xref: /openbmc/linux/mm/page_alloc.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78 #include "page_reporting.h"
79 
80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81 static DEFINE_MUTEX(pcp_batch_high_lock);
82 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
83 
84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85 DEFINE_PER_CPU(int, numa_node);
86 EXPORT_PER_CPU_SYMBOL(numa_node);
87 #endif
88 
89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90 
91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
92 /*
93  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96  * defined in <linux/topology.h>.
97  */
98 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
99 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100 #endif
101 
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 	struct zone *zone;
105 	struct work_struct work;
106 };
107 static DEFINE_MUTEX(pcpu_drain_mutex);
108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114 
115 /*
116  * Array of node states.
117  */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 	[N_POSSIBLE] = NODE_MASK_ALL,
120 	[N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 	[N_MEMORY] = { { [0] = 1UL } },
127 	[N_CPU] = { { [0] = 1UL } },
128 #endif	/* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131 
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136 
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141 #else
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143 #endif
144 EXPORT_SYMBOL(init_on_alloc);
145 
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
148 #else
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
150 #endif
151 EXPORT_SYMBOL(init_on_free);
152 
153 static int __init early_init_on_alloc(char *buf)
154 {
155 	int ret;
156 	bool bool_result;
157 
158 	if (!buf)
159 		return -EINVAL;
160 	ret = kstrtobool(buf, &bool_result);
161 	if (bool_result && page_poisoning_enabled())
162 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 	if (bool_result)
164 		static_branch_enable(&init_on_alloc);
165 	else
166 		static_branch_disable(&init_on_alloc);
167 	return ret;
168 }
169 early_param("init_on_alloc", early_init_on_alloc);
170 
171 static int __init early_init_on_free(char *buf)
172 {
173 	int ret;
174 	bool bool_result;
175 
176 	if (!buf)
177 		return -EINVAL;
178 	ret = kstrtobool(buf, &bool_result);
179 	if (bool_result && page_poisoning_enabled())
180 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 	if (bool_result)
182 		static_branch_enable(&init_on_free);
183 	else
184 		static_branch_disable(&init_on_free);
185 	return ret;
186 }
187 early_param("init_on_free", early_init_on_free);
188 
189 /*
190  * A cached value of the page's pageblock's migratetype, used when the page is
191  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193  * Also the migratetype set in the page does not necessarily match the pcplist
194  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195  * other index - this ensures that it will be put on the correct CMA freelist.
196  */
197 static inline int get_pcppage_migratetype(struct page *page)
198 {
199 	return page->index;
200 }
201 
202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 {
204 	page->index = migratetype;
205 }
206 
207 #ifdef CONFIG_PM_SLEEP
208 /*
209  * The following functions are used by the suspend/hibernate code to temporarily
210  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211  * while devices are suspended.  To avoid races with the suspend/hibernate code,
212  * they should always be called with system_transition_mutex held
213  * (gfp_allowed_mask also should only be modified with system_transition_mutex
214  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215  * with that modification).
216  */
217 
218 static gfp_t saved_gfp_mask;
219 
220 void pm_restore_gfp_mask(void)
221 {
222 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 	if (saved_gfp_mask) {
224 		gfp_allowed_mask = saved_gfp_mask;
225 		saved_gfp_mask = 0;
226 	}
227 }
228 
229 void pm_restrict_gfp_mask(void)
230 {
231 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 	WARN_ON(saved_gfp_mask);
233 	saved_gfp_mask = gfp_allowed_mask;
234 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
235 }
236 
237 bool pm_suspended_storage(void)
238 {
239 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
240 		return false;
241 	return true;
242 }
243 #endif /* CONFIG_PM_SLEEP */
244 
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
247 #endif
248 
249 static void __free_pages_ok(struct page *page, unsigned int order);
250 
251 /*
252  * results with 256, 32 in the lowmem_reserve sysctl:
253  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254  *	1G machine -> (16M dma, 784M normal, 224M high)
255  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258  *
259  * TBD: should special case ZONE_DMA32 machines here - in those we normally
260  * don't need any ZONE_NORMAL reservation
261  */
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
264 	[ZONE_DMA] = 256,
265 #endif
266 #ifdef CONFIG_ZONE_DMA32
267 	[ZONE_DMA32] = 256,
268 #endif
269 	[ZONE_NORMAL] = 32,
270 #ifdef CONFIG_HIGHMEM
271 	[ZONE_HIGHMEM] = 0,
272 #endif
273 	[ZONE_MOVABLE] = 0,
274 };
275 
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
278 	 "DMA",
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 	 "DMA32",
282 #endif
283 	 "Normal",
284 #ifdef CONFIG_HIGHMEM
285 	 "HighMem",
286 #endif
287 	 "Movable",
288 #ifdef CONFIG_ZONE_DEVICE
289 	 "Device",
290 #endif
291 };
292 
293 const char * const migratetype_names[MIGRATE_TYPES] = {
294 	"Unmovable",
295 	"Movable",
296 	"Reclaimable",
297 	"HighAtomic",
298 #ifdef CONFIG_CMA
299 	"CMA",
300 #endif
301 #ifdef CONFIG_MEMORY_ISOLATION
302 	"Isolate",
303 #endif
304 };
305 
306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 	[NULL_COMPOUND_DTOR] = NULL,
308 	[COMPOUND_PAGE_DTOR] = free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 	[HUGETLB_PAGE_DTOR] = free_huge_page,
311 #endif
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
314 #endif
315 };
316 
317 int min_free_kbytes = 1024;
318 int user_min_free_kbytes = -1;
319 #ifdef CONFIG_DISCONTIGMEM
320 /*
321  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322  * are not on separate NUMA nodes. Functionally this works but with
323  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324  * quite small. By default, do not boost watermarks on discontigmem as in
325  * many cases very high-order allocations like THP are likely to be
326  * unsupported and the premature reclaim offsets the advantage of long-term
327  * fragmentation avoidance.
328  */
329 int watermark_boost_factor __read_mostly;
330 #else
331 int watermark_boost_factor __read_mostly = 15000;
332 #endif
333 int watermark_scale_factor = 10;
334 
335 static unsigned long nr_kernel_pages __initdata;
336 static unsigned long nr_all_pages __initdata;
337 static unsigned long dma_reserve __initdata;
338 
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 
352 #if MAX_NUMNODES > 1
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
357 #endif
358 
359 int page_group_by_mobility_disabled __read_mostly;
360 
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
362 /*
363  * During boot we initialize deferred pages on-demand, as needed, but once
364  * page_alloc_init_late() has finished, the deferred pages are all initialized,
365  * and we can permanently disable that path.
366  */
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368 
369 /*
370  * Calling kasan_free_pages() only after deferred memory initialization
371  * has completed. Poisoning pages during deferred memory init will greatly
372  * lengthen the process and cause problem in large memory systems as the
373  * deferred pages initialization is done with interrupt disabled.
374  *
375  * Assuming that there will be no reference to those newly initialized
376  * pages before they are ever allocated, this should have no effect on
377  * KASAN memory tracking as the poison will be properly inserted at page
378  * allocation time. The only corner case is when pages are allocated by
379  * on-demand allocation and then freed again before the deferred pages
380  * initialization is done, but this is not likely to happen.
381  */
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383 {
384 	if (!static_branch_unlikely(&deferred_pages))
385 		kasan_free_pages(page, order);
386 }
387 
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
390 {
391 	int nid = early_pfn_to_nid(pfn);
392 
393 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
394 		return true;
395 
396 	return false;
397 }
398 
399 /*
400  * Returns true when the remaining initialisation should be deferred until
401  * later in the boot cycle when it can be parallelised.
402  */
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
405 {
406 	static unsigned long prev_end_pfn, nr_initialised;
407 
408 	/*
409 	 * prev_end_pfn static that contains the end of previous zone
410 	 * No need to protect because called very early in boot before smp_init.
411 	 */
412 	if (prev_end_pfn != end_pfn) {
413 		prev_end_pfn = end_pfn;
414 		nr_initialised = 0;
415 	}
416 
417 	/* Always populate low zones for address-constrained allocations */
418 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
419 		return false;
420 
421 	/*
422 	 * We start only with one section of pages, more pages are added as
423 	 * needed until the rest of deferred pages are initialized.
424 	 */
425 	nr_initialised++;
426 	if ((nr_initialised > PAGES_PER_SECTION) &&
427 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 		NODE_DATA(nid)->first_deferred_pfn = pfn;
429 		return true;
430 	}
431 	return false;
432 }
433 #else
434 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
435 
436 static inline bool early_page_uninitialised(unsigned long pfn)
437 {
438 	return false;
439 }
440 
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 	return false;
444 }
445 #endif
446 
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 							unsigned long pfn)
450 {
451 #ifdef CONFIG_SPARSEMEM
452 	return section_to_usemap(__pfn_to_section(pfn));
453 #else
454 	return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
456 }
457 
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459 {
460 #ifdef CONFIG_SPARSEMEM
461 	pfn &= (PAGES_PER_SECTION-1);
462 #else
463 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
464 #endif /* CONFIG_SPARSEMEM */
465 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466 }
467 
468 /**
469  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470  * @page: The page within the block of interest
471  * @pfn: The target page frame number
472  * @mask: mask of bits that the caller is interested in
473  *
474  * Return: pageblock_bits flags
475  */
476 static __always_inline
477 unsigned long __get_pfnblock_flags_mask(struct page *page,
478 					unsigned long pfn,
479 					unsigned long mask)
480 {
481 	unsigned long *bitmap;
482 	unsigned long bitidx, word_bitidx;
483 	unsigned long word;
484 
485 	bitmap = get_pageblock_bitmap(page, pfn);
486 	bitidx = pfn_to_bitidx(page, pfn);
487 	word_bitidx = bitidx / BITS_PER_LONG;
488 	bitidx &= (BITS_PER_LONG-1);
489 
490 	word = bitmap[word_bitidx];
491 	return (word >> bitidx) & mask;
492 }
493 
494 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
495 					unsigned long mask)
496 {
497 	return __get_pfnblock_flags_mask(page, pfn, mask);
498 }
499 
500 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
503 }
504 
505 /**
506  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
507  * @page: The page within the block of interest
508  * @flags: The flags to set
509  * @pfn: The target page frame number
510  * @mask: mask of bits that the caller is interested in
511  */
512 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
513 					unsigned long pfn,
514 					unsigned long mask)
515 {
516 	unsigned long *bitmap;
517 	unsigned long bitidx, word_bitidx;
518 	unsigned long old_word, word;
519 
520 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
521 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
522 
523 	bitmap = get_pageblock_bitmap(page, pfn);
524 	bitidx = pfn_to_bitidx(page, pfn);
525 	word_bitidx = bitidx / BITS_PER_LONG;
526 	bitidx &= (BITS_PER_LONG-1);
527 
528 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
529 
530 	mask <<= bitidx;
531 	flags <<= bitidx;
532 
533 	word = READ_ONCE(bitmap[word_bitidx]);
534 	for (;;) {
535 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
536 		if (word == old_word)
537 			break;
538 		word = old_word;
539 	}
540 }
541 
542 void set_pageblock_migratetype(struct page *page, int migratetype)
543 {
544 	if (unlikely(page_group_by_mobility_disabled &&
545 		     migratetype < MIGRATE_PCPTYPES))
546 		migratetype = MIGRATE_UNMOVABLE;
547 
548 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
549 				page_to_pfn(page), MIGRATETYPE_MASK);
550 }
551 
552 #ifdef CONFIG_DEBUG_VM
553 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
554 {
555 	int ret = 0;
556 	unsigned seq;
557 	unsigned long pfn = page_to_pfn(page);
558 	unsigned long sp, start_pfn;
559 
560 	do {
561 		seq = zone_span_seqbegin(zone);
562 		start_pfn = zone->zone_start_pfn;
563 		sp = zone->spanned_pages;
564 		if (!zone_spans_pfn(zone, pfn))
565 			ret = 1;
566 	} while (zone_span_seqretry(zone, seq));
567 
568 	if (ret)
569 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
570 			pfn, zone_to_nid(zone), zone->name,
571 			start_pfn, start_pfn + sp);
572 
573 	return ret;
574 }
575 
576 static int page_is_consistent(struct zone *zone, struct page *page)
577 {
578 	if (!pfn_valid_within(page_to_pfn(page)))
579 		return 0;
580 	if (zone != page_zone(page))
581 		return 0;
582 
583 	return 1;
584 }
585 /*
586  * Temporary debugging check for pages not lying within a given zone.
587  */
588 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
589 {
590 	if (page_outside_zone_boundaries(zone, page))
591 		return 1;
592 	if (!page_is_consistent(zone, page))
593 		return 1;
594 
595 	return 0;
596 }
597 #else
598 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
599 {
600 	return 0;
601 }
602 #endif
603 
604 static void bad_page(struct page *page, const char *reason)
605 {
606 	static unsigned long resume;
607 	static unsigned long nr_shown;
608 	static unsigned long nr_unshown;
609 
610 	/*
611 	 * Allow a burst of 60 reports, then keep quiet for that minute;
612 	 * or allow a steady drip of one report per second.
613 	 */
614 	if (nr_shown == 60) {
615 		if (time_before(jiffies, resume)) {
616 			nr_unshown++;
617 			goto out;
618 		}
619 		if (nr_unshown) {
620 			pr_alert(
621 			      "BUG: Bad page state: %lu messages suppressed\n",
622 				nr_unshown);
623 			nr_unshown = 0;
624 		}
625 		nr_shown = 0;
626 	}
627 	if (nr_shown++ == 0)
628 		resume = jiffies + 60 * HZ;
629 
630 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
631 		current->comm, page_to_pfn(page));
632 	__dump_page(page, reason);
633 	dump_page_owner(page);
634 
635 	print_modules();
636 	dump_stack();
637 out:
638 	/* Leave bad fields for debug, except PageBuddy could make trouble */
639 	page_mapcount_reset(page); /* remove PageBuddy */
640 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
641 }
642 
643 /*
644  * Higher-order pages are called "compound pages".  They are structured thusly:
645  *
646  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
647  *
648  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
650  *
651  * The first tail page's ->compound_dtor holds the offset in array of compound
652  * page destructors. See compound_page_dtors.
653  *
654  * The first tail page's ->compound_order holds the order of allocation.
655  * This usage means that zero-order pages may not be compound.
656  */
657 
658 void free_compound_page(struct page *page)
659 {
660 	mem_cgroup_uncharge(page);
661 	__free_pages_ok(page, compound_order(page));
662 }
663 
664 void prep_compound_page(struct page *page, unsigned int order)
665 {
666 	int i;
667 	int nr_pages = 1 << order;
668 
669 	__SetPageHead(page);
670 	for (i = 1; i < nr_pages; i++) {
671 		struct page *p = page + i;
672 		set_page_count(p, 0);
673 		p->mapping = TAIL_MAPPING;
674 		set_compound_head(p, page);
675 	}
676 
677 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
678 	set_compound_order(page, order);
679 	atomic_set(compound_mapcount_ptr(page), -1);
680 	if (hpage_pincount_available(page))
681 		atomic_set(compound_pincount_ptr(page), 0);
682 }
683 
684 #ifdef CONFIG_DEBUG_PAGEALLOC
685 unsigned int _debug_guardpage_minorder;
686 
687 bool _debug_pagealloc_enabled_early __read_mostly
688 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
689 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
690 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
691 EXPORT_SYMBOL(_debug_pagealloc_enabled);
692 
693 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
694 
695 static int __init early_debug_pagealloc(char *buf)
696 {
697 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
698 }
699 early_param("debug_pagealloc", early_debug_pagealloc);
700 
701 void init_debug_pagealloc(void)
702 {
703 	if (!debug_pagealloc_enabled())
704 		return;
705 
706 	static_branch_enable(&_debug_pagealloc_enabled);
707 
708 	if (!debug_guardpage_minorder())
709 		return;
710 
711 	static_branch_enable(&_debug_guardpage_enabled);
712 }
713 
714 static int __init debug_guardpage_minorder_setup(char *buf)
715 {
716 	unsigned long res;
717 
718 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
719 		pr_err("Bad debug_guardpage_minorder value\n");
720 		return 0;
721 	}
722 	_debug_guardpage_minorder = res;
723 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
724 	return 0;
725 }
726 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
727 
728 static inline bool set_page_guard(struct zone *zone, struct page *page,
729 				unsigned int order, int migratetype)
730 {
731 	if (!debug_guardpage_enabled())
732 		return false;
733 
734 	if (order >= debug_guardpage_minorder())
735 		return false;
736 
737 	__SetPageGuard(page);
738 	INIT_LIST_HEAD(&page->lru);
739 	set_page_private(page, order);
740 	/* Guard pages are not available for any usage */
741 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
742 
743 	return true;
744 }
745 
746 static inline void clear_page_guard(struct zone *zone, struct page *page,
747 				unsigned int order, int migratetype)
748 {
749 	if (!debug_guardpage_enabled())
750 		return;
751 
752 	__ClearPageGuard(page);
753 
754 	set_page_private(page, 0);
755 	if (!is_migrate_isolate(migratetype))
756 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
757 }
758 #else
759 static inline bool set_page_guard(struct zone *zone, struct page *page,
760 			unsigned int order, int migratetype) { return false; }
761 static inline void clear_page_guard(struct zone *zone, struct page *page,
762 				unsigned int order, int migratetype) {}
763 #endif
764 
765 static inline void set_page_order(struct page *page, unsigned int order)
766 {
767 	set_page_private(page, order);
768 	__SetPageBuddy(page);
769 }
770 
771 /*
772  * This function checks whether a page is free && is the buddy
773  * we can coalesce a page and its buddy if
774  * (a) the buddy is not in a hole (check before calling!) &&
775  * (b) the buddy is in the buddy system &&
776  * (c) a page and its buddy have the same order &&
777  * (d) a page and its buddy are in the same zone.
778  *
779  * For recording whether a page is in the buddy system, we set PageBuddy.
780  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
781  *
782  * For recording page's order, we use page_private(page).
783  */
784 static inline bool page_is_buddy(struct page *page, struct page *buddy,
785 							unsigned int order)
786 {
787 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
788 		return false;
789 
790 	if (page_order(buddy) != order)
791 		return false;
792 
793 	/*
794 	 * zone check is done late to avoid uselessly calculating
795 	 * zone/node ids for pages that could never merge.
796 	 */
797 	if (page_zone_id(page) != page_zone_id(buddy))
798 		return false;
799 
800 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
801 
802 	return true;
803 }
804 
805 #ifdef CONFIG_COMPACTION
806 static inline struct capture_control *task_capc(struct zone *zone)
807 {
808 	struct capture_control *capc = current->capture_control;
809 
810 	return unlikely(capc) &&
811 		!(current->flags & PF_KTHREAD) &&
812 		!capc->page &&
813 		capc->cc->zone == zone ? capc : NULL;
814 }
815 
816 static inline bool
817 compaction_capture(struct capture_control *capc, struct page *page,
818 		   int order, int migratetype)
819 {
820 	if (!capc || order != capc->cc->order)
821 		return false;
822 
823 	/* Do not accidentally pollute CMA or isolated regions*/
824 	if (is_migrate_cma(migratetype) ||
825 	    is_migrate_isolate(migratetype))
826 		return false;
827 
828 	/*
829 	 * Do not let lower order allocations polluate a movable pageblock.
830 	 * This might let an unmovable request use a reclaimable pageblock
831 	 * and vice-versa but no more than normal fallback logic which can
832 	 * have trouble finding a high-order free page.
833 	 */
834 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
835 		return false;
836 
837 	capc->page = page;
838 	return true;
839 }
840 
841 #else
842 static inline struct capture_control *task_capc(struct zone *zone)
843 {
844 	return NULL;
845 }
846 
847 static inline bool
848 compaction_capture(struct capture_control *capc, struct page *page,
849 		   int order, int migratetype)
850 {
851 	return false;
852 }
853 #endif /* CONFIG_COMPACTION */
854 
855 /* Used for pages not on another list */
856 static inline void add_to_free_list(struct page *page, struct zone *zone,
857 				    unsigned int order, int migratetype)
858 {
859 	struct free_area *area = &zone->free_area[order];
860 
861 	list_add(&page->lru, &area->free_list[migratetype]);
862 	area->nr_free++;
863 }
864 
865 /* Used for pages not on another list */
866 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
867 					 unsigned int order, int migratetype)
868 {
869 	struct free_area *area = &zone->free_area[order];
870 
871 	list_add_tail(&page->lru, &area->free_list[migratetype]);
872 	area->nr_free++;
873 }
874 
875 /* Used for pages which are on another list */
876 static inline void move_to_free_list(struct page *page, struct zone *zone,
877 				     unsigned int order, int migratetype)
878 {
879 	struct free_area *area = &zone->free_area[order];
880 
881 	list_move(&page->lru, &area->free_list[migratetype]);
882 }
883 
884 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
885 					   unsigned int order)
886 {
887 	/* clear reported state and update reported page count */
888 	if (page_reported(page))
889 		__ClearPageReported(page);
890 
891 	list_del(&page->lru);
892 	__ClearPageBuddy(page);
893 	set_page_private(page, 0);
894 	zone->free_area[order].nr_free--;
895 }
896 
897 /*
898  * If this is not the largest possible page, check if the buddy
899  * of the next-highest order is free. If it is, it's possible
900  * that pages are being freed that will coalesce soon. In case,
901  * that is happening, add the free page to the tail of the list
902  * so it's less likely to be used soon and more likely to be merged
903  * as a higher order page
904  */
905 static inline bool
906 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
907 		   struct page *page, unsigned int order)
908 {
909 	struct page *higher_page, *higher_buddy;
910 	unsigned long combined_pfn;
911 
912 	if (order >= MAX_ORDER - 2)
913 		return false;
914 
915 	if (!pfn_valid_within(buddy_pfn))
916 		return false;
917 
918 	combined_pfn = buddy_pfn & pfn;
919 	higher_page = page + (combined_pfn - pfn);
920 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
921 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
922 
923 	return pfn_valid_within(buddy_pfn) &&
924 	       page_is_buddy(higher_page, higher_buddy, order + 1);
925 }
926 
927 /*
928  * Freeing function for a buddy system allocator.
929  *
930  * The concept of a buddy system is to maintain direct-mapped table
931  * (containing bit values) for memory blocks of various "orders".
932  * The bottom level table contains the map for the smallest allocatable
933  * units of memory (here, pages), and each level above it describes
934  * pairs of units from the levels below, hence, "buddies".
935  * At a high level, all that happens here is marking the table entry
936  * at the bottom level available, and propagating the changes upward
937  * as necessary, plus some accounting needed to play nicely with other
938  * parts of the VM system.
939  * At each level, we keep a list of pages, which are heads of continuous
940  * free pages of length of (1 << order) and marked with PageBuddy.
941  * Page's order is recorded in page_private(page) field.
942  * So when we are allocating or freeing one, we can derive the state of the
943  * other.  That is, if we allocate a small block, and both were
944  * free, the remainder of the region must be split into blocks.
945  * If a block is freed, and its buddy is also free, then this
946  * triggers coalescing into a block of larger size.
947  *
948  * -- nyc
949  */
950 
951 static inline void __free_one_page(struct page *page,
952 		unsigned long pfn,
953 		struct zone *zone, unsigned int order,
954 		int migratetype, bool report)
955 {
956 	struct capture_control *capc = task_capc(zone);
957 	unsigned long buddy_pfn;
958 	unsigned long combined_pfn;
959 	unsigned int max_order;
960 	struct page *buddy;
961 	bool to_tail;
962 
963 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
964 
965 	VM_BUG_ON(!zone_is_initialized(zone));
966 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
967 
968 	VM_BUG_ON(migratetype == -1);
969 	if (likely(!is_migrate_isolate(migratetype)))
970 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
971 
972 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
973 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
974 
975 continue_merging:
976 	while (order < max_order - 1) {
977 		if (compaction_capture(capc, page, order, migratetype)) {
978 			__mod_zone_freepage_state(zone, -(1 << order),
979 								migratetype);
980 			return;
981 		}
982 		buddy_pfn = __find_buddy_pfn(pfn, order);
983 		buddy = page + (buddy_pfn - pfn);
984 
985 		if (!pfn_valid_within(buddy_pfn))
986 			goto done_merging;
987 		if (!page_is_buddy(page, buddy, order))
988 			goto done_merging;
989 		/*
990 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
991 		 * merge with it and move up one order.
992 		 */
993 		if (page_is_guard(buddy))
994 			clear_page_guard(zone, buddy, order, migratetype);
995 		else
996 			del_page_from_free_list(buddy, zone, order);
997 		combined_pfn = buddy_pfn & pfn;
998 		page = page + (combined_pfn - pfn);
999 		pfn = combined_pfn;
1000 		order++;
1001 	}
1002 	if (max_order < MAX_ORDER) {
1003 		/* If we are here, it means order is >= pageblock_order.
1004 		 * We want to prevent merge between freepages on isolate
1005 		 * pageblock and normal pageblock. Without this, pageblock
1006 		 * isolation could cause incorrect freepage or CMA accounting.
1007 		 *
1008 		 * We don't want to hit this code for the more frequent
1009 		 * low-order merging.
1010 		 */
1011 		if (unlikely(has_isolate_pageblock(zone))) {
1012 			int buddy_mt;
1013 
1014 			buddy_pfn = __find_buddy_pfn(pfn, order);
1015 			buddy = page + (buddy_pfn - pfn);
1016 			buddy_mt = get_pageblock_migratetype(buddy);
1017 
1018 			if (migratetype != buddy_mt
1019 					&& (is_migrate_isolate(migratetype) ||
1020 						is_migrate_isolate(buddy_mt)))
1021 				goto done_merging;
1022 		}
1023 		max_order++;
1024 		goto continue_merging;
1025 	}
1026 
1027 done_merging:
1028 	set_page_order(page, order);
1029 
1030 	if (is_shuffle_order(order))
1031 		to_tail = shuffle_pick_tail();
1032 	else
1033 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1034 
1035 	if (to_tail)
1036 		add_to_free_list_tail(page, zone, order, migratetype);
1037 	else
1038 		add_to_free_list(page, zone, order, migratetype);
1039 
1040 	/* Notify page reporting subsystem of freed page */
1041 	if (report)
1042 		page_reporting_notify_free(order);
1043 }
1044 
1045 /*
1046  * A bad page could be due to a number of fields. Instead of multiple branches,
1047  * try and check multiple fields with one check. The caller must do a detailed
1048  * check if necessary.
1049  */
1050 static inline bool page_expected_state(struct page *page,
1051 					unsigned long check_flags)
1052 {
1053 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1054 		return false;
1055 
1056 	if (unlikely((unsigned long)page->mapping |
1057 			page_ref_count(page) |
1058 #ifdef CONFIG_MEMCG
1059 			(unsigned long)page->mem_cgroup |
1060 #endif
1061 			(page->flags & check_flags)))
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 static const char *page_bad_reason(struct page *page, unsigned long flags)
1068 {
1069 	const char *bad_reason = NULL;
1070 
1071 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1072 		bad_reason = "nonzero mapcount";
1073 	if (unlikely(page->mapping != NULL))
1074 		bad_reason = "non-NULL mapping";
1075 	if (unlikely(page_ref_count(page) != 0))
1076 		bad_reason = "nonzero _refcount";
1077 	if (unlikely(page->flags & flags)) {
1078 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1079 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1080 		else
1081 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1082 	}
1083 #ifdef CONFIG_MEMCG
1084 	if (unlikely(page->mem_cgroup))
1085 		bad_reason = "page still charged to cgroup";
1086 #endif
1087 	return bad_reason;
1088 }
1089 
1090 static void check_free_page_bad(struct page *page)
1091 {
1092 	bad_page(page,
1093 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1094 }
1095 
1096 static inline int check_free_page(struct page *page)
1097 {
1098 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1099 		return 0;
1100 
1101 	/* Something has gone sideways, find it */
1102 	check_free_page_bad(page);
1103 	return 1;
1104 }
1105 
1106 static int free_tail_pages_check(struct page *head_page, struct page *page)
1107 {
1108 	int ret = 1;
1109 
1110 	/*
1111 	 * We rely page->lru.next never has bit 0 set, unless the page
1112 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1113 	 */
1114 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1115 
1116 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1117 		ret = 0;
1118 		goto out;
1119 	}
1120 	switch (page - head_page) {
1121 	case 1:
1122 		/* the first tail page: ->mapping may be compound_mapcount() */
1123 		if (unlikely(compound_mapcount(page))) {
1124 			bad_page(page, "nonzero compound_mapcount");
1125 			goto out;
1126 		}
1127 		break;
1128 	case 2:
1129 		/*
1130 		 * the second tail page: ->mapping is
1131 		 * deferred_list.next -- ignore value.
1132 		 */
1133 		break;
1134 	default:
1135 		if (page->mapping != TAIL_MAPPING) {
1136 			bad_page(page, "corrupted mapping in tail page");
1137 			goto out;
1138 		}
1139 		break;
1140 	}
1141 	if (unlikely(!PageTail(page))) {
1142 		bad_page(page, "PageTail not set");
1143 		goto out;
1144 	}
1145 	if (unlikely(compound_head(page) != head_page)) {
1146 		bad_page(page, "compound_head not consistent");
1147 		goto out;
1148 	}
1149 	ret = 0;
1150 out:
1151 	page->mapping = NULL;
1152 	clear_compound_head(page);
1153 	return ret;
1154 }
1155 
1156 static void kernel_init_free_pages(struct page *page, int numpages)
1157 {
1158 	int i;
1159 
1160 	/* s390's use of memset() could override KASAN redzones. */
1161 	kasan_disable_current();
1162 	for (i = 0; i < numpages; i++)
1163 		clear_highpage(page + i);
1164 	kasan_enable_current();
1165 }
1166 
1167 static __always_inline bool free_pages_prepare(struct page *page,
1168 					unsigned int order, bool check_free)
1169 {
1170 	int bad = 0;
1171 
1172 	VM_BUG_ON_PAGE(PageTail(page), page);
1173 
1174 	trace_mm_page_free(page, order);
1175 
1176 	/*
1177 	 * Check tail pages before head page information is cleared to
1178 	 * avoid checking PageCompound for order-0 pages.
1179 	 */
1180 	if (unlikely(order)) {
1181 		bool compound = PageCompound(page);
1182 		int i;
1183 
1184 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1185 
1186 		if (compound)
1187 			ClearPageDoubleMap(page);
1188 		for (i = 1; i < (1 << order); i++) {
1189 			if (compound)
1190 				bad += free_tail_pages_check(page, page + i);
1191 			if (unlikely(check_free_page(page + i))) {
1192 				bad++;
1193 				continue;
1194 			}
1195 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1196 		}
1197 	}
1198 	if (PageMappingFlags(page))
1199 		page->mapping = NULL;
1200 	if (memcg_kmem_enabled() && PageKmemcg(page))
1201 		__memcg_kmem_uncharge_page(page, order);
1202 	if (check_free)
1203 		bad += check_free_page(page);
1204 	if (bad)
1205 		return false;
1206 
1207 	page_cpupid_reset_last(page);
1208 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1209 	reset_page_owner(page, order);
1210 
1211 	if (!PageHighMem(page)) {
1212 		debug_check_no_locks_freed(page_address(page),
1213 					   PAGE_SIZE << order);
1214 		debug_check_no_obj_freed(page_address(page),
1215 					   PAGE_SIZE << order);
1216 	}
1217 	if (want_init_on_free())
1218 		kernel_init_free_pages(page, 1 << order);
1219 
1220 	kernel_poison_pages(page, 1 << order, 0);
1221 	/*
1222 	 * arch_free_page() can make the page's contents inaccessible.  s390
1223 	 * does this.  So nothing which can access the page's contents should
1224 	 * happen after this.
1225 	 */
1226 	arch_free_page(page, order);
1227 
1228 	if (debug_pagealloc_enabled_static())
1229 		kernel_map_pages(page, 1 << order, 0);
1230 
1231 	kasan_free_nondeferred_pages(page, order);
1232 
1233 	return true;
1234 }
1235 
1236 #ifdef CONFIG_DEBUG_VM
1237 /*
1238  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1239  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1240  * moved from pcp lists to free lists.
1241  */
1242 static bool free_pcp_prepare(struct page *page)
1243 {
1244 	return free_pages_prepare(page, 0, true);
1245 }
1246 
1247 static bool bulkfree_pcp_prepare(struct page *page)
1248 {
1249 	if (debug_pagealloc_enabled_static())
1250 		return check_free_page(page);
1251 	else
1252 		return false;
1253 }
1254 #else
1255 /*
1256  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1257  * moving from pcp lists to free list in order to reduce overhead. With
1258  * debug_pagealloc enabled, they are checked also immediately when being freed
1259  * to the pcp lists.
1260  */
1261 static bool free_pcp_prepare(struct page *page)
1262 {
1263 	if (debug_pagealloc_enabled_static())
1264 		return free_pages_prepare(page, 0, true);
1265 	else
1266 		return free_pages_prepare(page, 0, false);
1267 }
1268 
1269 static bool bulkfree_pcp_prepare(struct page *page)
1270 {
1271 	return check_free_page(page);
1272 }
1273 #endif /* CONFIG_DEBUG_VM */
1274 
1275 static inline void prefetch_buddy(struct page *page)
1276 {
1277 	unsigned long pfn = page_to_pfn(page);
1278 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1279 	struct page *buddy = page + (buddy_pfn - pfn);
1280 
1281 	prefetch(buddy);
1282 }
1283 
1284 /*
1285  * Frees a number of pages from the PCP lists
1286  * Assumes all pages on list are in same zone, and of same order.
1287  * count is the number of pages to free.
1288  *
1289  * If the zone was previously in an "all pages pinned" state then look to
1290  * see if this freeing clears that state.
1291  *
1292  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1293  * pinned" detection logic.
