xref: /openbmc/linux/mm/page_ext.c (revision eb3fcf00)
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/page_ext.h>
5 #include <linux/memory.h>
6 #include <linux/vmalloc.h>
7 #include <linux/kmemleak.h>
8 #include <linux/page_owner.h>
9 #include <linux/page_idle.h>
10 
11 /*
12  * struct page extension
13  *
14  * This is the feature to manage memory for extended data per page.
15  *
16  * Until now, we must modify struct page itself to store extra data per page.
17  * This requires rebuilding the kernel and it is really time consuming process.
18  * And, sometimes, rebuild is impossible due to third party module dependency.
19  * At last, enlarging struct page could cause un-wanted system behaviour change.
20  *
21  * This feature is intended to overcome above mentioned problems. This feature
22  * allocates memory for extended data per page in certain place rather than
23  * the struct page itself. This memory can be accessed by the accessor
24  * functions provided by this code. During the boot process, it checks whether
25  * allocation of huge chunk of memory is needed or not. If not, it avoids
26  * allocating memory at all. With this advantage, we can include this feature
27  * into the kernel in default and can avoid rebuild and solve related problems.
28  *
29  * To help these things to work well, there are two callbacks for clients. One
30  * is the need callback which is mandatory if user wants to avoid useless
31  * memory allocation at boot-time. The other is optional, init callback, which
32  * is used to do proper initialization after memory is allocated.
33  *
34  * The need callback is used to decide whether extended memory allocation is
35  * needed or not. Sometimes users want to deactivate some features in this
36  * boot and extra memory would be unneccessary. In this case, to avoid
37  * allocating huge chunk of memory, each clients represent their need of
38  * extra memory through the need callback. If one of the need callbacks
39  * returns true, it means that someone needs extra memory so that
40  * page extension core should allocates memory for page extension. If
41  * none of need callbacks return true, memory isn't needed at all in this boot
42  * and page extension core can skip to allocate memory. As result,
43  * none of memory is wasted.
44  *
45  * The init callback is used to do proper initialization after page extension
46  * is completely initialized. In sparse memory system, extra memory is
47  * allocated some time later than memmap is allocated. In other words, lifetime
48  * of memory for page extension isn't same with memmap for struct page.
49  * Therefore, clients can't store extra data until page extension is
50  * initialized, even if pages are allocated and used freely. This could
51  * cause inadequate state of extra data per page, so, to prevent it, client
52  * can utilize this callback to initialize the state of it correctly.
53  */
54 
55 static struct page_ext_operations *page_ext_ops[] = {
56 	&debug_guardpage_ops,
57 #ifdef CONFIG_PAGE_POISONING
58 	&page_poisoning_ops,
59 #endif
60 #ifdef CONFIG_PAGE_OWNER
61 	&page_owner_ops,
62 #endif
63 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
64 	&page_idle_ops,
65 #endif
66 };
67 
68 static unsigned long total_usage;
69 
70 static bool __init invoke_need_callbacks(void)
71 {
72 	int i;
73 	int entries = ARRAY_SIZE(page_ext_ops);
74 
75 	for (i = 0; i < entries; i++) {
76 		if (page_ext_ops[i]->need && page_ext_ops[i]->need())
77 			return true;
78 	}
79 
80 	return false;
81 }
82 
83 static void __init invoke_init_callbacks(void)
84 {
85 	int i;
86 	int entries = ARRAY_SIZE(page_ext_ops);
87 
88 	for (i = 0; i < entries; i++) {
89 		if (page_ext_ops[i]->init)
90 			page_ext_ops[i]->init();
91 	}
92 }
93 
94 #if !defined(CONFIG_SPARSEMEM)
95 
96 
97 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
98 {
99 	pgdat->node_page_ext = NULL;
100 }
101 
102 struct page_ext *lookup_page_ext(struct page *page)
103 {
104 	unsigned long pfn = page_to_pfn(page);
105 	unsigned long offset;
106 	struct page_ext *base;
107 
108 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
109 #ifdef CONFIG_DEBUG_VM
110 	/*
111 	 * The sanity checks the page allocator does upon freeing a
112 	 * page can reach here before the page_ext arrays are
113 	 * allocated when feeding a range of pages to the allocator
114 	 * for the first time during bootup or memory hotplug.
