xref: /openbmc/linux/mm/page_io.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <asm/pgtable.h>
28 
29 static struct bio *get_swap_bio(gfp_t gfp_flags,
30 				struct page *page, bio_end_io_t end_io)
31 {
32 	struct bio *bio;
33 
34 	bio = bio_alloc(gfp_flags, 1);
35 	if (bio) {
36 		struct block_device *bdev;
37 
38 		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
39 		bio_set_dev(bio, bdev);
40 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
41 		bio->bi_end_io = end_io;
42 
43 		bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
44 	}
45 	return bio;
46 }
47 
48 void end_swap_bio_write(struct bio *bio)
49 {
50 	struct page *page = bio_first_page_all(bio);
51 
52 	if (bio->bi_status) {
53 		SetPageError(page);
54 		/*
55 		 * We failed to write the page out to swap-space.
56 		 * Re-dirty the page in order to avoid it being reclaimed.
57 		 * Also print a dire warning that things will go BAD (tm)
58 		 * very quickly.
59 		 *
60 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
61 		 */
62 		set_page_dirty(page);
63 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
64 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65 			 (unsigned long long)bio->bi_iter.bi_sector);
66 		ClearPageReclaim(page);
67 	}
68 	end_page_writeback(page);
69 	bio_put(bio);
70 }
71 
72 static void swap_slot_free_notify(struct page *page)
73 {
74 	struct swap_info_struct *sis;
75 	struct gendisk *disk;
76 
77 	/*
78 	 * There is no guarantee that the page is in swap cache - the software
79 	 * suspend code (at least) uses end_swap_bio_read() against a non-
80 	 * swapcache page.  So we must check PG_swapcache before proceeding with
81 	 * this optimization.
82 	 */
83 	if (unlikely(!PageSwapCache(page)))
84 		return;
85 
86 	sis = page_swap_info(page);
87 	if (!(sis->flags & SWP_BLKDEV))
88 		return;
89 
90 	/*
91 	 * The swap subsystem performs lazy swap slot freeing,
92 	 * expecting that the page will be swapped out again.
93 	 * So we can avoid an unnecessary write if the page
94 	 * isn't redirtied.
95 	 * This is good for real swap storage because we can
96 	 * reduce unnecessary I/O and enhance wear-leveling
97 	 * if an SSD is used as the as swap device.
98 	 * But if in-memory swap device (eg zram) is used,
99 	 * this causes a duplicated copy between uncompressed
100 	 * data in VM-owned memory and compressed data in
101 	 * zram-owned memory.  So let's free zram-owned memory
102 	 * and make the VM-owned decompressed page *dirty*,
103 	 * so the page should be swapped out somewhere again if
104 	 * we again wish to reclaim it.
105 	 */
106 	disk = sis->bdev->bd_disk;
107 	if (disk->fops->swap_slot_free_notify) {
108 		swp_entry_t entry;
109 		unsigned long offset;
110 
111 		entry.val = page_private(page);
112 		offset = swp_offset(entry);
113 
114 		SetPageDirty(page);
115 		disk->fops->swap_slot_free_notify(sis->bdev,
116 				offset);
117 	}
118 }
119 
120 static void end_swap_bio_read(struct bio *bio)
121 {
122 	struct page *page = bio_first_page_all(bio);
123 	struct task_struct *waiter = bio->bi_private;
124 
125 	if (bio->bi_status) {
126 		SetPageError(page);
127 		ClearPageUptodate(page);
128 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130 			 (unsigned long long)bio->bi_iter.bi_sector);
131 		goto out;
132 	}
133 
134 	SetPageUptodate(page);
135 	swap_slot_free_notify(page);
136 out:
137 	unlock_page(page);
138 	WRITE_ONCE(bio->bi_private, NULL);
139 	bio_put(bio);
140 	blk_wake_io_task(waiter);
141 	put_task_struct(waiter);
142 }
143 
144 int generic_swapfile_activate(struct swap_info_struct *sis,
145 				struct file *swap_file,
146 				sector_t *span)
147 {
148 	struct address_space *mapping = swap_file->f_mapping;
149 	struct inode *inode = mapping->host;
150 	unsigned blocks_per_page;
151 	unsigned long page_no;
152 	unsigned blkbits;
153 	sector_t probe_block;
154 	sector_t last_block;
155 	sector_t lowest_block = -1;
156 	sector_t highest_block = 0;
157 	int nr_extents = 0;
158 	int ret;
159 
160 	blkbits = inode->i_blkbits;
161 	blocks_per_page = PAGE_SIZE >> blkbits;
162 
163 	/*
164 	 * Map all the blocks into the extent list.  This code doesn't try
165 	 * to be very smart.