1294  */
1295 static void free_pcppages_bulk(struct zone *zone, int count,
1296 					struct per_cpu_pages *pcp)
1297 {
1298 	int migratetype = 0;
1299 	int batch_free = 0;
1300 	int prefetch_nr = 0;
1301 	bool isolated_pageblocks;
1302 	struct page *page, *tmp;
1303 	LIST_HEAD(head);
1304 
1305 	/*
1306 	 * Ensure proper count is passed which otherwise would stuck in the
1307 	 * below while (list_empty(list)) loop.
1308 	 */
1309 	count = min(pcp->count, count);
1310 	while (count) {
1311 		struct list_head *list;
1312 
1313 		/*
1314 		 * Remove pages from lists in a round-robin fashion. A
1315 		 * batch_free count is maintained that is incremented when an
1316 		 * empty list is encountered.  This is so more pages are freed
1317 		 * off fuller lists instead of spinning excessively around empty
1318 		 * lists
1319 		 */
1320 		do {
1321 			batch_free++;
1322 			if (++migratetype == MIGRATE_PCPTYPES)
1323 				migratetype = 0;
1324 			list = &pcp->lists[migratetype];
1325 		} while (list_empty(list));
1326 
1327 		/* This is the only non-empty list. Free them all. */
1328 		if (batch_free == MIGRATE_PCPTYPES)
1329 			batch_free = count;
1330 
1331 		do {
1332 			page = list_last_entry(list, struct page, lru);
1333 			/* must delete to avoid corrupting pcp list */
1334 			list_del(&page->lru);
1335 			pcp->count--;
1336 
1337 			if (bulkfree_pcp_prepare(page))
1338 				continue;
1339 
1340 			list_add_tail(&page->lru, &head);
1341 
1342 			/*
1343 			 * We are going to put the page back to the global
1344 			 * pool, prefetch its buddy to speed up later access
1345 			 * under zone->lock. It is believed the overhead of
1346 			 * an additional test and calculating buddy_pfn here
1347 			 * can be offset by reduced memory latency later. To
1348 			 * avoid excessive prefetching due to large count, only
1349 			 * prefetch buddy for the first pcp->batch nr of pages.
1350 			 */
1351 			if (prefetch_nr++ < pcp->batch)
1352 				prefetch_buddy(page);
1353 		} while (--count && --batch_free && !list_empty(list));
1354 	}
1355 
1356 	spin_lock(&zone->lock);
1357 	isolated_pageblocks = has_isolate_pageblock(zone);
1358 
1359 	/*
1360 	 * Use safe version since after __free_one_page(),
1361 	 * page->lru.next will not point to original list.
1362 	 */
1363 	list_for_each_entry_safe(page, tmp, &head, lru) {
1364 		int mt = get_pcppage_migratetype(page);
1365 		/* MIGRATE_ISOLATE page should not go to pcplists */
1366 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1367 		/* Pageblock could have been isolated meanwhile */
1368 		if (unlikely(isolated_pageblocks))
1369 			mt = get_pageblock_migratetype(page);
1370 
1371 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1372 		trace_mm_page_pcpu_drain(page, 0, mt);
1373 	}
1374 	spin_unlock(&zone->lock);
1375 }
1376 
1377 static void free_one_page(struct zone *zone,
1378 				struct page *page, unsigned long pfn,
1379 				unsigned int order,
1380 				int migratetype)
1381 {
1382 	spin_lock(&zone->lock);
1383 	if (unlikely(has_isolate_pageblock(zone) ||
1384 		is_migrate_isolate(migratetype))) {
1385 		migratetype = get_pfnblock_migratetype(page, pfn);
1386 	}
1387 	__free_one_page(page, pfn, zone, order, migratetype, true);
1388 	spin_unlock(&zone->lock);
1389 }
1390 
1391 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1392 				unsigned long zone, int nid)
1393 {
1394 	mm_zero_struct_page(page);
1395 	set_page_links(page, zone, nid, pfn);
1396 	init_page_count(page);
1397 	page_mapcount_reset(page);
1398 	page_cpupid_reset_last(page);
1399 	page_kasan_tag_reset(page);
1400 
1401 	INIT_LIST_HEAD(&page->lru);
1402 #ifdef WANT_PAGE_VIRTUAL
1403 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1404 	if (!is_highmem_idx(zone))
1405 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1406 #endif
1407 }
1408 
1409 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1410 static void __meminit init_reserved_page(unsigned long pfn)
1411 {
1412 	pg_data_t *pgdat;
1413 	int nid, zid;
1414 
1415 	if (!early_page_uninitialised(pfn))
1416 		return;
1417 
1418 	nid = early_pfn_to_nid(pfn);
1419 	pgdat = NODE_DATA(nid);
1420 
1421 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1422 		struct zone *zone = &pgdat->node_zones[zid];
1423 
1424 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1425 			break;
1426 	}
1427 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1428 }
1429 #else
1430 static inline void init_reserved_page(unsigned long pfn)
1431 {
1432 }
1433 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1434 
1435 /*
1436  * Initialised pages do not have PageReserved set. This function is
1437  * called for each range allocated by the bootmem allocator and
1438  * marks the pages PageReserved. The remaining valid pages are later
1439  * sent to the buddy page allocator.
1440  */
1441 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1442 {
1443 	unsigned long start_pfn = PFN_DOWN(start);
1444 	unsigned long end_pfn = PFN_UP(end);
1445 
1446 	for (; start_pfn < end_pfn; start_pfn++) {
1447 		if (pfn_valid(start_pfn)) {
1448 			struct page *page = pfn_to_page(start_pfn);
1449 
1450 			init_reserved_page(start_pfn);
1451 
1452 			/* Avoid false-positive PageTail() */
1453 			INIT_LIST_HEAD(&page->lru);
1454 
1455 			/*
1456 			 * no need for atomic set_bit because the struct
1457 			 * page is not visible yet so nobody should
1458 			 * access it yet.
1459 			 */
1460 			__SetPageReserved(page);
1461 		}
1462 	}
1463 }
1464 
1465 static void __free_pages_ok(struct page *page, unsigned int order)
1466 {
1467 	unsigned long flags;
1468 	int migratetype;
1469 	unsigned long pfn = page_to_pfn(page);
1470 
1471 	if (!free_pages_prepare(page, order, true))
1472 		return;
1473 
1474 	migratetype = get_pfnblock_migratetype(page, pfn);
1475 	local_irq_save(flags);
1476 	__count_vm_events(PGFREE, 1 << order);
1477 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1478 	local_irq_restore(flags);
1479 }
1480 
1481 void __free_pages_core(struct page *page, unsigned int order)
1482 {
1483 	unsigned int nr_pages = 1 << order;
1484 	struct page *p = page;
1485 	unsigned int loop;
1486 
1487 	prefetchw(p);
1488 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1489 		prefetchw(p + 1);
1490 		__ClearPageReserved(p);
1491 		set_page_count(p, 0);
1492 	}
1493 	__ClearPageReserved(p);
1494 	set_page_count(p, 0);
1495 
1496 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1497 	set_page_refcounted(page);
1498 	__free_pages(page, order);
1499 }
1500 
1501 #ifdef CONFIG_NEED_MULTIPLE_NODES
1502 
1503 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1504 
1505 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1506 
1507 /*
1508  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1509  */
1510 int __meminit __early_pfn_to_nid(unsigned long pfn,
1511 					struct mminit_pfnnid_cache *state)
1512 {
1513 	unsigned long start_pfn, end_pfn;
1514 	int nid;
1515 
1516 	if (state->last_start <= pfn && pfn < state->last_end)
1517 		return state->last_nid;
1518 
1519 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1520 	if (nid != NUMA_NO_NODE) {
1521 		state->last_start = start_pfn;
1522 		state->last_end = end_pfn;
1523 		state->last_nid = nid;
1524 	}
1525 
1526 	return nid;
1527 }
1528 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1529 
1530 int __meminit early_pfn_to_nid(unsigned long pfn)
1531 {
1532 	static DEFINE_SPINLOCK(early_pfn_lock);
1533 	int nid;
1534 
1535 	spin_lock(&early_pfn_lock);
1536 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1537 	if (nid < 0)
1538 		nid = first_online_node;
1539 	spin_unlock(&early_pfn_lock);
1540 
1541 	return nid;
1542 }
1543 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1544 
1545 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1546 							unsigned int order)
1547 {
1548 	if (early_page_uninitialised(pfn))
1549 		return;
1550 	__free_pages_core(page, order);
1551 }
1552 
1553 /*
1554  * Check that the whole (or subset of) a pageblock given by the interval of
1555  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1556  * with the migration of free compaction scanner. The scanners then need to
1557  * use only pfn_valid_within() check for arches that allow holes within
1558  * pageblocks.
1559  *
1560  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1561  *
1562  * It's possible on some configurations to have a setup like node0 node1 node0
1563  * i.e. it's possible that all pages within a zones range of pages do not
1564  * belong to a single zone. We assume that a border between node0 and node1
1565  * can occur within a single pageblock, but not a node0 node1 node0
1566  * interleaving within a single pageblock. It is therefore sufficient to check
1567  * the first and last page of a pageblock and avoid checking each individual
1568  * page in a pageblock.
1569  */
1570 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1571 				     unsigned long end_pfn, struct zone *zone)
1572 {
1573 	struct page *start_page;
1574 	struct page *end_page;
1575 
1576 	/* end_pfn is one past the range we are checking */
1577 	end_pfn--;
1578 
1579 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1580 		return NULL;
1581 
1582 	start_page = pfn_to_online_page(start_pfn);
1583 	if (!start_page)
1584 		return NULL;
1585 
1586 	if (page_zone(start_page) != zone)
1587 		return NULL;
1588 
1589 	end_page = pfn_to_page(end_pfn);
1590 
1591 	/* This gives a shorter code than deriving page_zone(end_page) */
1592 	if (page_zone_id(start_page) != page_zone_id(end_page))
1593 		return NULL;
1594 
1595 	return start_page;
1596 }
1597 
1598 void set_zone_contiguous(struct zone *zone)
1599 {
1600 	unsigned long block_start_pfn = zone->zone_start_pfn;
1601 	unsigned long block_end_pfn;
1602 
1603 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1604 	for (; block_start_pfn < zone_end_pfn(zone);
1605 			block_start_pfn = block_end_pfn,
1606 			 block_end_pfn += pageblock_nr_pages) {
1607 
1608 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1609 
1610 		if (!__pageblock_pfn_to_page(block_start_pfn,
1611 					     block_end_pfn, zone))
1612 			return;
1613 		cond_resched();
1614 	}
1615 
1616 	/* We confirm that there is no hole */
1617 	zone->contiguous = true;
1618 }
1619 
1620 void clear_zone_contiguous(struct zone *zone)
1621 {
1622 	zone->contiguous = false;
1623 }
1624 
1625 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1626 static void __init deferred_free_range(unsigned long pfn,
1627 				       unsigned long nr_pages)
1628 {
1629 	struct page *page;
1630 	unsigned long i;
1631 
1632 	if (!nr_pages)
1633 		return;
1634 
1635 	page = pfn_to_page(pfn);
1636 
1637 	/* Free a large naturally-aligned chunk if possible */
1638 	if (nr_pages == pageblock_nr_pages &&
1639 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1640 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1641 		__free_pages_core(page, pageblock_order);
1642 		return;
1643 	}
1644 
1645 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1646 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1647 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1648 		__free_pages_core(page, 0);
1649 	}
1650 }
1651 
1652 /* Completion tracking for deferred_init_memmap() threads */
1653 static atomic_t pgdat_init_n_undone __initdata;
1654 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1655 
1656 static inline void __init pgdat_init_report_one_done(void)
1657 {
1658 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1659 		complete(&pgdat_init_all_done_comp);
1660 }
1661 
1662 /*
1663  * Returns true if page needs to be initialized or freed to buddy allocator.
1664  *
1665  * First we check if pfn is valid on architectures where it is possible to have
1666  * holes within pageblock_nr_pages. On systems where it is not possible, this
1667  * function is optimized out.
1668  *
1669  * Then, we check if a current large page is valid by only checking the validity
1670  * of the head pfn.
1671  */
1672 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1673 {
1674 	if (!pfn_valid_within(pfn))
1675 		return false;
1676 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1677 		return false;
1678 	return true;
1679 }
1680 
1681 /*
1682  * Free pages to buddy allocator. Try to free aligned pages in
1683  * pageblock_nr_pages sizes.
1684  */
1685 static void __init deferred_free_pages(unsigned long pfn,
1686 				       unsigned long end_pfn)
1687 {
1688 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1689 	unsigned long nr_free = 0;
1690 
1691 	for (; pfn < end_pfn; pfn++) {
1692 		if (!deferred_pfn_valid(pfn)) {
1693 			deferred_free_range(pfn - nr_free, nr_free);
1694 			nr_free = 0;
1695 		} else if (!(pfn & nr_pgmask)) {
1696 			deferred_free_range(pfn - nr_free, nr_free);
1697 			nr_free = 1;
1698 		} else {
1699 			nr_free++;
1700 		}
1701 	}
1702 	/* Free the last block of pages to allocator */
1703 	deferred_free_range(pfn - nr_free, nr_free);
1704 }
1705 
1706 /*
1707  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1708  * by performing it only once every pageblock_nr_pages.
1709  * Return number of pages initialized.
1710  */
1711 static unsigned long  __init deferred_init_pages(struct zone *zone,
1712 						 unsigned long pfn,
1713 						 unsigned long end_pfn)
1714 {
1715 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1716 	int nid = zone_to_nid(zone);
1717 	unsigned long nr_pages = 0;
1718 	int zid = zone_idx(zone);
1719 	struct page *page = NULL;
1720 
1721 	for (; pfn < end_pfn; pfn++) {
1722 		if (!deferred_pfn_valid(pfn)) {
1723 			page = NULL;
1724 			continue;
1725 		} else if (!page || !(pfn & nr_pgmask)) {
1726 			page = pfn_to_page(pfn);
1727 		} else {
1728 			page++;
1729 		}
1730 		__init_single_page(page, pfn, zid, nid);
1731 		nr_pages++;
1732 	}
1733 	return (nr_pages);
1734 }
1735 
1736 /*
1737  * This function is meant to pre-load the iterator for the zone init.
1738  * Specifically it walks through the ranges until we are caught up to the
1739  * first_init_pfn value and exits there. If we never encounter the value we
1740  * return false indicating there are no valid ranges left.
1741  */
1742 static bool __init
1743 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1744 				    unsigned long *spfn, unsigned long *epfn,
1745 				    unsigned long first_init_pfn)
1746 {
1747 	u64 j;
1748 
1749 	/*
1750 	 * Start out by walking through the ranges in this zone that have
1751 	 * already been initialized. We don't need to do anything with them
1752 	 * so we just need to flush them out of the system.
1753 	 */
1754 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1755 		if (*epfn <= first_init_pfn)
1756 			continue;
1757 		if (*spfn < first_init_pfn)
1758 			*spfn = first_init_pfn;
1759 		*i = j;
1760 		return true;
1761 	}
1762 
1763 	return false;
1764 }
1765 
1766 /*
1767  * Initialize and free pages. We do it in two loops: first we initialize
1768  * struct page, then free to buddy allocator, because while we are
1769  * freeing pages we can access pages that are ahead (computing buddy
1770  * page in __free_one_page()).
1771  *
1772  * In order to try and keep some memory in the cache we have the loop
1773  * broken along max page order boundaries. This way we will not cause
1774  * any issues with the buddy page computation.
1775  */
1776 static unsigned long __init
1777 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1778 		       unsigned long *end_pfn)
1779 {
1780 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1781 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1782 	unsigned long nr_pages = 0;
1783 	u64 j = *i;
1784 
1785 	/* First we loop through and initialize the page values */
1786 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1787 		unsigned long t;
1788 
1789 		if (mo_pfn <= *start_pfn)
1790 			break;
1791 
1792 		t = min(mo_pfn, *end_pfn);
1793 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1794 
1795 		if (mo_pfn < *end_pfn) {
1796 			*start_pfn = mo_pfn;
1797 			break;
1798 		}
1799 	}
1800 
1801 	/* Reset values and now loop through freeing pages as needed */
1802 	swap(j, *i);
1803 
1804 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1805 		unsigned long t;
1806 
1807 		if (mo_pfn <= spfn)
1808 			break;
1809 
1810 		t = min(mo_pfn, epfn);
1811 		deferred_free_pages(spfn, t);
1812 
1813 		if (mo_pfn <= epfn)
1814 			break;
1815 	}
1816 
1817 	return nr_pages;
1818 }
1819 
1820 static void __init
1821 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1822 			   void *arg)
1823 {
1824 	unsigned long spfn, epfn;
1825 	struct zone *zone = arg;
1826 	u64 i;
1827 
1828 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1829 
1830 	/*
1831 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1832 	 * can avoid introducing any issues with the buddy allocator.
1833 	 */
1834 	while (spfn < end_pfn) {
1835 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1836 		cond_resched();
1837 	}
1838 }
1839 
1840 /* An arch may override for more concurrency. */
1841 __weak int __init
1842 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1843 {
1844 	return 1;
1845 }
1846 
1847 /* Initialise remaining memory on a node */
1848 static int __init deferred_init_memmap(void *data)
1849 {
1850 	pg_data_t *pgdat = data;
1851 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1852 	unsigned long spfn = 0, epfn = 0;
1853 	unsigned long first_init_pfn, flags;
1854 	unsigned long start = jiffies;
1855 	struct zone *zone;
1856 	int zid, max_threads;
1857 	u64 i;
1858 
1859 	/* Bind memory initialisation thread to a local node if possible */
1860 	if (!cpumask_empty(cpumask))
1861 		set_cpus_allowed_ptr(current, cpumask);
1862 
1863 	pgdat_resize_lock(pgdat, &flags);
1864 	first_init_pfn = pgdat->first_deferred_pfn;
1865 	if (first_init_pfn == ULONG_MAX) {
1866 		pgdat_resize_unlock(pgdat, &flags);
1867 		pgdat_init_report_one_done();
1868 		return 0;
1869 	}
1870 
1871 	/* Sanity check boundaries */
1872 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1873 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1874 	pgdat->first_deferred_pfn = ULONG_MAX;
1875 
1876 	/*
1877 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1878 	 * interrupt thread must allocate this early in boot, zone must be
1879 	 * pre-grown prior to start of deferred page initialization.
1880 	 */
1881 	pgdat_resize_unlock(pgdat, &flags);
1882 
1883 	/* Only the highest zone is deferred so find it */
1884 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1885 		zone = pgdat->node_zones + zid;
1886 		if (first_init_pfn < zone_end_pfn(zone))
1887 			break;
1888 	}
1889 
1890 	/* If the zone is empty somebody else may have cleared out the zone */
1891 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1892 						 first_init_pfn))
1893 		goto zone_empty;
1894 
1895 	max_threads = deferred_page_init_max_threads(cpumask);
1896 
1897 	while (spfn < epfn) {
1898 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1899 		struct padata_mt_job job = {
1900 			.thread_fn   = deferred_init_memmap_chunk,
1901 			.fn_arg      = zone,
1902 			.start       = spfn,
1903 			.size        = epfn_align - spfn,
1904 			.align       = PAGES_PER_SECTION,
1905 			.min_chunk   = PAGES_PER_SECTION,
1906 			.max_threads = max_threads,
1907 		};
1908 
1909 		padata_do_multithreaded(&job);
1910 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1911 						    epfn_align);
1912 	}
1913 zone_empty:
1914 	/* Sanity check that the next zone really is unpopulated */
1915 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1916 
1917 	pr_info("node %d deferred pages initialised in %ums\n",
1918 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1919 
1920 	pgdat_init_report_one_done();
1921 	return 0;
1922 }
1923 
1924 /*
1925  * If this zone has deferred pages, try to grow it by initializing enough
1926  * deferred pages to satisfy the allocation specified by order, rounded up to
1927  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1928  * of SECTION_SIZE bytes by initializing struct pages in increments of
1929  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1930  *
1931  * Return true when zone was grown, otherwise return false. We return true even
1932  * when we grow less than requested, to let the caller decide if there are
1933  * enough pages to satisfy the allocation.
1934  *
1935  * Note: We use noinline because this function is needed only during boot, and
1936  * it is called from a __ref function _deferred_grow_zone. This way we are
1937  * making sure that it is not inlined into permanent text section.
1938  */
1939 static noinline bool __init
1940 deferred_grow_zone(struct zone *zone, unsigned int order)
1941 {
1942 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1943 	pg_data_t *pgdat = zone->zone_pgdat;
1944 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1945 	unsigned long spfn, epfn, flags;
1946 	unsigned long nr_pages = 0;
1947 	u64 i;
1948 
1949 	/* Only the last zone may have deferred pages */
1950 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1951 		return false;
1952 
1953 	pgdat_resize_lock(pgdat, &flags);
1954 
1955 	/*
1956 	 * If someone grew this zone while we were waiting for spinlock, return
1957 	 * true, as there might be enough pages already.
1958 	 */
1959 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1960 		pgdat_resize_unlock(pgdat, &flags);
1961 		return true;
1962 	}
1963 
1964 	/* If the zone is empty somebody else may have cleared out the zone */
1965 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1966 						 first_deferred_pfn)) {
1967 		pgdat->first_deferred_pfn = ULONG_MAX;
1968 		pgdat_resize_unlock(pgdat, &flags);
1969 		/* Retry only once. */
1970 		return first_deferred_pfn != ULONG_MAX;
1971 	}
1972 
1973 	/*
1974 	 * Initialize and free pages in MAX_ORDER sized increments so
1975 	 * that we can avoid introducing any issues with the buddy
1976 	 * allocator.
1977 	 */
1978 	while (spfn < epfn) {
1979 		/* update our first deferred PFN for this section */
1980 		first_deferred_pfn = spfn;
1981 
1982 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1983 		touch_nmi_watchdog();
1984 
1985 		/* We should only stop along section boundaries */
1986 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1987 			continue;
1988 
1989 		/* If our quota has been met we can stop here */
1990 		if (nr_pages >= nr_pages_needed)
1991 			break;
1992 	}
1993 
1994 	pgdat->first_deferred_pfn = spfn;
1995 	pgdat_resize_unlock(pgdat, &flags);
1996 
1997 	return nr_pages > 0;
1998 }
1999 
2000 /*
2001  * deferred_grow_zone() is __init, but it is called from
2002  * get_page_from_freelist() during early boot until deferred_pages permanently
2003  * disables this call. This is why we have refdata wrapper to avoid warning,
2004  * and to ensure that the function body gets unloaded.
2005  */
2006 static bool __ref
2007 _deferred_grow_zone(struct zone *zone, unsigned int order)
2008 {
2009 	return deferred_grow_zone(zone, order);
2010 }
2011 
2012 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2013 
2014 void __init page_alloc_init_late(void)
2015 {
2016 	struct zone *zone;
2017 	int nid;
2018 
2019 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2020 
2021 	/* There will be num_node_state(N_MEMORY) threads */
2022 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2023 	for_each_node_state(nid, N_MEMORY) {
2024 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2025 	}
2026 
2027 	/* Block until all are initialised */
2028 	wait_for_completion(&pgdat_init_all_done_comp);
2029 
2030 	/*
2031 	 * The number of managed pages has changed due to the initialisation
2032 	 * so the pcpu batch and high limits needs to be updated or the limits
2033 	 * will be artificially small.
2034 	 */
2035 	for_each_populated_zone(zone)
2036 		zone_pcp_update(zone);
2037 
2038 	/*
2039 	 * We initialized the rest of the deferred pages.  Permanently disable
2040 	 * on-demand struct page initialization.
2041 	 */
2042 	static_branch_disable(&deferred_pages);
2043 
2044 	/* Reinit limits that are based on free pages after the kernel is up */
2045 	files_maxfiles_init();
2046 #endif
2047 
2048 	/* Discard memblock private memory */
2049 	memblock_discard();
2050 
2051 	for_each_node_state(nid, N_MEMORY)
2052 		shuffle_free_memory(NODE_DATA(nid));
2053 
2054 	for_each_populated_zone(zone)
2055 		set_zone_contiguous(zone);
2056 }
2057 
2058 #ifdef CONFIG_CMA
2059 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2060 void __init init_cma_reserved_pageblock(struct page *page)
2061 {
2062 	unsigned i = pageblock_nr_pages;
2063 	struct page *p = page;
2064 
2065 	do {
2066 		__ClearPageReserved(p);
2067 		set_page_count(p, 0);
2068 	} while (++p, --i);
2069 
2070 	set_pageblock_migratetype(page, MIGRATE_CMA);
2071 
2072 	if (pageblock_order >= MAX_ORDER) {
2073 		i = pageblock_nr_pages;
2074 		p = page;
2075 		do {
2076 			set_page_refcounted(p);
2077 			__free_pages(p, MAX_ORDER - 1);
2078 			p += MAX_ORDER_NR_PAGES;
2079 		} while (i -= MAX_ORDER_NR_PAGES);
2080 	} else {
2081 		set_page_refcounted(page);
2082 		__free_pages(page, pageblock_order);
2083 	}
2084 
2085 	adjust_managed_page_count(page, pageblock_nr_pages);
2086 }
2087 #endif
2088 
2089 /*
2090  * The order of subdivision here is critical for the IO subsystem.
2091  * Please do not alter this order without good reasons and regression
2092  * testing. Specifically, as large blocks of memory are subdivided,
2093  * the order in which smaller blocks are delivered depends on the order
2094  * they're subdivided in this function. This is the primary factor
2095  * influencing the order in which pages are delivered to the IO
2096  * subsystem according to empirical testing, and this is also justified
2097  * by considering the behavior of a buddy system containing a single
2098  * large block of memory acted on by a series of small allocations.
2099  * This behavior is a critical factor in sglist merging's success.
2100  *
2101  * -- nyc
2102  */
2103 static inline void expand(struct zone *zone, struct page *page,
2104 	int low, int high, int migratetype)
2105 {
2106 	unsigned long size = 1 << high;
2107 
2108 	while (high > low) {
2109 		high--;
2110 		size >>= 1;
2111 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2112 
2113 		/*
2114 		 * Mark as guard pages (or page), that will allow to
2115 		 * merge back to allocator when buddy will be freed.
2116 		 * Corresponding page table entries will not be touched,
2117 		 * pages will stay not present in virtual address space
2118 		 */
2119 		if (set_page_guard(zone, &page[size], high, migratetype))
2120 			continue;
2121 
2122 		add_to_free_list(&page[size], zone, high, migratetype);
2123 		set_page_order(&page[size], high);
2124 	}
2125 }
2126 
2127 static void check_new_page_bad(struct page *page)
2128 {
2129 	if (unlikely(page->flags & __PG_HWPOISON)) {
2130 		/* Don't complain about hwpoisoned pages */
2131 		page_mapcount_reset(page); /* remove PageBuddy */
2132 		return;
2133 	}
2134 
2135 	bad_page(page,
2136 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2137 }
2138 
2139 /*
2140  * This page is about to be returned from the page allocator
2141  */
2142 static inline int check_new_page(struct page *page)
2143 {
2144 	if (likely(page_expected_state(page,
2145 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2146 		return 0;
2147 
2148 	check_new_page_bad(page);
2149 	return 1;
2150 }
2151 
2152 static inline bool free_pages_prezeroed(void)
2153 {
2154 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2155 		page_poisoning_enabled()) || want_init_on_free();
2156 }
2157 
2158 #ifdef CONFIG_DEBUG_VM
2159 /*
2160  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2161  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2162  * also checked when pcp lists are refilled from the free lists.
2163  */
2164 static inline bool check_pcp_refill(struct page *page)
2165 {
2166 	if (debug_pagealloc_enabled_static())
2167 		return check_new_page(page);
2168 	else
2169 		return false;
2170 }
2171 
2172 static inline bool check_new_pcp(struct page *page)
2173 {
2174 	return check_new_page(page);
2175 }
2176 #else
2177 /*
2178  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2179  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2180  * enabled, they are also checked when being allocated from the pcp lists.
2181  */
2182 static inline bool check_pcp_refill(struct page *page)
2183 {
2184 	return check_new_page(page);
2185 }
2186 static inline bool check_new_pcp(struct page *page)
2187 {
2188 	if (debug_pagealloc_enabled_static())
2189 		return check_new_page(page);
2190 	else
2191 		return false;
2192 }
2193 #endif /* CONFIG_DEBUG_VM */
2194 
2195 static bool check_new_pages(struct page *page, unsigned int order)
2196 {
2197 	int i;
2198 	for (i = 0; i < (1 << order); i++) {
2199 		struct page *p = page + i;
2200 
2201 		if (unlikely(check_new_page(p)))
2202 			return true;
2203 	}
2204 
2205 	return false;
2206 }
2207 
2208 inline void post_alloc_hook(struct page *page, unsigned int order,
2209 				gfp_t gfp_flags)
2210 {
2211 	set_page_private(page, 0);
2212 	set_page_refcounted(page);
2213 
2214 	arch_alloc_page(page, order);
2215 	if (debug_pagealloc_enabled_static())
2216 		kernel_map_pages(page, 1 << order, 1);
2217 	kasan_alloc_pages(page, order);
2218 	kernel_poison_pages(page, 1 << order, 1);
2219 	set_page_owner(page, order, gfp_flags);
2220 }
2221 
2222 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2223 							unsigned int alloc_flags)
2224 {
2225 	post_alloc_hook(page, order, gfp_flags);
2226 
2227 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2228 		kernel_init_free_pages(page, 1 << order);
2229 
2230 	if (order && (gfp_flags & __GFP_COMP))
2231 		prep_compound_page(page, order);
2232 
2233 	/*
2234 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2235 	 * allocate the page. The expectation is that the caller is taking
2236 	 * steps that will free more memory. The caller should avoid the page
2237 	 * being used for !PFMEMALLOC purposes.
2238 	 */
2239 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2240 		set_page_pfmemalloc(page);
2241 	else
2242 		clear_page_pfmemalloc(page);
2243 }
2244 
2245 /*
2246  * Go through the free lists for the given migratetype and remove
2247  * the smallest available page from the freelists
2248  */
2249 static __always_inline
2250 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2251 						int migratetype)
2252 {
2253 	unsigned int current_order;
2254 	struct free_area *area;
2255 	struct page *page;
2256 
2257 	/* Find a page of the appropriate size in the preferred list */
2258 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2259 		area = &(zone->free_area[current_order]);
2260 		page = get_page_from_free_area(area, migratetype);
2261 		if (!page)
2262 			continue;
2263 		del_page_from_free_list(page, zone, current_order);
2264 		expand(zone, page, order, current_order, migratetype);
2265 		set_pcppage_migratetype(page, migratetype);
2266 		return page;
2267 	}
2268 
2269 	return NULL;
2270 }
2271 
2272 
2273 /*
2274  * This array describes the order lists are fallen back to when
2275  * the free lists for the desirable migrate type are depleted
2276  */
2277 static int fallbacks[MIGRATE_TYPES][3] = {
2278 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2279 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2280 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2281 #ifdef CONFIG_CMA
2282 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2283 #endif
2284 #ifdef CONFIG_MEMORY_ISOLATION
2285 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2286 #endif
2287 };
2288 
2289 #ifdef CONFIG_CMA
2290 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2291 					unsigned int order)
2292 {
2293 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2294 }
2295 #else
2296 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2297 					unsigned int order) { return NULL; }
2298 #endif
2299 
2300 /*
2301  * Move the free pages in a range to the free lists of the requested type.
2302  * Note that start_page and end_pages are not aligned on a pageblock
2303  * boundary. If alignment is required, use move_freepages_block()
2304  */
2305 static int move_freepages(struct zone *zone,
2306 			  struct page *start_page, struct page *end_page,
2307 			  int migratetype, int *num_movable)
2308 {
2309 	struct page *page;
2310 	unsigned int order;
2311 	int pages_moved = 0;
2312 
2313 	for (page = start_page; page <= end_page;) {
2314 		if (!pfn_valid_within(page_to_pfn(page))) {
2315 			page++;
2316 			continue;
2317 		}
2318 
2319 		if (!PageBuddy(page)) {
2320 			/*
2321 			 * We assume that pages that could be isolated for
2322 			 * migration are movable. But we don't actually try
2323 			 * isolating, as that would be expensive.
2324 			 */
2325 			if (num_movable &&
2326 					(PageLRU(page) || __PageMovable(page)))
2327 				(*num_movable)++;
2328 
2329 			page++;
2330 			continue;
2331 		}
2332 
2333 		/* Make sure we are not inadvertently changing nodes */
2334 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2335 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2336 
2337 		order = page_order(page);
2338 		move_to_free_list(page, zone, order, migratetype);
2339 		page += 1 << order;
2340 		pages_moved += 1 << order;
2341 	}
2342 
2343 	return pages_moved;
2344 }
2345 
2346 int move_freepages_block(struct zone *zone, struct page *page,
2347 				int migratetype, int *num_movable)
2348 {
2349 	unsigned long start_pfn, end_pfn;
2350 	struct page *start_page, *end_page;
2351 
2352 	if (num_movable)
2353 		*num_movable = 0;
2354 
2355 	start_pfn = page_to_pfn(page);
2356 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2357 	start_page = pfn_to_page(start_pfn);
2358 	end_page = start_page + pageblock_nr_pages - 1;
2359 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2360 
2361 	/* Do not cross zone boundaries */
2362 	if (!zone_spans_pfn(zone, start_pfn))
2363 		start_page = page;
2364 	if (!zone_spans_pfn(zone, end_pfn))
2365 		return 0;
2366 
2367 	return move_freepages(zone, start_page, end_page, migratetype,
2368 								num_movable);
2369 }
2370 
2371 static void change_pageblock_range(struct page *pageblock_page,
2372 					int start_order, int migratetype)
2373 {
2374 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2375 
2376 	while (nr_pageblocks--) {
2377 		set_pageblock_migratetype(pageblock_page, migratetype);
2378 		pageblock_page += pageblock_nr_pages;
2379 	}
2380 }
2381 
2382 /*
2383  * When we are falling back to another migratetype during allocation, try to
2384  * steal extra free pages from the same pageblocks to satisfy further
2385  * allocations, instead of polluting multiple pageblocks.
