1 #include <linux/mm.h> 2 #include <linux/mmzone.h> 3 #include <linux/bootmem.h> 4 #include <linux/page_ext.h> 5 #include <linux/memory.h> 6 #include <linux/vmalloc.h> 7 #include <linux/kmemleak.h> 8 #include <linux/page_owner.h> 9 #include <linux/page_idle.h> 10 11 /* 12 * struct page extension 13 * 14 * This is the feature to manage memory for extended data per page. 15 * 16 * Until now, we must modify struct page itself to store extra data per page. 17 * This requires rebuilding the kernel and it is really time consuming process. 18 * And, sometimes, rebuild is impossible due to third party module dependency. 19 * At last, enlarging struct page could cause un-wanted system behaviour change. 20 * 21 * This feature is intended to overcome above mentioned problems. This feature 22 * allocates memory for extended data per page in certain place rather than 23 * the struct page itself. This memory can be accessed by the accessor 24 * functions provided by this code. During the boot process, it checks whether 25 * allocation of huge chunk of memory is needed or not. If not, it avoids 26 * allocating memory at all. With this advantage, we can include this feature 27 * into the kernel in default and can avoid rebuild and solve related problems. 28 * 29 * To help these things to work well, there are two callbacks for clients. One 30 * is the need callback which is mandatory if user wants to avoid useless 31 * memory allocation at boot-time. The other is optional, init callback, which 32 * is used to do proper initialization after memory is allocated. 33 * 34 * The need callback is used to decide whether extended memory allocation is 35 * needed or not. Sometimes users want to deactivate some features in this 36 * boot and extra memory would be unneccessary. In this case, to avoid 37 * allocating huge chunk of memory, each clients represent their need of 38 * extra memory through the need callback. If one of the need callbacks 39 * returns true, it means that someone needs extra memory so that 40 * page extension core should allocates memory for page extension. If 41 * none of need callbacks return true, memory isn't needed at all in this boot 42 * and page extension core can skip to allocate memory. As result, 43 * none of memory is wasted. 44 * 45 * The init callback is used to do proper initialization after page extension 46 * is completely initialized. In sparse memory system, extra memory is 47 * allocated some time later than memmap is allocated. In other words, lifetime 48 * of memory for page extension isn't same with memmap for struct page. 49 * Therefore, clients can't store extra data until page extension is 50 * initialized, even if pages are allocated and used freely. This could 51 * cause inadequate state of extra data per page, so, to prevent it, client 52 * can utilize this callback to initialize the state of it correctly. 53 */ 54 55 static struct page_ext_operations *page_ext_ops[] = { 56 &debug_guardpage_ops, 57 #ifdef CONFIG_PAGE_POISONING 58 &page_poisoning_ops, 59 #endif 60 #ifdef CONFIG_PAGE_OWNER 61 &page_owner_ops, 62 #endif 63 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT) 64 &page_idle_ops, 65 #endif 66 }; 67 68 static unsigned long total_usage; 69 70 static bool __init invoke_need_callbacks(void) 71 { 72 int i; 73 int entries = ARRAY_SIZE(page_ext_ops); 74 75 for (i = 0; i < entries; i++) { 76 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) 77 return true; 78 } 79 80 return false; 81 } 82 83 static void __init invoke_init_callbacks(void) 84 { 85 int i; 86 int entries = ARRAY_SIZE(page_ext_ops); 87 88 for (i = 0; i < entries; i++) { 89 if (page_ext_ops[i]->init) 90 page_ext_ops[i]->init(); 91 } 92 } 93 94 #if !defined(CONFIG_SPARSEMEM) 95 96 97 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 98 { 99 pgdat->node_page_ext = NULL; 100 } 101 102 struct page_ext *lookup_page_ext(struct page *page) 103 { 104 unsigned long pfn = page_to_pfn(page); 105 unsigned long offset; 106 struct page_ext *base; 107 108 base = NODE_DATA(page_to_nid(page))->node_page_ext; 109 #ifdef CONFIG_DEBUG_VM 110 /* 111 * The sanity checks the page allocator does upon freeing a 112 * page can reach here before the page_ext arrays are 113 * allocated when feeding a range of pages to the allocator 114 * for the first time during bootup or memory hotplug. 