xref: /openbmc/linux/mm/page_alloc.c (revision f0931824)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291 
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295 
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302 
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
306 static inline bool has_unaccepted_memory(void);
307 static bool __free_unaccepted(struct page *page);
308 
309 int page_group_by_mobility_disabled __read_mostly;
310 
311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
312 /*
313  * During boot we initialize deferred pages on-demand, as needed, but once
314  * page_alloc_init_late() has finished, the deferred pages are all initialized,
315  * and we can permanently disable that path.
316  */
317 DEFINE_STATIC_KEY_TRUE(deferred_pages);
318 
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return static_branch_unlikely(&deferred_pages);
322 }
323 
324 /*
325  * deferred_grow_zone() is __init, but it is called from
326  * get_page_from_freelist() during early boot until deferred_pages permanently
327  * disables this call. This is why we have refdata wrapper to avoid warning,
328  * and to ensure that the function body gets unloaded.
329  */
330 static bool __ref
331 _deferred_grow_zone(struct zone *zone, unsigned int order)
332 {
333        return deferred_grow_zone(zone, order);
334 }
335 #else
336 static inline bool deferred_pages_enabled(void)
337 {
338 	return false;
339 }
340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
341 
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
344 							unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 	return section_to_usemap(__pfn_to_section(pfn));
348 #else
349 	return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352 
353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 	pfn &= (PAGES_PER_SECTION-1);
357 #else
358 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
359 #endif /* CONFIG_SPARSEMEM */
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 }
362 
363 /**
364  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
365  * @page: The page within the block of interest
366  * @pfn: The target page frame number
367  * @mask: mask of bits that the caller is interested in
368  *
369  * Return: pageblock_bits flags
370  */
371 unsigned long get_pfnblock_flags_mask(const struct page *page,
372 					unsigned long pfn, unsigned long mask)
373 {
374 	unsigned long *bitmap;
375 	unsigned long bitidx, word_bitidx;
376 	unsigned long word;
377 
378 	bitmap = get_pageblock_bitmap(page, pfn);
379 	bitidx = pfn_to_bitidx(page, pfn);
380 	word_bitidx = bitidx / BITS_PER_LONG;
381 	bitidx &= (BITS_PER_LONG-1);
382 	/*
383 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
384 	 * a consistent read of the memory array, so that results, even though
385 	 * racy, are not corrupted.
386 	 */
387 	word = READ_ONCE(bitmap[word_bitidx]);
388 	return (word >> bitidx) & mask;
389 }
390 
391 static __always_inline int get_pfnblock_migratetype(const struct page *page,
392 					unsigned long pfn)
393 {
394 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
395 }
396 
397 /**
398  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
399  * @page: The page within the block of interest
400  * @flags: The flags to set
401  * @pfn: The target page frame number
402  * @mask: mask of bits that the caller is interested in
403  */
404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
405 					unsigned long pfn,
406 					unsigned long mask)
407 {
408 	unsigned long *bitmap;
409 	unsigned long bitidx, word_bitidx;
410 	unsigned long word;
411 
412 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
413 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
414 
415 	bitmap = get_pageblock_bitmap(page, pfn);
416 	bitidx = pfn_to_bitidx(page, pfn);
417 	word_bitidx = bitidx / BITS_PER_LONG;
418 	bitidx &= (BITS_PER_LONG-1);
419 
420 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
421 
422 	mask <<= bitidx;
423 	flags <<= bitidx;
424 
425 	word = READ_ONCE(bitmap[word_bitidx]);
426 	do {
427 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
428 }
429 
430 void set_pageblock_migratetype(struct page *page, int migratetype)
431 {
432 	if (unlikely(page_group_by_mobility_disabled &&
433 		     migratetype < MIGRATE_PCPTYPES))
434 		migratetype = MIGRATE_UNMOVABLE;
435 
436 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
437 				page_to_pfn(page), MIGRATETYPE_MASK);
438 }
439 
440 #ifdef CONFIG_DEBUG_VM
441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
442 {
443 	int ret;
444 	unsigned seq;
445 	unsigned long pfn = page_to_pfn(page);
446 	unsigned long sp, start_pfn;
447 
448 	do {
449 		seq = zone_span_seqbegin(zone);
450 		start_pfn = zone->zone_start_pfn;
451 		sp = zone->spanned_pages;
452 		ret = !zone_spans_pfn(zone, pfn);
453 	} while (zone_span_seqretry(zone, seq));
454 
455 	if (ret)
456 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
457 			pfn, zone_to_nid(zone), zone->name,
458 			start_pfn, start_pfn + sp);
459 
460 	return ret;
461 }
462 
463 /*
464  * Temporary debugging check for pages not lying within a given zone.
465  */
466 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
467 {
468 	if (page_outside_zone_boundaries(zone, page))
469 		return 1;
470 	if (zone != page_zone(page))
471 		return 1;
472 
473 	return 0;
474 }
475 #else
476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
477 {
478 	return 0;
479 }
480 #endif
481 
482 static void bad_page(struct page *page, const char *reason)
483 {
484 	static unsigned long resume;
485 	static unsigned long nr_shown;
486 	static unsigned long nr_unshown;
487 
488 	/*
489 	 * Allow a burst of 60 reports, then keep quiet for that minute;
490 	 * or allow a steady drip of one report per second.
491 	 */
492 	if (nr_shown == 60) {
493 		if (time_before(jiffies, resume)) {
494 			nr_unshown++;
495 			goto out;
496 		}
497 		if (nr_unshown) {
498 			pr_alert(
499 			      "BUG: Bad page state: %lu messages suppressed\n",
500 				nr_unshown);
501 			nr_unshown = 0;
502 		}
503 		nr_shown = 0;
504 	}
505 	if (nr_shown++ == 0)
506 		resume = jiffies + 60 * HZ;
507 
508 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
509 		current->comm, page_to_pfn(page));
510 	dump_page(page, reason);
511 
512 	print_modules();
513 	dump_stack();
514 out:
515 	/* Leave bad fields for debug, except PageBuddy could make trouble */
516 	page_mapcount_reset(page); /* remove PageBuddy */
517 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
518 }
519 
520 static inline unsigned int order_to_pindex(int migratetype, int order)
521 {
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
524 		VM_BUG_ON(order != pageblock_order);
525 		return NR_LOWORDER_PCP_LISTS;
526 	}
527 #else
528 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
529 #endif
530 
531 	return (MIGRATE_PCPTYPES * order) + migratetype;
532 }
533 
534 static inline int pindex_to_order(unsigned int pindex)
535 {
536 	int order = pindex / MIGRATE_PCPTYPES;
537 
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 	if (pindex == NR_LOWORDER_PCP_LISTS)
540 		order = pageblock_order;
541 #else
542 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
543 #endif
544 
545 	return order;
546 }
547 
548 static inline bool pcp_allowed_order(unsigned int order)
549 {
550 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
551 		return true;
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 	if (order == pageblock_order)
554 		return true;
555 #endif
556 	return false;
557 }
558 
559 static inline void free_the_page(struct page *page, unsigned int order)
560 {
561 	if (pcp_allowed_order(order))		/* Via pcp? */
562 		free_unref_page(page, order);
563 	else
564 		__free_pages_ok(page, order, FPI_NONE);
565 }
566 
567 /*
568  * Higher-order pages are called "compound pages".  They are structured thusly:
569  *
570  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
571  *
572  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
573  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
574  *
575  * The first tail page's ->compound_order holds the order of allocation.
576  * This usage means that zero-order pages may not be compound.
577  */
578 
579 void prep_compound_page(struct page *page, unsigned int order)
580 {
581 	int i;
582 	int nr_pages = 1 << order;
583 
584 	__SetPageHead(page);
585 	for (i = 1; i < nr_pages; i++)
586 		prep_compound_tail(page, i);
587 
588 	prep_compound_head(page, order);
589 }
590 
591 void destroy_large_folio(struct folio *folio)
592 {
593 	if (folio_test_hugetlb(folio)) {
594 		free_huge_folio(folio);
595 		return;
596 	}
597 
598 	if (folio_test_large_rmappable(folio))
599 		folio_undo_large_rmappable(folio);
600 
601 	mem_cgroup_uncharge(folio);
602 	free_the_page(&folio->page, folio_order(folio));
603 }
604 
605 static inline void set_buddy_order(struct page *page, unsigned int order)
606 {
607 	set_page_private(page, order);
608 	__SetPageBuddy(page);
609 }
610 
611 #ifdef CONFIG_COMPACTION
612 static inline struct capture_control *task_capc(struct zone *zone)
613 {
614 	struct capture_control *capc = current->capture_control;
615 
616 	return unlikely(capc) &&
617 		!(current->flags & PF_KTHREAD) &&
618 		!capc->page &&
619 		capc->cc->zone == zone ? capc : NULL;
620 }
621 
622 static inline bool
623 compaction_capture(struct capture_control *capc, struct page *page,
624 		   int order, int migratetype)
625 {
626 	if (!capc || order != capc->cc->order)
627 		return false;
628 
629 	/* Do not accidentally pollute CMA or isolated regions*/
630 	if (is_migrate_cma(migratetype) ||
631 	    is_migrate_isolate(migratetype))
632 		return false;
633 
634 	/*
635 	 * Do not let lower order allocations pollute a movable pageblock.
636 	 * This might let an unmovable request use a reclaimable pageblock
637 	 * and vice-versa but no more than normal fallback logic which can
638 	 * have trouble finding a high-order free page.
639 	 */
640 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
641 		return false;
642 
643 	capc->page = page;
644 	return true;
645 }
646 
647 #else
648 static inline struct capture_control *task_capc(struct zone *zone)
649 {
650 	return NULL;
651 }
652 
653 static inline bool
654 compaction_capture(struct capture_control *capc, struct page *page,
655 		   int order, int migratetype)
656 {
657 	return false;
658 }
659 #endif /* CONFIG_COMPACTION */
660 
661 /* Used for pages not on another list */
662 static inline void add_to_free_list(struct page *page, struct zone *zone,
663 				    unsigned int order, int migratetype)
664 {
665 	struct free_area *area = &zone->free_area[order];
666 
667 	list_add(&page->buddy_list, &area->free_list[migratetype]);
668 	area->nr_free++;
669 }
670 
671 /* Used for pages not on another list */
672 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
673 					 unsigned int order, int migratetype)
674 {
675 	struct free_area *area = &zone->free_area[order];
676 
677 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
678 	area->nr_free++;
679 }
680 
681 /*
682  * Used for pages which are on another list. Move the pages to the tail
683  * of the list - so the moved pages won't immediately be considered for
684  * allocation again (e.g., optimization for memory onlining).
685  */
686 static inline void move_to_free_list(struct page *page, struct zone *zone,
687 				     unsigned int order, int migratetype)
688 {
689 	struct free_area *area = &zone->free_area[order];
690 
691 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
692 }
693 
694 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
695 					   unsigned int order)
696 {
697 	/* clear reported state and update reported page count */
698 	if (page_reported(page))
699 		__ClearPageReported(page);
700 
701 	list_del(&page->buddy_list);
702 	__ClearPageBuddy(page);
703 	set_page_private(page, 0);
704 	zone->free_area[order].nr_free--;
705 }
706 
707 static inline struct page *get_page_from_free_area(struct free_area *area,
708 					    int migratetype)
709 {
710 	return list_first_entry_or_null(&area->free_list[migratetype],
711 					struct page, buddy_list);
712 }
713 
714 /*
715  * If this is not the largest possible page, check if the buddy
716  * of the next-highest order is free. If it is, it's possible
717  * that pages are being freed that will coalesce soon. In case,
718  * that is happening, add the free page to the tail of the list
719  * so it's less likely to be used soon and more likely to be merged
720  * as a higher order page
721  */
722 static inline bool
723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
724 		   struct page *page, unsigned int order)
725 {
726 	unsigned long higher_page_pfn;
727 	struct page *higher_page;
728 
729 	if (order >= MAX_ORDER - 1)
730 		return false;
731 
732 	higher_page_pfn = buddy_pfn & pfn;
733 	higher_page = page + (higher_page_pfn - pfn);
734 
735 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
736 			NULL) != NULL;
737 }
738 
739 /*
740  * Freeing function for a buddy system allocator.
741  *
742  * The concept of a buddy system is to maintain direct-mapped table
743  * (containing bit values) for memory blocks of various "orders".
744  * The bottom level table contains the map for the smallest allocatable
745  * units of memory (here, pages), and each level above it describes
746  * pairs of units from the levels below, hence, "buddies".
747  * At a high level, all that happens here is marking the table entry
748  * at the bottom level available, and propagating the changes upward
749  * as necessary, plus some accounting needed to play nicely with other
750  * parts of the VM system.
751  * At each level, we keep a list of pages, which are heads of continuous
752  * free pages of length of (1 << order) and marked with PageBuddy.
753  * Page's order is recorded in page_private(page) field.
754  * So when we are allocating or freeing one, we can derive the state of the
755  * other.  That is, if we allocate a small block, and both were
756  * free, the remainder of the region must be split into blocks.
757  * If a block is freed, and its buddy is also free, then this
758  * triggers coalescing into a block of larger size.
759  *
760  * -- nyc
761  */
762 
763 static inline void __free_one_page(struct page *page,
764 		unsigned long pfn,
765 		struct zone *zone, unsigned int order,
766 		int migratetype, fpi_t fpi_flags)
767 {
768 	struct capture_control *capc = task_capc(zone);
769 	unsigned long buddy_pfn = 0;
770 	unsigned long combined_pfn;
771 	struct page *buddy;
772 	bool to_tail;
773 
774 	VM_BUG_ON(!zone_is_initialized(zone));
775 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
776 
777 	VM_BUG_ON(migratetype == -1);
778 	if (likely(!is_migrate_isolate(migratetype)))
779 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
780 
781 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
782 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
783 
784 	while (order < MAX_ORDER) {
785 		if (compaction_capture(capc, page, order, migratetype)) {
786 			__mod_zone_freepage_state(zone, -(1 << order),
787 								migratetype);
788 			return;
789 		}
790 
791 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
792 		if (!buddy)
793 			goto done_merging;
794 
795 		if (unlikely(order >= pageblock_order)) {
796 			/*
797 			 * We want to prevent merge between freepages on pageblock
798 			 * without fallbacks and normal pageblock. Without this,
799 			 * pageblock isolation could cause incorrect freepage or CMA
800 			 * accounting or HIGHATOMIC accounting.
801 			 */
802 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
803 
804 			if (migratetype != buddy_mt
805 					&& (!migratetype_is_mergeable(migratetype) ||
806 						!migratetype_is_mergeable(buddy_mt)))
807 				goto done_merging;
808 		}
809 
810 		/*
811 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 		 * merge with it and move up one order.
813 		 */
814 		if (page_is_guard(buddy))
815 			clear_page_guard(zone, buddy, order, migratetype);
816 		else
817 			del_page_from_free_list(buddy, zone, order);
818 		combined_pfn = buddy_pfn & pfn;
819 		page = page + (combined_pfn - pfn);
820 		pfn = combined_pfn;
821 		order++;
822 	}
823 
824 done_merging:
825 	set_buddy_order(page, order);
826 
827 	if (fpi_flags & FPI_TO_TAIL)
828 		to_tail = true;
829 	else if (is_shuffle_order(order))
830 		to_tail = shuffle_pick_tail();
831 	else
832 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
833 
834 	if (to_tail)
835 		add_to_free_list_tail(page, zone, order, migratetype);
836 	else
837 		add_to_free_list(page, zone, order, migratetype);
838 
839 	/* Notify page reporting subsystem of freed page */
840 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
841 		page_reporting_notify_free(order);
842 }
843 
844 /**
845  * split_free_page() -- split a free page at split_pfn_offset
846  * @free_page:		the original free page
847  * @order:		the order of the page
848  * @split_pfn_offset:	split offset within the page
849  *
850  * Return -ENOENT if the free page is changed, otherwise 0
851  *
852  * It is used when the free page crosses two pageblocks with different migratetypes
853  * at split_pfn_offset within the page. The split free page will be put into
854  * separate migratetype lists afterwards. Otherwise, the function achieves
855  * nothing.
856  */
857 int split_free_page(struct page *free_page,
858 			unsigned int order, unsigned long split_pfn_offset)
859 {
860 	struct zone *zone = page_zone(free_page);
861 	unsigned long free_page_pfn = page_to_pfn(free_page);
862 	unsigned long pfn;
863 	unsigned long flags;
864 	int free_page_order;
865 	int mt;
866 	int ret = 0;
867 
868 	if (split_pfn_offset == 0)
869 		return ret;
870 
871 	spin_lock_irqsave(&zone->lock, flags);
872 
873 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
874 		ret = -ENOENT;
875 		goto out;
876 	}
877 
878 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
879 	if (likely(!is_migrate_isolate(mt)))
880 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
881 
882 	del_page_from_free_list(free_page, zone, order);
883 	for (pfn = free_page_pfn;
884 	     pfn < free_page_pfn + (1UL << order);) {
885 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
886 
887 		free_page_order = min_t(unsigned int,
888 					pfn ? __ffs(pfn) : order,
889 					__fls(split_pfn_offset));
890 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
891 				mt, FPI_NONE);
892 		pfn += 1UL << free_page_order;
893 		split_pfn_offset -= (1UL << free_page_order);
894 		/* we have done the first part, now switch to second part */
895 		if (split_pfn_offset == 0)
896 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
897 	}
898 out:
899 	spin_unlock_irqrestore(&zone->lock, flags);
900 	return ret;
901 }
902 /*
903  * A bad page could be due to a number of fields. Instead of multiple branches,
904  * try and check multiple fields with one check. The caller must do a detailed
905  * check if necessary.
906  */
907 static inline bool page_expected_state(struct page *page,
908 					unsigned long check_flags)
909 {
910 	if (unlikely(atomic_read(&page->_mapcount) != -1))
911 		return false;
912 
913 	if (unlikely((unsigned long)page->mapping |
914 			page_ref_count(page) |
915 #ifdef CONFIG_MEMCG
916 			page->memcg_data |
917 #endif
918 			(page->flags & check_flags)))
919 		return false;
920 
921 	return true;
922 }
923 
924 static const char *page_bad_reason(struct page *page, unsigned long flags)
925 {
926 	const char *bad_reason = NULL;
927 
928 	if (unlikely(atomic_read(&page->_mapcount) != -1))
929 		bad_reason = "nonzero mapcount";
930 	if (unlikely(page->mapping != NULL))
931 		bad_reason = "non-NULL mapping";
932 	if (unlikely(page_ref_count(page) != 0))
933 		bad_reason = "nonzero _refcount";
934 	if (unlikely(page->flags & flags)) {
935 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
936 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
937 		else
938 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 	}
940 #ifdef CONFIG_MEMCG
941 	if (unlikely(page->memcg_data))
942 		bad_reason = "page still charged to cgroup";
943 #endif
944 	return bad_reason;
945 }
946 
947 static void free_page_is_bad_report(struct page *page)
948 {
949 	bad_page(page,
950 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
951 }
952 
953 static inline bool free_page_is_bad(struct page *page)
954 {
955 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
956 		return false;
957 
958 	/* Something has gone sideways, find it */
959 	free_page_is_bad_report(page);
960 	return true;
961 }
962 
963 static inline bool is_check_pages_enabled(void)
964 {
965 	return static_branch_unlikely(&check_pages_enabled);
966 }
967 
968 static int free_tail_page_prepare(struct page *head_page, struct page *page)
969 {
970 	struct folio *folio = (struct folio *)head_page;
971 	int ret = 1;
972 
973 	/*
974 	 * We rely page->lru.next never has bit 0 set, unless the page
975 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
976 	 */
977 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
978 
979 	if (!is_check_pages_enabled()) {
980 		ret = 0;
981 		goto out;
982 	}
983 	switch (page - head_page) {
984 	case 1:
985 		/* the first tail page: these may be in place of ->mapping */
986 		if (unlikely(folio_entire_mapcount(folio))) {
987 			bad_page(page, "nonzero entire_mapcount");
988 			goto out;
989 		}
990 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
991 			bad_page(page, "nonzero nr_pages_mapped");
992 			goto out;
993 		}
994 		if (unlikely(atomic_read(&folio->_pincount))) {
995 			bad_page(page, "nonzero pincount");
996 			goto out;
997 		}
998 		break;
999 	case 2:
1000 		/*
1001 		 * the second tail page: ->mapping is
1002 		 * deferred_list.next -- ignore value.
1003 		 */
1004 		break;
1005 	default:
1006 		if (page->mapping != TAIL_MAPPING) {
1007 			bad_page(page, "corrupted mapping in tail page");
1008 			goto out;
1009 		}
1010 		break;
1011 	}
1012 	if (unlikely(!PageTail(page))) {
1013 		bad_page(page, "PageTail not set");
1014 		goto out;
1015 	}
1016 	if (unlikely(compound_head(page) != head_page)) {
1017 		bad_page(page, "compound_head not consistent");
1018 		goto out;
1019 	}
1020 	ret = 0;
1021 out:
1022 	page->mapping = NULL;
1023 	clear_compound_head(page);
1024 	return ret;
1025 }
1026 
1027 /*
1028  * Skip KASAN memory poisoning when either:
1029  *
1030  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1031  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1032  *    using page tags instead (see below).
1033  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1034  *    that error detection is disabled for accesses via the page address.
1035  *
1036  * Pages will have match-all tags in the following circumstances:
1037  *
1038  * 1. Pages are being initialized for the first time, including during deferred
1039  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1040  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1041  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1042  * 3. The allocation was excluded from being checked due to sampling,
1043  *    see the call to kasan_unpoison_pages.
1044  *
1045  * Poisoning pages during deferred memory init will greatly lengthen the
1046  * process and cause problem in large memory systems as the deferred pages
1047  * initialization is done with interrupt disabled.
1048  *
1049  * Assuming that there will be no reference to those newly initialized
1050  * pages before they are ever allocated, this should have no effect on
1051  * KASAN memory tracking as the poison will be properly inserted at page
1052  * allocation time. The only corner case is when pages are allocated by
1053  * on-demand allocation and then freed again before the deferred pages
1054  * initialization is done, but this is not likely to happen.
1055  */
1056 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1057 {
1058 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1059 		return deferred_pages_enabled();
1060 
1061 	return page_kasan_tag(page) == 0xff;
1062 }
1063 
1064 static void kernel_init_pages(struct page *page, int numpages)
1065 {
1066 	int i;
1067 
1068 	/* s390's use of memset() could override KASAN redzones. */
1069 	kasan_disable_current();
1070 	for (i = 0; i < numpages; i++)
1071 		clear_highpage_kasan_tagged(page + i);
1072 	kasan_enable_current();
1073 }
1074 
1075 static __always_inline bool free_pages_prepare(struct page *page,
1076 			unsigned int order, fpi_t fpi_flags)
1077 {
1078 	int bad = 0;
1079 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1080 	bool init = want_init_on_free();
1081 
1082 	VM_BUG_ON_PAGE(PageTail(page), page);
1083 
1084 	trace_mm_page_free(page, order);
1085 	kmsan_free_page(page, order);
1086 
1087 	if (unlikely(PageHWPoison(page)) && !order) {
1088 		/*
1089 		 * Do not let hwpoison pages hit pcplists/buddy
1090 		 * Untie memcg state and reset page's owner
1091 		 */
1092 		if (memcg_kmem_online() && PageMemcgKmem(page))
1093 			__memcg_kmem_uncharge_page(page, order);
1094 		reset_page_owner(page, order);
1095 		page_table_check_free(page, order);
1096 		return false;
1097 	}
1098 
1099 	/*
1100 	 * Check tail pages before head page information is cleared to
1101 	 * avoid checking PageCompound for order-0 pages.
1102 	 */
1103 	if (unlikely(order)) {
1104 		bool compound = PageCompound(page);
1105 		int i;
1106 
1107 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1108 
1109 		if (compound)
1110 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1111 		for (i = 1; i < (1 << order); i++) {
1112 			if (compound)
1113 				bad += free_tail_page_prepare(page, page + i);
1114 			if (is_check_pages_enabled()) {
1115 				if (free_page_is_bad(page + i)) {
1116 					bad++;
1117 					continue;
1118 				}
1119 			}
1120 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1121 		}
1122 	}
1123 	if (PageMappingFlags(page))
1124 		page->mapping = NULL;
1125 	if (memcg_kmem_online() && PageMemcgKmem(page))
1126 		__memcg_kmem_uncharge_page(page, order);
1127 	if (is_check_pages_enabled()) {
1128 		if (free_page_is_bad(page))
1129 			bad++;
1130 		if (bad)
1131 			return false;
1132 	}
1133 
1134 	page_cpupid_reset_last(page);
1135 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1136 	reset_page_owner(page, order);
1137 	page_table_check_free(page, order);
1138 
1139 	if (!PageHighMem(page)) {
1140 		debug_check_no_locks_freed(page_address(page),
1141 					   PAGE_SIZE << order);
1142 		debug_check_no_obj_freed(page_address(page),
1143 					   PAGE_SIZE << order);
1144 	}
1145 
1146 	kernel_poison_pages(page, 1 << order);
1147 
1148 	/*
1149 	 * As memory initialization might be integrated into KASAN,
1150 	 * KASAN poisoning and memory initialization code must be
1151 	 * kept together to avoid discrepancies in behavior.