2386  *
2387  * If we are stealing a relatively large buddy page, it is likely there will
2388  * be more free pages in the pageblock, so try to steal them all. For
2389  * reclaimable and unmovable allocations, we steal regardless of page size,
2390  * as fragmentation caused by those allocations polluting movable pageblocks
2391  * is worse than movable allocations stealing from unmovable and reclaimable
2392  * pageblocks.
2393  */
2394 static bool can_steal_fallback(unsigned int order, int start_mt)
2395 {
2396 	/*
2397 	 * Leaving this order check is intended, although there is
2398 	 * relaxed order check in next check. The reason is that
2399 	 * we can actually steal whole pageblock if this condition met,
2400 	 * but, below check doesn't guarantee it and that is just heuristic
2401 	 * so could be changed anytime.
2402 	 */
2403 	if (order >= pageblock_order)
2404 		return true;
2405 
2406 	if (order >= pageblock_order / 2 ||
2407 		start_mt == MIGRATE_RECLAIMABLE ||
2408 		start_mt == MIGRATE_UNMOVABLE ||
2409 		page_group_by_mobility_disabled)
2410 		return true;
2411 
2412 	return false;
2413 }
2414 
2415 static inline void boost_watermark(struct zone *zone)
2416 {
2417 	unsigned long max_boost;
2418 
2419 	if (!watermark_boost_factor)
2420 		return;
2421 	/*
2422 	 * Don't bother in zones that are unlikely to produce results.
2423 	 * On small machines, including kdump capture kernels running
2424 	 * in a small area, boosting the watermark can cause an out of
2425 	 * memory situation immediately.
2426 	 */
2427 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2428 		return;
2429 
2430 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2431 			watermark_boost_factor, 10000);
2432 
2433 	/*
2434 	 * high watermark may be uninitialised if fragmentation occurs
2435 	 * very early in boot so do not boost. We do not fall
2436 	 * through and boost by pageblock_nr_pages as failing
2437 	 * allocations that early means that reclaim is not going
2438 	 * to help and it may even be impossible to reclaim the
2439 	 * boosted watermark resulting in a hang.
2440 	 */
2441 	if (!max_boost)
2442 		return;
2443 
2444 	max_boost = max(pageblock_nr_pages, max_boost);
2445 
2446 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2447 		max_boost);
2448 }
2449 
2450 /*
2451  * This function implements actual steal behaviour. If order is large enough,
2452  * we can steal whole pageblock. If not, we first move freepages in this
2453  * pageblock to our migratetype and determine how many already-allocated pages
2454  * are there in the pageblock with a compatible migratetype. If at least half
2455  * of pages are free or compatible, we can change migratetype of the pageblock
2456  * itself, so pages freed in the future will be put on the correct free list.
2457  */
2458 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2459 		unsigned int alloc_flags, int start_type, bool whole_block)
2460 {
2461 	unsigned int current_order = page_order(page);
2462 	int free_pages, movable_pages, alike_pages;
2463 	int old_block_type;
2464 
2465 	old_block_type = get_pageblock_migratetype(page);
2466 
2467 	/*
2468 	 * This can happen due to races and we want to prevent broken
2469 	 * highatomic accounting.
2470 	 */
2471 	if (is_migrate_highatomic(old_block_type))
2472 		goto single_page;
2473 
2474 	/* Take ownership for orders >= pageblock_order */
2475 	if (current_order >= pageblock_order) {
2476 		change_pageblock_range(page, current_order, start_type);
2477 		goto single_page;
2478 	}
2479 
2480 	/*
2481 	 * Boost watermarks to increase reclaim pressure to reduce the
2482 	 * likelihood of future fallbacks. Wake kswapd now as the node
2483 	 * may be balanced overall and kswapd will not wake naturally.
2484 	 */
2485 	boost_watermark(zone);
2486 	if (alloc_flags & ALLOC_KSWAPD)
2487 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2488 
2489 	/* We are not allowed to try stealing from the whole block */
2490 	if (!whole_block)
2491 		goto single_page;
2492 
2493 	free_pages = move_freepages_block(zone, page, start_type,
2494 						&movable_pages);
2495 	/*
2496 	 * Determine how many pages are compatible with our allocation.
2497 	 * For movable allocation, it's the number of movable pages which
2498 	 * we just obtained. For other types it's a bit more tricky.
2499 	 */
2500 	if (start_type == MIGRATE_MOVABLE) {
2501 		alike_pages = movable_pages;
2502 	} else {
2503 		/*
2504 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2505 		 * to MOVABLE pageblock, consider all non-movable pages as
2506 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2507 		 * vice versa, be conservative since we can't distinguish the
2508 		 * exact migratetype of non-movable pages.
2509 		 */
2510 		if (old_block_type == MIGRATE_MOVABLE)
2511 			alike_pages = pageblock_nr_pages
2512 						- (free_pages + movable_pages);
2513 		else
2514 			alike_pages = 0;
2515 	}
2516 
2517 	/* moving whole block can fail due to zone boundary conditions */
2518 	if (!free_pages)
2519 		goto single_page;
2520 
2521 	/*
2522 	 * If a sufficient number of pages in the block are either free or of
2523 	 * comparable migratability as our allocation, claim the whole block.
2524 	 */
2525 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2526 			page_group_by_mobility_disabled)
2527 		set_pageblock_migratetype(page, start_type);
2528 
2529 	return;
2530 
2531 single_page:
2532 	move_to_free_list(page, zone, current_order, start_type);
2533 }
2534 
2535 /*
2536  * Check whether there is a suitable fallback freepage with requested order.
2537  * If only_stealable is true, this function returns fallback_mt only if
2538  * we can steal other freepages all together. This would help to reduce
2539  * fragmentation due to mixed migratetype pages in one pageblock.
2540  */
2541 int find_suitable_fallback(struct free_area *area, unsigned int order,
2542 			int migratetype, bool only_stealable, bool *can_steal)
2543 {
2544 	int i;
2545 	int fallback_mt;
2546 
2547 	if (area->nr_free == 0)
2548 		return -1;
2549 
2550 	*can_steal = false;
2551 	for (i = 0;; i++) {
2552 		fallback_mt = fallbacks[migratetype][i];
2553 		if (fallback_mt == MIGRATE_TYPES)
2554 			break;
2555 
2556 		if (free_area_empty(area, fallback_mt))
2557 			continue;
2558 
2559 		if (can_steal_fallback(order, migratetype))
2560 			*can_steal = true;
2561 
2562 		if (!only_stealable)
2563 			return fallback_mt;
2564 
2565 		if (*can_steal)
2566 			return fallback_mt;
2567 	}
2568 
2569 	return -1;
2570 }
2571 
2572 /*
2573  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2574  * there are no empty page blocks that contain a page with a suitable order
2575  */
2576 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2577 				unsigned int alloc_order)
2578 {
2579 	int mt;
2580 	unsigned long max_managed, flags;
2581 
2582 	/*
2583 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2584 	 * Check is race-prone but harmless.
2585 	 */
2586 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2587 	if (zone->nr_reserved_highatomic >= max_managed)
2588 		return;
2589 
2590 	spin_lock_irqsave(&zone->lock, flags);
2591 
2592 	/* Recheck the nr_reserved_highatomic limit under the lock */
2593 	if (zone->nr_reserved_highatomic >= max_managed)
2594 		goto out_unlock;
2595 
2596 	/* Yoink! */
2597 	mt = get_pageblock_migratetype(page);
2598 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2599 	    && !is_migrate_cma(mt)) {
2600 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2601 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2602 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2603 	}
2604 
2605 out_unlock:
2606 	spin_unlock_irqrestore(&zone->lock, flags);
2607 }
2608 
2609 /*
2610  * Used when an allocation is about to fail under memory pressure. This
2611  * potentially hurts the reliability of high-order allocations when under
2612  * intense memory pressure but failed atomic allocations should be easier
2613  * to recover from than an OOM.
2614  *
2615  * If @force is true, try to unreserve a pageblock even though highatomic
2616  * pageblock is exhausted.
2617  */
2618 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2619 						bool force)
2620 {
2621 	struct zonelist *zonelist = ac->zonelist;
2622 	unsigned long flags;
2623 	struct zoneref *z;
2624 	struct zone *zone;
2625 	struct page *page;
2626 	int order;
2627 	bool ret;
2628 
2629 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2630 								ac->nodemask) {
2631 		/*
2632 		 * Preserve at least one pageblock unless memory pressure
2633 		 * is really high.
2634 		 */
2635 		if (!force && zone->nr_reserved_highatomic <=
2636 					pageblock_nr_pages)
2637 			continue;
2638 
2639 		spin_lock_irqsave(&zone->lock, flags);
2640 		for (order = 0; order < MAX_ORDER; order++) {
2641 			struct free_area *area = &(zone->free_area[order]);
2642 
2643 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2644 			if (!page)
2645 				continue;
2646 
2647 			/*
2648 			 * In page freeing path, migratetype change is racy so
2649 			 * we can counter several free pages in a pageblock
2650 			 * in this loop althoug we changed the pageblock type
2651 			 * from highatomic to ac->migratetype. So we should
2652 			 * adjust the count once.
2653 			 */
2654 			if (is_migrate_highatomic_page(page)) {
2655 				/*
2656 				 * It should never happen but changes to
2657 				 * locking could inadvertently allow a per-cpu
2658 				 * drain to add pages to MIGRATE_HIGHATOMIC
2659 				 * while unreserving so be safe and watch for
2660 				 * underflows.
2661 				 */
2662 				zone->nr_reserved_highatomic -= min(
2663 						pageblock_nr_pages,
2664 						zone->nr_reserved_highatomic);
2665 			}
2666 
2667 			/*
2668 			 * Convert to ac->migratetype and avoid the normal
2669 			 * pageblock stealing heuristics. Minimally, the caller
2670 			 * is doing the work and needs the pages. More
2671 			 * importantly, if the block was always converted to
2672 			 * MIGRATE_UNMOVABLE or another type then the number
2673 			 * of pageblocks that cannot be completely freed
2674 			 * may increase.
2675 			 */
2676 			set_pageblock_migratetype(page, ac->migratetype);
2677 			ret = move_freepages_block(zone, page, ac->migratetype,
2678 									NULL);
2679 			if (ret) {
2680 				spin_unlock_irqrestore(&zone->lock, flags);
2681 				return ret;
2682 			}
2683 		}
2684 		spin_unlock_irqrestore(&zone->lock, flags);
2685 	}
2686 
2687 	return false;
2688 }
2689 
2690 /*
2691  * Try finding a free buddy page on the fallback list and put it on the free
2692  * list of requested migratetype, possibly along with other pages from the same
2693  * block, depending on fragmentation avoidance heuristics. Returns true if
2694  * fallback was found so that __rmqueue_smallest() can grab it.
2695  *
2696  * The use of signed ints for order and current_order is a deliberate
2697  * deviation from the rest of this file, to make the for loop
2698  * condition simpler.
2699  */
2700 static __always_inline bool
2701 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2702 						unsigned int alloc_flags)
2703 {
2704 	struct free_area *area;
2705 	int current_order;
2706 	int min_order = order;
2707 	struct page *page;
2708 	int fallback_mt;
2709 	bool can_steal;
2710 
2711 	/*
2712 	 * Do not steal pages from freelists belonging to other pageblocks
2713 	 * i.e. orders < pageblock_order. If there are no local zones free,
2714 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2715 	 */
2716 	if (alloc_flags & ALLOC_NOFRAGMENT)
2717 		min_order = pageblock_order;
2718 
2719 	/*
2720 	 * Find the largest available free page in the other list. This roughly
2721 	 * approximates finding the pageblock with the most free pages, which
2722 	 * would be too costly to do exactly.
2723 	 */
2724 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2725 				--current_order) {
2726 		area = &(zone->free_area[current_order]);
2727 		fallback_mt = find_suitable_fallback(area, current_order,
2728 				start_migratetype, false, &can_steal);
2729 		if (fallback_mt == -1)
2730 			continue;
2731 
2732 		/*
2733 		 * We cannot steal all free pages from the pageblock and the
2734 		 * requested migratetype is movable. In that case it's better to
2735 		 * steal and split the smallest available page instead of the
2736 		 * largest available page, because even if the next movable
2737 		 * allocation falls back into a different pageblock than this
2738 		 * one, it won't cause permanent fragmentation.
2739 		 */
2740 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2741 					&& current_order > order)
2742 			goto find_smallest;
2743 
2744 		goto do_steal;
2745 	}
2746 
2747 	return false;
2748 
2749 find_smallest:
2750 	for (current_order = order; current_order < MAX_ORDER;
2751 							current_order++) {
2752 		area = &(zone->free_area[current_order]);
2753 		fallback_mt = find_suitable_fallback(area, current_order,
2754 				start_migratetype, false, &can_steal);
2755 		if (fallback_mt != -1)
2756 			break;
2757 	}
2758 
2759 	/*
2760 	 * This should not happen - we already found a suitable fallback
2761 	 * when looking for the largest page.
2762 	 */
2763 	VM_BUG_ON(current_order == MAX_ORDER);
2764 
2765 do_steal:
2766 	page = get_page_from_free_area(area, fallback_mt);
2767 
2768 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2769 								can_steal);
2770 
2771 	trace_mm_page_alloc_extfrag(page, order, current_order,
2772 		start_migratetype, fallback_mt);
2773 
2774 	return true;
2775 
2776 }
2777 
2778 /*
2779  * Do the hard work of removing an element from the buddy allocator.
2780  * Call me with the zone->lock already held.
2781  */
2782 static __always_inline struct page *
2783 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2784 						unsigned int alloc_flags)
2785 {
2786 	struct page *page;
2787 
2788 #ifdef CONFIG_CMA
2789 	/*
2790 	 * Balance movable allocations between regular and CMA areas by
2791 	 * allocating from CMA when over half of the zone's free memory
2792 	 * is in the CMA area.
2793 	 */
2794 	if (alloc_flags & ALLOC_CMA &&
2795 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2796 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2797 		page = __rmqueue_cma_fallback(zone, order);
2798 		if (page)
2799 			return page;
2800 	}
2801 #endif
2802 retry:
2803 	page = __rmqueue_smallest(zone, order, migratetype);
2804 	if (unlikely(!page)) {
2805 		if (alloc_flags & ALLOC_CMA)
2806 			page = __rmqueue_cma_fallback(zone, order);
2807 
2808 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2809 								alloc_flags))
2810 			goto retry;
2811 	}
2812 
2813 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2814 	return page;
2815 }
2816 
2817 /*
2818  * Obtain a specified number of elements from the buddy allocator, all under
2819  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2820  * Returns the number of new pages which were placed at *list.
2821  */
2822 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2823 			unsigned long count, struct list_head *list,
2824 			int migratetype, unsigned int alloc_flags)
2825 {
2826 	int i, alloced = 0;
2827 
2828 	spin_lock(&zone->lock);
2829 	for (i = 0; i < count; ++i) {
2830 		struct page *page = __rmqueue(zone, order, migratetype,
2831 								alloc_flags);
2832 		if (unlikely(page == NULL))
2833 			break;
2834 
2835 		if (unlikely(check_pcp_refill(page)))
2836 			continue;
2837 
2838 		/*
2839 		 * Split buddy pages returned by expand() are received here in
2840 		 * physical page order. The page is added to the tail of
2841 		 * caller's list. From the callers perspective, the linked list
2842 		 * is ordered by page number under some conditions. This is
2843 		 * useful for IO devices that can forward direction from the
2844 		 * head, thus also in the physical page order. This is useful
2845 		 * for IO devices that can merge IO requests if the physical
2846 		 * pages are ordered properly.
2847 		 */
2848 		list_add_tail(&page->lru, list);
2849 		alloced++;
2850 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2851 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2852 					      -(1 << order));
2853 	}
2854 
2855 	/*
2856 	 * i pages were removed from the buddy list even if some leak due
2857 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2858 	 * on i. Do not confuse with 'alloced' which is the number of
2859 	 * pages added to the pcp list.
2860 	 */
2861 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2862 	spin_unlock(&zone->lock);
2863 	return alloced;
2864 }
2865 
2866 #ifdef CONFIG_NUMA
2867 /*
2868  * Called from the vmstat counter updater to drain pagesets of this
2869  * currently executing processor on remote nodes after they have
2870  * expired.
2871  *
2872  * Note that this function must be called with the thread pinned to
2873  * a single processor.
2874  */
2875 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2876 {
2877 	unsigned long flags;
2878 	int to_drain, batch;
2879 
2880 	local_irq_save(flags);
2881 	batch = READ_ONCE(pcp->batch);
2882 	to_drain = min(pcp->count, batch);
2883 	if (to_drain > 0)
2884 		free_pcppages_bulk(zone, to_drain, pcp);
2885 	local_irq_restore(flags);
2886 }
2887 #endif
2888 
2889 /*
2890  * Drain pcplists of the indicated processor and zone.
2891  *
2892  * The processor must either be the current processor and the
2893  * thread pinned to the current processor or a processor that
2894  * is not online.
2895  */
2896 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2897 {
2898 	unsigned long flags;
2899 	struct per_cpu_pageset *pset;
2900 	struct per_cpu_pages *pcp;
2901 
2902 	local_irq_save(flags);
2903 	pset = per_cpu_ptr(zone->pageset, cpu);
2904 
2905 	pcp = &pset->pcp;
2906 	if (pcp->count)
2907 		free_pcppages_bulk(zone, pcp->count, pcp);
2908 	local_irq_restore(flags);
2909 }
2910 
2911 /*
2912  * Drain pcplists of all zones on the indicated processor.
2913  *
2914  * The processor must either be the current processor and the
2915  * thread pinned to the current processor or a processor that
2916  * is not online.
2917  */
2918 static void drain_pages(unsigned int cpu)
2919 {
2920 	struct zone *zone;
2921 
2922 	for_each_populated_zone(zone) {
2923 		drain_pages_zone(cpu, zone);
2924 	}
2925 }
2926 
2927 /*
2928  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2929  *
2930  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2931  * the single zone's pages.
2932  */
2933 void drain_local_pages(struct zone *zone)
2934 {
2935 	int cpu = smp_processor_id();
2936 
2937 	if (zone)
2938 		drain_pages_zone(cpu, zone);
2939 	else
2940 		drain_pages(cpu);
2941 }
2942 
2943 static void drain_local_pages_wq(struct work_struct *work)
2944 {
2945 	struct pcpu_drain *drain;
2946 
2947 	drain = container_of(work, struct pcpu_drain, work);
2948 
2949 	/*
2950 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2951 	 * we can race with cpu offline when the WQ can move this from
2952 	 * a cpu pinned worker to an unbound one. We can operate on a different
2953 	 * cpu which is allright but we also have to make sure to not move to
2954 	 * a different one.
2955 	 */
2956 	preempt_disable();
2957 	drain_local_pages(drain->zone);
2958 	preempt_enable();
2959 }
2960 
2961 /*
2962  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2963  *
2964  * When zone parameter is non-NULL, spill just the single zone's pages.
2965  *
2966  * Note that this can be extremely slow as the draining happens in a workqueue.
2967  */
2968 void drain_all_pages(struct zone *zone)
2969 {
2970 	int cpu;
2971 
2972 	/*
2973 	 * Allocate in the BSS so we wont require allocation in
2974 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2975 	 */
2976 	static cpumask_t cpus_with_pcps;
2977 
2978 	/*
2979 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2980 	 * initialized.
2981 	 */
2982 	if (WARN_ON_ONCE(!mm_percpu_wq))
2983 		return;
2984 
2985 	/*
2986 	 * Do not drain if one is already in progress unless it's specific to
2987 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2988 	 * the drain to be complete when the call returns.
2989 	 */
2990 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2991 		if (!zone)
2992 			return;
2993 		mutex_lock(&pcpu_drain_mutex);
2994 	}
2995 
2996 	/*
2997 	 * We don't care about racing with CPU hotplug event
2998 	 * as offline notification will cause the notified
2999 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3000 	 * disables preemption as part of its processing
3001 	 */
3002 	for_each_online_cpu(cpu) {
3003 		struct per_cpu_pageset *pcp;
3004 		struct zone *z;
3005 		bool has_pcps = false;
3006 
3007 		if (zone) {
3008 			pcp = per_cpu_ptr(zone->pageset, cpu);
3009 			if (pcp->pcp.count)
3010 				has_pcps = true;
3011 		} else {
3012 			for_each_populated_zone(z) {
3013 				pcp = per_cpu_ptr(z->pageset, cpu);
3014 				if (pcp->pcp.count) {
3015 					has_pcps = true;
3016 					break;
3017 				}
3018 			}
3019 		}
3020 
3021 		if (has_pcps)
3022 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3023 		else
3024 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3025 	}
3026 
3027 	for_each_cpu(cpu, &cpus_with_pcps) {
3028 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3029 
3030 		drain->zone = zone;
3031 		INIT_WORK(&drain->work, drain_local_pages_wq);
3032 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3033 	}
3034 	for_each_cpu(cpu, &cpus_with_pcps)
3035 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3036 
3037 	mutex_unlock(&pcpu_drain_mutex);
3038 }
3039 
3040 #ifdef CONFIG_HIBERNATION
3041 
3042 /*
3043  * Touch the watchdog for every WD_PAGE_COUNT pages.
3044  */
3045 #define WD_PAGE_COUNT	(128*1024)
3046 
3047 void mark_free_pages(struct zone *zone)
3048 {
3049 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3050 	unsigned long flags;
3051 	unsigned int order, t;
3052 	struct page *page;
3053 
3054 	if (zone_is_empty(zone))
3055 		return;
3056 
3057 	spin_lock_irqsave(&zone->lock, flags);
3058 
3059 	max_zone_pfn = zone_end_pfn(zone);
3060 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3061 		if (pfn_valid(pfn)) {
3062 			page = pfn_to_page(pfn);
3063 
3064 			if (!--page_count) {
3065 				touch_nmi_watchdog();
3066 				page_count = WD_PAGE_COUNT;
3067 			}
3068 
3069 			if (page_zone(page) != zone)
3070 				continue;
3071 
3072 			if (!swsusp_page_is_forbidden(page))
3073 				swsusp_unset_page_free(page);
3074 		}
3075 
3076 	for_each_migratetype_order(order, t) {
3077 		list_for_each_entry(page,
3078 				&zone->free_area[order].free_list[t], lru) {
3079 			unsigned long i;
3080 
3081 			pfn = page_to_pfn(page);
3082 			for (i = 0; i < (1UL << order); i++) {
3083 				if (!--page_count) {
3084 					touch_nmi_watchdog();
3085 					page_count = WD_PAGE_COUNT;
3086 				}
3087 				swsusp_set_page_free(pfn_to_page(pfn + i));
3088 			}
3089 		}
3090 	}
3091 	spin_unlock_irqrestore(&zone->lock, flags);
3092 }
3093 #endif /* CONFIG_PM */
3094 
3095 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3096 {
3097 	int migratetype;
3098 
3099 	if (!free_pcp_prepare(page))
3100 		return false;
3101 
3102 	migratetype = get_pfnblock_migratetype(page, pfn);
3103 	set_pcppage_migratetype(page, migratetype);
3104 	return true;
3105 }
3106 
3107 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3108 {
3109 	struct zone *zone = page_zone(page);
3110 	struct per_cpu_pages *pcp;
3111 	int migratetype;
3112 
3113 	migratetype = get_pcppage_migratetype(page);
3114 	__count_vm_event(PGFREE);
3115 
3116 	/*
3117 	 * We only track unmovable, reclaimable and movable on pcp lists.
3118 	 * Free ISOLATE pages back to the allocator because they are being
3119 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3120 	 * areas back if necessary. Otherwise, we may have to free
3121 	 * excessively into the page allocator
3122 	 */
3123 	if (migratetype >= MIGRATE_PCPTYPES) {
3124 		if (unlikely(is_migrate_isolate(migratetype))) {
3125 			free_one_page(zone, page, pfn, 0, migratetype);
3126 			return;
3127 		}
3128 		migratetype = MIGRATE_MOVABLE;
3129 	}
3130 
3131 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3132 	list_add(&page->lru, &pcp->lists[migratetype]);
3133 	pcp->count++;
3134 	if (pcp->count >= pcp->high) {
3135 		unsigned long batch = READ_ONCE(pcp->batch);
3136 		free_pcppages_bulk(zone, batch, pcp);
3137 	}
3138 }
3139 
3140 /*
3141  * Free a 0-order page
3142  */
3143 void free_unref_page(struct page *page)
3144 {
3145 	unsigned long flags;
3146 	unsigned long pfn = page_to_pfn(page);
3147 
3148 	if (!free_unref_page_prepare(page, pfn))
3149 		return;
3150 
3151 	local_irq_save(flags);
3152 	free_unref_page_commit(page, pfn);
3153 	local_irq_restore(flags);
3154 }
3155 
3156 /*
3157  * Free a list of 0-order pages
3158  */
3159 void free_unref_page_list(struct list_head *list)
3160 {
3161 	struct page *page, *next;
3162 	unsigned long flags, pfn;
3163 	int batch_count = 0;
3164 
3165 	/* Prepare pages for freeing */
3166 	list_for_each_entry_safe(page, next, list, lru) {
3167 		pfn = page_to_pfn(page);
3168 		if (!free_unref_page_prepare(page, pfn))
3169 			list_del(&page->lru);
3170 		set_page_private(page, pfn);
3171 	}
3172 
3173 	local_irq_save(flags);
3174 	list_for_each_entry_safe(page, next, list, lru) {
3175 		unsigned long pfn = page_private(page);
3176 
3177 		set_page_private(page, 0);
3178 		trace_mm_page_free_batched(page);
3179 		free_unref_page_commit(page, pfn);
3180 
3181 		/*
3182 		 * Guard against excessive IRQ disabled times when we get
3183 		 * a large list of pages to free.
3184 		 */
3185 		if (++batch_count == SWAP_CLUSTER_MAX) {
3186 			local_irq_restore(flags);
3187 			batch_count = 0;
3188 			local_irq_save(flags);
3189 		}
3190 	}
3191 	local_irq_restore(flags);
3192 }
3193 
3194 /*
3195  * split_page takes a non-compound higher-order page, and splits it into
3196  * n (1<<order) sub-pages: page[0..n]
3197  * Each sub-page must be freed individually.
3198  *
3199  * Note: this is probably too low level an operation for use in drivers.
3200  * Please consult with lkml before using this in your driver.
3201  */
3202 void split_page(struct page *page, unsigned int order)
3203 {
3204 	int i;
3205 
3206 	VM_BUG_ON_PAGE(PageCompound(page), page);
3207 	VM_BUG_ON_PAGE(!page_count(page), page);
3208 
3209 	for (i = 1; i < (1 << order); i++)
3210 		set_page_refcounted(page + i);
3211 	split_page_owner(page, order);
3212 }
3213 EXPORT_SYMBOL_GPL(split_page);
3214 
3215 int __isolate_free_page(struct page *page, unsigned int order)
3216 {
3217 	unsigned long watermark;
3218 	struct zone *zone;
3219 	int mt;
3220 
3221 	BUG_ON(!PageBuddy(page));
3222 
3223 	zone = page_zone(page);
3224 	mt = get_pageblock_migratetype(page);
3225 
3226 	if (!is_migrate_isolate(mt)) {
3227 		/*
3228 		 * Obey watermarks as if the page was being allocated. We can
3229 		 * emulate a high-order watermark check with a raised order-0
3230 		 * watermark, because we already know our high-order page
3231 		 * exists.
3232 		 */
3233 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3234 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3235 			return 0;
3236 
3237 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3238 	}
3239 
3240 	/* Remove page from free list */
3241 
3242 	del_page_from_free_list(page, zone, order);
3243 
3244 	/*
3245 	 * Set the pageblock if the isolated page is at least half of a
3246 	 * pageblock
3247 	 */
3248 	if (order >= pageblock_order - 1) {
3249 		struct page *endpage = page + (1 << order) - 1;
3250 		for (; page < endpage; page += pageblock_nr_pages) {
3251 			int mt = get_pageblock_migratetype(page);
3252 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3253 			    && !is_migrate_highatomic(mt))
3254 				set_pageblock_migratetype(page,
3255 							  MIGRATE_MOVABLE);
3256 		}
3257 	}
3258 
3259 
3260 	return 1UL << order;
3261 }
3262 
3263 /**
3264  * __putback_isolated_page - Return a now-isolated page back where we got it
3265  * @page: Page that was isolated
3266  * @order: Order of the isolated page
3267  * @mt: The page's pageblock's migratetype
3268  *
3269  * This function is meant to return a page pulled from the free lists via
3270  * __isolate_free_page back to the free lists they were pulled from.
3271  */
3272 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3273 {
3274 	struct zone *zone = page_zone(page);
3275 
3276 	/* zone lock should be held when this function is called */
3277 	lockdep_assert_held(&zone->lock);
3278 
3279 	/* Return isolated page to tail of freelist. */
3280 	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3281 }
3282 
3283 /*
3284  * Update NUMA hit/miss statistics
3285  *
3286  * Must be called with interrupts disabled.
3287  */
3288 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3289 {
3290 #ifdef CONFIG_NUMA
3291 	enum numa_stat_item local_stat = NUMA_LOCAL;
3292 
3293 	/* skip numa counters update if numa stats is disabled */
3294 	if (!static_branch_likely(&vm_numa_stat_key))
3295 		return;
3296 
3297 	if (zone_to_nid(z) != numa_node_id())
3298 		local_stat = NUMA_OTHER;
3299 
3300 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3301 		__inc_numa_state(z, NUMA_HIT);
3302 	else {
3303 		__inc_numa_state(z, NUMA_MISS);
3304 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3305 	}
3306 	__inc_numa_state(z, local_stat);
3307 #endif
3308 }
3309 
3310 /* Remove page from the per-cpu list, caller must protect the list */
3311 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3312 			unsigned int alloc_flags,
3313 			struct per_cpu_pages *pcp,
3314 			struct list_head *list)
3315 {
3316 	struct page *page;
3317 
3318 	do {
3319 		if (list_empty(list)) {
3320 			pcp->count += rmqueue_bulk(zone, 0,
3321 					pcp->batch, list,
3322 					migratetype, alloc_flags);
3323 			if (unlikely(list_empty(list)))
3324 				return NULL;
3325 		}
3326 
3327 		page = list_first_entry(list, struct page, lru);
3328 		list_del(&page->lru);
3329 		pcp->count--;
3330 	} while (check_new_pcp(page));
3331 
3332 	return page;
3333 }
3334 
3335 /* Lock and remove page from the per-cpu list */
3336 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3337 			struct zone *zone, gfp_t gfp_flags,
3338 			int migratetype, unsigned int alloc_flags)
3339 {
3340 	struct per_cpu_pages *pcp;
3341 	struct list_head *list;
3342 	struct page *page;
3343 	unsigned long flags;
3344 
3345 	local_irq_save(flags);
3346 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3347 	list = &pcp->lists[migratetype];
3348 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3349 	if (page) {
3350 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3351 		zone_statistics(preferred_zone, zone);
3352 	}
3353 	local_irq_restore(flags);
3354 	return page;
3355 }
3356 
3357 /*
3358  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3359  */
3360 static inline
3361 struct page *rmqueue(struct zone *preferred_zone,
3362 			struct zone *zone, unsigned int order,
3363 			gfp_t gfp_flags, unsigned int alloc_flags,
3364 			int migratetype)
3365 {
3366 	unsigned long flags;
3367 	struct page *page;
3368 
3369 	if (likely(order == 0)) {
3370 		/*
3371 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3372 		 * we need to skip it when CMA area isn't allowed.
3373 		 */
3374 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3375 				migratetype != MIGRATE_MOVABLE) {
3376 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3377 					migratetype, alloc_flags);
3378 			goto out;
3379 		}
3380 	}
3381 
3382 	/*
3383 	 * We most definitely don't want callers attempting to
3384 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3385 	 */
3386 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3387 	spin_lock_irqsave(&zone->lock, flags);
3388 
3389 	do {
3390 		page = NULL;
3391 		/*
3392 		 * order-0 request can reach here when the pcplist is skipped
3393 		 * due to non-CMA allocation context. HIGHATOMIC area is
3394 		 * reserved for high-order atomic allocation, so order-0
3395 		 * request should skip it.
3396 		 */
3397 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3398 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3399 			if (page)
3400 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3401 		}
3402 		if (!page)
3403 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3404 	} while (page && check_new_pages(page, order));
3405 	spin_unlock(&zone->lock);
3406 	if (!page)
3407 		goto failed;
3408 	__mod_zone_freepage_state(zone, -(1 << order),
3409 				  get_pcppage_migratetype(page));
3410 
3411 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3412 	zone_statistics(preferred_zone, zone);
3413 	local_irq_restore(flags);
3414 
3415 out:
3416 	/* Separate test+clear to avoid unnecessary atomics */
3417 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3418 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3419 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3420 	}
3421 
3422 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3423 	return page;
3424 
3425 failed:
3426 	local_irq_restore(flags);
3427 	return NULL;
3428 }
3429 
3430 #ifdef CONFIG_FAIL_PAGE_ALLOC
3431 
3432 static struct {
3433 	struct fault_attr attr;
3434 
3435 	bool ignore_gfp_highmem;
3436 	bool ignore_gfp_reclaim;
3437 	u32 min_order;
3438 } fail_page_alloc = {
3439 	.attr = FAULT_ATTR_INITIALIZER,
3440 	.ignore_gfp_reclaim = true,
3441 	.ignore_gfp_highmem = true,
3442 	.min_order = 1,
3443 };
3444 
3445 static int __init setup_fail_page_alloc(char *str)
3446 {
3447 	return setup_fault_attr(&fail_page_alloc.attr, str);
3448 }
3449 __setup("fail_page_alloc=", setup_fail_page_alloc);
3450 
3451 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3452 {
3453 	if (order < fail_page_alloc.min_order)
3454 		return false;
3455 	if (gfp_mask & __GFP_NOFAIL)
3456 		return false;
3457 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3458 		return false;
3459 	if (fail_page_alloc.ignore_gfp_reclaim &&
3460 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3461 		return false;
3462 
3463 	return should_fail(&fail_page_alloc.attr, 1 << order);
3464 }
3465 
3466 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3467 
3468 static int __init fail_page_alloc_debugfs(void)
3469 {
3470 	umode_t mode = S_IFREG | 0600;
3471 	struct dentry *dir;
3472 
3473 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3474 					&fail_page_alloc.attr);
3475 
3476 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3477 			    &fail_page_alloc.ignore_gfp_reclaim);
3478 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3479 			    &fail_page_alloc.ignore_gfp_highmem);
3480 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3481 
3482 	return 0;
3483 }
3484 
3485 late_initcall(fail_page_alloc_debugfs);
3486 
3487 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3488 
3489 #else /* CONFIG_FAIL_PAGE_ALLOC */
3490 
3491 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3492 {
3493 	return false;
3494 }
3495 
3496 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3497 
3498 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3499 {
3500 	return __should_fail_alloc_page(gfp_mask, order);
3501 }
3502 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3503 
3504 static inline long __zone_watermark_unusable_free(struct zone *z,
3505 				unsigned int order, unsigned int alloc_flags)
3506 {
3507 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3508 	long unusable_free = (1 << order) - 1;
3509 
3510 	/*
3511 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3512 	 * the high-atomic reserves. This will over-estimate the size of the
3513 	 * atomic reserve but it avoids a search.
