xref: /openbmc/linux/mm/page_alloc.c (revision eb2e2b42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_trylock(type, member, ptr)				\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	if (!spin_trylock(&_ret->member)) {				\
179 		pcpu_task_unpin();					\
180 		_ret = NULL;						\
181 	}								\
182 	_ret;								\
183 })
184 
185 #define pcpu_spin_unlock(member, ptr)					\
186 ({									\
187 	spin_unlock(&ptr->member);					\
188 	pcpu_task_unpin();						\
189 })
190 
191 /* struct per_cpu_pages specific helpers. */
192 #define pcp_spin_lock(ptr)						\
193 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
194 
195 #define pcp_spin_trylock(ptr)						\
196 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
197 
198 #define pcp_spin_unlock(ptr)						\
199 	pcpu_spin_unlock(lock, ptr)
200 
201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202 DEFINE_PER_CPU(int, numa_node);
203 EXPORT_PER_CPU_SYMBOL(numa_node);
204 #endif
205 
206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
207 
208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
209 /*
210  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213  * defined in <linux/topology.h>.
214  */
215 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
216 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
217 #endif
218 
219 static DEFINE_MUTEX(pcpu_drain_mutex);
220 
221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222 volatile unsigned long latent_entropy __latent_entropy;
223 EXPORT_SYMBOL(latent_entropy);
224 #endif
225 
226 /*
227  * Array of node states.
228  */
229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 	[N_POSSIBLE] = NODE_MASK_ALL,
231 	[N_ONLINE] = { { [0] = 1UL } },
232 #ifndef CONFIG_NUMA
233 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
234 #ifdef CONFIG_HIGHMEM
235 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
236 #endif
237 	[N_MEMORY] = { { [0] = 1UL } },
238 	[N_CPU] = { { [0] = 1UL } },
239 #endif	/* NUMA */
240 };
241 EXPORT_SYMBOL(node_states);
242 
243 atomic_long_t _totalram_pages __read_mostly;
244 EXPORT_SYMBOL(_totalram_pages);
245 unsigned long totalreserve_pages __read_mostly;
246 unsigned long totalcma_pages __read_mostly;
247 
248 int percpu_pagelist_high_fraction;
249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251 EXPORT_SYMBOL(init_on_alloc);
252 
253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254 EXPORT_SYMBOL(init_on_free);
255 
256 static bool _init_on_alloc_enabled_early __read_mostly
257 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258 static int __init early_init_on_alloc(char *buf)
259 {
260 
261 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
262 }
263 early_param("init_on_alloc", early_init_on_alloc);
264 
265 static bool _init_on_free_enabled_early __read_mostly
266 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267 static int __init early_init_on_free(char *buf)
268 {
269 	return kstrtobool(buf, &_init_on_free_enabled_early);
270 }
271 early_param("init_on_free", early_init_on_free);
272 
273 /*
274  * A cached value of the page's pageblock's migratetype, used when the page is
275  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277  * Also the migratetype set in the page does not necessarily match the pcplist
278  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279  * other index - this ensures that it will be put on the correct CMA freelist.
280  */
281 static inline int get_pcppage_migratetype(struct page *page)
282 {
283 	return page->index;
284 }
285 
286 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
287 {
288 	page->index = migratetype;
289 }
290 
291 #ifdef CONFIG_PM_SLEEP
292 /*
293  * The following functions are used by the suspend/hibernate code to temporarily
294  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295  * while devices are suspended.  To avoid races with the suspend/hibernate code,
296  * they should always be called with system_transition_mutex held
297  * (gfp_allowed_mask also should only be modified with system_transition_mutex
298  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299  * with that modification).
300  */
301 
302 static gfp_t saved_gfp_mask;
303 
304 void pm_restore_gfp_mask(void)
305 {
306 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 	if (saved_gfp_mask) {
308 		gfp_allowed_mask = saved_gfp_mask;
309 		saved_gfp_mask = 0;
310 	}
311 }
312 
313 void pm_restrict_gfp_mask(void)
314 {
315 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 	WARN_ON(saved_gfp_mask);
317 	saved_gfp_mask = gfp_allowed_mask;
318 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
319 }
320 
321 bool pm_suspended_storage(void)
322 {
323 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
324 		return false;
325 	return true;
326 }
327 #endif /* CONFIG_PM_SLEEP */
328 
329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330 unsigned int pageblock_order __read_mostly;
331 #endif
332 
333 static void __free_pages_ok(struct page *page, unsigned int order,
334 			    fpi_t fpi_flags);
335 
336 /*
337  * results with 256, 32 in the lowmem_reserve sysctl:
338  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339  *	1G machine -> (16M dma, 784M normal, 224M high)
340  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
343  *
344  * TBD: should special case ZONE_DMA32 machines here - in those we normally
345  * don't need any ZONE_NORMAL reservation
346  */
347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348 #ifdef CONFIG_ZONE_DMA
349 	[ZONE_DMA] = 256,
350 #endif
351 #ifdef CONFIG_ZONE_DMA32
352 	[ZONE_DMA32] = 256,
353 #endif
354 	[ZONE_NORMAL] = 32,
355 #ifdef CONFIG_HIGHMEM
356 	[ZONE_HIGHMEM] = 0,
357 #endif
358 	[ZONE_MOVABLE] = 0,
359 };
360 
361 static char * const zone_names[MAX_NR_ZONES] = {
362 #ifdef CONFIG_ZONE_DMA
363 	 "DMA",
364 #endif
365 #ifdef CONFIG_ZONE_DMA32
366 	 "DMA32",
367 #endif
368 	 "Normal",
369 #ifdef CONFIG_HIGHMEM
370 	 "HighMem",
371 #endif
372 	 "Movable",
373 #ifdef CONFIG_ZONE_DEVICE
374 	 "Device",
375 #endif
376 };
377 
378 const char * const migratetype_names[MIGRATE_TYPES] = {
379 	"Unmovable",
380 	"Movable",
381 	"Reclaimable",
382 	"HighAtomic",
383 #ifdef CONFIG_CMA
384 	"CMA",
385 #endif
386 #ifdef CONFIG_MEMORY_ISOLATION
387 	"Isolate",
388 #endif
389 };
390 
391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 	[NULL_COMPOUND_DTOR] = NULL,
393 	[COMPOUND_PAGE_DTOR] = free_compound_page,
394 #ifdef CONFIG_HUGETLB_PAGE
395 	[HUGETLB_PAGE_DTOR] = free_huge_page,
396 #endif
397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
399 #endif
400 };
401 
402 int min_free_kbytes = 1024;
403 int user_min_free_kbytes = -1;
404 int watermark_boost_factor __read_mostly = 15000;
405 int watermark_scale_factor = 10;
406 
407 static unsigned long nr_kernel_pages __initdata;
408 static unsigned long nr_all_pages __initdata;
409 static unsigned long dma_reserve __initdata;
410 
411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413 static unsigned long required_kernelcore __initdata;
414 static unsigned long required_kernelcore_percent __initdata;
415 static unsigned long required_movablecore __initdata;
416 static unsigned long required_movablecore_percent __initdata;
417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418 bool mirrored_kernelcore __initdata_memblock;
419 
420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
421 int movable_zone;
422 EXPORT_SYMBOL(movable_zone);
423 
424 #if MAX_NUMNODES > 1
425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426 unsigned int nr_online_nodes __read_mostly = 1;
427 EXPORT_SYMBOL(nr_node_ids);
428 EXPORT_SYMBOL(nr_online_nodes);
429 #endif
430 
431 int page_group_by_mobility_disabled __read_mostly;
432 
433 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
434 /*
435  * During boot we initialize deferred pages on-demand, as needed, but once
436  * page_alloc_init_late() has finished, the deferred pages are all initialized,
437  * and we can permanently disable that path.
438  */
439 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
440 
441 static inline bool deferred_pages_enabled(void)
442 {
443 	return static_branch_unlikely(&deferred_pages);
444 }
445 
446 /* Returns true if the struct page for the pfn is initialised */
447 static inline bool __meminit early_page_initialised(unsigned long pfn)
448 {
449 	int nid = early_pfn_to_nid(pfn);
450 
451 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
452 		return false;
453 
454 	return true;
455 }
456 
457 /*
458  * Returns true when the remaining initialisation should be deferred until
459  * later in the boot cycle when it can be parallelised.
460  */
461 static bool __meminit
462 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
463 {
464 	static unsigned long prev_end_pfn, nr_initialised;
465 
466 	if (early_page_ext_enabled())
467 		return false;
468 	/*
469 	 * prev_end_pfn static that contains the end of previous zone
470 	 * No need to protect because called very early in boot before smp_init.
471 	 */
472 	if (prev_end_pfn != end_pfn) {
473 		prev_end_pfn = end_pfn;
474 		nr_initialised = 0;
475 	}
476 
477 	/* Always populate low zones for address-constrained allocations */
478 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
479 		return false;
480 
481 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
482 		return true;
483 	/*
484 	 * We start only with one section of pages, more pages are added as
485 	 * needed until the rest of deferred pages are initialized.
486 	 */
487 	nr_initialised++;
488 	if ((nr_initialised > PAGES_PER_SECTION) &&
489 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
490 		NODE_DATA(nid)->first_deferred_pfn = pfn;
491 		return true;
492 	}
493 	return false;
494 }
495 #else
496 static inline bool deferred_pages_enabled(void)
497 {
498 	return false;
499 }
500 
501 static inline bool early_page_initialised(unsigned long pfn)
502 {
503 	return true;
504 }
505 
506 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
507 {
508 	return false;
509 }
510 #endif
511 
512 /* Return a pointer to the bitmap storing bits affecting a block of pages */
513 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
514 							unsigned long pfn)
515 {
516 #ifdef CONFIG_SPARSEMEM
517 	return section_to_usemap(__pfn_to_section(pfn));
518 #else
519 	return page_zone(page)->pageblock_flags;
520 #endif /* CONFIG_SPARSEMEM */
521 }
522 
523 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
524 {
525 #ifdef CONFIG_SPARSEMEM
526 	pfn &= (PAGES_PER_SECTION-1);
527 #else
528 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
529 #endif /* CONFIG_SPARSEMEM */
530 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
531 }
532 
533 static __always_inline
534 unsigned long __get_pfnblock_flags_mask(const struct page *page,
535 					unsigned long pfn,
536 					unsigned long mask)
537 {
538 	unsigned long *bitmap;
539 	unsigned long bitidx, word_bitidx;
540 	unsigned long word;
541 
542 	bitmap = get_pageblock_bitmap(page, pfn);
543 	bitidx = pfn_to_bitidx(page, pfn);
544 	word_bitidx = bitidx / BITS_PER_LONG;
545 	bitidx &= (BITS_PER_LONG-1);
546 	/*
547 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
548 	 * a consistent read of the memory array, so that results, even though
549 	 * racy, are not corrupted.
550 	 */
551 	word = READ_ONCE(bitmap[word_bitidx]);
552 	return (word >> bitidx) & mask;
553 }
554 
555 /**
556  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
557  * @page: The page within the block of interest
558  * @pfn: The target page frame number
559  * @mask: mask of bits that the caller is interested in
560  *
561  * Return: pageblock_bits flags
562  */
563 unsigned long get_pfnblock_flags_mask(const struct page *page,
564 					unsigned long pfn, unsigned long mask)
565 {
566 	return __get_pfnblock_flags_mask(page, pfn, mask);
567 }
568 
569 static __always_inline int get_pfnblock_migratetype(const struct page *page,
570 					unsigned long pfn)
571 {
572 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
573 }
574 
575 /**
576  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
577  * @page: The page within the block of interest
578  * @flags: The flags to set
579  * @pfn: The target page frame number
580  * @mask: mask of bits that the caller is interested in
581  */
582 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
583 					unsigned long pfn,
584 					unsigned long mask)
585 {
586 	unsigned long *bitmap;
587 	unsigned long bitidx, word_bitidx;
588 	unsigned long word;
589 
590 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
591 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
592 
593 	bitmap = get_pageblock_bitmap(page, pfn);
594 	bitidx = pfn_to_bitidx(page, pfn);
595 	word_bitidx = bitidx / BITS_PER_LONG;
596 	bitidx &= (BITS_PER_LONG-1);
597 
598 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
599 
600 	mask <<= bitidx;
601 	flags <<= bitidx;
602 
603 	word = READ_ONCE(bitmap[word_bitidx]);
604 	do {
605 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
606 }
607 
608 void set_pageblock_migratetype(struct page *page, int migratetype)
609 {
610 	if (unlikely(page_group_by_mobility_disabled &&
611 		     migratetype < MIGRATE_PCPTYPES))
612 		migratetype = MIGRATE_UNMOVABLE;
613 
614 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
615 				page_to_pfn(page), MIGRATETYPE_MASK);
616 }
617 
618 #ifdef CONFIG_DEBUG_VM
619 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
620 {
621 	int ret = 0;
622 	unsigned seq;
623 	unsigned long pfn = page_to_pfn(page);
624 	unsigned long sp, start_pfn;
625 
626 	do {
627 		seq = zone_span_seqbegin(zone);
628 		start_pfn = zone->zone_start_pfn;
629 		sp = zone->spanned_pages;
630 		if (!zone_spans_pfn(zone, pfn))
631 			ret = 1;
632 	} while (zone_span_seqretry(zone, seq));
633 
634 	if (ret)
635 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
636 			pfn, zone_to_nid(zone), zone->name,
637 			start_pfn, start_pfn + sp);
638 
639 	return ret;
640 }
641 
642 static int page_is_consistent(struct zone *zone, struct page *page)
643 {
644 	if (zone != page_zone(page))
645 		return 0;
646 
647 	return 1;
648 }
649 /*
650  * Temporary debugging check for pages not lying within a given zone.
651  */
652 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
653 {
654 	if (page_outside_zone_boundaries(zone, page))
655 		return 1;
656 	if (!page_is_consistent(zone, page))
657 		return 1;
658 
659 	return 0;
660 }
661 #else
662 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
663 {
664 	return 0;
665 }
666 #endif
667 
668 static void bad_page(struct page *page, const char *reason)
669 {
670 	static unsigned long resume;
671 	static unsigned long nr_shown;
672 	static unsigned long nr_unshown;
673 
674 	/*
675 	 * Allow a burst of 60 reports, then keep quiet for that minute;
676 	 * or allow a steady drip of one report per second.
677 	 */
678 	if (nr_shown == 60) {
679 		if (time_before(jiffies, resume)) {
680 			nr_unshown++;
681 			goto out;
682 		}
683 		if (nr_unshown) {
684 			pr_alert(
685 			      "BUG: Bad page state: %lu messages suppressed\n",
686 				nr_unshown);
687 			nr_unshown = 0;
688 		}
689 		nr_shown = 0;
690 	}
691 	if (nr_shown++ == 0)
692 		resume = jiffies + 60 * HZ;
693 
694 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
695 		current->comm, page_to_pfn(page));
696 	dump_page(page, reason);
697 
698 	print_modules();
699 	dump_stack();
700 out:
701 	/* Leave bad fields for debug, except PageBuddy could make trouble */
702 	page_mapcount_reset(page); /* remove PageBuddy */
703 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
704 }
705 
706 static inline unsigned int order_to_pindex(int migratetype, int order)
707 {
708 	int base = order;
709 
710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
712 		VM_BUG_ON(order != pageblock_order);
713 		return NR_LOWORDER_PCP_LISTS;
714 	}
715 #else
716 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
717 #endif
718 
719 	return (MIGRATE_PCPTYPES * base) + migratetype;
720 }
721 
722 static inline int pindex_to_order(unsigned int pindex)
723 {
724 	int order = pindex / MIGRATE_PCPTYPES;
725 
726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
727 	if (pindex == NR_LOWORDER_PCP_LISTS)
728 		order = pageblock_order;
729 #else
730 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
731 #endif
732 
733 	return order;
734 }
735 
736 static inline bool pcp_allowed_order(unsigned int order)
737 {
738 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
739 		return true;
740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
741 	if (order == pageblock_order)
742 		return true;
743 #endif
744 	return false;
745 }
746 
747 static inline void free_the_page(struct page *page, unsigned int order)
748 {
749 	if (pcp_allowed_order(order))		/* Via pcp? */
750 		free_unref_page(page, order);
751 	else
752 		__free_pages_ok(page, order, FPI_NONE);
753 }
754 
755 /*
756  * Higher-order pages are called "compound pages".  They are structured thusly:
757  *
758  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
759  *
760  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
761  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
762  *
763  * The first tail page's ->compound_dtor holds the offset in array of compound
764  * page destructors. See compound_page_dtors.
765  *
766  * The first tail page's ->compound_order holds the order of allocation.
767  * This usage means that zero-order pages may not be compound.