166 	 */
167 	probe_block = 0;
168 	page_no = 0;
169 	last_block = i_size_read(inode) >> blkbits;
170 	while ((probe_block + blocks_per_page) <= last_block &&
171 			page_no < sis->max) {
172 		unsigned block_in_page;
173 		sector_t first_block;
174 
175 		cond_resched();
176 
177 		first_block = bmap(inode, probe_block);
178 		if (first_block == 0)
179 			goto bad_bmap;
180 
181 		/*
182 		 * It must be PAGE_SIZE aligned on-disk
183 		 */
184 		if (first_block & (blocks_per_page - 1)) {
185 			probe_block++;
186 			goto reprobe;
187 		}
188 
189 		for (block_in_page = 1; block_in_page < blocks_per_page;
190 					block_in_page++) {
191 			sector_t block;
192 
193 			block = bmap(inode, probe_block + block_in_page);
194 			if (block == 0)
195 				goto bad_bmap;
196 			if (block != first_block + block_in_page) {
197 				/* Discontiguity */
198 				probe_block++;
199 				goto reprobe;
200 			}
201 		}
202 
203 		first_block >>= (PAGE_SHIFT - blkbits);
204 		if (page_no) {	/* exclude the header page */
205 			if (first_block < lowest_block)
206 				lowest_block = first_block;
207 			if (first_block > highest_block)
208 				highest_block = first_block;
209 		}
210 
211 		/*
212 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
213 		 */
214 		ret = add_swap_extent(sis, page_no, 1, first_block);
215 		if (ret < 0)
216 			goto out;
217 		nr_extents += ret;
218 		page_no++;
219 		probe_block += blocks_per_page;
220 reprobe:
221 		continue;
222 	}
223 	ret = nr_extents;
224 	*span = 1 + highest_block - lowest_block;
225 	if (page_no == 0)
226 		page_no = 1;	/* force Empty message */
227 	sis->max = page_no;
228 	sis->pages = page_no - 1;
229 	sis->highest_bit = page_no - 1;
230 out:
231 	return ret;
232 bad_bmap:
233 	pr_err("swapon: swapfile has holes\n");
234 	ret = -EINVAL;
235 	goto out;
236 }
237 
238 /*
239  * We may have stale swap cache pages in memory: notice
240  * them here and get rid of the unnecessary final write.
241  */
242 int swap_writepage(struct page *page, struct writeback_control *wbc)
243 {
244 	int ret = 0;
245 
246 	if (try_to_free_swap(page)) {
247 		unlock_page(page);
248 		goto out;
249 	}
250 	if (frontswap_store(page) == 0) {
251 		set_page_writeback(page);
252 		unlock_page(page);
253 		end_page_writeback(page);
254 		goto out;
255 	}
256 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
257 out:
258 	return ret;
259 }
260 
261 static sector_t swap_page_sector(struct page *page)
262 {
263 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
264 }
265 
266 static inline void count_swpout_vm_event(struct page *page)
267 {
268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
269 	if (unlikely(PageTransHuge(page)))
270 		count_vm_event(THP_SWPOUT);
271 #endif
272 	count_vm_events(PSWPOUT, hpage_nr_pages(page));
273 }
274 
275 int __swap_writepage(struct page *page, struct writeback_control *wbc,
276 		bio_end_io_t end_write_func)
277 {
278 	struct bio *bio;
279 	int ret;
280 	struct swap_info_struct *sis = page_swap_info(page);
281 
282 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
283 	if (sis->flags & SWP_FS) {
284 		struct kiocb kiocb;
285 		struct file *swap_file = sis->swap_file;
286 		struct address_space *mapping = swap_file->f_mapping;
287 		struct bio_vec bv = {
288 			.bv_page = page,
289 			.bv_len  = PAGE_SIZE,
290 			.bv_offset = 0
291 		};
292 		struct iov_iter from;
293 
294 		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
295 		init_sync_kiocb(&kiocb, swap_file);
296 		kiocb.ki_pos = page_file_offset(page);
297 
298 		set_page_writeback(page);
299 		unlock_page(page);
300 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
301 		if (ret == PAGE_SIZE) {
302 			count_vm_event(PSWPOUT);
303 			ret = 0;
304 		} else {
305 			/*
306 			 * In the case of swap-over-nfs, this can be a
307 			 * temporary failure if the system has limited
308 			 * memory for allocating transmit buffers.
