xref: /openbmc/linux/mm/page_ext.c (revision 5b448065)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 
12 /*
13  * struct page extension
14  *
15  * This is the feature to manage memory for extended data per page.
16  *
17  * Until now, we must modify struct page itself to store extra data per page.
18  * This requires rebuilding the kernel and it is really time consuming process.
19  * And, sometimes, rebuild is impossible due to third party module dependency.
20  * At last, enlarging struct page could cause un-wanted system behaviour change.
21  *
22  * This feature is intended to overcome above mentioned problems. This feature
23  * allocates memory for extended data per page in certain place rather than
24  * the struct page itself. This memory can be accessed by the accessor
25  * functions provided by this code. During the boot process, it checks whether
26  * allocation of huge chunk of memory is needed or not. If not, it avoids
27  * allocating memory at all. With this advantage, we can include this feature
28  * into the kernel in default and can avoid rebuild and solve related problems.
29  *
30  * To help these things to work well, there are two callbacks for clients. One
31  * is the need callback which is mandatory if user wants to avoid useless
32  * memory allocation at boot-time. The other is optional, init callback, which
33  * is used to do proper initialization after memory is allocated.
34  *
35  * The need callback is used to decide whether extended memory allocation is
36  * needed or not. Sometimes users want to deactivate some features in this
37  * boot and extra memory would be unnecessary. In this case, to avoid
38  * allocating huge chunk of memory, each clients represent their need of
39  * extra memory through the need callback. If one of the need callbacks
40  * returns true, it means that someone needs extra memory so that
41  * page extension core should allocates memory for page extension. If
42  * none of need callbacks return true, memory isn't needed at all in this boot
43  * and page extension core can skip to allocate memory. As result,
44  * none of memory is wasted.
45  *
46  * When need callback returns true, page_ext checks if there is a request for
47  * extra memory through size in struct page_ext_operations. If it is non-zero,
48  * extra space is allocated for each page_ext entry and offset is returned to
49  * user through offset in struct page_ext_operations.
50  *
51  * The init callback is used to do proper initialization after page extension
52  * is completely initialized. In sparse memory system, extra memory is
53  * allocated some time later than memmap is allocated. In other words, lifetime
54  * of memory for page extension isn't same with memmap for struct page.
55  * Therefore, clients can't store extra data until page extension is
56  * initialized, even if pages are allocated and used freely. This could
57  * cause inadequate state of extra data per page, so, to prevent it, client
58  * can utilize this callback to initialize the state of it correctly.
59  */
60 
61 static struct page_ext_operations *page_ext_ops[] = {
62 #ifdef CONFIG_PAGE_OWNER
63 	&page_owner_ops,
64 #endif
65 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
66 	&page_idle_ops,
67 #endif
68 };
69 
70 unsigned long page_ext_size = sizeof(struct page_ext);
71 
72 static unsigned long total_usage;
73 
74 static bool __init invoke_need_callbacks(void)
75 {
76 	int i;
77 	int entries = ARRAY_SIZE(page_ext_ops);
78 	bool need = false;
79 
80 	for (i = 0; i < entries; i++) {
81 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
82 			page_ext_ops[i]->offset = page_ext_size;
83 			page_ext_size += page_ext_ops[i]->size;
84 			need = true;
85 		}
86 	}
87 
88 	return need;
89 }
90 
91 static void __init invoke_init_callbacks(void)
92 {
93 	int i;
94 	int entries = ARRAY_SIZE(page_ext_ops);
95 
96 	for (i = 0; i < entries; i++) {
97 		if (page_ext_ops[i]->init)
98 			page_ext_ops[i]->init();
99 	}
100 }
101 
102 #ifndef CONFIG_SPARSEMEM
103 void __init page_ext_init_flatmem_late(void)
104 {
105 	invoke_init_callbacks();
106 }
107 #endif
108 
109 static inline struct page_ext *get_entry(void *base, unsigned long index)
110 {
111 	return base + page_ext_size * index;
112 }
113 
114 #ifndef CONFIG_SPARSEMEM
115 
116 
117 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
118 {
119 	pgdat->node_page_ext = NULL;
120 }
121 
122 struct page_ext *lookup_page_ext(const struct page *page)
123 {
124 	unsigned long pfn = page_to_pfn(page);
125 	unsigned long index;
126 	struct page_ext *base;
127 
128 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
129 	/*
130 	 * The sanity checks the page allocator does upon freeing a
131 	 * page can reach here before the page_ext arrays are
132 	 * allocated when feeding a range of pages to the allocator
133 	 * for the first time during bootup or memory hotplug.
