xref: /openbmc/linux/mm/page_alloc.c (revision f5b06569)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72 
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
76 
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81 
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87  * defined in <linux/topology.h>.
88  */
89 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93 
94 /*
95  * Array of node states.
96  */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 	[N_POSSIBLE] = NODE_MASK_ALL,
99 	[N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 	[N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 	[N_CPU] = { { [0] = 1UL } },
109 #endif	/* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112 
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115 
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119 
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122 
123 /*
124  * A cached value of the page's pageblock's migratetype, used when the page is
125  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127  * Also the migratetype set in the page does not necessarily match the pcplist
128  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129  * other index - this ensures that it will be put on the correct CMA freelist.
130  */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 	return page->index;
134 }
135 
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 	page->index = migratetype;
139 }
140 
141 #ifdef CONFIG_PM_SLEEP
142 /*
143  * The following functions are used by the suspend/hibernate code to temporarily
144  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145  * while devices are suspended.  To avoid races with the suspend/hibernate code,
146  * they should always be called with pm_mutex held (gfp_allowed_mask also should
147  * only be modified with pm_mutex held, unless the suspend/hibernate code is
148  * guaranteed not to run in parallel with that modification).
149  */
150 
151 static gfp_t saved_gfp_mask;
152 
153 void pm_restore_gfp_mask(void)
154 {
155 	WARN_ON(!mutex_is_locked(&pm_mutex));
156 	if (saved_gfp_mask) {
157 		gfp_allowed_mask = saved_gfp_mask;
158 		saved_gfp_mask = 0;
159 	}
160 }
161 
162 void pm_restrict_gfp_mask(void)
163 {
164 	WARN_ON(!mutex_is_locked(&pm_mutex));
165 	WARN_ON(saved_gfp_mask);
166 	saved_gfp_mask = gfp_allowed_mask;
167 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169 
170 bool pm_suspended_storage(void)
171 {
172 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 		return false;
174 	return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177 
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181 
182 static void __free_pages_ok(struct page *page, unsigned int order);
183 
184 /*
185  * results with 256, 32 in the lowmem_reserve sysctl:
186  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187  *	1G machine -> (16M dma, 784M normal, 224M high)
188  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191  *
192  * TBD: should special case ZONE_DMA32 machines here - in those we normally
193  * don't need any ZONE_NORMAL reservation
194  */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 	 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 	 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 	 32,
204 #endif
205 	 32,
206 };
207 
208 EXPORT_SYMBOL(totalram_pages);
209 
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 	 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 	 "DMA32",
216 #endif
217 	 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 	 "HighMem",
220 #endif
221 	 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 	 "Device",
224 #endif
225 };
226 
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 	"Unmovable",
229 	"Movable",
230 	"Reclaimable",
231 	"HighAtomic",
232 #ifdef CONFIG_CMA
233 	"CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 	"Isolate",
237 #endif
238 };
239 
240 compound_page_dtor * const compound_page_dtors[] = {
241 	NULL,
242 	free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 	free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 	free_transhuge_page,
248 #endif
249 };
250 
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254 
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258 
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266 
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271 
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278 
279 int page_group_by_mobility_disabled __read_mostly;
280 
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 	pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286 
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 	int nid = early_pfn_to_nid(pfn);
291 
292 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 		return true;
294 
295 	return false;
296 }
297 
298 /*
299  * Returns false when the remaining initialisation should be deferred until
300  * later in the boot cycle when it can be parallelised.
301  */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 				unsigned long pfn, unsigned long zone_end,
304 				unsigned long *nr_initialised)
305 {
306 	unsigned long max_initialise;
307 
308 	/* Always populate low zones for address-contrained allocations */
309 	if (zone_end < pgdat_end_pfn(pgdat))
310 		return true;
311 	/*
312 	 * Initialise at least 2G of a node but also take into account that
313 	 * two large system hashes that can take up 1GB for 0.25TB/node.
314 	 */
315 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 		(pgdat->node_spanned_pages >> 8));
317 
318 	(*nr_initialised)++;
319 	if ((*nr_initialised > max_initialise) &&
320 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 		pgdat->first_deferred_pfn = pfn;
322 		return false;
323 	}
324 
325 	return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331 
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 	return false;
335 }
336 
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 				unsigned long pfn, unsigned long zone_end,
339 				unsigned long *nr_initialised)
340 {
341 	return true;
342 }
343 #endif
344 
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 							unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 	return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 	return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355 
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 	pfn &= (PAGES_PER_SECTION-1);
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366 
367 /**
368  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369  * @page: The page within the block of interest
370  * @pfn: The target page frame number
371  * @end_bitidx: The last bit of interest to retrieve
372  * @mask: mask of bits that the caller is interested in
373  *
374  * Return: pageblock_bits flags
375  */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 					unsigned long pfn,
378 					unsigned long end_bitidx,
379 					unsigned long mask)
380 {
381 	unsigned long *bitmap;
382 	unsigned long bitidx, word_bitidx;
383 	unsigned long word;
384 
385 	bitmap = get_pageblock_bitmap(page, pfn);
386 	bitidx = pfn_to_bitidx(page, pfn);
387 	word_bitidx = bitidx / BITS_PER_LONG;
388 	bitidx &= (BITS_PER_LONG-1);
389 
390 	word = bitmap[word_bitidx];
391 	bitidx += end_bitidx;
392 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394 
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 					unsigned long end_bitidx,
397 					unsigned long mask)
398 {
399 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401 
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406 
407 /**
408  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409  * @page: The page within the block of interest
410  * @flags: The flags to set
411  * @pfn: The target page frame number
412  * @end_bitidx: The last bit of interest
413  * @mask: mask of bits that the caller is interested in
414  */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 					unsigned long pfn,
417 					unsigned long end_bitidx,
418 					unsigned long mask)
419 {
420 	unsigned long *bitmap;
421 	unsigned long bitidx, word_bitidx;
422 	unsigned long old_word, word;
423 
424 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425 
426 	bitmap = get_pageblock_bitmap(page, pfn);
427 	bitidx = pfn_to_bitidx(page, pfn);
428 	word_bitidx = bitidx / BITS_PER_LONG;
429 	bitidx &= (BITS_PER_LONG-1);
430 
431 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432 
433 	bitidx += end_bitidx;
434 	mask <<= (BITS_PER_LONG - bitidx - 1);
435 	flags <<= (BITS_PER_LONG - bitidx - 1);
436 
437 	word = READ_ONCE(bitmap[word_bitidx]);
438 	for (;;) {
439 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 		if (word == old_word)
441 			break;
442 		word = old_word;
443 	}
444 }
445 
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 	if (unlikely(page_group_by_mobility_disabled &&
449 		     migratetype < MIGRATE_PCPTYPES))
450 		migratetype = MIGRATE_UNMOVABLE;
451 
452 	set_pageblock_flags_group(page, (unsigned long)migratetype,
453 					PB_migrate, PB_migrate_end);
454 }
455 
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 	int ret = 0;
460 	unsigned seq;
461 	unsigned long pfn = page_to_pfn(page);
462 	unsigned long sp, start_pfn;
463 
464 	do {
465 		seq = zone_span_seqbegin(zone);
466 		start_pfn = zone->zone_start_pfn;
467 		sp = zone->spanned_pages;
468 		if (!zone_spans_pfn(zone, pfn))
469 			ret = 1;
470 	} while (zone_span_seqretry(zone, seq));
471 
472 	if (ret)
473 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 			pfn, zone_to_nid(zone), zone->name,
475 			start_pfn, start_pfn + sp);
476 
477 	return ret;
478 }
479 
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 	if (!pfn_valid_within(page_to_pfn(page)))
483 		return 0;
484 	if (zone != page_zone(page))
485 		return 0;
486 
487 	return 1;
488 }
489 /*
490  * Temporary debugging check for pages not lying within a given zone.
491  */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 	if (page_outside_zone_boundaries(zone, page))
495 		return 1;
496 	if (!page_is_consistent(zone, page))
497 		return 1;
498 
499 	return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 	return 0;
505 }
506 #endif
507 
508 static void bad_page(struct page *page, const char *reason,
509 		unsigned long bad_flags)
510 {
511 	static unsigned long resume;
512 	static unsigned long nr_shown;
513 	static unsigned long nr_unshown;
514 
515 	/*
516 	 * Allow a burst of 60 reports, then keep quiet for that minute;
517 	 * or allow a steady drip of one report per second.
518 	 */
519 	if (nr_shown == 60) {
520 		if (time_before(jiffies, resume)) {
521 			nr_unshown++;
522 			goto out;
523 		}
524 		if (nr_unshown) {
525 			pr_alert(
526 			      "BUG: Bad page state: %lu messages suppressed\n",
527 				nr_unshown);
528 			nr_unshown = 0;
529 		}
530 		nr_shown = 0;
531 	}
532 	if (nr_shown++ == 0)
533 		resume = jiffies + 60 * HZ;
534 
535 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
536 		current->comm, page_to_pfn(page));
537 	__dump_page(page, reason);
538 	bad_flags &= page->flags;
539 	if (bad_flags)
540 		pr_alert("bad because of flags: %#lx(%pGp)\n",
541 						bad_flags, &bad_flags);
542 	dump_page_owner(page);
543 
544 	print_modules();
545 	dump_stack();
546 out:
547 	/* Leave bad fields for debug, except PageBuddy could make trouble */
548 	page_mapcount_reset(page); /* remove PageBuddy */
549 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551 
552 /*
553  * Higher-order pages are called "compound pages".  They are structured thusly:
554  *
555  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556  *
557  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559  *
560  * The first tail page's ->compound_dtor holds the offset in array of compound
561  * page destructors. See compound_page_dtors.
562  *
563  * The first tail page's ->compound_order holds the order of allocation.
564  * This usage means that zero-order pages may not be compound.
565  */
566 
567 void free_compound_page(struct page *page)
568 {
569 	__free_pages_ok(page, compound_order(page));
570 }
571 
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 	int i;
575 	int nr_pages = 1 << order;
576 
577 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 	set_compound_order(page, order);
579 	__SetPageHead(page);
580 	for (i = 1; i < nr_pages; i++) {
581 		struct page *p = page + i;
582 		set_page_count(p, 0);
583 		p->mapping = TAIL_MAPPING;
584 		set_compound_head(p, page);
585 	}
586 	atomic_set(compound_mapcount_ptr(page), -1);
587 }
588 
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595 
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 	if (!buf)
599 		return -EINVAL;
600 	return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603 
604 static bool need_debug_guardpage(void)
605 {
606 	/* If we don't use debug_pagealloc, we don't need guard page */
607 	if (!debug_pagealloc_enabled())
608 		return false;
609 
610 	return true;
611 }
612 
613 static void init_debug_guardpage(void)
614 {
615 	if (!debug_pagealloc_enabled())
616 		return;
617 
618 	_debug_guardpage_enabled = true;
619 }
620 
621 struct page_ext_operations debug_guardpage_ops = {
622 	.need = need_debug_guardpage,
623 	.init = init_debug_guardpage,
624 };
625 
626 static int __init debug_guardpage_minorder_setup(char *buf)
627 {
628 	unsigned long res;
629 
630 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
631 		pr_err("Bad debug_guardpage_minorder value\n");
632 		return 0;
633 	}
634 	_debug_guardpage_minorder = res;
635 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
636 	return 0;
637 }
638 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639 
640 static inline void set_page_guard(struct zone *zone, struct page *page,
641 				unsigned int order, int migratetype)
642 {
643 	struct page_ext *page_ext;
644 
645 	if (!debug_guardpage_enabled())
646 		return;
647 
648 	page_ext = lookup_page_ext(page);
649 	if (unlikely(!page_ext))
650 		return;
651 
652 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653 
654 	INIT_LIST_HEAD(&page->lru);
655 	set_page_private(page, order);
656 	/* Guard pages are not available for any usage */
657 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
658 }
659 
660 static inline void clear_page_guard(struct zone *zone, struct page *page,
661 				unsigned int order, int migratetype)
662 {
663 	struct page_ext *page_ext;
664 
665 	if (!debug_guardpage_enabled())
666 		return;
667 
668 	page_ext = lookup_page_ext(page);
669 	if (unlikely(!page_ext))
670 		return;
671 
672 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673 
674 	set_page_private(page, 0);
675 	if (!is_migrate_isolate(migratetype))
676 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
677 }
678 #else
679 struct page_ext_operations debug_guardpage_ops = { NULL, };
680 static inline void set_page_guard(struct zone *zone, struct page *page,
681 				unsigned int order, int migratetype) {}
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 				unsigned int order, int migratetype) {}
684 #endif
685 
686 static inline void set_page_order(struct page *page, unsigned int order)
687 {
688 	set_page_private(page, order);
689 	__SetPageBuddy(page);
690 }
691 
692 static inline void rmv_page_order(struct page *page)
693 {
694 	__ClearPageBuddy(page);
695 	set_page_private(page, 0);
696 }
697 
698 /*
699  * This function checks whether a page is free && is the buddy
700  * we can do coalesce a page and its buddy if
701  * (a) the buddy is not in a hole &&
702  * (b) the buddy is in the buddy system &&
703  * (c) a page and its buddy have the same order &&
704  * (d) a page and its buddy are in the same zone.
705  *
706  * For recording whether a page is in the buddy system, we set ->_mapcount
707  * PAGE_BUDDY_MAPCOUNT_VALUE.
708  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709  * serialized by zone->lock.
710  *
711  * For recording page's order, we use page_private(page).
712  */
713 static inline int page_is_buddy(struct page *page, struct page *buddy,
714 							unsigned int order)
715 {
716 	if (!pfn_valid_within(page_to_pfn(buddy)))
717 		return 0;
718 
719 	if (page_is_guard(buddy) && page_order(buddy) == order) {
720 		if (page_zone_id(page) != page_zone_id(buddy))
721 			return 0;
722 
723 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724 
725 		return 1;
726 	}
727 
728 	if (PageBuddy(buddy) && page_order(buddy) == order) {
729 		/*
730 		 * zone check is done late to avoid uselessly
731 		 * calculating zone/node ids for pages that could
732 		 * never merge.
733 		 */
734 		if (page_zone_id(page) != page_zone_id(buddy))
735 			return 0;
736 
737 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738 
739 		return 1;
740 	}
741 	return 0;
742 }
743 
744 /*
745  * Freeing function for a buddy system allocator.
746  *
747  * The concept of a buddy system is to maintain direct-mapped table
748  * (containing bit values) for memory blocks of various "orders".
749  * The bottom level table contains the map for the smallest allocatable
750  * units of memory (here, pages), and each level above it describes
751  * pairs of units from the levels below, hence, "buddies".
752  * At a high level, all that happens here is marking the table entry
753  * at the bottom level available, and propagating the changes upward
754  * as necessary, plus some accounting needed to play nicely with other
755  * parts of the VM system.
756  * At each level, we keep a list of pages, which are heads of continuous
757  * free pages of length of (1 << order) and marked with _mapcount
758  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759  * field.
760  * So when we are allocating or freeing one, we can derive the state of the
761  * other.  That is, if we allocate a small block, and both were
762  * free, the remainder of the region must be split into blocks.
763  * If a block is freed, and its buddy is also free, then this
764  * triggers coalescing into a block of larger size.
765  *
766  * -- nyc
767  */
768 
769 static inline void __free_one_page(struct page *page,
770 		unsigned long pfn,
771 		struct zone *zone, unsigned int order,
772 		int migratetype)
773 {
774 	unsigned long page_idx;
775 	unsigned long combined_idx;
776 	unsigned long uninitialized_var(buddy_idx);
777 	struct page *buddy;
778 	unsigned int max_order;
779 
780 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
781 
782 	VM_BUG_ON(!zone_is_initialized(zone));
783 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784 
785 	VM_BUG_ON(migratetype == -1);
786 	if (likely(!is_migrate_isolate(migratetype)))
787 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
788 
789 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
790 
791 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
793 
794 continue_merging:
795 	while (order < max_order - 1) {
796 		buddy_idx = __find_buddy_index(page_idx, order);
797 		buddy = page + (buddy_idx - page_idx);
798 		if (!page_is_buddy(page, buddy, order))
799 			goto done_merging;
800 		/*
801 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 		 * merge with it and move up one order.
803 		 */
804 		if (page_is_guard(buddy)) {
805 			clear_page_guard(zone, buddy, order, migratetype);
806 		} else {
807 			list_del(&buddy->lru);
808 			zone->free_area[order].nr_free--;
809 			rmv_page_order(buddy);
810 		}
811 		combined_idx = buddy_idx & page_idx;
812 		page = page + (combined_idx - page_idx);
813 		page_idx = combined_idx;
814 		order++;
815 	}
816 	if (max_order < MAX_ORDER) {
817 		/* If we are here, it means order is >= pageblock_order.
818 		 * We want to prevent merge between freepages on isolate
819 		 * pageblock and normal pageblock. Without this, pageblock
820 		 * isolation could cause incorrect freepage or CMA accounting.
821 		 *
822 		 * We don't want to hit this code for the more frequent
823 		 * low-order merging.
824 		 */
825 		if (unlikely(has_isolate_pageblock(zone))) {
826 			int buddy_mt;
827 
828 			buddy_idx = __find_buddy_index(page_idx, order);
829 			buddy = page + (buddy_idx - page_idx);
830 			buddy_mt = get_pageblock_migratetype(buddy);
831 
832 			if (migratetype != buddy_mt
833 					&& (is_migrate_isolate(migratetype) ||
834 						is_migrate_isolate(buddy_mt)))
835 				goto done_merging;
836 		}
837 		max_order++;
838 		goto continue_merging;
839 	}
840 
841 done_merging:
842 	set_page_order(page, order);
843 
844 	/*
845 	 * If this is not the largest possible page, check if the buddy
846 	 * of the next-highest order is free. If it is, it's possible
847 	 * that pages are being freed that will coalesce soon. In case,
848 	 * that is happening, add the free page to the tail of the list
849 	 * so it's less likely to be used soon and more likely to be merged
850 	 * as a higher order page
851 	 */
852 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
853 		struct page *higher_page, *higher_buddy;
854 		combined_idx = buddy_idx & page_idx;
855 		higher_page = page + (combined_idx - page_idx);
856 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
857 		higher_buddy = higher_page + (buddy_idx - combined_idx);
858 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 			list_add_tail(&page->lru,
860 				&zone->free_area[order].free_list[migratetype]);
861 			goto out;
862 		}
863 	}
864 
865 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866 out:
867 	zone->free_area[order].nr_free++;
868 }
869 
870 /*
871  * A bad page could be due to a number of fields. Instead of multiple branches,
872  * try and check multiple fields with one check. The caller must do a detailed
873  * check if necessary.
874  */
875 static inline bool page_expected_state(struct page *page,
876 					unsigned long check_flags)
877 {
878 	if (unlikely(atomic_read(&page->_mapcount) != -1))
879 		return false;
880 
881 	if (unlikely((unsigned long)page->mapping |
882 			page_ref_count(page) |
883 #ifdef CONFIG_MEMCG
884 			(unsigned long)page->mem_cgroup |
885 #endif
886 			(page->flags & check_flags)))
887 		return false;
888 
889 	return true;
890 }
891 
892 static void free_pages_check_bad(struct page *page)
893 {
894 	const char *bad_reason;
895 	unsigned long bad_flags;
896 
897 	bad_reason = NULL;
898 	bad_flags = 0;
899 
900 	if (unlikely(atomic_read(&page->_mapcount) != -1))
901 		bad_reason = "nonzero mapcount";
902 	if (unlikely(page->mapping != NULL))
903 		bad_reason = "non-NULL mapping";
904 	if (unlikely(page_ref_count(page) != 0))
905 		bad_reason = "nonzero _refcount";
906 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 	}
910 #ifdef CONFIG_MEMCG
911 	if (unlikely(page->mem_cgroup))
912 		bad_reason = "page still charged to cgroup";
913 #endif
914 	bad_page(page, bad_reason, bad_flags);
915 }
916 
917 static inline int free_pages_check(struct page *page)
918 {
919 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 		return 0;
921 
922 	/* Something has gone sideways, find it */
923 	free_pages_check_bad(page);
924 	return 1;
925 }
926 
927 static int free_tail_pages_check(struct page *head_page, struct page *page)
928 {
929 	int ret = 1;
930 
931 	/*
932 	 * We rely page->lru.next never has bit 0 set, unless the page
933 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 	 */
935 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936 
937 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 		ret = 0;
939 		goto out;
940 	}
941 	switch (page - head_page) {
942 	case 1:
943 		/* the first tail page: ->mapping is compound_mapcount() */
944 		if (unlikely(compound_mapcount(page))) {
945 			bad_page(page, "nonzero compound_mapcount", 0);
946 			goto out;
947 		}
948 		break;
949 	case 2:
950 		/*
951 		 * the second tail page: ->mapping is
952 		 * page_deferred_list().next -- ignore value.
953 		 */
954 		break;
955 	default:
956 		if (page->mapping != TAIL_MAPPING) {
957 			bad_page(page, "corrupted mapping in tail page", 0);
958 			goto out;
959 		}
960 		break;
961 	}
962 	if (unlikely(!PageTail(page))) {
963 		bad_page(page, "PageTail not set", 0);
964 		goto out;
965 	}
966 	if (unlikely(compound_head(page) != head_page)) {
967 		bad_page(page, "compound_head not consistent", 0);
968 		goto out;
969 	}
970 	ret = 0;
971 out:
972 	page->mapping = NULL;
973 	clear_compound_head(page);
974 	return ret;
975 }
976 
977 static __always_inline bool free_pages_prepare(struct page *page,
978 					unsigned int order, bool check_free)
979 {
980 	int bad = 0;
981 
982 	VM_BUG_ON_PAGE(PageTail(page), page);
983 
984 	trace_mm_page_free(page, order);
985 	kmemcheck_free_shadow(page, order);
986 
987 	/*
988 	 * Check tail pages before head page information is cleared to
989 	 * avoid checking PageCompound for order-0 pages.
990 	 */
991 	if (unlikely(order)) {
992 		bool compound = PageCompound(page);
993 		int i;
994 
995 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
996 
997 		if (compound)
998 			ClearPageDoubleMap(page);
999 		for (i = 1; i < (1 << order); i++) {
1000 			if (compound)
1001 				bad += free_tail_pages_check(page, page + i);
1002 			if (unlikely(free_pages_check(page + i))) {
1003 				bad++;
1004 				continue;
1005 			}
1006 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 		}
1008 	}
1009 	if (PageMappingFlags(page))
1010 		page->mapping = NULL;
1011 	if (memcg_kmem_enabled() && PageKmemcg(page))
1012 		memcg_kmem_uncharge(page, order);
1013 	if (check_free)
1014 		bad += free_pages_check(page);
1015 	if (bad)
1016 		return false;
1017 
1018 	page_cpupid_reset_last(page);
1019 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1020 	reset_page_owner(page, order);
1021 
1022 	if (!PageHighMem(page)) {
1023 		debug_check_no_locks_freed(page_address(page),
1024 					   PAGE_SIZE << order);
1025 		debug_check_no_obj_freed(page_address(page),
1026 					   PAGE_SIZE << order);
1027 	}
1028 	arch_free_page(page, order);
1029 	kernel_poison_pages(page, 1 << order, 0);
1030 	kernel_map_pages(page, 1 << order, 0);
1031 	kasan_free_pages(page, order);
1032 
1033 	return true;
1034 }
1035 
1036 #ifdef CONFIG_DEBUG_VM
1037 static inline bool free_pcp_prepare(struct page *page)
1038 {
1039 	return free_pages_prepare(page, 0, true);
1040 }
1041 
1042 static inline bool bulkfree_pcp_prepare(struct page *page)
1043 {
1044 	return false;
1045 }
1046 #else
1047 static bool free_pcp_prepare(struct page *page)
1048 {
1049 	return free_pages_prepare(page, 0, false);
1050 }
1051 
1052 static bool bulkfree_pcp_prepare(struct page *page)
1053 {
1054 	return free_pages_check(page);
1055 }
1056 #endif /* CONFIG_DEBUG_VM */
1057 
1058 /*
1059  * Frees a number of pages from the PCP lists
1060  * Assumes all pages on list are in same zone, and of same order.
1061  * count is the number of pages to free.
1062  *
1063  * If the zone was previously in an "all pages pinned" state then look to
1064  * see if this freeing clears that state.
1065  *
1066  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1067  * pinned" detection logic.
1068  */
1069 static void free_pcppages_bulk(struct zone *zone, int count,
1070 					struct per_cpu_pages *pcp)
1071 {
1072 	int migratetype = 0;
1073 	int batch_free = 0;
1074 	unsigned long nr_scanned;
1075 	bool isolated_pageblocks;
1076 
1077 	spin_lock(&zone->lock);
1078 	isolated_pageblocks = has_isolate_pageblock(zone);
1079 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1080 	if (nr_scanned)
1081 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1082 
1083 	while (count) {
1084 		struct page *page;
1085 		struct list_head *list;
1086 
1087 		/*
1088 		 * Remove pages from lists in a round-robin fashion. A
1089 		 * batch_free count is maintained that is incremented when an
1090 		 * empty list is encountered.  This is so more pages are freed
1091 		 * off fuller lists instead of spinning excessively around empty
1092 		 * lists
1093 		 */
1094 		do {
1095 			batch_free++;
1096 			if (++migratetype == MIGRATE_PCPTYPES)
1097 				migratetype = 0;
1098 			list = &pcp->lists[migratetype];
1099 		} while (list_empty(list));
1100 
1101 		/* This is the only non-empty list. Free them all. */
1102 		if (batch_free == MIGRATE_PCPTYPES)
1103 			batch_free = count;
1104 
1105 		do {
1106 			int mt;	/* migratetype of the to-be-freed page */
1107 
1108 			page = list_last_entry(list, struct page, lru);
1109 			/* must delete as __free_one_page list manipulates */
1110 			list_del(&page->lru);
1111 
1112 			mt = get_pcppage_migratetype(page);
1113 			/* MIGRATE_ISOLATE page should not go to pcplists */
1114 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1115 			/* Pageblock could have been isolated meanwhile */
1116 			if (unlikely(isolated_pageblocks))
1117 				mt = get_pageblock_migratetype(page);
1118 
1119 			if (bulkfree_pcp_prepare(page))
1120 				continue;
1121 
1122 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1123 			trace_mm_page_pcpu_drain(page, 0, mt);
1124 		} while (--count && --batch_free && !list_empty(list));
1125 	}
1126 	spin_unlock(&zone->lock);
1127 }
1128 
1129 static void free_one_page(struct zone *zone,
1130 				struct page *page, unsigned long pfn,
1131 				unsigned int order,
1132 				int migratetype)
1133 {
1134 	unsigned long nr_scanned;
1135 	spin_lock(&zone->lock);
1136 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1137 	if (nr_scanned)
1138 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1139 
1140 	if (unlikely(has_isolate_pageblock(zone) ||
1141 		is_migrate_isolate(migratetype))) {
1142 		migratetype = get_pfnblock_migratetype(page, pfn);
1143 	}
1144 	__free_one_page(page, pfn, zone, order, migratetype);
1145 	spin_unlock(&zone->lock);
1146 }
1147 
1148 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1149 				unsigned long zone, int nid)
1150 {
1151 	set_page_links(page, zone, nid, pfn);
1152 	init_page_count(page);
1153 	page_mapcount_reset(page);
1154 	page_cpupid_reset_last(page);
1155 
1156 	INIT_LIST_HEAD(&page->lru);
1157 #ifdef WANT_PAGE_VIRTUAL
1158 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1159 	if (!is_highmem_idx(zone))
1160 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1161 #endif
1162 }
1163 
1164 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1165 					int nid)
1166 {
1167 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1168 }
1169 
1170 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1171 static void init_reserved_page(unsigned long pfn)
1172 {
1173 	pg_data_t *pgdat;
1174 	int nid, zid;
1175 
1176 	if (!early_page_uninitialised(pfn))
1177 		return;
1178 
1179 	nid = early_pfn_to_nid(pfn);
1180 	pgdat = NODE_DATA(nid);
1181 
1182 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1183 		struct zone *zone = &pgdat->node_zones[zid];
1184 
1185 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1186 			break;
1187 	}
1188 	__init_single_pfn(pfn, zid, nid);
1189 }
1190 #else
1191 static inline void init_reserved_page(unsigned long pfn)
1192 {
1193 }
1194 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1195 
1196 /*
1197  * Initialised pages do not have PageReserved set. This function is
1198  * called for each range allocated by the bootmem allocator and
1199  * marks the pages PageReserved. The remaining valid pages are later
1200  * sent to the buddy page allocator.