1152 	 *
1153 	 * With hardware tag-based KASAN, memory tags must be set before the
1154 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1155 	 */
1156 	if (!skip_kasan_poison) {
1157 		kasan_poison_pages(page, order, init);
1158 
1159 		/* Memory is already initialized if KASAN did it internally. */
1160 		if (kasan_has_integrated_init())
1161 			init = false;
1162 	}
1163 	if (init)
1164 		kernel_init_pages(page, 1 << order);
1165 
1166 	/*
1167 	 * arch_free_page() can make the page's contents inaccessible.  s390
1168 	 * does this.  So nothing which can access the page's contents should
1169 	 * happen after this.
1170 	 */
1171 	arch_free_page(page, order);
1172 
1173 	debug_pagealloc_unmap_pages(page, 1 << order);
1174 
1175 	return true;
1176 }
1177 
1178 /*
1179  * Frees a number of pages from the PCP lists
1180  * Assumes all pages on list are in same zone.
1181  * count is the number of pages to free.
1182  */
1183 static void free_pcppages_bulk(struct zone *zone, int count,
1184 					struct per_cpu_pages *pcp,
1185 					int pindex)
1186 {
1187 	unsigned long flags;
1188 	unsigned int order;
1189 	bool isolated_pageblocks;
1190 	struct page *page;
1191 
1192 	/*
1193 	 * Ensure proper count is passed which otherwise would stuck in the
1194 	 * below while (list_empty(list)) loop.
1195 	 */
1196 	count = min(pcp->count, count);
1197 
1198 	/* Ensure requested pindex is drained first. */
1199 	pindex = pindex - 1;
1200 
1201 	spin_lock_irqsave(&zone->lock, flags);
1202 	isolated_pageblocks = has_isolate_pageblock(zone);
1203 
1204 	while (count > 0) {
1205 		struct list_head *list;
1206 		int nr_pages;
1207 
1208 		/* Remove pages from lists in a round-robin fashion. */
1209 		do {
1210 			if (++pindex > NR_PCP_LISTS - 1)
1211 				pindex = 0;
1212 			list = &pcp->lists[pindex];
1213 		} while (list_empty(list));
1214 
1215 		order = pindex_to_order(pindex);
1216 		nr_pages = 1 << order;
1217 		do {
1218 			int mt;
1219 
1220 			page = list_last_entry(list, struct page, pcp_list);
1221 			mt = get_pcppage_migratetype(page);
1222 
1223 			/* must delete to avoid corrupting pcp list */
1224 			list_del(&page->pcp_list);
1225 			count -= nr_pages;
1226 			pcp->count -= nr_pages;
1227 
1228 			/* MIGRATE_ISOLATE page should not go to pcplists */
1229 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1230 			/* Pageblock could have been isolated meanwhile */
1231 			if (unlikely(isolated_pageblocks))
1232 				mt = get_pageblock_migratetype(page);
1233 
1234 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1235 			trace_mm_page_pcpu_drain(page, order, mt);
1236 		} while (count > 0 && !list_empty(list));
1237 	}
1238 
1239 	spin_unlock_irqrestore(&zone->lock, flags);
1240 }
1241 
1242 static void free_one_page(struct zone *zone,
1243 				struct page *page, unsigned long pfn,
1244 				unsigned int order,
1245 				int migratetype, fpi_t fpi_flags)
1246 {
1247 	unsigned long flags;
1248 
1249 	spin_lock_irqsave(&zone->lock, flags);
1250 	if (unlikely(has_isolate_pageblock(zone) ||
1251 		is_migrate_isolate(migratetype))) {
1252 		migratetype = get_pfnblock_migratetype(page, pfn);
1253 	}
1254 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1255 	spin_unlock_irqrestore(&zone->lock, flags);
1256 }
1257 
1258 static void __free_pages_ok(struct page *page, unsigned int order,
1259 			    fpi_t fpi_flags)
1260 {
1261 	unsigned long flags;
1262 	int migratetype;
1263 	unsigned long pfn = page_to_pfn(page);
1264 	struct zone *zone = page_zone(page);
1265 
1266 	if (!free_pages_prepare(page, order, fpi_flags))
1267 		return;
1268 
1269 	/*
1270 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1271 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1272 	 * This will reduce the lock holding time.
1273 	 */
1274 	migratetype = get_pfnblock_migratetype(page, pfn);
1275 
1276 	spin_lock_irqsave(&zone->lock, flags);
1277 	if (unlikely(has_isolate_pageblock(zone) ||
1278 		is_migrate_isolate(migratetype))) {
1279 		migratetype = get_pfnblock_migratetype(page, pfn);
1280 	}
1281 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1282 	spin_unlock_irqrestore(&zone->lock, flags);
1283 
1284 	__count_vm_events(PGFREE, 1 << order);
1285 }
1286 
1287 void __free_pages_core(struct page *page, unsigned int order)
1288 {
1289 	unsigned int nr_pages = 1 << order;
1290 	struct page *p = page;
1291 	unsigned int loop;
1292 
1293 	/*
1294 	 * When initializing the memmap, __init_single_page() sets the refcount
1295 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1296 	 * refcount of all involved pages to 0.
1297 	 */
1298 	prefetchw(p);
1299 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1300 		prefetchw(p + 1);
1301 		__ClearPageReserved(p);
1302 		set_page_count(p, 0);
1303 	}
1304 	__ClearPageReserved(p);
1305 	set_page_count(p, 0);
1306 
1307 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1308 
1309 	if (page_contains_unaccepted(page, order)) {
1310 		if (order == MAX_ORDER && __free_unaccepted(page))
1311 			return;
1312 
1313 		accept_page(page, order);
1314 	}
1315 
1316 	/*
1317 	 * Bypass PCP and place fresh pages right to the tail, primarily
1318 	 * relevant for memory onlining.
1319 	 */
1320 	__free_pages_ok(page, order, FPI_TO_TAIL);
1321 }
1322 
1323 /*
1324  * Check that the whole (or subset of) a pageblock given by the interval of
1325  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326  * with the migration of free compaction scanner.
1327  *
1328  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1329  *
1330  * It's possible on some configurations to have a setup like node0 node1 node0
1331  * i.e. it's possible that all pages within a zones range of pages do not
1332  * belong to a single zone. We assume that a border between node0 and node1
1333  * can occur within a single pageblock, but not a node0 node1 node0
1334  * interleaving within a single pageblock. It is therefore sufficient to check
1335  * the first and last page of a pageblock and avoid checking each individual
1336  * page in a pageblock.
1337  *
1338  * Note: the function may return non-NULL struct page even for a page block
1339  * which contains a memory hole (i.e. there is no physical memory for a subset
1340  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1341  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1342  * even though the start pfn is online and valid. This should be safe most of
1343  * the time because struct pages are still initialized via init_unavailable_range()
1344  * and pfn walkers shouldn't touch any physical memory range for which they do
1345  * not recognize any specific metadata in struct pages.
1346  */
1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 				     unsigned long end_pfn, struct zone *zone)
1349 {
1350 	struct page *start_page;
1351 	struct page *end_page;
1352 
1353 	/* end_pfn is one past the range we are checking */
1354 	end_pfn--;
1355 
1356 	if (!pfn_valid(end_pfn))
1357 		return NULL;
1358 
1359 	start_page = pfn_to_online_page(start_pfn);
1360 	if (!start_page)
1361 		return NULL;
1362 
1363 	if (page_zone(start_page) != zone)
1364 		return NULL;
1365 
1366 	end_page = pfn_to_page(end_pfn);
1367 
1368 	/* This gives a shorter code than deriving page_zone(end_page) */
1369 	if (page_zone_id(start_page) != page_zone_id(end_page))
1370 		return NULL;
1371 
1372 	return start_page;
1373 }
1374 
1375 /*
1376  * The order of subdivision here is critical for the IO subsystem.
1377  * Please do not alter this order without good reasons and regression
1378  * testing. Specifically, as large blocks of memory are subdivided,
1379  * the order in which smaller blocks are delivered depends on the order
1380  * they're subdivided in this function. This is the primary factor
1381  * influencing the order in which pages are delivered to the IO
1382  * subsystem according to empirical testing, and this is also justified
1383  * by considering the behavior of a buddy system containing a single
1384  * large block of memory acted on by a series of small allocations.
1385  * This behavior is a critical factor in sglist merging's success.
1386  *
1387  * -- nyc
1388  */
1389 static inline void expand(struct zone *zone, struct page *page,
1390 	int low, int high, int migratetype)
1391 {
1392 	unsigned long size = 1 << high;
1393 
1394 	while (high > low) {
1395 		high--;
1396 		size >>= 1;
1397 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1398 
1399 		/*
1400 		 * Mark as guard pages (or page), that will allow to
1401 		 * merge back to allocator when buddy will be freed.
1402 		 * Corresponding page table entries will not be touched,
1403 		 * pages will stay not present in virtual address space
1404 		 */
1405 		if (set_page_guard(zone, &page[size], high, migratetype))
1406 			continue;
1407 
1408 		add_to_free_list(&page[size], zone, high, migratetype);
1409 		set_buddy_order(&page[size], high);
1410 	}
1411 }
1412 
1413 static void check_new_page_bad(struct page *page)
1414 {
1415 	if (unlikely(page->flags & __PG_HWPOISON)) {
1416 		/* Don't complain about hwpoisoned pages */
1417 		page_mapcount_reset(page); /* remove PageBuddy */
1418 		return;
1419 	}
1420 
1421 	bad_page(page,
1422 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1423 }
1424 
1425 /*
1426  * This page is about to be returned from the page allocator
1427  */
1428 static int check_new_page(struct page *page)
1429 {
1430 	if (likely(page_expected_state(page,
1431 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1432 		return 0;
1433 
1434 	check_new_page_bad(page);
1435 	return 1;
1436 }
1437 
1438 static inline bool check_new_pages(struct page *page, unsigned int order)
1439 {
1440 	if (is_check_pages_enabled()) {
1441 		for (int i = 0; i < (1 << order); i++) {
1442 			struct page *p = page + i;
1443 
1444 			if (check_new_page(p))
1445 				return true;
1446 		}
1447 	}
1448 
1449 	return false;
1450 }
1451 
1452 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1453 {
1454 	/* Don't skip if a software KASAN mode is enabled. */
1455 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1456 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1457 		return false;
1458 
1459 	/* Skip, if hardware tag-based KASAN is not enabled. */
1460 	if (!kasan_hw_tags_enabled())
1461 		return true;
1462 
1463 	/*
1464 	 * With hardware tag-based KASAN enabled, skip if this has been
1465 	 * requested via __GFP_SKIP_KASAN.
1466 	 */
1467 	return flags & __GFP_SKIP_KASAN;
1468 }
1469 
1470 static inline bool should_skip_init(gfp_t flags)
1471 {
1472 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1473 	if (!kasan_hw_tags_enabled())
1474 		return false;
1475 
1476 	/* For hardware tag-based KASAN, skip if requested. */
1477 	return (flags & __GFP_SKIP_ZERO);
1478 }
1479 
1480 inline void post_alloc_hook(struct page *page, unsigned int order,
1481 				gfp_t gfp_flags)
1482 {
1483 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1484 			!should_skip_init(gfp_flags);
1485 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1486 	int i;
1487 
1488 	set_page_private(page, 0);
1489 	set_page_refcounted(page);
1490 
1491 	arch_alloc_page(page, order);
1492 	debug_pagealloc_map_pages(page, 1 << order);
1493 
1494 	/*
1495 	 * Page unpoisoning must happen before memory initialization.
1496 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1497 	 * allocations and the page unpoisoning code will complain.
1498 	 */
1499 	kernel_unpoison_pages(page, 1 << order);
1500 
1501 	/*
1502 	 * As memory initialization might be integrated into KASAN,
1503 	 * KASAN unpoisoning and memory initializion code must be
1504 	 * kept together to avoid discrepancies in behavior.
1505 	 */
1506 
1507 	/*
1508 	 * If memory tags should be zeroed
1509 	 * (which happens only when memory should be initialized as well).
1510 	 */
1511 	if (zero_tags) {
1512 		/* Initialize both memory and memory tags. */
1513 		for (i = 0; i != 1 << order; ++i)
1514 			tag_clear_highpage(page + i);
1515 
1516 		/* Take note that memory was initialized by the loop above. */
1517 		init = false;
1518 	}
1519 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1520 	    kasan_unpoison_pages(page, order, init)) {
1521 		/* Take note that memory was initialized by KASAN. */
1522 		if (kasan_has_integrated_init())
1523 			init = false;
1524 	} else {
1525 		/*
1526 		 * If memory tags have not been set by KASAN, reset the page
1527 		 * tags to ensure page_address() dereferencing does not fault.
1528 		 */
1529 		for (i = 0; i != 1 << order; ++i)
1530 			page_kasan_tag_reset(page + i);
1531 	}
1532 	/* If memory is still not initialized, initialize it now. */
1533 	if (init)
1534 		kernel_init_pages(page, 1 << order);
1535 
1536 	set_page_owner(page, order, gfp_flags);
1537 	page_table_check_alloc(page, order);
1538 }
1539 
1540 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1541 							unsigned int alloc_flags)
1542 {
1543 	post_alloc_hook(page, order, gfp_flags);
1544 
1545 	if (order && (gfp_flags & __GFP_COMP))
1546 		prep_compound_page(page, order);
1547 
1548 	/*
1549 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1550 	 * allocate the page. The expectation is that the caller is taking
1551 	 * steps that will free more memory. The caller should avoid the page
1552 	 * being used for !PFMEMALLOC purposes.
1553 	 */
1554 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1555 		set_page_pfmemalloc(page);
1556 	else
1557 		clear_page_pfmemalloc(page);
1558 }
1559 
1560 /*
1561  * Go through the free lists for the given migratetype and remove
1562  * the smallest available page from the freelists
1563  */
1564 static __always_inline
1565 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1566 						int migratetype)
1567 {
1568 	unsigned int current_order;
1569 	struct free_area *area;
1570 	struct page *page;
1571 
1572 	/* Find a page of the appropriate size in the preferred list */
1573 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1574 		area = &(zone->free_area[current_order]);
1575 		page = get_page_from_free_area(area, migratetype);
1576 		if (!page)
1577 			continue;
1578 		del_page_from_free_list(page, zone, current_order);
1579 		expand(zone, page, order, current_order, migratetype);
1580 		set_pcppage_migratetype(page, migratetype);
1581 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1582 				pcp_allowed_order(order) &&
1583 				migratetype < MIGRATE_PCPTYPES);
1584 		return page;
1585 	}
1586 
1587 	return NULL;
1588 }
1589 
1590 
1591 /*
1592  * This array describes the order lists are fallen back to when
1593  * the free lists for the desirable migrate type are depleted
1594  *
1595  * The other migratetypes do not have fallbacks.
1596  */
1597 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1598 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1599 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1600 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1601 };
1602 
1603 #ifdef CONFIG_CMA
1604 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1605 					unsigned int order)
1606 {
1607 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1608 }
1609 #else
1610 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1611 					unsigned int order) { return NULL; }
1612 #endif
1613 
1614 /*
1615  * Move the free pages in a range to the freelist tail of the requested type.
1616  * Note that start_page and end_pages are not aligned on a pageblock
1617  * boundary. If alignment is required, use move_freepages_block()
1618  */
1619 static int move_freepages(struct zone *zone,
1620 			  unsigned long start_pfn, unsigned long end_pfn,
1621 			  int migratetype, int *num_movable)
1622 {
1623 	struct page *page;
1624 	unsigned long pfn;
1625 	unsigned int order;
1626 	int pages_moved = 0;
1627 
1628 	for (pfn = start_pfn; pfn <= end_pfn;) {
1629 		page = pfn_to_page(pfn);
1630 		if (!PageBuddy(page)) {
1631 			/*
1632 			 * We assume that pages that could be isolated for
1633 			 * migration are movable. But we don't actually try
1634 			 * isolating, as that would be expensive.
1635 			 */
1636 			if (num_movable &&
1637 					(PageLRU(page) || __PageMovable(page)))
1638 				(*num_movable)++;
1639 			pfn++;
1640 			continue;
1641 		}
1642 
1643 		/* Make sure we are not inadvertently changing nodes */
1644 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1645 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1646 
1647 		order = buddy_order(page);
1648 		move_to_free_list(page, zone, order, migratetype);
1649 		pfn += 1 << order;
1650 		pages_moved += 1 << order;
1651 	}
1652 
1653 	return pages_moved;
1654 }
1655 
1656 int move_freepages_block(struct zone *zone, struct page *page,
1657 				int migratetype, int *num_movable)
1658 {
1659 	unsigned long start_pfn, end_pfn, pfn;
1660 
1661 	if (num_movable)
1662 		*num_movable = 0;
1663 
1664 	pfn = page_to_pfn(page);
1665 	start_pfn = pageblock_start_pfn(pfn);
1666 	end_pfn = pageblock_end_pfn(pfn) - 1;
1667 
1668 	/* Do not cross zone boundaries */
1669 	if (!zone_spans_pfn(zone, start_pfn))
1670 		start_pfn = pfn;
1671 	if (!zone_spans_pfn(zone, end_pfn))
1672 		return 0;
1673 
1674 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1675 								num_movable);
1676 }
1677 
1678 static void change_pageblock_range(struct page *pageblock_page,
1679 					int start_order, int migratetype)
1680 {
1681 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1682 
1683 	while (nr_pageblocks--) {
1684 		set_pageblock_migratetype(pageblock_page, migratetype);
1685 		pageblock_page += pageblock_nr_pages;
1686 	}
1687 }
1688 
1689 /*
1690  * When we are falling back to another migratetype during allocation, try to
1691  * steal extra free pages from the same pageblocks to satisfy further
1692  * allocations, instead of polluting multiple pageblocks.
1693  *
1694  * If we are stealing a relatively large buddy page, it is likely there will
1695  * be more free pages in the pageblock, so try to steal them all. For
1696  * reclaimable and unmovable allocations, we steal regardless of page size,
1697  * as fragmentation caused by those allocations polluting movable pageblocks
1698  * is worse than movable allocations stealing from unmovable and reclaimable
1699  * pageblocks.
1700  */
1701 static bool can_steal_fallback(unsigned int order, int start_mt)
1702 {
1703 	/*
1704 	 * Leaving this order check is intended, although there is
1705 	 * relaxed order check in next check. The reason is that
1706 	 * we can actually steal whole pageblock if this condition met,
1707 	 * but, below check doesn't guarantee it and that is just heuristic
1708 	 * so could be changed anytime.
1709 	 */
1710 	if (order >= pageblock_order)
1711 		return true;
1712 
1713 	if (order >= pageblock_order / 2 ||
1714 		start_mt == MIGRATE_RECLAIMABLE ||
1715 		start_mt == MIGRATE_UNMOVABLE ||
1716 		page_group_by_mobility_disabled)
1717 		return true;
1718 
1719 	return false;
1720 }
1721 
1722 static inline bool boost_watermark(struct zone *zone)
1723 {
1724 	unsigned long max_boost;
1725 
1726 	if (!watermark_boost_factor)
1727 		return false;
1728 	/*
1729 	 * Don't bother in zones that are unlikely to produce results.
1730 	 * On small machines, including kdump capture kernels running
1731 	 * in a small area, boosting the watermark can cause an out of
1732 	 * memory situation immediately.
1733 	 */
1734 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1735 		return false;
1736 
1737 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1738 			watermark_boost_factor, 10000);
1739 
1740 	/*
1741 	 * high watermark may be uninitialised if fragmentation occurs
1742 	 * very early in boot so do not boost. We do not fall
1743 	 * through and boost by pageblock_nr_pages as failing
1744 	 * allocations that early means that reclaim is not going
1745 	 * to help and it may even be impossible to reclaim the
1746 	 * boosted watermark resulting in a hang.
1747 	 */
1748 	if (!max_boost)
1749 		return false;
1750 
1751 	max_boost = max(pageblock_nr_pages, max_boost);
1752 
1753 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1754 		max_boost);
1755 
1756 	return true;
1757 }
1758 
1759 /*
1760  * This function implements actual steal behaviour. If order is large enough,
1761  * we can steal whole pageblock. If not, we first move freepages in this
1762  * pageblock to our migratetype and determine how many already-allocated pages
1763  * are there in the pageblock with a compatible migratetype. If at least half
1764  * of pages are free or compatible, we can change migratetype of the pageblock
1765  * itself, so pages freed in the future will be put on the correct free list.
1766  */
1767 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1768 		unsigned int alloc_flags, int start_type, bool whole_block)
1769 {
1770 	unsigned int current_order = buddy_order(page);
1771 	int free_pages, movable_pages, alike_pages;
1772 	int old_block_type;
1773 
1774 	old_block_type = get_pageblock_migratetype(page);
1775 
1776 	/*
1777 	 * This can happen due to races and we want to prevent broken
1778 	 * highatomic accounting.
1779 	 */
1780 	if (is_migrate_highatomic(old_block_type))
1781 		goto single_page;
1782 
1783 	/* Take ownership for orders >= pageblock_order */
1784 	if (current_order >= pageblock_order) {
1785 		change_pageblock_range(page, current_order, start_type);
1786 		goto single_page;
1787 	}
1788 
1789 	/*
1790 	 * Boost watermarks to increase reclaim pressure to reduce the
1791 	 * likelihood of future fallbacks. Wake kswapd now as the node
1792 	 * may be balanced overall and kswapd will not wake naturally.
1793 	 */
1794 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1795 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1796 
1797 	/* We are not allowed to try stealing from the whole block */
1798 	if (!whole_block)
1799 		goto single_page;
1800 
1801 	free_pages = move_freepages_block(zone, page, start_type,
1802 						&movable_pages);
1803 	/* moving whole block can fail due to zone boundary conditions */
1804 	if (!free_pages)
1805 		goto single_page;
1806 
1807 	/*
1808 	 * Determine how many pages are compatible with our allocation.
1809 	 * For movable allocation, it's the number of movable pages which
1810 	 * we just obtained. For other types it's a bit more tricky.
1811 	 */
1812 	if (start_type == MIGRATE_MOVABLE) {
1813 		alike_pages = movable_pages;
1814 	} else {
1815 		/*
1816 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1817 		 * to MOVABLE pageblock, consider all non-movable pages as
1818 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1819 		 * vice versa, be conservative since we can't distinguish the
1820 		 * exact migratetype of non-movable pages.
1821 		 */
1822 		if (old_block_type == MIGRATE_MOVABLE)
1823 			alike_pages = pageblock_nr_pages
1824 						- (free_pages + movable_pages);
1825 		else
1826 			alike_pages = 0;
1827 	}
1828 	/*
1829 	 * If a sufficient number of pages in the block are either free or of
1830 	 * compatible migratability as our allocation, claim the whole block.
1831 	 */
1832 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1833 			page_group_by_mobility_disabled)
1834 		set_pageblock_migratetype(page, start_type);
1835 
1836 	return;
1837 
1838 single_page:
1839 	move_to_free_list(page, zone, current_order, start_type);
1840 }
1841 
1842 /*
1843  * Check whether there is a suitable fallback freepage with requested order.
1844  * If only_stealable is true, this function returns fallback_mt only if
1845  * we can steal other freepages all together. This would help to reduce
1846  * fragmentation due to mixed migratetype pages in one pageblock.
1847  */
1848 int find_suitable_fallback(struct free_area *area, unsigned int order,
1849 			int migratetype, bool only_stealable, bool *can_steal)
1850 {
1851 	int i;
1852 	int fallback_mt;
1853 
1854 	if (area->nr_free == 0)
1855 		return -1;
1856 
1857 	*can_steal = false;
1858 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1859 		fallback_mt = fallbacks[migratetype][i];
1860 		if (free_area_empty(area, fallback_mt))
1861 			continue;
1862 
1863 		if (can_steal_fallback(order, migratetype))
1864 			*can_steal = true;
1865 
1866 		if (!only_stealable)
1867 			return fallback_mt;
1868 
1869 		if (*can_steal)
1870 			return fallback_mt;
1871 	}
1872 
1873 	return -1;
1874 }
1875 
1876 /*
1877  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1878  * there are no empty page blocks that contain a page with a suitable order
1879  */
1880 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1881 {
1882 	int mt;
1883 	unsigned long max_managed, flags;
1884 
1885 	/*
1886 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1887 	 * Check is race-prone but harmless.
