xref: /openbmc/linux/mm/page_ext.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 
12 /*
13  * struct page extension
14  *
15  * This is the feature to manage memory for extended data per page.
16  *
17  * Until now, we must modify struct page itself to store extra data per page.
18  * This requires rebuilding the kernel and it is really time consuming process.
19  * And, sometimes, rebuild is impossible due to third party module dependency.
20  * At last, enlarging struct page could cause un-wanted system behaviour change.
21  *
22  * This feature is intended to overcome above mentioned problems. This feature
23  * allocates memory for extended data per page in certain place rather than
24  * the struct page itself. This memory can be accessed by the accessor
25  * functions provided by this code. During the boot process, it checks whether
26  * allocation of huge chunk of memory is needed or not. If not, it avoids
27  * allocating memory at all. With this advantage, we can include this feature
28  * into the kernel in default and can avoid rebuild and solve related problems.
29  *
30  * To help these things to work well, there are two callbacks for clients. One
31  * is the need callback which is mandatory if user wants to avoid useless
32  * memory allocation at boot-time. The other is optional, init callback, which
33  * is used to do proper initialization after memory is allocated.
34  *
35  * The need callback is used to decide whether extended memory allocation is
36  * needed or not. Sometimes users want to deactivate some features in this
37  * boot and extra memory would be unneccessary. In this case, to avoid
38  * allocating huge chunk of memory, each clients represent their need of
39  * extra memory through the need callback. If one of the need callbacks
40  * returns true, it means that someone needs extra memory so that
41  * page extension core should allocates memory for page extension. If
42  * none of need callbacks return true, memory isn't needed at all in this boot
43  * and page extension core can skip to allocate memory. As result,
44  * none of memory is wasted.
45  *
46  * When need callback returns true, page_ext checks if there is a request for
47  * extra memory through size in struct page_ext_operations. If it is non-zero,
48  * extra space is allocated for each page_ext entry and offset is returned to
49  * user through offset in struct page_ext_operations.
50  *
51  * The init callback is used to do proper initialization after page extension
52  * is completely initialized. In sparse memory system, extra memory is
53  * allocated some time later than memmap is allocated. In other words, lifetime
54  * of memory for page extension isn't same with memmap for struct page.
55  * Therefore, clients can't store extra data until page extension is
56  * initialized, even if pages are allocated and used freely. This could
57  * cause inadequate state of extra data per page, so, to prevent it, client
58  * can utilize this callback to initialize the state of it correctly.
59  */
60 
61 static struct page_ext_operations *page_ext_ops[] = {
62 #ifdef CONFIG_PAGE_OWNER
63 	&page_owner_ops,
64 #endif
65 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
66 	&page_idle_ops,
67 #endif
68 };
69 
70 static unsigned long total_usage;
71 static unsigned long extra_mem;
72 
73 static bool __init invoke_need_callbacks(void)
74 {
75 	int i;
76 	int entries = ARRAY_SIZE(page_ext_ops);
77 	bool need = false;
78 
79 	for (i = 0; i < entries; i++) {
80 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
81 			page_ext_ops[i]->offset = sizeof(struct page_ext) +
82 						extra_mem;
83 			extra_mem += page_ext_ops[i]->size;
84 			need = true;
85 		}
86 	}
87 
88 	return need;
89 }
90 
91 static void __init invoke_init_callbacks(void)
92 {
93 	int i;
94 	int entries = ARRAY_SIZE(page_ext_ops);
95 
96 	for (i = 0; i < entries; i++) {
97 		if (page_ext_ops[i]->init)
98 			page_ext_ops[i]->init();
99 	}
100 }
101 
102 static unsigned long get_entry_size(void)
103 {
104 	return sizeof(struct page_ext) + extra_mem;
105 }
106 
107 static inline struct page_ext *get_entry(void *base, unsigned long index)
108 {
109 	return base + get_entry_size() * index;
110 }
111 
112 #if !defined(CONFIG_SPARSEMEM)
113 
114 
115 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
116 {
117 	pgdat->node_page_ext = NULL;
118 }
119 
120 struct page_ext *lookup_page_ext(const struct page *page)
121 {
122 	unsigned long pfn = page_to_pfn(page);
123 	unsigned long index;
124 	struct page_ext *base;
125 
126 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
127 	/*
128 	 * The sanity checks the page allocator does upon freeing a
129 	 * page can reach here before the page_ext arrays are
130 	 * allocated when feeding a range of pages to the allocator
131 	 * for the first time during bootup or memory hotplug.