115 */ 116 if (unlikely(!base)) 117 return NULL; 118 #endif 119 offset = pfn - round_down(node_start_pfn(page_to_nid(page)), 120 MAX_ORDER_NR_PAGES); 121 return base + offset; 122 } 123 124 static int __init alloc_node_page_ext(int nid) 125 { 126 struct page_ext *base; 127 unsigned long table_size; 128 unsigned long nr_pages; 129 130 nr_pages = NODE_DATA(nid)->node_spanned_pages; 131 if (!nr_pages) 132 return 0; 133 134 /* 135 * Need extra space if node range is not aligned with 136 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm 137 * checks buddy's status, range could be out of exact node range. 138 */ 139 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || 140 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) 141 nr_pages += MAX_ORDER_NR_PAGES; 142 143 table_size = sizeof(struct page_ext) * nr_pages; 144 145 base = memblock_virt_alloc_try_nid_nopanic( 146 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 147 BOOTMEM_ALLOC_ACCESSIBLE, nid); 148 if (!base) 149 return -ENOMEM; 150 NODE_DATA(nid)->node_page_ext = base; 151 total_usage += table_size; 152 return 0; 153 } 154 155 void __init page_ext_init_flatmem(void) 156 { 157 158 int nid, fail; 159 160 if (!invoke_need_callbacks()) 161 return; 162 163 for_each_online_node(nid) { 164 fail = alloc_node_page_ext(nid); 165 if (fail) 166 goto fail; 167 } 168 pr_info("allocated %ld bytes of page_ext\n", total_usage); 169 invoke_init_callbacks(); 170 return; 171 172 fail: 173 pr_crit("allocation of page_ext failed.\n"); 174 panic("Out of memory"); 175 } 176 177 #else /* CONFIG_FLAT_NODE_MEM_MAP */ 178 179 struct page_ext *lookup_page_ext(struct page *page) 180 { 181 unsigned long pfn = page_to_pfn(page); 182 struct mem_section *section = __pfn_to_section(pfn); 183 #ifdef CONFIG_DEBUG_VM 184 /* 185 * The sanity checks the page allocator does upon freeing a 186 * page can reach here before the page_ext arrays are 187 * allocated when feeding a range of pages to the allocator 188 * for the first time during bootup or memory hotplug. 189 */ 190 if (!section->page_ext) 191 return NULL; 192 #endif 193 return section->page_ext + pfn; 194 } 195 196 static void *__meminit alloc_page_ext(size_t size, int nid) 197 { 198 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; 199 void *addr = NULL; 200 201 addr = alloc_pages_exact_nid(nid, size, flags); 202 if (addr) { 203 kmemleak_alloc(addr, size, 1, flags); 204 return addr; 205 } 206 207 if (node_state(nid, N_HIGH_MEMORY)) 208 addr = vzalloc_node(size, nid); 209 else 210 addr = vzalloc(size); 211 212 return addr; 213 } 214 215 static int __meminit init_section_page_ext(unsigned long pfn, int nid) 216 { 217 struct mem_section *section; 218 struct page_ext *base; 219 unsigned long table_size; 220 221 section = __pfn_to_section(pfn); 222 223 if (section->page_ext) 224 return 0; 225 226 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION; 227 base = alloc_page_ext(table_size, nid); 228 229 /* 230 * The value stored in section->page_ext is (base - pfn) 231 * and it does not point to the memory block allocated above, 232 * causing kmemleak false positives. 