309 			 * Mark the page dirty and avoid
310 			 * rotate_reclaimable_page but rate-limit the
311 			 * messages but do not flag PageError like
312 			 * the normal direct-to-bio case as it could
313 			 * be temporary.
314 			 */
315 			set_page_dirty(page);
316 			ClearPageReclaim(page);
317 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
318 					   page_file_offset(page));
319 		}
320 		end_page_writeback(page);
321 		return ret;
322 	}
323 
324 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
325 	if (!ret) {
326 		count_swpout_vm_event(page);
327 		return 0;
328 	}
329 
330 	ret = 0;
331 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
332 	if (bio == NULL) {
333 		set_page_dirty(page);
334 		unlock_page(page);
335 		ret = -ENOMEM;
336 		goto out;
337 	}
338 	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
339 	bio_associate_blkg_from_page(bio, page);
340 	count_swpout_vm_event(page);
341 	set_page_writeback(page);
342 	unlock_page(page);
343 	submit_bio(bio);
344 out:
345 	return ret;
346 }
347 
348 int swap_readpage(struct page *page, bool synchronous)
349 {
350 	struct bio *bio;
351 	int ret = 0;
352 	struct swap_info_struct *sis = page_swap_info(page);
353 	blk_qc_t qc;
354 	struct gendisk *disk;
355 
356 	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
357 	VM_BUG_ON_PAGE(!PageLocked(page), page);
358 	VM_BUG_ON_PAGE(PageUptodate(page), page);
359 	if (frontswap_load(page) == 0) {
360 		SetPageUptodate(page);
361 		unlock_page(page);
362 		goto out;
363 	}
364 
365 	if (sis->flags & SWP_FS) {
366 		struct file *swap_file = sis->swap_file;
367 		struct address_space *mapping = swap_file->f_mapping;
368 
369 		ret = mapping->a_ops->readpage(swap_file, page);
370 		if (!ret)
371 			count_vm_event(PSWPIN);
372 		return ret;
373 	}
374 
375 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
376 	if (!ret) {
377 		if (trylock_page(page)) {
378 			swap_slot_free_notify(page);
379 			unlock_page(page);
380 		}
381 
382 		count_vm_event(PSWPIN);
383 		return 0;
384 	}
385 
386 	ret = 0;
387 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
388 	if (bio == NULL) {
389 		unlock_page(page);
390 		ret = -ENOMEM;
391 		goto out;
392 	}
393 	disk = bio->bi_disk;
394 	/*
395 	 * Keep this task valid during swap readpage because the oom killer may
396 	 * attempt to access it in the page fault retry time check.
397 	 */
398 	get_task_struct(current);
399 	bio->bi_private = current;
400 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
401 	if (synchronous)
402 		bio->bi_opf |= REQ_HIPRI;
403 	count_vm_event(PSWPIN);
404 	bio_get(bio);
405 	qc = submit_bio(bio);
406 	while (synchronous) {
407 		set_current_state(TASK_UNINTERRUPTIBLE);
408 		if (!READ_ONCE(bio->bi_private))
409 			break;
410 
411 		if (!blk_poll(disk->queue, qc, true))
412 			io_schedule();
413 	}
414 	__set_current_state(TASK_RUNNING);
415 	bio_put(bio);
416 
417 out:
418 	return ret;
419 }
420 
421 int swap_set_page_dirty(struct page *page)
422 {
423 	struct swap_info_struct *sis = page_swap_info(page);
424 
425 	if (sis->flags & SWP_FS) {
426 		struct address_space *mapping = sis->swap_file->f_mapping;
427 
428 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
429 		return mapping->a_ops->set_page_dirty(page);
430 	} else {
431 		return __set_page_dirty_no_writeback(page);
432 	}
433 }
434