1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/mmzone.h> 4 #include <linux/memblock.h> 5 #include <linux/page_ext.h> 6 #include <linux/memory.h> 7 #include <linux/vmalloc.h> 8 #include <linux/kmemleak.h> 9 #include <linux/page_owner.h> 10 #include <linux/page_idle.h> 11 12 /* 13 * struct page extension 14 * 15 * This is the feature to manage memory for extended data per page. 16 * 17 * Until now, we must modify struct page itself to store extra data per page. 18 * This requires rebuilding the kernel and it is really time consuming process. 19 * And, sometimes, rebuild is impossible due to third party module dependency. 20 * At last, enlarging struct page could cause un-wanted system behaviour change. 21 * 22 * This feature is intended to overcome above mentioned problems. This feature 23 * allocates memory for extended data per page in certain place rather than 24 * the struct page itself. This memory can be accessed by the accessor 25 * functions provided by this code. During the boot process, it checks whether 26 * allocation of huge chunk of memory is needed or not. If not, it avoids 27 * allocating memory at all. With this advantage, we can include this feature 28 * into the kernel in default and can avoid rebuild and solve related problems. 29 * 30 * To help these things to work well, there are two callbacks for clients. One 31 * is the need callback which is mandatory if user wants to avoid useless 32 * memory allocation at boot-time. The other is optional, init callback, which 33 * is used to do proper initialization after memory is allocated. 34 * 35 * The need callback is used to decide whether extended memory allocation is 36 * needed or not. Sometimes users want to deactivate some features in this 37 * boot and extra memory would be unneccessary. In this case, to avoid 38 * allocating huge chunk of memory, each clients represent their need of 39 * extra memory through the need callback. If one of the need callbacks 40 * returns true, it means that someone needs extra memory so that 41 * page extension core should allocates memory for page extension. If 42 * none of need callbacks return true, memory isn't needed at all in this boot 43 * and page extension core can skip to allocate memory. As result, 44 * none of memory is wasted. 45 * 46 * When need callback returns true, page_ext checks if there is a request for 47 * extra memory through size in struct page_ext_operations. If it is non-zero, 48 * extra space is allocated for each page_ext entry and offset is returned to 49 * user through offset in struct page_ext_operations. 50 * 51 * The init callback is used to do proper initialization after page extension 52 * is completely initialized. In sparse memory system, extra memory is 53 * allocated some time later than memmap is allocated. In other words, lifetime 54 * of memory for page extension isn't same with memmap for struct page. 55 * Therefore, clients can't store extra data until page extension is 56 * initialized, even if pages are allocated and used freely. This could 57 * cause inadequate state of extra data per page, so, to prevent it, client 58 * can utilize this callback to initialize the state of it correctly. 59 */ 60 61 static struct page_ext_operations *page_ext_ops[] = { 62 #ifdef CONFIG_PAGE_OWNER 63 &page_owner_ops, 64 #endif 65 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT) 66 &page_idle_ops, 67 #endif 68 }; 69 70 static unsigned long total_usage; 71 static unsigned long extra_mem; 72 73 static bool __init invoke_need_callbacks(void) 74 { 75 int i; 76 int entries = ARRAY_SIZE(page_ext_ops); 77 bool need = false; 78 79 for (i = 0; i < entries; i++) { 80 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) { 81 page_ext_ops[i]->offset = sizeof(struct page_ext) + 82 extra_mem; 83 extra_mem += page_ext_ops[i]->size; 84 need = true; 85 } 86 } 87 88 return need; 89 } 90 91 static void __init invoke_init_callbacks(void) 92 { 93 int i; 94 int entries = ARRAY_SIZE(page_ext_ops); 95 96 for (i = 0; i < entries; i++) { 97 if (page_ext_ops[i]->init) 98 page_ext_ops[i]->init(); 99 } 100 } 101 102 static unsigned long get_entry_size(void) 103 { 104 return sizeof(struct page_ext) + extra_mem; 105 } 106 107 static inline struct page_ext *get_entry(void *base, unsigned long index) 108 { 109 return base + get_entry_size() * index; 110 } 111 112 #if !defined(CONFIG_SPARSEMEM) 113 114 115 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 116 { 117 pgdat->node_page_ext = NULL; 118 } 119 120 struct page_ext *lookup_page_ext(const struct page *page) 121 { 122 unsigned long pfn = page_to_pfn(page); 123 unsigned long index; 124 struct page_ext *base; 125 126 base = NODE_DATA(page_to_nid(page))->node_page_ext; 127 /* 128 * The sanity checks the page allocator does upon freeing a 129 * page can reach here before the page_ext arrays are 130 * allocated when feeding a range of pages to the allocator 131 * for the first time during bootup or memory hotplug. 132 */ 133 if (unlikely(!base)) 134 return NULL; 135 index = pfn - round_down(node_start_pfn(page_to_nid(page)), 136 MAX_ORDER_NR_PAGES); 137 return get_entry(base, index); 138 } 139 140 static int __init alloc_node_page_ext(int nid) 141 { 142 struct page_ext *base; 143 unsigned long table_size; 144 unsigned long nr_pages; 145 146 nr_pages = NODE_DATA(nid)->node_spanned_pages; 147 if (!nr_pages) 148 return 0; 149 150 /* 151 * Need extra space if node range is not aligned with 152 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm 153 * checks buddy's status, range could be out of exact node range. 154 */ 155 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || 156 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) 157 nr_pages += MAX_ORDER_NR_PAGES; 158 159 table_size = get_entry_size() * nr_pages; 160 161 base = memblock_alloc_try_nid( 162 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 163 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 164 if (!base) 165 return -ENOMEM; 166 NODE_DATA(nid)->node_page_ext = base; 167 total_usage += table_size; 168 return 0; 169 } 170 171 void __init page_ext_init_flatmem(void) 172 { 173 174 int nid, fail; 175 176 if (!invoke_need_callbacks()) 177 return; 178 179 for_each_online_node(nid) { 180 fail = alloc_node_page_ext(nid); 181 if (fail) 182 goto fail; 183 } 184 pr_info("allocated %ld bytes of page_ext\n", total_usage); 185 invoke_init_callbacks(); 186 return; 187 188 fail: 189 pr_crit("allocation of page_ext failed.\n"); 190 panic("Out of memory"); 191 } 192 193 #else /* CONFIG_FLAT_NODE_MEM_MAP */ 194 195 struct page_ext *lookup_page_ext(const struct page *page) 196 { 197 unsigned long pfn = page_to_pfn(page); 198 struct mem_section *section = __pfn_to_section(pfn); 199 /* 200 * The sanity checks the page allocator does upon freeing a 201 * page can reach here before the page_ext arrays are 202 * allocated when feeding a range of pages to the allocator 203 * for the first time during bootup or memory hotplug. 204 */ 205 if (!section->page_ext) 206 return NULL; 207 return get_entry(section->page_ext, pfn); 208 } 209 210 static void *__meminit alloc_page_ext(size_t size, int nid) 211 { 212 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; 213 void *addr = NULL; 214 215 addr = alloc_pages_exact_nid(nid, size, flags); 216 if (addr) { 217 kmemleak_alloc(addr, size, 1, flags); 218 return addr; 219 } 220 221 addr = vzalloc_node(size, nid); 222 223 return addr; 224 } 225 226 static int __meminit init_section_page_ext(unsigned long pfn, int nid) 227 { 228 struct mem_section *section; 229 struct page_ext *base; 230 unsigned long table_size; 231 232 section = __pfn_to_section(pfn); 233 234 if (section->page_ext) 235 return 0; 236 237 table_size = get_entry_size() * PAGES_PER_SECTION; 238 base = alloc_page_ext(table_size, nid); 239 240 /* 241 * The value stored in section->page_ext is (base - pfn) 242 * and it does not point to the memory block allocated above, 243 * causing kmemleak false positives. 