xref: /openbmc/linux/mm/page_ext.c (revision c9933d49)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 #include <linux/page_table_check.h>
12 
13 /*
14  * struct page extension
15  *
16  * This is the feature to manage memory for extended data per page.
17  *
18  * Until now, we must modify struct page itself to store extra data per page.
19  * This requires rebuilding the kernel and it is really time consuming process.
20  * And, sometimes, rebuild is impossible due to third party module dependency.
21  * At last, enlarging struct page could cause un-wanted system behaviour change.
22  *
23  * This feature is intended to overcome above mentioned problems. This feature
24  * allocates memory for extended data per page in certain place rather than
25  * the struct page itself. This memory can be accessed by the accessor
26  * functions provided by this code. During the boot process, it checks whether
27  * allocation of huge chunk of memory is needed or not. If not, it avoids
28  * allocating memory at all. With this advantage, we can include this feature
29  * into the kernel in default and can avoid rebuild and solve related problems.
30  *
31  * To help these things to work well, there are two callbacks for clients. One
32  * is the need callback which is mandatory if user wants to avoid useless
33  * memory allocation at boot-time. The other is optional, init callback, which
34  * is used to do proper initialization after memory is allocated.
35  *
36  * The need callback is used to decide whether extended memory allocation is
37  * needed or not. Sometimes users want to deactivate some features in this
38  * boot and extra memory would be unnecessary. In this case, to avoid
39  * allocating huge chunk of memory, each clients represent their need of
40  * extra memory through the need callback. If one of the need callbacks
41  * returns true, it means that someone needs extra memory so that
42  * page extension core should allocates memory for page extension. If
43  * none of need callbacks return true, memory isn't needed at all in this boot
44  * and page extension core can skip to allocate memory. As result,
45  * none of memory is wasted.
46  *
47  * When need callback returns true, page_ext checks if there is a request for
48  * extra memory through size in struct page_ext_operations. If it is non-zero,
49  * extra space is allocated for each page_ext entry and offset is returned to
50  * user through offset in struct page_ext_operations.
51  *
52  * The init callback is used to do proper initialization after page extension
53  * is completely initialized. In sparse memory system, extra memory is
54  * allocated some time later than memmap is allocated. In other words, lifetime
55  * of memory for page extension isn't same with memmap for struct page.
56  * Therefore, clients can't store extra data until page extension is
57  * initialized, even if pages are allocated and used freely. This could
58  * cause inadequate state of extra data per page, so, to prevent it, client
59  * can utilize this callback to initialize the state of it correctly.
60  */
61 
62 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
63 static bool need_page_idle(void)
64 {
65 	return true;
66 }
67 static struct page_ext_operations page_idle_ops __initdata = {
68 	.need = need_page_idle,
69 };
70 #endif
71 
72 static struct page_ext_operations *page_ext_ops[] __initdata = {
73 #ifdef CONFIG_PAGE_OWNER
74 	&page_owner_ops,
75 #endif
76 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
77 	&page_idle_ops,
78 #endif
79 #ifdef CONFIG_PAGE_TABLE_CHECK
80 	&page_table_check_ops,
81 #endif
82 };
83 
84 unsigned long page_ext_size = sizeof(struct page_ext);
85 
86 static unsigned long total_usage;
87 
88 static bool __init invoke_need_callbacks(void)
89 {
90 	int i;
91 	int entries = ARRAY_SIZE(page_ext_ops);
92 	bool need = false;
93 
94 	for (i = 0; i < entries; i++) {
95 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
96 			page_ext_ops[i]->offset = page_ext_size;
97 			page_ext_size += page_ext_ops[i]->size;
98 			need = true;
99 		}
100 	}
101 
102 	return need;
103 }
104 
105 static void __init invoke_init_callbacks(void)
106 {
107 	int i;
108 	int entries = ARRAY_SIZE(page_ext_ops);
109 
110 	for (i = 0; i < entries; i++) {
111 		if (page_ext_ops[i]->init)
112 			page_ext_ops[i]->init();
113 	}
114 }
115 
116 #ifndef CONFIG_SPARSEMEM
117 void __init page_ext_init_flatmem_late(void)
118 {
119 	invoke_init_callbacks();
120 }
121 #endif
122 
123 static inline struct page_ext *get_entry(void *base, unsigned long index)
124 {
125 	return base + page_ext_size * index;
126 }
127 
128 #ifndef CONFIG_SPARSEMEM
129 
130 
131 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
132 {
133 	pgdat->node_page_ext = NULL;
134 }
135 
136 struct page_ext *lookup_page_ext(const struct page *page)
137 {
138 	unsigned long pfn = page_to_pfn(page);
139 	unsigned long index;
140 	struct page_ext *base;
141 
142 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
143 	/*
144 	 * The sanity checks the page allocator does upon freeing a
145 	 * page can reach here before the page_ext arrays are
146 	 * allocated when feeding a range of pages to the allocator
147 	 * for the first time during bootup or memory hotplug.
