xref: /openbmc/linux/mm/page_alloc.c (revision f0702555)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71 
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
75 
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80 
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86  * defined in <linux/topology.h>.
87  */
88 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92 
93 /*
94  * Array of node states.
95  */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 	[N_POSSIBLE] = NODE_MASK_ALL,
98 	[N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 	[N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 	[N_CPU] = { { [0] = 1UL } },
108 #endif	/* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111 
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114 
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118 
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121 
122 /*
123  * A cached value of the page's pageblock's migratetype, used when the page is
124  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126  * Also the migratetype set in the page does not necessarily match the pcplist
127  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128  * other index - this ensures that it will be put on the correct CMA freelist.
129  */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 	return page->index;
133 }
134 
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 	page->index = migratetype;
138 }
139 
140 #ifdef CONFIG_PM_SLEEP
141 /*
142  * The following functions are used by the suspend/hibernate code to temporarily
143  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144  * while devices are suspended.  To avoid races with the suspend/hibernate code,
145  * they should always be called with pm_mutex held (gfp_allowed_mask also should
146  * only be modified with pm_mutex held, unless the suspend/hibernate code is
147  * guaranteed not to run in parallel with that modification).
148  */
149 
150 static gfp_t saved_gfp_mask;
151 
152 void pm_restore_gfp_mask(void)
153 {
154 	WARN_ON(!mutex_is_locked(&pm_mutex));
155 	if (saved_gfp_mask) {
156 		gfp_allowed_mask = saved_gfp_mask;
157 		saved_gfp_mask = 0;
158 	}
159 }
160 
161 void pm_restrict_gfp_mask(void)
162 {
163 	WARN_ON(!mutex_is_locked(&pm_mutex));
164 	WARN_ON(saved_gfp_mask);
165 	saved_gfp_mask = gfp_allowed_mask;
166 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168 
169 bool pm_suspended_storage(void)
170 {
171 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 		return false;
173 	return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176 
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180 
181 static void __free_pages_ok(struct page *page, unsigned int order);
182 
183 /*
184  * results with 256, 32 in the lowmem_reserve sysctl:
185  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186  *	1G machine -> (16M dma, 784M normal, 224M high)
187  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190  *
191  * TBD: should special case ZONE_DMA32 machines here - in those we normally
192  * don't need any ZONE_NORMAL reservation
193  */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 	 32,
203 #endif
204 	 32,
205 };
206 
207 EXPORT_SYMBOL(totalram_pages);
208 
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 	 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 	 "DMA32",
215 #endif
216 	 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 	 "HighMem",
219 #endif
220 	 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 	 "Device",
223 #endif
224 };
225 
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 	"Unmovable",
228 	"Movable",
229 	"Reclaimable",
230 	"HighAtomic",
231 #ifdef CONFIG_CMA
232 	"CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 	"Isolate",
236 #endif
237 };
238 
239 compound_page_dtor * const compound_page_dtors[] = {
240 	NULL,
241 	free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 	free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 	free_transhuge_page,
247 #endif
248 };
249 
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253 
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257 
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265 
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270 
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277 
278 int page_group_by_mobility_disabled __read_mostly;
279 
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 	pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285 
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 		return true;
291 
292 	return false;
293 }
294 
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 		return true;
299 
300 	return false;
301 }
302 
303 /*
304  * Returns false when the remaining initialisation should be deferred until
305  * later in the boot cycle when it can be parallelised.
306  */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 				unsigned long pfn, unsigned long zone_end,
309 				unsigned long *nr_initialised)
310 {
311 	unsigned long max_initialise;
312 
313 	/* Always populate low zones for address-contrained allocations */
314 	if (zone_end < pgdat_end_pfn(pgdat))
315 		return true;
316 	/*
317 	 * Initialise at least 2G of a node but also take into account that
318 	 * two large system hashes that can take up 1GB for 0.25TB/node.
319 	 */
320 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 		(pgdat->node_spanned_pages >> 8));
322 
323 	(*nr_initialised)++;
324 	if ((*nr_initialised > max_initialise) &&
325 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 		pgdat->first_deferred_pfn = pfn;
327 		return false;
328 	}
329 
330 	return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336 
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 	return false;
340 }
341 
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 	return false;
345 }
346 
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 				unsigned long pfn, unsigned long zone_end,
349 				unsigned long *nr_initialised)
350 {
351 	return true;
352 }
353 #endif
354 
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 							unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 	return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 	return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365 
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 	pfn &= (PAGES_PER_SECTION-1);
370 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376 
377 /**
378  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379  * @page: The page within the block of interest
380  * @pfn: The target page frame number
381  * @end_bitidx: The last bit of interest to retrieve
382  * @mask: mask of bits that the caller is interested in
383  *
384  * Return: pageblock_bits flags
385  */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 					unsigned long pfn,
388 					unsigned long end_bitidx,
389 					unsigned long mask)
390 {
391 	unsigned long *bitmap;
392 	unsigned long bitidx, word_bitidx;
393 	unsigned long word;
394 
395 	bitmap = get_pageblock_bitmap(page, pfn);
396 	bitidx = pfn_to_bitidx(page, pfn);
397 	word_bitidx = bitidx / BITS_PER_LONG;
398 	bitidx &= (BITS_PER_LONG-1);
399 
400 	word = bitmap[word_bitidx];
401 	bitidx += end_bitidx;
402 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404 
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 					unsigned long end_bitidx,
407 					unsigned long mask)
408 {
409 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411 
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416 
417 /**
418  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419  * @page: The page within the block of interest
420  * @flags: The flags to set
421  * @pfn: The target page frame number
422  * @end_bitidx: The last bit of interest
423  * @mask: mask of bits that the caller is interested in
424  */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 					unsigned long pfn,
427 					unsigned long end_bitidx,
428 					unsigned long mask)
429 {
430 	unsigned long *bitmap;
431 	unsigned long bitidx, word_bitidx;
432 	unsigned long old_word, word;
433 
434 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435 
436 	bitmap = get_pageblock_bitmap(page, pfn);
437 	bitidx = pfn_to_bitidx(page, pfn);
438 	word_bitidx = bitidx / BITS_PER_LONG;
439 	bitidx &= (BITS_PER_LONG-1);
440 
441 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442 
443 	bitidx += end_bitidx;
444 	mask <<= (BITS_PER_LONG - bitidx - 1);
445 	flags <<= (BITS_PER_LONG - bitidx - 1);
446 
447 	word = READ_ONCE(bitmap[word_bitidx]);
448 	for (;;) {
449 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 		if (word == old_word)
451 			break;
452 		word = old_word;
453 	}
454 }
455 
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 	if (unlikely(page_group_by_mobility_disabled &&
459 		     migratetype < MIGRATE_PCPTYPES))
460 		migratetype = MIGRATE_UNMOVABLE;
461 
462 	set_pageblock_flags_group(page, (unsigned long)migratetype,
463 					PB_migrate, PB_migrate_end);
464 }
465 
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 	int ret = 0;
470 	unsigned seq;
471 	unsigned long pfn = page_to_pfn(page);
472 	unsigned long sp, start_pfn;
473 
474 	do {
475 		seq = zone_span_seqbegin(zone);
476 		start_pfn = zone->zone_start_pfn;
477 		sp = zone->spanned_pages;
478 		if (!zone_spans_pfn(zone, pfn))
479 			ret = 1;
480 	} while (zone_span_seqretry(zone, seq));
481 
482 	if (ret)
483 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 			pfn, zone_to_nid(zone), zone->name,
485 			start_pfn, start_pfn + sp);
486 
487 	return ret;
488 }
489 
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 	if (!pfn_valid_within(page_to_pfn(page)))
493 		return 0;
494 	if (zone != page_zone(page))
495 		return 0;
496 
497 	return 1;
498 }
499 /*
500  * Temporary debugging check for pages not lying within a given zone.
501  */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 	if (page_outside_zone_boundaries(zone, page))
505 		return 1;
506 	if (!page_is_consistent(zone, page))
507 		return 1;
508 
509 	return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 	return 0;
515 }
516 #endif
517 
518 static void bad_page(struct page *page, const char *reason,
519 		unsigned long bad_flags)
520 {
521 	static unsigned long resume;
522 	static unsigned long nr_shown;
523 	static unsigned long nr_unshown;
524 
525 	/*
526 	 * Allow a burst of 60 reports, then keep quiet for that minute;
527 	 * or allow a steady drip of one report per second.
528 	 */
529 	if (nr_shown == 60) {
530 		if (time_before(jiffies, resume)) {
531 			nr_unshown++;
532 			goto out;
533 		}
534 		if (nr_unshown) {
535 			pr_alert(
536 			      "BUG: Bad page state: %lu messages suppressed\n",
537 				nr_unshown);
538 			nr_unshown = 0;
539 		}
540 		nr_shown = 0;
541 	}
542 	if (nr_shown++ == 0)
543 		resume = jiffies + 60 * HZ;
544 
545 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
546 		current->comm, page_to_pfn(page));
547 	__dump_page(page, reason);
548 	bad_flags &= page->flags;
549 	if (bad_flags)
550 		pr_alert("bad because of flags: %#lx(%pGp)\n",
551 						bad_flags, &bad_flags);
552 	dump_page_owner(page);
553 
554 	print_modules();
555 	dump_stack();
556 out:
557 	/* Leave bad fields for debug, except PageBuddy could make trouble */
558 	page_mapcount_reset(page); /* remove PageBuddy */
559 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
560 }
561 
562 /*
563  * Higher-order pages are called "compound pages".  They are structured thusly:
564  *
565  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
566  *
567  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
569  *
570  * The first tail page's ->compound_dtor holds the offset in array of compound
571  * page destructors. See compound_page_dtors.
572  *
573  * The first tail page's ->compound_order holds the order of allocation.
574  * This usage means that zero-order pages may not be compound.
575  */
576 
577 void free_compound_page(struct page *page)
578 {
579 	__free_pages_ok(page, compound_order(page));
580 }
581 
582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 	int i;
585 	int nr_pages = 1 << order;
586 
587 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 	set_compound_order(page, order);
589 	__SetPageHead(page);
590 	for (i = 1; i < nr_pages; i++) {
591 		struct page *p = page + i;
592 		set_page_count(p, 0);
593 		p->mapping = TAIL_MAPPING;
594 		set_compound_head(p, page);
595 	}
596 	atomic_set(compound_mapcount_ptr(page), -1);
597 }
598 
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
605 
606 static int __init early_debug_pagealloc(char *buf)
607 {
608 	if (!buf)
609 		return -EINVAL;
610 	return kstrtobool(buf, &_debug_pagealloc_enabled);
611 }
612 early_param("debug_pagealloc", early_debug_pagealloc);
613 
614 static bool need_debug_guardpage(void)
615 {
616 	/* If we don't use debug_pagealloc, we don't need guard page */
617 	if (!debug_pagealloc_enabled())
618 		return false;
619 
620 	return true;
621 }
622 
623 static void init_debug_guardpage(void)
624 {
625 	if (!debug_pagealloc_enabled())
626 		return;
627 
628 	_debug_guardpage_enabled = true;
629 }
630 
631 struct page_ext_operations debug_guardpage_ops = {
632 	.need = need_debug_guardpage,
633 	.init = init_debug_guardpage,
634 };
635 
636 static int __init debug_guardpage_minorder_setup(char *buf)
637 {
638 	unsigned long res;
639 
640 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
641 		pr_err("Bad debug_guardpage_minorder value\n");
642 		return 0;
643 	}
644 	_debug_guardpage_minorder = res;
645 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 	return 0;
647 }
648 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
649 
650 static inline void set_page_guard(struct zone *zone, struct page *page,
651 				unsigned int order, int migratetype)
652 {
653 	struct page_ext *page_ext;
654 
655 	if (!debug_guardpage_enabled())
656 		return;
657 
658 	page_ext = lookup_page_ext(page);
659 	if (unlikely(!page_ext))
660 		return;
661 
662 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
663 
664 	INIT_LIST_HEAD(&page->lru);
665 	set_page_private(page, order);
666 	/* Guard pages are not available for any usage */
667 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
668 }
669 
670 static inline void clear_page_guard(struct zone *zone, struct page *page,
671 				unsigned int order, int migratetype)
672 {
673 	struct page_ext *page_ext;
674 
675 	if (!debug_guardpage_enabled())
676 		return;
677 
678 	page_ext = lookup_page_ext(page);
679 	if (unlikely(!page_ext))
680 		return;
681 
682 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683 
684 	set_page_private(page, 0);
685 	if (!is_migrate_isolate(migratetype))
686 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
687 }
688 #else
689 struct page_ext_operations debug_guardpage_ops = { NULL, };
690 static inline void set_page_guard(struct zone *zone, struct page *page,
691 				unsigned int order, int migratetype) {}
692 static inline void clear_page_guard(struct zone *zone, struct page *page,
693 				unsigned int order, int migratetype) {}
694 #endif
695 
696 static inline void set_page_order(struct page *page, unsigned int order)
697 {
698 	set_page_private(page, order);
699 	__SetPageBuddy(page);
700 }
701 
702 static inline void rmv_page_order(struct page *page)
703 {
704 	__ClearPageBuddy(page);
705 	set_page_private(page, 0);
706 }
707 
708 /*
709  * This function checks whether a page is free && is the buddy
710  * we can do coalesce a page and its buddy if
711  * (a) the buddy is not in a hole &&
712  * (b) the buddy is in the buddy system &&
713  * (c) a page and its buddy have the same order &&
714  * (d) a page and its buddy are in the same zone.
715  *
716  * For recording whether a page is in the buddy system, we set ->_mapcount
717  * PAGE_BUDDY_MAPCOUNT_VALUE.
718  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
719  * serialized by zone->lock.
720  *
721  * For recording page's order, we use page_private(page).
722  */
723 static inline int page_is_buddy(struct page *page, struct page *buddy,
724 							unsigned int order)
725 {
726 	if (!pfn_valid_within(page_to_pfn(buddy)))
727 		return 0;
728 
729 	if (page_is_guard(buddy) && page_order(buddy) == order) {
730 		if (page_zone_id(page) != page_zone_id(buddy))
731 			return 0;
732 
733 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734 
735 		return 1;
736 	}
737 
738 	if (PageBuddy(buddy) && page_order(buddy) == order) {
739 		/*
740 		 * zone check is done late to avoid uselessly
741 		 * calculating zone/node ids for pages that could
742 		 * never merge.
743 		 */
744 		if (page_zone_id(page) != page_zone_id(buddy))
745 			return 0;
746 
747 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748 
749 		return 1;
750 	}
751 	return 0;
752 }
753 
754 /*
755  * Freeing function for a buddy system allocator.
756  *
757  * The concept of a buddy system is to maintain direct-mapped table
758  * (containing bit values) for memory blocks of various "orders".
759  * The bottom level table contains the map for the smallest allocatable
760  * units of memory (here, pages), and each level above it describes
761  * pairs of units from the levels below, hence, "buddies".
762  * At a high level, all that happens here is marking the table entry
763  * at the bottom level available, and propagating the changes upward
764  * as necessary, plus some accounting needed to play nicely with other
765  * parts of the VM system.
766  * At each level, we keep a list of pages, which are heads of continuous
767  * free pages of length of (1 << order) and marked with _mapcount
768  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
769  * field.
770  * So when we are allocating or freeing one, we can derive the state of the
771  * other.  That is, if we allocate a small block, and both were
772  * free, the remainder of the region must be split into blocks.
773  * If a block is freed, and its buddy is also free, then this
774  * triggers coalescing into a block of larger size.
775  *
776  * -- nyc
777  */
778 
779 static inline void __free_one_page(struct page *page,
780 		unsigned long pfn,
781 		struct zone *zone, unsigned int order,
782 		int migratetype)
783 {
784 	unsigned long page_idx;
785 	unsigned long combined_idx;
786 	unsigned long uninitialized_var(buddy_idx);
787 	struct page *buddy;
788 	unsigned int max_order;
789 
790 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
791 
792 	VM_BUG_ON(!zone_is_initialized(zone));
793 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
794 
795 	VM_BUG_ON(migratetype == -1);
796 	if (likely(!is_migrate_isolate(migratetype)))
797 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
798 
799 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
800 
801 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
802 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
803 
804 continue_merging:
805 	while (order < max_order - 1) {
806 		buddy_idx = __find_buddy_index(page_idx, order);
807 		buddy = page + (buddy_idx - page_idx);
808 		if (!page_is_buddy(page, buddy, order))
809 			goto done_merging;
810 		/*
811 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 		 * merge with it and move up one order.
813 		 */
814 		if (page_is_guard(buddy)) {
815 			clear_page_guard(zone, buddy, order, migratetype);
816 		} else {
817 			list_del(&buddy->lru);
818 			zone->free_area[order].nr_free--;
819 			rmv_page_order(buddy);
820 		}
821 		combined_idx = buddy_idx & page_idx;
822 		page = page + (combined_idx - page_idx);
823 		page_idx = combined_idx;
824 		order++;
825 	}
826 	if (max_order < MAX_ORDER) {
827 		/* If we are here, it means order is >= pageblock_order.
828 		 * We want to prevent merge between freepages on isolate
829 		 * pageblock and normal pageblock. Without this, pageblock
830 		 * isolation could cause incorrect freepage or CMA accounting.
831 		 *
832 		 * We don't want to hit this code for the more frequent
833 		 * low-order merging.
834 		 */
835 		if (unlikely(has_isolate_pageblock(zone))) {
836 			int buddy_mt;
837 
838 			buddy_idx = __find_buddy_index(page_idx, order);
839 			buddy = page + (buddy_idx - page_idx);
840 			buddy_mt = get_pageblock_migratetype(buddy);
841 
842 			if (migratetype != buddy_mt
843 					&& (is_migrate_isolate(migratetype) ||
844 						is_migrate_isolate(buddy_mt)))
845 				goto done_merging;
846 		}
847 		max_order++;
848 		goto continue_merging;
849 	}
850 
851 done_merging:
852 	set_page_order(page, order);
853 
854 	/*
855 	 * If this is not the largest possible page, check if the buddy
856 	 * of the next-highest order is free. If it is, it's possible
857 	 * that pages are being freed that will coalesce soon. In case,
858 	 * that is happening, add the free page to the tail of the list
859 	 * so it's less likely to be used soon and more likely to be merged
860 	 * as a higher order page
861 	 */
862 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
863 		struct page *higher_page, *higher_buddy;
864 		combined_idx = buddy_idx & page_idx;
865 		higher_page = page + (combined_idx - page_idx);
866 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
867 		higher_buddy = higher_page + (buddy_idx - combined_idx);
868 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 			list_add_tail(&page->lru,
870 				&zone->free_area[order].free_list[migratetype]);
871 			goto out;
872 		}
873 	}
874 
875 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876 out:
877 	zone->free_area[order].nr_free++;
878 }
879 
880 /*
881  * A bad page could be due to a number of fields. Instead of multiple branches,
882  * try and check multiple fields with one check. The caller must do a detailed
883  * check if necessary.
884  */
885 static inline bool page_expected_state(struct page *page,
886 					unsigned long check_flags)
887 {
888 	if (unlikely(atomic_read(&page->_mapcount) != -1))
889 		return false;
890 
891 	if (unlikely((unsigned long)page->mapping |
892 			page_ref_count(page) |
893 #ifdef CONFIG_MEMCG
894 			(unsigned long)page->mem_cgroup |
895 #endif
896 			(page->flags & check_flags)))
897 		return false;
898 
899 	return true;
900 }
901 
902 static void free_pages_check_bad(struct page *page)
903 {
904 	const char *bad_reason;
905 	unsigned long bad_flags;
906 
907 	bad_reason = NULL;
908 	bad_flags = 0;
909 
910 	if (unlikely(atomic_read(&page->_mapcount) != -1))
911 		bad_reason = "nonzero mapcount";
912 	if (unlikely(page->mapping != NULL))
913 		bad_reason = "non-NULL mapping";
914 	if (unlikely(page_ref_count(page) != 0))
915 		bad_reason = "nonzero _refcount";
916 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 	}
920 #ifdef CONFIG_MEMCG
921 	if (unlikely(page->mem_cgroup))
922 		bad_reason = "page still charged to cgroup";
923 #endif
924 	bad_page(page, bad_reason, bad_flags);
925 }
926 
927 static inline int free_pages_check(struct page *page)
928 {
929 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 		return 0;
931 
932 	/* Something has gone sideways, find it */
933 	free_pages_check_bad(page);
934 	return 1;
935 }
936 
937 static int free_tail_pages_check(struct page *head_page, struct page *page)
938 {
939 	int ret = 1;
940 
941 	/*
942 	 * We rely page->lru.next never has bit 0 set, unless the page
943 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 	 */
945 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946 
947 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 		ret = 0;
949 		goto out;
950 	}
951 	switch (page - head_page) {
952 	case 1:
953 		/* the first tail page: ->mapping is compound_mapcount() */
954 		if (unlikely(compound_mapcount(page))) {
955 			bad_page(page, "nonzero compound_mapcount", 0);
956 			goto out;
957 		}
958 		break;
959 	case 2:
960 		/*
961 		 * the second tail page: ->mapping is
962 		 * page_deferred_list().next -- ignore value.
963 		 */
964 		break;
965 	default:
966 		if (page->mapping != TAIL_MAPPING) {
967 			bad_page(page, "corrupted mapping in tail page", 0);
968 			goto out;
969 		}
970 		break;
971 	}
972 	if (unlikely(!PageTail(page))) {
973 		bad_page(page, "PageTail not set", 0);
974 		goto out;
975 	}
976 	if (unlikely(compound_head(page) != head_page)) {
977 		bad_page(page, "compound_head not consistent", 0);
978 		goto out;
979 	}
980 	ret = 0;
981 out:
982 	page->mapping = NULL;
983 	clear_compound_head(page);
984 	return ret;
985 }
986 
987 static __always_inline bool free_pages_prepare(struct page *page,
988 					unsigned int order, bool check_free)
989 {
990 	int bad = 0;
991 
992 	VM_BUG_ON_PAGE(PageTail(page), page);
993 
994 	trace_mm_page_free(page, order);
995 	kmemcheck_free_shadow(page, order);
996 
997 	/*
998 	 * Check tail pages before head page information is cleared to
999 	 * avoid checking PageCompound for order-0 pages.
1000 	 */
1001 	if (unlikely(order)) {
1002 		bool compound = PageCompound(page);
1003 		int i;
1004 
1005 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1006 
1007 		for (i = 1; i < (1 << order); i++) {
1008 			if (compound)
1009 				bad += free_tail_pages_check(page, page + i);
1010 			if (unlikely(free_pages_check(page + i))) {
1011 				bad++;
1012 				continue;
1013 			}
1014 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1015 		}
1016 	}
1017 	if (PageAnonHead(page))
1018 		page->mapping = NULL;
1019 	if (check_free)
1020 		bad += free_pages_check(page);
1021 	if (bad)
1022 		return false;
1023 
1024 	page_cpupid_reset_last(page);
1025 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 	reset_page_owner(page, order);
1027 
1028 	if (!PageHighMem(page)) {
1029 		debug_check_no_locks_freed(page_address(page),
1030 					   PAGE_SIZE << order);
1031 		debug_check_no_obj_freed(page_address(page),
1032 					   PAGE_SIZE << order);
1033 	}
1034 	arch_free_page(page, order);
1035 	kernel_poison_pages(page, 1 << order, 0);
1036 	kernel_map_pages(page, 1 << order, 0);
1037 	kasan_free_pages(page, order);
1038 
1039 	return true;
1040 }
1041 
1042 #ifdef CONFIG_DEBUG_VM
1043 static inline bool free_pcp_prepare(struct page *page)
1044 {
1045 	return free_pages_prepare(page, 0, true);
1046 }
1047 
1048 static inline bool bulkfree_pcp_prepare(struct page *page)
1049 {
1050 	return false;
1051 }
1052 #else
1053 static bool free_pcp_prepare(struct page *page)
1054 {
1055 	return free_pages_prepare(page, 0, false);
1056 }
1057 
1058 static bool bulkfree_pcp_prepare(struct page *page)
1059 {
1060 	return free_pages_check(page);
1061 }
1062 #endif /* CONFIG_DEBUG_VM */
1063 
1064 /*
1065  * Frees a number of pages from the PCP lists
1066  * Assumes all pages on list are in same zone, and of same order.
1067  * count is the number of pages to free.
1068  *
1069  * If the zone was previously in an "all pages pinned" state then look to
1070  * see if this freeing clears that state.
1071  *
1072  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1073  * pinned" detection logic.
1074  */
1075 static void free_pcppages_bulk(struct zone *zone, int count,
1076 					struct per_cpu_pages *pcp)
1077 {
1078 	int migratetype = 0;
1079 	int batch_free = 0;
1080 	unsigned long nr_scanned;
1081 	bool isolated_pageblocks;
1082 
1083 	spin_lock(&zone->lock);
1084 	isolated_pageblocks = has_isolate_pageblock(zone);
1085 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1086 	if (nr_scanned)
1087 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1088 
1089 	while (count) {
1090 		struct page *page;
1091 		struct list_head *list;
1092 
1093 		/*
1094 		 * Remove pages from lists in a round-robin fashion. A
1095 		 * batch_free count is maintained that is incremented when an
1096 		 * empty list is encountered.  This is so more pages are freed
1097 		 * off fuller lists instead of spinning excessively around empty
1098 		 * lists
1099 		 */
1100 		do {
1101 			batch_free++;
1102 			if (++migratetype == MIGRATE_PCPTYPES)
1103 				migratetype = 0;
1104 			list = &pcp->lists[migratetype];
1105 		} while (list_empty(list));
1106 
1107 		/* This is the only non-empty list. Free them all. */
1108 		if (batch_free == MIGRATE_PCPTYPES)
1109 			batch_free = count;
1110 
1111 		do {
1112 			int mt;	/* migratetype of the to-be-freed page */
1113 
1114 			page = list_last_entry(list, struct page, lru);
1115 			/* must delete as __free_one_page list manipulates */
1116 			list_del(&page->lru);
1117 
1118 			mt = get_pcppage_migratetype(page);
1119 			/* MIGRATE_ISOLATE page should not go to pcplists */
1120 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1121 			/* Pageblock could have been isolated meanwhile */
1122 			if (unlikely(isolated_pageblocks))
1123 				mt = get_pageblock_migratetype(page);
1124 
1125 			if (bulkfree_pcp_prepare(page))
1126 				continue;
1127 
1128 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1129 			trace_mm_page_pcpu_drain(page, 0, mt);
1130 		} while (--count && --batch_free && !list_empty(list));
1131 	}
1132 	spin_unlock(&zone->lock);
1133 }
1134 
1135 static void free_one_page(struct zone *zone,
1136 				struct page *page, unsigned long pfn,
1137 				unsigned int order,
1138 				int migratetype)
1139 {
1140 	unsigned long nr_scanned;
1141 	spin_lock(&zone->lock);
1142 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1143 	if (nr_scanned)
1144 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1145 
1146 	if (unlikely(has_isolate_pageblock(zone) ||
1147 		is_migrate_isolate(migratetype))) {
1148 		migratetype = get_pfnblock_migratetype(page, pfn);
1149 	}
1150 	__free_one_page(page, pfn, zone, order, migratetype);
1151 	spin_unlock(&zone->lock);
1152 }
1153 
1154 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1155 				unsigned long zone, int nid)
1156 {
1157 	set_page_links(page, zone, nid, pfn);
1158 	init_page_count(page);
1159 	page_mapcount_reset(page);
1160 	page_cpupid_reset_last(page);
1161 
1162 	INIT_LIST_HEAD(&page->lru);
1163 #ifdef WANT_PAGE_VIRTUAL
1164 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1165 	if (!is_highmem_idx(zone))
1166 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1167 #endif
1168 }
1169 
1170 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1171 					int nid)
1172 {
1173 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1174 }
1175 
1176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1177 static void init_reserved_page(unsigned long pfn)
1178 {
1179 	pg_data_t *pgdat;
1180 	int nid, zid;
1181 
1182 	if (!early_page_uninitialised(pfn))
1183 		return;
1184 
1185 	nid = early_pfn_to_nid(pfn);
1186 	pgdat = NODE_DATA(nid);
1187 
1188 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1189 		struct zone *zone = &pgdat->node_zones[zid];
1190 
1191 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1192 			break;
1193 	}
1194 	__init_single_pfn(pfn, zid, nid);
1195 }
1196 #else
1197 static inline void init_reserved_page(unsigned long pfn)
1198 {
1199 }
1200 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1201 
1202 /*
1203  * Initialised pages do not have PageReserved set. This function is
1204  * called for each range allocated by the bootmem allocator and
1205  * marks the pages PageReserved. The remaining valid pages are later
1206  * sent to the buddy page allocator.
