xref: /openbmc/linux/mm/page_ext.c (revision 3ca3af7d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 
12 /*
13  * struct page extension
14  *
15  * This is the feature to manage memory for extended data per page.
16  *
17  * Until now, we must modify struct page itself to store extra data per page.
18  * This requires rebuilding the kernel and it is really time consuming process.
19  * And, sometimes, rebuild is impossible due to third party module dependency.
20  * At last, enlarging struct page could cause un-wanted system behaviour change.
21  *
22  * This feature is intended to overcome above mentioned problems. This feature
23  * allocates memory for extended data per page in certain place rather than
24  * the struct page itself. This memory can be accessed by the accessor
25  * functions provided by this code. During the boot process, it checks whether
26  * allocation of huge chunk of memory is needed or not. If not, it avoids
27  * allocating memory at all. With this advantage, we can include this feature
28  * into the kernel in default and can avoid rebuild and solve related problems.
29  *
30  * To help these things to work well, there are two callbacks for clients. One
31  * is the need callback which is mandatory if user wants to avoid useless
32  * memory allocation at boot-time. The other is optional, init callback, which
33  * is used to do proper initialization after memory is allocated.
34  *
35  * The need callback is used to decide whether extended memory allocation is
36  * needed or not. Sometimes users want to deactivate some features in this
37  * boot and extra memory would be unnecessary. In this case, to avoid
38  * allocating huge chunk of memory, each clients represent their need of
39  * extra memory through the need callback. If one of the need callbacks
40  * returns true, it means that someone needs extra memory so that
41  * page extension core should allocates memory for page extension. If
42  * none of need callbacks return true, memory isn't needed at all in this boot
43  * and page extension core can skip to allocate memory. As result,
44  * none of memory is wasted.
45  *
46  * When need callback returns true, page_ext checks if there is a request for
47  * extra memory through size in struct page_ext_operations. If it is non-zero,
48  * extra space is allocated for each page_ext entry and offset is returned to
49  * user through offset in struct page_ext_operations.
50  *
51  * The init callback is used to do proper initialization after page extension
52  * is completely initialized. In sparse memory system, extra memory is
53  * allocated some time later than memmap is allocated. In other words, lifetime
54  * of memory for page extension isn't same with memmap for struct page.
55  * Therefore, clients can't store extra data until page extension is
56  * initialized, even if pages are allocated and used freely. This could
57  * cause inadequate state of extra data per page, so, to prevent it, client
58  * can utilize this callback to initialize the state of it correctly.
59  */
60 
61 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
62 static bool need_page_idle(void)
63 {
64 	return true;
65 }
66 struct page_ext_operations page_idle_ops = {
67 	.need = need_page_idle,
68 };
69 #endif
70 
71 static struct page_ext_operations *page_ext_ops[] = {
72 #ifdef CONFIG_PAGE_OWNER
73 	&page_owner_ops,
74 #endif
75 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
76 	&page_idle_ops,
77 #endif
78 };
79 
80 unsigned long page_ext_size = sizeof(struct page_ext);
81 
82 static unsigned long total_usage;
83 
84 static bool __init invoke_need_callbacks(void)
85 {
86 	int i;
87 	int entries = ARRAY_SIZE(page_ext_ops);
88 	bool need = false;
89 
90 	for (i = 0; i < entries; i++) {
91 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
92 			page_ext_ops[i]->offset = page_ext_size;
93 			page_ext_size += page_ext_ops[i]->size;
94 			need = true;
95 		}
96 	}
97 
98 	return need;
99 }
100 
101 static void __init invoke_init_callbacks(void)
102 {
103 	int i;
104 	int entries = ARRAY_SIZE(page_ext_ops);
105 
106 	for (i = 0; i < entries; i++) {
107 		if (page_ext_ops[i]->init)
108 			page_ext_ops[i]->init();
109 	}
110 }
111 
112 #ifndef CONFIG_SPARSEMEM
113 void __init page_ext_init_flatmem_late(void)
114 {
115 	invoke_init_callbacks();
116 }
117 #endif
118 
119 static inline struct page_ext *get_entry(void *base, unsigned long index)
120 {
121 	return base + page_ext_size * index;
122 }
123 
124 #ifndef CONFIG_SPARSEMEM
125 
126 
127 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
128 {
129 	pgdat->node_page_ext = NULL;
130 }
131 
132 struct page_ext *lookup_page_ext(const struct page *page)
133 {
134 	unsigned long pfn = page_to_pfn(page);
135 	unsigned long index;
136 	struct page_ext *base;
137 
138 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
139 	/*
140 	 * The sanity checks the page allocator does upon freeing a
141 	 * page can reach here before the page_ext arrays are
142 	 * allocated when feeding a range of pages to the allocator
143 	 * for the first time during bootup or memory hotplug.