134 	 */
135 	if (unlikely(!base))
136 		return NULL;
137 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
138 					MAX_ORDER_NR_PAGES);
139 	return get_entry(base, index);
140 }
141 
142 static int __init alloc_node_page_ext(int nid)
143 {
144 	struct page_ext *base;
145 	unsigned long table_size;
146 	unsigned long nr_pages;
147 
148 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
149 	if (!nr_pages)
150 		return 0;
151 
152 	/*
153 	 * Need extra space if node range is not aligned with
154 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
155 	 * checks buddy's status, range could be out of exact node range.
156 	 */
157 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
158 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
159 		nr_pages += MAX_ORDER_NR_PAGES;
160 
161 	table_size = page_ext_size * nr_pages;
162 
163 	base = memblock_alloc_try_nid(
164 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
165 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
166 	if (!base)
167 		return -ENOMEM;
168 	NODE_DATA(nid)->node_page_ext = base;
169 	total_usage += table_size;
170 	return 0;
171 }
172 
173 void __init page_ext_init_flatmem(void)
174 {
175 
176 	int nid, fail;
177 
178 	if (!invoke_need_callbacks())
179 		return;
180 
181 	for_each_online_node(nid)  {
182 		fail = alloc_node_page_ext(nid);
183 		if (fail)
184 			goto fail;
185 	}
186 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
187 	return;
188 
189 fail:
190 	pr_crit("allocation of page_ext failed.\n");
191 	panic("Out of memory");
192 }
193 
194 #else /* CONFIG_FLAT_NODE_MEM_MAP */
195 
196 struct page_ext *lookup_page_ext(const struct page *page)
197 {
198 	unsigned long pfn = page_to_pfn(page);
199 	struct mem_section *section = __pfn_to_section(pfn);
200 	/*
201 	 * The sanity checks the page allocator does upon freeing a
202 	 * page can reach here before the page_ext arrays are
203 	 * allocated when feeding a range of pages to the allocator
204 	 * for the first time during bootup or memory hotplug.
205 	 */
206 	if (!section->page_ext)
207 		return NULL;
208 	return get_entry(section->page_ext, pfn);
209 }
210 
211 static void *__meminit alloc_page_ext(size_t size, int nid)
212 {
213 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
214 	void *addr = NULL;
215 
216 	addr = alloc_pages_exact_nid(nid, size, flags);
217 	if (addr) {
218 		kmemleak_alloc(addr, size, 1, flags);
219 		return addr;
220 	}
221 
222 	addr = vzalloc_node(size, nid);
223 
224 	return addr;
225 }
226 
227 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
228 {
229 	struct mem_section *section;
230 	struct page_ext *base;
231 	unsigned long table_size;
232 
233 	section = __pfn_to_section(pfn);
234 
235 	if (section->page_ext)
236 		return 0;
237 
238 	table_size = page_ext_size * PAGES_PER_SECTION;
239 	base = alloc_page_ext(table_size, nid);
240 
241 	/*
242 	 * The value stored in section->page_ext is (base - pfn)
243 	 * and it does not point to the memory block allocated above,
244 	 * causing kmemleak false positives.
245 	 */
246 	kmemleak_not_leak(base);
247 
248 	if (!base) {
249 		pr_err("page ext allocation failure\n");
250 		return -ENOMEM;
251 	}
252 
253 	/*
254 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
255 	 * we need to apply a mask.