1888 	 */
1889 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1890 	if (zone->nr_reserved_highatomic >= max_managed)
1891 		return;
1892 
1893 	spin_lock_irqsave(&zone->lock, flags);
1894 
1895 	/* Recheck the nr_reserved_highatomic limit under the lock */
1896 	if (zone->nr_reserved_highatomic >= max_managed)
1897 		goto out_unlock;
1898 
1899 	/* Yoink! */
1900 	mt = get_pageblock_migratetype(page);
1901 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1902 	if (migratetype_is_mergeable(mt)) {
1903 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1904 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1905 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1906 	}
1907 
1908 out_unlock:
1909 	spin_unlock_irqrestore(&zone->lock, flags);
1910 }
1911 
1912 /*
1913  * Used when an allocation is about to fail under memory pressure. This
1914  * potentially hurts the reliability of high-order allocations when under
1915  * intense memory pressure but failed atomic allocations should be easier
1916  * to recover from than an OOM.
1917  *
1918  * If @force is true, try to unreserve a pageblock even though highatomic
1919  * pageblock is exhausted.
1920  */
1921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1922 						bool force)
1923 {
1924 	struct zonelist *zonelist = ac->zonelist;
1925 	unsigned long flags;
1926 	struct zoneref *z;
1927 	struct zone *zone;
1928 	struct page *page;
1929 	int order;
1930 	bool ret;
1931 
1932 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1933 								ac->nodemask) {
1934 		/*
1935 		 * Preserve at least one pageblock unless memory pressure
1936 		 * is really high.
1937 		 */
1938 		if (!force && zone->nr_reserved_highatomic <=
1939 					pageblock_nr_pages)
1940 			continue;
1941 
1942 		spin_lock_irqsave(&zone->lock, flags);
1943 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1944 			struct free_area *area = &(zone->free_area[order]);
1945 
1946 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1947 			if (!page)
1948 				continue;
1949 
1950 			/*
1951 			 * In page freeing path, migratetype change is racy so
1952 			 * we can counter several free pages in a pageblock
1953 			 * in this loop although we changed the pageblock type
1954 			 * from highatomic to ac->migratetype. So we should
1955 			 * adjust the count once.
1956 			 */
1957 			if (is_migrate_highatomic_page(page)) {
1958 				/*
1959 				 * It should never happen but changes to
1960 				 * locking could inadvertently allow a per-cpu
1961 				 * drain to add pages to MIGRATE_HIGHATOMIC
1962 				 * while unreserving so be safe and watch for
1963 				 * underflows.
1964 				 */
1965 				zone->nr_reserved_highatomic -= min(
1966 						pageblock_nr_pages,
1967 						zone->nr_reserved_highatomic);
1968 			}
1969 
1970 			/*
1971 			 * Convert to ac->migratetype and avoid the normal
1972 			 * pageblock stealing heuristics. Minimally, the caller
1973 			 * is doing the work and needs the pages. More
1974 			 * importantly, if the block was always converted to
1975 			 * MIGRATE_UNMOVABLE or another type then the number
1976 			 * of pageblocks that cannot be completely freed
1977 			 * may increase.
1978 			 */
1979 			set_pageblock_migratetype(page, ac->migratetype);
1980 			ret = move_freepages_block(zone, page, ac->migratetype,
1981 									NULL);
1982 			if (ret) {
1983 				spin_unlock_irqrestore(&zone->lock, flags);
1984 				return ret;
1985 			}
1986 		}
1987 		spin_unlock_irqrestore(&zone->lock, flags);
1988 	}
1989 
1990 	return false;
1991 }
1992 
1993 /*
1994  * Try finding a free buddy page on the fallback list and put it on the free
1995  * list of requested migratetype, possibly along with other pages from the same
1996  * block, depending on fragmentation avoidance heuristics. Returns true if
1997  * fallback was found so that __rmqueue_smallest() can grab it.
1998  *
1999  * The use of signed ints for order and current_order is a deliberate
2000  * deviation from the rest of this file, to make the for loop
2001  * condition simpler.
2002  */
2003 static __always_inline bool
2004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2005 						unsigned int alloc_flags)
2006 {
2007 	struct free_area *area;
2008 	int current_order;
2009 	int min_order = order;
2010 	struct page *page;
2011 	int fallback_mt;
2012 	bool can_steal;
2013 
2014 	/*
2015 	 * Do not steal pages from freelists belonging to other pageblocks
2016 	 * i.e. orders < pageblock_order. If there are no local zones free,
2017 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2018 	 */
2019 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2020 		min_order = pageblock_order;
2021 
2022 	/*
2023 	 * Find the largest available free page in the other list. This roughly
2024 	 * approximates finding the pageblock with the most free pages, which
2025 	 * would be too costly to do exactly.
2026 	 */
2027 	for (current_order = MAX_ORDER; current_order >= min_order;
2028 				--current_order) {
2029 		area = &(zone->free_area[current_order]);
2030 		fallback_mt = find_suitable_fallback(area, current_order,
2031 				start_migratetype, false, &can_steal);
2032 		if (fallback_mt == -1)
2033 			continue;
2034 
2035 		/*
2036 		 * We cannot steal all free pages from the pageblock and the
2037 		 * requested migratetype is movable. In that case it's better to
2038 		 * steal and split the smallest available page instead of the
2039 		 * largest available page, because even if the next movable
2040 		 * allocation falls back into a different pageblock than this
2041 		 * one, it won't cause permanent fragmentation.
2042 		 */
2043 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2044 					&& current_order > order)
2045 			goto find_smallest;
2046 
2047 		goto do_steal;
2048 	}
2049 
2050 	return false;
2051 
2052 find_smallest:
2053 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2054 		area = &(zone->free_area[current_order]);
2055 		fallback_mt = find_suitable_fallback(area, current_order,
2056 				start_migratetype, false, &can_steal);
2057 		if (fallback_mt != -1)
2058 			break;
2059 	}
2060 
2061 	/*
2062 	 * This should not happen - we already found a suitable fallback
2063 	 * when looking for the largest page.
2064 	 */
2065 	VM_BUG_ON(current_order > MAX_ORDER);
2066 
2067 do_steal:
2068 	page = get_page_from_free_area(area, fallback_mt);
2069 
2070 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2071 								can_steal);
2072 
2073 	trace_mm_page_alloc_extfrag(page, order, current_order,
2074 		start_migratetype, fallback_mt);
2075 
2076 	return true;
2077 
2078 }
2079 
2080 /*
2081  * Do the hard work of removing an element from the buddy allocator.
2082  * Call me with the zone->lock already held.
2083  */
2084 static __always_inline struct page *
2085 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2086 						unsigned int alloc_flags)
2087 {
2088 	struct page *page;
2089 
2090 	if (IS_ENABLED(CONFIG_CMA)) {
2091 		/*
2092 		 * Balance movable allocations between regular and CMA areas by
2093 		 * allocating from CMA when over half of the zone's free memory
2094 		 * is in the CMA area.
2095 		 */
2096 		if (alloc_flags & ALLOC_CMA &&
2097 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2098 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2099 			page = __rmqueue_cma_fallback(zone, order);
2100 			if (page)
2101 				return page;
2102 		}
2103 	}
2104 retry:
2105 	page = __rmqueue_smallest(zone, order, migratetype);
2106 	if (unlikely(!page)) {
2107 		if (alloc_flags & ALLOC_CMA)
2108 			page = __rmqueue_cma_fallback(zone, order);
2109 
2110 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2111 								alloc_flags))
2112 			goto retry;
2113 	}
2114 	return page;
2115 }
2116 
2117 /*
2118  * Obtain a specified number of elements from the buddy allocator, all under
2119  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2120  * Returns the number of new pages which were placed at *list.
2121  */
2122 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2123 			unsigned long count, struct list_head *list,
2124 			int migratetype, unsigned int alloc_flags)
2125 {
2126 	unsigned long flags;
2127 	int i;
2128 
2129 	spin_lock_irqsave(&zone->lock, flags);
2130 	for (i = 0; i < count; ++i) {
2131 		struct page *page = __rmqueue(zone, order, migratetype,
2132 								alloc_flags);
2133 		if (unlikely(page == NULL))
2134 			break;
2135 
2136 		/*
2137 		 * Split buddy pages returned by expand() are received here in
2138 		 * physical page order. The page is added to the tail of
2139 		 * caller's list. From the callers perspective, the linked list
2140 		 * is ordered by page number under some conditions. This is
2141 		 * useful for IO devices that can forward direction from the
2142 		 * head, thus also in the physical page order. This is useful
2143 		 * for IO devices that can merge IO requests if the physical
2144 		 * pages are ordered properly.
2145 		 */
2146 		list_add_tail(&page->pcp_list, list);
2147 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2148 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2149 					      -(1 << order));
2150 	}
2151 
2152 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2153 	spin_unlock_irqrestore(&zone->lock, flags);
2154 
2155 	return i;
2156 }
2157 
2158 #ifdef CONFIG_NUMA
2159 /*
2160  * Called from the vmstat counter updater to drain pagesets of this
2161  * currently executing processor on remote nodes after they have
2162  * expired.
2163  */
2164 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2165 {
2166 	int to_drain, batch;
2167 
2168 	batch = READ_ONCE(pcp->batch);
2169 	to_drain = min(pcp->count, batch);
2170 	if (to_drain > 0) {
2171 		spin_lock(&pcp->lock);
2172 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2173 		spin_unlock(&pcp->lock);
2174 	}
2175 }
2176 #endif
2177 
2178 /*
2179  * Drain pcplists of the indicated processor and zone.
2180  */
2181 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2182 {
2183 	struct per_cpu_pages *pcp;
2184 
2185 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2186 	if (pcp->count) {
2187 		spin_lock(&pcp->lock);
2188 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2189 		spin_unlock(&pcp->lock);
2190 	}
2191 }
2192 
2193 /*
2194  * Drain pcplists of all zones on the indicated processor.
2195  */
2196 static void drain_pages(unsigned int cpu)
2197 {
2198 	struct zone *zone;
2199 
2200 	for_each_populated_zone(zone) {
2201 		drain_pages_zone(cpu, zone);
2202 	}
2203 }
2204 
2205 /*
2206  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2207  */
2208 void drain_local_pages(struct zone *zone)
2209 {
2210 	int cpu = smp_processor_id();
2211 
2212 	if (zone)
2213 		drain_pages_zone(cpu, zone);
2214 	else
2215 		drain_pages(cpu);
2216 }
2217 
2218 /*
2219  * The implementation of drain_all_pages(), exposing an extra parameter to
2220  * drain on all cpus.
2221  *
2222  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2223  * not empty. The check for non-emptiness can however race with a free to
2224  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2225  * that need the guarantee that every CPU has drained can disable the
2226  * optimizing racy check.
2227  */
2228 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2229 {
2230 	int cpu;
2231 
2232 	/*
2233 	 * Allocate in the BSS so we won't require allocation in
2234 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2235 	 */
2236 	static cpumask_t cpus_with_pcps;
2237 
2238 	/*
2239 	 * Do not drain if one is already in progress unless it's specific to
2240 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2241 	 * the drain to be complete when the call returns.
2242 	 */
2243 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2244 		if (!zone)
2245 			return;
2246 		mutex_lock(&pcpu_drain_mutex);
2247 	}
2248 
2249 	/*
2250 	 * We don't care about racing with CPU hotplug event
2251 	 * as offline notification will cause the notified
2252 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2253 	 * disables preemption as part of its processing
2254 	 */
2255 	for_each_online_cpu(cpu) {
2256 		struct per_cpu_pages *pcp;
2257 		struct zone *z;
2258 		bool has_pcps = false;
2259 
2260 		if (force_all_cpus) {
2261 			/*
2262 			 * The pcp.count check is racy, some callers need a
2263 			 * guarantee that no cpu is missed.
2264 			 */
2265 			has_pcps = true;
2266 		} else if (zone) {
2267 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2268 			if (pcp->count)
2269 				has_pcps = true;
2270 		} else {
2271 			for_each_populated_zone(z) {
2272 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2273 				if (pcp->count) {
2274 					has_pcps = true;
2275 					break;
2276 				}
2277 			}
2278 		}
2279 
2280 		if (has_pcps)
2281 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2282 		else
2283 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2284 	}
2285 
2286 	for_each_cpu(cpu, &cpus_with_pcps) {
2287 		if (zone)
2288 			drain_pages_zone(cpu, zone);
2289 		else
2290 			drain_pages(cpu);
2291 	}
2292 
2293 	mutex_unlock(&pcpu_drain_mutex);
2294 }
2295 
2296 /*
2297  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2298  *
2299  * When zone parameter is non-NULL, spill just the single zone's pages.
2300  */
2301 void drain_all_pages(struct zone *zone)
2302 {
2303 	__drain_all_pages(zone, false);
2304 }
2305 
2306 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2307 							unsigned int order)
2308 {
2309 	int migratetype;
2310 
2311 	if (!free_pages_prepare(page, order, FPI_NONE))
2312 		return false;
2313 
2314 	migratetype = get_pfnblock_migratetype(page, pfn);
2315 	set_pcppage_migratetype(page, migratetype);
2316 	return true;
2317 }
2318 
2319 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2320 {
2321 	int min_nr_free, max_nr_free;
2322 	int batch = READ_ONCE(pcp->batch);
2323 
2324 	/* Free everything if batch freeing high-order pages. */
2325 	if (unlikely(free_high))
2326 		return pcp->count;
2327 
2328 	/* Check for PCP disabled or boot pageset */
2329 	if (unlikely(high < batch))
2330 		return 1;
2331 
2332 	/* Leave at least pcp->batch pages on the list */
2333 	min_nr_free = batch;
2334 	max_nr_free = high - batch;
2335 
2336 	/*
2337 	 * Double the number of pages freed each time there is subsequent
2338 	 * freeing of pages without any allocation.
2339 	 */
2340 	batch <<= pcp->free_factor;
2341 	if (batch < max_nr_free)
2342 		pcp->free_factor++;
2343 	batch = clamp(batch, min_nr_free, max_nr_free);
2344 
2345 	return batch;
2346 }
2347 
2348 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2349 		       bool free_high)
2350 {
2351 	int high = READ_ONCE(pcp->high);
2352 
2353 	if (unlikely(!high || free_high))
2354 		return 0;
2355 
2356 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2357 		return high;
2358 
2359 	/*
2360 	 * If reclaim is active, limit the number of pages that can be
2361 	 * stored on pcp lists
2362 	 */
2363 	return min(READ_ONCE(pcp->batch) << 2, high);
2364 }
2365 
2366 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2367 				   struct page *page, int migratetype,
2368 				   unsigned int order)
2369 {
2370 	int high;
2371 	int pindex;
2372 	bool free_high;
2373 
2374 	__count_vm_events(PGFREE, 1 << order);
2375 	pindex = order_to_pindex(migratetype, order);
2376 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2377 	pcp->count += 1 << order;
2378 
2379 	/*
2380 	 * As high-order pages other than THP's stored on PCP can contribute
2381 	 * to fragmentation, limit the number stored when PCP is heavily
2382 	 * freeing without allocation. The remainder after bulk freeing
2383 	 * stops will be drained from vmstat refresh context.
2384 	 */
2385 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2386 
2387 	high = nr_pcp_high(pcp, zone, free_high);
2388 	if (pcp->count >= high) {
2389 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2390 	}
2391 }
2392 
2393 /*
2394  * Free a pcp page
2395  */
2396 void free_unref_page(struct page *page, unsigned int order)
2397 {
2398 	unsigned long __maybe_unused UP_flags;
2399 	struct per_cpu_pages *pcp;
2400 	struct zone *zone;
2401 	unsigned long pfn = page_to_pfn(page);
2402 	int migratetype, pcpmigratetype;
2403 
2404 	if (!free_unref_page_prepare(page, pfn, order))
2405 		return;
2406 
2407 	/*
2408 	 * We only track unmovable, reclaimable and movable on pcp lists.
2409 	 * Place ISOLATE pages on the isolated list because they are being
2410 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2411 	 * get those areas back if necessary. Otherwise, we may have to free
2412 	 * excessively into the page allocator
2413 	 */
2414 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2415 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2416 		if (unlikely(is_migrate_isolate(migratetype))) {
2417 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2418 			return;
2419 		}
2420 		pcpmigratetype = MIGRATE_MOVABLE;
2421 	}
2422 
2423 	zone = page_zone(page);
2424 	pcp_trylock_prepare(UP_flags);
2425 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2426 	if (pcp) {
2427 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2428 		pcp_spin_unlock(pcp);
2429 	} else {
2430 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2431 	}
2432 	pcp_trylock_finish(UP_flags);
2433 }
2434 
2435 /*
2436  * Free a list of 0-order pages
2437  */
2438 void free_unref_page_list(struct list_head *list)
2439 {
2440 	unsigned long __maybe_unused UP_flags;
2441 	struct page *page, *next;
2442 	struct per_cpu_pages *pcp = NULL;
2443 	struct zone *locked_zone = NULL;
2444 	int batch_count = 0;
2445 	int migratetype;
2446 
2447 	/* Prepare pages for freeing */
2448 	list_for_each_entry_safe(page, next, list, lru) {
2449 		unsigned long pfn = page_to_pfn(page);
2450 		if (!free_unref_page_prepare(page, pfn, 0)) {
2451 			list_del(&page->lru);
2452 			continue;
2453 		}
2454 
2455 		/*
2456 		 * Free isolated pages directly to the allocator, see
2457 		 * comment in free_unref_page.
2458 		 */
2459 		migratetype = get_pcppage_migratetype(page);
2460 		if (unlikely(is_migrate_isolate(migratetype))) {
2461 			list_del(&page->lru);
2462 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2463 			continue;
2464 		}
2465 	}
2466 
2467 	list_for_each_entry_safe(page, next, list, lru) {
2468 		struct zone *zone = page_zone(page);
2469 
2470 		list_del(&page->lru);
2471 		migratetype = get_pcppage_migratetype(page);
2472 
2473 		/*
2474 		 * Either different zone requiring a different pcp lock or
2475 		 * excessive lock hold times when freeing a large list of
2476 		 * pages.
2477 		 */
2478 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2479 			if (pcp) {
2480 				pcp_spin_unlock(pcp);
2481 				pcp_trylock_finish(UP_flags);
2482 			}
2483 
2484 			batch_count = 0;
2485 
2486 			/*
2487 			 * trylock is necessary as pages may be getting freed
2488 			 * from IRQ or SoftIRQ context after an IO completion.
2489 			 */
2490 			pcp_trylock_prepare(UP_flags);
2491 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2492 			if (unlikely(!pcp)) {
2493 				pcp_trylock_finish(UP_flags);
2494 				free_one_page(zone, page, page_to_pfn(page),
2495 					      0, migratetype, FPI_NONE);
2496 				locked_zone = NULL;
2497 				continue;
2498 			}
2499 			locked_zone = zone;
2500 		}
2501 
2502 		/*
2503 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2504 		 * to the MIGRATE_MOVABLE pcp list.
2505 		 */
2506 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2507 			migratetype = MIGRATE_MOVABLE;
2508 
2509 		trace_mm_page_free_batched(page);
2510 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2511 		batch_count++;
2512 	}
2513 
2514 	if (pcp) {
2515 		pcp_spin_unlock(pcp);
2516 		pcp_trylock_finish(UP_flags);
2517 	}
2518 }
2519 
2520 /*
2521  * split_page takes a non-compound higher-order page, and splits it into
2522  * n (1<<order) sub-pages: page[0..n]
2523  * Each sub-page must be freed individually.
2524  *
2525  * Note: this is probably too low level an operation for use in drivers.
2526  * Please consult with lkml before using this in your driver.
2527  */
2528 void split_page(struct page *page, unsigned int order)
2529 {
2530 	int i;
2531 
2532 	VM_BUG_ON_PAGE(PageCompound(page), page);
2533 	VM_BUG_ON_PAGE(!page_count(page), page);
2534 
2535 	for (i = 1; i < (1 << order); i++)
2536 		set_page_refcounted(page + i);
2537 	split_page_owner(page, 1 << order);
2538 	split_page_memcg(page, 1 << order);
2539 }
2540 EXPORT_SYMBOL_GPL(split_page);
2541 
2542 int __isolate_free_page(struct page *page, unsigned int order)
2543 {
2544 	struct zone *zone = page_zone(page);
2545 	int mt = get_pageblock_migratetype(page);
2546 
2547 	if (!is_migrate_isolate(mt)) {
2548 		unsigned long watermark;
2549 		/*
2550 		 * Obey watermarks as if the page was being allocated. We can
2551 		 * emulate a high-order watermark check with a raised order-0
2552 		 * watermark, because we already know our high-order page
2553 		 * exists.
2554 		 */
2555 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2556 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2557 			return 0;
2558 
2559 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2560 	}
2561 
2562 	del_page_from_free_list(page, zone, order);
2563 
2564 	/*
2565 	 * Set the pageblock if the isolated page is at least half of a
2566 	 * pageblock
2567 	 */
2568 	if (order >= pageblock_order - 1) {
2569 		struct page *endpage = page + (1 << order) - 1;
2570 		for (; page < endpage; page += pageblock_nr_pages) {
2571 			int mt = get_pageblock_migratetype(page);
2572 			/*
2573 			 * Only change normal pageblocks (i.e., they can merge
2574 			 * with others)
2575 			 */
2576 			if (migratetype_is_mergeable(mt))
2577 				set_pageblock_migratetype(page,
2578 							  MIGRATE_MOVABLE);
2579 		}
2580 	}
2581 
2582 	return 1UL << order;
2583 }
2584 
2585 /**
2586  * __putback_isolated_page - Return a now-isolated page back where we got it
2587  * @page: Page that was isolated
2588  * @order: Order of the isolated page
2589  * @mt: The page's pageblock's migratetype
2590  *
2591  * This function is meant to return a page pulled from the free lists via
2592  * __isolate_free_page back to the free lists they were pulled from.
2593  */
2594 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2595 {
2596 	struct zone *zone = page_zone(page);
2597 
2598 	/* zone lock should be held when this function is called */
2599 	lockdep_assert_held(&zone->lock);
2600 
2601 	/* Return isolated page to tail of freelist. */
2602 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2603 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2604 }
2605 
2606 /*
2607  * Update NUMA hit/miss statistics
2608  */
2609 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2610 				   long nr_account)
2611 {
2612 #ifdef CONFIG_NUMA
2613 	enum numa_stat_item local_stat = NUMA_LOCAL;
2614 
2615 	/* skip numa counters update if numa stats is disabled */
2616 	if (!static_branch_likely(&vm_numa_stat_key))
2617 		return;
2618 
2619 	if (zone_to_nid(z) != numa_node_id())
2620 		local_stat = NUMA_OTHER;
2621 
2622 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2623 		__count_numa_events(z, NUMA_HIT, nr_account);
2624 	else {
2625 		__count_numa_events(z, NUMA_MISS, nr_account);
2626 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2627 	}
2628 	__count_numa_events(z, local_stat, nr_account);
2629 #endif
2630 }
2631 
2632 static __always_inline
2633 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2634 			   unsigned int order, unsigned int alloc_flags,
2635 			   int migratetype)
2636 {
2637 	struct page *page;
2638 	unsigned long flags;
2639 
2640 	do {
2641 		page = NULL;
2642 		spin_lock_irqsave(&zone->lock, flags);
2643 		if (alloc_flags & ALLOC_HIGHATOMIC)
2644 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2645 		if (!page) {
2646 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2647 
2648 			/*
2649 			 * If the allocation fails, allow OOM handling access
2650 			 * to HIGHATOMIC reserves as failing now is worse than
2651 			 * failing a high-order atomic allocation in the
2652 			 * future.
2653 			 */
2654 			if (!page && (alloc_flags & ALLOC_OOM))
2655 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2656 
2657 			if (!page) {
2658 				spin_unlock_irqrestore(&zone->lock, flags);
2659 				return NULL;
2660 			}
2661 		}
2662 		__mod_zone_freepage_state(zone, -(1 << order),
2663 					  get_pcppage_migratetype(page));
2664 		spin_unlock_irqrestore(&zone->lock, flags);
2665 	} while (check_new_pages(page, order));
2666 
2667 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2668 	zone_statistics(preferred_zone, zone, 1);
2669 
2670 	return page;
2671 }
2672 
2673 /* Remove page from the per-cpu list, caller must protect the list */
2674 static inline
2675 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2676 			int migratetype,
2677 			unsigned int alloc_flags,
2678 			struct per_cpu_pages *pcp,
2679 			struct list_head *list)
2680 {
2681 	struct page *page;
2682 
2683 	do {
2684 		if (list_empty(list)) {
2685 			int batch = READ_ONCE(pcp->batch);
2686 			int alloced;
2687 
2688 			/*
2689 			 * Scale batch relative to order if batch implies
2690 			 * free pages can be stored on the PCP. Batch can
2691 			 * be 1 for small zones or for boot pagesets which
2692 			 * should never store free pages as the pages may
2693 			 * belong to arbitrary zones.