3514 	 */
3515 	if (likely(!alloc_harder))
3516 		unusable_free += z->nr_reserved_highatomic;
3517 
3518 #ifdef CONFIG_CMA
3519 	/* If allocation can't use CMA areas don't use free CMA pages */
3520 	if (!(alloc_flags & ALLOC_CMA))
3521 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3522 #endif
3523 
3524 	return unusable_free;
3525 }
3526 
3527 /*
3528  * Return true if free base pages are above 'mark'. For high-order checks it
3529  * will return true of the order-0 watermark is reached and there is at least
3530  * one free page of a suitable size. Checking now avoids taking the zone lock
3531  * to check in the allocation paths if no pages are free.
3532  */
3533 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3534 			 int highest_zoneidx, unsigned int alloc_flags,
3535 			 long free_pages)
3536 {
3537 	long min = mark;
3538 	int o;
3539 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3540 
3541 	/* free_pages may go negative - that's OK */
3542 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3543 
3544 	if (alloc_flags & ALLOC_HIGH)
3545 		min -= min / 2;
3546 
3547 	if (unlikely(alloc_harder)) {
3548 		/*
3549 		 * OOM victims can try even harder than normal ALLOC_HARDER
3550 		 * users on the grounds that it's definitely going to be in
3551 		 * the exit path shortly and free memory. Any allocation it
3552 		 * makes during the free path will be small and short-lived.
3553 		 */
3554 		if (alloc_flags & ALLOC_OOM)
3555 			min -= min / 2;
3556 		else
3557 			min -= min / 4;
3558 	}
3559 
3560 	/*
3561 	 * Check watermarks for an order-0 allocation request. If these
3562 	 * are not met, then a high-order request also cannot go ahead
3563 	 * even if a suitable page happened to be free.
3564 	 */
3565 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3566 		return false;
3567 
3568 	/* If this is an order-0 request then the watermark is fine */
3569 	if (!order)
3570 		return true;
3571 
3572 	/* For a high-order request, check at least one suitable page is free */
3573 	for (o = order; o < MAX_ORDER; o++) {
3574 		struct free_area *area = &z->free_area[o];
3575 		int mt;
3576 
3577 		if (!area->nr_free)
3578 			continue;
3579 
3580 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3581 			if (!free_area_empty(area, mt))
3582 				return true;
3583 		}
3584 
3585 #ifdef CONFIG_CMA
3586 		if ((alloc_flags & ALLOC_CMA) &&
3587 		    !free_area_empty(area, MIGRATE_CMA)) {
3588 			return true;
3589 		}
3590 #endif
3591 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3592 			return true;
3593 	}
3594 	return false;
3595 }
3596 
3597 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3598 		      int highest_zoneidx, unsigned int alloc_flags)
3599 {
3600 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3601 					zone_page_state(z, NR_FREE_PAGES));
3602 }
3603 
3604 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3605 				unsigned long mark, int highest_zoneidx,
3606 				unsigned int alloc_flags, gfp_t gfp_mask)
3607 {
3608 	long free_pages;
3609 
3610 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3611 
3612 	/*
3613 	 * Fast check for order-0 only. If this fails then the reserves
3614 	 * need to be calculated.
3615 	 */
3616 	if (!order) {
3617 		long fast_free;
3618 
3619 		fast_free = free_pages;
3620 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3621 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3622 			return true;
3623 	}
3624 
3625 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3626 					free_pages))
3627 		return true;
3628 	/*
3629 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3630 	 * when checking the min watermark. The min watermark is the
3631 	 * point where boosting is ignored so that kswapd is woken up
3632 	 * when below the low watermark.
3633 	 */
3634 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3635 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3636 		mark = z->_watermark[WMARK_MIN];
3637 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3638 					alloc_flags, free_pages);
3639 	}
3640 
3641 	return false;
3642 }
3643 
3644 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3645 			unsigned long mark, int highest_zoneidx)
3646 {
3647 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3648 
3649 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3650 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3651 
3652 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3653 								free_pages);
3654 }
3655 
3656 #ifdef CONFIG_NUMA
3657 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3658 {
3659 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3660 				node_reclaim_distance;
3661 }
3662 #else	/* CONFIG_NUMA */
3663 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3664 {
3665 	return true;
3666 }
3667 #endif	/* CONFIG_NUMA */
3668 
3669 /*
3670  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3671  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3672  * premature use of a lower zone may cause lowmem pressure problems that
3673  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3674  * probably too small. It only makes sense to spread allocations to avoid
3675  * fragmentation between the Normal and DMA32 zones.
3676  */
3677 static inline unsigned int
3678 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3679 {
3680 	unsigned int alloc_flags;
3681 
3682 	/*
3683 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3684 	 * to save a branch.
3685 	 */
3686 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3687 
3688 #ifdef CONFIG_ZONE_DMA32
3689 	if (!zone)
3690 		return alloc_flags;
3691 
3692 	if (zone_idx(zone) != ZONE_NORMAL)
3693 		return alloc_flags;
3694 
3695 	/*
3696 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3697 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3698 	 * on UMA that if Normal is populated then so is DMA32.
3699 	 */
3700 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3701 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3702 		return alloc_flags;
3703 
3704 	alloc_flags |= ALLOC_NOFRAGMENT;
3705 #endif /* CONFIG_ZONE_DMA32 */
3706 	return alloc_flags;
3707 }
3708 
3709 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3710 					unsigned int alloc_flags)
3711 {
3712 #ifdef CONFIG_CMA
3713 	unsigned int pflags = current->flags;
3714 
3715 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3716 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3717 		alloc_flags |= ALLOC_CMA;
3718 
3719 #endif
3720 	return alloc_flags;
3721 }
3722 
3723 /*
3724  * get_page_from_freelist goes through the zonelist trying to allocate
3725  * a page.
3726  */
3727 static struct page *
3728 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3729 						const struct alloc_context *ac)
3730 {
3731 	struct zoneref *z;
3732 	struct zone *zone;
3733 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3734 	bool no_fallback;
3735 
3736 retry:
3737 	/*
3738 	 * Scan zonelist, looking for a zone with enough free.
3739 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3740 	 */
3741 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3742 	z = ac->preferred_zoneref;
3743 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3744 					ac->highest_zoneidx, ac->nodemask) {
3745 		struct page *page;
3746 		unsigned long mark;
3747 
3748 		if (cpusets_enabled() &&
3749 			(alloc_flags & ALLOC_CPUSET) &&
3750 			!__cpuset_zone_allowed(zone, gfp_mask))
3751 				continue;
3752 		/*
3753 		 * When allocating a page cache page for writing, we
3754 		 * want to get it from a node that is within its dirty
3755 		 * limit, such that no single node holds more than its
3756 		 * proportional share of globally allowed dirty pages.
3757 		 * The dirty limits take into account the node's
3758 		 * lowmem reserves and high watermark so that kswapd
3759 		 * should be able to balance it without having to
3760 		 * write pages from its LRU list.
3761 		 *
3762 		 * XXX: For now, allow allocations to potentially
3763 		 * exceed the per-node dirty limit in the slowpath
3764 		 * (spread_dirty_pages unset) before going into reclaim,
3765 		 * which is important when on a NUMA setup the allowed
3766 		 * nodes are together not big enough to reach the
3767 		 * global limit.  The proper fix for these situations
3768 		 * will require awareness of nodes in the
3769 		 * dirty-throttling and the flusher threads.
3770 		 */
3771 		if (ac->spread_dirty_pages) {
3772 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3773 				continue;
3774 
3775 			if (!node_dirty_ok(zone->zone_pgdat)) {
3776 				last_pgdat_dirty_limit = zone->zone_pgdat;
3777 				continue;
3778 			}
3779 		}
3780 
3781 		if (no_fallback && nr_online_nodes > 1 &&
3782 		    zone != ac->preferred_zoneref->zone) {
3783 			int local_nid;
3784 
3785 			/*
3786 			 * If moving to a remote node, retry but allow
3787 			 * fragmenting fallbacks. Locality is more important
3788 			 * than fragmentation avoidance.
3789 			 */
3790 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3791 			if (zone_to_nid(zone) != local_nid) {
3792 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3793 				goto retry;
3794 			}
3795 		}
3796 
3797 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3798 		if (!zone_watermark_fast(zone, order, mark,
3799 				       ac->highest_zoneidx, alloc_flags,
3800 				       gfp_mask)) {
3801 			int ret;
3802 
3803 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3804 			/*
3805 			 * Watermark failed for this zone, but see if we can
3806 			 * grow this zone if it contains deferred pages.
3807 			 */
3808 			if (static_branch_unlikely(&deferred_pages)) {
3809 				if (_deferred_grow_zone(zone, order))
3810 					goto try_this_zone;
3811 			}
3812 #endif
3813 			/* Checked here to keep the fast path fast */
3814 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3815 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3816 				goto try_this_zone;
3817 
3818 			if (node_reclaim_mode == 0 ||
3819 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3820 				continue;
3821 
3822 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3823 			switch (ret) {
3824 			case NODE_RECLAIM_NOSCAN:
3825 				/* did not scan */
3826 				continue;
3827 			case NODE_RECLAIM_FULL:
3828 				/* scanned but unreclaimable */
3829 				continue;
3830 			default:
3831 				/* did we reclaim enough */
3832 				if (zone_watermark_ok(zone, order, mark,
3833 					ac->highest_zoneidx, alloc_flags))
3834 					goto try_this_zone;
3835 
3836 				continue;
3837 			}
3838 		}
3839 
3840 try_this_zone:
3841 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3842 				gfp_mask, alloc_flags, ac->migratetype);
3843 		if (page) {
3844 			prep_new_page(page, order, gfp_mask, alloc_flags);
3845 
3846 			/*
3847 			 * If this is a high-order atomic allocation then check
3848 			 * if the pageblock should be reserved for the future
3849 			 */
3850 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3851 				reserve_highatomic_pageblock(page, zone, order);
3852 
3853 			return page;
3854 		} else {
3855 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3856 			/* Try again if zone has deferred pages */
3857 			if (static_branch_unlikely(&deferred_pages)) {
3858 				if (_deferred_grow_zone(zone, order))
3859 					goto try_this_zone;
3860 			}
3861 #endif
3862 		}
3863 	}
3864 
3865 	/*
3866 	 * It's possible on a UMA machine to get through all zones that are
3867 	 * fragmented. If avoiding fragmentation, reset and try again.
3868 	 */
3869 	if (no_fallback) {
3870 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3871 		goto retry;
3872 	}
3873 
3874 	return NULL;
3875 }
3876 
3877 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3878 {
3879 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3880 
3881 	/*
3882 	 * This documents exceptions given to allocations in certain
3883 	 * contexts that are allowed to allocate outside current's set
3884 	 * of allowed nodes.
3885 	 */
3886 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3887 		if (tsk_is_oom_victim(current) ||
3888 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3889 			filter &= ~SHOW_MEM_FILTER_NODES;
3890 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3891 		filter &= ~SHOW_MEM_FILTER_NODES;
3892 
3893 	show_mem(filter, nodemask);
3894 }
3895 
3896 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3897 {
3898 	struct va_format vaf;
3899 	va_list args;
3900 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3901 
3902 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3903 		return;
3904 
3905 	va_start(args, fmt);
3906 	vaf.fmt = fmt;
3907 	vaf.va = &args;
3908 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3909 			current->comm, &vaf, gfp_mask, &gfp_mask,
3910 			nodemask_pr_args(nodemask));
3911 	va_end(args);
3912 
3913 	cpuset_print_current_mems_allowed();
3914 	pr_cont("\n");
3915 	dump_stack();
3916 	warn_alloc_show_mem(gfp_mask, nodemask);
3917 }
3918 
3919 static inline struct page *
3920 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3921 			      unsigned int alloc_flags,
3922 			      const struct alloc_context *ac)
3923 {
3924 	struct page *page;
3925 
3926 	page = get_page_from_freelist(gfp_mask, order,
3927 			alloc_flags|ALLOC_CPUSET, ac);
3928 	/*
3929 	 * fallback to ignore cpuset restriction if our nodes
3930 	 * are depleted
3931 	 */
3932 	if (!page)
3933 		page = get_page_from_freelist(gfp_mask, order,
3934 				alloc_flags, ac);
3935 
3936 	return page;
3937 }
3938 
3939 static inline struct page *
3940 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3941 	const struct alloc_context *ac, unsigned long *did_some_progress)
3942 {
3943 	struct oom_control oc = {
3944 		.zonelist = ac->zonelist,
3945 		.nodemask = ac->nodemask,
3946 		.memcg = NULL,
3947 		.gfp_mask = gfp_mask,
3948 		.order = order,
3949 	};
3950 	struct page *page;
3951 
3952 	*did_some_progress = 0;
3953 
3954 	/*
3955 	 * Acquire the oom lock.  If that fails, somebody else is
3956 	 * making progress for us.
3957 	 */
3958 	if (!mutex_trylock(&oom_lock)) {
3959 		*did_some_progress = 1;
3960 		schedule_timeout_uninterruptible(1);
3961 		return NULL;
3962 	}
3963 
3964 	/*
3965 	 * Go through the zonelist yet one more time, keep very high watermark
3966 	 * here, this is only to catch a parallel oom killing, we must fail if
3967 	 * we're still under heavy pressure. But make sure that this reclaim
3968 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3969 	 * allocation which will never fail due to oom_lock already held.
3970 	 */
3971 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3972 				      ~__GFP_DIRECT_RECLAIM, order,
3973 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3974 	if (page)
3975 		goto out;
3976 
3977 	/* Coredumps can quickly deplete all memory reserves */
3978 	if (current->flags & PF_DUMPCORE)
3979 		goto out;
3980 	/* The OOM killer will not help higher order allocs */
3981 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3982 		goto out;
3983 	/*
3984 	 * We have already exhausted all our reclaim opportunities without any
3985 	 * success so it is time to admit defeat. We will skip the OOM killer
3986 	 * because it is very likely that the caller has a more reasonable
3987 	 * fallback than shooting a random task.
3988 	 */
3989 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3990 		goto out;
3991 	/* The OOM killer does not needlessly kill tasks for lowmem */
3992 	if (ac->highest_zoneidx < ZONE_NORMAL)
3993 		goto out;
3994 	if (pm_suspended_storage())
3995 		goto out;
3996 	/*
3997 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3998 	 * other request to make a forward progress.
3999 	 * We are in an unfortunate situation where out_of_memory cannot
4000 	 * do much for this context but let's try it to at least get
4001 	 * access to memory reserved if the current task is killed (see
4002 	 * out_of_memory). Once filesystems are ready to handle allocation
4003 	 * failures more gracefully we should just bail out here.
4004 	 */
4005 
4006 	/* The OOM killer may not free memory on a specific node */
4007 	if (gfp_mask & __GFP_THISNODE)
4008 		goto out;
4009 
4010 	/* Exhausted what can be done so it's blame time */
4011 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4012 		*did_some_progress = 1;
4013 
4014 		/*
4015 		 * Help non-failing allocations by giving them access to memory
4016 		 * reserves
4017 		 */
4018 		if (gfp_mask & __GFP_NOFAIL)
4019 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4020 					ALLOC_NO_WATERMARKS, ac);
4021 	}
4022 out:
4023 	mutex_unlock(&oom_lock);
4024 	return page;
4025 }
4026 
4027 /*
4028  * Maximum number of compaction retries wit a progress before OOM
4029  * killer is consider as the only way to move forward.
4030  */
4031 #define MAX_COMPACT_RETRIES 16
4032 
4033 #ifdef CONFIG_COMPACTION
4034 /* Try memory compaction for high-order allocations before reclaim */
4035 static struct page *
4036 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4037 		unsigned int alloc_flags, const struct alloc_context *ac,
4038 		enum compact_priority prio, enum compact_result *compact_result)
4039 {
4040 	struct page *page = NULL;
4041 	unsigned long pflags;
4042 	unsigned int noreclaim_flag;
4043 
4044 	if (!order)
4045 		return NULL;
4046 
4047 	psi_memstall_enter(&pflags);
4048 	noreclaim_flag = memalloc_noreclaim_save();
4049 
4050 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4051 								prio, &page);
4052 
4053 	memalloc_noreclaim_restore(noreclaim_flag);
4054 	psi_memstall_leave(&pflags);
4055 
4056 	/*
4057 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4058 	 * count a compaction stall
4059 	 */
4060 	count_vm_event(COMPACTSTALL);
4061 
4062 	/* Prep a captured page if available */
4063 	if (page)
4064 		prep_new_page(page, order, gfp_mask, alloc_flags);
4065 
4066 	/* Try get a page from the freelist if available */
4067 	if (!page)
4068 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4069 
4070 	if (page) {
4071 		struct zone *zone = page_zone(page);
4072 
4073 		zone->compact_blockskip_flush = false;
4074 		compaction_defer_reset(zone, order, true);
4075 		count_vm_event(COMPACTSUCCESS);
4076 		return page;
4077 	}
4078 
4079 	/*
4080 	 * It's bad if compaction run occurs and fails. The most likely reason
4081 	 * is that pages exist, but not enough to satisfy watermarks.
4082 	 */
4083 	count_vm_event(COMPACTFAIL);
4084 
4085 	cond_resched();
4086 
4087 	return NULL;
4088 }
4089 
4090 static inline bool
4091 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4092 		     enum compact_result compact_result,
4093 		     enum compact_priority *compact_priority,
4094 		     int *compaction_retries)
4095 {
4096 	int max_retries = MAX_COMPACT_RETRIES;
4097 	int min_priority;
4098 	bool ret = false;
4099 	int retries = *compaction_retries;
4100 	enum compact_priority priority = *compact_priority;
4101 
4102 	if (!order)
4103 		return false;
4104 
4105 	if (compaction_made_progress(compact_result))
4106 		(*compaction_retries)++;
4107 
4108 	/*
4109 	 * compaction considers all the zone as desperately out of memory
4110 	 * so it doesn't really make much sense to retry except when the
4111 	 * failure could be caused by insufficient priority
4112 	 */
4113 	if (compaction_failed(compact_result))
4114 		goto check_priority;
4115 
4116 	/*
4117 	 * compaction was skipped because there are not enough order-0 pages
4118 	 * to work with, so we retry only if it looks like reclaim can help.
4119 	 */
4120 	if (compaction_needs_reclaim(compact_result)) {
4121 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4122 		goto out;
4123 	}
4124 
4125 	/*
4126 	 * make sure the compaction wasn't deferred or didn't bail out early
4127 	 * due to locks contention before we declare that we should give up.
4128 	 * But the next retry should use a higher priority if allowed, so
4129 	 * we don't just keep bailing out endlessly.
4130 	 */
4131 	if (compaction_withdrawn(compact_result)) {
4132 		goto check_priority;
4133 	}
4134 
4135 	/*
4136 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4137 	 * costly ones because they are de facto nofail and invoke OOM
4138 	 * killer to move on while costly can fail and users are ready
4139 	 * to cope with that. 1/4 retries is rather arbitrary but we
4140 	 * would need much more detailed feedback from compaction to
4141 	 * make a better decision.
4142 	 */
4143 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4144 		max_retries /= 4;
4145 	if (*compaction_retries <= max_retries) {
4146 		ret = true;
4147 		goto out;
4148 	}
4149 
4150 	/*
4151 	 * Make sure there are attempts at the highest priority if we exhausted
4152 	 * all retries or failed at the lower priorities.
4153 	 */
4154 check_priority:
4155 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4156 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4157 
4158 	if (*compact_priority > min_priority) {
4159 		(*compact_priority)--;
4160 		*compaction_retries = 0;
4161 		ret = true;
4162 	}
4163 out:
4164 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4165 	return ret;
4166 }
4167 #else
4168 static inline struct page *
4169 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4170 		unsigned int alloc_flags, const struct alloc_context *ac,
4171 		enum compact_priority prio, enum compact_result *compact_result)
4172 {
4173 	*compact_result = COMPACT_SKIPPED;
4174 	return NULL;
4175 }
4176 
4177 static inline bool
4178 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4179 		     enum compact_result compact_result,
4180 		     enum compact_priority *compact_priority,
4181 		     int *compaction_retries)
4182 {
4183 	struct zone *zone;
4184 	struct zoneref *z;
4185 
4186 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4187 		return false;
4188 
4189 	/*
4190 	 * There are setups with compaction disabled which would prefer to loop
4191 	 * inside the allocator rather than hit the oom killer prematurely.
4192 	 * Let's give them a good hope and keep retrying while the order-0
4193 	 * watermarks are OK.
4194 	 */
4195 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4196 				ac->highest_zoneidx, ac->nodemask) {
4197 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4198 					ac->highest_zoneidx, alloc_flags))
4199 			return true;
4200 	}
4201 	return false;
4202 }
4203 #endif /* CONFIG_COMPACTION */
4204 
4205 #ifdef CONFIG_LOCKDEP
4206 static struct lockdep_map __fs_reclaim_map =
4207 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4208 
4209 static bool __need_fs_reclaim(gfp_t gfp_mask)
4210 {
4211 	gfp_mask = current_gfp_context(gfp_mask);
4212 
4213 	/* no reclaim without waiting on it */
4214 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4215 		return false;
4216 
4217 	/* this guy won't enter reclaim */
4218 	if (current->flags & PF_MEMALLOC)
4219 		return false;
4220 
4221 	/* We're only interested __GFP_FS allocations for now */
4222 	if (!(gfp_mask & __GFP_FS))
4223 		return false;
4224 
4225 	if (gfp_mask & __GFP_NOLOCKDEP)
4226 		return false;
4227 
4228 	return true;
4229 }
4230 
4231 void __fs_reclaim_acquire(void)
4232 {
4233 	lock_map_acquire(&__fs_reclaim_map);
4234 }
4235 
4236 void __fs_reclaim_release(void)
4237 {
4238 	lock_map_release(&__fs_reclaim_map);
4239 }
4240 
4241 void fs_reclaim_acquire(gfp_t gfp_mask)
4242 {
4243 	if (__need_fs_reclaim(gfp_mask))
4244 		__fs_reclaim_acquire();
4245 }
4246 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4247 
4248 void fs_reclaim_release(gfp_t gfp_mask)
4249 {
4250 	if (__need_fs_reclaim(gfp_mask))
4251 		__fs_reclaim_release();
4252 }
4253 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4254 #endif
4255 
4256 /* Perform direct synchronous page reclaim */
4257 static int
4258 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4259 					const struct alloc_context *ac)
4260 {
4261 	int progress;
4262 	unsigned int noreclaim_flag;
4263 	unsigned long pflags;
4264 
4265 	cond_resched();
4266 
4267 	/* We now go into synchronous reclaim */
4268 	cpuset_memory_pressure_bump();
4269 	psi_memstall_enter(&pflags);
4270 	fs_reclaim_acquire(gfp_mask);
4271 	noreclaim_flag = memalloc_noreclaim_save();
4272 
4273 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4274 								ac->nodemask);
4275 
4276 	memalloc_noreclaim_restore(noreclaim_flag);
4277 	fs_reclaim_release(gfp_mask);
4278 	psi_memstall_leave(&pflags);
4279 
4280 	cond_resched();
4281 
4282 	return progress;
4283 }
4284 
4285 /* The really slow allocator path where we enter direct reclaim */
4286 static inline struct page *
4287 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4288 		unsigned int alloc_flags, const struct alloc_context *ac,
4289 		unsigned long *did_some_progress)
4290 {
4291 	struct page *page = NULL;
4292 	bool drained = false;
4293 
4294 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4295 	if (unlikely(!(*did_some_progress)))
4296 		return NULL;
4297 
4298 retry:
4299 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4300 
4301 	/*
4302 	 * If an allocation failed after direct reclaim, it could be because
4303 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4304 	 * Shrink them and try again
4305 	 */
4306 	if (!page && !drained) {
4307 		unreserve_highatomic_pageblock(ac, false);
4308 		drain_all_pages(NULL);
4309 		drained = true;
4310 		goto retry;
4311 	}
4312 
4313 	return page;
4314 }
4315 
4316 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4317 			     const struct alloc_context *ac)
4318 {
4319 	struct zoneref *z;
4320 	struct zone *zone;
4321 	pg_data_t *last_pgdat = NULL;
4322 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4323 
4324 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4325 					ac->nodemask) {
4326 		if (last_pgdat != zone->zone_pgdat)
4327 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4328 		last_pgdat = zone->zone_pgdat;
4329 	}
4330 }
4331 
4332 static inline unsigned int
4333 gfp_to_alloc_flags(gfp_t gfp_mask)
4334 {
4335 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4336 
4337 	/*
4338 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4339 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4340 	 * to save two branches.
4341 	 */
4342 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4343 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4344 
4345 	/*
4346 	 * The caller may dip into page reserves a bit more if the caller
4347 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4348 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4349 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4350 	 */
4351 	alloc_flags |= (__force int)
4352 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4353 
4354 	if (gfp_mask & __GFP_ATOMIC) {
4355 		/*
4356 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4357 		 * if it can't schedule.
4358 		 */
4359 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4360 			alloc_flags |= ALLOC_HARDER;
4361 		/*
4362 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4363 		 * comment for __cpuset_node_allowed().
4364 		 */
4365 		alloc_flags &= ~ALLOC_CPUSET;
4366 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4367 		alloc_flags |= ALLOC_HARDER;
4368 
4369 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4370 
4371 	return alloc_flags;
4372 }
4373 
4374 static bool oom_reserves_allowed(struct task_struct *tsk)
4375 {
4376 	if (!tsk_is_oom_victim(tsk))
4377 		return false;
4378 
4379 	/*
4380 	 * !MMU doesn't have oom reaper so give access to memory reserves
4381 	 * only to the thread with TIF_MEMDIE set
4382 	 */
4383 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4384 		return false;
4385 
4386 	return true;
4387 }
4388 
4389 /*
4390  * Distinguish requests which really need access to full memory
4391  * reserves from oom victims which can live with a portion of it
4392  */
4393 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4394 {
4395 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4396 		return 0;
4397 	if (gfp_mask & __GFP_MEMALLOC)
4398 		return ALLOC_NO_WATERMARKS;
4399 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4400 		return ALLOC_NO_WATERMARKS;
4401 	if (!in_interrupt()) {
4402 		if (current->flags & PF_MEMALLOC)
4403 			return ALLOC_NO_WATERMARKS;
4404 		else if (oom_reserves_allowed(current))
4405 			return ALLOC_OOM;
4406 	}
4407 
4408 	return 0;
4409 }
4410 
4411 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4412 {
4413 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4414 }
4415 
4416 /*
4417  * Checks whether it makes sense to retry the reclaim to make a forward progress
4418  * for the given allocation request.
4419  *
4420  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4421  * without success, or when we couldn't even meet the watermark if we
4422  * reclaimed all remaining pages on the LRU lists.
4423  *
4424  * Returns true if a retry is viable or false to enter the oom path.
4425  */
4426 static inline bool
4427 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4428 		     struct alloc_context *ac, int alloc_flags,
4429 		     bool did_some_progress, int *no_progress_loops)
4430 {
4431 	struct zone *zone;
4432 	struct zoneref *z;
4433 	bool ret = false;
4434 
4435 	/*
4436 	 * Costly allocations might have made a progress but this doesn't mean
4437 	 * their order will become available due to high fragmentation so
4438 	 * always increment the no progress counter for them
4439 	 */
4440 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4441 		*no_progress_loops = 0;
4442 	else
4443 		(*no_progress_loops)++;
4444 
4445 	/*
4446 	 * Make sure we converge to OOM if we cannot make any progress
4447 	 * several times in the row.
4448 	 */
4449 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4450 		/* Before OOM, exhaust highatomic_reserve */
4451 		return unreserve_highatomic_pageblock(ac, true);
4452 	}
4453 
4454 	/*
4455 	 * Keep reclaiming pages while there is a chance this will lead
4456 	 * somewhere.  If none of the target zones can satisfy our allocation
4457 	 * request even if all reclaimable pages are considered then we are
4458 	 * screwed and have to go OOM.
4459 	 */
4460 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4461 				ac->highest_zoneidx, ac->nodemask) {
4462 		unsigned long available;
4463 		unsigned long reclaimable;
4464 		unsigned long min_wmark = min_wmark_pages(zone);
4465 		bool wmark;
4466 
4467 		available = reclaimable = zone_reclaimable_pages(zone);
4468 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4469 
4470 		/*
4471 		 * Would the allocation succeed if we reclaimed all
4472 		 * reclaimable pages?
4473 		 */
4474 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4475 				ac->highest_zoneidx, alloc_flags, available);
4476 		trace_reclaim_retry_zone(z, order, reclaimable,
4477 				available, min_wmark, *no_progress_loops, wmark);
4478 		if (wmark) {
4479 			/*
4480 			 * If we didn't make any progress and have a lot of
4481 			 * dirty + writeback pages then we should wait for
4482 			 * an IO to complete to slow down the reclaim and
4483 			 * prevent from pre mature OOM
4484 			 */
4485 			if (!did_some_progress) {
4486 				unsigned long write_pending;
4487 
4488 				write_pending = zone_page_state_snapshot(zone,
4489 							NR_ZONE_WRITE_PENDING);
4490 
4491 				if (2 * write_pending > reclaimable) {
4492 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4493 					return true;
4494 				}
4495 			}
4496 
4497 			ret = true;
4498 			goto out;
4499 		}
4500 	}
4501 
4502 out:
4503 	/*
4504 	 * Memory allocation/reclaim might be called from a WQ context and the
4505 	 * current implementation of the WQ concurrency control doesn't
4506 	 * recognize that a particular WQ is congested if the worker thread is
4507 	 * looping without ever sleeping. Therefore we have to do a short sleep
4508 	 * here rather than calling cond_resched().
4509 	 */
4510 	if (current->flags & PF_WQ_WORKER)
4511 		schedule_timeout_uninterruptible(1);
4512 	else
4513 		cond_resched();
4514 	return ret;
4515 }
4516 
4517 static inline bool
4518 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4519 {
4520 	/*
4521 	 * It's possible that cpuset's mems_allowed and the nodemask from
4522 	 * mempolicy don't intersect. This should be normally dealt with by
4523 	 * policy_nodemask(), but it's possible to race with cpuset update in
4524 	 * such a way the check therein was true, and then it became false
4525 	 * before we got our cpuset_mems_cookie here.
4526 	 * This assumes that for all allocations, ac->nodemask can come only
4527 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4528 	 * when it does not intersect with the cpuset restrictions) or the
4529 	 * caller can deal with a violated nodemask.
4530 	 */
4531 	if (cpusets_enabled() && ac->nodemask &&
4532 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4533 		ac->nodemask = NULL;
4534 		return true;
4535 	}
4536 
4537 	/*
4538 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4539 	 * possible to race with parallel threads in such a way that our
4540 	 * allocation can fail while the mask is being updated. If we are about
4541 	 * to fail, check if the cpuset changed during allocation and if so,
4542 	 * retry.
4543 	 */
4544 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4545 		return true;
4546 
4547 	return false;
4548 }
4549 
4550 static inline struct page *
4551 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4552 						struct alloc_context *ac)
4553 {
4554 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4555 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4556 	struct page *page = NULL;
4557 	unsigned int alloc_flags;
4558 	unsigned long did_some_progress;
4559 	enum compact_priority compact_priority;
4560 	enum compact_result compact_result;
4561 	int compaction_retries;
4562 	int no_progress_loops;
4563 	unsigned int cpuset_mems_cookie;
4564 	int reserve_flags;
4565 
4566 	/*
4567 	 * We also sanity check to catch abuse of atomic reserves being used by
4568 	 * callers that are not in atomic context.
4569 	 */
4570 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4571 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4572 		gfp_mask &= ~__GFP_ATOMIC;
4573 
4574 retry_cpuset:
4575 	compaction_retries = 0;
4576 	no_progress_loops = 0;
4577 	compact_priority = DEF_COMPACT_PRIORITY;
4578 	cpuset_mems_cookie = read_mems_allowed_begin();
4579 
4580 	/*
4581 	 * The fast path uses conservative alloc_flags to succeed only until
4582 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4583 	 * alloc_flags precisely. So we do that now.
4584 	 */
4585 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4586 
4587 	/*
4588 	 * We need to recalculate the starting point for the zonelist iterator
4589 	 * because we might have used different nodemask in the fast path, or
4590 	 * there was a cpuset modification and we are retrying - otherwise we
4591 	 * could end up iterating over non-eligible zones endlessly.
