1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/mmzone.h> 4 #include <linux/memblock.h> 5 #include <linux/page_ext.h> 6 #include <linux/memory.h> 7 #include <linux/vmalloc.h> 8 #include <linux/kmemleak.h> 9 #include <linux/page_owner.h> 10 #include <linux/page_idle.h> 11 #include <linux/page_table_check.h> 12 13 /* 14 * struct page extension 15 * 16 * This is the feature to manage memory for extended data per page. 17 * 18 * Until now, we must modify struct page itself to store extra data per page. 19 * This requires rebuilding the kernel and it is really time consuming process. 20 * And, sometimes, rebuild is impossible due to third party module dependency. 21 * At last, enlarging struct page could cause un-wanted system behaviour change. 22 * 23 * This feature is intended to overcome above mentioned problems. This feature 24 * allocates memory for extended data per page in certain place rather than 25 * the struct page itself. This memory can be accessed by the accessor 26 * functions provided by this code. During the boot process, it checks whether 27 * allocation of huge chunk of memory is needed or not. If not, it avoids 28 * allocating memory at all. With this advantage, we can include this feature 29 * into the kernel in default and can avoid rebuild and solve related problems. 30 * 31 * To help these things to work well, there are two callbacks for clients. One 32 * is the need callback which is mandatory if user wants to avoid useless 33 * memory allocation at boot-time. The other is optional, init callback, which 34 * is used to do proper initialization after memory is allocated. 35 * 36 * The need callback is used to decide whether extended memory allocation is 37 * needed or not. Sometimes users want to deactivate some features in this 38 * boot and extra memory would be unnecessary. In this case, to avoid 39 * allocating huge chunk of memory, each clients represent their need of 40 * extra memory through the need callback. If one of the need callbacks 41 * returns true, it means that someone needs extra memory so that 42 * page extension core should allocates memory for page extension. If 43 * none of need callbacks return true, memory isn't needed at all in this boot 44 * and page extension core can skip to allocate memory. As result, 45 * none of memory is wasted. 46 * 47 * When need callback returns true, page_ext checks if there is a request for 48 * extra memory through size in struct page_ext_operations. If it is non-zero, 49 * extra space is allocated for each page_ext entry and offset is returned to 50 * user through offset in struct page_ext_operations. 51 * 52 * The init callback is used to do proper initialization after page extension 53 * is completely initialized. In sparse memory system, extra memory is 54 * allocated some time later than memmap is allocated. In other words, lifetime 55 * of memory for page extension isn't same with memmap for struct page. 56 * Therefore, clients can't store extra data until page extension is 57 * initialized, even if pages are allocated and used freely. This could 58 * cause inadequate state of extra data per page, so, to prevent it, client 59 * can utilize this callback to initialize the state of it correctly. 60 */ 61 62 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) 63 static bool need_page_idle(void) 64 { 65 return true; 66 } 67 static struct page_ext_operations page_idle_ops __initdata = { 68 .need = need_page_idle, 69 }; 70 #endif 71 72 static struct page_ext_operations *page_ext_ops[] __initdata = { 73 #ifdef CONFIG_PAGE_OWNER 74 &page_owner_ops, 75 #endif 76 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) 77 &page_idle_ops, 78 #endif 79 #ifdef CONFIG_PAGE_TABLE_CHECK 80 &page_table_check_ops, 81 #endif 82 }; 83 84 unsigned long page_ext_size = sizeof(struct page_ext); 85 86 static unsigned long total_usage; 87 88 static bool __init invoke_need_callbacks(void) 89 { 90 int i; 91 int entries = ARRAY_SIZE(page_ext_ops); 92 bool need = false; 93 94 for (i = 0; i < entries; i++) { 95 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) { 96 page_ext_ops[i]->offset = page_ext_size; 97 page_ext_size += page_ext_ops[i]->size; 