1207  */
1208 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1209 {
1210 	unsigned long start_pfn = PFN_DOWN(start);
1211 	unsigned long end_pfn = PFN_UP(end);
1212 
1213 	for (; start_pfn < end_pfn; start_pfn++) {
1214 		if (pfn_valid(start_pfn)) {
1215 			struct page *page = pfn_to_page(start_pfn);
1216 
1217 			init_reserved_page(start_pfn);
1218 
1219 			/* Avoid false-positive PageTail() */
1220 			INIT_LIST_HEAD(&page->lru);
1221 
1222 			SetPageReserved(page);
1223 		}
1224 	}
1225 }
1226 
1227 static void __free_pages_ok(struct page *page, unsigned int order)
1228 {
1229 	unsigned long flags;
1230 	int migratetype;
1231 	unsigned long pfn = page_to_pfn(page);
1232 
1233 	if (!free_pages_prepare(page, order, true))
1234 		return;
1235 
1236 	migratetype = get_pfnblock_migratetype(page, pfn);
1237 	local_irq_save(flags);
1238 	__count_vm_events(PGFREE, 1 << order);
1239 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1240 	local_irq_restore(flags);
1241 }
1242 
1243 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1244 {
1245 	unsigned int nr_pages = 1 << order;
1246 	struct page *p = page;
1247 	unsigned int loop;
1248 
1249 	prefetchw(p);
1250 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1251 		prefetchw(p + 1);
1252 		__ClearPageReserved(p);
1253 		set_page_count(p, 0);
1254 	}
1255 	__ClearPageReserved(p);
1256 	set_page_count(p, 0);
1257 
1258 	page_zone(page)->managed_pages += nr_pages;
1259 	set_page_refcounted(page);
1260 	__free_pages(page, order);
1261 }
1262 
1263 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1264 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1265 
1266 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1267 
1268 int __meminit early_pfn_to_nid(unsigned long pfn)
1269 {
1270 	static DEFINE_SPINLOCK(early_pfn_lock);
1271 	int nid;
1272 
1273 	spin_lock(&early_pfn_lock);
1274 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1275 	if (nid < 0)
1276 		nid = 0;
1277 	spin_unlock(&early_pfn_lock);
1278 
1279 	return nid;
1280 }
1281 #endif
1282 
1283 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1284 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1285 					struct mminit_pfnnid_cache *state)
1286 {
1287 	int nid;
1288 
1289 	nid = __early_pfn_to_nid(pfn, state);
1290 	if (nid >= 0 && nid != node)
1291 		return false;
1292 	return true;
1293 }
1294 
1295 /* Only safe to use early in boot when initialisation is single-threaded */
1296 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1297 {
1298 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1299 }
1300 
1301 #else
1302 
1303 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304 {
1305 	return true;
1306 }
1307 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1308 					struct mminit_pfnnid_cache *state)
1309 {
1310 	return true;
1311 }
1312 #endif
1313 
1314 
1315 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1316 							unsigned int order)
1317 {
1318 	if (early_page_uninitialised(pfn))
1319 		return;
1320 	return __free_pages_boot_core(page, order);
1321 }
1322 
1323 /*
1324  * Check that the whole (or subset of) a pageblock given by the interval of
1325  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326  * with the migration of free compaction scanner. The scanners then need to
1327  * use only pfn_valid_within() check for arches that allow holes within
1328  * pageblocks.
1329  *
1330  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1331  *
1332  * It's possible on some configurations to have a setup like node0 node1 node0
1333  * i.e. it's possible that all pages within a zones range of pages do not
1334  * belong to a single zone. We assume that a border between node0 and node1
1335  * can occur within a single pageblock, but not a node0 node1 node0
1336  * interleaving within a single pageblock. It is therefore sufficient to check
1337  * the first and last page of a pageblock and avoid checking each individual
1338  * page in a pageblock.
1339  */
1340 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1341 				     unsigned long end_pfn, struct zone *zone)
1342 {
1343 	struct page *start_page;
1344 	struct page *end_page;
1345 
1346 	/* end_pfn is one past the range we are checking */
1347 	end_pfn--;
1348 
1349 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1350 		return NULL;
1351 
1352 	start_page = pfn_to_page(start_pfn);
1353 
1354 	if (page_zone(start_page) != zone)
1355 		return NULL;
1356 
1357 	end_page = pfn_to_page(end_pfn);
1358 
1359 	/* This gives a shorter code than deriving page_zone(end_page) */
1360 	if (page_zone_id(start_page) != page_zone_id(end_page))
1361 		return NULL;
1362 
1363 	return start_page;
1364 }
1365 
1366 void set_zone_contiguous(struct zone *zone)
1367 {
1368 	unsigned long block_start_pfn = zone->zone_start_pfn;
1369 	unsigned long block_end_pfn;
1370 
1371 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1372 	for (; block_start_pfn < zone_end_pfn(zone);
1373 			block_start_pfn = block_end_pfn,
1374 			 block_end_pfn += pageblock_nr_pages) {
1375 
1376 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1377 
1378 		if (!__pageblock_pfn_to_page(block_start_pfn,
1379 					     block_end_pfn, zone))
1380 			return;
1381 	}
1382 
1383 	/* We confirm that there is no hole */
1384 	zone->contiguous = true;
1385 }
1386 
1387 void clear_zone_contiguous(struct zone *zone)
1388 {
1389 	zone->contiguous = false;
1390 }
1391 
1392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1393 static void __init deferred_free_range(struct page *page,
1394 					unsigned long pfn, int nr_pages)
1395 {
1396 	int i;
1397 
1398 	if (!page)
1399 		return;
1400 
1401 	/* Free a large naturally-aligned chunk if possible */
1402 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1403 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1404 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1405 		__free_pages_boot_core(page, MAX_ORDER-1);
1406 		return;
1407 	}
1408 
1409 	for (i = 0; i < nr_pages; i++, page++)
1410 		__free_pages_boot_core(page, 0);
1411 }
1412 
1413 /* Completion tracking for deferred_init_memmap() threads */
1414 static atomic_t pgdat_init_n_undone __initdata;
1415 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1416 
1417 static inline void __init pgdat_init_report_one_done(void)
1418 {
1419 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1420 		complete(&pgdat_init_all_done_comp);
1421 }
1422 
1423 /* Initialise remaining memory on a node */
1424 static int __init deferred_init_memmap(void *data)
1425 {
1426 	pg_data_t *pgdat = data;
1427 	int nid = pgdat->node_id;
1428 	struct mminit_pfnnid_cache nid_init_state = { };
1429 	unsigned long start = jiffies;
1430 	unsigned long nr_pages = 0;
1431 	unsigned long walk_start, walk_end;
1432 	int i, zid;
1433 	struct zone *zone;
1434 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1435 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1436 
1437 	if (first_init_pfn == ULONG_MAX) {
1438 		pgdat_init_report_one_done();
1439 		return 0;
1440 	}
1441 
1442 	/* Bind memory initialisation thread to a local node if possible */
1443 	if (!cpumask_empty(cpumask))
1444 		set_cpus_allowed_ptr(current, cpumask);
1445 
1446 	/* Sanity check boundaries */
1447 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1448 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1449 	pgdat->first_deferred_pfn = ULONG_MAX;
1450 
1451 	/* Only the highest zone is deferred so find it */
1452 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1453 		zone = pgdat->node_zones + zid;
1454 		if (first_init_pfn < zone_end_pfn(zone))
1455 			break;
1456 	}
1457 
1458 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1459 		unsigned long pfn, end_pfn;
1460 		struct page *page = NULL;
1461 		struct page *free_base_page = NULL;
1462 		unsigned long free_base_pfn = 0;
1463 		int nr_to_free = 0;
1464 
1465 		end_pfn = min(walk_end, zone_end_pfn(zone));
1466 		pfn = first_init_pfn;
1467 		if (pfn < walk_start)
1468 			pfn = walk_start;
1469 		if (pfn < zone->zone_start_pfn)
1470 			pfn = zone->zone_start_pfn;
1471 
1472 		for (; pfn < end_pfn; pfn++) {
1473 			if (!pfn_valid_within(pfn))
1474 				goto free_range;
1475 
1476 			/*
1477 			 * Ensure pfn_valid is checked every
1478 			 * MAX_ORDER_NR_PAGES for memory holes
1479 			 */
1480 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1481 				if (!pfn_valid(pfn)) {
1482 					page = NULL;
1483 					goto free_range;
1484 				}
1485 			}
1486 
1487 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1488 				page = NULL;
1489 				goto free_range;
1490 			}
1491 
1492 			/* Minimise pfn page lookups and scheduler checks */
1493 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1494 				page++;
1495 			} else {
1496 				nr_pages += nr_to_free;
1497 				deferred_free_range(free_base_page,
1498 						free_base_pfn, nr_to_free);
1499 				free_base_page = NULL;
1500 				free_base_pfn = nr_to_free = 0;
1501 
1502 				page = pfn_to_page(pfn);
1503 				cond_resched();
1504 			}
1505 
1506 			if (page->flags) {
1507 				VM_BUG_ON(page_zone(page) != zone);
1508 				goto free_range;
1509 			}
1510 
1511 			__init_single_page(page, pfn, zid, nid);
1512 			if (!free_base_page) {
1513 				free_base_page = page;
1514 				free_base_pfn = pfn;
1515 				nr_to_free = 0;
1516 			}
1517 			nr_to_free++;
1518 
1519 			/* Where possible, batch up pages for a single free */
1520 			continue;
1521 free_range:
1522 			/* Free the current block of pages to allocator */
1523 			nr_pages += nr_to_free;
1524 			deferred_free_range(free_base_page, free_base_pfn,
1525 								nr_to_free);
1526 			free_base_page = NULL;
1527 			free_base_pfn = nr_to_free = 0;
1528 		}
1529 
1530 		first_init_pfn = max(end_pfn, first_init_pfn);
1531 	}
1532 
1533 	/* Sanity check that the next zone really is unpopulated */
1534 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1535 
1536 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1537 					jiffies_to_msecs(jiffies - start));
1538 
1539 	pgdat_init_report_one_done();
1540 	return 0;
1541 }
1542 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1543 
1544 void __init page_alloc_init_late(void)
1545 {
1546 	struct zone *zone;
1547 
1548 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1549 	int nid;
1550 
1551 	/* There will be num_node_state(N_MEMORY) threads */
1552 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1553 	for_each_node_state(nid, N_MEMORY) {
1554 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1555 	}
1556 
1557 	/* Block until all are initialised */
1558 	wait_for_completion(&pgdat_init_all_done_comp);
1559 
1560 	/* Reinit limits that are based on free pages after the kernel is up */
1561 	files_maxfiles_init();
1562 #endif
1563 
1564 	for_each_populated_zone(zone)
1565 		set_zone_contiguous(zone);
1566 }
1567 
1568 #ifdef CONFIG_CMA
1569 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1570 void __init init_cma_reserved_pageblock(struct page *page)
1571 {
1572 	unsigned i = pageblock_nr_pages;
1573 	struct page *p = page;
1574 
1575 	do {
1576 		__ClearPageReserved(p);
1577 		set_page_count(p, 0);
1578 	} while (++p, --i);
1579 
1580 	set_pageblock_migratetype(page, MIGRATE_CMA);
1581 
1582 	if (pageblock_order >= MAX_ORDER) {
1583 		i = pageblock_nr_pages;
1584 		p = page;
1585 		do {
1586 			set_page_refcounted(p);
1587 			__free_pages(p, MAX_ORDER - 1);
1588 			p += MAX_ORDER_NR_PAGES;
1589 		} while (i -= MAX_ORDER_NR_PAGES);
1590 	} else {
1591 		set_page_refcounted(page);
1592 		__free_pages(page, pageblock_order);
1593 	}
1594 
1595 	adjust_managed_page_count(page, pageblock_nr_pages);
1596 }
1597 #endif
1598 
1599 /*
1600  * The order of subdivision here is critical for the IO subsystem.
1601  * Please do not alter this order without good reasons and regression
1602  * testing. Specifically, as large blocks of memory are subdivided,
1603  * the order in which smaller blocks are delivered depends on the order
1604  * they're subdivided in this function. This is the primary factor
1605  * influencing the order in which pages are delivered to the IO
1606  * subsystem according to empirical testing, and this is also justified
1607  * by considering the behavior of a buddy system containing a single
1608  * large block of memory acted on by a series of small allocations.
1609  * This behavior is a critical factor in sglist merging's success.
1610  *
1611  * -- nyc
1612  */
1613 static inline void expand(struct zone *zone, struct page *page,
1614 	int low, int high, struct free_area *area,
1615 	int migratetype)
1616 {
1617 	unsigned long size = 1 << high;
1618 
1619 	while (high > low) {
1620 		area--;
1621 		high--;
1622 		size >>= 1;
1623 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1624 
1625 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1626 			debug_guardpage_enabled() &&
1627 			high < debug_guardpage_minorder()) {
1628 			/*
1629 			 * Mark as guard pages (or page), that will allow to
1630 			 * merge back to allocator when buddy will be freed.
1631 			 * Corresponding page table entries will not be touched,
1632 			 * pages will stay not present in virtual address space
1633 			 */
1634 			set_page_guard(zone, &page[size], high, migratetype);
1635 			continue;
1636 		}
1637 		list_add(&page[size].lru, &area->free_list[migratetype]);
1638 		area->nr_free++;
1639 		set_page_order(&page[size], high);
1640 	}
1641 }
1642 
1643 static void check_new_page_bad(struct page *page)
1644 {
1645 	const char *bad_reason = NULL;
1646 	unsigned long bad_flags = 0;
1647 
1648 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1649 		bad_reason = "nonzero mapcount";
1650 	if (unlikely(page->mapping != NULL))
1651 		bad_reason = "non-NULL mapping";
1652 	if (unlikely(page_ref_count(page) != 0))
1653 		bad_reason = "nonzero _count";
1654 	if (unlikely(page->flags & __PG_HWPOISON)) {
1655 		bad_reason = "HWPoisoned (hardware-corrupted)";
1656 		bad_flags = __PG_HWPOISON;
1657 		/* Don't complain about hwpoisoned pages */
1658 		page_mapcount_reset(page); /* remove PageBuddy */
1659 		return;
1660 	}
1661 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1662 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1663 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1664 	}
1665 #ifdef CONFIG_MEMCG
1666 	if (unlikely(page->mem_cgroup))
1667 		bad_reason = "page still charged to cgroup";
1668 #endif
1669 	bad_page(page, bad_reason, bad_flags);
1670 }
1671 
1672 /*
1673  * This page is about to be returned from the page allocator
1674  */
1675 static inline int check_new_page(struct page *page)
1676 {
1677 	if (likely(page_expected_state(page,
1678 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1679 		return 0;
1680 
1681 	check_new_page_bad(page);
1682 	return 1;
1683 }
1684 
1685 static inline bool free_pages_prezeroed(bool poisoned)
1686 {
1687 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1688 		page_poisoning_enabled() && poisoned;
1689 }
1690 
1691 #ifdef CONFIG_DEBUG_VM
1692 static bool check_pcp_refill(struct page *page)
1693 {
1694 	return false;
1695 }
1696 
1697 static bool check_new_pcp(struct page *page)
1698 {
1699 	return check_new_page(page);
1700 }
1701 #else
1702 static bool check_pcp_refill(struct page *page)
1703 {
1704 	return check_new_page(page);
1705 }
1706 static bool check_new_pcp(struct page *page)
1707 {
1708 	return false;
1709 }
1710 #endif /* CONFIG_DEBUG_VM */
1711 
1712 static bool check_new_pages(struct page *page, unsigned int order)
1713 {
1714 	int i;
1715 	for (i = 0; i < (1 << order); i++) {
1716 		struct page *p = page + i;
1717 
1718 		if (unlikely(check_new_page(p)))
1719 			return true;
1720 	}
1721 
1722 	return false;
1723 }
1724 
1725 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1726 							unsigned int alloc_flags)
1727 {
1728 	int i;
1729 	bool poisoned = true;
1730 
1731 	for (i = 0; i < (1 << order); i++) {
1732 		struct page *p = page + i;
1733 		if (poisoned)
1734 			poisoned &= page_is_poisoned(p);
1735 	}
1736 
1737 	set_page_private(page, 0);
1738 	set_page_refcounted(page);
1739 
1740 	arch_alloc_page(page, order);
1741 	kernel_map_pages(page, 1 << order, 1);
1742 	kernel_poison_pages(page, 1 << order, 1);
1743 	kasan_alloc_pages(page, order);
1744 
1745 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1746 		for (i = 0; i < (1 << order); i++)
1747 			clear_highpage(page + i);
1748 
1749 	if (order && (gfp_flags & __GFP_COMP))
1750 		prep_compound_page(page, order);
1751 
1752 	set_page_owner(page, order, gfp_flags);
1753 
1754 	/*
1755 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1756 	 * allocate the page. The expectation is that the caller is taking
1757 	 * steps that will free more memory. The caller should avoid the page
1758 	 * being used for !PFMEMALLOC purposes.
1759 	 */
1760 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1761 		set_page_pfmemalloc(page);
1762 	else
1763 		clear_page_pfmemalloc(page);
1764 }
1765 
1766 /*
1767  * Go through the free lists for the given migratetype and remove
1768  * the smallest available page from the freelists
1769  */
1770 static inline
1771 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1772 						int migratetype)
1773 {
1774 	unsigned int current_order;
1775 	struct free_area *area;
1776 	struct page *page;
1777 
1778 	/* Find a page of the appropriate size in the preferred list */
1779 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1780 		area = &(zone->free_area[current_order]);
1781 		page = list_first_entry_or_null(&area->free_list[migratetype],
1782 							struct page, lru);
1783 		if (!page)
1784 			continue;
1785 		list_del(&page->lru);
1786 		rmv_page_order(page);
1787 		area->nr_free--;
1788 		expand(zone, page, order, current_order, area, migratetype);
1789 		set_pcppage_migratetype(page, migratetype);
1790 		return page;
1791 	}
1792 
1793 	return NULL;
1794 }
1795 
1796 
1797 /*
1798  * This array describes the order lists are fallen back to when
1799  * the free lists for the desirable migrate type are depleted
1800  */
1801 static int fallbacks[MIGRATE_TYPES][4] = {
1802 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1803 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1804 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1805 #ifdef CONFIG_CMA
1806 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1807 #endif
1808 #ifdef CONFIG_MEMORY_ISOLATION
1809 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1810 #endif
1811 };
1812 
1813 #ifdef CONFIG_CMA
1814 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1815 					unsigned int order)
1816 {
1817 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1818 }
1819 #else
1820 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 					unsigned int order) { return NULL; }
1822 #endif
1823 
1824 /*
1825  * Move the free pages in a range to the free lists of the requested type.
1826  * Note that start_page and end_pages are not aligned on a pageblock
1827  * boundary. If alignment is required, use move_freepages_block()
1828  */
1829 int move_freepages(struct zone *zone,
1830 			  struct page *start_page, struct page *end_page,
1831 			  int migratetype)
1832 {
1833 	struct page *page;
1834 	unsigned int order;
1835 	int pages_moved = 0;
1836 
1837 #ifndef CONFIG_HOLES_IN_ZONE
1838 	/*
1839 	 * page_zone is not safe to call in this context when
1840 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1841 	 * anyway as we check zone boundaries in move_freepages_block().
1842 	 * Remove at a later date when no bug reports exist related to
1843 	 * grouping pages by mobility
1844 	 */
1845 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1846 #endif
1847 
1848 	for (page = start_page; page <= end_page;) {
1849 		/* Make sure we are not inadvertently changing nodes */
1850 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1851 
1852 		if (!pfn_valid_within(page_to_pfn(page))) {
1853 			page++;
1854 			continue;
1855 		}
1856 
1857 		if (!PageBuddy(page)) {
1858 			page++;
1859 			continue;
1860 		}
1861 
1862 		order = page_order(page);
1863 		list_move(&page->lru,
1864 			  &zone->free_area[order].free_list[migratetype]);
1865 		page += 1 << order;
1866 		pages_moved += 1 << order;
1867 	}
1868 
1869 	return pages_moved;
1870 }
1871 
1872 int move_freepages_block(struct zone *zone, struct page *page,
1873 				int migratetype)
1874 {
1875 	unsigned long start_pfn, end_pfn;
1876 	struct page *start_page, *end_page;
1877 
1878 	start_pfn = page_to_pfn(page);
1879 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1880 	start_page = pfn_to_page(start_pfn);
1881 	end_page = start_page + pageblock_nr_pages - 1;
1882 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1883 
1884 	/* Do not cross zone boundaries */
1885 	if (!zone_spans_pfn(zone, start_pfn))
1886 		start_page = page;
1887 	if (!zone_spans_pfn(zone, end_pfn))
1888 		return 0;
1889 
1890 	return move_freepages(zone, start_page, end_page, migratetype);
1891 }
1892 
1893 static void change_pageblock_range(struct page *pageblock_page,
1894 					int start_order, int migratetype)
1895 {
1896 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1897 
1898 	while (nr_pageblocks--) {
1899 		set_pageblock_migratetype(pageblock_page, migratetype);
1900 		pageblock_page += pageblock_nr_pages;
1901 	}
1902 }
1903 
1904 /*
1905  * When we are falling back to another migratetype during allocation, try to
1906  * steal extra free pages from the same pageblocks to satisfy further
1907  * allocations, instead of polluting multiple pageblocks.
1908  *
1909  * If we are stealing a relatively large buddy page, it is likely there will
1910  * be more free pages in the pageblock, so try to steal them all. For
1911  * reclaimable and unmovable allocations, we steal regardless of page size,
1912  * as fragmentation caused by those allocations polluting movable pageblocks
1913  * is worse than movable allocations stealing from unmovable and reclaimable
1914  * pageblocks.
1915  */
1916 static bool can_steal_fallback(unsigned int order, int start_mt)
1917 {
1918 	/*
1919 	 * Leaving this order check is intended, although there is
1920 	 * relaxed order check in next check. The reason is that
1921 	 * we can actually steal whole pageblock if this condition met,
1922 	 * but, below check doesn't guarantee it and that is just heuristic
1923 	 * so could be changed anytime.
1924 	 */
1925 	if (order >= pageblock_order)
1926 		return true;
1927 
1928 	if (order >= pageblock_order / 2 ||
1929 		start_mt == MIGRATE_RECLAIMABLE ||
1930 		start_mt == MIGRATE_UNMOVABLE ||
1931 		page_group_by_mobility_disabled)
1932 		return true;
1933 
1934 	return false;
1935 }
1936 
1937 /*
1938  * This function implements actual steal behaviour. If order is large enough,
1939  * we can steal whole pageblock. If not, we first move freepages in this
1940  * pageblock and check whether half of pages are moved or not. If half of
1941  * pages are moved, we can change migratetype of pageblock and permanently
1942  * use it's pages as requested migratetype in the future.
1943  */
1944 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1945 							  int start_type)
1946 {
1947 	unsigned int current_order = page_order(page);
1948 	int pages;
1949 
1950 	/* Take ownership for orders >= pageblock_order */
1951 	if (current_order >= pageblock_order) {
1952 		change_pageblock_range(page, current_order, start_type);
1953 		return;
1954 	}
1955 
1956 	pages = move_freepages_block(zone, page, start_type);
1957 
1958 	/* Claim the whole block if over half of it is free */
1959 	if (pages >= (1 << (pageblock_order-1)) ||
1960 			page_group_by_mobility_disabled)
1961 		set_pageblock_migratetype(page, start_type);
1962 }
1963 
1964 /*
1965  * Check whether there is a suitable fallback freepage with requested order.
1966  * If only_stealable is true, this function returns fallback_mt only if
1967  * we can steal other freepages all together. This would help to reduce
1968  * fragmentation due to mixed migratetype pages in one pageblock.
1969  */
1970 int find_suitable_fallback(struct free_area *area, unsigned int order,
1971 			int migratetype, bool only_stealable, bool *can_steal)
1972 {
1973 	int i;
1974 	int fallback_mt;
1975 
1976 	if (area->nr_free == 0)
1977 		return -1;
1978 
1979 	*can_steal = false;
1980 	for (i = 0;; i++) {
1981 		fallback_mt = fallbacks[migratetype][i];
1982 		if (fallback_mt == MIGRATE_TYPES)
1983 			break;
1984 
1985 		if (list_empty(&area->free_list[fallback_mt]))
1986 			continue;
1987 
1988 		if (can_steal_fallback(order, migratetype))
1989 			*can_steal = true;
1990 
1991 		if (!only_stealable)
1992 			return fallback_mt;
1993 
1994 		if (*can_steal)
1995 			return fallback_mt;
1996 	}
1997 
1998 	return -1;
1999 }
2000 
2001 /*
2002  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2003  * there are no empty page blocks that contain a page with a suitable order
2004  */
2005 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2006 				unsigned int alloc_order)
2007 {
2008 	int mt;
2009 	unsigned long max_managed, flags;
2010 
2011 	/*
2012 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2013 	 * Check is race-prone but harmless.
2014 	 */
2015 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2016 	if (zone->nr_reserved_highatomic >= max_managed)
2017 		return;
2018 
2019 	spin_lock_irqsave(&zone->lock, flags);
2020 
2021 	/* Recheck the nr_reserved_highatomic limit under the lock */
2022 	if (zone->nr_reserved_highatomic >= max_managed)
2023 		goto out_unlock;
2024 
2025 	/* Yoink! */
2026 	mt = get_pageblock_migratetype(page);
2027 	if (mt != MIGRATE_HIGHATOMIC &&
2028 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2029 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2030 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2031 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2032 	}
2033 
2034 out_unlock:
2035 	spin_unlock_irqrestore(&zone->lock, flags);
2036 }
2037 
2038 /*
2039  * Used when an allocation is about to fail under memory pressure. This
2040  * potentially hurts the reliability of high-order allocations when under
2041  * intense memory pressure but failed atomic allocations should be easier
2042  * to recover from than an OOM.
2043  */
2044 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2045 {
2046 	struct zonelist *zonelist = ac->zonelist;
2047 	unsigned long flags;
2048 	struct zoneref *z;
2049 	struct zone *zone;
2050 	struct page *page;
2051 	int order;
2052 
2053 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2054 								ac->nodemask) {
2055 		/* Preserve at least one pageblock */
2056 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2057 			continue;
2058 
2059 		spin_lock_irqsave(&zone->lock, flags);
2060 		for (order = 0; order < MAX_ORDER; order++) {
2061 			struct free_area *area = &(zone->free_area[order]);
2062 
2063 			page = list_first_entry_or_null(
2064 					&area->free_list[MIGRATE_HIGHATOMIC],
2065 					struct page, lru);
2066 			if (!page)
2067 				continue;
2068 
2069 			/*
2070 			 * It should never happen but changes to locking could
2071 			 * inadvertently allow a per-cpu drain to add pages
2072 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2073 			 * and watch for underflows.
2074 			 */
2075 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2076 				zone->nr_reserved_highatomic);
2077 
2078 			/*
2079 			 * Convert to ac->migratetype and avoid the normal
2080 			 * pageblock stealing heuristics. Minimally, the caller
2081 			 * is doing the work and needs the pages. More
2082 			 * importantly, if the block was always converted to
2083 			 * MIGRATE_UNMOVABLE or another type then the number
2084 			 * of pageblocks that cannot be completely freed
2085 			 * may increase.
2086 			 */
2087 			set_pageblock_migratetype(page, ac->migratetype);
2088 			move_freepages_block(zone, page, ac->migratetype);
2089 			spin_unlock_irqrestore(&zone->lock, flags);
2090 			return;
2091 		}
2092 		spin_unlock_irqrestore(&zone->lock, flags);
2093 	}
2094 }
2095 
2096 /* Remove an element from the buddy allocator from the fallback list */
2097 static inline struct page *
2098 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2099 {
2100 	struct free_area *area;
2101 	unsigned int current_order;
2102 	struct page *page;
2103 	int fallback_mt;
2104 	bool can_steal;
2105 
2106 	/* Find the largest possible block of pages in the other list */
2107 	for (current_order = MAX_ORDER-1;
2108 				current_order >= order && current_order <= MAX_ORDER-1;
2109 				--current_order) {
2110 		area = &(zone->free_area[current_order]);
2111 		fallback_mt = find_suitable_fallback(area, current_order,
2112 				start_migratetype, false, &can_steal);
2113 		if (fallback_mt == -1)
2114 			continue;
2115 
2116 		page = list_first_entry(&area->free_list[fallback_mt],
2117 						struct page, lru);
2118 		if (can_steal)
2119 			steal_suitable_fallback(zone, page, start_migratetype);
2120 
2121 		/* Remove the page from the freelists */
2122 		area->nr_free--;
2123 		list_del(&page->lru);
2124 		rmv_page_order(page);
2125 
2126 		expand(zone, page, order, current_order, area,
2127 					start_migratetype);
2128 		/*
2129 		 * The pcppage_migratetype may differ from pageblock's
2130 		 * migratetype depending on the decisions in
2131 		 * find_suitable_fallback(). This is OK as long as it does not
2132 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2133 		 * fallback only via special __rmqueue_cma_fallback() function
2134 		 */
2135 		set_pcppage_migratetype(page, start_migratetype);
2136 
2137 		trace_mm_page_alloc_extfrag(page, order, current_order,
2138 			start_migratetype, fallback_mt);
2139 
2140 		return page;
2141 	}
2142 
2143 	return NULL;
2144 }
2145 
2146 /*
2147  * Do the hard work of removing an element from the buddy allocator.