768  */
769 
770 void free_compound_page(struct page *page)
771 {
772 	mem_cgroup_uncharge(page_folio(page));
773 	free_the_page(page, compound_order(page));
774 }
775 
776 static void prep_compound_head(struct page *page, unsigned int order)
777 {
778 	struct folio *folio = (struct folio *)page;
779 
780 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
781 	set_compound_order(page, order);
782 	atomic_set(&folio->_entire_mapcount, -1);
783 	atomic_set(&folio->_nr_pages_mapped, 0);
784 	atomic_set(&folio->_pincount, 0);
785 }
786 
787 static void prep_compound_tail(struct page *head, int tail_idx)
788 {
789 	struct page *p = head + tail_idx;
790 
791 	p->mapping = TAIL_MAPPING;
792 	set_compound_head(p, head);
793 	set_page_private(p, 0);
794 }
795 
796 void prep_compound_page(struct page *page, unsigned int order)
797 {
798 	int i;
799 	int nr_pages = 1 << order;
800 
801 	__SetPageHead(page);
802 	for (i = 1; i < nr_pages; i++)
803 		prep_compound_tail(page, i);
804 
805 	prep_compound_head(page, order);
806 }
807 
808 void destroy_large_folio(struct folio *folio)
809 {
810 	enum compound_dtor_id dtor = folio->_folio_dtor;
811 
812 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
813 	compound_page_dtors[dtor](&folio->page);
814 }
815 
816 #ifdef CONFIG_DEBUG_PAGEALLOC
817 unsigned int _debug_guardpage_minorder;
818 
819 bool _debug_pagealloc_enabled_early __read_mostly
820 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
821 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
822 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
823 EXPORT_SYMBOL(_debug_pagealloc_enabled);
824 
825 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
826 
827 static int __init early_debug_pagealloc(char *buf)
828 {
829 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
830 }
831 early_param("debug_pagealloc", early_debug_pagealloc);
832 
833 static int __init debug_guardpage_minorder_setup(char *buf)
834 {
835 	unsigned long res;
836 
837 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
838 		pr_err("Bad debug_guardpage_minorder value\n");
839 		return 0;
840 	}
841 	_debug_guardpage_minorder = res;
842 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
843 	return 0;
844 }
845 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
846 
847 static inline bool set_page_guard(struct zone *zone, struct page *page,
848 				unsigned int order, int migratetype)
849 {
850 	if (!debug_guardpage_enabled())
851 		return false;
852 
853 	if (order >= debug_guardpage_minorder())
854 		return false;
855 
856 	__SetPageGuard(page);
857 	INIT_LIST_HEAD(&page->buddy_list);
858 	set_page_private(page, order);
859 	/* Guard pages are not available for any usage */
860 	if (!is_migrate_isolate(migratetype))
861 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
862 
863 	return true;
864 }
865 
866 static inline void clear_page_guard(struct zone *zone, struct page *page,
867 				unsigned int order, int migratetype)
868 {
869 	if (!debug_guardpage_enabled())
870 		return;
871 
872 	__ClearPageGuard(page);
873 
874 	set_page_private(page, 0);
875 	if (!is_migrate_isolate(migratetype))
876 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
877 }
878 #else
879 static inline bool set_page_guard(struct zone *zone, struct page *page,
880 			unsigned int order, int migratetype) { return false; }
881 static inline void clear_page_guard(struct zone *zone, struct page *page,
882 				unsigned int order, int migratetype) {}
883 #endif
884 
885 /*
886  * Enable static keys related to various memory debugging and hardening options.
887  * Some override others, and depend on early params that are evaluated in the
888  * order of appearance. So we need to first gather the full picture of what was
889  * enabled, and then make decisions.
890  */
891 void __init init_mem_debugging_and_hardening(void)
892 {
893 	bool page_poisoning_requested = false;
894 
895 #ifdef CONFIG_PAGE_POISONING
896 	/*
897 	 * Page poisoning is debug page alloc for some arches. If
898 	 * either of those options are enabled, enable poisoning.
899 	 */
900 	if (page_poisoning_enabled() ||
901 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
902 	      debug_pagealloc_enabled())) {
903 		static_branch_enable(&_page_poisoning_enabled);
904 		page_poisoning_requested = true;
905 	}
906 #endif
907 
908 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
909 	    page_poisoning_requested) {
910 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
911 			"will take precedence over init_on_alloc and init_on_free\n");
912 		_init_on_alloc_enabled_early = false;
913 		_init_on_free_enabled_early = false;
914 	}
915 
916 	if (_init_on_alloc_enabled_early)
917 		static_branch_enable(&init_on_alloc);
918 	else
919 		static_branch_disable(&init_on_alloc);
920 
921 	if (_init_on_free_enabled_early)
922 		static_branch_enable(&init_on_free);
923 	else
924 		static_branch_disable(&init_on_free);
925 
926 	if (IS_ENABLED(CONFIG_KMSAN) &&
927 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
928 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
929 
930 #ifdef CONFIG_DEBUG_PAGEALLOC
931 	if (!debug_pagealloc_enabled())
932 		return;
933 
934 	static_branch_enable(&_debug_pagealloc_enabled);
935 
936 	if (!debug_guardpage_minorder())
937 		return;
938 
939 	static_branch_enable(&_debug_guardpage_enabled);
940 #endif
941 }
942 
943 static inline void set_buddy_order(struct page *page, unsigned int order)
944 {
945 	set_page_private(page, order);
946 	__SetPageBuddy(page);
947 }
948 
949 #ifdef CONFIG_COMPACTION
950 static inline struct capture_control *task_capc(struct zone *zone)
951 {
952 	struct capture_control *capc = current->capture_control;
953 
954 	return unlikely(capc) &&
955 		!(current->flags & PF_KTHREAD) &&
956 		!capc->page &&
957 		capc->cc->zone == zone ? capc : NULL;
958 }
959 
960 static inline bool
961 compaction_capture(struct capture_control *capc, struct page *page,
962 		   int order, int migratetype)
963 {
964 	if (!capc || order != capc->cc->order)
965 		return false;
966 
967 	/* Do not accidentally pollute CMA or isolated regions*/
968 	if (is_migrate_cma(migratetype) ||
969 	    is_migrate_isolate(migratetype))
970 		return false;
971 
972 	/*
973 	 * Do not let lower order allocations pollute a movable pageblock.
974 	 * This might let an unmovable request use a reclaimable pageblock
975 	 * and vice-versa but no more than normal fallback logic which can
976 	 * have trouble finding a high-order free page.
977 	 */
978 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
979 		return false;
980 
981 	capc->page = page;
982 	return true;
983 }
984 
985 #else
986 static inline struct capture_control *task_capc(struct zone *zone)
987 {
988 	return NULL;
989 }
990 
991 static inline bool
992 compaction_capture(struct capture_control *capc, struct page *page,
993 		   int order, int migratetype)
994 {
995 	return false;
996 }
997 #endif /* CONFIG_COMPACTION */
998 
999 /* Used for pages not on another list */
1000 static inline void add_to_free_list(struct page *page, struct zone *zone,
1001 				    unsigned int order, int migratetype)
1002 {
1003 	struct free_area *area = &zone->free_area[order];
1004 
1005 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1006 	area->nr_free++;
1007 }
1008 
1009 /* Used for pages not on another list */
1010 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1011 					 unsigned int order, int migratetype)
1012 {
1013 	struct free_area *area = &zone->free_area[order];
1014 
1015 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1016 	area->nr_free++;
1017 }
1018 
1019 /*
1020  * Used for pages which are on another list. Move the pages to the tail
1021  * of the list - so the moved pages won't immediately be considered for
1022  * allocation again (e.g., optimization for memory onlining).
1023  */
1024 static inline void move_to_free_list(struct page *page, struct zone *zone,
1025 				     unsigned int order, int migratetype)
1026 {
1027 	struct free_area *area = &zone->free_area[order];
1028 
1029 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1030 }
1031 
1032 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1033 					   unsigned int order)
1034 {
1035 	/* clear reported state and update reported page count */
1036 	if (page_reported(page))
1037 		__ClearPageReported(page);
1038 
1039 	list_del(&page->buddy_list);
1040 	__ClearPageBuddy(page);
1041 	set_page_private(page, 0);
1042 	zone->free_area[order].nr_free--;
1043 }
1044 
1045 /*
1046  * If this is not the largest possible page, check if the buddy
1047  * of the next-highest order is free. If it is, it's possible
1048  * that pages are being freed that will coalesce soon. In case,
1049  * that is happening, add the free page to the tail of the list
1050  * so it's less likely to be used soon and more likely to be merged
1051  * as a higher order page
1052  */
1053 static inline bool
1054 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1055 		   struct page *page, unsigned int order)
1056 {
1057 	unsigned long higher_page_pfn;
1058 	struct page *higher_page;
1059 
1060 	if (order >= MAX_ORDER - 2)
1061 		return false;
1062 
1063 	higher_page_pfn = buddy_pfn & pfn;
1064 	higher_page = page + (higher_page_pfn - pfn);
1065 
1066 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1067 			NULL) != NULL;
1068 }
1069 
1070 /*
1071  * Freeing function for a buddy system allocator.
1072  *
1073  * The concept of a buddy system is to maintain direct-mapped table
1074  * (containing bit values) for memory blocks of various "orders".
1075  * The bottom level table contains the map for the smallest allocatable
1076  * units of memory (here, pages), and each level above it describes
1077  * pairs of units from the levels below, hence, "buddies".
1078  * At a high level, all that happens here is marking the table entry
1079  * at the bottom level available, and propagating the changes upward
1080  * as necessary, plus some accounting needed to play nicely with other
1081  * parts of the VM system.
1082  * At each level, we keep a list of pages, which are heads of continuous
1083  * free pages of length of (1 << order) and marked with PageBuddy.
1084  * Page's order is recorded in page_private(page) field.
1085  * So when we are allocating or freeing one, we can derive the state of the
1086  * other.  That is, if we allocate a small block, and both were
1087  * free, the remainder of the region must be split into blocks.
1088  * If a block is freed, and its buddy is also free, then this
1089  * triggers coalescing into a block of larger size.
1090  *
1091  * -- nyc
1092  */
1093 
1094 static inline void __free_one_page(struct page *page,
1095 		unsigned long pfn,
1096 		struct zone *zone, unsigned int order,
1097 		int migratetype, fpi_t fpi_flags)
1098 {
1099 	struct capture_control *capc = task_capc(zone);
1100 	unsigned long buddy_pfn = 0;
1101 	unsigned long combined_pfn;
1102 	struct page *buddy;
1103 	bool to_tail;
1104 
1105 	VM_BUG_ON(!zone_is_initialized(zone));
1106 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1107 
1108 	VM_BUG_ON(migratetype == -1);
1109 	if (likely(!is_migrate_isolate(migratetype)))
1110 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1111 
1112 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1113 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1114 
1115 	while (order < MAX_ORDER - 1) {
1116 		if (compaction_capture(capc, page, order, migratetype)) {
1117 			__mod_zone_freepage_state(zone, -(1 << order),
1118 								migratetype);
1119 			return;
1120 		}
1121 
1122 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1123 		if (!buddy)
1124 			goto done_merging;
1125 
1126 		if (unlikely(order >= pageblock_order)) {
1127 			/*
1128 			 * We want to prevent merge between freepages on pageblock
1129 			 * without fallbacks and normal pageblock. Without this,
1130 			 * pageblock isolation could cause incorrect freepage or CMA
1131 			 * accounting or HIGHATOMIC accounting.
1132 			 */
1133 			int buddy_mt = get_pageblock_migratetype(buddy);
1134 
1135 			if (migratetype != buddy_mt
1136 					&& (!migratetype_is_mergeable(migratetype) ||
1137 						!migratetype_is_mergeable(buddy_mt)))
1138 				goto done_merging;
1139 		}
1140 
1141 		/*
1142 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1143 		 * merge with it and move up one order.
1144 		 */
1145 		if (page_is_guard(buddy))
1146 			clear_page_guard(zone, buddy, order, migratetype);
1147 		else
1148 			del_page_from_free_list(buddy, zone, order);
1149 		combined_pfn = buddy_pfn & pfn;
1150 		page = page + (combined_pfn - pfn);
1151 		pfn = combined_pfn;
1152 		order++;
1153 	}
1154 
1155 done_merging:
1156 	set_buddy_order(page, order);
1157 
1158 	if (fpi_flags & FPI_TO_TAIL)
1159 		to_tail = true;
1160 	else if (is_shuffle_order(order))
1161 		to_tail = shuffle_pick_tail();
1162 	else
1163 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1164 
1165 	if (to_tail)
1166 		add_to_free_list_tail(page, zone, order, migratetype);
1167 	else
1168 		add_to_free_list(page, zone, order, migratetype);
1169 
1170 	/* Notify page reporting subsystem of freed page */
1171 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1172 		page_reporting_notify_free(order);
1173 }
1174 
1175 /**
1176  * split_free_page() -- split a free page at split_pfn_offset
1177  * @free_page:		the original free page
1178  * @order:		the order of the page
1179  * @split_pfn_offset:	split offset within the page
1180  *
1181  * Return -ENOENT if the free page is changed, otherwise 0
1182  *
1183  * It is used when the free page crosses two pageblocks with different migratetypes
1184  * at split_pfn_offset within the page. The split free page will be put into
1185  * separate migratetype lists afterwards. Otherwise, the function achieves
1186  * nothing.
1187  */
1188 int split_free_page(struct page *free_page,
1189 			unsigned int order, unsigned long split_pfn_offset)
1190 {
1191 	struct zone *zone = page_zone(free_page);
1192 	unsigned long free_page_pfn = page_to_pfn(free_page);
1193 	unsigned long pfn;
1194 	unsigned long flags;
1195 	int free_page_order;
1196 	int mt;
1197 	int ret = 0;
1198 
1199 	if (split_pfn_offset == 0)
1200 		return ret;
1201 
1202 	spin_lock_irqsave(&zone->lock, flags);
1203 
1204 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1205 		ret = -ENOENT;
1206 		goto out;
1207 	}
1208 
1209 	mt = get_pageblock_migratetype(free_page);
1210 	if (likely(!is_migrate_isolate(mt)))
1211 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1212 
1213 	del_page_from_free_list(free_page, zone, order);
1214 	for (pfn = free_page_pfn;
1215 	     pfn < free_page_pfn + (1UL << order);) {
1216 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1217 
1218 		free_page_order = min_t(unsigned int,
1219 					pfn ? __ffs(pfn) : order,
1220 					__fls(split_pfn_offset));
1221 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1222 				mt, FPI_NONE);
1223 		pfn += 1UL << free_page_order;
1224 		split_pfn_offset -= (1UL << free_page_order);
1225 		/* we have done the first part, now switch to second part */
1226 		if (split_pfn_offset == 0)
1227 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1228 	}
1229 out:
1230 	spin_unlock_irqrestore(&zone->lock, flags);
1231 	return ret;
1232 }
1233 /*
1234  * A bad page could be due to a number of fields. Instead of multiple branches,
1235  * try and check multiple fields with one check. The caller must do a detailed
1236  * check if necessary.
1237  */
1238 static inline bool page_expected_state(struct page *page,
1239 					unsigned long check_flags)
1240 {
1241 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1242 		return false;
1243 
1244 	if (unlikely((unsigned long)page->mapping |
1245 			page_ref_count(page) |
1246 #ifdef CONFIG_MEMCG
1247 			page->memcg_data |
1248 #endif
1249 			(page->flags & check_flags)))
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 static const char *page_bad_reason(struct page *page, unsigned long flags)
1256 {
1257 	const char *bad_reason = NULL;
1258 
1259 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1260 		bad_reason = "nonzero mapcount";
1261 	if (unlikely(page->mapping != NULL))
1262 		bad_reason = "non-NULL mapping";
1263 	if (unlikely(page_ref_count(page) != 0))
1264 		bad_reason = "nonzero _refcount";
1265 	if (unlikely(page->flags & flags)) {
1266 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1267 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1268 		else
1269 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1270 	}
1271 #ifdef CONFIG_MEMCG
1272 	if (unlikely(page->memcg_data))
1273 		bad_reason = "page still charged to cgroup";
1274 #endif
1275 	return bad_reason;
1276 }
1277 
1278 static void free_page_is_bad_report(struct page *page)
1279 {
1280 	bad_page(page,
1281 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1282 }
1283 
1284 static inline bool free_page_is_bad(struct page *page)
1285 {
1286 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1287 		return false;
1288 
1289 	/* Something has gone sideways, find it */
1290 	free_page_is_bad_report(page);
1291 	return true;
1292 }
1293 
1294 static int free_tail_pages_check(struct page *head_page, struct page *page)
1295 {
1296 	struct folio *folio = (struct folio *)head_page;
1297 	int ret = 1;
1298 
1299 	/*
1300 	 * We rely page->lru.next never has bit 0 set, unless the page
1301 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1302 	 */
1303 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1304 
1305 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1306 		ret = 0;
1307 		goto out;
1308 	}
1309 	switch (page - head_page) {
1310 	case 1:
1311 		/* the first tail page: these may be in place of ->mapping */
1312 		if (unlikely(folio_entire_mapcount(folio))) {
1313 			bad_page(page, "nonzero entire_mapcount");
1314 			goto out;
1315 		}
1316 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1317 			bad_page(page, "nonzero nr_pages_mapped");
1318 			goto out;
1319 		}
1320 		if (unlikely(atomic_read(&folio->_pincount))) {
1321 			bad_page(page, "nonzero pincount");
1322 			goto out;
1323 		}
1324 		break;
1325 	case 2:
1326 		/*
1327 		 * the second tail page: ->mapping is
1328 		 * deferred_list.next -- ignore value.