2694 			 */
2695 			if (batch > 1)
2696 				batch = max(batch >> order, 2);
2697 			alloced = rmqueue_bulk(zone, order,
2698 					batch, list,
2699 					migratetype, alloc_flags);
2700 
2701 			pcp->count += alloced << order;
2702 			if (unlikely(list_empty(list)))
2703 				return NULL;
2704 		}
2705 
2706 		page = list_first_entry(list, struct page, pcp_list);
2707 		list_del(&page->pcp_list);
2708 		pcp->count -= 1 << order;
2709 	} while (check_new_pages(page, order));
2710 
2711 	return page;
2712 }
2713 
2714 /* Lock and remove page from the per-cpu list */
2715 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2716 			struct zone *zone, unsigned int order,
2717 			int migratetype, unsigned int alloc_flags)
2718 {
2719 	struct per_cpu_pages *pcp;
2720 	struct list_head *list;
2721 	struct page *page;
2722 	unsigned long __maybe_unused UP_flags;
2723 
2724 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2725 	pcp_trylock_prepare(UP_flags);
2726 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2727 	if (!pcp) {
2728 		pcp_trylock_finish(UP_flags);
2729 		return NULL;
2730 	}
2731 
2732 	/*
2733 	 * On allocation, reduce the number of pages that are batch freed.
2734 	 * See nr_pcp_free() where free_factor is increased for subsequent
2735 	 * frees.
2736 	 */
2737 	pcp->free_factor >>= 1;
2738 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2739 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2740 	pcp_spin_unlock(pcp);
2741 	pcp_trylock_finish(UP_flags);
2742 	if (page) {
2743 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2744 		zone_statistics(preferred_zone, zone, 1);
2745 	}
2746 	return page;
2747 }
2748 
2749 /*
2750  * Allocate a page from the given zone.
2751  * Use pcplists for THP or "cheap" high-order allocations.
2752  */
2753 
2754 /*
2755  * Do not instrument rmqueue() with KMSAN. This function may call
2756  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2757  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2758  * may call rmqueue() again, which will result in a deadlock.
2759  */
2760 __no_sanitize_memory
2761 static inline
2762 struct page *rmqueue(struct zone *preferred_zone,
2763 			struct zone *zone, unsigned int order,
2764 			gfp_t gfp_flags, unsigned int alloc_flags,
2765 			int migratetype)
2766 {
2767 	struct page *page;
2768 
2769 	/*
2770 	 * We most definitely don't want callers attempting to
2771 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2772 	 */
2773 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2774 
2775 	if (likely(pcp_allowed_order(order))) {
2776 		page = rmqueue_pcplist(preferred_zone, zone, order,
2777 				       migratetype, alloc_flags);
2778 		if (likely(page))
2779 			goto out;
2780 	}
2781 
2782 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2783 							migratetype);
2784 
2785 out:
2786 	/* Separate test+clear to avoid unnecessary atomics */
2787 	if ((alloc_flags & ALLOC_KSWAPD) &&
2788 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2789 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2790 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2791 	}
2792 
2793 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2794 	return page;
2795 }
2796 
2797 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2798 {
2799 	return __should_fail_alloc_page(gfp_mask, order);
2800 }
2801 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2802 
2803 static inline long __zone_watermark_unusable_free(struct zone *z,
2804 				unsigned int order, unsigned int alloc_flags)
2805 {
2806 	long unusable_free = (1 << order) - 1;
2807 
2808 	/*
2809 	 * If the caller does not have rights to reserves below the min
2810 	 * watermark then subtract the high-atomic reserves. This will
2811 	 * over-estimate the size of the atomic reserve but it avoids a search.
2812 	 */
2813 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2814 		unusable_free += z->nr_reserved_highatomic;
2815 
2816 #ifdef CONFIG_CMA
2817 	/* If allocation can't use CMA areas don't use free CMA pages */
2818 	if (!(alloc_flags & ALLOC_CMA))
2819 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2820 #endif
2821 #ifdef CONFIG_UNACCEPTED_MEMORY
2822 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2823 #endif
2824 
2825 	return unusable_free;
2826 }
2827 
2828 /*
2829  * Return true if free base pages are above 'mark'. For high-order checks it
2830  * will return true of the order-0 watermark is reached and there is at least
2831  * one free page of a suitable size. Checking now avoids taking the zone lock
2832  * to check in the allocation paths if no pages are free.
2833  */
2834 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2835 			 int highest_zoneidx, unsigned int alloc_flags,
2836 			 long free_pages)
2837 {
2838 	long min = mark;
2839 	int o;
2840 
2841 	/* free_pages may go negative - that's OK */
2842 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2843 
2844 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2845 		/*
2846 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2847 		 * as OOM.
2848 		 */
2849 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2850 			min -= min / 2;
2851 
2852 			/*
2853 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2854 			 * access more reserves than just __GFP_HIGH. Other
2855 			 * non-blocking allocations requests such as GFP_NOWAIT
2856 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2857 			 * access to the min reserve.
2858 			 */
2859 			if (alloc_flags & ALLOC_NON_BLOCK)
2860 				min -= min / 4;
2861 		}
2862 
2863 		/*
2864 		 * OOM victims can try even harder than the normal reserve
2865 		 * users on the grounds that it's definitely going to be in
2866 		 * the exit path shortly and free memory. Any allocation it
2867 		 * makes during the free path will be small and short-lived.
2868 		 */
2869 		if (alloc_flags & ALLOC_OOM)
2870 			min -= min / 2;
2871 	}
2872 
2873 	/*
2874 	 * Check watermarks for an order-0 allocation request. If these
2875 	 * are not met, then a high-order request also cannot go ahead
2876 	 * even if a suitable page happened to be free.
2877 	 */
2878 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2879 		return false;
2880 
2881 	/* If this is an order-0 request then the watermark is fine */
2882 	if (!order)
2883 		return true;
2884 
2885 	/* For a high-order request, check at least one suitable page is free */
2886 	for (o = order; o < NR_PAGE_ORDERS; o++) {
2887 		struct free_area *area = &z->free_area[o];
2888 		int mt;
2889 
2890 		if (!area->nr_free)
2891 			continue;
2892 
2893 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2894 			if (!free_area_empty(area, mt))
2895 				return true;
2896 		}
2897 
2898 #ifdef CONFIG_CMA
2899 		if ((alloc_flags & ALLOC_CMA) &&
2900 		    !free_area_empty(area, MIGRATE_CMA)) {
2901 			return true;
2902 		}
2903 #endif
2904 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2905 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2906 			return true;
2907 		}
2908 	}
2909 	return false;
2910 }
2911 
2912 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2913 		      int highest_zoneidx, unsigned int alloc_flags)
2914 {
2915 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2916 					zone_page_state(z, NR_FREE_PAGES));
2917 }
2918 
2919 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2920 				unsigned long mark, int highest_zoneidx,
2921 				unsigned int alloc_flags, gfp_t gfp_mask)
2922 {
2923 	long free_pages;
2924 
2925 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2926 
2927 	/*
2928 	 * Fast check for order-0 only. If this fails then the reserves
2929 	 * need to be calculated.
2930 	 */
2931 	if (!order) {
2932 		long usable_free;
2933 		long reserved;
2934 
2935 		usable_free = free_pages;
2936 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2937 
2938 		/* reserved may over estimate high-atomic reserves. */
2939 		usable_free -= min(usable_free, reserved);
2940 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2941 			return true;
2942 	}
2943 
2944 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2945 					free_pages))
2946 		return true;
2947 
2948 	/*
2949 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2950 	 * when checking the min watermark. The min watermark is the
2951 	 * point where boosting is ignored so that kswapd is woken up
2952 	 * when below the low watermark.
2953 	 */
2954 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2955 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2956 		mark = z->_watermark[WMARK_MIN];
2957 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2958 					alloc_flags, free_pages);
2959 	}
2960 
2961 	return false;
2962 }
2963 
2964 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2965 			unsigned long mark, int highest_zoneidx)
2966 {
2967 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2968 
2969 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2970 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2971 
2972 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2973 								free_pages);
2974 }
2975 
2976 #ifdef CONFIG_NUMA
2977 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
2978 
2979 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2980 {
2981 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2982 				node_reclaim_distance;
2983 }
2984 #else	/* CONFIG_NUMA */
2985 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2986 {
2987 	return true;
2988 }
2989 #endif	/* CONFIG_NUMA */
2990 
2991 /*
2992  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
2993  * fragmentation is subtle. If the preferred zone was HIGHMEM then
2994  * premature use of a lower zone may cause lowmem pressure problems that
2995  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
2996  * probably too small. It only makes sense to spread allocations to avoid
2997  * fragmentation between the Normal and DMA32 zones.
2998  */
2999 static inline unsigned int
3000 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3001 {
3002 	unsigned int alloc_flags;
3003 
3004 	/*
3005 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3006 	 * to save a branch.
3007 	 */
3008 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3009 
3010 #ifdef CONFIG_ZONE_DMA32
3011 	if (!zone)
3012 		return alloc_flags;
3013 
3014 	if (zone_idx(zone) != ZONE_NORMAL)
3015 		return alloc_flags;
3016 
3017 	/*
3018 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3019 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3020 	 * on UMA that if Normal is populated then so is DMA32.
3021 	 */
3022 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3023 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3024 		return alloc_flags;
3025 
3026 	alloc_flags |= ALLOC_NOFRAGMENT;
3027 #endif /* CONFIG_ZONE_DMA32 */
3028 	return alloc_flags;
3029 }
3030 
3031 /* Must be called after current_gfp_context() which can change gfp_mask */
3032 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3033 						  unsigned int alloc_flags)
3034 {
3035 #ifdef CONFIG_CMA
3036 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3037 		alloc_flags |= ALLOC_CMA;
3038 #endif
3039 	return alloc_flags;
3040 }
3041 
3042 /*
3043  * get_page_from_freelist goes through the zonelist trying to allocate
3044  * a page.
3045  */
3046 static struct page *
3047 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3048 						const struct alloc_context *ac)
3049 {
3050 	struct zoneref *z;
3051 	struct zone *zone;
3052 	struct pglist_data *last_pgdat = NULL;
3053 	bool last_pgdat_dirty_ok = false;
3054 	bool no_fallback;
3055 
3056 retry:
3057 	/*
3058 	 * Scan zonelist, looking for a zone with enough free.
3059 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3060 	 */
3061 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3062 	z = ac->preferred_zoneref;
3063 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3064 					ac->nodemask) {
3065 		struct page *page;
3066 		unsigned long mark;
3067 
3068 		if (cpusets_enabled() &&
3069 			(alloc_flags & ALLOC_CPUSET) &&
3070 			!__cpuset_zone_allowed(zone, gfp_mask))
3071 				continue;
3072 		/*
3073 		 * When allocating a page cache page for writing, we
3074 		 * want to get it from a node that is within its dirty
3075 		 * limit, such that no single node holds more than its
3076 		 * proportional share of globally allowed dirty pages.
3077 		 * The dirty limits take into account the node's
3078 		 * lowmem reserves and high watermark so that kswapd
3079 		 * should be able to balance it without having to
3080 		 * write pages from its LRU list.
3081 		 *
3082 		 * XXX: For now, allow allocations to potentially
3083 		 * exceed the per-node dirty limit in the slowpath
3084 		 * (spread_dirty_pages unset) before going into reclaim,
3085 		 * which is important when on a NUMA setup the allowed
3086 		 * nodes are together not big enough to reach the
3087 		 * global limit.  The proper fix for these situations
3088 		 * will require awareness of nodes in the
3089 		 * dirty-throttling and the flusher threads.
3090 		 */
3091 		if (ac->spread_dirty_pages) {
3092 			if (last_pgdat != zone->zone_pgdat) {
3093 				last_pgdat = zone->zone_pgdat;
3094 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3095 			}
3096 
3097 			if (!last_pgdat_dirty_ok)
3098 				continue;
3099 		}
3100 
3101 		if (no_fallback && nr_online_nodes > 1 &&
3102 		    zone != ac->preferred_zoneref->zone) {
3103 			int local_nid;
3104 
3105 			/*
3106 			 * If moving to a remote node, retry but allow
3107 			 * fragmenting fallbacks. Locality is more important
3108 			 * than fragmentation avoidance.
3109 			 */
3110 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3111 			if (zone_to_nid(zone) != local_nid) {
3112 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3113 				goto retry;
3114 			}
3115 		}
3116 
3117 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3118 		if (!zone_watermark_fast(zone, order, mark,
3119 				       ac->highest_zoneidx, alloc_flags,
3120 				       gfp_mask)) {
3121 			int ret;
3122 
3123 			if (has_unaccepted_memory()) {
3124 				if (try_to_accept_memory(zone, order))
3125 					goto try_this_zone;
3126 			}
3127 
3128 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3129 			/*
3130 			 * Watermark failed for this zone, but see if we can
3131 			 * grow this zone if it contains deferred pages.
3132 			 */
3133 			if (deferred_pages_enabled()) {
3134 				if (_deferred_grow_zone(zone, order))
3135 					goto try_this_zone;
3136 			}
3137 #endif
3138 			/* Checked here to keep the fast path fast */
3139 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3140 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3141 				goto try_this_zone;
3142 
3143 			if (!node_reclaim_enabled() ||
3144 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3145 				continue;
3146 
3147 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3148 			switch (ret) {
3149 			case NODE_RECLAIM_NOSCAN:
3150 				/* did not scan */
3151 				continue;
3152 			case NODE_RECLAIM_FULL:
3153 				/* scanned but unreclaimable */
3154 				continue;
3155 			default:
3156 				/* did we reclaim enough */
3157 				if (zone_watermark_ok(zone, order, mark,
3158 					ac->highest_zoneidx, alloc_flags))
3159 					goto try_this_zone;
3160 
3161 				continue;
3162 			}
3163 		}
3164 
3165 try_this_zone:
3166 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3167 				gfp_mask, alloc_flags, ac->migratetype);
3168 		if (page) {
3169 			prep_new_page(page, order, gfp_mask, alloc_flags);
3170 
3171 			/*
3172 			 * If this is a high-order atomic allocation then check
3173 			 * if the pageblock should be reserved for the future
3174 			 */
3175 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3176 				reserve_highatomic_pageblock(page, zone);
3177 
3178 			return page;
3179 		} else {
3180 			if (has_unaccepted_memory()) {
3181 				if (try_to_accept_memory(zone, order))
3182 					goto try_this_zone;
3183 			}
3184 
3185 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3186 			/* Try again if zone has deferred pages */
3187 			if (deferred_pages_enabled()) {
3188 				if (_deferred_grow_zone(zone, order))
3189 					goto try_this_zone;
3190 			}
3191 #endif
3192 		}
3193 	}
3194 
3195 	/*
3196 	 * It's possible on a UMA machine to get through all zones that are
3197 	 * fragmented. If avoiding fragmentation, reset and try again.
3198 	 */
3199 	if (no_fallback) {
3200 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3201 		goto retry;
3202 	}
3203 
3204 	return NULL;
3205 }
3206 
3207 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3208 {
3209 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3210 
3211 	/*
3212 	 * This documents exceptions given to allocations in certain
3213 	 * contexts that are allowed to allocate outside current's set
3214 	 * of allowed nodes.
3215 	 */
3216 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3217 		if (tsk_is_oom_victim(current) ||
3218 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3219 			filter &= ~SHOW_MEM_FILTER_NODES;
3220 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3221 		filter &= ~SHOW_MEM_FILTER_NODES;
3222 
3223 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3224 }
3225 
3226 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3227 {
3228 	struct va_format vaf;
3229 	va_list args;
3230 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3231 
3232 	if ((gfp_mask & __GFP_NOWARN) ||
3233 	     !__ratelimit(&nopage_rs) ||
3234 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3235 		return;
3236 
3237 	va_start(args, fmt);
3238 	vaf.fmt = fmt;
3239 	vaf.va = &args;
3240 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3241 			current->comm, &vaf, gfp_mask, &gfp_mask,
3242 			nodemask_pr_args(nodemask));
3243 	va_end(args);
3244 
3245 	cpuset_print_current_mems_allowed();
3246 	pr_cont("\n");
3247 	dump_stack();
3248 	warn_alloc_show_mem(gfp_mask, nodemask);
3249 }
3250 
3251 static inline struct page *
3252 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3253 			      unsigned int alloc_flags,
3254 			      const struct alloc_context *ac)
3255 {
3256 	struct page *page;
3257 
3258 	page = get_page_from_freelist(gfp_mask, order,
3259 			alloc_flags|ALLOC_CPUSET, ac);
3260 	/*
3261 	 * fallback to ignore cpuset restriction if our nodes
3262 	 * are depleted
3263 	 */
3264 	if (!page)
3265 		page = get_page_from_freelist(gfp_mask, order,
3266 				alloc_flags, ac);
3267 
3268 	return page;
3269 }
3270 
3271 static inline struct page *
3272 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3273 	const struct alloc_context *ac, unsigned long *did_some_progress)
3274 {
3275 	struct oom_control oc = {
3276 		.zonelist = ac->zonelist,
3277 		.nodemask = ac->nodemask,
3278 		.memcg = NULL,
3279 		.gfp_mask = gfp_mask,
3280 		.order = order,
3281 	};
3282 	struct page *page;
3283 
3284 	*did_some_progress = 0;
3285 
3286 	/*
3287 	 * Acquire the oom lock.  If that fails, somebody else is
3288 	 * making progress for us.
3289 	 */
3290 	if (!mutex_trylock(&oom_lock)) {
3291 		*did_some_progress = 1;
3292 		schedule_timeout_uninterruptible(1);
3293 		return NULL;
3294 	}
3295 
3296 	/*
3297 	 * Go through the zonelist yet one more time, keep very high watermark
3298 	 * here, this is only to catch a parallel oom killing, we must fail if
3299 	 * we're still under heavy pressure. But make sure that this reclaim
3300 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3301 	 * allocation which will never fail due to oom_lock already held.
3302 	 */
3303 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3304 				      ~__GFP_DIRECT_RECLAIM, order,
3305 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3306 	if (page)
3307 		goto out;
3308 
3309 	/* Coredumps can quickly deplete all memory reserves */
3310 	if (current->flags & PF_DUMPCORE)
3311 		goto out;
3312 	/* The OOM killer will not help higher order allocs */
3313 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3314 		goto out;
3315 	/*
3316 	 * We have already exhausted all our reclaim opportunities without any
3317 	 * success so it is time to admit defeat. We will skip the OOM killer
3318 	 * because it is very likely that the caller has a more reasonable
3319 	 * fallback than shooting a random task.
3320 	 *
3321 	 * The OOM killer may not free memory on a specific node.
3322 	 */
3323 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3324 		goto out;
3325 	/* The OOM killer does not needlessly kill tasks for lowmem */
3326 	if (ac->highest_zoneidx < ZONE_NORMAL)
3327 		goto out;
3328 	if (pm_suspended_storage())
3329 		goto out;
3330 	/*
3331 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3332 	 * other request to make a forward progress.
3333 	 * We are in an unfortunate situation where out_of_memory cannot
3334 	 * do much for this context but let's try it to at least get
3335 	 * access to memory reserved if the current task is killed (see
3336 	 * out_of_memory). Once filesystems are ready to handle allocation
3337 	 * failures more gracefully we should just bail out here.
3338 	 */
3339 
3340 	/* Exhausted what can be done so it's blame time */
3341 	if (out_of_memory(&oc) ||
3342 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3343 		*did_some_progress = 1;
3344 
3345 		/*
3346 		 * Help non-failing allocations by giving them access to memory
3347 		 * reserves
3348 		 */
3349 		if (gfp_mask & __GFP_NOFAIL)
3350 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3351 					ALLOC_NO_WATERMARKS, ac);
3352 	}
3353 out:
3354 	mutex_unlock(&oom_lock);
3355 	return page;
3356 }
3357 
3358 /*
3359  * Maximum number of compaction retries with a progress before OOM
3360  * killer is consider as the only way to move forward.
3361  */
3362 #define MAX_COMPACT_RETRIES 16
3363 
3364 #ifdef CONFIG_COMPACTION
3365 /* Try memory compaction for high-order allocations before reclaim */
3366 static struct page *
3367 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3368 		unsigned int alloc_flags, const struct alloc_context *ac,
3369 		enum compact_priority prio, enum compact_result *compact_result)
3370 {
3371 	struct page *page = NULL;
3372 	unsigned long pflags;
3373 	unsigned int noreclaim_flag;
3374 
3375 	if (!order)
3376 		return NULL;
3377 
3378 	psi_memstall_enter(&pflags);
3379 	delayacct_compact_start();
3380 	noreclaim_flag = memalloc_noreclaim_save();
3381 
3382 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3383 								prio, &page);
3384 
3385 	memalloc_noreclaim_restore(noreclaim_flag);
3386 	psi_memstall_leave(&pflags);
3387 	delayacct_compact_end();
3388 
3389 	if (*compact_result == COMPACT_SKIPPED)
3390 		return NULL;
3391 	/*
3392 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3393 	 * count a compaction stall
3394 	 */
3395 	count_vm_event(COMPACTSTALL);
3396 
3397 	/* Prep a captured page if available */
3398 	if (page)
3399 		prep_new_page(page, order, gfp_mask, alloc_flags);
3400 
3401 	/* Try get a page from the freelist if available */
3402 	if (!page)
3403 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3404 
3405 	if (page) {
3406 		struct zone *zone = page_zone(page);
3407 
3408 		zone->compact_blockskip_flush = false;
3409 		compaction_defer_reset(zone, order, true);
3410 		count_vm_event(COMPACTSUCCESS);
3411 		return page;
3412 	}
3413 
3414 	/*
3415 	 * It's bad if compaction run occurs and fails. The most likely reason
3416 	 * is that pages exist, but not enough to satisfy watermarks.
3417 	 */
3418 	count_vm_event(COMPACTFAIL);
3419 
3420 	cond_resched();
3421 
3422 	return NULL;
3423 }
3424 
3425 static inline bool
3426 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3427 		     enum compact_result compact_result,
3428 		     enum compact_priority *compact_priority,
3429 		     int *compaction_retries)
3430 {
3431 	int max_retries = MAX_COMPACT_RETRIES;
3432 	int min_priority;
3433 	bool ret = false;
3434 	int retries = *compaction_retries;
3435 	enum compact_priority priority = *compact_priority;
3436 
3437 	if (!order)
3438 		return false;
3439 
3440 	if (fatal_signal_pending(current))
3441 		return false;
3442 
3443 	/*
3444 	 * Compaction was skipped due to a lack of free order-0
3445 	 * migration targets. Continue if reclaim can help.
3446 	 */
3447 	if (compact_result == COMPACT_SKIPPED) {
3448 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3449 		goto out;
3450 	}
3451 
3452 	/*
3453 	 * Compaction managed to coalesce some page blocks, but the
3454 	 * allocation failed presumably due to a race. Retry some.
3455 	 */
3456 	if (compact_result == COMPACT_SUCCESS) {
3457 		/*
3458 		 * !costly requests are much more important than
3459 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3460 		 * facto nofail and invoke OOM killer to move on while
3461 		 * costly can fail and users are ready to cope with
3462 		 * that. 1/4 retries is rather arbitrary but we would
3463 		 * need much more detailed feedback from compaction to
3464 		 * make a better decision.
3465 		 */
3466 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3467 			max_retries /= 4;
3468 
3469 		if (++(*compaction_retries) <= max_retries) {
3470 			ret = true;
3471 			goto out;
3472 		}
3473 	}
3474 
3475 	/*
3476 	 * Compaction failed. Retry with increasing priority.
3477 	 */
3478 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3479 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3480 
3481 	if (*compact_priority > min_priority) {
3482 		(*compact_priority)--;
3483 		*compaction_retries = 0;
3484 		ret = true;
3485 	}
3486 out:
3487 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3488 	return ret;
3489 }
3490 #else
3491 static inline struct page *
3492 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3493 		unsigned int alloc_flags, const struct alloc_context *ac,
3494 		enum compact_priority prio, enum compact_result *compact_result)
3495 {
3496 	*compact_result = COMPACT_SKIPPED;
3497 	return NULL;
3498 }
3499 
3500 static inline bool
3501 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3502 		     enum compact_result compact_result,
3503 		     enum compact_priority *compact_priority,
3504 		     int *compaction_retries)
3505 {
3506 	struct zone *zone;
3507 	struct zoneref *z;
3508 
3509 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3510 		return false;
3511 
3512 	/*
3513 	 * There are setups with compaction disabled which would prefer to loop
3514 	 * inside the allocator rather than hit the oom killer prematurely.
3515 	 * Let's give them a good hope and keep retrying while the order-0
3516 	 * watermarks are OK.