4592 	 */
4593 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4594 					ac->highest_zoneidx, ac->nodemask);
4595 	if (!ac->preferred_zoneref->zone)
4596 		goto nopage;
4597 
4598 	if (alloc_flags & ALLOC_KSWAPD)
4599 		wake_all_kswapds(order, gfp_mask, ac);
4600 
4601 	/*
4602 	 * The adjusted alloc_flags might result in immediate success, so try
4603 	 * that first
4604 	 */
4605 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4606 	if (page)
4607 		goto got_pg;
4608 
4609 	/*
4610 	 * For costly allocations, try direct compaction first, as it's likely
4611 	 * that we have enough base pages and don't need to reclaim. For non-
4612 	 * movable high-order allocations, do that as well, as compaction will
4613 	 * try prevent permanent fragmentation by migrating from blocks of the
4614 	 * same migratetype.
4615 	 * Don't try this for allocations that are allowed to ignore
4616 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4617 	 */
4618 	if (can_direct_reclaim &&
4619 			(costly_order ||
4620 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4621 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4622 		page = __alloc_pages_direct_compact(gfp_mask, order,
4623 						alloc_flags, ac,
4624 						INIT_COMPACT_PRIORITY,
4625 						&compact_result);
4626 		if (page)
4627 			goto got_pg;
4628 
4629 		/*
4630 		 * Checks for costly allocations with __GFP_NORETRY, which
4631 		 * includes some THP page fault allocations
4632 		 */
4633 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4634 			/*
4635 			 * If allocating entire pageblock(s) and compaction
4636 			 * failed because all zones are below low watermarks
4637 			 * or is prohibited because it recently failed at this
4638 			 * order, fail immediately unless the allocator has
4639 			 * requested compaction and reclaim retry.
4640 			 *
4641 			 * Reclaim is
4642 			 *  - potentially very expensive because zones are far
4643 			 *    below their low watermarks or this is part of very
4644 			 *    bursty high order allocations,
4645 			 *  - not guaranteed to help because isolate_freepages()
4646 			 *    may not iterate over freed pages as part of its
4647 			 *    linear scan, and
4648 			 *  - unlikely to make entire pageblocks free on its
4649 			 *    own.
4650 			 */
4651 			if (compact_result == COMPACT_SKIPPED ||
4652 			    compact_result == COMPACT_DEFERRED)
4653 				goto nopage;
4654 
4655 			/*
4656 			 * Looks like reclaim/compaction is worth trying, but
4657 			 * sync compaction could be very expensive, so keep
4658 			 * using async compaction.
4659 			 */
4660 			compact_priority = INIT_COMPACT_PRIORITY;
4661 		}
4662 	}
4663 
4664 retry:
4665 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4666 	if (alloc_flags & ALLOC_KSWAPD)
4667 		wake_all_kswapds(order, gfp_mask, ac);
4668 
4669 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4670 	if (reserve_flags)
4671 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4672 
4673 	/*
4674 	 * Reset the nodemask and zonelist iterators if memory policies can be
4675 	 * ignored. These allocations are high priority and system rather than
4676 	 * user oriented.
4677 	 */
4678 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4679 		ac->nodemask = NULL;
4680 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4681 					ac->highest_zoneidx, ac->nodemask);
4682 	}
4683 
4684 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4685 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4686 	if (page)
4687 		goto got_pg;
4688 
4689 	/* Caller is not willing to reclaim, we can't balance anything */
4690 	if (!can_direct_reclaim)
4691 		goto nopage;
4692 
4693 	/* Avoid recursion of direct reclaim */
4694 	if (current->flags & PF_MEMALLOC)
4695 		goto nopage;
4696 
4697 	/* Try direct reclaim and then allocating */
4698 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4699 							&did_some_progress);
4700 	if (page)
4701 		goto got_pg;
4702 
4703 	/* Try direct compaction and then allocating */
4704 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4705 					compact_priority, &compact_result);
4706 	if (page)
4707 		goto got_pg;
4708 
4709 	/* Do not loop if specifically requested */
4710 	if (gfp_mask & __GFP_NORETRY)
4711 		goto nopage;
4712 
4713 	/*
4714 	 * Do not retry costly high order allocations unless they are
4715 	 * __GFP_RETRY_MAYFAIL
4716 	 */
4717 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4718 		goto nopage;
4719 
4720 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4721 				 did_some_progress > 0, &no_progress_loops))
4722 		goto retry;
4723 
4724 	/*
4725 	 * It doesn't make any sense to retry for the compaction if the order-0
4726 	 * reclaim is not able to make any progress because the current
4727 	 * implementation of the compaction depends on the sufficient amount
4728 	 * of free memory (see __compaction_suitable)
4729 	 */
4730 	if (did_some_progress > 0 &&
4731 			should_compact_retry(ac, order, alloc_flags,
4732 				compact_result, &compact_priority,
4733 				&compaction_retries))
4734 		goto retry;
4735 
4736 
4737 	/* Deal with possible cpuset update races before we start OOM killing */
4738 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4739 		goto retry_cpuset;
4740 
4741 	/* Reclaim has failed us, start killing things */
4742 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4743 	if (page)
4744 		goto got_pg;
4745 
4746 	/* Avoid allocations with no watermarks from looping endlessly */
4747 	if (tsk_is_oom_victim(current) &&
4748 	    (alloc_flags & ALLOC_OOM ||
4749 	     (gfp_mask & __GFP_NOMEMALLOC)))
4750 		goto nopage;
4751 
4752 	/* Retry as long as the OOM killer is making progress */
4753 	if (did_some_progress) {
4754 		no_progress_loops = 0;
4755 		goto retry;
4756 	}
4757 
4758 nopage:
4759 	/* Deal with possible cpuset update races before we fail */
4760 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4761 		goto retry_cpuset;
4762 
4763 	/*
4764 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4765 	 * we always retry
4766 	 */
4767 	if (gfp_mask & __GFP_NOFAIL) {
4768 		/*
4769 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4770 		 * of any new users that actually require GFP_NOWAIT
4771 		 */
4772 		if (WARN_ON_ONCE(!can_direct_reclaim))
4773 			goto fail;
4774 
4775 		/*
4776 		 * PF_MEMALLOC request from this context is rather bizarre
4777 		 * because we cannot reclaim anything and only can loop waiting
4778 		 * for somebody to do a work for us
4779 		 */
4780 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4781 
4782 		/*
4783 		 * non failing costly orders are a hard requirement which we
4784 		 * are not prepared for much so let's warn about these users
4785 		 * so that we can identify them and convert them to something
4786 		 * else.
4787 		 */
4788 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4789 
4790 		/*
4791 		 * Help non-failing allocations by giving them access to memory
4792 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4793 		 * could deplete whole memory reserves which would just make
4794 		 * the situation worse
4795 		 */
4796 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4797 		if (page)
4798 			goto got_pg;
4799 
4800 		cond_resched();
4801 		goto retry;
4802 	}
4803 fail:
4804 	warn_alloc(gfp_mask, ac->nodemask,
4805 			"page allocation failure: order:%u", order);
4806 got_pg:
4807 	return page;
4808 }
4809 
4810 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4811 		int preferred_nid, nodemask_t *nodemask,
4812 		struct alloc_context *ac, gfp_t *alloc_mask,
4813 		unsigned int *alloc_flags)
4814 {
4815 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4816 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4817 	ac->nodemask = nodemask;
4818 	ac->migratetype = gfp_migratetype(gfp_mask);
4819 
4820 	if (cpusets_enabled()) {
4821 		*alloc_mask |= __GFP_HARDWALL;
4822 		/*
4823 		 * When we are in the interrupt context, it is irrelevant
4824 		 * to the current task context. It means that any node ok.
4825 		 */
4826 		if (!in_interrupt() && !ac->nodemask)
4827 			ac->nodemask = &cpuset_current_mems_allowed;
4828 		else
4829 			*alloc_flags |= ALLOC_CPUSET;
4830 	}
4831 
4832 	fs_reclaim_acquire(gfp_mask);
4833 	fs_reclaim_release(gfp_mask);
4834 
4835 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4836 
4837 	if (should_fail_alloc_page(gfp_mask, order))
4838 		return false;
4839 
4840 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4841 
4842 	return true;
4843 }
4844 
4845 /* Determine whether to spread dirty pages and what the first usable zone */
4846 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4847 {
4848 	/* Dirty zone balancing only done in the fast path */
4849 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4850 
4851 	/*
4852 	 * The preferred zone is used for statistics but crucially it is
4853 	 * also used as the starting point for the zonelist iterator. It
4854 	 * may get reset for allocations that ignore memory policies.
4855 	 */
4856 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4857 					ac->highest_zoneidx, ac->nodemask);
4858 }
4859 
4860 /*
4861  * This is the 'heart' of the zoned buddy allocator.
4862  */
4863 struct page *
4864 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4865 							nodemask_t *nodemask)
4866 {
4867 	struct page *page;
4868 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4869 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4870 	struct alloc_context ac = { };
4871 
4872 	/*
4873 	 * There are several places where we assume that the order value is sane
4874 	 * so bail out early if the request is out of bound.
4875 	 */
4876 	if (unlikely(order >= MAX_ORDER)) {
4877 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4878 		return NULL;
4879 	}
4880 
4881 	gfp_mask &= gfp_allowed_mask;
4882 	alloc_mask = gfp_mask;
4883 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4884 		return NULL;
4885 
4886 	finalise_ac(gfp_mask, &ac);
4887 
4888 	/*
4889 	 * Forbid the first pass from falling back to types that fragment
4890 	 * memory until all local zones are considered.
4891 	 */
4892 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4893 
4894 	/* First allocation attempt */
4895 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4896 	if (likely(page))
4897 		goto out;
4898 
4899 	/*
4900 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4901 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4902 	 * from a particular context which has been marked by
4903 	 * memalloc_no{fs,io}_{save,restore}.
4904 	 */
4905 	alloc_mask = current_gfp_context(gfp_mask);
4906 	ac.spread_dirty_pages = false;
4907 
4908 	/*
4909 	 * Restore the original nodemask if it was potentially replaced with
4910 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4911 	 */
4912 	ac.nodemask = nodemask;
4913 
4914 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4915 
4916 out:
4917 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4918 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4919 		__free_pages(page, order);
4920 		page = NULL;
4921 	}
4922 
4923 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4924 
4925 	return page;
4926 }
4927 EXPORT_SYMBOL(__alloc_pages_nodemask);
4928 
4929 /*
4930  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4931  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4932  * you need to access high mem.
4933  */
4934 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4935 {
4936 	struct page *page;
4937 
4938 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4939 	if (!page)
4940 		return 0;
4941 	return (unsigned long) page_address(page);
4942 }
4943 EXPORT_SYMBOL(__get_free_pages);
4944 
4945 unsigned long get_zeroed_page(gfp_t gfp_mask)
4946 {
4947 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4948 }
4949 EXPORT_SYMBOL(get_zeroed_page);
4950 
4951 static inline void free_the_page(struct page *page, unsigned int order)
4952 {
4953 	if (order == 0)		/* Via pcp? */
4954 		free_unref_page(page);
4955 	else
4956 		__free_pages_ok(page, order);
4957 }
4958 
4959 void __free_pages(struct page *page, unsigned int order)
4960 {
4961 	if (put_page_testzero(page))
4962 		free_the_page(page, order);
4963 }
4964 EXPORT_SYMBOL(__free_pages);
4965 
4966 void free_pages(unsigned long addr, unsigned int order)
4967 {
4968 	if (addr != 0) {
4969 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4970 		__free_pages(virt_to_page((void *)addr), order);
4971 	}
4972 }
4973 
4974 EXPORT_SYMBOL(free_pages);
4975 
4976 /*
4977  * Page Fragment:
4978  *  An arbitrary-length arbitrary-offset area of memory which resides
4979  *  within a 0 or higher order page.  Multiple fragments within that page
4980  *  are individually refcounted, in the page's reference counter.
4981  *
4982  * The page_frag functions below provide a simple allocation framework for
4983  * page fragments.  This is used by the network stack and network device
4984  * drivers to provide a backing region of memory for use as either an
4985  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4986  */
4987 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4988 					     gfp_t gfp_mask)
4989 {
4990 	struct page *page = NULL;
4991 	gfp_t gfp = gfp_mask;
4992 
4993 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4994 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4995 		    __GFP_NOMEMALLOC;
4996 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4997 				PAGE_FRAG_CACHE_MAX_ORDER);
4998 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4999 #endif
5000 	if (unlikely(!page))
5001 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5002 
5003 	nc->va = page ? page_address(page) : NULL;
5004 
5005 	return page;
5006 }
5007 
5008 void __page_frag_cache_drain(struct page *page, unsigned int count)
5009 {
5010 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5011 
5012 	if (page_ref_sub_and_test(page, count))
5013 		free_the_page(page, compound_order(page));
5014 }
5015 EXPORT_SYMBOL(__page_frag_cache_drain);
5016 
5017 void *page_frag_alloc(struct page_frag_cache *nc,
5018 		      unsigned int fragsz, gfp_t gfp_mask)
5019 {
5020 	unsigned int size = PAGE_SIZE;
5021 	struct page *page;
5022 	int offset;
5023 
5024 	if (unlikely(!nc->va)) {
5025 refill:
5026 		page = __page_frag_cache_refill(nc, gfp_mask);
5027 		if (!page)
5028 			return NULL;
5029 
5030 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5031 		/* if size can vary use size else just use PAGE_SIZE */
5032 		size = nc->size;
5033 #endif
5034 		/* Even if we own the page, we do not use atomic_set().
5035 		 * This would break get_page_unless_zero() users.
5036 		 */
5037 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5038 
5039 		/* reset page count bias and offset to start of new frag */
5040 		nc->pfmemalloc = page_is_pfmemalloc(page);
5041 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5042 		nc->offset = size;
5043 	}
5044 
5045 	offset = nc->offset - fragsz;
5046 	if (unlikely(offset < 0)) {
5047 		page = virt_to_page(nc->va);
5048 
5049 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5050 			goto refill;
5051 
5052 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5053 		/* if size can vary use size else just use PAGE_SIZE */
5054 		size = nc->size;
5055 #endif
5056 		/* OK, page count is 0, we can safely set it */
5057 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5058 
5059 		/* reset page count bias and offset to start of new frag */
5060 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5061 		offset = size - fragsz;
5062 	}
5063 
5064 	nc->pagecnt_bias--;
5065 	nc->offset = offset;
5066 
5067 	return nc->va + offset;
5068 }
5069 EXPORT_SYMBOL(page_frag_alloc);
5070 
5071 /*
5072  * Frees a page fragment allocated out of either a compound or order 0 page.
5073  */
5074 void page_frag_free(void *addr)
5075 {
5076 	struct page *page = virt_to_head_page(addr);
5077 
5078 	if (unlikely(put_page_testzero(page)))
5079 		free_the_page(page, compound_order(page));
5080 }
5081 EXPORT_SYMBOL(page_frag_free);
5082 
5083 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5084 		size_t size)
5085 {
5086 	if (addr) {
5087 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5088 		unsigned long used = addr + PAGE_ALIGN(size);
5089 
5090 		split_page(virt_to_page((void *)addr), order);
5091 		while (used < alloc_end) {
5092 			free_page(used);
5093 			used += PAGE_SIZE;
5094 		}
5095 	}
5096 	return (void *)addr;
5097 }
5098 
5099 /**
5100  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5101  * @size: the number of bytes to allocate
5102  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5103  *
5104  * This function is similar to alloc_pages(), except that it allocates the
5105  * minimum number of pages to satisfy the request.  alloc_pages() can only
5106  * allocate memory in power-of-two pages.
5107  *
5108  * This function is also limited by MAX_ORDER.
5109  *
5110  * Memory allocated by this function must be released by free_pages_exact().
5111  *
5112  * Return: pointer to the allocated area or %NULL in case of error.
5113  */
5114 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5115 {
5116 	unsigned int order = get_order(size);
5117 	unsigned long addr;
5118 
5119 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5120 		gfp_mask &= ~__GFP_COMP;
5121 
5122 	addr = __get_free_pages(gfp_mask, order);
5123 	return make_alloc_exact(addr, order, size);
5124 }
5125 EXPORT_SYMBOL(alloc_pages_exact);
5126 
5127 /**
5128  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5129  *			   pages on a node.
5130  * @nid: the preferred node ID where memory should be allocated
5131  * @size: the number of bytes to allocate
5132  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5133  *
5134  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5135  * back.
5136  *
5137  * Return: pointer to the allocated area or %NULL in case of error.
5138  */
5139 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5140 {
5141 	unsigned int order = get_order(size);
5142 	struct page *p;
5143 
5144 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5145 		gfp_mask &= ~__GFP_COMP;
5146 
5147 	p = alloc_pages_node(nid, gfp_mask, order);
5148 	if (!p)
5149 		return NULL;
5150 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5151 }
5152 
5153 /**
5154  * free_pages_exact - release memory allocated via alloc_pages_exact()
5155  * @virt: the value returned by alloc_pages_exact.
5156  * @size: size of allocation, same value as passed to alloc_pages_exact().
5157  *
5158  * Release the memory allocated by a previous call to alloc_pages_exact.
5159  */
5160 void free_pages_exact(void *virt, size_t size)
5161 {
5162 	unsigned long addr = (unsigned long)virt;
5163 	unsigned long end = addr + PAGE_ALIGN(size);
5164 
5165 	while (addr < end) {
5166 		free_page(addr);
5167 		addr += PAGE_SIZE;
5168 	}
5169 }
5170 EXPORT_SYMBOL(free_pages_exact);
5171 
5172 /**
5173  * nr_free_zone_pages - count number of pages beyond high watermark
5174  * @offset: The zone index of the highest zone
5175  *
5176  * nr_free_zone_pages() counts the number of pages which are beyond the
5177  * high watermark within all zones at or below a given zone index.  For each
5178  * zone, the number of pages is calculated as:
5179  *
5180  *     nr_free_zone_pages = managed_pages - high_pages
5181  *
5182  * Return: number of pages beyond high watermark.
5183  */
5184 static unsigned long nr_free_zone_pages(int offset)
5185 {
5186 	struct zoneref *z;
5187 	struct zone *zone;
5188 
5189 	/* Just pick one node, since fallback list is circular */
5190 	unsigned long sum = 0;
5191 
5192 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5193 
5194 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5195 		unsigned long size = zone_managed_pages(zone);
5196 		unsigned long high = high_wmark_pages(zone);
5197 		if (size > high)
5198 			sum += size - high;
5199 	}
5200 
5201 	return sum;
5202 }
5203 
5204 /**
5205  * nr_free_buffer_pages - count number of pages beyond high watermark
5206  *
5207  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5208  * watermark within ZONE_DMA and ZONE_NORMAL.
5209  *
5210  * Return: number of pages beyond high watermark within ZONE_DMA and
5211  * ZONE_NORMAL.
5212  */
5213 unsigned long nr_free_buffer_pages(void)
5214 {
5215 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5216 }
5217 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5218 
5219 static inline void show_node(struct zone *zone)
5220 {
5221 	if (IS_ENABLED(CONFIG_NUMA))
5222 		printk("Node %d ", zone_to_nid(zone));
5223 }
5224 
5225 long si_mem_available(void)
5226 {
5227 	long available;
5228 	unsigned long pagecache;
5229 	unsigned long wmark_low = 0;
5230 	unsigned long pages[NR_LRU_LISTS];
5231 	unsigned long reclaimable;
5232 	struct zone *zone;
5233 	int lru;
5234 
5235 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5236 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5237 
5238 	for_each_zone(zone)
5239 		wmark_low += low_wmark_pages(zone);
5240 
5241 	/*
5242 	 * Estimate the amount of memory available for userspace allocations,
5243 	 * without causing swapping.
5244 	 */
5245 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5246 
5247 	/*
5248 	 * Not all the page cache can be freed, otherwise the system will
5249 	 * start swapping. Assume at least half of the page cache, or the
5250 	 * low watermark worth of cache, needs to stay.
5251 	 */
5252 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5253 	pagecache -= min(pagecache / 2, wmark_low);
5254 	available += pagecache;
5255 
5256 	/*
5257 	 * Part of the reclaimable slab and other kernel memory consists of
5258 	 * items that are in use, and cannot be freed. Cap this estimate at the
5259 	 * low watermark.
5260 	 */
5261 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5262 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5263 	available += reclaimable - min(reclaimable / 2, wmark_low);
5264 
5265 	if (available < 0)
5266 		available = 0;
5267 	return available;
5268 }
5269 EXPORT_SYMBOL_GPL(si_mem_available);
5270 
5271 void si_meminfo(struct sysinfo *val)
5272 {
5273 	val->totalram = totalram_pages();
5274 	val->sharedram = global_node_page_state(NR_SHMEM);
5275 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5276 	val->bufferram = nr_blockdev_pages();
5277 	val->totalhigh = totalhigh_pages();
5278 	val->freehigh = nr_free_highpages();
5279 	val->mem_unit = PAGE_SIZE;
5280 }
5281 
5282 EXPORT_SYMBOL(si_meminfo);
5283 
5284 #ifdef CONFIG_NUMA
5285 void si_meminfo_node(struct sysinfo *val, int nid)
5286 {
5287 	int zone_type;		/* needs to be signed */
5288 	unsigned long managed_pages = 0;
5289 	unsigned long managed_highpages = 0;
5290 	unsigned long free_highpages = 0;
5291 	pg_data_t *pgdat = NODE_DATA(nid);
5292 
5293 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5294 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5295 	val->totalram = managed_pages;
5296 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5297 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5298 #ifdef CONFIG_HIGHMEM
5299 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5300 		struct zone *zone = &pgdat->node_zones[zone_type];
5301 
5302 		if (is_highmem(zone)) {
5303 			managed_highpages += zone_managed_pages(zone);
5304 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5305 		}
5306 	}
5307 	val->totalhigh = managed_highpages;
5308 	val->freehigh = free_highpages;
5309 #else
5310 	val->totalhigh = managed_highpages;
5311 	val->freehigh = free_highpages;
5312 #endif
5313 	val->mem_unit = PAGE_SIZE;
5314 }
5315 #endif
5316 
5317 /*
5318  * Determine whether the node should be displayed or not, depending on whether
5319  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5320  */
5321 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5322 {
5323 	if (!(flags & SHOW_MEM_FILTER_NODES))
5324 		return false;
5325 
5326 	/*
5327 	 * no node mask - aka implicit memory numa policy. Do not bother with
5328 	 * the synchronization - read_mems_allowed_begin - because we do not
5329 	 * have to be precise here.
5330 	 */
5331 	if (!nodemask)
5332 		nodemask = &cpuset_current_mems_allowed;
5333 
5334 	return !node_isset(nid, *nodemask);
5335 }
5336 
5337 #define K(x) ((x) << (PAGE_SHIFT-10))
5338 
5339 static void show_migration_types(unsigned char type)
5340 {
5341 	static const char types[MIGRATE_TYPES] = {
5342 		[MIGRATE_UNMOVABLE]	= 'U',
5343 		[MIGRATE_MOVABLE]	= 'M',
5344 		[MIGRATE_RECLAIMABLE]	= 'E',
5345 		[MIGRATE_HIGHATOMIC]	= 'H',
5346 #ifdef CONFIG_CMA
5347 		[MIGRATE_CMA]		= 'C',
5348 #endif
5349 #ifdef CONFIG_MEMORY_ISOLATION
5350 		[MIGRATE_ISOLATE]	= 'I',
5351 #endif
5352 	};
5353 	char tmp[MIGRATE_TYPES + 1];
5354 	char *p = tmp;
5355 	int i;
5356 
5357 	for (i = 0; i < MIGRATE_TYPES; i++) {
5358 		if (type & (1 << i))
5359 			*p++ = types[i];
5360 	}
5361 
5362 	*p = '\0';
5363 	printk(KERN_CONT "(%s) ", tmp);
5364 }
5365 
5366 /*
5367  * Show free area list (used inside shift_scroll-lock stuff)
5368  * We also calculate the percentage fragmentation. We do this by counting the
5369  * memory on each free list with the exception of the first item on the list.
5370  *
5371  * Bits in @filter:
5372  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5373  *   cpuset.
5374  */
5375 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5376 {
5377 	unsigned long free_pcp = 0;
5378 	int cpu;
5379 	struct zone *zone;
5380 	pg_data_t *pgdat;
5381 
5382 	for_each_populated_zone(zone) {
5383 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5384 			continue;
5385 
5386 		for_each_online_cpu(cpu)
5387 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5388 	}
5389 
5390 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5391 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5392 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5393 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5394 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5395 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5396 		global_node_page_state(NR_ACTIVE_ANON),
5397 		global_node_page_state(NR_INACTIVE_ANON),
5398 		global_node_page_state(NR_ISOLATED_ANON),
5399 		global_node_page_state(NR_ACTIVE_FILE),
5400 		global_node_page_state(NR_INACTIVE_FILE),
5401 		global_node_page_state(NR_ISOLATED_FILE),
5402 		global_node_page_state(NR_UNEVICTABLE),
5403 		global_node_page_state(NR_FILE_DIRTY),
5404 		global_node_page_state(NR_WRITEBACK),
5405 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5406 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5407 		global_node_page_state(NR_FILE_MAPPED),
5408 		global_node_page_state(NR_SHMEM),
5409 		global_zone_page_state(NR_PAGETABLE),
5410 		global_zone_page_state(NR_BOUNCE),
5411 		global_zone_page_state(NR_FREE_PAGES),
5412 		free_pcp,
5413 		global_zone_page_state(NR_FREE_CMA_PAGES));
5414 
5415 	for_each_online_pgdat(pgdat) {
5416 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5417 			continue;
5418 
5419 		printk("Node %d"
5420 			" active_anon:%lukB"
5421 			" inactive_anon:%lukB"
5422 			" active_file:%lukB"
5423 			" inactive_file:%lukB"
5424 			" unevictable:%lukB"
5425 			" isolated(anon):%lukB"
5426 			" isolated(file):%lukB"
5427 			" mapped:%lukB"
5428 			" dirty:%lukB"
5429 			" writeback:%lukB"
5430 			" shmem:%lukB"
5431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5432 			" shmem_thp: %lukB"
5433 			" shmem_pmdmapped: %lukB"
5434 			" anon_thp: %lukB"
5435 #endif
5436 			" writeback_tmp:%lukB"
5437 			" kernel_stack:%lukB"
5438 #ifdef CONFIG_SHADOW_CALL_STACK
5439 			" shadow_call_stack:%lukB"
5440 #endif
5441 			" all_unreclaimable? %s"
5442 			"\n",
5443 			pgdat->node_id,
5444 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5445 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5446 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5447 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5448 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5449 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5450 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5451 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5452 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5453 			K(node_page_state(pgdat, NR_WRITEBACK)),
5454 			K(node_page_state(pgdat, NR_SHMEM)),
5455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5456 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5457 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5458 					* HPAGE_PMD_NR),
5459 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5460 #endif
5461 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5462 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5463 #ifdef CONFIG_SHADOW_CALL_STACK
5464 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5465 #endif
5466 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5467 				"yes" : "no");
5468 	}
5469 
5470 	for_each_populated_zone(zone) {
5471 		int i;
5472 
5473 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5474 			continue;
5475 
5476 		free_pcp = 0;
5477 		for_each_online_cpu(cpu)
5478 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5479 
5480 		show_node(zone);
5481 		printk(KERN_CONT
5482 			"%s"
5483 			" free:%lukB"
5484 			" min:%lukB"
5485 			" low:%lukB"
5486 			" high:%lukB"
5487 			" reserved_highatomic:%luKB"
5488 			" active_anon:%lukB"
5489 			" inactive_anon:%lukB"
5490 			" active_file:%lukB"
5491 			" inactive_file:%lukB"
5492 			" unevictable:%lukB"
5493 			" writepending:%lukB"
5494 			" present:%lukB"
5495 			" managed:%lukB"
5496 			" mlocked:%lukB"
5497 			" pagetables:%lukB"
5498 			" bounce:%lukB"
5499 			" free_pcp:%lukB"
5500 			" local_pcp:%ukB"
5501 			" free_cma:%lukB"
5502 			"\n",
5503 			zone->name,
5504 			K(zone_page_state(zone, NR_FREE_PAGES)),
5505 			K(min_wmark_pages(zone)),
5506 			K(low_wmark_pages(zone)),
5507 			K(high_wmark_pages(zone)),
5508 			K(zone->nr_reserved_highatomic),
5509 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5510 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5511 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5512 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5513 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5514 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5515 			K(zone->present_pages),
5516 			K(zone_managed_pages(zone)),
5517 			K(zone_page_state(zone, NR_MLOCK)),
5518 			K(zone_page_state(zone, NR_PAGETABLE)),
5519 			K(zone_page_state(zone, NR_BOUNCE)),
5520 			K(free_pcp),
5521 			K(this_cpu_read(zone->pageset->pcp.count)),
5522 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5523 		printk("lowmem_reserve[]:");
5524 		for (i = 0; i < MAX_NR_ZONES; i++)
5525 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5526 		printk(KERN_CONT "\n");
5527 	}
5528 
5529 	for_each_populated_zone(zone) {
5530 		unsigned int order;
5531 		unsigned long nr[MAX_ORDER], flags, total = 0;
5532 		unsigned char types[MAX_ORDER];
5533 
5534 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5535 			continue;
5536 		show_node(zone);
5537 		printk(KERN_CONT "%s: ", zone->name);
5538 
5539 		spin_lock_irqsave(&zone->lock, flags);
5540 		for (order = 0; order < MAX_ORDER; order++) {
5541 			struct free_area *area = &zone->free_area[order];
5542 			int type;
5543 
5544 			nr[order] = area->nr_free;
5545 			total += nr[order] << order;
5546 
5547 			types[order] = 0;
5548 			for (type = 0; type < MIGRATE_TYPES; type++) {
5549 				if (!free_area_empty(area, type))
5550 					types[order] |= 1 << type;
5551 			}
5552 		}
5553 		spin_unlock_irqrestore(&zone->lock, flags);
5554 		for (order = 0; order < MAX_ORDER; order++) {
5555 			printk(KERN_CONT "%lu*%lukB ",
5556 			       nr[order], K(1UL) << order);
5557 			if (nr[order])
5558 				show_migration_types(types[order]);
5559 		}
5560 		printk(KERN_CONT "= %lukB\n", K(total));
5561 	}
5562 
5563 	hugetlb_show_meminfo();
5564 
5565 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5566 
5567 	show_swap_cache_info();
5568 }
5569 
5570 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5571 {
5572 	zoneref->zone = zone;
5573 	zoneref->zone_idx = zone_idx(zone);
5574 }
5575 
5576 /*
5577  * Builds allocation fallback zone lists.
5578  *
5579  * Add all populated zones of a node to the zonelist.
5580  */
5581 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5582 {
5583 	struct zone *zone;
5584 	enum zone_type zone_type = MAX_NR_ZONES;
5585 	int nr_zones = 0;
5586 
5587 	do {
5588 		zone_type--;
5589 		zone = pgdat->node_zones + zone_type;
5590 		if (managed_zone(zone)) {
5591 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5592 			check_highest_zone(zone_type);
5593 		}
5594 	} while (zone_type);
5595 
5596 	return nr_zones;
5597 }
5598 
5599 #ifdef CONFIG_NUMA
5600 
5601 static int __parse_numa_zonelist_order(char *s)
5602 {
5603 	/*
5604 	 * We used to support different zonlists modes but they turned
5605 	 * out to be just not useful. Let's keep the warning in place
5606 	 * if somebody still use the cmd line parameter so that we do
5607 	 * not fail it silently
5608 	 */
5609 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5610 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5611 		return -EINVAL;
5612 	}
5613 	return 0;
5614 }
5615 
5616 char numa_zonelist_order[] = "Node";
5617 
5618 /*
5619  * sysctl handler for numa_zonelist_order
5620  */
5621 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5622 		void *buffer, size_t *length, loff_t *ppos)
5623 {
5624 	if (write)
5625 		return __parse_numa_zonelist_order(buffer);
5626 	return proc_dostring(table, write, buffer, length, ppos);
5627 }
5628 
5629 
5630 #define MAX_NODE_LOAD (nr_online_nodes)
5631 static int node_load[MAX_NUMNODES];
5632 
5633 /**
5634  * find_next_best_node - find the next node that should appear in a given node's fallback list
5635  * @node: node whose fallback list we're appending
5636  * @used_node_mask: nodemask_t of already used nodes
5637  *
5638  * We use a number of factors to determine which is the next node that should
5639  * appear on a given node's fallback list.  The node should not have appeared
5640  * already in @node's fallback list, and it should be the next closest node
5641  * according to the distance array (which contains arbitrary distance values
5642  * from each node to each node in the system), and should also prefer nodes
5643  * with no CPUs, since presumably they'll have very little allocation pressure
5644  * on them otherwise.
5645  *
5646  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5647  */
5648 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5649 {
5650 	int n, val;
5651 	int min_val = INT_MAX;
5652 	int best_node = NUMA_NO_NODE;
5653 	const struct cpumask *tmp = cpumask_of_node(0);
5654 
5655 	/* Use the local node if we haven't already */
5656 	if (!node_isset(node, *used_node_mask)) {
5657 		node_set(node, *used_node_mask);
5658 		return node;
5659 	}
5660 
5661 	for_each_node_state(n, N_MEMORY) {
5662 
5663 		/* Don't want a node to appear more than once */
5664 		if (node_isset(n, *used_node_mask))
5665 			continue;
5666 
5667 		/* Use the distance array to find the distance */
5668 		val = node_distance(node, n);
5669 
5670 		/* Penalize nodes under us ("prefer the next node") */
5671 		val += (n < node);
5672 
5673 		/* Give preference to headless and unused nodes */
5674 		tmp = cpumask_of_node(n);
5675 		if (!cpumask_empty(tmp))
5676 			val += PENALTY_FOR_NODE_WITH_CPUS;
5677 
5678 		/* Slight preference for less loaded node */
5679 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5680 		val += node_load[n];
5681 
5682 		if (val < min_val) {
5683 			min_val = val;
5684 			best_node = n;
5685 		}
5686 	}
5687 
5688 	if (best_node >= 0)
5689 		node_set(best_node, *used_node_mask);
5690 
5691 	return best_node;
5692 }
5693 
5694 
5695 /*
5696  * Build zonelists ordered by node and zones within node.