144 	 */
145 	if (unlikely(!base))
146 		return NULL;
147 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
148 					MAX_ORDER_NR_PAGES);
149 	return get_entry(base, index);
150 }
151 
152 static int __init alloc_node_page_ext(int nid)
153 {
154 	struct page_ext *base;
155 	unsigned long table_size;
156 	unsigned long nr_pages;
157 
158 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
159 	if (!nr_pages)
160 		return 0;
161 
162 	/*
163 	 * Need extra space if node range is not aligned with
164 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
165 	 * checks buddy's status, range could be out of exact node range.
166 	 */
167 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
168 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
169 		nr_pages += MAX_ORDER_NR_PAGES;
170 
171 	table_size = page_ext_size * nr_pages;
172 
173 	base = memblock_alloc_try_nid(
174 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
175 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
176 	if (!base)
177 		return -ENOMEM;
178 	NODE_DATA(nid)->node_page_ext = base;
179 	total_usage += table_size;
180 	return 0;
181 }
182 
183 void __init page_ext_init_flatmem(void)
184 {
185 
186 	int nid, fail;
187 
188 	if (!invoke_need_callbacks())
189 		return;
190 
191 	for_each_online_node(nid)  {
192 		fail = alloc_node_page_ext(nid);
193 		if (fail)
194 			goto fail;
195 	}
196 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
197 	return;
198 
199 fail:
200 	pr_crit("allocation of page_ext failed.\n");
201 	panic("Out of memory");
202 }
203 
204 #else /* CONFIG_SPARSEMEM */
205 
206 struct page_ext *lookup_page_ext(const struct page *page)
207 {
208 	unsigned long pfn = page_to_pfn(page);
209 	struct mem_section *section = __pfn_to_section(pfn);
210 	/*
211 	 * The sanity checks the page allocator does upon freeing a
212 	 * page can reach here before the page_ext arrays are
213 	 * allocated when feeding a range of pages to the allocator
214 	 * for the first time during bootup or memory hotplug.
215 	 */
216 	if (!section->page_ext)
217 		return NULL;
218 	return get_entry(section->page_ext, pfn);
219 }
220 
221 static void *__meminit alloc_page_ext(size_t size, int nid)
222 {
223 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
224 	void *addr = NULL;
225 
226 	addr = alloc_pages_exact_nid(nid, size, flags);
227 	if (addr) {
228 		kmemleak_alloc(addr, size, 1, flags);
229 		return addr;
230 	}
231 
232 	addr = vzalloc_node(size, nid);
233 
234 	return addr;
235 }
236 
237 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
238 {
239 	struct mem_section *section;
240 	struct page_ext *base;
241 	unsigned long table_size;
242 
243 	section = __pfn_to_section(pfn);
244 
245 	if (section->page_ext)
246 		return 0;
247 
248 	table_size = page_ext_size * PAGES_PER_SECTION;
249 	base = alloc_page_ext(table_size, nid);
250 
251 	/*
252 	 * The value stored in section->page_ext is (base - pfn)
253 	 * and it does not point to the memory block allocated above,
254 	 * causing kmemleak false positives.
255 	 */
256 	kmemleak_not_leak(base);
257 
258 	if (!base) {
259 		pr_err("page ext allocation failure\n");
260 		return -ENOMEM;
261 	}
262 
263 	/*
264 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
265 	 * we need to apply a mask.
