1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 52 #include <asm/tlbflush.h> 53 #include <asm/div64.h> 54 #include "internal.h" 55 56 /* 57 * Array of node states. 58 */ 59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 60 [N_POSSIBLE] = NODE_MASK_ALL, 61 [N_ONLINE] = { { [0] = 1UL } }, 62 #ifndef CONFIG_NUMA 63 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 64 #ifdef CONFIG_HIGHMEM 65 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 66 #endif 67 [N_CPU] = { { [0] = 1UL } }, 68 #endif /* NUMA */ 69 }; 70 EXPORT_SYMBOL(node_states); 71 72 unsigned long totalram_pages __read_mostly; 73 unsigned long totalreserve_pages __read_mostly; 74 unsigned long highest_memmap_pfn __read_mostly; 75 int percpu_pagelist_fraction; 76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 77 78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 79 int pageblock_order __read_mostly; 80 #endif 81 82 static void __free_pages_ok(struct page *page, unsigned int order); 83 84 /* 85 * results with 256, 32 in the lowmem_reserve sysctl: 86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 87 * 1G machine -> (16M dma, 784M normal, 224M high) 88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 91 * 92 * TBD: should special case ZONE_DMA32 machines here - in those we normally 93 * don't need any ZONE_NORMAL reservation 94 */ 95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 96 #ifdef CONFIG_ZONE_DMA 97 256, 98 #endif 99 #ifdef CONFIG_ZONE_DMA32 100 256, 101 #endif 102 #ifdef CONFIG_HIGHMEM 103 32, 104 #endif 105 32, 106 }; 107 108 EXPORT_SYMBOL(totalram_pages); 109 110 static char * const zone_names[MAX_NR_ZONES] = { 111 #ifdef CONFIG_ZONE_DMA 112 "DMA", 113 #endif 114 #ifdef CONFIG_ZONE_DMA32 115 "DMA32", 116 #endif 117 "Normal", 118 #ifdef CONFIG_HIGHMEM 119 "HighMem", 120 #endif 121 "Movable", 122 }; 123 124 int min_free_kbytes = 1024; 125 126 unsigned long __meminitdata nr_kernel_pages; 127 unsigned long __meminitdata nr_all_pages; 128 static unsigned long __meminitdata dma_reserve; 129 130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 131 /* 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 133 * ranges of memory (RAM) that may be registered with add_active_range(). 134 * Ranges passed to add_active_range() will be merged if possible 135 * so the number of times add_active_range() can be called is 136 * related to the number of nodes and the number of holes 137 */ 138 #ifdef CONFIG_MAX_ACTIVE_REGIONS 139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 141 #else 142 #if MAX_NUMNODES >= 32 143 /* If there can be many nodes, allow up to 50 holes per node */ 144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 145 #else 146 /* By default, allow up to 256 distinct regions */ 147 #define MAX_ACTIVE_REGIONS 256 148 #endif 149 #endif 150 151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 152 static int __meminitdata nr_nodemap_entries; 153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 155 static unsigned long __initdata required_kernelcore; 156 static unsigned long __initdata required_movablecore; 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 158 159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 160 int movable_zone; 161 EXPORT_SYMBOL(movable_zone); 162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 163 164 #if MAX_NUMNODES > 1 165 int nr_node_ids __read_mostly = MAX_NUMNODES; 166 int nr_online_nodes __read_mostly = 1; 167 EXPORT_SYMBOL(nr_node_ids); 168 EXPORT_SYMBOL(nr_online_nodes); 169 #endif 170 171 int page_group_by_mobility_disabled __read_mostly; 172 173 static void set_pageblock_migratetype(struct page *page, int migratetype) 174 { 175 176 if (unlikely(page_group_by_mobility_disabled)) 177 migratetype = MIGRATE_UNMOVABLE; 178 179 set_pageblock_flags_group(page, (unsigned long)migratetype, 180 PB_migrate, PB_migrate_end); 181 } 182 183 bool oom_killer_disabled __read_mostly; 184 185 #ifdef CONFIG_DEBUG_VM 186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 187 { 188 int ret = 0; 189 unsigned seq; 190 unsigned long pfn = page_to_pfn(page); 191 192 do { 193 seq = zone_span_seqbegin(zone); 194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 195 ret = 1; 196 else if (pfn < zone->zone_start_pfn) 197 ret = 1; 198 } while (zone_span_seqretry(zone, seq)); 199 200 return ret; 201 } 202 203 static int page_is_consistent(struct zone *zone, struct page *page) 204 { 205 if (!pfn_valid_within(page_to_pfn(page))) 206 return 0; 207 if (zone != page_zone(page)) 208 return 0; 209 210 return 1; 211 } 212 /* 213 * Temporary debugging check for pages not lying within a given zone. 214 */ 215 static int bad_range(struct zone *zone, struct page *page) 216 { 217 if (page_outside_zone_boundaries(zone, page)) 218 return 1; 219 if (!page_is_consistent(zone, page)) 220 return 1; 221 222 return 0; 223 } 224 #else 225 static inline int bad_range(struct zone *zone, struct page *page) 226 { 227 return 0; 228 } 229 #endif 230 231 static void bad_page(struct page *page) 232 { 233 static unsigned long resume; 234 static unsigned long nr_shown; 235 static unsigned long nr_unshown; 236 237 /* 238 * Allow a burst of 60 reports, then keep quiet for that minute; 239 * or allow a steady drip of one report per second. 240 */ 241 if (nr_shown == 60) { 242 if (time_before(jiffies, resume)) { 243 nr_unshown++; 244 goto out; 245 } 246 if (nr_unshown) { 247 printk(KERN_ALERT 248 "BUG: Bad page state: %lu messages suppressed\n", 249 nr_unshown); 250 nr_unshown = 0; 251 } 252 nr_shown = 0; 253 } 254 if (nr_shown++ == 0) 255 resume = jiffies + 60 * HZ; 256 257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 258 current->comm, page_to_pfn(page)); 259 printk(KERN_ALERT 260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 261 page, (void *)page->flags, page_count(page), 262 page_mapcount(page), page->mapping, page->index); 263 264 dump_stack(); 265 out: 266 /* Leave bad fields for debug, except PageBuddy could make trouble */ 267 __ClearPageBuddy(page); 268 add_taint(TAINT_BAD_PAGE); 269 } 270 271 /* 272 * Higher-order pages are called "compound pages". They are structured thusly: 273 * 274 * The first PAGE_SIZE page is called the "head page". 275 * 276 * The remaining PAGE_SIZE pages are called "tail pages". 277 * 278 * All pages have PG_compound set. All pages have their ->private pointing at 279 * the head page (even the head page has this). 280 * 281 * The first tail page's ->lru.next holds the address of the compound page's 282 * put_page() function. Its ->lru.prev holds the order of allocation. 283 * This usage means that zero-order pages may not be compound. 284 */ 285 286 static void free_compound_page(struct page *page) 287 { 288 __free_pages_ok(page, compound_order(page)); 289 } 290 291 void prep_compound_page(struct page *page, unsigned long order) 292 { 293 int i; 294 int nr_pages = 1 << order; 295 296 set_compound_page_dtor(page, free_compound_page); 297 set_compound_order(page, order); 298 __SetPageHead(page); 299 for (i = 1; i < nr_pages; i++) { 300 struct page *p = page + i; 301 302 __SetPageTail(p); 303 p->first_page = page; 304 } 305 } 306 307 static int destroy_compound_page(struct page *page, unsigned long order) 308 { 309 int i; 310 int nr_pages = 1 << order; 311 int bad = 0; 312 313 if (unlikely(compound_order(page) != order) || 314 unlikely(!PageHead(page))) { 315 bad_page(page); 316 bad++; 317 } 318 319 __ClearPageHead(page); 320 321 for (i = 1; i < nr_pages; i++) { 322 struct page *p = page + i; 323 324 if (unlikely(!PageTail(p) || (p->first_page != page))) { 325 bad_page(page); 326 bad++; 327 } 328 __ClearPageTail(p); 329 } 330 331 return bad; 332 } 333 334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 335 { 336 int i; 337 338 /* 339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 340 * and __GFP_HIGHMEM from hard or soft interrupt context. 341 */ 342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 343 for (i = 0; i < (1 << order); i++) 344 clear_highpage(page + i); 345 } 346 347 static inline void set_page_order(struct page *page, int order) 348 { 349 set_page_private(page, order); 350 __SetPageBuddy(page); 351 } 352 353 static inline void rmv_page_order(struct page *page) 354 { 355 __ClearPageBuddy(page); 356 set_page_private(page, 0); 357 } 358 359 /* 360 * Locate the struct page for both the matching buddy in our 361 * pair (buddy1) and the combined O(n+1) page they form (page). 362 * 363 * 1) Any buddy B1 will have an order O twin B2 which satisfies 364 * the following equation: 365 * B2 = B1 ^ (1 << O) 366 * For example, if the starting buddy (buddy2) is #8 its order 367 * 1 buddy is #10: 368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 369 * 370 * 2) Any buddy B will have an order O+1 parent P which 371 * satisfies the following equation: 372 * P = B & ~(1 << O) 373 * 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 375 */ 376 static inline struct page * 377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 378 { 379 unsigned long buddy_idx = page_idx ^ (1 << order); 380 381 return page + (buddy_idx - page_idx); 382 } 383 384 static inline unsigned long 385 __find_combined_index(unsigned long page_idx, unsigned int order) 386 { 387 return (page_idx & ~(1 << order)); 388 } 389 390 /* 391 * This function checks whether a page is free && is the buddy 392 * we can do coalesce a page and its buddy if 393 * (a) the buddy is not in a hole && 394 * (b) the buddy is in the buddy system && 395 * (c) a page and its buddy have the same order && 396 * (d) a page and its buddy are in the same zone. 397 * 398 * For recording whether a page is in the buddy system, we use PG_buddy. 399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 400 * 401 * For recording page's order, we use page_private(page). 402 */ 403 static inline int page_is_buddy(struct page *page, struct page *buddy, 404 int order) 405 { 406 if (!pfn_valid_within(page_to_pfn(buddy))) 407 return 0; 408 409 if (page_zone_id(page) != page_zone_id(buddy)) 410 return 0; 411 412 if (PageBuddy(buddy) && page_order(buddy) == order) { 413 VM_BUG_ON(page_count(buddy) != 0); 414 return 1; 415 } 416 return 0; 417 } 418 419 /* 420 * Freeing function for a buddy system allocator. 421 * 422 * The concept of a buddy system is to maintain direct-mapped table 423 * (containing bit values) for memory blocks of various "orders". 424 * The bottom level table contains the map for the smallest allocatable 425 * units of memory (here, pages), and each level above it describes 426 * pairs of units from the levels below, hence, "buddies". 427 * At a high level, all that happens here is marking the table entry 428 * at the bottom level available, and propagating the changes upward 429 * as necessary, plus some accounting needed to play nicely with other 430 * parts of the VM system. 431 * At each level, we keep a list of pages, which are heads of continuous 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's 433 * order is recorded in page_private(page) field. 434 * So when we are allocating or freeing one, we can derive the state of the 435 * other. That is, if we allocate a small block, and both were 436 * free, the remainder of the region must be split into blocks. 437 * If a block is freed, and its buddy is also free, then this 438 * triggers coalescing into a block of larger size. 439 * 440 * -- wli 441 */ 442 443 static inline void __free_one_page(struct page *page, 444 struct zone *zone, unsigned int order, 445 int migratetype) 446 { 447 unsigned long page_idx; 448 449 if (unlikely(PageCompound(page))) 450 if (unlikely(destroy_compound_page(page, order))) 451 return; 452 453 VM_BUG_ON(migratetype == -1); 454 455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 456 457 VM_BUG_ON(page_idx & ((1 << order) - 1)); 458 VM_BUG_ON(bad_range(zone, page)); 459 460 while (order < MAX_ORDER-1) { 461 unsigned long combined_idx; 462 struct page *buddy; 463 464 buddy = __page_find_buddy(page, page_idx, order); 465 if (!page_is_buddy(page, buddy, order)) 466 break; 467 468 /* Our buddy is free, merge with it and move up one order. */ 469 list_del(&buddy->lru); 470 zone->free_area[order].nr_free--; 471 rmv_page_order(buddy); 472 combined_idx = __find_combined_index(page_idx, order); 473 page = page + (combined_idx - page_idx); 474 page_idx = combined_idx; 475 order++; 476 } 477 set_page_order(page, order); 478 list_add(&page->lru, 479 &zone->free_area[order].free_list[migratetype]); 480 zone->free_area[order].nr_free++; 481 } 482 483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT 484 /* 485 * free_page_mlock() -- clean up attempts to free and mlocked() page. 486 * Page should not be on lru, so no need to fix that up. 487 * free_pages_check() will verify... 488 */ 489 static inline void free_page_mlock(struct page *page) 490 { 491 __dec_zone_page_state(page, NR_MLOCK); 492 __count_vm_event(UNEVICTABLE_MLOCKFREED); 493 } 494 #else 495 static void free_page_mlock(struct page *page) { } 496 #endif 497 498 static inline int free_pages_check(struct page *page) 499 { 500 if (unlikely(page_mapcount(page) | 501 (page->mapping != NULL) | 502 (atomic_read(&page->_count) != 0) | 503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 504 bad_page(page); 505 return 1; 506 } 507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 509 return 0; 510 } 511 512 /* 513 * Frees a list of pages. 514 * Assumes all pages on list are in same zone, and of same order. 515 * count is the number of pages to free. 516 * 517 * If the zone was previously in an "all pages pinned" state then look to 518 * see if this freeing clears that state. 519 * 520 * And clear the zone's pages_scanned counter, to hold off the "all pages are 521 * pinned" detection logic. 522 */ 523 static void free_pages_bulk(struct zone *zone, int count, 524 struct list_head *list, int order) 525 { 526 spin_lock(&zone->lock); 527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 528 zone->pages_scanned = 0; 529 530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order); 531 while (count--) { 532 struct page *page; 533 534 VM_BUG_ON(list_empty(list)); 535 page = list_entry(list->prev, struct page, lru); 536 /* have to delete it as __free_one_page list manipulates */ 537 list_del(&page->lru); 538 __free_one_page(page, zone, order, page_private(page)); 539 } 540 spin_unlock(&zone->lock); 541 } 542 543 static void free_one_page(struct zone *zone, struct page *page, int order, 544 int migratetype) 545 { 546 spin_lock(&zone->lock); 547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 548 zone->pages_scanned = 0; 549 550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 551 __free_one_page(page, zone, order, migratetype); 552 spin_unlock(&zone->lock); 553 } 554 555 static void __free_pages_ok(struct page *page, unsigned int order) 556 { 557 unsigned long flags; 558 int i; 559 int bad = 0; 560 int wasMlocked = TestClearPageMlocked(page); 561 562 kmemcheck_free_shadow(page, order); 563 564 for (i = 0 ; i < (1 << order) ; ++i) 565 bad += free_pages_check(page + i); 566 if (bad) 567 return; 568 569 if (!PageHighMem(page)) { 570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 571 debug_check_no_obj_freed(page_address(page), 572 PAGE_SIZE << order); 573 } 574 arch_free_page(page, order); 575 kernel_map_pages(page, 1 << order, 0); 576 577 local_irq_save(flags); 578 if (unlikely(wasMlocked)) 579 free_page_mlock(page); 580 __count_vm_events(PGFREE, 1 << order); 581 free_one_page(page_zone(page), page, order, 582 get_pageblock_migratetype(page)); 583 local_irq_restore(flags); 584 } 585 586 /* 587 * permit the bootmem allocator to evade page validation on high-order frees 588 */ 589 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 590 { 591 if (order == 0) { 592 __ClearPageReserved(page); 593 set_page_count(page, 0); 594 set_page_refcounted(page); 595 __free_page(page); 596 } else { 597 int loop; 598 599 prefetchw(page); 600 for (loop = 0; loop < BITS_PER_LONG; loop++) { 601 struct page *p = &page[loop]; 602 603 if (loop + 1 < BITS_PER_LONG) 604 prefetchw(p + 1); 605 __ClearPageReserved(p); 606 set_page_count(p, 0); 607 } 608 609 set_page_refcounted(page); 610 __free_pages(page, order); 611 } 612 } 613 614 615 /* 616 * The order of subdivision here is critical for the IO subsystem. 617 * Please do not alter this order without good reasons and regression 618 * testing. Specifically, as large blocks of memory are subdivided, 619 * the order in which smaller blocks are delivered depends on the order 620 * they're subdivided in this function. This is the primary factor 621 * influencing the order in which pages are delivered to the IO 622 * subsystem according to empirical testing, and this is also justified 623 * by considering the behavior of a buddy system containing a single 624 * large block of memory acted on by a series of small allocations. 625 * This behavior is a critical factor in sglist merging's success. 626 * 627 * -- wli 628 */ 629 static inline void expand(struct zone *zone, struct page *page, 630 int low, int high, struct free_area *area, 631 int migratetype) 632 { 633 unsigned long size = 1 << high; 634 635 while (high > low) { 636 area--; 637 high--; 638 size >>= 1; 639 VM_BUG_ON(bad_range(zone, &page[size])); 640 list_add(&page[size].lru, &area->free_list[migratetype]); 641 area->nr_free++; 642 set_page_order(&page[size], high); 643 } 644 } 645 646 /* 647 * This page is about to be returned from the page allocator 648 */ 649 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 650 { 651 if (unlikely(page_mapcount(page) | 652 (page->mapping != NULL) | 653 (atomic_read(&page->_count) != 0) | 654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 655 bad_page(page); 656 return 1; 657 } 658 659 set_page_private(page, 0); 660 set_page_refcounted(page); 661 662 arch_alloc_page(page, order); 663 kernel_map_pages(page, 1 << order, 1); 664 665 if (gfp_flags & __GFP_ZERO) 666 prep_zero_page(page, order, gfp_flags); 667 668 if (order && (gfp_flags & __GFP_COMP)) 669 prep_compound_page(page, order); 670 671 return 0; 672 } 673 674 /* 675 * Go through the free lists for the given migratetype and remove 676 * the smallest available page from the freelists 677 */ 678 static inline 679 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 680 int migratetype) 681 { 682 unsigned int current_order; 683 struct free_area * area; 684 struct page *page; 685 686 /* Find a page of the appropriate size in the preferred list */ 687 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 688 area = &(zone->free_area[current_order]); 689 if (list_empty(&area->free_list[migratetype])) 690 continue; 691 692 page = list_entry(area->free_list[migratetype].next, 693 struct page, lru); 694 list_del(&page->lru); 695 rmv_page_order(page); 696 area->nr_free--; 697 expand(zone, page, order, current_order, area, migratetype); 698 return page; 699 } 700 701 return NULL; 702 } 703 704 705 /* 706 * This array describes the order lists are fallen back to when 707 * the free lists for the desirable migrate type are depleted 708 */ 709 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 714 }; 715 716 /* 717 * Move the free pages in a range to the free lists of the requested type. 718 * Note that start_page and end_pages are not aligned on a pageblock 719 * boundary. If alignment is required, use move_freepages_block() 720 */ 721 static int move_freepages(struct zone *zone, 722 struct page *start_page, struct page *end_page, 723 int migratetype) 724 { 725 struct page *page; 726 unsigned long order; 727 int pages_moved = 0; 728 729 #ifndef CONFIG_HOLES_IN_ZONE 730 /* 731 * page_zone is not safe to call in this context when 732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 733 * anyway as we check zone boundaries in move_freepages_block(). 