xref: /openbmc/linux/mm/page_ext.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/page_ext.h>
5 #include <linux/memory.h>
6 #include <linux/vmalloc.h>
7 #include <linux/kmemleak.h>
8 #include <linux/page_owner.h>
9 #include <linux/page_idle.h>
10 
11 /*
12  * struct page extension
13  *
14  * This is the feature to manage memory for extended data per page.
15  *
16  * Until now, we must modify struct page itself to store extra data per page.
17  * This requires rebuilding the kernel and it is really time consuming process.
18  * And, sometimes, rebuild is impossible due to third party module dependency.
19  * At last, enlarging struct page could cause un-wanted system behaviour change.
20  *
21  * This feature is intended to overcome above mentioned problems. This feature
22  * allocates memory for extended data per page in certain place rather than
23  * the struct page itself. This memory can be accessed by the accessor
24  * functions provided by this code. During the boot process, it checks whether
25  * allocation of huge chunk of memory is needed or not. If not, it avoids
26  * allocating memory at all. With this advantage, we can include this feature
27  * into the kernel in default and can avoid rebuild and solve related problems.
28  *
29  * To help these things to work well, there are two callbacks for clients. One
30  * is the need callback which is mandatory if user wants to avoid useless
31  * memory allocation at boot-time. The other is optional, init callback, which
32  * is used to do proper initialization after memory is allocated.
33  *
34  * The need callback is used to decide whether extended memory allocation is
35  * needed or not. Sometimes users want to deactivate some features in this
36  * boot and extra memory would be unneccessary. In this case, to avoid
37  * allocating huge chunk of memory, each clients represent their need of
38  * extra memory through the need callback. If one of the need callbacks
39  * returns true, it means that someone needs extra memory so that
40  * page extension core should allocates memory for page extension. If
41  * none of need callbacks return true, memory isn't needed at all in this boot
42  * and page extension core can skip to allocate memory. As result,
43  * none of memory is wasted.
44  *
45  * When need callback returns true, page_ext checks if there is a request for
46  * extra memory through size in struct page_ext_operations. If it is non-zero,
47  * extra space is allocated for each page_ext entry and offset is returned to
48  * user through offset in struct page_ext_operations.
49  *
50  * The init callback is used to do proper initialization after page extension
51  * is completely initialized. In sparse memory system, extra memory is
52  * allocated some time later than memmap is allocated. In other words, lifetime
53  * of memory for page extension isn't same with memmap for struct page.
54  * Therefore, clients can't store extra data until page extension is
55  * initialized, even if pages are allocated and used freely. This could
56  * cause inadequate state of extra data per page, so, to prevent it, client
57  * can utilize this callback to initialize the state of it correctly.
58  */
59 
60 static struct page_ext_operations *page_ext_ops[] = {
61 	&debug_guardpage_ops,
62 #ifdef CONFIG_PAGE_OWNER
63 	&page_owner_ops,
64 #endif
65 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
66 	&page_idle_ops,
67 #endif
68 };
69 
70 static unsigned long total_usage;
71 static unsigned long extra_mem;
72 
73 static bool __init invoke_need_callbacks(void)
74 {
75 	int i;
76 	int entries = ARRAY_SIZE(page_ext_ops);
77 	bool need = false;
78 
79 	for (i = 0; i < entries; i++) {
80 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
81 			page_ext_ops[i]->offset = sizeof(struct page_ext) +
82 						extra_mem;
83 			extra_mem += page_ext_ops[i]->size;
84 			need = true;
85 		}
86 	}
87 
88 	return need;
89 }
90 
91 static void __init invoke_init_callbacks(void)
92 {
93 	int i;
94 	int entries = ARRAY_SIZE(page_ext_ops);
95 
96 	for (i = 0; i < entries; i++) {
97 		if (page_ext_ops[i]->init)
98 			page_ext_ops[i]->init();
99 	}
100 }
101 
102 static unsigned long get_entry_size(void)
103 {
104 	return sizeof(struct page_ext) + extra_mem;
105 }
106 
107 static inline struct page_ext *get_entry(void *base, unsigned long index)
108 {
109 	return base + get_entry_size() * index;
110 }
111 
112 #if !defined(CONFIG_SPARSEMEM)
113 
114 
115 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
116 {
117 	pgdat->node_page_ext = NULL;
118 }
119 
120 struct page_ext *lookup_page_ext(struct page *page)
121 {
122 	unsigned long pfn = page_to_pfn(page);
123 	unsigned long index;
124 	struct page_ext *base;
125 
126 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
127 #if defined(CONFIG_DEBUG_VM)
128 	/*
129 	 * The sanity checks the page allocator does upon freeing a
130 	 * page can reach here before the page_ext arrays are
131 	 * allocated when feeding a range of pages to the allocator
132 	 * for the first time during bootup or memory hotplug.
