xref: /openbmc/linux/mm/page_io.c (revision 225311a4)
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95,
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <linux/sched/task.h>
26 #include <asm/pgtable.h>
27 
28 static struct bio *get_swap_bio(gfp_t gfp_flags,
29 				struct page *page, bio_end_io_t end_io)
30 {
31 	int i, nr = hpage_nr_pages(page);
32 	struct bio *bio;
33 
34 	bio = bio_alloc(gfp_flags, nr);
35 	if (bio) {
36 		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
37 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
38 		bio->bi_end_io = end_io;
39 
40 		for (i = 0; i < nr; i++)
41 			bio_add_page(bio, page + i, PAGE_SIZE, 0);
42 		VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
43 	}
44 	return bio;
45 }
46 
47 void end_swap_bio_write(struct bio *bio)
48 {
49 	struct page *page = bio->bi_io_vec[0].bv_page;
50 
51 	if (bio->bi_status) {
52 		SetPageError(page);
53 		/*
54 		 * We failed to write the page out to swap-space.
55 		 * Re-dirty the page in order to avoid it being reclaimed.
56 		 * Also print a dire warning that things will go BAD (tm)
57 		 * very quickly.
58 		 *
59 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
60 		 */
61 		set_page_dirty(page);
62 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
63 			 imajor(bio->bi_bdev->bd_inode),
64 			 iminor(bio->bi_bdev->bd_inode),
65 			 (unsigned long long)bio->bi_iter.bi_sector);
66 		ClearPageReclaim(page);
67 	}
68 	end_page_writeback(page);
69 	bio_put(bio);
70 }
71 
72 static void swap_slot_free_notify(struct page *page)
73 {
74 	struct swap_info_struct *sis;
75 	struct gendisk *disk;
76 
77 	/*
78 	 * There is no guarantee that the page is in swap cache - the software
79 	 * suspend code (at least) uses end_swap_bio_read() against a non-
80 	 * swapcache page.  So we must check PG_swapcache before proceeding with
81 	 * this optimization.
82 	 */
83 	if (unlikely(!PageSwapCache(page)))
84 		return;
85 
86 	sis = page_swap_info(page);
87 	if (!(sis->flags & SWP_BLKDEV))
88 		return;
89 
90 	/*
91 	 * The swap subsystem performs lazy swap slot freeing,
92 	 * expecting that the page will be swapped out again.
93 	 * So we can avoid an unnecessary write if the page
94 	 * isn't redirtied.
95 	 * This is good for real swap storage because we can
96 	 * reduce unnecessary I/O and enhance wear-leveling
97 	 * if an SSD is used as the as swap device.
98 	 * But if in-memory swap device (eg zram) is used,
99 	 * this causes a duplicated copy between uncompressed
100 	 * data in VM-owned memory and compressed data in
101 	 * zram-owned memory.  So let's free zram-owned memory
102 	 * and make the VM-owned decompressed page *dirty*,
103 	 * so the page should be swapped out somewhere again if
104 	 * we again wish to reclaim it.
105 	 */
106 	disk = sis->bdev->bd_disk;
107 	if (disk->fops->swap_slot_free_notify) {
108 		swp_entry_t entry;
109 		unsigned long offset;
110 
111 		entry.val = page_private(page);
112 		offset = swp_offset(entry);
113 
114 		SetPageDirty(page);
115 		disk->fops->swap_slot_free_notify(sis->bdev,
116 				offset);
117 	}
118 }
119 
120 static void end_swap_bio_read(struct bio *bio)
121 {
122 	struct page *page = bio->bi_io_vec[0].bv_page;
123 	struct task_struct *waiter = bio->bi_private;
124 
125 	if (bio->bi_status) {
126 		SetPageError(page);
127 		ClearPageUptodate(page);
128 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129 			 imajor(bio->bi_bdev->bd_inode),
130 			 iminor(bio->bi_bdev->bd_inode),
131 			 (unsigned long long)bio->bi_iter.bi_sector);
132 		goto out;
133 	}
134 
135 	SetPageUptodate(page);
136 	swap_slot_free_notify(page);
137 out:
138 	unlock_page(page);
139 	WRITE_ONCE(bio->bi_private, NULL);
140 	bio_put(bio);
141 	wake_up_process(waiter);
142 	put_task_struct(waiter);
143 }
144 
145 int generic_swapfile_activate(struct swap_info_struct *sis,
146 				struct file *swap_file,
147 				sector_t *span)
148 {
149 	struct address_space *mapping = swap_file->f_mapping;
150 	struct inode *inode = mapping->host;
151 	unsigned blocks_per_page;
152 	unsigned long page_no;
153 	unsigned blkbits;
154 	sector_t probe_block;
155 	sector_t last_block;
156 	sector_t lowest_block = -1;
157 	sector_t highest_block = 0;
158 	int nr_extents = 0;
159 	int ret;
160 
161 	blkbits = inode->i_blkbits;
162 	blocks_per_page = PAGE_SIZE >> blkbits;
163 
164 	/*
165 	 * Map all the blocks into the extent list.  This code doesn't try
166 	 * to be very smart.