115 	 */
116 	if (unlikely(!base))
117 		return NULL;
118 #endif
119 	offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
120 					MAX_ORDER_NR_PAGES);
121 	return base + offset;
122 }
123 
124 static int __init alloc_node_page_ext(int nid)
125 {
126 	struct page_ext *base;
127 	unsigned long table_size;
128 	unsigned long nr_pages;
129 
130 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
131 	if (!nr_pages)
132 		return 0;
133 
134 	/*
135 	 * Need extra space if node range is not aligned with
136 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
137 	 * checks buddy's status, range could be out of exact node range.
138 	 */
139 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
140 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
141 		nr_pages += MAX_ORDER_NR_PAGES;
142 
143 	table_size = sizeof(struct page_ext) * nr_pages;
144 
145 	base = memblock_virt_alloc_try_nid_nopanic(
146 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
147 			BOOTMEM_ALLOC_ACCESSIBLE, nid);
148 	if (!base)
149 		return -ENOMEM;
150 	NODE_DATA(nid)->node_page_ext = base;
151 	total_usage += table_size;
152 	return 0;
153 }
154 
155 void __init page_ext_init_flatmem(void)
156 {
157 
158 	int nid, fail;
159 
160 	if (!invoke_need_callbacks())
161 		return;
162 
163 	for_each_online_node(nid)  {
164 		fail = alloc_node_page_ext(nid);
165 		if (fail)
166 			goto fail;
167 	}
168 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
169 	invoke_init_callbacks();
170 	return;
171 
172 fail:
173 	pr_crit("allocation of page_ext failed.\n");
174 	panic("Out of memory");
175 }
176 
177 #else /* CONFIG_FLAT_NODE_MEM_MAP */
178 
179 struct page_ext *lookup_page_ext(struct page *page)
180 {
181 	unsigned long pfn = page_to_pfn(page);
182 	struct mem_section *section = __pfn_to_section(pfn);
183 #ifdef CONFIG_DEBUG_VM
184 	/*
185 	 * The sanity checks the page allocator does upon freeing a
186 	 * page can reach here before the page_ext arrays are
187 	 * allocated when feeding a range of pages to the allocator
188 	 * for the first time during bootup or memory hotplug.
189 	 */
190 	if (!section->page_ext)
191 		return NULL;
192 #endif
193 	return section->page_ext + pfn;
194 }
195 
196 static void *__meminit alloc_page_ext(size_t size, int nid)
197 {
198 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
199 	void *addr = NULL;
200 
201 	addr = alloc_pages_exact_nid(nid, size, flags);
202 	if (addr) {
203 		kmemleak_alloc(addr, size, 1, flags);
204 		return addr;
205 	}
206 
207 	if (node_state(nid, N_HIGH_MEMORY))
208 		addr = vzalloc_node(size, nid);
209 	else
210 		addr = vzalloc(size);
211 
212 	return addr;
213 }
214 
215 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
216 {
217 	struct mem_section *section;
218 	struct page_ext *base;
219 	unsigned long table_size;
220 
221 	section = __pfn_to_section(pfn);
222 
223 	if (section->page_ext)
224 		return 0;
225 
226 	table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
227 	base = alloc_page_ext(table_size, nid);
228 
229 	/*
230 	 * The value stored in section->page_ext is (base - pfn)
231 	 * and it does not point to the memory block allocated above,
232 	 * causing kmemleak false positives.
233 	 */
234 	kmemleak_not_leak(base);
235 
236 	if (!base) {
237 		pr_err("page ext allocation failure\n");
238 		return -ENOMEM;
239 	}
240 
241 	/*
242 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
243 	 * we need to apply a mask.