98 need = true; 99 } 100 } 101 102 return need; 103 } 104 105 static void __init invoke_init_callbacks(void) 106 { 107 int i; 108 int entries = ARRAY_SIZE(page_ext_ops); 109 110 for (i = 0; i < entries; i++) { 111 if (page_ext_ops[i]->init) 112 page_ext_ops[i]->init(); 113 } 114 } 115 116 #ifndef CONFIG_SPARSEMEM 117 void __init page_ext_init_flatmem_late(void) 118 { 119 invoke_init_callbacks(); 120 } 121 #endif 122 123 static inline struct page_ext *get_entry(void *base, unsigned long index) 124 { 125 return base + page_ext_size * index; 126 } 127 128 #ifndef CONFIG_SPARSEMEM 129 130 131 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 132 { 133 pgdat->node_page_ext = NULL; 134 } 135 136 struct page_ext *lookup_page_ext(const struct page *page) 137 { 138 unsigned long pfn = page_to_pfn(page); 139 unsigned long index; 140 struct page_ext *base; 141 142 base = NODE_DATA(page_to_nid(page))->node_page_ext; 143 /* 144 * The sanity checks the page allocator does upon freeing a 145 * page can reach here before the page_ext arrays are 146 * allocated when feeding a range of pages to the allocator 147 * for the first time during bootup or memory hotplug. 148 */ 149 if (unlikely(!base)) 150 return NULL; 151 index = pfn - round_down(node_start_pfn(page_to_nid(page)), 152 MAX_ORDER_NR_PAGES); 153 return get_entry(base, index); 154 } 155 156 static int __init alloc_node_page_ext(int nid) 157 { 158 struct page_ext *base; 159 unsigned long table_size; 160 unsigned long nr_pages; 161 162 nr_pages = NODE_DATA(nid)->node_spanned_pages; 163 if (!nr_pages) 164 return 0; 165 166 /* 167 * Need extra space if node range is not aligned with 168 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm 169 * checks buddy's status, range could be out of exact node range. 170 */ 171 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || 172 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) 173 nr_pages += MAX_ORDER_NR_PAGES; 174 175 table_size = page_ext_size * nr_pages; 176 177 base = memblock_alloc_try_nid( 178 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 179 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 180 if (!base) 181 return -ENOMEM; 182 NODE_DATA(nid)->node_page_ext = base; 183 total_usage += table_size; 184 return 0; 185 } 186 187 void __init page_ext_init_flatmem(void) 188 { 189 190 int nid, fail; 191 192 if (!invoke_need_callbacks()) 193 return; 194 195 for_each_online_node(nid) { 196 fail = alloc_node_page_ext(nid); 197 if (fail) 198 goto fail; 199 } 200 pr_info("allocated %ld bytes of page_ext\n", total_usage); 201 return; 202 203 fail: 204 pr_crit("allocation of page_ext failed.\n"); 205 panic("Out of memory"); 206 } 207 208 #else /* CONFIG_SPARSEMEM */ 209 210 struct page_ext *lookup_page_ext(const struct page *page) 211 { 212 unsigned long pfn = page_to_pfn(page); 213 struct mem_section *section = __pfn_to_section(pfn); 214 /* 215 * The sanity checks the page allocator does upon freeing a 216 * page can reach here before the page_ext arrays are 217 * allocated when feeding a range of pages to the allocator 218 * for the first time during bootup or memory hotplug. 219 */ 220 if (!section->page_ext) 221 return NULL; 222 return get_entry(section->page_ext, pfn); 223 } 224 225 static void *__meminit alloc_page_ext(size_t size, int nid) 226 { 227 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; 228 void *addr = NULL; 229 230 addr = alloc_pages_exact_nid(nid, size, flags); 231 if (addr) { 232 kmemleak_alloc(addr, size, 1, flags); 233 return addr; 234 } 235 236 addr = vzalloc_node(size, nid); 237 238 return addr; 239 } 240 241 static int __meminit init_section_page_ext(unsigned long pfn, int nid) 242 { 243 struct mem_section *section; 244 struct page_ext *base; 245 unsigned long table_size; 246 247 section = __pfn_to_section(pfn); 248 249 if (section->page_ext) 250 return 0; 251 252 table_size = page_ext_size * PAGES_PER_SECTION; 253 base = alloc_page_ext(table_size, nid); 254 255 /* 256 * The value stored in section->page_ext is (base - pfn) 257 * and it does not point to the memory block allocated above, 258 * causing kmemleak false positives. 