5697  * This results in maximum locality--normal zone overflows into local
5698  * DMA zone, if any--but risks exhausting DMA zone.
5699  */
5700 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5701 		unsigned nr_nodes)
5702 {
5703 	struct zoneref *zonerefs;
5704 	int i;
5705 
5706 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5707 
5708 	for (i = 0; i < nr_nodes; i++) {
5709 		int nr_zones;
5710 
5711 		pg_data_t *node = NODE_DATA(node_order[i]);
5712 
5713 		nr_zones = build_zonerefs_node(node, zonerefs);
5714 		zonerefs += nr_zones;
5715 	}
5716 	zonerefs->zone = NULL;
5717 	zonerefs->zone_idx = 0;
5718 }
5719 
5720 /*
5721  * Build gfp_thisnode zonelists
5722  */
5723 static void build_thisnode_zonelists(pg_data_t *pgdat)
5724 {
5725 	struct zoneref *zonerefs;
5726 	int nr_zones;
5727 
5728 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5729 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5730 	zonerefs += nr_zones;
5731 	zonerefs->zone = NULL;
5732 	zonerefs->zone_idx = 0;
5733 }
5734 
5735 /*
5736  * Build zonelists ordered by zone and nodes within zones.
5737  * This results in conserving DMA zone[s] until all Normal memory is
5738  * exhausted, but results in overflowing to remote node while memory
5739  * may still exist in local DMA zone.
5740  */
5741 
5742 static void build_zonelists(pg_data_t *pgdat)
5743 {
5744 	static int node_order[MAX_NUMNODES];
5745 	int node, load, nr_nodes = 0;
5746 	nodemask_t used_mask = NODE_MASK_NONE;
5747 	int local_node, prev_node;
5748 
5749 	/* NUMA-aware ordering of nodes */
5750 	local_node = pgdat->node_id;
5751 	load = nr_online_nodes;
5752 	prev_node = local_node;
5753 
5754 	memset(node_order, 0, sizeof(node_order));
5755 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5756 		/*
5757 		 * We don't want to pressure a particular node.
5758 		 * So adding penalty to the first node in same
5759 		 * distance group to make it round-robin.
5760 		 */
5761 		if (node_distance(local_node, node) !=
5762 		    node_distance(local_node, prev_node))
5763 			node_load[node] = load;
5764 
5765 		node_order[nr_nodes++] = node;
5766 		prev_node = node;
5767 		load--;
5768 	}
5769 
5770 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5771 	build_thisnode_zonelists(pgdat);
5772 }
5773 
5774 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5775 /*
5776  * Return node id of node used for "local" allocations.
5777  * I.e., first node id of first zone in arg node's generic zonelist.
5778  * Used for initializing percpu 'numa_mem', which is used primarily
5779  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5780  */
5781 int local_memory_node(int node)
5782 {
5783 	struct zoneref *z;
5784 
5785 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5786 				   gfp_zone(GFP_KERNEL),
5787 				   NULL);
5788 	return zone_to_nid(z->zone);
5789 }
5790 #endif
5791 
5792 static void setup_min_unmapped_ratio(void);
5793 static void setup_min_slab_ratio(void);
5794 #else	/* CONFIG_NUMA */
5795 
5796 static void build_zonelists(pg_data_t *pgdat)
5797 {
5798 	int node, local_node;
5799 	struct zoneref *zonerefs;
5800 	int nr_zones;
5801 
5802 	local_node = pgdat->node_id;
5803 
5804 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5805 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5806 	zonerefs += nr_zones;
5807 
5808 	/*
5809 	 * Now we build the zonelist so that it contains the zones
5810 	 * of all the other nodes.
5811 	 * We don't want to pressure a particular node, so when
5812 	 * building the zones for node N, we make sure that the
5813 	 * zones coming right after the local ones are those from
5814 	 * node N+1 (modulo N)
5815 	 */
5816 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5817 		if (!node_online(node))
5818 			continue;
5819 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5820 		zonerefs += nr_zones;
5821 	}
5822 	for (node = 0; node < local_node; node++) {
5823 		if (!node_online(node))
5824 			continue;
5825 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5826 		zonerefs += nr_zones;
5827 	}
5828 
5829 	zonerefs->zone = NULL;
5830 	zonerefs->zone_idx = 0;
5831 }
5832 
5833 #endif	/* CONFIG_NUMA */
5834 
5835 /*
5836  * Boot pageset table. One per cpu which is going to be used for all
5837  * zones and all nodes. The parameters will be set in such a way
5838  * that an item put on a list will immediately be handed over to
5839  * the buddy list. This is safe since pageset manipulation is done
5840  * with interrupts disabled.
5841  *
5842  * The boot_pagesets must be kept even after bootup is complete for
5843  * unused processors and/or zones. They do play a role for bootstrapping
5844  * hotplugged processors.
5845  *
5846  * zoneinfo_show() and maybe other functions do
5847  * not check if the processor is online before following the pageset pointer.
5848  * Other parts of the kernel may not check if the zone is available.
5849  */
5850 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5851 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5852 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5853 
5854 static void __build_all_zonelists(void *data)
5855 {
5856 	int nid;
5857 	int __maybe_unused cpu;
5858 	pg_data_t *self = data;
5859 	static DEFINE_SPINLOCK(lock);
5860 
5861 	spin_lock(&lock);
5862 
5863 #ifdef CONFIG_NUMA
5864 	memset(node_load, 0, sizeof(node_load));
5865 #endif
5866 
5867 	/*
5868 	 * This node is hotadded and no memory is yet present.   So just
5869 	 * building zonelists is fine - no need to touch other nodes.
5870 	 */
5871 	if (self && !node_online(self->node_id)) {
5872 		build_zonelists(self);
5873 	} else {
5874 		for_each_online_node(nid) {
5875 			pg_data_t *pgdat = NODE_DATA(nid);
5876 
5877 			build_zonelists(pgdat);
5878 		}
5879 
5880 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5881 		/*
5882 		 * We now know the "local memory node" for each node--
5883 		 * i.e., the node of the first zone in the generic zonelist.
5884 		 * Set up numa_mem percpu variable for on-line cpus.  During
5885 		 * boot, only the boot cpu should be on-line;  we'll init the
5886 		 * secondary cpus' numa_mem as they come on-line.  During
5887 		 * node/memory hotplug, we'll fixup all on-line cpus.
5888 		 */
5889 		for_each_online_cpu(cpu)
5890 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5891 #endif
5892 	}
5893 
5894 	spin_unlock(&lock);
5895 }
5896 
5897 static noinline void __init
5898 build_all_zonelists_init(void)
5899 {
5900 	int cpu;
5901 
5902 	__build_all_zonelists(NULL);
5903 
5904 	/*
5905 	 * Initialize the boot_pagesets that are going to be used
5906 	 * for bootstrapping processors. The real pagesets for
5907 	 * each zone will be allocated later when the per cpu
5908 	 * allocator is available.
5909 	 *
5910 	 * boot_pagesets are used also for bootstrapping offline
5911 	 * cpus if the system is already booted because the pagesets
5912 	 * are needed to initialize allocators on a specific cpu too.
5913 	 * F.e. the percpu allocator needs the page allocator which
5914 	 * needs the percpu allocator in order to allocate its pagesets
5915 	 * (a chicken-egg dilemma).
5916 	 */
5917 	for_each_possible_cpu(cpu)
5918 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5919 
5920 	mminit_verify_zonelist();
5921 	cpuset_init_current_mems_allowed();
5922 }
5923 
5924 /*
5925  * unless system_state == SYSTEM_BOOTING.
5926  *
5927  * __ref due to call of __init annotated helper build_all_zonelists_init
5928  * [protected by SYSTEM_BOOTING].
5929  */
5930 void __ref build_all_zonelists(pg_data_t *pgdat)
5931 {
5932 	unsigned long vm_total_pages;
5933 
5934 	if (system_state == SYSTEM_BOOTING) {
5935 		build_all_zonelists_init();
5936 	} else {
5937 		__build_all_zonelists(pgdat);
5938 		/* cpuset refresh routine should be here */
5939 	}
5940 	/* Get the number of free pages beyond high watermark in all zones. */
5941 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5942 	/*
5943 	 * Disable grouping by mobility if the number of pages in the
5944 	 * system is too low to allow the mechanism to work. It would be
5945 	 * more accurate, but expensive to check per-zone. This check is
5946 	 * made on memory-hotadd so a system can start with mobility
5947 	 * disabled and enable it later
5948 	 */
5949 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5950 		page_group_by_mobility_disabled = 1;
5951 	else
5952 		page_group_by_mobility_disabled = 0;
5953 
5954 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5955 		nr_online_nodes,
5956 		page_group_by_mobility_disabled ? "off" : "on",
5957 		vm_total_pages);
5958 #ifdef CONFIG_NUMA
5959 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5960 #endif
5961 }
5962 
5963 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5964 static bool __meminit
5965 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5966 {
5967 	static struct memblock_region *r;
5968 
5969 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5970 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5971 			for_each_memblock(memory, r) {
5972 				if (*pfn < memblock_region_memory_end_pfn(r))
5973 					break;
5974 			}
5975 		}
5976 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5977 		    memblock_is_mirror(r)) {
5978 			*pfn = memblock_region_memory_end_pfn(r);
5979 			return true;
5980 		}
5981 	}
5982 	return false;
5983 }
5984 
5985 /*
5986  * Initially all pages are reserved - free ones are freed
5987  * up by memblock_free_all() once the early boot process is
5988  * done. Non-atomic initialization, single-pass.
5989  */
5990 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5991 		unsigned long start_pfn, enum meminit_context context,
5992 		struct vmem_altmap *altmap)
5993 {
5994 	unsigned long pfn, end_pfn = start_pfn + size;
5995 	struct page *page;
5996 
5997 	if (highest_memmap_pfn < end_pfn - 1)
5998 		highest_memmap_pfn = end_pfn - 1;
5999 
6000 #ifdef CONFIG_ZONE_DEVICE
6001 	/*
6002 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6003 	 * memory. We limit the total number of pages to initialize to just
6004 	 * those that might contain the memory mapping. We will defer the
6005 	 * ZONE_DEVICE page initialization until after we have released
6006 	 * the hotplug lock.
6007 	 */
6008 	if (zone == ZONE_DEVICE) {
6009 		if (!altmap)
6010 			return;
6011 
6012 		if (start_pfn == altmap->base_pfn)
6013 			start_pfn += altmap->reserve;
6014 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6015 	}
6016 #endif
6017 
6018 	for (pfn = start_pfn; pfn < end_pfn; ) {
6019 		/*
6020 		 * There can be holes in boot-time mem_map[]s handed to this
6021 		 * function.  They do not exist on hotplugged memory.
6022 		 */
6023 		if (context == MEMINIT_EARLY) {
6024 			if (overlap_memmap_init(zone, &pfn))
6025 				continue;
6026 			if (defer_init(nid, pfn, end_pfn))
6027 				break;
6028 		}
6029 
6030 		page = pfn_to_page(pfn);
6031 		__init_single_page(page, pfn, zone, nid);
6032 		if (context == MEMINIT_HOTPLUG)
6033 			__SetPageReserved(page);
6034 
6035 		/*
6036 		 * Mark the block movable so that blocks are reserved for
6037 		 * movable at startup. This will force kernel allocations
6038 		 * to reserve their blocks rather than leaking throughout
6039 		 * the address space during boot when many long-lived
6040 		 * kernel allocations are made.
6041 		 *
6042 		 * bitmap is created for zone's valid pfn range. but memmap
6043 		 * can be created for invalid pages (for alignment)
6044 		 * check here not to call set_pageblock_migratetype() against
6045 		 * pfn out of zone.
6046 		 */
6047 		if (!(pfn & (pageblock_nr_pages - 1))) {
6048 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6049 			cond_resched();
6050 		}
6051 		pfn++;
6052 	}
6053 }
6054 
6055 #ifdef CONFIG_ZONE_DEVICE
6056 void __ref memmap_init_zone_device(struct zone *zone,
6057 				   unsigned long start_pfn,
6058 				   unsigned long nr_pages,
6059 				   struct dev_pagemap *pgmap)
6060 {
6061 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6062 	struct pglist_data *pgdat = zone->zone_pgdat;
6063 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6064 	unsigned long zone_idx = zone_idx(zone);
6065 	unsigned long start = jiffies;
6066 	int nid = pgdat->node_id;
6067 
6068 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6069 		return;
6070 
6071 	/*
6072 	 * The call to memmap_init_zone should have already taken care
6073 	 * of the pages reserved for the memmap, so we can just jump to
6074 	 * the end of that region and start processing the device pages.
6075 	 */
6076 	if (altmap) {
6077 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6078 		nr_pages = end_pfn - start_pfn;
6079 	}
6080 
6081 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6082 		struct page *page = pfn_to_page(pfn);
6083 
6084 		__init_single_page(page, pfn, zone_idx, nid);
6085 
6086 		/*
6087 		 * Mark page reserved as it will need to wait for onlining
6088 		 * phase for it to be fully associated with a zone.
6089 		 *
6090 		 * We can use the non-atomic __set_bit operation for setting
6091 		 * the flag as we are still initializing the pages.
6092 		 */
6093 		__SetPageReserved(page);
6094 
6095 		/*
6096 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6097 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6098 		 * ever freed or placed on a driver-private list.
6099 		 */
6100 		page->pgmap = pgmap;
6101 		page->zone_device_data = NULL;
6102 
6103 		/*
6104 		 * Mark the block movable so that blocks are reserved for
6105 		 * movable at startup. This will force kernel allocations
6106 		 * to reserve their blocks rather than leaking throughout
6107 		 * the address space during boot when many long-lived
6108 		 * kernel allocations are made.
6109 		 *
6110 		 * bitmap is created for zone's valid pfn range. but memmap
6111 		 * can be created for invalid pages (for alignment)
6112 		 * check here not to call set_pageblock_migratetype() against
6113 		 * pfn out of zone.
6114 		 *
6115 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6116 		 * because this is done early in section_activate()
6117 		 */
6118 		if (!(pfn & (pageblock_nr_pages - 1))) {
6119 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6120 			cond_resched();
6121 		}
6122 	}
6123 
6124 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6125 		nr_pages, jiffies_to_msecs(jiffies - start));
6126 }
6127 
6128 #endif
6129 static void __meminit zone_init_free_lists(struct zone *zone)
6130 {
6131 	unsigned int order, t;
6132 	for_each_migratetype_order(order, t) {
6133 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6134 		zone->free_area[order].nr_free = 0;
6135 	}
6136 }
6137 
6138 void __meminit __weak memmap_init(unsigned long size, int nid,
6139 				  unsigned long zone,
6140 				  unsigned long range_start_pfn)
6141 {
6142 	unsigned long start_pfn, end_pfn;
6143 	unsigned long range_end_pfn = range_start_pfn + size;
6144 	int i;
6145 
6146 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6147 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6148 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6149 
6150 		if (end_pfn > start_pfn) {
6151 			size = end_pfn - start_pfn;
6152 			memmap_init_zone(size, nid, zone, start_pfn,
6153 					 MEMINIT_EARLY, NULL);
6154 		}
6155 	}
6156 }
6157 
6158 static int zone_batchsize(struct zone *zone)
6159 {
6160 #ifdef CONFIG_MMU
6161 	int batch;
6162 
6163 	/*
6164 	 * The per-cpu-pages pools are set to around 1000th of the
6165 	 * size of the zone.
6166 	 */
6167 	batch = zone_managed_pages(zone) / 1024;
6168 	/* But no more than a meg. */
6169 	if (batch * PAGE_SIZE > 1024 * 1024)
6170 		batch = (1024 * 1024) / PAGE_SIZE;
6171 	batch /= 4;		/* We effectively *= 4 below */
6172 	if (batch < 1)
6173 		batch = 1;
6174 
6175 	/*
6176 	 * Clamp the batch to a 2^n - 1 value. Having a power
6177 	 * of 2 value was found to be more likely to have
6178 	 * suboptimal cache aliasing properties in some cases.
6179 	 *
6180 	 * For example if 2 tasks are alternately allocating
6181 	 * batches of pages, one task can end up with a lot
6182 	 * of pages of one half of the possible page colors
6183 	 * and the other with pages of the other colors.
6184 	 */
6185 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6186 
6187 	return batch;
6188 
6189 #else
6190 	/* The deferral and batching of frees should be suppressed under NOMMU
6191 	 * conditions.
6192 	 *
6193 	 * The problem is that NOMMU needs to be able to allocate large chunks
6194 	 * of contiguous memory as there's no hardware page translation to
6195 	 * assemble apparent contiguous memory from discontiguous pages.
6196 	 *
6197 	 * Queueing large contiguous runs of pages for batching, however,
6198 	 * causes the pages to actually be freed in smaller chunks.  As there
6199 	 * can be a significant delay between the individual batches being
6200 	 * recycled, this leads to the once large chunks of space being
6201 	 * fragmented and becoming unavailable for high-order allocations.
6202 	 */
6203 	return 0;
6204 #endif
6205 }
6206 
6207 /*
6208  * pcp->high and pcp->batch values are related and dependent on one another:
6209  * ->batch must never be higher then ->high.
6210  * The following function updates them in a safe manner without read side
6211  * locking.
6212  *
6213  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6214  * those fields changing asynchronously (acording to the above rule).
6215  *
6216  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6217  * outside of boot time (or some other assurance that no concurrent updaters
6218  * exist).
6219  */
6220 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6221 		unsigned long batch)
6222 {
6223        /* start with a fail safe value for batch */
6224 	pcp->batch = 1;
6225 	smp_wmb();
6226 
6227        /* Update high, then batch, in order */
6228 	pcp->high = high;
6229 	smp_wmb();
6230 
6231 	pcp->batch = batch;
6232 }
6233 
6234 /* a companion to pageset_set_high() */
6235 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6236 {
6237 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6238 }
6239 
6240 static void pageset_init(struct per_cpu_pageset *p)
6241 {
6242 	struct per_cpu_pages *pcp;
6243 	int migratetype;
6244 
6245 	memset(p, 0, sizeof(*p));
6246 
6247 	pcp = &p->pcp;
6248 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6249 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6250 }
6251 
6252 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6253 {
6254 	pageset_init(p);
6255 	pageset_set_batch(p, batch);
6256 }
6257 
6258 /*
6259  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6260  * to the value high for the pageset p.
6261  */
6262 static void pageset_set_high(struct per_cpu_pageset *p,
6263 				unsigned long high)
6264 {
6265 	unsigned long batch = max(1UL, high / 4);
6266 	if ((high / 4) > (PAGE_SHIFT * 8))
6267 		batch = PAGE_SHIFT * 8;
6268 
6269 	pageset_update(&p->pcp, high, batch);
6270 }
6271 
6272 static void pageset_set_high_and_batch(struct zone *zone,
6273 				       struct per_cpu_pageset *pcp)
6274 {
6275 	if (percpu_pagelist_fraction)
6276 		pageset_set_high(pcp,
6277 			(zone_managed_pages(zone) /
6278 				percpu_pagelist_fraction));
6279 	else
6280 		pageset_set_batch(pcp, zone_batchsize(zone));
6281 }
6282 
6283 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6284 {
6285 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6286 
6287 	pageset_init(pcp);
6288 	pageset_set_high_and_batch(zone, pcp);
6289 }
6290 
6291 void __meminit setup_zone_pageset(struct zone *zone)
6292 {
6293 	int cpu;
6294 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6295 	for_each_possible_cpu(cpu)
6296 		zone_pageset_init(zone, cpu);
6297 }
6298 
6299 /*
6300  * Allocate per cpu pagesets and initialize them.
6301  * Before this call only boot pagesets were available.
6302  */
6303 void __init setup_per_cpu_pageset(void)
6304 {
6305 	struct pglist_data *pgdat;
6306 	struct zone *zone;
6307 	int __maybe_unused cpu;
6308 
6309 	for_each_populated_zone(zone)
6310 		setup_zone_pageset(zone);
6311 
6312 #ifdef CONFIG_NUMA
6313 	/*
6314 	 * Unpopulated zones continue using the boot pagesets.
6315 	 * The numa stats for these pagesets need to be reset.
6316 	 * Otherwise, they will end up skewing the stats of
6317 	 * the nodes these zones are associated with.
6318 	 */
6319 	for_each_possible_cpu(cpu) {
6320 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6321 		memset(pcp->vm_numa_stat_diff, 0,
6322 		       sizeof(pcp->vm_numa_stat_diff));
6323 	}
6324 #endif
6325 
6326 	for_each_online_pgdat(pgdat)
6327 		pgdat->per_cpu_nodestats =
6328 			alloc_percpu(struct per_cpu_nodestat);
6329 }
6330 
6331 static __meminit void zone_pcp_init(struct zone *zone)
6332 {
6333 	/*
6334 	 * per cpu subsystem is not up at this point. The following code
6335 	 * relies on the ability of the linker to provide the
6336 	 * offset of a (static) per cpu variable into the per cpu area.
6337 	 */
6338 	zone->pageset = &boot_pageset;
6339 
6340 	if (populated_zone(zone))
6341 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6342 			zone->name, zone->present_pages,
6343 					 zone_batchsize(zone));
6344 }
6345 
6346 void __meminit init_currently_empty_zone(struct zone *zone,
6347 					unsigned long zone_start_pfn,
6348 					unsigned long size)
6349 {
6350 	struct pglist_data *pgdat = zone->zone_pgdat;
6351 	int zone_idx = zone_idx(zone) + 1;
6352 
6353 	if (zone_idx > pgdat->nr_zones)
6354 		pgdat->nr_zones = zone_idx;
6355 
6356 	zone->zone_start_pfn = zone_start_pfn;
6357 
6358 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6359 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6360 			pgdat->node_id,
6361 			(unsigned long)zone_idx(zone),
6362 			zone_start_pfn, (zone_start_pfn + size));
6363 
6364 	zone_init_free_lists(zone);
6365 	zone->initialized = 1;
6366 }
6367 
6368 /**
6369  * get_pfn_range_for_nid - Return the start and end page frames for a node
6370  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6371  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6372  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6373  *
6374  * It returns the start and end page frame of a node based on information
6375  * provided by memblock_set_node(). If called for a node
6376  * with no available memory, a warning is printed and the start and end
6377  * PFNs will be 0.
6378  */
6379 void __init get_pfn_range_for_nid(unsigned int nid,
6380 			unsigned long *start_pfn, unsigned long *end_pfn)
6381 {
6382 	unsigned long this_start_pfn, this_end_pfn;
6383 	int i;
6384 
6385 	*start_pfn = -1UL;
6386 	*end_pfn = 0;
6387 
6388 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6389 		*start_pfn = min(*start_pfn, this_start_pfn);
6390 		*end_pfn = max(*end_pfn, this_end_pfn);
6391 	}
6392 
6393 	if (*start_pfn == -1UL)
6394 		*start_pfn = 0;
6395 }
6396 
6397 /*
6398  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6399  * assumption is made that zones within a node are ordered in monotonic
6400  * increasing memory addresses so that the "highest" populated zone is used
6401  */
6402 static void __init find_usable_zone_for_movable(void)
6403 {
6404 	int zone_index;
6405 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6406 		if (zone_index == ZONE_MOVABLE)
6407 			continue;
6408 
6409 		if (arch_zone_highest_possible_pfn[zone_index] >
6410 				arch_zone_lowest_possible_pfn[zone_index])
6411 			break;
6412 	}
6413 
6414 	VM_BUG_ON(zone_index == -1);
6415 	movable_zone = zone_index;
6416 }
6417 
6418 /*
6419  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6420  * because it is sized independent of architecture. Unlike the other zones,
6421  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6422  * in each node depending on the size of each node and how evenly kernelcore
6423  * is distributed. This helper function adjusts the zone ranges
6424  * provided by the architecture for a given node by using the end of the
6425  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6426  * zones within a node are in order of monotonic increases memory addresses
6427  */
6428 static void __init adjust_zone_range_for_zone_movable(int nid,
6429 					unsigned long zone_type,
6430 					unsigned long node_start_pfn,
6431 					unsigned long node_end_pfn,
6432 					unsigned long *zone_start_pfn,
6433 					unsigned long *zone_end_pfn)
6434 {
6435 	/* Only adjust if ZONE_MOVABLE is on this node */
6436 	if (zone_movable_pfn[nid]) {
6437 		/* Size ZONE_MOVABLE */
6438 		if (zone_type == ZONE_MOVABLE) {
6439 			*zone_start_pfn = zone_movable_pfn[nid];
6440 			*zone_end_pfn = min(node_end_pfn,
6441 				arch_zone_highest_possible_pfn[movable_zone]);
6442 
6443 		/* Adjust for ZONE_MOVABLE starting within this range */
6444 		} else if (!mirrored_kernelcore &&
6445 			*zone_start_pfn < zone_movable_pfn[nid] &&
6446 			*zone_end_pfn > zone_movable_pfn[nid]) {
6447 			*zone_end_pfn = zone_movable_pfn[nid];
6448 
6449 		/* Check if this whole range is within ZONE_MOVABLE */
6450 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6451 			*zone_start_pfn = *zone_end_pfn;
6452 	}
6453 }
6454 
6455 /*
6456  * Return the number of pages a zone spans in a node, including holes
6457  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6458  */
6459 static unsigned long __init zone_spanned_pages_in_node(int nid,
6460 					unsigned long zone_type,
6461 					unsigned long node_start_pfn,
6462 					unsigned long node_end_pfn,
6463 					unsigned long *zone_start_pfn,
6464 					unsigned long *zone_end_pfn)
6465 {
6466 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6467 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6468 	/* When hotadd a new node from cpu_up(), the node should be empty */
6469 	if (!node_start_pfn && !node_end_pfn)
6470 		return 0;
6471 
6472 	/* Get the start and end of the zone */
6473 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6474 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6475 	adjust_zone_range_for_zone_movable(nid, zone_type,
6476 				node_start_pfn, node_end_pfn,
6477 				zone_start_pfn, zone_end_pfn);
6478 
6479 	/* Check that this node has pages within the zone's required range */
6480 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6481 		return 0;
6482 
6483 	/* Move the zone boundaries inside the node if necessary */
6484 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6485 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6486 
6487 	/* Return the spanned pages */
6488 	return *zone_end_pfn - *zone_start_pfn;
6489 }
6490 
6491 /*
6492  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6493  * then all holes in the requested range will be accounted for.
6494  */
6495 unsigned long __init __absent_pages_in_range(int nid,
6496 				unsigned long range_start_pfn,
6497 				unsigned long range_end_pfn)
6498 {
6499 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6500 	unsigned long start_pfn, end_pfn;
6501 	int i;
6502 
6503 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6504 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6505 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6506 		nr_absent -= end_pfn - start_pfn;
6507 	}
6508 	return nr_absent;
6509 }
6510 
6511 /**
6512  * absent_pages_in_range - Return number of page frames in holes within a range
6513  * @start_pfn: The start PFN to start searching for holes
6514  * @end_pfn: The end PFN to stop searching for holes
6515  *
6516  * Return: the number of pages frames in memory holes within a range.
6517  */
6518 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6519 							unsigned long end_pfn)
6520 {
6521 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6522 }
6523 
6524 /* Return the number of page frames in holes in a zone on a node */
6525 static unsigned long __init zone_absent_pages_in_node(int nid,
6526 					unsigned long zone_type,
6527 					unsigned long node_start_pfn,
6528 					unsigned long node_end_pfn)
6529 {
6530 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6531 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6532 	unsigned long zone_start_pfn, zone_end_pfn;
6533 	unsigned long nr_absent;
6534 
6535 	/* When hotadd a new node from cpu_up(), the node should be empty */
6536 	if (!node_start_pfn && !node_end_pfn)
6537 		return 0;
6538 
6539 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6540 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6541 
6542 	adjust_zone_range_for_zone_movable(nid, zone_type,
6543 			node_start_pfn, node_end_pfn,
6544 			&zone_start_pfn, &zone_end_pfn);
6545 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6546 
6547 	/*
6548 	 * ZONE_MOVABLE handling.
6549 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6550 	 * and vice versa.
6551 	 */
6552 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6553 		unsigned long start_pfn, end_pfn;
6554 		struct memblock_region *r;
6555 
6556 		for_each_memblock(memory, r) {
6557 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6558 					  zone_start_pfn, zone_end_pfn);
6559 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6560 					zone_start_pfn, zone_end_pfn);
6561 
6562 			if (zone_type == ZONE_MOVABLE &&
6563 			    memblock_is_mirror(r))
6564 				nr_absent += end_pfn - start_pfn;
6565 
6566 			if (zone_type == ZONE_NORMAL &&
6567 			    !memblock_is_mirror(r))
6568 				nr_absent += end_pfn - start_pfn;
6569 		}
6570 	}
6571 
6572 	return nr_absent;
6573 }
6574 
6575 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6576 						unsigned long node_start_pfn,
6577 						unsigned long node_end_pfn)
6578 {
6579 	unsigned long realtotalpages = 0, totalpages = 0;
6580 	enum zone_type i;
6581 
6582 	for (i = 0; i < MAX_NR_ZONES; i++) {
6583 		struct zone *zone = pgdat->node_zones + i;
6584 		unsigned long zone_start_pfn, zone_end_pfn;
6585 		unsigned long spanned, absent;
6586 		unsigned long size, real_size;
6587 
6588 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6589 						     node_start_pfn,
6590 						     node_end_pfn,
6591 						     &zone_start_pfn,
6592 						     &zone_end_pfn);
6593 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6594 						   node_start_pfn,
6595 						   node_end_pfn);
6596 
6597 		size = spanned;
6598 		real_size = size - absent;
6599 
6600 		if (size)
6601 			zone->zone_start_pfn = zone_start_pfn;
6602 		else
6603 			zone->zone_start_pfn = 0;
6604 		zone->spanned_pages = size;
6605 		zone->present_pages = real_size;
6606 
6607 		totalpages += size;
6608 		realtotalpages += real_size;
6609 	}
6610 
6611 	pgdat->node_spanned_pages = totalpages;
6612 	pgdat->node_present_pages = realtotalpages;
6613 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6614 							realtotalpages);
6615 }
6616 
6617 #ifndef CONFIG_SPARSEMEM
6618 /*
6619  * Calculate the size of the zone->blockflags rounded to an unsigned long
6620  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6621  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6622  * round what is now in bits to nearest long in bits, then return it in
6623  * bytes.
6624  */
6625 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6626 {
6627 	unsigned long usemapsize;
6628 
6629 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6630 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6631 	usemapsize = usemapsize >> pageblock_order;
6632 	usemapsize *= NR_PAGEBLOCK_BITS;
6633 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6634 
6635 	return usemapsize / 8;
6636 }
6637 
6638 static void __ref setup_usemap(struct pglist_data *pgdat,
6639 				struct zone *zone,
6640 				unsigned long zone_start_pfn,
6641 				unsigned long zonesize)
6642 {
6643 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6644 	zone->pageblock_flags = NULL;
6645 	if (usemapsize) {
6646 		zone->pageblock_flags =
6647 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6648 					    pgdat->node_id);
6649 		if (!zone->pageblock_flags)
6650 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6651 			      usemapsize, zone->name, pgdat->node_id);
6652 	}
6653 }
6654 #else
6655 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6656 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6657 #endif /* CONFIG_SPARSEMEM */
6658 
6659 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6660 
6661 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6662 void __init set_pageblock_order(void)
6663 {
6664 	unsigned int order;
6665 
6666 	/* Check that pageblock_nr_pages has not already been setup */
6667 	if (pageblock_order)
6668 		return;
6669 
6670 	if (HPAGE_SHIFT > PAGE_SHIFT)
6671 		order = HUGETLB_PAGE_ORDER;
6672 	else
6673 		order = MAX_ORDER - 1;
6674 
6675 	/*
6676 	 * Assume the largest contiguous order of interest is a huge page.
6677 	 * This value may be variable depending on boot parameters on IA64 and
6678 	 * powerpc.
6679 	 */
6680 	pageblock_order = order;
6681 }
6682 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6683 
6684 /*
6685  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6686  * is unused as pageblock_order is set at compile-time. See
6687  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6688  * the kernel config
6689  */
6690 void __init set_pageblock_order(void)
6691 {
6692 }
6693 
6694 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6695 
6696 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6697 						unsigned long present_pages)
6698 {
6699 	unsigned long pages = spanned_pages;
6700 
6701 	/*
6702 	 * Provide a more accurate estimation if there are holes within
6703 	 * the zone and SPARSEMEM is in use. If there are holes within the
6704 	 * zone, each populated memory region may cost us one or two extra
6705 	 * memmap pages due to alignment because memmap pages for each
6706 	 * populated regions may not be naturally aligned on page boundary.