2148  * Call me with the zone->lock already held.
2149  */
2150 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2151 				int migratetype)
2152 {
2153 	struct page *page;
2154 
2155 	page = __rmqueue_smallest(zone, order, migratetype);
2156 	if (unlikely(!page)) {
2157 		if (migratetype == MIGRATE_MOVABLE)
2158 			page = __rmqueue_cma_fallback(zone, order);
2159 
2160 		if (!page)
2161 			page = __rmqueue_fallback(zone, order, migratetype);
2162 	}
2163 
2164 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2165 	return page;
2166 }
2167 
2168 /*
2169  * Obtain a specified number of elements from the buddy allocator, all under
2170  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2171  * Returns the number of new pages which were placed at *list.
2172  */
2173 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2174 			unsigned long count, struct list_head *list,
2175 			int migratetype, bool cold)
2176 {
2177 	int i;
2178 
2179 	spin_lock(&zone->lock);
2180 	for (i = 0; i < count; ++i) {
2181 		struct page *page = __rmqueue(zone, order, migratetype);
2182 		if (unlikely(page == NULL))
2183 			break;
2184 
2185 		if (unlikely(check_pcp_refill(page)))
2186 			continue;
2187 
2188 		/*
2189 		 * Split buddy pages returned by expand() are received here
2190 		 * in physical page order. The page is added to the callers and
2191 		 * list and the list head then moves forward. From the callers
2192 		 * perspective, the linked list is ordered by page number in
2193 		 * some conditions. This is useful for IO devices that can
2194 		 * merge IO requests if the physical pages are ordered
2195 		 * properly.
2196 		 */
2197 		if (likely(!cold))
2198 			list_add(&page->lru, list);
2199 		else
2200 			list_add_tail(&page->lru, list);
2201 		list = &page->lru;
2202 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2203 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2204 					      -(1 << order));
2205 	}
2206 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2207 	spin_unlock(&zone->lock);
2208 	return i;
2209 }
2210 
2211 #ifdef CONFIG_NUMA
2212 /*
2213  * Called from the vmstat counter updater to drain pagesets of this
2214  * currently executing processor on remote nodes after they have
2215  * expired.
2216  *
2217  * Note that this function must be called with the thread pinned to
2218  * a single processor.
2219  */
2220 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2221 {
2222 	unsigned long flags;
2223 	int to_drain, batch;
2224 
2225 	local_irq_save(flags);
2226 	batch = READ_ONCE(pcp->batch);
2227 	to_drain = min(pcp->count, batch);
2228 	if (to_drain > 0) {
2229 		free_pcppages_bulk(zone, to_drain, pcp);
2230 		pcp->count -= to_drain;
2231 	}
2232 	local_irq_restore(flags);
2233 }
2234 #endif
2235 
2236 /*
2237  * Drain pcplists of the indicated processor and zone.
2238  *
2239  * The processor must either be the current processor and the
2240  * thread pinned to the current processor or a processor that
2241  * is not online.
2242  */
2243 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2244 {
2245 	unsigned long flags;
2246 	struct per_cpu_pageset *pset;
2247 	struct per_cpu_pages *pcp;
2248 
2249 	local_irq_save(flags);
2250 	pset = per_cpu_ptr(zone->pageset, cpu);
2251 
2252 	pcp = &pset->pcp;
2253 	if (pcp->count) {
2254 		free_pcppages_bulk(zone, pcp->count, pcp);
2255 		pcp->count = 0;
2256 	}
2257 	local_irq_restore(flags);
2258 }
2259 
2260 /*
2261  * Drain pcplists of all zones on the indicated processor.
2262  *
2263  * The processor must either be the current processor and the
2264  * thread pinned to the current processor or a processor that
2265  * is not online.
2266  */
2267 static void drain_pages(unsigned int cpu)
2268 {
2269 	struct zone *zone;
2270 
2271 	for_each_populated_zone(zone) {
2272 		drain_pages_zone(cpu, zone);
2273 	}
2274 }
2275 
2276 /*
2277  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2278  *
2279  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2280  * the single zone's pages.
2281  */
2282 void drain_local_pages(struct zone *zone)
2283 {
2284 	int cpu = smp_processor_id();
2285 
2286 	if (zone)
2287 		drain_pages_zone(cpu, zone);
2288 	else
2289 		drain_pages(cpu);
2290 }
2291 
2292 /*
2293  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2294  *
2295  * When zone parameter is non-NULL, spill just the single zone's pages.
2296  *
2297  * Note that this code is protected against sending an IPI to an offline
2298  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2299  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2300  * nothing keeps CPUs from showing up after we populated the cpumask and
2301  * before the call to on_each_cpu_mask().
2302  */
2303 void drain_all_pages(struct zone *zone)
2304 {
2305 	int cpu;
2306 
2307 	/*
2308 	 * Allocate in the BSS so we wont require allocation in
2309 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2310 	 */
2311 	static cpumask_t cpus_with_pcps;
2312 
2313 	/*
2314 	 * We don't care about racing with CPU hotplug event
2315 	 * as offline notification will cause the notified
2316 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2317 	 * disables preemption as part of its processing
2318 	 */
2319 	for_each_online_cpu(cpu) {
2320 		struct per_cpu_pageset *pcp;
2321 		struct zone *z;
2322 		bool has_pcps = false;
2323 
2324 		if (zone) {
2325 			pcp = per_cpu_ptr(zone->pageset, cpu);
2326 			if (pcp->pcp.count)
2327 				has_pcps = true;
2328 		} else {
2329 			for_each_populated_zone(z) {
2330 				pcp = per_cpu_ptr(z->pageset, cpu);
2331 				if (pcp->pcp.count) {
2332 					has_pcps = true;
2333 					break;
2334 				}
2335 			}
2336 		}
2337 
2338 		if (has_pcps)
2339 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2340 		else
2341 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2342 	}
2343 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2344 								zone, 1);
2345 }
2346 
2347 #ifdef CONFIG_HIBERNATION
2348 
2349 void mark_free_pages(struct zone *zone)
2350 {
2351 	unsigned long pfn, max_zone_pfn;
2352 	unsigned long flags;
2353 	unsigned int order, t;
2354 	struct page *page;
2355 
2356 	if (zone_is_empty(zone))
2357 		return;
2358 
2359 	spin_lock_irqsave(&zone->lock, flags);
2360 
2361 	max_zone_pfn = zone_end_pfn(zone);
2362 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2363 		if (pfn_valid(pfn)) {
2364 			page = pfn_to_page(pfn);
2365 
2366 			if (page_zone(page) != zone)
2367 				continue;
2368 
2369 			if (!swsusp_page_is_forbidden(page))
2370 				swsusp_unset_page_free(page);
2371 		}
2372 
2373 	for_each_migratetype_order(order, t) {
2374 		list_for_each_entry(page,
2375 				&zone->free_area[order].free_list[t], lru) {
2376 			unsigned long i;
2377 
2378 			pfn = page_to_pfn(page);
2379 			for (i = 0; i < (1UL << order); i++)
2380 				swsusp_set_page_free(pfn_to_page(pfn + i));
2381 		}
2382 	}
2383 	spin_unlock_irqrestore(&zone->lock, flags);
2384 }
2385 #endif /* CONFIG_PM */
2386 
2387 /*
2388  * Free a 0-order page
2389  * cold == true ? free a cold page : free a hot page
2390  */
2391 void free_hot_cold_page(struct page *page, bool cold)
2392 {
2393 	struct zone *zone = page_zone(page);
2394 	struct per_cpu_pages *pcp;
2395 	unsigned long flags;
2396 	unsigned long pfn = page_to_pfn(page);
2397 	int migratetype;
2398 
2399 	if (!free_pcp_prepare(page))
2400 		return;
2401 
2402 	migratetype = get_pfnblock_migratetype(page, pfn);
2403 	set_pcppage_migratetype(page, migratetype);
2404 	local_irq_save(flags);
2405 	__count_vm_event(PGFREE);
2406 
2407 	/*
2408 	 * We only track unmovable, reclaimable and movable on pcp lists.
2409 	 * Free ISOLATE pages back to the allocator because they are being
2410 	 * offlined but treat RESERVE as movable pages so we can get those
2411 	 * areas back if necessary. Otherwise, we may have to free
2412 	 * excessively into the page allocator
2413 	 */
2414 	if (migratetype >= MIGRATE_PCPTYPES) {
2415 		if (unlikely(is_migrate_isolate(migratetype))) {
2416 			free_one_page(zone, page, pfn, 0, migratetype);
2417 			goto out;
2418 		}
2419 		migratetype = MIGRATE_MOVABLE;
2420 	}
2421 
2422 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2423 	if (!cold)
2424 		list_add(&page->lru, &pcp->lists[migratetype]);
2425 	else
2426 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2427 	pcp->count++;
2428 	if (pcp->count >= pcp->high) {
2429 		unsigned long batch = READ_ONCE(pcp->batch);
2430 		free_pcppages_bulk(zone, batch, pcp);
2431 		pcp->count -= batch;
2432 	}
2433 
2434 out:
2435 	local_irq_restore(flags);
2436 }
2437 
2438 /*
2439  * Free a list of 0-order pages
2440  */
2441 void free_hot_cold_page_list(struct list_head *list, bool cold)
2442 {
2443 	struct page *page, *next;
2444 
2445 	list_for_each_entry_safe(page, next, list, lru) {
2446 		trace_mm_page_free_batched(page, cold);
2447 		free_hot_cold_page(page, cold);
2448 	}
2449 }
2450 
2451 /*
2452  * split_page takes a non-compound higher-order page, and splits it into
2453  * n (1<<order) sub-pages: page[0..n]
2454  * Each sub-page must be freed individually.
2455  *
2456  * Note: this is probably too low level an operation for use in drivers.
2457  * Please consult with lkml before using this in your driver.
2458  */
2459 void split_page(struct page *page, unsigned int order)
2460 {
2461 	int i;
2462 	gfp_t gfp_mask;
2463 
2464 	VM_BUG_ON_PAGE(PageCompound(page), page);
2465 	VM_BUG_ON_PAGE(!page_count(page), page);
2466 
2467 #ifdef CONFIG_KMEMCHECK
2468 	/*
2469 	 * Split shadow pages too, because free(page[0]) would
2470 	 * otherwise free the whole shadow.
2471 	 */
2472 	if (kmemcheck_page_is_tracked(page))
2473 		split_page(virt_to_page(page[0].shadow), order);
2474 #endif
2475 
2476 	gfp_mask = get_page_owner_gfp(page);
2477 	set_page_owner(page, 0, gfp_mask);
2478 	for (i = 1; i < (1 << order); i++) {
2479 		set_page_refcounted(page + i);
2480 		set_page_owner(page + i, 0, gfp_mask);
2481 	}
2482 }
2483 EXPORT_SYMBOL_GPL(split_page);
2484 
2485 int __isolate_free_page(struct page *page, unsigned int order)
2486 {
2487 	unsigned long watermark;
2488 	struct zone *zone;
2489 	int mt;
2490 
2491 	BUG_ON(!PageBuddy(page));
2492 
2493 	zone = page_zone(page);
2494 	mt = get_pageblock_migratetype(page);
2495 
2496 	if (!is_migrate_isolate(mt)) {
2497 		/* Obey watermarks as if the page was being allocated */
2498 		watermark = low_wmark_pages(zone) + (1 << order);
2499 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2500 			return 0;
2501 
2502 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2503 	}
2504 
2505 	/* Remove page from free list */
2506 	list_del(&page->lru);
2507 	zone->free_area[order].nr_free--;
2508 	rmv_page_order(page);
2509 
2510 	set_page_owner(page, order, __GFP_MOVABLE);
2511 
2512 	/* Set the pageblock if the isolated page is at least a pageblock */
2513 	if (order >= pageblock_order - 1) {
2514 		struct page *endpage = page + (1 << order) - 1;
2515 		for (; page < endpage; page += pageblock_nr_pages) {
2516 			int mt = get_pageblock_migratetype(page);
2517 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2518 				set_pageblock_migratetype(page,
2519 							  MIGRATE_MOVABLE);
2520 		}
2521 	}
2522 
2523 
2524 	return 1UL << order;
2525 }
2526 
2527 /*
2528  * Similar to split_page except the page is already free. As this is only
2529  * being used for migration, the migratetype of the block also changes.
2530  * As this is called with interrupts disabled, the caller is responsible
2531  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2532  * are enabled.
2533  *
2534  * Note: this is probably too low level an operation for use in drivers.
2535  * Please consult with lkml before using this in your driver.
2536  */
2537 int split_free_page(struct page *page)
2538 {
2539 	unsigned int order;
2540 	int nr_pages;
2541 
2542 	order = page_order(page);
2543 
2544 	nr_pages = __isolate_free_page(page, order);
2545 	if (!nr_pages)
2546 		return 0;
2547 
2548 	/* Split into individual pages */
2549 	set_page_refcounted(page);
2550 	split_page(page, order);
2551 	return nr_pages;
2552 }
2553 
2554 /*
2555  * Update NUMA hit/miss statistics
2556  *
2557  * Must be called with interrupts disabled.
2558  *
2559  * When __GFP_OTHER_NODE is set assume the node of the preferred
2560  * zone is the local node. This is useful for daemons who allocate
2561  * memory on behalf of other processes.
2562  */
2563 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2564 								gfp_t flags)
2565 {
2566 #ifdef CONFIG_NUMA
2567 	int local_nid = numa_node_id();
2568 	enum zone_stat_item local_stat = NUMA_LOCAL;
2569 
2570 	if (unlikely(flags & __GFP_OTHER_NODE)) {
2571 		local_stat = NUMA_OTHER;
2572 		local_nid = preferred_zone->node;
2573 	}
2574 
2575 	if (z->node == local_nid) {
2576 		__inc_zone_state(z, NUMA_HIT);
2577 		__inc_zone_state(z, local_stat);
2578 	} else {
2579 		__inc_zone_state(z, NUMA_MISS);
2580 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2581 	}
2582 #endif
2583 }
2584 
2585 /*
2586  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2587  */
2588 static inline
2589 struct page *buffered_rmqueue(struct zone *preferred_zone,
2590 			struct zone *zone, unsigned int order,
2591 			gfp_t gfp_flags, unsigned int alloc_flags,
2592 			int migratetype)
2593 {
2594 	unsigned long flags;
2595 	struct page *page;
2596 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2597 
2598 	if (likely(order == 0)) {
2599 		struct per_cpu_pages *pcp;
2600 		struct list_head *list;
2601 
2602 		local_irq_save(flags);
2603 		do {
2604 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2605 			list = &pcp->lists[migratetype];
2606 			if (list_empty(list)) {
2607 				pcp->count += rmqueue_bulk(zone, 0,
2608 						pcp->batch, list,
2609 						migratetype, cold);
2610 				if (unlikely(list_empty(list)))
2611 					goto failed;
2612 			}
2613 
2614 			if (cold)
2615 				page = list_last_entry(list, struct page, lru);
2616 			else
2617 				page = list_first_entry(list, struct page, lru);
2618 
2619 			__dec_zone_state(zone, NR_ALLOC_BATCH);
2620 			list_del(&page->lru);
2621 			pcp->count--;
2622 
2623 		} while (check_new_pcp(page));
2624 	} else {
2625 		/*
2626 		 * We most definitely don't want callers attempting to
2627 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2628 		 */
2629 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2630 		spin_lock_irqsave(&zone->lock, flags);
2631 
2632 		do {
2633 			page = NULL;
2634 			if (alloc_flags & ALLOC_HARDER) {
2635 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2636 				if (page)
2637 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2638 			}
2639 			if (!page)
2640 				page = __rmqueue(zone, order, migratetype);
2641 		} while (page && check_new_pages(page, order));
2642 		spin_unlock(&zone->lock);
2643 		if (!page)
2644 			goto failed;
2645 		__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2646 		__mod_zone_freepage_state(zone, -(1 << order),
2647 					  get_pcppage_migratetype(page));
2648 	}
2649 
2650 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2651 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2652 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2653 
2654 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2655 	zone_statistics(preferred_zone, zone, gfp_flags);
2656 	local_irq_restore(flags);
2657 
2658 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2659 	return page;
2660 
2661 failed:
2662 	local_irq_restore(flags);
2663 	return NULL;
2664 }
2665 
2666 #ifdef CONFIG_FAIL_PAGE_ALLOC
2667 
2668 static struct {
2669 	struct fault_attr attr;
2670 
2671 	bool ignore_gfp_highmem;
2672 	bool ignore_gfp_reclaim;
2673 	u32 min_order;
2674 } fail_page_alloc = {
2675 	.attr = FAULT_ATTR_INITIALIZER,
2676 	.ignore_gfp_reclaim = true,
2677 	.ignore_gfp_highmem = true,
2678 	.min_order = 1,
2679 };
2680 
2681 static int __init setup_fail_page_alloc(char *str)
2682 {
2683 	return setup_fault_attr(&fail_page_alloc.attr, str);
2684 }
2685 __setup("fail_page_alloc=", setup_fail_page_alloc);
2686 
2687 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2688 {
2689 	if (order < fail_page_alloc.min_order)
2690 		return false;
2691 	if (gfp_mask & __GFP_NOFAIL)
2692 		return false;
2693 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2694 		return false;
2695 	if (fail_page_alloc.ignore_gfp_reclaim &&
2696 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2697 		return false;
2698 
2699 	return should_fail(&fail_page_alloc.attr, 1 << order);
2700 }
2701 
2702 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2703 
2704 static int __init fail_page_alloc_debugfs(void)
2705 {
2706 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2707 	struct dentry *dir;
2708 
2709 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2710 					&fail_page_alloc.attr);
2711 	if (IS_ERR(dir))
2712 		return PTR_ERR(dir);
2713 
2714 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2715 				&fail_page_alloc.ignore_gfp_reclaim))
2716 		goto fail;
2717 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2718 				&fail_page_alloc.ignore_gfp_highmem))
2719 		goto fail;
2720 	if (!debugfs_create_u32("min-order", mode, dir,
2721 				&fail_page_alloc.min_order))
2722 		goto fail;
2723 
2724 	return 0;
2725 fail:
2726 	debugfs_remove_recursive(dir);
2727 
2728 	return -ENOMEM;
2729 }
2730 
2731 late_initcall(fail_page_alloc_debugfs);
2732 
2733 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2734 
2735 #else /* CONFIG_FAIL_PAGE_ALLOC */
2736 
2737 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2738 {
2739 	return false;
2740 }
2741 
2742 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2743 
2744 /*
2745  * Return true if free base pages are above 'mark'. For high-order checks it
2746  * will return true of the order-0 watermark is reached and there is at least
2747  * one free page of a suitable size. Checking now avoids taking the zone lock
2748  * to check in the allocation paths if no pages are free.
2749  */
2750 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2751 			 int classzone_idx, unsigned int alloc_flags,
2752 			 long free_pages)
2753 {
2754 	long min = mark;
2755 	int o;
2756 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2757 
2758 	/* free_pages may go negative - that's OK */
2759 	free_pages -= (1 << order) - 1;
2760 
2761 	if (alloc_flags & ALLOC_HIGH)
2762 		min -= min / 2;
2763 
2764 	/*
2765 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2766 	 * the high-atomic reserves. This will over-estimate the size of the
2767 	 * atomic reserve but it avoids a search.
2768 	 */
2769 	if (likely(!alloc_harder))
2770 		free_pages -= z->nr_reserved_highatomic;
2771 	else
2772 		min -= min / 4;
2773 
2774 #ifdef CONFIG_CMA
2775 	/* If allocation can't use CMA areas don't use free CMA pages */
2776 	if (!(alloc_flags & ALLOC_CMA))
2777 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2778 #endif
2779 
2780 	/*
2781 	 * Check watermarks for an order-0 allocation request. If these
2782 	 * are not met, then a high-order request also cannot go ahead
2783 	 * even if a suitable page happened to be free.
2784 	 */
2785 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2786 		return false;
2787 
2788 	/* If this is an order-0 request then the watermark is fine */
2789 	if (!order)
2790 		return true;
2791 
2792 	/* For a high-order request, check at least one suitable page is free */
2793 	for (o = order; o < MAX_ORDER; o++) {
2794 		struct free_area *area = &z->free_area[o];
2795 		int mt;
2796 
2797 		if (!area->nr_free)
2798 			continue;
2799 
2800 		if (alloc_harder)
2801 			return true;
2802 
2803 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2804 			if (!list_empty(&area->free_list[mt]))
2805 				return true;
2806 		}
2807 
2808 #ifdef CONFIG_CMA
2809 		if ((alloc_flags & ALLOC_CMA) &&
2810 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2811 			return true;
2812 		}
2813 #endif
2814 	}
2815 	return false;
2816 }
2817 
2818 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2819 		      int classzone_idx, unsigned int alloc_flags)
2820 {
2821 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2822 					zone_page_state(z, NR_FREE_PAGES));
2823 }
2824 
2825 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2826 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2827 {
2828 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2829 	long cma_pages = 0;
2830 
2831 #ifdef CONFIG_CMA
2832 	/* If allocation can't use CMA areas don't use free CMA pages */
2833 	if (!(alloc_flags & ALLOC_CMA))
2834 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2835 #endif
2836 
2837 	/*
2838 	 * Fast check for order-0 only. If this fails then the reserves
2839 	 * need to be calculated. There is a corner case where the check
2840 	 * passes but only the high-order atomic reserve are free. If
2841 	 * the caller is !atomic then it'll uselessly search the free
2842 	 * list. That corner case is then slower but it is harmless.
2843 	 */
2844 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2845 		return true;
2846 
2847 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2848 					free_pages);
2849 }
2850 
2851 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2852 			unsigned long mark, int classzone_idx)
2853 {
2854 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2855 
2856 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2857 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2858 
2859 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2860 								free_pages);
2861 }
2862 
2863 #ifdef CONFIG_NUMA
2864 static bool zone_local(struct zone *local_zone, struct zone *zone)
2865 {
2866 	return local_zone->node == zone->node;
2867 }
2868 
2869 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2870 {
2871 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2872 				RECLAIM_DISTANCE;
2873 }
2874 #else	/* CONFIG_NUMA */
2875 static bool zone_local(struct zone *local_zone, struct zone *zone)
2876 {
2877 	return true;
2878 }
2879 
2880 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2881 {
2882 	return true;
2883 }
2884 #endif	/* CONFIG_NUMA */
2885 
2886 static void reset_alloc_batches(struct zone *preferred_zone)
2887 {
2888 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2889 
2890 	do {
2891 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2892 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2893 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2894 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2895 	} while (zone++ != preferred_zone);
2896 }
2897 
2898 /*
2899  * get_page_from_freelist goes through the zonelist trying to allocate
2900  * a page.
2901  */
2902 static struct page *
2903 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2904 						const struct alloc_context *ac)
2905 {
2906 	struct zoneref *z = ac->preferred_zoneref;
2907 	struct zone *zone;
2908 	bool fair_skipped = false;
2909 	bool apply_fair = (alloc_flags & ALLOC_FAIR);
2910 
2911 zonelist_scan:
2912 	/*
2913 	 * Scan zonelist, looking for a zone with enough free.
2914 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2915 	 */
2916 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2917 								ac->nodemask) {
2918 		struct page *page;
2919 		unsigned long mark;
2920 
2921 		if (cpusets_enabled() &&
2922 			(alloc_flags & ALLOC_CPUSET) &&
2923 			!__cpuset_zone_allowed(zone, gfp_mask))
2924 				continue;
2925 		/*
2926 		 * Distribute pages in proportion to the individual
2927 		 * zone size to ensure fair page aging.  The zone a
2928 		 * page was allocated in should have no effect on the
2929 		 * time the page has in memory before being reclaimed.
2930 		 */
2931 		if (apply_fair) {
2932 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2933 				fair_skipped = true;
2934 				continue;
2935 			}
2936 			if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2937 				if (fair_skipped)
2938 					goto reset_fair;
2939 				apply_fair = false;
2940 			}
2941 		}
2942 		/*
2943 		 * When allocating a page cache page for writing, we
2944 		 * want to get it from a zone that is within its dirty
2945 		 * limit, such that no single zone holds more than its
2946 		 * proportional share of globally allowed dirty pages.
2947 		 * The dirty limits take into account the zone's
2948 		 * lowmem reserves and high watermark so that kswapd
2949 		 * should be able to balance it without having to
2950 		 * write pages from its LRU list.
2951 		 *
2952 		 * This may look like it could increase pressure on
2953 		 * lower zones by failing allocations in higher zones
2954 		 * before they are full.  But the pages that do spill
2955 		 * over are limited as the lower zones are protected
2956 		 * by this very same mechanism.  It should not become
2957 		 * a practical burden to them.
2958 		 *
2959 		 * XXX: For now, allow allocations to potentially
2960 		 * exceed the per-zone dirty limit in the slowpath
2961 		 * (spread_dirty_pages unset) before going into reclaim,
2962 		 * which is important when on a NUMA setup the allowed
2963 		 * zones are together not big enough to reach the
2964 		 * global limit.  The proper fix for these situations
2965 		 * will require awareness of zones in the
2966 		 * dirty-throttling and the flusher threads.
2967 		 */
2968 		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2969 			continue;
2970 
2971 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2972 		if (!zone_watermark_fast(zone, order, mark,
2973 				       ac_classzone_idx(ac), alloc_flags)) {
2974 			int ret;
2975 
2976 			/* Checked here to keep the fast path fast */
2977 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2978 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2979 				goto try_this_zone;
2980 
2981 			if (zone_reclaim_mode == 0 ||
2982 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2983 				continue;
2984 
2985 			ret = zone_reclaim(zone, gfp_mask, order);
2986 			switch (ret) {
2987 			case ZONE_RECLAIM_NOSCAN:
2988 				/* did not scan */
2989 				continue;
2990 			case ZONE_RECLAIM_FULL:
2991 				/* scanned but unreclaimable */
2992 				continue;
2993 			default:
2994 				/* did we reclaim enough */
2995 				if (zone_watermark_ok(zone, order, mark,
2996 						ac_classzone_idx(ac), alloc_flags))
2997 					goto try_this_zone;
2998 
2999 				continue;
3000 			}
3001 		}
3002 
3003 try_this_zone:
3004 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
3005 				gfp_mask, alloc_flags, ac->migratetype);
3006 		if (page) {
3007 			prep_new_page(page, order, gfp_mask, alloc_flags);
3008 
3009 			/*
3010 			 * If this is a high-order atomic allocation then check
3011 			 * if the pageblock should be reserved for the future
3012 			 */
3013 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3014 				reserve_highatomic_pageblock(page, zone, order);
3015 
3016 			return page;
3017 		}
3018 	}
3019 
3020 	/*
3021 	 * The first pass makes sure allocations are spread fairly within the
3022 	 * local node.  However, the local node might have free pages left
3023 	 * after the fairness batches are exhausted, and remote zones haven't
3024 	 * even been considered yet.  Try once more without fairness, and
3025 	 * include remote zones now, before entering the slowpath and waking
3026 	 * kswapd: prefer spilling to a remote zone over swapping locally.
3027 	 */
3028 	if (fair_skipped) {
3029 reset_fair:
3030 		apply_fair = false;
3031 		fair_skipped = false;
3032 		reset_alloc_batches(ac->preferred_zoneref->zone);
3033 		z = ac->preferred_zoneref;
3034 		goto zonelist_scan;
3035 	}
3036 
3037 	return NULL;
3038 }
3039 
3040 /*
3041  * Large machines with many possible nodes should not always dump per-node
3042  * meminfo in irq context.
3043  */
3044 static inline bool should_suppress_show_mem(void)
3045 {
3046 	bool ret = false;
3047 
3048 #if NODES_SHIFT > 8
3049 	ret = in_interrupt();
3050 #endif
3051 	return ret;
3052 }
3053 
3054 static DEFINE_RATELIMIT_STATE(nopage_rs,
3055 		DEFAULT_RATELIMIT_INTERVAL,
3056 		DEFAULT_RATELIMIT_BURST);
3057 
3058 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3059 {
3060 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3061 
3062 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3063 	    debug_guardpage_minorder() > 0)
3064 		return;
3065 
3066 	/*
3067 	 * This documents exceptions given to allocations in certain
3068 	 * contexts that are allowed to allocate outside current's set
3069 	 * of allowed nodes.