3517 	 */
3518 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3519 				ac->highest_zoneidx, ac->nodemask) {
3520 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3521 					ac->highest_zoneidx, alloc_flags))
3522 			return true;
3523 	}
3524 	return false;
3525 }
3526 #endif /* CONFIG_COMPACTION */
3527 
3528 #ifdef CONFIG_LOCKDEP
3529 static struct lockdep_map __fs_reclaim_map =
3530 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3531 
3532 static bool __need_reclaim(gfp_t gfp_mask)
3533 {
3534 	/* no reclaim without waiting on it */
3535 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3536 		return false;
3537 
3538 	/* this guy won't enter reclaim */
3539 	if (current->flags & PF_MEMALLOC)
3540 		return false;
3541 
3542 	if (gfp_mask & __GFP_NOLOCKDEP)
3543 		return false;
3544 
3545 	return true;
3546 }
3547 
3548 void __fs_reclaim_acquire(unsigned long ip)
3549 {
3550 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3551 }
3552 
3553 void __fs_reclaim_release(unsigned long ip)
3554 {
3555 	lock_release(&__fs_reclaim_map, ip);
3556 }
3557 
3558 void fs_reclaim_acquire(gfp_t gfp_mask)
3559 {
3560 	gfp_mask = current_gfp_context(gfp_mask);
3561 
3562 	if (__need_reclaim(gfp_mask)) {
3563 		if (gfp_mask & __GFP_FS)
3564 			__fs_reclaim_acquire(_RET_IP_);
3565 
3566 #ifdef CONFIG_MMU_NOTIFIER
3567 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3568 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3569 #endif
3570 
3571 	}
3572 }
3573 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3574 
3575 void fs_reclaim_release(gfp_t gfp_mask)
3576 {
3577 	gfp_mask = current_gfp_context(gfp_mask);
3578 
3579 	if (__need_reclaim(gfp_mask)) {
3580 		if (gfp_mask & __GFP_FS)
3581 			__fs_reclaim_release(_RET_IP_);
3582 	}
3583 }
3584 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3585 #endif
3586 
3587 /*
3588  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3589  * have been rebuilt so allocation retries. Reader side does not lock and
3590  * retries the allocation if zonelist changes. Writer side is protected by the
3591  * embedded spin_lock.
3592  */
3593 static DEFINE_SEQLOCK(zonelist_update_seq);
3594 
3595 static unsigned int zonelist_iter_begin(void)
3596 {
3597 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3598 		return read_seqbegin(&zonelist_update_seq);
3599 
3600 	return 0;
3601 }
3602 
3603 static unsigned int check_retry_zonelist(unsigned int seq)
3604 {
3605 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3606 		return read_seqretry(&zonelist_update_seq, seq);
3607 
3608 	return seq;
3609 }
3610 
3611 /* Perform direct synchronous page reclaim */
3612 static unsigned long
3613 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3614 					const struct alloc_context *ac)
3615 {
3616 	unsigned int noreclaim_flag;
3617 	unsigned long progress;
3618 
3619 	cond_resched();
3620 
3621 	/* We now go into synchronous reclaim */
3622 	cpuset_memory_pressure_bump();
3623 	fs_reclaim_acquire(gfp_mask);
3624 	noreclaim_flag = memalloc_noreclaim_save();
3625 
3626 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3627 								ac->nodemask);
3628 
3629 	memalloc_noreclaim_restore(noreclaim_flag);
3630 	fs_reclaim_release(gfp_mask);
3631 
3632 	cond_resched();
3633 
3634 	return progress;
3635 }
3636 
3637 /* The really slow allocator path where we enter direct reclaim */
3638 static inline struct page *
3639 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3640 		unsigned int alloc_flags, const struct alloc_context *ac,
3641 		unsigned long *did_some_progress)
3642 {
3643 	struct page *page = NULL;
3644 	unsigned long pflags;
3645 	bool drained = false;
3646 
3647 	psi_memstall_enter(&pflags);
3648 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3649 	if (unlikely(!(*did_some_progress)))
3650 		goto out;
3651 
3652 retry:
3653 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3654 
3655 	/*
3656 	 * If an allocation failed after direct reclaim, it could be because
3657 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3658 	 * Shrink them and try again
3659 	 */
3660 	if (!page && !drained) {
3661 		unreserve_highatomic_pageblock(ac, false);
3662 		drain_all_pages(NULL);
3663 		drained = true;
3664 		goto retry;
3665 	}
3666 out:
3667 	psi_memstall_leave(&pflags);
3668 
3669 	return page;
3670 }
3671 
3672 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3673 			     const struct alloc_context *ac)
3674 {
3675 	struct zoneref *z;
3676 	struct zone *zone;
3677 	pg_data_t *last_pgdat = NULL;
3678 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3679 
3680 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3681 					ac->nodemask) {
3682 		if (!managed_zone(zone))
3683 			continue;
3684 		if (last_pgdat != zone->zone_pgdat) {
3685 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3686 			last_pgdat = zone->zone_pgdat;
3687 		}
3688 	}
3689 }
3690 
3691 static inline unsigned int
3692 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3693 {
3694 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3695 
3696 	/*
3697 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3698 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3699 	 * to save two branches.
3700 	 */
3701 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3702 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3703 
3704 	/*
3705 	 * The caller may dip into page reserves a bit more if the caller
3706 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3707 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3708 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3709 	 */
3710 	alloc_flags |= (__force int)
3711 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3712 
3713 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3714 		/*
3715 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3716 		 * if it can't schedule.
3717 		 */
3718 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3719 			alloc_flags |= ALLOC_NON_BLOCK;
3720 
3721 			if (order > 0)
3722 				alloc_flags |= ALLOC_HIGHATOMIC;
3723 		}
3724 
3725 		/*
3726 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3727 		 * GFP_ATOMIC) rather than fail, see the comment for
3728 		 * cpuset_node_allowed().
3729 		 */
3730 		if (alloc_flags & ALLOC_MIN_RESERVE)
3731 			alloc_flags &= ~ALLOC_CPUSET;
3732 	} else if (unlikely(rt_task(current)) && in_task())
3733 		alloc_flags |= ALLOC_MIN_RESERVE;
3734 
3735 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3736 
3737 	return alloc_flags;
3738 }
3739 
3740 static bool oom_reserves_allowed(struct task_struct *tsk)
3741 {
3742 	if (!tsk_is_oom_victim(tsk))
3743 		return false;
3744 
3745 	/*
3746 	 * !MMU doesn't have oom reaper so give access to memory reserves
3747 	 * only to the thread with TIF_MEMDIE set
3748 	 */
3749 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3750 		return false;
3751 
3752 	return true;
3753 }
3754 
3755 /*
3756  * Distinguish requests which really need access to full memory
3757  * reserves from oom victims which can live with a portion of it
3758  */
3759 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3760 {
3761 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3762 		return 0;
3763 	if (gfp_mask & __GFP_MEMALLOC)
3764 		return ALLOC_NO_WATERMARKS;
3765 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3766 		return ALLOC_NO_WATERMARKS;
3767 	if (!in_interrupt()) {
3768 		if (current->flags & PF_MEMALLOC)
3769 			return ALLOC_NO_WATERMARKS;
3770 		else if (oom_reserves_allowed(current))
3771 			return ALLOC_OOM;
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3778 {
3779 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3780 }
3781 
3782 /*
3783  * Checks whether it makes sense to retry the reclaim to make a forward progress
3784  * for the given allocation request.
3785  *
3786  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3787  * without success, or when we couldn't even meet the watermark if we
3788  * reclaimed all remaining pages on the LRU lists.
3789  *
3790  * Returns true if a retry is viable or false to enter the oom path.
3791  */
3792 static inline bool
3793 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3794 		     struct alloc_context *ac, int alloc_flags,
3795 		     bool did_some_progress, int *no_progress_loops)
3796 {
3797 	struct zone *zone;
3798 	struct zoneref *z;
3799 	bool ret = false;
3800 
3801 	/*
3802 	 * Costly allocations might have made a progress but this doesn't mean
3803 	 * their order will become available due to high fragmentation so
3804 	 * always increment the no progress counter for them
3805 	 */
3806 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3807 		*no_progress_loops = 0;
3808 	else
3809 		(*no_progress_loops)++;
3810 
3811 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3812 		goto out;
3813 
3814 
3815 	/*
3816 	 * Keep reclaiming pages while there is a chance this will lead
3817 	 * somewhere.  If none of the target zones can satisfy our allocation
3818 	 * request even if all reclaimable pages are considered then we are
3819 	 * screwed and have to go OOM.
3820 	 */
3821 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3822 				ac->highest_zoneidx, ac->nodemask) {
3823 		unsigned long available;
3824 		unsigned long reclaimable;
3825 		unsigned long min_wmark = min_wmark_pages(zone);
3826 		bool wmark;
3827 
3828 		available = reclaimable = zone_reclaimable_pages(zone);
3829 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3830 
3831 		/*
3832 		 * Would the allocation succeed if we reclaimed all
3833 		 * reclaimable pages?
3834 		 */
3835 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3836 				ac->highest_zoneidx, alloc_flags, available);
3837 		trace_reclaim_retry_zone(z, order, reclaimable,
3838 				available, min_wmark, *no_progress_loops, wmark);
3839 		if (wmark) {
3840 			ret = true;
3841 			break;
3842 		}
3843 	}
3844 
3845 	/*
3846 	 * Memory allocation/reclaim might be called from a WQ context and the
3847 	 * current implementation of the WQ concurrency control doesn't
3848 	 * recognize that a particular WQ is congested if the worker thread is
3849 	 * looping without ever sleeping. Therefore we have to do a short sleep
3850 	 * here rather than calling cond_resched().
3851 	 */
3852 	if (current->flags & PF_WQ_WORKER)
3853 		schedule_timeout_uninterruptible(1);
3854 	else
3855 		cond_resched();
3856 out:
3857 	/* Before OOM, exhaust highatomic_reserve */
3858 	if (!ret)
3859 		return unreserve_highatomic_pageblock(ac, true);
3860 
3861 	return ret;
3862 }
3863 
3864 static inline bool
3865 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3866 {
3867 	/*
3868 	 * It's possible that cpuset's mems_allowed and the nodemask from
3869 	 * mempolicy don't intersect. This should be normally dealt with by
3870 	 * policy_nodemask(), but it's possible to race with cpuset update in
3871 	 * such a way the check therein was true, and then it became false
3872 	 * before we got our cpuset_mems_cookie here.
3873 	 * This assumes that for all allocations, ac->nodemask can come only
3874 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3875 	 * when it does not intersect with the cpuset restrictions) or the
3876 	 * caller can deal with a violated nodemask.
3877 	 */
3878 	if (cpusets_enabled() && ac->nodemask &&
3879 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3880 		ac->nodemask = NULL;
3881 		return true;
3882 	}
3883 
3884 	/*
3885 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3886 	 * possible to race with parallel threads in such a way that our
3887 	 * allocation can fail while the mask is being updated. If we are about
3888 	 * to fail, check if the cpuset changed during allocation and if so,
3889 	 * retry.
3890 	 */
3891 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3892 		return true;
3893 
3894 	return false;
3895 }
3896 
3897 static inline struct page *
3898 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3899 						struct alloc_context *ac)
3900 {
3901 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3902 	bool can_compact = gfp_compaction_allowed(gfp_mask);
3903 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3904 	struct page *page = NULL;
3905 	unsigned int alloc_flags;
3906 	unsigned long did_some_progress;
3907 	enum compact_priority compact_priority;
3908 	enum compact_result compact_result;
3909 	int compaction_retries;
3910 	int no_progress_loops;
3911 	unsigned int cpuset_mems_cookie;
3912 	unsigned int zonelist_iter_cookie;
3913 	int reserve_flags;
3914 
3915 restart:
3916 	compaction_retries = 0;
3917 	no_progress_loops = 0;
3918 	compact_priority = DEF_COMPACT_PRIORITY;
3919 	cpuset_mems_cookie = read_mems_allowed_begin();
3920 	zonelist_iter_cookie = zonelist_iter_begin();
3921 
3922 	/*
3923 	 * The fast path uses conservative alloc_flags to succeed only until
3924 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3925 	 * alloc_flags precisely. So we do that now.
3926 	 */
3927 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3928 
3929 	/*
3930 	 * We need to recalculate the starting point for the zonelist iterator
3931 	 * because we might have used different nodemask in the fast path, or
3932 	 * there was a cpuset modification and we are retrying - otherwise we
3933 	 * could end up iterating over non-eligible zones endlessly.
3934 	 */
3935 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3936 					ac->highest_zoneidx, ac->nodemask);
3937 	if (!ac->preferred_zoneref->zone)
3938 		goto nopage;
3939 
3940 	/*
3941 	 * Check for insane configurations where the cpuset doesn't contain
3942 	 * any suitable zone to satisfy the request - e.g. non-movable
3943 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3944 	 */
3945 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3946 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3947 					ac->highest_zoneidx,
3948 					&cpuset_current_mems_allowed);
3949 		if (!z->zone)
3950 			goto nopage;
3951 	}
3952 
3953 	if (alloc_flags & ALLOC_KSWAPD)
3954 		wake_all_kswapds(order, gfp_mask, ac);
3955 
3956 	/*
3957 	 * The adjusted alloc_flags might result in immediate success, so try
3958 	 * that first
3959 	 */
3960 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3961 	if (page)
3962 		goto got_pg;
3963 
3964 	/*
3965 	 * For costly allocations, try direct compaction first, as it's likely
3966 	 * that we have enough base pages and don't need to reclaim. For non-
3967 	 * movable high-order allocations, do that as well, as compaction will
3968 	 * try prevent permanent fragmentation by migrating from blocks of the
3969 	 * same migratetype.
3970 	 * Don't try this for allocations that are allowed to ignore
3971 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3972 	 */
3973 	if (can_direct_reclaim && can_compact &&
3974 			(costly_order ||
3975 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3976 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3977 		page = __alloc_pages_direct_compact(gfp_mask, order,
3978 						alloc_flags, ac,
3979 						INIT_COMPACT_PRIORITY,
3980 						&compact_result);
3981 		if (page)
3982 			goto got_pg;
3983 
3984 		/*
3985 		 * Checks for costly allocations with __GFP_NORETRY, which
3986 		 * includes some THP page fault allocations
3987 		 */
3988 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3989 			/*
3990 			 * If allocating entire pageblock(s) and compaction
3991 			 * failed because all zones are below low watermarks
3992 			 * or is prohibited because it recently failed at this
3993 			 * order, fail immediately unless the allocator has
3994 			 * requested compaction and reclaim retry.
3995 			 *
3996 			 * Reclaim is
3997 			 *  - potentially very expensive because zones are far
3998 			 *    below their low watermarks or this is part of very
3999 			 *    bursty high order allocations,
4000 			 *  - not guaranteed to help because isolate_freepages()
4001 			 *    may not iterate over freed pages as part of its
4002 			 *    linear scan, and
4003 			 *  - unlikely to make entire pageblocks free on its
4004 			 *    own.
4005 			 */
4006 			if (compact_result == COMPACT_SKIPPED ||
4007 			    compact_result == COMPACT_DEFERRED)
4008 				goto nopage;
4009 
4010 			/*
4011 			 * Looks like reclaim/compaction is worth trying, but
4012 			 * sync compaction could be very expensive, so keep
4013 			 * using async compaction.
4014 			 */
4015 			compact_priority = INIT_COMPACT_PRIORITY;
4016 		}
4017 	}
4018 
4019 retry:
4020 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4021 	if (alloc_flags & ALLOC_KSWAPD)
4022 		wake_all_kswapds(order, gfp_mask, ac);
4023 
4024 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4025 	if (reserve_flags)
4026 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4027 					  (alloc_flags & ALLOC_KSWAPD);
4028 
4029 	/*
4030 	 * Reset the nodemask and zonelist iterators if memory policies can be
4031 	 * ignored. These allocations are high priority and system rather than
4032 	 * user oriented.
4033 	 */
4034 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4035 		ac->nodemask = NULL;
4036 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4037 					ac->highest_zoneidx, ac->nodemask);
4038 	}
4039 
4040 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4041 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4042 	if (page)
4043 		goto got_pg;
4044 
4045 	/* Caller is not willing to reclaim, we can't balance anything */
4046 	if (!can_direct_reclaim)
4047 		goto nopage;
4048 
4049 	/* Avoid recursion of direct reclaim */
4050 	if (current->flags & PF_MEMALLOC)
4051 		goto nopage;
4052 
4053 	/* Try direct reclaim and then allocating */
4054 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4055 							&did_some_progress);
4056 	if (page)
4057 		goto got_pg;
4058 
4059 	/* Try direct compaction and then allocating */
4060 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4061 					compact_priority, &compact_result);
4062 	if (page)
4063 		goto got_pg;
4064 
4065 	/* Do not loop if specifically requested */
4066 	if (gfp_mask & __GFP_NORETRY)
4067 		goto nopage;
4068 
4069 	/*
4070 	 * Do not retry costly high order allocations unless they are
4071 	 * __GFP_RETRY_MAYFAIL and we can compact
4072 	 */
4073 	if (costly_order && (!can_compact ||
4074 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4075 		goto nopage;
4076 
4077 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4078 				 did_some_progress > 0, &no_progress_loops))
4079 		goto retry;
4080 
4081 	/*
4082 	 * It doesn't make any sense to retry for the compaction if the order-0
4083 	 * reclaim is not able to make any progress because the current
4084 	 * implementation of the compaction depends on the sufficient amount
4085 	 * of free memory (see __compaction_suitable)
4086 	 */
4087 	if (did_some_progress > 0 && can_compact &&
4088 			should_compact_retry(ac, order, alloc_flags,
4089 				compact_result, &compact_priority,
4090 				&compaction_retries))
4091 		goto retry;
4092 
4093 
4094 	/*
4095 	 * Deal with possible cpuset update races or zonelist updates to avoid
4096 	 * a unnecessary OOM kill.
4097 	 */
4098 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4099 	    check_retry_zonelist(zonelist_iter_cookie))
4100 		goto restart;
4101 
4102 	/* Reclaim has failed us, start killing things */
4103 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4104 	if (page)
4105 		goto got_pg;
4106 
4107 	/* Avoid allocations with no watermarks from looping endlessly */
4108 	if (tsk_is_oom_victim(current) &&
4109 	    (alloc_flags & ALLOC_OOM ||
4110 	     (gfp_mask & __GFP_NOMEMALLOC)))
4111 		goto nopage;
4112 
4113 	/* Retry as long as the OOM killer is making progress */
4114 	if (did_some_progress) {
4115 		no_progress_loops = 0;
4116 		goto retry;
4117 	}
4118 
4119 nopage:
4120 	/*
4121 	 * Deal with possible cpuset update races or zonelist updates to avoid
4122 	 * a unnecessary OOM kill.
4123 	 */
4124 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4125 	    check_retry_zonelist(zonelist_iter_cookie))
4126 		goto restart;
4127 
4128 	/*
4129 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4130 	 * we always retry
4131 	 */
4132 	if (gfp_mask & __GFP_NOFAIL) {
4133 		/*
4134 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4135 		 * of any new users that actually require GFP_NOWAIT
4136 		 */
4137 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4138 			goto fail;
4139 
4140 		/*
4141 		 * PF_MEMALLOC request from this context is rather bizarre
4142 		 * because we cannot reclaim anything and only can loop waiting
4143 		 * for somebody to do a work for us
4144 		 */
4145 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4146 
4147 		/*
4148 		 * non failing costly orders are a hard requirement which we
4149 		 * are not prepared for much so let's warn about these users
4150 		 * so that we can identify them and convert them to something
4151 		 * else.
4152 		 */
4153 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4154 
4155 		/*
4156 		 * Help non-failing allocations by giving some access to memory
4157 		 * reserves normally used for high priority non-blocking
4158 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4159 		 * could deplete whole memory reserves which would just make
4160 		 * the situation worse.
4161 		 */
4162 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4163 		if (page)
4164 			goto got_pg;
4165 
4166 		cond_resched();
4167 		goto retry;
4168 	}
4169 fail:
4170 	warn_alloc(gfp_mask, ac->nodemask,
4171 			"page allocation failure: order:%u", order);
4172 got_pg:
4173 	return page;
4174 }
4175 
4176 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4177 		int preferred_nid, nodemask_t *nodemask,
4178 		struct alloc_context *ac, gfp_t *alloc_gfp,
4179 		unsigned int *alloc_flags)
4180 {
4181 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4182 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4183 	ac->nodemask = nodemask;
4184 	ac->migratetype = gfp_migratetype(gfp_mask);
4185 
4186 	if (cpusets_enabled()) {
4187 		*alloc_gfp |= __GFP_HARDWALL;
4188 		/*
4189 		 * When we are in the interrupt context, it is irrelevant
4190 		 * to the current task context. It means that any node ok.
4191 		 */
4192 		if (in_task() && !ac->nodemask)
4193 			ac->nodemask = &cpuset_current_mems_allowed;
4194 		else
4195 			*alloc_flags |= ALLOC_CPUSET;
4196 	}
4197 
4198 	might_alloc(gfp_mask);
4199 
4200 	if (should_fail_alloc_page(gfp_mask, order))
4201 		return false;
4202 
4203 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4204 
4205 	/* Dirty zone balancing only done in the fast path */
4206 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4207 
4208 	/*
4209 	 * The preferred zone is used for statistics but crucially it is
4210 	 * also used as the starting point for the zonelist iterator. It
4211 	 * may get reset for allocations that ignore memory policies.
4212 	 */
4213 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4214 					ac->highest_zoneidx, ac->nodemask);
4215 
4216 	return true;
4217 }
4218 
4219 /*
4220  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4221  * @gfp: GFP flags for the allocation
4222  * @preferred_nid: The preferred NUMA node ID to allocate from
4223  * @nodemask: Set of nodes to allocate from, may be NULL
4224  * @nr_pages: The number of pages desired on the list or array
4225  * @page_list: Optional list to store the allocated pages
4226  * @page_array: Optional array to store the pages
4227  *
4228  * This is a batched version of the page allocator that attempts to
4229  * allocate nr_pages quickly. Pages are added to page_list if page_list
4230  * is not NULL, otherwise it is assumed that the page_array is valid.
4231  *
4232  * For lists, nr_pages is the number of pages that should be allocated.
4233  *
4234  * For arrays, only NULL elements are populated with pages and nr_pages
4235  * is the maximum number of pages that will be stored in the array.
4236  *
4237  * Returns the number of pages on the list or array.
4238  */
4239 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4240 			nodemask_t *nodemask, int nr_pages,
4241 			struct list_head *page_list,
4242 			struct page **page_array)
4243 {
4244 	struct page *page;
4245 	unsigned long __maybe_unused UP_flags;
4246 	struct zone *zone;
4247 	struct zoneref *z;
4248 	struct per_cpu_pages *pcp;
4249 	struct list_head *pcp_list;
4250 	struct alloc_context ac;
4251 	gfp_t alloc_gfp;
4252 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4253 	int nr_populated = 0, nr_account = 0;
4254 
4255 	/*
4256 	 * Skip populated array elements to determine if any pages need
4257 	 * to be allocated before disabling IRQs.
4258 	 */
4259 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4260 		nr_populated++;
4261 
4262 	/* No pages requested? */
4263 	if (unlikely(nr_pages <= 0))
4264 		goto out;
4265 
4266 	/* Already populated array? */
4267 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4268 		goto out;
4269 
4270 	/* Bulk allocator does not support memcg accounting. */
4271 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4272 		goto failed;
4273 
4274 	/* Use the single page allocator for one page. */
4275 	if (nr_pages - nr_populated == 1)
4276 		goto failed;
4277 
4278 #ifdef CONFIG_PAGE_OWNER
4279 	/*
4280 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4281 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4282 	 * removes much of the performance benefit of bulk allocation so
4283 	 * force the caller to allocate one page at a time as it'll have
4284 	 * similar performance to added complexity to the bulk allocator.
4285 	 */
4286 	if (static_branch_unlikely(&page_owner_inited))
4287 		goto failed;
4288 #endif
4289 
4290 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4291 	gfp &= gfp_allowed_mask;
4292 	alloc_gfp = gfp;
4293 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4294 		goto out;
4295 	gfp = alloc_gfp;
4296 
4297 	/* Find an allowed local zone that meets the low watermark. */
4298 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4299 		unsigned long mark;
4300 
4301 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4302 		    !__cpuset_zone_allowed(zone, gfp)) {
4303 			continue;
4304 		}
4305 
4306 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4307 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4308 			goto failed;
4309 		}
4310 
4311 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4312 		if (zone_watermark_fast(zone, 0,  mark,
4313 				zonelist_zone_idx(ac.preferred_zoneref),
4314 				alloc_flags, gfp)) {
4315 			break;
4316 		}
4317 	}
4318 
4319 	/*
4320 	 * If there are no allowed local zones that meets the watermarks then
4321 	 * try to allocate a single page and reclaim if necessary.