233 */ 234 kmemleak_not_leak(base); 235 236 if (!base) { 237 pr_err("page ext allocation failure\n"); 238 return -ENOMEM; 239 } 240 241 /* 242 * The passed "pfn" may not be aligned to SECTION. For the calculation 243 * we need to apply a mask. 244 */ 245 pfn &= PAGE_SECTION_MASK; 246 section->page_ext = base - pfn; 247 total_usage += table_size; 248 return 0; 249 } 250 #ifdef CONFIG_MEMORY_HOTPLUG 251 static void free_page_ext(void *addr) 252 { 253 if (is_vmalloc_addr(addr)) { 254 vfree(addr); 255 } else { 256 struct page *page = virt_to_page(addr); 257 size_t table_size; 258 259 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION; 260 261 BUG_ON(PageReserved(page)); 262 free_pages_exact(addr, table_size); 263 } 264 } 265 266 static void __free_page_ext(unsigned long pfn) 267 { 268 struct mem_section *ms; 269 struct page_ext *base; 270 271 ms = __pfn_to_section(pfn); 272 if (!ms || !ms->page_ext) 273 return; 274 base = ms->page_ext + pfn; 275 free_page_ext(base); 276 ms->page_ext = NULL; 277 } 278 279 static int __meminit online_page_ext(unsigned long start_pfn, 280 unsigned long nr_pages, 281 int nid) 282 { 283 unsigned long start, end, pfn; 284 int fail = 0; 285 286 start = SECTION_ALIGN_DOWN(start_pfn); 287 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 288 289 if (nid == -1) { 290 /* 291 * In this case, "nid" already exists and contains valid memory. 292 * "start_pfn" passed to us is a pfn which is an arg for 293 * online__pages(), and start_pfn should exist. 294 */ 295 nid = pfn_to_nid(start_pfn); 296 VM_BUG_ON(!node_state(nid, N_ONLINE)); 297 } 298 299 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { 300 if (!pfn_present(pfn)) 301 continue; 302 fail = init_section_page_ext(pfn, nid); 303 } 304 if (!fail) 305 return 0; 306 307 /* rollback */ 308 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 309 __free_page_ext(pfn); 310 311 return -ENOMEM; 312 } 313 314 static int __meminit offline_page_ext(unsigned long start_pfn, 315 unsigned long nr_pages, int nid) 316 { 317 unsigned long start, end, pfn; 318 319 start = SECTION_ALIGN_DOWN(start_pfn); 320 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 321 322 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 323 __free_page_ext(pfn); 324 return 0; 325 326 } 327 328 static int __meminit page_ext_callback(struct notifier_block *self, 329 unsigned long action, void *arg) 330 { 331 struct memory_notify *mn = arg; 332 int ret = 0; 333 334 switch (action) { 335 case MEM_GOING_ONLINE: 336 ret = online_page_ext(mn->start_pfn, 337 mn->nr_pages, mn->status_change_nid); 338 break; 339 case MEM_OFFLINE: 340 offline_page_ext(mn->start_pfn, 341 mn->nr_pages, mn->status_change_nid); 342 break; 343 case MEM_CANCEL_ONLINE: 344 offline_page_ext(mn->start_pfn, 345 mn->nr_pages, mn->status_change_nid); 346 break; 347 case MEM_GOING_OFFLINE: 348 break; 349 case MEM_ONLINE: 350 case MEM_CANCEL_OFFLINE: 351 break; 352 } 353 354 return notifier_from_errno(ret); 355 } 356 357 #endif 358 359 void __init page_ext_init(void) 360 { 361 unsigned long pfn; 362 int nid; 363 364 if (!invoke_need_callbacks()) 365 return; 366 367 for_each_node_state(nid, N_MEMORY) { 368 unsigned long start_pfn, end_pfn; 369 370 start_pfn = node_start_pfn(nid); 371 end_pfn = node_end_pfn(nid); 372 /* 373 * start_pfn and end_pfn may not be aligned to SECTION and the 374 * page->flags of out of node pages are not initialized. So we 375 * scan [start_pfn, the biggest section's pfn < end_pfn) here. 376 */ 377 for (pfn = start_pfn; pfn < end_pfn; 378 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { 379 380 if (!pfn_valid(pfn)) 381 continue; 382 /* 383 * Nodes's pfns can be overlapping. 384 * We know some arch can have a nodes layout such as 385 * -------------pfn--------------> 386 * N0 | N1 | N2 | N0 | N1 | N2|.... 387 */ 388 if (pfn_to_nid(pfn) != nid) 389 continue; 390 if (init_section_page_ext(pfn, nid)) 391 goto oom; 392 } 393 } 394 hotplug_memory_notifier(page_ext_callback, 0); 395 pr_info("allocated %ld bytes of page_ext\n", total_usage); 396 invoke_init_callbacks(); 397 return; 398 399 oom: 400 panic("Out of memory"); 401 } 402 403 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 404 { 405 } 406 407 #endif 408