1201  */
1202 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1203 {
1204 	unsigned long start_pfn = PFN_DOWN(start);
1205 	unsigned long end_pfn = PFN_UP(end);
1206 
1207 	for (; start_pfn < end_pfn; start_pfn++) {
1208 		if (pfn_valid(start_pfn)) {
1209 			struct page *page = pfn_to_page(start_pfn);
1210 
1211 			init_reserved_page(start_pfn);
1212 
1213 			/* Avoid false-positive PageTail() */
1214 			INIT_LIST_HEAD(&page->lru);
1215 
1216 			SetPageReserved(page);
1217 		}
1218 	}
1219 }
1220 
1221 static void __free_pages_ok(struct page *page, unsigned int order)
1222 {
1223 	unsigned long flags;
1224 	int migratetype;
1225 	unsigned long pfn = page_to_pfn(page);
1226 
1227 	if (!free_pages_prepare(page, order, true))
1228 		return;
1229 
1230 	migratetype = get_pfnblock_migratetype(page, pfn);
1231 	local_irq_save(flags);
1232 	__count_vm_events(PGFREE, 1 << order);
1233 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1234 	local_irq_restore(flags);
1235 }
1236 
1237 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1238 {
1239 	unsigned int nr_pages = 1 << order;
1240 	struct page *p = page;
1241 	unsigned int loop;
1242 
1243 	prefetchw(p);
1244 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1245 		prefetchw(p + 1);
1246 		__ClearPageReserved(p);
1247 		set_page_count(p, 0);
1248 	}
1249 	__ClearPageReserved(p);
1250 	set_page_count(p, 0);
1251 
1252 	page_zone(page)->managed_pages += nr_pages;
1253 	set_page_refcounted(page);
1254 	__free_pages(page, order);
1255 }
1256 
1257 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1258 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1259 
1260 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1261 
1262 int __meminit early_pfn_to_nid(unsigned long pfn)
1263 {
1264 	static DEFINE_SPINLOCK(early_pfn_lock);
1265 	int nid;
1266 
1267 	spin_lock(&early_pfn_lock);
1268 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1269 	if (nid < 0)
1270 		nid = first_online_node;
1271 	spin_unlock(&early_pfn_lock);
1272 
1273 	return nid;
1274 }
1275 #endif
1276 
1277 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1278 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1279 					struct mminit_pfnnid_cache *state)
1280 {
1281 	int nid;
1282 
1283 	nid = __early_pfn_to_nid(pfn, state);
1284 	if (nid >= 0 && nid != node)
1285 		return false;
1286 	return true;
1287 }
1288 
1289 /* Only safe to use early in boot when initialisation is single-threaded */
1290 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1291 {
1292 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1293 }
1294 
1295 #else
1296 
1297 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1298 {
1299 	return true;
1300 }
1301 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1302 					struct mminit_pfnnid_cache *state)
1303 {
1304 	return true;
1305 }
1306 #endif
1307 
1308 
1309 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1310 							unsigned int order)
1311 {
1312 	if (early_page_uninitialised(pfn))
1313 		return;
1314 	return __free_pages_boot_core(page, order);
1315 }
1316 
1317 /*
1318  * Check that the whole (or subset of) a pageblock given by the interval of
1319  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1320  * with the migration of free compaction scanner. The scanners then need to
1321  * use only pfn_valid_within() check for arches that allow holes within
1322  * pageblocks.
1323  *
1324  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1325  *
1326  * It's possible on some configurations to have a setup like node0 node1 node0
1327  * i.e. it's possible that all pages within a zones range of pages do not
1328  * belong to a single zone. We assume that a border between node0 and node1
1329  * can occur within a single pageblock, but not a node0 node1 node0
1330  * interleaving within a single pageblock. It is therefore sufficient to check
1331  * the first and last page of a pageblock and avoid checking each individual
1332  * page in a pageblock.
1333  */
1334 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1335 				     unsigned long end_pfn, struct zone *zone)
1336 {
1337 	struct page *start_page;
1338 	struct page *end_page;
1339 
1340 	/* end_pfn is one past the range we are checking */
1341 	end_pfn--;
1342 
1343 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1344 		return NULL;
1345 
1346 	start_page = pfn_to_page(start_pfn);
1347 
1348 	if (page_zone(start_page) != zone)
1349 		return NULL;
1350 
1351 	end_page = pfn_to_page(end_pfn);
1352 
1353 	/* This gives a shorter code than deriving page_zone(end_page) */
1354 	if (page_zone_id(start_page) != page_zone_id(end_page))
1355 		return NULL;
1356 
1357 	return start_page;
1358 }
1359 
1360 void set_zone_contiguous(struct zone *zone)
1361 {
1362 	unsigned long block_start_pfn = zone->zone_start_pfn;
1363 	unsigned long block_end_pfn;
1364 
1365 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1366 	for (; block_start_pfn < zone_end_pfn(zone);
1367 			block_start_pfn = block_end_pfn,
1368 			 block_end_pfn += pageblock_nr_pages) {
1369 
1370 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1371 
1372 		if (!__pageblock_pfn_to_page(block_start_pfn,
1373 					     block_end_pfn, zone))
1374 			return;
1375 	}
1376 
1377 	/* We confirm that there is no hole */
1378 	zone->contiguous = true;
1379 }
1380 
1381 void clear_zone_contiguous(struct zone *zone)
1382 {
1383 	zone->contiguous = false;
1384 }
1385 
1386 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1387 static void __init deferred_free_range(struct page *page,
1388 					unsigned long pfn, int nr_pages)
1389 {
1390 	int i;
1391 
1392 	if (!page)
1393 		return;
1394 
1395 	/* Free a large naturally-aligned chunk if possible */
1396 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1397 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1398 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1399 		__free_pages_boot_core(page, MAX_ORDER-1);
1400 		return;
1401 	}
1402 
1403 	for (i = 0; i < nr_pages; i++, page++)
1404 		__free_pages_boot_core(page, 0);
1405 }
1406 
1407 /* Completion tracking for deferred_init_memmap() threads */
1408 static atomic_t pgdat_init_n_undone __initdata;
1409 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1410 
1411 static inline void __init pgdat_init_report_one_done(void)
1412 {
1413 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1414 		complete(&pgdat_init_all_done_comp);
1415 }
1416 
1417 /* Initialise remaining memory on a node */
1418 static int __init deferred_init_memmap(void *data)
1419 {
1420 	pg_data_t *pgdat = data;
1421 	int nid = pgdat->node_id;
1422 	struct mminit_pfnnid_cache nid_init_state = { };
1423 	unsigned long start = jiffies;
1424 	unsigned long nr_pages = 0;
1425 	unsigned long walk_start, walk_end;
1426 	int i, zid;
1427 	struct zone *zone;
1428 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1429 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1430 
1431 	if (first_init_pfn == ULONG_MAX) {
1432 		pgdat_init_report_one_done();
1433 		return 0;
1434 	}
1435 
1436 	/* Bind memory initialisation thread to a local node if possible */
1437 	if (!cpumask_empty(cpumask))
1438 		set_cpus_allowed_ptr(current, cpumask);
1439 
1440 	/* Sanity check boundaries */
1441 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1442 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1443 	pgdat->first_deferred_pfn = ULONG_MAX;
1444 
1445 	/* Only the highest zone is deferred so find it */
1446 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1447 		zone = pgdat->node_zones + zid;
1448 		if (first_init_pfn < zone_end_pfn(zone))
1449 			break;
1450 	}
1451 
1452 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1453 		unsigned long pfn, end_pfn;
1454 		struct page *page = NULL;
1455 		struct page *free_base_page = NULL;
1456 		unsigned long free_base_pfn = 0;
1457 		int nr_to_free = 0;
1458 
1459 		end_pfn = min(walk_end, zone_end_pfn(zone));
1460 		pfn = first_init_pfn;
1461 		if (pfn < walk_start)
1462 			pfn = walk_start;
1463 		if (pfn < zone->zone_start_pfn)
1464 			pfn = zone->zone_start_pfn;
1465 
1466 		for (; pfn < end_pfn; pfn++) {
1467 			if (!pfn_valid_within(pfn))
1468 				goto free_range;
1469 
1470 			/*
1471 			 * Ensure pfn_valid is checked every
1472 			 * MAX_ORDER_NR_PAGES for memory holes
1473 			 */
1474 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1475 				if (!pfn_valid(pfn)) {
1476 					page = NULL;
1477 					goto free_range;
1478 				}
1479 			}
1480 
1481 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1482 				page = NULL;
1483 				goto free_range;
1484 			}
1485 
1486 			/* Minimise pfn page lookups and scheduler checks */
1487 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1488 				page++;
1489 			} else {
1490 				nr_pages += nr_to_free;
1491 				deferred_free_range(free_base_page,
1492 						free_base_pfn, nr_to_free);
1493 				free_base_page = NULL;
1494 				free_base_pfn = nr_to_free = 0;
1495 
1496 				page = pfn_to_page(pfn);
1497 				cond_resched();
1498 			}
1499 
1500 			if (page->flags) {
1501 				VM_BUG_ON(page_zone(page) != zone);
1502 				goto free_range;
1503 			}
1504 
1505 			__init_single_page(page, pfn, zid, nid);
1506 			if (!free_base_page) {
1507 				free_base_page = page;
1508 				free_base_pfn = pfn;
1509 				nr_to_free = 0;
1510 			}
1511 			nr_to_free++;
1512 
1513 			/* Where possible, batch up pages for a single free */
1514 			continue;
1515 free_range:
1516 			/* Free the current block of pages to allocator */
1517 			nr_pages += nr_to_free;
1518 			deferred_free_range(free_base_page, free_base_pfn,
1519 								nr_to_free);
1520 			free_base_page = NULL;
1521 			free_base_pfn = nr_to_free = 0;
1522 		}
1523 
1524 		first_init_pfn = max(end_pfn, first_init_pfn);
1525 	}
1526 
1527 	/* Sanity check that the next zone really is unpopulated */
1528 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1529 
1530 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1531 					jiffies_to_msecs(jiffies - start));
1532 
1533 	pgdat_init_report_one_done();
1534 	return 0;
1535 }
1536 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1537 
1538 void __init page_alloc_init_late(void)
1539 {
1540 	struct zone *zone;
1541 
1542 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1543 	int nid;
1544 
1545 	/* There will be num_node_state(N_MEMORY) threads */
1546 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1547 	for_each_node_state(nid, N_MEMORY) {
1548 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1549 	}
1550 
1551 	/* Block until all are initialised */
1552 	wait_for_completion(&pgdat_init_all_done_comp);
1553 
1554 	/* Reinit limits that are based on free pages after the kernel is up */
1555 	files_maxfiles_init();
1556 #endif
1557 
1558 	for_each_populated_zone(zone)
1559 		set_zone_contiguous(zone);
1560 }
1561 
1562 #ifdef CONFIG_CMA
1563 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1564 void __init init_cma_reserved_pageblock(struct page *page)
1565 {
1566 	unsigned i = pageblock_nr_pages;
1567 	struct page *p = page;
1568 
1569 	do {
1570 		__ClearPageReserved(p);
1571 		set_page_count(p, 0);
1572 	} while (++p, --i);
1573 
1574 	set_pageblock_migratetype(page, MIGRATE_CMA);
1575 
1576 	if (pageblock_order >= MAX_ORDER) {
1577 		i = pageblock_nr_pages;
1578 		p = page;
1579 		do {
1580 			set_page_refcounted(p);
1581 			__free_pages(p, MAX_ORDER - 1);
1582 			p += MAX_ORDER_NR_PAGES;
1583 		} while (i -= MAX_ORDER_NR_PAGES);
1584 	} else {
1585 		set_page_refcounted(page);
1586 		__free_pages(page, pageblock_order);
1587 	}
1588 
1589 	adjust_managed_page_count(page, pageblock_nr_pages);
1590 }
1591 #endif
1592 
1593 /*
1594  * The order of subdivision here is critical for the IO subsystem.
1595  * Please do not alter this order without good reasons and regression
1596  * testing. Specifically, as large blocks of memory are subdivided,
1597  * the order in which smaller blocks are delivered depends on the order
1598  * they're subdivided in this function. This is the primary factor
1599  * influencing the order in which pages are delivered to the IO
1600  * subsystem according to empirical testing, and this is also justified
1601  * by considering the behavior of a buddy system containing a single
1602  * large block of memory acted on by a series of small allocations.
1603  * This behavior is a critical factor in sglist merging's success.
1604  *
1605  * -- nyc
1606  */
1607 static inline void expand(struct zone *zone, struct page *page,
1608 	int low, int high, struct free_area *area,
1609 	int migratetype)
1610 {
1611 	unsigned long size = 1 << high;
1612 
1613 	while (high > low) {
1614 		area--;
1615 		high--;
1616 		size >>= 1;
1617 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1618 
1619 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1620 			debug_guardpage_enabled() &&
1621 			high < debug_guardpage_minorder()) {
1622 			/*
1623 			 * Mark as guard pages (or page), that will allow to
1624 			 * merge back to allocator when buddy will be freed.
1625 			 * Corresponding page table entries will not be touched,
1626 			 * pages will stay not present in virtual address space
1627 			 */
1628 			set_page_guard(zone, &page[size], high, migratetype);
1629 			continue;
1630 		}
1631 		list_add(&page[size].lru, &area->free_list[migratetype]);
1632 		area->nr_free++;
1633 		set_page_order(&page[size], high);
1634 	}
1635 }
1636 
1637 static void check_new_page_bad(struct page *page)
1638 {
1639 	const char *bad_reason = NULL;
1640 	unsigned long bad_flags = 0;
1641 
1642 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1643 		bad_reason = "nonzero mapcount";
1644 	if (unlikely(page->mapping != NULL))
1645 		bad_reason = "non-NULL mapping";
1646 	if (unlikely(page_ref_count(page) != 0))
1647 		bad_reason = "nonzero _count";
1648 	if (unlikely(page->flags & __PG_HWPOISON)) {
1649 		bad_reason = "HWPoisoned (hardware-corrupted)";
1650 		bad_flags = __PG_HWPOISON;
1651 		/* Don't complain about hwpoisoned pages */
1652 		page_mapcount_reset(page); /* remove PageBuddy */
1653 		return;
1654 	}
1655 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1656 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1657 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1658 	}
1659 #ifdef CONFIG_MEMCG
1660 	if (unlikely(page->mem_cgroup))
1661 		bad_reason = "page still charged to cgroup";
1662 #endif
1663 	bad_page(page, bad_reason, bad_flags);
1664 }
1665 
1666 /*
1667  * This page is about to be returned from the page allocator
1668  */
1669 static inline int check_new_page(struct page *page)
1670 {
1671 	if (likely(page_expected_state(page,
1672 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1673 		return 0;
1674 
1675 	check_new_page_bad(page);
1676 	return 1;
1677 }
1678 
1679 static inline bool free_pages_prezeroed(bool poisoned)
1680 {
1681 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1682 		page_poisoning_enabled() && poisoned;
1683 }
1684 
1685 #ifdef CONFIG_DEBUG_VM
1686 static bool check_pcp_refill(struct page *page)
1687 {
1688 	return false;
1689 }
1690 
1691 static bool check_new_pcp(struct page *page)
1692 {
1693 	return check_new_page(page);
1694 }
1695 #else
1696 static bool check_pcp_refill(struct page *page)
1697 {
1698 	return check_new_page(page);
1699 }
1700 static bool check_new_pcp(struct page *page)
1701 {
1702 	return false;
1703 }
1704 #endif /* CONFIG_DEBUG_VM */
1705 
1706 static bool check_new_pages(struct page *page, unsigned int order)
1707 {
1708 	int i;
1709 	for (i = 0; i < (1 << order); i++) {
1710 		struct page *p = page + i;
1711 
1712 		if (unlikely(check_new_page(p)))
1713 			return true;
1714 	}
1715 
1716 	return false;
1717 }
1718 
1719 inline void post_alloc_hook(struct page *page, unsigned int order,
1720 				gfp_t gfp_flags)
1721 {
1722 	set_page_private(page, 0);
1723 	set_page_refcounted(page);
1724 
1725 	arch_alloc_page(page, order);
1726 	kernel_map_pages(page, 1 << order, 1);
1727 	kernel_poison_pages(page, 1 << order, 1);
1728 	kasan_alloc_pages(page, order);
1729 	set_page_owner(page, order, gfp_flags);
1730 }
1731 
1732 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1733 							unsigned int alloc_flags)
1734 {
1735 	int i;
1736 	bool poisoned = true;
1737 
1738 	for (i = 0; i < (1 << order); i++) {
1739 		struct page *p = page + i;
1740 		if (poisoned)
1741 			poisoned &= page_is_poisoned(p);
1742 	}
1743 
1744 	post_alloc_hook(page, order, gfp_flags);
1745 
1746 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1747 		for (i = 0; i < (1 << order); i++)
1748 			clear_highpage(page + i);
1749 
1750 	if (order && (gfp_flags & __GFP_COMP))
1751 		prep_compound_page(page, order);
1752 
1753 	/*
1754 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1755 	 * allocate the page. The expectation is that the caller is taking
1756 	 * steps that will free more memory. The caller should avoid the page
1757 	 * being used for !PFMEMALLOC purposes.
1758 	 */
1759 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1760 		set_page_pfmemalloc(page);
1761 	else
1762 		clear_page_pfmemalloc(page);
1763 }
1764 
1765 /*
1766  * Go through the free lists for the given migratetype and remove
1767  * the smallest available page from the freelists
1768  */
1769 static inline
1770 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1771 						int migratetype)
1772 {
1773 	unsigned int current_order;
1774 	struct free_area *area;
1775 	struct page *page;
1776 
1777 	/* Find a page of the appropriate size in the preferred list */
1778 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1779 		area = &(zone->free_area[current_order]);
1780 		page = list_first_entry_or_null(&area->free_list[migratetype],
1781 							struct page, lru);
1782 		if (!page)
1783 			continue;
1784 		list_del(&page->lru);
1785 		rmv_page_order(page);
1786 		area->nr_free--;
1787 		expand(zone, page, order, current_order, area, migratetype);
1788 		set_pcppage_migratetype(page, migratetype);
1789 		return page;
1790 	}
1791 
1792 	return NULL;
1793 }
1794 
1795 
1796 /*
1797  * This array describes the order lists are fallen back to when
1798  * the free lists for the desirable migrate type are depleted
1799  */
1800 static int fallbacks[MIGRATE_TYPES][4] = {
1801 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1802 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1803 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1804 #ifdef CONFIG_CMA
1805 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1806 #endif
1807 #ifdef CONFIG_MEMORY_ISOLATION
1808 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1809 #endif
1810 };
1811 
1812 #ifdef CONFIG_CMA
1813 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1814 					unsigned int order)
1815 {
1816 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1817 }
1818 #else
1819 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1820 					unsigned int order) { return NULL; }
1821 #endif
1822 
1823 /*
1824  * Move the free pages in a range to the free lists of the requested type.
1825  * Note that start_page and end_pages are not aligned on a pageblock
1826  * boundary. If alignment is required, use move_freepages_block()
1827  */
1828 int move_freepages(struct zone *zone,
1829 			  struct page *start_page, struct page *end_page,
1830 			  int migratetype)
1831 {
1832 	struct page *page;
1833 	unsigned int order;
1834 	int pages_moved = 0;
1835 
1836 #ifndef CONFIG_HOLES_IN_ZONE
1837 	/*
1838 	 * page_zone is not safe to call in this context when
1839 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1840 	 * anyway as we check zone boundaries in move_freepages_block().
1841 	 * Remove at a later date when no bug reports exist related to
1842 	 * grouping pages by mobility
1843 	 */
1844 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1845 #endif
1846 
1847 	for (page = start_page; page <= end_page;) {
1848 		/* Make sure we are not inadvertently changing nodes */
1849 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1850 
1851 		if (!pfn_valid_within(page_to_pfn(page))) {
1852 			page++;
1853 			continue;
1854 		}
1855 
1856 		if (!PageBuddy(page)) {
1857 			page++;
1858 			continue;
1859 		}
1860 
1861 		order = page_order(page);
1862 		list_move(&page->lru,
1863 			  &zone->free_area[order].free_list[migratetype]);
1864 		page += 1 << order;
1865 		pages_moved += 1 << order;
1866 	}
1867 
1868 	return pages_moved;
1869 }
1870 
1871 int move_freepages_block(struct zone *zone, struct page *page,
1872 				int migratetype)
1873 {
1874 	unsigned long start_pfn, end_pfn;
1875 	struct page *start_page, *end_page;
1876 
1877 	start_pfn = page_to_pfn(page);
1878 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1879 	start_page = pfn_to_page(start_pfn);
1880 	end_page = start_page + pageblock_nr_pages - 1;
1881 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1882 
1883 	/* Do not cross zone boundaries */
1884 	if (!zone_spans_pfn(zone, start_pfn))
1885 		start_page = page;
1886 	if (!zone_spans_pfn(zone, end_pfn))
1887 		return 0;
1888 
1889 	return move_freepages(zone, start_page, end_page, migratetype);
1890 }
1891 
1892 static void change_pageblock_range(struct page *pageblock_page,
1893 					int start_order, int migratetype)
1894 {
1895 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1896 
1897 	while (nr_pageblocks--) {
1898 		set_pageblock_migratetype(pageblock_page, migratetype);
1899 		pageblock_page += pageblock_nr_pages;
1900 	}
1901 }
1902 
1903 /*
1904  * When we are falling back to another migratetype during allocation, try to
1905  * steal extra free pages from the same pageblocks to satisfy further
1906  * allocations, instead of polluting multiple pageblocks.
1907  *
1908  * If we are stealing a relatively large buddy page, it is likely there will
1909  * be more free pages in the pageblock, so try to steal them all. For
1910  * reclaimable and unmovable allocations, we steal regardless of page size,
1911  * as fragmentation caused by those allocations polluting movable pageblocks
1912  * is worse than movable allocations stealing from unmovable and reclaimable
1913  * pageblocks.
1914  */
1915 static bool can_steal_fallback(unsigned int order, int start_mt)
1916 {
1917 	/*
1918 	 * Leaving this order check is intended, although there is
1919 	 * relaxed order check in next check. The reason is that
1920 	 * we can actually steal whole pageblock if this condition met,
1921 	 * but, below check doesn't guarantee it and that is just heuristic
1922 	 * so could be changed anytime.
1923 	 */
1924 	if (order >= pageblock_order)
1925 		return true;
1926 
1927 	if (order >= pageblock_order / 2 ||
1928 		start_mt == MIGRATE_RECLAIMABLE ||
1929 		start_mt == MIGRATE_UNMOVABLE ||
1930 		page_group_by_mobility_disabled)
1931 		return true;
1932 
1933 	return false;
1934 }
1935 
1936 /*
1937  * This function implements actual steal behaviour. If order is large enough,
1938  * we can steal whole pageblock. If not, we first move freepages in this
1939  * pageblock and check whether half of pages are moved or not. If half of
1940  * pages are moved, we can change migratetype of pageblock and permanently
1941  * use it's pages as requested migratetype in the future.
1942  */
1943 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1944 							  int start_type)
1945 {
1946 	unsigned int current_order = page_order(page);
1947 	int pages;
1948 
1949 	/* Take ownership for orders >= pageblock_order */
1950 	if (current_order >= pageblock_order) {
1951 		change_pageblock_range(page, current_order, start_type);
1952 		return;
1953 	}
1954 
1955 	pages = move_freepages_block(zone, page, start_type);
1956 
1957 	/* Claim the whole block if over half of it is free */
1958 	if (pages >= (1 << (pageblock_order-1)) ||
1959 			page_group_by_mobility_disabled)
1960 		set_pageblock_migratetype(page, start_type);
1961 }
1962 
1963 /*
1964  * Check whether there is a suitable fallback freepage with requested order.
1965  * If only_stealable is true, this function returns fallback_mt only if
1966  * we can steal other freepages all together. This would help to reduce
1967  * fragmentation due to mixed migratetype pages in one pageblock.
1968  */
1969 int find_suitable_fallback(struct free_area *area, unsigned int order,
1970 			int migratetype, bool only_stealable, bool *can_steal)
1971 {
1972 	int i;
1973 	int fallback_mt;
1974 
1975 	if (area->nr_free == 0)
1976 		return -1;
1977 
1978 	*can_steal = false;
1979 	for (i = 0;; i++) {
1980 		fallback_mt = fallbacks[migratetype][i];
1981 		if (fallback_mt == MIGRATE_TYPES)
1982 			break;
1983 
1984 		if (list_empty(&area->free_list[fallback_mt]))
1985 			continue;
1986 
1987 		if (can_steal_fallback(order, migratetype))
1988 			*can_steal = true;
1989 
1990 		if (!only_stealable)
1991 			return fallback_mt;
1992 
1993 		if (*can_steal)
1994 			return fallback_mt;
1995 	}
1996 
1997 	return -1;
1998 }
1999 
2000 /*
2001  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2002  * there are no empty page blocks that contain a page with a suitable order
2003  */
2004 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2005 				unsigned int alloc_order)
2006 {
2007 	int mt;
2008 	unsigned long max_managed, flags;
2009 
2010 	/*
2011 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2012 	 * Check is race-prone but harmless.
2013 	 */
2014 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2015 	if (zone->nr_reserved_highatomic >= max_managed)
2016 		return;
2017 
2018 	spin_lock_irqsave(&zone->lock, flags);
2019 
2020 	/* Recheck the nr_reserved_highatomic limit under the lock */
2021 	if (zone->nr_reserved_highatomic >= max_managed)
2022 		goto out_unlock;
2023 
2024 	/* Yoink! */
2025 	mt = get_pageblock_migratetype(page);
2026 	if (mt != MIGRATE_HIGHATOMIC &&
2027 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2028 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2029 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2030 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2031 	}
2032 
2033 out_unlock:
2034 	spin_unlock_irqrestore(&zone->lock, flags);
2035 }
2036 
2037 /*
2038  * Used when an allocation is about to fail under memory pressure. This
2039  * potentially hurts the reliability of high-order allocations when under
2040  * intense memory pressure but failed atomic allocations should be easier
2041  * to recover from than an OOM.
2042  */
2043 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2044 {
2045 	struct zonelist *zonelist = ac->zonelist;
2046 	unsigned long flags;
2047 	struct zoneref *z;
2048 	struct zone *zone;
2049 	struct page *page;
2050 	int order;
2051 
2052 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2053 								ac->nodemask) {
2054 		/* Preserve at least one pageblock */
2055 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2056 			continue;
2057 
2058 		spin_lock_irqsave(&zone->lock, flags);
2059 		for (order = 0; order < MAX_ORDER; order++) {
2060 			struct free_area *area = &(zone->free_area[order]);
2061 
2062 			page = list_first_entry_or_null(
2063 					&area->free_list[MIGRATE_HIGHATOMIC],
2064 					struct page, lru);
2065 			if (!page)
2066 				continue;
2067 
2068 			/*
2069 			 * It should never happen but changes to locking could
2070 			 * inadvertently allow a per-cpu drain to add pages
2071 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2072 			 * and watch for underflows.
2073 			 */
2074 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2075 				zone->nr_reserved_highatomic);
2076 
2077 			/*
2078 			 * Convert to ac->migratetype and avoid the normal
2079 			 * pageblock stealing heuristics. Minimally, the caller
2080 			 * is doing the work and needs the pages. More
2081 			 * importantly, if the block was always converted to
2082 			 * MIGRATE_UNMOVABLE or another type then the number
2083 			 * of pageblocks that cannot be completely freed
2084 			 * may increase.