3070 	 */
3071 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3072 		if (test_thread_flag(TIF_MEMDIE) ||
3073 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3074 			filter &= ~SHOW_MEM_FILTER_NODES;
3075 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3076 		filter &= ~SHOW_MEM_FILTER_NODES;
3077 
3078 	if (fmt) {
3079 		struct va_format vaf;
3080 		va_list args;
3081 
3082 		va_start(args, fmt);
3083 
3084 		vaf.fmt = fmt;
3085 		vaf.va = &args;
3086 
3087 		pr_warn("%pV", &vaf);
3088 
3089 		va_end(args);
3090 	}
3091 
3092 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3093 		current->comm, order, gfp_mask, &gfp_mask);
3094 	dump_stack();
3095 	if (!should_suppress_show_mem())
3096 		show_mem(filter);
3097 }
3098 
3099 static inline struct page *
3100 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3101 	const struct alloc_context *ac, unsigned long *did_some_progress)
3102 {
3103 	struct oom_control oc = {
3104 		.zonelist = ac->zonelist,
3105 		.nodemask = ac->nodemask,
3106 		.gfp_mask = gfp_mask,
3107 		.order = order,
3108 	};
3109 	struct page *page;
3110 
3111 	*did_some_progress = 0;
3112 
3113 	/*
3114 	 * Acquire the oom lock.  If that fails, somebody else is
3115 	 * making progress for us.
3116 	 */
3117 	if (!mutex_trylock(&oom_lock)) {
3118 		*did_some_progress = 1;
3119 		schedule_timeout_uninterruptible(1);
3120 		return NULL;
3121 	}
3122 
3123 	/*
3124 	 * Go through the zonelist yet one more time, keep very high watermark
3125 	 * here, this is only to catch a parallel oom killing, we must fail if
3126 	 * we're still under heavy pressure.
3127 	 */
3128 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3129 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3130 	if (page)
3131 		goto out;
3132 
3133 	if (!(gfp_mask & __GFP_NOFAIL)) {
3134 		/* Coredumps can quickly deplete all memory reserves */
3135 		if (current->flags & PF_DUMPCORE)
3136 			goto out;
3137 		/* The OOM killer will not help higher order allocs */
3138 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3139 			goto out;
3140 		/* The OOM killer does not needlessly kill tasks for lowmem */
3141 		if (ac->high_zoneidx < ZONE_NORMAL)
3142 			goto out;
3143 		if (pm_suspended_storage())
3144 			goto out;
3145 		/*
3146 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3147 		 * other request to make a forward progress.
3148 		 * We are in an unfortunate situation where out_of_memory cannot
3149 		 * do much for this context but let's try it to at least get
3150 		 * access to memory reserved if the current task is killed (see
3151 		 * out_of_memory). Once filesystems are ready to handle allocation
3152 		 * failures more gracefully we should just bail out here.
3153 		 */
3154 
3155 		/* The OOM killer may not free memory on a specific node */
3156 		if (gfp_mask & __GFP_THISNODE)
3157 			goto out;
3158 	}
3159 	/* Exhausted what can be done so it's blamo time */
3160 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3161 		*did_some_progress = 1;
3162 
3163 		if (gfp_mask & __GFP_NOFAIL) {
3164 			page = get_page_from_freelist(gfp_mask, order,
3165 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3166 			/*
3167 			 * fallback to ignore cpuset restriction if our nodes
3168 			 * are depleted
3169 			 */
3170 			if (!page)
3171 				page = get_page_from_freelist(gfp_mask, order,
3172 					ALLOC_NO_WATERMARKS, ac);
3173 		}
3174 	}
3175 out:
3176 	mutex_unlock(&oom_lock);
3177 	return page;
3178 }
3179 
3180 
3181 /*
3182  * Maximum number of compaction retries wit a progress before OOM
3183  * killer is consider as the only way to move forward.
3184  */
3185 #define MAX_COMPACT_RETRIES 16
3186 
3187 #ifdef CONFIG_COMPACTION
3188 /* Try memory compaction for high-order allocations before reclaim */
3189 static struct page *
3190 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3191 		unsigned int alloc_flags, const struct alloc_context *ac,
3192 		enum migrate_mode mode, enum compact_result *compact_result)
3193 {
3194 	struct page *page;
3195 	int contended_compaction;
3196 
3197 	if (!order)
3198 		return NULL;
3199 
3200 	current->flags |= PF_MEMALLOC;
3201 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3202 						mode, &contended_compaction);
3203 	current->flags &= ~PF_MEMALLOC;
3204 
3205 	if (*compact_result <= COMPACT_INACTIVE)
3206 		return NULL;
3207 
3208 	/*
3209 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3210 	 * count a compaction stall
3211 	 */
3212 	count_vm_event(COMPACTSTALL);
3213 
3214 	page = get_page_from_freelist(gfp_mask, order,
3215 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3216 
3217 	if (page) {
3218 		struct zone *zone = page_zone(page);
3219 
3220 		zone->compact_blockskip_flush = false;
3221 		compaction_defer_reset(zone, order, true);
3222 		count_vm_event(COMPACTSUCCESS);
3223 		return page;
3224 	}
3225 
3226 	/*
3227 	 * It's bad if compaction run occurs and fails. The most likely reason
3228 	 * is that pages exist, but not enough to satisfy watermarks.
3229 	 */
3230 	count_vm_event(COMPACTFAIL);
3231 
3232 	/*
3233 	 * In all zones where compaction was attempted (and not
3234 	 * deferred or skipped), lock contention has been detected.
3235 	 * For THP allocation we do not want to disrupt the others
3236 	 * so we fallback to base pages instead.
3237 	 */
3238 	if (contended_compaction == COMPACT_CONTENDED_LOCK)
3239 		*compact_result = COMPACT_CONTENDED;
3240 
3241 	/*
3242 	 * If compaction was aborted due to need_resched(), we do not
3243 	 * want to further increase allocation latency, unless it is
3244 	 * khugepaged trying to collapse.
3245 	 */
3246 	if (contended_compaction == COMPACT_CONTENDED_SCHED
3247 		&& !(current->flags & PF_KTHREAD))
3248 		*compact_result = COMPACT_CONTENDED;
3249 
3250 	cond_resched();
3251 
3252 	return NULL;
3253 }
3254 
3255 static inline bool
3256 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3257 		     enum compact_result compact_result, enum migrate_mode *migrate_mode,
3258 		     int compaction_retries)
3259 {
3260 	int max_retries = MAX_COMPACT_RETRIES;
3261 
3262 	if (!order)
3263 		return false;
3264 
3265 	/*
3266 	 * compaction considers all the zone as desperately out of memory
3267 	 * so it doesn't really make much sense to retry except when the
3268 	 * failure could be caused by weak migration mode.
3269 	 */
3270 	if (compaction_failed(compact_result)) {
3271 		if (*migrate_mode == MIGRATE_ASYNC) {
3272 			*migrate_mode = MIGRATE_SYNC_LIGHT;
3273 			return true;
3274 		}
3275 		return false;
3276 	}
3277 
3278 	/*
3279 	 * make sure the compaction wasn't deferred or didn't bail out early
3280 	 * due to locks contention before we declare that we should give up.
3281 	 * But do not retry if the given zonelist is not suitable for
3282 	 * compaction.
3283 	 */
3284 	if (compaction_withdrawn(compact_result))
3285 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3286 
3287 	/*
3288 	 * !costly requests are much more important than __GFP_REPEAT
3289 	 * costly ones because they are de facto nofail and invoke OOM
3290 	 * killer to move on while costly can fail and users are ready
3291 	 * to cope with that. 1/4 retries is rather arbitrary but we
3292 	 * would need much more detailed feedback from compaction to
3293 	 * make a better decision.
3294 	 */
3295 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3296 		max_retries /= 4;
3297 	if (compaction_retries <= max_retries)
3298 		return true;
3299 
3300 	return false;
3301 }
3302 #else
3303 static inline struct page *
3304 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3305 		unsigned int alloc_flags, const struct alloc_context *ac,
3306 		enum migrate_mode mode, enum compact_result *compact_result)
3307 {
3308 	*compact_result = COMPACT_SKIPPED;
3309 	return NULL;
3310 }
3311 
3312 static inline bool
3313 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3314 		     enum compact_result compact_result,
3315 		     enum migrate_mode *migrate_mode,
3316 		     int compaction_retries)
3317 {
3318 	struct zone *zone;
3319 	struct zoneref *z;
3320 
3321 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3322 		return false;
3323 
3324 	/*
3325 	 * There are setups with compaction disabled which would prefer to loop
3326 	 * inside the allocator rather than hit the oom killer prematurely.
3327 	 * Let's give them a good hope and keep retrying while the order-0
3328 	 * watermarks are OK.
3329 	 */
3330 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3331 					ac->nodemask) {
3332 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3333 					ac_classzone_idx(ac), alloc_flags))
3334 			return true;
3335 	}
3336 	return false;
3337 }
3338 #endif /* CONFIG_COMPACTION */
3339 
3340 /* Perform direct synchronous page reclaim */
3341 static int
3342 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3343 					const struct alloc_context *ac)
3344 {
3345 	struct reclaim_state reclaim_state;
3346 	int progress;
3347 
3348 	cond_resched();
3349 
3350 	/* We now go into synchronous reclaim */
3351 	cpuset_memory_pressure_bump();
3352 	current->flags |= PF_MEMALLOC;
3353 	lockdep_set_current_reclaim_state(gfp_mask);
3354 	reclaim_state.reclaimed_slab = 0;
3355 	current->reclaim_state = &reclaim_state;
3356 
3357 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3358 								ac->nodemask);
3359 
3360 	current->reclaim_state = NULL;
3361 	lockdep_clear_current_reclaim_state();
3362 	current->flags &= ~PF_MEMALLOC;
3363 
3364 	cond_resched();
3365 
3366 	return progress;
3367 }
3368 
3369 /* The really slow allocator path where we enter direct reclaim */
3370 static inline struct page *
3371 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3372 		unsigned int alloc_flags, const struct alloc_context *ac,
3373 		unsigned long *did_some_progress)
3374 {
3375 	struct page *page = NULL;
3376 	bool drained = false;
3377 
3378 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3379 	if (unlikely(!(*did_some_progress)))
3380 		return NULL;
3381 
3382 retry:
3383 	page = get_page_from_freelist(gfp_mask, order,
3384 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3385 
3386 	/*
3387 	 * If an allocation failed after direct reclaim, it could be because
3388 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3389 	 * Shrink them them and try again
3390 	 */
3391 	if (!page && !drained) {
3392 		unreserve_highatomic_pageblock(ac);
3393 		drain_all_pages(NULL);
3394 		drained = true;
3395 		goto retry;
3396 	}
3397 
3398 	return page;
3399 }
3400 
3401 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3402 {
3403 	struct zoneref *z;
3404 	struct zone *zone;
3405 
3406 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3407 						ac->high_zoneidx, ac->nodemask)
3408 		wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3409 }
3410 
3411 static inline unsigned int
3412 gfp_to_alloc_flags(gfp_t gfp_mask)
3413 {
3414 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3415 
3416 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3417 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3418 
3419 	/*
3420 	 * The caller may dip into page reserves a bit more if the caller
3421 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3422 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3423 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3424 	 */
3425 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3426 
3427 	if (gfp_mask & __GFP_ATOMIC) {
3428 		/*
3429 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3430 		 * if it can't schedule.
3431 		 */
3432 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3433 			alloc_flags |= ALLOC_HARDER;
3434 		/*
3435 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3436 		 * comment for __cpuset_node_allowed().
3437 		 */
3438 		alloc_flags &= ~ALLOC_CPUSET;
3439 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3440 		alloc_flags |= ALLOC_HARDER;
3441 
3442 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3443 		if (gfp_mask & __GFP_MEMALLOC)
3444 			alloc_flags |= ALLOC_NO_WATERMARKS;
3445 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3446 			alloc_flags |= ALLOC_NO_WATERMARKS;
3447 		else if (!in_interrupt() &&
3448 				((current->flags & PF_MEMALLOC) ||
3449 				 unlikely(test_thread_flag(TIF_MEMDIE))))
3450 			alloc_flags |= ALLOC_NO_WATERMARKS;
3451 	}
3452 #ifdef CONFIG_CMA
3453 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3454 		alloc_flags |= ALLOC_CMA;
3455 #endif
3456 	return alloc_flags;
3457 }
3458 
3459 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3460 {
3461 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3462 }
3463 
3464 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3465 {
3466 	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3467 }
3468 
3469 /*
3470  * Maximum number of reclaim retries without any progress before OOM killer
3471  * is consider as the only way to move forward.
3472  */
3473 #define MAX_RECLAIM_RETRIES 16
3474 
3475 /*
3476  * Checks whether it makes sense to retry the reclaim to make a forward progress
3477  * for the given allocation request.
3478  * The reclaim feedback represented by did_some_progress (any progress during
3479  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3480  * any progress in a row) is considered as well as the reclaimable pages on the
3481  * applicable zone list (with a backoff mechanism which is a function of
3482  * no_progress_loops).
3483  *
3484  * Returns true if a retry is viable or false to enter the oom path.
3485  */
3486 static inline bool
3487 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3488 		     struct alloc_context *ac, int alloc_flags,
3489 		     bool did_some_progress, int no_progress_loops)
3490 {
3491 	struct zone *zone;
3492 	struct zoneref *z;
3493 
3494 	/*
3495 	 * Make sure we converge to OOM if we cannot make any progress
3496 	 * several times in the row.
3497 	 */
3498 	if (no_progress_loops > MAX_RECLAIM_RETRIES)
3499 		return false;
3500 
3501 	/*
3502 	 * Keep reclaiming pages while there is a chance this will lead somewhere.
3503 	 * If none of the target zones can satisfy our allocation request even
3504 	 * if all reclaimable pages are considered then we are screwed and have
3505 	 * to go OOM.
3506 	 */
3507 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3508 					ac->nodemask) {
3509 		unsigned long available;
3510 		unsigned long reclaimable;
3511 
3512 		available = reclaimable = zone_reclaimable_pages(zone);
3513 		available -= DIV_ROUND_UP(no_progress_loops * available,
3514 					  MAX_RECLAIM_RETRIES);
3515 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3516 
3517 		/*
3518 		 * Would the allocation succeed if we reclaimed the whole
3519 		 * available?
3520 		 */
3521 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3522 				ac_classzone_idx(ac), alloc_flags, available)) {
3523 			/*
3524 			 * If we didn't make any progress and have a lot of
3525 			 * dirty + writeback pages then we should wait for
3526 			 * an IO to complete to slow down the reclaim and
3527 			 * prevent from pre mature OOM
3528 			 */
3529 			if (!did_some_progress) {
3530 				unsigned long writeback;
3531 				unsigned long dirty;
3532 
3533 				writeback = zone_page_state_snapshot(zone,
3534 								     NR_WRITEBACK);
3535 				dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3536 
3537 				if (2*(writeback + dirty) > reclaimable) {
3538 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3539 					return true;
3540 				}
3541 			}
3542 
3543 			/*
3544 			 * Memory allocation/reclaim might be called from a WQ
3545 			 * context and the current implementation of the WQ
3546 			 * concurrency control doesn't recognize that
3547 			 * a particular WQ is congested if the worker thread is
3548 			 * looping without ever sleeping. Therefore we have to
3549 			 * do a short sleep here rather than calling
3550 			 * cond_resched().
3551 			 */
3552 			if (current->flags & PF_WQ_WORKER)
3553 				schedule_timeout_uninterruptible(1);
3554 			else
3555 				cond_resched();
3556 
3557 			return true;
3558 		}
3559 	}
3560 
3561 	return false;
3562 }
3563 
3564 static inline struct page *
3565 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3566 						struct alloc_context *ac)
3567 {
3568 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3569 	struct page *page = NULL;
3570 	unsigned int alloc_flags;
3571 	unsigned long did_some_progress;
3572 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
3573 	enum compact_result compact_result;
3574 	int compaction_retries = 0;
3575 	int no_progress_loops = 0;
3576 
3577 	/*
3578 	 * In the slowpath, we sanity check order to avoid ever trying to
3579 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3580 	 * be using allocators in order of preference for an area that is
3581 	 * too large.
3582 	 */
3583 	if (order >= MAX_ORDER) {
3584 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3585 		return NULL;
3586 	}
3587 
3588 	/*
3589 	 * We also sanity check to catch abuse of atomic reserves being used by
3590 	 * callers that are not in atomic context.
3591 	 */
3592 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3593 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3594 		gfp_mask &= ~__GFP_ATOMIC;
3595 
3596 retry:
3597 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3598 		wake_all_kswapds(order, ac);
3599 
3600 	/*
3601 	 * OK, we're below the kswapd watermark and have kicked background
3602 	 * reclaim. Now things get more complex, so set up alloc_flags according
3603 	 * to how we want to proceed.
3604 	 */
3605 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3606 
3607 	/*
3608 	 * Reset the zonelist iterators if memory policies can be ignored.
3609 	 * These allocations are high priority and system rather than user
3610 	 * orientated.
3611 	 */
3612 	if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3613 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3614 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3615 					ac->high_zoneidx, ac->nodemask);
3616 	}
3617 
3618 	/* This is the last chance, in general, before the goto nopage. */
3619 	page = get_page_from_freelist(gfp_mask, order,
3620 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3621 	if (page)
3622 		goto got_pg;
3623 
3624 	/* Allocate without watermarks if the context allows */
3625 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3626 		page = get_page_from_freelist(gfp_mask, order,
3627 						ALLOC_NO_WATERMARKS, ac);
3628 		if (page)
3629 			goto got_pg;
3630 	}
3631 
3632 	/* Caller is not willing to reclaim, we can't balance anything */
3633 	if (!can_direct_reclaim) {
3634 		/*
3635 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3636 		 * of any new users that actually allow this type of allocation
3637 		 * to fail.
3638 		 */
3639 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3640 		goto nopage;
3641 	}
3642 
3643 	/* Avoid recursion of direct reclaim */
3644 	if (current->flags & PF_MEMALLOC) {
3645 		/*
3646 		 * __GFP_NOFAIL request from this context is rather bizarre
3647 		 * because we cannot reclaim anything and only can loop waiting
3648 		 * for somebody to do a work for us.
3649 		 */
3650 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3651 			cond_resched();
3652 			goto retry;
3653 		}
3654 		goto nopage;
3655 	}
3656 
3657 	/* Avoid allocations with no watermarks from looping endlessly */
3658 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3659 		goto nopage;
3660 
3661 	/*
3662 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3663 	 * attempts after direct reclaim are synchronous
3664 	 */
3665 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3666 					migration_mode,
3667 					&compact_result);
3668 	if (page)
3669 		goto got_pg;
3670 
3671 	/* Checks for THP-specific high-order allocations */
3672 	if (is_thp_gfp_mask(gfp_mask)) {
3673 		/*
3674 		 * If compaction is deferred for high-order allocations, it is
3675 		 * because sync compaction recently failed. If this is the case
3676 		 * and the caller requested a THP allocation, we do not want
3677 		 * to heavily disrupt the system, so we fail the allocation
3678 		 * instead of entering direct reclaim.
3679 		 */
3680 		if (compact_result == COMPACT_DEFERRED)
3681 			goto nopage;
3682 
3683 		/*
3684 		 * Compaction is contended so rather back off than cause
3685 		 * excessive stalls.
3686 		 */
3687 		if(compact_result == COMPACT_CONTENDED)
3688 			goto nopage;
3689 	}
3690 
3691 	if (order && compaction_made_progress(compact_result))
3692 		compaction_retries++;
3693 
3694 	/* Try direct reclaim and then allocating */
3695 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3696 							&did_some_progress);
3697 	if (page)
3698 		goto got_pg;
3699 
3700 	/* Do not loop if specifically requested */
3701 	if (gfp_mask & __GFP_NORETRY)
3702 		goto noretry;
3703 
3704 	/*
3705 	 * Do not retry costly high order allocations unless they are
3706 	 * __GFP_REPEAT
3707 	 */
3708 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3709 		goto noretry;
3710 
3711 	/*
3712 	 * Costly allocations might have made a progress but this doesn't mean
3713 	 * their order will become available due to high fragmentation so
3714 	 * always increment the no progress counter for them
3715 	 */
3716 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3717 		no_progress_loops = 0;
3718 	else
3719 		no_progress_loops++;
3720 
3721 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3722 				 did_some_progress > 0, no_progress_loops))
3723 		goto retry;
3724 
3725 	/*
3726 	 * It doesn't make any sense to retry for the compaction if the order-0
3727 	 * reclaim is not able to make any progress because the current
3728 	 * implementation of the compaction depends on the sufficient amount
3729 	 * of free memory (see __compaction_suitable)
3730 	 */
3731 	if (did_some_progress > 0 &&
3732 			should_compact_retry(ac, order, alloc_flags,
3733 				compact_result, &migration_mode,
3734 				compaction_retries))
3735 		goto retry;
3736 
3737 	/* Reclaim has failed us, start killing things */
3738 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3739 	if (page)
3740 		goto got_pg;
3741 
3742 	/* Retry as long as the OOM killer is making progress */
3743 	if (did_some_progress) {
3744 		no_progress_loops = 0;
3745 		goto retry;
3746 	}
3747 
3748 noretry:
3749 	/*
3750 	 * High-order allocations do not necessarily loop after direct reclaim
3751 	 * and reclaim/compaction depends on compaction being called after
3752 	 * reclaim so call directly if necessary.
3753 	 * It can become very expensive to allocate transparent hugepages at
3754 	 * fault, so use asynchronous memory compaction for THP unless it is
3755 	 * khugepaged trying to collapse. All other requests should tolerate
3756 	 * at least light sync migration.
3757 	 */
3758 	if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3759 		migration_mode = MIGRATE_ASYNC;
3760 	else
3761 		migration_mode = MIGRATE_SYNC_LIGHT;
3762 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3763 					    ac, migration_mode,
3764 					    &compact_result);
3765 	if (page)
3766 		goto got_pg;
3767 nopage:
3768 	warn_alloc_failed(gfp_mask, order, NULL);
3769 got_pg:
3770 	return page;
3771 }
3772 
3773 /*
3774  * This is the 'heart' of the zoned buddy allocator.
3775  */
3776 struct page *
3777 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3778 			struct zonelist *zonelist, nodemask_t *nodemask)
3779 {
3780 	struct page *page;
3781 	unsigned int cpuset_mems_cookie;
3782 	unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3783 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3784 	struct alloc_context ac = {
3785 		.high_zoneidx = gfp_zone(gfp_mask),
3786 		.zonelist = zonelist,
3787 		.nodemask = nodemask,
3788 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3789 	};
3790 
3791 	if (cpusets_enabled()) {
3792 		alloc_mask |= __GFP_HARDWALL;
3793 		alloc_flags |= ALLOC_CPUSET;
3794 		if (!ac.nodemask)
3795 			ac.nodemask = &cpuset_current_mems_allowed;
3796 	}
3797 
3798 	gfp_mask &= gfp_allowed_mask;
3799 
3800 	lockdep_trace_alloc(gfp_mask);
3801 
3802 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3803 
3804 	if (should_fail_alloc_page(gfp_mask, order))
3805 		return NULL;
3806 
3807 	/*
3808 	 * Check the zones suitable for the gfp_mask contain at least one
3809 	 * valid zone. It's possible to have an empty zonelist as a result
3810 	 * of __GFP_THISNODE and a memoryless node
3811 	 */
3812 	if (unlikely(!zonelist->_zonerefs->zone))
3813 		return NULL;
3814 
3815 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3816 		alloc_flags |= ALLOC_CMA;
3817 
3818 retry_cpuset:
3819 	cpuset_mems_cookie = read_mems_allowed_begin();
3820 
3821 	/* Dirty zone balancing only done in the fast path */
3822 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3823 
3824 	/*
3825 	 * The preferred zone is used for statistics but crucially it is
3826 	 * also used as the starting point for the zonelist iterator. It
3827 	 * may get reset for allocations that ignore memory policies.
3828 	 */
3829 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3830 					ac.high_zoneidx, ac.nodemask);
3831 	if (!ac.preferred_zoneref) {
3832 		page = NULL;
3833 		goto no_zone;
3834 	}
3835 
3836 	/* First allocation attempt */
3837 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3838 	if (likely(page))
3839 		goto out;
3840 
3841 	/*
3842 	 * Runtime PM, block IO and its error handling path can deadlock
3843 	 * because I/O on the device might not complete.
3844 	 */
3845 	alloc_mask = memalloc_noio_flags(gfp_mask);
3846 	ac.spread_dirty_pages = false;
3847 
3848 	/*
3849 	 * Restore the original nodemask if it was potentially replaced with
3850 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3851 	 */
3852 	if (cpusets_enabled())
3853 		ac.nodemask = nodemask;
3854 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3855 
3856 no_zone:
3857 	/*
3858 	 * When updating a task's mems_allowed, it is possible to race with
3859 	 * parallel threads in such a way that an allocation can fail while
3860 	 * the mask is being updated. If a page allocation is about to fail,
3861 	 * check if the cpuset changed during allocation and if so, retry.
3862 	 */
3863 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3864 		alloc_mask = gfp_mask;
3865 		goto retry_cpuset;
3866 	}
3867 
3868 out:
3869 	if (kmemcheck_enabled && page)
3870 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3871 
3872 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3873 
3874 	return page;
3875 }
3876 EXPORT_SYMBOL(__alloc_pages_nodemask);
3877 
3878 /*
3879  * Common helper functions.
3880  */
3881 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3882 {
3883 	struct page *page;
3884 
3885 	/*
3886 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3887 	 * a highmem page
3888 	 */
3889 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3890 
3891 	page = alloc_pages(gfp_mask, order);
3892 	if (!page)
3893 		return 0;
3894 	return (unsigned long) page_address(page);
3895 }
3896 EXPORT_SYMBOL(__get_free_pages);
3897 
3898 unsigned long get_zeroed_page(gfp_t gfp_mask)
3899 {
3900 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3901 }
3902 EXPORT_SYMBOL(get_zeroed_page);
3903 
3904 void __free_pages(struct page *page, unsigned int order)
3905 {
3906 	if (put_page_testzero(page)) {
3907 		if (order == 0)
3908 			free_hot_cold_page(page, false);
3909 		else
3910 			__free_pages_ok(page, order);
3911 	}
3912 }
3913 
3914 EXPORT_SYMBOL(__free_pages);
3915 
3916 void free_pages(unsigned long addr, unsigned int order)
3917 {
3918 	if (addr != 0) {
3919 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3920 		__free_pages(virt_to_page((void *)addr), order);
3921 	}
3922 }
3923 
3924 EXPORT_SYMBOL(free_pages);
3925 
3926 /*
3927  * Page Fragment:
3928  *  An arbitrary-length arbitrary-offset area of memory which resides
3929  *  within a 0 or higher order page.  Multiple fragments within that page
3930  *  are individually refcounted, in the page's reference counter.
3931  *
3932  * The page_frag functions below provide a simple allocation framework for
3933  * page fragments.  This is used by the network stack and network device
3934  * drivers to provide a backing region of memory for use as either an
3935  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3936  */
3937 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3938 				       gfp_t gfp_mask)
3939 {
3940 	struct page *page = NULL;
3941 	gfp_t gfp = gfp_mask;
3942 
3943 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3944 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3945 		    __GFP_NOMEMALLOC;
3946 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3947 				PAGE_FRAG_CACHE_MAX_ORDER);
3948 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3949 #endif
3950 	if (unlikely(!page))
3951 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3952 
3953 	nc->va = page ? page_address(page) : NULL;
3954 
3955 	return page;
3956 }
3957 
3958 void *__alloc_page_frag(struct page_frag_cache *nc,
3959 			unsigned int fragsz, gfp_t gfp_mask)
3960 {
3961 	unsigned int size = PAGE_SIZE;
3962 	struct page *page;
3963 	int offset;
3964 
3965 	if (unlikely(!nc->va)) {
3966 refill:
3967 		page = __page_frag_refill(nc, gfp_mask);
3968 		if (!page)
3969 			return NULL;
3970 
3971 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3972 		/* if size can vary use size else just use PAGE_SIZE */
3973 		size = nc->size;
3974 #endif
3975 		/* Even if we own the page, we do not use atomic_set().
3976 		 * This would break get_page_unless_zero() users.
3977 		 */
3978 		page_ref_add(page, size - 1);
3979 
3980 		/* reset page count bias and offset to start of new frag */
3981 		nc->pfmemalloc = page_is_pfmemalloc(page);
3982 		nc->pagecnt_bias = size;
3983 		nc->offset = size;
3984 	}
3985 
3986 	offset = nc->offset - fragsz;
3987 	if (unlikely(offset < 0)) {
3988 		page = virt_to_page(nc->va);
3989 
3990 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3991 			goto refill;
3992 
3993 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3994 		/* if size can vary use size else just use PAGE_SIZE */
3995 		size = nc->size;
3996 #endif
3997 		/* OK, page count is 0, we can safely set it */
3998 		set_page_count(page, size);
3999 
4000 		/* reset page count bias and offset to start of new frag */
4001 		nc->pagecnt_bias = size;
4002 		offset = size - fragsz;
4003 	}
4004 
4005 	nc->pagecnt_bias--;
4006 	nc->offset = offset;
4007 
4008 	return nc->va + offset;
4009 }
4010 EXPORT_SYMBOL(__alloc_page_frag);
4011 
4012 /*
4013  * Frees a page fragment allocated out of either a compound or order 0 page.