1329 		 */
1330 		break;
1331 	default:
1332 		if (page->mapping != TAIL_MAPPING) {
1333 			bad_page(page, "corrupted mapping in tail page");
1334 			goto out;
1335 		}
1336 		break;
1337 	}
1338 	if (unlikely(!PageTail(page))) {
1339 		bad_page(page, "PageTail not set");
1340 		goto out;
1341 	}
1342 	if (unlikely(compound_head(page) != head_page)) {
1343 		bad_page(page, "compound_head not consistent");
1344 		goto out;
1345 	}
1346 	ret = 0;
1347 out:
1348 	page->mapping = NULL;
1349 	clear_compound_head(page);
1350 	return ret;
1351 }
1352 
1353 /*
1354  * Skip KASAN memory poisoning when either:
1355  *
1356  * 1. Deferred memory initialization has not yet completed,
1357  *    see the explanation below.
1358  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1359  *    see the comment next to it.
1360  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1361  *    see the comment next to it.
1362  * 4. The allocation is excluded from being checked due to sampling,
1363  *    see the call to kasan_unpoison_pages.
1364  *
1365  * Poisoning pages during deferred memory init will greatly lengthen the
1366  * process and cause problem in large memory systems as the deferred pages
1367  * initialization is done with interrupt disabled.
1368  *
1369  * Assuming that there will be no reference to those newly initialized
1370  * pages before they are ever allocated, this should have no effect on
1371  * KASAN memory tracking as the poison will be properly inserted at page
1372  * allocation time. The only corner case is when pages are allocated by
1373  * on-demand allocation and then freed again before the deferred pages
1374  * initialization is done, but this is not likely to happen.
1375  */
1376 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1377 {
1378 	return deferred_pages_enabled() ||
1379 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1380 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1381 	       PageSkipKASanPoison(page);
1382 }
1383 
1384 static void kernel_init_pages(struct page *page, int numpages)
1385 {
1386 	int i;
1387 
1388 	/* s390's use of memset() could override KASAN redzones. */
1389 	kasan_disable_current();
1390 	for (i = 0; i < numpages; i++)
1391 		clear_highpage_kasan_tagged(page + i);
1392 	kasan_enable_current();
1393 }
1394 
1395 static __always_inline bool free_pages_prepare(struct page *page,
1396 			unsigned int order, bool check_free, fpi_t fpi_flags)
1397 {
1398 	int bad = 0;
1399 	bool init = want_init_on_free();
1400 
1401 	VM_BUG_ON_PAGE(PageTail(page), page);
1402 
1403 	trace_mm_page_free(page, order);
1404 	kmsan_free_page(page, order);
1405 
1406 	if (unlikely(PageHWPoison(page)) && !order) {
1407 		/*
1408 		 * Do not let hwpoison pages hit pcplists/buddy
1409 		 * Untie memcg state and reset page's owner
1410 		 */
1411 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1412 			__memcg_kmem_uncharge_page(page, order);
1413 		reset_page_owner(page, order);
1414 		page_table_check_free(page, order);
1415 		return false;
1416 	}
1417 
1418 	/*
1419 	 * Check tail pages before head page information is cleared to
1420 	 * avoid checking PageCompound for order-0 pages.
1421 	 */
1422 	if (unlikely(order)) {
1423 		bool compound = PageCompound(page);
1424 		int i;
1425 
1426 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1427 
1428 		if (compound)
1429 			ClearPageHasHWPoisoned(page);
1430 		for (i = 1; i < (1 << order); i++) {
1431 			if (compound)
1432 				bad += free_tail_pages_check(page, page + i);
1433 			if (unlikely(free_page_is_bad(page + i))) {
1434 				bad++;
1435 				continue;
1436 			}
1437 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1438 		}
1439 	}
1440 	if (PageMappingFlags(page))
1441 		page->mapping = NULL;
1442 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1443 		__memcg_kmem_uncharge_page(page, order);
1444 	if (check_free && free_page_is_bad(page))
1445 		bad++;
1446 	if (bad)
1447 		return false;
1448 
1449 	page_cpupid_reset_last(page);
1450 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1451 	reset_page_owner(page, order);
1452 	page_table_check_free(page, order);
1453 
1454 	if (!PageHighMem(page)) {
1455 		debug_check_no_locks_freed(page_address(page),
1456 					   PAGE_SIZE << order);
1457 		debug_check_no_obj_freed(page_address(page),
1458 					   PAGE_SIZE << order);
1459 	}
1460 
1461 	kernel_poison_pages(page, 1 << order);
1462 
1463 	/*
1464 	 * As memory initialization might be integrated into KASAN,
1465 	 * KASAN poisoning and memory initialization code must be
1466 	 * kept together to avoid discrepancies in behavior.
1467 	 *
1468 	 * With hardware tag-based KASAN, memory tags must be set before the
1469 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1470 	 */
1471 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1472 		kasan_poison_pages(page, order, init);
1473 
1474 		/* Memory is already initialized if KASAN did it internally. */
1475 		if (kasan_has_integrated_init())
1476 			init = false;
1477 	}
1478 	if (init)
1479 		kernel_init_pages(page, 1 << order);
1480 
1481 	/*
1482 	 * arch_free_page() can make the page's contents inaccessible.  s390
1483 	 * does this.  So nothing which can access the page's contents should
1484 	 * happen after this.
1485 	 */
1486 	arch_free_page(page, order);
1487 
1488 	debug_pagealloc_unmap_pages(page, 1 << order);
1489 
1490 	return true;
1491 }
1492 
1493 #ifdef CONFIG_DEBUG_VM
1494 /*
1495  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1496  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1497  * moved from pcp lists to free lists.
1498  */
1499 static bool free_pcp_prepare(struct page *page, unsigned int order)
1500 {
1501 	return free_pages_prepare(page, order, true, FPI_NONE);
1502 }
1503 
1504 /* return true if this page has an inappropriate state */
1505 static bool bulkfree_pcp_prepare(struct page *page)
1506 {
1507 	if (debug_pagealloc_enabled_static())
1508 		return free_page_is_bad(page);
1509 	else
1510 		return false;
1511 }
1512 #else
1513 /*
1514  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1515  * moving from pcp lists to free list in order to reduce overhead. With
1516  * debug_pagealloc enabled, they are checked also immediately when being freed
1517  * to the pcp lists.
1518  */
1519 static bool free_pcp_prepare(struct page *page, unsigned int order)
1520 {
1521 	if (debug_pagealloc_enabled_static())
1522 		return free_pages_prepare(page, order, true, FPI_NONE);
1523 	else
1524 		return free_pages_prepare(page, order, false, FPI_NONE);
1525 }
1526 
1527 static bool bulkfree_pcp_prepare(struct page *page)
1528 {
1529 	return free_page_is_bad(page);
1530 }
1531 #endif /* CONFIG_DEBUG_VM */
1532 
1533 /*
1534  * Frees a number of pages from the PCP lists
1535  * Assumes all pages on list are in same zone.
1536  * count is the number of pages to free.
1537  */
1538 static void free_pcppages_bulk(struct zone *zone, int count,
1539 					struct per_cpu_pages *pcp,
1540 					int pindex)
1541 {
1542 	unsigned long flags;
1543 	int min_pindex = 0;
1544 	int max_pindex = NR_PCP_LISTS - 1;
1545 	unsigned int order;
1546 	bool isolated_pageblocks;
1547 	struct page *page;
1548 
1549 	/*
1550 	 * Ensure proper count is passed which otherwise would stuck in the
1551 	 * below while (list_empty(list)) loop.
1552 	 */
1553 	count = min(pcp->count, count);
1554 
1555 	/* Ensure requested pindex is drained first. */
1556 	pindex = pindex - 1;
1557 
1558 	spin_lock_irqsave(&zone->lock, flags);
1559 	isolated_pageblocks = has_isolate_pageblock(zone);
1560 
1561 	while (count > 0) {
1562 		struct list_head *list;
1563 		int nr_pages;
1564 
1565 		/* Remove pages from lists in a round-robin fashion. */
1566 		do {
1567 			if (++pindex > max_pindex)
1568 				pindex = min_pindex;
1569 			list = &pcp->lists[pindex];
1570 			if (!list_empty(list))
1571 				break;
1572 
1573 			if (pindex == max_pindex)
1574 				max_pindex--;
1575 			if (pindex == min_pindex)
1576 				min_pindex++;
1577 		} while (1);
1578 
1579 		order = pindex_to_order(pindex);
1580 		nr_pages = 1 << order;
1581 		do {
1582 			int mt;
1583 
1584 			page = list_last_entry(list, struct page, pcp_list);
1585 			mt = get_pcppage_migratetype(page);
1586 
1587 			/* must delete to avoid corrupting pcp list */
1588 			list_del(&page->pcp_list);
1589 			count -= nr_pages;
1590 			pcp->count -= nr_pages;
1591 
1592 			if (bulkfree_pcp_prepare(page))
1593 				continue;
1594 
1595 			/* MIGRATE_ISOLATE page should not go to pcplists */
1596 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1597 			/* Pageblock could have been isolated meanwhile */
1598 			if (unlikely(isolated_pageblocks))
1599 				mt = get_pageblock_migratetype(page);
1600 
1601 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1602 			trace_mm_page_pcpu_drain(page, order, mt);
1603 		} while (count > 0 && !list_empty(list));
1604 	}
1605 
1606 	spin_unlock_irqrestore(&zone->lock, flags);
1607 }
1608 
1609 static void free_one_page(struct zone *zone,
1610 				struct page *page, unsigned long pfn,
1611 				unsigned int order,
1612 				int migratetype, fpi_t fpi_flags)
1613 {
1614 	unsigned long flags;
1615 
1616 	spin_lock_irqsave(&zone->lock, flags);
1617 	if (unlikely(has_isolate_pageblock(zone) ||
1618 		is_migrate_isolate(migratetype))) {
1619 		migratetype = get_pfnblock_migratetype(page, pfn);
1620 	}
1621 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1622 	spin_unlock_irqrestore(&zone->lock, flags);
1623 }
1624 
1625 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1626 				unsigned long zone, int nid)
1627 {
1628 	mm_zero_struct_page(page);
1629 	set_page_links(page, zone, nid, pfn);
1630 	init_page_count(page);
1631 	page_mapcount_reset(page);
1632 	page_cpupid_reset_last(page);
1633 	page_kasan_tag_reset(page);
1634 
1635 	INIT_LIST_HEAD(&page->lru);
1636 #ifdef WANT_PAGE_VIRTUAL
1637 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1638 	if (!is_highmem_idx(zone))
1639 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1640 #endif
1641 }
1642 
1643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1644 static void __meminit init_reserved_page(unsigned long pfn)
1645 {
1646 	pg_data_t *pgdat;
1647 	int nid, zid;
1648 
1649 	if (early_page_initialised(pfn))
1650 		return;
1651 
1652 	nid = early_pfn_to_nid(pfn);
1653 	pgdat = NODE_DATA(nid);
1654 
1655 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1656 		struct zone *zone = &pgdat->node_zones[zid];
1657 
1658 		if (zone_spans_pfn(zone, pfn))
1659 			break;
1660 	}
1661 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1662 }
1663 #else
1664 static inline void init_reserved_page(unsigned long pfn)
1665 {
1666 }
1667 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1668 
1669 /*
1670  * Initialised pages do not have PageReserved set. This function is
1671  * called for each range allocated by the bootmem allocator and
1672  * marks the pages PageReserved. The remaining valid pages are later
1673  * sent to the buddy page allocator.
1674  */
1675 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1676 {
1677 	unsigned long start_pfn = PFN_DOWN(start);
1678 	unsigned long end_pfn = PFN_UP(end);
1679 
1680 	for (; start_pfn < end_pfn; start_pfn++) {
1681 		if (pfn_valid(start_pfn)) {
1682 			struct page *page = pfn_to_page(start_pfn);
1683 
1684 			init_reserved_page(start_pfn);
1685 
1686 			/* Avoid false-positive PageTail() */
1687 			INIT_LIST_HEAD(&page->lru);
1688 
1689 			/*
1690 			 * no need for atomic set_bit because the struct
1691 			 * page is not visible yet so nobody should
1692 			 * access it yet.
1693 			 */
1694 			__SetPageReserved(page);
1695 		}
1696 	}
1697 }
1698 
1699 static void __free_pages_ok(struct page *page, unsigned int order,
1700 			    fpi_t fpi_flags)
1701 {
1702 	unsigned long flags;
1703 	int migratetype;
1704 	unsigned long pfn = page_to_pfn(page);
1705 	struct zone *zone = page_zone(page);
1706 
1707 	if (!free_pages_prepare(page, order, true, fpi_flags))
1708 		return;
1709 
1710 	/*
1711 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1712 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1713 	 * This will reduce the lock holding time.
1714 	 */
1715 	migratetype = get_pfnblock_migratetype(page, pfn);
1716 
1717 	spin_lock_irqsave(&zone->lock, flags);
1718 	if (unlikely(has_isolate_pageblock(zone) ||
1719 		is_migrate_isolate(migratetype))) {
1720 		migratetype = get_pfnblock_migratetype(page, pfn);
1721 	}
1722 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1723 	spin_unlock_irqrestore(&zone->lock, flags);
1724 
1725 	__count_vm_events(PGFREE, 1 << order);
1726 }
1727 
1728 void __free_pages_core(struct page *page, unsigned int order)
1729 {
1730 	unsigned int nr_pages = 1 << order;
1731 	struct page *p = page;
1732 	unsigned int loop;
1733 
1734 	/*
1735 	 * When initializing the memmap, __init_single_page() sets the refcount
1736 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1737 	 * refcount of all involved pages to 0.
1738 	 */
1739 	prefetchw(p);
1740 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1741 		prefetchw(p + 1);
1742 		__ClearPageReserved(p);
1743 		set_page_count(p, 0);
1744 	}
1745 	__ClearPageReserved(p);
1746 	set_page_count(p, 0);
1747 
1748 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1749 
1750 	/*
1751 	 * Bypass PCP and place fresh pages right to the tail, primarily
1752 	 * relevant for memory onlining.
1753 	 */
1754 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1755 }
1756 
1757 #ifdef CONFIG_NUMA
1758 
1759 /*
1760  * During memory init memblocks map pfns to nids. The search is expensive and
1761  * this caches recent lookups. The implementation of __early_pfn_to_nid
1762  * treats start/end as pfns.
1763  */
1764 struct mminit_pfnnid_cache {
1765 	unsigned long last_start;
1766 	unsigned long last_end;
1767 	int last_nid;
1768 };
1769 
1770 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1771 
1772 /*
1773  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1774  */
1775 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1776 					struct mminit_pfnnid_cache *state)
1777 {
1778 	unsigned long start_pfn, end_pfn;
1779 	int nid;
1780 
1781 	if (state->last_start <= pfn && pfn < state->last_end)
1782 		return state->last_nid;
1783 
1784 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1785 	if (nid != NUMA_NO_NODE) {
1786 		state->last_start = start_pfn;
1787 		state->last_end = end_pfn;
1788 		state->last_nid = nid;
1789 	}
1790 
1791 	return nid;
1792 }
1793 
1794 int __meminit early_pfn_to_nid(unsigned long pfn)
1795 {
1796 	static DEFINE_SPINLOCK(early_pfn_lock);
1797 	int nid;
1798 
1799 	spin_lock(&early_pfn_lock);
1800 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1801 	if (nid < 0)
1802 		nid = first_online_node;
1803 	spin_unlock(&early_pfn_lock);
1804 
1805 	return nid;
1806 }
1807 #endif /* CONFIG_NUMA */
1808 
1809 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1810 							unsigned int order)
1811 {
1812 	if (!early_page_initialised(pfn))
1813 		return;
1814 	if (!kmsan_memblock_free_pages(page, order)) {
1815 		/* KMSAN will take care of these pages. */
1816 		return;
1817 	}
1818 	__free_pages_core(page, order);
1819 }
1820 
1821 /*
1822  * Check that the whole (or subset of) a pageblock given by the interval of
1823  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1824  * with the migration of free compaction scanner.
1825  *
1826  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1827  *
1828  * It's possible on some configurations to have a setup like node0 node1 node0
1829  * i.e. it's possible that all pages within a zones range of pages do not
1830  * belong to a single zone. We assume that a border between node0 and node1
1831  * can occur within a single pageblock, but not a node0 node1 node0
1832  * interleaving within a single pageblock. It is therefore sufficient to check
1833  * the first and last page of a pageblock and avoid checking each individual
1834  * page in a pageblock.