734 * Remove at a later date when no bug reports exist related to 735 * grouping pages by mobility 736 */ 737 BUG_ON(page_zone(start_page) != page_zone(end_page)); 738 #endif 739 740 for (page = start_page; page <= end_page;) { 741 /* Make sure we are not inadvertently changing nodes */ 742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 743 744 if (!pfn_valid_within(page_to_pfn(page))) { 745 page++; 746 continue; 747 } 748 749 if (!PageBuddy(page)) { 750 page++; 751 continue; 752 } 753 754 order = page_order(page); 755 list_del(&page->lru); 756 list_add(&page->lru, 757 &zone->free_area[order].free_list[migratetype]); 758 page += 1 << order; 759 pages_moved += 1 << order; 760 } 761 762 return pages_moved; 763 } 764 765 static int move_freepages_block(struct zone *zone, struct page *page, 766 int migratetype) 767 { 768 unsigned long start_pfn, end_pfn; 769 struct page *start_page, *end_page; 770 771 start_pfn = page_to_pfn(page); 772 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 773 start_page = pfn_to_page(start_pfn); 774 end_page = start_page + pageblock_nr_pages - 1; 775 end_pfn = start_pfn + pageblock_nr_pages - 1; 776 777 /* Do not cross zone boundaries */ 778 if (start_pfn < zone->zone_start_pfn) 779 start_page = page; 780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 781 return 0; 782 783 return move_freepages(zone, start_page, end_page, migratetype); 784 } 785 786 /* Remove an element from the buddy allocator from the fallback list */ 787 static inline struct page * 788 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 789 { 790 struct free_area * area; 791 int current_order; 792 struct page *page; 793 int migratetype, i; 794 795 /* Find the largest possible block of pages in the other list */ 796 for (current_order = MAX_ORDER-1; current_order >= order; 797 --current_order) { 798 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 799 migratetype = fallbacks[start_migratetype][i]; 800 801 /* MIGRATE_RESERVE handled later if necessary */ 802 if (migratetype == MIGRATE_RESERVE) 803 continue; 804 805 area = &(zone->free_area[current_order]); 806 if (list_empty(&area->free_list[migratetype])) 807 continue; 808 809 page = list_entry(area->free_list[migratetype].next, 810 struct page, lru); 811 area->nr_free--; 812 813 /* 814 * If breaking a large block of pages, move all free 815 * pages to the preferred allocation list. If falling 816 * back for a reclaimable kernel allocation, be more 817 * agressive about taking ownership of free pages 818 */ 819 if (unlikely(current_order >= (pageblock_order >> 1)) || 820 start_migratetype == MIGRATE_RECLAIMABLE || 821 page_group_by_mobility_disabled) { 822 unsigned long pages; 823 pages = move_freepages_block(zone, page, 824 start_migratetype); 825 826 /* Claim the whole block if over half of it is free */ 827 if (pages >= (1 << (pageblock_order-1)) || 828 page_group_by_mobility_disabled) 829 set_pageblock_migratetype(page, 830 start_migratetype); 831 832 migratetype = start_migratetype; 833 } 834 835 /* Remove the page from the freelists */ 836 list_del(&page->lru); 837 rmv_page_order(page); 838 839 if (current_order == pageblock_order) 840 set_pageblock_migratetype(page, 841 start_migratetype); 842 843 expand(zone, page, order, current_order, area, migratetype); 844 return page; 845 } 846 } 847 848 return NULL; 849 } 850 851 /* 852 * Do the hard work of removing an element from the buddy allocator. 853 * Call me with the zone->lock already held. 854 */ 855 static struct page *__rmqueue(struct zone *zone, unsigned int order, 856 int migratetype) 857 { 858 struct page *page; 859 860 retry_reserve: 861 page = __rmqueue_smallest(zone, order, migratetype); 862 863 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 864 page = __rmqueue_fallback(zone, order, migratetype); 865 866 /* 867 * Use MIGRATE_RESERVE rather than fail an allocation. goto 868 * is used because __rmqueue_smallest is an inline function 869 * and we want just one call site 870 */ 871 if (!page) { 872 migratetype = MIGRATE_RESERVE; 873 goto retry_reserve; 874 } 875 } 876 877 return page; 878 } 879 880 /* 881 * Obtain a specified number of elements from the buddy allocator, all under 882 * a single hold of the lock, for efficiency. Add them to the supplied list. 883 * Returns the number of new pages which were placed at *list. 884 */ 885 static int rmqueue_bulk(struct zone *zone, unsigned int order, 886 unsigned long count, struct list_head *list, 887 int migratetype, int cold) 888 { 889 int i; 890 891 spin_lock(&zone->lock); 892 for (i = 0; i < count; ++i) { 893 struct page *page = __rmqueue(zone, order, migratetype); 894 if (unlikely(page == NULL)) 895 break; 896 897 /* 898 * Split buddy pages returned by expand() are received here 899 * in physical page order. The page is added to the callers and 900 * list and the list head then moves forward. From the callers 901 * perspective, the linked list is ordered by page number in 902 * some conditions. This is useful for IO devices that can 903 * merge IO requests if the physical pages are ordered 904 * properly. 905 */ 906 if (likely(cold == 0)) 907 list_add(&page->lru, list); 908 else 909 list_add_tail(&page->lru, list); 910 set_page_private(page, migratetype); 911 list = &page->lru; 912 } 913 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 914 spin_unlock(&zone->lock); 915 return i; 916 } 917 918 #ifdef CONFIG_NUMA 919 /* 920 * Called from the vmstat counter updater to drain pagesets of this 921 * currently executing processor on remote nodes after they have 922 * expired. 923 * 924 * Note that this function must be called with the thread pinned to 925 * a single processor. 926 */ 927 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 928 { 929 unsigned long flags; 930 int to_drain; 931 932 local_irq_save(flags); 933 if (pcp->count >= pcp->batch) 934 to_drain = pcp->batch; 935 else 936 to_drain = pcp->count; 937 free_pages_bulk(zone, to_drain, &pcp->list, 0); 938 pcp->count -= to_drain; 939 local_irq_restore(flags); 940 } 941 #endif 942 943 /* 944 * Drain pages of the indicated processor. 945 * 946 * The processor must either be the current processor and the 947 * thread pinned to the current processor or a processor that 948 * is not online. 949 */ 950 static void drain_pages(unsigned int cpu) 951 { 952 unsigned long flags; 953 struct zone *zone; 954 955 for_each_populated_zone(zone) { 956 struct per_cpu_pageset *pset; 957 struct per_cpu_pages *pcp; 958 959 pset = zone_pcp(zone, cpu); 960 961 pcp = &pset->pcp; 962 local_irq_save(flags); 963 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 964 pcp->count = 0; 965 local_irq_restore(flags); 966 } 967 } 968 969 /* 970 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 971 */ 972 void drain_local_pages(void *arg) 973 { 974 drain_pages(smp_processor_id()); 975 } 976 977 /* 978 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 979 */ 980 void drain_all_pages(void) 981 { 982 on_each_cpu(drain_local_pages, NULL, 1); 983 } 984 985 #ifdef CONFIG_HIBERNATION 986 987 void mark_free_pages(struct zone *zone) 988 { 989 unsigned long pfn, max_zone_pfn; 990 unsigned long flags; 991 int order, t; 992 struct list_head *curr; 993 994 if (!zone->spanned_pages) 995 return; 996 997 spin_lock_irqsave(&zone->lock, flags); 998 999 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1000 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1001 if (pfn_valid(pfn)) { 1002 struct page *page = pfn_to_page(pfn); 1003 1004 if (!swsusp_page_is_forbidden(page)) 1005 swsusp_unset_page_free(page); 1006 } 1007 1008 for_each_migratetype_order(order, t) { 1009 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1010 unsigned long i; 1011 1012 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1013 for (i = 0; i < (1UL << order); i++) 1014 swsusp_set_page_free(pfn_to_page(pfn + i)); 1015 } 1016 } 1017 spin_unlock_irqrestore(&zone->lock, flags); 1018 } 1019 #endif /* CONFIG_PM */ 1020 1021 /* 1022 * Free a 0-order page 1023 */ 1024 static void free_hot_cold_page(struct page *page, int cold) 1025 { 1026 struct zone *zone = page_zone(page); 1027 struct per_cpu_pages *pcp; 1028 unsigned long flags; 1029 int wasMlocked = TestClearPageMlocked(page); 1030 1031 kmemcheck_free_shadow(page, 0); 1032 1033 if (PageAnon(page)) 1034 page->mapping = NULL; 1035 if (free_pages_check(page)) 1036 return; 1037 1038 if (!PageHighMem(page)) { 1039 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1040 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1041 } 1042 arch_free_page(page, 0); 1043 kernel_map_pages(page, 1, 0); 1044 1045 pcp = &zone_pcp(zone, get_cpu())->pcp; 1046 set_page_private(page, get_pageblock_migratetype(page)); 1047 local_irq_save(flags); 1048 if (unlikely(wasMlocked)) 1049 free_page_mlock(page); 1050 __count_vm_event(PGFREE); 1051 1052 if (cold) 1053 list_add_tail(&page->lru, &pcp->list); 1054 else 1055 list_add(&page->lru, &pcp->list); 1056 pcp->count++; 1057 if (pcp->count >= pcp->high) { 1058 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1059 pcp->count -= pcp->batch; 1060 } 1061 local_irq_restore(flags); 1062 put_cpu(); 1063 } 1064 1065 void free_hot_page(struct page *page) 1066 { 1067 free_hot_cold_page(page, 0); 1068 } 1069 1070 void free_cold_page(struct page *page) 1071 { 1072 free_hot_cold_page(page, 1); 1073 } 1074 1075 /* 1076 * split_page takes a non-compound higher-order page, and splits it into 1077 * n (1<<order) sub-pages: page[0..n] 1078 * Each sub-page must be freed individually. 1079 * 1080 * Note: this is probably too low level an operation for use in drivers. 1081 * Please consult with lkml before using this in your driver. 1082 */ 1083 void split_page(struct page *page, unsigned int order) 1084 { 1085 int i; 1086 1087 VM_BUG_ON(PageCompound(page)); 1088 VM_BUG_ON(!page_count(page)); 1089 1090 #ifdef CONFIG_KMEMCHECK 1091 /* 1092 * Split shadow pages too, because free(page[0]) would 1093 * otherwise free the whole shadow. 1094 */ 1095 if (kmemcheck_page_is_tracked(page)) 1096 split_page(virt_to_page(page[0].shadow), order); 1097 #endif 1098 1099 for (i = 1; i < (1 << order); i++) 1100 set_page_refcounted(page + i); 1101 } 1102 1103 /* 1104 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1105 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1106 * or two. 1107 */ 1108 static inline 1109 struct page *buffered_rmqueue(struct zone *preferred_zone, 1110 struct zone *zone, int order, gfp_t gfp_flags, 1111 int migratetype) 1112 { 1113 unsigned long flags; 1114 struct page *page; 1115 int cold = !!(gfp_flags & __GFP_COLD); 1116 int cpu; 1117 1118 again: 1119 cpu = get_cpu(); 1120 if (likely(order == 0)) { 1121 struct per_cpu_pages *pcp; 1122 1123 pcp = &zone_pcp(zone, cpu)->pcp; 1124 local_irq_save(flags); 1125 if (!pcp->count) { 1126 pcp->count = rmqueue_bulk(zone, 0, 1127 pcp->batch, &pcp->list, 1128 migratetype, cold); 1129 if (unlikely(!pcp->count)) 1130 goto failed; 1131 } 1132 1133 /* Find a page of the appropriate migrate type */ 1134 if (cold) { 1135 list_for_each_entry_reverse(page, &pcp->list, lru) 1136 if (page_private(page) == migratetype) 1137 break; 1138 } else { 1139 list_for_each_entry(page, &pcp->list, lru) 1140 if (page_private(page) == migratetype) 1141 break; 1142 } 1143 1144 /* Allocate more to the pcp list if necessary */ 1145 if (unlikely(&page->lru == &pcp->list)) { 1146 pcp->count += rmqueue_bulk(zone, 0, 1147 pcp->batch, &pcp->list, 1148 migratetype, cold); 1149 page = list_entry(pcp->list.next, struct page, lru); 1150 } 1151 1152 list_del(&page->lru); 1153 pcp->count--; 1154 } else { 1155 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1156 /* 1157 * __GFP_NOFAIL is not to be used in new code. 1158 * 1159 * All __GFP_NOFAIL callers should be fixed so that they 1160 * properly detect and handle allocation failures. 1161 * 1162 * We most definitely don't want callers attempting to 1163 * allocate greater than order-1 page units with 1164 * __GFP_NOFAIL. 1165 */ 1166 WARN_ON_ONCE(order > 1); 1167 } 1168 spin_lock_irqsave(&zone->lock, flags); 1169 page = __rmqueue(zone, order, migratetype); 1170 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1171 spin_unlock(&zone->lock); 1172 if (!page) 1173 goto failed; 1174 } 1175 1176 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1177 zone_statistics(preferred_zone, zone); 1178 local_irq_restore(flags); 1179 put_cpu(); 1180 1181 VM_BUG_ON(bad_range(zone, page)); 1182 if (prep_new_page(page, order, gfp_flags)) 1183 goto again; 1184 return page; 1185 1186 failed: 1187 local_irq_restore(flags); 1188 put_cpu(); 1189 return NULL; 1190 } 1191 1192 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1193 #define ALLOC_WMARK_MIN WMARK_MIN 1194 #define ALLOC_WMARK_LOW WMARK_LOW 1195 #define ALLOC_WMARK_HIGH WMARK_HIGH 1196 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1197 1198 /* Mask to get the watermark bits */ 1199 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1200 1201 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1202 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1203 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1204 1205 #ifdef CONFIG_FAIL_PAGE_ALLOC 1206 1207 static struct fail_page_alloc_attr { 1208 struct fault_attr attr; 1209 1210 u32 ignore_gfp_highmem; 1211 u32 ignore_gfp_wait; 1212 u32 min_order; 1213 1214 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1215 1216 struct dentry *ignore_gfp_highmem_file; 1217 struct dentry *ignore_gfp_wait_file; 1218 struct dentry *min_order_file; 1219 1220 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1221 1222 } fail_page_alloc = { 1223 .attr = FAULT_ATTR_INITIALIZER, 1224 .ignore_gfp_wait = 1, 1225 .ignore_gfp_highmem = 1, 1226 .min_order = 1, 1227 }; 1228 1229 static int __init setup_fail_page_alloc(char *str) 1230 { 1231 return setup_fault_attr(&fail_page_alloc.attr, str); 1232 } 1233 __setup("fail_page_alloc=", setup_fail_page_alloc); 1234 1235 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1236 { 1237 if (order < fail_page_alloc.min_order) 1238 return 0; 1239 if (gfp_mask & __GFP_NOFAIL) 1240 return 0; 1241 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1242 return 0; 1243 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1244 return 0; 1245 1246 return should_fail(&fail_page_alloc.attr, 1 << order); 1247 } 1248 1249 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1250 1251 static int __init fail_page_alloc_debugfs(void) 1252 { 1253 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1254 struct dentry *dir; 1255 int err; 1256 1257 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1258 "fail_page_alloc"); 1259 if (err) 1260 return err; 1261 dir = fail_page_alloc.attr.dentries.dir; 1262 1263 fail_page_alloc.ignore_gfp_wait_file = 1264 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1265 &fail_page_alloc.ignore_gfp_wait); 1266 1267 fail_page_alloc.ignore_gfp_highmem_file = 1268 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1269 &fail_page_alloc.ignore_gfp_highmem); 1270 fail_page_alloc.min_order_file = 1271 debugfs_create_u32("min-order", mode, dir, 1272 &fail_page_alloc.min_order); 1273 1274 if (!fail_page_alloc.ignore_gfp_wait_file || 1275 !fail_page_alloc.ignore_gfp_highmem_file || 1276 !fail_page_alloc.min_order_file) { 1277 err = -ENOMEM; 1278 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1279 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1280 debugfs_remove(fail_page_alloc.min_order_file); 1281 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1282 } 1283 1284 return err; 1285 } 1286 1287 late_initcall(fail_page_alloc_debugfs); 1288 1289 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1290 1291 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1292 1293 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1294 { 1295 return 0; 1296 } 1297 1298 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1299 1300 /* 1301 * Return 1 if free pages are above 'mark'. This takes into account the order 1302 * of the allocation. 1303 */ 1304 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1305 int classzone_idx, int alloc_flags) 1306 { 1307 /* free_pages my go negative - that's OK */ 1308 long min = mark; 1309 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1310 int o; 1311 1312 if (alloc_flags & ALLOC_HIGH) 1313 min -= min / 2; 1314 if (alloc_flags & ALLOC_HARDER) 1315 min -= min / 4; 1316 1317 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1318 return 0; 1319 for (o = 0; o < order; o++) { 1320 /* At the next order, this order's pages become unavailable */ 1321 free_pages -= z->free_area[o].nr_free << o; 1322 1323 /* Require fewer higher order pages to be free */ 1324 min >>= 1; 1325 1326 if (free_pages <= min) 1327 return 0; 1328 } 1329 return 1; 1330 } 1331 1332 #ifdef CONFIG_NUMA 1333 /* 1334 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1335 * skip over zones that are not allowed by the cpuset, or that have 1336 * been recently (in last second) found to be nearly full. See further 1337 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1338 * that have to skip over a lot of full or unallowed zones. 