148 	 */
149 	if (unlikely(!base))
150 		return NULL;
151 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
152 					MAX_ORDER_NR_PAGES);
153 	return get_entry(base, index);
154 }
155 
156 static int __init alloc_node_page_ext(int nid)
157 {
158 	struct page_ext *base;
159 	unsigned long table_size;
160 	unsigned long nr_pages;
161 
162 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
163 	if (!nr_pages)
164 		return 0;
165 
166 	/*
167 	 * Need extra space if node range is not aligned with
168 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
169 	 * checks buddy's status, range could be out of exact node range.
170 	 */
171 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
172 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
173 		nr_pages += MAX_ORDER_NR_PAGES;
174 
175 	table_size = page_ext_size * nr_pages;
176 
177 	base = memblock_alloc_try_nid(
178 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
179 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
180 	if (!base)
181 		return -ENOMEM;
182 	NODE_DATA(nid)->node_page_ext = base;
183 	total_usage += table_size;
184 	return 0;
185 }
186 
187 void __init page_ext_init_flatmem(void)
188 {
189 
190 	int nid, fail;
191 
192 	if (!invoke_need_callbacks())
193 		return;
194 
195 	for_each_online_node(nid)  {
196 		fail = alloc_node_page_ext(nid);
197 		if (fail)
198 			goto fail;
199 	}
200 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
201 	return;
202 
203 fail:
204 	pr_crit("allocation of page_ext failed.\n");
205 	panic("Out of memory");
206 }
207 
208 #else /* CONFIG_SPARSEMEM */
209 
210 struct page_ext *lookup_page_ext(const struct page *page)
211 {
212 	unsigned long pfn = page_to_pfn(page);
213 	struct mem_section *section = __pfn_to_section(pfn);
214 	/*
215 	 * The sanity checks the page allocator does upon freeing a
216 	 * page can reach here before the page_ext arrays are
217 	 * allocated when feeding a range of pages to the allocator
218 	 * for the first time during bootup or memory hotplug.
219 	 */
220 	if (!section->page_ext)
221 		return NULL;
222 	return get_entry(section->page_ext, pfn);
223 }
224 
225 static void *__meminit alloc_page_ext(size_t size, int nid)
226 {
227 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
228 	void *addr = NULL;
229 
230 	addr = alloc_pages_exact_nid(nid, size, flags);
231 	if (addr) {
232 		kmemleak_alloc(addr, size, 1, flags);
233 		return addr;
234 	}
235 
236 	addr = vzalloc_node(size, nid);
237 
238 	return addr;
239 }
240 
241 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
242 {
243 	struct mem_section *section;
244 	struct page_ext *base;
245 	unsigned long table_size;
246 
247 	section = __pfn_to_section(pfn);
248 
249 	if (section->page_ext)
250 		return 0;
251 
252 	table_size = page_ext_size * PAGES_PER_SECTION;
253 	base = alloc_page_ext(table_size, nid);
254 
255 	/*
256 	 * The value stored in section->page_ext is (base - pfn)
257 	 * and it does not point to the memory block allocated above,
258 	 * causing kmemleak false positives.
259 	 */
260 	kmemleak_not_leak(base);
261 
262 	if (!base) {
263 		pr_err("page ext allocation failure\n");
264 		return -ENOMEM;
265 	}
266 
267 	/*
268 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
269 	 * we need to apply a mask.