167 	 */
168 	probe_block = 0;
169 	page_no = 0;
170 	last_block = i_size_read(inode) >> blkbits;
171 	while ((probe_block + blocks_per_page) <= last_block &&
172 			page_no < sis->max) {
173 		unsigned block_in_page;
174 		sector_t first_block;
175 
176 		cond_resched();
177 
178 		first_block = bmap(inode, probe_block);
179 		if (first_block == 0)
180 			goto bad_bmap;
181 
182 		/*
183 		 * It must be PAGE_SIZE aligned on-disk
184 		 */
185 		if (first_block & (blocks_per_page - 1)) {
186 			probe_block++;
187 			goto reprobe;
188 		}
189 
190 		for (block_in_page = 1; block_in_page < blocks_per_page;
191 					block_in_page++) {
192 			sector_t block;
193 
194 			block = bmap(inode, probe_block + block_in_page);
195 			if (block == 0)
196 				goto bad_bmap;
197 			if (block != first_block + block_in_page) {
198 				/* Discontiguity */
199 				probe_block++;
200 				goto reprobe;
201 			}
202 		}
203 
204 		first_block >>= (PAGE_SHIFT - blkbits);
205 		if (page_no) {	/* exclude the header page */
206 			if (first_block < lowest_block)
207 				lowest_block = first_block;
208 			if (first_block > highest_block)
209 				highest_block = first_block;
210 		}
211 
212 		/*
213 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
214 		 */
215 		ret = add_swap_extent(sis, page_no, 1, first_block);
216 		if (ret < 0)
217 			goto out;
218 		nr_extents += ret;
219 		page_no++;
220 		probe_block += blocks_per_page;
221 reprobe:
222 		continue;
223 	}
224 	ret = nr_extents;
225 	*span = 1 + highest_block - lowest_block;
226 	if (page_no == 0)
227 		page_no = 1;	/* force Empty message */
228 	sis->max = page_no;
229 	sis->pages = page_no - 1;
230 	sis->highest_bit = page_no - 1;
231 out:
232 	return ret;
233 bad_bmap:
234 	pr_err("swapon: swapfile has holes\n");
235 	ret = -EINVAL;
236 	goto out;
237 }
238 
239 /*
240  * We may have stale swap cache pages in memory: notice
241  * them here and get rid of the unnecessary final write.
242  */
243 int swap_writepage(struct page *page, struct writeback_control *wbc)
244 {
245 	int ret = 0;
246 
247 	if (try_to_free_swap(page)) {
248 		unlock_page(page);
249 		goto out;
250 	}
251 	if (frontswap_store(page) == 0) {
252 		set_page_writeback(page);
253 		unlock_page(page);
254 		end_page_writeback(page);
255 		goto out;
256 	}
257 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
258 out:
259 	return ret;
260 }
261 
262 static sector_t swap_page_sector(struct page *page)
263 {
264 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
265 }
266 
267 static inline void count_swpout_vm_event(struct page *page)
268 {
269 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
270 	if (unlikely(PageTransHuge(page)))
271 		count_vm_event(THP_SWPOUT);
272 #endif
273 	count_vm_events(PSWPOUT, hpage_nr_pages(page));
274 }
275 
276 int __swap_writepage(struct page *page, struct writeback_control *wbc,
277 		bio_end_io_t end_write_func)
278 {
279 	struct bio *bio;
280 	int ret;
281 	struct swap_info_struct *sis = page_swap_info(page);
282 
283 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
284 	if (sis->flags & SWP_FILE) {
285 		struct kiocb kiocb;
286 		struct file *swap_file = sis->swap_file;
287 		struct address_space *mapping = swap_file->f_mapping;
288 		struct bio_vec bv = {
289 			.bv_page = page,
290 			.bv_len  = PAGE_SIZE,
291 			.bv_offset = 0
292 		};
293 		struct iov_iter from;
294 
295 		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
296 		init_sync_kiocb(&kiocb, swap_file);
297 		kiocb.ki_pos = page_file_offset(page);
298 
299 		set_page_writeback(page);
300 		unlock_page(page);
301 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
302 		if (ret == PAGE_SIZE) {
303 			count_vm_event(PSWPOUT);
304 			ret = 0;
305 		} else {
306 			/*
307 			 * In the case of swap-over-nfs, this can be a
308 			 * temporary failure if the system has limited
309 			 * memory for allocating transmit buffers.