266 	 */
267 	pfn &= PAGE_SECTION_MASK;
268 	section->page_ext = (void *)base - page_ext_size * pfn;
269 	total_usage += table_size;
270 	return 0;
271 }
272 
273 static void free_page_ext(void *addr)
274 {
275 	if (is_vmalloc_addr(addr)) {
276 		vfree(addr);
277 	} else {
278 		struct page *page = virt_to_page(addr);
279 		size_t table_size;
280 
281 		table_size = page_ext_size * PAGES_PER_SECTION;
282 
283 		BUG_ON(PageReserved(page));
284 		kmemleak_free(addr);
285 		free_pages_exact(addr, table_size);
286 	}
287 }
288 
289 static void __free_page_ext(unsigned long pfn)
290 {
291 	struct mem_section *ms;
292 	struct page_ext *base;
293 
294 	ms = __pfn_to_section(pfn);
295 	if (!ms || !ms->page_ext)
296 		return;
297 	base = get_entry(ms->page_ext, pfn);
298 	free_page_ext(base);
299 	ms->page_ext = NULL;
300 }
301 
302 static int __meminit online_page_ext(unsigned long start_pfn,
303 				unsigned long nr_pages,
304 				int nid)
305 {
306 	unsigned long start, end, pfn;
307 	int fail = 0;
308 
309 	start = SECTION_ALIGN_DOWN(start_pfn);
310 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
311 
312 	if (nid == NUMA_NO_NODE) {
313 		/*
314 		 * In this case, "nid" already exists and contains valid memory.
315 		 * "start_pfn" passed to us is a pfn which is an arg for
316 		 * online__pages(), and start_pfn should exist.
317 		 */
318 		nid = pfn_to_nid(start_pfn);
319 		VM_BUG_ON(!node_state(nid, N_ONLINE));
320 	}
321 
322 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
323 		fail = init_section_page_ext(pfn, nid);
324 	if (!fail)
325 		return 0;
326 
327 	/* rollback */
328 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
329 		__free_page_ext(pfn);
330 
331 	return -ENOMEM;
332 }
333 
334 static int __meminit offline_page_ext(unsigned long start_pfn,
335 				unsigned long nr_pages, int nid)
336 {
337 	unsigned long start, end, pfn;
338 
339 	start = SECTION_ALIGN_DOWN(start_pfn);
340 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
341 
342 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
343 		__free_page_ext(pfn);
344 	return 0;
345 
346 }
347 
348 static int __meminit page_ext_callback(struct notifier_block *self,
349 			       unsigned long action, void *arg)
350 {
351 	struct memory_notify *mn = arg;
352 	int ret = 0;
353 
354 	switch (action) {
355 	case MEM_GOING_ONLINE:
356 		ret = online_page_ext(mn->start_pfn,
357 				   mn->nr_pages, mn->status_change_nid);
358 		break;
359 	case MEM_OFFLINE:
360 		offline_page_ext(mn->start_pfn,
361 				mn->nr_pages, mn->status_change_nid);
362 		break;
363 	case MEM_CANCEL_ONLINE:
364 		offline_page_ext(mn->start_pfn,
365 				mn->nr_pages, mn->status_change_nid);
366 		break;
367 	case MEM_GOING_OFFLINE:
368 		break;
369 	case MEM_ONLINE:
370 	case MEM_CANCEL_OFFLINE:
371 		break;
372 	}
373 
374 	return notifier_from_errno(ret);
375 }
376 
377 void __init page_ext_init(void)
378 {
379 	unsigned long pfn;
380 	int nid;
381 
382 	if (!invoke_need_callbacks())
383 		return;
384 
385 	for_each_node_state(nid, N_MEMORY) {
386 		unsigned long start_pfn, end_pfn;
387 
388 		start_pfn = node_start_pfn(nid);
389 		end_pfn = node_end_pfn(nid);
390 		/*
391 		 * start_pfn and end_pfn may not be aligned to SECTION and the
392 		 * page->flags of out of node pages are not initialized.  So we
393 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
394 		 */
395 		for (pfn = start_pfn; pfn < end_pfn;
396 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
397 
398 			if (!pfn_valid(pfn))
399 				continue;
400 			/*
401 			 * Nodes's pfns can be overlapping.
402 			 * We know some arch can have a nodes layout such as
403 			 * -------------pfn-------------->
404 			 * N0 | N1 | N2 | N0 | N1 | N2|....
405 			 */
406 			if (pfn_to_nid(pfn) != nid)
407 				continue;
408 			if (init_section_page_ext(pfn, nid))
409 				goto oom;
410 			cond_resched();
411 		}
412 	}
413 	hotplug_memory_notifier(page_ext_callback, 0);
414 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
415 	invoke_init_callbacks();
416 	return;
417 
418 oom:
419 	panic("Out of memory");
420 }
421 
422 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
423 {
424 }
425 
426 #endif
427