2085 			 */
2086 			set_pageblock_migratetype(page, ac->migratetype);
2087 			move_freepages_block(zone, page, ac->migratetype);
2088 			spin_unlock_irqrestore(&zone->lock, flags);
2089 			return;
2090 		}
2091 		spin_unlock_irqrestore(&zone->lock, flags);
2092 	}
2093 }
2094 
2095 /* Remove an element from the buddy allocator from the fallback list */
2096 static inline struct page *
2097 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2098 {
2099 	struct free_area *area;
2100 	unsigned int current_order;
2101 	struct page *page;
2102 	int fallback_mt;
2103 	bool can_steal;
2104 
2105 	/* Find the largest possible block of pages in the other list */
2106 	for (current_order = MAX_ORDER-1;
2107 				current_order >= order && current_order <= MAX_ORDER-1;
2108 				--current_order) {
2109 		area = &(zone->free_area[current_order]);
2110 		fallback_mt = find_suitable_fallback(area, current_order,
2111 				start_migratetype, false, &can_steal);
2112 		if (fallback_mt == -1)
2113 			continue;
2114 
2115 		page = list_first_entry(&area->free_list[fallback_mt],
2116 						struct page, lru);
2117 		if (can_steal)
2118 			steal_suitable_fallback(zone, page, start_migratetype);
2119 
2120 		/* Remove the page from the freelists */
2121 		area->nr_free--;
2122 		list_del(&page->lru);
2123 		rmv_page_order(page);
2124 
2125 		expand(zone, page, order, current_order, area,
2126 					start_migratetype);
2127 		/*
2128 		 * The pcppage_migratetype may differ from pageblock's
2129 		 * migratetype depending on the decisions in
2130 		 * find_suitable_fallback(). This is OK as long as it does not
2131 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2132 		 * fallback only via special __rmqueue_cma_fallback() function
2133 		 */
2134 		set_pcppage_migratetype(page, start_migratetype);
2135 
2136 		trace_mm_page_alloc_extfrag(page, order, current_order,
2137 			start_migratetype, fallback_mt);
2138 
2139 		return page;
2140 	}
2141 
2142 	return NULL;
2143 }
2144 
2145 /*
2146  * Do the hard work of removing an element from the buddy allocator.
2147  * Call me with the zone->lock already held.
2148  */
2149 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2150 				int migratetype)
2151 {
2152 	struct page *page;
2153 
2154 	page = __rmqueue_smallest(zone, order, migratetype);
2155 	if (unlikely(!page)) {
2156 		if (migratetype == MIGRATE_MOVABLE)
2157 			page = __rmqueue_cma_fallback(zone, order);
2158 
2159 		if (!page)
2160 			page = __rmqueue_fallback(zone, order, migratetype);
2161 	}
2162 
2163 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2164 	return page;
2165 }
2166 
2167 /*
2168  * Obtain a specified number of elements from the buddy allocator, all under
2169  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2170  * Returns the number of new pages which were placed at *list.
2171  */
2172 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2173 			unsigned long count, struct list_head *list,
2174 			int migratetype, bool cold)
2175 {
2176 	int i;
2177 
2178 	spin_lock(&zone->lock);
2179 	for (i = 0; i < count; ++i) {
2180 		struct page *page = __rmqueue(zone, order, migratetype);
2181 		if (unlikely(page == NULL))
2182 			break;
2183 
2184 		if (unlikely(check_pcp_refill(page)))
2185 			continue;
2186 
2187 		/*
2188 		 * Split buddy pages returned by expand() are received here
2189 		 * in physical page order. The page is added to the callers and
2190 		 * list and the list head then moves forward. From the callers
2191 		 * perspective, the linked list is ordered by page number in
2192 		 * some conditions. This is useful for IO devices that can
2193 		 * merge IO requests if the physical pages are ordered
2194 		 * properly.
2195 		 */
2196 		if (likely(!cold))
2197 			list_add(&page->lru, list);
2198 		else
2199 			list_add_tail(&page->lru, list);
2200 		list = &page->lru;
2201 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2202 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2203 					      -(1 << order));
2204 	}
2205 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2206 	spin_unlock(&zone->lock);
2207 	return i;
2208 }
2209 
2210 #ifdef CONFIG_NUMA
2211 /*
2212  * Called from the vmstat counter updater to drain pagesets of this
2213  * currently executing processor on remote nodes after they have
2214  * expired.
2215  *
2216  * Note that this function must be called with the thread pinned to
2217  * a single processor.
2218  */
2219 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2220 {
2221 	unsigned long flags;
2222 	int to_drain, batch;
2223 
2224 	local_irq_save(flags);
2225 	batch = READ_ONCE(pcp->batch);
2226 	to_drain = min(pcp->count, batch);
2227 	if (to_drain > 0) {
2228 		free_pcppages_bulk(zone, to_drain, pcp);
2229 		pcp->count -= to_drain;
2230 	}
2231 	local_irq_restore(flags);
2232 }
2233 #endif
2234 
2235 /*
2236  * Drain pcplists of the indicated processor and zone.
2237  *
2238  * The processor must either be the current processor and the
2239  * thread pinned to the current processor or a processor that
2240  * is not online.
2241  */
2242 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2243 {
2244 	unsigned long flags;
2245 	struct per_cpu_pageset *pset;
2246 	struct per_cpu_pages *pcp;
2247 
2248 	local_irq_save(flags);
2249 	pset = per_cpu_ptr(zone->pageset, cpu);
2250 
2251 	pcp = &pset->pcp;
2252 	if (pcp->count) {
2253 		free_pcppages_bulk(zone, pcp->count, pcp);
2254 		pcp->count = 0;
2255 	}
2256 	local_irq_restore(flags);
2257 }
2258 
2259 /*
2260  * Drain pcplists of all zones on the indicated processor.
2261  *
2262  * The processor must either be the current processor and the
2263  * thread pinned to the current processor or a processor that
2264  * is not online.
2265  */
2266 static void drain_pages(unsigned int cpu)
2267 {
2268 	struct zone *zone;
2269 
2270 	for_each_populated_zone(zone) {
2271 		drain_pages_zone(cpu, zone);
2272 	}
2273 }
2274 
2275 /*
2276  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2277  *
2278  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2279  * the single zone's pages.
2280  */
2281 void drain_local_pages(struct zone *zone)
2282 {
2283 	int cpu = smp_processor_id();
2284 
2285 	if (zone)
2286 		drain_pages_zone(cpu, zone);
2287 	else
2288 		drain_pages(cpu);
2289 }
2290 
2291 /*
2292  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2293  *
2294  * When zone parameter is non-NULL, spill just the single zone's pages.
2295  *
2296  * Note that this code is protected against sending an IPI to an offline
2297  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2298  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2299  * nothing keeps CPUs from showing up after we populated the cpumask and
2300  * before the call to on_each_cpu_mask().
2301  */
2302 void drain_all_pages(struct zone *zone)
2303 {
2304 	int cpu;
2305 
2306 	/*
2307 	 * Allocate in the BSS so we wont require allocation in
2308 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2309 	 */
2310 	static cpumask_t cpus_with_pcps;
2311 
2312 	/*
2313 	 * We don't care about racing with CPU hotplug event
2314 	 * as offline notification will cause the notified
2315 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2316 	 * disables preemption as part of its processing
2317 	 */
2318 	for_each_online_cpu(cpu) {
2319 		struct per_cpu_pageset *pcp;
2320 		struct zone *z;
2321 		bool has_pcps = false;
2322 
2323 		if (zone) {
2324 			pcp = per_cpu_ptr(zone->pageset, cpu);
2325 			if (pcp->pcp.count)
2326 				has_pcps = true;
2327 		} else {
2328 			for_each_populated_zone(z) {
2329 				pcp = per_cpu_ptr(z->pageset, cpu);
2330 				if (pcp->pcp.count) {
2331 					has_pcps = true;
2332 					break;
2333 				}
2334 			}
2335 		}
2336 
2337 		if (has_pcps)
2338 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2339 		else
2340 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2341 	}
2342 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2343 								zone, 1);
2344 }
2345 
2346 #ifdef CONFIG_HIBERNATION
2347 
2348 void mark_free_pages(struct zone *zone)
2349 {
2350 	unsigned long pfn, max_zone_pfn;
2351 	unsigned long flags;
2352 	unsigned int order, t;
2353 	struct page *page;
2354 
2355 	if (zone_is_empty(zone))
2356 		return;
2357 
2358 	spin_lock_irqsave(&zone->lock, flags);
2359 
2360 	max_zone_pfn = zone_end_pfn(zone);
2361 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2362 		if (pfn_valid(pfn)) {
2363 			page = pfn_to_page(pfn);
2364 
2365 			if (page_zone(page) != zone)
2366 				continue;
2367 
2368 			if (!swsusp_page_is_forbidden(page))
2369 				swsusp_unset_page_free(page);
2370 		}
2371 
2372 	for_each_migratetype_order(order, t) {
2373 		list_for_each_entry(page,
2374 				&zone->free_area[order].free_list[t], lru) {
2375 			unsigned long i;
2376 
2377 			pfn = page_to_pfn(page);
2378 			for (i = 0; i < (1UL << order); i++)
2379 				swsusp_set_page_free(pfn_to_page(pfn + i));
2380 		}
2381 	}
2382 	spin_unlock_irqrestore(&zone->lock, flags);
2383 }
2384 #endif /* CONFIG_PM */
2385 
2386 /*
2387  * Free a 0-order page
2388  * cold == true ? free a cold page : free a hot page
2389  */
2390 void free_hot_cold_page(struct page *page, bool cold)
2391 {
2392 	struct zone *zone = page_zone(page);
2393 	struct per_cpu_pages *pcp;
2394 	unsigned long flags;
2395 	unsigned long pfn = page_to_pfn(page);
2396 	int migratetype;
2397 
2398 	if (!free_pcp_prepare(page))
2399 		return;
2400 
2401 	migratetype = get_pfnblock_migratetype(page, pfn);
2402 	set_pcppage_migratetype(page, migratetype);
2403 	local_irq_save(flags);
2404 	__count_vm_event(PGFREE);
2405 
2406 	/*
2407 	 * We only track unmovable, reclaimable and movable on pcp lists.
2408 	 * Free ISOLATE pages back to the allocator because they are being
2409 	 * offlined but treat RESERVE as movable pages so we can get those
2410 	 * areas back if necessary. Otherwise, we may have to free
2411 	 * excessively into the page allocator
2412 	 */
2413 	if (migratetype >= MIGRATE_PCPTYPES) {
2414 		if (unlikely(is_migrate_isolate(migratetype))) {
2415 			free_one_page(zone, page, pfn, 0, migratetype);
2416 			goto out;
2417 		}
2418 		migratetype = MIGRATE_MOVABLE;
2419 	}
2420 
2421 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2422 	if (!cold)
2423 		list_add(&page->lru, &pcp->lists[migratetype]);
2424 	else
2425 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2426 	pcp->count++;
2427 	if (pcp->count >= pcp->high) {
2428 		unsigned long batch = READ_ONCE(pcp->batch);
2429 		free_pcppages_bulk(zone, batch, pcp);
2430 		pcp->count -= batch;
2431 	}
2432 
2433 out:
2434 	local_irq_restore(flags);
2435 }
2436 
2437 /*
2438  * Free a list of 0-order pages
2439  */
2440 void free_hot_cold_page_list(struct list_head *list, bool cold)
2441 {
2442 	struct page *page, *next;
2443 
2444 	list_for_each_entry_safe(page, next, list, lru) {
2445 		trace_mm_page_free_batched(page, cold);
2446 		free_hot_cold_page(page, cold);
2447 	}
2448 }
2449 
2450 /*
2451  * split_page takes a non-compound higher-order page, and splits it into
2452  * n (1<<order) sub-pages: page[0..n]
2453  * Each sub-page must be freed individually.
2454  *
2455  * Note: this is probably too low level an operation for use in drivers.
2456  * Please consult with lkml before using this in your driver.
2457  */
2458 void split_page(struct page *page, unsigned int order)
2459 {
2460 	int i;
2461 
2462 	VM_BUG_ON_PAGE(PageCompound(page), page);
2463 	VM_BUG_ON_PAGE(!page_count(page), page);
2464 
2465 #ifdef CONFIG_KMEMCHECK
2466 	/*
2467 	 * Split shadow pages too, because free(page[0]) would
2468 	 * otherwise free the whole shadow.
2469 	 */
2470 	if (kmemcheck_page_is_tracked(page))
2471 		split_page(virt_to_page(page[0].shadow), order);
2472 #endif
2473 
2474 	for (i = 1; i < (1 << order); i++)
2475 		set_page_refcounted(page + i);
2476 	split_page_owner(page, order);
2477 }
2478 EXPORT_SYMBOL_GPL(split_page);
2479 
2480 int __isolate_free_page(struct page *page, unsigned int order)
2481 {
2482 	unsigned long watermark;
2483 	struct zone *zone;
2484 	int mt;
2485 
2486 	BUG_ON(!PageBuddy(page));
2487 
2488 	zone = page_zone(page);
2489 	mt = get_pageblock_migratetype(page);
2490 
2491 	if (!is_migrate_isolate(mt)) {
2492 		/* Obey watermarks as if the page was being allocated */
2493 		watermark = low_wmark_pages(zone) + (1 << order);
2494 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2495 			return 0;
2496 
2497 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2498 	}
2499 
2500 	/* Remove page from free list */
2501 	list_del(&page->lru);
2502 	zone->free_area[order].nr_free--;
2503 	rmv_page_order(page);
2504 
2505 	/*
2506 	 * Set the pageblock if the isolated page is at least half of a
2507 	 * pageblock
2508 	 */
2509 	if (order >= pageblock_order - 1) {
2510 		struct page *endpage = page + (1 << order) - 1;
2511 		for (; page < endpage; page += pageblock_nr_pages) {
2512 			int mt = get_pageblock_migratetype(page);
2513 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2514 				set_pageblock_migratetype(page,
2515 							  MIGRATE_MOVABLE);
2516 		}
2517 	}
2518 
2519 
2520 	return 1UL << order;
2521 }
2522 
2523 /*
2524  * Update NUMA hit/miss statistics
2525  *
2526  * Must be called with interrupts disabled.
2527  *
2528  * When __GFP_OTHER_NODE is set assume the node of the preferred
2529  * zone is the local node. This is useful for daemons who allocate
2530  * memory on behalf of other processes.
2531  */
2532 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2533 								gfp_t flags)
2534 {
2535 #ifdef CONFIG_NUMA
2536 	int local_nid = numa_node_id();
2537 	enum zone_stat_item local_stat = NUMA_LOCAL;
2538 
2539 	if (unlikely(flags & __GFP_OTHER_NODE)) {
2540 		local_stat = NUMA_OTHER;
2541 		local_nid = preferred_zone->node;
2542 	}
2543 
2544 	if (z->node == local_nid) {
2545 		__inc_zone_state(z, NUMA_HIT);
2546 		__inc_zone_state(z, local_stat);
2547 	} else {
2548 		__inc_zone_state(z, NUMA_MISS);
2549 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2550 	}
2551 #endif
2552 }
2553 
2554 /*
2555  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2556  */
2557 static inline
2558 struct page *buffered_rmqueue(struct zone *preferred_zone,
2559 			struct zone *zone, unsigned int order,
2560 			gfp_t gfp_flags, unsigned int alloc_flags,
2561 			int migratetype)
2562 {
2563 	unsigned long flags;
2564 	struct page *page;
2565 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2566 
2567 	if (likely(order == 0)) {
2568 		struct per_cpu_pages *pcp;
2569 		struct list_head *list;
2570 
2571 		local_irq_save(flags);
2572 		do {
2573 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2574 			list = &pcp->lists[migratetype];
2575 			if (list_empty(list)) {
2576 				pcp->count += rmqueue_bulk(zone, 0,
2577 						pcp->batch, list,
2578 						migratetype, cold);
2579 				if (unlikely(list_empty(list)))
2580 					goto failed;
2581 			}
2582 
2583 			if (cold)
2584 				page = list_last_entry(list, struct page, lru);
2585 			else
2586 				page = list_first_entry(list, struct page, lru);
2587 
2588 			list_del(&page->lru);
2589 			pcp->count--;
2590 
2591 		} while (check_new_pcp(page));
2592 	} else {
2593 		/*
2594 		 * We most definitely don't want callers attempting to
2595 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2596 		 */
2597 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2598 		spin_lock_irqsave(&zone->lock, flags);
2599 
2600 		do {
2601 			page = NULL;
2602 			if (alloc_flags & ALLOC_HARDER) {
2603 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2604 				if (page)
2605 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2606 			}
2607 			if (!page)
2608 				page = __rmqueue(zone, order, migratetype);
2609 		} while (page && check_new_pages(page, order));
2610 		spin_unlock(&zone->lock);
2611 		if (!page)
2612 			goto failed;
2613 		__mod_zone_freepage_state(zone, -(1 << order),
2614 					  get_pcppage_migratetype(page));
2615 	}
2616 
2617 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2618 	zone_statistics(preferred_zone, zone, gfp_flags);
2619 	local_irq_restore(flags);
2620 
2621 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2622 	return page;
2623 
2624 failed:
2625 	local_irq_restore(flags);
2626 	return NULL;
2627 }
2628 
2629 #ifdef CONFIG_FAIL_PAGE_ALLOC
2630 
2631 static struct {
2632 	struct fault_attr attr;
2633 
2634 	bool ignore_gfp_highmem;
2635 	bool ignore_gfp_reclaim;
2636 	u32 min_order;
2637 } fail_page_alloc = {
2638 	.attr = FAULT_ATTR_INITIALIZER,
2639 	.ignore_gfp_reclaim = true,
2640 	.ignore_gfp_highmem = true,
2641 	.min_order = 1,
2642 };
2643 
2644 static int __init setup_fail_page_alloc(char *str)
2645 {
2646 	return setup_fault_attr(&fail_page_alloc.attr, str);
2647 }
2648 __setup("fail_page_alloc=", setup_fail_page_alloc);
2649 
2650 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2651 {
2652 	if (order < fail_page_alloc.min_order)
2653 		return false;
2654 	if (gfp_mask & __GFP_NOFAIL)
2655 		return false;
2656 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2657 		return false;
2658 	if (fail_page_alloc.ignore_gfp_reclaim &&
2659 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2660 		return false;
2661 
2662 	return should_fail(&fail_page_alloc.attr, 1 << order);
2663 }
2664 
2665 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2666 
2667 static int __init fail_page_alloc_debugfs(void)
2668 {
2669 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2670 	struct dentry *dir;
2671 
2672 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2673 					&fail_page_alloc.attr);
2674 	if (IS_ERR(dir))
2675 		return PTR_ERR(dir);
2676 
2677 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2678 				&fail_page_alloc.ignore_gfp_reclaim))
2679 		goto fail;
2680 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2681 				&fail_page_alloc.ignore_gfp_highmem))
2682 		goto fail;
2683 	if (!debugfs_create_u32("min-order", mode, dir,
2684 				&fail_page_alloc.min_order))
2685 		goto fail;
2686 
2687 	return 0;
2688 fail:
2689 	debugfs_remove_recursive(dir);
2690 
2691 	return -ENOMEM;
2692 }
2693 
2694 late_initcall(fail_page_alloc_debugfs);
2695 
2696 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2697 
2698 #else /* CONFIG_FAIL_PAGE_ALLOC */
2699 
2700 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2701 {
2702 	return false;
2703 }
2704 
2705 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2706 
2707 /*
2708  * Return true if free base pages are above 'mark'. For high-order checks it
2709  * will return true of the order-0 watermark is reached and there is at least
2710  * one free page of a suitable size. Checking now avoids taking the zone lock
2711  * to check in the allocation paths if no pages are free.
2712  */
2713 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2714 			 int classzone_idx, unsigned int alloc_flags,
2715 			 long free_pages)
2716 {
2717 	long min = mark;
2718 	int o;
2719 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2720 
2721 	/* free_pages may go negative - that's OK */
2722 	free_pages -= (1 << order) - 1;
2723 
2724 	if (alloc_flags & ALLOC_HIGH)
2725 		min -= min / 2;
2726 
2727 	/*
2728 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2729 	 * the high-atomic reserves. This will over-estimate the size of the
2730 	 * atomic reserve but it avoids a search.
2731 	 */
2732 	if (likely(!alloc_harder))
2733 		free_pages -= z->nr_reserved_highatomic;
2734 	else
2735 		min -= min / 4;
2736 
2737 #ifdef CONFIG_CMA
2738 	/* If allocation can't use CMA areas don't use free CMA pages */
2739 	if (!(alloc_flags & ALLOC_CMA))
2740 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2741 #endif
2742 
2743 	/*
2744 	 * Check watermarks for an order-0 allocation request. If these
2745 	 * are not met, then a high-order request also cannot go ahead
2746 	 * even if a suitable page happened to be free.
2747 	 */
2748 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2749 		return false;
2750 
2751 	/* If this is an order-0 request then the watermark is fine */
2752 	if (!order)
2753 		return true;
2754 
2755 	/* For a high-order request, check at least one suitable page is free */
2756 	for (o = order; o < MAX_ORDER; o++) {
2757 		struct free_area *area = &z->free_area[o];
2758 		int mt;
2759 
2760 		if (!area->nr_free)
2761 			continue;
2762 
2763 		if (alloc_harder)
2764 			return true;
2765 
2766 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2767 			if (!list_empty(&area->free_list[mt]))
2768 				return true;
2769 		}
2770 
2771 #ifdef CONFIG_CMA
2772 		if ((alloc_flags & ALLOC_CMA) &&
2773 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2774 			return true;
2775 		}
2776 #endif
2777 	}
2778 	return false;
2779 }
2780 
2781 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2782 		      int classzone_idx, unsigned int alloc_flags)
2783 {
2784 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2785 					zone_page_state(z, NR_FREE_PAGES));
2786 }
2787 
2788 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2789 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2790 {
2791 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2792 	long cma_pages = 0;
2793 
2794 #ifdef CONFIG_CMA
2795 	/* If allocation can't use CMA areas don't use free CMA pages */
2796 	if (!(alloc_flags & ALLOC_CMA))
2797 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2798 #endif
2799 
2800 	/*
2801 	 * Fast check for order-0 only. If this fails then the reserves
2802 	 * need to be calculated. There is a corner case where the check
2803 	 * passes but only the high-order atomic reserve are free. If
2804 	 * the caller is !atomic then it'll uselessly search the free
2805 	 * list. That corner case is then slower but it is harmless.
2806 	 */
2807 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2808 		return true;
2809 
2810 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2811 					free_pages);
2812 }
2813 
2814 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2815 			unsigned long mark, int classzone_idx)
2816 {
2817 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2818 
2819 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2820 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2821 
2822 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2823 								free_pages);
2824 }
2825 
2826 #ifdef CONFIG_NUMA
2827 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2828 {
2829 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2830 				RECLAIM_DISTANCE;
2831 }
2832 #else	/* CONFIG_NUMA */
2833 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2834 {
2835 	return true;
2836 }
2837 #endif	/* CONFIG_NUMA */
2838 
2839 /*
2840  * get_page_from_freelist goes through the zonelist trying to allocate
2841  * a page.
2842  */
2843 static struct page *
2844 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2845 						const struct alloc_context *ac)
2846 {
2847 	struct zoneref *z = ac->preferred_zoneref;
2848 	struct zone *zone;
2849 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2850 
2851 	/*
2852 	 * Scan zonelist, looking for a zone with enough free.
2853 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2854 	 */
2855 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2856 								ac->nodemask) {
2857 		struct page *page;
2858 		unsigned long mark;
2859 
2860 		if (cpusets_enabled() &&
2861 			(alloc_flags & ALLOC_CPUSET) &&
2862 			!__cpuset_zone_allowed(zone, gfp_mask))
2863 				continue;
2864 		/*
2865 		 * When allocating a page cache page for writing, we
2866 		 * want to get it from a node that is within its dirty
2867 		 * limit, such that no single node holds more than its
2868 		 * proportional share of globally allowed dirty pages.
2869 		 * The dirty limits take into account the node's
2870 		 * lowmem reserves and high watermark so that kswapd
2871 		 * should be able to balance it without having to
2872 		 * write pages from its LRU list.
2873 		 *
2874 		 * XXX: For now, allow allocations to potentially
2875 		 * exceed the per-node dirty limit in the slowpath
2876 		 * (spread_dirty_pages unset) before going into reclaim,
2877 		 * which is important when on a NUMA setup the allowed
2878 		 * nodes are together not big enough to reach the
2879 		 * global limit.  The proper fix for these situations
2880 		 * will require awareness of nodes in the
2881 		 * dirty-throttling and the flusher threads.
2882 		 */
2883 		if (ac->spread_dirty_pages) {
2884 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
2885 				continue;
2886 
2887 			if (!node_dirty_ok(zone->zone_pgdat)) {
2888 				last_pgdat_dirty_limit = zone->zone_pgdat;
2889 				continue;
2890 			}
2891 		}
2892 
2893 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2894 		if (!zone_watermark_fast(zone, order, mark,
2895 				       ac_classzone_idx(ac), alloc_flags)) {
2896 			int ret;
2897 
2898 			/* Checked here to keep the fast path fast */
2899 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2900 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2901 				goto try_this_zone;
2902 
2903 			if (node_reclaim_mode == 0 ||
2904 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2905 				continue;
2906 
2907 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2908 			switch (ret) {
2909 			case NODE_RECLAIM_NOSCAN:
2910 				/* did not scan */
2911 				continue;
2912 			case NODE_RECLAIM_FULL:
2913 				/* scanned but unreclaimable */
2914 				continue;
2915 			default:
2916 				/* did we reclaim enough */
2917 				if (zone_watermark_ok(zone, order, mark,
2918 						ac_classzone_idx(ac), alloc_flags))
2919 					goto try_this_zone;
2920 
2921 				continue;
2922 			}
2923 		}
2924 
2925 try_this_zone:
2926 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2927 				gfp_mask, alloc_flags, ac->migratetype);
2928 		if (page) {
2929 			prep_new_page(page, order, gfp_mask, alloc_flags);
2930 
2931 			/*
2932 			 * If this is a high-order atomic allocation then check
2933 			 * if the pageblock should be reserved for the future
2934 			 */
2935 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2936 				reserve_highatomic_pageblock(page, zone, order);
2937 
2938 			return page;
2939 		}
2940 	}
2941 
2942 	return NULL;
2943 }
2944 
2945 /*
2946  * Large machines with many possible nodes should not always dump per-node
2947  * meminfo in irq context.
2948  */
2949 static inline bool should_suppress_show_mem(void)
2950 {
2951 	bool ret = false;
2952 
2953 #if NODES_SHIFT > 8
2954 	ret = in_interrupt();
2955 #endif
2956 	return ret;
2957 }
2958 
2959 static DEFINE_RATELIMIT_STATE(nopage_rs,
2960 		DEFAULT_RATELIMIT_INTERVAL,
2961 		DEFAULT_RATELIMIT_BURST);
2962 
2963 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2964 {
2965 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2966 
2967 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2968 	    debug_guardpage_minorder() > 0)
2969 		return;
2970 
2971 	/*
2972 	 * This documents exceptions given to allocations in certain
2973 	 * contexts that are allowed to allocate outside current's set
2974 	 * of allowed nodes.
2975 	 */
2976 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2977 		if (test_thread_flag(TIF_MEMDIE) ||
2978 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2979 			filter &= ~SHOW_MEM_FILTER_NODES;
2980 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2981 		filter &= ~SHOW_MEM_FILTER_NODES;
2982 
2983 	if (fmt) {
2984 		struct va_format vaf;
2985 		va_list args;
2986 
2987 		va_start(args, fmt);
2988 
2989 		vaf.fmt = fmt;
2990 		vaf.va = &args;
2991 
2992 		pr_warn("%pV", &vaf);
2993 
2994 		va_end(args);
2995 	}
2996 
2997 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2998 		current->comm, order, gfp_mask, &gfp_mask);
2999 	dump_stack();
3000 	if (!should_suppress_show_mem())
3001 		show_mem(filter);
3002 }
3003 
3004 static inline struct page *
3005 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3006 	const struct alloc_context *ac, unsigned long *did_some_progress)
3007 {
3008 	struct oom_control oc = {
3009 		.zonelist = ac->zonelist,
3010 		.nodemask = ac->nodemask,
3011 		.memcg = NULL,
3012 		.gfp_mask = gfp_mask,
3013 		.order = order,
3014 	};
3015 	struct page *page;
3016 
3017 	*did_some_progress = 0;
3018 
3019 	/*
3020 	 * Acquire the oom lock.  If that fails, somebody else is
3021 	 * making progress for us.
3022 	 */
3023 	if (!mutex_trylock(&oom_lock)) {
3024 		*did_some_progress = 1;
3025 		schedule_timeout_uninterruptible(1);
3026 		return NULL;
3027 	}
3028 
3029 	/*
3030 	 * Go through the zonelist yet one more time, keep very high watermark
3031 	 * here, this is only to catch a parallel oom killing, we must fail if
3032 	 * we're still under heavy pressure.
