xref: /openbmc/linux/mm/page_ext.c (revision f7d84fa7)
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/page_ext.h>
5 #include <linux/memory.h>
6 #include <linux/vmalloc.h>
7 #include <linux/kmemleak.h>
8 #include <linux/page_owner.h>
9 #include <linux/page_idle.h>
10 
11 /*
12  * struct page extension
13  *
14  * This is the feature to manage memory for extended data per page.
15  *
16  * Until now, we must modify struct page itself to store extra data per page.
17  * This requires rebuilding the kernel and it is really time consuming process.
18  * And, sometimes, rebuild is impossible due to third party module dependency.
19  * At last, enlarging struct page could cause un-wanted system behaviour change.
20  *
21  * This feature is intended to overcome above mentioned problems. This feature
22  * allocates memory for extended data per page in certain place rather than
23  * the struct page itself. This memory can be accessed by the accessor
24  * functions provided by this code. During the boot process, it checks whether
25  * allocation of huge chunk of memory is needed or not. If not, it avoids
26  * allocating memory at all. With this advantage, we can include this feature
27  * into the kernel in default and can avoid rebuild and solve related problems.
28  *
29  * To help these things to work well, there are two callbacks for clients. One
30  * is the need callback which is mandatory if user wants to avoid useless
31  * memory allocation at boot-time. The other is optional, init callback, which
32  * is used to do proper initialization after memory is allocated.
33  *
34  * The need callback is used to decide whether extended memory allocation is
35  * needed or not. Sometimes users want to deactivate some features in this
36  * boot and extra memory would be unneccessary. In this case, to avoid
37  * allocating huge chunk of memory, each clients represent their need of
38  * extra memory through the need callback. If one of the need callbacks
39  * returns true, it means that someone needs extra memory so that
40  * page extension core should allocates memory for page extension. If
41  * none of need callbacks return true, memory isn't needed at all in this boot
42  * and page extension core can skip to allocate memory. As result,
43  * none of memory is wasted.
44  *
45  * When need callback returns true, page_ext checks if there is a request for
46  * extra memory through size in struct page_ext_operations. If it is non-zero,
47  * extra space is allocated for each page_ext entry and offset is returned to
48  * user through offset in struct page_ext_operations.
49  *
50  * The init callback is used to do proper initialization after page extension
51  * is completely initialized. In sparse memory system, extra memory is
52  * allocated some time later than memmap is allocated. In other words, lifetime
53  * of memory for page extension isn't same with memmap for struct page.
54  * Therefore, clients can't store extra data until page extension is
55  * initialized, even if pages are allocated and used freely. This could
56  * cause inadequate state of extra data per page, so, to prevent it, client
57  * can utilize this callback to initialize the state of it correctly.
58  */
59 
60 static struct page_ext_operations *page_ext_ops[] = {
61 	&debug_guardpage_ops,
62 #ifdef CONFIG_PAGE_OWNER
63 	&page_owner_ops,
64 #endif
65 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
66 	&page_idle_ops,
67 #endif
68 };
69 
70 static unsigned long total_usage;
71 static unsigned long extra_mem;
72 
73 static bool __init invoke_need_callbacks(void)
74 {
75 	int i;
76 	int entries = ARRAY_SIZE(page_ext_ops);
77 	bool need = false;
78 
79 	for (i = 0; i < entries; i++) {
80 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
81 			page_ext_ops[i]->offset = sizeof(struct page_ext) +
82 						extra_mem;
83 			extra_mem += page_ext_ops[i]->size;
84 			need = true;
85 		}
86 	}
87 
88 	return need;
89 }
90 
91 static void __init invoke_init_callbacks(void)
92 {
93 	int i;
94 	int entries = ARRAY_SIZE(page_ext_ops);
95 
96 	for (i = 0; i < entries; i++) {
97 		if (page_ext_ops[i]->init)
98 			page_ext_ops[i]->init();
99 	}
100 }
101 
102 static unsigned long get_entry_size(void)
103 {
104 	return sizeof(struct page_ext) + extra_mem;
105 }
106 
107 static inline struct page_ext *get_entry(void *base, unsigned long index)
108 {
109 	return base + get_entry_size() * index;
110 }
111 
112 #if !defined(CONFIG_SPARSEMEM)
113 
114 
115 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
116 {
117 	pgdat->node_page_ext = NULL;
118 }
119 
120 struct page_ext *lookup_page_ext(struct page *page)
121 {
122 	unsigned long pfn = page_to_pfn(page);
123 	unsigned long index;
124 	struct page_ext *base;
125 
126 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
127 #if defined(CONFIG_DEBUG_VM)
128 	/*
129 	 * The sanity checks the page allocator does upon freeing a
130 	 * page can reach here before the page_ext arrays are
131 	 * allocated when feeding a range of pages to the allocator
132 	 * for the first time during bootup or memory hotplug.
