xref: /openbmc/linux/mm/page_ext.c (revision 6dfcd296)
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/page_ext.h>
5 #include <linux/memory.h>
6 #include <linux/vmalloc.h>
7 #include <linux/kmemleak.h>
8 #include <linux/page_owner.h>
9 #include <linux/page_idle.h>
10 
11 /*
12  * struct page extension
13  *
14  * This is the feature to manage memory for extended data per page.
15  *
16  * Until now, we must modify struct page itself to store extra data per page.
17  * This requires rebuilding the kernel and it is really time consuming process.
18  * And, sometimes, rebuild is impossible due to third party module dependency.
19  * At last, enlarging struct page could cause un-wanted system behaviour change.
20  *
21  * This feature is intended to overcome above mentioned problems. This feature
22  * allocates memory for extended data per page in certain place rather than
23  * the struct page itself. This memory can be accessed by the accessor
24  * functions provided by this code. During the boot process, it checks whether
25  * allocation of huge chunk of memory is needed or not. If not, it avoids
26  * allocating memory at all. With this advantage, we can include this feature
27  * into the kernel in default and can avoid rebuild and solve related problems.
28  *
29  * To help these things to work well, there are two callbacks for clients. One
30  * is the need callback which is mandatory if user wants to avoid useless
31  * memory allocation at boot-time. The other is optional, init callback, which
32  * is used to do proper initialization after memory is allocated.
33  *
34  * The need callback is used to decide whether extended memory allocation is
35  * needed or not. Sometimes users want to deactivate some features in this
36  * boot and extra memory would be unneccessary. In this case, to avoid
37  * allocating huge chunk of memory, each clients represent their need of
38  * extra memory through the need callback. If one of the need callbacks
39  * returns true, it means that someone needs extra memory so that
40  * page extension core should allocates memory for page extension. If
41  * none of need callbacks return true, memory isn't needed at all in this boot
42  * and page extension core can skip to allocate memory. As result,
43  * none of memory is wasted.
44  *
45  * When need callback returns true, page_ext checks if there is a request for
46  * extra memory through size in struct page_ext_operations. If it is non-zero,
47  * extra space is allocated for each page_ext entry and offset is returned to
48  * user through offset in struct page_ext_operations.
49  *
50  * The init callback is used to do proper initialization after page extension
51  * is completely initialized. In sparse memory system, extra memory is
52  * allocated some time later than memmap is allocated. In other words, lifetime
53  * of memory for page extension isn't same with memmap for struct page.
54  * Therefore, clients can't store extra data until page extension is
55  * initialized, even if pages are allocated and used freely. This could
56  * cause inadequate state of extra data per page, so, to prevent it, client
57  * can utilize this callback to initialize the state of it correctly.
58  */
59 
60 static struct page_ext_operations *page_ext_ops[] = {
61 	&debug_guardpage_ops,
62 #ifdef CONFIG_PAGE_POISONING
63 	&page_poisoning_ops,
64 #endif
65 #ifdef CONFIG_PAGE_OWNER
66 	&page_owner_ops,
67 #endif
68 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
69 	&page_idle_ops,
70 #endif
71 };
72 
73 static unsigned long total_usage;
74 static unsigned long extra_mem;
75 
76 static bool __init invoke_need_callbacks(void)
77 {
78 	int i;
79 	int entries = ARRAY_SIZE(page_ext_ops);
80 	bool need = false;
81 
82 	for (i = 0; i < entries; i++) {
83 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
84 			page_ext_ops[i]->offset = sizeof(struct page_ext) +
85 						extra_mem;
86 			extra_mem += page_ext_ops[i]->size;
87 			need = true;
88 		}
89 	}
90 
91 	return need;
92 }
93 
94 static void __init invoke_init_callbacks(void)
95 {
96 	int i;
97 	int entries = ARRAY_SIZE(page_ext_ops);
98 
99 	for (i = 0; i < entries; i++) {
100 		if (page_ext_ops[i]->init)
101 			page_ext_ops[i]->init();
102 	}
103 }
104 
105 static unsigned long get_entry_size(void)
106 {
107 	return sizeof(struct page_ext) + extra_mem;
108 }
109 
110 static inline struct page_ext *get_entry(void *base, unsigned long index)
111 {
112 	return base + get_entry_size() * index;
113 }
114 
115 #if !defined(CONFIG_SPARSEMEM)
116 
117 
118 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
119 {
120 	pgdat->node_page_ext = NULL;
121 }
122 
123 struct page_ext *lookup_page_ext(struct page *page)
124 {
125 	unsigned long pfn = page_to_pfn(page);
126 	unsigned long index;
127 	struct page_ext *base;
128 
129 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
130 #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
131 	/*
132 	 * The sanity checks the page allocator does upon freeing a
133 	 * page can reach here before the page_ext arrays are
134 	 * allocated when feeding a range of pages to the allocator
135 	 * for the first time during bootup or memory hotplug.
