xref: /openbmc/linux/mm/page_ext.c (revision e2eb96ae)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 #include <linux/page_table_check.h>
12 #include <linux/rcupdate.h>
13 
14 /*
15  * struct page extension
16  *
17  * This is the feature to manage memory for extended data per page.
18  *
19  * Until now, we must modify struct page itself to store extra data per page.
20  * This requires rebuilding the kernel and it is really time consuming process.
21  * And, sometimes, rebuild is impossible due to third party module dependency.
22  * At last, enlarging struct page could cause un-wanted system behaviour change.
23  *
24  * This feature is intended to overcome above mentioned problems. This feature
25  * allocates memory for extended data per page in certain place rather than
26  * the struct page itself. This memory can be accessed by the accessor
27  * functions provided by this code. During the boot process, it checks whether
28  * allocation of huge chunk of memory is needed or not. If not, it avoids
29  * allocating memory at all. With this advantage, we can include this feature
30  * into the kernel in default and can avoid rebuild and solve related problems.
31  *
32  * To help these things to work well, there are two callbacks for clients. One
33  * is the need callback which is mandatory if user wants to avoid useless
34  * memory allocation at boot-time. The other is optional, init callback, which
35  * is used to do proper initialization after memory is allocated.
36  *
37  * The need callback is used to decide whether extended memory allocation is
38  * needed or not. Sometimes users want to deactivate some features in this
39  * boot and extra memory would be unnecessary. In this case, to avoid
40  * allocating huge chunk of memory, each clients represent their need of
41  * extra memory through the need callback. If one of the need callbacks
42  * returns true, it means that someone needs extra memory so that
43  * page extension core should allocates memory for page extension. If
44  * none of need callbacks return true, memory isn't needed at all in this boot
45  * and page extension core can skip to allocate memory. As result,
46  * none of memory is wasted.
47  *
48  * When need callback returns true, page_ext checks if there is a request for
49  * extra memory through size in struct page_ext_operations. If it is non-zero,
50  * extra space is allocated for each page_ext entry and offset is returned to
51  * user through offset in struct page_ext_operations.
52  *
53  * The init callback is used to do proper initialization after page extension
54  * is completely initialized. In sparse memory system, extra memory is
55  * allocated some time later than memmap is allocated. In other words, lifetime
56  * of memory for page extension isn't same with memmap for struct page.
57  * Therefore, clients can't store extra data until page extension is
58  * initialized, even if pages are allocated and used freely. This could
59  * cause inadequate state of extra data per page, so, to prevent it, client
60  * can utilize this callback to initialize the state of it correctly.
61  */
62 
63 #ifdef CONFIG_SPARSEMEM
64 #define PAGE_EXT_INVALID       (0x1)
65 #endif
66 
67 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
68 static bool need_page_idle(void)
69 {
70 	return true;
71 }
72 static struct page_ext_operations page_idle_ops __initdata = {
73 	.need = need_page_idle,
74 	.need_shared_flags = true,
75 };
76 #endif
77 
78 static struct page_ext_operations *page_ext_ops[] __initdata = {
79 #ifdef CONFIG_PAGE_OWNER
80 	&page_owner_ops,
81 #endif
82 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
83 	&page_idle_ops,
84 #endif
85 #ifdef CONFIG_PAGE_TABLE_CHECK
86 	&page_table_check_ops,
87 #endif
88 };
89 
90 unsigned long page_ext_size;
91 
92 static unsigned long total_usage;
93 
94 bool early_page_ext __meminitdata;
95 static int __init setup_early_page_ext(char *str)
96 {
97 	early_page_ext = true;
98 	return 0;
99 }
100 early_param("early_page_ext", setup_early_page_ext);