133 	 */
134 	if (unlikely(!base))
135 		return NULL;
136 #endif
137 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
138 					MAX_ORDER_NR_PAGES);
139 	return get_entry(base, index);
140 }
141 
142 static int __init alloc_node_page_ext(int nid)
143 {
144 	struct page_ext *base;
145 	unsigned long table_size;
146 	unsigned long nr_pages;
147 
148 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
149 	if (!nr_pages)
150 		return 0;
151 
152 	/*
153 	 * Need extra space if node range is not aligned with
154 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
155 	 * checks buddy's status, range could be out of exact node range.
156 	 */
157 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
158 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
159 		nr_pages += MAX_ORDER_NR_PAGES;
160 
161 	table_size = get_entry_size() * nr_pages;
162 
163 	base = memblock_virt_alloc_try_nid_nopanic(
164 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
165 			BOOTMEM_ALLOC_ACCESSIBLE, nid);
166 	if (!base)
167 		return -ENOMEM;
168 	NODE_DATA(nid)->node_page_ext = base;
169 	total_usage += table_size;
170 	return 0;
171 }
172 
173 void __init page_ext_init_flatmem(void)
174 {
175 
176 	int nid, fail;
177 
178 	if (!invoke_need_callbacks())
179 		return;
180 
181 	for_each_online_node(nid)  {
182 		fail = alloc_node_page_ext(nid);
183 		if (fail)
184 			goto fail;
185 	}
186 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
187 	invoke_init_callbacks();
188 	return;
189 
190 fail:
191 	pr_crit("allocation of page_ext failed.\n");
192 	panic("Out of memory");
193 }
194 
195 #else /* CONFIG_FLAT_NODE_MEM_MAP */
196 
197 struct page_ext *lookup_page_ext(struct page *page)
198 {
199 	unsigned long pfn = page_to_pfn(page);
200 	struct mem_section *section = __pfn_to_section(pfn);
201 #if defined(CONFIG_DEBUG_VM)
202 	/*
203 	 * The sanity checks the page allocator does upon freeing a
204 	 * page can reach here before the page_ext arrays are
205 	 * allocated when feeding a range of pages to the allocator
206 	 * for the first time during bootup or memory hotplug.
207 	 */
208 	if (!section->page_ext)
209 		return NULL;
210 #endif
211 	return get_entry(section->page_ext, pfn);
212 }
213 
214 static void *__meminit alloc_page_ext(size_t size, int nid)
215 {
216 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
217 	void *addr = NULL;
218 
219 	addr = alloc_pages_exact_nid(nid, size, flags);
220 	if (addr) {
221 		kmemleak_alloc(addr, size, 1, flags);
222 		return addr;
223 	}
224 
225 	addr = vzalloc_node(size, nid);
226 
227 	return addr;
228 }
229 
230 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
231 {
232 	struct mem_section *section;
233 	struct page_ext *base;
234 	unsigned long table_size;
235 
236 	section = __pfn_to_section(pfn);
237 
238 	if (section->page_ext)
239 		return 0;
240 
241 	table_size = get_entry_size() * PAGES_PER_SECTION;
242 	base = alloc_page_ext(table_size, nid);
243 
244 	/*
245 	 * The value stored in section->page_ext is (base - pfn)
246 	 * and it does not point to the memory block allocated above,
247 	 * causing kmemleak false positives.
248 	 */
249 	kmemleak_not_leak(base);
250 
251 	if (!base) {
252 		pr_err("page ext allocation failure\n");
253 		return -ENOMEM;
254 	}
255 
256 	/*
257 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
258 	 * we need to apply a mask.