3033 	 */
3034 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3035 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3036 	if (page)
3037 		goto out;
3038 
3039 	if (!(gfp_mask & __GFP_NOFAIL)) {
3040 		/* Coredumps can quickly deplete all memory reserves */
3041 		if (current->flags & PF_DUMPCORE)
3042 			goto out;
3043 		/* The OOM killer will not help higher order allocs */
3044 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3045 			goto out;
3046 		/* The OOM killer does not needlessly kill tasks for lowmem */
3047 		if (ac->high_zoneidx < ZONE_NORMAL)
3048 			goto out;
3049 		if (pm_suspended_storage())
3050 			goto out;
3051 		/*
3052 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3053 		 * other request to make a forward progress.
3054 		 * We are in an unfortunate situation where out_of_memory cannot
3055 		 * do much for this context but let's try it to at least get
3056 		 * access to memory reserved if the current task is killed (see
3057 		 * out_of_memory). Once filesystems are ready to handle allocation
3058 		 * failures more gracefully we should just bail out here.
3059 		 */
3060 
3061 		/* The OOM killer may not free memory on a specific node */
3062 		if (gfp_mask & __GFP_THISNODE)
3063 			goto out;
3064 	}
3065 	/* Exhausted what can be done so it's blamo time */
3066 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3067 		*did_some_progress = 1;
3068 
3069 		if (gfp_mask & __GFP_NOFAIL) {
3070 			page = get_page_from_freelist(gfp_mask, order,
3071 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3072 			/*
3073 			 * fallback to ignore cpuset restriction if our nodes
3074 			 * are depleted
3075 			 */
3076 			if (!page)
3077 				page = get_page_from_freelist(gfp_mask, order,
3078 					ALLOC_NO_WATERMARKS, ac);
3079 		}
3080 	}
3081 out:
3082 	mutex_unlock(&oom_lock);
3083 	return page;
3084 }
3085 
3086 /*
3087  * Maximum number of compaction retries wit a progress before OOM
3088  * killer is consider as the only way to move forward.
3089  */
3090 #define MAX_COMPACT_RETRIES 16
3091 
3092 #ifdef CONFIG_COMPACTION
3093 /* Try memory compaction for high-order allocations before reclaim */
3094 static struct page *
3095 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3096 		unsigned int alloc_flags, const struct alloc_context *ac,
3097 		enum compact_priority prio, enum compact_result *compact_result)
3098 {
3099 	struct page *page;
3100 
3101 	if (!order)
3102 		return NULL;
3103 
3104 	current->flags |= PF_MEMALLOC;
3105 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3106 									prio);
3107 	current->flags &= ~PF_MEMALLOC;
3108 
3109 	if (*compact_result <= COMPACT_INACTIVE)
3110 		return NULL;
3111 
3112 	/*
3113 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3114 	 * count a compaction stall
3115 	 */
3116 	count_vm_event(COMPACTSTALL);
3117 
3118 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3119 
3120 	if (page) {
3121 		struct zone *zone = page_zone(page);
3122 
3123 		zone->compact_blockskip_flush = false;
3124 		compaction_defer_reset(zone, order, true);
3125 		count_vm_event(COMPACTSUCCESS);
3126 		return page;
3127 	}
3128 
3129 	/*
3130 	 * It's bad if compaction run occurs and fails. The most likely reason
3131 	 * is that pages exist, but not enough to satisfy watermarks.
3132 	 */
3133 	count_vm_event(COMPACTFAIL);
3134 
3135 	cond_resched();
3136 
3137 	return NULL;
3138 }
3139 
3140 static inline bool
3141 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3142 		     enum compact_result compact_result,
3143 		     enum compact_priority *compact_priority,
3144 		     int compaction_retries)
3145 {
3146 	int max_retries = MAX_COMPACT_RETRIES;
3147 
3148 	if (!order)
3149 		return false;
3150 
3151 	/*
3152 	 * compaction considers all the zone as desperately out of memory
3153 	 * so it doesn't really make much sense to retry except when the
3154 	 * failure could be caused by insufficient priority
3155 	 */
3156 	if (compaction_failed(compact_result)) {
3157 		if (*compact_priority > MIN_COMPACT_PRIORITY) {
3158 			(*compact_priority)--;
3159 			return true;
3160 		}
3161 		return false;
3162 	}
3163 
3164 	/*
3165 	 * make sure the compaction wasn't deferred or didn't bail out early
3166 	 * due to locks contention before we declare that we should give up.
3167 	 * But do not retry if the given zonelist is not suitable for
3168 	 * compaction.
3169 	 */
3170 	if (compaction_withdrawn(compact_result))
3171 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3172 
3173 	/*
3174 	 * !costly requests are much more important than __GFP_REPEAT
3175 	 * costly ones because they are de facto nofail and invoke OOM
3176 	 * killer to move on while costly can fail and users are ready
3177 	 * to cope with that. 1/4 retries is rather arbitrary but we
3178 	 * would need much more detailed feedback from compaction to
3179 	 * make a better decision.
3180 	 */
3181 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3182 		max_retries /= 4;
3183 	if (compaction_retries <= max_retries)
3184 		return true;
3185 
3186 	return false;
3187 }
3188 #else
3189 static inline struct page *
3190 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3191 		unsigned int alloc_flags, const struct alloc_context *ac,
3192 		enum compact_priority prio, enum compact_result *compact_result)
3193 {
3194 	*compact_result = COMPACT_SKIPPED;
3195 	return NULL;
3196 }
3197 
3198 static inline bool
3199 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3200 		     enum compact_result compact_result,
3201 		     enum compact_priority *compact_priority,
3202 		     int compaction_retries)
3203 {
3204 	struct zone *zone;
3205 	struct zoneref *z;
3206 
3207 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3208 		return false;
3209 
3210 	/*
3211 	 * There are setups with compaction disabled which would prefer to loop
3212 	 * inside the allocator rather than hit the oom killer prematurely.
3213 	 * Let's give them a good hope and keep retrying while the order-0
3214 	 * watermarks are OK.
3215 	 */
3216 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3217 					ac->nodemask) {
3218 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3219 					ac_classzone_idx(ac), alloc_flags))
3220 			return true;
3221 	}
3222 	return false;
3223 }
3224 #endif /* CONFIG_COMPACTION */
3225 
3226 /* Perform direct synchronous page reclaim */
3227 static int
3228 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3229 					const struct alloc_context *ac)
3230 {
3231 	struct reclaim_state reclaim_state;
3232 	int progress;
3233 
3234 	cond_resched();
3235 
3236 	/* We now go into synchronous reclaim */
3237 	cpuset_memory_pressure_bump();
3238 	current->flags |= PF_MEMALLOC;
3239 	lockdep_set_current_reclaim_state(gfp_mask);
3240 	reclaim_state.reclaimed_slab = 0;
3241 	current->reclaim_state = &reclaim_state;
3242 
3243 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3244 								ac->nodemask);
3245 
3246 	current->reclaim_state = NULL;
3247 	lockdep_clear_current_reclaim_state();
3248 	current->flags &= ~PF_MEMALLOC;
3249 
3250 	cond_resched();
3251 
3252 	return progress;
3253 }
3254 
3255 /* The really slow allocator path where we enter direct reclaim */
3256 static inline struct page *
3257 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3258 		unsigned int alloc_flags, const struct alloc_context *ac,
3259 		unsigned long *did_some_progress)
3260 {
3261 	struct page *page = NULL;
3262 	bool drained = false;
3263 
3264 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3265 	if (unlikely(!(*did_some_progress)))
3266 		return NULL;
3267 
3268 retry:
3269 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3270 
3271 	/*
3272 	 * If an allocation failed after direct reclaim, it could be because
3273 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3274 	 * Shrink them them and try again
3275 	 */
3276 	if (!page && !drained) {
3277 		unreserve_highatomic_pageblock(ac);
3278 		drain_all_pages(NULL);
3279 		drained = true;
3280 		goto retry;
3281 	}
3282 
3283 	return page;
3284 }
3285 
3286 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3287 {
3288 	struct zoneref *z;
3289 	struct zone *zone;
3290 	pg_data_t *last_pgdat = NULL;
3291 
3292 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3293 					ac->high_zoneidx, ac->nodemask) {
3294 		if (last_pgdat != zone->zone_pgdat)
3295 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3296 		last_pgdat = zone->zone_pgdat;
3297 	}
3298 }
3299 
3300 static inline unsigned int
3301 gfp_to_alloc_flags(gfp_t gfp_mask)
3302 {
3303 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3304 
3305 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3306 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3307 
3308 	/*
3309 	 * The caller may dip into page reserves a bit more if the caller
3310 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3311 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3312 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3313 	 */
3314 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3315 
3316 	if (gfp_mask & __GFP_ATOMIC) {
3317 		/*
3318 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3319 		 * if it can't schedule.
3320 		 */
3321 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3322 			alloc_flags |= ALLOC_HARDER;
3323 		/*
3324 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3325 		 * comment for __cpuset_node_allowed().
3326 		 */
3327 		alloc_flags &= ~ALLOC_CPUSET;
3328 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3329 		alloc_flags |= ALLOC_HARDER;
3330 
3331 #ifdef CONFIG_CMA
3332 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3333 		alloc_flags |= ALLOC_CMA;
3334 #endif
3335 	return alloc_flags;
3336 }
3337 
3338 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3339 {
3340 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3341 		return false;
3342 
3343 	if (gfp_mask & __GFP_MEMALLOC)
3344 		return true;
3345 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3346 		return true;
3347 	if (!in_interrupt() &&
3348 			((current->flags & PF_MEMALLOC) ||
3349 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3350 		return true;
3351 
3352 	return false;
3353 }
3354 
3355 /*
3356  * Maximum number of reclaim retries without any progress before OOM killer
3357  * is consider as the only way to move forward.
3358  */
3359 #define MAX_RECLAIM_RETRIES 16
3360 
3361 /*
3362  * Checks whether it makes sense to retry the reclaim to make a forward progress
3363  * for the given allocation request.
3364  * The reclaim feedback represented by did_some_progress (any progress during
3365  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3366  * any progress in a row) is considered as well as the reclaimable pages on the
3367  * applicable zone list (with a backoff mechanism which is a function of
3368  * no_progress_loops).
3369  *
3370  * Returns true if a retry is viable or false to enter the oom path.
3371  */
3372 static inline bool
3373 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3374 		     struct alloc_context *ac, int alloc_flags,
3375 		     bool did_some_progress, int no_progress_loops)
3376 {
3377 	struct zone *zone;
3378 	struct zoneref *z;
3379 
3380 	/*
3381 	 * Make sure we converge to OOM if we cannot make any progress
3382 	 * several times in the row.
3383 	 */
3384 	if (no_progress_loops > MAX_RECLAIM_RETRIES)
3385 		return false;
3386 
3387 	/*
3388 	 * Keep reclaiming pages while there is a chance this will lead
3389 	 * somewhere.  If none of the target zones can satisfy our allocation
3390 	 * request even if all reclaimable pages are considered then we are
3391 	 * screwed and have to go OOM.
3392 	 */
3393 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3394 					ac->nodemask) {
3395 		unsigned long available;
3396 		unsigned long reclaimable;
3397 
3398 		available = reclaimable = zone_reclaimable_pages(zone);
3399 		available -= DIV_ROUND_UP(no_progress_loops * available,
3400 					  MAX_RECLAIM_RETRIES);
3401 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3402 
3403 		/*
3404 		 * Would the allocation succeed if we reclaimed the whole
3405 		 * available?
3406 		 */
3407 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3408 				ac_classzone_idx(ac), alloc_flags, available)) {
3409 			/*
3410 			 * If we didn't make any progress and have a lot of
3411 			 * dirty + writeback pages then we should wait for
3412 			 * an IO to complete to slow down the reclaim and
3413 			 * prevent from pre mature OOM
3414 			 */
3415 			if (!did_some_progress) {
3416 				unsigned long write_pending;
3417 
3418 				write_pending = zone_page_state_snapshot(zone,
3419 							NR_ZONE_WRITE_PENDING);
3420 
3421 				if (2 * write_pending > reclaimable) {
3422 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3423 					return true;
3424 				}
3425 			}
3426 
3427 			/*
3428 			 * Memory allocation/reclaim might be called from a WQ
3429 			 * context and the current implementation of the WQ
3430 			 * concurrency control doesn't recognize that
3431 			 * a particular WQ is congested if the worker thread is
3432 			 * looping without ever sleeping. Therefore we have to
3433 			 * do a short sleep here rather than calling
3434 			 * cond_resched().
3435 			 */
3436 			if (current->flags & PF_WQ_WORKER)
3437 				schedule_timeout_uninterruptible(1);
3438 			else
3439 				cond_resched();
3440 
3441 			return true;
3442 		}
3443 	}
3444 
3445 	return false;
3446 }
3447 
3448 static inline struct page *
3449 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3450 						struct alloc_context *ac)
3451 {
3452 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3453 	struct page *page = NULL;
3454 	unsigned int alloc_flags;
3455 	unsigned long did_some_progress;
3456 	enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3457 	enum compact_result compact_result;
3458 	int compaction_retries = 0;
3459 	int no_progress_loops = 0;
3460 
3461 	/*
3462 	 * In the slowpath, we sanity check order to avoid ever trying to
3463 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3464 	 * be using allocators in order of preference for an area that is
3465 	 * too large.
3466 	 */
3467 	if (order >= MAX_ORDER) {
3468 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3469 		return NULL;
3470 	}
3471 
3472 	/*
3473 	 * We also sanity check to catch abuse of atomic reserves being used by
3474 	 * callers that are not in atomic context.
3475 	 */
3476 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3477 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3478 		gfp_mask &= ~__GFP_ATOMIC;
3479 
3480 	/*
3481 	 * The fast path uses conservative alloc_flags to succeed only until
3482 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3483 	 * alloc_flags precisely. So we do that now.
3484 	 */
3485 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3486 
3487 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3488 		wake_all_kswapds(order, ac);
3489 
3490 	/*
3491 	 * The adjusted alloc_flags might result in immediate success, so try
3492 	 * that first
3493 	 */
3494 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3495 	if (page)
3496 		goto got_pg;
3497 
3498 	/*
3499 	 * For costly allocations, try direct compaction first, as it's likely
3500 	 * that we have enough base pages and don't need to reclaim. Don't try
3501 	 * that for allocations that are allowed to ignore watermarks, as the
3502 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3503 	 */
3504 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3505 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3506 		page = __alloc_pages_direct_compact(gfp_mask, order,
3507 						alloc_flags, ac,
3508 						INIT_COMPACT_PRIORITY,
3509 						&compact_result);
3510 		if (page)
3511 			goto got_pg;
3512 
3513 		/*
3514 		 * Checks for costly allocations with __GFP_NORETRY, which
3515 		 * includes THP page fault allocations
3516 		 */
3517 		if (gfp_mask & __GFP_NORETRY) {
3518 			/*
3519 			 * If compaction is deferred for high-order allocations,
3520 			 * it is because sync compaction recently failed. If
3521 			 * this is the case and the caller requested a THP
3522 			 * allocation, we do not want to heavily disrupt the
3523 			 * system, so we fail the allocation instead of entering
3524 			 * direct reclaim.
3525 			 */
3526 			if (compact_result == COMPACT_DEFERRED)
3527 				goto nopage;
3528 
3529 			/*
3530 			 * Looks like reclaim/compaction is worth trying, but
3531 			 * sync compaction could be very expensive, so keep
3532 			 * using async compaction.
3533 			 */
3534 			compact_priority = INIT_COMPACT_PRIORITY;
3535 		}
3536 	}
3537 
3538 retry:
3539 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3540 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3541 		wake_all_kswapds(order, ac);
3542 
3543 	if (gfp_pfmemalloc_allowed(gfp_mask))
3544 		alloc_flags = ALLOC_NO_WATERMARKS;
3545 
3546 	/*
3547 	 * Reset the zonelist iterators if memory policies can be ignored.
3548 	 * These allocations are high priority and system rather than user
3549 	 * orientated.
3550 	 */
3551 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3552 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3553 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3554 					ac->high_zoneidx, ac->nodemask);
3555 	}
3556 
3557 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3558 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3559 	if (page)
3560 		goto got_pg;
3561 
3562 	/* Caller is not willing to reclaim, we can't balance anything */
3563 	if (!can_direct_reclaim) {
3564 		/*
3565 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3566 		 * of any new users that actually allow this type of allocation
3567 		 * to fail.
3568 		 */
3569 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3570 		goto nopage;
3571 	}
3572 
3573 	/* Avoid recursion of direct reclaim */
3574 	if (current->flags & PF_MEMALLOC) {
3575 		/*
3576 		 * __GFP_NOFAIL request from this context is rather bizarre
3577 		 * because we cannot reclaim anything and only can loop waiting
3578 		 * for somebody to do a work for us.
3579 		 */
3580 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3581 			cond_resched();
3582 			goto retry;
3583 		}
3584 		goto nopage;
3585 	}
3586 
3587 	/* Avoid allocations with no watermarks from looping endlessly */
3588 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3589 		goto nopage;
3590 
3591 
3592 	/* Try direct reclaim and then allocating */
3593 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3594 							&did_some_progress);
3595 	if (page)
3596 		goto got_pg;
3597 
3598 	/* Try direct compaction and then allocating */
3599 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3600 					compact_priority, &compact_result);
3601 	if (page)
3602 		goto got_pg;
3603 
3604 	if (order && compaction_made_progress(compact_result))
3605 		compaction_retries++;
3606 
3607 	/* Do not loop if specifically requested */
3608 	if (gfp_mask & __GFP_NORETRY)
3609 		goto nopage;
3610 
3611 	/*
3612 	 * Do not retry costly high order allocations unless they are
3613 	 * __GFP_REPEAT
3614 	 */
3615 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3616 		goto nopage;
3617 
3618 	/*
3619 	 * Costly allocations might have made a progress but this doesn't mean
3620 	 * their order will become available due to high fragmentation so
3621 	 * always increment the no progress counter for them
3622 	 */
3623 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3624 		no_progress_loops = 0;
3625 	else
3626 		no_progress_loops++;
3627 
3628 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3629 				 did_some_progress > 0, no_progress_loops))
3630 		goto retry;
3631 
3632 	/*
3633 	 * It doesn't make any sense to retry for the compaction if the order-0
3634 	 * reclaim is not able to make any progress because the current
3635 	 * implementation of the compaction depends on the sufficient amount
3636 	 * of free memory (see __compaction_suitable)
3637 	 */
3638 	if (did_some_progress > 0 &&
3639 			should_compact_retry(ac, order, alloc_flags,
3640 				compact_result, &compact_priority,
3641 				compaction_retries))
3642 		goto retry;
3643 
3644 	/* Reclaim has failed us, start killing things */
3645 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3646 	if (page)
3647 		goto got_pg;
3648 
3649 	/* Retry as long as the OOM killer is making progress */
3650 	if (did_some_progress) {
3651 		no_progress_loops = 0;
3652 		goto retry;
3653 	}
3654 
3655 nopage:
3656 	warn_alloc_failed(gfp_mask, order, NULL);
3657 got_pg:
3658 	return page;
3659 }
3660 
3661 /*
3662  * This is the 'heart' of the zoned buddy allocator.
3663  */
3664 struct page *
3665 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3666 			struct zonelist *zonelist, nodemask_t *nodemask)
3667 {
3668 	struct page *page;
3669 	unsigned int cpuset_mems_cookie;
3670 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3671 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3672 	struct alloc_context ac = {
3673 		.high_zoneidx = gfp_zone(gfp_mask),
3674 		.zonelist = zonelist,
3675 		.nodemask = nodemask,
3676 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3677 	};
3678 
3679 	if (cpusets_enabled()) {
3680 		alloc_mask |= __GFP_HARDWALL;
3681 		alloc_flags |= ALLOC_CPUSET;
3682 		if (!ac.nodemask)
3683 			ac.nodemask = &cpuset_current_mems_allowed;
3684 	}
3685 
3686 	gfp_mask &= gfp_allowed_mask;
3687 
3688 	lockdep_trace_alloc(gfp_mask);
3689 
3690 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3691 
3692 	if (should_fail_alloc_page(gfp_mask, order))
3693 		return NULL;
3694 
3695 	/*
3696 	 * Check the zones suitable for the gfp_mask contain at least one
3697 	 * valid zone. It's possible to have an empty zonelist as a result
3698 	 * of __GFP_THISNODE and a memoryless node
3699 	 */
3700 	if (unlikely(!zonelist->_zonerefs->zone))
3701 		return NULL;
3702 
3703 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3704 		alloc_flags |= ALLOC_CMA;
3705 
3706 retry_cpuset:
3707 	cpuset_mems_cookie = read_mems_allowed_begin();
3708 
3709 	/* Dirty zone balancing only done in the fast path */
3710 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3711 
3712 	/*
3713 	 * The preferred zone is used for statistics but crucially it is
3714 	 * also used as the starting point for the zonelist iterator. It
3715 	 * may get reset for allocations that ignore memory policies.
3716 	 */
3717 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3718 					ac.high_zoneidx, ac.nodemask);
3719 	if (!ac.preferred_zoneref) {
3720 		page = NULL;
3721 		goto no_zone;
3722 	}
3723 
3724 	/* First allocation attempt */
3725 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3726 	if (likely(page))
3727 		goto out;
3728 
3729 	/*
3730 	 * Runtime PM, block IO and its error handling path can deadlock
3731 	 * because I/O on the device might not complete.
3732 	 */
3733 	alloc_mask = memalloc_noio_flags(gfp_mask);
3734 	ac.spread_dirty_pages = false;
3735 
3736 	/*
3737 	 * Restore the original nodemask if it was potentially replaced with
3738 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3739 	 */
3740 	if (cpusets_enabled())
3741 		ac.nodemask = nodemask;
3742 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3743 
3744 no_zone:
3745 	/*
3746 	 * When updating a task's mems_allowed, it is possible to race with
3747 	 * parallel threads in such a way that an allocation can fail while
3748 	 * the mask is being updated. If a page allocation is about to fail,
3749 	 * check if the cpuset changed during allocation and if so, retry.
3750 	 */
3751 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3752 		alloc_mask = gfp_mask;
3753 		goto retry_cpuset;
3754 	}
3755 
3756 out:
3757 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3758 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3759 		__free_pages(page, order);
3760 		page = NULL;
3761 	}
3762 
3763 	if (kmemcheck_enabled && page)
3764 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3765 
3766 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3767 
3768 	return page;
3769 }
3770 EXPORT_SYMBOL(__alloc_pages_nodemask);
3771 
3772 /*
3773  * Common helper functions.
3774  */
3775 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3776 {
3777 	struct page *page;
3778 
3779 	/*
3780 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3781 	 * a highmem page
3782 	 */
3783 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3784 
3785 	page = alloc_pages(gfp_mask, order);
3786 	if (!page)
3787 		return 0;
3788 	return (unsigned long) page_address(page);
3789 }
3790 EXPORT_SYMBOL(__get_free_pages);
3791 
3792 unsigned long get_zeroed_page(gfp_t gfp_mask)
3793 {
3794 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3795 }
3796 EXPORT_SYMBOL(get_zeroed_page);
3797 
3798 void __free_pages(struct page *page, unsigned int order)
3799 {
3800 	if (put_page_testzero(page)) {
3801 		if (order == 0)
3802 			free_hot_cold_page(page, false);
3803 		else
3804 			__free_pages_ok(page, order);
3805 	}
3806 }
3807 
3808 EXPORT_SYMBOL(__free_pages);
3809 
3810 void free_pages(unsigned long addr, unsigned int order)
3811 {
3812 	if (addr != 0) {
3813 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3814 		__free_pages(virt_to_page((void *)addr), order);
3815 	}
3816 }
3817 
3818 EXPORT_SYMBOL(free_pages);
3819 
3820 /*
3821  * Page Fragment:
3822  *  An arbitrary-length arbitrary-offset area of memory which resides
3823  *  within a 0 or higher order page.  Multiple fragments within that page
3824  *  are individually refcounted, in the page's reference counter.
3825  *
3826  * The page_frag functions below provide a simple allocation framework for
3827  * page fragments.  This is used by the network stack and network device
3828  * drivers to provide a backing region of memory for use as either an
3829  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3830  */
3831 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3832 				       gfp_t gfp_mask)
3833 {
3834 	struct page *page = NULL;
3835 	gfp_t gfp = gfp_mask;
3836 
3837 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3838 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3839 		    __GFP_NOMEMALLOC;
3840 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3841 				PAGE_FRAG_CACHE_MAX_ORDER);
3842 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3843 #endif
3844 	if (unlikely(!page))
3845 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3846 
3847 	nc->va = page ? page_address(page) : NULL;
3848 
3849 	return page;
3850 }
3851 
3852 void *__alloc_page_frag(struct page_frag_cache *nc,
3853 			unsigned int fragsz, gfp_t gfp_mask)
3854 {
3855 	unsigned int size = PAGE_SIZE;
3856 	struct page *page;
3857 	int offset;
3858 
3859 	if (unlikely(!nc->va)) {
3860 refill:
3861 		page = __page_frag_refill(nc, gfp_mask);
3862 		if (!page)
3863 			return NULL;
3864 
3865 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3866 		/* if size can vary use size else just use PAGE_SIZE */
3867 		size = nc->size;
3868 #endif
3869 		/* Even if we own the page, we do not use atomic_set().
3870 		 * This would break get_page_unless_zero() users.
3871 		 */
3872 		page_ref_add(page, size - 1);
3873 
3874 		/* reset page count bias and offset to start of new frag */
3875 		nc->pfmemalloc = page_is_pfmemalloc(page);
3876 		nc->pagecnt_bias = size;
3877 		nc->offset = size;
3878 	}
3879 
3880 	offset = nc->offset - fragsz;
3881 	if (unlikely(offset < 0)) {
3882 		page = virt_to_page(nc->va);
3883 
3884 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3885 			goto refill;
3886 
3887 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3888 		/* if size can vary use size else just use PAGE_SIZE */
3889 		size = nc->size;
3890 #endif
3891 		/* OK, page count is 0, we can safely set it */
3892 		set_page_count(page, size);
3893 
3894 		/* reset page count bias and offset to start of new frag */
3895 		nc->pagecnt_bias = size;
3896 		offset = size - fragsz;
3897 	}
3898 
3899 	nc->pagecnt_bias--;
3900 	nc->offset = offset;
3901 
3902 	return nc->va + offset;
3903 }
3904 EXPORT_SYMBOL(__alloc_page_frag);
3905 
3906 /*
3907  * Frees a page fragment allocated out of either a compound or order 0 page.
3908  */
3909 void __free_page_frag(void *addr)
3910 {
3911 	struct page *page = virt_to_head_page(addr);
3912 
3913 	if (unlikely(put_page_testzero(page)))
3914 		__free_pages_ok(page, compound_order(page));
3915 }
3916 EXPORT_SYMBOL(__free_page_frag);
3917 
3918 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3919 		size_t size)
3920 {
3921 	if (addr) {
3922 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3923 		unsigned long used = addr + PAGE_ALIGN(size);
3924 
3925 		split_page(virt_to_page((void *)addr), order);
3926 		while (used < alloc_end) {
3927 			free_page(used);
3928 			used += PAGE_SIZE;
3929 		}
3930 	}
3931 	return (void *)addr;
3932 }
3933 
3934 /**
3935  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3936  * @size: the number of bytes to allocate
3937  * @gfp_mask: GFP flags for the allocation
3938  *
3939  * This function is similar to alloc_pages(), except that it allocates the
3940  * minimum number of pages to satisfy the request.  alloc_pages() can only
3941  * allocate memory in power-of-two pages.
3942  *
3943  * This function is also limited by MAX_ORDER.
3944  *
3945  * Memory allocated by this function must be released by free_pages_exact().
3946  */
3947 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3948 {
3949 	unsigned int order = get_order(size);
3950 	unsigned long addr;
3951 
3952 	addr = __get_free_pages(gfp_mask, order);
3953 	return make_alloc_exact(addr, order, size);
3954 }
3955 EXPORT_SYMBOL(alloc_pages_exact);
3956 
3957 /**
3958  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3959  *			   pages on a node.
3960  * @nid: the preferred node ID where memory should be allocated
3961  * @size: the number of bytes to allocate
3962  * @gfp_mask: GFP flags for the allocation
3963  *
3964  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3965  * back.
3966  */
3967 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3968 {
3969 	unsigned int order = get_order(size);
3970 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3971 	if (!p)
3972 		return NULL;
3973 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3974 }
3975 
3976 /**
3977  * free_pages_exact - release memory allocated via alloc_pages_exact()
3978  * @virt: the value returned by alloc_pages_exact.
3979  * @size: size of allocation, same value as passed to alloc_pages_exact().