101 
102 static bool __init invoke_need_callbacks(void)
103 {
104 	int i;
105 	int entries = ARRAY_SIZE(page_ext_ops);
106 	bool need = false;
107 
108 	for (i = 0; i < entries; i++) {
109 		if (page_ext_ops[i]->need()) {
110 			if (page_ext_ops[i]->need_shared_flags) {
111 				page_ext_size = sizeof(struct page_ext);
112 				break;
113 			}
114 		}
115 	}
116 
117 	for (i = 0; i < entries; i++) {
118 		if (page_ext_ops[i]->need()) {
119 			page_ext_ops[i]->offset = page_ext_size;
120 			page_ext_size += page_ext_ops[i]->size;
121 			need = true;
122 		}
123 	}
124 
125 	return need;
126 }
127 
128 static void __init invoke_init_callbacks(void)
129 {
130 	int i;
131 	int entries = ARRAY_SIZE(page_ext_ops);
132 
133 	for (i = 0; i < entries; i++) {
134 		if (page_ext_ops[i]->init)
135 			page_ext_ops[i]->init();
136 	}
137 }
138 
139 static inline struct page_ext *get_entry(void *base, unsigned long index)
140 {
141 	return base + page_ext_size * index;
142 }
143 
144 #ifndef CONFIG_SPARSEMEM
145 void __init page_ext_init_flatmem_late(void)
146 {
147 	invoke_init_callbacks();
148 }
149 
150 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
151 {
152 	pgdat->node_page_ext = NULL;
153 }
154 
155 static struct page_ext *lookup_page_ext(const struct page *page)
156 {
157 	unsigned long pfn = page_to_pfn(page);
158 	unsigned long index;
159 	struct page_ext *base;
160 
161 	WARN_ON_ONCE(!rcu_read_lock_held());
162 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
163 	/*
164 	 * The sanity checks the page allocator does upon freeing a
165 	 * page can reach here before the page_ext arrays are
166 	 * allocated when feeding a range of pages to the allocator
167 	 * for the first time during bootup or memory hotplug.
168 	 */
169 	if (unlikely(!base))
170 		return NULL;
171 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
172 					MAX_ORDER_NR_PAGES);
173 	return get_entry(base, index);
174 }
175 
176 static int __init alloc_node_page_ext(int nid)
177 {
178 	struct page_ext *base;
179 	unsigned long table_size;
180 	unsigned long nr_pages;
181 
182 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
183 	if (!nr_pages)
184 		return 0;
185 
186 	/*
187 	 * Need extra space if node range is not aligned with
188 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
189 	 * checks buddy's status, range could be out of exact node range.
190 	 */
191 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
192 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
193 		nr_pages += MAX_ORDER_NR_PAGES;
194 
195 	table_size = page_ext_size * nr_pages;
196 
197 	base = memblock_alloc_try_nid(
198 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
199 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
200 	if (!base)
201 		return -ENOMEM;
202 	NODE_DATA(nid)->node_page_ext = base;
203 	total_usage += table_size;
204 	return 0;
205 }
206 
207 void __init page_ext_init_flatmem(void)
208 {
209 
210 	int nid, fail;
211 
212 	if (!invoke_need_callbacks())
213 		return;
214 
215 	for_each_online_node(nid)  {
216 		fail = alloc_node_page_ext(nid);
217 		if (fail)
218 			goto fail;
219 	}
220 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
221 	return;
222 
223 fail:
224 	pr_crit("allocation of page_ext failed.\n");
225 	panic("Out of memory");
226 }
227 
228 #else /* CONFIG_SPARSEMEM */
229 static bool page_ext_invalid(struct page_ext *page_ext)
230 {
231 	return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
232 }
233 
234 static struct page_ext *lookup_page_ext(const struct page *page)
235 {
236 	unsigned long pfn = page_to_pfn(page);
237 	struct mem_section *section = __pfn_to_section(pfn);
238 	struct page_ext *page_ext = READ_ONCE(section->page_ext);
239 
240 	WARN_ON_ONCE(!rcu_read_lock_held());
241 	/*
242 	 * The sanity checks the page allocator does upon freeing a
243 	 * page can reach here before the page_ext arrays are
244 	 * allocated when feeding a range of pages to the allocator
245 	 * for the first time during bootup or memory hotplug.