1339 * 1340 * If the zonelist cache is present in the passed in zonelist, then 1341 * returns a pointer to the allowed node mask (either the current 1342 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1343 * 1344 * If the zonelist cache is not available for this zonelist, does 1345 * nothing and returns NULL. 1346 * 1347 * If the fullzones BITMAP in the zonelist cache is stale (more than 1348 * a second since last zap'd) then we zap it out (clear its bits.) 1349 * 1350 * We hold off even calling zlc_setup, until after we've checked the 1351 * first zone in the zonelist, on the theory that most allocations will 1352 * be satisfied from that first zone, so best to examine that zone as 1353 * quickly as we can. 1354 */ 1355 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1356 { 1357 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1358 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1359 1360 zlc = zonelist->zlcache_ptr; 1361 if (!zlc) 1362 return NULL; 1363 1364 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1365 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1366 zlc->last_full_zap = jiffies; 1367 } 1368 1369 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1370 &cpuset_current_mems_allowed : 1371 &node_states[N_HIGH_MEMORY]; 1372 return allowednodes; 1373 } 1374 1375 /* 1376 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1377 * if it is worth looking at further for free memory: 1378 * 1) Check that the zone isn't thought to be full (doesn't have its 1379 * bit set in the zonelist_cache fullzones BITMAP). 1380 * 2) Check that the zones node (obtained from the zonelist_cache 1381 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1382 * Return true (non-zero) if zone is worth looking at further, or 1383 * else return false (zero) if it is not. 1384 * 1385 * This check -ignores- the distinction between various watermarks, 1386 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1387 * found to be full for any variation of these watermarks, it will 1388 * be considered full for up to one second by all requests, unless 1389 * we are so low on memory on all allowed nodes that we are forced 1390 * into the second scan of the zonelist. 1391 * 1392 * In the second scan we ignore this zonelist cache and exactly 1393 * apply the watermarks to all zones, even it is slower to do so. 1394 * We are low on memory in the second scan, and should leave no stone 1395 * unturned looking for a free page. 1396 */ 1397 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1398 nodemask_t *allowednodes) 1399 { 1400 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1401 int i; /* index of *z in zonelist zones */ 1402 int n; /* node that zone *z is on */ 1403 1404 zlc = zonelist->zlcache_ptr; 1405 if (!zlc) 1406 return 1; 1407 1408 i = z - zonelist->_zonerefs; 1409 n = zlc->z_to_n[i]; 1410 1411 /* This zone is worth trying if it is allowed but not full */ 1412 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1413 } 1414 1415 /* 1416 * Given 'z' scanning a zonelist, set the corresponding bit in 1417 * zlc->fullzones, so that subsequent attempts to allocate a page 1418 * from that zone don't waste time re-examining it. 1419 */ 1420 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1421 { 1422 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1423 int i; /* index of *z in zonelist zones */ 1424 1425 zlc = zonelist->zlcache_ptr; 1426 if (!zlc) 1427 return; 1428 1429 i = z - zonelist->_zonerefs; 1430 1431 set_bit(i, zlc->fullzones); 1432 } 1433 1434 #else /* CONFIG_NUMA */ 1435 1436 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1437 { 1438 return NULL; 1439 } 1440 1441 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1442 nodemask_t *allowednodes) 1443 { 1444 return 1; 1445 } 1446 1447 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1448 { 1449 } 1450 #endif /* CONFIG_NUMA */ 1451 1452 /* 1453 * get_page_from_freelist goes through the zonelist trying to allocate 1454 * a page. 1455 */ 1456 static struct page * 1457 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1458 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1459 struct zone *preferred_zone, int migratetype) 1460 { 1461 struct zoneref *z; 1462 struct page *page = NULL; 1463 int classzone_idx; 1464 struct zone *zone; 1465 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1466 int zlc_active = 0; /* set if using zonelist_cache */ 1467 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1468 1469 classzone_idx = zone_idx(preferred_zone); 1470 zonelist_scan: 1471 /* 1472 * Scan zonelist, looking for a zone with enough free. 1473 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1474 */ 1475 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1476 high_zoneidx, nodemask) { 1477 if (NUMA_BUILD && zlc_active && 1478 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1479 continue; 1480 if ((alloc_flags & ALLOC_CPUSET) && 1481 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1482 goto try_next_zone; 1483 1484 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1485 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1486 unsigned long mark; 1487 int ret; 1488 1489 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1490 if (zone_watermark_ok(zone, order, mark, 1491 classzone_idx, alloc_flags)) 1492 goto try_this_zone; 1493 1494 if (zone_reclaim_mode == 0) 1495 goto this_zone_full; 1496 1497 ret = zone_reclaim(zone, gfp_mask, order); 1498 switch (ret) { 1499 case ZONE_RECLAIM_NOSCAN: 1500 /* did not scan */ 1501 goto try_next_zone; 1502 case ZONE_RECLAIM_FULL: 1503 /* scanned but unreclaimable */ 1504 goto this_zone_full; 1505 default: 1506 /* did we reclaim enough */ 1507 if (!zone_watermark_ok(zone, order, mark, 1508 classzone_idx, alloc_flags)) 1509 goto this_zone_full; 1510 } 1511 } 1512 1513 try_this_zone: 1514 page = buffered_rmqueue(preferred_zone, zone, order, 1515 gfp_mask, migratetype); 1516 if (page) 1517 break; 1518 this_zone_full: 1519 if (NUMA_BUILD) 1520 zlc_mark_zone_full(zonelist, z); 1521 try_next_zone: 1522 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1523 /* 1524 * we do zlc_setup after the first zone is tried but only 1525 * if there are multiple nodes make it worthwhile 1526 */ 1527 allowednodes = zlc_setup(zonelist, alloc_flags); 1528 zlc_active = 1; 1529 did_zlc_setup = 1; 1530 } 1531 } 1532 1533 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1534 /* Disable zlc cache for second zonelist scan */ 1535 zlc_active = 0; 1536 goto zonelist_scan; 1537 } 1538 return page; 1539 } 1540 1541 static inline int 1542 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1543 unsigned long pages_reclaimed) 1544 { 1545 /* Do not loop if specifically requested */ 1546 if (gfp_mask & __GFP_NORETRY) 1547 return 0; 1548 1549 /* 1550 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1551 * means __GFP_NOFAIL, but that may not be true in other 1552 * implementations. 1553 */ 1554 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1555 return 1; 1556 1557 /* 1558 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1559 * specified, then we retry until we no longer reclaim any pages 1560 * (above), or we've reclaimed an order of pages at least as 1561 * large as the allocation's order. In both cases, if the 1562 * allocation still fails, we stop retrying. 1563 */ 1564 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1565 return 1; 1566 1567 /* 1568 * Don't let big-order allocations loop unless the caller 1569 * explicitly requests that. 1570 */ 1571 if (gfp_mask & __GFP_NOFAIL) 1572 return 1; 1573 1574 return 0; 1575 } 1576 1577 static inline struct page * 1578 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1579 struct zonelist *zonelist, enum zone_type high_zoneidx, 1580 nodemask_t *nodemask, struct zone *preferred_zone, 1581 int migratetype) 1582 { 1583 struct page *page; 1584 1585 /* Acquire the OOM killer lock for the zones in zonelist */ 1586 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1587 schedule_timeout_uninterruptible(1); 1588 return NULL; 1589 } 1590 1591 /* 1592 * Go through the zonelist yet one more time, keep very high watermark 1593 * here, this is only to catch a parallel oom killing, we must fail if 1594 * we're still under heavy pressure. 1595 */ 1596 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1597 order, zonelist, high_zoneidx, 1598 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1599 preferred_zone, migratetype); 1600 if (page) 1601 goto out; 1602 1603 /* The OOM killer will not help higher order allocs */ 1604 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL)) 1605 goto out; 1606 1607 /* Exhausted what can be done so it's blamo time */ 1608 out_of_memory(zonelist, gfp_mask, order); 1609 1610 out: 1611 clear_zonelist_oom(zonelist, gfp_mask); 1612 return page; 1613 } 1614 1615 /* The really slow allocator path where we enter direct reclaim */ 1616 static inline struct page * 1617 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1618 struct zonelist *zonelist, enum zone_type high_zoneidx, 1619 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1620 int migratetype, unsigned long *did_some_progress) 1621 { 1622 struct page *page = NULL; 1623 struct reclaim_state reclaim_state; 1624 struct task_struct *p = current; 1625 1626 cond_resched(); 1627 1628 /* We now go into synchronous reclaim */ 1629 cpuset_memory_pressure_bump(); 1630 1631 /* 1632 * The task's cpuset might have expanded its set of allowable nodes 1633 */ 1634 p->flags |= PF_MEMALLOC; 1635 lockdep_set_current_reclaim_state(gfp_mask); 1636 reclaim_state.reclaimed_slab = 0; 1637 p->reclaim_state = &reclaim_state; 1638 1639 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1640 1641 p->reclaim_state = NULL; 1642 lockdep_clear_current_reclaim_state(); 1643 p->flags &= ~PF_MEMALLOC; 1644 1645 cond_resched(); 1646 1647 if (order != 0) 1648 drain_all_pages(); 1649 1650 if (likely(*did_some_progress)) 1651 page = get_page_from_freelist(gfp_mask, nodemask, order, 1652 zonelist, high_zoneidx, 1653 alloc_flags, preferred_zone, 1654 migratetype); 1655 return page; 1656 } 1657 1658 /* 1659 * This is called in the allocator slow-path if the allocation request is of 1660 * sufficient urgency to ignore watermarks and take other desperate measures 1661 */ 1662 static inline struct page * 1663 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1664 struct zonelist *zonelist, enum zone_type high_zoneidx, 1665 nodemask_t *nodemask, struct zone *preferred_zone, 1666 int migratetype) 1667 { 1668 struct page *page; 1669 1670 do { 1671 page = get_page_from_freelist(gfp_mask, nodemask, order, 1672 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1673 preferred_zone, migratetype); 1674 1675 if (!page && gfp_mask & __GFP_NOFAIL) 1676 congestion_wait(BLK_RW_ASYNC, HZ/50); 1677 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1678 1679 return page; 1680 } 1681 1682 static inline 1683 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1684 enum zone_type high_zoneidx) 1685 { 1686 struct zoneref *z; 1687 struct zone *zone; 1688 1689 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1690 wakeup_kswapd(zone, order); 1691 } 1692 1693 static inline int 1694 gfp_to_alloc_flags(gfp_t gfp_mask) 1695 { 1696 struct task_struct *p = current; 1697 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1698 const gfp_t wait = gfp_mask & __GFP_WAIT; 1699 1700 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1701 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1702 1703 /* 1704 * The caller may dip into page reserves a bit more if the caller 1705 * cannot run direct reclaim, or if the caller has realtime scheduling 1706 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1707 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1708 */ 1709 alloc_flags |= (gfp_mask & __GFP_HIGH); 1710 1711 if (!wait) { 1712 alloc_flags |= ALLOC_HARDER; 1713 /* 1714 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1715 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1716 */ 1717 alloc_flags &= ~ALLOC_CPUSET; 1718 } else if (unlikely(rt_task(p))) 1719 alloc_flags |= ALLOC_HARDER; 1720 1721 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1722 if (!in_interrupt() && 1723 ((p->flags & PF_MEMALLOC) || 1724 unlikely(test_thread_flag(TIF_MEMDIE)))) 1725 alloc_flags |= ALLOC_NO_WATERMARKS; 1726 } 1727 1728 return alloc_flags; 1729 } 1730 1731 static inline struct page * 1732 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1733 struct zonelist *zonelist, enum zone_type high_zoneidx, 1734 nodemask_t *nodemask, struct zone *preferred_zone, 1735 int migratetype) 1736 { 1737 const gfp_t wait = gfp_mask & __GFP_WAIT; 1738 struct page *page = NULL; 1739 int alloc_flags; 1740 unsigned long pages_reclaimed = 0; 1741 unsigned long did_some_progress; 1742 struct task_struct *p = current; 1743 1744 /* 1745 * In the slowpath, we sanity check order to avoid ever trying to 1746 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1747 * be using allocators in order of preference for an area that is 1748 * too large. 1749 */ 1750 if (order >= MAX_ORDER) { 1751 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1752 return NULL; 1753 } 1754 1755 /* 1756 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1757 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1758 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1759 * using a larger set of nodes after it has established that the 1760 * allowed per node queues are empty and that nodes are 1761 * over allocated. 1762 */ 1763 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1764 goto nopage; 1765 1766 wake_all_kswapd(order, zonelist, high_zoneidx); 1767 1768 /* 1769 * OK, we're below the kswapd watermark and have kicked background 1770 * reclaim. Now things get more complex, so set up alloc_flags according 1771 * to how we want to proceed. 1772 */ 1773 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1774 1775 restart: 1776 /* This is the last chance, in general, before the goto nopage. */ 1777 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1778 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1779 preferred_zone, migratetype); 1780 if (page) 1781 goto got_pg; 1782 1783 rebalance: 1784 /* Allocate without watermarks if the context allows */ 1785 if (alloc_flags & ALLOC_NO_WATERMARKS) { 1786 page = __alloc_pages_high_priority(gfp_mask, order, 1787 zonelist, high_zoneidx, nodemask, 1788 preferred_zone, migratetype); 1789 if (page) 1790 goto got_pg; 1791 } 1792 1793 /* Atomic allocations - we can't balance anything */ 1794 if (!wait) 1795 goto nopage; 1796 1797 /* Avoid recursion of direct reclaim */ 1798 if (p->flags & PF_MEMALLOC) 1799 goto nopage; 1800 1801 /* Avoid allocations with no watermarks from looping endlessly */ 1802 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 1803 goto nopage; 1804 1805 /* Try direct reclaim and then allocating */ 1806 page = __alloc_pages_direct_reclaim(gfp_mask, order, 1807 zonelist, high_zoneidx, 1808 nodemask, 1809 alloc_flags, preferred_zone, 1810 migratetype, &did_some_progress); 1811 if (page) 1812 goto got_pg; 1813 1814 /* 1815 * If we failed to make any progress reclaiming, then we are 1816 * running out of options and have to consider going OOM 1817 */ 1818 if (!did_some_progress) { 1819 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1820 if (oom_killer_disabled) 1821 goto nopage; 1822 page = __alloc_pages_may_oom(gfp_mask, order, 1823 zonelist, high_zoneidx, 1824 nodemask, preferred_zone, 1825 migratetype); 1826 if (page) 1827 goto got_pg; 1828 1829 /* 1830 * The OOM killer does not trigger for high-order 1831 * ~__GFP_NOFAIL allocations so if no progress is being 1832 * made, there are no other options and retrying is 1833 * unlikely to help. 1834 */ 1835 if (order > PAGE_ALLOC_COSTLY_ORDER && 1836 !(gfp_mask & __GFP_NOFAIL)) 1837 goto nopage; 1838 1839 goto restart; 1840 } 1841 } 1842 1843 /* Check if we should retry the allocation */ 1844 pages_reclaimed += did_some_progress; 1845 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 1846 /* Wait for some write requests to complete then retry */ 1847 congestion_wait(BLK_RW_ASYNC, HZ/50); 1848 goto rebalance; 1849 } 1850 1851 nopage: 1852 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1853 printk(KERN_WARNING "%s: page allocation failure." 1854 " order:%d, mode:0x%x\n", 1855 p->comm, order, gfp_mask); 1856 dump_stack(); 1857 show_mem(); 1858 } 1859 return page; 1860 got_pg: 1861 if (kmemcheck_enabled) 1862 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 1863 return page; 1864 1865 } 1866 1867 /* 1868 * This is the 'heart' of the zoned buddy allocator. 1869 */ 1870 struct page * 1871 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 1872 struct zonelist *zonelist, nodemask_t *nodemask) 1873 { 1874 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1875 struct zone *preferred_zone; 1876 struct page *page; 1877 int migratetype = allocflags_to_migratetype(gfp_mask); 1878 1879 gfp_mask &= gfp_allowed_mask; 1880 1881 lockdep_trace_alloc(gfp_mask); 1882 1883 might_sleep_if(gfp_mask & __GFP_WAIT); 1884 1885 if (should_fail_alloc_page(gfp_mask, order)) 1886 return NULL; 1887 1888 /* 1889 * Check the zones suitable for the gfp_mask contain at least one 1890 * valid zone. It's possible to have an empty zonelist as a result 1891 * of GFP_THISNODE and a memoryless node 1892 */ 1893 if (unlikely(!zonelist->_zonerefs->zone)) 1894 return NULL; 1895 1896 /* The preferred zone is used for statistics later */ 1897 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 1898 if (!preferred_zone) 1899 return NULL; 1900 1901 /* First allocation attempt */ 1902 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1903 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 1904 preferred_zone, migratetype); 1905 if (unlikely(!page)) 1906 page = __alloc_pages_slowpath(gfp_mask, order, 1907 zonelist, high_zoneidx, nodemask, 1908 preferred_zone, migratetype); 1909 1910 return page; 1911 } 1912 EXPORT_SYMBOL(__alloc_pages_nodemask); 1913 1914 /* 1915 * Common helper functions. 