6707 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6708 	 */
6709 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6710 	    IS_ENABLED(CONFIG_SPARSEMEM))
6711 		pages = present_pages;
6712 
6713 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6714 }
6715 
6716 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6717 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6718 {
6719 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6720 
6721 	spin_lock_init(&ds_queue->split_queue_lock);
6722 	INIT_LIST_HEAD(&ds_queue->split_queue);
6723 	ds_queue->split_queue_len = 0;
6724 }
6725 #else
6726 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6727 #endif
6728 
6729 #ifdef CONFIG_COMPACTION
6730 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6731 {
6732 	init_waitqueue_head(&pgdat->kcompactd_wait);
6733 }
6734 #else
6735 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6736 #endif
6737 
6738 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6739 {
6740 	pgdat_resize_init(pgdat);
6741 
6742 	pgdat_init_split_queue(pgdat);
6743 	pgdat_init_kcompactd(pgdat);
6744 
6745 	init_waitqueue_head(&pgdat->kswapd_wait);
6746 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6747 
6748 	pgdat_page_ext_init(pgdat);
6749 	spin_lock_init(&pgdat->lru_lock);
6750 	lruvec_init(&pgdat->__lruvec);
6751 }
6752 
6753 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6754 							unsigned long remaining_pages)
6755 {
6756 	atomic_long_set(&zone->managed_pages, remaining_pages);
6757 	zone_set_nid(zone, nid);
6758 	zone->name = zone_names[idx];
6759 	zone->zone_pgdat = NODE_DATA(nid);
6760 	spin_lock_init(&zone->lock);
6761 	zone_seqlock_init(zone);
6762 	zone_pcp_init(zone);
6763 }
6764 
6765 /*
6766  * Set up the zone data structures
6767  * - init pgdat internals
6768  * - init all zones belonging to this node
6769  *
6770  * NOTE: this function is only called during memory hotplug
6771  */
6772 #ifdef CONFIG_MEMORY_HOTPLUG
6773 void __ref free_area_init_core_hotplug(int nid)
6774 {
6775 	enum zone_type z;
6776 	pg_data_t *pgdat = NODE_DATA(nid);
6777 
6778 	pgdat_init_internals(pgdat);
6779 	for (z = 0; z < MAX_NR_ZONES; z++)
6780 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6781 }
6782 #endif
6783 
6784 /*
6785  * Set up the zone data structures:
6786  *   - mark all pages reserved
6787  *   - mark all memory queues empty
6788  *   - clear the memory bitmaps
6789  *
6790  * NOTE: pgdat should get zeroed by caller.
6791  * NOTE: this function is only called during early init.
6792  */
6793 static void __init free_area_init_core(struct pglist_data *pgdat)
6794 {
6795 	enum zone_type j;
6796 	int nid = pgdat->node_id;
6797 
6798 	pgdat_init_internals(pgdat);
6799 	pgdat->per_cpu_nodestats = &boot_nodestats;
6800 
6801 	for (j = 0; j < MAX_NR_ZONES; j++) {
6802 		struct zone *zone = pgdat->node_zones + j;
6803 		unsigned long size, freesize, memmap_pages;
6804 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6805 
6806 		size = zone->spanned_pages;
6807 		freesize = zone->present_pages;
6808 
6809 		/*
6810 		 * Adjust freesize so that it accounts for how much memory
6811 		 * is used by this zone for memmap. This affects the watermark
6812 		 * and per-cpu initialisations
6813 		 */
6814 		memmap_pages = calc_memmap_size(size, freesize);
6815 		if (!is_highmem_idx(j)) {
6816 			if (freesize >= memmap_pages) {
6817 				freesize -= memmap_pages;
6818 				if (memmap_pages)
6819 					printk(KERN_DEBUG
6820 					       "  %s zone: %lu pages used for memmap\n",
6821 					       zone_names[j], memmap_pages);
6822 			} else
6823 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6824 					zone_names[j], memmap_pages, freesize);
6825 		}
6826 
6827 		/* Account for reserved pages */
6828 		if (j == 0 && freesize > dma_reserve) {
6829 			freesize -= dma_reserve;
6830 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6831 					zone_names[0], dma_reserve);
6832 		}
6833 
6834 		if (!is_highmem_idx(j))
6835 			nr_kernel_pages += freesize;
6836 		/* Charge for highmem memmap if there are enough kernel pages */
6837 		else if (nr_kernel_pages > memmap_pages * 2)
6838 			nr_kernel_pages -= memmap_pages;
6839 		nr_all_pages += freesize;
6840 
6841 		/*
6842 		 * Set an approximate value for lowmem here, it will be adjusted
6843 		 * when the bootmem allocator frees pages into the buddy system.
6844 		 * And all highmem pages will be managed by the buddy system.
6845 		 */
6846 		zone_init_internals(zone, j, nid, freesize);
6847 
6848 		if (!size)
6849 			continue;
6850 
6851 		set_pageblock_order();
6852 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6853 		init_currently_empty_zone(zone, zone_start_pfn, size);
6854 		memmap_init(size, nid, j, zone_start_pfn);
6855 	}
6856 }
6857 
6858 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6859 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6860 {
6861 	unsigned long __maybe_unused start = 0;
6862 	unsigned long __maybe_unused offset = 0;
6863 
6864 	/* Skip empty nodes */
6865 	if (!pgdat->node_spanned_pages)
6866 		return;
6867 
6868 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6869 	offset = pgdat->node_start_pfn - start;
6870 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6871 	if (!pgdat->node_mem_map) {
6872 		unsigned long size, end;
6873 		struct page *map;
6874 
6875 		/*
6876 		 * The zone's endpoints aren't required to be MAX_ORDER
6877 		 * aligned but the node_mem_map endpoints must be in order
6878 		 * for the buddy allocator to function correctly.
6879 		 */
6880 		end = pgdat_end_pfn(pgdat);
6881 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6882 		size =  (end - start) * sizeof(struct page);
6883 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6884 					  pgdat->node_id);
6885 		if (!map)
6886 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6887 			      size, pgdat->node_id);
6888 		pgdat->node_mem_map = map + offset;
6889 	}
6890 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6891 				__func__, pgdat->node_id, (unsigned long)pgdat,
6892 				(unsigned long)pgdat->node_mem_map);
6893 #ifndef CONFIG_NEED_MULTIPLE_NODES
6894 	/*
6895 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6896 	 */
6897 	if (pgdat == NODE_DATA(0)) {
6898 		mem_map = NODE_DATA(0)->node_mem_map;
6899 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6900 			mem_map -= offset;
6901 	}
6902 #endif
6903 }
6904 #else
6905 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6906 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6907 
6908 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6909 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6910 {
6911 	pgdat->first_deferred_pfn = ULONG_MAX;
6912 }
6913 #else
6914 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6915 #endif
6916 
6917 static void __init free_area_init_node(int nid)
6918 {
6919 	pg_data_t *pgdat = NODE_DATA(nid);
6920 	unsigned long start_pfn = 0;
6921 	unsigned long end_pfn = 0;
6922 
6923 	/* pg_data_t should be reset to zero when it's allocated */
6924 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6925 
6926 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6927 
6928 	pgdat->node_id = nid;
6929 	pgdat->node_start_pfn = start_pfn;
6930 	pgdat->per_cpu_nodestats = NULL;
6931 
6932 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6933 		(u64)start_pfn << PAGE_SHIFT,
6934 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6935 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6936 
6937 	alloc_node_mem_map(pgdat);
6938 	pgdat_set_deferred_range(pgdat);
6939 
6940 	free_area_init_core(pgdat);
6941 }
6942 
6943 void __init free_area_init_memoryless_node(int nid)
6944 {
6945 	free_area_init_node(nid);
6946 }
6947 
6948 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6949 /*
6950  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6951  * PageReserved(). Return the number of struct pages that were initialized.
6952  */
6953 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6954 {
6955 	unsigned long pfn;
6956 	u64 pgcnt = 0;
6957 
6958 	for (pfn = spfn; pfn < epfn; pfn++) {
6959 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6960 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6961 				+ pageblock_nr_pages - 1;
6962 			continue;
6963 		}
6964 		/*
6965 		 * Use a fake node/zone (0) for now. Some of these pages
6966 		 * (in memblock.reserved but not in memblock.memory) will
6967 		 * get re-initialized via reserve_bootmem_region() later.
6968 		 */
6969 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6970 		__SetPageReserved(pfn_to_page(pfn));
6971 		pgcnt++;
6972 	}
6973 
6974 	return pgcnt;
6975 }
6976 
6977 /*
6978  * Only struct pages that are backed by physical memory are zeroed and
6979  * initialized by going through __init_single_page(). But, there are some
6980  * struct pages which are reserved in memblock allocator and their fields
6981  * may be accessed (for example page_to_pfn() on some configuration accesses
6982  * flags). We must explicitly initialize those struct pages.
6983  *
6984  * This function also addresses a similar issue where struct pages are left
6985  * uninitialized because the physical address range is not covered by
6986  * memblock.memory or memblock.reserved. That could happen when memblock
6987  * layout is manually configured via memmap=, or when the highest physical
6988  * address (max_pfn) does not end on a section boundary.
6989  */
6990 static void __init init_unavailable_mem(void)
6991 {
6992 	phys_addr_t start, end;
6993 	u64 i, pgcnt;
6994 	phys_addr_t next = 0;
6995 
6996 	/*
6997 	 * Loop through unavailable ranges not covered by memblock.memory.
6998 	 */
6999 	pgcnt = 0;
7000 	for_each_mem_range(i, &memblock.memory, NULL,
7001 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7002 		if (next < start)
7003 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7004 							PFN_UP(start));
7005 		next = end;
7006 	}
7007 
7008 	/*
7009 	 * Early sections always have a fully populated memmap for the whole
7010 	 * section - see pfn_valid(). If the last section has holes at the
7011 	 * end and that section is marked "online", the memmap will be
7012 	 * considered initialized. Make sure that memmap has a well defined
7013 	 * state.
7014 	 */
7015 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7016 					round_up(max_pfn, PAGES_PER_SECTION));
7017 
7018 	/*
7019 	 * Struct pages that do not have backing memory. This could be because
7020 	 * firmware is using some of this memory, or for some other reasons.
7021 	 */
7022 	if (pgcnt)
7023 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7024 }
7025 #else
7026 static inline void __init init_unavailable_mem(void)
7027 {
7028 }
7029 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7030 
7031 #if MAX_NUMNODES > 1
7032 /*
7033  * Figure out the number of possible node ids.
7034  */
7035 void __init setup_nr_node_ids(void)
7036 {
7037 	unsigned int highest;
7038 
7039 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7040 	nr_node_ids = highest + 1;
7041 }
7042 #endif
7043 
7044 /**
7045  * node_map_pfn_alignment - determine the maximum internode alignment
7046  *
7047  * This function should be called after node map is populated and sorted.
7048  * It calculates the maximum power of two alignment which can distinguish
7049  * all the nodes.
7050  *
7051  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7052  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7053  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7054  * shifted, 1GiB is enough and this function will indicate so.
7055  *
7056  * This is used to test whether pfn -> nid mapping of the chosen memory
7057  * model has fine enough granularity to avoid incorrect mapping for the
7058  * populated node map.
7059  *
7060  * Return: the determined alignment in pfn's.  0 if there is no alignment
7061  * requirement (single node).
7062  */
7063 unsigned long __init node_map_pfn_alignment(void)
7064 {
7065 	unsigned long accl_mask = 0, last_end = 0;
7066 	unsigned long start, end, mask;
7067 	int last_nid = NUMA_NO_NODE;
7068 	int i, nid;
7069 
7070 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7071 		if (!start || last_nid < 0 || last_nid == nid) {
7072 			last_nid = nid;
7073 			last_end = end;
7074 			continue;
7075 		}
7076 
7077 		/*
7078 		 * Start with a mask granular enough to pin-point to the
7079 		 * start pfn and tick off bits one-by-one until it becomes
7080 		 * too coarse to separate the current node from the last.
7081 		 */
7082 		mask = ~((1 << __ffs(start)) - 1);
7083 		while (mask && last_end <= (start & (mask << 1)))
7084 			mask <<= 1;
7085 
7086 		/* accumulate all internode masks */
7087 		accl_mask |= mask;
7088 	}
7089 
7090 	/* convert mask to number of pages */
7091 	return ~accl_mask + 1;
7092 }
7093 
7094 /**
7095  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7096  *
7097  * Return: the minimum PFN based on information provided via
7098  * memblock_set_node().
7099  */
7100 unsigned long __init find_min_pfn_with_active_regions(void)
7101 {
7102 	return PHYS_PFN(memblock_start_of_DRAM());
7103 }
7104 
7105 /*
7106  * early_calculate_totalpages()
7107  * Sum pages in active regions for movable zone.
7108  * Populate N_MEMORY for calculating usable_nodes.
7109  */
7110 static unsigned long __init early_calculate_totalpages(void)
7111 {
7112 	unsigned long totalpages = 0;
7113 	unsigned long start_pfn, end_pfn;
7114 	int i, nid;
7115 
7116 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7117 		unsigned long pages = end_pfn - start_pfn;
7118 
7119 		totalpages += pages;
7120 		if (pages)
7121 			node_set_state(nid, N_MEMORY);
7122 	}
7123 	return totalpages;
7124 }
7125 
7126 /*
7127  * Find the PFN the Movable zone begins in each node. Kernel memory
7128  * is spread evenly between nodes as long as the nodes have enough
7129  * memory. When they don't, some nodes will have more kernelcore than
7130  * others
7131  */
7132 static void __init find_zone_movable_pfns_for_nodes(void)
7133 {
7134 	int i, nid;
7135 	unsigned long usable_startpfn;
7136 	unsigned long kernelcore_node, kernelcore_remaining;
7137 	/* save the state before borrow the nodemask */
7138 	nodemask_t saved_node_state = node_states[N_MEMORY];
7139 	unsigned long totalpages = early_calculate_totalpages();
7140 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7141 	struct memblock_region *r;
7142 
7143 	/* Need to find movable_zone earlier when movable_node is specified. */
7144 	find_usable_zone_for_movable();
7145 
7146 	/*
7147 	 * If movable_node is specified, ignore kernelcore and movablecore
7148 	 * options.
7149 	 */
7150 	if (movable_node_is_enabled()) {
7151 		for_each_memblock(memory, r) {
7152 			if (!memblock_is_hotpluggable(r))
7153 				continue;
7154 
7155 			nid = memblock_get_region_node(r);
7156 
7157 			usable_startpfn = PFN_DOWN(r->base);
7158 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7159 				min(usable_startpfn, zone_movable_pfn[nid]) :
7160 				usable_startpfn;
7161 		}
7162 
7163 		goto out2;
7164 	}
7165 
7166 	/*
7167 	 * If kernelcore=mirror is specified, ignore movablecore option
7168 	 */
7169 	if (mirrored_kernelcore) {
7170 		bool mem_below_4gb_not_mirrored = false;
7171 
7172 		for_each_memblock(memory, r) {
7173 			if (memblock_is_mirror(r))
7174 				continue;
7175 
7176 			nid = memblock_get_region_node(r);
7177 
7178 			usable_startpfn = memblock_region_memory_base_pfn(r);
7179 
7180 			if (usable_startpfn < 0x100000) {
7181 				mem_below_4gb_not_mirrored = true;
7182 				continue;
7183 			}
7184 
7185 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7186 				min(usable_startpfn, zone_movable_pfn[nid]) :
7187 				usable_startpfn;
7188 		}
7189 
7190 		if (mem_below_4gb_not_mirrored)
7191 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7192 
7193 		goto out2;
7194 	}
7195 
7196 	/*
7197 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7198 	 * amount of necessary memory.
7199 	 */
7200 	if (required_kernelcore_percent)
7201 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7202 				       10000UL;
7203 	if (required_movablecore_percent)
7204 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7205 					10000UL;
7206 
7207 	/*
7208 	 * If movablecore= was specified, calculate what size of
7209 	 * kernelcore that corresponds so that memory usable for
7210 	 * any allocation type is evenly spread. If both kernelcore
7211 	 * and movablecore are specified, then the value of kernelcore
7212 	 * will be used for required_kernelcore if it's greater than
7213 	 * what movablecore would have allowed.
7214 	 */
7215 	if (required_movablecore) {
7216 		unsigned long corepages;
7217 
7218 		/*
7219 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7220 		 * was requested by the user
7221 		 */
7222 		required_movablecore =
7223 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7224 		required_movablecore = min(totalpages, required_movablecore);
7225 		corepages = totalpages - required_movablecore;
7226 
7227 		required_kernelcore = max(required_kernelcore, corepages);
7228 	}
7229 
7230 	/*
7231 	 * If kernelcore was not specified or kernelcore size is larger
7232 	 * than totalpages, there is no ZONE_MOVABLE.
7233 	 */
7234 	if (!required_kernelcore || required_kernelcore >= totalpages)
7235 		goto out;
7236 
7237 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7238 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7239 
7240 restart:
7241 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7242 	kernelcore_node = required_kernelcore / usable_nodes;
7243 	for_each_node_state(nid, N_MEMORY) {
7244 		unsigned long start_pfn, end_pfn;
7245 
7246 		/*
7247 		 * Recalculate kernelcore_node if the division per node
7248 		 * now exceeds what is necessary to satisfy the requested
7249 		 * amount of memory for the kernel
7250 		 */
7251 		if (required_kernelcore < kernelcore_node)
7252 			kernelcore_node = required_kernelcore / usable_nodes;
7253 
7254 		/*
7255 		 * As the map is walked, we track how much memory is usable
7256 		 * by the kernel using kernelcore_remaining. When it is
7257 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7258 		 */
7259 		kernelcore_remaining = kernelcore_node;
7260 
7261 		/* Go through each range of PFNs within this node */
7262 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7263 			unsigned long size_pages;
7264 
7265 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7266 			if (start_pfn >= end_pfn)
7267 				continue;
7268 
7269 			/* Account for what is only usable for kernelcore */
7270 			if (start_pfn < usable_startpfn) {
7271 				unsigned long kernel_pages;
7272 				kernel_pages = min(end_pfn, usable_startpfn)
7273 								- start_pfn;
7274 
7275 				kernelcore_remaining -= min(kernel_pages,
7276 							kernelcore_remaining);
7277 				required_kernelcore -= min(kernel_pages,
7278 							required_kernelcore);
7279 
7280 				/* Continue if range is now fully accounted */
7281 				if (end_pfn <= usable_startpfn) {
7282 
7283 					/*
7284 					 * Push zone_movable_pfn to the end so
7285 					 * that if we have to rebalance
7286 					 * kernelcore across nodes, we will
7287 					 * not double account here
7288 					 */
7289 					zone_movable_pfn[nid] = end_pfn;
7290 					continue;
7291 				}
7292 				start_pfn = usable_startpfn;
7293 			}
7294 
7295 			/*
7296 			 * The usable PFN range for ZONE_MOVABLE is from
7297 			 * start_pfn->end_pfn. Calculate size_pages as the
7298 			 * number of pages used as kernelcore
7299 			 */
7300 			size_pages = end_pfn - start_pfn;
7301 			if (size_pages > kernelcore_remaining)
7302 				size_pages = kernelcore_remaining;
7303 			zone_movable_pfn[nid] = start_pfn + size_pages;
7304 
7305 			/*
7306 			 * Some kernelcore has been met, update counts and
7307 			 * break if the kernelcore for this node has been
7308 			 * satisfied
7309 			 */
7310 			required_kernelcore -= min(required_kernelcore,
7311 								size_pages);
7312 			kernelcore_remaining -= size_pages;
7313 			if (!kernelcore_remaining)
7314 				break;
7315 		}
7316 	}
7317 
7318 	/*
7319 	 * If there is still required_kernelcore, we do another pass with one
7320 	 * less node in the count. This will push zone_movable_pfn[nid] further
7321 	 * along on the nodes that still have memory until kernelcore is
7322 	 * satisfied
7323 	 */
7324 	usable_nodes--;
7325 	if (usable_nodes && required_kernelcore > usable_nodes)
7326 		goto restart;
7327 
7328 out2:
7329 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7330 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7331 		zone_movable_pfn[nid] =
7332 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7333 
7334 out:
7335 	/* restore the node_state */
7336 	node_states[N_MEMORY] = saved_node_state;
7337 }
7338 
7339 /* Any regular or high memory on that node ? */
7340 static void check_for_memory(pg_data_t *pgdat, int nid)
7341 {
7342 	enum zone_type zone_type;
7343 
7344 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7345 		struct zone *zone = &pgdat->node_zones[zone_type];
7346 		if (populated_zone(zone)) {
7347 			if (IS_ENABLED(CONFIG_HIGHMEM))
7348 				node_set_state(nid, N_HIGH_MEMORY);
7349 			if (zone_type <= ZONE_NORMAL)
7350 				node_set_state(nid, N_NORMAL_MEMORY);
7351 			break;
7352 		}
7353 	}
7354 }
7355 
7356 /*
7357  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7358  * such cases we allow max_zone_pfn sorted in the descending order
7359  */
7360 bool __weak arch_has_descending_max_zone_pfns(void)
7361 {
7362 	return false;
7363 }
7364 
7365 /**
7366  * free_area_init - Initialise all pg_data_t and zone data
7367  * @max_zone_pfn: an array of max PFNs for each zone
7368  *
7369  * This will call free_area_init_node() for each active node in the system.
7370  * Using the page ranges provided by memblock_set_node(), the size of each
7371  * zone in each node and their holes is calculated. If the maximum PFN
7372  * between two adjacent zones match, it is assumed that the zone is empty.
7373  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7374  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7375  * starts where the previous one ended. For example, ZONE_DMA32 starts
7376  * at arch_max_dma_pfn.
7377  */
7378 void __init free_area_init(unsigned long *max_zone_pfn)
7379 {
7380 	unsigned long start_pfn, end_pfn;
7381 	int i, nid, zone;
7382 	bool descending;
7383 
7384 	/* Record where the zone boundaries are */
7385 	memset(arch_zone_lowest_possible_pfn, 0,
7386 				sizeof(arch_zone_lowest_possible_pfn));
7387 	memset(arch_zone_highest_possible_pfn, 0,
7388 				sizeof(arch_zone_highest_possible_pfn));
7389 
7390 	start_pfn = find_min_pfn_with_active_regions();
7391 	descending = arch_has_descending_max_zone_pfns();
7392 
7393 	for (i = 0; i < MAX_NR_ZONES; i++) {
7394 		if (descending)
7395 			zone = MAX_NR_ZONES - i - 1;
7396 		else
7397 			zone = i;
7398 
7399 		if (zone == ZONE_MOVABLE)
7400 			continue;
7401 
7402 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7403 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7404 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7405 
7406 		start_pfn = end_pfn;
7407 	}
7408 
7409 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7410 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7411 	find_zone_movable_pfns_for_nodes();
7412 
7413 	/* Print out the zone ranges */
7414 	pr_info("Zone ranges:\n");
7415 	for (i = 0; i < MAX_NR_ZONES; i++) {
7416 		if (i == ZONE_MOVABLE)
7417 			continue;
7418 		pr_info("  %-8s ", zone_names[i]);
7419 		if (arch_zone_lowest_possible_pfn[i] ==
7420 				arch_zone_highest_possible_pfn[i])
7421 			pr_cont("empty\n");
7422 		else
7423 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7424 				(u64)arch_zone_lowest_possible_pfn[i]
7425 					<< PAGE_SHIFT,
7426 				((u64)arch_zone_highest_possible_pfn[i]
7427 					<< PAGE_SHIFT) - 1);
7428 	}
7429 
7430 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7431 	pr_info("Movable zone start for each node\n");
7432 	for (i = 0; i < MAX_NUMNODES; i++) {
7433 		if (zone_movable_pfn[i])
7434 			pr_info("  Node %d: %#018Lx\n", i,
7435 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7436 	}
7437 
7438 	/*
7439 	 * Print out the early node map, and initialize the
7440 	 * subsection-map relative to active online memory ranges to
7441 	 * enable future "sub-section" extensions of the memory map.
7442 	 */
7443 	pr_info("Early memory node ranges\n");
7444 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7445 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7446 			(u64)start_pfn << PAGE_SHIFT,
7447 			((u64)end_pfn << PAGE_SHIFT) - 1);
7448 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7449 	}
7450 
7451 	/* Initialise every node */
7452 	mminit_verify_pageflags_layout();
7453 	setup_nr_node_ids();
7454 	init_unavailable_mem();
7455 	for_each_online_node(nid) {
7456 		pg_data_t *pgdat = NODE_DATA(nid);
7457 		free_area_init_node(nid);
7458 
7459 		/* Any memory on that node */
7460 		if (pgdat->node_present_pages)
7461 			node_set_state(nid, N_MEMORY);
7462 		check_for_memory(pgdat, nid);
7463 	}
7464 }
7465 
7466 static int __init cmdline_parse_core(char *p, unsigned long *core,
7467 				     unsigned long *percent)
7468 {
7469 	unsigned long long coremem;
7470 	char *endptr;
7471 
7472 	if (!p)
7473 		return -EINVAL;
7474 
7475 	/* Value may be a percentage of total memory, otherwise bytes */
7476 	coremem = simple_strtoull(p, &endptr, 0);
7477 	if (*endptr == '%') {
7478 		/* Paranoid check for percent values greater than 100 */
7479 		WARN_ON(coremem > 100);
7480 
7481 		*percent = coremem;
7482 	} else {
7483 		coremem = memparse(p, &p);
7484 		/* Paranoid check that UL is enough for the coremem value */
7485 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7486 
7487 		*core = coremem >> PAGE_SHIFT;
7488 		*percent = 0UL;
7489 	}
7490 	return 0;
7491 }
7492 
7493 /*
7494  * kernelcore=size sets the amount of memory for use for allocations that
7495  * cannot be reclaimed or migrated.
7496  */
7497 static int __init cmdline_parse_kernelcore(char *p)
7498 {
7499 	/* parse kernelcore=mirror */
7500 	if (parse_option_str(p, "mirror")) {
7501 		mirrored_kernelcore = true;
7502 		return 0;
7503 	}
7504 
7505 	return cmdline_parse_core(p, &required_kernelcore,
7506 				  &required_kernelcore_percent);
7507 }
7508 
7509 /*
7510  * movablecore=size sets the amount of memory for use for allocations that
7511  * can be reclaimed or migrated.
7512  */
7513 static int __init cmdline_parse_movablecore(char *p)
7514 {
7515 	return cmdline_parse_core(p, &required_movablecore,
7516 				  &required_movablecore_percent);
7517 }
7518 
7519 early_param("kernelcore", cmdline_parse_kernelcore);
7520 early_param("movablecore", cmdline_parse_movablecore);
7521 
7522 void adjust_managed_page_count(struct page *page, long count)
7523 {
7524 	atomic_long_add(count, &page_zone(page)->managed_pages);
7525 	totalram_pages_add(count);
7526 #ifdef CONFIG_HIGHMEM
7527 	if (PageHighMem(page))
7528 		totalhigh_pages_add(count);
7529 #endif
7530 }
7531 EXPORT_SYMBOL(adjust_managed_page_count);
7532 
7533 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7534 {
7535 	void *pos;
7536 	unsigned long pages = 0;
7537 
7538 	start = (void *)PAGE_ALIGN((unsigned long)start);
7539 	end = (void *)((unsigned long)end & PAGE_MASK);
7540 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7541 		struct page *page = virt_to_page(pos);
7542 		void *direct_map_addr;
7543 
7544 		/*
7545 		 * 'direct_map_addr' might be different from 'pos'
7546 		 * because some architectures' virt_to_page()
7547 		 * work with aliases.  Getting the direct map
7548 		 * address ensures that we get a _writeable_
7549 		 * alias for the memset().
7550 		 */
7551 		direct_map_addr = page_address(page);
7552 		if ((unsigned int)poison <= 0xFF)
7553 			memset(direct_map_addr, poison, PAGE_SIZE);
7554 
7555 		free_reserved_page(page);
7556 	}
7557 
7558 	if (pages && s)
7559 		pr_info("Freeing %s memory: %ldK\n",
7560 			s, pages << (PAGE_SHIFT - 10));
7561 
7562 	return pages;
7563 }
7564 
7565 #ifdef	CONFIG_HIGHMEM
7566 void free_highmem_page(struct page *page)
7567 {
7568 	__free_reserved_page(page);
7569 	totalram_pages_inc();
7570 	atomic_long_inc(&page_zone(page)->managed_pages);
7571 	totalhigh_pages_inc();
7572 }
7573 #endif
7574 
7575 
7576 void __init mem_init_print_info(const char *str)
7577 {
7578 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7579 	unsigned long init_code_size, init_data_size;
7580 
7581 	physpages = get_num_physpages();
7582 	codesize = _etext - _stext;
7583 	datasize = _edata - _sdata;
7584 	rosize = __end_rodata - __start_rodata;
7585 	bss_size = __bss_stop - __bss_start;
7586 	init_data_size = __init_end - __init_begin;
7587 	init_code_size = _einittext - _sinittext;
7588 
7589 	/*
7590 	 * Detect special cases and adjust section sizes accordingly:
7591 	 * 1) .init.* may be embedded into .data sections
7592 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7593 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7594 	 * 3) .rodata.* may be embedded into .text or .data sections.
7595 	 */
7596 #define adj_init_size(start, end, size, pos, adj) \
7597 	do { \
7598 		if (start <= pos && pos < end && size > adj) \
7599 			size -= adj; \
7600 	} while (0)
7601 
7602 	adj_init_size(__init_begin, __init_end, init_data_size,
7603 		     _sinittext, init_code_size);
7604 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7605 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7606 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7607 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7608 
7609 #undef	adj_init_size
7610 
7611 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7612 #ifdef	CONFIG_HIGHMEM
7613 		", %luK highmem"
7614 #endif
7615 		"%s%s)\n",
7616 		nr_free_pages() << (PAGE_SHIFT - 10),
7617 		physpages << (PAGE_SHIFT - 10),
7618 		codesize >> 10, datasize >> 10, rosize >> 10,
7619 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7620 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7621 		totalcma_pages << (PAGE_SHIFT - 10),
7622 #ifdef	CONFIG_HIGHMEM
7623 		totalhigh_pages() << (PAGE_SHIFT - 10),
7624 #endif
7625 		str ? ", " : "", str ? str : "");
7626 }
7627 
7628 /**
7629  * set_dma_reserve - set the specified number of pages reserved in the first zone
7630  * @new_dma_reserve: The number of pages to mark reserved
7631  *
7632  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7633  * In the DMA zone, a significant percentage may be consumed by kernel image
7634  * and other unfreeable allocations which can skew the watermarks badly. This
7635  * function may optionally be used to account for unfreeable pages in the
7636  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7637  * smaller per-cpu batchsize.
7638  */
7639 void __init set_dma_reserve(unsigned long new_dma_reserve)
7640 {
7641 	dma_reserve = new_dma_reserve;
7642 }
7643 
7644 static int page_alloc_cpu_dead(unsigned int cpu)
7645 {
7646 
7647 	lru_add_drain_cpu(cpu);
7648 	drain_pages(cpu);
7649 
7650 	/*
7651 	 * Spill the event counters of the dead processor
7652 	 * into the current processors event counters.
7653 	 * This artificially elevates the count of the current
7654 	 * processor.
7655 	 */
7656 	vm_events_fold_cpu(cpu);
7657 
7658 	/*
7659 	 * Zero the differential counters of the dead processor
7660 	 * so that the vm statistics are consistent.
7661 	 *
7662 	 * This is only okay since the processor is dead and cannot
7663 	 * race with what we are doing.
7664 	 */
7665 	cpu_vm_stats_fold(cpu);
7666 	return 0;
7667 }
7668 
7669 #ifdef CONFIG_NUMA
7670 int hashdist = HASHDIST_DEFAULT;
7671 
7672 static int __init set_hashdist(char *str)
7673 {
7674 	if (!str)
7675 		return 0;
7676 	hashdist = simple_strtoul(str, &str, 0);
7677 	return 1;
7678 }
7679 __setup("hashdist=", set_hashdist);
7680 #endif
7681 
7682 void __init page_alloc_init(void)
7683 {
7684 	int ret;
7685 
7686 #ifdef CONFIG_NUMA
7687 	if (num_node_state(N_MEMORY) == 1)
7688 		hashdist = 0;
7689 #endif
7690 
7691 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7692 					"mm/page_alloc:dead", NULL,
7693 					page_alloc_cpu_dead);
7694 	WARN_ON(ret < 0);
7695 }
7696 
7697 /*
7698  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7699  *	or min_free_kbytes changes.
7700  */
7701 static void calculate_totalreserve_pages(void)
7702 {
7703 	struct pglist_data *pgdat;
7704 	unsigned long reserve_pages = 0;
7705 	enum zone_type i, j;
7706 
7707 	for_each_online_pgdat(pgdat) {
7708 
7709 		pgdat->totalreserve_pages = 0;
7710 
7711 		for (i = 0; i < MAX_NR_ZONES; i++) {
7712 			struct zone *zone = pgdat->node_zones + i;
7713 			long max = 0;
7714 			unsigned long managed_pages = zone_managed_pages(zone);
7715 
7716 			/* Find valid and maximum lowmem_reserve in the zone */
7717 			for (j = i; j < MAX_NR_ZONES; j++) {
7718 				if (zone->lowmem_reserve[j] > max)
7719 					max = zone->lowmem_reserve[j];
7720 			}
7721 
7722 			/* we treat the high watermark as reserved pages. */
7723 			max += high_wmark_pages(zone);
7724 
7725 			if (max > managed_pages)
7726 				max = managed_pages;
7727 
7728 			pgdat->totalreserve_pages += max;
7729 
7730 			reserve_pages += max;
7731 		}
7732 	}
7733 	totalreserve_pages = reserve_pages;
7734 }
7735 
7736 /*
7737  * setup_per_zone_lowmem_reserve - called whenever
7738  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7739  *	has a correct pages reserved value, so an adequate number of
7740  *	pages are left in the zone after a successful __alloc_pages().