4322 	 */
4323 	if (unlikely(!zone))
4324 		goto failed;
4325 
4326 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4327 	pcp_trylock_prepare(UP_flags);
4328 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4329 	if (!pcp)
4330 		goto failed_irq;
4331 
4332 	/* Attempt the batch allocation */
4333 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4334 	while (nr_populated < nr_pages) {
4335 
4336 		/* Skip existing pages */
4337 		if (page_array && page_array[nr_populated]) {
4338 			nr_populated++;
4339 			continue;
4340 		}
4341 
4342 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4343 								pcp, pcp_list);
4344 		if (unlikely(!page)) {
4345 			/* Try and allocate at least one page */
4346 			if (!nr_account) {
4347 				pcp_spin_unlock(pcp);
4348 				goto failed_irq;
4349 			}
4350 			break;
4351 		}
4352 		nr_account++;
4353 
4354 		prep_new_page(page, 0, gfp, 0);
4355 		if (page_list)
4356 			list_add(&page->lru, page_list);
4357 		else
4358 			page_array[nr_populated] = page;
4359 		nr_populated++;
4360 	}
4361 
4362 	pcp_spin_unlock(pcp);
4363 	pcp_trylock_finish(UP_flags);
4364 
4365 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4366 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4367 
4368 out:
4369 	return nr_populated;
4370 
4371 failed_irq:
4372 	pcp_trylock_finish(UP_flags);
4373 
4374 failed:
4375 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4376 	if (page) {
4377 		if (page_list)
4378 			list_add(&page->lru, page_list);
4379 		else
4380 			page_array[nr_populated] = page;
4381 		nr_populated++;
4382 	}
4383 
4384 	goto out;
4385 }
4386 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4387 
4388 /*
4389  * This is the 'heart' of the zoned buddy allocator.
4390  */
4391 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4392 							nodemask_t *nodemask)
4393 {
4394 	struct page *page;
4395 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4396 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4397 	struct alloc_context ac = { };
4398 
4399 	/*
4400 	 * There are several places where we assume that the order value is sane
4401 	 * so bail out early if the request is out of bound.
4402 	 */
4403 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4404 		return NULL;
4405 
4406 	gfp &= gfp_allowed_mask;
4407 	/*
4408 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4409 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4410 	 * from a particular context which has been marked by
4411 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4412 	 * movable zones are not used during allocation.
4413 	 */
4414 	gfp = current_gfp_context(gfp);
4415 	alloc_gfp = gfp;
4416 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4417 			&alloc_gfp, &alloc_flags))
4418 		return NULL;
4419 
4420 	/*
4421 	 * Forbid the first pass from falling back to types that fragment
4422 	 * memory until all local zones are considered.
4423 	 */
4424 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4425 
4426 	/* First allocation attempt */
4427 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4428 	if (likely(page))
4429 		goto out;
4430 
4431 	alloc_gfp = gfp;
4432 	ac.spread_dirty_pages = false;
4433 
4434 	/*
4435 	 * Restore the original nodemask if it was potentially replaced with
4436 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4437 	 */
4438 	ac.nodemask = nodemask;
4439 
4440 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4441 
4442 out:
4443 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4444 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4445 		__free_pages(page, order);
4446 		page = NULL;
4447 	}
4448 
4449 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4450 	kmsan_alloc_page(page, order, alloc_gfp);
4451 
4452 	return page;
4453 }
4454 EXPORT_SYMBOL(__alloc_pages);
4455 
4456 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4457 		nodemask_t *nodemask)
4458 {
4459 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4460 			preferred_nid, nodemask);
4461 	struct folio *folio = (struct folio *)page;
4462 
4463 	if (folio && order > 1)
4464 		folio_prep_large_rmappable(folio);
4465 	return folio;
4466 }
4467 EXPORT_SYMBOL(__folio_alloc);
4468 
4469 /*
4470  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4471  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4472  * you need to access high mem.
4473  */
4474 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4475 {
4476 	struct page *page;
4477 
4478 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4479 	if (!page)
4480 		return 0;
4481 	return (unsigned long) page_address(page);
4482 }
4483 EXPORT_SYMBOL(__get_free_pages);
4484 
4485 unsigned long get_zeroed_page(gfp_t gfp_mask)
4486 {
4487 	return __get_free_page(gfp_mask | __GFP_ZERO);
4488 }
4489 EXPORT_SYMBOL(get_zeroed_page);
4490 
4491 /**
4492  * __free_pages - Free pages allocated with alloc_pages().
4493  * @page: The page pointer returned from alloc_pages().
4494  * @order: The order of the allocation.
4495  *
4496  * This function can free multi-page allocations that are not compound
4497  * pages.  It does not check that the @order passed in matches that of
4498  * the allocation, so it is easy to leak memory.  Freeing more memory
4499  * than was allocated will probably emit a warning.
4500  *
4501  * If the last reference to this page is speculative, it will be released
4502  * by put_page() which only frees the first page of a non-compound
4503  * allocation.  To prevent the remaining pages from being leaked, we free
4504  * the subsequent pages here.  If you want to use the page's reference
4505  * count to decide when to free the allocation, you should allocate a
4506  * compound page, and use put_page() instead of __free_pages().
4507  *
4508  * Context: May be called in interrupt context or while holding a normal
4509  * spinlock, but not in NMI context or while holding a raw spinlock.
4510  */
4511 void __free_pages(struct page *page, unsigned int order)
4512 {
4513 	/* get PageHead before we drop reference */
4514 	int head = PageHead(page);
4515 
4516 	if (put_page_testzero(page))
4517 		free_the_page(page, order);
4518 	else if (!head)
4519 		while (order-- > 0)
4520 			free_the_page(page + (1 << order), order);
4521 }
4522 EXPORT_SYMBOL(__free_pages);
4523 
4524 void free_pages(unsigned long addr, unsigned int order)
4525 {
4526 	if (addr != 0) {
4527 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4528 		__free_pages(virt_to_page((void *)addr), order);
4529 	}
4530 }
4531 
4532 EXPORT_SYMBOL(free_pages);
4533 
4534 /*
4535  * Page Fragment:
4536  *  An arbitrary-length arbitrary-offset area of memory which resides
4537  *  within a 0 or higher order page.  Multiple fragments within that page
4538  *  are individually refcounted, in the page's reference counter.
4539  *
4540  * The page_frag functions below provide a simple allocation framework for
4541  * page fragments.  This is used by the network stack and network device
4542  * drivers to provide a backing region of memory for use as either an
4543  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4544  */
4545 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4546 					     gfp_t gfp_mask)
4547 {
4548 	struct page *page = NULL;
4549 	gfp_t gfp = gfp_mask;
4550 
4551 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4552 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4553 		    __GFP_NOMEMALLOC;
4554 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4555 				PAGE_FRAG_CACHE_MAX_ORDER);
4556 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4557 #endif
4558 	if (unlikely(!page))
4559 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4560 
4561 	nc->va = page ? page_address(page) : NULL;
4562 
4563 	return page;
4564 }
4565 
4566 void __page_frag_cache_drain(struct page *page, unsigned int count)
4567 {
4568 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4569 
4570 	if (page_ref_sub_and_test(page, count))
4571 		free_the_page(page, compound_order(page));
4572 }
4573 EXPORT_SYMBOL(__page_frag_cache_drain);
4574 
4575 void *page_frag_alloc_align(struct page_frag_cache *nc,
4576 		      unsigned int fragsz, gfp_t gfp_mask,
4577 		      unsigned int align_mask)
4578 {
4579 	unsigned int size = PAGE_SIZE;
4580 	struct page *page;
4581 	int offset;
4582 
4583 	if (unlikely(!nc->va)) {
4584 refill:
4585 		page = __page_frag_cache_refill(nc, gfp_mask);
4586 		if (!page)
4587 			return NULL;
4588 
4589 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4590 		/* if size can vary use size else just use PAGE_SIZE */
4591 		size = nc->size;
4592 #endif
4593 		/* Even if we own the page, we do not use atomic_set().
4594 		 * This would break get_page_unless_zero() users.
4595 		 */
4596 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4597 
4598 		/* reset page count bias and offset to start of new frag */
4599 		nc->pfmemalloc = page_is_pfmemalloc(page);
4600 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4601 		nc->offset = size;
4602 	}
4603 
4604 	offset = nc->offset - fragsz;
4605 	if (unlikely(offset < 0)) {
4606 		page = virt_to_page(nc->va);
4607 
4608 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4609 			goto refill;
4610 
4611 		if (unlikely(nc->pfmemalloc)) {
4612 			free_the_page(page, compound_order(page));
4613 			goto refill;
4614 		}
4615 
4616 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4617 		/* if size can vary use size else just use PAGE_SIZE */
4618 		size = nc->size;
4619 #endif
4620 		/* OK, page count is 0, we can safely set it */
4621 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4622 
4623 		/* reset page count bias and offset to start of new frag */
4624 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4625 		offset = size - fragsz;
4626 		if (unlikely(offset < 0)) {
4627 			/*
4628 			 * The caller is trying to allocate a fragment
4629 			 * with fragsz > PAGE_SIZE but the cache isn't big
4630 			 * enough to satisfy the request, this may
4631 			 * happen in low memory conditions.
4632 			 * We don't release the cache page because
4633 			 * it could make memory pressure worse
4634 			 * so we simply return NULL here.
4635 			 */
4636 			return NULL;
4637 		}
4638 	}
4639 
4640 	nc->pagecnt_bias--;
4641 	offset &= align_mask;
4642 	nc->offset = offset;
4643 
4644 	return nc->va + offset;
4645 }
4646 EXPORT_SYMBOL(page_frag_alloc_align);
4647 
4648 /*
4649  * Frees a page fragment allocated out of either a compound or order 0 page.
4650  */
4651 void page_frag_free(void *addr)
4652 {
4653 	struct page *page = virt_to_head_page(addr);
4654 
4655 	if (unlikely(put_page_testzero(page)))
4656 		free_the_page(page, compound_order(page));
4657 }
4658 EXPORT_SYMBOL(page_frag_free);
4659 
4660 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4661 		size_t size)
4662 {
4663 	if (addr) {
4664 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4665 		struct page *page = virt_to_page((void *)addr);
4666 		struct page *last = page + nr;
4667 
4668 		split_page_owner(page, 1 << order);
4669 		split_page_memcg(page, 1 << order);
4670 		while (page < --last)
4671 			set_page_refcounted(last);
4672 
4673 		last = page + (1UL << order);
4674 		for (page += nr; page < last; page++)
4675 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4676 	}
4677 	return (void *)addr;
4678 }
4679 
4680 /**
4681  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4682  * @size: the number of bytes to allocate
4683  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4684  *
4685  * This function is similar to alloc_pages(), except that it allocates the
4686  * minimum number of pages to satisfy the request.  alloc_pages() can only
4687  * allocate memory in power-of-two pages.
4688  *
4689  * This function is also limited by MAX_ORDER.
4690  *
4691  * Memory allocated by this function must be released by free_pages_exact().
4692  *
4693  * Return: pointer to the allocated area or %NULL in case of error.
4694  */
4695 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4696 {
4697 	unsigned int order = get_order(size);
4698 	unsigned long addr;
4699 
4700 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4701 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4702 
4703 	addr = __get_free_pages(gfp_mask, order);
4704 	return make_alloc_exact(addr, order, size);
4705 }
4706 EXPORT_SYMBOL(alloc_pages_exact);
4707 
4708 /**
4709  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4710  *			   pages on a node.
4711  * @nid: the preferred node ID where memory should be allocated
4712  * @size: the number of bytes to allocate
4713  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4714  *
4715  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4716  * back.
4717  *
4718  * Return: pointer to the allocated area or %NULL in case of error.
4719  */
4720 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4721 {
4722 	unsigned int order = get_order(size);
4723 	struct page *p;
4724 
4725 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4726 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4727 
4728 	p = alloc_pages_node(nid, gfp_mask, order);
4729 	if (!p)
4730 		return NULL;
4731 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4732 }
4733 
4734 /**
4735  * free_pages_exact - release memory allocated via alloc_pages_exact()
4736  * @virt: the value returned by alloc_pages_exact.
4737  * @size: size of allocation, same value as passed to alloc_pages_exact().
4738  *
4739  * Release the memory allocated by a previous call to alloc_pages_exact.
4740  */
4741 void free_pages_exact(void *virt, size_t size)
4742 {
4743 	unsigned long addr = (unsigned long)virt;
4744 	unsigned long end = addr + PAGE_ALIGN(size);
4745 
4746 	while (addr < end) {
4747 		free_page(addr);
4748 		addr += PAGE_SIZE;
4749 	}
4750 }
4751 EXPORT_SYMBOL(free_pages_exact);
4752 
4753 /**
4754  * nr_free_zone_pages - count number of pages beyond high watermark
4755  * @offset: The zone index of the highest zone
4756  *
4757  * nr_free_zone_pages() counts the number of pages which are beyond the
4758  * high watermark within all zones at or below a given zone index.  For each
4759  * zone, the number of pages is calculated as:
4760  *
4761  *     nr_free_zone_pages = managed_pages - high_pages
4762  *
4763  * Return: number of pages beyond high watermark.
4764  */
4765 static unsigned long nr_free_zone_pages(int offset)
4766 {
4767 	struct zoneref *z;
4768 	struct zone *zone;
4769 
4770 	/* Just pick one node, since fallback list is circular */
4771 	unsigned long sum = 0;
4772 
4773 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4774 
4775 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4776 		unsigned long size = zone_managed_pages(zone);
4777 		unsigned long high = high_wmark_pages(zone);
4778 		if (size > high)
4779 			sum += size - high;
4780 	}
4781 
4782 	return sum;
4783 }
4784 
4785 /**
4786  * nr_free_buffer_pages - count number of pages beyond high watermark
4787  *
4788  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4789  * watermark within ZONE_DMA and ZONE_NORMAL.
4790  *
4791  * Return: number of pages beyond high watermark within ZONE_DMA and
4792  * ZONE_NORMAL.
4793  */
4794 unsigned long nr_free_buffer_pages(void)
4795 {
4796 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4797 }
4798 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4799 
4800 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4801 {
4802 	zoneref->zone = zone;
4803 	zoneref->zone_idx = zone_idx(zone);
4804 }
4805 
4806 /*
4807  * Builds allocation fallback zone lists.
4808  *
4809  * Add all populated zones of a node to the zonelist.
4810  */
4811 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4812 {
4813 	struct zone *zone;
4814 	enum zone_type zone_type = MAX_NR_ZONES;
4815 	int nr_zones = 0;
4816 
4817 	do {
4818 		zone_type--;
4819 		zone = pgdat->node_zones + zone_type;
4820 		if (populated_zone(zone)) {
4821 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4822 			check_highest_zone(zone_type);
4823 		}
4824 	} while (zone_type);
4825 
4826 	return nr_zones;
4827 }
4828 
4829 #ifdef CONFIG_NUMA
4830 
4831 static int __parse_numa_zonelist_order(char *s)
4832 {
4833 	/*
4834 	 * We used to support different zonelists modes but they turned
4835 	 * out to be just not useful. Let's keep the warning in place
4836 	 * if somebody still use the cmd line parameter so that we do
4837 	 * not fail it silently
4838 	 */
4839 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4840 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4841 		return -EINVAL;
4842 	}
4843 	return 0;
4844 }
4845 
4846 static char numa_zonelist_order[] = "Node";
4847 #define NUMA_ZONELIST_ORDER_LEN	16
4848 /*
4849  * sysctl handler for numa_zonelist_order
4850  */
4851 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4852 		void *buffer, size_t *length, loff_t *ppos)
4853 {
4854 	if (write)
4855 		return __parse_numa_zonelist_order(buffer);
4856 	return proc_dostring(table, write, buffer, length, ppos);
4857 }
4858 
4859 static int node_load[MAX_NUMNODES];
4860 
4861 /**
4862  * find_next_best_node - find the next node that should appear in a given node's fallback list
4863  * @node: node whose fallback list we're appending
4864  * @used_node_mask: nodemask_t of already used nodes
4865  *
4866  * We use a number of factors to determine which is the next node that should
4867  * appear on a given node's fallback list.  The node should not have appeared
4868  * already in @node's fallback list, and it should be the next closest node
4869  * according to the distance array (which contains arbitrary distance values
4870  * from each node to each node in the system), and should also prefer nodes
4871  * with no CPUs, since presumably they'll have very little allocation pressure
4872  * on them otherwise.
4873  *
4874  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4875  */
4876 int find_next_best_node(int node, nodemask_t *used_node_mask)
4877 {
4878 	int n, val;
4879 	int min_val = INT_MAX;
4880 	int best_node = NUMA_NO_NODE;
4881 
4882 	/* Use the local node if we haven't already */
4883 	if (!node_isset(node, *used_node_mask)) {
4884 		node_set(node, *used_node_mask);
4885 		return node;
4886 	}
4887 
4888 	for_each_node_state(n, N_MEMORY) {
4889 
4890 		/* Don't want a node to appear more than once */
4891 		if (node_isset(n, *used_node_mask))
4892 			continue;
4893 
4894 		/* Use the distance array to find the distance */
4895 		val = node_distance(node, n);
4896 
4897 		/* Penalize nodes under us ("prefer the next node") */
4898 		val += (n < node);
4899 
4900 		/* Give preference to headless and unused nodes */
4901 		if (!cpumask_empty(cpumask_of_node(n)))
4902 			val += PENALTY_FOR_NODE_WITH_CPUS;
4903 
4904 		/* Slight preference for less loaded node */
4905 		val *= MAX_NUMNODES;
4906 		val += node_load[n];
4907 
4908 		if (val < min_val) {
4909 			min_val = val;
4910 			best_node = n;
4911 		}
4912 	}
4913 
4914 	if (best_node >= 0)
4915 		node_set(best_node, *used_node_mask);
4916 
4917 	return best_node;
4918 }
4919 
4920 
4921 /*
4922  * Build zonelists ordered by node and zones within node.
4923  * This results in maximum locality--normal zone overflows into local
4924  * DMA zone, if any--but risks exhausting DMA zone.
4925  */
4926 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4927 		unsigned nr_nodes)
4928 {
4929 	struct zoneref *zonerefs;
4930 	int i;
4931 
4932 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4933 
4934 	for (i = 0; i < nr_nodes; i++) {
4935 		int nr_zones;
4936 
4937 		pg_data_t *node = NODE_DATA(node_order[i]);
4938 
4939 		nr_zones = build_zonerefs_node(node, zonerefs);
4940 		zonerefs += nr_zones;
4941 	}
4942 	zonerefs->zone = NULL;
4943 	zonerefs->zone_idx = 0;
4944 }
4945 
4946 /*
4947  * Build gfp_thisnode zonelists
4948  */
4949 static void build_thisnode_zonelists(pg_data_t *pgdat)
4950 {
4951 	struct zoneref *zonerefs;
4952 	int nr_zones;
4953 
4954 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4955 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4956 	zonerefs += nr_zones;
4957 	zonerefs->zone = NULL;
4958 	zonerefs->zone_idx = 0;
4959 }
4960 
4961 /*
4962  * Build zonelists ordered by zone and nodes within zones.
4963  * This results in conserving DMA zone[s] until all Normal memory is
4964  * exhausted, but results in overflowing to remote node while memory
4965  * may still exist in local DMA zone.
4966  */
4967 
4968 static void build_zonelists(pg_data_t *pgdat)
4969 {
4970 	static int node_order[MAX_NUMNODES];
4971 	int node, nr_nodes = 0;
4972 	nodemask_t used_mask = NODE_MASK_NONE;
4973 	int local_node, prev_node;
4974 
4975 	/* NUMA-aware ordering of nodes */
4976 	local_node = pgdat->node_id;
4977 	prev_node = local_node;
4978 
4979 	memset(node_order, 0, sizeof(node_order));
4980 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4981 		/*
4982 		 * We don't want to pressure a particular node.
4983 		 * So adding penalty to the first node in same
4984 		 * distance group to make it round-robin.
4985 		 */
4986 		if (node_distance(local_node, node) !=
4987 		    node_distance(local_node, prev_node))
4988 			node_load[node] += 1;
4989 
4990 		node_order[nr_nodes++] = node;
4991 		prev_node = node;
4992 	}
4993 
4994 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
4995 	build_thisnode_zonelists(pgdat);
4996 	pr_info("Fallback order for Node %d: ", local_node);
4997 	for (node = 0; node < nr_nodes; node++)
4998 		pr_cont("%d ", node_order[node]);
4999 	pr_cont("\n");
5000 }
5001 
5002 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5003 /*
5004  * Return node id of node used for "local" allocations.
5005  * I.e., first node id of first zone in arg node's generic zonelist.
5006  * Used for initializing percpu 'numa_mem', which is used primarily
5007  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5008  */
5009 int local_memory_node(int node)
5010 {
5011 	struct zoneref *z;
5012 
5013 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5014 				   gfp_zone(GFP_KERNEL),
5015 				   NULL);
5016 	return zone_to_nid(z->zone);
5017 }
5018 #endif
5019 
5020 static void setup_min_unmapped_ratio(void);
5021 static void setup_min_slab_ratio(void);
5022 #else	/* CONFIG_NUMA */
5023 
5024 static void build_zonelists(pg_data_t *pgdat)
5025 {
5026 	int node, local_node;
5027 	struct zoneref *zonerefs;
5028 	int nr_zones;
5029 
5030 	local_node = pgdat->node_id;
5031 
5032 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5033 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5034 	zonerefs += nr_zones;
5035 
5036 	/*
5037 	 * Now we build the zonelist so that it contains the zones
5038 	 * of all the other nodes.
5039 	 * We don't want to pressure a particular node, so when
5040 	 * building the zones for node N, we make sure that the
5041 	 * zones coming right after the local ones are those from
5042 	 * node N+1 (modulo N)
5043 	 */
5044 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5045 		if (!node_online(node))
5046 			continue;
5047 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5048 		zonerefs += nr_zones;
5049 	}
5050 	for (node = 0; node < local_node; node++) {
5051 		if (!node_online(node))
5052 			continue;
5053 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5054 		zonerefs += nr_zones;
5055 	}
5056 
5057 	zonerefs->zone = NULL;
5058 	zonerefs->zone_idx = 0;
5059 }
5060 
5061 #endif	/* CONFIG_NUMA */
5062 
5063 /*
5064  * Boot pageset table. One per cpu which is going to be used for all
5065  * zones and all nodes. The parameters will be set in such a way
5066  * that an item put on a list will immediately be handed over to
5067  * the buddy list. This is safe since pageset manipulation is done
5068  * with interrupts disabled.
5069  *
5070  * The boot_pagesets must be kept even after bootup is complete for
5071  * unused processors and/or zones. They do play a role for bootstrapping
5072  * hotplugged processors.
5073  *
5074  * zoneinfo_show() and maybe other functions do
5075  * not check if the processor is online before following the pageset pointer.
5076  * Other parts of the kernel may not check if the zone is available.
5077  */
5078 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5079 /* These effectively disable the pcplists in the boot pageset completely */
5080 #define BOOT_PAGESET_HIGH	0
5081 #define BOOT_PAGESET_BATCH	1
5082 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5083 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5084 
5085 static void __build_all_zonelists(void *data)
5086 {
5087 	int nid;
5088 	int __maybe_unused cpu;
5089 	pg_data_t *self = data;
5090 	unsigned long flags;
5091 
5092 	/*
5093 	 * The zonelist_update_seq must be acquired with irqsave because the
5094 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5095 	 */
5096 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5097 	/*
5098 	 * Also disable synchronous printk() to prevent any printk() from
5099 	 * trying to hold port->lock, for
5100 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5101 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5102 	 */
5103 	printk_deferred_enter();
5104 
5105 #ifdef CONFIG_NUMA
5106 	memset(node_load, 0, sizeof(node_load));
5107 #endif
5108 
5109 	/*
5110 	 * This node is hotadded and no memory is yet present.   So just
5111 	 * building zonelists is fine - no need to touch other nodes.
5112 	 */
5113 	if (self && !node_online(self->node_id)) {
5114 		build_zonelists(self);
5115 	} else {
5116 		/*
5117 		 * All possible nodes have pgdat preallocated
5118 		 * in free_area_init
5119 		 */
5120 		for_each_node(nid) {
5121 			pg_data_t *pgdat = NODE_DATA(nid);
5122 
5123 			build_zonelists(pgdat);
5124 		}
5125 
5126 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5127 		/*
5128 		 * We now know the "local memory node" for each node--
5129 		 * i.e., the node of the first zone in the generic zonelist.
5130 		 * Set up numa_mem percpu variable for on-line cpus.  During
5131 		 * boot, only the boot cpu should be on-line;  we'll init the
5132 		 * secondary cpus' numa_mem as they come on-line.  During
5133 		 * node/memory hotplug, we'll fixup all on-line cpus.
5134 		 */
5135 		for_each_online_cpu(cpu)
5136 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5137 #endif
5138 	}
5139 
5140 	printk_deferred_exit();
5141 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5142 }
5143 
5144 static noinline void __init
5145 build_all_zonelists_init(void)
5146 {
5147 	int cpu;
5148 
5149 	__build_all_zonelists(NULL);
5150 
5151 	/*
5152 	 * Initialize the boot_pagesets that are going to be used
5153 	 * for bootstrapping processors. The real pagesets for
5154 	 * each zone will be allocated later when the per cpu
5155 	 * allocator is available.