1916 */ 1917 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1918 { 1919 struct page * page; 1920 page = alloc_pages(gfp_mask, order); 1921 if (!page) 1922 return 0; 1923 return (unsigned long) page_address(page); 1924 } 1925 1926 EXPORT_SYMBOL(__get_free_pages); 1927 1928 unsigned long get_zeroed_page(gfp_t gfp_mask) 1929 { 1930 struct page * page; 1931 1932 /* 1933 * get_zeroed_page() returns a 32-bit address, which cannot represent 1934 * a highmem page 1935 */ 1936 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1937 1938 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1939 if (page) 1940 return (unsigned long) page_address(page); 1941 return 0; 1942 } 1943 1944 EXPORT_SYMBOL(get_zeroed_page); 1945 1946 void __pagevec_free(struct pagevec *pvec) 1947 { 1948 int i = pagevec_count(pvec); 1949 1950 while (--i >= 0) 1951 free_hot_cold_page(pvec->pages[i], pvec->cold); 1952 } 1953 1954 void __free_pages(struct page *page, unsigned int order) 1955 { 1956 if (put_page_testzero(page)) { 1957 if (order == 0) 1958 free_hot_page(page); 1959 else 1960 __free_pages_ok(page, order); 1961 } 1962 } 1963 1964 EXPORT_SYMBOL(__free_pages); 1965 1966 void free_pages(unsigned long addr, unsigned int order) 1967 { 1968 if (addr != 0) { 1969 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1970 __free_pages(virt_to_page((void *)addr), order); 1971 } 1972 } 1973 1974 EXPORT_SYMBOL(free_pages); 1975 1976 /** 1977 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1978 * @size: the number of bytes to allocate 1979 * @gfp_mask: GFP flags for the allocation 1980 * 1981 * This function is similar to alloc_pages(), except that it allocates the 1982 * minimum number of pages to satisfy the request. alloc_pages() can only 1983 * allocate memory in power-of-two pages. 1984 * 1985 * This function is also limited by MAX_ORDER. 1986 * 1987 * Memory allocated by this function must be released by free_pages_exact(). 1988 */ 1989 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1990 { 1991 unsigned int order = get_order(size); 1992 unsigned long addr; 1993 1994 addr = __get_free_pages(gfp_mask, order); 1995 if (addr) { 1996 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1997 unsigned long used = addr + PAGE_ALIGN(size); 1998 1999 split_page(virt_to_page((void *)addr), order); 2000 while (used < alloc_end) { 2001 free_page(used); 2002 used += PAGE_SIZE; 2003 } 2004 } 2005 2006 return (void *)addr; 2007 } 2008 EXPORT_SYMBOL(alloc_pages_exact); 2009 2010 /** 2011 * free_pages_exact - release memory allocated via alloc_pages_exact() 2012 * @virt: the value returned by alloc_pages_exact. 2013 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2014 * 2015 * Release the memory allocated by a previous call to alloc_pages_exact. 2016 */ 2017 void free_pages_exact(void *virt, size_t size) 2018 { 2019 unsigned long addr = (unsigned long)virt; 2020 unsigned long end = addr + PAGE_ALIGN(size); 2021 2022 while (addr < end) { 2023 free_page(addr); 2024 addr += PAGE_SIZE; 2025 } 2026 } 2027 EXPORT_SYMBOL(free_pages_exact); 2028 2029 static unsigned int nr_free_zone_pages(int offset) 2030 { 2031 struct zoneref *z; 2032 struct zone *zone; 2033 2034 /* Just pick one node, since fallback list is circular */ 2035 unsigned int sum = 0; 2036 2037 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2038 2039 for_each_zone_zonelist(zone, z, zonelist, offset) { 2040 unsigned long size = zone->present_pages; 2041 unsigned long high = high_wmark_pages(zone); 2042 if (size > high) 2043 sum += size - high; 2044 } 2045 2046 return sum; 2047 } 2048 2049 /* 2050 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2051 */ 2052 unsigned int nr_free_buffer_pages(void) 2053 { 2054 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2055 } 2056 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2057 2058 /* 2059 * Amount of free RAM allocatable within all zones 2060 */ 2061 unsigned int nr_free_pagecache_pages(void) 2062 { 2063 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2064 } 2065 2066 static inline void show_node(struct zone *zone) 2067 { 2068 if (NUMA_BUILD) 2069 printk("Node %d ", zone_to_nid(zone)); 2070 } 2071 2072 void si_meminfo(struct sysinfo *val) 2073 { 2074 val->totalram = totalram_pages; 2075 val->sharedram = 0; 2076 val->freeram = global_page_state(NR_FREE_PAGES); 2077 val->bufferram = nr_blockdev_pages(); 2078 val->totalhigh = totalhigh_pages; 2079 val->freehigh = nr_free_highpages(); 2080 val->mem_unit = PAGE_SIZE; 2081 } 2082 2083 EXPORT_SYMBOL(si_meminfo); 2084 2085 #ifdef CONFIG_NUMA 2086 void si_meminfo_node(struct sysinfo *val, int nid) 2087 { 2088 pg_data_t *pgdat = NODE_DATA(nid); 2089 2090 val->totalram = pgdat->node_present_pages; 2091 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2092 #ifdef CONFIG_HIGHMEM 2093 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2094 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2095 NR_FREE_PAGES); 2096 #else 2097 val->totalhigh = 0; 2098 val->freehigh = 0; 2099 #endif 2100 val->mem_unit = PAGE_SIZE; 2101 } 2102 #endif 2103 2104 #define K(x) ((x) << (PAGE_SHIFT-10)) 2105 2106 /* 2107 * Show free area list (used inside shift_scroll-lock stuff) 2108 * We also calculate the percentage fragmentation. We do this by counting the 2109 * memory on each free list with the exception of the first item on the list. 2110 */ 2111 void show_free_areas(void) 2112 { 2113 int cpu; 2114 struct zone *zone; 2115 2116 for_each_populated_zone(zone) { 2117 show_node(zone); 2118 printk("%s per-cpu:\n", zone->name); 2119 2120 for_each_online_cpu(cpu) { 2121 struct per_cpu_pageset *pageset; 2122 2123 pageset = zone_pcp(zone, cpu); 2124 2125 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2126 cpu, pageset->pcp.high, 2127 pageset->pcp.batch, pageset->pcp.count); 2128 } 2129 } 2130 2131 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" 2132 " inactive_file:%lu" 2133 " unevictable:%lu" 2134 " dirty:%lu writeback:%lu unstable:%lu\n" 2135 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 2136 global_page_state(NR_ACTIVE_ANON), 2137 global_page_state(NR_ACTIVE_FILE), 2138 global_page_state(NR_INACTIVE_ANON), 2139 global_page_state(NR_INACTIVE_FILE), 2140 global_page_state(NR_UNEVICTABLE), 2141 global_page_state(NR_FILE_DIRTY), 2142 global_page_state(NR_WRITEBACK), 2143 global_page_state(NR_UNSTABLE_NFS), 2144 global_page_state(NR_FREE_PAGES), 2145 global_page_state(NR_SLAB_RECLAIMABLE) + 2146 global_page_state(NR_SLAB_UNRECLAIMABLE), 2147 global_page_state(NR_FILE_MAPPED), 2148 global_page_state(NR_PAGETABLE), 2149 global_page_state(NR_BOUNCE)); 2150 2151 for_each_populated_zone(zone) { 2152 int i; 2153 2154 show_node(zone); 2155 printk("%s" 2156 " free:%lukB" 2157 " min:%lukB" 2158 " low:%lukB" 2159 " high:%lukB" 2160 " active_anon:%lukB" 2161 " inactive_anon:%lukB" 2162 " active_file:%lukB" 2163 " inactive_file:%lukB" 2164 " unevictable:%lukB" 2165 " present:%lukB" 2166 " pages_scanned:%lu" 2167 " all_unreclaimable? %s" 2168 "\n", 2169 zone->name, 2170 K(zone_page_state(zone, NR_FREE_PAGES)), 2171 K(min_wmark_pages(zone)), 2172 K(low_wmark_pages(zone)), 2173 K(high_wmark_pages(zone)), 2174 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2175 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2176 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2177 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2178 K(zone_page_state(zone, NR_UNEVICTABLE)), 2179 K(zone->present_pages), 2180 zone->pages_scanned, 2181 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 2182 ); 2183 printk("lowmem_reserve[]:"); 2184 for (i = 0; i < MAX_NR_ZONES; i++) 2185 printk(" %lu", zone->lowmem_reserve[i]); 2186 printk("\n"); 2187 } 2188 2189 for_each_populated_zone(zone) { 2190 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2191 2192 show_node(zone); 2193 printk("%s: ", zone->name); 2194 2195 spin_lock_irqsave(&zone->lock, flags); 2196 for (order = 0; order < MAX_ORDER; order++) { 2197 nr[order] = zone->free_area[order].nr_free; 2198 total += nr[order] << order; 2199 } 2200 spin_unlock_irqrestore(&zone->lock, flags); 2201 for (order = 0; order < MAX_ORDER; order++) 2202 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2203 printk("= %lukB\n", K(total)); 2204 } 2205 2206 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2207 2208 show_swap_cache_info(); 2209 } 2210 2211 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2212 { 2213 zoneref->zone = zone; 2214 zoneref->zone_idx = zone_idx(zone); 2215 } 2216 2217 /* 2218 * Builds allocation fallback zone lists. 2219 * 2220 * Add all populated zones of a node to the zonelist. 2221 */ 2222 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2223 int nr_zones, enum zone_type zone_type) 2224 { 2225 struct zone *zone; 2226 2227 BUG_ON(zone_type >= MAX_NR_ZONES); 2228 zone_type++; 2229 2230 do { 2231 zone_type--; 2232 zone = pgdat->node_zones + zone_type; 2233 if (populated_zone(zone)) { 2234 zoneref_set_zone(zone, 2235 &zonelist->_zonerefs[nr_zones++]); 2236 check_highest_zone(zone_type); 2237 } 2238 2239 } while (zone_type); 2240 return nr_zones; 2241 } 2242 2243 2244 /* 2245 * zonelist_order: 2246 * 0 = automatic detection of better ordering. 2247 * 1 = order by ([node] distance, -zonetype) 2248 * 2 = order by (-zonetype, [node] distance) 2249 * 2250 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2251 * the same zonelist. So only NUMA can configure this param. 2252 */ 2253 #define ZONELIST_ORDER_DEFAULT 0 2254 #define ZONELIST_ORDER_NODE 1 2255 #define ZONELIST_ORDER_ZONE 2 2256 2257 /* zonelist order in the kernel. 2258 * set_zonelist_order() will set this to NODE or ZONE. 2259 */ 2260 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2261 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2262 2263 2264 #ifdef CONFIG_NUMA 2265 /* The value user specified ....changed by config */ 2266 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2267 /* string for sysctl */ 2268 #define NUMA_ZONELIST_ORDER_LEN 16 2269 char numa_zonelist_order[16] = "default"; 2270 2271 /* 2272 * interface for configure zonelist ordering. 2273 * command line option "numa_zonelist_order" 2274 * = "[dD]efault - default, automatic configuration. 2275 * = "[nN]ode - order by node locality, then by zone within node 2276 * = "[zZ]one - order by zone, then by locality within zone 2277 */ 2278 2279 static int __parse_numa_zonelist_order(char *s) 2280 { 2281 if (*s == 'd' || *s == 'D') { 2282 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2283 } else if (*s == 'n' || *s == 'N') { 2284 user_zonelist_order = ZONELIST_ORDER_NODE; 2285 } else if (*s == 'z' || *s == 'Z') { 2286 user_zonelist_order = ZONELIST_ORDER_ZONE; 2287 } else { 2288 printk(KERN_WARNING 2289 "Ignoring invalid numa_zonelist_order value: " 2290 "%s\n", s); 2291 return -EINVAL; 2292 } 2293 return 0; 2294 } 2295 2296 static __init int setup_numa_zonelist_order(char *s) 2297 { 2298 if (s) 2299 return __parse_numa_zonelist_order(s); 2300 return 0; 2301 } 2302 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2303 2304 /* 2305 * sysctl handler for numa_zonelist_order 2306 */ 2307 int numa_zonelist_order_handler(ctl_table *table, int write, 2308 struct file *file, void __user *buffer, size_t *length, 2309 loff_t *ppos) 2310 { 2311 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2312 int ret; 2313 2314 if (write) 2315 strncpy(saved_string, (char*)table->data, 2316 NUMA_ZONELIST_ORDER_LEN); 2317 ret = proc_dostring(table, write, file, buffer, length, ppos); 2318 if (ret) 2319 return ret; 2320 if (write) { 2321 int oldval = user_zonelist_order; 2322 if (__parse_numa_zonelist_order((char*)table->data)) { 2323 /* 2324 * bogus value. restore saved string 2325 */ 2326 strncpy((char*)table->data, saved_string, 2327 NUMA_ZONELIST_ORDER_LEN); 2328 user_zonelist_order = oldval; 2329 } else if (oldval != user_zonelist_order) 2330 build_all_zonelists(); 2331 } 2332 return 0; 2333 } 2334 2335 2336 #define MAX_NODE_LOAD (nr_online_nodes) 2337 static int node_load[MAX_NUMNODES]; 2338 2339 /** 2340 * find_next_best_node - find the next node that should appear in a given node's fallback list 2341 * @node: node whose fallback list we're appending 2342 * @used_node_mask: nodemask_t of already used nodes 2343 * 2344 * We use a number of factors to determine which is the next node that should 2345 * appear on a given node's fallback list. The node should not have appeared 2346 * already in @node's fallback list, and it should be the next closest node 2347 * according to the distance array (which contains arbitrary distance values 2348 * from each node to each node in the system), and should also prefer nodes 2349 * with no CPUs, since presumably they'll have very little allocation pressure 2350 * on them otherwise. 2351 * It returns -1 if no node is found. 2352 */ 2353 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2354 { 2355 int n, val; 2356 int min_val = INT_MAX; 2357 int best_node = -1; 2358 const struct cpumask *tmp = cpumask_of_node(0); 2359 2360 /* Use the local node if we haven't already */ 2361 if (!node_isset(node, *used_node_mask)) { 2362 node_set(node, *used_node_mask); 2363 return node; 2364 } 2365 2366 for_each_node_state(n, N_HIGH_MEMORY) { 2367 2368 /* Don't want a node to appear more than once */ 2369 if (node_isset(n, *used_node_mask)) 2370 continue; 2371 2372 /* Use the distance array to find the distance */ 2373 val = node_distance(node, n); 2374 2375 /* Penalize nodes under us ("prefer the next node") */ 2376 val += (n < node); 2377 2378 /* Give preference to headless and unused nodes */ 2379 tmp = cpumask_of_node(n); 2380 if (!cpumask_empty(tmp)) 2381 val += PENALTY_FOR_NODE_WITH_CPUS; 2382 2383 /* Slight preference for less loaded node */ 2384 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2385 val += node_load[n]; 2386 2387 if (val < min_val) { 2388 min_val = val; 2389 best_node = n; 2390 } 2391 } 2392 2393 if (best_node >= 0) 2394 node_set(best_node, *used_node_mask); 2395 2396 return best_node; 2397 } 2398 2399 2400 /* 2401 * Build zonelists ordered by node and zones within node. 2402 * This results in maximum locality--normal zone overflows into local 2403 * DMA zone, if any--but risks exhausting DMA zone. 2404 */ 2405 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2406 { 2407 int j; 2408 struct zonelist *zonelist; 2409 2410 zonelist = &pgdat->node_zonelists[0]; 2411 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2412 ; 2413 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2414 MAX_NR_ZONES - 1); 2415 zonelist->_zonerefs[j].zone = NULL; 2416 zonelist->_zonerefs[j].zone_idx = 0; 2417 } 2418 2419 /* 2420 * Build gfp_thisnode zonelists 2421 */ 2422 static void build_thisnode_zonelists(pg_data_t *pgdat) 2423 { 2424 int j; 2425 struct zonelist *zonelist; 2426 2427 zonelist = &pgdat->node_zonelists[1]; 2428 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2429 zonelist->_zonerefs[j].zone = NULL; 2430 zonelist->_zonerefs[j].zone_idx = 0; 2431 } 2432 2433 /* 2434 * Build zonelists ordered by zone and nodes within zones. 2435 * This results in conserving DMA zone[s] until all Normal memory is 2436 * exhausted, but results in overflowing to remote node while memory 2437 * may still exist in local DMA zone. 2438 */ 2439 static int node_order[MAX_NUMNODES]; 2440 2441 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2442 { 2443 int pos, j, node; 2444 int zone_type; /* needs to be signed */ 2445 struct zone *z; 2446 struct zonelist *zonelist; 2447 2448 zonelist = &pgdat->node_zonelists[0]; 2449 pos = 0; 2450 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2451 for (j = 0; j < nr_nodes; j++) { 2452 node = node_order[j]; 2453 z = &NODE_DATA(node)->node_zones[zone_type]; 2454 if (populated_zone(z)) { 2455 zoneref_set_zone(z, 2456 &zonelist->_zonerefs[pos++]); 2457 check_highest_zone(zone_type); 2458 } 2459 } 2460 } 2461 zonelist->_zonerefs[pos].zone = NULL; 2462 zonelist->_zonerefs[pos].zone_idx = 0; 2463 } 2464 2465 static int default_zonelist_order(void) 2466 { 2467 int nid, zone_type; 2468 unsigned long low_kmem_size,total_size; 2469 struct zone *z; 2470 int average_size; 2471 /* 2472 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2473 * If they are really small and used heavily, the system can fall 2474 * into OOM very easily. 2475 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2476 */ 2477 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2478 low_kmem_size = 0; 2479 total_size = 0; 2480 for_each_online_node(nid) { 2481 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2482 z = &NODE_DATA(nid)->node_zones[zone_type]; 2483 if (populated_zone(z)) { 2484 if (zone_type < ZONE_NORMAL) 2485 low_kmem_size += z->present_pages; 2486 total_size += z->present_pages; 2487 } 2488 } 2489 } 2490 if (!low_kmem_size || /* there are no DMA area. */ 2491 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2492 return ZONELIST_ORDER_NODE; 2493 /* 2494 * look into each node's config. 2495 * If there is a node whose DMA/DMA32 memory is very big area on 2496 * local memory, NODE_ORDER may be suitable. 2497 */ 2498 average_size = total_size / 2499 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2500 for_each_online_node(nid) { 2501 low_kmem_size = 0; 2502 total_size = 0; 2503 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2504 z = &NODE_DATA(nid)->node_zones[zone_type]; 2505 if (populated_zone(z)) { 2506 if (zone_type < ZONE_NORMAL) 2507 low_kmem_size += z->present_pages; 2508 total_size += z->present_pages; 2509 } 2510 } 2511 if (low_kmem_size && 2512 total_size > average_size && /* ignore small node */ 2513 low_kmem_size > total_size * 70/100) 2514 return ZONELIST_ORDER_NODE; 2515 } 2516 return ZONELIST_ORDER_ZONE; 2517 } 2518 2519 static void set_zonelist_order(void) 2520 { 2521 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2522 current_zonelist_order = default_zonelist_order(); 2523 else 2524 current_zonelist_order = user_zonelist_order; 2525 } 2526 2527 static void build_zonelists(pg_data_t *pgdat) 2528 { 2529 int j, node, load; 2530 enum zone_type i; 2531 nodemask_t used_mask; 2532 int local_node, prev_node; 2533 struct zonelist *zonelist; 2534 int order = current_zonelist_order; 2535 2536 /* initialize zonelists */ 2537 for (i = 0; i < MAX_ZONELISTS; i++) { 2538 zonelist = pgdat->node_zonelists + i; 2539 zonelist->_zonerefs[0].zone = NULL; 2540 zonelist->_zonerefs[0].zone_idx = 0; 2541 } 2542 2543 /* NUMA-aware ordering of nodes */ 2544 local_node = pgdat->node_id; 2545 load = nr_online_nodes; 2546 prev_node = local_node; 2547 nodes_clear(used_mask); 2548 2549 memset(node_order, 0, sizeof(node_order)); 2550 j = 0; 2551 2552 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2553 int distance = node_distance(local_node, node); 2554 2555 /* 2556 * If another node is sufficiently far away then it is better 2557 * to reclaim pages in a zone before going off node. 2558 */ 2559 if (distance > RECLAIM_DISTANCE) 2560 zone_reclaim_mode = 1; 2561 2562 /* 2563 * We don't want to pressure a particular node. 2564 * So adding penalty to the first node in same 2565 * distance group to make it round-robin. 