4014  */
4015 void __free_page_frag(void *addr)
4016 {
4017 	struct page *page = virt_to_head_page(addr);
4018 
4019 	if (unlikely(put_page_testzero(page)))
4020 		__free_pages_ok(page, compound_order(page));
4021 }
4022 EXPORT_SYMBOL(__free_page_frag);
4023 
4024 /*
4025  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
4026  * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4027  * equivalent to alloc_pages.
4028  *
4029  * It should be used when the caller would like to use kmalloc, but since the
4030  * allocation is large, it has to fall back to the page allocator.
4031  */
4032 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4033 {
4034 	struct page *page;
4035 
4036 	page = alloc_pages(gfp_mask, order);
4037 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4038 		__free_pages(page, order);
4039 		page = NULL;
4040 	}
4041 	return page;
4042 }
4043 
4044 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4045 {
4046 	struct page *page;
4047 
4048 	page = alloc_pages_node(nid, gfp_mask, order);
4049 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4050 		__free_pages(page, order);
4051 		page = NULL;
4052 	}
4053 	return page;
4054 }
4055 
4056 /*
4057  * __free_kmem_pages and free_kmem_pages will free pages allocated with
4058  * alloc_kmem_pages.
4059  */
4060 void __free_kmem_pages(struct page *page, unsigned int order)
4061 {
4062 	memcg_kmem_uncharge(page, order);
4063 	__free_pages(page, order);
4064 }
4065 
4066 void free_kmem_pages(unsigned long addr, unsigned int order)
4067 {
4068 	if (addr != 0) {
4069 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4070 		__free_kmem_pages(virt_to_page((void *)addr), order);
4071 	}
4072 }
4073 
4074 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4075 		size_t size)
4076 {
4077 	if (addr) {
4078 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4079 		unsigned long used = addr + PAGE_ALIGN(size);
4080 
4081 		split_page(virt_to_page((void *)addr), order);
4082 		while (used < alloc_end) {
4083 			free_page(used);
4084 			used += PAGE_SIZE;
4085 		}
4086 	}
4087 	return (void *)addr;
4088 }
4089 
4090 /**
4091  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4092  * @size: the number of bytes to allocate
4093  * @gfp_mask: GFP flags for the allocation
4094  *
4095  * This function is similar to alloc_pages(), except that it allocates the
4096  * minimum number of pages to satisfy the request.  alloc_pages() can only
4097  * allocate memory in power-of-two pages.
4098  *
4099  * This function is also limited by MAX_ORDER.
4100  *
4101  * Memory allocated by this function must be released by free_pages_exact().
4102  */
4103 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4104 {
4105 	unsigned int order = get_order(size);
4106 	unsigned long addr;
4107 
4108 	addr = __get_free_pages(gfp_mask, order);
4109 	return make_alloc_exact(addr, order, size);
4110 }
4111 EXPORT_SYMBOL(alloc_pages_exact);
4112 
4113 /**
4114  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4115  *			   pages on a node.
4116  * @nid: the preferred node ID where memory should be allocated
4117  * @size: the number of bytes to allocate
4118  * @gfp_mask: GFP flags for the allocation
4119  *
4120  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4121  * back.
4122  */
4123 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4124 {
4125 	unsigned int order = get_order(size);
4126 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4127 	if (!p)
4128 		return NULL;
4129 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4130 }
4131 
4132 /**
4133  * free_pages_exact - release memory allocated via alloc_pages_exact()
4134  * @virt: the value returned by alloc_pages_exact.
4135  * @size: size of allocation, same value as passed to alloc_pages_exact().
4136  *
4137  * Release the memory allocated by a previous call to alloc_pages_exact.
4138  */
4139 void free_pages_exact(void *virt, size_t size)
4140 {
4141 	unsigned long addr = (unsigned long)virt;
4142 	unsigned long end = addr + PAGE_ALIGN(size);
4143 
4144 	while (addr < end) {
4145 		free_page(addr);
4146 		addr += PAGE_SIZE;
4147 	}
4148 }
4149 EXPORT_SYMBOL(free_pages_exact);
4150 
4151 /**
4152  * nr_free_zone_pages - count number of pages beyond high watermark
4153  * @offset: The zone index of the highest zone
4154  *
4155  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4156  * high watermark within all zones at or below a given zone index.  For each
4157  * zone, the number of pages is calculated as:
4158  *     managed_pages - high_pages
4159  */
4160 static unsigned long nr_free_zone_pages(int offset)
4161 {
4162 	struct zoneref *z;
4163 	struct zone *zone;
4164 
4165 	/* Just pick one node, since fallback list is circular */
4166 	unsigned long sum = 0;
4167 
4168 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4169 
4170 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4171 		unsigned long size = zone->managed_pages;
4172 		unsigned long high = high_wmark_pages(zone);
4173 		if (size > high)
4174 			sum += size - high;
4175 	}
4176 
4177 	return sum;
4178 }
4179 
4180 /**
4181  * nr_free_buffer_pages - count number of pages beyond high watermark
4182  *
4183  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4184  * watermark within ZONE_DMA and ZONE_NORMAL.
4185  */
4186 unsigned long nr_free_buffer_pages(void)
4187 {
4188 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4189 }
4190 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4191 
4192 /**
4193  * nr_free_pagecache_pages - count number of pages beyond high watermark
4194  *
4195  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4196  * high watermark within all zones.
4197  */
4198 unsigned long nr_free_pagecache_pages(void)
4199 {
4200 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4201 }
4202 
4203 static inline void show_node(struct zone *zone)
4204 {
4205 	if (IS_ENABLED(CONFIG_NUMA))
4206 		printk("Node %d ", zone_to_nid(zone));
4207 }
4208 
4209 long si_mem_available(void)
4210 {
4211 	long available;
4212 	unsigned long pagecache;
4213 	unsigned long wmark_low = 0;
4214 	unsigned long pages[NR_LRU_LISTS];
4215 	struct zone *zone;
4216 	int lru;
4217 
4218 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4219 		pages[lru] = global_page_state(NR_LRU_BASE + lru);
4220 
4221 	for_each_zone(zone)
4222 		wmark_low += zone->watermark[WMARK_LOW];
4223 
4224 	/*
4225 	 * Estimate the amount of memory available for userspace allocations,
4226 	 * without causing swapping.
4227 	 */
4228 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4229 
4230 	/*
4231 	 * Not all the page cache can be freed, otherwise the system will
4232 	 * start swapping. Assume at least half of the page cache, or the
4233 	 * low watermark worth of cache, needs to stay.
4234 	 */
4235 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4236 	pagecache -= min(pagecache / 2, wmark_low);
4237 	available += pagecache;
4238 
4239 	/*
4240 	 * Part of the reclaimable slab consists of items that are in use,
4241 	 * and cannot be freed. Cap this estimate at the low watermark.
4242 	 */
4243 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4244 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4245 
4246 	if (available < 0)
4247 		available = 0;
4248 	return available;
4249 }
4250 EXPORT_SYMBOL_GPL(si_mem_available);
4251 
4252 void si_meminfo(struct sysinfo *val)
4253 {
4254 	val->totalram = totalram_pages;
4255 	val->sharedram = global_page_state(NR_SHMEM);
4256 	val->freeram = global_page_state(NR_FREE_PAGES);
4257 	val->bufferram = nr_blockdev_pages();
4258 	val->totalhigh = totalhigh_pages;
4259 	val->freehigh = nr_free_highpages();
4260 	val->mem_unit = PAGE_SIZE;
4261 }
4262 
4263 EXPORT_SYMBOL(si_meminfo);
4264 
4265 #ifdef CONFIG_NUMA
4266 void si_meminfo_node(struct sysinfo *val, int nid)
4267 {
4268 	int zone_type;		/* needs to be signed */
4269 	unsigned long managed_pages = 0;
4270 	unsigned long managed_highpages = 0;
4271 	unsigned long free_highpages = 0;
4272 	pg_data_t *pgdat = NODE_DATA(nid);
4273 
4274 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4275 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4276 	val->totalram = managed_pages;
4277 	val->sharedram = node_page_state(nid, NR_SHMEM);
4278 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
4279 #ifdef CONFIG_HIGHMEM
4280 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4281 		struct zone *zone = &pgdat->node_zones[zone_type];
4282 
4283 		if (is_highmem(zone)) {
4284 			managed_highpages += zone->managed_pages;
4285 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4286 		}
4287 	}
4288 	val->totalhigh = managed_highpages;
4289 	val->freehigh = free_highpages;
4290 #else
4291 	val->totalhigh = managed_highpages;
4292 	val->freehigh = free_highpages;
4293 #endif
4294 	val->mem_unit = PAGE_SIZE;
4295 }
4296 #endif
4297 
4298 /*
4299  * Determine whether the node should be displayed or not, depending on whether
4300  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4301  */
4302 bool skip_free_areas_node(unsigned int flags, int nid)
4303 {
4304 	bool ret = false;
4305 	unsigned int cpuset_mems_cookie;
4306 
4307 	if (!(flags & SHOW_MEM_FILTER_NODES))
4308 		goto out;
4309 
4310 	do {
4311 		cpuset_mems_cookie = read_mems_allowed_begin();
4312 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4313 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4314 out:
4315 	return ret;
4316 }
4317 
4318 #define K(x) ((x) << (PAGE_SHIFT-10))
4319 
4320 static void show_migration_types(unsigned char type)
4321 {
4322 	static const char types[MIGRATE_TYPES] = {
4323 		[MIGRATE_UNMOVABLE]	= 'U',
4324 		[MIGRATE_MOVABLE]	= 'M',
4325 		[MIGRATE_RECLAIMABLE]	= 'E',
4326 		[MIGRATE_HIGHATOMIC]	= 'H',
4327 #ifdef CONFIG_CMA
4328 		[MIGRATE_CMA]		= 'C',
4329 #endif
4330 #ifdef CONFIG_MEMORY_ISOLATION
4331 		[MIGRATE_ISOLATE]	= 'I',
4332 #endif
4333 	};
4334 	char tmp[MIGRATE_TYPES + 1];
4335 	char *p = tmp;
4336 	int i;
4337 
4338 	for (i = 0; i < MIGRATE_TYPES; i++) {
4339 		if (type & (1 << i))
4340 			*p++ = types[i];
4341 	}
4342 
4343 	*p = '\0';
4344 	printk("(%s) ", tmp);
4345 }
4346 
4347 /*
4348  * Show free area list (used inside shift_scroll-lock stuff)
4349  * We also calculate the percentage fragmentation. We do this by counting the
4350  * memory on each free list with the exception of the first item on the list.
4351  *
4352  * Bits in @filter:
4353  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4354  *   cpuset.
4355  */
4356 void show_free_areas(unsigned int filter)
4357 {
4358 	unsigned long free_pcp = 0;
4359 	int cpu;
4360 	struct zone *zone;
4361 
4362 	for_each_populated_zone(zone) {
4363 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4364 			continue;
4365 
4366 		for_each_online_cpu(cpu)
4367 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4368 	}
4369 
4370 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4371 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4372 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4373 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4374 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4375 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4376 		global_page_state(NR_ACTIVE_ANON),
4377 		global_page_state(NR_INACTIVE_ANON),
4378 		global_page_state(NR_ISOLATED_ANON),
4379 		global_page_state(NR_ACTIVE_FILE),
4380 		global_page_state(NR_INACTIVE_FILE),
4381 		global_page_state(NR_ISOLATED_FILE),
4382 		global_page_state(NR_UNEVICTABLE),
4383 		global_page_state(NR_FILE_DIRTY),
4384 		global_page_state(NR_WRITEBACK),
4385 		global_page_state(NR_UNSTABLE_NFS),
4386 		global_page_state(NR_SLAB_RECLAIMABLE),
4387 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4388 		global_page_state(NR_FILE_MAPPED),
4389 		global_page_state(NR_SHMEM),
4390 		global_page_state(NR_PAGETABLE),
4391 		global_page_state(NR_BOUNCE),
4392 		global_page_state(NR_FREE_PAGES),
4393 		free_pcp,
4394 		global_page_state(NR_FREE_CMA_PAGES));
4395 
4396 	for_each_populated_zone(zone) {
4397 		int i;
4398 
4399 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4400 			continue;
4401 
4402 		free_pcp = 0;
4403 		for_each_online_cpu(cpu)
4404 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4405 
4406 		show_node(zone);
4407 		printk("%s"
4408 			" free:%lukB"
4409 			" min:%lukB"
4410 			" low:%lukB"
4411 			" high:%lukB"
4412 			" active_anon:%lukB"
4413 			" inactive_anon:%lukB"
4414 			" active_file:%lukB"
4415 			" inactive_file:%lukB"
4416 			" unevictable:%lukB"
4417 			" isolated(anon):%lukB"
4418 			" isolated(file):%lukB"
4419 			" present:%lukB"
4420 			" managed:%lukB"
4421 			" mlocked:%lukB"
4422 			" dirty:%lukB"
4423 			" writeback:%lukB"
4424 			" mapped:%lukB"
4425 			" shmem:%lukB"
4426 			" slab_reclaimable:%lukB"
4427 			" slab_unreclaimable:%lukB"
4428 			" kernel_stack:%lukB"
4429 			" pagetables:%lukB"
4430 			" unstable:%lukB"
4431 			" bounce:%lukB"
4432 			" free_pcp:%lukB"
4433 			" local_pcp:%ukB"
4434 			" free_cma:%lukB"
4435 			" writeback_tmp:%lukB"
4436 			" pages_scanned:%lu"
4437 			" all_unreclaimable? %s"
4438 			"\n",
4439 			zone->name,
4440 			K(zone_page_state(zone, NR_FREE_PAGES)),
4441 			K(min_wmark_pages(zone)),
4442 			K(low_wmark_pages(zone)),
4443 			K(high_wmark_pages(zone)),
4444 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
4445 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
4446 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
4447 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
4448 			K(zone_page_state(zone, NR_UNEVICTABLE)),
4449 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
4450 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
4451 			K(zone->present_pages),
4452 			K(zone->managed_pages),
4453 			K(zone_page_state(zone, NR_MLOCK)),
4454 			K(zone_page_state(zone, NR_FILE_DIRTY)),
4455 			K(zone_page_state(zone, NR_WRITEBACK)),
4456 			K(zone_page_state(zone, NR_FILE_MAPPED)),
4457 			K(zone_page_state(zone, NR_SHMEM)),
4458 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4459 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4460 			zone_page_state(zone, NR_KERNEL_STACK) *
4461 				THREAD_SIZE / 1024,
4462 			K(zone_page_state(zone, NR_PAGETABLE)),
4463 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4464 			K(zone_page_state(zone, NR_BOUNCE)),
4465 			K(free_pcp),
4466 			K(this_cpu_read(zone->pageset->pcp.count)),
4467 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4468 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4469 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
4470 			(!zone_reclaimable(zone) ? "yes" : "no")
4471 			);
4472 		printk("lowmem_reserve[]:");
4473 		for (i = 0; i < MAX_NR_ZONES; i++)
4474 			printk(" %ld", zone->lowmem_reserve[i]);
4475 		printk("\n");
4476 	}
4477 
4478 	for_each_populated_zone(zone) {
4479 		unsigned int order;
4480 		unsigned long nr[MAX_ORDER], flags, total = 0;
4481 		unsigned char types[MAX_ORDER];
4482 
4483 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4484 			continue;
4485 		show_node(zone);
4486 		printk("%s: ", zone->name);
4487 
4488 		spin_lock_irqsave(&zone->lock, flags);
4489 		for (order = 0; order < MAX_ORDER; order++) {
4490 			struct free_area *area = &zone->free_area[order];
4491 			int type;
4492 
4493 			nr[order] = area->nr_free;
4494 			total += nr[order] << order;
4495 
4496 			types[order] = 0;
4497 			for (type = 0; type < MIGRATE_TYPES; type++) {
4498 				if (!list_empty(&area->free_list[type]))
4499 					types[order] |= 1 << type;
4500 			}
4501 		}
4502 		spin_unlock_irqrestore(&zone->lock, flags);
4503 		for (order = 0; order < MAX_ORDER; order++) {
4504 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4505 			if (nr[order])
4506 				show_migration_types(types[order]);
4507 		}
4508 		printk("= %lukB\n", K(total));
4509 	}
4510 
4511 	hugetlb_show_meminfo();
4512 
4513 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4514 
4515 	show_swap_cache_info();
4516 }
4517 
4518 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4519 {
4520 	zoneref->zone = zone;
4521 	zoneref->zone_idx = zone_idx(zone);
4522 }
4523 
4524 /*
4525  * Builds allocation fallback zone lists.
4526  *
4527  * Add all populated zones of a node to the zonelist.
4528  */
4529 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4530 				int nr_zones)
4531 {
4532 	struct zone *zone;
4533 	enum zone_type zone_type = MAX_NR_ZONES;
4534 
4535 	do {
4536 		zone_type--;
4537 		zone = pgdat->node_zones + zone_type;
4538 		if (populated_zone(zone)) {
4539 			zoneref_set_zone(zone,
4540 				&zonelist->_zonerefs[nr_zones++]);
4541 			check_highest_zone(zone_type);
4542 		}
4543 	} while (zone_type);
4544 
4545 	return nr_zones;
4546 }
4547 
4548 
4549 /*
4550  *  zonelist_order:
4551  *  0 = automatic detection of better ordering.
4552  *  1 = order by ([node] distance, -zonetype)
4553  *  2 = order by (-zonetype, [node] distance)
4554  *
4555  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4556  *  the same zonelist. So only NUMA can configure this param.
4557  */
4558 #define ZONELIST_ORDER_DEFAULT  0
4559 #define ZONELIST_ORDER_NODE     1
4560 #define ZONELIST_ORDER_ZONE     2
4561 
4562 /* zonelist order in the kernel.
4563  * set_zonelist_order() will set this to NODE or ZONE.
4564  */
4565 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4566 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4567 
4568 
4569 #ifdef CONFIG_NUMA
4570 /* The value user specified ....changed by config */
4571 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4572 /* string for sysctl */
4573 #define NUMA_ZONELIST_ORDER_LEN	16
4574 char numa_zonelist_order[16] = "default";
4575 
4576 /*
4577  * interface for configure zonelist ordering.
4578  * command line option "numa_zonelist_order"
4579  *	= "[dD]efault	- default, automatic configuration.
4580  *	= "[nN]ode 	- order by node locality, then by zone within node
4581  *	= "[zZ]one      - order by zone, then by locality within zone
4582  */
4583 
4584 static int __parse_numa_zonelist_order(char *s)
4585 {
4586 	if (*s == 'd' || *s == 'D') {
4587 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4588 	} else if (*s == 'n' || *s == 'N') {
4589 		user_zonelist_order = ZONELIST_ORDER_NODE;
4590 	} else if (*s == 'z' || *s == 'Z') {
4591 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4592 	} else {
4593 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4594 		return -EINVAL;
4595 	}
4596 	return 0;
4597 }
4598 
4599 static __init int setup_numa_zonelist_order(char *s)
4600 {
4601 	int ret;
4602 
4603 	if (!s)
4604 		return 0;
4605 
4606 	ret = __parse_numa_zonelist_order(s);
4607 	if (ret == 0)
4608 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4609 
4610 	return ret;
4611 }
4612 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4613 
4614 /*
4615  * sysctl handler for numa_zonelist_order
4616  */
4617 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4618 		void __user *buffer, size_t *length,
4619 		loff_t *ppos)
4620 {
4621 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4622 	int ret;
4623 	static DEFINE_MUTEX(zl_order_mutex);
4624 
4625 	mutex_lock(&zl_order_mutex);
4626 	if (write) {
4627 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4628 			ret = -EINVAL;
4629 			goto out;
4630 		}
4631 		strcpy(saved_string, (char *)table->data);
4632 	}
4633 	ret = proc_dostring(table, write, buffer, length, ppos);
4634 	if (ret)
4635 		goto out;
4636 	if (write) {
4637 		int oldval = user_zonelist_order;
4638 
4639 		ret = __parse_numa_zonelist_order((char *)table->data);
4640 		if (ret) {
4641 			/*
4642 			 * bogus value.  restore saved string
4643 			 */
4644 			strncpy((char *)table->data, saved_string,
4645 				NUMA_ZONELIST_ORDER_LEN);
4646 			user_zonelist_order = oldval;
4647 		} else if (oldval != user_zonelist_order) {
4648 			mutex_lock(&zonelists_mutex);
4649 			build_all_zonelists(NULL, NULL);
4650 			mutex_unlock(&zonelists_mutex);
4651 		}
4652 	}
4653 out:
4654 	mutex_unlock(&zl_order_mutex);
4655 	return ret;
4656 }
4657 
4658 
4659 #define MAX_NODE_LOAD (nr_online_nodes)
4660 static int node_load[MAX_NUMNODES];
4661 
4662 /**
4663  * find_next_best_node - find the next node that should appear in a given node's fallback list
4664  * @node: node whose fallback list we're appending
4665  * @used_node_mask: nodemask_t of already used nodes
4666  *
4667  * We use a number of factors to determine which is the next node that should
4668  * appear on a given node's fallback list.  The node should not have appeared
4669  * already in @node's fallback list, and it should be the next closest node
4670  * according to the distance array (which contains arbitrary distance values
4671  * from each node to each node in the system), and should also prefer nodes
4672  * with no CPUs, since presumably they'll have very little allocation pressure
4673  * on them otherwise.
4674  * It returns -1 if no node is found.
4675  */
4676 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4677 {
4678 	int n, val;
4679 	int min_val = INT_MAX;
4680 	int best_node = NUMA_NO_NODE;
4681 	const struct cpumask *tmp = cpumask_of_node(0);
4682 
4683 	/* Use the local node if we haven't already */
4684 	if (!node_isset(node, *used_node_mask)) {
4685 		node_set(node, *used_node_mask);
4686 		return node;
4687 	}
4688 
4689 	for_each_node_state(n, N_MEMORY) {
4690 
4691 		/* Don't want a node to appear more than once */
4692 		if (node_isset(n, *used_node_mask))
4693 			continue;
4694 
4695 		/* Use the distance array to find the distance */
4696 		val = node_distance(node, n);
4697 
4698 		/* Penalize nodes under us ("prefer the next node") */
4699 		val += (n < node);
4700 
4701 		/* Give preference to headless and unused nodes */
4702 		tmp = cpumask_of_node(n);
4703 		if (!cpumask_empty(tmp))
4704 			val += PENALTY_FOR_NODE_WITH_CPUS;
4705 
4706 		/* Slight preference for less loaded node */
4707 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4708 		val += node_load[n];
4709 
4710 		if (val < min_val) {
4711 			min_val = val;
4712 			best_node = n;
4713 		}
4714 	}
4715 
4716 	if (best_node >= 0)
4717 		node_set(best_node, *used_node_mask);
4718 
4719 	return best_node;
4720 }
4721 
4722 
4723 /*
4724  * Build zonelists ordered by node and zones within node.
4725  * This results in maximum locality--normal zone overflows into local
4726  * DMA zone, if any--but risks exhausting DMA zone.
4727  */
4728 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4729 {
4730 	int j;
4731 	struct zonelist *zonelist;
4732 
4733 	zonelist = &pgdat->node_zonelists[0];
4734 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4735 		;
4736 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4737 	zonelist->_zonerefs[j].zone = NULL;
4738 	zonelist->_zonerefs[j].zone_idx = 0;
4739 }
4740 
4741 /*
4742  * Build gfp_thisnode zonelists
4743  */
4744 static void build_thisnode_zonelists(pg_data_t *pgdat)
4745 {
4746 	int j;
4747 	struct zonelist *zonelist;
4748 
4749 	zonelist = &pgdat->node_zonelists[1];
4750 	j = build_zonelists_node(pgdat, zonelist, 0);
4751 	zonelist->_zonerefs[j].zone = NULL;
4752 	zonelist->_zonerefs[j].zone_idx = 0;
4753 }
4754 
4755 /*
4756  * Build zonelists ordered by zone and nodes within zones.
4757  * This results in conserving DMA zone[s] until all Normal memory is
4758  * exhausted, but results in overflowing to remote node while memory
4759  * may still exist in local DMA zone.
4760  */
4761 static int node_order[MAX_NUMNODES];
4762 
4763 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4764 {
4765 	int pos, j, node;
4766 	int zone_type;		/* needs to be signed */
4767 	struct zone *z;
4768 	struct zonelist *zonelist;
4769 
4770 	zonelist = &pgdat->node_zonelists[0];
4771 	pos = 0;
4772 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4773 		for (j = 0; j < nr_nodes; j++) {
4774 			node = node_order[j];
4775 			z = &NODE_DATA(node)->node_zones[zone_type];
4776 			if (populated_zone(z)) {
4777 				zoneref_set_zone(z,
4778 					&zonelist->_zonerefs[pos++]);
4779 				check_highest_zone(zone_type);
4780 			}
4781 		}
4782 	}
4783 	zonelist->_zonerefs[pos].zone = NULL;
4784 	zonelist->_zonerefs[pos].zone_idx = 0;
4785 }
4786 
4787 #if defined(CONFIG_64BIT)
4788 /*
4789  * Devices that require DMA32/DMA are relatively rare and do not justify a
4790  * penalty to every machine in case the specialised case applies. Default
4791  * to Node-ordering on 64-bit NUMA machines
4792  */
4793 static int default_zonelist_order(void)
4794 {
4795 	return ZONELIST_ORDER_NODE;
4796 }
4797 #else
4798 /*
4799  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4800  * by the kernel. If processes running on node 0 deplete the low memory zone
4801  * then reclaim will occur more frequency increasing stalls and potentially
4802  * be easier to OOM if a large percentage of the zone is under writeback or
4803  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4804  * Hence, default to zone ordering on 32-bit.
4805  */
4806 static int default_zonelist_order(void)
4807 {
4808 	return ZONELIST_ORDER_ZONE;
4809 }
4810 #endif /* CONFIG_64BIT */
4811 
4812 static void set_zonelist_order(void)
4813 {
4814 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4815 		current_zonelist_order = default_zonelist_order();
4816 	else
4817 		current_zonelist_order = user_zonelist_order;
4818 }
4819 
4820 static void build_zonelists(pg_data_t *pgdat)
4821 {
4822 	int i, node, load;
4823 	nodemask_t used_mask;
4824 	int local_node, prev_node;
4825 	struct zonelist *zonelist;
4826 	unsigned int order = current_zonelist_order;
4827 
4828 	/* initialize zonelists */
4829 	for (i = 0; i < MAX_ZONELISTS; i++) {
4830 		zonelist = pgdat->node_zonelists + i;
4831 		zonelist->_zonerefs[0].zone = NULL;
4832 		zonelist->_zonerefs[0].zone_idx = 0;
4833 	}
4834 
4835 	/* NUMA-aware ordering of nodes */
4836 	local_node = pgdat->node_id;
4837 	load = nr_online_nodes;
4838 	prev_node = local_node;
4839 	nodes_clear(used_mask);
4840 
4841 	memset(node_order, 0, sizeof(node_order));
4842 	i = 0;
4843 
4844 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4845 		/*
4846 		 * We don't want to pressure a particular node.
4847 		 * So adding penalty to the first node in same
4848 		 * distance group to make it round-robin.
4849 		 */
4850 		if (node_distance(local_node, node) !=
4851 		    node_distance(local_node, prev_node))
4852 			node_load[node] = load;
4853 
4854 		prev_node = node;
4855 		load--;
4856 		if (order == ZONELIST_ORDER_NODE)
4857 			build_zonelists_in_node_order(pgdat, node);
4858 		else
4859 			node_order[i++] = node;	/* remember order */
4860 	}
4861 
4862 	if (order == ZONELIST_ORDER_ZONE) {
4863 		/* calculate node order -- i.e., DMA last! */
4864 		build_zonelists_in_zone_order(pgdat, i);
4865 	}
4866 
4867 	build_thisnode_zonelists(pgdat);
4868 }
4869 
4870 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4871 /*
4872  * Return node id of node used for "local" allocations.
4873  * I.e., first node id of first zone in arg node's generic zonelist.
4874  * Used for initializing percpu 'numa_mem', which is used primarily
4875  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4876  */
4877 int local_memory_node(int node)
4878 {
4879 	struct zoneref *z;
4880 
4881 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4882 				   gfp_zone(GFP_KERNEL),
4883 				   NULL);
4884 	return z->zone->node;
4885 }
4886 #endif
4887 
4888 #else	/* CONFIG_NUMA */
4889 
4890 static void set_zonelist_order(void)
4891 {
4892 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4893 }
4894 
4895 static void build_zonelists(pg_data_t *pgdat)
4896 {
4897 	int node, local_node;
4898 	enum zone_type j;
4899 	struct zonelist *zonelist;
4900 
4901 	local_node = pgdat->node_id;
4902 
4903 	zonelist = &pgdat->node_zonelists[0];
4904 	j = build_zonelists_node(pgdat, zonelist, 0);
4905 
4906 	/*
4907 	 * Now we build the zonelist so that it contains the zones
4908 	 * of all the other nodes.