246 	 */
247 	if (page_ext_invalid(page_ext))
248 		return NULL;
249 	return get_entry(page_ext, pfn);
250 }
251 
252 static void *__meminit alloc_page_ext(size_t size, int nid)
253 {
254 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
255 	void *addr = NULL;
256 
257 	addr = alloc_pages_exact_nid(nid, size, flags);
258 	if (addr) {
259 		kmemleak_alloc(addr, size, 1, flags);
260 		return addr;
261 	}
262 
263 	addr = vzalloc_node(size, nid);
264 
265 	return addr;
266 }
267 
268 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
269 {
270 	struct mem_section *section;
271 	struct page_ext *base;
272 	unsigned long table_size;
273 
274 	section = __pfn_to_section(pfn);
275 
276 	if (section->page_ext)
277 		return 0;
278 
279 	table_size = page_ext_size * PAGES_PER_SECTION;
280 	base = alloc_page_ext(table_size, nid);
281 
282 	/*
283 	 * The value stored in section->page_ext is (base - pfn)
284 	 * and it does not point to the memory block allocated above,
285 	 * causing kmemleak false positives.
286 	 */
287 	kmemleak_not_leak(base);
288 
289 	if (!base) {
290 		pr_err("page ext allocation failure\n");
291 		return -ENOMEM;
292 	}
293 
294 	/*
295 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
296 	 * we need to apply a mask.
297 	 */
298 	pfn &= PAGE_SECTION_MASK;
299 	section->page_ext = (void *)base - page_ext_size * pfn;
300 	total_usage += table_size;
301 	return 0;
302 }
303 
304 static void free_page_ext(void *addr)
305 {
306 	if (is_vmalloc_addr(addr)) {
307 		vfree(addr);
308 	} else {
309 		struct page *page = virt_to_page(addr);
310 		size_t table_size;
311 
312 		table_size = page_ext_size * PAGES_PER_SECTION;
313 
314 		BUG_ON(PageReserved(page));
315 		kmemleak_free(addr);
316 		free_pages_exact(addr, table_size);
317 	}
318 }
319 
320 static void __free_page_ext(unsigned long pfn)
321 {
322 	struct mem_section *ms;
323 	struct page_ext *base;
324 
325 	ms = __pfn_to_section(pfn);
326 	if (!ms || !ms->page_ext)
327 		return;
328 
329 	base = READ_ONCE(ms->page_ext);
330 	/*
331 	 * page_ext here can be valid while doing the roll back
332 	 * operation in online_page_ext().
333 	 */
334 	if (page_ext_invalid(base))
335 		base = (void *)base - PAGE_EXT_INVALID;
336 	WRITE_ONCE(ms->page_ext, NULL);
337 
338 	base = get_entry(base, pfn);
339 	free_page_ext(base);
340 }
341 
342 static void __invalidate_page_ext(unsigned long pfn)
343 {
344 	struct mem_section *ms;
345 	void *val;
346 
347 	ms = __pfn_to_section(pfn);
348 	if (!ms || !ms->page_ext)
349 		return;
350 	val = (void *)ms->page_ext + PAGE_EXT_INVALID;
351 	WRITE_ONCE(ms->page_ext, val);
352 }
353 
354 static int __meminit online_page_ext(unsigned long start_pfn,
355 				unsigned long nr_pages,
356 				int nid)
357 {
358 	unsigned long start, end, pfn;
359 	int fail = 0;
360 
361 	start = SECTION_ALIGN_DOWN(start_pfn);
362 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
363 
364 	if (nid == NUMA_NO_NODE) {
365 		/*
366 		 * In this case, "nid" already exists and contains valid memory.
367 		 * "start_pfn" passed to us is a pfn which is an arg for
368 		 * online__pages(), and start_pfn should exist.
369 		 */
370 		nid = pfn_to_nid(start_pfn);
371 		VM_BUG_ON(!node_online(nid));
372 	}
373 
374 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
375 		fail = init_section_page_ext(pfn, nid);
376 	if (!fail)
377 		return 0;
378 
379 	/* rollback */
380 	end = pfn - PAGES_PER_SECTION;
381 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
382 		__free_page_ext(pfn);
383 
384 	return -ENOMEM;
385 }
386 
387 static void __meminit offline_page_ext(unsigned long start_pfn,
388 				unsigned long nr_pages)
389 {
390 	unsigned long start, end, pfn;
391 
392 	start = SECTION_ALIGN_DOWN(start_pfn);
393 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
394 
395 	/*
396 	 * Freeing of page_ext is done in 3 steps to avoid
397 	 * use-after-free of it:
398 	 * 1) Traverse all the sections and mark their page_ext
399 	 *    as invalid.