1835  */
1836 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1837 				     unsigned long end_pfn, struct zone *zone)
1838 {
1839 	struct page *start_page;
1840 	struct page *end_page;
1841 
1842 	/* end_pfn is one past the range we are checking */
1843 	end_pfn--;
1844 
1845 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1846 		return NULL;
1847 
1848 	start_page = pfn_to_online_page(start_pfn);
1849 	if (!start_page)
1850 		return NULL;
1851 
1852 	if (page_zone(start_page) != zone)
1853 		return NULL;
1854 
1855 	end_page = pfn_to_page(end_pfn);
1856 
1857 	/* This gives a shorter code than deriving page_zone(end_page) */
1858 	if (page_zone_id(start_page) != page_zone_id(end_page))
1859 		return NULL;
1860 
1861 	return start_page;
1862 }
1863 
1864 void set_zone_contiguous(struct zone *zone)
1865 {
1866 	unsigned long block_start_pfn = zone->zone_start_pfn;
1867 	unsigned long block_end_pfn;
1868 
1869 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1870 	for (; block_start_pfn < zone_end_pfn(zone);
1871 			block_start_pfn = block_end_pfn,
1872 			 block_end_pfn += pageblock_nr_pages) {
1873 
1874 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1875 
1876 		if (!__pageblock_pfn_to_page(block_start_pfn,
1877 					     block_end_pfn, zone))
1878 			return;
1879 		cond_resched();
1880 	}
1881 
1882 	/* We confirm that there is no hole */
1883 	zone->contiguous = true;
1884 }
1885 
1886 void clear_zone_contiguous(struct zone *zone)
1887 {
1888 	zone->contiguous = false;
1889 }
1890 
1891 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1892 static void __init deferred_free_range(unsigned long pfn,
1893 				       unsigned long nr_pages)
1894 {
1895 	struct page *page;
1896 	unsigned long i;
1897 
1898 	if (!nr_pages)
1899 		return;
1900 
1901 	page = pfn_to_page(pfn);
1902 
1903 	/* Free a large naturally-aligned chunk if possible */
1904 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1905 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1906 		__free_pages_core(page, pageblock_order);
1907 		return;
1908 	}
1909 
1910 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1911 		if (pageblock_aligned(pfn))
1912 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1913 		__free_pages_core(page, 0);
1914 	}
1915 }
1916 
1917 /* Completion tracking for deferred_init_memmap() threads */
1918 static atomic_t pgdat_init_n_undone __initdata;
1919 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1920 
1921 static inline void __init pgdat_init_report_one_done(void)
1922 {
1923 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1924 		complete(&pgdat_init_all_done_comp);
1925 }
1926 
1927 /*
1928  * Returns true if page needs to be initialized or freed to buddy allocator.
1929  *
1930  * We check if a current large page is valid by only checking the validity
1931  * of the head pfn.
1932  */
1933 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1934 {
1935 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1936 		return false;
1937 	return true;
1938 }
1939 
1940 /*
1941  * Free pages to buddy allocator. Try to free aligned pages in
1942  * pageblock_nr_pages sizes.
1943  */
1944 static void __init deferred_free_pages(unsigned long pfn,
1945 				       unsigned long end_pfn)
1946 {
1947 	unsigned long nr_free = 0;
1948 
1949 	for (; pfn < end_pfn; pfn++) {
1950 		if (!deferred_pfn_valid(pfn)) {
1951 			deferred_free_range(pfn - nr_free, nr_free);
1952 			nr_free = 0;
1953 		} else if (pageblock_aligned(pfn)) {
1954 			deferred_free_range(pfn - nr_free, nr_free);
1955 			nr_free = 1;
1956 		} else {
1957 			nr_free++;
1958 		}
1959 	}
1960 	/* Free the last block of pages to allocator */
1961 	deferred_free_range(pfn - nr_free, nr_free);
1962 }
1963 
1964 /*
1965  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1966  * by performing it only once every pageblock_nr_pages.
1967  * Return number of pages initialized.
1968  */
1969 static unsigned long  __init deferred_init_pages(struct zone *zone,
1970 						 unsigned long pfn,
1971 						 unsigned long end_pfn)
1972 {
1973 	int nid = zone_to_nid(zone);
1974 	unsigned long nr_pages = 0;
1975 	int zid = zone_idx(zone);
1976 	struct page *page = NULL;
1977 
1978 	for (; pfn < end_pfn; pfn++) {
1979 		if (!deferred_pfn_valid(pfn)) {
1980 			page = NULL;
1981 			continue;
1982 		} else if (!page || pageblock_aligned(pfn)) {
1983 			page = pfn_to_page(pfn);
1984 		} else {
1985 			page++;
1986 		}
1987 		__init_single_page(page, pfn, zid, nid);
1988 		nr_pages++;
1989 	}
1990 	return (nr_pages);
1991 }
1992 
1993 /*
1994  * This function is meant to pre-load the iterator for the zone init.
1995  * Specifically it walks through the ranges until we are caught up to the
1996  * first_init_pfn value and exits there. If we never encounter the value we
1997  * return false indicating there are no valid ranges left.
1998  */
1999 static bool __init
2000 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2001 				    unsigned long *spfn, unsigned long *epfn,
2002 				    unsigned long first_init_pfn)
2003 {
2004 	u64 j;
2005 
2006 	/*
2007 	 * Start out by walking through the ranges in this zone that have
2008 	 * already been initialized. We don't need to do anything with them
2009 	 * so we just need to flush them out of the system.
2010 	 */
2011 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2012 		if (*epfn <= first_init_pfn)
2013 			continue;
2014 		if (*spfn < first_init_pfn)
2015 			*spfn = first_init_pfn;
2016 		*i = j;
2017 		return true;
2018 	}
2019 
2020 	return false;
2021 }
2022 
2023 /*
2024  * Initialize and free pages. We do it in two loops: first we initialize
2025  * struct page, then free to buddy allocator, because while we are
2026  * freeing pages we can access pages that are ahead (computing buddy
2027  * page in __free_one_page()).
2028  *
2029  * In order to try and keep some memory in the cache we have the loop
2030  * broken along max page order boundaries. This way we will not cause
2031  * any issues with the buddy page computation.
2032  */
2033 static unsigned long __init
2034 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2035 		       unsigned long *end_pfn)
2036 {
2037 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2038 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2039 	unsigned long nr_pages = 0;
2040 	u64 j = *i;
2041 
2042 	/* First we loop through and initialize the page values */
2043 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2044 		unsigned long t;
2045 
2046 		if (mo_pfn <= *start_pfn)
2047 			break;
2048 
2049 		t = min(mo_pfn, *end_pfn);
2050 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2051 
2052 		if (mo_pfn < *end_pfn) {
2053 			*start_pfn = mo_pfn;
2054 			break;
2055 		}
2056 	}
2057 
2058 	/* Reset values and now loop through freeing pages as needed */
2059 	swap(j, *i);
2060 
2061 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2062 		unsigned long t;
2063 
2064 		if (mo_pfn <= spfn)
2065 			break;
2066 
2067 		t = min(mo_pfn, epfn);
2068 		deferred_free_pages(spfn, t);
2069 
2070 		if (mo_pfn <= epfn)
2071 			break;
2072 	}
2073 
2074 	return nr_pages;
2075 }
2076 
2077 static void __init
2078 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2079 			   void *arg)
2080 {
2081 	unsigned long spfn, epfn;
2082 	struct zone *zone = arg;
2083 	u64 i;
2084 
2085 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2086 
2087 	/*
2088 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2089 	 * can avoid introducing any issues with the buddy allocator.
2090 	 */
2091 	while (spfn < end_pfn) {
2092 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2093 		cond_resched();
2094 	}
2095 }
2096 
2097 /* An arch may override for more concurrency. */
2098 __weak int __init
2099 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2100 {
2101 	return 1;
2102 }
2103 
2104 /* Initialise remaining memory on a node */
2105 static int __init deferred_init_memmap(void *data)
2106 {
2107 	pg_data_t *pgdat = data;
2108 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2109 	unsigned long spfn = 0, epfn = 0;
2110 	unsigned long first_init_pfn, flags;
2111 	unsigned long start = jiffies;
2112 	struct zone *zone;
2113 	int zid, max_threads;
2114 	u64 i;
2115 
2116 	/* Bind memory initialisation thread to a local node if possible */
2117 	if (!cpumask_empty(cpumask))
2118 		set_cpus_allowed_ptr(current, cpumask);
2119 
2120 	pgdat_resize_lock(pgdat, &flags);
2121 	first_init_pfn = pgdat->first_deferred_pfn;
2122 	if (first_init_pfn == ULONG_MAX) {
2123 		pgdat_resize_unlock(pgdat, &flags);
2124 		pgdat_init_report_one_done();
2125 		return 0;
2126 	}
2127 
2128 	/* Sanity check boundaries */
2129 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2130 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2131 	pgdat->first_deferred_pfn = ULONG_MAX;
2132 
2133 	/*
2134 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2135 	 * interrupt thread must allocate this early in boot, zone must be
2136 	 * pre-grown prior to start of deferred page initialization.
2137 	 */
2138 	pgdat_resize_unlock(pgdat, &flags);
2139 
2140 	/* Only the highest zone is deferred so find it */
2141 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2142 		zone = pgdat->node_zones + zid;
2143 		if (first_init_pfn < zone_end_pfn(zone))
2144 			break;
2145 	}
2146 
2147 	/* If the zone is empty somebody else may have cleared out the zone */
2148 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2149 						 first_init_pfn))
2150 		goto zone_empty;
2151 
2152 	max_threads = deferred_page_init_max_threads(cpumask);
2153 
2154 	while (spfn < epfn) {
2155 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2156 		struct padata_mt_job job = {
2157 			.thread_fn   = deferred_init_memmap_chunk,
2158 			.fn_arg      = zone,
2159 			.start       = spfn,
2160 			.size        = epfn_align - spfn,
2161 			.align       = PAGES_PER_SECTION,
2162 			.min_chunk   = PAGES_PER_SECTION,
2163 			.max_threads = max_threads,
2164 		};
2165 
2166 		padata_do_multithreaded(&job);
2167 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2168 						    epfn_align);
2169 	}
2170 zone_empty:
2171 	/* Sanity check that the next zone really is unpopulated */
2172 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2173 
2174 	pr_info("node %d deferred pages initialised in %ums\n",
2175 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2176 
2177 	pgdat_init_report_one_done();
2178 	return 0;
2179 }
2180 
2181 /*
2182  * If this zone has deferred pages, try to grow it by initializing enough
2183  * deferred pages to satisfy the allocation specified by order, rounded up to
2184  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2185  * of SECTION_SIZE bytes by initializing struct pages in increments of
2186  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2187  *
2188  * Return true when zone was grown, otherwise return false. We return true even
2189  * when we grow less than requested, to let the caller decide if there are
2190  * enough pages to satisfy the allocation.
2191  *
2192  * Note: We use noinline because this function is needed only during boot, and
2193  * it is called from a __ref function _deferred_grow_zone. This way we are
2194  * making sure that it is not inlined into permanent text section.
2195  */
2196 static noinline bool __init
2197 deferred_grow_zone(struct zone *zone, unsigned int order)
2198 {
2199 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2200 	pg_data_t *pgdat = zone->zone_pgdat;
2201 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2202 	unsigned long spfn, epfn, flags;
2203 	unsigned long nr_pages = 0;
2204 	u64 i;
2205 
2206 	/* Only the last zone may have deferred pages */
2207 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2208 		return false;
2209 
2210 	pgdat_resize_lock(pgdat, &flags);
2211 
2212 	/*
2213 	 * If someone grew this zone while we were waiting for spinlock, return
2214 	 * true, as there might be enough pages already.
2215 	 */
2216 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2217 		pgdat_resize_unlock(pgdat, &flags);
2218 		return true;
2219 	}
2220 
2221 	/* If the zone is empty somebody else may have cleared out the zone */
2222 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2223 						 first_deferred_pfn)) {
2224 		pgdat->first_deferred_pfn = ULONG_MAX;
2225 		pgdat_resize_unlock(pgdat, &flags);
2226 		/* Retry only once. */
2227 		return first_deferred_pfn != ULONG_MAX;
2228 	}
2229 
2230 	/*
2231 	 * Initialize and free pages in MAX_ORDER sized increments so
2232 	 * that we can avoid introducing any issues with the buddy
2233 	 * allocator.
2234 	 */
2235 	while (spfn < epfn) {
2236 		/* update our first deferred PFN for this section */
2237 		first_deferred_pfn = spfn;
2238 
2239 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2240 		touch_nmi_watchdog();
2241 
2242 		/* We should only stop along section boundaries */
2243 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2244 			continue;
2245 
2246 		/* If our quota has been met we can stop here */
2247 		if (nr_pages >= nr_pages_needed)
2248 			break;
2249 	}
2250 
2251 	pgdat->first_deferred_pfn = spfn;
2252 	pgdat_resize_unlock(pgdat, &flags);
2253 
2254 	return nr_pages > 0;
2255 }
2256 
2257 /*
2258  * deferred_grow_zone() is __init, but it is called from
2259  * get_page_from_freelist() during early boot until deferred_pages permanently
2260  * disables this call. This is why we have refdata wrapper to avoid warning,
2261  * and to ensure that the function body gets unloaded.
2262  */
2263 static bool __ref
2264 _deferred_grow_zone(struct zone *zone, unsigned int order)
2265 {
2266 	return deferred_grow_zone(zone, order);
2267 }
2268 
2269 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2270 
2271 void __init page_alloc_init_late(void)
2272 {
2273 	struct zone *zone;
2274 	int nid;
2275 
2276 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2277 
2278 	/* There will be num_node_state(N_MEMORY) threads */
2279 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2280 	for_each_node_state(nid, N_MEMORY) {
2281 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2282 	}
2283 
2284 	/* Block until all are initialised */
2285 	wait_for_completion(&pgdat_init_all_done_comp);
2286 
2287 	/*
2288 	 * We initialized the rest of the deferred pages.  Permanently disable
2289 	 * on-demand struct page initialization.
2290 	 */
2291 	static_branch_disable(&deferred_pages);
2292 
2293 	/* Reinit limits that are based on free pages after the kernel is up */
2294 	files_maxfiles_init();
2295 #endif
2296 
2297 	buffer_init();
2298 
2299 	/* Discard memblock private memory */
2300 	memblock_discard();
2301 
2302 	for_each_node_state(nid, N_MEMORY)
2303 		shuffle_free_memory(NODE_DATA(nid));
2304 
2305 	for_each_populated_zone(zone)
2306 		set_zone_contiguous(zone);
2307 }
2308 
2309 #ifdef CONFIG_CMA
2310 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2311 void __init init_cma_reserved_pageblock(struct page *page)
2312 {
2313 	unsigned i = pageblock_nr_pages;
2314 	struct page *p = page;
2315 
2316 	do {
2317 		__ClearPageReserved(p);
2318 		set_page_count(p, 0);
2319 	} while (++p, --i);
2320 
2321 	set_pageblock_migratetype(page, MIGRATE_CMA);
2322 	set_page_refcounted(page);
2323 	__free_pages(page, pageblock_order);
2324 
2325 	adjust_managed_page_count(page, pageblock_nr_pages);
2326 	page_zone(page)->cma_pages += pageblock_nr_pages;
2327 }
2328 #endif
2329 
2330 /*
2331  * The order of subdivision here is critical for the IO subsystem.
2332  * Please do not alter this order without good reasons and regression
2333  * testing. Specifically, as large blocks of memory are subdivided,
2334  * the order in which smaller blocks are delivered depends on the order
2335  * they're subdivided in this function. This is the primary factor
2336  * influencing the order in which pages are delivered to the IO
2337  * subsystem according to empirical testing, and this is also justified
2338  * by considering the behavior of a buddy system containing a single
2339  * large block of memory acted on by a series of small allocations.
2340  * This behavior is a critical factor in sglist merging's success.
2341  *
2342  * -- nyc
2343  */
2344 static inline void expand(struct zone *zone, struct page *page,
2345 	int low, int high, int migratetype)
2346 {
2347 	unsigned long size = 1 << high;
2348 
2349 	while (high > low) {
2350 		high--;
2351 		size >>= 1;
2352 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2353 
2354 		/*
2355 		 * Mark as guard pages (or page), that will allow to
2356 		 * merge back to allocator when buddy will be freed.
2357 		 * Corresponding page table entries will not be touched,
2358 		 * pages will stay not present in virtual address space
2359 		 */
2360 		if (set_page_guard(zone, &page[size], high, migratetype))
2361 			continue;
2362 
2363 		add_to_free_list(&page[size], zone, high, migratetype);
2364 		set_buddy_order(&page[size], high);
2365 	}
2366 }
2367 
2368 static void check_new_page_bad(struct page *page)
2369 {
2370 	if (unlikely(page->flags & __PG_HWPOISON)) {
2371 		/* Don't complain about hwpoisoned pages */
2372 		page_mapcount_reset(page); /* remove PageBuddy */
2373 		return;
2374 	}
2375 
2376 	bad_page(page,
2377 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2378 }
2379 
2380 /*
2381  * This page is about to be returned from the page allocator
2382  */
2383 static inline int check_new_page(struct page *page)
2384 {
2385 	if (likely(page_expected_state(page,
2386 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2387 		return 0;
2388 
2389 	check_new_page_bad(page);
2390 	return 1;
2391 }
2392 
2393 static bool check_new_pages(struct page *page, unsigned int order)
2394 {
2395 	int i;
2396 	for (i = 0; i < (1 << order); i++) {
2397 		struct page *p = page + i;
2398 
2399 		if (unlikely(check_new_page(p)))
2400 			return true;
2401 	}
2402 
2403 	return false;
2404 }
2405 
2406 #ifdef CONFIG_DEBUG_VM
2407 /*
2408  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2409  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2410  * also checked when pcp lists are refilled from the free lists.