4909 	 * We don't want to pressure a particular node, so when
4910 	 * building the zones for node N, we make sure that the
4911 	 * zones coming right after the local ones are those from
4912 	 * node N+1 (modulo N)
4913 	 */
4914 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4915 		if (!node_online(node))
4916 			continue;
4917 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4918 	}
4919 	for (node = 0; node < local_node; node++) {
4920 		if (!node_online(node))
4921 			continue;
4922 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4923 	}
4924 
4925 	zonelist->_zonerefs[j].zone = NULL;
4926 	zonelist->_zonerefs[j].zone_idx = 0;
4927 }
4928 
4929 #endif	/* CONFIG_NUMA */
4930 
4931 /*
4932  * Boot pageset table. One per cpu which is going to be used for all
4933  * zones and all nodes. The parameters will be set in such a way
4934  * that an item put on a list will immediately be handed over to
4935  * the buddy list. This is safe since pageset manipulation is done
4936  * with interrupts disabled.
4937  *
4938  * The boot_pagesets must be kept even after bootup is complete for
4939  * unused processors and/or zones. They do play a role for bootstrapping
4940  * hotplugged processors.
4941  *
4942  * zoneinfo_show() and maybe other functions do
4943  * not check if the processor is online before following the pageset pointer.
4944  * Other parts of the kernel may not check if the zone is available.
4945  */
4946 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4947 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4948 static void setup_zone_pageset(struct zone *zone);
4949 
4950 /*
4951  * Global mutex to protect against size modification of zonelists
4952  * as well as to serialize pageset setup for the new populated zone.
4953  */
4954 DEFINE_MUTEX(zonelists_mutex);
4955 
4956 /* return values int ....just for stop_machine() */
4957 static int __build_all_zonelists(void *data)
4958 {
4959 	int nid;
4960 	int cpu;
4961 	pg_data_t *self = data;
4962 
4963 #ifdef CONFIG_NUMA
4964 	memset(node_load, 0, sizeof(node_load));
4965 #endif
4966 
4967 	if (self && !node_online(self->node_id)) {
4968 		build_zonelists(self);
4969 	}
4970 
4971 	for_each_online_node(nid) {
4972 		pg_data_t *pgdat = NODE_DATA(nid);
4973 
4974 		build_zonelists(pgdat);
4975 	}
4976 
4977 	/*
4978 	 * Initialize the boot_pagesets that are going to be used
4979 	 * for bootstrapping processors. The real pagesets for
4980 	 * each zone will be allocated later when the per cpu
4981 	 * allocator is available.
4982 	 *
4983 	 * boot_pagesets are used also for bootstrapping offline
4984 	 * cpus if the system is already booted because the pagesets
4985 	 * are needed to initialize allocators on a specific cpu too.
4986 	 * F.e. the percpu allocator needs the page allocator which
4987 	 * needs the percpu allocator in order to allocate its pagesets
4988 	 * (a chicken-egg dilemma).
4989 	 */
4990 	for_each_possible_cpu(cpu) {
4991 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4992 
4993 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4994 		/*
4995 		 * We now know the "local memory node" for each node--
4996 		 * i.e., the node of the first zone in the generic zonelist.
4997 		 * Set up numa_mem percpu variable for on-line cpus.  During
4998 		 * boot, only the boot cpu should be on-line;  we'll init the
4999 		 * secondary cpus' numa_mem as they come on-line.  During
5000 		 * node/memory hotplug, we'll fixup all on-line cpus.
5001 		 */
5002 		if (cpu_online(cpu))
5003 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5004 #endif
5005 	}
5006 
5007 	return 0;
5008 }
5009 
5010 static noinline void __init
5011 build_all_zonelists_init(void)
5012 {
5013 	__build_all_zonelists(NULL);
5014 	mminit_verify_zonelist();
5015 	cpuset_init_current_mems_allowed();
5016 }
5017 
5018 /*
5019  * Called with zonelists_mutex held always
5020  * unless system_state == SYSTEM_BOOTING.
5021  *
5022  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5023  * [we're only called with non-NULL zone through __meminit paths] and
5024  * (2) call of __init annotated helper build_all_zonelists_init
5025  * [protected by SYSTEM_BOOTING].
5026  */
5027 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5028 {
5029 	set_zonelist_order();
5030 
5031 	if (system_state == SYSTEM_BOOTING) {
5032 		build_all_zonelists_init();
5033 	} else {
5034 #ifdef CONFIG_MEMORY_HOTPLUG
5035 		if (zone)
5036 			setup_zone_pageset(zone);
5037 #endif
5038 		/* we have to stop all cpus to guarantee there is no user
5039 		   of zonelist */
5040 		stop_machine(__build_all_zonelists, pgdat, NULL);
5041 		/* cpuset refresh routine should be here */
5042 	}
5043 	vm_total_pages = nr_free_pagecache_pages();
5044 	/*
5045 	 * Disable grouping by mobility if the number of pages in the
5046 	 * system is too low to allow the mechanism to work. It would be
5047 	 * more accurate, but expensive to check per-zone. This check is
5048 	 * made on memory-hotadd so a system can start with mobility
5049 	 * disabled and enable it later
5050 	 */
5051 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5052 		page_group_by_mobility_disabled = 1;
5053 	else
5054 		page_group_by_mobility_disabled = 0;
5055 
5056 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5057 		nr_online_nodes,
5058 		zonelist_order_name[current_zonelist_order],
5059 		page_group_by_mobility_disabled ? "off" : "on",
5060 		vm_total_pages);
5061 #ifdef CONFIG_NUMA
5062 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5063 #endif
5064 }
5065 
5066 /*
5067  * Helper functions to size the waitqueue hash table.
5068  * Essentially these want to choose hash table sizes sufficiently
5069  * large so that collisions trying to wait on pages are rare.
5070  * But in fact, the number of active page waitqueues on typical
5071  * systems is ridiculously low, less than 200. So this is even
5072  * conservative, even though it seems large.
5073  *
5074  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5075  * waitqueues, i.e. the size of the waitq table given the number of pages.
5076  */
5077 #define PAGES_PER_WAITQUEUE	256
5078 
5079 #ifndef CONFIG_MEMORY_HOTPLUG
5080 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5081 {
5082 	unsigned long size = 1;
5083 
5084 	pages /= PAGES_PER_WAITQUEUE;
5085 
5086 	while (size < pages)
5087 		size <<= 1;
5088 
5089 	/*
5090 	 * Once we have dozens or even hundreds of threads sleeping
5091 	 * on IO we've got bigger problems than wait queue collision.
5092 	 * Limit the size of the wait table to a reasonable size.
5093 	 */
5094 	size = min(size, 4096UL);
5095 
5096 	return max(size, 4UL);
5097 }
5098 #else
5099 /*
5100  * A zone's size might be changed by hot-add, so it is not possible to determine
5101  * a suitable size for its wait_table.  So we use the maximum size now.
5102  *
5103  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
5104  *
5105  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
5106  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5107  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
5108  *
5109  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5110  * or more by the traditional way. (See above).  It equals:
5111  *
5112  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
5113  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
5114  *    powerpc (64K page size)             : =  (32G +16M)byte.
5115  */
5116 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5117 {
5118 	return 4096UL;
5119 }
5120 #endif
5121 
5122 /*
5123  * This is an integer logarithm so that shifts can be used later
5124  * to extract the more random high bits from the multiplicative
5125  * hash function before the remainder is taken.
5126  */
5127 static inline unsigned long wait_table_bits(unsigned long size)
5128 {
5129 	return ffz(~size);
5130 }
5131 
5132 /*
5133  * Initially all pages are reserved - free ones are freed
5134  * up by free_all_bootmem() once the early boot process is
5135  * done. Non-atomic initialization, single-pass.
5136  */
5137 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5138 		unsigned long start_pfn, enum memmap_context context)
5139 {
5140 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5141 	unsigned long end_pfn = start_pfn + size;
5142 	pg_data_t *pgdat = NODE_DATA(nid);
5143 	unsigned long pfn;
5144 	unsigned long nr_initialised = 0;
5145 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5146 	struct memblock_region *r = NULL, *tmp;
5147 #endif
5148 
5149 	if (highest_memmap_pfn < end_pfn - 1)
5150 		highest_memmap_pfn = end_pfn - 1;
5151 
5152 	/*
5153 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5154 	 * memory
5155 	 */
5156 	if (altmap && start_pfn == altmap->base_pfn)
5157 		start_pfn += altmap->reserve;
5158 
5159 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5160 		/*
5161 		 * There can be holes in boot-time mem_map[]s handed to this
5162 		 * function.  They do not exist on hotplugged memory.
5163 		 */
5164 		if (context != MEMMAP_EARLY)
5165 			goto not_early;
5166 
5167 		if (!early_pfn_valid(pfn))
5168 			continue;
5169 		if (!early_pfn_in_nid(pfn, nid))
5170 			continue;
5171 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5172 			break;
5173 
5174 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5175 		/*
5176 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5177 		 * from zone_movable_pfn[nid] to end of each node should be
5178 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5179 		 */
5180 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
5181 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5182 				continue;
5183 
5184 		/*
5185 		 * Check given memblock attribute by firmware which can affect
5186 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5187 		 * mirrored, it's an overlapped memmap init. skip it.
5188 		 */
5189 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5190 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5191 				for_each_memblock(memory, tmp)
5192 					if (pfn < memblock_region_memory_end_pfn(tmp))
5193 						break;
5194 				r = tmp;
5195 			}
5196 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5197 			    memblock_is_mirror(r)) {
5198 				/* already initialized as NORMAL */
5199 				pfn = memblock_region_memory_end_pfn(r);
5200 				continue;
5201 			}
5202 		}
5203 #endif
5204 
5205 not_early:
5206 		/*
5207 		 * Mark the block movable so that blocks are reserved for
5208 		 * movable at startup. This will force kernel allocations
5209 		 * to reserve their blocks rather than leaking throughout
5210 		 * the address space during boot when many long-lived
5211 		 * kernel allocations are made.
5212 		 *
5213 		 * bitmap is created for zone's valid pfn range. but memmap
5214 		 * can be created for invalid pages (for alignment)
5215 		 * check here not to call set_pageblock_migratetype() against
5216 		 * pfn out of zone.
5217 		 */
5218 		if (!(pfn & (pageblock_nr_pages - 1))) {
5219 			struct page *page = pfn_to_page(pfn);
5220 
5221 			__init_single_page(page, pfn, zone, nid);
5222 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5223 		} else {
5224 			__init_single_pfn(pfn, zone, nid);
5225 		}
5226 	}
5227 }
5228 
5229 static void __meminit zone_init_free_lists(struct zone *zone)
5230 {
5231 	unsigned int order, t;
5232 	for_each_migratetype_order(order, t) {
5233 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5234 		zone->free_area[order].nr_free = 0;
5235 	}
5236 }
5237 
5238 #ifndef __HAVE_ARCH_MEMMAP_INIT
5239 #define memmap_init(size, nid, zone, start_pfn) \
5240 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5241 #endif
5242 
5243 static int zone_batchsize(struct zone *zone)
5244 {
5245 #ifdef CONFIG_MMU
5246 	int batch;
5247 
5248 	/*
5249 	 * The per-cpu-pages pools are set to around 1000th of the
5250 	 * size of the zone.  But no more than 1/2 of a meg.
5251 	 *
5252 	 * OK, so we don't know how big the cache is.  So guess.
5253 	 */
5254 	batch = zone->managed_pages / 1024;
5255 	if (batch * PAGE_SIZE > 512 * 1024)
5256 		batch = (512 * 1024) / PAGE_SIZE;
5257 	batch /= 4;		/* We effectively *= 4 below */
5258 	if (batch < 1)
5259 		batch = 1;
5260 
5261 	/*
5262 	 * Clamp the batch to a 2^n - 1 value. Having a power
5263 	 * of 2 value was found to be more likely to have
5264 	 * suboptimal cache aliasing properties in some cases.
5265 	 *
5266 	 * For example if 2 tasks are alternately allocating
5267 	 * batches of pages, one task can end up with a lot
5268 	 * of pages of one half of the possible page colors
5269 	 * and the other with pages of the other colors.
5270 	 */
5271 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5272 
5273 	return batch;
5274 
5275 #else
5276 	/* The deferral and batching of frees should be suppressed under NOMMU
5277 	 * conditions.
5278 	 *
5279 	 * The problem is that NOMMU needs to be able to allocate large chunks
5280 	 * of contiguous memory as there's no hardware page translation to
5281 	 * assemble apparent contiguous memory from discontiguous pages.
5282 	 *
5283 	 * Queueing large contiguous runs of pages for batching, however,
5284 	 * causes the pages to actually be freed in smaller chunks.  As there
5285 	 * can be a significant delay between the individual batches being
5286 	 * recycled, this leads to the once large chunks of space being
5287 	 * fragmented and becoming unavailable for high-order allocations.
5288 	 */
5289 	return 0;
5290 #endif
5291 }
5292 
5293 /*
5294  * pcp->high and pcp->batch values are related and dependent on one another:
5295  * ->batch must never be higher then ->high.
5296  * The following function updates them in a safe manner without read side
5297  * locking.
5298  *
5299  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5300  * those fields changing asynchronously (acording the the above rule).
5301  *
5302  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5303  * outside of boot time (or some other assurance that no concurrent updaters
5304  * exist).
5305  */
5306 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5307 		unsigned long batch)
5308 {
5309        /* start with a fail safe value for batch */
5310 	pcp->batch = 1;
5311 	smp_wmb();
5312 
5313        /* Update high, then batch, in order */
5314 	pcp->high = high;
5315 	smp_wmb();
5316 
5317 	pcp->batch = batch;
5318 }
5319 
5320 /* a companion to pageset_set_high() */
5321 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5322 {
5323 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5324 }
5325 
5326 static void pageset_init(struct per_cpu_pageset *p)
5327 {
5328 	struct per_cpu_pages *pcp;
5329 	int migratetype;
5330 
5331 	memset(p, 0, sizeof(*p));
5332 
5333 	pcp = &p->pcp;
5334 	pcp->count = 0;
5335 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5336 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5337 }
5338 
5339 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5340 {
5341 	pageset_init(p);
5342 	pageset_set_batch(p, batch);
5343 }
5344 
5345 /*
5346  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5347  * to the value high for the pageset p.
5348  */
5349 static void pageset_set_high(struct per_cpu_pageset *p,
5350 				unsigned long high)
5351 {
5352 	unsigned long batch = max(1UL, high / 4);
5353 	if ((high / 4) > (PAGE_SHIFT * 8))
5354 		batch = PAGE_SHIFT * 8;
5355 
5356 	pageset_update(&p->pcp, high, batch);
5357 }
5358 
5359 static void pageset_set_high_and_batch(struct zone *zone,
5360 				       struct per_cpu_pageset *pcp)
5361 {
5362 	if (percpu_pagelist_fraction)
5363 		pageset_set_high(pcp,
5364 			(zone->managed_pages /
5365 				percpu_pagelist_fraction));
5366 	else
5367 		pageset_set_batch(pcp, zone_batchsize(zone));
5368 }
5369 
5370 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5371 {
5372 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5373 
5374 	pageset_init(pcp);
5375 	pageset_set_high_and_batch(zone, pcp);
5376 }
5377 
5378 static void __meminit setup_zone_pageset(struct zone *zone)
5379 {
5380 	int cpu;
5381 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5382 	for_each_possible_cpu(cpu)
5383 		zone_pageset_init(zone, cpu);
5384 }
5385 
5386 /*
5387  * Allocate per cpu pagesets and initialize them.
5388  * Before this call only boot pagesets were available.
5389  */
5390 void __init setup_per_cpu_pageset(void)
5391 {
5392 	struct zone *zone;
5393 
5394 	for_each_populated_zone(zone)
5395 		setup_zone_pageset(zone);
5396 }
5397 
5398 static noinline __init_refok
5399 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5400 {
5401 	int i;
5402 	size_t alloc_size;
5403 
5404 	/*
5405 	 * The per-page waitqueue mechanism uses hashed waitqueues
5406 	 * per zone.
5407 	 */
5408 	zone->wait_table_hash_nr_entries =
5409 		 wait_table_hash_nr_entries(zone_size_pages);
5410 	zone->wait_table_bits =
5411 		wait_table_bits(zone->wait_table_hash_nr_entries);
5412 	alloc_size = zone->wait_table_hash_nr_entries
5413 					* sizeof(wait_queue_head_t);
5414 
5415 	if (!slab_is_available()) {
5416 		zone->wait_table = (wait_queue_head_t *)
5417 			memblock_virt_alloc_node_nopanic(
5418 				alloc_size, zone->zone_pgdat->node_id);
5419 	} else {
5420 		/*
5421 		 * This case means that a zone whose size was 0 gets new memory
5422 		 * via memory hot-add.
5423 		 * But it may be the case that a new node was hot-added.  In
5424 		 * this case vmalloc() will not be able to use this new node's
5425 		 * memory - this wait_table must be initialized to use this new
5426 		 * node itself as well.
5427 		 * To use this new node's memory, further consideration will be
5428 		 * necessary.
5429 		 */
5430 		zone->wait_table = vmalloc(alloc_size);
5431 	}
5432 	if (!zone->wait_table)
5433 		return -ENOMEM;
5434 
5435 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5436 		init_waitqueue_head(zone->wait_table + i);
5437 
5438 	return 0;
5439 }
5440 
5441 static __meminit void zone_pcp_init(struct zone *zone)
5442 {
5443 	/*
5444 	 * per cpu subsystem is not up at this point. The following code
5445 	 * relies on the ability of the linker to provide the
5446 	 * offset of a (static) per cpu variable into the per cpu area.
5447 	 */
5448 	zone->pageset = &boot_pageset;
5449 
5450 	if (populated_zone(zone))
5451 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5452 			zone->name, zone->present_pages,
5453 					 zone_batchsize(zone));
5454 }
5455 
5456 int __meminit init_currently_empty_zone(struct zone *zone,
5457 					unsigned long zone_start_pfn,
5458 					unsigned long size)
5459 {
5460 	struct pglist_data *pgdat = zone->zone_pgdat;
5461 	int ret;
5462 	ret = zone_wait_table_init(zone, size);
5463 	if (ret)
5464 		return ret;
5465 	pgdat->nr_zones = zone_idx(zone) + 1;
5466 
5467 	zone->zone_start_pfn = zone_start_pfn;
5468 
5469 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5470 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5471 			pgdat->node_id,
5472 			(unsigned long)zone_idx(zone),
5473 			zone_start_pfn, (zone_start_pfn + size));
5474 
5475 	zone_init_free_lists(zone);
5476 
5477 	return 0;
5478 }
5479 
5480 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5481 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5482 
5483 /*
5484  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5485  */
5486 int __meminit __early_pfn_to_nid(unsigned long pfn,
5487 					struct mminit_pfnnid_cache *state)
5488 {
5489 	unsigned long start_pfn, end_pfn;
5490 	int nid;
5491 
5492 	if (state->last_start <= pfn && pfn < state->last_end)
5493 		return state->last_nid;
5494 
5495 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5496 	if (nid != -1) {
5497 		state->last_start = start_pfn;
5498 		state->last_end = end_pfn;
5499 		state->last_nid = nid;
5500 	}
5501 
5502 	return nid;
5503 }
5504 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5505 
5506 /**
5507  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5508  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5509  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5510  *
5511  * If an architecture guarantees that all ranges registered contain no holes
5512  * and may be freed, this this function may be used instead of calling
5513  * memblock_free_early_nid() manually.
5514  */
5515 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5516 {
5517 	unsigned long start_pfn, end_pfn;
5518 	int i, this_nid;
5519 
5520 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5521 		start_pfn = min(start_pfn, max_low_pfn);
5522 		end_pfn = min(end_pfn, max_low_pfn);
5523 
5524 		if (start_pfn < end_pfn)
5525 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5526 					(end_pfn - start_pfn) << PAGE_SHIFT,
5527 					this_nid);
5528 	}
5529 }
5530 
5531 /**
5532  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5533  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5534  *
5535  * If an architecture guarantees that all ranges registered contain no holes and may
5536  * be freed, this function may be used instead of calling memory_present() manually.
5537  */
5538 void __init sparse_memory_present_with_active_regions(int nid)
5539 {
5540 	unsigned long start_pfn, end_pfn;
5541 	int i, this_nid;
5542 
5543 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5544 		memory_present(this_nid, start_pfn, end_pfn);
5545 }
5546 
5547 /**
5548  * get_pfn_range_for_nid - Return the start and end page frames for a node
5549  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5550  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5551  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5552  *
5553  * It returns the start and end page frame of a node based on information
5554  * provided by memblock_set_node(). If called for a node
5555  * with no available memory, a warning is printed and the start and end
5556  * PFNs will be 0.
5557  */
5558 void __meminit get_pfn_range_for_nid(unsigned int nid,
5559 			unsigned long *start_pfn, unsigned long *end_pfn)
5560 {
5561 	unsigned long this_start_pfn, this_end_pfn;
5562 	int i;
5563 
5564 	*start_pfn = -1UL;
5565 	*end_pfn = 0;
5566 
5567 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5568 		*start_pfn = min(*start_pfn, this_start_pfn);
5569 		*end_pfn = max(*end_pfn, this_end_pfn);
5570 	}
5571 
5572 	if (*start_pfn == -1UL)
5573 		*start_pfn = 0;
5574 }
5575 
5576 /*
5577  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5578  * assumption is made that zones within a node are ordered in monotonic
5579  * increasing memory addresses so that the "highest" populated zone is used
5580  */
5581 static void __init find_usable_zone_for_movable(void)
5582 {
5583 	int zone_index;
5584 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5585 		if (zone_index == ZONE_MOVABLE)
5586 			continue;
5587 
5588 		if (arch_zone_highest_possible_pfn[zone_index] >
5589 				arch_zone_lowest_possible_pfn[zone_index])
5590 			break;
5591 	}
5592 
5593 	VM_BUG_ON(zone_index == -1);
5594 	movable_zone = zone_index;
5595 }
5596 
5597 /*
5598  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5599  * because it is sized independent of architecture. Unlike the other zones,
5600  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5601  * in each node depending on the size of each node and how evenly kernelcore
5602  * is distributed. This helper function adjusts the zone ranges
5603  * provided by the architecture for a given node by using the end of the
5604  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5605  * zones within a node are in order of monotonic increases memory addresses
5606  */
5607 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5608 					unsigned long zone_type,
5609 					unsigned long node_start_pfn,
5610 					unsigned long node_end_pfn,
5611 					unsigned long *zone_start_pfn,
5612 					unsigned long *zone_end_pfn)
5613 {
5614 	/* Only adjust if ZONE_MOVABLE is on this node */
5615 	if (zone_movable_pfn[nid]) {
5616 		/* Size ZONE_MOVABLE */
5617 		if (zone_type == ZONE_MOVABLE) {
5618 			*zone_start_pfn = zone_movable_pfn[nid];
5619 			*zone_end_pfn = min(node_end_pfn,
5620 				arch_zone_highest_possible_pfn[movable_zone]);
5621 
5622 		/* Check if this whole range is within ZONE_MOVABLE */
5623 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5624 			*zone_start_pfn = *zone_end_pfn;
5625 	}
5626 }
5627 
5628 /*
5629  * Return the number of pages a zone spans in a node, including holes
5630  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5631  */
5632 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5633 					unsigned long zone_type,
5634 					unsigned long node_start_pfn,
5635 					unsigned long node_end_pfn,
5636 					unsigned long *zone_start_pfn,
5637 					unsigned long *zone_end_pfn,
5638 					unsigned long *ignored)
5639 {
5640 	/* When hotadd a new node from cpu_up(), the node should be empty */
5641 	if (!node_start_pfn && !node_end_pfn)
5642 		return 0;
5643 
5644 	/* Get the start and end of the zone */
5645 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5646 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5647 	adjust_zone_range_for_zone_movable(nid, zone_type,
5648 				node_start_pfn, node_end_pfn,
5649 				zone_start_pfn, zone_end_pfn);
5650 
5651 	/* Check that this node has pages within the zone's required range */
5652 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5653 		return 0;
5654 
5655 	/* Move the zone boundaries inside the node if necessary */
5656 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5657 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5658 
5659 	/* Return the spanned pages */
5660 	return *zone_end_pfn - *zone_start_pfn;
5661 }
5662 
5663 /*
5664  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5665  * then all holes in the requested range will be accounted for.
5666  */
5667 unsigned long __meminit __absent_pages_in_range(int nid,
5668 				unsigned long range_start_pfn,
5669 				unsigned long range_end_pfn)
5670 {
5671 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5672 	unsigned long start_pfn, end_pfn;
5673 	int i;
5674 
5675 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5676 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5677 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5678 		nr_absent -= end_pfn - start_pfn;
5679 	}
5680 	return nr_absent;
5681 }
5682 
5683 /**
5684  * absent_pages_in_range - Return number of page frames in holes within a range
5685  * @start_pfn: The start PFN to start searching for holes
5686  * @end_pfn: The end PFN to stop searching for holes
5687  *
5688  * It returns the number of pages frames in memory holes within a range.
5689  */
5690 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5691 							unsigned long end_pfn)
5692 {
5693 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5694 }
5695 
5696 /* Return the number of page frames in holes in a zone on a node */
5697 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5698 					unsigned long zone_type,
5699 					unsigned long node_start_pfn,
5700 					unsigned long node_end_pfn,
5701 					unsigned long *ignored)
5702 {
5703 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5704 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5705 	unsigned long zone_start_pfn, zone_end_pfn;
5706 	unsigned long nr_absent;
5707 
5708 	/* When hotadd a new node from cpu_up(), the node should be empty */
5709 	if (!node_start_pfn && !node_end_pfn)
5710 		return 0;
5711 
5712 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5713 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5714 
5715 	adjust_zone_range_for_zone_movable(nid, zone_type,
5716 			node_start_pfn, node_end_pfn,
5717 			&zone_start_pfn, &zone_end_pfn);
5718 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5719 
5720 	/*
5721 	 * ZONE_MOVABLE handling.
5722 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5723 	 * and vice versa.
5724 	 */
5725 	if (zone_movable_pfn[nid]) {
5726 		if (mirrored_kernelcore) {
5727 			unsigned long start_pfn, end_pfn;
5728 			struct memblock_region *r;
5729 
5730 			for_each_memblock(memory, r) {
5731 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5732 						  zone_start_pfn, zone_end_pfn);
5733 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5734 						zone_start_pfn, zone_end_pfn);
5735 
5736 				if (zone_type == ZONE_MOVABLE &&
5737 				    memblock_is_mirror(r))
5738 					nr_absent += end_pfn - start_pfn;
5739 
5740 				if (zone_type == ZONE_NORMAL &&
5741 				    !memblock_is_mirror(r))
5742 					nr_absent += end_pfn - start_pfn;
5743 			}
5744 		} else {
5745 			if (zone_type == ZONE_NORMAL)
5746 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5747 		}
5748 	}
5749 
5750 	return nr_absent;
5751 }
5752 
5753 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5754 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5755 					unsigned long zone_type,
5756 					unsigned long node_start_pfn,
5757 					unsigned long node_end_pfn,
5758 					unsigned long *zone_start_pfn,
5759 					unsigned long *zone_end_pfn,
5760 					unsigned long *zones_size)
5761 {
5762 	unsigned int zone;
5763 
5764 	*zone_start_pfn = node_start_pfn;
5765 	for (zone = 0; zone < zone_type; zone++)
5766 		*zone_start_pfn += zones_size[zone];
5767 
5768 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5769 
5770 	return zones_size[zone_type];
5771 }
5772 
5773 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5774 						unsigned long zone_type,
5775 						unsigned long node_start_pfn,
5776 						unsigned long node_end_pfn,
5777 						unsigned long *zholes_size)
5778 {
5779 	if (!zholes_size)
5780 		return 0;
5781 
5782 	return zholes_size[zone_type];
5783 }
5784 
5785 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5786 
5787 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5788 						unsigned long node_start_pfn,
5789 						unsigned long node_end_pfn,
5790 						unsigned long *zones_size,
5791 						unsigned long *zholes_size)
5792 {
5793 	unsigned long realtotalpages = 0, totalpages = 0;
5794 	enum zone_type i;
5795 
5796 	for (i = 0; i < MAX_NR_ZONES; i++) {
5797 		struct zone *zone = pgdat->node_zones + i;
5798 		unsigned long zone_start_pfn, zone_end_pfn;
5799 		unsigned long size, real_size;
5800 
5801 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5802 						  node_start_pfn,
5803 						  node_end_pfn,
5804 						  &zone_start_pfn,
5805 						  &zone_end_pfn,
5806 						  zones_size);
5807 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5808 						  node_start_pfn, node_end_pfn,
5809 						  zholes_size);
5810 		if (size)
5811 			zone->zone_start_pfn = zone_start_pfn;
5812 		else
5813 			zone->zone_start_pfn = 0;
5814 		zone->spanned_pages = size;
5815 		zone->present_pages = real_size;
5816 
5817 		totalpages += size;
5818 		realtotalpages += real_size;
5819 	}
5820 
5821 	pgdat->node_spanned_pages = totalpages;
5822 	pgdat->node_present_pages = realtotalpages;
5823 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5824 							realtotalpages);
5825 }
5826 
5827 #ifndef CONFIG_SPARSEMEM
5828 /*
5829  * Calculate the size of the zone->blockflags rounded to an unsigned long
5830  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5831  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5832  * round what is now in bits to nearest long in bits, then return it in
5833  * bytes.
