xref: /openbmc/linux/mm/page_ext.c (revision 519b58bbfa825f042fcf80261cc18e1e35f85ffd)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 #include <linux/page_table_check.h>
12 #include <linux/rcupdate.h>
13 
14 /*
15  * struct page extension
16  *
17  * This is the feature to manage memory for extended data per page.
18  *
19  * Until now, we must modify struct page itself to store extra data per page.
20  * This requires rebuilding the kernel and it is really time consuming process.
21  * And, sometimes, rebuild is impossible due to third party module dependency.
22  * At last, enlarging struct page could cause un-wanted system behaviour change.
23  *
24  * This feature is intended to overcome above mentioned problems. This feature
25  * allocates memory for extended data per page in certain place rather than
26  * the struct page itself. This memory can be accessed by the accessor
27  * functions provided by this code. During the boot process, it checks whether
28  * allocation of huge chunk of memory is needed or not. If not, it avoids
29  * allocating memory at all. With this advantage, we can include this feature
30  * into the kernel in default and can avoid rebuild and solve related problems.
31  *
32  * To help these things to work well, there are two callbacks for clients. One
33  * is the need callback which is mandatory if user wants to avoid useless
34  * memory allocation at boot-time. The other is optional, init callback, which
35  * is used to do proper initialization after memory is allocated.
36  *
37  * The need callback is used to decide whether extended memory allocation is
38  * needed or not. Sometimes users want to deactivate some features in this
39  * boot and extra memory would be unnecessary. In this case, to avoid
40  * allocating huge chunk of memory, each clients represent their need of
41  * extra memory through the need callback. If one of the need callbacks
42  * returns true, it means that someone needs extra memory so that
43  * page extension core should allocates memory for page extension. If
44  * none of need callbacks return true, memory isn't needed at all in this boot
45  * and page extension core can skip to allocate memory. As result,
46  * none of memory is wasted.
47  *
48  * When need callback returns true, page_ext checks if there is a request for
49  * extra memory through size in struct page_ext_operations. If it is non-zero,
50  * extra space is allocated for each page_ext entry and offset is returned to
51  * user through offset in struct page_ext_operations.
52  *
53  * The init callback is used to do proper initialization after page extension
54  * is completely initialized. In sparse memory system, extra memory is
55  * allocated some time later than memmap is allocated. In other words, lifetime
56  * of memory for page extension isn't same with memmap for struct page.
57  * Therefore, clients can't store extra data until page extension is
58  * initialized, even if pages are allocated and used freely. This could
59  * cause inadequate state of extra data per page, so, to prevent it, client
60  * can utilize this callback to initialize the state of it correctly.
61  */
62 
63 #ifdef CONFIG_SPARSEMEM
64 #define PAGE_EXT_INVALID       (0x1)
65 #endif
66 
67 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
68 static bool need_page_idle(void)
69 {
70 	return true;
71 }
72 static struct page_ext_operations page_idle_ops __initdata = {
73 	.need = need_page_idle,
74 };
75 #endif
76 
77 static struct page_ext_operations *page_ext_ops[] __initdata = {
78 #ifdef CONFIG_PAGE_OWNER
79 	&page_owner_ops,
80 #endif
81 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
82 	&page_idle_ops,
83 #endif
84 #ifdef CONFIG_PAGE_TABLE_CHECK
85 	&page_table_check_ops,
86 #endif
87 };
88 
89 unsigned long page_ext_size = sizeof(struct page_ext);
90 
91 static unsigned long total_usage;
92 static struct page_ext *lookup_page_ext(const struct page *page);
93 
94 bool early_page_ext;
95 static int __init setup_early_page_ext(char *str)
96 {
97 	early_page_ext = true;
98 	return 0;
99 }
100 early_param("early_page_ext", setup_early_page_ext);
101 
102 static bool __init invoke_need_callbacks(void)
103 {
104 	int i;
105 	int entries = ARRAY_SIZE(page_ext_ops);
106 	bool need = false;
107 
108 	for (i = 0; i < entries; i++) {
109 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
110 			page_ext_ops[i]->offset = page_ext_size;
111 			page_ext_size += page_ext_ops[i]->size;
112 			need = true;
113 		}
114 	}
115 
116 	return need;
117 }
118 
119 static void __init invoke_init_callbacks(void)
120 {
121 	int i;
122 	int entries = ARRAY_SIZE(page_ext_ops);
123 
124 	for (i = 0; i < entries; i++) {
125 		if (page_ext_ops[i]->init)
126 			page_ext_ops[i]->init();
127 	}
128 }
129 
130 #ifndef CONFIG_SPARSEMEM
131 void __init page_ext_init_flatmem_late(void)
132 {
133 	invoke_init_callbacks();
134 }
135 #endif
136 
137 static inline struct page_ext *get_entry(void *base, unsigned long index)
138 {
139 	return base + page_ext_size * index;
140 }
141 
142 /**
143  * page_ext_get() - Get the extended information for a page.