2566 */ 2567 if (distance != node_distance(local_node, prev_node)) 2568 node_load[node] = load; 2569 2570 prev_node = node; 2571 load--; 2572 if (order == ZONELIST_ORDER_NODE) 2573 build_zonelists_in_node_order(pgdat, node); 2574 else 2575 node_order[j++] = node; /* remember order */ 2576 } 2577 2578 if (order == ZONELIST_ORDER_ZONE) { 2579 /* calculate node order -- i.e., DMA last! */ 2580 build_zonelists_in_zone_order(pgdat, j); 2581 } 2582 2583 build_thisnode_zonelists(pgdat); 2584 } 2585 2586 /* Construct the zonelist performance cache - see further mmzone.h */ 2587 static void build_zonelist_cache(pg_data_t *pgdat) 2588 { 2589 struct zonelist *zonelist; 2590 struct zonelist_cache *zlc; 2591 struct zoneref *z; 2592 2593 zonelist = &pgdat->node_zonelists[0]; 2594 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2595 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2596 for (z = zonelist->_zonerefs; z->zone; z++) 2597 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2598 } 2599 2600 2601 #else /* CONFIG_NUMA */ 2602 2603 static void set_zonelist_order(void) 2604 { 2605 current_zonelist_order = ZONELIST_ORDER_ZONE; 2606 } 2607 2608 static void build_zonelists(pg_data_t *pgdat) 2609 { 2610 int node, local_node; 2611 enum zone_type j; 2612 struct zonelist *zonelist; 2613 2614 local_node = pgdat->node_id; 2615 2616 zonelist = &pgdat->node_zonelists[0]; 2617 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2618 2619 /* 2620 * Now we build the zonelist so that it contains the zones 2621 * of all the other nodes. 2622 * We don't want to pressure a particular node, so when 2623 * building the zones for node N, we make sure that the 2624 * zones coming right after the local ones are those from 2625 * node N+1 (modulo N) 2626 */ 2627 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2628 if (!node_online(node)) 2629 continue; 2630 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2631 MAX_NR_ZONES - 1); 2632 } 2633 for (node = 0; node < local_node; node++) { 2634 if (!node_online(node)) 2635 continue; 2636 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2637 MAX_NR_ZONES - 1); 2638 } 2639 2640 zonelist->_zonerefs[j].zone = NULL; 2641 zonelist->_zonerefs[j].zone_idx = 0; 2642 } 2643 2644 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2645 static void build_zonelist_cache(pg_data_t *pgdat) 2646 { 2647 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2648 } 2649 2650 #endif /* CONFIG_NUMA */ 2651 2652 /* return values int ....just for stop_machine() */ 2653 static int __build_all_zonelists(void *dummy) 2654 { 2655 int nid; 2656 2657 #ifdef CONFIG_NUMA 2658 memset(node_load, 0, sizeof(node_load)); 2659 #endif 2660 for_each_online_node(nid) { 2661 pg_data_t *pgdat = NODE_DATA(nid); 2662 2663 build_zonelists(pgdat); 2664 build_zonelist_cache(pgdat); 2665 } 2666 return 0; 2667 } 2668 2669 void build_all_zonelists(void) 2670 { 2671 set_zonelist_order(); 2672 2673 if (system_state == SYSTEM_BOOTING) { 2674 __build_all_zonelists(NULL); 2675 mminit_verify_zonelist(); 2676 cpuset_init_current_mems_allowed(); 2677 } else { 2678 /* we have to stop all cpus to guarantee there is no user 2679 of zonelist */ 2680 stop_machine(__build_all_zonelists, NULL, NULL); 2681 /* cpuset refresh routine should be here */ 2682 } 2683 vm_total_pages = nr_free_pagecache_pages(); 2684 /* 2685 * Disable grouping by mobility if the number of pages in the 2686 * system is too low to allow the mechanism to work. It would be 2687 * more accurate, but expensive to check per-zone. This check is 2688 * made on memory-hotadd so a system can start with mobility 2689 * disabled and enable it later 2690 */ 2691 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2692 page_group_by_mobility_disabled = 1; 2693 else 2694 page_group_by_mobility_disabled = 0; 2695 2696 printk("Built %i zonelists in %s order, mobility grouping %s. " 2697 "Total pages: %ld\n", 2698 nr_online_nodes, 2699 zonelist_order_name[current_zonelist_order], 2700 page_group_by_mobility_disabled ? "off" : "on", 2701 vm_total_pages); 2702 #ifdef CONFIG_NUMA 2703 printk("Policy zone: %s\n", zone_names[policy_zone]); 2704 #endif 2705 } 2706 2707 /* 2708 * Helper functions to size the waitqueue hash table. 2709 * Essentially these want to choose hash table sizes sufficiently 2710 * large so that collisions trying to wait on pages are rare. 2711 * But in fact, the number of active page waitqueues on typical 2712 * systems is ridiculously low, less than 200. So this is even 2713 * conservative, even though it seems large. 2714 * 2715 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2716 * waitqueues, i.e. the size of the waitq table given the number of pages. 2717 */ 2718 #define PAGES_PER_WAITQUEUE 256 2719 2720 #ifndef CONFIG_MEMORY_HOTPLUG 2721 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2722 { 2723 unsigned long size = 1; 2724 2725 pages /= PAGES_PER_WAITQUEUE; 2726 2727 while (size < pages) 2728 size <<= 1; 2729 2730 /* 2731 * Once we have dozens or even hundreds of threads sleeping 2732 * on IO we've got bigger problems than wait queue collision. 2733 * Limit the size of the wait table to a reasonable size. 2734 */ 2735 size = min(size, 4096UL); 2736 2737 return max(size, 4UL); 2738 } 2739 #else 2740 /* 2741 * A zone's size might be changed by hot-add, so it is not possible to determine 2742 * a suitable size for its wait_table. So we use the maximum size now. 2743 * 2744 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2745 * 2746 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2747 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2748 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2749 * 2750 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2751 * or more by the traditional way. (See above). It equals: 2752 * 2753 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2754 * ia64(16K page size) : = ( 8G + 4M)byte. 2755 * powerpc (64K page size) : = (32G +16M)byte. 2756 */ 2757 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2758 { 2759 return 4096UL; 2760 } 2761 #endif 2762 2763 /* 2764 * This is an integer logarithm so that shifts can be used later 2765 * to extract the more random high bits from the multiplicative 2766 * hash function before the remainder is taken. 2767 */ 2768 static inline unsigned long wait_table_bits(unsigned long size) 2769 { 2770 return ffz(~size); 2771 } 2772 2773 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2774 2775 /* 2776 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2777 * of blocks reserved is based on min_wmark_pages(zone). The memory within 2778 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 2779 * higher will lead to a bigger reserve which will get freed as contiguous 2780 * blocks as reclaim kicks in 2781 */ 2782 static void setup_zone_migrate_reserve(struct zone *zone) 2783 { 2784 unsigned long start_pfn, pfn, end_pfn; 2785 struct page *page; 2786 unsigned long reserve, block_migratetype; 2787 2788 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2789 start_pfn = zone->zone_start_pfn; 2790 end_pfn = start_pfn + zone->spanned_pages; 2791 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 2792 pageblock_order; 2793 2794 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2795 if (!pfn_valid(pfn)) 2796 continue; 2797 page = pfn_to_page(pfn); 2798 2799 /* Watch out for overlapping nodes */ 2800 if (page_to_nid(page) != zone_to_nid(zone)) 2801 continue; 2802 2803 /* Blocks with reserved pages will never free, skip them. */ 2804 if (PageReserved(page)) 2805 continue; 2806 2807 block_migratetype = get_pageblock_migratetype(page); 2808 2809 /* If this block is reserved, account for it */ 2810 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2811 reserve--; 2812 continue; 2813 } 2814 2815 /* Suitable for reserving if this block is movable */ 2816 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2817 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2818 move_freepages_block(zone, page, MIGRATE_RESERVE); 2819 reserve--; 2820 continue; 2821 } 2822 2823 /* 2824 * If the reserve is met and this is a previous reserved block, 2825 * take it back 2826 */ 2827 if (block_migratetype == MIGRATE_RESERVE) { 2828 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2829 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2830 } 2831 } 2832 } 2833 2834 /* 2835 * Initially all pages are reserved - free ones are freed 2836 * up by free_all_bootmem() once the early boot process is 2837 * done. Non-atomic initialization, single-pass. 2838 */ 2839 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2840 unsigned long start_pfn, enum memmap_context context) 2841 { 2842 struct page *page; 2843 unsigned long end_pfn = start_pfn + size; 2844 unsigned long pfn; 2845 struct zone *z; 2846 2847 if (highest_memmap_pfn < end_pfn - 1) 2848 highest_memmap_pfn = end_pfn - 1; 2849 2850 z = &NODE_DATA(nid)->node_zones[zone]; 2851 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2852 /* 2853 * There can be holes in boot-time mem_map[]s 2854 * handed to this function. They do not 2855 * exist on hotplugged memory. 2856 */ 2857 if (context == MEMMAP_EARLY) { 2858 if (!early_pfn_valid(pfn)) 2859 continue; 2860 if (!early_pfn_in_nid(pfn, nid)) 2861 continue; 2862 } 2863 page = pfn_to_page(pfn); 2864 set_page_links(page, zone, nid, pfn); 2865 mminit_verify_page_links(page, zone, nid, pfn); 2866 init_page_count(page); 2867 reset_page_mapcount(page); 2868 SetPageReserved(page); 2869 /* 2870 * Mark the block movable so that blocks are reserved for 2871 * movable at startup. This will force kernel allocations 2872 * to reserve their blocks rather than leaking throughout 2873 * the address space during boot when many long-lived 2874 * kernel allocations are made. Later some blocks near 2875 * the start are marked MIGRATE_RESERVE by 2876 * setup_zone_migrate_reserve() 2877 * 2878 * bitmap is created for zone's valid pfn range. but memmap 2879 * can be created for invalid pages (for alignment) 2880 * check here not to call set_pageblock_migratetype() against 2881 * pfn out of zone. 2882 */ 2883 if ((z->zone_start_pfn <= pfn) 2884 && (pfn < z->zone_start_pfn + z->spanned_pages) 2885 && !(pfn & (pageblock_nr_pages - 1))) 2886 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2887 2888 INIT_LIST_HEAD(&page->lru); 2889 #ifdef WANT_PAGE_VIRTUAL 2890 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2891 if (!is_highmem_idx(zone)) 2892 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2893 #endif 2894 } 2895 } 2896 2897 static void __meminit zone_init_free_lists(struct zone *zone) 2898 { 2899 int order, t; 2900 for_each_migratetype_order(order, t) { 2901 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2902 zone->free_area[order].nr_free = 0; 2903 } 2904 } 2905 2906 #ifndef __HAVE_ARCH_MEMMAP_INIT 2907 #define memmap_init(size, nid, zone, start_pfn) \ 2908 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2909 #endif 2910 2911 static int zone_batchsize(struct zone *zone) 2912 { 2913 #ifdef CONFIG_MMU 2914 int batch; 2915 2916 /* 2917 * The per-cpu-pages pools are set to around 1000th of the 2918 * size of the zone. But no more than 1/2 of a meg. 2919 * 2920 * OK, so we don't know how big the cache is. So guess. 2921 */ 2922 batch = zone->present_pages / 1024; 2923 if (batch * PAGE_SIZE > 512 * 1024) 2924 batch = (512 * 1024) / PAGE_SIZE; 2925 batch /= 4; /* We effectively *= 4 below */ 2926 if (batch < 1) 2927 batch = 1; 2928 2929 /* 2930 * Clamp the batch to a 2^n - 1 value. Having a power 2931 * of 2 value was found to be more likely to have 2932 * suboptimal cache aliasing properties in some cases. 2933 * 2934 * For example if 2 tasks are alternately allocating 2935 * batches of pages, one task can end up with a lot 2936 * of pages of one half of the possible page colors 2937 * and the other with pages of the other colors. 2938 */ 2939 batch = rounddown_pow_of_two(batch + batch/2) - 1; 2940 2941 return batch; 2942 2943 #else 2944 /* The deferral and batching of frees should be suppressed under NOMMU 2945 * conditions. 2946 * 2947 * The problem is that NOMMU needs to be able to allocate large chunks 2948 * of contiguous memory as there's no hardware page translation to 2949 * assemble apparent contiguous memory from discontiguous pages. 2950 * 2951 * Queueing large contiguous runs of pages for batching, however, 2952 * causes the pages to actually be freed in smaller chunks. As there 2953 * can be a significant delay between the individual batches being 2954 * recycled, this leads to the once large chunks of space being 2955 * fragmented and becoming unavailable for high-order allocations. 2956 */ 2957 return 0; 2958 #endif 2959 } 2960 2961 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2962 { 2963 struct per_cpu_pages *pcp; 2964 2965 memset(p, 0, sizeof(*p)); 2966 2967 pcp = &p->pcp; 2968 pcp->count = 0; 2969 pcp->high = 6 * batch; 2970 pcp->batch = max(1UL, 1 * batch); 2971 INIT_LIST_HEAD(&pcp->list); 2972 } 2973 2974 /* 2975 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2976 * to the value high for the pageset p. 2977 */ 2978 2979 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2980 unsigned long high) 2981 { 2982 struct per_cpu_pages *pcp; 2983 2984 pcp = &p->pcp; 2985 pcp->high = high; 2986 pcp->batch = max(1UL, high/4); 2987 if ((high/4) > (PAGE_SHIFT * 8)) 2988 pcp->batch = PAGE_SHIFT * 8; 2989 } 2990 2991 2992 #ifdef CONFIG_NUMA 2993 /* 2994 * Boot pageset table. One per cpu which is going to be used for all 2995 * zones and all nodes. The parameters will be set in such a way 2996 * that an item put on a list will immediately be handed over to 2997 * the buddy list. This is safe since pageset manipulation is done 2998 * with interrupts disabled. 2999 * 3000 * Some NUMA counter updates may also be caught by the boot pagesets. 3001 * 3002 * The boot_pagesets must be kept even after bootup is complete for 3003 * unused processors and/or zones. They do play a role for bootstrapping 3004 * hotplugged processors. 3005 * 3006 * zoneinfo_show() and maybe other functions do 3007 * not check if the processor is online before following the pageset pointer. 3008 * Other parts of the kernel may not check if the zone is available. 3009 */ 3010 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 3011 3012 /* 3013 * Dynamically allocate memory for the 3014 * per cpu pageset array in struct zone. 3015 */ 3016 static int __cpuinit process_zones(int cpu) 3017 { 3018 struct zone *zone, *dzone; 3019 int node = cpu_to_node(cpu); 3020 3021 node_set_state(node, N_CPU); /* this node has a cpu */ 3022 3023 for_each_populated_zone(zone) { 3024 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 3025 GFP_KERNEL, node); 3026 if (!zone_pcp(zone, cpu)) 3027 goto bad; 3028 3029 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 3030 3031 if (percpu_pagelist_fraction) 3032 setup_pagelist_highmark(zone_pcp(zone, cpu), 3033 (zone->present_pages / percpu_pagelist_fraction)); 3034 } 3035 3036 return 0; 3037 bad: 3038 for_each_zone(dzone) { 3039 if (!populated_zone(dzone)) 3040 continue; 3041 if (dzone == zone) 3042 break; 3043 kfree(zone_pcp(dzone, cpu)); 3044 zone_pcp(dzone, cpu) = &boot_pageset[cpu]; 3045 } 3046 return -ENOMEM; 3047 } 3048 3049 static inline void free_zone_pagesets(int cpu) 3050 { 3051 struct zone *zone; 3052 3053 for_each_zone(zone) { 3054 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 3055 3056 /* Free per_cpu_pageset if it is slab allocated */ 3057 if (pset != &boot_pageset[cpu]) 3058 kfree(pset); 3059 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3060 } 3061 } 3062 3063 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 3064 unsigned long action, 3065 void *hcpu) 3066 { 3067 int cpu = (long)hcpu; 3068 int ret = NOTIFY_OK; 3069 3070 switch (action) { 3071 case CPU_UP_PREPARE: 3072 case CPU_UP_PREPARE_FROZEN: 3073 if (process_zones(cpu)) 3074 ret = NOTIFY_BAD; 3075 break; 3076 case CPU_UP_CANCELED: 3077 case CPU_UP_CANCELED_FROZEN: 3078 case CPU_DEAD: 3079 case CPU_DEAD_FROZEN: 3080 free_zone_pagesets(cpu); 3081 break; 3082 default: 3083 break; 3084 } 3085 return ret; 3086 } 3087 3088 static struct notifier_block __cpuinitdata pageset_notifier = 3089 { &pageset_cpuup_callback, NULL, 0 }; 3090 3091 void __init setup_per_cpu_pageset(void) 3092 { 3093 int err; 3094 3095 /* Initialize per_cpu_pageset for cpu 0. 3096 * A cpuup callback will do this for every cpu 3097 * as it comes online 3098 */ 3099 err = process_zones(smp_processor_id()); 3100 BUG_ON(err); 3101 register_cpu_notifier(&pageset_notifier); 3102 } 3103 3104 #endif 3105 3106 static noinline __init_refok 3107 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3108 { 3109 int i; 3110 struct pglist_data *pgdat = zone->zone_pgdat; 3111 size_t alloc_size; 3112 3113 /* 3114 * The per-page waitqueue mechanism uses hashed waitqueues 3115 * per zone. 3116 */ 3117 zone->wait_table_hash_nr_entries = 3118 wait_table_hash_nr_entries(zone_size_pages); 3119 zone->wait_table_bits = 3120 wait_table_bits(zone->wait_table_hash_nr_entries); 3121 alloc_size = zone->wait_table_hash_nr_entries 3122 * sizeof(wait_queue_head_t); 3123 3124 if (!slab_is_available()) { 3125 zone->wait_table = (wait_queue_head_t *) 3126 alloc_bootmem_node(pgdat, alloc_size); 3127 } else { 3128 /* 3129 * This case means that a zone whose size was 0 gets new memory 3130 * via memory hot-add. 3131 * But it may be the case that a new node was hot-added. In 3132 * this case vmalloc() will not be able to use this new node's 3133 * memory - this wait_table must be initialized to use this new 3134 * node itself as well. 3135 * To use this new node's memory, further consideration will be 3136 * necessary. 