5834  */
5835 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5836 {
5837 	unsigned long usemapsize;
5838 
5839 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5840 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5841 	usemapsize = usemapsize >> pageblock_order;
5842 	usemapsize *= NR_PAGEBLOCK_BITS;
5843 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5844 
5845 	return usemapsize / 8;
5846 }
5847 
5848 static void __init setup_usemap(struct pglist_data *pgdat,
5849 				struct zone *zone,
5850 				unsigned long zone_start_pfn,
5851 				unsigned long zonesize)
5852 {
5853 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5854 	zone->pageblock_flags = NULL;
5855 	if (usemapsize)
5856 		zone->pageblock_flags =
5857 			memblock_virt_alloc_node_nopanic(usemapsize,
5858 							 pgdat->node_id);
5859 }
5860 #else
5861 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5862 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5863 #endif /* CONFIG_SPARSEMEM */
5864 
5865 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5866 
5867 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5868 void __paginginit set_pageblock_order(void)
5869 {
5870 	unsigned int order;
5871 
5872 	/* Check that pageblock_nr_pages has not already been setup */
5873 	if (pageblock_order)
5874 		return;
5875 
5876 	if (HPAGE_SHIFT > PAGE_SHIFT)
5877 		order = HUGETLB_PAGE_ORDER;
5878 	else
5879 		order = MAX_ORDER - 1;
5880 
5881 	/*
5882 	 * Assume the largest contiguous order of interest is a huge page.
5883 	 * This value may be variable depending on boot parameters on IA64 and
5884 	 * powerpc.
5885 	 */
5886 	pageblock_order = order;
5887 }
5888 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5889 
5890 /*
5891  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5892  * is unused as pageblock_order is set at compile-time. See
5893  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5894  * the kernel config
5895  */
5896 void __paginginit set_pageblock_order(void)
5897 {
5898 }
5899 
5900 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5901 
5902 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5903 						   unsigned long present_pages)
5904 {
5905 	unsigned long pages = spanned_pages;
5906 
5907 	/*
5908 	 * Provide a more accurate estimation if there are holes within
5909 	 * the zone and SPARSEMEM is in use. If there are holes within the
5910 	 * zone, each populated memory region may cost us one or two extra
5911 	 * memmap pages due to alignment because memmap pages for each
5912 	 * populated regions may not naturally algined on page boundary.
5913 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5914 	 */
5915 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5916 	    IS_ENABLED(CONFIG_SPARSEMEM))
5917 		pages = present_pages;
5918 
5919 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5920 }
5921 
5922 /*
5923  * Set up the zone data structures:
5924  *   - mark all pages reserved
5925  *   - mark all memory queues empty
5926  *   - clear the memory bitmaps
5927  *
5928  * NOTE: pgdat should get zeroed by caller.
5929  */
5930 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5931 {
5932 	enum zone_type j;
5933 	int nid = pgdat->node_id;
5934 	int ret;
5935 
5936 	pgdat_resize_init(pgdat);
5937 #ifdef CONFIG_NUMA_BALANCING
5938 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5939 	pgdat->numabalancing_migrate_nr_pages = 0;
5940 	pgdat->numabalancing_migrate_next_window = jiffies;
5941 #endif
5942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5943 	spin_lock_init(&pgdat->split_queue_lock);
5944 	INIT_LIST_HEAD(&pgdat->split_queue);
5945 	pgdat->split_queue_len = 0;
5946 #endif
5947 	init_waitqueue_head(&pgdat->kswapd_wait);
5948 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5949 #ifdef CONFIG_COMPACTION
5950 	init_waitqueue_head(&pgdat->kcompactd_wait);
5951 #endif
5952 	pgdat_page_ext_init(pgdat);
5953 
5954 	for (j = 0; j < MAX_NR_ZONES; j++) {
5955 		struct zone *zone = pgdat->node_zones + j;
5956 		unsigned long size, realsize, freesize, memmap_pages;
5957 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5958 
5959 		size = zone->spanned_pages;
5960 		realsize = freesize = zone->present_pages;
5961 
5962 		/*
5963 		 * Adjust freesize so that it accounts for how much memory
5964 		 * is used by this zone for memmap. This affects the watermark
5965 		 * and per-cpu initialisations
5966 		 */
5967 		memmap_pages = calc_memmap_size(size, realsize);
5968 		if (!is_highmem_idx(j)) {
5969 			if (freesize >= memmap_pages) {
5970 				freesize -= memmap_pages;
5971 				if (memmap_pages)
5972 					printk(KERN_DEBUG
5973 					       "  %s zone: %lu pages used for memmap\n",
5974 					       zone_names[j], memmap_pages);
5975 			} else
5976 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5977 					zone_names[j], memmap_pages, freesize);
5978 		}
5979 
5980 		/* Account for reserved pages */
5981 		if (j == 0 && freesize > dma_reserve) {
5982 			freesize -= dma_reserve;
5983 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5984 					zone_names[0], dma_reserve);
5985 		}
5986 
5987 		if (!is_highmem_idx(j))
5988 			nr_kernel_pages += freesize;
5989 		/* Charge for highmem memmap if there are enough kernel pages */
5990 		else if (nr_kernel_pages > memmap_pages * 2)
5991 			nr_kernel_pages -= memmap_pages;
5992 		nr_all_pages += freesize;
5993 
5994 		/*
5995 		 * Set an approximate value for lowmem here, it will be adjusted
5996 		 * when the bootmem allocator frees pages into the buddy system.
5997 		 * And all highmem pages will be managed by the buddy system.
5998 		 */
5999 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6000 #ifdef CONFIG_NUMA
6001 		zone->node = nid;
6002 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
6003 						/ 100;
6004 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
6005 #endif
6006 		zone->name = zone_names[j];
6007 		spin_lock_init(&zone->lock);
6008 		spin_lock_init(&zone->lru_lock);
6009 		zone_seqlock_init(zone);
6010 		zone->zone_pgdat = pgdat;
6011 		zone_pcp_init(zone);
6012 
6013 		/* For bootup, initialized properly in watermark setup */
6014 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6015 
6016 		lruvec_init(&zone->lruvec);
6017 		if (!size)
6018 			continue;
6019 
6020 		set_pageblock_order();
6021 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6022 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6023 		BUG_ON(ret);
6024 		memmap_init(size, nid, j, zone_start_pfn);
6025 	}
6026 }
6027 
6028 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
6029 {
6030 	unsigned long __maybe_unused start = 0;
6031 	unsigned long __maybe_unused offset = 0;
6032 
6033 	/* Skip empty nodes */
6034 	if (!pgdat->node_spanned_pages)
6035 		return;
6036 
6037 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6038 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6039 	offset = pgdat->node_start_pfn - start;
6040 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6041 	if (!pgdat->node_mem_map) {
6042 		unsigned long size, end;
6043 		struct page *map;
6044 
6045 		/*
6046 		 * The zone's endpoints aren't required to be MAX_ORDER
6047 		 * aligned but the node_mem_map endpoints must be in order
6048 		 * for the buddy allocator to function correctly.
6049 		 */
6050 		end = pgdat_end_pfn(pgdat);
6051 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6052 		size =  (end - start) * sizeof(struct page);
6053 		map = alloc_remap(pgdat->node_id, size);
6054 		if (!map)
6055 			map = memblock_virt_alloc_node_nopanic(size,
6056 							       pgdat->node_id);
6057 		pgdat->node_mem_map = map + offset;
6058 	}
6059 #ifndef CONFIG_NEED_MULTIPLE_NODES
6060 	/*
6061 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6062 	 */
6063 	if (pgdat == NODE_DATA(0)) {
6064 		mem_map = NODE_DATA(0)->node_mem_map;
6065 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6066 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6067 			mem_map -= offset;
6068 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6069 	}
6070 #endif
6071 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6072 }
6073 
6074 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6075 		unsigned long node_start_pfn, unsigned long *zholes_size)
6076 {
6077 	pg_data_t *pgdat = NODE_DATA(nid);
6078 	unsigned long start_pfn = 0;
6079 	unsigned long end_pfn = 0;
6080 
6081 	/* pg_data_t should be reset to zero when it's allocated */
6082 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
6083 
6084 	reset_deferred_meminit(pgdat);
6085 	pgdat->node_id = nid;
6086 	pgdat->node_start_pfn = node_start_pfn;
6087 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6088 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6089 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6090 		(u64)start_pfn << PAGE_SHIFT,
6091 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6092 #else
6093 	start_pfn = node_start_pfn;
6094 #endif
6095 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6096 				  zones_size, zholes_size);
6097 
6098 	alloc_node_mem_map(pgdat);
6099 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6100 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6101 		nid, (unsigned long)pgdat,
6102 		(unsigned long)pgdat->node_mem_map);
6103 #endif
6104 
6105 	free_area_init_core(pgdat);
6106 }
6107 
6108 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6109 
6110 #if MAX_NUMNODES > 1
6111 /*
6112  * Figure out the number of possible node ids.
6113  */
6114 void __init setup_nr_node_ids(void)
6115 {
6116 	unsigned int highest;
6117 
6118 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6119 	nr_node_ids = highest + 1;
6120 }
6121 #endif
6122 
6123 /**
6124  * node_map_pfn_alignment - determine the maximum internode alignment
6125  *
6126  * This function should be called after node map is populated and sorted.
6127  * It calculates the maximum power of two alignment which can distinguish
6128  * all the nodes.
6129  *
6130  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6131  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6132  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6133  * shifted, 1GiB is enough and this function will indicate so.
6134  *
6135  * This is used to test whether pfn -> nid mapping of the chosen memory
6136  * model has fine enough granularity to avoid incorrect mapping for the
6137  * populated node map.
6138  *
6139  * Returns the determined alignment in pfn's.  0 if there is no alignment
6140  * requirement (single node).
6141  */
6142 unsigned long __init node_map_pfn_alignment(void)
6143 {
6144 	unsigned long accl_mask = 0, last_end = 0;
6145 	unsigned long start, end, mask;
6146 	int last_nid = -1;
6147 	int i, nid;
6148 
6149 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6150 		if (!start || last_nid < 0 || last_nid == nid) {
6151 			last_nid = nid;
6152 			last_end = end;
6153 			continue;
6154 		}
6155 
6156 		/*
6157 		 * Start with a mask granular enough to pin-point to the
6158 		 * start pfn and tick off bits one-by-one until it becomes
6159 		 * too coarse to separate the current node from the last.
6160 		 */
6161 		mask = ~((1 << __ffs(start)) - 1);
6162 		while (mask && last_end <= (start & (mask << 1)))
6163 			mask <<= 1;
6164 
6165 		/* accumulate all internode masks */
6166 		accl_mask |= mask;
6167 	}
6168 
6169 	/* convert mask to number of pages */
6170 	return ~accl_mask + 1;
6171 }
6172 
6173 /* Find the lowest pfn for a node */
6174 static unsigned long __init find_min_pfn_for_node(int nid)
6175 {
6176 	unsigned long min_pfn = ULONG_MAX;
6177 	unsigned long start_pfn;
6178 	int i;
6179 
6180 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6181 		min_pfn = min(min_pfn, start_pfn);
6182 
6183 	if (min_pfn == ULONG_MAX) {
6184 		pr_warn("Could not find start_pfn for node %d\n", nid);
6185 		return 0;
6186 	}
6187 
6188 	return min_pfn;
6189 }
6190 
6191 /**
6192  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6193  *
6194  * It returns the minimum PFN based on information provided via
6195  * memblock_set_node().
6196  */
6197 unsigned long __init find_min_pfn_with_active_regions(void)
6198 {
6199 	return find_min_pfn_for_node(MAX_NUMNODES);
6200 }
6201 
6202 /*
6203  * early_calculate_totalpages()
6204  * Sum pages in active regions for movable zone.
6205  * Populate N_MEMORY for calculating usable_nodes.
6206  */
6207 static unsigned long __init early_calculate_totalpages(void)
6208 {
6209 	unsigned long totalpages = 0;
6210 	unsigned long start_pfn, end_pfn;
6211 	int i, nid;
6212 
6213 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6214 		unsigned long pages = end_pfn - start_pfn;
6215 
6216 		totalpages += pages;
6217 		if (pages)
6218 			node_set_state(nid, N_MEMORY);
6219 	}
6220 	return totalpages;
6221 }
6222 
6223 /*
6224  * Find the PFN the Movable zone begins in each node. Kernel memory
6225  * is spread evenly between nodes as long as the nodes have enough
6226  * memory. When they don't, some nodes will have more kernelcore than
6227  * others
6228  */
6229 static void __init find_zone_movable_pfns_for_nodes(void)
6230 {
6231 	int i, nid;
6232 	unsigned long usable_startpfn;
6233 	unsigned long kernelcore_node, kernelcore_remaining;
6234 	/* save the state before borrow the nodemask */
6235 	nodemask_t saved_node_state = node_states[N_MEMORY];
6236 	unsigned long totalpages = early_calculate_totalpages();
6237 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6238 	struct memblock_region *r;
6239 
6240 	/* Need to find movable_zone earlier when movable_node is specified. */
6241 	find_usable_zone_for_movable();
6242 
6243 	/*
6244 	 * If movable_node is specified, ignore kernelcore and movablecore
6245 	 * options.
6246 	 */
6247 	if (movable_node_is_enabled()) {
6248 		for_each_memblock(memory, r) {
6249 			if (!memblock_is_hotpluggable(r))
6250 				continue;
6251 
6252 			nid = r->nid;
6253 
6254 			usable_startpfn = PFN_DOWN(r->base);
6255 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6256 				min(usable_startpfn, zone_movable_pfn[nid]) :
6257 				usable_startpfn;
6258 		}
6259 
6260 		goto out2;
6261 	}
6262 
6263 	/*
6264 	 * If kernelcore=mirror is specified, ignore movablecore option
6265 	 */
6266 	if (mirrored_kernelcore) {
6267 		bool mem_below_4gb_not_mirrored = false;
6268 
6269 		for_each_memblock(memory, r) {
6270 			if (memblock_is_mirror(r))
6271 				continue;
6272 
6273 			nid = r->nid;
6274 
6275 			usable_startpfn = memblock_region_memory_base_pfn(r);
6276 
6277 			if (usable_startpfn < 0x100000) {
6278 				mem_below_4gb_not_mirrored = true;
6279 				continue;
6280 			}
6281 
6282 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6283 				min(usable_startpfn, zone_movable_pfn[nid]) :
6284 				usable_startpfn;
6285 		}
6286 
6287 		if (mem_below_4gb_not_mirrored)
6288 			pr_warn("This configuration results in unmirrored kernel memory.");
6289 
6290 		goto out2;
6291 	}
6292 
6293 	/*
6294 	 * If movablecore=nn[KMG] was specified, calculate what size of
6295 	 * kernelcore that corresponds so that memory usable for
6296 	 * any allocation type is evenly spread. If both kernelcore
6297 	 * and movablecore are specified, then the value of kernelcore
6298 	 * will be used for required_kernelcore if it's greater than
6299 	 * what movablecore would have allowed.
6300 	 */
6301 	if (required_movablecore) {
6302 		unsigned long corepages;
6303 
6304 		/*
6305 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6306 		 * was requested by the user
6307 		 */
6308 		required_movablecore =
6309 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6310 		required_movablecore = min(totalpages, required_movablecore);
6311 		corepages = totalpages - required_movablecore;
6312 
6313 		required_kernelcore = max(required_kernelcore, corepages);
6314 	}
6315 
6316 	/*
6317 	 * If kernelcore was not specified or kernelcore size is larger
6318 	 * than totalpages, there is no ZONE_MOVABLE.
6319 	 */
6320 	if (!required_kernelcore || required_kernelcore >= totalpages)
6321 		goto out;
6322 
6323 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6324 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6325 
6326 restart:
6327 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6328 	kernelcore_node = required_kernelcore / usable_nodes;
6329 	for_each_node_state(nid, N_MEMORY) {
6330 		unsigned long start_pfn, end_pfn;
6331 
6332 		/*
6333 		 * Recalculate kernelcore_node if the division per node
6334 		 * now exceeds what is necessary to satisfy the requested
6335 		 * amount of memory for the kernel
6336 		 */
6337 		if (required_kernelcore < kernelcore_node)
6338 			kernelcore_node = required_kernelcore / usable_nodes;
6339 
6340 		/*
6341 		 * As the map is walked, we track how much memory is usable
6342 		 * by the kernel using kernelcore_remaining. When it is
6343 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6344 		 */
6345 		kernelcore_remaining = kernelcore_node;
6346 
6347 		/* Go through each range of PFNs within this node */
6348 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6349 			unsigned long size_pages;
6350 
6351 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6352 			if (start_pfn >= end_pfn)
6353 				continue;
6354 
6355 			/* Account for what is only usable for kernelcore */
6356 			if (start_pfn < usable_startpfn) {
6357 				unsigned long kernel_pages;
6358 				kernel_pages = min(end_pfn, usable_startpfn)
6359 								- start_pfn;
6360 
6361 				kernelcore_remaining -= min(kernel_pages,
6362 							kernelcore_remaining);
6363 				required_kernelcore -= min(kernel_pages,
6364 							required_kernelcore);
6365 
6366 				/* Continue if range is now fully accounted */
6367 				if (end_pfn <= usable_startpfn) {
6368 
6369 					/*
6370 					 * Push zone_movable_pfn to the end so
6371 					 * that if we have to rebalance
6372 					 * kernelcore across nodes, we will
6373 					 * not double account here
6374 					 */
6375 					zone_movable_pfn[nid] = end_pfn;
6376 					continue;
6377 				}
6378 				start_pfn = usable_startpfn;
6379 			}
6380 
6381 			/*
6382 			 * The usable PFN range for ZONE_MOVABLE is from
6383 			 * start_pfn->end_pfn. Calculate size_pages as the
6384 			 * number of pages used as kernelcore
6385 			 */
6386 			size_pages = end_pfn - start_pfn;
6387 			if (size_pages > kernelcore_remaining)
6388 				size_pages = kernelcore_remaining;
6389 			zone_movable_pfn[nid] = start_pfn + size_pages;
6390 
6391 			/*
6392 			 * Some kernelcore has been met, update counts and
6393 			 * break if the kernelcore for this node has been
6394 			 * satisfied
6395 			 */
6396 			required_kernelcore -= min(required_kernelcore,
6397 								size_pages);
6398 			kernelcore_remaining -= size_pages;
6399 			if (!kernelcore_remaining)
6400 				break;
6401 		}
6402 	}
6403 
6404 	/*
6405 	 * If there is still required_kernelcore, we do another pass with one
6406 	 * less node in the count. This will push zone_movable_pfn[nid] further
6407 	 * along on the nodes that still have memory until kernelcore is
6408 	 * satisfied
6409 	 */
6410 	usable_nodes--;
6411 	if (usable_nodes && required_kernelcore > usable_nodes)
6412 		goto restart;
6413 
6414 out2:
6415 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6416 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6417 		zone_movable_pfn[nid] =
6418 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6419 
6420 out:
6421 	/* restore the node_state */
6422 	node_states[N_MEMORY] = saved_node_state;
6423 }
6424 
6425 /* Any regular or high memory on that node ? */
6426 static void check_for_memory(pg_data_t *pgdat, int nid)
6427 {
6428 	enum zone_type zone_type;
6429 
6430 	if (N_MEMORY == N_NORMAL_MEMORY)
6431 		return;
6432 
6433 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6434 		struct zone *zone = &pgdat->node_zones[zone_type];
6435 		if (populated_zone(zone)) {
6436 			node_set_state(nid, N_HIGH_MEMORY);
6437 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6438 			    zone_type <= ZONE_NORMAL)
6439 				node_set_state(nid, N_NORMAL_MEMORY);
6440 			break;
6441 		}
6442 	}
6443 }
6444 
6445 /**
6446  * free_area_init_nodes - Initialise all pg_data_t and zone data
6447  * @max_zone_pfn: an array of max PFNs for each zone
6448  *
6449  * This will call free_area_init_node() for each active node in the system.
6450  * Using the page ranges provided by memblock_set_node(), the size of each
6451  * zone in each node and their holes is calculated. If the maximum PFN
6452  * between two adjacent zones match, it is assumed that the zone is empty.
6453  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6454  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6455  * starts where the previous one ended. For example, ZONE_DMA32 starts
6456  * at arch_max_dma_pfn.
6457  */
6458 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6459 {
6460 	unsigned long start_pfn, end_pfn;
6461 	int i, nid;
6462 
6463 	/* Record where the zone boundaries are */
6464 	memset(arch_zone_lowest_possible_pfn, 0,
6465 				sizeof(arch_zone_lowest_possible_pfn));
6466 	memset(arch_zone_highest_possible_pfn, 0,
6467 				sizeof(arch_zone_highest_possible_pfn));
6468 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6469 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6470 	for (i = 1; i < MAX_NR_ZONES; i++) {
6471 		if (i == ZONE_MOVABLE)
6472 			continue;
6473 		arch_zone_lowest_possible_pfn[i] =
6474 			arch_zone_highest_possible_pfn[i-1];
6475 		arch_zone_highest_possible_pfn[i] =
6476 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6477 	}
6478 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6479 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6480 
6481 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6482 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6483 	find_zone_movable_pfns_for_nodes();
6484 
6485 	/* Print out the zone ranges */
6486 	pr_info("Zone ranges:\n");
6487 	for (i = 0; i < MAX_NR_ZONES; i++) {
6488 		if (i == ZONE_MOVABLE)
6489 			continue;
6490 		pr_info("  %-8s ", zone_names[i]);
6491 		if (arch_zone_lowest_possible_pfn[i] ==
6492 				arch_zone_highest_possible_pfn[i])
6493 			pr_cont("empty\n");
6494 		else
6495 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6496 				(u64)arch_zone_lowest_possible_pfn[i]
6497 					<< PAGE_SHIFT,
6498 				((u64)arch_zone_highest_possible_pfn[i]
6499 					<< PAGE_SHIFT) - 1);
6500 	}
6501 
6502 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6503 	pr_info("Movable zone start for each node\n");
6504 	for (i = 0; i < MAX_NUMNODES; i++) {
6505 		if (zone_movable_pfn[i])
6506 			pr_info("  Node %d: %#018Lx\n", i,
6507 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6508 	}
6509 
6510 	/* Print out the early node map */
6511 	pr_info("Early memory node ranges\n");
6512 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6513 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6514 			(u64)start_pfn << PAGE_SHIFT,
6515 			((u64)end_pfn << PAGE_SHIFT) - 1);
6516 
6517 	/* Initialise every node */
6518 	mminit_verify_pageflags_layout();
6519 	setup_nr_node_ids();
6520 	for_each_online_node(nid) {
6521 		pg_data_t *pgdat = NODE_DATA(nid);
6522 		free_area_init_node(nid, NULL,
6523 				find_min_pfn_for_node(nid), NULL);
6524 
6525 		/* Any memory on that node */
6526 		if (pgdat->node_present_pages)
6527 			node_set_state(nid, N_MEMORY);
6528 		check_for_memory(pgdat, nid);
6529 	}
6530 }
6531 
6532 static int __init cmdline_parse_core(char *p, unsigned long *core)
6533 {
6534 	unsigned long long coremem;
6535 	if (!p)
6536 		return -EINVAL;
6537 
6538 	coremem = memparse(p, &p);
6539 	*core = coremem >> PAGE_SHIFT;
6540 
6541 	/* Paranoid check that UL is enough for the coremem value */
6542 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6543 
6544 	return 0;
6545 }
6546 
6547 /*
6548  * kernelcore=size sets the amount of memory for use for allocations that
6549  * cannot be reclaimed or migrated.
6550  */
6551 static int __init cmdline_parse_kernelcore(char *p)
6552 {
6553 	/* parse kernelcore=mirror */
6554 	if (parse_option_str(p, "mirror")) {
6555 		mirrored_kernelcore = true;
6556 		return 0;
6557 	}
6558 
6559 	return cmdline_parse_core(p, &required_kernelcore);
6560 }
6561 
6562 /*
6563  * movablecore=size sets the amount of memory for use for allocations that
6564  * can be reclaimed or migrated.
6565  */
6566 static int __init cmdline_parse_movablecore(char *p)
6567 {
6568 	return cmdline_parse_core(p, &required_movablecore);
6569 }
6570 
6571 early_param("kernelcore", cmdline_parse_kernelcore);
6572 early_param("movablecore", cmdline_parse_movablecore);
6573 
6574 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6575 
6576 void adjust_managed_page_count(struct page *page, long count)
6577 {
6578 	spin_lock(&managed_page_count_lock);
6579 	page_zone(page)->managed_pages += count;
6580 	totalram_pages += count;
6581 #ifdef CONFIG_HIGHMEM
6582 	if (PageHighMem(page))
6583 		totalhigh_pages += count;
6584 #endif
6585 	spin_unlock(&managed_page_count_lock);
6586 }
6587 EXPORT_SYMBOL(adjust_managed_page_count);
6588 
6589 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6590 {
6591 	void *pos;
6592 	unsigned long pages = 0;
6593 
6594 	start = (void *)PAGE_ALIGN((unsigned long)start);
6595 	end = (void *)((unsigned long)end & PAGE_MASK);
6596 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6597 		if ((unsigned int)poison <= 0xFF)
6598 			memset(pos, poison, PAGE_SIZE);
6599 		free_reserved_page(virt_to_page(pos));
6600 	}
6601 
6602 	if (pages && s)
6603 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6604 			s, pages << (PAGE_SHIFT - 10), start, end);
6605 
6606 	return pages;
6607 }
6608 EXPORT_SYMBOL(free_reserved_area);
6609 
6610 #ifdef	CONFIG_HIGHMEM
6611 void free_highmem_page(struct page *page)
6612 {
6613 	__free_reserved_page(page);
6614 	totalram_pages++;
6615 	page_zone(page)->managed_pages++;
6616 	totalhigh_pages++;
6617 }
6618 #endif
6619 
6620 
6621 void __init mem_init_print_info(const char *str)
6622 {
6623 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6624 	unsigned long init_code_size, init_data_size;
6625 
6626 	physpages = get_num_physpages();
6627 	codesize = _etext - _stext;
6628 	datasize = _edata - _sdata;
6629 	rosize = __end_rodata - __start_rodata;
6630 	bss_size = __bss_stop - __bss_start;
6631 	init_data_size = __init_end - __init_begin;
6632 	init_code_size = _einittext - _sinittext;
6633 
6634 	/*
6635 	 * Detect special cases and adjust section sizes accordingly:
6636 	 * 1) .init.* may be embedded into .data sections
6637 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6638 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6639 	 * 3) .rodata.* may be embedded into .text or .data sections.
6640 	 */
6641 #define adj_init_size(start, end, size, pos, adj) \
6642 	do { \
6643 		if (start <= pos && pos < end && size > adj) \
6644 			size -= adj; \
6645 	} while (0)
6646 
6647 	adj_init_size(__init_begin, __init_end, init_data_size,
6648 		     _sinittext, init_code_size);
6649 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6650 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6651 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6652 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6653 
6654 #undef	adj_init_size
6655 
6656 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6657 #ifdef	CONFIG_HIGHMEM
6658 		", %luK highmem"
6659 #endif
6660 		"%s%s)\n",
6661 		nr_free_pages() << (PAGE_SHIFT - 10),
6662 		physpages << (PAGE_SHIFT - 10),
6663 		codesize >> 10, datasize >> 10, rosize >> 10,
6664 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6665 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6666 		totalcma_pages << (PAGE_SHIFT - 10),
6667 #ifdef	CONFIG_HIGHMEM
6668 		totalhigh_pages << (PAGE_SHIFT - 10),
6669 #endif
6670 		str ? ", " : "", str ? str : "");
6671 }
6672 
6673 /**
6674  * set_dma_reserve - set the specified number of pages reserved in the first zone
6675  * @new_dma_reserve: The number of pages to mark reserved
6676  *
6677  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6678  * In the DMA zone, a significant percentage may be consumed by kernel image
6679  * and other unfreeable allocations which can skew the watermarks badly. This
6680  * function may optionally be used to account for unfreeable pages in the
6681  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6682  * smaller per-cpu batchsize.
6683  */
6684 void __init set_dma_reserve(unsigned long new_dma_reserve)
6685 {
6686 	dma_reserve = new_dma_reserve;
6687 }
6688 
6689 void __init free_area_init(unsigned long *zones_size)
6690 {
6691 	free_area_init_node(0, zones_size,
6692 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6693 }
6694 
6695 static int page_alloc_cpu_notify(struct notifier_block *self,
6696 				 unsigned long action, void *hcpu)
6697 {
6698 	int cpu = (unsigned long)hcpu;
6699 
6700 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6701 		lru_add_drain_cpu(cpu);
6702 		drain_pages(cpu);
6703 
6704 		/*
6705 		 * Spill the event counters of the dead processor
6706 		 * into the current processors event counters.