3980  *
3981  * Release the memory allocated by a previous call to alloc_pages_exact.
3982  */
3983 void free_pages_exact(void *virt, size_t size)
3984 {
3985 	unsigned long addr = (unsigned long)virt;
3986 	unsigned long end = addr + PAGE_ALIGN(size);
3987 
3988 	while (addr < end) {
3989 		free_page(addr);
3990 		addr += PAGE_SIZE;
3991 	}
3992 }
3993 EXPORT_SYMBOL(free_pages_exact);
3994 
3995 /**
3996  * nr_free_zone_pages - count number of pages beyond high watermark
3997  * @offset: The zone index of the highest zone
3998  *
3999  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4000  * high watermark within all zones at or below a given zone index.  For each
4001  * zone, the number of pages is calculated as:
4002  *     managed_pages - high_pages
4003  */
4004 static unsigned long nr_free_zone_pages(int offset)
4005 {
4006 	struct zoneref *z;
4007 	struct zone *zone;
4008 
4009 	/* Just pick one node, since fallback list is circular */
4010 	unsigned long sum = 0;
4011 
4012 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4013 
4014 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4015 		unsigned long size = zone->managed_pages;
4016 		unsigned long high = high_wmark_pages(zone);
4017 		if (size > high)
4018 			sum += size - high;
4019 	}
4020 
4021 	return sum;
4022 }
4023 
4024 /**
4025  * nr_free_buffer_pages - count number of pages beyond high watermark
4026  *
4027  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4028  * watermark within ZONE_DMA and ZONE_NORMAL.
4029  */
4030 unsigned long nr_free_buffer_pages(void)
4031 {
4032 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4033 }
4034 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4035 
4036 /**
4037  * nr_free_pagecache_pages - count number of pages beyond high watermark
4038  *
4039  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4040  * high watermark within all zones.
4041  */
4042 unsigned long nr_free_pagecache_pages(void)
4043 {
4044 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4045 }
4046 
4047 static inline void show_node(struct zone *zone)
4048 {
4049 	if (IS_ENABLED(CONFIG_NUMA))
4050 		printk("Node %d ", zone_to_nid(zone));
4051 }
4052 
4053 long si_mem_available(void)
4054 {
4055 	long available;
4056 	unsigned long pagecache;
4057 	unsigned long wmark_low = 0;
4058 	unsigned long pages[NR_LRU_LISTS];
4059 	struct zone *zone;
4060 	int lru;
4061 
4062 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4063 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4064 
4065 	for_each_zone(zone)
4066 		wmark_low += zone->watermark[WMARK_LOW];
4067 
4068 	/*
4069 	 * Estimate the amount of memory available for userspace allocations,
4070 	 * without causing swapping.
4071 	 */
4072 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4073 
4074 	/*
4075 	 * Not all the page cache can be freed, otherwise the system will
4076 	 * start swapping. Assume at least half of the page cache, or the
4077 	 * low watermark worth of cache, needs to stay.
4078 	 */
4079 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4080 	pagecache -= min(pagecache / 2, wmark_low);
4081 	available += pagecache;
4082 
4083 	/*
4084 	 * Part of the reclaimable slab consists of items that are in use,
4085 	 * and cannot be freed. Cap this estimate at the low watermark.
4086 	 */
4087 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4088 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4089 
4090 	if (available < 0)
4091 		available = 0;
4092 	return available;
4093 }
4094 EXPORT_SYMBOL_GPL(si_mem_available);
4095 
4096 void si_meminfo(struct sysinfo *val)
4097 {
4098 	val->totalram = totalram_pages;
4099 	val->sharedram = global_node_page_state(NR_SHMEM);
4100 	val->freeram = global_page_state(NR_FREE_PAGES);
4101 	val->bufferram = nr_blockdev_pages();
4102 	val->totalhigh = totalhigh_pages;
4103 	val->freehigh = nr_free_highpages();
4104 	val->mem_unit = PAGE_SIZE;
4105 }
4106 
4107 EXPORT_SYMBOL(si_meminfo);
4108 
4109 #ifdef CONFIG_NUMA
4110 void si_meminfo_node(struct sysinfo *val, int nid)
4111 {
4112 	int zone_type;		/* needs to be signed */
4113 	unsigned long managed_pages = 0;
4114 	unsigned long managed_highpages = 0;
4115 	unsigned long free_highpages = 0;
4116 	pg_data_t *pgdat = NODE_DATA(nid);
4117 
4118 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4119 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4120 	val->totalram = managed_pages;
4121 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4122 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4123 #ifdef CONFIG_HIGHMEM
4124 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4125 		struct zone *zone = &pgdat->node_zones[zone_type];
4126 
4127 		if (is_highmem(zone)) {
4128 			managed_highpages += zone->managed_pages;
4129 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4130 		}
4131 	}
4132 	val->totalhigh = managed_highpages;
4133 	val->freehigh = free_highpages;
4134 #else
4135 	val->totalhigh = managed_highpages;
4136 	val->freehigh = free_highpages;
4137 #endif
4138 	val->mem_unit = PAGE_SIZE;
4139 }
4140 #endif
4141 
4142 /*
4143  * Determine whether the node should be displayed or not, depending on whether
4144  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4145  */
4146 bool skip_free_areas_node(unsigned int flags, int nid)
4147 {
4148 	bool ret = false;
4149 	unsigned int cpuset_mems_cookie;
4150 
4151 	if (!(flags & SHOW_MEM_FILTER_NODES))
4152 		goto out;
4153 
4154 	do {
4155 		cpuset_mems_cookie = read_mems_allowed_begin();
4156 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4157 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4158 out:
4159 	return ret;
4160 }
4161 
4162 #define K(x) ((x) << (PAGE_SHIFT-10))
4163 
4164 static void show_migration_types(unsigned char type)
4165 {
4166 	static const char types[MIGRATE_TYPES] = {
4167 		[MIGRATE_UNMOVABLE]	= 'U',
4168 		[MIGRATE_MOVABLE]	= 'M',
4169 		[MIGRATE_RECLAIMABLE]	= 'E',
4170 		[MIGRATE_HIGHATOMIC]	= 'H',
4171 #ifdef CONFIG_CMA
4172 		[MIGRATE_CMA]		= 'C',
4173 #endif
4174 #ifdef CONFIG_MEMORY_ISOLATION
4175 		[MIGRATE_ISOLATE]	= 'I',
4176 #endif
4177 	};
4178 	char tmp[MIGRATE_TYPES + 1];
4179 	char *p = tmp;
4180 	int i;
4181 
4182 	for (i = 0; i < MIGRATE_TYPES; i++) {
4183 		if (type & (1 << i))
4184 			*p++ = types[i];
4185 	}
4186 
4187 	*p = '\0';
4188 	printk("(%s) ", tmp);
4189 }
4190 
4191 /*
4192  * Show free area list (used inside shift_scroll-lock stuff)
4193  * We also calculate the percentage fragmentation. We do this by counting the
4194  * memory on each free list with the exception of the first item on the list.
4195  *
4196  * Bits in @filter:
4197  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4198  *   cpuset.
4199  */
4200 void show_free_areas(unsigned int filter)
4201 {
4202 	unsigned long free_pcp = 0;
4203 	int cpu;
4204 	struct zone *zone;
4205 	pg_data_t *pgdat;
4206 
4207 	for_each_populated_zone(zone) {
4208 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4209 			continue;
4210 
4211 		for_each_online_cpu(cpu)
4212 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4213 	}
4214 
4215 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4216 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4217 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4218 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4219 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4220 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4221 		global_node_page_state(NR_ACTIVE_ANON),
4222 		global_node_page_state(NR_INACTIVE_ANON),
4223 		global_node_page_state(NR_ISOLATED_ANON),
4224 		global_node_page_state(NR_ACTIVE_FILE),
4225 		global_node_page_state(NR_INACTIVE_FILE),
4226 		global_node_page_state(NR_ISOLATED_FILE),
4227 		global_node_page_state(NR_UNEVICTABLE),
4228 		global_node_page_state(NR_FILE_DIRTY),
4229 		global_node_page_state(NR_WRITEBACK),
4230 		global_node_page_state(NR_UNSTABLE_NFS),
4231 		global_page_state(NR_SLAB_RECLAIMABLE),
4232 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4233 		global_node_page_state(NR_FILE_MAPPED),
4234 		global_node_page_state(NR_SHMEM),
4235 		global_page_state(NR_PAGETABLE),
4236 		global_page_state(NR_BOUNCE),
4237 		global_page_state(NR_FREE_PAGES),
4238 		free_pcp,
4239 		global_page_state(NR_FREE_CMA_PAGES));
4240 
4241 	for_each_online_pgdat(pgdat) {
4242 		printk("Node %d"
4243 			" active_anon:%lukB"
4244 			" inactive_anon:%lukB"
4245 			" active_file:%lukB"
4246 			" inactive_file:%lukB"
4247 			" unevictable:%lukB"
4248 			" isolated(anon):%lukB"
4249 			" isolated(file):%lukB"
4250 			" mapped:%lukB"
4251 			" dirty:%lukB"
4252 			" writeback:%lukB"
4253 			" shmem:%lukB"
4254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4255 			" shmem_thp: %lukB"
4256 			" shmem_pmdmapped: %lukB"
4257 			" anon_thp: %lukB"
4258 #endif
4259 			" writeback_tmp:%lukB"
4260 			" unstable:%lukB"
4261 			" pages_scanned:%lu"
4262 			" all_unreclaimable? %s"
4263 			"\n",
4264 			pgdat->node_id,
4265 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4266 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4267 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4268 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4269 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4270 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4271 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4272 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4273 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4274 			K(node_page_state(pgdat, NR_WRITEBACK)),
4275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4276 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4277 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4278 					* HPAGE_PMD_NR),
4279 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4280 #endif
4281 			K(node_page_state(pgdat, NR_SHMEM)),
4282 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4283 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4284 			node_page_state(pgdat, NR_PAGES_SCANNED),
4285 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4286 	}
4287 
4288 	for_each_populated_zone(zone) {
4289 		int i;
4290 
4291 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4292 			continue;
4293 
4294 		free_pcp = 0;
4295 		for_each_online_cpu(cpu)
4296 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4297 
4298 		show_node(zone);
4299 		printk("%s"
4300 			" free:%lukB"
4301 			" min:%lukB"
4302 			" low:%lukB"
4303 			" high:%lukB"
4304 			" active_anon:%lukB"
4305 			" inactive_anon:%lukB"
4306 			" active_file:%lukB"
4307 			" inactive_file:%lukB"
4308 			" unevictable:%lukB"
4309 			" writepending:%lukB"
4310 			" present:%lukB"
4311 			" managed:%lukB"
4312 			" mlocked:%lukB"
4313 			" slab_reclaimable:%lukB"
4314 			" slab_unreclaimable:%lukB"
4315 			" kernel_stack:%lukB"
4316 			" pagetables:%lukB"
4317 			" bounce:%lukB"
4318 			" free_pcp:%lukB"
4319 			" local_pcp:%ukB"
4320 			" free_cma:%lukB"
4321 			"\n",
4322 			zone->name,
4323 			K(zone_page_state(zone, NR_FREE_PAGES)),
4324 			K(min_wmark_pages(zone)),
4325 			K(low_wmark_pages(zone)),
4326 			K(high_wmark_pages(zone)),
4327 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4328 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4329 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4330 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4331 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4332 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4333 			K(zone->present_pages),
4334 			K(zone->managed_pages),
4335 			K(zone_page_state(zone, NR_MLOCK)),
4336 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4337 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4338 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4339 			K(zone_page_state(zone, NR_PAGETABLE)),
4340 			K(zone_page_state(zone, NR_BOUNCE)),
4341 			K(free_pcp),
4342 			K(this_cpu_read(zone->pageset->pcp.count)),
4343 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4344 		printk("lowmem_reserve[]:");
4345 		for (i = 0; i < MAX_NR_ZONES; i++)
4346 			printk(" %ld", zone->lowmem_reserve[i]);
4347 		printk("\n");
4348 	}
4349 
4350 	for_each_populated_zone(zone) {
4351 		unsigned int order;
4352 		unsigned long nr[MAX_ORDER], flags, total = 0;
4353 		unsigned char types[MAX_ORDER];
4354 
4355 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4356 			continue;
4357 		show_node(zone);
4358 		printk("%s: ", zone->name);
4359 
4360 		spin_lock_irqsave(&zone->lock, flags);
4361 		for (order = 0; order < MAX_ORDER; order++) {
4362 			struct free_area *area = &zone->free_area[order];
4363 			int type;
4364 
4365 			nr[order] = area->nr_free;
4366 			total += nr[order] << order;
4367 
4368 			types[order] = 0;
4369 			for (type = 0; type < MIGRATE_TYPES; type++) {
4370 				if (!list_empty(&area->free_list[type]))
4371 					types[order] |= 1 << type;
4372 			}
4373 		}
4374 		spin_unlock_irqrestore(&zone->lock, flags);
4375 		for (order = 0; order < MAX_ORDER; order++) {
4376 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4377 			if (nr[order])
4378 				show_migration_types(types[order]);
4379 		}
4380 		printk("= %lukB\n", K(total));
4381 	}
4382 
4383 	hugetlb_show_meminfo();
4384 
4385 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4386 
4387 	show_swap_cache_info();
4388 }
4389 
4390 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4391 {
4392 	zoneref->zone = zone;
4393 	zoneref->zone_idx = zone_idx(zone);
4394 }
4395 
4396 /*
4397  * Builds allocation fallback zone lists.
4398  *
4399  * Add all populated zones of a node to the zonelist.
4400  */
4401 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4402 				int nr_zones)
4403 {
4404 	struct zone *zone;
4405 	enum zone_type zone_type = MAX_NR_ZONES;
4406 
4407 	do {
4408 		zone_type--;
4409 		zone = pgdat->node_zones + zone_type;
4410 		if (populated_zone(zone)) {
4411 			zoneref_set_zone(zone,
4412 				&zonelist->_zonerefs[nr_zones++]);
4413 			check_highest_zone(zone_type);
4414 		}
4415 	} while (zone_type);
4416 
4417 	return nr_zones;
4418 }
4419 
4420 
4421 /*
4422  *  zonelist_order:
4423  *  0 = automatic detection of better ordering.
4424  *  1 = order by ([node] distance, -zonetype)
4425  *  2 = order by (-zonetype, [node] distance)
4426  *
4427  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4428  *  the same zonelist. So only NUMA can configure this param.
4429  */
4430 #define ZONELIST_ORDER_DEFAULT  0
4431 #define ZONELIST_ORDER_NODE     1
4432 #define ZONELIST_ORDER_ZONE     2
4433 
4434 /* zonelist order in the kernel.
4435  * set_zonelist_order() will set this to NODE or ZONE.
4436  */
4437 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4438 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4439 
4440 
4441 #ifdef CONFIG_NUMA
4442 /* The value user specified ....changed by config */
4443 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4444 /* string for sysctl */
4445 #define NUMA_ZONELIST_ORDER_LEN	16
4446 char numa_zonelist_order[16] = "default";
4447 
4448 /*
4449  * interface for configure zonelist ordering.
4450  * command line option "numa_zonelist_order"
4451  *	= "[dD]efault	- default, automatic configuration.
4452  *	= "[nN]ode 	- order by node locality, then by zone within node
4453  *	= "[zZ]one      - order by zone, then by locality within zone
4454  */
4455 
4456 static int __parse_numa_zonelist_order(char *s)
4457 {
4458 	if (*s == 'd' || *s == 'D') {
4459 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4460 	} else if (*s == 'n' || *s == 'N') {
4461 		user_zonelist_order = ZONELIST_ORDER_NODE;
4462 	} else if (*s == 'z' || *s == 'Z') {
4463 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4464 	} else {
4465 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4466 		return -EINVAL;
4467 	}
4468 	return 0;
4469 }
4470 
4471 static __init int setup_numa_zonelist_order(char *s)
4472 {
4473 	int ret;
4474 
4475 	if (!s)
4476 		return 0;
4477 
4478 	ret = __parse_numa_zonelist_order(s);
4479 	if (ret == 0)
4480 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4481 
4482 	return ret;
4483 }
4484 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4485 
4486 /*
4487  * sysctl handler for numa_zonelist_order
4488  */
4489 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4490 		void __user *buffer, size_t *length,
4491 		loff_t *ppos)
4492 {
4493 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4494 	int ret;
4495 	static DEFINE_MUTEX(zl_order_mutex);
4496 
4497 	mutex_lock(&zl_order_mutex);
4498 	if (write) {
4499 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4500 			ret = -EINVAL;
4501 			goto out;
4502 		}
4503 		strcpy(saved_string, (char *)table->data);
4504 	}
4505 	ret = proc_dostring(table, write, buffer, length, ppos);
4506 	if (ret)
4507 		goto out;
4508 	if (write) {
4509 		int oldval = user_zonelist_order;
4510 
4511 		ret = __parse_numa_zonelist_order((char *)table->data);
4512 		if (ret) {
4513 			/*
4514 			 * bogus value.  restore saved string
4515 			 */
4516 			strncpy((char *)table->data, saved_string,
4517 				NUMA_ZONELIST_ORDER_LEN);
4518 			user_zonelist_order = oldval;
4519 		} else if (oldval != user_zonelist_order) {
4520 			mutex_lock(&zonelists_mutex);
4521 			build_all_zonelists(NULL, NULL);
4522 			mutex_unlock(&zonelists_mutex);
4523 		}
4524 	}
4525 out:
4526 	mutex_unlock(&zl_order_mutex);
4527 	return ret;
4528 }
4529 
4530 
4531 #define MAX_NODE_LOAD (nr_online_nodes)
4532 static int node_load[MAX_NUMNODES];
4533 
4534 /**
4535  * find_next_best_node - find the next node that should appear in a given node's fallback list
4536  * @node: node whose fallback list we're appending
4537  * @used_node_mask: nodemask_t of already used nodes
4538  *
4539  * We use a number of factors to determine which is the next node that should
4540  * appear on a given node's fallback list.  The node should not have appeared
4541  * already in @node's fallback list, and it should be the next closest node
4542  * according to the distance array (which contains arbitrary distance values
4543  * from each node to each node in the system), and should also prefer nodes
4544  * with no CPUs, since presumably they'll have very little allocation pressure
4545  * on them otherwise.
4546  * It returns -1 if no node is found.
4547  */
4548 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4549 {
4550 	int n, val;
4551 	int min_val = INT_MAX;
4552 	int best_node = NUMA_NO_NODE;
4553 	const struct cpumask *tmp = cpumask_of_node(0);
4554 
4555 	/* Use the local node if we haven't already */
4556 	if (!node_isset(node, *used_node_mask)) {
4557 		node_set(node, *used_node_mask);
4558 		return node;
4559 	}
4560 
4561 	for_each_node_state(n, N_MEMORY) {
4562 
4563 		/* Don't want a node to appear more than once */
4564 		if (node_isset(n, *used_node_mask))
4565 			continue;
4566 
4567 		/* Use the distance array to find the distance */
4568 		val = node_distance(node, n);
4569 
4570 		/* Penalize nodes under us ("prefer the next node") */
4571 		val += (n < node);
4572 
4573 		/* Give preference to headless and unused nodes */
4574 		tmp = cpumask_of_node(n);
4575 		if (!cpumask_empty(tmp))
4576 			val += PENALTY_FOR_NODE_WITH_CPUS;
4577 
4578 		/* Slight preference for less loaded node */
4579 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4580 		val += node_load[n];
4581 
4582 		if (val < min_val) {
4583 			min_val = val;
4584 			best_node = n;
4585 		}
4586 	}
4587 
4588 	if (best_node >= 0)
4589 		node_set(best_node, *used_node_mask);
4590 
4591 	return best_node;
4592 }
4593 
4594 
4595 /*
4596  * Build zonelists ordered by node and zones within node.
4597  * This results in maximum locality--normal zone overflows into local
4598  * DMA zone, if any--but risks exhausting DMA zone.
4599  */
4600 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4601 {
4602 	int j;
4603 	struct zonelist *zonelist;
4604 
4605 	zonelist = &pgdat->node_zonelists[0];
4606 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4607 		;
4608 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4609 	zonelist->_zonerefs[j].zone = NULL;
4610 	zonelist->_zonerefs[j].zone_idx = 0;
4611 }
4612 
4613 /*
4614  * Build gfp_thisnode zonelists
4615  */
4616 static void build_thisnode_zonelists(pg_data_t *pgdat)
4617 {
4618 	int j;
4619 	struct zonelist *zonelist;
4620 
4621 	zonelist = &pgdat->node_zonelists[1];
4622 	j = build_zonelists_node(pgdat, zonelist, 0);
4623 	zonelist->_zonerefs[j].zone = NULL;
4624 	zonelist->_zonerefs[j].zone_idx = 0;
4625 }
4626 
4627 /*
4628  * Build zonelists ordered by zone and nodes within zones.
4629  * This results in conserving DMA zone[s] until all Normal memory is
4630  * exhausted, but results in overflowing to remote node while memory
4631  * may still exist in local DMA zone.
4632  */
4633 static int node_order[MAX_NUMNODES];
4634 
4635 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4636 {
4637 	int pos, j, node;
4638 	int zone_type;		/* needs to be signed */
4639 	struct zone *z;
4640 	struct zonelist *zonelist;
4641 
4642 	zonelist = &pgdat->node_zonelists[0];
4643 	pos = 0;
4644 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4645 		for (j = 0; j < nr_nodes; j++) {
4646 			node = node_order[j];
4647 			z = &NODE_DATA(node)->node_zones[zone_type];
4648 			if (populated_zone(z)) {
4649 				zoneref_set_zone(z,
4650 					&zonelist->_zonerefs[pos++]);
4651 				check_highest_zone(zone_type);
4652 			}
4653 		}
4654 	}
4655 	zonelist->_zonerefs[pos].zone = NULL;
4656 	zonelist->_zonerefs[pos].zone_idx = 0;
4657 }
4658 
4659 #if defined(CONFIG_64BIT)
4660 /*
4661  * Devices that require DMA32/DMA are relatively rare and do not justify a
4662  * penalty to every machine in case the specialised case applies. Default
4663  * to Node-ordering on 64-bit NUMA machines
4664  */
4665 static int default_zonelist_order(void)
4666 {
4667 	return ZONELIST_ORDER_NODE;
4668 }
4669 #else
4670 /*
4671  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4672  * by the kernel. If processes running on node 0 deplete the low memory zone
4673  * then reclaim will occur more frequency increasing stalls and potentially
4674  * be easier to OOM if a large percentage of the zone is under writeback or
4675  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4676  * Hence, default to zone ordering on 32-bit.
4677  */
4678 static int default_zonelist_order(void)
4679 {
4680 	return ZONELIST_ORDER_ZONE;
4681 }
4682 #endif /* CONFIG_64BIT */
4683 
4684 static void set_zonelist_order(void)
4685 {
4686 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4687 		current_zonelist_order = default_zonelist_order();
4688 	else
4689 		current_zonelist_order = user_zonelist_order;
4690 }
4691 
4692 static void build_zonelists(pg_data_t *pgdat)
4693 {
4694 	int i, node, load;
4695 	nodemask_t used_mask;
4696 	int local_node, prev_node;
4697 	struct zonelist *zonelist;
4698 	unsigned int order = current_zonelist_order;
4699 
4700 	/* initialize zonelists */
4701 	for (i = 0; i < MAX_ZONELISTS; i++) {
4702 		zonelist = pgdat->node_zonelists + i;
4703 		zonelist->_zonerefs[0].zone = NULL;
4704 		zonelist->_zonerefs[0].zone_idx = 0;
4705 	}
4706 
4707 	/* NUMA-aware ordering of nodes */
4708 	local_node = pgdat->node_id;
4709 	load = nr_online_nodes;
4710 	prev_node = local_node;
4711 	nodes_clear(used_mask);
4712 
4713 	memset(node_order, 0, sizeof(node_order));
4714 	i = 0;
4715 
4716 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4717 		/*
4718 		 * We don't want to pressure a particular node.
4719 		 * So adding penalty to the first node in same
4720 		 * distance group to make it round-robin.
4721 		 */
4722 		if (node_distance(local_node, node) !=
4723 		    node_distance(local_node, prev_node))
4724 			node_load[node] = load;
4725 
4726 		prev_node = node;
4727 		load--;
4728 		if (order == ZONELIST_ORDER_NODE)
4729 			build_zonelists_in_node_order(pgdat, node);
4730 		else
4731 			node_order[i++] = node;	/* remember order */
4732 	}
4733 
4734 	if (order == ZONELIST_ORDER_ZONE) {
4735 		/* calculate node order -- i.e., DMA last! */
4736 		build_zonelists_in_zone_order(pgdat, i);
4737 	}
4738 
4739 	build_thisnode_zonelists(pgdat);
4740 }
4741 
4742 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4743 /*
4744  * Return node id of node used for "local" allocations.
4745  * I.e., first node id of first zone in arg node's generic zonelist.
4746  * Used for initializing percpu 'numa_mem', which is used primarily
4747  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4748  */
4749 int local_memory_node(int node)
4750 {
4751 	struct zoneref *z;
4752 
4753 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4754 				   gfp_zone(GFP_KERNEL),
4755 				   NULL);
4756 	return z->zone->node;
4757 }
4758 #endif
4759 
4760 static void setup_min_unmapped_ratio(void);
4761 static void setup_min_slab_ratio(void);
4762 #else	/* CONFIG_NUMA */
4763 
4764 static void set_zonelist_order(void)
4765 {
4766 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4767 }
4768 
4769 static void build_zonelists(pg_data_t *pgdat)
4770 {
4771 	int node, local_node;
4772 	enum zone_type j;
4773 	struct zonelist *zonelist;
4774 
4775 	local_node = pgdat->node_id;
4776 
4777 	zonelist = &pgdat->node_zonelists[0];
4778 	j = build_zonelists_node(pgdat, zonelist, 0);
4779 
4780 	/*
4781 	 * Now we build the zonelist so that it contains the zones
4782 	 * of all the other nodes.
4783 	 * We don't want to pressure a particular node, so when
4784 	 * building the zones for node N, we make sure that the
4785 	 * zones coming right after the local ones are those from
4786 	 * node N+1 (modulo N)
4787 	 */
4788 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4789 		if (!node_online(node))
4790 			continue;
4791 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4792 	}
4793 	for (node = 0; node < local_node; node++) {
4794 		if (!node_online(node))
4795 			continue;
4796 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4797 	}
4798 
4799 	zonelist->_zonerefs[j].zone = NULL;
4800 	zonelist->_zonerefs[j].zone_idx = 0;
4801 }
4802 
4803 #endif	/* CONFIG_NUMA */
4804 
4805 /*
4806  * Boot pageset table. One per cpu which is going to be used for all
4807  * zones and all nodes. The parameters will be set in such a way
4808  * that an item put on a list will immediately be handed over to
4809  * the buddy list. This is safe since pageset manipulation is done
4810  * with interrupts disabled.
4811  *
4812  * The boot_pagesets must be kept even after bootup is complete for
4813  * unused processors and/or zones. They do play a role for bootstrapping
4814  * hotplugged processors.
4815  *
4816  * zoneinfo_show() and maybe other functions do
4817  * not check if the processor is online before following the pageset pointer.
4818  * Other parts of the kernel may not check if the zone is available.
4819  */
4820 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4821 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4822 static void setup_zone_pageset(struct zone *zone);
4823 
4824 /*
4825  * Global mutex to protect against size modification of zonelists
4826  * as well as to serialize pageset setup for the new populated zone.
4827  */
4828 DEFINE_MUTEX(zonelists_mutex);
4829 
4830 /* return values int ....just for stop_machine() */
4831 static int __build_all_zonelists(void *data)
4832 {
4833 	int nid;
4834 	int cpu;
4835 	pg_data_t *self = data;
4836 
4837 #ifdef CONFIG_NUMA
4838 	memset(node_load, 0, sizeof(node_load));
4839 #endif
4840 
4841 	if (self && !node_online(self->node_id)) {
4842 		build_zonelists(self);
4843 	}
4844 
4845 	for_each_online_node(nid) {
4846 		pg_data_t *pgdat = NODE_DATA(nid);
4847 
4848 		build_zonelists(pgdat);
4849 	}
4850 
4851 	/*
4852 	 * Initialize the boot_pagesets that are going to be used
4853 	 * for bootstrapping processors. The real pagesets for
4854 	 * each zone will be allocated later when the per cpu
4855 	 * allocator is available.