244 */ 245 kmemleak_not_leak(base); 246 247 if (!base) { 248 pr_err("page ext allocation failure\n"); 249 return -ENOMEM; 250 } 251 252 /* 253 * The passed "pfn" may not be aligned to SECTION. For the calculation 254 * we need to apply a mask. 255 */ 256 pfn &= PAGE_SECTION_MASK; 257 section->page_ext = (void *)base - get_entry_size() * pfn; 258 total_usage += table_size; 259 return 0; 260 } 261 #ifdef CONFIG_MEMORY_HOTPLUG 262 static void free_page_ext(void *addr) 263 { 264 if (is_vmalloc_addr(addr)) { 265 vfree(addr); 266 } else { 267 struct page *page = virt_to_page(addr); 268 size_t table_size; 269 270 table_size = get_entry_size() * PAGES_PER_SECTION; 271 272 BUG_ON(PageReserved(page)); 273 kmemleak_free(addr); 274 free_pages_exact(addr, table_size); 275 } 276 } 277 278 static void __free_page_ext(unsigned long pfn) 279 { 280 struct mem_section *ms; 281 struct page_ext *base; 282 283 ms = __pfn_to_section(pfn); 284 if (!ms || !ms->page_ext) 285 return; 286 base = get_entry(ms->page_ext, pfn); 287 free_page_ext(base); 288 ms->page_ext = NULL; 289 } 290 291 static int __meminit online_page_ext(unsigned long start_pfn, 292 unsigned long nr_pages, 293 int nid) 294 { 295 unsigned long start, end, pfn; 296 int fail = 0; 297 298 start = SECTION_ALIGN_DOWN(start_pfn); 299 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 300 301 if (nid == NUMA_NO_NODE) { 302 /* 303 * In this case, "nid" already exists and contains valid memory. 304 * "start_pfn" passed to us is a pfn which is an arg for 305 * online__pages(), and start_pfn should exist. 306 */ 307 nid = pfn_to_nid(start_pfn); 308 VM_BUG_ON(!node_state(nid, N_ONLINE)); 309 } 310 311 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { 312 if (!pfn_present(pfn)) 313 continue; 314 fail = init_section_page_ext(pfn, nid); 315 } 316 if (!fail) 317 return 0; 318 319 /* rollback */ 320 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 321 __free_page_ext(pfn); 322 323 return -ENOMEM; 324 } 325 326 static int __meminit offline_page_ext(unsigned long start_pfn, 327 unsigned long nr_pages, int nid) 328 { 329 unsigned long start, end, pfn; 330 331 start = SECTION_ALIGN_DOWN(start_pfn); 332 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 333 334 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 335 __free_page_ext(pfn); 336 return 0; 337 338 } 339 340 static int __meminit page_ext_callback(struct notifier_block *self, 341 unsigned long action, void *arg) 342 { 343 struct memory_notify *mn = arg; 344 int ret = 0; 345 346 switch (action) { 347 case MEM_GOING_ONLINE: 348 ret = online_page_ext(mn->start_pfn, 349 mn->nr_pages, mn->status_change_nid); 350 break; 351 case MEM_OFFLINE: 352 offline_page_ext(mn->start_pfn, 353 mn->nr_pages, mn->status_change_nid); 354 break; 355 case MEM_CANCEL_ONLINE: 356 offline_page_ext(mn->start_pfn, 357 mn->nr_pages, mn->status_change_nid); 358 break; 359 case MEM_GOING_OFFLINE: 360 break; 361 case MEM_ONLINE: 362 case MEM_CANCEL_OFFLINE: 363 break; 364 } 365 366 return notifier_from_errno(ret); 367 } 368 369 #endif 370 371 void __init page_ext_init(void) 372 { 373 unsigned long pfn; 374 int nid; 375 376 if (!invoke_need_callbacks()) 377 return; 378 379 for_each_node_state(nid, N_MEMORY) { 380 unsigned long start_pfn, end_pfn; 381 382 start_pfn = node_start_pfn(nid); 383 end_pfn = node_end_pfn(nid); 384 /* 385 * start_pfn and end_pfn may not be aligned to SECTION and the 386 * page->flags of out of node pages are not initialized. So we 387 * scan [start_pfn, the biggest section's pfn < end_pfn) here. 388 */ 389 for (pfn = start_pfn; pfn < end_pfn; 390 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { 391 392 if (!pfn_valid(pfn)) 393 continue; 394 /* 395 * Nodes's pfns can be overlapping. 396 * We know some arch can have a nodes layout such as 397 * -------------pfn--------------> 398 * N0 | N1 | N2 | N0 | N1 | N2|.... 399 */ 400 if (pfn_to_nid(pfn) != nid) 401 continue; 402 if (init_section_page_ext(pfn, nid)) 403 goto oom; 404 cond_resched(); 405 } 406 } 407 hotplug_memory_notifier(page_ext_callback, 0); 408 pr_info("allocated %ld bytes of page_ext\n", total_usage); 409 invoke_init_callbacks(); 410 return; 411 412 oom: 413 panic("Out of memory"); 414 } 415 416 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 417 { 418 } 419 420 #endif 421