132 	 */
133 	if (unlikely(!base))
134 		return NULL;
135 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
136 					MAX_ORDER_NR_PAGES);
137 	return get_entry(base, index);
138 }
139 
140 static int __init alloc_node_page_ext(int nid)
141 {
142 	struct page_ext *base;
143 	unsigned long table_size;
144 	unsigned long nr_pages;
145 
146 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
147 	if (!nr_pages)
148 		return 0;
149 
150 	/*
151 	 * Need extra space if node range is not aligned with
152 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
153 	 * checks buddy's status, range could be out of exact node range.
154 	 */
155 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
156 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
157 		nr_pages += MAX_ORDER_NR_PAGES;
158 
159 	table_size = get_entry_size() * nr_pages;
160 
161 	base = memblock_alloc_try_nid(
162 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
163 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
164 	if (!base)
165 		return -ENOMEM;
166 	NODE_DATA(nid)->node_page_ext = base;
167 	total_usage += table_size;
168 	return 0;
169 }
170 
171 void __init page_ext_init_flatmem(void)
172 {
173 
174 	int nid, fail;
175 
176 	if (!invoke_need_callbacks())
177 		return;
178 
179 	for_each_online_node(nid)  {
180 		fail = alloc_node_page_ext(nid);
181 		if (fail)
182 			goto fail;
183 	}
184 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
185 	invoke_init_callbacks();
186 	return;
187 
188 fail:
189 	pr_crit("allocation of page_ext failed.\n");
190 	panic("Out of memory");
191 }
192 
193 #else /* CONFIG_FLAT_NODE_MEM_MAP */
194 
195 struct page_ext *lookup_page_ext(const struct page *page)
196 {
197 	unsigned long pfn = page_to_pfn(page);
198 	struct mem_section *section = __pfn_to_section(pfn);
199 	/*
200 	 * The sanity checks the page allocator does upon freeing a
201 	 * page can reach here before the page_ext arrays are
202 	 * allocated when feeding a range of pages to the allocator
203 	 * for the first time during bootup or memory hotplug.
204 	 */
205 	if (!section->page_ext)
206 		return NULL;
207 	return get_entry(section->page_ext, pfn);
208 }
209 
210 static void *__meminit alloc_page_ext(size_t size, int nid)
211 {
212 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
213 	void *addr = NULL;
214 
215 	addr = alloc_pages_exact_nid(nid, size, flags);
216 	if (addr) {
217 		kmemleak_alloc(addr, size, 1, flags);
218 		return addr;
219 	}
220 
221 	addr = vzalloc_node(size, nid);
222 
223 	return addr;
224 }
225 
226 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
227 {
228 	struct mem_section *section;
229 	struct page_ext *base;
230 	unsigned long table_size;
231 
232 	section = __pfn_to_section(pfn);
233 
234 	if (section->page_ext)
235 		return 0;
236 
237 	table_size = get_entry_size() * PAGES_PER_SECTION;
238 	base = alloc_page_ext(table_size, nid);
239 
240 	/*
241 	 * The value stored in section->page_ext is (base - pfn)
242 	 * and it does not point to the memory block allocated above,
243 	 * causing kmemleak false positives.
244 	 */
245 	kmemleak_not_leak(base);
246 
247 	if (!base) {
248 		pr_err("page ext allocation failure\n");
249 		return -ENOMEM;
250 	}
251 
252 	/*
253 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
254 	 * we need to apply a mask.