259 	 */
260 	pfn &= PAGE_SECTION_MASK;
261 	section->page_ext = (void *)base - get_entry_size() * pfn;
262 	total_usage += table_size;
263 	return 0;
264 }
265 #ifdef CONFIG_MEMORY_HOTPLUG
266 static void free_page_ext(void *addr)
267 {
268 	if (is_vmalloc_addr(addr)) {
269 		vfree(addr);
270 	} else {
271 		struct page *page = virt_to_page(addr);
272 		size_t table_size;
273 
274 		table_size = get_entry_size() * PAGES_PER_SECTION;
275 
276 		BUG_ON(PageReserved(page));
277 		free_pages_exact(addr, table_size);
278 	}
279 }
280 
281 static void __free_page_ext(unsigned long pfn)
282 {
283 	struct mem_section *ms;
284 	struct page_ext *base;
285 
286 	ms = __pfn_to_section(pfn);
287 	if (!ms || !ms->page_ext)
288 		return;
289 	base = get_entry(ms->page_ext, pfn);
290 	free_page_ext(base);
291 	ms->page_ext = NULL;
292 }
293 
294 static int __meminit online_page_ext(unsigned long start_pfn,
295 				unsigned long nr_pages,
296 				int nid)
297 {
298 	unsigned long start, end, pfn;
299 	int fail = 0;
300 
301 	start = SECTION_ALIGN_DOWN(start_pfn);
302 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
303 
304 	if (nid == -1) {
305 		/*
306 		 * In this case, "nid" already exists and contains valid memory.
307 		 * "start_pfn" passed to us is a pfn which is an arg for
308 		 * online__pages(), and start_pfn should exist.
309 		 */
310 		nid = pfn_to_nid(start_pfn);
311 		VM_BUG_ON(!node_state(nid, N_ONLINE));
312 	}
313 
314 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
315 		if (!pfn_present(pfn))
316 			continue;
317 		fail = init_section_page_ext(pfn, nid);
318 	}
319 	if (!fail)
320 		return 0;
321 
322 	/* rollback */
323 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
324 		__free_page_ext(pfn);
325 
326 	return -ENOMEM;
327 }
328 
329 static int __meminit offline_page_ext(unsigned long start_pfn,
330 				unsigned long nr_pages, int nid)
331 {
332 	unsigned long start, end, pfn;
333 
334 	start = SECTION_ALIGN_DOWN(start_pfn);
335 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
336 
337 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
338 		__free_page_ext(pfn);
339 	return 0;
340 
341 }
342 
343 static int __meminit page_ext_callback(struct notifier_block *self,
344 			       unsigned long action, void *arg)
345 {
346 	struct memory_notify *mn = arg;
347 	int ret = 0;
348 
349 	switch (action) {
350 	case MEM_GOING_ONLINE:
351 		ret = online_page_ext(mn->start_pfn,
352 				   mn->nr_pages, mn->status_change_nid);
353 		break;
354 	case MEM_OFFLINE:
355 		offline_page_ext(mn->start_pfn,
356 				mn->nr_pages, mn->status_change_nid);
357 		break;
358 	case MEM_CANCEL_ONLINE:
359 		offline_page_ext(mn->start_pfn,
360 				mn->nr_pages, mn->status_change_nid);
361 		break;
362 	case MEM_GOING_OFFLINE:
363 		break;
364 	case MEM_ONLINE:
365 	case MEM_CANCEL_OFFLINE:
366 		break;
367 	}
368 
369 	return notifier_from_errno(ret);
370 }
371 
372 #endif
373 
374 void __init page_ext_init(void)
375 {
376 	unsigned long pfn;
377 	int nid;
378 
379 	if (!invoke_need_callbacks())
380 		return;
381 
382 	for_each_node_state(nid, N_MEMORY) {
383 		unsigned long start_pfn, end_pfn;
384 
385 		start_pfn = node_start_pfn(nid);
386 		end_pfn = node_end_pfn(nid);
387 		/*
388 		 * start_pfn and end_pfn may not be aligned to SECTION and the
389 		 * page->flags of out of node pages are not initialized.  So we
390 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
391 		 */
392 		for (pfn = start_pfn; pfn < end_pfn;
393 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
394 
395 			if (!pfn_valid(pfn))
396 				continue;
397 			/*
398 			 * Nodes's pfns can be overlapping.
399 			 * We know some arch can have a nodes layout such as
400 			 * -------------pfn-------------->
401 			 * N0 | N1 | N2 | N0 | N1 | N2|....
402 			 *
403 			 * Take into account DEFERRED_STRUCT_PAGE_INIT.
404 			 */
405 			if (early_pfn_to_nid(pfn) != nid)
406 				continue;
407 			if (init_section_page_ext(pfn, nid))
408 				goto oom;
409 			cond_resched();
410 		}
411 	}
412 	hotplug_memory_notifier(page_ext_callback, 0);
413 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
414 	invoke_init_callbacks();
415 	return;
416 
417 oom:
418 	panic("Out of memory");
419 }
420 
421 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
422 {
423 }
424 
425 #endif
426