2411  */
2412 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2413 {
2414 	if (debug_pagealloc_enabled_static())
2415 		return check_new_pages(page, order);
2416 	else
2417 		return false;
2418 }
2419 
2420 static inline bool check_new_pcp(struct page *page, unsigned int order)
2421 {
2422 	return check_new_pages(page, order);
2423 }
2424 #else
2425 /*
2426  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2427  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2428  * enabled, they are also checked when being allocated from the pcp lists.
2429  */
2430 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2431 {
2432 	return check_new_pages(page, order);
2433 }
2434 static inline bool check_new_pcp(struct page *page, unsigned int order)
2435 {
2436 	if (debug_pagealloc_enabled_static())
2437 		return check_new_pages(page, order);
2438 	else
2439 		return false;
2440 }
2441 #endif /* CONFIG_DEBUG_VM */
2442 
2443 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2444 {
2445 	/* Don't skip if a software KASAN mode is enabled. */
2446 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2447 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2448 		return false;
2449 
2450 	/* Skip, if hardware tag-based KASAN is not enabled. */
2451 	if (!kasan_hw_tags_enabled())
2452 		return true;
2453 
2454 	/*
2455 	 * With hardware tag-based KASAN enabled, skip if this has been
2456 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2457 	 */
2458 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2459 }
2460 
2461 static inline bool should_skip_init(gfp_t flags)
2462 {
2463 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2464 	if (!kasan_hw_tags_enabled())
2465 		return false;
2466 
2467 	/* For hardware tag-based KASAN, skip if requested. */
2468 	return (flags & __GFP_SKIP_ZERO);
2469 }
2470 
2471 inline void post_alloc_hook(struct page *page, unsigned int order,
2472 				gfp_t gfp_flags)
2473 {
2474 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2475 			!should_skip_init(gfp_flags);
2476 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2477 	bool reset_tags = !zero_tags;
2478 	int i;
2479 
2480 	set_page_private(page, 0);
2481 	set_page_refcounted(page);
2482 
2483 	arch_alloc_page(page, order);
2484 	debug_pagealloc_map_pages(page, 1 << order);
2485 
2486 	/*
2487 	 * Page unpoisoning must happen before memory initialization.
2488 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2489 	 * allocations and the page unpoisoning code will complain.
2490 	 */
2491 	kernel_unpoison_pages(page, 1 << order);
2492 
2493 	/*
2494 	 * As memory initialization might be integrated into KASAN,
2495 	 * KASAN unpoisoning and memory initializion code must be
2496 	 * kept together to avoid discrepancies in behavior.
2497 	 */
2498 
2499 	/*
2500 	 * If memory tags should be zeroed
2501 	 * (which happens only when memory should be initialized as well).
2502 	 */
2503 	if (zero_tags) {
2504 		/* Initialize both memory and tags. */
2505 		for (i = 0; i != 1 << order; ++i)
2506 			tag_clear_highpage(page + i);
2507 
2508 		/* Take note that memory was initialized by the loop above. */
2509 		init = false;
2510 	}
2511 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2512 		/* Try unpoisoning (or setting tags) and initializing memory. */
2513 		if (kasan_unpoison_pages(page, order, init)) {
2514 			/* Take note that memory was initialized by KASAN. */
2515 			if (kasan_has_integrated_init())
2516 				init = false;
2517 			/* Take note that memory tags were set by KASAN. */
2518 			reset_tags = false;
2519 		} else {
2520 			/*
2521 			 * KASAN decided to exclude this allocation from being
2522 			 * poisoned due to sampling. Skip poisoning as well.
2523 			 */
2524 			SetPageSkipKASanPoison(page);
2525 		}
2526 	}
2527 	/*
2528 	 * If memory tags have not been set, reset the page tags to ensure
2529 	 * page_address() dereferencing does not fault.
2530 	 */
2531 	if (reset_tags) {
2532 		for (i = 0; i != 1 << order; ++i)
2533 			page_kasan_tag_reset(page + i);
2534 	}
2535 	/* If memory is still not initialized, initialize it now. */
2536 	if (init)
2537 		kernel_init_pages(page, 1 << order);
2538 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2539 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2540 		SetPageSkipKASanPoison(page);
2541 
2542 	set_page_owner(page, order, gfp_flags);
2543 	page_table_check_alloc(page, order);
2544 }
2545 
2546 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2547 							unsigned int alloc_flags)
2548 {
2549 	post_alloc_hook(page, order, gfp_flags);
2550 
2551 	if (order && (gfp_flags & __GFP_COMP))
2552 		prep_compound_page(page, order);
2553 
2554 	/*
2555 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2556 	 * allocate the page. The expectation is that the caller is taking
2557 	 * steps that will free more memory. The caller should avoid the page
2558 	 * being used for !PFMEMALLOC purposes.
2559 	 */
2560 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2561 		set_page_pfmemalloc(page);
2562 	else
2563 		clear_page_pfmemalloc(page);
2564 }
2565 
2566 /*
2567  * Go through the free lists for the given migratetype and remove
2568  * the smallest available page from the freelists
2569  */
2570 static __always_inline
2571 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2572 						int migratetype)
2573 {
2574 	unsigned int current_order;
2575 	struct free_area *area;
2576 	struct page *page;
2577 
2578 	/* Find a page of the appropriate size in the preferred list */
2579 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2580 		area = &(zone->free_area[current_order]);
2581 		page = get_page_from_free_area(area, migratetype);
2582 		if (!page)
2583 			continue;
2584 		del_page_from_free_list(page, zone, current_order);
2585 		expand(zone, page, order, current_order, migratetype);
2586 		set_pcppage_migratetype(page, migratetype);
2587 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2588 				pcp_allowed_order(order) &&
2589 				migratetype < MIGRATE_PCPTYPES);
2590 		return page;
2591 	}
2592 
2593 	return NULL;
2594 }
2595 
2596 
2597 /*
2598  * This array describes the order lists are fallen back to when
2599  * the free lists for the desirable migrate type are depleted
2600  *
2601  * The other migratetypes do not have fallbacks.
2602  */
2603 static int fallbacks[MIGRATE_TYPES][3] = {
2604 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2605 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2606 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2607 };
2608 
2609 #ifdef CONFIG_CMA
2610 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2611 					unsigned int order)
2612 {
2613 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2614 }
2615 #else
2616 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2617 					unsigned int order) { return NULL; }
2618 #endif
2619 
2620 /*
2621  * Move the free pages in a range to the freelist tail of the requested type.
2622  * Note that start_page and end_pages are not aligned on a pageblock
2623  * boundary. If alignment is required, use move_freepages_block()
2624  */
2625 static int move_freepages(struct zone *zone,
2626 			  unsigned long start_pfn, unsigned long end_pfn,
2627 			  int migratetype, int *num_movable)
2628 {
2629 	struct page *page;
2630 	unsigned long pfn;
2631 	unsigned int order;
2632 	int pages_moved = 0;
2633 
2634 	for (pfn = start_pfn; pfn <= end_pfn;) {
2635 		page = pfn_to_page(pfn);
2636 		if (!PageBuddy(page)) {
2637 			/*
2638 			 * We assume that pages that could be isolated for
2639 			 * migration are movable. But we don't actually try
2640 			 * isolating, as that would be expensive.
2641 			 */
2642 			if (num_movable &&
2643 					(PageLRU(page) || __PageMovable(page)))
2644 				(*num_movable)++;
2645 			pfn++;
2646 			continue;
2647 		}
2648 
2649 		/* Make sure we are not inadvertently changing nodes */
2650 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2651 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2652 
2653 		order = buddy_order(page);
2654 		move_to_free_list(page, zone, order, migratetype);
2655 		pfn += 1 << order;
2656 		pages_moved += 1 << order;
2657 	}
2658 
2659 	return pages_moved;
2660 }
2661 
2662 int move_freepages_block(struct zone *zone, struct page *page,
2663 				int migratetype, int *num_movable)
2664 {
2665 	unsigned long start_pfn, end_pfn, pfn;
2666 
2667 	if (num_movable)
2668 		*num_movable = 0;
2669 
2670 	pfn = page_to_pfn(page);
2671 	start_pfn = pageblock_start_pfn(pfn);
2672 	end_pfn = pageblock_end_pfn(pfn) - 1;
2673 
2674 	/* Do not cross zone boundaries */
2675 	if (!zone_spans_pfn(zone, start_pfn))
2676 		start_pfn = pfn;
2677 	if (!zone_spans_pfn(zone, end_pfn))
2678 		return 0;
2679 
2680 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2681 								num_movable);
2682 }
2683 
2684 static void change_pageblock_range(struct page *pageblock_page,
2685 					int start_order, int migratetype)
2686 {
2687 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2688 
2689 	while (nr_pageblocks--) {
2690 		set_pageblock_migratetype(pageblock_page, migratetype);
2691 		pageblock_page += pageblock_nr_pages;
2692 	}
2693 }
2694 
2695 /*
2696  * When we are falling back to another migratetype during allocation, try to
2697  * steal extra free pages from the same pageblocks to satisfy further
2698  * allocations, instead of polluting multiple pageblocks.
2699  *
2700  * If we are stealing a relatively large buddy page, it is likely there will
2701  * be more free pages in the pageblock, so try to steal them all. For
2702  * reclaimable and unmovable allocations, we steal regardless of page size,
2703  * as fragmentation caused by those allocations polluting movable pageblocks
2704  * is worse than movable allocations stealing from unmovable and reclaimable
2705  * pageblocks.
2706  */
2707 static bool can_steal_fallback(unsigned int order, int start_mt)
2708 {
2709 	/*
2710 	 * Leaving this order check is intended, although there is
2711 	 * relaxed order check in next check. The reason is that
2712 	 * we can actually steal whole pageblock if this condition met,
2713 	 * but, below check doesn't guarantee it and that is just heuristic
2714 	 * so could be changed anytime.
2715 	 */
2716 	if (order >= pageblock_order)
2717 		return true;
2718 
2719 	if (order >= pageblock_order / 2 ||
2720 		start_mt == MIGRATE_RECLAIMABLE ||
2721 		start_mt == MIGRATE_UNMOVABLE ||
2722 		page_group_by_mobility_disabled)
2723 		return true;
2724 
2725 	return false;
2726 }
2727 
2728 static inline bool boost_watermark(struct zone *zone)
2729 {
2730 	unsigned long max_boost;
2731 
2732 	if (!watermark_boost_factor)
2733 		return false;
2734 	/*
2735 	 * Don't bother in zones that are unlikely to produce results.
2736 	 * On small machines, including kdump capture kernels running
2737 	 * in a small area, boosting the watermark can cause an out of
2738 	 * memory situation immediately.
2739 	 */
2740 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2741 		return false;
2742 
2743 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2744 			watermark_boost_factor, 10000);
2745 
2746 	/*
2747 	 * high watermark may be uninitialised if fragmentation occurs
2748 	 * very early in boot so do not boost. We do not fall
2749 	 * through and boost by pageblock_nr_pages as failing
2750 	 * allocations that early means that reclaim is not going
2751 	 * to help and it may even be impossible to reclaim the
2752 	 * boosted watermark resulting in a hang.
2753 	 */
2754 	if (!max_boost)
2755 		return false;
2756 
2757 	max_boost = max(pageblock_nr_pages, max_boost);
2758 
2759 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2760 		max_boost);
2761 
2762 	return true;
2763 }
2764 
2765 /*
2766  * This function implements actual steal behaviour. If order is large enough,
2767  * we can steal whole pageblock. If not, we first move freepages in this
2768  * pageblock to our migratetype and determine how many already-allocated pages
2769  * are there in the pageblock with a compatible migratetype. If at least half
2770  * of pages are free or compatible, we can change migratetype of the pageblock
2771  * itself, so pages freed in the future will be put on the correct free list.
2772  */
2773 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2774 		unsigned int alloc_flags, int start_type, bool whole_block)
2775 {
2776 	unsigned int current_order = buddy_order(page);
2777 	int free_pages, movable_pages, alike_pages;
2778 	int old_block_type;
2779 
2780 	old_block_type = get_pageblock_migratetype(page);
2781 
2782 	/*
2783 	 * This can happen due to races and we want to prevent broken
2784 	 * highatomic accounting.
2785 	 */
2786 	if (is_migrate_highatomic(old_block_type))
2787 		goto single_page;
2788 
2789 	/* Take ownership for orders >= pageblock_order */
2790 	if (current_order >= pageblock_order) {
2791 		change_pageblock_range(page, current_order, start_type);
2792 		goto single_page;
2793 	}
2794 
2795 	/*
2796 	 * Boost watermarks to increase reclaim pressure to reduce the
2797 	 * likelihood of future fallbacks. Wake kswapd now as the node
2798 	 * may be balanced overall and kswapd will not wake naturally.
2799 	 */
2800 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2801 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2802 
2803 	/* We are not allowed to try stealing from the whole block */
2804 	if (!whole_block)
2805 		goto single_page;
2806 
2807 	free_pages = move_freepages_block(zone, page, start_type,
2808 						&movable_pages);
2809 	/*
2810 	 * Determine how many pages are compatible with our allocation.
2811 	 * For movable allocation, it's the number of movable pages which
2812 	 * we just obtained. For other types it's a bit more tricky.
2813 	 */
2814 	if (start_type == MIGRATE_MOVABLE) {
2815 		alike_pages = movable_pages;
2816 	} else {
2817 		/*
2818 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2819 		 * to MOVABLE pageblock, consider all non-movable pages as
2820 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2821 		 * vice versa, be conservative since we can't distinguish the
2822 		 * exact migratetype of non-movable pages.
2823 		 */
2824 		if (old_block_type == MIGRATE_MOVABLE)
2825 			alike_pages = pageblock_nr_pages
2826 						- (free_pages + movable_pages);
2827 		else
2828 			alike_pages = 0;
2829 	}
2830 
2831 	/* moving whole block can fail due to zone boundary conditions */
2832 	if (!free_pages)
2833 		goto single_page;
2834 
2835 	/*
2836 	 * If a sufficient number of pages in the block are either free or of
2837 	 * comparable migratability as our allocation, claim the whole block.
2838 	 */
2839 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2840 			page_group_by_mobility_disabled)
2841 		set_pageblock_migratetype(page, start_type);
2842 
2843 	return;
2844 
2845 single_page:
2846 	move_to_free_list(page, zone, current_order, start_type);
2847 }
2848 
2849 /*
2850  * Check whether there is a suitable fallback freepage with requested order.
2851  * If only_stealable is true, this function returns fallback_mt only if
2852  * we can steal other freepages all together. This would help to reduce
2853  * fragmentation due to mixed migratetype pages in one pageblock.
2854  */
2855 int find_suitable_fallback(struct free_area *area, unsigned int order,
2856 			int migratetype, bool only_stealable, bool *can_steal)
2857 {
2858 	int i;
2859 	int fallback_mt;
2860 
2861 	if (area->nr_free == 0)
2862 		return -1;
2863 
2864 	*can_steal = false;
2865 	for (i = 0;; i++) {
2866 		fallback_mt = fallbacks[migratetype][i];
2867 		if (fallback_mt == MIGRATE_TYPES)
2868 			break;
2869 
2870 		if (free_area_empty(area, fallback_mt))
2871 			continue;
2872 
2873 		if (can_steal_fallback(order, migratetype))
2874 			*can_steal = true;
2875 
2876 		if (!only_stealable)
2877 			return fallback_mt;
2878 
2879 		if (*can_steal)
2880 			return fallback_mt;
2881 	}
2882 
2883 	return -1;
2884 }
2885 
2886 /*
2887  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2888  * there are no empty page blocks that contain a page with a suitable order
2889  */
2890 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2891 				unsigned int alloc_order)
2892 {
2893 	int mt;
2894 	unsigned long max_managed, flags;
2895 
2896 	/*
2897 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2898 	 * Check is race-prone but harmless.
2899 	 */
2900 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2901 	if (zone->nr_reserved_highatomic >= max_managed)
2902 		return;
2903 
2904 	spin_lock_irqsave(&zone->lock, flags);
2905 
2906 	/* Recheck the nr_reserved_highatomic limit under the lock */
2907 	if (zone->nr_reserved_highatomic >= max_managed)
2908 		goto out_unlock;
2909 
2910 	/* Yoink! */
2911 	mt = get_pageblock_migratetype(page);
2912 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2913 	if (migratetype_is_mergeable(mt)) {
2914 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2915 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2916 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2917 	}
2918 
2919 out_unlock:
2920 	spin_unlock_irqrestore(&zone->lock, flags);
2921 }
2922 
2923 /*
2924  * Used when an allocation is about to fail under memory pressure. This
2925  * potentially hurts the reliability of high-order allocations when under
2926  * intense memory pressure but failed atomic allocations should be easier
2927  * to recover from than an OOM.