136 	 *
137 	 * This check is also necessary for ensuring page poisoning
138 	 * works as expected when enabled
139 	 */
140 	if (unlikely(!base))
141 		return NULL;
142 #endif
143 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
144 					MAX_ORDER_NR_PAGES);
145 	return get_entry(base, index);
146 }
147 
148 static int __init alloc_node_page_ext(int nid)
149 {
150 	struct page_ext *base;
151 	unsigned long table_size;
152 	unsigned long nr_pages;
153 
154 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
155 	if (!nr_pages)
156 		return 0;
157 
158 	/*
159 	 * Need extra space if node range is not aligned with
160 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
161 	 * checks buddy's status, range could be out of exact node range.
162 	 */
163 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
164 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
165 		nr_pages += MAX_ORDER_NR_PAGES;
166 
167 	table_size = get_entry_size() * nr_pages;
168 
169 	base = memblock_virt_alloc_try_nid_nopanic(
170 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
171 			BOOTMEM_ALLOC_ACCESSIBLE, nid);
172 	if (!base)
173 		return -ENOMEM;
174 	NODE_DATA(nid)->node_page_ext = base;
175 	total_usage += table_size;
176 	return 0;
177 }
178 
179 void __init page_ext_init_flatmem(void)
180 {
181 
182 	int nid, fail;
183 
184 	if (!invoke_need_callbacks())
185 		return;
186 
187 	for_each_online_node(nid)  {
188 		fail = alloc_node_page_ext(nid);
189 		if (fail)
190 			goto fail;
191 	}
192 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
193 	invoke_init_callbacks();
194 	return;
195 
196 fail:
197 	pr_crit("allocation of page_ext failed.\n");
198 	panic("Out of memory");
199 }
200 
201 #else /* CONFIG_FLAT_NODE_MEM_MAP */
202 
203 struct page_ext *lookup_page_ext(struct page *page)
204 {
205 	unsigned long pfn = page_to_pfn(page);
206 	struct mem_section *section = __pfn_to_section(pfn);
207 #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
208 	/*
209 	 * The sanity checks the page allocator does upon freeing a
210 	 * page can reach here before the page_ext arrays are
211 	 * allocated when feeding a range of pages to the allocator
212 	 * for the first time during bootup or memory hotplug.
213 	 *
214 	 * This check is also necessary for ensuring page poisoning
215 	 * works as expected when enabled
216 	 */
217 	if (!section->page_ext)
218 		return NULL;
219 #endif
220 	return get_entry(section->page_ext, pfn);
221 }
222 
223 static void *__meminit alloc_page_ext(size_t size, int nid)
224 {
225 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
226 	void *addr = NULL;
227 
228 	addr = alloc_pages_exact_nid(nid, size, flags);
229 	if (addr) {
230 		kmemleak_alloc(addr, size, 1, flags);
231 		return addr;
232 	}
233 
234 	if (node_state(nid, N_HIGH_MEMORY))
235 		addr = vzalloc_node(size, nid);
236 	else
237 		addr = vzalloc(size);
238 
239 	return addr;
240 }
241 
242 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
243 {
244 	struct mem_section *section;
245 	struct page_ext *base;
246 	unsigned long table_size;
247 
248 	section = __pfn_to_section(pfn);
249 
250 	if (section->page_ext)
251 		return 0;
252 
253 	table_size = get_entry_size() * PAGES_PER_SECTION;
254 	base = alloc_page_ext(table_size, nid);
255 
256 	/*
257 	 * The value stored in section->page_ext is (base - pfn)
258 	 * and it does not point to the memory block allocated above,
259 	 * causing kmemleak false positives.
260 	 */
261 	kmemleak_not_leak(base);
262 
263 	if (!base) {
264 		pr_err("page ext allocation failure\n");
265 		return -ENOMEM;
266 	}
267 
268 	/*
269 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
270 	 * we need to apply a mask.