133 	 */
134 	if (unlikely(!base))
135 		return NULL;
136 #endif
137 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
138 					MAX_ORDER_NR_PAGES);
139 	return get_entry(base, index);
140 }
141 
142 static int __init alloc_node_page_ext(int nid)
143 {
144 	struct page_ext *base;
145 	unsigned long table_size;
146 	unsigned long nr_pages;
147 
148 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
149 	if (!nr_pages)
150 		return 0;
151 
152 	/*
153 	 * Need extra space if node range is not aligned with
154 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
155 	 * checks buddy's status, range could be out of exact node range.
156 	 */
157 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
158 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
159 		nr_pages += MAX_ORDER_NR_PAGES;
160 
161 	table_size = get_entry_size() * nr_pages;
162 
163 	base = memblock_virt_alloc_try_nid_nopanic(
164 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
165 			BOOTMEM_ALLOC_ACCESSIBLE, nid);
166 	if (!base)
167 		return -ENOMEM;
168 	NODE_DATA(nid)->node_page_ext = base;
169 	total_usage += table_size;
170 	return 0;
171 }
172 
173 void __init page_ext_init_flatmem(void)
174 {
175 
176 	int nid, fail;
177 
178 	if (!invoke_need_callbacks())
179 		return;
180 
181 	for_each_online_node(nid)  {
182 		fail = alloc_node_page_ext(nid);
183 		if (fail)
184 			goto fail;
185 	}
186 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
187 	invoke_init_callbacks();
188 	return;
189 
190 fail:
191 	pr_crit("allocation of page_ext failed.\n");
192 	panic("Out of memory");
193 }
194 
195 #else /* CONFIG_FLAT_NODE_MEM_MAP */
196 
197 struct page_ext *lookup_page_ext(struct page *page)
198 {
199 	unsigned long pfn = page_to_pfn(page);
200 	struct mem_section *section = __pfn_to_section(pfn);
201 #if defined(CONFIG_DEBUG_VM)
202 	/*
203 	 * The sanity checks the page allocator does upon freeing a
204 	 * page can reach here before the page_ext arrays are
205 	 * allocated when feeding a range of pages to the allocator
206 	 * for the first time during bootup or memory hotplug.
207 	 */
208 	if (!section->page_ext)
209 		return NULL;
210 #endif
211 	return get_entry(section->page_ext, pfn);
212 }
213 
214 static void *__meminit alloc_page_ext(size_t size, int nid)
215 {
216 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
217 	void *addr = NULL;
218 
219 	addr = alloc_pages_exact_nid(nid, size, flags);
220 	if (addr) {
221 		kmemleak_alloc(addr, size, 1, flags);
222 		return addr;
223 	}
224 
225 	if (node_state(nid, N_HIGH_MEMORY))
226 		addr = vzalloc_node(size, nid);
227 	else
228 		addr = vzalloc(size);
229 
230 	return addr;
231 }
232 
233 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
234 {
235 	struct mem_section *section;
236 	struct page_ext *base;
237 	unsigned long table_size;
238 
239 	section = __pfn_to_section(pfn);
240 
241 	if (section->page_ext)
242 		return 0;
243 
244 	table_size = get_entry_size() * PAGES_PER_SECTION;
245 	base = alloc_page_ext(table_size, nid);
246 
247 	/*
248 	 * The value stored in section->page_ext is (base - pfn)
249 	 * and it does not point to the memory block allocated above,
250 	 * causing kmemleak false positives.
251 	 */
252 	kmemleak_not_leak(base);
253 
254 	if (!base) {
255 		pr_err("page ext allocation failure\n");
256 		return -ENOMEM;
257 	}
258 
259 	/*
260 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
261 	 * we need to apply a mask.