4856 	 *
4857 	 * boot_pagesets are used also for bootstrapping offline
4858 	 * cpus if the system is already booted because the pagesets
4859 	 * are needed to initialize allocators on a specific cpu too.
4860 	 * F.e. the percpu allocator needs the page allocator which
4861 	 * needs the percpu allocator in order to allocate its pagesets
4862 	 * (a chicken-egg dilemma).
4863 	 */
4864 	for_each_possible_cpu(cpu) {
4865 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4866 
4867 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4868 		/*
4869 		 * We now know the "local memory node" for each node--
4870 		 * i.e., the node of the first zone in the generic zonelist.
4871 		 * Set up numa_mem percpu variable for on-line cpus.  During
4872 		 * boot, only the boot cpu should be on-line;  we'll init the
4873 		 * secondary cpus' numa_mem as they come on-line.  During
4874 		 * node/memory hotplug, we'll fixup all on-line cpus.
4875 		 */
4876 		if (cpu_online(cpu))
4877 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4878 #endif
4879 	}
4880 
4881 	return 0;
4882 }
4883 
4884 static noinline void __init
4885 build_all_zonelists_init(void)
4886 {
4887 	__build_all_zonelists(NULL);
4888 	mminit_verify_zonelist();
4889 	cpuset_init_current_mems_allowed();
4890 }
4891 
4892 /*
4893  * Called with zonelists_mutex held always
4894  * unless system_state == SYSTEM_BOOTING.
4895  *
4896  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4897  * [we're only called with non-NULL zone through __meminit paths] and
4898  * (2) call of __init annotated helper build_all_zonelists_init
4899  * [protected by SYSTEM_BOOTING].
4900  */
4901 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4902 {
4903 	set_zonelist_order();
4904 
4905 	if (system_state == SYSTEM_BOOTING) {
4906 		build_all_zonelists_init();
4907 	} else {
4908 #ifdef CONFIG_MEMORY_HOTPLUG
4909 		if (zone)
4910 			setup_zone_pageset(zone);
4911 #endif
4912 		/* we have to stop all cpus to guarantee there is no user
4913 		   of zonelist */
4914 		stop_machine(__build_all_zonelists, pgdat, NULL);
4915 		/* cpuset refresh routine should be here */
4916 	}
4917 	vm_total_pages = nr_free_pagecache_pages();
4918 	/*
4919 	 * Disable grouping by mobility if the number of pages in the
4920 	 * system is too low to allow the mechanism to work. It would be
4921 	 * more accurate, but expensive to check per-zone. This check is
4922 	 * made on memory-hotadd so a system can start with mobility
4923 	 * disabled and enable it later
4924 	 */
4925 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4926 		page_group_by_mobility_disabled = 1;
4927 	else
4928 		page_group_by_mobility_disabled = 0;
4929 
4930 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4931 		nr_online_nodes,
4932 		zonelist_order_name[current_zonelist_order],
4933 		page_group_by_mobility_disabled ? "off" : "on",
4934 		vm_total_pages);
4935 #ifdef CONFIG_NUMA
4936 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4937 #endif
4938 }
4939 
4940 /*
4941  * Helper functions to size the waitqueue hash table.
4942  * Essentially these want to choose hash table sizes sufficiently
4943  * large so that collisions trying to wait on pages are rare.
4944  * But in fact, the number of active page waitqueues on typical
4945  * systems is ridiculously low, less than 200. So this is even
4946  * conservative, even though it seems large.
4947  *
4948  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4949  * waitqueues, i.e. the size of the waitq table given the number of pages.
4950  */
4951 #define PAGES_PER_WAITQUEUE	256
4952 
4953 #ifndef CONFIG_MEMORY_HOTPLUG
4954 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4955 {
4956 	unsigned long size = 1;
4957 
4958 	pages /= PAGES_PER_WAITQUEUE;
4959 
4960 	while (size < pages)
4961 		size <<= 1;
4962 
4963 	/*
4964 	 * Once we have dozens or even hundreds of threads sleeping
4965 	 * on IO we've got bigger problems than wait queue collision.
4966 	 * Limit the size of the wait table to a reasonable size.
4967 	 */
4968 	size = min(size, 4096UL);
4969 
4970 	return max(size, 4UL);
4971 }
4972 #else
4973 /*
4974  * A zone's size might be changed by hot-add, so it is not possible to determine
4975  * a suitable size for its wait_table.  So we use the maximum size now.
4976  *
4977  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4978  *
4979  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4980  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4981  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4982  *
4983  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4984  * or more by the traditional way. (See above).  It equals:
4985  *
4986  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4987  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4988  *    powerpc (64K page size)             : =  (32G +16M)byte.
4989  */
4990 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4991 {
4992 	return 4096UL;
4993 }
4994 #endif
4995 
4996 /*
4997  * This is an integer logarithm so that shifts can be used later
4998  * to extract the more random high bits from the multiplicative
4999  * hash function before the remainder is taken.
5000  */
5001 static inline unsigned long wait_table_bits(unsigned long size)
5002 {
5003 	return ffz(~size);
5004 }
5005 
5006 /*
5007  * Initially all pages are reserved - free ones are freed
5008  * up by free_all_bootmem() once the early boot process is
5009  * done. Non-atomic initialization, single-pass.
5010  */
5011 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5012 		unsigned long start_pfn, enum memmap_context context)
5013 {
5014 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5015 	unsigned long end_pfn = start_pfn + size;
5016 	pg_data_t *pgdat = NODE_DATA(nid);
5017 	unsigned long pfn;
5018 	unsigned long nr_initialised = 0;
5019 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5020 	struct memblock_region *r = NULL, *tmp;
5021 #endif
5022 
5023 	if (highest_memmap_pfn < end_pfn - 1)
5024 		highest_memmap_pfn = end_pfn - 1;
5025 
5026 	/*
5027 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5028 	 * memory
5029 	 */
5030 	if (altmap && start_pfn == altmap->base_pfn)
5031 		start_pfn += altmap->reserve;
5032 
5033 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5034 		/*
5035 		 * There can be holes in boot-time mem_map[]s handed to this
5036 		 * function.  They do not exist on hotplugged memory.
5037 		 */
5038 		if (context != MEMMAP_EARLY)
5039 			goto not_early;
5040 
5041 		if (!early_pfn_valid(pfn))
5042 			continue;
5043 		if (!early_pfn_in_nid(pfn, nid))
5044 			continue;
5045 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5046 			break;
5047 
5048 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5049 		/*
5050 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5051 		 * from zone_movable_pfn[nid] to end of each node should be
5052 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5053 		 */
5054 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
5055 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5056 				continue;
5057 
5058 		/*
5059 		 * Check given memblock attribute by firmware which can affect
5060 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5061 		 * mirrored, it's an overlapped memmap init. skip it.
5062 		 */
5063 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5064 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5065 				for_each_memblock(memory, tmp)
5066 					if (pfn < memblock_region_memory_end_pfn(tmp))
5067 						break;
5068 				r = tmp;
5069 			}
5070 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5071 			    memblock_is_mirror(r)) {
5072 				/* already initialized as NORMAL */
5073 				pfn = memblock_region_memory_end_pfn(r);
5074 				continue;
5075 			}
5076 		}
5077 #endif
5078 
5079 not_early:
5080 		/*
5081 		 * Mark the block movable so that blocks are reserved for
5082 		 * movable at startup. This will force kernel allocations
5083 		 * to reserve their blocks rather than leaking throughout
5084 		 * the address space during boot when many long-lived
5085 		 * kernel allocations are made.
5086 		 *
5087 		 * bitmap is created for zone's valid pfn range. but memmap
5088 		 * can be created for invalid pages (for alignment)
5089 		 * check here not to call set_pageblock_migratetype() against
5090 		 * pfn out of zone.
5091 		 */
5092 		if (!(pfn & (pageblock_nr_pages - 1))) {
5093 			struct page *page = pfn_to_page(pfn);
5094 
5095 			__init_single_page(page, pfn, zone, nid);
5096 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5097 		} else {
5098 			__init_single_pfn(pfn, zone, nid);
5099 		}
5100 	}
5101 }
5102 
5103 static void __meminit zone_init_free_lists(struct zone *zone)
5104 {
5105 	unsigned int order, t;
5106 	for_each_migratetype_order(order, t) {
5107 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5108 		zone->free_area[order].nr_free = 0;
5109 	}
5110 }
5111 
5112 #ifndef __HAVE_ARCH_MEMMAP_INIT
5113 #define memmap_init(size, nid, zone, start_pfn) \
5114 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5115 #endif
5116 
5117 static int zone_batchsize(struct zone *zone)
5118 {
5119 #ifdef CONFIG_MMU
5120 	int batch;
5121 
5122 	/*
5123 	 * The per-cpu-pages pools are set to around 1000th of the
5124 	 * size of the zone.  But no more than 1/2 of a meg.
5125 	 *
5126 	 * OK, so we don't know how big the cache is.  So guess.
5127 	 */
5128 	batch = zone->managed_pages / 1024;
5129 	if (batch * PAGE_SIZE > 512 * 1024)
5130 		batch = (512 * 1024) / PAGE_SIZE;
5131 	batch /= 4;		/* We effectively *= 4 below */
5132 	if (batch < 1)
5133 		batch = 1;
5134 
5135 	/*
5136 	 * Clamp the batch to a 2^n - 1 value. Having a power
5137 	 * of 2 value was found to be more likely to have
5138 	 * suboptimal cache aliasing properties in some cases.
5139 	 *
5140 	 * For example if 2 tasks are alternately allocating
5141 	 * batches of pages, one task can end up with a lot
5142 	 * of pages of one half of the possible page colors
5143 	 * and the other with pages of the other colors.
5144 	 */
5145 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5146 
5147 	return batch;
5148 
5149 #else
5150 	/* The deferral and batching of frees should be suppressed under NOMMU
5151 	 * conditions.
5152 	 *
5153 	 * The problem is that NOMMU needs to be able to allocate large chunks
5154 	 * of contiguous memory as there's no hardware page translation to
5155 	 * assemble apparent contiguous memory from discontiguous pages.
5156 	 *
5157 	 * Queueing large contiguous runs of pages for batching, however,
5158 	 * causes the pages to actually be freed in smaller chunks.  As there
5159 	 * can be a significant delay between the individual batches being
5160 	 * recycled, this leads to the once large chunks of space being
5161 	 * fragmented and becoming unavailable for high-order allocations.
5162 	 */
5163 	return 0;
5164 #endif
5165 }
5166 
5167 /*
5168  * pcp->high and pcp->batch values are related and dependent on one another:
5169  * ->batch must never be higher then ->high.
5170  * The following function updates them in a safe manner without read side
5171  * locking.
5172  *
5173  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5174  * those fields changing asynchronously (acording the the above rule).
5175  *
5176  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5177  * outside of boot time (or some other assurance that no concurrent updaters
5178  * exist).
5179  */
5180 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5181 		unsigned long batch)
5182 {
5183        /* start with a fail safe value for batch */
5184 	pcp->batch = 1;
5185 	smp_wmb();
5186 
5187        /* Update high, then batch, in order */
5188 	pcp->high = high;
5189 	smp_wmb();
5190 
5191 	pcp->batch = batch;
5192 }
5193 
5194 /* a companion to pageset_set_high() */
5195 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5196 {
5197 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5198 }
5199 
5200 static void pageset_init(struct per_cpu_pageset *p)
5201 {
5202 	struct per_cpu_pages *pcp;
5203 	int migratetype;
5204 
5205 	memset(p, 0, sizeof(*p));
5206 
5207 	pcp = &p->pcp;
5208 	pcp->count = 0;
5209 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5210 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5211 }
5212 
5213 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5214 {
5215 	pageset_init(p);
5216 	pageset_set_batch(p, batch);
5217 }
5218 
5219 /*
5220  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5221  * to the value high for the pageset p.
5222  */
5223 static void pageset_set_high(struct per_cpu_pageset *p,
5224 				unsigned long high)
5225 {
5226 	unsigned long batch = max(1UL, high / 4);
5227 	if ((high / 4) > (PAGE_SHIFT * 8))
5228 		batch = PAGE_SHIFT * 8;
5229 
5230 	pageset_update(&p->pcp, high, batch);
5231 }
5232 
5233 static void pageset_set_high_and_batch(struct zone *zone,
5234 				       struct per_cpu_pageset *pcp)
5235 {
5236 	if (percpu_pagelist_fraction)
5237 		pageset_set_high(pcp,
5238 			(zone->managed_pages /
5239 				percpu_pagelist_fraction));
5240 	else
5241 		pageset_set_batch(pcp, zone_batchsize(zone));
5242 }
5243 
5244 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5245 {
5246 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5247 
5248 	pageset_init(pcp);
5249 	pageset_set_high_and_batch(zone, pcp);
5250 }
5251 
5252 static void __meminit setup_zone_pageset(struct zone *zone)
5253 {
5254 	int cpu;
5255 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5256 	for_each_possible_cpu(cpu)
5257 		zone_pageset_init(zone, cpu);
5258 }
5259 
5260 /*
5261  * Allocate per cpu pagesets and initialize them.
5262  * Before this call only boot pagesets were available.
5263  */
5264 void __init setup_per_cpu_pageset(void)
5265 {
5266 	struct pglist_data *pgdat;
5267 	struct zone *zone;
5268 
5269 	for_each_populated_zone(zone)
5270 		setup_zone_pageset(zone);
5271 
5272 	for_each_online_pgdat(pgdat)
5273 		pgdat->per_cpu_nodestats =
5274 			alloc_percpu(struct per_cpu_nodestat);
5275 }
5276 
5277 static noinline __ref
5278 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5279 {
5280 	int i;
5281 	size_t alloc_size;
5282 
5283 	/*
5284 	 * The per-page waitqueue mechanism uses hashed waitqueues
5285 	 * per zone.
5286 	 */
5287 	zone->wait_table_hash_nr_entries =
5288 		 wait_table_hash_nr_entries(zone_size_pages);
5289 	zone->wait_table_bits =
5290 		wait_table_bits(zone->wait_table_hash_nr_entries);
5291 	alloc_size = zone->wait_table_hash_nr_entries
5292 					* sizeof(wait_queue_head_t);
5293 
5294 	if (!slab_is_available()) {
5295 		zone->wait_table = (wait_queue_head_t *)
5296 			memblock_virt_alloc_node_nopanic(
5297 				alloc_size, zone->zone_pgdat->node_id);
5298 	} else {
5299 		/*
5300 		 * This case means that a zone whose size was 0 gets new memory
5301 		 * via memory hot-add.
5302 		 * But it may be the case that a new node was hot-added.  In
5303 		 * this case vmalloc() will not be able to use this new node's
5304 		 * memory - this wait_table must be initialized to use this new
5305 		 * node itself as well.
5306 		 * To use this new node's memory, further consideration will be
5307 		 * necessary.
5308 		 */
5309 		zone->wait_table = vmalloc(alloc_size);
5310 	}
5311 	if (!zone->wait_table)
5312 		return -ENOMEM;
5313 
5314 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5315 		init_waitqueue_head(zone->wait_table + i);
5316 
5317 	return 0;
5318 }
5319 
5320 static __meminit void zone_pcp_init(struct zone *zone)
5321 {
5322 	/*
5323 	 * per cpu subsystem is not up at this point. The following code
5324 	 * relies on the ability of the linker to provide the
5325 	 * offset of a (static) per cpu variable into the per cpu area.
5326 	 */
5327 	zone->pageset = &boot_pageset;
5328 
5329 	if (populated_zone(zone))
5330 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5331 			zone->name, zone->present_pages,
5332 					 zone_batchsize(zone));
5333 }
5334 
5335 int __meminit init_currently_empty_zone(struct zone *zone,
5336 					unsigned long zone_start_pfn,
5337 					unsigned long size)
5338 {
5339 	struct pglist_data *pgdat = zone->zone_pgdat;
5340 	int ret;
5341 	ret = zone_wait_table_init(zone, size);
5342 	if (ret)
5343 		return ret;
5344 	pgdat->nr_zones = zone_idx(zone) + 1;
5345 
5346 	zone->zone_start_pfn = zone_start_pfn;
5347 
5348 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5349 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5350 			pgdat->node_id,
5351 			(unsigned long)zone_idx(zone),
5352 			zone_start_pfn, (zone_start_pfn + size));
5353 
5354 	zone_init_free_lists(zone);
5355 
5356 	return 0;
5357 }
5358 
5359 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5360 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5361 
5362 /*
5363  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5364  */
5365 int __meminit __early_pfn_to_nid(unsigned long pfn,
5366 					struct mminit_pfnnid_cache *state)
5367 {
5368 	unsigned long start_pfn, end_pfn;
5369 	int nid;
5370 
5371 	if (state->last_start <= pfn && pfn < state->last_end)
5372 		return state->last_nid;
5373 
5374 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5375 	if (nid != -1) {
5376 		state->last_start = start_pfn;
5377 		state->last_end = end_pfn;
5378 		state->last_nid = nid;
5379 	}
5380 
5381 	return nid;
5382 }
5383 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5384 
5385 /**
5386  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5387  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5388  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5389  *
5390  * If an architecture guarantees that all ranges registered contain no holes
5391  * and may be freed, this this function may be used instead of calling
5392  * memblock_free_early_nid() manually.
5393  */
5394 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5395 {
5396 	unsigned long start_pfn, end_pfn;
5397 	int i, this_nid;
5398 
5399 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5400 		start_pfn = min(start_pfn, max_low_pfn);
5401 		end_pfn = min(end_pfn, max_low_pfn);
5402 
5403 		if (start_pfn < end_pfn)
5404 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5405 					(end_pfn - start_pfn) << PAGE_SHIFT,
5406 					this_nid);
5407 	}
5408 }
5409 
5410 /**
5411  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5412  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5413  *
5414  * If an architecture guarantees that all ranges registered contain no holes and may
5415  * be freed, this function may be used instead of calling memory_present() manually.
5416  */
5417 void __init sparse_memory_present_with_active_regions(int nid)
5418 {
5419 	unsigned long start_pfn, end_pfn;
5420 	int i, this_nid;
5421 
5422 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5423 		memory_present(this_nid, start_pfn, end_pfn);
5424 }
5425 
5426 /**
5427  * get_pfn_range_for_nid - Return the start and end page frames for a node
5428  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5429  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5430  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5431  *
5432  * It returns the start and end page frame of a node based on information
5433  * provided by memblock_set_node(). If called for a node
5434  * with no available memory, a warning is printed and the start and end
5435  * PFNs will be 0.
5436  */
5437 void __meminit get_pfn_range_for_nid(unsigned int nid,
5438 			unsigned long *start_pfn, unsigned long *end_pfn)
5439 {
5440 	unsigned long this_start_pfn, this_end_pfn;
5441 	int i;
5442 
5443 	*start_pfn = -1UL;
5444 	*end_pfn = 0;
5445 
5446 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5447 		*start_pfn = min(*start_pfn, this_start_pfn);
5448 		*end_pfn = max(*end_pfn, this_end_pfn);
5449 	}
5450 
5451 	if (*start_pfn == -1UL)
5452 		*start_pfn = 0;
5453 }
5454 
5455 /*
5456  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5457  * assumption is made that zones within a node are ordered in monotonic
5458  * increasing memory addresses so that the "highest" populated zone is used
5459  */
5460 static void __init find_usable_zone_for_movable(void)
5461 {
5462 	int zone_index;
5463 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5464 		if (zone_index == ZONE_MOVABLE)
5465 			continue;
5466 
5467 		if (arch_zone_highest_possible_pfn[zone_index] >
5468 				arch_zone_lowest_possible_pfn[zone_index])
5469 			break;
5470 	}
5471 
5472 	VM_BUG_ON(zone_index == -1);
5473 	movable_zone = zone_index;
5474 }
5475 
5476 /*
5477  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5478  * because it is sized independent of architecture. Unlike the other zones,
5479  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5480  * in each node depending on the size of each node and how evenly kernelcore
5481  * is distributed. This helper function adjusts the zone ranges
5482  * provided by the architecture for a given node by using the end of the
5483  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5484  * zones within a node are in order of monotonic increases memory addresses
5485  */
5486 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5487 					unsigned long zone_type,
5488 					unsigned long node_start_pfn,
5489 					unsigned long node_end_pfn,
5490 					unsigned long *zone_start_pfn,
5491 					unsigned long *zone_end_pfn)
5492 {
5493 	/* Only adjust if ZONE_MOVABLE is on this node */
5494 	if (zone_movable_pfn[nid]) {
5495 		/* Size ZONE_MOVABLE */
5496 		if (zone_type == ZONE_MOVABLE) {
5497 			*zone_start_pfn = zone_movable_pfn[nid];
5498 			*zone_end_pfn = min(node_end_pfn,
5499 				arch_zone_highest_possible_pfn[movable_zone]);
5500 
5501 		/* Check if this whole range is within ZONE_MOVABLE */
5502 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5503 			*zone_start_pfn = *zone_end_pfn;
5504 	}
5505 }
5506 
5507 /*
5508  * Return the number of pages a zone spans in a node, including holes
5509  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5510  */
5511 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5512 					unsigned long zone_type,
5513 					unsigned long node_start_pfn,
5514 					unsigned long node_end_pfn,
5515 					unsigned long *zone_start_pfn,
5516 					unsigned long *zone_end_pfn,
5517 					unsigned long *ignored)
5518 {
5519 	/* When hotadd a new node from cpu_up(), the node should be empty */
5520 	if (!node_start_pfn && !node_end_pfn)
5521 		return 0;
5522 
5523 	/* Get the start and end of the zone */
5524 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5525 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5526 	adjust_zone_range_for_zone_movable(nid, zone_type,
5527 				node_start_pfn, node_end_pfn,
5528 				zone_start_pfn, zone_end_pfn);
5529 
5530 	/* Check that this node has pages within the zone's required range */
5531 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5532 		return 0;
5533 
5534 	/* Move the zone boundaries inside the node if necessary */
5535 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5536 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5537 
5538 	/* Return the spanned pages */
5539 	return *zone_end_pfn - *zone_start_pfn;
5540 }
5541 
5542 /*
5543  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5544  * then all holes in the requested range will be accounted for.
5545  */
5546 unsigned long __meminit __absent_pages_in_range(int nid,
5547 				unsigned long range_start_pfn,
5548 				unsigned long range_end_pfn)
5549 {
5550 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5551 	unsigned long start_pfn, end_pfn;
5552 	int i;
5553 
5554 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5555 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5556 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5557 		nr_absent -= end_pfn - start_pfn;
5558 	}
5559 	return nr_absent;
5560 }
5561 
5562 /**
5563  * absent_pages_in_range - Return number of page frames in holes within a range
5564  * @start_pfn: The start PFN to start searching for holes
5565  * @end_pfn: The end PFN to stop searching for holes
5566  *
5567  * It returns the number of pages frames in memory holes within a range.
5568  */
5569 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5570 							unsigned long end_pfn)
5571 {
5572 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5573 }
5574 
5575 /* Return the number of page frames in holes in a zone on a node */
5576 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5577 					unsigned long zone_type,
5578 					unsigned long node_start_pfn,
5579 					unsigned long node_end_pfn,
5580 					unsigned long *ignored)
5581 {
5582 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5583 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5584 	unsigned long zone_start_pfn, zone_end_pfn;
5585 	unsigned long nr_absent;
5586 
5587 	/* When hotadd a new node from cpu_up(), the node should be empty */
5588 	if (!node_start_pfn && !node_end_pfn)
5589 		return 0;
5590 
5591 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5592 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5593 
5594 	adjust_zone_range_for_zone_movable(nid, zone_type,
5595 			node_start_pfn, node_end_pfn,
5596 			&zone_start_pfn, &zone_end_pfn);
5597 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5598 
5599 	/*
5600 	 * ZONE_MOVABLE handling.
5601 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5602 	 * and vice versa.
5603 	 */
5604 	if (zone_movable_pfn[nid]) {
5605 		if (mirrored_kernelcore) {
5606 			unsigned long start_pfn, end_pfn;
5607 			struct memblock_region *r;
5608 
5609 			for_each_memblock(memory, r) {
5610 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5611 						  zone_start_pfn, zone_end_pfn);
5612 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5613 						zone_start_pfn, zone_end_pfn);
5614 
5615 				if (zone_type == ZONE_MOVABLE &&
5616 				    memblock_is_mirror(r))
5617 					nr_absent += end_pfn - start_pfn;
5618 
5619 				if (zone_type == ZONE_NORMAL &&
5620 				    !memblock_is_mirror(r))
5621 					nr_absent += end_pfn - start_pfn;
5622 			}
5623 		} else {
5624 			if (zone_type == ZONE_NORMAL)
5625 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5626 		}
5627 	}
5628 
5629 	return nr_absent;
5630 }
5631 
5632 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5633 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5634 					unsigned long zone_type,
5635 					unsigned long node_start_pfn,
5636 					unsigned long node_end_pfn,
5637 					unsigned long *zone_start_pfn,
5638 					unsigned long *zone_end_pfn,
5639 					unsigned long *zones_size)
5640 {
5641 	unsigned int zone;
5642 
5643 	*zone_start_pfn = node_start_pfn;
5644 	for (zone = 0; zone < zone_type; zone++)
5645 		*zone_start_pfn += zones_size[zone];
5646 
5647 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5648 
5649 	return zones_size[zone_type];
5650 }
5651 
5652 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5653 						unsigned long zone_type,
5654 						unsigned long node_start_pfn,
5655 						unsigned long node_end_pfn,
5656 						unsigned long *zholes_size)
5657 {
5658 	if (!zholes_size)
5659 		return 0;
5660 
5661 	return zholes_size[zone_type];
5662 }
5663 
5664 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5665 
5666 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5667 						unsigned long node_start_pfn,
5668 						unsigned long node_end_pfn,
5669 						unsigned long *zones_size,
5670 						unsigned long *zholes_size)
5671 {
5672 	unsigned long realtotalpages = 0, totalpages = 0;
5673 	enum zone_type i;
5674 
5675 	for (i = 0; i < MAX_NR_ZONES; i++) {
5676 		struct zone *zone = pgdat->node_zones + i;
5677 		unsigned long zone_start_pfn, zone_end_pfn;
5678 		unsigned long size, real_size;
5679 
5680 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5681 						  node_start_pfn,
5682 						  node_end_pfn,
5683 						  &zone_start_pfn,
5684 						  &zone_end_pfn,
5685 						  zones_size);
5686 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5687 						  node_start_pfn, node_end_pfn,
5688 						  zholes_size);
5689 		if (size)
5690 			zone->zone_start_pfn = zone_start_pfn;
5691 		else
5692 			zone->zone_start_pfn = 0;
5693 		zone->spanned_pages = size;
5694 		zone->present_pages = real_size;
5695 
5696 		totalpages += size;
5697 		realtotalpages += real_size;
5698 	}
5699 
5700 	pgdat->node_spanned_pages = totalpages;
5701 	pgdat->node_present_pages = realtotalpages;
5702 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5703 							realtotalpages);
5704 }
5705 
5706 #ifndef CONFIG_SPARSEMEM
5707 /*
5708  * Calculate the size of the zone->blockflags rounded to an unsigned long
5709  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5710  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5711  * round what is now in bits to nearest long in bits, then return it in
5712  * bytes.
5713  */
5714 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5715 {
5716 	unsigned long usemapsize;
5717 
5718 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5719 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5720 	usemapsize = usemapsize >> pageblock_order;
5721 	usemapsize *= NR_PAGEBLOCK_BITS;
5722 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5723 
5724 	return usemapsize / 8;
5725 }
5726 
5727 static void __init setup_usemap(struct pglist_data *pgdat,
5728 				struct zone *zone,
5729 				unsigned long zone_start_pfn,
5730 				unsigned long zonesize)
5731 {
5732 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5733 	zone->pageblock_flags = NULL;
5734 	if (usemapsize)
5735 		zone->pageblock_flags =
5736 			memblock_virt_alloc_node_nopanic(usemapsize,
5737 							 pgdat->node_id);
5738 }
5739 #else
5740 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5741 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5742 #endif /* CONFIG_SPARSEMEM */
5743 
5744 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5745 
5746 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5747 void __paginginit set_pageblock_order(void)
5748 {
5749 	unsigned int order;
5750 
5751 	/* Check that pageblock_nr_pages has not already been setup */
5752 	if (pageblock_order)
5753 		return;
5754 
5755 	if (HPAGE_SHIFT > PAGE_SHIFT)
5756 		order = HUGETLB_PAGE_ORDER;
5757 	else
5758 		order = MAX_ORDER - 1;
5759 
5760 	/*
5761 	 * Assume the largest contiguous order of interest is a huge page.