271 	 */
272 	pfn &= PAGE_SECTION_MASK;
273 	section->page_ext = (void *)base - get_entry_size() * pfn;
274 	total_usage += table_size;
275 	return 0;
276 }
277 #ifdef CONFIG_MEMORY_HOTPLUG
278 static void free_page_ext(void *addr)
279 {
280 	if (is_vmalloc_addr(addr)) {
281 		vfree(addr);
282 	} else {
283 		struct page *page = virt_to_page(addr);
284 		size_t table_size;
285 
286 		table_size = get_entry_size() * PAGES_PER_SECTION;
287 
288 		BUG_ON(PageReserved(page));
289 		free_pages_exact(addr, table_size);
290 	}
291 }
292 
293 static void __free_page_ext(unsigned long pfn)
294 {
295 	struct mem_section *ms;
296 	struct page_ext *base;
297 
298 	ms = __pfn_to_section(pfn);
299 	if (!ms || !ms->page_ext)
300 		return;
301 	base = get_entry(ms->page_ext, pfn);
302 	free_page_ext(base);
303 	ms->page_ext = NULL;
304 }
305 
306 static int __meminit online_page_ext(unsigned long start_pfn,
307 				unsigned long nr_pages,
308 				int nid)
309 {
310 	unsigned long start, end, pfn;
311 	int fail = 0;
312 
313 	start = SECTION_ALIGN_DOWN(start_pfn);
314 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
315 
316 	if (nid == -1) {
317 		/*
318 		 * In this case, "nid" already exists and contains valid memory.
319 		 * "start_pfn" passed to us is a pfn which is an arg for
320 		 * online__pages(), and start_pfn should exist.
321 		 */
322 		nid = pfn_to_nid(start_pfn);
323 		VM_BUG_ON(!node_state(nid, N_ONLINE));
324 	}
325 
326 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
327 		if (!pfn_present(pfn))
328 			continue;
329 		fail = init_section_page_ext(pfn, nid);
330 	}
331 	if (!fail)
332 		return 0;
333 
334 	/* rollback */
335 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
336 		__free_page_ext(pfn);
337 
338 	return -ENOMEM;
339 }
340 
341 static int __meminit offline_page_ext(unsigned long start_pfn,
342 				unsigned long nr_pages, int nid)
343 {
344 	unsigned long start, end, pfn;
345 
346 	start = SECTION_ALIGN_DOWN(start_pfn);
347 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
348 
349 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
350 		__free_page_ext(pfn);
351 	return 0;
352 
353 }
354 
355 static int __meminit page_ext_callback(struct notifier_block *self,
356 			       unsigned long action, void *arg)
357 {
358 	struct memory_notify *mn = arg;
359 	int ret = 0;
360 
361 	switch (action) {
362 	case MEM_GOING_ONLINE:
363 		ret = online_page_ext(mn->start_pfn,
364 				   mn->nr_pages, mn->status_change_nid);
365 		break;
366 	case MEM_OFFLINE:
367 		offline_page_ext(mn->start_pfn,
368 				mn->nr_pages, mn->status_change_nid);
369 		break;
370 	case MEM_CANCEL_ONLINE:
371 		offline_page_ext(mn->start_pfn,
372 				mn->nr_pages, mn->status_change_nid);
373 		break;
374 	case MEM_GOING_OFFLINE:
375 		break;
376 	case MEM_ONLINE:
377 	case MEM_CANCEL_OFFLINE:
378 		break;
379 	}
380 
381 	return notifier_from_errno(ret);
382 }
383 
384 #endif
385 
386 void __init page_ext_init(void)
387 {
388 	unsigned long pfn;
389 	int nid;
390 
391 	if (!invoke_need_callbacks())
392 		return;
393 
394 	for_each_node_state(nid, N_MEMORY) {
395 		unsigned long start_pfn, end_pfn;
396 
397 		start_pfn = node_start_pfn(nid);
398 		end_pfn = node_end_pfn(nid);
399 		/*
400 		 * start_pfn and end_pfn may not be aligned to SECTION and the
401 		 * page->flags of out of node pages are not initialized.  So we
402 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
403 		 */
404 		for (pfn = start_pfn; pfn < end_pfn;
405 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
406 
407 			if (!pfn_valid(pfn))
408 				continue;
409 			/*
410 			 * Nodes's pfns can be overlapping.
411 			 * We know some arch can have a nodes layout such as
412 			 * -------------pfn-------------->
413 			 * N0 | N1 | N2 | N0 | N1 | N2|....
414 			 *
415 			 * Take into account DEFERRED_STRUCT_PAGE_INIT.
416 			 */
417 			if (early_pfn_to_nid(pfn) != nid)
418 				continue;
419 			if (init_section_page_ext(pfn, nid))
420 				goto oom;
421 		}
422 	}
423 	hotplug_memory_notifier(page_ext_callback, 0);
424 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
425 	invoke_init_callbacks();
426 	return;
427 
428 oom:
429 	panic("Out of memory");
430 }
431 
432 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
433 {
434 }
435 
436 #endif
437