400 	 * 2) Wait for all the existing users of page_ext who
401 	 *    started before invalidation to finish.
402 	 * 3) Free the page_ext.
403 	 */
404 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
405 		__invalidate_page_ext(pfn);
406 
407 	synchronize_rcu();
408 
409 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
410 		__free_page_ext(pfn);
411 }
412 
413 static int __meminit page_ext_callback(struct notifier_block *self,
414 			       unsigned long action, void *arg)
415 {
416 	struct memory_notify *mn = arg;
417 	int ret = 0;
418 
419 	switch (action) {
420 	case MEM_GOING_ONLINE:
421 		ret = online_page_ext(mn->start_pfn,
422 				   mn->nr_pages, mn->status_change_nid);
423 		break;
424 	case MEM_OFFLINE:
425 		offline_page_ext(mn->start_pfn,
426 				mn->nr_pages);
427 		break;
428 	case MEM_CANCEL_ONLINE:
429 		offline_page_ext(mn->start_pfn,
430 				mn->nr_pages);
431 		break;
432 	case MEM_GOING_OFFLINE:
433 		break;
434 	case MEM_ONLINE:
435 	case MEM_CANCEL_OFFLINE:
436 		break;
437 	}
438 
439 	return notifier_from_errno(ret);
440 }
441 
442 void __init page_ext_init(void)
443 {
444 	unsigned long pfn;
445 	int nid;
446 
447 	if (!invoke_need_callbacks())
448 		return;
449 
450 	for_each_node_state(nid, N_MEMORY) {
451 		unsigned long start_pfn, end_pfn;
452 
453 		start_pfn = node_start_pfn(nid);
454 		end_pfn = node_end_pfn(nid);
455 		/*
456 		 * start_pfn and end_pfn may not be aligned to SECTION and the
457 		 * page->flags of out of node pages are not initialized.  So we
458 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
459 		 */
460 		for (pfn = start_pfn; pfn < end_pfn;
461 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
462 
463 			if (!pfn_valid(pfn))
464 				continue;
465 			/*
466 			 * Nodes's pfns can be overlapping.
467 			 * We know some arch can have a nodes layout such as
468 			 * -------------pfn-------------->
469 			 * N0 | N1 | N2 | N0 | N1 | N2|....
470 			 */
471 			if (pfn_to_nid(pfn) != nid)
472 				continue;
473 			if (init_section_page_ext(pfn, nid))
474 				goto oom;
475 			cond_resched();
476 		}
477 	}
478 	hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI);
479 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
480 	invoke_init_callbacks();
481 	return;
482 
483 oom:
484 	panic("Out of memory");
485 }
486 
487 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
488 {
489 }
490 
491 #endif
492 
493 /**
494  * page_ext_get() - Get the extended information for a page.
495  * @page: The page we're interested in.
496  *
497  * Ensures that the page_ext will remain valid until page_ext_put()
498  * is called.
499  *
500  * Return: NULL if no page_ext exists for this page.
501  * Context: Any context.  Caller may not sleep until they have called
502  * page_ext_put().
503  */
504 struct page_ext *page_ext_get(struct page *page)
505 {
506 	struct page_ext *page_ext;
507 
508 	rcu_read_lock();
509 	page_ext = lookup_page_ext(page);
510 	if (!page_ext) {
511 		rcu_read_unlock();
512 		return NULL;
513 	}
514 
515 	return page_ext;
516 }
517 
518 /**
519  * page_ext_put() - Working with page extended information is done.
520  * @page_ext: Page extended information received from page_ext_get().
521  *
522  * The page extended information of the page may not be valid after this
523  * function is called.
524  *
525  * Return: None.
526  * Context: Any context with corresponding page_ext_get() is called.
527  */
528 void page_ext_put(struct page_ext *page_ext)
529 {
530 	if (unlikely(!page_ext))
531 		return;
532 
533 	rcu_read_unlock();
534 }
535