3137 */ 3138 zone->wait_table = vmalloc(alloc_size); 3139 } 3140 if (!zone->wait_table) 3141 return -ENOMEM; 3142 3143 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3144 init_waitqueue_head(zone->wait_table + i); 3145 3146 return 0; 3147 } 3148 3149 static __meminit void zone_pcp_init(struct zone *zone) 3150 { 3151 int cpu; 3152 unsigned long batch = zone_batchsize(zone); 3153 3154 for (cpu = 0; cpu < NR_CPUS; cpu++) { 3155 #ifdef CONFIG_NUMA 3156 /* Early boot. Slab allocator not functional yet */ 3157 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3158 setup_pageset(&boot_pageset[cpu],0); 3159 #else 3160 setup_pageset(zone_pcp(zone,cpu), batch); 3161 #endif 3162 } 3163 if (zone->present_pages) 3164 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 3165 zone->name, zone->present_pages, batch); 3166 } 3167 3168 __meminit int init_currently_empty_zone(struct zone *zone, 3169 unsigned long zone_start_pfn, 3170 unsigned long size, 3171 enum memmap_context context) 3172 { 3173 struct pglist_data *pgdat = zone->zone_pgdat; 3174 int ret; 3175 ret = zone_wait_table_init(zone, size); 3176 if (ret) 3177 return ret; 3178 pgdat->nr_zones = zone_idx(zone) + 1; 3179 3180 zone->zone_start_pfn = zone_start_pfn; 3181 3182 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3183 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3184 pgdat->node_id, 3185 (unsigned long)zone_idx(zone), 3186 zone_start_pfn, (zone_start_pfn + size)); 3187 3188 zone_init_free_lists(zone); 3189 3190 return 0; 3191 } 3192 3193 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3194 /* 3195 * Basic iterator support. Return the first range of PFNs for a node 3196 * Note: nid == MAX_NUMNODES returns first region regardless of node 3197 */ 3198 static int __meminit first_active_region_index_in_nid(int nid) 3199 { 3200 int i; 3201 3202 for (i = 0; i < nr_nodemap_entries; i++) 3203 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3204 return i; 3205 3206 return -1; 3207 } 3208 3209 /* 3210 * Basic iterator support. Return the next active range of PFNs for a node 3211 * Note: nid == MAX_NUMNODES returns next region regardless of node 3212 */ 3213 static int __meminit next_active_region_index_in_nid(int index, int nid) 3214 { 3215 for (index = index + 1; index < nr_nodemap_entries; index++) 3216 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3217 return index; 3218 3219 return -1; 3220 } 3221 3222 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3223 /* 3224 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3225 * Architectures may implement their own version but if add_active_range() 3226 * was used and there are no special requirements, this is a convenient 3227 * alternative 3228 */ 3229 int __meminit __early_pfn_to_nid(unsigned long pfn) 3230 { 3231 int i; 3232 3233 for (i = 0; i < nr_nodemap_entries; i++) { 3234 unsigned long start_pfn = early_node_map[i].start_pfn; 3235 unsigned long end_pfn = early_node_map[i].end_pfn; 3236 3237 if (start_pfn <= pfn && pfn < end_pfn) 3238 return early_node_map[i].nid; 3239 } 3240 /* This is a memory hole */ 3241 return -1; 3242 } 3243 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3244 3245 int __meminit early_pfn_to_nid(unsigned long pfn) 3246 { 3247 int nid; 3248 3249 nid = __early_pfn_to_nid(pfn); 3250 if (nid >= 0) 3251 return nid; 3252 /* just returns 0 */ 3253 return 0; 3254 } 3255 3256 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3257 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3258 { 3259 int nid; 3260 3261 nid = __early_pfn_to_nid(pfn); 3262 if (nid >= 0 && nid != node) 3263 return false; 3264 return true; 3265 } 3266 #endif 3267 3268 /* Basic iterator support to walk early_node_map[] */ 3269 #define for_each_active_range_index_in_nid(i, nid) \ 3270 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3271 i = next_active_region_index_in_nid(i, nid)) 3272 3273 /** 3274 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3275 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3276 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3277 * 3278 * If an architecture guarantees that all ranges registered with 3279 * add_active_ranges() contain no holes and may be freed, this 3280 * this function may be used instead of calling free_bootmem() manually. 3281 */ 3282 void __init free_bootmem_with_active_regions(int nid, 3283 unsigned long max_low_pfn) 3284 { 3285 int i; 3286 3287 for_each_active_range_index_in_nid(i, nid) { 3288 unsigned long size_pages = 0; 3289 unsigned long end_pfn = early_node_map[i].end_pfn; 3290 3291 if (early_node_map[i].start_pfn >= max_low_pfn) 3292 continue; 3293 3294 if (end_pfn > max_low_pfn) 3295 end_pfn = max_low_pfn; 3296 3297 size_pages = end_pfn - early_node_map[i].start_pfn; 3298 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3299 PFN_PHYS(early_node_map[i].start_pfn), 3300 size_pages << PAGE_SHIFT); 3301 } 3302 } 3303 3304 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3305 { 3306 int i; 3307 int ret; 3308 3309 for_each_active_range_index_in_nid(i, nid) { 3310 ret = work_fn(early_node_map[i].start_pfn, 3311 early_node_map[i].end_pfn, data); 3312 if (ret) 3313 break; 3314 } 3315 } 3316 /** 3317 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3318 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3319 * 3320 * If an architecture guarantees that all ranges registered with 3321 * add_active_ranges() contain no holes and may be freed, this 3322 * function may be used instead of calling memory_present() manually. 3323 */ 3324 void __init sparse_memory_present_with_active_regions(int nid) 3325 { 3326 int i; 3327 3328 for_each_active_range_index_in_nid(i, nid) 3329 memory_present(early_node_map[i].nid, 3330 early_node_map[i].start_pfn, 3331 early_node_map[i].end_pfn); 3332 } 3333 3334 /** 3335 * get_pfn_range_for_nid - Return the start and end page frames for a node 3336 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3337 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3338 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3339 * 3340 * It returns the start and end page frame of a node based on information 3341 * provided by an arch calling add_active_range(). If called for a node 3342 * with no available memory, a warning is printed and the start and end 3343 * PFNs will be 0. 3344 */ 3345 void __meminit get_pfn_range_for_nid(unsigned int nid, 3346 unsigned long *start_pfn, unsigned long *end_pfn) 3347 { 3348 int i; 3349 *start_pfn = -1UL; 3350 *end_pfn = 0; 3351 3352 for_each_active_range_index_in_nid(i, nid) { 3353 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3354 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3355 } 3356 3357 if (*start_pfn == -1UL) 3358 *start_pfn = 0; 3359 } 3360 3361 /* 3362 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3363 * assumption is made that zones within a node are ordered in monotonic 3364 * increasing memory addresses so that the "highest" populated zone is used 3365 */ 3366 static void __init find_usable_zone_for_movable(void) 3367 { 3368 int zone_index; 3369 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3370 if (zone_index == ZONE_MOVABLE) 3371 continue; 3372 3373 if (arch_zone_highest_possible_pfn[zone_index] > 3374 arch_zone_lowest_possible_pfn[zone_index]) 3375 break; 3376 } 3377 3378 VM_BUG_ON(zone_index == -1); 3379 movable_zone = zone_index; 3380 } 3381 3382 /* 3383 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3384 * because it is sized independant of architecture. Unlike the other zones, 3385 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3386 * in each node depending on the size of each node and how evenly kernelcore 3387 * is distributed. This helper function adjusts the zone ranges 3388 * provided by the architecture for a given node by using the end of the 3389 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3390 * zones within a node are in order of monotonic increases memory addresses 3391 */ 3392 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3393 unsigned long zone_type, 3394 unsigned long node_start_pfn, 3395 unsigned long node_end_pfn, 3396 unsigned long *zone_start_pfn, 3397 unsigned long *zone_end_pfn) 3398 { 3399 /* Only adjust if ZONE_MOVABLE is on this node */ 3400 if (zone_movable_pfn[nid]) { 3401 /* Size ZONE_MOVABLE */ 3402 if (zone_type == ZONE_MOVABLE) { 3403 *zone_start_pfn = zone_movable_pfn[nid]; 3404 *zone_end_pfn = min(node_end_pfn, 3405 arch_zone_highest_possible_pfn[movable_zone]); 3406 3407 /* Adjust for ZONE_MOVABLE starting within this range */ 3408 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3409 *zone_end_pfn > zone_movable_pfn[nid]) { 3410 *zone_end_pfn = zone_movable_pfn[nid]; 3411 3412 /* Check if this whole range is within ZONE_MOVABLE */ 3413 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3414 *zone_start_pfn = *zone_end_pfn; 3415 } 3416 } 3417 3418 /* 3419 * Return the number of pages a zone spans in a node, including holes 3420 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3421 */ 3422 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3423 unsigned long zone_type, 3424 unsigned long *ignored) 3425 { 3426 unsigned long node_start_pfn, node_end_pfn; 3427 unsigned long zone_start_pfn, zone_end_pfn; 3428 3429 /* Get the start and end of the node and zone */ 3430 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3431 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3432 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3433 adjust_zone_range_for_zone_movable(nid, zone_type, 3434 node_start_pfn, node_end_pfn, 3435 &zone_start_pfn, &zone_end_pfn); 3436 3437 /* Check that this node has pages within the zone's required range */ 3438 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3439 return 0; 3440 3441 /* Move the zone boundaries inside the node if necessary */ 3442 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3443 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3444 3445 /* Return the spanned pages */ 3446 return zone_end_pfn - zone_start_pfn; 3447 } 3448 3449 /* 3450 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3451 * then all holes in the requested range will be accounted for. 3452 */ 3453 static unsigned long __meminit __absent_pages_in_range(int nid, 3454 unsigned long range_start_pfn, 3455 unsigned long range_end_pfn) 3456 { 3457 int i = 0; 3458 unsigned long prev_end_pfn = 0, hole_pages = 0; 3459 unsigned long start_pfn; 3460 3461 /* Find the end_pfn of the first active range of pfns in the node */ 3462 i = first_active_region_index_in_nid(nid); 3463 if (i == -1) 3464 return 0; 3465 3466 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3467 3468 /* Account for ranges before physical memory on this node */ 3469 if (early_node_map[i].start_pfn > range_start_pfn) 3470 hole_pages = prev_end_pfn - range_start_pfn; 3471 3472 /* Find all holes for the zone within the node */ 3473 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3474 3475 /* No need to continue if prev_end_pfn is outside the zone */ 3476 if (prev_end_pfn >= range_end_pfn) 3477 break; 3478 3479 /* Make sure the end of the zone is not within the hole */ 3480 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3481 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3482 3483 /* Update the hole size cound and move on */ 3484 if (start_pfn > range_start_pfn) { 3485 BUG_ON(prev_end_pfn > start_pfn); 3486 hole_pages += start_pfn - prev_end_pfn; 3487 } 3488 prev_end_pfn = early_node_map[i].end_pfn; 3489 } 3490 3491 /* Account for ranges past physical memory on this node */ 3492 if (range_end_pfn > prev_end_pfn) 3493 hole_pages += range_end_pfn - 3494 max(range_start_pfn, prev_end_pfn); 3495 3496 return hole_pages; 3497 } 3498 3499 /** 3500 * absent_pages_in_range - Return number of page frames in holes within a range 3501 * @start_pfn: The start PFN to start searching for holes 3502 * @end_pfn: The end PFN to stop searching for holes 3503 * 3504 * It returns the number of pages frames in memory holes within a range. 3505 */ 3506 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3507 unsigned long end_pfn) 3508 { 3509 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3510 } 3511 3512 /* Return the number of page frames in holes in a zone on a node */ 3513 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3514 unsigned long zone_type, 3515 unsigned long *ignored) 3516 { 3517 unsigned long node_start_pfn, node_end_pfn; 3518 unsigned long zone_start_pfn, zone_end_pfn; 3519 3520 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3521 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3522 node_start_pfn); 3523 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3524 node_end_pfn); 3525 3526 adjust_zone_range_for_zone_movable(nid, zone_type, 3527 node_start_pfn, node_end_pfn, 3528 &zone_start_pfn, &zone_end_pfn); 3529 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3530 } 3531 3532 #else 3533 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3534 unsigned long zone_type, 3535 unsigned long *zones_size) 3536 { 3537 return zones_size[zone_type]; 3538 } 3539 3540 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3541 unsigned long zone_type, 3542 unsigned long *zholes_size) 3543 { 3544 if (!zholes_size) 3545 return 0; 3546 3547 return zholes_size[zone_type]; 3548 } 3549 3550 #endif 3551 3552 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3553 unsigned long *zones_size, unsigned long *zholes_size) 3554 { 3555 unsigned long realtotalpages, totalpages = 0; 3556 enum zone_type i; 3557 3558 for (i = 0; i < MAX_NR_ZONES; i++) 3559 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3560 zones_size); 3561 pgdat->node_spanned_pages = totalpages; 3562 3563 realtotalpages = totalpages; 3564 for (i = 0; i < MAX_NR_ZONES; i++) 3565 realtotalpages -= 3566 zone_absent_pages_in_node(pgdat->node_id, i, 3567 zholes_size); 3568 pgdat->node_present_pages = realtotalpages; 3569 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3570 realtotalpages); 3571 } 3572 3573 #ifndef CONFIG_SPARSEMEM 3574 /* 3575 * Calculate the size of the zone->blockflags rounded to an unsigned long 3576 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3577 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3578 * round what is now in bits to nearest long in bits, then return it in 3579 * bytes. 3580 */ 3581 static unsigned long __init usemap_size(unsigned long zonesize) 3582 { 3583 unsigned long usemapsize; 3584 3585 usemapsize = roundup(zonesize, pageblock_nr_pages); 3586 usemapsize = usemapsize >> pageblock_order; 3587 usemapsize *= NR_PAGEBLOCK_BITS; 3588 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3589 3590 return usemapsize / 8; 3591 } 3592 3593 static void __init setup_usemap(struct pglist_data *pgdat, 3594 struct zone *zone, unsigned long zonesize) 3595 { 3596 unsigned long usemapsize = usemap_size(zonesize); 3597 zone->pageblock_flags = NULL; 3598 if (usemapsize) 3599 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3600 } 3601 #else 3602 static void inline setup_usemap(struct pglist_data *pgdat, 3603 struct zone *zone, unsigned long zonesize) {} 3604 #endif /* CONFIG_SPARSEMEM */ 3605 3606 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3607 3608 /* Return a sensible default order for the pageblock size. */ 3609 static inline int pageblock_default_order(void) 3610 { 3611 if (HPAGE_SHIFT > PAGE_SHIFT) 3612 return HUGETLB_PAGE_ORDER; 3613 3614 return MAX_ORDER-1; 3615 } 3616 3617 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3618 static inline void __init set_pageblock_order(unsigned int order) 3619 { 3620 /* Check that pageblock_nr_pages has not already been setup */ 3621 if (pageblock_order) 3622 return; 3623 3624 /* 3625 * Assume the largest contiguous order of interest is a huge page. 3626 * This value may be variable depending on boot parameters on IA64 3627 */ 3628 pageblock_order = order; 3629 } 3630 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3631 3632 /* 3633 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3634 * and pageblock_default_order() are unused as pageblock_order is set 3635 * at compile-time. See include/linux/pageblock-flags.h for the values of 3636 * pageblock_order based on the kernel config 3637 */ 3638 static inline int pageblock_default_order(unsigned int order) 3639 { 3640 return MAX_ORDER-1; 3641 } 3642 #define set_pageblock_order(x) do {} while (0) 3643 3644 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3645 3646 /* 3647 * Set up the zone data structures: 3648 * - mark all pages reserved 3649 * - mark all memory queues empty 3650 * - clear the memory bitmaps 3651 */ 3652 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3653 unsigned long *zones_size, unsigned long *zholes_size) 3654 { 3655 enum zone_type j; 3656 int nid = pgdat->node_id; 3657 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3658 int ret; 3659 3660 pgdat_resize_init(pgdat); 3661 pgdat->nr_zones = 0; 3662 init_waitqueue_head(&pgdat->kswapd_wait); 3663 pgdat->kswapd_max_order = 0; 3664 pgdat_page_cgroup_init(pgdat); 3665 3666 for (j = 0; j < MAX_NR_ZONES; j++) { 3667 struct zone *zone = pgdat->node_zones + j; 3668 unsigned long size, realsize, memmap_pages; 3669 enum lru_list l; 3670 3671 size = zone_spanned_pages_in_node(nid, j, zones_size); 3672 realsize = size - zone_absent_pages_in_node(nid, j, 3673 zholes_size); 3674 3675 /* 3676 * Adjust realsize so that it accounts for how much memory 3677 * is used by this zone for memmap. This affects the watermark 3678 * and per-cpu initialisations 3679 */ 3680 memmap_pages = 3681 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3682 if (realsize >= memmap_pages) { 3683 realsize -= memmap_pages; 3684 if (memmap_pages) 3685 printk(KERN_DEBUG 3686 " %s zone: %lu pages used for memmap\n", 3687 zone_names[j], memmap_pages); 3688 } else 3689 printk(KERN_WARNING 3690 " %s zone: %lu pages exceeds realsize %lu\n", 3691 zone_names[j], memmap_pages, realsize); 3692 3693 /* Account for reserved pages */ 3694 if (j == 0 && realsize > dma_reserve) { 3695 realsize -= dma_reserve; 3696 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3697 zone_names[0], dma_reserve); 3698 } 3699 3700 if (!is_highmem_idx(j)) 3701 nr_kernel_pages += realsize; 3702 nr_all_pages += realsize; 3703 3704 zone->spanned_pages = size; 3705 zone->present_pages = realsize; 3706 #ifdef CONFIG_NUMA 3707 zone->node = nid; 3708 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3709 / 100; 3710 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3711 #endif 3712 zone->name = zone_names[j]; 3713 spin_lock_init(&zone->lock); 3714 spin_lock_init(&zone->lru_lock); 3715 zone_seqlock_init(zone); 3716 zone->zone_pgdat = pgdat; 3717 3718 zone->prev_priority = DEF_PRIORITY; 3719 3720 zone_pcp_init(zone); 3721 for_each_lru(l) { 3722 INIT_LIST_HEAD(&zone->lru[l].list); 3723 zone->lru[l].nr_saved_scan = 0; 3724 } 3725 zone->reclaim_stat.recent_rotated[0] = 0; 3726 zone->reclaim_stat.recent_rotated[1] = 0; 3727 zone->reclaim_stat.recent_scanned[0] = 0; 3728 zone->reclaim_stat.recent_scanned[1] = 0; 3729 zap_zone_vm_stats(zone); 3730 zone->flags = 0; 3731 if (!size) 3732 continue; 3733 3734 set_pageblock_order(pageblock_default_order()); 3735 setup_usemap(pgdat, zone, size); 3736 ret = init_currently_empty_zone(zone, zone_start_pfn, 3737 size, MEMMAP_EARLY); 3738 BUG_ON(ret); 3739 memmap_init(size, nid, j, zone_start_pfn); 3740 zone_start_pfn += size; 3741 } 3742 } 3743 3744 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3745 { 3746 /* Skip empty nodes */ 3747 if (!pgdat->node_spanned_pages) 3748 return; 3749 3750 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3751 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3752 if (!pgdat->node_mem_map) { 3753 unsigned long size, start, end; 3754 struct page *map; 3755 3756 /* 3757 * The zone's endpoints aren't required to be MAX_ORDER 3758 * aligned but the node_mem_map endpoints must be in order 3759 * for the buddy allocator to function correctly. 