5762 	 * This value may be variable depending on boot parameters on IA64 and
5763 	 * powerpc.
5764 	 */
5765 	pageblock_order = order;
5766 }
5767 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5768 
5769 /*
5770  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5771  * is unused as pageblock_order is set at compile-time. See
5772  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5773  * the kernel config
5774  */
5775 void __paginginit set_pageblock_order(void)
5776 {
5777 }
5778 
5779 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5780 
5781 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5782 						   unsigned long present_pages)
5783 {
5784 	unsigned long pages = spanned_pages;
5785 
5786 	/*
5787 	 * Provide a more accurate estimation if there are holes within
5788 	 * the zone and SPARSEMEM is in use. If there are holes within the
5789 	 * zone, each populated memory region may cost us one or two extra
5790 	 * memmap pages due to alignment because memmap pages for each
5791 	 * populated regions may not naturally algined on page boundary.
5792 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5793 	 */
5794 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5795 	    IS_ENABLED(CONFIG_SPARSEMEM))
5796 		pages = present_pages;
5797 
5798 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5799 }
5800 
5801 /*
5802  * Set up the zone data structures:
5803  *   - mark all pages reserved
5804  *   - mark all memory queues empty
5805  *   - clear the memory bitmaps
5806  *
5807  * NOTE: pgdat should get zeroed by caller.
5808  */
5809 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5810 {
5811 	enum zone_type j;
5812 	int nid = pgdat->node_id;
5813 	int ret;
5814 
5815 	pgdat_resize_init(pgdat);
5816 #ifdef CONFIG_NUMA_BALANCING
5817 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5818 	pgdat->numabalancing_migrate_nr_pages = 0;
5819 	pgdat->numabalancing_migrate_next_window = jiffies;
5820 #endif
5821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5822 	spin_lock_init(&pgdat->split_queue_lock);
5823 	INIT_LIST_HEAD(&pgdat->split_queue);
5824 	pgdat->split_queue_len = 0;
5825 #endif
5826 	init_waitqueue_head(&pgdat->kswapd_wait);
5827 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5828 #ifdef CONFIG_COMPACTION
5829 	init_waitqueue_head(&pgdat->kcompactd_wait);
5830 #endif
5831 	pgdat_page_ext_init(pgdat);
5832 	spin_lock_init(&pgdat->lru_lock);
5833 	lruvec_init(node_lruvec(pgdat));
5834 
5835 	for (j = 0; j < MAX_NR_ZONES; j++) {
5836 		struct zone *zone = pgdat->node_zones + j;
5837 		unsigned long size, realsize, freesize, memmap_pages;
5838 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5839 
5840 		size = zone->spanned_pages;
5841 		realsize = freesize = zone->present_pages;
5842 
5843 		/*
5844 		 * Adjust freesize so that it accounts for how much memory
5845 		 * is used by this zone for memmap. This affects the watermark
5846 		 * and per-cpu initialisations
5847 		 */
5848 		memmap_pages = calc_memmap_size(size, realsize);
5849 		if (!is_highmem_idx(j)) {
5850 			if (freesize >= memmap_pages) {
5851 				freesize -= memmap_pages;
5852 				if (memmap_pages)
5853 					printk(KERN_DEBUG
5854 					       "  %s zone: %lu pages used for memmap\n",
5855 					       zone_names[j], memmap_pages);
5856 			} else
5857 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5858 					zone_names[j], memmap_pages, freesize);
5859 		}
5860 
5861 		/* Account for reserved pages */
5862 		if (j == 0 && freesize > dma_reserve) {
5863 			freesize -= dma_reserve;
5864 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5865 					zone_names[0], dma_reserve);
5866 		}
5867 
5868 		if (!is_highmem_idx(j))
5869 			nr_kernel_pages += freesize;
5870 		/* Charge for highmem memmap if there are enough kernel pages */
5871 		else if (nr_kernel_pages > memmap_pages * 2)
5872 			nr_kernel_pages -= memmap_pages;
5873 		nr_all_pages += freesize;
5874 
5875 		/*
5876 		 * Set an approximate value for lowmem here, it will be adjusted
5877 		 * when the bootmem allocator frees pages into the buddy system.
5878 		 * And all highmem pages will be managed by the buddy system.
5879 		 */
5880 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5881 #ifdef CONFIG_NUMA
5882 		zone->node = nid;
5883 #endif
5884 		zone->name = zone_names[j];
5885 		zone->zone_pgdat = pgdat;
5886 		spin_lock_init(&zone->lock);
5887 		zone_seqlock_init(zone);
5888 		zone_pcp_init(zone);
5889 
5890 		if (!size)
5891 			continue;
5892 
5893 		set_pageblock_order();
5894 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5895 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5896 		BUG_ON(ret);
5897 		memmap_init(size, nid, j, zone_start_pfn);
5898 	}
5899 }
5900 
5901 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5902 {
5903 	unsigned long __maybe_unused start = 0;
5904 	unsigned long __maybe_unused offset = 0;
5905 
5906 	/* Skip empty nodes */
5907 	if (!pgdat->node_spanned_pages)
5908 		return;
5909 
5910 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5911 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5912 	offset = pgdat->node_start_pfn - start;
5913 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5914 	if (!pgdat->node_mem_map) {
5915 		unsigned long size, end;
5916 		struct page *map;
5917 
5918 		/*
5919 		 * The zone's endpoints aren't required to be MAX_ORDER
5920 		 * aligned but the node_mem_map endpoints must be in order
5921 		 * for the buddy allocator to function correctly.
5922 		 */
5923 		end = pgdat_end_pfn(pgdat);
5924 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5925 		size =  (end - start) * sizeof(struct page);
5926 		map = alloc_remap(pgdat->node_id, size);
5927 		if (!map)
5928 			map = memblock_virt_alloc_node_nopanic(size,
5929 							       pgdat->node_id);
5930 		pgdat->node_mem_map = map + offset;
5931 	}
5932 #ifndef CONFIG_NEED_MULTIPLE_NODES
5933 	/*
5934 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5935 	 */
5936 	if (pgdat == NODE_DATA(0)) {
5937 		mem_map = NODE_DATA(0)->node_mem_map;
5938 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5939 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5940 			mem_map -= offset;
5941 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5942 	}
5943 #endif
5944 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5945 }
5946 
5947 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5948 		unsigned long node_start_pfn, unsigned long *zholes_size)
5949 {
5950 	pg_data_t *pgdat = NODE_DATA(nid);
5951 	unsigned long start_pfn = 0;
5952 	unsigned long end_pfn = 0;
5953 
5954 	/* pg_data_t should be reset to zero when it's allocated */
5955 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5956 
5957 	reset_deferred_meminit(pgdat);
5958 	pgdat->node_id = nid;
5959 	pgdat->node_start_pfn = node_start_pfn;
5960 	pgdat->per_cpu_nodestats = NULL;
5961 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5962 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5963 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5964 		(u64)start_pfn << PAGE_SHIFT,
5965 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5966 #else
5967 	start_pfn = node_start_pfn;
5968 #endif
5969 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5970 				  zones_size, zholes_size);
5971 
5972 	alloc_node_mem_map(pgdat);
5973 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5974 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5975 		nid, (unsigned long)pgdat,
5976 		(unsigned long)pgdat->node_mem_map);
5977 #endif
5978 
5979 	free_area_init_core(pgdat);
5980 }
5981 
5982 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5983 
5984 #if MAX_NUMNODES > 1
5985 /*
5986  * Figure out the number of possible node ids.
5987  */
5988 void __init setup_nr_node_ids(void)
5989 {
5990 	unsigned int highest;
5991 
5992 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5993 	nr_node_ids = highest + 1;
5994 }
5995 #endif
5996 
5997 /**
5998  * node_map_pfn_alignment - determine the maximum internode alignment
5999  *
6000  * This function should be called after node map is populated and sorted.
6001  * It calculates the maximum power of two alignment which can distinguish
6002  * all the nodes.
6003  *
6004  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6005  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6006  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6007  * shifted, 1GiB is enough and this function will indicate so.
6008  *
6009  * This is used to test whether pfn -> nid mapping of the chosen memory
6010  * model has fine enough granularity to avoid incorrect mapping for the
6011  * populated node map.
6012  *
6013  * Returns the determined alignment in pfn's.  0 if there is no alignment
6014  * requirement (single node).
6015  */
6016 unsigned long __init node_map_pfn_alignment(void)
6017 {
6018 	unsigned long accl_mask = 0, last_end = 0;
6019 	unsigned long start, end, mask;
6020 	int last_nid = -1;
6021 	int i, nid;
6022 
6023 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6024 		if (!start || last_nid < 0 || last_nid == nid) {
6025 			last_nid = nid;
6026 			last_end = end;
6027 			continue;
6028 		}
6029 
6030 		/*
6031 		 * Start with a mask granular enough to pin-point to the
6032 		 * start pfn and tick off bits one-by-one until it becomes
6033 		 * too coarse to separate the current node from the last.
6034 		 */
6035 		mask = ~((1 << __ffs(start)) - 1);
6036 		while (mask && last_end <= (start & (mask << 1)))
6037 			mask <<= 1;
6038 
6039 		/* accumulate all internode masks */
6040 		accl_mask |= mask;
6041 	}
6042 
6043 	/* convert mask to number of pages */
6044 	return ~accl_mask + 1;
6045 }
6046 
6047 /* Find the lowest pfn for a node */
6048 static unsigned long __init find_min_pfn_for_node(int nid)
6049 {
6050 	unsigned long min_pfn = ULONG_MAX;
6051 	unsigned long start_pfn;
6052 	int i;
6053 
6054 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6055 		min_pfn = min(min_pfn, start_pfn);
6056 
6057 	if (min_pfn == ULONG_MAX) {
6058 		pr_warn("Could not find start_pfn for node %d\n", nid);
6059 		return 0;
6060 	}
6061 
6062 	return min_pfn;
6063 }
6064 
6065 /**
6066  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6067  *
6068  * It returns the minimum PFN based on information provided via
6069  * memblock_set_node().
6070  */
6071 unsigned long __init find_min_pfn_with_active_regions(void)
6072 {
6073 	return find_min_pfn_for_node(MAX_NUMNODES);
6074 }
6075 
6076 /*
6077  * early_calculate_totalpages()
6078  * Sum pages in active regions for movable zone.
6079  * Populate N_MEMORY for calculating usable_nodes.
6080  */
6081 static unsigned long __init early_calculate_totalpages(void)
6082 {
6083 	unsigned long totalpages = 0;
6084 	unsigned long start_pfn, end_pfn;
6085 	int i, nid;
6086 
6087 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6088 		unsigned long pages = end_pfn - start_pfn;
6089 
6090 		totalpages += pages;
6091 		if (pages)
6092 			node_set_state(nid, N_MEMORY);
6093 	}
6094 	return totalpages;
6095 }
6096 
6097 /*
6098  * Find the PFN the Movable zone begins in each node. Kernel memory
6099  * is spread evenly between nodes as long as the nodes have enough
6100  * memory. When they don't, some nodes will have more kernelcore than
6101  * others
6102  */
6103 static void __init find_zone_movable_pfns_for_nodes(void)
6104 {
6105 	int i, nid;
6106 	unsigned long usable_startpfn;
6107 	unsigned long kernelcore_node, kernelcore_remaining;
6108 	/* save the state before borrow the nodemask */
6109 	nodemask_t saved_node_state = node_states[N_MEMORY];
6110 	unsigned long totalpages = early_calculate_totalpages();
6111 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6112 	struct memblock_region *r;
6113 
6114 	/* Need to find movable_zone earlier when movable_node is specified. */
6115 	find_usable_zone_for_movable();
6116 
6117 	/*
6118 	 * If movable_node is specified, ignore kernelcore and movablecore
6119 	 * options.
6120 	 */
6121 	if (movable_node_is_enabled()) {
6122 		for_each_memblock(memory, r) {
6123 			if (!memblock_is_hotpluggable(r))
6124 				continue;
6125 
6126 			nid = r->nid;
6127 
6128 			usable_startpfn = PFN_DOWN(r->base);
6129 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6130 				min(usable_startpfn, zone_movable_pfn[nid]) :
6131 				usable_startpfn;
6132 		}
6133 
6134 		goto out2;
6135 	}
6136 
6137 	/*
6138 	 * If kernelcore=mirror is specified, ignore movablecore option
6139 	 */
6140 	if (mirrored_kernelcore) {
6141 		bool mem_below_4gb_not_mirrored = false;
6142 
6143 		for_each_memblock(memory, r) {
6144 			if (memblock_is_mirror(r))
6145 				continue;
6146 
6147 			nid = r->nid;
6148 
6149 			usable_startpfn = memblock_region_memory_base_pfn(r);
6150 
6151 			if (usable_startpfn < 0x100000) {
6152 				mem_below_4gb_not_mirrored = true;
6153 				continue;
6154 			}
6155 
6156 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6157 				min(usable_startpfn, zone_movable_pfn[nid]) :
6158 				usable_startpfn;
6159 		}
6160 
6161 		if (mem_below_4gb_not_mirrored)
6162 			pr_warn("This configuration results in unmirrored kernel memory.");
6163 
6164 		goto out2;
6165 	}
6166 
6167 	/*
6168 	 * If movablecore=nn[KMG] was specified, calculate what size of
6169 	 * kernelcore that corresponds so that memory usable for
6170 	 * any allocation type is evenly spread. If both kernelcore
6171 	 * and movablecore are specified, then the value of kernelcore
6172 	 * will be used for required_kernelcore if it's greater than
6173 	 * what movablecore would have allowed.
6174 	 */
6175 	if (required_movablecore) {
6176 		unsigned long corepages;
6177 
6178 		/*
6179 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6180 		 * was requested by the user
6181 		 */
6182 		required_movablecore =
6183 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6184 		required_movablecore = min(totalpages, required_movablecore);
6185 		corepages = totalpages - required_movablecore;
6186 
6187 		required_kernelcore = max(required_kernelcore, corepages);
6188 	}
6189 
6190 	/*
6191 	 * If kernelcore was not specified or kernelcore size is larger
6192 	 * than totalpages, there is no ZONE_MOVABLE.
6193 	 */
6194 	if (!required_kernelcore || required_kernelcore >= totalpages)
6195 		goto out;
6196 
6197 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6198 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6199 
6200 restart:
6201 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6202 	kernelcore_node = required_kernelcore / usable_nodes;
6203 	for_each_node_state(nid, N_MEMORY) {
6204 		unsigned long start_pfn, end_pfn;
6205 
6206 		/*
6207 		 * Recalculate kernelcore_node if the division per node
6208 		 * now exceeds what is necessary to satisfy the requested
6209 		 * amount of memory for the kernel
6210 		 */
6211 		if (required_kernelcore < kernelcore_node)
6212 			kernelcore_node = required_kernelcore / usable_nodes;
6213 
6214 		/*
6215 		 * As the map is walked, we track how much memory is usable
6216 		 * by the kernel using kernelcore_remaining. When it is
6217 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6218 		 */
6219 		kernelcore_remaining = kernelcore_node;
6220 
6221 		/* Go through each range of PFNs within this node */
6222 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6223 			unsigned long size_pages;
6224 
6225 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6226 			if (start_pfn >= end_pfn)
6227 				continue;
6228 
6229 			/* Account for what is only usable for kernelcore */
6230 			if (start_pfn < usable_startpfn) {
6231 				unsigned long kernel_pages;
6232 				kernel_pages = min(end_pfn, usable_startpfn)
6233 								- start_pfn;
6234 
6235 				kernelcore_remaining -= min(kernel_pages,
6236 							kernelcore_remaining);
6237 				required_kernelcore -= min(kernel_pages,
6238 							required_kernelcore);
6239 
6240 				/* Continue if range is now fully accounted */
6241 				if (end_pfn <= usable_startpfn) {
6242 
6243 					/*
6244 					 * Push zone_movable_pfn to the end so
6245 					 * that if we have to rebalance
6246 					 * kernelcore across nodes, we will
6247 					 * not double account here
6248 					 */
6249 					zone_movable_pfn[nid] = end_pfn;
6250 					continue;
6251 				}
6252 				start_pfn = usable_startpfn;
6253 			}
6254 
6255 			/*
6256 			 * The usable PFN range for ZONE_MOVABLE is from
6257 			 * start_pfn->end_pfn. Calculate size_pages as the
6258 			 * number of pages used as kernelcore
6259 			 */
6260 			size_pages = end_pfn - start_pfn;
6261 			if (size_pages > kernelcore_remaining)
6262 				size_pages = kernelcore_remaining;
6263 			zone_movable_pfn[nid] = start_pfn + size_pages;
6264 
6265 			/*
6266 			 * Some kernelcore has been met, update counts and
6267 			 * break if the kernelcore for this node has been
6268 			 * satisfied
6269 			 */
6270 			required_kernelcore -= min(required_kernelcore,
6271 								size_pages);
6272 			kernelcore_remaining -= size_pages;
6273 			if (!kernelcore_remaining)
6274 				break;
6275 		}
6276 	}
6277 
6278 	/*
6279 	 * If there is still required_kernelcore, we do another pass with one
6280 	 * less node in the count. This will push zone_movable_pfn[nid] further
6281 	 * along on the nodes that still have memory until kernelcore is
6282 	 * satisfied
6283 	 */
6284 	usable_nodes--;
6285 	if (usable_nodes && required_kernelcore > usable_nodes)
6286 		goto restart;
6287 
6288 out2:
6289 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6290 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6291 		zone_movable_pfn[nid] =
6292 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6293 
6294 out:
6295 	/* restore the node_state */
6296 	node_states[N_MEMORY] = saved_node_state;
6297 }
6298 
6299 /* Any regular or high memory on that node ? */
6300 static void check_for_memory(pg_data_t *pgdat, int nid)
6301 {
6302 	enum zone_type zone_type;
6303 
6304 	if (N_MEMORY == N_NORMAL_MEMORY)
6305 		return;
6306 
6307 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6308 		struct zone *zone = &pgdat->node_zones[zone_type];
6309 		if (populated_zone(zone)) {
6310 			node_set_state(nid, N_HIGH_MEMORY);
6311 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6312 			    zone_type <= ZONE_NORMAL)
6313 				node_set_state(nid, N_NORMAL_MEMORY);
6314 			break;
6315 		}
6316 	}
6317 }
6318 
6319 /**
6320  * free_area_init_nodes - Initialise all pg_data_t and zone data
6321  * @max_zone_pfn: an array of max PFNs for each zone
6322  *
6323  * This will call free_area_init_node() for each active node in the system.
6324  * Using the page ranges provided by memblock_set_node(), the size of each
6325  * zone in each node and their holes is calculated. If the maximum PFN
6326  * between two adjacent zones match, it is assumed that the zone is empty.
6327  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6328  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6329  * starts where the previous one ended. For example, ZONE_DMA32 starts
6330  * at arch_max_dma_pfn.
6331  */
6332 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6333 {
6334 	unsigned long start_pfn, end_pfn;
6335 	int i, nid;
6336 
6337 	/* Record where the zone boundaries are */
6338 	memset(arch_zone_lowest_possible_pfn, 0,
6339 				sizeof(arch_zone_lowest_possible_pfn));
6340 	memset(arch_zone_highest_possible_pfn, 0,
6341 				sizeof(arch_zone_highest_possible_pfn));
6342 
6343 	start_pfn = find_min_pfn_with_active_regions();
6344 
6345 	for (i = 0; i < MAX_NR_ZONES; i++) {
6346 		if (i == ZONE_MOVABLE)
6347 			continue;
6348 
6349 		end_pfn = max(max_zone_pfn[i], start_pfn);
6350 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6351 		arch_zone_highest_possible_pfn[i] = end_pfn;
6352 
6353 		start_pfn = end_pfn;
6354 	}
6355 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6356 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6357 
6358 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6359 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6360 	find_zone_movable_pfns_for_nodes();
6361 
6362 	/* Print out the zone ranges */
6363 	pr_info("Zone ranges:\n");
6364 	for (i = 0; i < MAX_NR_ZONES; i++) {
6365 		if (i == ZONE_MOVABLE)
6366 			continue;
6367 		pr_info("  %-8s ", zone_names[i]);
6368 		if (arch_zone_lowest_possible_pfn[i] ==
6369 				arch_zone_highest_possible_pfn[i])
6370 			pr_cont("empty\n");
6371 		else
6372 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6373 				(u64)arch_zone_lowest_possible_pfn[i]
6374 					<< PAGE_SHIFT,
6375 				((u64)arch_zone_highest_possible_pfn[i]
6376 					<< PAGE_SHIFT) - 1);
6377 	}
6378 
6379 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6380 	pr_info("Movable zone start for each node\n");
6381 	for (i = 0; i < MAX_NUMNODES; i++) {
6382 		if (zone_movable_pfn[i])
6383 			pr_info("  Node %d: %#018Lx\n", i,
6384 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6385 	}
6386 
6387 	/* Print out the early node map */
6388 	pr_info("Early memory node ranges\n");
6389 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6390 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6391 			(u64)start_pfn << PAGE_SHIFT,
6392 			((u64)end_pfn << PAGE_SHIFT) - 1);
6393 
6394 	/* Initialise every node */
6395 	mminit_verify_pageflags_layout();
6396 	setup_nr_node_ids();
6397 	for_each_online_node(nid) {
6398 		pg_data_t *pgdat = NODE_DATA(nid);
6399 		free_area_init_node(nid, NULL,
6400 				find_min_pfn_for_node(nid), NULL);
6401 
6402 		/* Any memory on that node */
6403 		if (pgdat->node_present_pages)
6404 			node_set_state(nid, N_MEMORY);
6405 		check_for_memory(pgdat, nid);
6406 	}
6407 }
6408 
6409 static int __init cmdline_parse_core(char *p, unsigned long *core)
6410 {
6411 	unsigned long long coremem;
6412 	if (!p)
6413 		return -EINVAL;
6414 
6415 	coremem = memparse(p, &p);
6416 	*core = coremem >> PAGE_SHIFT;
6417 
6418 	/* Paranoid check that UL is enough for the coremem value */
6419 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6420 
6421 	return 0;
6422 }
6423 
6424 /*
6425  * kernelcore=size sets the amount of memory for use for allocations that
6426  * cannot be reclaimed or migrated.
6427  */
6428 static int __init cmdline_parse_kernelcore(char *p)
6429 {
6430 	/* parse kernelcore=mirror */
6431 	if (parse_option_str(p, "mirror")) {
6432 		mirrored_kernelcore = true;
6433 		return 0;
6434 	}
6435 
6436 	return cmdline_parse_core(p, &required_kernelcore);
6437 }
6438 
6439 /*
6440  * movablecore=size sets the amount of memory for use for allocations that
6441  * can be reclaimed or migrated.
6442  */
6443 static int __init cmdline_parse_movablecore(char *p)
6444 {
6445 	return cmdline_parse_core(p, &required_movablecore);
6446 }
6447 
6448 early_param("kernelcore", cmdline_parse_kernelcore);
6449 early_param("movablecore", cmdline_parse_movablecore);
6450 
6451 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6452 
6453 void adjust_managed_page_count(struct page *page, long count)
6454 {
6455 	spin_lock(&managed_page_count_lock);
6456 	page_zone(page)->managed_pages += count;
6457 	totalram_pages += count;
6458 #ifdef CONFIG_HIGHMEM
6459 	if (PageHighMem(page))
6460 		totalhigh_pages += count;
6461 #endif
6462 	spin_unlock(&managed_page_count_lock);
6463 }
6464 EXPORT_SYMBOL(adjust_managed_page_count);
6465 
6466 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6467 {
6468 	void *pos;
6469 	unsigned long pages = 0;
6470 
6471 	start = (void *)PAGE_ALIGN((unsigned long)start);
6472 	end = (void *)((unsigned long)end & PAGE_MASK);
6473 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6474 		if ((unsigned int)poison <= 0xFF)
6475 			memset(pos, poison, PAGE_SIZE);
6476 		free_reserved_page(virt_to_page(pos));
6477 	}
6478 
6479 	if (pages && s)
6480 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6481 			s, pages << (PAGE_SHIFT - 10), start, end);
6482 
6483 	return pages;
6484 }
6485 EXPORT_SYMBOL(free_reserved_area);
6486 
6487 #ifdef	CONFIG_HIGHMEM
6488 void free_highmem_page(struct page *page)
6489 {
6490 	__free_reserved_page(page);
6491 	totalram_pages++;
6492 	page_zone(page)->managed_pages++;
6493 	totalhigh_pages++;
6494 }
6495 #endif
6496 
6497 
6498 void __init mem_init_print_info(const char *str)
6499 {
6500 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6501 	unsigned long init_code_size, init_data_size;
6502 
6503 	physpages = get_num_physpages();
6504 	codesize = _etext - _stext;
6505 	datasize = _edata - _sdata;
6506 	rosize = __end_rodata - __start_rodata;
6507 	bss_size = __bss_stop - __bss_start;
6508 	init_data_size = __init_end - __init_begin;
6509 	init_code_size = _einittext - _sinittext;
6510 
6511 	/*
6512 	 * Detect special cases and adjust section sizes accordingly:
6513 	 * 1) .init.* may be embedded into .data sections
6514 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6515 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6516 	 * 3) .rodata.* may be embedded into .text or .data sections.
6517 	 */
6518 #define adj_init_size(start, end, size, pos, adj) \
6519 	do { \
6520 		if (start <= pos && pos < end && size > adj) \
6521 			size -= adj; \
6522 	} while (0)
6523 
6524 	adj_init_size(__init_begin, __init_end, init_data_size,
6525 		     _sinittext, init_code_size);
6526 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6527 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6528 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6529 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6530 
6531 #undef	adj_init_size
6532 
6533 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6534 #ifdef	CONFIG_HIGHMEM
6535 		", %luK highmem"
6536 #endif
6537 		"%s%s)\n",
6538 		nr_free_pages() << (PAGE_SHIFT - 10),
6539 		physpages << (PAGE_SHIFT - 10),
6540 		codesize >> 10, datasize >> 10, rosize >> 10,
6541 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6542 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6543 		totalcma_pages << (PAGE_SHIFT - 10),
6544 #ifdef	CONFIG_HIGHMEM
6545 		totalhigh_pages << (PAGE_SHIFT - 10),
6546 #endif
6547 		str ? ", " : "", str ? str : "");
6548 }
6549 
6550 /**
6551  * set_dma_reserve - set the specified number of pages reserved in the first zone
6552  * @new_dma_reserve: The number of pages to mark reserved
6553  *
6554  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6555  * In the DMA zone, a significant percentage may be consumed by kernel image
6556  * and other unfreeable allocations which can skew the watermarks badly. This
6557  * function may optionally be used to account for unfreeable pages in the
6558  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6559  * smaller per-cpu batchsize.
6560  */
6561 void __init set_dma_reserve(unsigned long new_dma_reserve)
6562 {
6563 	dma_reserve = new_dma_reserve;
6564 }
6565 
6566 void __init free_area_init(unsigned long *zones_size)
6567 {
6568 	free_area_init_node(0, zones_size,
6569 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6570 }
6571 
6572 static int page_alloc_cpu_notify(struct notifier_block *self,
6573 				 unsigned long action, void *hcpu)
6574 {
6575 	int cpu = (unsigned long)hcpu;
6576 
6577 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6578 		lru_add_drain_cpu(cpu);
6579 		drain_pages(cpu);
6580 
6581 		/*
6582 		 * Spill the event counters of the dead processor
6583 		 * into the current processors event counters.
6584 		 * This artificially elevates the count of the current
6585 		 * processor.
6586 		 */
6587 		vm_events_fold_cpu(cpu);
6588 
6589 		/*
6590 		 * Zero the differential counters of the dead processor
6591 		 * so that the vm statistics are consistent.
6592 		 *
6593 		 * This is only okay since the processor is dead and cannot
6594 		 * race with what we are doing.
6595 		 */
6596 		cpu_vm_stats_fold(cpu);
6597 	}
6598 	return NOTIFY_OK;
6599 }
6600 
6601 void __init page_alloc_init(void)
6602 {
6603 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6604 }
6605 
6606 /*
6607  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6608  *	or min_free_kbytes changes.