259 */ 260 kmemleak_not_leak(base); 261 262 if (!base) { 263 pr_err("page ext allocation failure\n"); 264 return -ENOMEM; 265 } 266 267 /* 268 * The passed "pfn" may not be aligned to SECTION. For the calculation 269 * we need to apply a mask. 270 */ 271 pfn &= PAGE_SECTION_MASK; 272 section->page_ext = (void *)base - page_ext_size * pfn; 273 total_usage += table_size; 274 return 0; 275 } 276 277 static void free_page_ext(void *addr) 278 { 279 if (is_vmalloc_addr(addr)) { 280 vfree(addr); 281 } else { 282 struct page *page = virt_to_page(addr); 283 size_t table_size; 284 285 table_size = page_ext_size * PAGES_PER_SECTION; 286 287 BUG_ON(PageReserved(page)); 288 kmemleak_free(addr); 289 free_pages_exact(addr, table_size); 290 } 291 } 292 293 static void __free_page_ext(unsigned long pfn) 294 { 295 struct mem_section *ms; 296 struct page_ext *base; 297 298 ms = __pfn_to_section(pfn); 299 if (!ms || !ms->page_ext) 300 return; 301 base = get_entry(ms->page_ext, pfn); 302 free_page_ext(base); 303 ms->page_ext = NULL; 304 } 305 306 static int __meminit online_page_ext(unsigned long start_pfn, 307 unsigned long nr_pages, 308 int nid) 309 { 310 unsigned long start, end, pfn; 311 int fail = 0; 312 313 start = SECTION_ALIGN_DOWN(start_pfn); 314 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 315 316 if (nid == NUMA_NO_NODE) { 317 /* 318 * In this case, "nid" already exists and contains valid memory. 319 * "start_pfn" passed to us is a pfn which is an arg for 320 * online__pages(), and start_pfn should exist. 321 */ 322 nid = pfn_to_nid(start_pfn); 323 VM_BUG_ON(!node_state(nid, N_ONLINE)); 324 } 325 326 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) 327 fail = init_section_page_ext(pfn, nid); 328 if (!fail) 329 return 0; 330 331 /* rollback */ 332 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 333 __free_page_ext(pfn); 334 335 return -ENOMEM; 336 } 337 338 static int __meminit offline_page_ext(unsigned long start_pfn, 339 unsigned long nr_pages, int nid) 340 { 341 unsigned long start, end, pfn; 342 343 start = SECTION_ALIGN_DOWN(start_pfn); 344 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 345 346 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 347 __free_page_ext(pfn); 348 return 0; 349 350 } 351 352 static int __meminit page_ext_callback(struct notifier_block *self, 353 unsigned long action, void *arg) 354 { 355 struct memory_notify *mn = arg; 356 int ret = 0; 357 358 switch (action) { 359 case MEM_GOING_ONLINE: 360 ret = online_page_ext(mn->start_pfn, 361 mn->nr_pages, mn->status_change_nid); 362 break; 363 case MEM_OFFLINE: 364 offline_page_ext(mn->start_pfn, 365 mn->nr_pages, mn->status_change_nid); 366 break; 367 case MEM_CANCEL_ONLINE: 368 offline_page_ext(mn->start_pfn, 369 mn->nr_pages, mn->status_change_nid); 370 break; 371 case MEM_GOING_OFFLINE: 372 break; 373 case MEM_ONLINE: 374 case MEM_CANCEL_OFFLINE: 375 break; 376 } 377 378 return notifier_from_errno(ret); 379 } 380 381 void __init page_ext_init(void) 382 { 383 unsigned long pfn; 384 int nid; 385 386 if (!invoke_need_callbacks()) 387 return; 388 389 for_each_node_state(nid, N_MEMORY) { 390 unsigned long start_pfn, end_pfn; 391 392 start_pfn = node_start_pfn(nid); 393 end_pfn = node_end_pfn(nid); 394 /* 395 * start_pfn and end_pfn may not be aligned to SECTION and the 396 * page->flags of out of node pages are not initialized. So we 397 * scan [start_pfn, the biggest section's pfn < end_pfn) here. 398 */ 399 for (pfn = start_pfn; pfn < end_pfn; 400 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { 401 402 if (!pfn_valid(pfn)) 403 continue; 404 /* 405 * Nodes's pfns can be overlapping. 406 * We know some arch can have a nodes layout such as 407 * -------------pfn--------------> 408 * N0 | N1 | N2 | N0 | N1 | N2|.... 409 */ 410 if (pfn_to_nid(pfn) != nid) 411 continue; 412 if (init_section_page_ext(pfn, nid)) 413 goto oom; 414 cond_resched(); 415 } 416 } 417 hotplug_memory_notifier(page_ext_callback, 0); 418 pr_info("allocated %ld bytes of page_ext\n", total_usage); 419 invoke_init_callbacks(); 420 return; 421 422 oom: 423 panic("Out of memory"); 424 } 425 426 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 427 { 428 } 429 430 #endif 431