244 	 */
245 	pfn &= PAGE_SECTION_MASK;
246 	section->page_ext = base - pfn;
247 	total_usage += table_size;
248 	return 0;
249 }
250 #ifdef CONFIG_MEMORY_HOTPLUG
251 static void free_page_ext(void *addr)
252 {
253 	if (is_vmalloc_addr(addr)) {
254 		vfree(addr);
255 	} else {
256 		struct page *page = virt_to_page(addr);
257 		size_t table_size;
258 
259 		table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
260 
261 		BUG_ON(PageReserved(page));
262 		free_pages_exact(addr, table_size);
263 	}
264 }
265 
266 static void __free_page_ext(unsigned long pfn)
267 {
268 	struct mem_section *ms;
269 	struct page_ext *base;
270 
271 	ms = __pfn_to_section(pfn);
272 	if (!ms || !ms->page_ext)
273 		return;
274 	base = ms->page_ext + pfn;
275 	free_page_ext(base);
276 	ms->page_ext = NULL;
277 }
278 
279 static int __meminit online_page_ext(unsigned long start_pfn,
280 				unsigned long nr_pages,
281 				int nid)
282 {
283 	unsigned long start, end, pfn;
284 	int fail = 0;
285 
286 	start = SECTION_ALIGN_DOWN(start_pfn);
287 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
288 
289 	if (nid == -1) {
290 		/*
291 		 * In this case, "nid" already exists and contains valid memory.
292 		 * "start_pfn" passed to us is a pfn which is an arg for
293 		 * online__pages(), and start_pfn should exist.
294 		 */
295 		nid = pfn_to_nid(start_pfn);
296 		VM_BUG_ON(!node_state(nid, N_ONLINE));
297 	}
298 
299 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
300 		if (!pfn_present(pfn))
301 			continue;
302 		fail = init_section_page_ext(pfn, nid);
303 	}
304 	if (!fail)
305 		return 0;
306 
307 	/* rollback */
308 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
309 		__free_page_ext(pfn);
310 
311 	return -ENOMEM;
312 }
313 
314 static int __meminit offline_page_ext(unsigned long start_pfn,
315 				unsigned long nr_pages, int nid)
316 {
317 	unsigned long start, end, pfn;
318 
319 	start = SECTION_ALIGN_DOWN(start_pfn);
320 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
321 
322 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
323 		__free_page_ext(pfn);
324 	return 0;
325 
326 }
327 
328 static int __meminit page_ext_callback(struct notifier_block *self,
329 			       unsigned long action, void *arg)
330 {
331 	struct memory_notify *mn = arg;
332 	int ret = 0;
333 
334 	switch (action) {
335 	case MEM_GOING_ONLINE:
336 		ret = online_page_ext(mn->start_pfn,
337 				   mn->nr_pages, mn->status_change_nid);
338 		break;
339 	case MEM_OFFLINE:
340 		offline_page_ext(mn->start_pfn,
341 				mn->nr_pages, mn->status_change_nid);
342 		break;
343 	case MEM_CANCEL_ONLINE:
344 		offline_page_ext(mn->start_pfn,
345 				mn->nr_pages, mn->status_change_nid);
346 		break;
347 	case MEM_GOING_OFFLINE:
348 		break;
349 	case MEM_ONLINE:
350 	case MEM_CANCEL_OFFLINE:
351 		break;
352 	}
353 
354 	return notifier_from_errno(ret);
355 }
356 
357 #endif
358 
359 void __init page_ext_init(void)
360 {
361 	unsigned long pfn;
362 	int nid;
363 
364 	if (!invoke_need_callbacks())
365 		return;
366 
367 	for_each_node_state(nid, N_MEMORY) {
368 		unsigned long start_pfn, end_pfn;
369 
370 		start_pfn = node_start_pfn(nid);
371 		end_pfn = node_end_pfn(nid);
372 		/*
373 		 * start_pfn and end_pfn may not be aligned to SECTION and the
374 		 * page->flags of out of node pages are not initialized.  So we
375 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
376 		 */
377 		for (pfn = start_pfn; pfn < end_pfn;
378 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
379 
380 			if (!pfn_valid(pfn))
381 				continue;
382 			/*
383 			 * Nodes's pfns can be overlapping.
384 			 * We know some arch can have a nodes layout such as
385 			 * -------------pfn-------------->
386 			 * N0 | N1 | N2 | N0 | N1 | N2|....
387 			 */
388 			if (pfn_to_nid(pfn) != nid)
389 				continue;
390 			if (init_section_page_ext(pfn, nid))
391 				goto oom;
392 		}
393 	}
394 	hotplug_memory_notifier(page_ext_callback, 0);
395 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
396 	invoke_init_callbacks();
397 	return;
398 
399 oom:
400 	panic("Out of memory");
401 }
402 
403 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
404 {
405 }
406 
407 #endif
408