2928  *
2929  * If @force is true, try to unreserve a pageblock even though highatomic
2930  * pageblock is exhausted.
2931  */
2932 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2933 						bool force)
2934 {
2935 	struct zonelist *zonelist = ac->zonelist;
2936 	unsigned long flags;
2937 	struct zoneref *z;
2938 	struct zone *zone;
2939 	struct page *page;
2940 	int order;
2941 	bool ret;
2942 
2943 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2944 								ac->nodemask) {
2945 		/*
2946 		 * Preserve at least one pageblock unless memory pressure
2947 		 * is really high.
2948 		 */
2949 		if (!force && zone->nr_reserved_highatomic <=
2950 					pageblock_nr_pages)
2951 			continue;
2952 
2953 		spin_lock_irqsave(&zone->lock, flags);
2954 		for (order = 0; order < MAX_ORDER; order++) {
2955 			struct free_area *area = &(zone->free_area[order]);
2956 
2957 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2958 			if (!page)
2959 				continue;
2960 
2961 			/*
2962 			 * In page freeing path, migratetype change is racy so
2963 			 * we can counter several free pages in a pageblock
2964 			 * in this loop although we changed the pageblock type
2965 			 * from highatomic to ac->migratetype. So we should
2966 			 * adjust the count once.
2967 			 */
2968 			if (is_migrate_highatomic_page(page)) {
2969 				/*
2970 				 * It should never happen but changes to
2971 				 * locking could inadvertently allow a per-cpu
2972 				 * drain to add pages to MIGRATE_HIGHATOMIC
2973 				 * while unreserving so be safe and watch for
2974 				 * underflows.
2975 				 */
2976 				zone->nr_reserved_highatomic -= min(
2977 						pageblock_nr_pages,
2978 						zone->nr_reserved_highatomic);
2979 			}
2980 
2981 			/*
2982 			 * Convert to ac->migratetype and avoid the normal
2983 			 * pageblock stealing heuristics. Minimally, the caller
2984 			 * is doing the work and needs the pages. More
2985 			 * importantly, if the block was always converted to
2986 			 * MIGRATE_UNMOVABLE or another type then the number
2987 			 * of pageblocks that cannot be completely freed
2988 			 * may increase.
2989 			 */
2990 			set_pageblock_migratetype(page, ac->migratetype);
2991 			ret = move_freepages_block(zone, page, ac->migratetype,
2992 									NULL);
2993 			if (ret) {
2994 				spin_unlock_irqrestore(&zone->lock, flags);
2995 				return ret;
2996 			}
2997 		}
2998 		spin_unlock_irqrestore(&zone->lock, flags);
2999 	}
3000 
3001 	return false;
3002 }
3003 
3004 /*
3005  * Try finding a free buddy page on the fallback list and put it on the free
3006  * list of requested migratetype, possibly along with other pages from the same
3007  * block, depending on fragmentation avoidance heuristics. Returns true if
3008  * fallback was found so that __rmqueue_smallest() can grab it.
3009  *
3010  * The use of signed ints for order and current_order is a deliberate
3011  * deviation from the rest of this file, to make the for loop
3012  * condition simpler.
3013  */
3014 static __always_inline bool
3015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3016 						unsigned int alloc_flags)
3017 {
3018 	struct free_area *area;
3019 	int current_order;
3020 	int min_order = order;
3021 	struct page *page;
3022 	int fallback_mt;
3023 	bool can_steal;
3024 
3025 	/*
3026 	 * Do not steal pages from freelists belonging to other pageblocks
3027 	 * i.e. orders < pageblock_order. If there are no local zones free,
3028 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3029 	 */
3030 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3031 		min_order = pageblock_order;
3032 
3033 	/*
3034 	 * Find the largest available free page in the other list. This roughly
3035 	 * approximates finding the pageblock with the most free pages, which
3036 	 * would be too costly to do exactly.
3037 	 */
3038 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3039 				--current_order) {
3040 		area = &(zone->free_area[current_order]);
3041 		fallback_mt = find_suitable_fallback(area, current_order,
3042 				start_migratetype, false, &can_steal);
3043 		if (fallback_mt == -1)
3044 			continue;
3045 
3046 		/*
3047 		 * We cannot steal all free pages from the pageblock and the
3048 		 * requested migratetype is movable. In that case it's better to
3049 		 * steal and split the smallest available page instead of the
3050 		 * largest available page, because even if the next movable
3051 		 * allocation falls back into a different pageblock than this
3052 		 * one, it won't cause permanent fragmentation.
3053 		 */
3054 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3055 					&& current_order > order)
3056 			goto find_smallest;
3057 
3058 		goto do_steal;
3059 	}
3060 
3061 	return false;
3062 
3063 find_smallest:
3064 	for (current_order = order; current_order < MAX_ORDER;
3065 							current_order++) {
3066 		area = &(zone->free_area[current_order]);
3067 		fallback_mt = find_suitable_fallback(area, current_order,
3068 				start_migratetype, false, &can_steal);
3069 		if (fallback_mt != -1)
3070 			break;
3071 	}
3072 
3073 	/*
3074 	 * This should not happen - we already found a suitable fallback
3075 	 * when looking for the largest page.
3076 	 */
3077 	VM_BUG_ON(current_order == MAX_ORDER);
3078 
3079 do_steal:
3080 	page = get_page_from_free_area(area, fallback_mt);
3081 
3082 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3083 								can_steal);
3084 
3085 	trace_mm_page_alloc_extfrag(page, order, current_order,
3086 		start_migratetype, fallback_mt);
3087 
3088 	return true;
3089 
3090 }
3091 
3092 /*
3093  * Do the hard work of removing an element from the buddy allocator.
3094  * Call me with the zone->lock already held.
3095  */
3096 static __always_inline struct page *
3097 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3098 						unsigned int alloc_flags)
3099 {
3100 	struct page *page;
3101 
3102 	if (IS_ENABLED(CONFIG_CMA)) {
3103 		/*
3104 		 * Balance movable allocations between regular and CMA areas by
3105 		 * allocating from CMA when over half of the zone's free memory
3106 		 * is in the CMA area.
3107 		 */
3108 		if (alloc_flags & ALLOC_CMA &&
3109 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3110 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3111 			page = __rmqueue_cma_fallback(zone, order);
3112 			if (page)
3113 				return page;
3114 		}
3115 	}
3116 retry:
3117 	page = __rmqueue_smallest(zone, order, migratetype);
3118 	if (unlikely(!page)) {
3119 		if (alloc_flags & ALLOC_CMA)
3120 			page = __rmqueue_cma_fallback(zone, order);
3121 
3122 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3123 								alloc_flags))
3124 			goto retry;
3125 	}
3126 	return page;
3127 }
3128 
3129 /*
3130  * Obtain a specified number of elements from the buddy allocator, all under
3131  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3132  * Returns the number of new pages which were placed at *list.
3133  */
3134 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3135 			unsigned long count, struct list_head *list,
3136 			int migratetype, unsigned int alloc_flags)
3137 {
3138 	unsigned long flags;
3139 	int i, allocated = 0;
3140 
3141 	spin_lock_irqsave(&zone->lock, flags);
3142 	for (i = 0; i < count; ++i) {
3143 		struct page *page = __rmqueue(zone, order, migratetype,
3144 								alloc_flags);
3145 		if (unlikely(page == NULL))
3146 			break;
3147 
3148 		if (unlikely(check_pcp_refill(page, order)))
3149 			continue;
3150 
3151 		/*
3152 		 * Split buddy pages returned by expand() are received here in
3153 		 * physical page order. The page is added to the tail of
3154 		 * caller's list. From the callers perspective, the linked list
3155 		 * is ordered by page number under some conditions. This is
3156 		 * useful for IO devices that can forward direction from the
3157 		 * head, thus also in the physical page order. This is useful
3158 		 * for IO devices that can merge IO requests if the physical
3159 		 * pages are ordered properly.
3160 		 */
3161 		list_add_tail(&page->pcp_list, list);
3162 		allocated++;
3163 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3164 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3165 					      -(1 << order));
3166 	}
3167 
3168 	/*
3169 	 * i pages were removed from the buddy list even if some leak due
3170 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3171 	 * on i. Do not confuse with 'allocated' which is the number of
3172 	 * pages added to the pcp list.
3173 	 */
3174 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3175 	spin_unlock_irqrestore(&zone->lock, flags);
3176 	return allocated;
3177 }
3178 
3179 #ifdef CONFIG_NUMA
3180 /*
3181  * Called from the vmstat counter updater to drain pagesets of this
3182  * currently executing processor on remote nodes after they have
3183  * expired.
3184  */
3185 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3186 {
3187 	int to_drain, batch;
3188 
3189 	batch = READ_ONCE(pcp->batch);
3190 	to_drain = min(pcp->count, batch);
3191 	if (to_drain > 0) {
3192 		spin_lock(&pcp->lock);
3193 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3194 		spin_unlock(&pcp->lock);
3195 	}
3196 }
3197 #endif
3198 
3199 /*
3200  * Drain pcplists of the indicated processor and zone.
3201  */
3202 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3203 {
3204 	struct per_cpu_pages *pcp;
3205 
3206 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3207 	if (pcp->count) {
3208 		spin_lock(&pcp->lock);
3209 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3210 		spin_unlock(&pcp->lock);
3211 	}
3212 }
3213 
3214 /*
3215  * Drain pcplists of all zones on the indicated processor.
3216  */
3217 static void drain_pages(unsigned int cpu)
3218 {
3219 	struct zone *zone;
3220 
3221 	for_each_populated_zone(zone) {
3222 		drain_pages_zone(cpu, zone);
3223 	}
3224 }
3225 
3226 /*
3227  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3228  */
3229 void drain_local_pages(struct zone *zone)
3230 {
3231 	int cpu = smp_processor_id();
3232 
3233 	if (zone)
3234 		drain_pages_zone(cpu, zone);
3235 	else
3236 		drain_pages(cpu);
3237 }
3238 
3239 /*
3240  * The implementation of drain_all_pages(), exposing an extra parameter to
3241  * drain on all cpus.
3242  *
3243  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3244  * not empty. The check for non-emptiness can however race with a free to
3245  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3246  * that need the guarantee that every CPU has drained can disable the
3247  * optimizing racy check.
3248  */
3249 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3250 {
3251 	int cpu;
3252 
3253 	/*
3254 	 * Allocate in the BSS so we won't require allocation in
3255 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3256 	 */
3257 	static cpumask_t cpus_with_pcps;
3258 
3259 	/*
3260 	 * Do not drain if one is already in progress unless it's specific to
3261 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3262 	 * the drain to be complete when the call returns.
3263 	 */
3264 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3265 		if (!zone)
3266 			return;
3267 		mutex_lock(&pcpu_drain_mutex);
3268 	}
3269 
3270 	/*
3271 	 * We don't care about racing with CPU hotplug event
3272 	 * as offline notification will cause the notified
3273 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3274 	 * disables preemption as part of its processing
3275 	 */
3276 	for_each_online_cpu(cpu) {
3277 		struct per_cpu_pages *pcp;
3278 		struct zone *z;
3279 		bool has_pcps = false;
3280 
3281 		if (force_all_cpus) {
3282 			/*
3283 			 * The pcp.count check is racy, some callers need a
3284 			 * guarantee that no cpu is missed.
3285 			 */
3286 			has_pcps = true;
3287 		} else if (zone) {
3288 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3289 			if (pcp->count)
3290 				has_pcps = true;
3291 		} else {
3292 			for_each_populated_zone(z) {
3293 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3294 				if (pcp->count) {
3295 					has_pcps = true;
3296 					break;
3297 				}
3298 			}
3299 		}
3300 
3301 		if (has_pcps)
3302 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3303 		else
3304 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3305 	}
3306 
3307 	for_each_cpu(cpu, &cpus_with_pcps) {
3308 		if (zone)
3309 			drain_pages_zone(cpu, zone);
3310 		else
3311 			drain_pages(cpu);
3312 	}
3313 
3314 	mutex_unlock(&pcpu_drain_mutex);
3315 }
3316 
3317 /*
3318  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3319  *
3320  * When zone parameter is non-NULL, spill just the single zone's pages.
3321  */
3322 void drain_all_pages(struct zone *zone)
3323 {
3324 	__drain_all_pages(zone, false);
3325 }
3326 
3327 #ifdef CONFIG_HIBERNATION
3328 
3329 /*
3330  * Touch the watchdog for every WD_PAGE_COUNT pages.
3331  */
3332 #define WD_PAGE_COUNT	(128*1024)
3333 
3334 void mark_free_pages(struct zone *zone)
3335 {
3336 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3337 	unsigned long flags;
3338 	unsigned int order, t;
3339 	struct page *page;
3340 
3341 	if (zone_is_empty(zone))
3342 		return;
3343 
3344 	spin_lock_irqsave(&zone->lock, flags);
3345 
3346 	max_zone_pfn = zone_end_pfn(zone);
3347 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3348 		if (pfn_valid(pfn)) {
3349 			page = pfn_to_page(pfn);
3350 
3351 			if (!--page_count) {
3352 				touch_nmi_watchdog();
3353 				page_count = WD_PAGE_COUNT;
3354 			}
3355 
3356 			if (page_zone(page) != zone)
3357 				continue;
3358 
3359 			if (!swsusp_page_is_forbidden(page))
3360 				swsusp_unset_page_free(page);
3361 		}
3362 
3363 	for_each_migratetype_order(order, t) {
3364 		list_for_each_entry(page,
3365 				&zone->free_area[order].free_list[t], buddy_list) {
3366 			unsigned long i;
3367 
3368 			pfn = page_to_pfn(page);
3369 			for (i = 0; i < (1UL << order); i++) {
3370 				if (!--page_count) {
3371 					touch_nmi_watchdog();
3372 					page_count = WD_PAGE_COUNT;
3373 				}
3374 				swsusp_set_page_free(pfn_to_page(pfn + i));
3375 			}
3376 		}
3377 	}
3378 	spin_unlock_irqrestore(&zone->lock, flags);
3379 }
3380 #endif /* CONFIG_PM */
3381 
3382 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3383 							unsigned int order)
3384 {
3385 	int migratetype;
3386 
3387 	if (!free_pcp_prepare(page, order))
3388 		return false;
3389 
3390 	migratetype = get_pfnblock_migratetype(page, pfn);
3391 	set_pcppage_migratetype(page, migratetype);
3392 	return true;
3393 }
3394 
3395 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3396 		       bool free_high)
3397 {
3398 	int min_nr_free, max_nr_free;
3399 
3400 	/* Free everything if batch freeing high-order pages. */
3401 	if (unlikely(free_high))
3402 		return pcp->count;
3403 
3404 	/* Check for PCP disabled or boot pageset */
3405 	if (unlikely(high < batch))
3406 		return 1;
3407 
3408 	/* Leave at least pcp->batch pages on the list */
3409 	min_nr_free = batch;
3410 	max_nr_free = high - batch;
3411 
3412 	/*
3413 	 * Double the number of pages freed each time there is subsequent
3414 	 * freeing of pages without any allocation.
3415 	 */
3416 	batch <<= pcp->free_factor;
3417 	if (batch < max_nr_free)
3418 		pcp->free_factor++;
3419 	batch = clamp(batch, min_nr_free, max_nr_free);
3420 
3421 	return batch;
3422 }
3423 
3424 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3425 		       bool free_high)
3426 {
3427 	int high = READ_ONCE(pcp->high);
3428 
3429 	if (unlikely(!high || free_high))
3430 		return 0;
3431 
3432 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3433 		return high;
3434 
3435 	/*
3436 	 * If reclaim is active, limit the number of pages that can be
3437 	 * stored on pcp lists
3438 	 */
3439 	return min(READ_ONCE(pcp->batch) << 2, high);
3440 }
3441 
3442 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3443 				   struct page *page, int migratetype,
3444 				   unsigned int order)
3445 {
3446 	int high;
3447 	int pindex;
3448 	bool free_high;
3449 
3450 	__count_vm_events(PGFREE, 1 << order);
3451 	pindex = order_to_pindex(migratetype, order);
3452 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3453 	pcp->count += 1 << order;
3454 
3455 	/*
3456 	 * As high-order pages other than THP's stored on PCP can contribute
3457 	 * to fragmentation, limit the number stored when PCP is heavily
3458 	 * freeing without allocation. The remainder after bulk freeing
3459 	 * stops will be drained from vmstat refresh context.