270 	 */
271 	pfn &= PAGE_SECTION_MASK;
272 	section->page_ext = (void *)base - page_ext_size * pfn;
273 	total_usage += table_size;
274 	return 0;
275 }
276 
277 static void free_page_ext(void *addr)
278 {
279 	if (is_vmalloc_addr(addr)) {
280 		vfree(addr);
281 	} else {
282 		struct page *page = virt_to_page(addr);
283 		size_t table_size;
284 
285 		table_size = page_ext_size * PAGES_PER_SECTION;
286 
287 		BUG_ON(PageReserved(page));
288 		kmemleak_free(addr);
289 		free_pages_exact(addr, table_size);
290 	}
291 }
292 
293 static void __free_page_ext(unsigned long pfn)
294 {
295 	struct mem_section *ms;
296 	struct page_ext *base;
297 
298 	ms = __pfn_to_section(pfn);
299 	if (!ms || !ms->page_ext)
300 		return;
301 	base = get_entry(ms->page_ext, pfn);
302 	free_page_ext(base);
303 	ms->page_ext = NULL;
304 }
305 
306 static int __meminit online_page_ext(unsigned long start_pfn,
307 				unsigned long nr_pages,
308 				int nid)
309 {
310 	unsigned long start, end, pfn;
311 	int fail = 0;
312 
313 	start = SECTION_ALIGN_DOWN(start_pfn);
314 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
315 
316 	if (nid == NUMA_NO_NODE) {
317 		/*
318 		 * In this case, "nid" already exists and contains valid memory.
319 		 * "start_pfn" passed to us is a pfn which is an arg for
320 		 * online__pages(), and start_pfn should exist.
321 		 */
322 		nid = pfn_to_nid(start_pfn);
323 		VM_BUG_ON(!node_state(nid, N_ONLINE));
324 	}
325 
326 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
327 		fail = init_section_page_ext(pfn, nid);
328 	if (!fail)
329 		return 0;
330 
331 	/* rollback */
332 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
333 		__free_page_ext(pfn);
334 
335 	return -ENOMEM;
336 }
337 
338 static int __meminit offline_page_ext(unsigned long start_pfn,
339 				unsigned long nr_pages, int nid)
340 {
341 	unsigned long start, end, pfn;
342 
343 	start = SECTION_ALIGN_DOWN(start_pfn);
344 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
345 
346 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
347 		__free_page_ext(pfn);
348 	return 0;
349 
350 }
351 
352 static int __meminit page_ext_callback(struct notifier_block *self,
353 			       unsigned long action, void *arg)
354 {
355 	struct memory_notify *mn = arg;
356 	int ret = 0;
357 
358 	switch (action) {
359 	case MEM_GOING_ONLINE:
360 		ret = online_page_ext(mn->start_pfn,
361 				   mn->nr_pages, mn->status_change_nid);
362 		break;
363 	case MEM_OFFLINE:
364 		offline_page_ext(mn->start_pfn,
365 				mn->nr_pages, mn->status_change_nid);
366 		break;
367 	case MEM_CANCEL_ONLINE:
368 		offline_page_ext(mn->start_pfn,
369 				mn->nr_pages, mn->status_change_nid);
370 		break;
371 	case MEM_GOING_OFFLINE:
372 		break;
373 	case MEM_ONLINE:
374 	case MEM_CANCEL_OFFLINE:
375 		break;
376 	}
377 
378 	return notifier_from_errno(ret);
379 }
380 
381 void __init page_ext_init(void)
382 {
383 	unsigned long pfn;
384 	int nid;
385 
386 	if (!invoke_need_callbacks())
387 		return;
388 
389 	for_each_node_state(nid, N_MEMORY) {
390 		unsigned long start_pfn, end_pfn;
391 
392 		start_pfn = node_start_pfn(nid);
393 		end_pfn = node_end_pfn(nid);
394 		/*
395 		 * start_pfn and end_pfn may not be aligned to SECTION and the
396 		 * page->flags of out of node pages are not initialized.  So we
397 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
398 		 */
399 		for (pfn = start_pfn; pfn < end_pfn;
400 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
401 
402 			if (!pfn_valid(pfn))
403 				continue;
404 			/*
405 			 * Nodes's pfns can be overlapping.
406 			 * We know some arch can have a nodes layout such as
407 			 * -------------pfn-------------->
408 			 * N0 | N1 | N2 | N0 | N1 | N2|....
409 			 */
410 			if (pfn_to_nid(pfn) != nid)
411 				continue;
412 			if (init_section_page_ext(pfn, nid))
413 				goto oom;
414 			cond_resched();
415 		}
416 	}
417 	hotplug_memory_notifier(page_ext_callback, 0);
418 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
419 	invoke_init_callbacks();
420 	return;
421 
422 oom:
423 	panic("Out of memory");
424 }
425 
426 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
427 {
428 }
429 
430 #endif
431