255 	 */
256 	pfn &= PAGE_SECTION_MASK;
257 	section->page_ext = (void *)base - get_entry_size() * pfn;
258 	total_usage += table_size;
259 	return 0;
260 }
261 #ifdef CONFIG_MEMORY_HOTPLUG
262 static void free_page_ext(void *addr)
263 {
264 	if (is_vmalloc_addr(addr)) {
265 		vfree(addr);
266 	} else {
267 		struct page *page = virt_to_page(addr);
268 		size_t table_size;
269 
270 		table_size = get_entry_size() * PAGES_PER_SECTION;
271 
272 		BUG_ON(PageReserved(page));
273 		kmemleak_free(addr);
274 		free_pages_exact(addr, table_size);
275 	}
276 }
277 
278 static void __free_page_ext(unsigned long pfn)
279 {
280 	struct mem_section *ms;
281 	struct page_ext *base;
282 
283 	ms = __pfn_to_section(pfn);
284 	if (!ms || !ms->page_ext)
285 		return;
286 	base = get_entry(ms->page_ext, pfn);
287 	free_page_ext(base);
288 	ms->page_ext = NULL;
289 }
290 
291 static int __meminit online_page_ext(unsigned long start_pfn,
292 				unsigned long nr_pages,
293 				int nid)
294 {
295 	unsigned long start, end, pfn;
296 	int fail = 0;
297 
298 	start = SECTION_ALIGN_DOWN(start_pfn);
299 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
300 
301 	if (nid == NUMA_NO_NODE) {
302 		/*
303 		 * In this case, "nid" already exists and contains valid memory.
304 		 * "start_pfn" passed to us is a pfn which is an arg for
305 		 * online__pages(), and start_pfn should exist.
306 		 */
307 		nid = pfn_to_nid(start_pfn);
308 		VM_BUG_ON(!node_state(nid, N_ONLINE));
309 	}
310 
311 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
312 		if (!pfn_present(pfn))
313 			continue;
314 		fail = init_section_page_ext(pfn, nid);
315 	}
316 	if (!fail)
317 		return 0;
318 
319 	/* rollback */
320 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
321 		__free_page_ext(pfn);
322 
323 	return -ENOMEM;
324 }
325 
326 static int __meminit offline_page_ext(unsigned long start_pfn,
327 				unsigned long nr_pages, int nid)
328 {
329 	unsigned long start, end, pfn;
330 
331 	start = SECTION_ALIGN_DOWN(start_pfn);
332 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
333 
334 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
335 		__free_page_ext(pfn);
336 	return 0;
337 
338 }
339 
340 static int __meminit page_ext_callback(struct notifier_block *self,
341 			       unsigned long action, void *arg)
342 {
343 	struct memory_notify *mn = arg;
344 	int ret = 0;
345 
346 	switch (action) {
347 	case MEM_GOING_ONLINE:
348 		ret = online_page_ext(mn->start_pfn,
349 				   mn->nr_pages, mn->status_change_nid);
350 		break;
351 	case MEM_OFFLINE:
352 		offline_page_ext(mn->start_pfn,
353 				mn->nr_pages, mn->status_change_nid);
354 		break;
355 	case MEM_CANCEL_ONLINE:
356 		offline_page_ext(mn->start_pfn,
357 				mn->nr_pages, mn->status_change_nid);
358 		break;
359 	case MEM_GOING_OFFLINE:
360 		break;
361 	case MEM_ONLINE:
362 	case MEM_CANCEL_OFFLINE:
363 		break;
364 	}
365 
366 	return notifier_from_errno(ret);
367 }
368 
369 #endif
370 
371 void __init page_ext_init(void)
372 {
373 	unsigned long pfn;
374 	int nid;
375 
376 	if (!invoke_need_callbacks())
377 		return;
378 
379 	for_each_node_state(nid, N_MEMORY) {
380 		unsigned long start_pfn, end_pfn;
381 
382 		start_pfn = node_start_pfn(nid);
383 		end_pfn = node_end_pfn(nid);
384 		/*
385 		 * start_pfn and end_pfn may not be aligned to SECTION and the
386 		 * page->flags of out of node pages are not initialized.  So we
387 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
388 		 */
389 		for (pfn = start_pfn; pfn < end_pfn;
390 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
391 
392 			if (!pfn_valid(pfn))
393 				continue;
394 			/*
395 			 * Nodes's pfns can be overlapping.
396 			 * We know some arch can have a nodes layout such as
397 			 * -------------pfn-------------->
398 			 * N0 | N1 | N2 | N0 | N1 | N2|....
399 			 */
400 			if (pfn_to_nid(pfn) != nid)
401 				continue;
402 			if (init_section_page_ext(pfn, nid))
403 				goto oom;
404 			cond_resched();
405 		}
406 	}
407 	hotplug_memory_notifier(page_ext_callback, 0);
408 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
409 	invoke_init_callbacks();
410 	return;
411 
412 oom:
413 	panic("Out of memory");
414 }
415 
416 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
417 {
418 }
419 
420 #endif
421