6707 		 * This artificially elevates the count of the current
6708 		 * processor.
6709 		 */
6710 		vm_events_fold_cpu(cpu);
6711 
6712 		/*
6713 		 * Zero the differential counters of the dead processor
6714 		 * so that the vm statistics are consistent.
6715 		 *
6716 		 * This is only okay since the processor is dead and cannot
6717 		 * race with what we are doing.
6718 		 */
6719 		cpu_vm_stats_fold(cpu);
6720 	}
6721 	return NOTIFY_OK;
6722 }
6723 
6724 void __init page_alloc_init(void)
6725 {
6726 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6727 }
6728 
6729 /*
6730  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6731  *	or min_free_kbytes changes.
6732  */
6733 static void calculate_totalreserve_pages(void)
6734 {
6735 	struct pglist_data *pgdat;
6736 	unsigned long reserve_pages = 0;
6737 	enum zone_type i, j;
6738 
6739 	for_each_online_pgdat(pgdat) {
6740 		for (i = 0; i < MAX_NR_ZONES; i++) {
6741 			struct zone *zone = pgdat->node_zones + i;
6742 			long max = 0;
6743 
6744 			/* Find valid and maximum lowmem_reserve in the zone */
6745 			for (j = i; j < MAX_NR_ZONES; j++) {
6746 				if (zone->lowmem_reserve[j] > max)
6747 					max = zone->lowmem_reserve[j];
6748 			}
6749 
6750 			/* we treat the high watermark as reserved pages. */
6751 			max += high_wmark_pages(zone);
6752 
6753 			if (max > zone->managed_pages)
6754 				max = zone->managed_pages;
6755 
6756 			zone->totalreserve_pages = max;
6757 
6758 			reserve_pages += max;
6759 		}
6760 	}
6761 	totalreserve_pages = reserve_pages;
6762 }
6763 
6764 /*
6765  * setup_per_zone_lowmem_reserve - called whenever
6766  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6767  *	has a correct pages reserved value, so an adequate number of
6768  *	pages are left in the zone after a successful __alloc_pages().
6769  */
6770 static void setup_per_zone_lowmem_reserve(void)
6771 {
6772 	struct pglist_data *pgdat;
6773 	enum zone_type j, idx;
6774 
6775 	for_each_online_pgdat(pgdat) {
6776 		for (j = 0; j < MAX_NR_ZONES; j++) {
6777 			struct zone *zone = pgdat->node_zones + j;
6778 			unsigned long managed_pages = zone->managed_pages;
6779 
6780 			zone->lowmem_reserve[j] = 0;
6781 
6782 			idx = j;
6783 			while (idx) {
6784 				struct zone *lower_zone;
6785 
6786 				idx--;
6787 
6788 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6789 					sysctl_lowmem_reserve_ratio[idx] = 1;
6790 
6791 				lower_zone = pgdat->node_zones + idx;
6792 				lower_zone->lowmem_reserve[j] = managed_pages /
6793 					sysctl_lowmem_reserve_ratio[idx];
6794 				managed_pages += lower_zone->managed_pages;
6795 			}
6796 		}
6797 	}
6798 
6799 	/* update totalreserve_pages */
6800 	calculate_totalreserve_pages();
6801 }
6802 
6803 static void __setup_per_zone_wmarks(void)
6804 {
6805 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6806 	unsigned long lowmem_pages = 0;
6807 	struct zone *zone;
6808 	unsigned long flags;
6809 
6810 	/* Calculate total number of !ZONE_HIGHMEM pages */
6811 	for_each_zone(zone) {
6812 		if (!is_highmem(zone))
6813 			lowmem_pages += zone->managed_pages;
6814 	}
6815 
6816 	for_each_zone(zone) {
6817 		u64 tmp;
6818 
6819 		spin_lock_irqsave(&zone->lock, flags);
6820 		tmp = (u64)pages_min * zone->managed_pages;
6821 		do_div(tmp, lowmem_pages);
6822 		if (is_highmem(zone)) {
6823 			/*
6824 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6825 			 * need highmem pages, so cap pages_min to a small
6826 			 * value here.
6827 			 *
6828 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6829 			 * deltas control asynch page reclaim, and so should
6830 			 * not be capped for highmem.
6831 			 */
6832 			unsigned long min_pages;
6833 
6834 			min_pages = zone->managed_pages / 1024;
6835 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6836 			zone->watermark[WMARK_MIN] = min_pages;
6837 		} else {
6838 			/*
6839 			 * If it's a lowmem zone, reserve a number of pages
6840 			 * proportionate to the zone's size.
6841 			 */
6842 			zone->watermark[WMARK_MIN] = tmp;
6843 		}
6844 
6845 		/*
6846 		 * Set the kswapd watermarks distance according to the
6847 		 * scale factor in proportion to available memory, but
6848 		 * ensure a minimum size on small systems.
6849 		 */
6850 		tmp = max_t(u64, tmp >> 2,
6851 			    mult_frac(zone->managed_pages,
6852 				      watermark_scale_factor, 10000));
6853 
6854 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6855 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6856 
6857 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6858 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6859 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6860 
6861 		spin_unlock_irqrestore(&zone->lock, flags);
6862 	}
6863 
6864 	/* update totalreserve_pages */
6865 	calculate_totalreserve_pages();
6866 }
6867 
6868 /**
6869  * setup_per_zone_wmarks - called when min_free_kbytes changes
6870  * or when memory is hot-{added|removed}
6871  *
6872  * Ensures that the watermark[min,low,high] values for each zone are set
6873  * correctly with respect to min_free_kbytes.
6874  */
6875 void setup_per_zone_wmarks(void)
6876 {
6877 	mutex_lock(&zonelists_mutex);
6878 	__setup_per_zone_wmarks();
6879 	mutex_unlock(&zonelists_mutex);
6880 }
6881 
6882 /*
6883  * Initialise min_free_kbytes.
6884  *
6885  * For small machines we want it small (128k min).  For large machines
6886  * we want it large (64MB max).  But it is not linear, because network
6887  * bandwidth does not increase linearly with machine size.  We use
6888  *
6889  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6890  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6891  *
6892  * which yields
6893  *
6894  * 16MB:	512k
6895  * 32MB:	724k
6896  * 64MB:	1024k
6897  * 128MB:	1448k
6898  * 256MB:	2048k
6899  * 512MB:	2896k
6900  * 1024MB:	4096k
6901  * 2048MB:	5792k
6902  * 4096MB:	8192k
6903  * 8192MB:	11584k
6904  * 16384MB:	16384k
6905  */
6906 int __meminit init_per_zone_wmark_min(void)
6907 {
6908 	unsigned long lowmem_kbytes;
6909 	int new_min_free_kbytes;
6910 
6911 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6912 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6913 
6914 	if (new_min_free_kbytes > user_min_free_kbytes) {
6915 		min_free_kbytes = new_min_free_kbytes;
6916 		if (min_free_kbytes < 128)
6917 			min_free_kbytes = 128;
6918 		if (min_free_kbytes > 65536)
6919 			min_free_kbytes = 65536;
6920 	} else {
6921 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6922 				new_min_free_kbytes, user_min_free_kbytes);
6923 	}
6924 	setup_per_zone_wmarks();
6925 	refresh_zone_stat_thresholds();
6926 	setup_per_zone_lowmem_reserve();
6927 	return 0;
6928 }
6929 core_initcall(init_per_zone_wmark_min)
6930 
6931 /*
6932  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6933  *	that we can call two helper functions whenever min_free_kbytes
6934  *	changes.
6935  */
6936 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6937 	void __user *buffer, size_t *length, loff_t *ppos)
6938 {
6939 	int rc;
6940 
6941 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6942 	if (rc)
6943 		return rc;
6944 
6945 	if (write) {
6946 		user_min_free_kbytes = min_free_kbytes;
6947 		setup_per_zone_wmarks();
6948 	}
6949 	return 0;
6950 }
6951 
6952 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6953 	void __user *buffer, size_t *length, loff_t *ppos)
6954 {
6955 	int rc;
6956 
6957 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6958 	if (rc)
6959 		return rc;
6960 
6961 	if (write)
6962 		setup_per_zone_wmarks();
6963 
6964 	return 0;
6965 }
6966 
6967 #ifdef CONFIG_NUMA
6968 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6969 	void __user *buffer, size_t *length, loff_t *ppos)
6970 {
6971 	struct zone *zone;
6972 	int rc;
6973 
6974 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6975 	if (rc)
6976 		return rc;
6977 
6978 	for_each_zone(zone)
6979 		zone->min_unmapped_pages = (zone->managed_pages *
6980 				sysctl_min_unmapped_ratio) / 100;
6981 	return 0;
6982 }
6983 
6984 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6985 	void __user *buffer, size_t *length, loff_t *ppos)
6986 {
6987 	struct zone *zone;
6988 	int rc;
6989 
6990 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6991 	if (rc)
6992 		return rc;
6993 
6994 	for_each_zone(zone)
6995 		zone->min_slab_pages = (zone->managed_pages *
6996 				sysctl_min_slab_ratio) / 100;
6997 	return 0;
6998 }
6999 #endif
7000 
7001 /*
7002  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7003  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7004  *	whenever sysctl_lowmem_reserve_ratio changes.
7005  *
7006  * The reserve ratio obviously has absolutely no relation with the
7007  * minimum watermarks. The lowmem reserve ratio can only make sense
7008  * if in function of the boot time zone sizes.
7009  */
7010 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7011 	void __user *buffer, size_t *length, loff_t *ppos)
7012 {
7013 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7014 	setup_per_zone_lowmem_reserve();
7015 	return 0;
7016 }
7017 
7018 /*
7019  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7020  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7021  * pagelist can have before it gets flushed back to buddy allocator.
7022  */
7023 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7024 	void __user *buffer, size_t *length, loff_t *ppos)
7025 {
7026 	struct zone *zone;
7027 	int old_percpu_pagelist_fraction;
7028 	int ret;
7029 
7030 	mutex_lock(&pcp_batch_high_lock);
7031 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7032 
7033 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7034 	if (!write || ret < 0)
7035 		goto out;
7036 
7037 	/* Sanity checking to avoid pcp imbalance */
7038 	if (percpu_pagelist_fraction &&
7039 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7040 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7041 		ret = -EINVAL;
7042 		goto out;
7043 	}
7044 
7045 	/* No change? */
7046 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7047 		goto out;
7048 
7049 	for_each_populated_zone(zone) {
7050 		unsigned int cpu;
7051 
7052 		for_each_possible_cpu(cpu)
7053 			pageset_set_high_and_batch(zone,
7054 					per_cpu_ptr(zone->pageset, cpu));
7055 	}
7056 out:
7057 	mutex_unlock(&pcp_batch_high_lock);
7058 	return ret;
7059 }
7060 
7061 #ifdef CONFIG_NUMA
7062 int hashdist = HASHDIST_DEFAULT;
7063 
7064 static int __init set_hashdist(char *str)
7065 {
7066 	if (!str)
7067 		return 0;
7068 	hashdist = simple_strtoul(str, &str, 0);
7069 	return 1;
7070 }
7071 __setup("hashdist=", set_hashdist);
7072 #endif
7073 
7074 /*
7075  * allocate a large system hash table from bootmem
7076  * - it is assumed that the hash table must contain an exact power-of-2
7077  *   quantity of entries
7078  * - limit is the number of hash buckets, not the total allocation size
7079  */
7080 void *__init alloc_large_system_hash(const char *tablename,
7081 				     unsigned long bucketsize,
7082 				     unsigned long numentries,
7083 				     int scale,
7084 				     int flags,
7085 				     unsigned int *_hash_shift,
7086 				     unsigned int *_hash_mask,
7087 				     unsigned long low_limit,
7088 				     unsigned long high_limit)
7089 {
7090 	unsigned long long max = high_limit;
7091 	unsigned long log2qty, size;
7092 	void *table = NULL;
7093 
7094 	/* allow the kernel cmdline to have a say */
7095 	if (!numentries) {
7096 		/* round applicable memory size up to nearest megabyte */
7097 		numentries = nr_kernel_pages;
7098 
7099 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7100 		if (PAGE_SHIFT < 20)
7101 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7102 
7103 		/* limit to 1 bucket per 2^scale bytes of low memory */
7104 		if (scale > PAGE_SHIFT)
7105 			numentries >>= (scale - PAGE_SHIFT);
7106 		else
7107 			numentries <<= (PAGE_SHIFT - scale);
7108 
7109 		/* Make sure we've got at least a 0-order allocation.. */
7110 		if (unlikely(flags & HASH_SMALL)) {
7111 			/* Makes no sense without HASH_EARLY */
7112 			WARN_ON(!(flags & HASH_EARLY));
7113 			if (!(numentries >> *_hash_shift)) {
7114 				numentries = 1UL << *_hash_shift;
7115 				BUG_ON(!numentries);
7116 			}
7117 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7118 			numentries = PAGE_SIZE / bucketsize;
7119 	}
7120 	numentries = roundup_pow_of_two(numentries);
7121 
7122 	/* limit allocation size to 1/16 total memory by default */
7123 	if (max == 0) {
7124 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7125 		do_div(max, bucketsize);
7126 	}
7127 	max = min(max, 0x80000000ULL);
7128 
7129 	if (numentries < low_limit)
7130 		numentries = low_limit;
7131 	if (numentries > max)
7132 		numentries = max;
7133 
7134 	log2qty = ilog2(numentries);
7135 
7136 	do {
7137 		size = bucketsize << log2qty;
7138 		if (flags & HASH_EARLY)
7139 			table = memblock_virt_alloc_nopanic(size, 0);
7140 		else if (hashdist)
7141 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7142 		else {
7143 			/*
7144 			 * If bucketsize is not a power-of-two, we may free
7145 			 * some pages at the end of hash table which
7146 			 * alloc_pages_exact() automatically does
7147 			 */
7148 			if (get_order(size) < MAX_ORDER) {
7149 				table = alloc_pages_exact(size, GFP_ATOMIC);
7150 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7151 			}
7152 		}
7153 	} while (!table && size > PAGE_SIZE && --log2qty);
7154 
7155 	if (!table)
7156 		panic("Failed to allocate %s hash table\n", tablename);
7157 
7158 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7159 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7160 
7161 	if (_hash_shift)
7162 		*_hash_shift = log2qty;
7163 	if (_hash_mask)
7164 		*_hash_mask = (1 << log2qty) - 1;
7165 
7166 	return table;
7167 }
7168 
7169 /*
7170  * This function checks whether pageblock includes unmovable pages or not.
7171  * If @count is not zero, it is okay to include less @count unmovable pages
7172  *
7173  * PageLRU check without isolation or lru_lock could race so that
7174  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7175  * expect this function should be exact.
7176  */
7177 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7178 			 bool skip_hwpoisoned_pages)
7179 {
7180 	unsigned long pfn, iter, found;
7181 	int mt;
7182 
7183 	/*
7184 	 * For avoiding noise data, lru_add_drain_all() should be called
7185 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7186 	 */
7187 	if (zone_idx(zone) == ZONE_MOVABLE)
7188 		return false;
7189 	mt = get_pageblock_migratetype(page);
7190 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7191 		return false;
7192 
7193 	pfn = page_to_pfn(page);
7194 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7195 		unsigned long check = pfn + iter;
7196 
7197 		if (!pfn_valid_within(check))
7198 			continue;
7199 
7200 		page = pfn_to_page(check);
7201 
7202 		/*
7203 		 * Hugepages are not in LRU lists, but they're movable.
7204 		 * We need not scan over tail pages bacause we don't
7205 		 * handle each tail page individually in migration.
7206 		 */
7207 		if (PageHuge(page)) {
7208 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7209 			continue;
7210 		}
7211 
7212 		/*
7213 		 * We can't use page_count without pin a page
7214 		 * because another CPU can free compound page.
7215 		 * This check already skips compound tails of THP
7216 		 * because their page->_refcount is zero at all time.
7217 		 */
7218 		if (!page_ref_count(page)) {
7219 			if (PageBuddy(page))
7220 				iter += (1 << page_order(page)) - 1;
7221 			continue;
7222 		}
7223 
7224 		/*
7225 		 * The HWPoisoned page may be not in buddy system, and
7226 		 * page_count() is not 0.
7227 		 */
7228 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7229 			continue;
7230 
7231 		if (!PageLRU(page))
7232 			found++;
7233 		/*
7234 		 * If there are RECLAIMABLE pages, we need to check
7235 		 * it.  But now, memory offline itself doesn't call
7236 		 * shrink_node_slabs() and it still to be fixed.
7237 		 */
7238 		/*
7239 		 * If the page is not RAM, page_count()should be 0.
7240 		 * we don't need more check. This is an _used_ not-movable page.
7241 		 *
7242 		 * The problematic thing here is PG_reserved pages. PG_reserved
7243 		 * is set to both of a memory hole page and a _used_ kernel
7244 		 * page at boot.
7245 		 */
7246 		if (found > count)
7247 			return true;
7248 	}
7249 	return false;
7250 }
7251 
7252 bool is_pageblock_removable_nolock(struct page *page)
7253 {
7254 	struct zone *zone;
7255 	unsigned long pfn;
7256 
7257 	/*
7258 	 * We have to be careful here because we are iterating over memory
7259 	 * sections which are not zone aware so we might end up outside of
7260 	 * the zone but still within the section.
7261 	 * We have to take care about the node as well. If the node is offline
7262 	 * its NODE_DATA will be NULL - see page_zone.
7263 	 */
7264 	if (!node_online(page_to_nid(page)))
7265 		return false;
7266 
7267 	zone = page_zone(page);
7268 	pfn = page_to_pfn(page);
7269 	if (!zone_spans_pfn(zone, pfn))
7270 		return false;
7271 
7272 	return !has_unmovable_pages(zone, page, 0, true);
7273 }
7274 
7275 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7276 
7277 static unsigned long pfn_max_align_down(unsigned long pfn)
7278 {
7279 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7280 			     pageblock_nr_pages) - 1);
7281 }
7282 
7283 static unsigned long pfn_max_align_up(unsigned long pfn)
7284 {
7285 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7286 				pageblock_nr_pages));
7287 }
7288 
7289 /* [start, end) must belong to a single zone. */
7290 static int __alloc_contig_migrate_range(struct compact_control *cc,
7291 					unsigned long start, unsigned long end)
7292 {
7293 	/* This function is based on compact_zone() from compaction.c. */
7294 	unsigned long nr_reclaimed;
7295 	unsigned long pfn = start;
7296 	unsigned int tries = 0;
7297 	int ret = 0;
7298 
7299 	migrate_prep();
7300 
7301 	while (pfn < end || !list_empty(&cc->migratepages)) {
7302 		if (fatal_signal_pending(current)) {
7303 			ret = -EINTR;
7304 			break;
7305 		}
7306 
7307 		if (list_empty(&cc->migratepages)) {
7308 			cc->nr_migratepages = 0;
7309 			pfn = isolate_migratepages_range(cc, pfn, end);
7310 			if (!pfn) {
7311 				ret = -EINTR;
7312 				break;
7313 			}
7314 			tries = 0;
7315 		} else if (++tries == 5) {
7316 			ret = ret < 0 ? ret : -EBUSY;
7317 			break;
7318 		}
7319 
7320 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7321 							&cc->migratepages);
7322 		cc->nr_migratepages -= nr_reclaimed;
7323 
7324 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7325 				    NULL, 0, cc->mode, MR_CMA);
7326 	}
7327 	if (ret < 0) {
7328 		putback_movable_pages(&cc->migratepages);
7329 		return ret;
7330 	}
7331 	return 0;
7332 }
7333 
7334 /**
7335  * alloc_contig_range() -- tries to allocate given range of pages
7336  * @start:	start PFN to allocate
7337  * @end:	one-past-the-last PFN to allocate
7338  * @migratetype:	migratetype of the underlaying pageblocks (either
7339  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7340  *			in range must have the same migratetype and it must
7341  *			be either of the two.
7342  *
7343  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7344  * aligned, however it's the caller's responsibility to guarantee that
7345  * we are the only thread that changes migrate type of pageblocks the
7346  * pages fall in.
7347  *
7348  * The PFN range must belong to a single zone.
7349  *
7350  * Returns zero on success or negative error code.  On success all
7351  * pages which PFN is in [start, end) are allocated for the caller and
7352  * need to be freed with free_contig_range().
7353  */
7354 int alloc_contig_range(unsigned long start, unsigned long end,
7355 		       unsigned migratetype)
7356 {
7357 	unsigned long outer_start, outer_end;
7358 	unsigned int order;
7359 	int ret = 0;
7360 
7361 	struct compact_control cc = {
7362 		.nr_migratepages = 0,
7363 		.order = -1,
7364 		.zone = page_zone(pfn_to_page(start)),
7365 		.mode = MIGRATE_SYNC,
7366 		.ignore_skip_hint = true,
7367 	};
7368 	INIT_LIST_HEAD(&cc.migratepages);
7369 
7370 	/*
7371 	 * What we do here is we mark all pageblocks in range as
7372 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7373 	 * have different sizes, and due to the way page allocator
7374 	 * work, we align the range to biggest of the two pages so
7375 	 * that page allocator won't try to merge buddies from
7376 	 * different pageblocks and change MIGRATE_ISOLATE to some
7377 	 * other migration type.
7378 	 *
7379 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7380 	 * migrate the pages from an unaligned range (ie. pages that
7381 	 * we are interested in).  This will put all the pages in
7382 	 * range back to page allocator as MIGRATE_ISOLATE.
7383 	 *
7384 	 * When this is done, we take the pages in range from page
7385 	 * allocator removing them from the buddy system.  This way
7386 	 * page allocator will never consider using them.
7387 	 *
7388 	 * This lets us mark the pageblocks back as
7389 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7390 	 * aligned range but not in the unaligned, original range are
7391 	 * put back to page allocator so that buddy can use them.
7392 	 */
7393 
7394 	ret = start_isolate_page_range(pfn_max_align_down(start),
7395 				       pfn_max_align_up(end), migratetype,
7396 				       false);
7397 	if (ret)
7398 		return ret;
7399 
7400 	/*
7401 	 * In case of -EBUSY, we'd like to know which page causes problem.
7402 	 * So, just fall through. We will check it in test_pages_isolated().
7403 	 */
7404 	ret = __alloc_contig_migrate_range(&cc, start, end);
7405 	if (ret && ret != -EBUSY)
7406 		goto done;
7407 
7408 	/*
7409 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7410 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7411 	 * more, all pages in [start, end) are free in page allocator.
7412 	 * What we are going to do is to allocate all pages from
7413 	 * [start, end) (that is remove them from page allocator).
7414 	 *
7415 	 * The only problem is that pages at the beginning and at the
7416 	 * end of interesting range may be not aligned with pages that
7417 	 * page allocator holds, ie. they can be part of higher order
7418 	 * pages.  Because of this, we reserve the bigger range and
7419 	 * once this is done free the pages we are not interested in.
7420 	 *
7421 	 * We don't have to hold zone->lock here because the pages are
7422 	 * isolated thus they won't get removed from buddy.
7423 	 */
7424 
7425 	lru_add_drain_all();
7426 	drain_all_pages(cc.zone);
7427 
7428 	order = 0;
7429 	outer_start = start;
7430 	while (!PageBuddy(pfn_to_page(outer_start))) {
7431 		if (++order >= MAX_ORDER) {
7432 			outer_start = start;
7433 			break;
7434 		}
7435 		outer_start &= ~0UL << order;
7436 	}
7437 
7438 	if (outer_start != start) {
7439 		order = page_order(pfn_to_page(outer_start));
7440 
7441 		/*
7442 		 * outer_start page could be small order buddy page and
7443 		 * it doesn't include start page. Adjust outer_start
7444 		 * in this case to report failed page properly
7445 		 * on tracepoint in test_pages_isolated()
7446 		 */
7447 		if (outer_start + (1UL << order) <= start)
7448 			outer_start = start;
7449 	}
7450 
7451 	/* Make sure the range is really isolated. */
7452 	if (test_pages_isolated(outer_start, end, false)) {
7453 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7454 			__func__, outer_start, end);
7455 		ret = -EBUSY;
7456 		goto done;
7457 	}
7458 
7459 	/* Grab isolated pages from freelists. */
7460 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7461 	if (!outer_end) {
7462 		ret = -EBUSY;
7463 		goto done;
7464 	}
7465 
7466 	/* Free head and tail (if any) */
7467 	if (start != outer_start)
7468 		free_contig_range(outer_start, start - outer_start);
7469 	if (end != outer_end)
7470 		free_contig_range(end, outer_end - end);
7471 
7472 done:
7473 	undo_isolate_page_range(pfn_max_align_down(start),
7474 				pfn_max_align_up(end), migratetype);
7475 	return ret;
7476 }
7477 
7478 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7479 {
7480 	unsigned int count = 0;
7481 
7482 	for (; nr_pages--; pfn++) {
7483 		struct page *page = pfn_to_page(pfn);
7484 
7485 		count += page_count(page) != 1;
7486 		__free_page(page);
7487 	}
7488 	WARN(count != 0, "%d pages are still in use!\n", count);
7489 }
7490 #endif
7491 
7492 #ifdef CONFIG_MEMORY_HOTPLUG
7493 /*
7494  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7495  * page high values need to be recalulated.
7496  */
7497 void __meminit zone_pcp_update(struct zone *zone)
7498 {
7499 	unsigned cpu;
7500 	mutex_lock(&pcp_batch_high_lock);
7501 	for_each_possible_cpu(cpu)
7502 		pageset_set_high_and_batch(zone,
7503 				per_cpu_ptr(zone->pageset, cpu));
7504 	mutex_unlock(&pcp_batch_high_lock);
7505 }
7506 #endif
7507 
7508 void zone_pcp_reset(struct zone *zone)
7509 {
7510 	unsigned long flags;
7511 	int cpu;
7512 	struct per_cpu_pageset *pset;
7513 
7514 	/* avoid races with drain_pages()  */
7515 	local_irq_save(flags);
7516 	if (zone->pageset != &boot_pageset) {
7517 		for_each_online_cpu(cpu) {
7518 			pset = per_cpu_ptr(zone->pageset, cpu);
7519 			drain_zonestat(zone, pset);
7520 		}
7521 		free_percpu(zone->pageset);
7522 		zone->pageset = &boot_pageset;
7523 	}
7524 	local_irq_restore(flags);
7525 }
7526 
7527 #ifdef CONFIG_MEMORY_HOTREMOVE
7528 /*
7529  * All pages in the range must be in a single zone and isolated
7530  * before calling this.
7531  */
7532 void
7533 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7534 {
7535 	struct page *page;
7536 	struct zone *zone;
7537 	unsigned int order, i;
7538 	unsigned long pfn;
7539 	unsigned long flags;
7540 	/* find the first valid pfn */
7541 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7542 		if (pfn_valid(pfn))
7543 			break;
7544 	if (pfn == end_pfn)
7545 		return;
7546 	zone = page_zone(pfn_to_page(pfn));
7547 	spin_lock_irqsave(&zone->lock, flags);
7548 	pfn = start_pfn;
7549 	while (pfn < end_pfn) {
7550 		if (!pfn_valid(pfn)) {
7551 			pfn++;
7552 			continue;
7553 		}
7554 		page = pfn_to_page(pfn);
7555 		/*
7556 		 * The HWPoisoned page may be not in buddy system, and
7557 		 * page_count() is not 0.
7558 		 */
7559 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7560 			pfn++;
7561 			SetPageReserved(page);
7562 			continue;
7563 		}
7564 
7565 		BUG_ON(page_count(page));
7566 		BUG_ON(!PageBuddy(page));
7567 		order = page_order(page);
7568 #ifdef CONFIG_DEBUG_VM
7569 		pr_info("remove from free list %lx %d %lx\n",
7570 			pfn, 1 << order, end_pfn);
7571 #endif
7572 		list_del(&page->lru);
7573 		rmv_page_order(page);
7574 		zone->free_area[order].nr_free--;
7575 		for (i = 0; i < (1 << order); i++)
7576 			SetPageReserved((page+i));
7577 		pfn += (1 << order);
7578 	}
7579 	spin_unlock_irqrestore(&zone->lock, flags);
7580 }
7581 #endif
7582 
7583 bool is_free_buddy_page(struct page *page)
7584 {
7585 	struct zone *zone = page_zone(page);
7586 	unsigned long pfn = page_to_pfn(page);
7587 	unsigned long flags;
7588 	unsigned int order;
7589 
7590 	spin_lock_irqsave(&zone->lock, flags);
7591 	for (order = 0; order < MAX_ORDER; order++) {
7592 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7593 
7594 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7595 			break;
7596 	}
7597 	spin_unlock_irqrestore(&zone->lock, flags);
7598 
7599 	return order < MAX_ORDER;
7600 }
7601