6609  */
6610 static void calculate_totalreserve_pages(void)
6611 {
6612 	struct pglist_data *pgdat;
6613 	unsigned long reserve_pages = 0;
6614 	enum zone_type i, j;
6615 
6616 	for_each_online_pgdat(pgdat) {
6617 
6618 		pgdat->totalreserve_pages = 0;
6619 
6620 		for (i = 0; i < MAX_NR_ZONES; i++) {
6621 			struct zone *zone = pgdat->node_zones + i;
6622 			long max = 0;
6623 
6624 			/* Find valid and maximum lowmem_reserve in the zone */
6625 			for (j = i; j < MAX_NR_ZONES; j++) {
6626 				if (zone->lowmem_reserve[j] > max)
6627 					max = zone->lowmem_reserve[j];
6628 			}
6629 
6630 			/* we treat the high watermark as reserved pages. */
6631 			max += high_wmark_pages(zone);
6632 
6633 			if (max > zone->managed_pages)
6634 				max = zone->managed_pages;
6635 
6636 			pgdat->totalreserve_pages += max;
6637 
6638 			reserve_pages += max;
6639 		}
6640 	}
6641 	totalreserve_pages = reserve_pages;
6642 }
6643 
6644 /*
6645  * setup_per_zone_lowmem_reserve - called whenever
6646  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6647  *	has a correct pages reserved value, so an adequate number of
6648  *	pages are left in the zone after a successful __alloc_pages().
6649  */
6650 static void setup_per_zone_lowmem_reserve(void)
6651 {
6652 	struct pglist_data *pgdat;
6653 	enum zone_type j, idx;
6654 
6655 	for_each_online_pgdat(pgdat) {
6656 		for (j = 0; j < MAX_NR_ZONES; j++) {
6657 			struct zone *zone = pgdat->node_zones + j;
6658 			unsigned long managed_pages = zone->managed_pages;
6659 
6660 			zone->lowmem_reserve[j] = 0;
6661 
6662 			idx = j;
6663 			while (idx) {
6664 				struct zone *lower_zone;
6665 
6666 				idx--;
6667 
6668 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6669 					sysctl_lowmem_reserve_ratio[idx] = 1;
6670 
6671 				lower_zone = pgdat->node_zones + idx;
6672 				lower_zone->lowmem_reserve[j] = managed_pages /
6673 					sysctl_lowmem_reserve_ratio[idx];
6674 				managed_pages += lower_zone->managed_pages;
6675 			}
6676 		}
6677 	}
6678 
6679 	/* update totalreserve_pages */
6680 	calculate_totalreserve_pages();
6681 }
6682 
6683 static void __setup_per_zone_wmarks(void)
6684 {
6685 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6686 	unsigned long lowmem_pages = 0;
6687 	struct zone *zone;
6688 	unsigned long flags;
6689 
6690 	/* Calculate total number of !ZONE_HIGHMEM pages */
6691 	for_each_zone(zone) {
6692 		if (!is_highmem(zone))
6693 			lowmem_pages += zone->managed_pages;
6694 	}
6695 
6696 	for_each_zone(zone) {
6697 		u64 tmp;
6698 
6699 		spin_lock_irqsave(&zone->lock, flags);
6700 		tmp = (u64)pages_min * zone->managed_pages;
6701 		do_div(tmp, lowmem_pages);
6702 		if (is_highmem(zone)) {
6703 			/*
6704 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6705 			 * need highmem pages, so cap pages_min to a small
6706 			 * value here.
6707 			 *
6708 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6709 			 * deltas control asynch page reclaim, and so should
6710 			 * not be capped for highmem.
6711 			 */
6712 			unsigned long min_pages;
6713 
6714 			min_pages = zone->managed_pages / 1024;
6715 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6716 			zone->watermark[WMARK_MIN] = min_pages;
6717 		} else {
6718 			/*
6719 			 * If it's a lowmem zone, reserve a number of pages
6720 			 * proportionate to the zone's size.
6721 			 */
6722 			zone->watermark[WMARK_MIN] = tmp;
6723 		}
6724 
6725 		/*
6726 		 * Set the kswapd watermarks distance according to the
6727 		 * scale factor in proportion to available memory, but
6728 		 * ensure a minimum size on small systems.
6729 		 */
6730 		tmp = max_t(u64, tmp >> 2,
6731 			    mult_frac(zone->managed_pages,
6732 				      watermark_scale_factor, 10000));
6733 
6734 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6735 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6736 
6737 		spin_unlock_irqrestore(&zone->lock, flags);
6738 	}
6739 
6740 	/* update totalreserve_pages */
6741 	calculate_totalreserve_pages();
6742 }
6743 
6744 /**
6745  * setup_per_zone_wmarks - called when min_free_kbytes changes
6746  * or when memory is hot-{added|removed}
6747  *
6748  * Ensures that the watermark[min,low,high] values for each zone are set
6749  * correctly with respect to min_free_kbytes.
6750  */
6751 void setup_per_zone_wmarks(void)
6752 {
6753 	mutex_lock(&zonelists_mutex);
6754 	__setup_per_zone_wmarks();
6755 	mutex_unlock(&zonelists_mutex);
6756 }
6757 
6758 /*
6759  * Initialise min_free_kbytes.
6760  *
6761  * For small machines we want it small (128k min).  For large machines
6762  * we want it large (64MB max).  But it is not linear, because network
6763  * bandwidth does not increase linearly with machine size.  We use
6764  *
6765  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6766  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6767  *
6768  * which yields
6769  *
6770  * 16MB:	512k
6771  * 32MB:	724k
6772  * 64MB:	1024k
6773  * 128MB:	1448k
6774  * 256MB:	2048k
6775  * 512MB:	2896k
6776  * 1024MB:	4096k
6777  * 2048MB:	5792k
6778  * 4096MB:	8192k
6779  * 8192MB:	11584k
6780  * 16384MB:	16384k
6781  */
6782 int __meminit init_per_zone_wmark_min(void)
6783 {
6784 	unsigned long lowmem_kbytes;
6785 	int new_min_free_kbytes;
6786 
6787 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6788 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6789 
6790 	if (new_min_free_kbytes > user_min_free_kbytes) {
6791 		min_free_kbytes = new_min_free_kbytes;
6792 		if (min_free_kbytes < 128)
6793 			min_free_kbytes = 128;
6794 		if (min_free_kbytes > 65536)
6795 			min_free_kbytes = 65536;
6796 	} else {
6797 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6798 				new_min_free_kbytes, user_min_free_kbytes);
6799 	}
6800 	setup_per_zone_wmarks();
6801 	refresh_zone_stat_thresholds();
6802 	setup_per_zone_lowmem_reserve();
6803 
6804 #ifdef CONFIG_NUMA
6805 	setup_min_unmapped_ratio();
6806 	setup_min_slab_ratio();
6807 #endif
6808 
6809 	return 0;
6810 }
6811 core_initcall(init_per_zone_wmark_min)
6812 
6813 /*
6814  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6815  *	that we can call two helper functions whenever min_free_kbytes
6816  *	changes.
6817  */
6818 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6819 	void __user *buffer, size_t *length, loff_t *ppos)
6820 {
6821 	int rc;
6822 
6823 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6824 	if (rc)
6825 		return rc;
6826 
6827 	if (write) {
6828 		user_min_free_kbytes = min_free_kbytes;
6829 		setup_per_zone_wmarks();
6830 	}
6831 	return 0;
6832 }
6833 
6834 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6835 	void __user *buffer, size_t *length, loff_t *ppos)
6836 {
6837 	int rc;
6838 
6839 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6840 	if (rc)
6841 		return rc;
6842 
6843 	if (write)
6844 		setup_per_zone_wmarks();
6845 
6846 	return 0;
6847 }
6848 
6849 #ifdef CONFIG_NUMA
6850 static void setup_min_unmapped_ratio(void)
6851 {
6852 	pg_data_t *pgdat;
6853 	struct zone *zone;
6854 
6855 	for_each_online_pgdat(pgdat)
6856 		pgdat->min_unmapped_pages = 0;
6857 
6858 	for_each_zone(zone)
6859 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6860 				sysctl_min_unmapped_ratio) / 100;
6861 }
6862 
6863 
6864 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6865 	void __user *buffer, size_t *length, loff_t *ppos)
6866 {
6867 	int rc;
6868 
6869 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6870 	if (rc)
6871 		return rc;
6872 
6873 	setup_min_unmapped_ratio();
6874 
6875 	return 0;
6876 }
6877 
6878 static void setup_min_slab_ratio(void)
6879 {
6880 	pg_data_t *pgdat;
6881 	struct zone *zone;
6882 
6883 	for_each_online_pgdat(pgdat)
6884 		pgdat->min_slab_pages = 0;
6885 
6886 	for_each_zone(zone)
6887 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6888 				sysctl_min_slab_ratio) / 100;
6889 }
6890 
6891 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6892 	void __user *buffer, size_t *length, loff_t *ppos)
6893 {
6894 	int rc;
6895 
6896 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6897 	if (rc)
6898 		return rc;
6899 
6900 	setup_min_slab_ratio();
6901 
6902 	return 0;
6903 }
6904 #endif
6905 
6906 /*
6907  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6908  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6909  *	whenever sysctl_lowmem_reserve_ratio changes.
6910  *
6911  * The reserve ratio obviously has absolutely no relation with the
6912  * minimum watermarks. The lowmem reserve ratio can only make sense
6913  * if in function of the boot time zone sizes.
6914  */
6915 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6916 	void __user *buffer, size_t *length, loff_t *ppos)
6917 {
6918 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6919 	setup_per_zone_lowmem_reserve();
6920 	return 0;
6921 }
6922 
6923 /*
6924  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6925  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6926  * pagelist can have before it gets flushed back to buddy allocator.
6927  */
6928 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6929 	void __user *buffer, size_t *length, loff_t *ppos)
6930 {
6931 	struct zone *zone;
6932 	int old_percpu_pagelist_fraction;
6933 	int ret;
6934 
6935 	mutex_lock(&pcp_batch_high_lock);
6936 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6937 
6938 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6939 	if (!write || ret < 0)
6940 		goto out;
6941 
6942 	/* Sanity checking to avoid pcp imbalance */
6943 	if (percpu_pagelist_fraction &&
6944 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6945 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6946 		ret = -EINVAL;
6947 		goto out;
6948 	}
6949 
6950 	/* No change? */
6951 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6952 		goto out;
6953 
6954 	for_each_populated_zone(zone) {
6955 		unsigned int cpu;
6956 
6957 		for_each_possible_cpu(cpu)
6958 			pageset_set_high_and_batch(zone,
6959 					per_cpu_ptr(zone->pageset, cpu));
6960 	}
6961 out:
6962 	mutex_unlock(&pcp_batch_high_lock);
6963 	return ret;
6964 }
6965 
6966 #ifdef CONFIG_NUMA
6967 int hashdist = HASHDIST_DEFAULT;
6968 
6969 static int __init set_hashdist(char *str)
6970 {
6971 	if (!str)
6972 		return 0;
6973 	hashdist = simple_strtoul(str, &str, 0);
6974 	return 1;
6975 }
6976 __setup("hashdist=", set_hashdist);
6977 #endif
6978 
6979 /*
6980  * allocate a large system hash table from bootmem
6981  * - it is assumed that the hash table must contain an exact power-of-2
6982  *   quantity of entries
6983  * - limit is the number of hash buckets, not the total allocation size
6984  */
6985 void *__init alloc_large_system_hash(const char *tablename,
6986 				     unsigned long bucketsize,
6987 				     unsigned long numentries,
6988 				     int scale,
6989 				     int flags,
6990 				     unsigned int *_hash_shift,
6991 				     unsigned int *_hash_mask,
6992 				     unsigned long low_limit,
6993 				     unsigned long high_limit)
6994 {
6995 	unsigned long long max = high_limit;
6996 	unsigned long log2qty, size;
6997 	void *table = NULL;
6998 
6999 	/* allow the kernel cmdline to have a say */
7000 	if (!numentries) {
7001 		/* round applicable memory size up to nearest megabyte */
7002 		numentries = nr_kernel_pages;
7003 
7004 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7005 		if (PAGE_SHIFT < 20)
7006 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7007 
7008 		/* limit to 1 bucket per 2^scale bytes of low memory */
7009 		if (scale > PAGE_SHIFT)
7010 			numentries >>= (scale - PAGE_SHIFT);
7011 		else
7012 			numentries <<= (PAGE_SHIFT - scale);
7013 
7014 		/* Make sure we've got at least a 0-order allocation.. */
7015 		if (unlikely(flags & HASH_SMALL)) {
7016 			/* Makes no sense without HASH_EARLY */
7017 			WARN_ON(!(flags & HASH_EARLY));
7018 			if (!(numentries >> *_hash_shift)) {
7019 				numentries = 1UL << *_hash_shift;
7020 				BUG_ON(!numentries);
7021 			}
7022 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7023 			numentries = PAGE_SIZE / bucketsize;
7024 	}
7025 	numentries = roundup_pow_of_two(numentries);
7026 
7027 	/* limit allocation size to 1/16 total memory by default */
7028 	if (max == 0) {
7029 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7030 		do_div(max, bucketsize);
7031 	}
7032 	max = min(max, 0x80000000ULL);
7033 
7034 	if (numentries < low_limit)
7035 		numentries = low_limit;
7036 	if (numentries > max)
7037 		numentries = max;
7038 
7039 	log2qty = ilog2(numentries);
7040 
7041 	do {
7042 		size = bucketsize << log2qty;
7043 		if (flags & HASH_EARLY)
7044 			table = memblock_virt_alloc_nopanic(size, 0);
7045 		else if (hashdist)
7046 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7047 		else {
7048 			/*
7049 			 * If bucketsize is not a power-of-two, we may free
7050 			 * some pages at the end of hash table which
7051 			 * alloc_pages_exact() automatically does
7052 			 */
7053 			if (get_order(size) < MAX_ORDER) {
7054 				table = alloc_pages_exact(size, GFP_ATOMIC);
7055 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7056 			}
7057 		}
7058 	} while (!table && size > PAGE_SIZE && --log2qty);
7059 
7060 	if (!table)
7061 		panic("Failed to allocate %s hash table\n", tablename);
7062 
7063 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7064 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7065 
7066 	if (_hash_shift)
7067 		*_hash_shift = log2qty;
7068 	if (_hash_mask)
7069 		*_hash_mask = (1 << log2qty) - 1;
7070 
7071 	return table;
7072 }
7073 
7074 /*
7075  * This function checks whether pageblock includes unmovable pages or not.
7076  * If @count is not zero, it is okay to include less @count unmovable pages
7077  *
7078  * PageLRU check without isolation or lru_lock could race so that
7079  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7080  * expect this function should be exact.
7081  */
7082 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7083 			 bool skip_hwpoisoned_pages)
7084 {
7085 	unsigned long pfn, iter, found;
7086 	int mt;
7087 
7088 	/*
7089 	 * For avoiding noise data, lru_add_drain_all() should be called
7090 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7091 	 */
7092 	if (zone_idx(zone) == ZONE_MOVABLE)
7093 		return false;
7094 	mt = get_pageblock_migratetype(page);
7095 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7096 		return false;
7097 
7098 	pfn = page_to_pfn(page);
7099 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7100 		unsigned long check = pfn + iter;
7101 
7102 		if (!pfn_valid_within(check))
7103 			continue;
7104 
7105 		page = pfn_to_page(check);
7106 
7107 		/*
7108 		 * Hugepages are not in LRU lists, but they're movable.
7109 		 * We need not scan over tail pages bacause we don't
7110 		 * handle each tail page individually in migration.
7111 		 */
7112 		if (PageHuge(page)) {
7113 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7114 			continue;
7115 		}
7116 
7117 		/*
7118 		 * We can't use page_count without pin a page
7119 		 * because another CPU can free compound page.
7120 		 * This check already skips compound tails of THP
7121 		 * because their page->_refcount is zero at all time.
7122 		 */
7123 		if (!page_ref_count(page)) {
7124 			if (PageBuddy(page))
7125 				iter += (1 << page_order(page)) - 1;
7126 			continue;
7127 		}
7128 
7129 		/*
7130 		 * The HWPoisoned page may be not in buddy system, and
7131 		 * page_count() is not 0.
7132 		 */
7133 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7134 			continue;
7135 
7136 		if (!PageLRU(page))
7137 			found++;
7138 		/*
7139 		 * If there are RECLAIMABLE pages, we need to check
7140 		 * it.  But now, memory offline itself doesn't call
7141 		 * shrink_node_slabs() and it still to be fixed.
7142 		 */
7143 		/*
7144 		 * If the page is not RAM, page_count()should be 0.
7145 		 * we don't need more check. This is an _used_ not-movable page.
7146 		 *
7147 		 * The problematic thing here is PG_reserved pages. PG_reserved
7148 		 * is set to both of a memory hole page and a _used_ kernel
7149 		 * page at boot.
7150 		 */
7151 		if (found > count)
7152 			return true;
7153 	}
7154 	return false;
7155 }
7156 
7157 bool is_pageblock_removable_nolock(struct page *page)
7158 {
7159 	struct zone *zone;
7160 	unsigned long pfn;
7161 
7162 	/*
7163 	 * We have to be careful here because we are iterating over memory
7164 	 * sections which are not zone aware so we might end up outside of
7165 	 * the zone but still within the section.
7166 	 * We have to take care about the node as well. If the node is offline
7167 	 * its NODE_DATA will be NULL - see page_zone.
7168 	 */
7169 	if (!node_online(page_to_nid(page)))
7170 		return false;
7171 
7172 	zone = page_zone(page);
7173 	pfn = page_to_pfn(page);
7174 	if (!zone_spans_pfn(zone, pfn))
7175 		return false;
7176 
7177 	return !has_unmovable_pages(zone, page, 0, true);
7178 }
7179 
7180 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7181 
7182 static unsigned long pfn_max_align_down(unsigned long pfn)
7183 {
7184 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7185 			     pageblock_nr_pages) - 1);
7186 }
7187 
7188 static unsigned long pfn_max_align_up(unsigned long pfn)
7189 {
7190 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7191 				pageblock_nr_pages));
7192 }
7193 
7194 /* [start, end) must belong to a single zone. */
7195 static int __alloc_contig_migrate_range(struct compact_control *cc,
7196 					unsigned long start, unsigned long end)
7197 {
7198 	/* This function is based on compact_zone() from compaction.c. */
7199 	unsigned long nr_reclaimed;
7200 	unsigned long pfn = start;
7201 	unsigned int tries = 0;
7202 	int ret = 0;
7203 
7204 	migrate_prep();
7205 
7206 	while (pfn < end || !list_empty(&cc->migratepages)) {
7207 		if (fatal_signal_pending(current)) {
7208 			ret = -EINTR;
7209 			break;
7210 		}
7211 
7212 		if (list_empty(&cc->migratepages)) {
7213 			cc->nr_migratepages = 0;
7214 			pfn = isolate_migratepages_range(cc, pfn, end);
7215 			if (!pfn) {
7216 				ret = -EINTR;
7217 				break;
7218 			}
7219 			tries = 0;
7220 		} else if (++tries == 5) {
7221 			ret = ret < 0 ? ret : -EBUSY;
7222 			break;
7223 		}
7224 
7225 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7226 							&cc->migratepages);
7227 		cc->nr_migratepages -= nr_reclaimed;
7228 
7229 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7230 				    NULL, 0, cc->mode, MR_CMA);
7231 	}
7232 	if (ret < 0) {
7233 		putback_movable_pages(&cc->migratepages);
7234 		return ret;
7235 	}
7236 	return 0;
7237 }
7238 
7239 /**
7240  * alloc_contig_range() -- tries to allocate given range of pages
7241  * @start:	start PFN to allocate
7242  * @end:	one-past-the-last PFN to allocate
7243  * @migratetype:	migratetype of the underlaying pageblocks (either
7244  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7245  *			in range must have the same migratetype and it must
7246  *			be either of the two.
7247  *
7248  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7249  * aligned, however it's the caller's responsibility to guarantee that
7250  * we are the only thread that changes migrate type of pageblocks the
7251  * pages fall in.
7252  *
7253  * The PFN range must belong to a single zone.
7254  *
7255  * Returns zero on success or negative error code.  On success all
7256  * pages which PFN is in [start, end) are allocated for the caller and
7257  * need to be freed with free_contig_range().
7258  */
7259 int alloc_contig_range(unsigned long start, unsigned long end,
7260 		       unsigned migratetype)
7261 {
7262 	unsigned long outer_start, outer_end;
7263 	unsigned int order;
7264 	int ret = 0;
7265 
7266 	struct compact_control cc = {
7267 		.nr_migratepages = 0,
7268 		.order = -1,
7269 		.zone = page_zone(pfn_to_page(start)),
7270 		.mode = MIGRATE_SYNC,
7271 		.ignore_skip_hint = true,
7272 	};
7273 	INIT_LIST_HEAD(&cc.migratepages);
7274 
7275 	/*
7276 	 * What we do here is we mark all pageblocks in range as
7277 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7278 	 * have different sizes, and due to the way page allocator
7279 	 * work, we align the range to biggest of the two pages so
7280 	 * that page allocator won't try to merge buddies from
7281 	 * different pageblocks and change MIGRATE_ISOLATE to some
7282 	 * other migration type.
7283 	 *
7284 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7285 	 * migrate the pages from an unaligned range (ie. pages that
7286 	 * we are interested in).  This will put all the pages in
7287 	 * range back to page allocator as MIGRATE_ISOLATE.
7288 	 *
7289 	 * When this is done, we take the pages in range from page
7290 	 * allocator removing them from the buddy system.  This way
7291 	 * page allocator will never consider using them.
7292 	 *
7293 	 * This lets us mark the pageblocks back as
7294 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7295 	 * aligned range but not in the unaligned, original range are
7296 	 * put back to page allocator so that buddy can use them.
7297 	 */
7298 
7299 	ret = start_isolate_page_range(pfn_max_align_down(start),
7300 				       pfn_max_align_up(end), migratetype,
7301 				       false);
7302 	if (ret)
7303 		return ret;
7304 
7305 	/*
7306 	 * In case of -EBUSY, we'd like to know which page causes problem.
7307 	 * So, just fall through. We will check it in test_pages_isolated().
7308 	 */
7309 	ret = __alloc_contig_migrate_range(&cc, start, end);
7310 	if (ret && ret != -EBUSY)
7311 		goto done;
7312 
7313 	/*
7314 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7315 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7316 	 * more, all pages in [start, end) are free in page allocator.
7317 	 * What we are going to do is to allocate all pages from
7318 	 * [start, end) (that is remove them from page allocator).
7319 	 *
7320 	 * The only problem is that pages at the beginning and at the
7321 	 * end of interesting range may be not aligned with pages that
7322 	 * page allocator holds, ie. they can be part of higher order
7323 	 * pages.  Because of this, we reserve the bigger range and
7324 	 * once this is done free the pages we are not interested in.
7325 	 *
7326 	 * We don't have to hold zone->lock here because the pages are
7327 	 * isolated thus they won't get removed from buddy.
7328 	 */
7329 
7330 	lru_add_drain_all();
7331 	drain_all_pages(cc.zone);
7332 
7333 	order = 0;
7334 	outer_start = start;
7335 	while (!PageBuddy(pfn_to_page(outer_start))) {
7336 		if (++order >= MAX_ORDER) {
7337 			outer_start = start;
7338 			break;
7339 		}
7340 		outer_start &= ~0UL << order;
7341 	}
7342 
7343 	if (outer_start != start) {
7344 		order = page_order(pfn_to_page(outer_start));
7345 
7346 		/*
7347 		 * outer_start page could be small order buddy page and
7348 		 * it doesn't include start page. Adjust outer_start
7349 		 * in this case to report failed page properly
7350 		 * on tracepoint in test_pages_isolated()
7351 		 */
7352 		if (outer_start + (1UL << order) <= start)
7353 			outer_start = start;
7354 	}
7355 
7356 	/* Make sure the range is really isolated. */
7357 	if (test_pages_isolated(outer_start, end, false)) {
7358 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7359 			__func__, outer_start, end);
7360 		ret = -EBUSY;
7361 		goto done;
7362 	}
7363 
7364 	/* Grab isolated pages from freelists. */
7365 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7366 	if (!outer_end) {
7367 		ret = -EBUSY;
7368 		goto done;
7369 	}
7370 
7371 	/* Free head and tail (if any) */
7372 	if (start != outer_start)
7373 		free_contig_range(outer_start, start - outer_start);
7374 	if (end != outer_end)
7375 		free_contig_range(end, outer_end - end);
7376 
7377 done:
7378 	undo_isolate_page_range(pfn_max_align_down(start),
7379 				pfn_max_align_up(end), migratetype);
7380 	return ret;
7381 }
7382 
7383 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7384 {
7385 	unsigned int count = 0;
7386 
7387 	for (; nr_pages--; pfn++) {
7388 		struct page *page = pfn_to_page(pfn);
7389 
7390 		count += page_count(page) != 1;
7391 		__free_page(page);
7392 	}
7393 	WARN(count != 0, "%d pages are still in use!\n", count);
7394 }
7395 #endif
7396 
7397 #ifdef CONFIG_MEMORY_HOTPLUG
7398 /*
7399  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7400  * page high values need to be recalulated.
7401  */
7402 void __meminit zone_pcp_update(struct zone *zone)
7403 {
7404 	unsigned cpu;
7405 	mutex_lock(&pcp_batch_high_lock);
7406 	for_each_possible_cpu(cpu)
7407 		pageset_set_high_and_batch(zone,
7408 				per_cpu_ptr(zone->pageset, cpu));
7409 	mutex_unlock(&pcp_batch_high_lock);
7410 }
7411 #endif
7412 
7413 void zone_pcp_reset(struct zone *zone)
7414 {
7415 	unsigned long flags;
7416 	int cpu;
7417 	struct per_cpu_pageset *pset;
7418 
7419 	/* avoid races with drain_pages()  */
7420 	local_irq_save(flags);
7421 	if (zone->pageset != &boot_pageset) {
7422 		for_each_online_cpu(cpu) {
7423 			pset = per_cpu_ptr(zone->pageset, cpu);
7424 			drain_zonestat(zone, pset);
7425 		}
7426 		free_percpu(zone->pageset);
7427 		zone->pageset = &boot_pageset;
7428 	}
7429 	local_irq_restore(flags);
7430 }
7431 
7432 #ifdef CONFIG_MEMORY_HOTREMOVE
7433 /*
7434  * All pages in the range must be in a single zone and isolated
7435  * before calling this.
7436  */
7437 void
7438 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7439 {
7440 	struct page *page;
7441 	struct zone *zone;
7442 	unsigned int order, i;
7443 	unsigned long pfn;
7444 	unsigned long flags;
7445 	/* find the first valid pfn */
7446 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7447 		if (pfn_valid(pfn))
7448 			break;
7449 	if (pfn == end_pfn)
7450 		return;
7451 	zone = page_zone(pfn_to_page(pfn));
7452 	spin_lock_irqsave(&zone->lock, flags);
7453 	pfn = start_pfn;
7454 	while (pfn < end_pfn) {
7455 		if (!pfn_valid(pfn)) {
7456 			pfn++;
7457 			continue;
7458 		}
7459 		page = pfn_to_page(pfn);
7460 		/*
7461 		 * The HWPoisoned page may be not in buddy system, and
7462 		 * page_count() is not 0.
7463 		 */
7464 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7465 			pfn++;
7466 			SetPageReserved(page);
7467 			continue;
7468 		}
7469 
7470 		BUG_ON(page_count(page));
7471 		BUG_ON(!PageBuddy(page));
7472 		order = page_order(page);
7473 #ifdef CONFIG_DEBUG_VM
7474 		pr_info("remove from free list %lx %d %lx\n",
7475 			pfn, 1 << order, end_pfn);
7476 #endif
7477 		list_del(&page->lru);
7478 		rmv_page_order(page);
7479 		zone->free_area[order].nr_free--;
7480 		for (i = 0; i < (1 << order); i++)
7481 			SetPageReserved((page+i));
7482 		pfn += (1 << order);
7483 	}
7484 	spin_unlock_irqrestore(&zone->lock, flags);
7485 }
7486 #endif
7487 
7488 bool is_free_buddy_page(struct page *page)
7489 {
7490 	struct zone *zone = page_zone(page);
7491 	unsigned long pfn = page_to_pfn(page);
7492 	unsigned long flags;
7493 	unsigned int order;
7494 
7495 	spin_lock_irqsave(&zone->lock, flags);
7496 	for (order = 0; order < MAX_ORDER; order++) {
7497 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7498 
7499 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7500 			break;
7501 	}
7502 	spin_unlock_irqrestore(&zone->lock, flags);
7503 
7504 	return order < MAX_ORDER;
7505 }
7506