144  * @page: The page we're interested in.
145  *
146  * Ensures that the page_ext will remain valid until page_ext_put()
147  * is called.
148  *
149  * Return: NULL if no page_ext exists for this page.
150  * Context: Any context.  Caller may not sleep until they have called
151  * page_ext_put().
152  */
153 struct page_ext *page_ext_get(struct page *page)
154 {
155 	struct page_ext *page_ext;
156 
157 	rcu_read_lock();
158 	page_ext = lookup_page_ext(page);
159 	if (!page_ext) {
160 		rcu_read_unlock();
161 		return NULL;
162 	}
163 
164 	return page_ext;
165 }
166 
167 /**
168  * page_ext_put() - Working with page extended information is done.
169  * @page_ext - Page extended information received from page_ext_get().
170  *
171  * The page extended information of the page may not be valid after this
172  * function is called.
173  *
174  * Return: None.
175  * Context: Any context with corresponding page_ext_get() is called.
176  */
177 void page_ext_put(struct page_ext *page_ext)
178 {
179 	if (unlikely(!page_ext))
180 		return;
181 
182 	rcu_read_unlock();
183 }
184 #ifndef CONFIG_SPARSEMEM
185 
186 
187 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
188 {
189 	pgdat->node_page_ext = NULL;
190 }
191 
192 static struct page_ext *lookup_page_ext(const struct page *page)
193 {
194 	unsigned long pfn = page_to_pfn(page);
195 	unsigned long index;
196 	struct page_ext *base;
197 
198 	WARN_ON_ONCE(!rcu_read_lock_held());
199 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
200 	/*
201 	 * The sanity checks the page allocator does upon freeing a
202 	 * page can reach here before the page_ext arrays are
203 	 * allocated when feeding a range of pages to the allocator
204 	 * for the first time during bootup or memory hotplug.
205 	 */
206 	if (unlikely(!base))
207 		return NULL;
208 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
209 					MAX_ORDER_NR_PAGES);
210 	return get_entry(base, index);
211 }
212 
213 static int __init alloc_node_page_ext(int nid)
214 {
215 	struct page_ext *base;
216 	unsigned long table_size;
217 	unsigned long nr_pages;
218 
219 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
220 	if (!nr_pages)
221 		return 0;
222 
223 	/*
224 	 * Need extra space if node range is not aligned with
225 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
226 	 * checks buddy's status, range could be out of exact node range.
227 	 */
228 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
229 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
230 		nr_pages += MAX_ORDER_NR_PAGES;
231 
232 	table_size = page_ext_size * nr_pages;
233 
234 	base = memblock_alloc_try_nid(
235 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
236 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
237 	if (!base)
238 		return -ENOMEM;
239 	NODE_DATA(nid)->node_page_ext = base;
240 	total_usage += table_size;
241 	return 0;
242 }
243 
244 void __init page_ext_init_flatmem(void)
245 {
246 
247 	int nid, fail;
248 
249 	if (!invoke_need_callbacks())
250 		return;
251 
252 	for_each_online_node(nid)  {
253 		fail = alloc_node_page_ext(nid);
254 		if (fail)
255 			goto fail;
256 	}
257 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
258 	return;
259 
260 fail:
261 	pr_crit("allocation of page_ext failed.\n");
262 	panic("Out of memory");
263 }
264 
265 #else /* CONFIG_SPARSEMEM */
266 static bool page_ext_invalid(struct page_ext *page_ext)
267 {
268 	return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
269 }
270 
271 static struct page_ext *lookup_page_ext(const struct page *page)
272 {
273 	unsigned long pfn = page_to_pfn(page);
274 	struct mem_section *section = __pfn_to_section(pfn);
275 	struct page_ext *page_ext = READ_ONCE(section->page_ext);
276 
277 	WARN_ON_ONCE(!rcu_read_lock_held());
278 	/*
279 	 * The sanity checks the page allocator does upon freeing a
280 	 * page can reach here before the page_ext arrays are
281 	 * allocated when feeding a range of pages to the allocator
282 	 * for the first time during bootup or memory hotplug.