3760 */ 3761 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3762 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3763 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3764 size = (end - start) * sizeof(struct page); 3765 map = alloc_remap(pgdat->node_id, size); 3766 if (!map) 3767 map = alloc_bootmem_node(pgdat, size); 3768 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3769 } 3770 #ifndef CONFIG_NEED_MULTIPLE_NODES 3771 /* 3772 * With no DISCONTIG, the global mem_map is just set as node 0's 3773 */ 3774 if (pgdat == NODE_DATA(0)) { 3775 mem_map = NODE_DATA(0)->node_mem_map; 3776 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3777 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3778 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3779 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3780 } 3781 #endif 3782 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3783 } 3784 3785 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3786 unsigned long node_start_pfn, unsigned long *zholes_size) 3787 { 3788 pg_data_t *pgdat = NODE_DATA(nid); 3789 3790 pgdat->node_id = nid; 3791 pgdat->node_start_pfn = node_start_pfn; 3792 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3793 3794 alloc_node_mem_map(pgdat); 3795 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3796 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3797 nid, (unsigned long)pgdat, 3798 (unsigned long)pgdat->node_mem_map); 3799 #endif 3800 3801 free_area_init_core(pgdat, zones_size, zholes_size); 3802 } 3803 3804 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3805 3806 #if MAX_NUMNODES > 1 3807 /* 3808 * Figure out the number of possible node ids. 3809 */ 3810 static void __init setup_nr_node_ids(void) 3811 { 3812 unsigned int node; 3813 unsigned int highest = 0; 3814 3815 for_each_node_mask(node, node_possible_map) 3816 highest = node; 3817 nr_node_ids = highest + 1; 3818 } 3819 #else 3820 static inline void setup_nr_node_ids(void) 3821 { 3822 } 3823 #endif 3824 3825 /** 3826 * add_active_range - Register a range of PFNs backed by physical memory 3827 * @nid: The node ID the range resides on 3828 * @start_pfn: The start PFN of the available physical memory 3829 * @end_pfn: The end PFN of the available physical memory 3830 * 3831 * These ranges are stored in an early_node_map[] and later used by 3832 * free_area_init_nodes() to calculate zone sizes and holes. If the 3833 * range spans a memory hole, it is up to the architecture to ensure 3834 * the memory is not freed by the bootmem allocator. If possible 3835 * the range being registered will be merged with existing ranges. 3836 */ 3837 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3838 unsigned long end_pfn) 3839 { 3840 int i; 3841 3842 mminit_dprintk(MMINIT_TRACE, "memory_register", 3843 "Entering add_active_range(%d, %#lx, %#lx) " 3844 "%d entries of %d used\n", 3845 nid, start_pfn, end_pfn, 3846 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3847 3848 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3849 3850 /* Merge with existing active regions if possible */ 3851 for (i = 0; i < nr_nodemap_entries; i++) { 3852 if (early_node_map[i].nid != nid) 3853 continue; 3854 3855 /* Skip if an existing region covers this new one */ 3856 if (start_pfn >= early_node_map[i].start_pfn && 3857 end_pfn <= early_node_map[i].end_pfn) 3858 return; 3859 3860 /* Merge forward if suitable */ 3861 if (start_pfn <= early_node_map[i].end_pfn && 3862 end_pfn > early_node_map[i].end_pfn) { 3863 early_node_map[i].end_pfn = end_pfn; 3864 return; 3865 } 3866 3867 /* Merge backward if suitable */ 3868 if (start_pfn < early_node_map[i].end_pfn && 3869 end_pfn >= early_node_map[i].start_pfn) { 3870 early_node_map[i].start_pfn = start_pfn; 3871 return; 3872 } 3873 } 3874 3875 /* Check that early_node_map is large enough */ 3876 if (i >= MAX_ACTIVE_REGIONS) { 3877 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3878 MAX_ACTIVE_REGIONS); 3879 return; 3880 } 3881 3882 early_node_map[i].nid = nid; 3883 early_node_map[i].start_pfn = start_pfn; 3884 early_node_map[i].end_pfn = end_pfn; 3885 nr_nodemap_entries = i + 1; 3886 } 3887 3888 /** 3889 * remove_active_range - Shrink an existing registered range of PFNs 3890 * @nid: The node id the range is on that should be shrunk 3891 * @start_pfn: The new PFN of the range 3892 * @end_pfn: The new PFN of the range 3893 * 3894 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3895 * The map is kept near the end physical page range that has already been 3896 * registered. This function allows an arch to shrink an existing registered 3897 * range. 3898 */ 3899 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3900 unsigned long end_pfn) 3901 { 3902 int i, j; 3903 int removed = 0; 3904 3905 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3906 nid, start_pfn, end_pfn); 3907 3908 /* Find the old active region end and shrink */ 3909 for_each_active_range_index_in_nid(i, nid) { 3910 if (early_node_map[i].start_pfn >= start_pfn && 3911 early_node_map[i].end_pfn <= end_pfn) { 3912 /* clear it */ 3913 early_node_map[i].start_pfn = 0; 3914 early_node_map[i].end_pfn = 0; 3915 removed = 1; 3916 continue; 3917 } 3918 if (early_node_map[i].start_pfn < start_pfn && 3919 early_node_map[i].end_pfn > start_pfn) { 3920 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3921 early_node_map[i].end_pfn = start_pfn; 3922 if (temp_end_pfn > end_pfn) 3923 add_active_range(nid, end_pfn, temp_end_pfn); 3924 continue; 3925 } 3926 if (early_node_map[i].start_pfn >= start_pfn && 3927 early_node_map[i].end_pfn > end_pfn && 3928 early_node_map[i].start_pfn < end_pfn) { 3929 early_node_map[i].start_pfn = end_pfn; 3930 continue; 3931 } 3932 } 3933 3934 if (!removed) 3935 return; 3936 3937 /* remove the blank ones */ 3938 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3939 if (early_node_map[i].nid != nid) 3940 continue; 3941 if (early_node_map[i].end_pfn) 3942 continue; 3943 /* we found it, get rid of it */ 3944 for (j = i; j < nr_nodemap_entries - 1; j++) 3945 memcpy(&early_node_map[j], &early_node_map[j+1], 3946 sizeof(early_node_map[j])); 3947 j = nr_nodemap_entries - 1; 3948 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3949 nr_nodemap_entries--; 3950 } 3951 } 3952 3953 /** 3954 * remove_all_active_ranges - Remove all currently registered regions 3955 * 3956 * During discovery, it may be found that a table like SRAT is invalid 3957 * and an alternative discovery method must be used. This function removes 3958 * all currently registered regions. 3959 */ 3960 void __init remove_all_active_ranges(void) 3961 { 3962 memset(early_node_map, 0, sizeof(early_node_map)); 3963 nr_nodemap_entries = 0; 3964 } 3965 3966 /* Compare two active node_active_regions */ 3967 static int __init cmp_node_active_region(const void *a, const void *b) 3968 { 3969 struct node_active_region *arange = (struct node_active_region *)a; 3970 struct node_active_region *brange = (struct node_active_region *)b; 3971 3972 /* Done this way to avoid overflows */ 3973 if (arange->start_pfn > brange->start_pfn) 3974 return 1; 3975 if (arange->start_pfn < brange->start_pfn) 3976 return -1; 3977 3978 return 0; 3979 } 3980 3981 /* sort the node_map by start_pfn */ 3982 static void __init sort_node_map(void) 3983 { 3984 sort(early_node_map, (size_t)nr_nodemap_entries, 3985 sizeof(struct node_active_region), 3986 cmp_node_active_region, NULL); 3987 } 3988 3989 /* Find the lowest pfn for a node */ 3990 static unsigned long __init find_min_pfn_for_node(int nid) 3991 { 3992 int i; 3993 unsigned long min_pfn = ULONG_MAX; 3994 3995 /* Assuming a sorted map, the first range found has the starting pfn */ 3996 for_each_active_range_index_in_nid(i, nid) 3997 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3998 3999 if (min_pfn == ULONG_MAX) { 4000 printk(KERN_WARNING 4001 "Could not find start_pfn for node %d\n", nid); 4002 return 0; 4003 } 4004 4005 return min_pfn; 4006 } 4007 4008 /** 4009 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4010 * 4011 * It returns the minimum PFN based on information provided via 4012 * add_active_range(). 4013 */ 4014 unsigned long __init find_min_pfn_with_active_regions(void) 4015 { 4016 return find_min_pfn_for_node(MAX_NUMNODES); 4017 } 4018 4019 /* 4020 * early_calculate_totalpages() 4021 * Sum pages in active regions for movable zone. 4022 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4023 */ 4024 static unsigned long __init early_calculate_totalpages(void) 4025 { 4026 int i; 4027 unsigned long totalpages = 0; 4028 4029 for (i = 0; i < nr_nodemap_entries; i++) { 4030 unsigned long pages = early_node_map[i].end_pfn - 4031 early_node_map[i].start_pfn; 4032 totalpages += pages; 4033 if (pages) 4034 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4035 } 4036 return totalpages; 4037 } 4038 4039 /* 4040 * Find the PFN the Movable zone begins in each node. Kernel memory 4041 * is spread evenly between nodes as long as the nodes have enough 4042 * memory. When they don't, some nodes will have more kernelcore than 4043 * others 4044 */ 4045 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4046 { 4047 int i, nid; 4048 unsigned long usable_startpfn; 4049 unsigned long kernelcore_node, kernelcore_remaining; 4050 /* save the state before borrow the nodemask */ 4051 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4052 unsigned long totalpages = early_calculate_totalpages(); 4053 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4054 4055 /* 4056 * If movablecore was specified, calculate what size of 4057 * kernelcore that corresponds so that memory usable for 4058 * any allocation type is evenly spread. If both kernelcore 4059 * and movablecore are specified, then the value of kernelcore 4060 * will be used for required_kernelcore if it's greater than 4061 * what movablecore would have allowed. 4062 */ 4063 if (required_movablecore) { 4064 unsigned long corepages; 4065 4066 /* 4067 * Round-up so that ZONE_MOVABLE is at least as large as what 4068 * was requested by the user 4069 */ 4070 required_movablecore = 4071 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4072 corepages = totalpages - required_movablecore; 4073 4074 required_kernelcore = max(required_kernelcore, corepages); 4075 } 4076 4077 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4078 if (!required_kernelcore) 4079 goto out; 4080 4081 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4082 find_usable_zone_for_movable(); 4083 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4084 4085 restart: 4086 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4087 kernelcore_node = required_kernelcore / usable_nodes; 4088 for_each_node_state(nid, N_HIGH_MEMORY) { 4089 /* 4090 * Recalculate kernelcore_node if the division per node 4091 * now exceeds what is necessary to satisfy the requested 4092 * amount of memory for the kernel 4093 */ 4094 if (required_kernelcore < kernelcore_node) 4095 kernelcore_node = required_kernelcore / usable_nodes; 4096 4097 /* 4098 * As the map is walked, we track how much memory is usable 4099 * by the kernel using kernelcore_remaining. When it is 4100 * 0, the rest of the node is usable by ZONE_MOVABLE 4101 */ 4102 kernelcore_remaining = kernelcore_node; 4103 4104 /* Go through each range of PFNs within this node */ 4105 for_each_active_range_index_in_nid(i, nid) { 4106 unsigned long start_pfn, end_pfn; 4107 unsigned long size_pages; 4108 4109 start_pfn = max(early_node_map[i].start_pfn, 4110 zone_movable_pfn[nid]); 4111 end_pfn = early_node_map[i].end_pfn; 4112 if (start_pfn >= end_pfn) 4113 continue; 4114 4115 /* Account for what is only usable for kernelcore */ 4116 if (start_pfn < usable_startpfn) { 4117 unsigned long kernel_pages; 4118 kernel_pages = min(end_pfn, usable_startpfn) 4119 - start_pfn; 4120 4121 kernelcore_remaining -= min(kernel_pages, 4122 kernelcore_remaining); 4123 required_kernelcore -= min(kernel_pages, 4124 required_kernelcore); 4125 4126 /* Continue if range is now fully accounted */ 4127 if (end_pfn <= usable_startpfn) { 4128 4129 /* 4130 * Push zone_movable_pfn to the end so 4131 * that if we have to rebalance 4132 * kernelcore across nodes, we will 4133 * not double account here 4134 */ 4135 zone_movable_pfn[nid] = end_pfn; 4136 continue; 4137 } 4138 start_pfn = usable_startpfn; 4139 } 4140 4141 /* 4142 * The usable PFN range for ZONE_MOVABLE is from 4143 * start_pfn->end_pfn. Calculate size_pages as the 4144 * number of pages used as kernelcore 4145 */ 4146 size_pages = end_pfn - start_pfn; 4147 if (size_pages > kernelcore_remaining) 4148 size_pages = kernelcore_remaining; 4149 zone_movable_pfn[nid] = start_pfn + size_pages; 4150 4151 /* 4152 * Some kernelcore has been met, update counts and 4153 * break if the kernelcore for this node has been 4154 * satisified 4155 */ 4156 required_kernelcore -= min(required_kernelcore, 4157 size_pages); 4158 kernelcore_remaining -= size_pages; 4159 if (!kernelcore_remaining) 4160 break; 4161 } 4162 } 4163 4164 /* 4165 * If there is still required_kernelcore, we do another pass with one 4166 * less node in the count. This will push zone_movable_pfn[nid] further 4167 * along on the nodes that still have memory until kernelcore is 4168 * satisified 4169 */ 4170 usable_nodes--; 4171 if (usable_nodes && required_kernelcore > usable_nodes) 4172 goto restart; 4173 4174 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4175 for (nid = 0; nid < MAX_NUMNODES; nid++) 4176 zone_movable_pfn[nid] = 4177 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4178 4179 out: 4180 /* restore the node_state */ 4181 node_states[N_HIGH_MEMORY] = saved_node_state; 4182 } 4183 4184 /* Any regular memory on that node ? */ 4185 static void check_for_regular_memory(pg_data_t *pgdat) 4186 { 4187 #ifdef CONFIG_HIGHMEM 4188 enum zone_type zone_type; 4189 4190 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4191 struct zone *zone = &pgdat->node_zones[zone_type]; 4192 if (zone->present_pages) 4193 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4194 } 4195 #endif 4196 } 4197 4198 /** 4199 * free_area_init_nodes - Initialise all pg_data_t and zone data 4200 * @max_zone_pfn: an array of max PFNs for each zone 4201 * 4202 * This will call free_area_init_node() for each active node in the system. 4203 * Using the page ranges provided by add_active_range(), the size of each 4204 * zone in each node and their holes is calculated. If the maximum PFN 4205 * between two adjacent zones match, it is assumed that the zone is empty. 4206 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4207 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4208 * starts where the previous one ended. For example, ZONE_DMA32 starts 4209 * at arch_max_dma_pfn. 4210 */ 4211 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4212 { 4213 unsigned long nid; 4214 int i; 4215 4216 /* Sort early_node_map as initialisation assumes it is sorted */ 4217 sort_node_map(); 4218 4219 /* Record where the zone boundaries are */ 4220 memset(arch_zone_lowest_possible_pfn, 0, 4221 sizeof(arch_zone_lowest_possible_pfn)); 4222 memset(arch_zone_highest_possible_pfn, 0, 4223 sizeof(arch_zone_highest_possible_pfn)); 4224 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4225 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4226 for (i = 1; i < MAX_NR_ZONES; i++) { 4227 if (i == ZONE_MOVABLE) 4228 continue; 4229 arch_zone_lowest_possible_pfn[i] = 4230 arch_zone_highest_possible_pfn[i-1]; 4231 arch_zone_highest_possible_pfn[i] = 4232 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4233 } 4234 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4235 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4236 4237 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4238 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4239 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4240 4241 /* Print out the zone ranges */ 4242 printk("Zone PFN ranges:\n"); 4243 for (i = 0; i < MAX_NR_ZONES; i++) { 4244 if (i == ZONE_MOVABLE) 4245 continue; 4246 printk(" %-8s %0#10lx -> %0#10lx\n", 4247 zone_names[i], 4248 arch_zone_lowest_possible_pfn[i], 4249 arch_zone_highest_possible_pfn[i]); 4250 } 4251 4252 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4253 printk("Movable zone start PFN for each node\n"); 4254 for (i = 0; i < MAX_NUMNODES; i++) { 4255 if (zone_movable_pfn[i]) 4256 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4257 } 4258 4259 /* Print out the early_node_map[] */ 4260 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4261 for (i = 0; i < nr_nodemap_entries; i++) 4262 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4263 early_node_map[i].start_pfn, 4264 early_node_map[i].end_pfn); 4265 4266 /* Initialise every node */ 4267 mminit_verify_pageflags_layout(); 4268 setup_nr_node_ids(); 4269 for_each_online_node(nid) { 4270 pg_data_t *pgdat = NODE_DATA(nid); 4271 free_area_init_node(nid, NULL, 4272 find_min_pfn_for_node(nid), NULL); 4273 4274 /* Any memory on that node */ 4275 if (pgdat->node_present_pages) 4276 node_set_state(nid, N_HIGH_MEMORY); 4277 check_for_regular_memory(pgdat); 4278 } 4279 } 4280 4281 static int __init cmdline_parse_core(char *p, unsigned long *core) 4282 { 4283 unsigned long long coremem; 4284 if (!p) 4285 return -EINVAL; 4286 4287 coremem = memparse(p, &p); 4288 *core = coremem >> PAGE_SHIFT; 4289 4290 /* Paranoid check that UL is enough for the coremem value */ 4291 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4292 4293 return 0; 4294 } 4295 4296 /* 4297 * kernelcore=size sets the amount of memory for use for allocations that 4298 * cannot be reclaimed or migrated. 4299 */ 4300 static int __init cmdline_parse_kernelcore(char *p) 4301 { 4302 return cmdline_parse_core(p, &required_kernelcore); 4303 } 4304 4305 /* 4306 * movablecore=size sets the amount of memory for use for allocations that 4307 * can be reclaimed or migrated. 