256 	 */
257 	pfn &= PAGE_SECTION_MASK;
258 	section->page_ext = (void *)base - page_ext_size * pfn;
259 	total_usage += table_size;
260 	return 0;
261 }
262 #ifdef CONFIG_MEMORY_HOTPLUG
263 static void free_page_ext(void *addr)
264 {
265 	if (is_vmalloc_addr(addr)) {
266 		vfree(addr);
267 	} else {
268 		struct page *page = virt_to_page(addr);
269 		size_t table_size;
270 
271 		table_size = page_ext_size * PAGES_PER_SECTION;
272 
273 		BUG_ON(PageReserved(page));
274 		kmemleak_free(addr);
275 		free_pages_exact(addr, table_size);
276 	}
277 }
278 
279 static void __free_page_ext(unsigned long pfn)
280 {
281 	struct mem_section *ms;
282 	struct page_ext *base;
283 
284 	ms = __pfn_to_section(pfn);
285 	if (!ms || !ms->page_ext)
286 		return;
287 	base = get_entry(ms->page_ext, pfn);
288 	free_page_ext(base);
289 	ms->page_ext = NULL;
290 }
291 
292 static int __meminit online_page_ext(unsigned long start_pfn,
293 				unsigned long nr_pages,
294 				int nid)
295 {
296 	unsigned long start, end, pfn;
297 	int fail = 0;
298 
299 	start = SECTION_ALIGN_DOWN(start_pfn);
300 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
301 
302 	if (nid == NUMA_NO_NODE) {
303 		/*
304 		 * In this case, "nid" already exists and contains valid memory.
305 		 * "start_pfn" passed to us is a pfn which is an arg for
306 		 * online__pages(), and start_pfn should exist.
307 		 */
308 		nid = pfn_to_nid(start_pfn);
309 		VM_BUG_ON(!node_state(nid, N_ONLINE));
310 	}
311 
312 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
313 		fail = init_section_page_ext(pfn, nid);
314 	if (!fail)
315 		return 0;
316 
317 	/* rollback */
318 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
319 		__free_page_ext(pfn);
320 
321 	return -ENOMEM;
322 }
323 
324 static int __meminit offline_page_ext(unsigned long start_pfn,
325 				unsigned long nr_pages, int nid)
326 {
327 	unsigned long start, end, pfn;
328 
329 	start = SECTION_ALIGN_DOWN(start_pfn);
330 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
331 
332 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
333 		__free_page_ext(pfn);
334 	return 0;
335 
336 }
337 
338 static int __meminit page_ext_callback(struct notifier_block *self,
339 			       unsigned long action, void *arg)
340 {
341 	struct memory_notify *mn = arg;
342 	int ret = 0;
343 
344 	switch (action) {
345 	case MEM_GOING_ONLINE:
346 		ret = online_page_ext(mn->start_pfn,
347 				   mn->nr_pages, mn->status_change_nid);
348 		break;
349 	case MEM_OFFLINE:
350 		offline_page_ext(mn->start_pfn,
351 				mn->nr_pages, mn->status_change_nid);
352 		break;
353 	case MEM_CANCEL_ONLINE:
354 		offline_page_ext(mn->start_pfn,
355 				mn->nr_pages, mn->status_change_nid);
356 		break;
357 	case MEM_GOING_OFFLINE:
358 		break;
359 	case MEM_ONLINE:
360 	case MEM_CANCEL_OFFLINE:
361 		break;
362 	}
363 
364 	return notifier_from_errno(ret);
365 }
366 
367 #endif
368 
369 void __init page_ext_init(void)
370 {
371 	unsigned long pfn;
372 	int nid;
373 
374 	if (!invoke_need_callbacks())
375 		return;
376 
377 	for_each_node_state(nid, N_MEMORY) {
378 		unsigned long start_pfn, end_pfn;
379 
380 		start_pfn = node_start_pfn(nid);
381 		end_pfn = node_end_pfn(nid);
382 		/*
383 		 * start_pfn and end_pfn may not be aligned to SECTION and the
384 		 * page->flags of out of node pages are not initialized.  So we
385 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
386 		 */
387 		for (pfn = start_pfn; pfn < end_pfn;
388 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
389 
390 			if (!pfn_valid(pfn))
391 				continue;
392 			/*
393 			 * Nodes's pfns can be overlapping.
394 			 * We know some arch can have a nodes layout such as
395 			 * -------------pfn-------------->
396 			 * N0 | N1 | N2 | N0 | N1 | N2|....
397 			 */
398 			if (pfn_to_nid(pfn) != nid)
399 				continue;
400 			if (init_section_page_ext(pfn, nid))
401 				goto oom;
402 			cond_resched();
403 		}
404 	}
405 	hotplug_memory_notifier(page_ext_callback, 0);
406 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
407 	invoke_init_callbacks();
408 	return;
409 
410 oom:
411 	panic("Out of memory");
412 }
413 
414 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
415 {
416 }
417 
418 #endif
419