262 	 */
263 	pfn &= PAGE_SECTION_MASK;
264 	section->page_ext = (void *)base - get_entry_size() * pfn;
265 	total_usage += table_size;
266 	return 0;
267 }
268 #ifdef CONFIG_MEMORY_HOTPLUG
269 static void free_page_ext(void *addr)
270 {
271 	if (is_vmalloc_addr(addr)) {
272 		vfree(addr);
273 	} else {
274 		struct page *page = virt_to_page(addr);
275 		size_t table_size;
276 
277 		table_size = get_entry_size() * PAGES_PER_SECTION;
278 
279 		BUG_ON(PageReserved(page));
280 		free_pages_exact(addr, table_size);
281 	}
282 }
283 
284 static void __free_page_ext(unsigned long pfn)
285 {
286 	struct mem_section *ms;
287 	struct page_ext *base;
288 
289 	ms = __pfn_to_section(pfn);
290 	if (!ms || !ms->page_ext)
291 		return;
292 	base = get_entry(ms->page_ext, pfn);
293 	free_page_ext(base);
294 	ms->page_ext = NULL;
295 }
296 
297 static int __meminit online_page_ext(unsigned long start_pfn,
298 				unsigned long nr_pages,
299 				int nid)
300 {
301 	unsigned long start, end, pfn;
302 	int fail = 0;
303 
304 	start = SECTION_ALIGN_DOWN(start_pfn);
305 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
306 
307 	if (nid == -1) {
308 		/*
309 		 * In this case, "nid" already exists and contains valid memory.
310 		 * "start_pfn" passed to us is a pfn which is an arg for
311 		 * online__pages(), and start_pfn should exist.
312 		 */
313 		nid = pfn_to_nid(start_pfn);
314 		VM_BUG_ON(!node_state(nid, N_ONLINE));
315 	}
316 
317 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
318 		if (!pfn_present(pfn))
319 			continue;
320 		fail = init_section_page_ext(pfn, nid);
321 	}
322 	if (!fail)
323 		return 0;
324 
325 	/* rollback */
326 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
327 		__free_page_ext(pfn);
328 
329 	return -ENOMEM;
330 }
331 
332 static int __meminit offline_page_ext(unsigned long start_pfn,
333 				unsigned long nr_pages, int nid)
334 {
335 	unsigned long start, end, pfn;
336 
337 	start = SECTION_ALIGN_DOWN(start_pfn);
338 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
339 
340 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
341 		__free_page_ext(pfn);
342 	return 0;
343 
344 }
345 
346 static int __meminit page_ext_callback(struct notifier_block *self,
347 			       unsigned long action, void *arg)
348 {
349 	struct memory_notify *mn = arg;
350 	int ret = 0;
351 
352 	switch (action) {
353 	case MEM_GOING_ONLINE:
354 		ret = online_page_ext(mn->start_pfn,
355 				   mn->nr_pages, mn->status_change_nid);
356 		break;
357 	case MEM_OFFLINE:
358 		offline_page_ext(mn->start_pfn,
359 				mn->nr_pages, mn->status_change_nid);
360 		break;
361 	case MEM_CANCEL_ONLINE:
362 		offline_page_ext(mn->start_pfn,
363 				mn->nr_pages, mn->status_change_nid);
364 		break;
365 	case MEM_GOING_OFFLINE:
366 		break;
367 	case MEM_ONLINE:
368 	case MEM_CANCEL_OFFLINE:
369 		break;
370 	}
371 
372 	return notifier_from_errno(ret);
373 }
374 
375 #endif
376 
377 void __init page_ext_init(void)
378 {
379 	unsigned long pfn;
380 	int nid;
381 
382 	if (!invoke_need_callbacks())
383 		return;
384 
385 	for_each_node_state(nid, N_MEMORY) {
386 		unsigned long start_pfn, end_pfn;
387 
388 		start_pfn = node_start_pfn(nid);
389 		end_pfn = node_end_pfn(nid);
390 		/*
391 		 * start_pfn and end_pfn may not be aligned to SECTION and the
392 		 * page->flags of out of node pages are not initialized.  So we
393 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
394 		 */
395 		for (pfn = start_pfn; pfn < end_pfn;
396 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
397 
398 			if (!pfn_valid(pfn))
399 				continue;
400 			/*
401 			 * Nodes's pfns can be overlapping.
402 			 * We know some arch can have a nodes layout such as
403 			 * -------------pfn-------------->
404 			 * N0 | N1 | N2 | N0 | N1 | N2|....
405 			 *
406 			 * Take into account DEFERRED_STRUCT_PAGE_INIT.
407 			 */
408 			if (early_pfn_to_nid(pfn) != nid)
409 				continue;
410 			if (init_section_page_ext(pfn, nid))
411 				goto oom;
412 		}
413 	}
414 	hotplug_memory_notifier(page_ext_callback, 0);
415 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
416 	invoke_init_callbacks();
417 	return;
418 
419 oom:
420 	panic("Out of memory");
421 }
422 
423 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
424 {
425 }
426 
427 #endif
428