3460 	 */
3461 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3462 
3463 	high = nr_pcp_high(pcp, zone, free_high);
3464 	if (pcp->count >= high) {
3465 		int batch = READ_ONCE(pcp->batch);
3466 
3467 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3468 	}
3469 }
3470 
3471 /*
3472  * Free a pcp page
3473  */
3474 void free_unref_page(struct page *page, unsigned int order)
3475 {
3476 	unsigned long __maybe_unused UP_flags;
3477 	struct per_cpu_pages *pcp;
3478 	struct zone *zone;
3479 	unsigned long pfn = page_to_pfn(page);
3480 	int migratetype;
3481 
3482 	if (!free_unref_page_prepare(page, pfn, order))
3483 		return;
3484 
3485 	/*
3486 	 * We only track unmovable, reclaimable and movable on pcp lists.
3487 	 * Place ISOLATE pages on the isolated list because they are being
3488 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3489 	 * areas back if necessary. Otherwise, we may have to free
3490 	 * excessively into the page allocator
3491 	 */
3492 	migratetype = get_pcppage_migratetype(page);
3493 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3494 		if (unlikely(is_migrate_isolate(migratetype))) {
3495 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3496 			return;
3497 		}
3498 		migratetype = MIGRATE_MOVABLE;
3499 	}
3500 
3501 	zone = page_zone(page);
3502 	pcp_trylock_prepare(UP_flags);
3503 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3504 	if (pcp) {
3505 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3506 		pcp_spin_unlock(pcp);
3507 	} else {
3508 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3509 	}
3510 	pcp_trylock_finish(UP_flags);
3511 }
3512 
3513 /*
3514  * Free a list of 0-order pages
3515  */
3516 void free_unref_page_list(struct list_head *list)
3517 {
3518 	unsigned long __maybe_unused UP_flags;
3519 	struct page *page, *next;
3520 	struct per_cpu_pages *pcp = NULL;
3521 	struct zone *locked_zone = NULL;
3522 	int batch_count = 0;
3523 	int migratetype;
3524 
3525 	/* Prepare pages for freeing */
3526 	list_for_each_entry_safe(page, next, list, lru) {
3527 		unsigned long pfn = page_to_pfn(page);
3528 		if (!free_unref_page_prepare(page, pfn, 0)) {
3529 			list_del(&page->lru);
3530 			continue;
3531 		}
3532 
3533 		/*
3534 		 * Free isolated pages directly to the allocator, see
3535 		 * comment in free_unref_page.
3536 		 */
3537 		migratetype = get_pcppage_migratetype(page);
3538 		if (unlikely(is_migrate_isolate(migratetype))) {
3539 			list_del(&page->lru);
3540 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 			continue;
3542 		}
3543 	}
3544 
3545 	list_for_each_entry_safe(page, next, list, lru) {
3546 		struct zone *zone = page_zone(page);
3547 
3548 		list_del(&page->lru);
3549 		migratetype = get_pcppage_migratetype(page);
3550 
3551 		/*
3552 		 * Either different zone requiring a different pcp lock or
3553 		 * excessive lock hold times when freeing a large list of
3554 		 * pages.
3555 		 */
3556 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3557 			if (pcp) {
3558 				pcp_spin_unlock(pcp);
3559 				pcp_trylock_finish(UP_flags);
3560 			}
3561 
3562 			batch_count = 0;
3563 
3564 			/*
3565 			 * trylock is necessary as pages may be getting freed
3566 			 * from IRQ or SoftIRQ context after an IO completion.
3567 			 */
3568 			pcp_trylock_prepare(UP_flags);
3569 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3570 			if (unlikely(!pcp)) {
3571 				pcp_trylock_finish(UP_flags);
3572 				free_one_page(zone, page, page_to_pfn(page),
3573 					      0, migratetype, FPI_NONE);
3574 				locked_zone = NULL;
3575 				continue;
3576 			}
3577 			locked_zone = zone;
3578 		}
3579 
3580 		/*
3581 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3582 		 * to the MIGRATE_MOVABLE pcp list.
3583 		 */
3584 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3585 			migratetype = MIGRATE_MOVABLE;
3586 
3587 		trace_mm_page_free_batched(page);
3588 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3589 		batch_count++;
3590 	}
3591 
3592 	if (pcp) {
3593 		pcp_spin_unlock(pcp);
3594 		pcp_trylock_finish(UP_flags);
3595 	}
3596 }
3597 
3598 /*
3599  * split_page takes a non-compound higher-order page, and splits it into
3600  * n (1<<order) sub-pages: page[0..n]
3601  * Each sub-page must be freed individually.
3602  *
3603  * Note: this is probably too low level an operation for use in drivers.
3604  * Please consult with lkml before using this in your driver.
3605  */
3606 void split_page(struct page *page, unsigned int order)
3607 {
3608 	int i;
3609 
3610 	VM_BUG_ON_PAGE(PageCompound(page), page);
3611 	VM_BUG_ON_PAGE(!page_count(page), page);
3612 
3613 	for (i = 1; i < (1 << order); i++)
3614 		set_page_refcounted(page + i);
3615 	split_page_owner(page, 1 << order);
3616 	split_page_memcg(page, 1 << order);
3617 }
3618 EXPORT_SYMBOL_GPL(split_page);
3619 
3620 int __isolate_free_page(struct page *page, unsigned int order)
3621 {
3622 	struct zone *zone = page_zone(page);
3623 	int mt = get_pageblock_migratetype(page);
3624 
3625 	if (!is_migrate_isolate(mt)) {
3626 		unsigned long watermark;
3627 		/*
3628 		 * Obey watermarks as if the page was being allocated. We can
3629 		 * emulate a high-order watermark check with a raised order-0
3630 		 * watermark, because we already know our high-order page
3631 		 * exists.
3632 		 */
3633 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3634 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3635 			return 0;
3636 
3637 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3638 	}
3639 
3640 	del_page_from_free_list(page, zone, order);
3641 
3642 	/*
3643 	 * Set the pageblock if the isolated page is at least half of a
3644 	 * pageblock
3645 	 */
3646 	if (order >= pageblock_order - 1) {
3647 		struct page *endpage = page + (1 << order) - 1;
3648 		for (; page < endpage; page += pageblock_nr_pages) {
3649 			int mt = get_pageblock_migratetype(page);
3650 			/*
3651 			 * Only change normal pageblocks (i.e., they can merge
3652 			 * with others)
3653 			 */
3654 			if (migratetype_is_mergeable(mt))
3655 				set_pageblock_migratetype(page,
3656 							  MIGRATE_MOVABLE);
3657 		}
3658 	}
3659 
3660 	return 1UL << order;
3661 }
3662 
3663 /**
3664  * __putback_isolated_page - Return a now-isolated page back where we got it
3665  * @page: Page that was isolated
3666  * @order: Order of the isolated page
3667  * @mt: The page's pageblock's migratetype
3668  *
3669  * This function is meant to return a page pulled from the free lists via
3670  * __isolate_free_page back to the free lists they were pulled from.
3671  */
3672 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3673 {
3674 	struct zone *zone = page_zone(page);
3675 
3676 	/* zone lock should be held when this function is called */
3677 	lockdep_assert_held(&zone->lock);
3678 
3679 	/* Return isolated page to tail of freelist. */
3680 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3681 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3682 }
3683 
3684 /*
3685  * Update NUMA hit/miss statistics
3686  */
3687 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3688 				   long nr_account)
3689 {
3690 #ifdef CONFIG_NUMA
3691 	enum numa_stat_item local_stat = NUMA_LOCAL;
3692 
3693 	/* skip numa counters update if numa stats is disabled */
3694 	if (!static_branch_likely(&vm_numa_stat_key))
3695 		return;
3696 
3697 	if (zone_to_nid(z) != numa_node_id())
3698 		local_stat = NUMA_OTHER;
3699 
3700 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3701 		__count_numa_events(z, NUMA_HIT, nr_account);
3702 	else {
3703 		__count_numa_events(z, NUMA_MISS, nr_account);
3704 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3705 	}
3706 	__count_numa_events(z, local_stat, nr_account);
3707 #endif
3708 }
3709 
3710 static __always_inline
3711 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3712 			   unsigned int order, unsigned int alloc_flags,
3713 			   int migratetype)
3714 {
3715 	struct page *page;
3716 	unsigned long flags;
3717 
3718 	do {
3719 		page = NULL;
3720 		spin_lock_irqsave(&zone->lock, flags);
3721 		/*
3722 		 * order-0 request can reach here when the pcplist is skipped
3723 		 * due to non-CMA allocation context. HIGHATOMIC area is
3724 		 * reserved for high-order atomic allocation, so order-0
3725 		 * request should skip it.
3726 		 */
3727 		if (alloc_flags & ALLOC_HIGHATOMIC)
3728 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3729 		if (!page) {
3730 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3731 
3732 			/*
3733 			 * If the allocation fails, allow OOM handling access
3734 			 * to HIGHATOMIC reserves as failing now is worse than
3735 			 * failing a high-order atomic allocation in the
3736 			 * future.
3737 			 */
3738 			if (!page && (alloc_flags & ALLOC_OOM))
3739 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3740 
3741 			if (!page) {
3742 				spin_unlock_irqrestore(&zone->lock, flags);
3743 				return NULL;
3744 			}
3745 		}
3746 		__mod_zone_freepage_state(zone, -(1 << order),
3747 					  get_pcppage_migratetype(page));
3748 		spin_unlock_irqrestore(&zone->lock, flags);
3749 	} while (check_new_pages(page, order));
3750 
3751 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3752 	zone_statistics(preferred_zone, zone, 1);
3753 
3754 	return page;
3755 }
3756 
3757 /* Remove page from the per-cpu list, caller must protect the list */
3758 static inline
3759 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3760 			int migratetype,
3761 			unsigned int alloc_flags,
3762 			struct per_cpu_pages *pcp,
3763 			struct list_head *list)
3764 {
3765 	struct page *page;
3766 
3767 	do {
3768 		if (list_empty(list)) {
3769 			int batch = READ_ONCE(pcp->batch);
3770 			int alloced;
3771 
3772 			/*
3773 			 * Scale batch relative to order if batch implies
3774 			 * free pages can be stored on the PCP. Batch can
3775 			 * be 1 for small zones or for boot pagesets which
3776 			 * should never store free pages as the pages may
3777 			 * belong to arbitrary zones.
3778 			 */
3779 			if (batch > 1)
3780 				batch = max(batch >> order, 2);
3781 			alloced = rmqueue_bulk(zone, order,
3782 					batch, list,
3783 					migratetype, alloc_flags);
3784 
3785 			pcp->count += alloced << order;
3786 			if (unlikely(list_empty(list)))
3787 				return NULL;
3788 		}
3789 
3790 		page = list_first_entry(list, struct page, pcp_list);
3791 		list_del(&page->pcp_list);
3792 		pcp->count -= 1 << order;
3793 	} while (check_new_pcp(page, order));
3794 
3795 	return page;
3796 }
3797 
3798 /* Lock and remove page from the per-cpu list */
3799 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3800 			struct zone *zone, unsigned int order,
3801 			int migratetype, unsigned int alloc_flags)
3802 {
3803 	struct per_cpu_pages *pcp;
3804 	struct list_head *list;
3805 	struct page *page;
3806 	unsigned long __maybe_unused UP_flags;
3807 
3808 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3809 	pcp_trylock_prepare(UP_flags);
3810 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3811 	if (!pcp) {
3812 		pcp_trylock_finish(UP_flags);
3813 		return NULL;
3814 	}
3815 
3816 	/*
3817 	 * On allocation, reduce the number of pages that are batch freed.
3818 	 * See nr_pcp_free() where free_factor is increased for subsequent
3819 	 * frees.
3820 	 */
3821 	pcp->free_factor >>= 1;
3822 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3823 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3824 	pcp_spin_unlock(pcp);
3825 	pcp_trylock_finish(UP_flags);
3826 	if (page) {
3827 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3828 		zone_statistics(preferred_zone, zone, 1);
3829 	}
3830 	return page;
3831 }
3832 
3833 /*
3834  * Allocate a page from the given zone.
3835  * Use pcplists for THP or "cheap" high-order allocations.
3836  */
3837 
3838 /*
3839  * Do not instrument rmqueue() with KMSAN. This function may call
3840  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3841  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3842  * may call rmqueue() again, which will result in a deadlock.
3843  */
3844 __no_sanitize_memory
3845 static inline
3846 struct page *rmqueue(struct zone *preferred_zone,
3847 			struct zone *zone, unsigned int order,
3848 			gfp_t gfp_flags, unsigned int alloc_flags,
3849 			int migratetype)
3850 {
3851 	struct page *page;
3852 
3853 	/*
3854 	 * We most definitely don't want callers attempting to
3855 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3856 	 */
3857 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3858 
3859 	if (likely(pcp_allowed_order(order))) {
3860 		/*
3861 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3862 		 * we need to skip it when CMA area isn't allowed.
3863 		 */
3864 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3865 				migratetype != MIGRATE_MOVABLE) {
3866 			page = rmqueue_pcplist(preferred_zone, zone, order,
3867 					migratetype, alloc_flags);
3868 			if (likely(page))
3869 				goto out;
3870 		}
3871 	}
3872 
3873 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3874 							migratetype);
3875 
3876 out:
3877 	/* Separate test+clear to avoid unnecessary atomics */
3878 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3879 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3880 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3881 	}
3882 
3883 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3884 	return page;
3885 }
3886 
3887 #ifdef CONFIG_FAIL_PAGE_ALLOC
3888 
3889 static struct {
3890 	struct fault_attr attr;
3891 
3892 	bool ignore_gfp_highmem;
3893 	bool ignore_gfp_reclaim;
3894 	u32 min_order;
3895 } fail_page_alloc = {
3896 	.attr = FAULT_ATTR_INITIALIZER,
3897 	.ignore_gfp_reclaim = true,
3898 	.ignore_gfp_highmem = true,
3899 	.min_order = 1,
3900 };
3901 
3902 static int __init setup_fail_page_alloc(char *str)
3903 {
3904 	return setup_fault_attr(&fail_page_alloc.attr, str);
3905 }
3906 __setup("fail_page_alloc=", setup_fail_page_alloc);
3907 
3908 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3909 {
3910 	int flags = 0;
3911 
3912 	if (order < fail_page_alloc.min_order)
3913 		return false;
3914 	if (gfp_mask & __GFP_NOFAIL)
3915 		return false;
3916 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3917 		return false;
3918 	if (fail_page_alloc.ignore_gfp_reclaim &&
3919 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3920 		return false;
3921 
3922 	/* See comment in __should_failslab() */
3923 	if (gfp_mask & __GFP_NOWARN)
3924 		flags |= FAULT_NOWARN;
3925 
3926 	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3927 }
3928 
3929 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3930 
3931 static int __init fail_page_alloc_debugfs(void)
3932 {
3933 	umode_t mode = S_IFREG | 0600;
3934 	struct dentry *dir;
3935 
3936 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3937 					&fail_page_alloc.attr);
3938 
3939 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3940 			    &fail_page_alloc.ignore_gfp_reclaim);
3941 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3942 			    &fail_page_alloc.ignore_gfp_highmem);
3943 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3944 
3945 	return 0;
3946 }
3947 
3948 late_initcall(fail_page_alloc_debugfs);
3949 
3950 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3951 
3952 #else /* CONFIG_FAIL_PAGE_ALLOC */
3953 
3954 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3955 {
3956 	return false;
3957 }
3958 
3959 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3960 
3961 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3962 {
3963 	return __should_fail_alloc_page(gfp_mask, order);
3964 }
3965 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3966 
3967 static inline long __zone_watermark_unusable_free(struct zone *z,
3968 				unsigned int order, unsigned int alloc_flags)
3969 {
3970 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3971 	long unusable_free = (1 << order) - 1;
3972 
3973 	/*
3974 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3975 	 * the high-atomic reserves. This will over-estimate the size of the
3976 	 * atomic reserve but it avoids a search.
3977 	 */
3978 	if (likely(!alloc_harder))
3979 		unusable_free += z->nr_reserved_highatomic;
3980 
3981 #ifdef CONFIG_CMA
3982 	/* If allocation can't use CMA areas don't use free CMA pages */
3983 	if (!(alloc_flags & ALLOC_CMA))
3984 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3985 #endif
3986 
3987 	return unusable_free;
3988 }
3989 
3990 /*
3991  * Return true if free base pages are above 'mark'. For high-order checks it
3992  * will return true of the order-0 watermark is reached and there is at least
3993  * one free page of a suitable size. Checking now avoids taking the zone lock
3994  * to check in the allocation paths if no pages are free.
3995  */
3996 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3997 			 int highest_zoneidx, unsigned int alloc_flags,
3998 			 long free_pages)
3999 {
4000 	long min = mark;
4001 	int o;
4002 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
4003 
4004 	/* free_pages may go negative - that's OK */
4005 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4006 
4007 	if (alloc_flags & ALLOC_MIN_RESERVE)
4008 		min -= min / 2;
4009 
4010 	if (unlikely(alloc_harder)) {
4011 		/*
4012 		 * OOM victims can try even harder than normal ALLOC_HARDER
4013 		 * users on the grounds that it's definitely going to be in
4014 		 * the exit path shortly and free memory. Any allocation it
4015 		 * makes during the free path will be small and short-lived.