5156 	 *
5157 	 * boot_pagesets are used also for bootstrapping offline
5158 	 * cpus if the system is already booted because the pagesets
5159 	 * are needed to initialize allocators on a specific cpu too.
5160 	 * F.e. the percpu allocator needs the page allocator which
5161 	 * needs the percpu allocator in order to allocate its pagesets
5162 	 * (a chicken-egg dilemma).
5163 	 */
5164 	for_each_possible_cpu(cpu)
5165 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5166 
5167 	mminit_verify_zonelist();
5168 	cpuset_init_current_mems_allowed();
5169 }
5170 
5171 /*
5172  * unless system_state == SYSTEM_BOOTING.
5173  *
5174  * __ref due to call of __init annotated helper build_all_zonelists_init
5175  * [protected by SYSTEM_BOOTING].
5176  */
5177 void __ref build_all_zonelists(pg_data_t *pgdat)
5178 {
5179 	unsigned long vm_total_pages;
5180 
5181 	if (system_state == SYSTEM_BOOTING) {
5182 		build_all_zonelists_init();
5183 	} else {
5184 		__build_all_zonelists(pgdat);
5185 		/* cpuset refresh routine should be here */
5186 	}
5187 	/* Get the number of free pages beyond high watermark in all zones. */
5188 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5189 	/*
5190 	 * Disable grouping by mobility if the number of pages in the
5191 	 * system is too low to allow the mechanism to work. It would be
5192 	 * more accurate, but expensive to check per-zone. This check is
5193 	 * made on memory-hotadd so a system can start with mobility
5194 	 * disabled and enable it later
5195 	 */
5196 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5197 		page_group_by_mobility_disabled = 1;
5198 	else
5199 		page_group_by_mobility_disabled = 0;
5200 
5201 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5202 		nr_online_nodes,
5203 		page_group_by_mobility_disabled ? "off" : "on",
5204 		vm_total_pages);
5205 #ifdef CONFIG_NUMA
5206 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5207 #endif
5208 }
5209 
5210 static int zone_batchsize(struct zone *zone)
5211 {
5212 #ifdef CONFIG_MMU
5213 	int batch;
5214 
5215 	/*
5216 	 * The number of pages to batch allocate is either ~0.1%
5217 	 * of the zone or 1MB, whichever is smaller. The batch
5218 	 * size is striking a balance between allocation latency
5219 	 * and zone lock contention.
5220 	 */
5221 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5222 	batch /= 4;		/* We effectively *= 4 below */
5223 	if (batch < 1)
5224 		batch = 1;
5225 
5226 	/*
5227 	 * Clamp the batch to a 2^n - 1 value. Having a power
5228 	 * of 2 value was found to be more likely to have
5229 	 * suboptimal cache aliasing properties in some cases.
5230 	 *
5231 	 * For example if 2 tasks are alternately allocating
5232 	 * batches of pages, one task can end up with a lot
5233 	 * of pages of one half of the possible page colors
5234 	 * and the other with pages of the other colors.
5235 	 */
5236 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5237 
5238 	return batch;
5239 
5240 #else
5241 	/* The deferral and batching of frees should be suppressed under NOMMU
5242 	 * conditions.
5243 	 *
5244 	 * The problem is that NOMMU needs to be able to allocate large chunks
5245 	 * of contiguous memory as there's no hardware page translation to
5246 	 * assemble apparent contiguous memory from discontiguous pages.
5247 	 *
5248 	 * Queueing large contiguous runs of pages for batching, however,
5249 	 * causes the pages to actually be freed in smaller chunks.  As there
5250 	 * can be a significant delay between the individual batches being
5251 	 * recycled, this leads to the once large chunks of space being
5252 	 * fragmented and becoming unavailable for high-order allocations.
5253 	 */
5254 	return 0;
5255 #endif
5256 }
5257 
5258 static int percpu_pagelist_high_fraction;
5259 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5260 {
5261 #ifdef CONFIG_MMU
5262 	int high;
5263 	int nr_split_cpus;
5264 	unsigned long total_pages;
5265 
5266 	if (!percpu_pagelist_high_fraction) {
5267 		/*
5268 		 * By default, the high value of the pcp is based on the zone
5269 		 * low watermark so that if they are full then background
5270 		 * reclaim will not be started prematurely.
5271 		 */
5272 		total_pages = low_wmark_pages(zone);
5273 	} else {
5274 		/*
5275 		 * If percpu_pagelist_high_fraction is configured, the high
5276 		 * value is based on a fraction of the managed pages in the
5277 		 * zone.
5278 		 */
5279 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5280 	}
5281 
5282 	/*
5283 	 * Split the high value across all online CPUs local to the zone. Note
5284 	 * that early in boot that CPUs may not be online yet and that during
5285 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5286 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5287 	 * all online CPUs to mitigate the risk that reclaim is triggered
5288 	 * prematurely due to pages stored on pcp lists.
5289 	 */
5290 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5291 	if (!nr_split_cpus)
5292 		nr_split_cpus = num_online_cpus();
5293 	high = total_pages / nr_split_cpus;
5294 
5295 	/*
5296 	 * Ensure high is at least batch*4. The multiple is based on the
5297 	 * historical relationship between high and batch.
5298 	 */
5299 	high = max(high, batch << 2);
5300 
5301 	return high;
5302 #else
5303 	return 0;
5304 #endif
5305 }
5306 
5307 /*
5308  * pcp->high and pcp->batch values are related and generally batch is lower
5309  * than high. They are also related to pcp->count such that count is lower
5310  * than high, and as soon as it reaches high, the pcplist is flushed.
5311  *
5312  * However, guaranteeing these relations at all times would require e.g. write
5313  * barriers here but also careful usage of read barriers at the read side, and
5314  * thus be prone to error and bad for performance. Thus the update only prevents
5315  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5316  * can cope with those fields changing asynchronously, and fully trust only the
5317  * pcp->count field on the local CPU with interrupts disabled.
5318  *
5319  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5320  * outside of boot time (or some other assurance that no concurrent updaters
5321  * exist).
5322  */
5323 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5324 		unsigned long batch)
5325 {
5326 	WRITE_ONCE(pcp->batch, batch);
5327 	WRITE_ONCE(pcp->high, high);
5328 }
5329 
5330 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5331 {
5332 	int pindex;
5333 
5334 	memset(pcp, 0, sizeof(*pcp));
5335 	memset(pzstats, 0, sizeof(*pzstats));
5336 
5337 	spin_lock_init(&pcp->lock);
5338 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5339 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5340 
5341 	/*
5342 	 * Set batch and high values safe for a boot pageset. A true percpu
5343 	 * pageset's initialization will update them subsequently. Here we don't
5344 	 * need to be as careful as pageset_update() as nobody can access the
5345 	 * pageset yet.
5346 	 */
5347 	pcp->high = BOOT_PAGESET_HIGH;
5348 	pcp->batch = BOOT_PAGESET_BATCH;
5349 	pcp->free_factor = 0;
5350 }
5351 
5352 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5353 		unsigned long batch)
5354 {
5355 	struct per_cpu_pages *pcp;
5356 	int cpu;
5357 
5358 	for_each_possible_cpu(cpu) {
5359 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5360 		pageset_update(pcp, high, batch);
5361 	}
5362 }
5363 
5364 /*
5365  * Calculate and set new high and batch values for all per-cpu pagesets of a
5366  * zone based on the zone's size.
5367  */
5368 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5369 {
5370 	int new_high, new_batch;
5371 
5372 	new_batch = max(1, zone_batchsize(zone));
5373 	new_high = zone_highsize(zone, new_batch, cpu_online);
5374 
5375 	if (zone->pageset_high == new_high &&
5376 	    zone->pageset_batch == new_batch)
5377 		return;
5378 
5379 	zone->pageset_high = new_high;
5380 	zone->pageset_batch = new_batch;
5381 
5382 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5383 }
5384 
5385 void __meminit setup_zone_pageset(struct zone *zone)
5386 {
5387 	int cpu;
5388 
5389 	/* Size may be 0 on !SMP && !NUMA */
5390 	if (sizeof(struct per_cpu_zonestat) > 0)
5391 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5392 
5393 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5394 	for_each_possible_cpu(cpu) {
5395 		struct per_cpu_pages *pcp;
5396 		struct per_cpu_zonestat *pzstats;
5397 
5398 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5399 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5400 		per_cpu_pages_init(pcp, pzstats);
5401 	}
5402 
5403 	zone_set_pageset_high_and_batch(zone, 0);
5404 }
5405 
5406 /*
5407  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5408  * page high values need to be recalculated.
5409  */
5410 static void zone_pcp_update(struct zone *zone, int cpu_online)
5411 {
5412 	mutex_lock(&pcp_batch_high_lock);
5413 	zone_set_pageset_high_and_batch(zone, cpu_online);
5414 	mutex_unlock(&pcp_batch_high_lock);
5415 }
5416 
5417 /*
5418  * Allocate per cpu pagesets and initialize them.
5419  * Before this call only boot pagesets were available.
5420  */
5421 void __init setup_per_cpu_pageset(void)
5422 {
5423 	struct pglist_data *pgdat;
5424 	struct zone *zone;
5425 	int __maybe_unused cpu;
5426 
5427 	for_each_populated_zone(zone)
5428 		setup_zone_pageset(zone);
5429 
5430 #ifdef CONFIG_NUMA
5431 	/*
5432 	 * Unpopulated zones continue using the boot pagesets.
5433 	 * The numa stats for these pagesets need to be reset.
5434 	 * Otherwise, they will end up skewing the stats of
5435 	 * the nodes these zones are associated with.
5436 	 */
5437 	for_each_possible_cpu(cpu) {
5438 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5439 		memset(pzstats->vm_numa_event, 0,
5440 		       sizeof(pzstats->vm_numa_event));
5441 	}
5442 #endif
5443 
5444 	for_each_online_pgdat(pgdat)
5445 		pgdat->per_cpu_nodestats =
5446 			alloc_percpu(struct per_cpu_nodestat);
5447 }
5448 
5449 __meminit void zone_pcp_init(struct zone *zone)
5450 {
5451 	/*
5452 	 * per cpu subsystem is not up at this point. The following code
5453 	 * relies on the ability of the linker to provide the
5454 	 * offset of a (static) per cpu variable into the per cpu area.
5455 	 */
5456 	zone->per_cpu_pageset = &boot_pageset;
5457 	zone->per_cpu_zonestats = &boot_zonestats;
5458 	zone->pageset_high = BOOT_PAGESET_HIGH;
5459 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5460 
5461 	if (populated_zone(zone))
5462 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5463 			 zone->present_pages, zone_batchsize(zone));
5464 }
5465 
5466 void adjust_managed_page_count(struct page *page, long count)
5467 {
5468 	atomic_long_add(count, &page_zone(page)->managed_pages);
5469 	totalram_pages_add(count);
5470 #ifdef CONFIG_HIGHMEM
5471 	if (PageHighMem(page))
5472 		totalhigh_pages_add(count);
5473 #endif
5474 }
5475 EXPORT_SYMBOL(adjust_managed_page_count);
5476 
5477 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5478 {
5479 	void *pos;
5480 	unsigned long pages = 0;
5481 
5482 	start = (void *)PAGE_ALIGN((unsigned long)start);
5483 	end = (void *)((unsigned long)end & PAGE_MASK);
5484 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5485 		struct page *page = virt_to_page(pos);
5486 		void *direct_map_addr;
5487 
5488 		/*
5489 		 * 'direct_map_addr' might be different from 'pos'
5490 		 * because some architectures' virt_to_page()
5491 		 * work with aliases.  Getting the direct map
5492 		 * address ensures that we get a _writeable_
5493 		 * alias for the memset().
5494 		 */
5495 		direct_map_addr = page_address(page);
5496 		/*
5497 		 * Perform a kasan-unchecked memset() since this memory
5498 		 * has not been initialized.
5499 		 */
5500 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5501 		if ((unsigned int)poison <= 0xFF)
5502 			memset(direct_map_addr, poison, PAGE_SIZE);
5503 
5504 		free_reserved_page(page);
5505 	}
5506 
5507 	if (pages && s)
5508 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5509 
5510 	return pages;
5511 }
5512 
5513 static int page_alloc_cpu_dead(unsigned int cpu)
5514 {
5515 	struct zone *zone;
5516 
5517 	lru_add_drain_cpu(cpu);
5518 	mlock_drain_remote(cpu);
5519 	drain_pages(cpu);
5520 
5521 	/*
5522 	 * Spill the event counters of the dead processor
5523 	 * into the current processors event counters.
5524 	 * This artificially elevates the count of the current
5525 	 * processor.
5526 	 */
5527 	vm_events_fold_cpu(cpu);
5528 
5529 	/*
5530 	 * Zero the differential counters of the dead processor
5531 	 * so that the vm statistics are consistent.
5532 	 *
5533 	 * This is only okay since the processor is dead and cannot
5534 	 * race with what we are doing.
5535 	 */
5536 	cpu_vm_stats_fold(cpu);
5537 
5538 	for_each_populated_zone(zone)
5539 		zone_pcp_update(zone, 0);
5540 
5541 	return 0;
5542 }
5543 
5544 static int page_alloc_cpu_online(unsigned int cpu)
5545 {
5546 	struct zone *zone;
5547 
5548 	for_each_populated_zone(zone)
5549 		zone_pcp_update(zone, 1);
5550 	return 0;
5551 }
5552 
5553 void __init page_alloc_init_cpuhp(void)
5554 {
5555 	int ret;
5556 
5557 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5558 					"mm/page_alloc:pcp",
5559 					page_alloc_cpu_online,
5560 					page_alloc_cpu_dead);
5561 	WARN_ON(ret < 0);
5562 }
5563 
5564 /*
5565  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5566  *	or min_free_kbytes changes.
5567  */
5568 static void calculate_totalreserve_pages(void)
5569 {
5570 	struct pglist_data *pgdat;
5571 	unsigned long reserve_pages = 0;
5572 	enum zone_type i, j;
5573 
5574 	for_each_online_pgdat(pgdat) {
5575 
5576 		pgdat->totalreserve_pages = 0;
5577 
5578 		for (i = 0; i < MAX_NR_ZONES; i++) {
5579 			struct zone *zone = pgdat->node_zones + i;
5580 			long max = 0;
5581 			unsigned long managed_pages = zone_managed_pages(zone);
5582 
5583 			/* Find valid and maximum lowmem_reserve in the zone */
5584 			for (j = i; j < MAX_NR_ZONES; j++) {
5585 				if (zone->lowmem_reserve[j] > max)
5586 					max = zone->lowmem_reserve[j];
5587 			}
5588 
5589 			/* we treat the high watermark as reserved pages. */
5590 			max += high_wmark_pages(zone);
5591 
5592 			if (max > managed_pages)
5593 				max = managed_pages;
5594 
5595 			pgdat->totalreserve_pages += max;
5596 
5597 			reserve_pages += max;
5598 		}
5599 	}
5600 	totalreserve_pages = reserve_pages;
5601 }
5602 
5603 /*
5604  * setup_per_zone_lowmem_reserve - called whenever
5605  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5606  *	has a correct pages reserved value, so an adequate number of
5607  *	pages are left in the zone after a successful __alloc_pages().
5608  */
5609 static void setup_per_zone_lowmem_reserve(void)
5610 {
5611 	struct pglist_data *pgdat;
5612 	enum zone_type i, j;
5613 
5614 	for_each_online_pgdat(pgdat) {
5615 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5616 			struct zone *zone = &pgdat->node_zones[i];
5617 			int ratio = sysctl_lowmem_reserve_ratio[i];
5618 			bool clear = !ratio || !zone_managed_pages(zone);
5619 			unsigned long managed_pages = 0;
5620 
5621 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5622 				struct zone *upper_zone = &pgdat->node_zones[j];
5623 
5624 				managed_pages += zone_managed_pages(upper_zone);
5625 
5626 				if (clear)
5627 					zone->lowmem_reserve[j] = 0;
5628 				else
5629 					zone->lowmem_reserve[j] = managed_pages / ratio;
5630 			}
5631 		}
5632 	}
5633 
5634 	/* update totalreserve_pages */
5635 	calculate_totalreserve_pages();
5636 }
5637 
5638 static void __setup_per_zone_wmarks(void)
5639 {
5640 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5641 	unsigned long lowmem_pages = 0;
5642 	struct zone *zone;
5643 	unsigned long flags;
5644 
5645 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5646 	for_each_zone(zone) {
5647 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5648 			lowmem_pages += zone_managed_pages(zone);
5649 	}
5650 
5651 	for_each_zone(zone) {
5652 		u64 tmp;
5653 
5654 		spin_lock_irqsave(&zone->lock, flags);
5655 		tmp = (u64)pages_min * zone_managed_pages(zone);
5656 		do_div(tmp, lowmem_pages);
5657 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5658 			/*
5659 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5660 			 * need highmem and movable zones pages, so cap pages_min
5661 			 * to a small  value here.
5662 			 *
5663 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5664 			 * deltas control async page reclaim, and so should
5665 			 * not be capped for highmem and movable zones.
5666 			 */
5667 			unsigned long min_pages;
5668 
5669 			min_pages = zone_managed_pages(zone) / 1024;
5670 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5671 			zone->_watermark[WMARK_MIN] = min_pages;
5672 		} else {
5673 			/*
5674 			 * If it's a lowmem zone, reserve a number of pages
5675 			 * proportionate to the zone's size.
5676 			 */
5677 			zone->_watermark[WMARK_MIN] = tmp;
5678 		}
5679 
5680 		/*
5681 		 * Set the kswapd watermarks distance according to the
5682 		 * scale factor in proportion to available memory, but
5683 		 * ensure a minimum size on small systems.
5684 		 */
5685 		tmp = max_t(u64, tmp >> 2,
5686 			    mult_frac(zone_managed_pages(zone),
5687 				      watermark_scale_factor, 10000));
5688 
5689 		zone->watermark_boost = 0;
5690 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5691 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5692 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5693 
5694 		spin_unlock_irqrestore(&zone->lock, flags);
5695 	}
5696 
5697 	/* update totalreserve_pages */
5698 	calculate_totalreserve_pages();
5699 }
5700 
5701 /**
5702  * setup_per_zone_wmarks - called when min_free_kbytes changes
5703  * or when memory is hot-{added|removed}
5704  *
5705  * Ensures that the watermark[min,low,high] values for each zone are set
5706  * correctly with respect to min_free_kbytes.
5707  */
5708 void setup_per_zone_wmarks(void)
5709 {
5710 	struct zone *zone;
5711 	static DEFINE_SPINLOCK(lock);
5712 
5713 	spin_lock(&lock);
5714 	__setup_per_zone_wmarks();
5715 	spin_unlock(&lock);
5716 
5717 	/*
5718 	 * The watermark size have changed so update the pcpu batch
5719 	 * and high limits or the limits may be inappropriate.
5720 	 */
5721 	for_each_zone(zone)
5722 		zone_pcp_update(zone, 0);
5723 }
5724 
5725 /*
5726  * Initialise min_free_kbytes.
5727  *
5728  * For small machines we want it small (128k min).  For large machines
5729  * we want it large (256MB max).  But it is not linear, because network
5730  * bandwidth does not increase linearly with machine size.  We use
5731  *
5732  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5733  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5734  *
5735  * which yields
5736  *
5737  * 16MB:	512k
5738  * 32MB:	724k
5739  * 64MB:	1024k
5740  * 128MB:	1448k
5741  * 256MB:	2048k
5742  * 512MB:	2896k
5743  * 1024MB:	4096k
5744  * 2048MB:	5792k
5745  * 4096MB:	8192k
5746  * 8192MB:	11584k
5747  * 16384MB:	16384k
5748  */
5749 void calculate_min_free_kbytes(void)
5750 {
5751 	unsigned long lowmem_kbytes;
5752 	int new_min_free_kbytes;
5753 
5754 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5755 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5756 
5757 	if (new_min_free_kbytes > user_min_free_kbytes)
5758 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5759 	else
5760 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5761 				new_min_free_kbytes, user_min_free_kbytes);
5762 
5763 }
5764 
5765 int __meminit init_per_zone_wmark_min(void)
5766 {
5767 	calculate_min_free_kbytes();
5768 	setup_per_zone_wmarks();
5769 	refresh_zone_stat_thresholds();
5770 	setup_per_zone_lowmem_reserve();
5771 
5772 #ifdef CONFIG_NUMA
5773 	setup_min_unmapped_ratio();
5774 	setup_min_slab_ratio();
5775 #endif
5776 
5777 	khugepaged_min_free_kbytes_update();
5778 
5779 	return 0;
5780 }
5781 postcore_initcall(init_per_zone_wmark_min)
5782 
5783 /*
5784  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5785  *	that we can call two helper functions whenever min_free_kbytes
5786  *	changes.
5787  */
5788 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5789 		void *buffer, size_t *length, loff_t *ppos)
5790 {
5791 	int rc;
5792 
5793 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5794 	if (rc)
5795 		return rc;
5796 
5797 	if (write) {
5798 		user_min_free_kbytes = min_free_kbytes;
5799 		setup_per_zone_wmarks();
5800 	}
5801 	return 0;
5802 }
5803 
5804 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5805 		void *buffer, size_t *length, loff_t *ppos)
5806 {
5807 	int rc;
5808 
5809 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5810 	if (rc)
5811 		return rc;
5812 
5813 	if (write)
5814 		setup_per_zone_wmarks();
5815 
5816 	return 0;
5817 }
5818 
5819 #ifdef CONFIG_NUMA
5820 static void setup_min_unmapped_ratio(void)
5821 {
5822 	pg_data_t *pgdat;
5823 	struct zone *zone;
5824 
5825 	for_each_online_pgdat(pgdat)
5826 		pgdat->min_unmapped_pages = 0;
5827 
5828 	for_each_zone(zone)
5829 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5830 						         sysctl_min_unmapped_ratio) / 100;
5831 }
5832 
5833 
5834 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5835 		void *buffer, size_t *length, loff_t *ppos)
5836 {
5837 	int rc;
5838 
5839 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5840 	if (rc)
5841 		return rc;
5842 
5843 	setup_min_unmapped_ratio();
5844 
5845 	return 0;
5846 }
5847 
5848 static void setup_min_slab_ratio(void)
5849 {
5850 	pg_data_t *pgdat;
5851 	struct zone *zone;
5852 
5853 	for_each_online_pgdat(pgdat)
5854 		pgdat->min_slab_pages = 0;
5855 
5856 	for_each_zone(zone)
5857 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5858 						     sysctl_min_slab_ratio) / 100;
5859 }
5860 
5861 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5862 		void *buffer, size_t *length, loff_t *ppos)
5863 {
5864 	int rc;
5865 
5866 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5867 	if (rc)
5868 		return rc;
5869 
5870 	setup_min_slab_ratio();
5871 
5872 	return 0;
5873 }
5874 #endif
5875 
5876 /*
5877  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5878  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5879  *	whenever sysctl_lowmem_reserve_ratio changes.
5880  *
5881  * The reserve ratio obviously has absolutely no relation with the
5882  * minimum watermarks. The lowmem reserve ratio can only make sense
5883  * if in function of the boot time zone sizes.
5884  */
5885 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5886 		int write, void *buffer, size_t *length, loff_t *ppos)
5887 {
5888 	int i;
5889 
5890 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5891 
5892 	for (i = 0; i < MAX_NR_ZONES; i++) {
5893 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5894 			sysctl_lowmem_reserve_ratio[i] = 0;
5895 	}
5896 
5897 	setup_per_zone_lowmem_reserve();
5898 	return 0;
5899 }
5900 
5901 /*
5902  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5903  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5904  * pagelist can have before it gets flushed back to buddy allocator.