310 			 * Mark the page dirty and avoid
311 			 * rotate_reclaimable_page but rate-limit the
312 			 * messages but do not flag PageError like
313 			 * the normal direct-to-bio case as it could
314 			 * be temporary.
315 			 */
316 			set_page_dirty(page);
317 			ClearPageReclaim(page);
318 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
319 					   page_file_offset(page));
320 		}
321 		end_page_writeback(page);
322 		return ret;
323 	}
324 
325 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
326 	if (!ret) {
327 		count_swpout_vm_event(page);
328 		return 0;
329 	}
330 
331 	ret = 0;
332 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
333 	if (bio == NULL) {
334 		set_page_dirty(page);
335 		unlock_page(page);
336 		ret = -ENOMEM;
337 		goto out;
338 	}
339 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
340 	count_swpout_vm_event(page);
341 	set_page_writeback(page);
342 	unlock_page(page);
343 	submit_bio(bio);
344 out:
345 	return ret;
346 }
347 
348 int swap_readpage(struct page *page, bool do_poll)
349 {
350 	struct bio *bio;
351 	int ret = 0;
352 	struct swap_info_struct *sis = page_swap_info(page);
353 	blk_qc_t qc;
354 	struct block_device *bdev;
355 
356 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
357 	VM_BUG_ON_PAGE(!PageLocked(page), page);
358 	VM_BUG_ON_PAGE(PageUptodate(page), page);
359 	if (frontswap_load(page) == 0) {
360 		SetPageUptodate(page);
361 		unlock_page(page);
362 		goto out;
363 	}
364 
365 	if (sis->flags & SWP_FILE) {
366 		struct file *swap_file = sis->swap_file;
367 		struct address_space *mapping = swap_file->f_mapping;
368 
369 		ret = mapping->a_ops->readpage(swap_file, page);
370 		if (!ret)
371 			count_vm_event(PSWPIN);
372 		return ret;
373 	}
374 
375 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
376 	if (!ret) {
377 		if (trylock_page(page)) {
378 			swap_slot_free_notify(page);
379 			unlock_page(page);
380 		}
381 
382 		count_vm_event(PSWPIN);
383 		return 0;
384 	}
385 
386 	ret = 0;
387 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
388 	if (bio == NULL) {
389 		unlock_page(page);
390 		ret = -ENOMEM;
391 		goto out;
392 	}
393 	bdev = bio->bi_bdev;
394 	/*
395 	 * Keep this task valid during swap readpage because the oom killer may
396 	 * attempt to access it in the page fault retry time check.
397 	 */
398 	get_task_struct(current);
399 	bio->bi_private = current;
400 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
401 	count_vm_event(PSWPIN);
402 	bio_get(bio);
403 	qc = submit_bio(bio);
404 	while (do_poll) {
405 		set_current_state(TASK_UNINTERRUPTIBLE);
406 		if (!READ_ONCE(bio->bi_private))
407 			break;
408 
409 		if (!blk_mq_poll(bdev_get_queue(bdev), qc))
410 			break;
411 	}
412 	__set_current_state(TASK_RUNNING);
413 	bio_put(bio);
414 
415 out:
416 	return ret;
417 }
418 
419 int swap_set_page_dirty(struct page *page)
420 {
421 	struct swap_info_struct *sis = page_swap_info(page);
422 
423 	if (sis->flags & SWP_FILE) {
424 		struct address_space *mapping = sis->swap_file->f_mapping;
425 
426 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
427 		return mapping->a_ops->set_page_dirty(page);
428 	} else {
429 		return __set_page_dirty_no_writeback(page);
430 	}
431 }
432