4308 */ 4309 static int __init cmdline_parse_movablecore(char *p) 4310 { 4311 return cmdline_parse_core(p, &required_movablecore); 4312 } 4313 4314 early_param("kernelcore", cmdline_parse_kernelcore); 4315 early_param("movablecore", cmdline_parse_movablecore); 4316 4317 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4318 4319 /** 4320 * set_dma_reserve - set the specified number of pages reserved in the first zone 4321 * @new_dma_reserve: The number of pages to mark reserved 4322 * 4323 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4324 * In the DMA zone, a significant percentage may be consumed by kernel image 4325 * and other unfreeable allocations which can skew the watermarks badly. This 4326 * function may optionally be used to account for unfreeable pages in the 4327 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4328 * smaller per-cpu batchsize. 4329 */ 4330 void __init set_dma_reserve(unsigned long new_dma_reserve) 4331 { 4332 dma_reserve = new_dma_reserve; 4333 } 4334 4335 #ifndef CONFIG_NEED_MULTIPLE_NODES 4336 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4337 EXPORT_SYMBOL(contig_page_data); 4338 #endif 4339 4340 void __init free_area_init(unsigned long *zones_size) 4341 { 4342 free_area_init_node(0, zones_size, 4343 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4344 } 4345 4346 static int page_alloc_cpu_notify(struct notifier_block *self, 4347 unsigned long action, void *hcpu) 4348 { 4349 int cpu = (unsigned long)hcpu; 4350 4351 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4352 drain_pages(cpu); 4353 4354 /* 4355 * Spill the event counters of the dead processor 4356 * into the current processors event counters. 4357 * This artificially elevates the count of the current 4358 * processor. 4359 */ 4360 vm_events_fold_cpu(cpu); 4361 4362 /* 4363 * Zero the differential counters of the dead processor 4364 * so that the vm statistics are consistent. 4365 * 4366 * This is only okay since the processor is dead and cannot 4367 * race with what we are doing. 4368 */ 4369 refresh_cpu_vm_stats(cpu); 4370 } 4371 return NOTIFY_OK; 4372 } 4373 4374 void __init page_alloc_init(void) 4375 { 4376 hotcpu_notifier(page_alloc_cpu_notify, 0); 4377 } 4378 4379 /* 4380 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4381 * or min_free_kbytes changes. 4382 */ 4383 static void calculate_totalreserve_pages(void) 4384 { 4385 struct pglist_data *pgdat; 4386 unsigned long reserve_pages = 0; 4387 enum zone_type i, j; 4388 4389 for_each_online_pgdat(pgdat) { 4390 for (i = 0; i < MAX_NR_ZONES; i++) { 4391 struct zone *zone = pgdat->node_zones + i; 4392 unsigned long max = 0; 4393 4394 /* Find valid and maximum lowmem_reserve in the zone */ 4395 for (j = i; j < MAX_NR_ZONES; j++) { 4396 if (zone->lowmem_reserve[j] > max) 4397 max = zone->lowmem_reserve[j]; 4398 } 4399 4400 /* we treat the high watermark as reserved pages. */ 4401 max += high_wmark_pages(zone); 4402 4403 if (max > zone->present_pages) 4404 max = zone->present_pages; 4405 reserve_pages += max; 4406 } 4407 } 4408 totalreserve_pages = reserve_pages; 4409 } 4410 4411 /* 4412 * setup_per_zone_lowmem_reserve - called whenever 4413 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4414 * has a correct pages reserved value, so an adequate number of 4415 * pages are left in the zone after a successful __alloc_pages(). 4416 */ 4417 static void setup_per_zone_lowmem_reserve(void) 4418 { 4419 struct pglist_data *pgdat; 4420 enum zone_type j, idx; 4421 4422 for_each_online_pgdat(pgdat) { 4423 for (j = 0; j < MAX_NR_ZONES; j++) { 4424 struct zone *zone = pgdat->node_zones + j; 4425 unsigned long present_pages = zone->present_pages; 4426 4427 zone->lowmem_reserve[j] = 0; 4428 4429 idx = j; 4430 while (idx) { 4431 struct zone *lower_zone; 4432 4433 idx--; 4434 4435 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4436 sysctl_lowmem_reserve_ratio[idx] = 1; 4437 4438 lower_zone = pgdat->node_zones + idx; 4439 lower_zone->lowmem_reserve[j] = present_pages / 4440 sysctl_lowmem_reserve_ratio[idx]; 4441 present_pages += lower_zone->present_pages; 4442 } 4443 } 4444 } 4445 4446 /* update totalreserve_pages */ 4447 calculate_totalreserve_pages(); 4448 } 4449 4450 /** 4451 * setup_per_zone_wmarks - called when min_free_kbytes changes 4452 * or when memory is hot-{added|removed} 4453 * 4454 * Ensures that the watermark[min,low,high] values for each zone are set 4455 * correctly with respect to min_free_kbytes. 4456 */ 4457 void setup_per_zone_wmarks(void) 4458 { 4459 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4460 unsigned long lowmem_pages = 0; 4461 struct zone *zone; 4462 unsigned long flags; 4463 4464 /* Calculate total number of !ZONE_HIGHMEM pages */ 4465 for_each_zone(zone) { 4466 if (!is_highmem(zone)) 4467 lowmem_pages += zone->present_pages; 4468 } 4469 4470 for_each_zone(zone) { 4471 u64 tmp; 4472 4473 spin_lock_irqsave(&zone->lock, flags); 4474 tmp = (u64)pages_min * zone->present_pages; 4475 do_div(tmp, lowmem_pages); 4476 if (is_highmem(zone)) { 4477 /* 4478 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4479 * need highmem pages, so cap pages_min to a small 4480 * value here. 4481 * 4482 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4483 * deltas controls asynch page reclaim, and so should 4484 * not be capped for highmem. 4485 */ 4486 int min_pages; 4487 4488 min_pages = zone->present_pages / 1024; 4489 if (min_pages < SWAP_CLUSTER_MAX) 4490 min_pages = SWAP_CLUSTER_MAX; 4491 if (min_pages > 128) 4492 min_pages = 128; 4493 zone->watermark[WMARK_MIN] = min_pages; 4494 } else { 4495 /* 4496 * If it's a lowmem zone, reserve a number of pages 4497 * proportionate to the zone's size. 4498 */ 4499 zone->watermark[WMARK_MIN] = tmp; 4500 } 4501 4502 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4503 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4504 setup_zone_migrate_reserve(zone); 4505 spin_unlock_irqrestore(&zone->lock, flags); 4506 } 4507 4508 /* update totalreserve_pages */ 4509 calculate_totalreserve_pages(); 4510 } 4511 4512 /** 4513 * The inactive anon list should be small enough that the VM never has to 4514 * do too much work, but large enough that each inactive page has a chance 4515 * to be referenced again before it is swapped out. 4516 * 4517 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4518 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4519 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4520 * the anonymous pages are kept on the inactive list. 4521 * 4522 * total target max 4523 * memory ratio inactive anon 4524 * ------------------------------------- 4525 * 10MB 1 5MB 4526 * 100MB 1 50MB 4527 * 1GB 3 250MB 4528 * 10GB 10 0.9GB 4529 * 100GB 31 3GB 4530 * 1TB 101 10GB 4531 * 10TB 320 32GB 4532 */ 4533 void calculate_zone_inactive_ratio(struct zone *zone) 4534 { 4535 unsigned int gb, ratio; 4536 4537 /* Zone size in gigabytes */ 4538 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4539 if (gb) 4540 ratio = int_sqrt(10 * gb); 4541 else 4542 ratio = 1; 4543 4544 zone->inactive_ratio = ratio; 4545 } 4546 4547 static void __init setup_per_zone_inactive_ratio(void) 4548 { 4549 struct zone *zone; 4550 4551 for_each_zone(zone) 4552 calculate_zone_inactive_ratio(zone); 4553 } 4554 4555 /* 4556 * Initialise min_free_kbytes. 4557 * 4558 * For small machines we want it small (128k min). For large machines 4559 * we want it large (64MB max). But it is not linear, because network 4560 * bandwidth does not increase linearly with machine size. We use 4561 * 4562 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4563 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4564 * 4565 * which yields 4566 * 4567 * 16MB: 512k 4568 * 32MB: 724k 4569 * 64MB: 1024k 4570 * 128MB: 1448k 4571 * 256MB: 2048k 4572 * 512MB: 2896k 4573 * 1024MB: 4096k 4574 * 2048MB: 5792k 4575 * 4096MB: 8192k 4576 * 8192MB: 11584k 4577 * 16384MB: 16384k 4578 */ 4579 static int __init init_per_zone_wmark_min(void) 4580 { 4581 unsigned long lowmem_kbytes; 4582 4583 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4584 4585 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4586 if (min_free_kbytes < 128) 4587 min_free_kbytes = 128; 4588 if (min_free_kbytes > 65536) 4589 min_free_kbytes = 65536; 4590 setup_per_zone_wmarks(); 4591 setup_per_zone_lowmem_reserve(); 4592 setup_per_zone_inactive_ratio(); 4593 return 0; 4594 } 4595 module_init(init_per_zone_wmark_min) 4596 4597 /* 4598 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4599 * that we can call two helper functions whenever min_free_kbytes 4600 * changes. 4601 */ 4602 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4603 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4604 { 4605 proc_dointvec(table, write, file, buffer, length, ppos); 4606 if (write) 4607 setup_per_zone_wmarks(); 4608 return 0; 4609 } 4610 4611 #ifdef CONFIG_NUMA 4612 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4613 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4614 { 4615 struct zone *zone; 4616 int rc; 4617 4618 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4619 if (rc) 4620 return rc; 4621 4622 for_each_zone(zone) 4623 zone->min_unmapped_pages = (zone->present_pages * 4624 sysctl_min_unmapped_ratio) / 100; 4625 return 0; 4626 } 4627 4628 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4629 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4630 { 4631 struct zone *zone; 4632 int rc; 4633 4634 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4635 if (rc) 4636 return rc; 4637 4638 for_each_zone(zone) 4639 zone->min_slab_pages = (zone->present_pages * 4640 sysctl_min_slab_ratio) / 100; 4641 return 0; 4642 } 4643 #endif 4644 4645 /* 4646 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4647 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4648 * whenever sysctl_lowmem_reserve_ratio changes. 4649 * 4650 * The reserve ratio obviously has absolutely no relation with the 4651 * minimum watermarks. The lowmem reserve ratio can only make sense 4652 * if in function of the boot time zone sizes. 4653 */ 4654 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4655 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4656 { 4657 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4658 setup_per_zone_lowmem_reserve(); 4659 return 0; 4660 } 4661 4662 /* 4663 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4664 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4665 * can have before it gets flushed back to buddy allocator. 4666 */ 4667 4668 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4669 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4670 { 4671 struct zone *zone; 4672 unsigned int cpu; 4673 int ret; 4674 4675 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4676 if (!write || (ret == -EINVAL)) 4677 return ret; 4678 for_each_populated_zone(zone) { 4679 for_each_online_cpu(cpu) { 4680 unsigned long high; 4681 high = zone->present_pages / percpu_pagelist_fraction; 4682 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4683 } 4684 } 4685 return 0; 4686 } 4687 4688 int hashdist = HASHDIST_DEFAULT; 4689 4690 #ifdef CONFIG_NUMA 4691 static int __init set_hashdist(char *str) 4692 { 4693 if (!str) 4694 return 0; 4695 hashdist = simple_strtoul(str, &str, 0); 4696 return 1; 4697 } 4698 __setup("hashdist=", set_hashdist); 4699 #endif 4700 4701 /* 4702 * allocate a large system hash table from bootmem 4703 * - it is assumed that the hash table must contain an exact power-of-2 4704 * quantity of entries 4705 * - limit is the number of hash buckets, not the total allocation size 4706 */ 4707 void *__init alloc_large_system_hash(const char *tablename, 4708 unsigned long bucketsize, 4709 unsigned long numentries, 4710 int scale, 4711 int flags, 4712 unsigned int *_hash_shift, 4713 unsigned int *_hash_mask, 4714 unsigned long limit) 4715 { 4716 unsigned long long max = limit; 4717 unsigned long log2qty, size; 4718 void *table = NULL; 4719 4720 /* allow the kernel cmdline to have a say */ 4721 if (!numentries) { 4722 /* round applicable memory size up to nearest megabyte */ 4723 numentries = nr_kernel_pages; 4724 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4725 numentries >>= 20 - PAGE_SHIFT; 4726 numentries <<= 20 - PAGE_SHIFT; 4727 4728 /* limit to 1 bucket per 2^scale bytes of low memory */ 4729 if (scale > PAGE_SHIFT) 4730 numentries >>= (scale - PAGE_SHIFT); 4731 else 4732 numentries <<= (PAGE_SHIFT - scale); 4733 4734 /* Make sure we've got at least a 0-order allocation.. */ 4735 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4736 numentries = PAGE_SIZE / bucketsize; 4737 } 4738 numentries = roundup_pow_of_two(numentries); 4739 4740 /* limit allocation size to 1/16 total memory by default */ 4741 if (max == 0) { 4742 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4743 do_div(max, bucketsize); 4744 } 4745 4746 if (numentries > max) 4747 numentries = max; 4748 4749 log2qty = ilog2(numentries); 4750 4751 do { 4752 size = bucketsize << log2qty; 4753 if (flags & HASH_EARLY) 4754 table = alloc_bootmem_nopanic(size); 4755 else if (hashdist) 4756 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4757 else { 4758 /* 4759 * If bucketsize is not a power-of-two, we may free 4760 * some pages at the end of hash table which 4761 * alloc_pages_exact() automatically does 4762 */ 4763 if (get_order(size) < MAX_ORDER) { 4764 table = alloc_pages_exact(size, GFP_ATOMIC); 4765 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 4766 } 4767 } 4768 } while (!table && size > PAGE_SIZE && --log2qty); 4769 4770 if (!table) 4771 panic("Failed to allocate %s hash table\n", tablename); 4772 4773 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4774 tablename, 4775 (1U << log2qty), 4776 ilog2(size) - PAGE_SHIFT, 4777 size); 4778 4779 if (_hash_shift) 4780 *_hash_shift = log2qty; 4781 if (_hash_mask) 4782 *_hash_mask = (1 << log2qty) - 1; 4783 4784 return table; 4785 } 4786 4787 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4788 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4789 unsigned long pfn) 4790 { 4791 #ifdef CONFIG_SPARSEMEM 4792 return __pfn_to_section(pfn)->pageblock_flags; 4793 #else 4794 return zone->pageblock_flags; 4795 #endif /* CONFIG_SPARSEMEM */ 4796 } 4797 4798 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4799 { 4800 #ifdef CONFIG_SPARSEMEM 4801 pfn &= (PAGES_PER_SECTION-1); 4802 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4803 #else 4804 pfn = pfn - zone->zone_start_pfn; 4805 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4806 #endif /* CONFIG_SPARSEMEM */ 4807 } 4808 4809 /** 4810 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4811 * @page: The page within the block of interest 4812 * @start_bitidx: The first bit of interest to retrieve 4813 * @end_bitidx: The last bit of interest 4814 * returns pageblock_bits flags 4815 */ 4816 unsigned long get_pageblock_flags_group(struct page *page, 4817 int start_bitidx, int end_bitidx) 4818 { 4819 struct zone *zone; 4820 unsigned long *bitmap; 4821 unsigned long pfn, bitidx; 4822 unsigned long flags = 0; 4823 unsigned long value = 1; 4824 4825 zone = page_zone(page); 4826 pfn = page_to_pfn(page); 4827 bitmap = get_pageblock_bitmap(zone, pfn); 4828 bitidx = pfn_to_bitidx(zone, pfn); 4829 4830 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4831 if (test_bit(bitidx + start_bitidx, bitmap)) 4832 flags |= value; 4833 4834 return flags; 4835 } 4836 4837 /** 4838 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4839 * @page: The page within the block of interest 4840 * @start_bitidx: The first bit of interest 4841 * @end_bitidx: The last bit of interest 4842 * @flags: The flags to set 4843 */ 4844 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4845 int start_bitidx, int end_bitidx) 4846 { 4847 struct zone *zone; 4848 unsigned long *bitmap; 4849 unsigned long pfn, bitidx; 4850 unsigned long value = 1; 4851 4852 zone = page_zone(page); 4853 pfn = page_to_pfn(page); 4854 bitmap = get_pageblock_bitmap(zone, pfn); 4855 bitidx = pfn_to_bitidx(zone, pfn); 4856 VM_BUG_ON(pfn < zone->zone_start_pfn); 4857 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4858 4859 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4860 if (flags & value) 4861 __set_bit(bitidx + start_bitidx, bitmap); 4862 else 4863 __clear_bit(bitidx + start_bitidx, bitmap); 4864 } 4865 4866 /* 4867 * This is designed as sub function...plz see page_isolation.c also. 4868 * set/clear page block's type to be ISOLATE. 4869 * page allocater never alloc memory from ISOLATE block. 4870 */ 4871 4872 int set_migratetype_isolate(struct page *page) 4873 { 4874 struct zone *zone; 4875 unsigned long flags; 4876 int ret = -EBUSY; 4877 4878 zone = page_zone(page); 4879 spin_lock_irqsave(&zone->lock, flags); 4880 /* 4881 * In future, more migrate types will be able to be isolation target. 4882 */ 4883 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4884 goto out; 4885 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4886 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4887 ret = 0; 4888 out: 4889 spin_unlock_irqrestore(&zone->lock, flags); 4890 if (!ret) 4891 drain_all_pages(); 4892 return ret; 4893 } 4894 4895 void unset_migratetype_isolate(struct page *page) 4896 { 4897 struct zone *zone; 4898 unsigned long flags; 4899 zone = page_zone(page); 4900 spin_lock_irqsave(&zone->lock, flags); 4901 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4902 goto out; 4903 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4904 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4905 out: 4906 spin_unlock_irqrestore(&zone->lock, flags); 4907 } 4908 4909 #ifdef CONFIG_MEMORY_HOTREMOVE 4910 /* 4911 * All pages in the range must be isolated before calling this. 4912 */ 4913 void 4914 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4915 { 4916 struct page *page; 4917 struct zone *zone; 4918 int order, i; 4919 unsigned long pfn; 4920 unsigned long flags; 4921 /* find the first valid pfn */ 4922 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4923 if (pfn_valid(pfn)) 4924 break; 4925 if (pfn == end_pfn) 4926 return; 4927 zone = page_zone(pfn_to_page(pfn)); 4928 spin_lock_irqsave(&zone->lock, flags); 4929 pfn = start_pfn; 4930 while (pfn < end_pfn) { 4931 if (!pfn_valid(pfn)) { 4932 pfn++; 4933 continue; 4934 } 4935 page = pfn_to_page(pfn); 4936 BUG_ON(page_count(page)); 4937 BUG_ON(!PageBuddy(page)); 4938 order = page_order(page); 4939 #ifdef CONFIG_DEBUG_VM 4940 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4941 pfn, 1 << order, end_pfn); 4942 #endif 4943 list_del(&page->lru); 4944 rmv_page_order(page); 4945 zone->free_area[order].nr_free--; 4946 __mod_zone_page_state(zone, NR_FREE_PAGES, 4947 - (1UL << order)); 4948 for (i = 0; i < (1 << order); i++) 4949 SetPageReserved((page+i)); 4950 pfn += (1 << order); 4951 } 4952 spin_unlock_irqrestore(&zone->lock, flags); 4953 } 4954 #endif 4955