5905  */
5906 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5907 		int write, void *buffer, size_t *length, loff_t *ppos)
5908 {
5909 	struct zone *zone;
5910 	int old_percpu_pagelist_high_fraction;
5911 	int ret;
5912 
5913 	mutex_lock(&pcp_batch_high_lock);
5914 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5915 
5916 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5917 	if (!write || ret < 0)
5918 		goto out;
5919 
5920 	/* Sanity checking to avoid pcp imbalance */
5921 	if (percpu_pagelist_high_fraction &&
5922 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5923 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5924 		ret = -EINVAL;
5925 		goto out;
5926 	}
5927 
5928 	/* No change? */
5929 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5930 		goto out;
5931 
5932 	for_each_populated_zone(zone)
5933 		zone_set_pageset_high_and_batch(zone, 0);
5934 out:
5935 	mutex_unlock(&pcp_batch_high_lock);
5936 	return ret;
5937 }
5938 
5939 static struct ctl_table page_alloc_sysctl_table[] = {
5940 	{
5941 		.procname	= "min_free_kbytes",
5942 		.data		= &min_free_kbytes,
5943 		.maxlen		= sizeof(min_free_kbytes),
5944 		.mode		= 0644,
5945 		.proc_handler	= min_free_kbytes_sysctl_handler,
5946 		.extra1		= SYSCTL_ZERO,
5947 	},
5948 	{
5949 		.procname	= "watermark_boost_factor",
5950 		.data		= &watermark_boost_factor,
5951 		.maxlen		= sizeof(watermark_boost_factor),
5952 		.mode		= 0644,
5953 		.proc_handler	= proc_dointvec_minmax,
5954 		.extra1		= SYSCTL_ZERO,
5955 	},
5956 	{
5957 		.procname	= "watermark_scale_factor",
5958 		.data		= &watermark_scale_factor,
5959 		.maxlen		= sizeof(watermark_scale_factor),
5960 		.mode		= 0644,
5961 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5962 		.extra1		= SYSCTL_ONE,
5963 		.extra2		= SYSCTL_THREE_THOUSAND,
5964 	},
5965 	{
5966 		.procname	= "percpu_pagelist_high_fraction",
5967 		.data		= &percpu_pagelist_high_fraction,
5968 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5969 		.mode		= 0644,
5970 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
5971 		.extra1		= SYSCTL_ZERO,
5972 	},
5973 	{
5974 		.procname	= "lowmem_reserve_ratio",
5975 		.data		= &sysctl_lowmem_reserve_ratio,
5976 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
5977 		.mode		= 0644,
5978 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
5979 	},
5980 #ifdef CONFIG_NUMA
5981 	{
5982 		.procname	= "numa_zonelist_order",
5983 		.data		= &numa_zonelist_order,
5984 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
5985 		.mode		= 0644,
5986 		.proc_handler	= numa_zonelist_order_handler,
5987 	},
5988 	{
5989 		.procname	= "min_unmapped_ratio",
5990 		.data		= &sysctl_min_unmapped_ratio,
5991 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
5992 		.mode		= 0644,
5993 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
5994 		.extra1		= SYSCTL_ZERO,
5995 		.extra2		= SYSCTL_ONE_HUNDRED,
5996 	},
5997 	{
5998 		.procname	= "min_slab_ratio",
5999 		.data		= &sysctl_min_slab_ratio,
6000 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6001 		.mode		= 0644,
6002 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6003 		.extra1		= SYSCTL_ZERO,
6004 		.extra2		= SYSCTL_ONE_HUNDRED,
6005 	},
6006 #endif
6007 	{}
6008 };
6009 
6010 void __init page_alloc_sysctl_init(void)
6011 {
6012 	register_sysctl_init("vm", page_alloc_sysctl_table);
6013 }
6014 
6015 #ifdef CONFIG_CONTIG_ALLOC
6016 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6017 static void alloc_contig_dump_pages(struct list_head *page_list)
6018 {
6019 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6020 
6021 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6022 		struct page *page;
6023 
6024 		dump_stack();
6025 		list_for_each_entry(page, page_list, lru)
6026 			dump_page(page, "migration failure");
6027 	}
6028 }
6029 
6030 /* [start, end) must belong to a single zone. */
6031 int __alloc_contig_migrate_range(struct compact_control *cc,
6032 					unsigned long start, unsigned long end)
6033 {
6034 	/* This function is based on compact_zone() from compaction.c. */
6035 	unsigned int nr_reclaimed;
6036 	unsigned long pfn = start;
6037 	unsigned int tries = 0;
6038 	int ret = 0;
6039 	struct migration_target_control mtc = {
6040 		.nid = zone_to_nid(cc->zone),
6041 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6042 	};
6043 
6044 	lru_cache_disable();
6045 
6046 	while (pfn < end || !list_empty(&cc->migratepages)) {
6047 		if (fatal_signal_pending(current)) {
6048 			ret = -EINTR;
6049 			break;
6050 		}
6051 
6052 		if (list_empty(&cc->migratepages)) {
6053 			cc->nr_migratepages = 0;
6054 			ret = isolate_migratepages_range(cc, pfn, end);
6055 			if (ret && ret != -EAGAIN)
6056 				break;
6057 			pfn = cc->migrate_pfn;
6058 			tries = 0;
6059 		} else if (++tries == 5) {
6060 			ret = -EBUSY;
6061 			break;
6062 		}
6063 
6064 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6065 							&cc->migratepages);
6066 		cc->nr_migratepages -= nr_reclaimed;
6067 
6068 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6069 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6070 
6071 		/*
6072 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6073 		 * to retry again over this error, so do the same here.
6074 		 */
6075 		if (ret == -ENOMEM)
6076 			break;
6077 	}
6078 
6079 	lru_cache_enable();
6080 	if (ret < 0) {
6081 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6082 			alloc_contig_dump_pages(&cc->migratepages);
6083 		putback_movable_pages(&cc->migratepages);
6084 		return ret;
6085 	}
6086 	return 0;
6087 }
6088 
6089 /**
6090  * alloc_contig_range() -- tries to allocate given range of pages
6091  * @start:	start PFN to allocate
6092  * @end:	one-past-the-last PFN to allocate
6093  * @migratetype:	migratetype of the underlying pageblocks (either
6094  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6095  *			in range must have the same migratetype and it must
6096  *			be either of the two.
6097  * @gfp_mask:	GFP mask to use during compaction
6098  *
6099  * The PFN range does not have to be pageblock aligned. The PFN range must
6100  * belong to a single zone.
6101  *
6102  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6103  * pageblocks in the range.  Once isolated, the pageblocks should not
6104  * be modified by others.
6105  *
6106  * Return: zero on success or negative error code.  On success all
6107  * pages which PFN is in [start, end) are allocated for the caller and
6108  * need to be freed with free_contig_range().
6109  */
6110 int alloc_contig_range(unsigned long start, unsigned long end,
6111 		       unsigned migratetype, gfp_t gfp_mask)
6112 {
6113 	unsigned long outer_start, outer_end;
6114 	int order;
6115 	int ret = 0;
6116 
6117 	struct compact_control cc = {
6118 		.nr_migratepages = 0,
6119 		.order = -1,
6120 		.zone = page_zone(pfn_to_page(start)),
6121 		.mode = MIGRATE_SYNC,
6122 		.ignore_skip_hint = true,
6123 		.no_set_skip_hint = true,
6124 		.gfp_mask = current_gfp_context(gfp_mask),
6125 		.alloc_contig = true,
6126 	};
6127 	INIT_LIST_HEAD(&cc.migratepages);
6128 
6129 	/*
6130 	 * What we do here is we mark all pageblocks in range as
6131 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6132 	 * have different sizes, and due to the way page allocator
6133 	 * work, start_isolate_page_range() has special handlings for this.
6134 	 *
6135 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6136 	 * migrate the pages from an unaligned range (ie. pages that
6137 	 * we are interested in). This will put all the pages in
6138 	 * range back to page allocator as MIGRATE_ISOLATE.
6139 	 *
6140 	 * When this is done, we take the pages in range from page
6141 	 * allocator removing them from the buddy system.  This way
6142 	 * page allocator will never consider using them.
6143 	 *
6144 	 * This lets us mark the pageblocks back as
6145 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6146 	 * aligned range but not in the unaligned, original range are
6147 	 * put back to page allocator so that buddy can use them.
6148 	 */
6149 
6150 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6151 	if (ret)
6152 		goto done;
6153 
6154 	drain_all_pages(cc.zone);
6155 
6156 	/*
6157 	 * In case of -EBUSY, we'd like to know which page causes problem.
6158 	 * So, just fall through. test_pages_isolated() has a tracepoint
6159 	 * which will report the busy page.
6160 	 *
6161 	 * It is possible that busy pages could become available before
6162 	 * the call to test_pages_isolated, and the range will actually be
6163 	 * allocated.  So, if we fall through be sure to clear ret so that
6164 	 * -EBUSY is not accidentally used or returned to caller.
6165 	 */
6166 	ret = __alloc_contig_migrate_range(&cc, start, end);
6167 	if (ret && ret != -EBUSY)
6168 		goto done;
6169 	ret = 0;
6170 
6171 	/*
6172 	 * Pages from [start, end) are within a pageblock_nr_pages
6173 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6174 	 * more, all pages in [start, end) are free in page allocator.
6175 	 * What we are going to do is to allocate all pages from
6176 	 * [start, end) (that is remove them from page allocator).
6177 	 *
6178 	 * The only problem is that pages at the beginning and at the
6179 	 * end of interesting range may be not aligned with pages that
6180 	 * page allocator holds, ie. they can be part of higher order
6181 	 * pages.  Because of this, we reserve the bigger range and
6182 	 * once this is done free the pages we are not interested in.
6183 	 *
6184 	 * We don't have to hold zone->lock here because the pages are
6185 	 * isolated thus they won't get removed from buddy.
6186 	 */
6187 
6188 	order = 0;
6189 	outer_start = start;
6190 	while (!PageBuddy(pfn_to_page(outer_start))) {
6191 		if (++order > MAX_ORDER) {
6192 			outer_start = start;
6193 			break;
6194 		}
6195 		outer_start &= ~0UL << order;
6196 	}
6197 
6198 	if (outer_start != start) {
6199 		order = buddy_order(pfn_to_page(outer_start));
6200 
6201 		/*
6202 		 * outer_start page could be small order buddy page and
6203 		 * it doesn't include start page. Adjust outer_start
6204 		 * in this case to report failed page properly
6205 		 * on tracepoint in test_pages_isolated()
6206 		 */
6207 		if (outer_start + (1UL << order) <= start)
6208 			outer_start = start;
6209 	}
6210 
6211 	/* Make sure the range is really isolated. */
6212 	if (test_pages_isolated(outer_start, end, 0)) {
6213 		ret = -EBUSY;
6214 		goto done;
6215 	}
6216 
6217 	/* Grab isolated pages from freelists. */
6218 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6219 	if (!outer_end) {
6220 		ret = -EBUSY;
6221 		goto done;
6222 	}
6223 
6224 	/* Free head and tail (if any) */
6225 	if (start != outer_start)
6226 		free_contig_range(outer_start, start - outer_start);
6227 	if (end != outer_end)
6228 		free_contig_range(end, outer_end - end);
6229 
6230 done:
6231 	undo_isolate_page_range(start, end, migratetype);
6232 	return ret;
6233 }
6234 EXPORT_SYMBOL(alloc_contig_range);
6235 
6236 static int __alloc_contig_pages(unsigned long start_pfn,
6237 				unsigned long nr_pages, gfp_t gfp_mask)
6238 {
6239 	unsigned long end_pfn = start_pfn + nr_pages;
6240 
6241 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6242 				  gfp_mask);
6243 }
6244 
6245 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6246 				   unsigned long nr_pages)
6247 {
6248 	unsigned long i, end_pfn = start_pfn + nr_pages;
6249 	struct page *page;
6250 
6251 	for (i = start_pfn; i < end_pfn; i++) {
6252 		page = pfn_to_online_page(i);
6253 		if (!page)
6254 			return false;
6255 
6256 		if (page_zone(page) != z)
6257 			return false;
6258 
6259 		if (PageReserved(page))
6260 			return false;
6261 
6262 		if (PageHuge(page))
6263 			return false;
6264 	}
6265 	return true;
6266 }
6267 
6268 static bool zone_spans_last_pfn(const struct zone *zone,
6269 				unsigned long start_pfn, unsigned long nr_pages)
6270 {
6271 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6272 
6273 	return zone_spans_pfn(zone, last_pfn);
6274 }
6275 
6276 /**
6277  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6278  * @nr_pages:	Number of contiguous pages to allocate
6279  * @gfp_mask:	GFP mask to limit search and used during compaction
6280  * @nid:	Target node
6281  * @nodemask:	Mask for other possible nodes
6282  *
6283  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6284  * on an applicable zonelist to find a contiguous pfn range which can then be
6285  * tried for allocation with alloc_contig_range(). This routine is intended
6286  * for allocation requests which can not be fulfilled with the buddy allocator.
6287  *
6288  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6289  * power of two, then allocated range is also guaranteed to be aligned to same
6290  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6291  *
6292  * Allocated pages can be freed with free_contig_range() or by manually calling
6293  * __free_page() on each allocated page.
6294  *
6295  * Return: pointer to contiguous pages on success, or NULL if not successful.
6296  */
6297 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6298 				int nid, nodemask_t *nodemask)
6299 {
6300 	unsigned long ret, pfn, flags;
6301 	struct zonelist *zonelist;
6302 	struct zone *zone;
6303 	struct zoneref *z;
6304 
6305 	zonelist = node_zonelist(nid, gfp_mask);
6306 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6307 					gfp_zone(gfp_mask), nodemask) {
6308 		spin_lock_irqsave(&zone->lock, flags);
6309 
6310 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6311 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6312 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6313 				/*
6314 				 * We release the zone lock here because
6315 				 * alloc_contig_range() will also lock the zone
6316 				 * at some point. If there's an allocation
6317 				 * spinning on this lock, it may win the race
6318 				 * and cause alloc_contig_range() to fail...
6319 				 */
6320 				spin_unlock_irqrestore(&zone->lock, flags);
6321 				ret = __alloc_contig_pages(pfn, nr_pages,
6322 							gfp_mask);
6323 				if (!ret)
6324 					return pfn_to_page(pfn);
6325 				spin_lock_irqsave(&zone->lock, flags);
6326 			}
6327 			pfn += nr_pages;
6328 		}
6329 		spin_unlock_irqrestore(&zone->lock, flags);
6330 	}
6331 	return NULL;
6332 }
6333 #endif /* CONFIG_CONTIG_ALLOC */
6334 
6335 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6336 {
6337 	unsigned long count = 0;
6338 
6339 	for (; nr_pages--; pfn++) {
6340 		struct page *page = pfn_to_page(pfn);
6341 
6342 		count += page_count(page) != 1;
6343 		__free_page(page);
6344 	}
6345 	WARN(count != 0, "%lu pages are still in use!\n", count);
6346 }
6347 EXPORT_SYMBOL(free_contig_range);
6348 
6349 /*
6350  * Effectively disable pcplists for the zone by setting the high limit to 0
6351  * and draining all cpus. A concurrent page freeing on another CPU that's about
6352  * to put the page on pcplist will either finish before the drain and the page
6353  * will be drained, or observe the new high limit and skip the pcplist.
6354  *
6355  * Must be paired with a call to zone_pcp_enable().
6356  */
6357 void zone_pcp_disable(struct zone *zone)
6358 {
6359 	mutex_lock(&pcp_batch_high_lock);
6360 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6361 	__drain_all_pages(zone, true);
6362 }
6363 
6364 void zone_pcp_enable(struct zone *zone)
6365 {
6366 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6367 	mutex_unlock(&pcp_batch_high_lock);
6368 }
6369 
6370 void zone_pcp_reset(struct zone *zone)
6371 {
6372 	int cpu;
6373 	struct per_cpu_zonestat *pzstats;
6374 
6375 	if (zone->per_cpu_pageset != &boot_pageset) {
6376 		for_each_online_cpu(cpu) {
6377 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6378 			drain_zonestat(zone, pzstats);
6379 		}
6380 		free_percpu(zone->per_cpu_pageset);
6381 		zone->per_cpu_pageset = &boot_pageset;
6382 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6383 			free_percpu(zone->per_cpu_zonestats);
6384 			zone->per_cpu_zonestats = &boot_zonestats;
6385 		}
6386 	}
6387 }
6388 
6389 #ifdef CONFIG_MEMORY_HOTREMOVE
6390 /*
6391  * All pages in the range must be in a single zone, must not contain holes,
6392  * must span full sections, and must be isolated before calling this function.
6393  */
6394 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6395 {
6396 	unsigned long pfn = start_pfn;
6397 	struct page *page;
6398 	struct zone *zone;
6399 	unsigned int order;
6400 	unsigned long flags;
6401 
6402 	offline_mem_sections(pfn, end_pfn);
6403 	zone = page_zone(pfn_to_page(pfn));
6404 	spin_lock_irqsave(&zone->lock, flags);
6405 	while (pfn < end_pfn) {
6406 		page = pfn_to_page(pfn);
6407 		/*
6408 		 * The HWPoisoned page may be not in buddy system, and
6409 		 * page_count() is not 0.
6410 		 */
6411 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6412 			pfn++;
6413 			continue;
6414 		}
6415 		/*
6416 		 * At this point all remaining PageOffline() pages have a
6417 		 * reference count of 0 and can simply be skipped.
6418 		 */
6419 		if (PageOffline(page)) {
6420 			BUG_ON(page_count(page));
6421 			BUG_ON(PageBuddy(page));
6422 			pfn++;
6423 			continue;
6424 		}
6425 
6426 		BUG_ON(page_count(page));
6427 		BUG_ON(!PageBuddy(page));
6428 		order = buddy_order(page);
6429 		del_page_from_free_list(page, zone, order);
6430 		pfn += (1 << order);
6431 	}
6432 	spin_unlock_irqrestore(&zone->lock, flags);
6433 }
6434 #endif
6435 
6436 /*
6437  * This function returns a stable result only if called under zone lock.
6438  */
6439 bool is_free_buddy_page(struct page *page)
6440 {
6441 	unsigned long pfn = page_to_pfn(page);
6442 	unsigned int order;
6443 
6444 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6445 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6446 
6447 		if (PageBuddy(page_head) &&
6448 		    buddy_order_unsafe(page_head) >= order)
6449 			break;
6450 	}
6451 
6452 	return order <= MAX_ORDER;
6453 }
6454 EXPORT_SYMBOL(is_free_buddy_page);
6455 
6456 #ifdef CONFIG_MEMORY_FAILURE
6457 /*
6458  * Break down a higher-order page in sub-pages, and keep our target out of
6459  * buddy allocator.
6460  */
6461 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6462 				   struct page *target, int low, int high,
6463 				   int migratetype)
6464 {
6465 	unsigned long size = 1 << high;
6466 	struct page *current_buddy, *next_page;
6467 
6468 	while (high > low) {
6469 		high--;
6470 		size >>= 1;
6471 
6472 		if (target >= &page[size]) {
6473 			next_page = page + size;
6474 			current_buddy = page;
6475 		} else {
6476 			next_page = page;
6477 			current_buddy = page + size;
6478 		}
6479 		page = next_page;
6480 
6481 		if (set_page_guard(zone, current_buddy, high, migratetype))
6482 			continue;
6483 
6484 		if (current_buddy != target) {
6485 			add_to_free_list(current_buddy, zone, high, migratetype);
6486 			set_buddy_order(current_buddy, high);
6487 		}
6488 	}
6489 }
6490 
6491 /*
6492  * Take a page that will be marked as poisoned off the buddy allocator.
6493  */
6494 bool take_page_off_buddy(struct page *page)
6495 {
6496 	struct zone *zone = page_zone(page);
6497 	unsigned long pfn = page_to_pfn(page);
6498 	unsigned long flags;
6499 	unsigned int order;
6500 	bool ret = false;
6501 
6502 	spin_lock_irqsave(&zone->lock, flags);
6503 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6504 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6505 		int page_order = buddy_order(page_head);
6506 
6507 		if (PageBuddy(page_head) && page_order >= order) {
6508 			unsigned long pfn_head = page_to_pfn(page_head);
6509 			int migratetype = get_pfnblock_migratetype(page_head,
6510 								   pfn_head);
6511 
6512 			del_page_from_free_list(page_head, zone, page_order);
6513 			break_down_buddy_pages(zone, page_head, page, 0,
6514 						page_order, migratetype);
6515 			SetPageHWPoisonTakenOff(page);
6516 			if (!is_migrate_isolate(migratetype))
6517 				__mod_zone_freepage_state(zone, -1, migratetype);
6518 			ret = true;
6519 			break;
6520 		}
6521 		if (page_count(page_head) > 0)
6522 			break;
6523 	}
6524 	spin_unlock_irqrestore(&zone->lock, flags);
6525 	return ret;
6526 }
6527 
6528 /*
6529  * Cancel takeoff done by take_page_off_buddy().
6530  */
6531 bool put_page_back_buddy(struct page *page)
6532 {
6533 	struct zone *zone = page_zone(page);
6534 	unsigned long pfn = page_to_pfn(page);
6535 	unsigned long flags;
6536 	int migratetype = get_pfnblock_migratetype(page, pfn);
6537 	bool ret = false;
6538 
6539 	spin_lock_irqsave(&zone->lock, flags);
6540 	if (put_page_testzero(page)) {
6541 		ClearPageHWPoisonTakenOff(page);
6542 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6543 		if (TestClearPageHWPoison(page)) {
6544 			ret = true;
6545 		}
6546 	}
6547 	spin_unlock_irqrestore(&zone->lock, flags);
6548 
6549 	return ret;
6550 }
6551 #endif
6552 
6553 #ifdef CONFIG_ZONE_DMA
6554 bool has_managed_dma(void)
6555 {
6556 	struct pglist_data *pgdat;
6557 
6558 	for_each_online_pgdat(pgdat) {
6559 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6560 
6561 		if (managed_zone(zone))
6562 			return true;
6563 	}
6564 	return false;
6565 }
6566 #endif /* CONFIG_ZONE_DMA */
6567 
6568 #ifdef CONFIG_UNACCEPTED_MEMORY
6569 
6570 /* Counts number of zones with unaccepted pages. */
6571 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6572 
6573 static bool lazy_accept = true;
6574 
6575 static int __init accept_memory_parse(char *p)
6576 {
6577 	if (!strcmp(p, "lazy")) {
6578 		lazy_accept = true;
6579 		return 0;
6580 	} else if (!strcmp(p, "eager")) {
6581 		lazy_accept = false;
6582 		return 0;
6583 	} else {
6584 		return -EINVAL;
6585 	}
6586 }
6587 early_param("accept_memory", accept_memory_parse);
6588 
6589 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6590 {
6591 	phys_addr_t start = page_to_phys(page);
6592 	phys_addr_t end = start + (PAGE_SIZE << order);
6593 
6594 	return range_contains_unaccepted_memory(start, end);
6595 }
6596 
6597 static void accept_page(struct page *page, unsigned int order)
6598 {
6599 	phys_addr_t start = page_to_phys(page);
6600 
6601 	accept_memory(start, start + (PAGE_SIZE << order));
6602 }
6603 
6604 static bool try_to_accept_memory_one(struct zone *zone)
6605 {
6606 	unsigned long flags;
6607 	struct page *page;
6608 	bool last;
6609 
6610 	if (list_empty(&zone->unaccepted_pages))
6611 		return false;
6612 
6613 	spin_lock_irqsave(&zone->lock, flags);
6614 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6615 					struct page, lru);
6616 	if (!page) {
6617 		spin_unlock_irqrestore(&zone->lock, flags);
6618 		return false;
6619 	}
6620 
6621 	list_del(&page->lru);
6622 	last = list_empty(&zone->unaccepted_pages);
6623 
6624 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6625 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6626 	spin_unlock_irqrestore(&zone->lock, flags);
6627 
6628 	accept_page(page, MAX_ORDER);
6629 
6630 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6631 
6632 	if (last)
6633 		static_branch_dec(&zones_with_unaccepted_pages);
6634 
6635 	return true;
6636 }
6637 
6638 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6639 {
6640 	long to_accept;
6641 	int ret = false;
6642 
6643 	/* How much to accept to get to high watermark? */
6644 	to_accept = high_wmark_pages(zone) -
6645 		    (zone_page_state(zone, NR_FREE_PAGES) -
6646 		    __zone_watermark_unusable_free(zone, order, 0));
6647 
6648 	/* Accept at least one page */
6649 	do {
6650 		if (!try_to_accept_memory_one(zone))
6651 			break;
6652 		ret = true;
6653 		to_accept -= MAX_ORDER_NR_PAGES;
6654 	} while (to_accept > 0);
6655 
6656 	return ret;
6657 }
6658 
6659 static inline bool has_unaccepted_memory(void)
6660 {
6661 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6662 }
6663 
6664 static bool __free_unaccepted(struct page *page)
6665 {
6666 	struct zone *zone = page_zone(page);
6667 	unsigned long flags;
6668 	bool first = false;
6669 
6670 	if (!lazy_accept)
6671 		return false;
6672 
6673 	spin_lock_irqsave(&zone->lock, flags);
6674 	first = list_empty(&zone->unaccepted_pages);
6675 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6676 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6677 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6678 	spin_unlock_irqrestore(&zone->lock, flags);
6679 
6680 	if (first)
6681 		static_branch_inc(&zones_with_unaccepted_pages);
6682 
6683 	return true;
6684 }
6685 
6686 #else
6687 
6688 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6689 {
6690 	return false;
6691 }
6692 
6693 static void accept_page(struct page *page, unsigned int order)
6694 {
6695 }
6696 
6697 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6698 {
6699 	return false;
6700 }
6701 
6702 static inline bool has_unaccepted_memory(void)
6703 {
6704 	return false;
6705 }
6706 
6707 static bool __free_unaccepted(struct page *page)
6708 {
6709 	BUILD_BUG();
6710 	return false;
6711 }
6712 
6713 #endif /* CONFIG_UNACCEPTED_MEMORY */
6714