283 	 */
284 	if (page_ext_invalid(page_ext))
285 		return NULL;
286 	return get_entry(page_ext, pfn);
287 }
288 
289 static void *__meminit alloc_page_ext(size_t size, int nid)
290 {
291 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
292 	void *addr = NULL;
293 
294 	addr = alloc_pages_exact_nid(nid, size, flags);
295 	if (addr) {
296 		kmemleak_alloc(addr, size, 1, flags);
297 		return addr;
298 	}
299 
300 	addr = vzalloc_node(size, nid);
301 
302 	return addr;
303 }
304 
305 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
306 {
307 	struct mem_section *section;
308 	struct page_ext *base;
309 	unsigned long table_size;
310 
311 	section = __pfn_to_section(pfn);
312 
313 	if (section->page_ext)
314 		return 0;
315 
316 	table_size = page_ext_size * PAGES_PER_SECTION;
317 	base = alloc_page_ext(table_size, nid);
318 
319 	/*
320 	 * The value stored in section->page_ext is (base - pfn)
321 	 * and it does not point to the memory block allocated above,
322 	 * causing kmemleak false positives.
323 	 */
324 	kmemleak_not_leak(base);
325 
326 	if (!base) {
327 		pr_err("page ext allocation failure\n");
328 		return -ENOMEM;
329 	}
330 
331 	/*
332 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
333 	 * we need to apply a mask.
334 	 */
335 	pfn &= PAGE_SECTION_MASK;
336 	section->page_ext = (void *)base - page_ext_size * pfn;
337 	total_usage += table_size;
338 	return 0;
339 }
340 
341 static void free_page_ext(void *addr)
342 {
343 	if (is_vmalloc_addr(addr)) {
344 		vfree(addr);
345 	} else {
346 		struct page *page = virt_to_page(addr);
347 		size_t table_size;
348 
349 		table_size = page_ext_size * PAGES_PER_SECTION;
350 
351 		BUG_ON(PageReserved(page));
352 		kmemleak_free(addr);
353 		free_pages_exact(addr, table_size);
354 	}
355 }
356 
357 static void __free_page_ext(unsigned long pfn)
358 {
359 	struct mem_section *ms;
360 	struct page_ext *base;
361 
362 	ms = __pfn_to_section(pfn);
363 	if (!ms || !ms->page_ext)
364 		return;
365 
366 	base = READ_ONCE(ms->page_ext);
367 	/*
368 	 * page_ext here can be valid while doing the roll back
369 	 * operation in online_page_ext().
370 	 */
371 	if (page_ext_invalid(base))
372 		base = (void *)base - PAGE_EXT_INVALID;
373 	WRITE_ONCE(ms->page_ext, NULL);
374 
375 	base = get_entry(base, pfn);
376 	free_page_ext(base);
377 }
378 
379 static void __invalidate_page_ext(unsigned long pfn)
380 {
381 	struct mem_section *ms;
382 	void *val;
383 
384 	ms = __pfn_to_section(pfn);
385 	if (!ms || !ms->page_ext)
386 		return;
387 	val = (void *)ms->page_ext + PAGE_EXT_INVALID;
388 	WRITE_ONCE(ms->page_ext, val);
389 }
390 
391 static int __meminit online_page_ext(unsigned long start_pfn,
392 				unsigned long nr_pages,
393 				int nid)
394 {
395 	unsigned long start, end, pfn;
396 	int fail = 0;
397 
398 	start = SECTION_ALIGN_DOWN(start_pfn);
399 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
400 
401 	if (nid == NUMA_NO_NODE) {
402 		/*
403 		 * In this case, "nid" already exists and contains valid memory.