7741  */
7742 static void setup_per_zone_lowmem_reserve(void)
7743 {
7744 	struct pglist_data *pgdat;
7745 	enum zone_type j, idx;
7746 
7747 	for_each_online_pgdat(pgdat) {
7748 		for (j = 0; j < MAX_NR_ZONES; j++) {
7749 			struct zone *zone = pgdat->node_zones + j;
7750 			unsigned long managed_pages = zone_managed_pages(zone);
7751 
7752 			zone->lowmem_reserve[j] = 0;
7753 
7754 			idx = j;
7755 			while (idx) {
7756 				struct zone *lower_zone;
7757 
7758 				idx--;
7759 				lower_zone = pgdat->node_zones + idx;
7760 
7761 				if (!sysctl_lowmem_reserve_ratio[idx] ||
7762 				    !zone_managed_pages(lower_zone)) {
7763 					lower_zone->lowmem_reserve[j] = 0;
7764 					continue;
7765 				} else {
7766 					lower_zone->lowmem_reserve[j] =
7767 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7768 				}
7769 				managed_pages += zone_managed_pages(lower_zone);
7770 			}
7771 		}
7772 	}
7773 
7774 	/* update totalreserve_pages */
7775 	calculate_totalreserve_pages();
7776 }
7777 
7778 static void __setup_per_zone_wmarks(void)
7779 {
7780 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7781 	unsigned long lowmem_pages = 0;
7782 	struct zone *zone;
7783 	unsigned long flags;
7784 
7785 	/* Calculate total number of !ZONE_HIGHMEM pages */
7786 	for_each_zone(zone) {
7787 		if (!is_highmem(zone))
7788 			lowmem_pages += zone_managed_pages(zone);
7789 	}
7790 
7791 	for_each_zone(zone) {
7792 		u64 tmp;
7793 
7794 		spin_lock_irqsave(&zone->lock, flags);
7795 		tmp = (u64)pages_min * zone_managed_pages(zone);
7796 		do_div(tmp, lowmem_pages);
7797 		if (is_highmem(zone)) {
7798 			/*
7799 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7800 			 * need highmem pages, so cap pages_min to a small
7801 			 * value here.
7802 			 *
7803 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7804 			 * deltas control async page reclaim, and so should
7805 			 * not be capped for highmem.
7806 			 */
7807 			unsigned long min_pages;
7808 
7809 			min_pages = zone_managed_pages(zone) / 1024;
7810 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7811 			zone->_watermark[WMARK_MIN] = min_pages;
7812 		} else {
7813 			/*
7814 			 * If it's a lowmem zone, reserve a number of pages
7815 			 * proportionate to the zone's size.
7816 			 */
7817 			zone->_watermark[WMARK_MIN] = tmp;
7818 		}
7819 
7820 		/*
7821 		 * Set the kswapd watermarks distance according to the
7822 		 * scale factor in proportion to available memory, but
7823 		 * ensure a minimum size on small systems.
7824 		 */
7825 		tmp = max_t(u64, tmp >> 2,
7826 			    mult_frac(zone_managed_pages(zone),
7827 				      watermark_scale_factor, 10000));
7828 
7829 		zone->watermark_boost = 0;
7830 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7831 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7832 
7833 		spin_unlock_irqrestore(&zone->lock, flags);
7834 	}
7835 
7836 	/* update totalreserve_pages */
7837 	calculate_totalreserve_pages();
7838 }
7839 
7840 /**
7841  * setup_per_zone_wmarks - called when min_free_kbytes changes
7842  * or when memory is hot-{added|removed}
7843  *
7844  * Ensures that the watermark[min,low,high] values for each zone are set
7845  * correctly with respect to min_free_kbytes.
7846  */
7847 void setup_per_zone_wmarks(void)
7848 {
7849 	static DEFINE_SPINLOCK(lock);
7850 
7851 	spin_lock(&lock);
7852 	__setup_per_zone_wmarks();
7853 	spin_unlock(&lock);
7854 }
7855 
7856 /*
7857  * Initialise min_free_kbytes.
7858  *
7859  * For small machines we want it small (128k min).  For large machines
7860  * we want it large (256MB max).  But it is not linear, because network
7861  * bandwidth does not increase linearly with machine size.  We use
7862  *
7863  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7864  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7865  *
7866  * which yields
7867  *
7868  * 16MB:	512k
7869  * 32MB:	724k
7870  * 64MB:	1024k
7871  * 128MB:	1448k
7872  * 256MB:	2048k
7873  * 512MB:	2896k
7874  * 1024MB:	4096k
7875  * 2048MB:	5792k
7876  * 4096MB:	8192k
7877  * 8192MB:	11584k
7878  * 16384MB:	16384k
7879  */
7880 int __meminit init_per_zone_wmark_min(void)
7881 {
7882 	unsigned long lowmem_kbytes;
7883 	int new_min_free_kbytes;
7884 
7885 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7886 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7887 
7888 	if (new_min_free_kbytes > user_min_free_kbytes) {
7889 		min_free_kbytes = new_min_free_kbytes;
7890 		if (min_free_kbytes < 128)
7891 			min_free_kbytes = 128;
7892 		if (min_free_kbytes > 262144)
7893 			min_free_kbytes = 262144;
7894 	} else {
7895 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7896 				new_min_free_kbytes, user_min_free_kbytes);
7897 	}
7898 	setup_per_zone_wmarks();
7899 	refresh_zone_stat_thresholds();
7900 	setup_per_zone_lowmem_reserve();
7901 
7902 #ifdef CONFIG_NUMA
7903 	setup_min_unmapped_ratio();
7904 	setup_min_slab_ratio();
7905 #endif
7906 
7907 	return 0;
7908 }
7909 postcore_initcall(init_per_zone_wmark_min)
7910 
7911 /*
7912  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7913  *	that we can call two helper functions whenever min_free_kbytes
7914  *	changes.
7915  */
7916 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7917 		void *buffer, size_t *length, loff_t *ppos)
7918 {
7919 	int rc;
7920 
7921 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7922 	if (rc)
7923 		return rc;
7924 
7925 	if (write) {
7926 		user_min_free_kbytes = min_free_kbytes;
7927 		setup_per_zone_wmarks();
7928 	}
7929 	return 0;
7930 }
7931 
7932 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7933 		void *buffer, size_t *length, loff_t *ppos)
7934 {
7935 	int rc;
7936 
7937 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7938 	if (rc)
7939 		return rc;
7940 
7941 	if (write)
7942 		setup_per_zone_wmarks();
7943 
7944 	return 0;
7945 }
7946 
7947 #ifdef CONFIG_NUMA
7948 static void setup_min_unmapped_ratio(void)
7949 {
7950 	pg_data_t *pgdat;
7951 	struct zone *zone;
7952 
7953 	for_each_online_pgdat(pgdat)
7954 		pgdat->min_unmapped_pages = 0;
7955 
7956 	for_each_zone(zone)
7957 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7958 						         sysctl_min_unmapped_ratio) / 100;
7959 }
7960 
7961 
7962 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7963 		void *buffer, size_t *length, loff_t *ppos)
7964 {
7965 	int rc;
7966 
7967 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7968 	if (rc)
7969 		return rc;
7970 
7971 	setup_min_unmapped_ratio();
7972 
7973 	return 0;
7974 }
7975 
7976 static void setup_min_slab_ratio(void)
7977 {
7978 	pg_data_t *pgdat;
7979 	struct zone *zone;
7980 
7981 	for_each_online_pgdat(pgdat)
7982 		pgdat->min_slab_pages = 0;
7983 
7984 	for_each_zone(zone)
7985 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7986 						     sysctl_min_slab_ratio) / 100;
7987 }
7988 
7989 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7990 		void *buffer, size_t *length, loff_t *ppos)
7991 {
7992 	int rc;
7993 
7994 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7995 	if (rc)
7996 		return rc;
7997 
7998 	setup_min_slab_ratio();
7999 
8000 	return 0;
8001 }
8002 #endif
8003 
8004 /*
8005  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8006  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8007  *	whenever sysctl_lowmem_reserve_ratio changes.
8008  *
8009  * The reserve ratio obviously has absolutely no relation with the
8010  * minimum watermarks. The lowmem reserve ratio can only make sense
8011  * if in function of the boot time zone sizes.
8012  */
8013 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8014 		void *buffer, size_t *length, loff_t *ppos)
8015 {
8016 	int i;
8017 
8018 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8019 
8020 	for (i = 0; i < MAX_NR_ZONES; i++) {
8021 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8022 			sysctl_lowmem_reserve_ratio[i] = 0;
8023 	}
8024 
8025 	setup_per_zone_lowmem_reserve();
8026 	return 0;
8027 }
8028 
8029 static void __zone_pcp_update(struct zone *zone)
8030 {
8031 	unsigned int cpu;
8032 
8033 	for_each_possible_cpu(cpu)
8034 		pageset_set_high_and_batch(zone,
8035 				per_cpu_ptr(zone->pageset, cpu));
8036 }
8037 
8038 /*
8039  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8040  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8041  * pagelist can have before it gets flushed back to buddy allocator.
8042  */
8043 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8044 		void *buffer, size_t *length, loff_t *ppos)
8045 {
8046 	struct zone *zone;
8047 	int old_percpu_pagelist_fraction;
8048 	int ret;
8049 
8050 	mutex_lock(&pcp_batch_high_lock);
8051 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8052 
8053 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8054 	if (!write || ret < 0)
8055 		goto out;
8056 
8057 	/* Sanity checking to avoid pcp imbalance */
8058 	if (percpu_pagelist_fraction &&
8059 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8060 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8061 		ret = -EINVAL;
8062 		goto out;
8063 	}
8064 
8065 	/* No change? */
8066 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8067 		goto out;
8068 
8069 	for_each_populated_zone(zone)
8070 		__zone_pcp_update(zone);
8071 out:
8072 	mutex_unlock(&pcp_batch_high_lock);
8073 	return ret;
8074 }
8075 
8076 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8077 /*
8078  * Returns the number of pages that arch has reserved but
8079  * is not known to alloc_large_system_hash().
8080  */
8081 static unsigned long __init arch_reserved_kernel_pages(void)
8082 {
8083 	return 0;
8084 }
8085 #endif
8086 
8087 /*
8088  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8089  * machines. As memory size is increased the scale is also increased but at
8090  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8091  * quadruples the scale is increased by one, which means the size of hash table
8092  * only doubles, instead of quadrupling as well.
8093  * Because 32-bit systems cannot have large physical memory, where this scaling
8094  * makes sense, it is disabled on such platforms.
8095  */
8096 #if __BITS_PER_LONG > 32
8097 #define ADAPT_SCALE_BASE	(64ul << 30)
8098 #define ADAPT_SCALE_SHIFT	2
8099 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8100 #endif
8101 
8102 /*
8103  * allocate a large system hash table from bootmem
8104  * - it is assumed that the hash table must contain an exact power-of-2
8105  *   quantity of entries
8106  * - limit is the number of hash buckets, not the total allocation size
8107  */
8108 void *__init alloc_large_system_hash(const char *tablename,
8109 				     unsigned long bucketsize,
8110 				     unsigned long numentries,
8111 				     int scale,
8112 				     int flags,
8113 				     unsigned int *_hash_shift,
8114 				     unsigned int *_hash_mask,
8115 				     unsigned long low_limit,
8116 				     unsigned long high_limit)
8117 {
8118 	unsigned long long max = high_limit;
8119 	unsigned long log2qty, size;
8120 	void *table = NULL;
8121 	gfp_t gfp_flags;
8122 	bool virt;
8123 
8124 	/* allow the kernel cmdline to have a say */
8125 	if (!numentries) {
8126 		/* round applicable memory size up to nearest megabyte */
8127 		numentries = nr_kernel_pages;
8128 		numentries -= arch_reserved_kernel_pages();
8129 
8130 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8131 		if (PAGE_SHIFT < 20)
8132 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8133 
8134 #if __BITS_PER_LONG > 32
8135 		if (!high_limit) {
8136 			unsigned long adapt;
8137 
8138 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8139 			     adapt <<= ADAPT_SCALE_SHIFT)
8140 				scale++;
8141 		}
8142 #endif
8143 
8144 		/* limit to 1 bucket per 2^scale bytes of low memory */
8145 		if (scale > PAGE_SHIFT)
8146 			numentries >>= (scale - PAGE_SHIFT);
8147 		else
8148 			numentries <<= (PAGE_SHIFT - scale);
8149 
8150 		/* Make sure we've got at least a 0-order allocation.. */
8151 		if (unlikely(flags & HASH_SMALL)) {
8152 			/* Makes no sense without HASH_EARLY */
8153 			WARN_ON(!(flags & HASH_EARLY));
8154 			if (!(numentries >> *_hash_shift)) {
8155 				numentries = 1UL << *_hash_shift;
8156 				BUG_ON(!numentries);
8157 			}
8158 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8159 			numentries = PAGE_SIZE / bucketsize;
8160 	}
8161 	numentries = roundup_pow_of_two(numentries);
8162 
8163 	/* limit allocation size to 1/16 total memory by default */
8164 	if (max == 0) {
8165 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8166 		do_div(max, bucketsize);
8167 	}
8168 	max = min(max, 0x80000000ULL);
8169 
8170 	if (numentries < low_limit)
8171 		numentries = low_limit;
8172 	if (numentries > max)
8173 		numentries = max;
8174 
8175 	log2qty = ilog2(numentries);
8176 
8177 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8178 	do {
8179 		virt = false;
8180 		size = bucketsize << log2qty;
8181 		if (flags & HASH_EARLY) {
8182 			if (flags & HASH_ZERO)
8183 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8184 			else
8185 				table = memblock_alloc_raw(size,
8186 							   SMP_CACHE_BYTES);
8187 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8188 			table = __vmalloc(size, gfp_flags);
8189 			virt = true;
8190 		} else {
8191 			/*
8192 			 * If bucketsize is not a power-of-two, we may free
8193 			 * some pages at the end of hash table which
8194 			 * alloc_pages_exact() automatically does
8195 			 */
8196 			table = alloc_pages_exact(size, gfp_flags);
8197 			kmemleak_alloc(table, size, 1, gfp_flags);
8198 		}
8199 	} while (!table && size > PAGE_SIZE && --log2qty);
8200 
8201 	if (!table)
8202 		panic("Failed to allocate %s hash table\n", tablename);
8203 
8204 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8205 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8206 		virt ? "vmalloc" : "linear");
8207 
8208 	if (_hash_shift)
8209 		*_hash_shift = log2qty;
8210 	if (_hash_mask)
8211 		*_hash_mask = (1 << log2qty) - 1;
8212 
8213 	return table;
8214 }
8215 
8216 /*
8217  * This function checks whether pageblock includes unmovable pages or not.
8218  *
8219  * PageLRU check without isolation or lru_lock could race so that
8220  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8221  * check without lock_page also may miss some movable non-lru pages at
8222  * race condition. So you can't expect this function should be exact.
8223  *
8224  * Returns a page without holding a reference. If the caller wants to
8225  * dereference that page (e.g., dumping), it has to make sure that it
8226  * cannot get removed (e.g., via memory unplug) concurrently.
8227  *
8228  */
8229 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8230 				 int migratetype, int flags)
8231 {
8232 	unsigned long iter = 0;
8233 	unsigned long pfn = page_to_pfn(page);
8234 
8235 	/*
8236 	 * TODO we could make this much more efficient by not checking every
8237 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8238 	 * that the movable zone guarantees that pages are migratable but
8239 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8240 	 * can still lead to having bootmem allocations in zone_movable.
8241 	 */
8242 
8243 	if (is_migrate_cma_page(page)) {
8244 		/*
8245 		 * CMA allocations (alloc_contig_range) really need to mark
8246 		 * isolate CMA pageblocks even when they are not movable in fact
8247 		 * so consider them movable here.
8248 		 */
8249 		if (is_migrate_cma(migratetype))
8250 			return NULL;
8251 
8252 		return page;
8253 	}
8254 
8255 	for (; iter < pageblock_nr_pages; iter++) {
8256 		if (!pfn_valid_within(pfn + iter))
8257 			continue;
8258 
8259 		page = pfn_to_page(pfn + iter);
8260 
8261 		if (PageReserved(page))
8262 			return page;
8263 
8264 		/*
8265 		 * If the zone is movable and we have ruled out all reserved
8266 		 * pages then it should be reasonably safe to assume the rest
8267 		 * is movable.
8268 		 */
8269 		if (zone_idx(zone) == ZONE_MOVABLE)
8270 			continue;
8271 
8272 		/*
8273 		 * Hugepages are not in LRU lists, but they're movable.
8274 		 * THPs are on the LRU, but need to be counted as #small pages.
8275 		 * We need not scan over tail pages because we don't
8276 		 * handle each tail page individually in migration.
8277 		 */
8278 		if (PageHuge(page) || PageTransCompound(page)) {
8279 			struct page *head = compound_head(page);
8280 			unsigned int skip_pages;
8281 
8282 			if (PageHuge(page)) {
8283 				if (!hugepage_migration_supported(page_hstate(head)))
8284 					return page;
8285 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8286 				return page;
8287 			}
8288 
8289 			skip_pages = compound_nr(head) - (page - head);
8290 			iter += skip_pages - 1;
8291 			continue;
8292 		}
8293 
8294 		/*
8295 		 * We can't use page_count without pin a page
8296 		 * because another CPU can free compound page.
8297 		 * This check already skips compound tails of THP
8298 		 * because their page->_refcount is zero at all time.
8299 		 */
8300 		if (!page_ref_count(page)) {
8301 			if (PageBuddy(page))
8302 				iter += (1 << page_order(page)) - 1;
8303 			continue;
8304 		}
8305 
8306 		/*
8307 		 * The HWPoisoned page may be not in buddy system, and
8308 		 * page_count() is not 0.
8309 		 */
8310 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8311 			continue;
8312 
8313 		/*
8314 		 * We treat all PageOffline() pages as movable when offlining
8315 		 * to give drivers a chance to decrement their reference count
8316 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8317 		 * can be offlined as there are no direct references anymore.
8318 		 * For actually unmovable PageOffline() where the driver does
8319 		 * not support this, we will fail later when trying to actually
8320 		 * move these pages that still have a reference count > 0.
8321 		 * (false negatives in this function only)
8322 		 */
8323 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8324 			continue;
8325 
8326 		if (__PageMovable(page) || PageLRU(page))
8327 			continue;
8328 
8329 		/*
8330 		 * If there are RECLAIMABLE pages, we need to check
8331 		 * it.  But now, memory offline itself doesn't call
8332 		 * shrink_node_slabs() and it still to be fixed.
8333 		 */
8334 		/*
8335 		 * If the page is not RAM, page_count()should be 0.
8336 		 * we don't need more check. This is an _used_ not-movable page.
8337 		 *
8338 		 * The problematic thing here is PG_reserved pages. PG_reserved
8339 		 * is set to both of a memory hole page and a _used_ kernel
8340 		 * page at boot.
8341 		 */
8342 		return page;
8343 	}
8344 	return NULL;
8345 }
8346 
8347 #ifdef CONFIG_CONTIG_ALLOC
8348 static unsigned long pfn_max_align_down(unsigned long pfn)
8349 {
8350 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8351 			     pageblock_nr_pages) - 1);
8352 }
8353 
8354 static unsigned long pfn_max_align_up(unsigned long pfn)
8355 {
8356 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8357 				pageblock_nr_pages));
8358 }
8359 
8360 /* [start, end) must belong to a single zone. */
8361 static int __alloc_contig_migrate_range(struct compact_control *cc,
8362 					unsigned long start, unsigned long end)
8363 {
8364 	/* This function is based on compact_zone() from compaction.c. */
8365 	unsigned int nr_reclaimed;
8366 	unsigned long pfn = start;
8367 	unsigned int tries = 0;
8368 	int ret = 0;
8369 	struct migration_target_control mtc = {
8370 		.nid = zone_to_nid(cc->zone),
8371 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8372 	};
8373 
8374 	migrate_prep();
8375 
8376 	while (pfn < end || !list_empty(&cc->migratepages)) {
8377 		if (fatal_signal_pending(current)) {
8378 			ret = -EINTR;
8379 			break;
8380 		}
8381 
8382 		if (list_empty(&cc->migratepages)) {
8383 			cc->nr_migratepages = 0;
8384 			pfn = isolate_migratepages_range(cc, pfn, end);
8385 			if (!pfn) {
8386 				ret = -EINTR;
8387 				break;
8388 			}
8389 			tries = 0;
8390 		} else if (++tries == 5) {
8391 			ret = ret < 0 ? ret : -EBUSY;
8392 			break;
8393 		}
8394 
8395 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8396 							&cc->migratepages);
8397 		cc->nr_migratepages -= nr_reclaimed;
8398 
8399 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8400 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8401 	}
8402 	if (ret < 0) {
8403 		putback_movable_pages(&cc->migratepages);
8404 		return ret;
8405 	}
8406 	return 0;
8407 }
8408 
8409 /**
8410  * alloc_contig_range() -- tries to allocate given range of pages
8411  * @start:	start PFN to allocate
8412  * @end:	one-past-the-last PFN to allocate
8413  * @migratetype:	migratetype of the underlaying pageblocks (either
8414  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8415  *			in range must have the same migratetype and it must
8416  *			be either of the two.
8417  * @gfp_mask:	GFP mask to use during compaction
8418  *
8419  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8420  * aligned.  The PFN range must belong to a single zone.
8421  *
8422  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8423  * pageblocks in the range.  Once isolated, the pageblocks should not
8424  * be modified by others.
8425  *
8426  * Return: zero on success or negative error code.  On success all
8427  * pages which PFN is in [start, end) are allocated for the caller and
8428  * need to be freed with free_contig_range().
8429  */
8430 int alloc_contig_range(unsigned long start, unsigned long end,
8431 		       unsigned migratetype, gfp_t gfp_mask)
8432 {
8433 	unsigned long outer_start, outer_end;
8434 	unsigned int order;
8435 	int ret = 0;
8436 
8437 	struct compact_control cc = {
8438 		.nr_migratepages = 0,
8439 		.order = -1,
8440 		.zone = page_zone(pfn_to_page(start)),
8441 		.mode = MIGRATE_SYNC,
8442 		.ignore_skip_hint = true,
8443 		.no_set_skip_hint = true,
8444 		.gfp_mask = current_gfp_context(gfp_mask),
8445 		.alloc_contig = true,
8446 	};
8447 	INIT_LIST_HEAD(&cc.migratepages);
8448 
8449 	/*
8450 	 * What we do here is we mark all pageblocks in range as
8451 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8452 	 * have different sizes, and due to the way page allocator
8453 	 * work, we align the range to biggest of the two pages so
8454 	 * that page allocator won't try to merge buddies from
8455 	 * different pageblocks and change MIGRATE_ISOLATE to some
8456 	 * other migration type.
8457 	 *
8458 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8459 	 * migrate the pages from an unaligned range (ie. pages that
8460 	 * we are interested in).  This will put all the pages in
8461 	 * range back to page allocator as MIGRATE_ISOLATE.
8462 	 *
8463 	 * When this is done, we take the pages in range from page
8464 	 * allocator removing them from the buddy system.  This way
8465 	 * page allocator will never consider using them.
8466 	 *
8467 	 * This lets us mark the pageblocks back as
8468 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8469 	 * aligned range but not in the unaligned, original range are
8470 	 * put back to page allocator so that buddy can use them.
8471 	 */
8472 
8473 	ret = start_isolate_page_range(pfn_max_align_down(start),
8474 				       pfn_max_align_up(end), migratetype, 0);
8475 	if (ret < 0)
8476 		return ret;
8477 
8478 	/*
8479 	 * In case of -EBUSY, we'd like to know which page causes problem.
8480 	 * So, just fall through. test_pages_isolated() has a tracepoint
8481 	 * which will report the busy page.
8482 	 *
8483 	 * It is possible that busy pages could become available before
8484 	 * the call to test_pages_isolated, and the range will actually be
8485 	 * allocated.  So, if we fall through be sure to clear ret so that
8486 	 * -EBUSY is not accidentally used or returned to caller.
8487 	 */
8488 	ret = __alloc_contig_migrate_range(&cc, start, end);
8489 	if (ret && ret != -EBUSY)
8490 		goto done;
8491 	ret =0;
8492 
8493 	/*
8494 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8495 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8496 	 * more, all pages in [start, end) are free in page allocator.
8497 	 * What we are going to do is to allocate all pages from
8498 	 * [start, end) (that is remove them from page allocator).
8499 	 *
8500 	 * The only problem is that pages at the beginning and at the
8501 	 * end of interesting range may be not aligned with pages that
8502 	 * page allocator holds, ie. they can be part of higher order
8503 	 * pages.  Because of this, we reserve the bigger range and
8504 	 * once this is done free the pages we are not interested in.
8505 	 *
8506 	 * We don't have to hold zone->lock here because the pages are
8507 	 * isolated thus they won't get removed from buddy.
8508 	 */
8509 
8510 	lru_add_drain_all();
8511 
8512 	order = 0;
8513 	outer_start = start;
8514 	while (!PageBuddy(pfn_to_page(outer_start))) {
8515 		if (++order >= MAX_ORDER) {
8516 			outer_start = start;
8517 			break;
8518 		}
8519 		outer_start &= ~0UL << order;
8520 	}
8521 
8522 	if (outer_start != start) {
8523 		order = page_order(pfn_to_page(outer_start));
8524 
8525 		/*
8526 		 * outer_start page could be small order buddy page and
8527 		 * it doesn't include start page. Adjust outer_start
8528 		 * in this case to report failed page properly
8529 		 * on tracepoint in test_pages_isolated()
8530 		 */
8531 		if (outer_start + (1UL << order) <= start)
8532 			outer_start = start;
8533 	}
8534 
8535 	/* Make sure the range is really isolated. */
8536 	if (test_pages_isolated(outer_start, end, 0)) {
8537 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8538 			__func__, outer_start, end);
8539 		ret = -EBUSY;
8540 		goto done;
8541 	}
8542 
8543 	/* Grab isolated pages from freelists. */
8544 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8545 	if (!outer_end) {
8546 		ret = -EBUSY;
8547 		goto done;
8548 	}
8549 
8550 	/* Free head and tail (if any) */
8551 	if (start != outer_start)
8552 		free_contig_range(outer_start, start - outer_start);
8553 	if (end != outer_end)
8554 		free_contig_range(end, outer_end - end);
8555 
8556 done:
8557 	undo_isolate_page_range(pfn_max_align_down(start),
8558 				pfn_max_align_up(end), migratetype);
8559 	return ret;
8560 }
8561 EXPORT_SYMBOL(alloc_contig_range);
8562 
8563 static int __alloc_contig_pages(unsigned long start_pfn,
8564 				unsigned long nr_pages, gfp_t gfp_mask)
8565 {
8566 	unsigned long end_pfn = start_pfn + nr_pages;
8567 
8568 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8569 				  gfp_mask);
8570 }
8571 
8572 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8573 				   unsigned long nr_pages)
8574 {
8575 	unsigned long i, end_pfn = start_pfn + nr_pages;
8576 	struct page *page;
8577 
8578 	for (i = start_pfn; i < end_pfn; i++) {
8579 		page = pfn_to_online_page(i);
8580 		if (!page)
8581 			return false;
8582 
8583 		if (page_zone(page) != z)
8584 			return false;
8585 
8586 		if (PageReserved(page))
8587 			return false;
8588 
8589 		if (page_count(page) > 0)
8590 			return false;
8591 
8592 		if (PageHuge(page))
8593 			return false;
8594 	}
8595 	return true;
8596 }
8597 
8598 static bool zone_spans_last_pfn(const struct zone *zone,
8599 				unsigned long start_pfn, unsigned long nr_pages)
8600 {
8601 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8602 
8603 	return zone_spans_pfn(zone, last_pfn);
8604 }
8605 
8606 /**
8607  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8608  * @nr_pages:	Number of contiguous pages to allocate
8609  * @gfp_mask:	GFP mask to limit search and used during compaction
8610  * @nid:	Target node
8611  * @nodemask:	Mask for other possible nodes
8612  *
8613  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8614  * on an applicable zonelist to find a contiguous pfn range which can then be
8615  * tried for allocation with alloc_contig_range(). This routine is intended
8616  * for allocation requests which can not be fulfilled with the buddy allocator.
8617  *
8618  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8619  * power of two then the alignment is guaranteed to be to the given nr_pages
8620  * (e.g. 1GB request would be aligned to 1GB).
8621  *
8622  * Allocated pages can be freed with free_contig_range() or by manually calling
8623  * __free_page() on each allocated page.
8624  *
8625  * Return: pointer to contiguous pages on success, or NULL if not successful.
8626  */
8627 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8628 				int nid, nodemask_t *nodemask)
8629 {
8630 	unsigned long ret, pfn, flags;
8631 	struct zonelist *zonelist;
8632 	struct zone *zone;
8633 	struct zoneref *z;
8634 
8635 	zonelist = node_zonelist(nid, gfp_mask);
8636 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8637 					gfp_zone(gfp_mask), nodemask) {
8638 		spin_lock_irqsave(&zone->lock, flags);
8639 
8640 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8641 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8642 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8643 				/*
8644 				 * We release the zone lock here because
8645 				 * alloc_contig_range() will also lock the zone
8646 				 * at some point. If there's an allocation
8647 				 * spinning on this lock, it may win the race
8648 				 * and cause alloc_contig_range() to fail...
8649 				 */
8650 				spin_unlock_irqrestore(&zone->lock, flags);
8651 				ret = __alloc_contig_pages(pfn, nr_pages,
8652 							gfp_mask);
8653 				if (!ret)
8654 					return pfn_to_page(pfn);
8655 				spin_lock_irqsave(&zone->lock, flags);
8656 			}
8657 			pfn += nr_pages;
8658 		}
8659 		spin_unlock_irqrestore(&zone->lock, flags);
8660 	}
8661 	return NULL;
8662 }
8663 #endif /* CONFIG_CONTIG_ALLOC */
8664 
8665 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8666 {
8667 	unsigned int count = 0;
8668 
8669 	for (; nr_pages--; pfn++) {
8670 		struct page *page = pfn_to_page(pfn);
8671 
8672 		count += page_count(page) != 1;
8673 		__free_page(page);
8674 	}
8675 	WARN(count != 0, "%d pages are still in use!\n", count);
8676 }
8677 EXPORT_SYMBOL(free_contig_range);
8678 
8679 /*
8680  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8681  * page high values need to be recalulated.
8682  */
8683 void __meminit zone_pcp_update(struct zone *zone)
8684 {
8685 	mutex_lock(&pcp_batch_high_lock);
8686 	__zone_pcp_update(zone);
8687 	mutex_unlock(&pcp_batch_high_lock);
8688 }
8689 
8690 void zone_pcp_reset(struct zone *zone)
8691 {
8692 	unsigned long flags;
8693 	int cpu;
8694 	struct per_cpu_pageset *pset;
8695 
8696 	/* avoid races with drain_pages()  */
8697 	local_irq_save(flags);
8698 	if (zone->pageset != &boot_pageset) {
8699 		for_each_online_cpu(cpu) {
8700 			pset = per_cpu_ptr(zone->pageset, cpu);
8701 			drain_zonestat(zone, pset);
8702 		}
8703 		free_percpu(zone->pageset);
8704 		zone->pageset = &boot_pageset;
8705 	}
8706 	local_irq_restore(flags);
8707 }
8708 
8709 #ifdef CONFIG_MEMORY_HOTREMOVE
8710 /*
8711  * All pages in the range must be in a single zone and isolated
8712  * before calling this.
8713  */
8714 unsigned long
8715 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8716 {
8717 	struct page *page;
8718 	struct zone *zone;
8719 	unsigned int order;
8720 	unsigned long pfn;
8721 	unsigned long flags;
8722 	unsigned long offlined_pages = 0;
8723 
8724 	/* find the first valid pfn */
8725 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8726 		if (pfn_valid(pfn))
8727 			break;
8728 	if (pfn == end_pfn)
8729 		return offlined_pages;
8730 
8731 	offline_mem_sections(pfn, end_pfn);
8732 	zone = page_zone(pfn_to_page(pfn));
8733 	spin_lock_irqsave(&zone->lock, flags);
8734 	pfn = start_pfn;
8735 	while (pfn < end_pfn) {
8736 		if (!pfn_valid(pfn)) {
8737 			pfn++;
8738 			continue;
8739 		}
8740 		page = pfn_to_page(pfn);
8741 		/*
8742 		 * The HWPoisoned page may be not in buddy system, and
8743 		 * page_count() is not 0.
8744 		 */
8745 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8746 			pfn++;
8747 			offlined_pages++;
8748 			continue;
8749 		}
8750 		/*
8751 		 * At this point all remaining PageOffline() pages have a
8752 		 * reference count of 0 and can simply be skipped.
8753 		 */
8754 		if (PageOffline(page)) {
8755 			BUG_ON(page_count(page));
8756 			BUG_ON(PageBuddy(page));
8757 			pfn++;
8758 			offlined_pages++;
8759 			continue;
8760 		}
8761 
8762 		BUG_ON(page_count(page));
8763 		BUG_ON(!PageBuddy(page));
8764 		order = page_order(page);
8765 		offlined_pages += 1 << order;
8766 		del_page_from_free_list(page, zone, order);
8767 		pfn += (1 << order);
8768 	}
8769 	spin_unlock_irqrestore(&zone->lock, flags);
8770 
8771 	return offlined_pages;
8772 }
8773 #endif
8774 
8775 bool is_free_buddy_page(struct page *page)
8776 {
8777 	struct zone *zone = page_zone(page);
8778 	unsigned long pfn = page_to_pfn(page);
8779 	unsigned long flags;
8780 	unsigned int order;
8781 
8782 	spin_lock_irqsave(&zone->lock, flags);
8783 	for (order = 0; order < MAX_ORDER; order++) {
8784 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8785 
8786 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8787 			break;
8788 	}
8789 	spin_unlock_irqrestore(&zone->lock, flags);
8790 
8791 	return order < MAX_ORDER;
8792 }
8793 
8794 #ifdef CONFIG_MEMORY_FAILURE
8795 /*
8796  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8797  * test is performed under the zone lock to prevent a race against page
8798  * allocation.
8799  */
8800 bool set_hwpoison_free_buddy_page(struct page *page)
8801 {
8802 	struct zone *zone = page_zone(page);
8803 	unsigned long pfn = page_to_pfn(page);
8804 	unsigned long flags;
8805 	unsigned int order;
8806 	bool hwpoisoned = false;
8807 
8808 	spin_lock_irqsave(&zone->lock, flags);
8809 	for (order = 0; order < MAX_ORDER; order++) {
8810 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8811 
8812 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8813 			if (!TestSetPageHWPoison(page))
8814 				hwpoisoned = true;
8815 			break;
8816 		}
8817 	}
8818 	spin_unlock_irqrestore(&zone->lock, flags);
8819 
8820 	return hwpoisoned;
8821 }
8822 #endif
8823