404 		 * "start_pfn" passed to us is a pfn which is an arg for
405 		 * online__pages(), and start_pfn should exist.
406 		 */
407 		nid = pfn_to_nid(start_pfn);
408 		VM_BUG_ON(!node_online(nid));
409 	}
410 
411 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
412 		fail = init_section_page_ext(pfn, nid);
413 	if (!fail)
414 		return 0;
415 
416 	/* rollback */
417 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
418 		__free_page_ext(pfn);
419 
420 	return -ENOMEM;
421 }
422 
423 static int __meminit offline_page_ext(unsigned long start_pfn,
424 				unsigned long nr_pages)
425 {
426 	unsigned long start, end, pfn;
427 
428 	start = SECTION_ALIGN_DOWN(start_pfn);
429 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
430 
431 	/*
432 	 * Freeing of page_ext is done in 3 steps to avoid
433 	 * use-after-free of it:
434 	 * 1) Traverse all the sections and mark their page_ext
435 	 *    as invalid.
436 	 * 2) Wait for all the existing users of page_ext who
437 	 *    started before invalidation to finish.
438 	 * 3) Free the page_ext.
439 	 */
440 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
441 		__invalidate_page_ext(pfn);
442 
443 	synchronize_rcu();
444 
445 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
446 		__free_page_ext(pfn);
447 	return 0;
448 
449 }
450 
451 static int __meminit page_ext_callback(struct notifier_block *self,
452 			       unsigned long action, void *arg)
453 {
454 	struct memory_notify *mn = arg;
455 	int ret = 0;
456 
457 	switch (action) {
458 	case MEM_GOING_ONLINE:
459 		ret = online_page_ext(mn->start_pfn,
460 				   mn->nr_pages, mn->status_change_nid);
461 		break;
462 	case MEM_OFFLINE:
463 		offline_page_ext(mn->start_pfn,
464 				mn->nr_pages);
465 		break;
466 	case MEM_CANCEL_ONLINE:
467 		offline_page_ext(mn->start_pfn,
468 				mn->nr_pages);
469 		break;
470 	case MEM_GOING_OFFLINE:
471 		break;
472 	case MEM_ONLINE:
473 	case MEM_CANCEL_OFFLINE:
474 		break;
475 	}
476 
477 	return notifier_from_errno(ret);
478 }
479 
480 void __init page_ext_init(void)
481 {
482 	unsigned long pfn;
483 	int nid;
484 
485 	if (!invoke_need_callbacks())
486 		return;
487 
488 	for_each_node_state(nid, N_MEMORY) {
489 		unsigned long start_pfn, end_pfn;
490 
491 		start_pfn = node_start_pfn(nid);
492 		end_pfn = node_end_pfn(nid);
493 		/*
494 		 * start_pfn and end_pfn may not be aligned to SECTION and the
495 		 * page->flags of out of node pages are not initialized.  So we
496 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
497 		 */
498 		for (pfn = start_pfn; pfn < end_pfn;
499 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
500 
501 			if (!pfn_valid(pfn))
502 				continue;
503 			/*
504 			 * Nodes's pfns can be overlapping.
505 			 * We know some arch can have a nodes layout such as
506 			 * -------------pfn-------------->
507 			 * N0 | N1 | N2 | N0 | N1 | N2|....
508 			 */
509 			if (pfn_to_nid(pfn) != nid)
510 				continue;
511 			if (init_section_page_ext(pfn, nid))
512 				goto oom;
513 			cond_resched();
514 		}
515 	}
516 	hotplug_memory_notifier(page_ext_callback, 0);
517 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
518 	invoke_init_callbacks();
519 	return;
520 
521 oom:
522 	panic("Out of memory");
523 }
524 
525 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
526 {
527 }
528 
529 #endif
530