4016 		 */
4017 		if (alloc_flags & ALLOC_OOM)
4018 			min -= min / 2;
4019 		else
4020 			min -= min / 4;
4021 	}
4022 
4023 	/*
4024 	 * Check watermarks for an order-0 allocation request. If these
4025 	 * are not met, then a high-order request also cannot go ahead
4026 	 * even if a suitable page happened to be free.
4027 	 */
4028 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4029 		return false;
4030 
4031 	/* If this is an order-0 request then the watermark is fine */
4032 	if (!order)
4033 		return true;
4034 
4035 	/* For a high-order request, check at least one suitable page is free */
4036 	for (o = order; o < MAX_ORDER; o++) {
4037 		struct free_area *area = &z->free_area[o];
4038 		int mt;
4039 
4040 		if (!area->nr_free)
4041 			continue;
4042 
4043 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4044 			if (!free_area_empty(area, mt))
4045 				return true;
4046 		}
4047 
4048 #ifdef CONFIG_CMA
4049 		if ((alloc_flags & ALLOC_CMA) &&
4050 		    !free_area_empty(area, MIGRATE_CMA)) {
4051 			return true;
4052 		}
4053 #endif
4054 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
4055 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
4056 			return true;
4057 		}
4058 	}
4059 	return false;
4060 }
4061 
4062 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4063 		      int highest_zoneidx, unsigned int alloc_flags)
4064 {
4065 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4066 					zone_page_state(z, NR_FREE_PAGES));
4067 }
4068 
4069 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4070 				unsigned long mark, int highest_zoneidx,
4071 				unsigned int alloc_flags, gfp_t gfp_mask)
4072 {
4073 	long free_pages;
4074 
4075 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4076 
4077 	/*
4078 	 * Fast check for order-0 only. If this fails then the reserves
4079 	 * need to be calculated.
4080 	 */
4081 	if (!order) {
4082 		long usable_free;
4083 		long reserved;
4084 
4085 		usable_free = free_pages;
4086 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4087 
4088 		/* reserved may over estimate high-atomic reserves. */
4089 		usable_free -= min(usable_free, reserved);
4090 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4091 			return true;
4092 	}
4093 
4094 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4095 					free_pages))
4096 		return true;
4097 	/*
4098 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4099 	 * when checking the min watermark. The min watermark is the
4100 	 * point where boosting is ignored so that kswapd is woken up
4101 	 * when below the low watermark.
4102 	 */
4103 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4104 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4105 		mark = z->_watermark[WMARK_MIN];
4106 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4107 					alloc_flags, free_pages);
4108 	}
4109 
4110 	return false;
4111 }
4112 
4113 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4114 			unsigned long mark, int highest_zoneidx)
4115 {
4116 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4117 
4118 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4119 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4120 
4121 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4122 								free_pages);
4123 }
4124 
4125 #ifdef CONFIG_NUMA
4126 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4127 
4128 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4129 {
4130 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4131 				node_reclaim_distance;
4132 }
4133 #else	/* CONFIG_NUMA */
4134 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4135 {
4136 	return true;
4137 }
4138 #endif	/* CONFIG_NUMA */
4139 
4140 /*
4141  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4142  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4143  * premature use of a lower zone may cause lowmem pressure problems that
4144  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4145  * probably too small. It only makes sense to spread allocations to avoid
4146  * fragmentation between the Normal and DMA32 zones.
4147  */
4148 static inline unsigned int
4149 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4150 {
4151 	unsigned int alloc_flags;
4152 
4153 	/*
4154 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4155 	 * to save a branch.
4156 	 */
4157 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4158 
4159 #ifdef CONFIG_ZONE_DMA32
4160 	if (!zone)
4161 		return alloc_flags;
4162 
4163 	if (zone_idx(zone) != ZONE_NORMAL)
4164 		return alloc_flags;
4165 
4166 	/*
4167 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4168 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4169 	 * on UMA that if Normal is populated then so is DMA32.
4170 	 */
4171 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4172 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4173 		return alloc_flags;
4174 
4175 	alloc_flags |= ALLOC_NOFRAGMENT;
4176 #endif /* CONFIG_ZONE_DMA32 */
4177 	return alloc_flags;
4178 }
4179 
4180 /* Must be called after current_gfp_context() which can change gfp_mask */
4181 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4182 						  unsigned int alloc_flags)
4183 {
4184 #ifdef CONFIG_CMA
4185 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4186 		alloc_flags |= ALLOC_CMA;
4187 #endif
4188 	return alloc_flags;
4189 }
4190 
4191 /*
4192  * get_page_from_freelist goes through the zonelist trying to allocate
4193  * a page.
4194  */
4195 static struct page *
4196 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4197 						const struct alloc_context *ac)
4198 {
4199 	struct zoneref *z;
4200 	struct zone *zone;
4201 	struct pglist_data *last_pgdat = NULL;
4202 	bool last_pgdat_dirty_ok = false;
4203 	bool no_fallback;
4204 
4205 retry:
4206 	/*
4207 	 * Scan zonelist, looking for a zone with enough free.
4208 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4209 	 */
4210 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4211 	z = ac->preferred_zoneref;
4212 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4213 					ac->nodemask) {
4214 		struct page *page;
4215 		unsigned long mark;
4216 
4217 		if (cpusets_enabled() &&
4218 			(alloc_flags & ALLOC_CPUSET) &&
4219 			!__cpuset_zone_allowed(zone, gfp_mask))
4220 				continue;
4221 		/*
4222 		 * When allocating a page cache page for writing, we
4223 		 * want to get it from a node that is within its dirty
4224 		 * limit, such that no single node holds more than its
4225 		 * proportional share of globally allowed dirty pages.
4226 		 * The dirty limits take into account the node's
4227 		 * lowmem reserves and high watermark so that kswapd
4228 		 * should be able to balance it without having to
4229 		 * write pages from its LRU list.
4230 		 *
4231 		 * XXX: For now, allow allocations to potentially
4232 		 * exceed the per-node dirty limit in the slowpath
4233 		 * (spread_dirty_pages unset) before going into reclaim,
4234 		 * which is important when on a NUMA setup the allowed
4235 		 * nodes are together not big enough to reach the
4236 		 * global limit.  The proper fix for these situations
4237 		 * will require awareness of nodes in the
4238 		 * dirty-throttling and the flusher threads.
4239 		 */
4240 		if (ac->spread_dirty_pages) {
4241 			if (last_pgdat != zone->zone_pgdat) {
4242 				last_pgdat = zone->zone_pgdat;
4243 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4244 			}
4245 
4246 			if (!last_pgdat_dirty_ok)
4247 				continue;
4248 		}
4249 
4250 		if (no_fallback && nr_online_nodes > 1 &&
4251 		    zone != ac->preferred_zoneref->zone) {
4252 			int local_nid;
4253 
4254 			/*
4255 			 * If moving to a remote node, retry but allow
4256 			 * fragmenting fallbacks. Locality is more important
4257 			 * than fragmentation avoidance.
4258 			 */
4259 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4260 			if (zone_to_nid(zone) != local_nid) {
4261 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4262 				goto retry;
4263 			}
4264 		}
4265 
4266 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4267 		if (!zone_watermark_fast(zone, order, mark,
4268 				       ac->highest_zoneidx, alloc_flags,
4269 				       gfp_mask)) {
4270 			int ret;
4271 
4272 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4273 			/*
4274 			 * Watermark failed for this zone, but see if we can
4275 			 * grow this zone if it contains deferred pages.
4276 			 */
4277 			if (static_branch_unlikely(&deferred_pages)) {
4278 				if (_deferred_grow_zone(zone, order))
4279 					goto try_this_zone;
4280 			}
4281 #endif
4282 			/* Checked here to keep the fast path fast */
4283 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4284 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4285 				goto try_this_zone;
4286 
4287 			if (!node_reclaim_enabled() ||
4288 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4289 				continue;
4290 
4291 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4292 			switch (ret) {
4293 			case NODE_RECLAIM_NOSCAN:
4294 				/* did not scan */
4295 				continue;
4296 			case NODE_RECLAIM_FULL:
4297 				/* scanned but unreclaimable */
4298 				continue;
4299 			default:
4300 				/* did we reclaim enough */
4301 				if (zone_watermark_ok(zone, order, mark,
4302 					ac->highest_zoneidx, alloc_flags))
4303 					goto try_this_zone;
4304 
4305 				continue;
4306 			}
4307 		}
4308 
4309 try_this_zone:
4310 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4311 				gfp_mask, alloc_flags, ac->migratetype);
4312 		if (page) {
4313 			prep_new_page(page, order, gfp_mask, alloc_flags);
4314 
4315 			/*
4316 			 * If this is a high-order atomic allocation then check
4317 			 * if the pageblock should be reserved for the future
4318 			 */
4319 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
4320 				reserve_highatomic_pageblock(page, zone, order);
4321 
4322 			return page;
4323 		} else {
4324 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4325 			/* Try again if zone has deferred pages */
4326 			if (static_branch_unlikely(&deferred_pages)) {
4327 				if (_deferred_grow_zone(zone, order))
4328 					goto try_this_zone;
4329 			}
4330 #endif
4331 		}
4332 	}
4333 
4334 	/*
4335 	 * It's possible on a UMA machine to get through all zones that are
4336 	 * fragmented. If avoiding fragmentation, reset and try again.
4337 	 */
4338 	if (no_fallback) {
4339 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4340 		goto retry;
4341 	}
4342 
4343 	return NULL;
4344 }
4345 
4346 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4347 {
4348 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4349 
4350 	/*
4351 	 * This documents exceptions given to allocations in certain
4352 	 * contexts that are allowed to allocate outside current's set
4353 	 * of allowed nodes.
4354 	 */
4355 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4356 		if (tsk_is_oom_victim(current) ||
4357 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4358 			filter &= ~SHOW_MEM_FILTER_NODES;
4359 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4360 		filter &= ~SHOW_MEM_FILTER_NODES;
4361 
4362 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4363 }
4364 
4365 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4366 {
4367 	struct va_format vaf;
4368 	va_list args;
4369 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4370 
4371 	if ((gfp_mask & __GFP_NOWARN) ||
4372 	     !__ratelimit(&nopage_rs) ||
4373 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4374 		return;
4375 
4376 	va_start(args, fmt);
4377 	vaf.fmt = fmt;
4378 	vaf.va = &args;
4379 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4380 			current->comm, &vaf, gfp_mask, &gfp_mask,
4381 			nodemask_pr_args(nodemask));
4382 	va_end(args);
4383 
4384 	cpuset_print_current_mems_allowed();
4385 	pr_cont("\n");
4386 	dump_stack();
4387 	warn_alloc_show_mem(gfp_mask, nodemask);
4388 }
4389 
4390 static inline struct page *
4391 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4392 			      unsigned int alloc_flags,
4393 			      const struct alloc_context *ac)
4394 {
4395 	struct page *page;
4396 
4397 	page = get_page_from_freelist(gfp_mask, order,
4398 			alloc_flags|ALLOC_CPUSET, ac);
4399 	/*
4400 	 * fallback to ignore cpuset restriction if our nodes
4401 	 * are depleted
4402 	 */
4403 	if (!page)
4404 		page = get_page_from_freelist(gfp_mask, order,
4405 				alloc_flags, ac);
4406 
4407 	return page;
4408 }
4409 
4410 static inline struct page *
4411 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4412 	const struct alloc_context *ac, unsigned long *did_some_progress)
4413 {
4414 	struct oom_control oc = {
4415 		.zonelist = ac->zonelist,
4416 		.nodemask = ac->nodemask,
4417 		.memcg = NULL,
4418 		.gfp_mask = gfp_mask,
4419 		.order = order,
4420 	};
4421 	struct page *page;
4422 
4423 	*did_some_progress = 0;
4424 
4425 	/*
4426 	 * Acquire the oom lock.  If that fails, somebody else is
4427 	 * making progress for us.
4428 	 */
4429 	if (!mutex_trylock(&oom_lock)) {
4430 		*did_some_progress = 1;
4431 		schedule_timeout_uninterruptible(1);
4432 		return NULL;
4433 	}
4434 
4435 	/*
4436 	 * Go through the zonelist yet one more time, keep very high watermark
4437 	 * here, this is only to catch a parallel oom killing, we must fail if
4438 	 * we're still under heavy pressure. But make sure that this reclaim
4439 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4440 	 * allocation which will never fail due to oom_lock already held.
4441 	 */
4442 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4443 				      ~__GFP_DIRECT_RECLAIM, order,
4444 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4445 	if (page)
4446 		goto out;
4447 
4448 	/* Coredumps can quickly deplete all memory reserves */
4449 	if (current->flags & PF_DUMPCORE)
4450 		goto out;
4451 	/* The OOM killer will not help higher order allocs */
4452 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4453 		goto out;
4454 	/*
4455 	 * We have already exhausted all our reclaim opportunities without any
4456 	 * success so it is time to admit defeat. We will skip the OOM killer
4457 	 * because it is very likely that the caller has a more reasonable
4458 	 * fallback than shooting a random task.
4459 	 *
4460 	 * The OOM killer may not free memory on a specific node.
4461 	 */
4462 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4463 		goto out;
4464 	/* The OOM killer does not needlessly kill tasks for lowmem */
4465 	if (ac->highest_zoneidx < ZONE_NORMAL)
4466 		goto out;
4467 	if (pm_suspended_storage())
4468 		goto out;
4469 	/*
4470 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4471 	 * other request to make a forward progress.
4472 	 * We are in an unfortunate situation where out_of_memory cannot
4473 	 * do much for this context but let's try it to at least get
4474 	 * access to memory reserved if the current task is killed (see
4475 	 * out_of_memory). Once filesystems are ready to handle allocation
4476 	 * failures more gracefully we should just bail out here.
4477 	 */
4478 
4479 	/* Exhausted what can be done so it's blame time */
4480 	if (out_of_memory(&oc) ||
4481 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4482 		*did_some_progress = 1;
4483 
4484 		/*
4485 		 * Help non-failing allocations by giving them access to memory
4486 		 * reserves
4487 		 */
4488 		if (gfp_mask & __GFP_NOFAIL)
4489 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4490 					ALLOC_NO_WATERMARKS, ac);
4491 	}
4492 out:
4493 	mutex_unlock(&oom_lock);
4494 	return page;
4495 }
4496 
4497 /*
4498  * Maximum number of compaction retries with a progress before OOM
4499  * killer is consider as the only way to move forward.
4500  */
4501 #define MAX_COMPACT_RETRIES 16
4502 
4503 #ifdef CONFIG_COMPACTION
4504 /* Try memory compaction for high-order allocations before reclaim */
4505 static struct page *
4506 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4507 		unsigned int alloc_flags, const struct alloc_context *ac,
4508 		enum compact_priority prio, enum compact_result *compact_result)
4509 {
4510 	struct page *page = NULL;
4511 	unsigned long pflags;
4512 	unsigned int noreclaim_flag;
4513 
4514 	if (!order)
4515 		return NULL;
4516 
4517 	psi_memstall_enter(&pflags);
4518 	delayacct_compact_start();
4519 	noreclaim_flag = memalloc_noreclaim_save();
4520 
4521 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4522 								prio, &page);
4523 
4524 	memalloc_noreclaim_restore(noreclaim_flag);
4525 	psi_memstall_leave(&pflags);
4526 	delayacct_compact_end();
4527 
4528 	if (*compact_result == COMPACT_SKIPPED)
4529 		return NULL;
4530 	/*
4531 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4532 	 * count a compaction stall
4533 	 */
4534 	count_vm_event(COMPACTSTALL);
4535 
4536 	/* Prep a captured page if available */
4537 	if (page)
4538 		prep_new_page(page, order, gfp_mask, alloc_flags);
4539 
4540 	/* Try get a page from the freelist if available */
4541 	if (!page)
4542 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4543 
4544 	if (page) {
4545 		struct zone *zone = page_zone(page);
4546 
4547 		zone->compact_blockskip_flush = false;
4548 		compaction_defer_reset(zone, order, true);
4549 		count_vm_event(COMPACTSUCCESS);
4550 		return page;
4551 	}
4552 
4553 	/*
4554 	 * It's bad if compaction run occurs and fails. The most likely reason
4555 	 * is that pages exist, but not enough to satisfy watermarks.
4556 	 */
4557 	count_vm_event(COMPACTFAIL);
4558 
4559 	cond_resched();
4560 
4561 	return NULL;
4562 }
4563 
4564 static inline bool
4565 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4566 		     enum compact_result compact_result,
4567 		     enum compact_priority *compact_priority,
4568 		     int *compaction_retries)
4569 {
4570 	int max_retries = MAX_COMPACT_RETRIES;
4571 	int min_priority;
4572 	bool ret = false;
4573 	int retries = *compaction_retries;
4574 	enum compact_priority priority = *compact_priority;
4575 
4576 	if (!order)
4577 		return false;
4578 
4579 	if (fatal_signal_pending(current))
4580 		return false;
4581 
4582 	if (compaction_made_progress(compact_result))
4583 		(*compaction_retries)++;
4584 
4585 	/*
4586 	 * compaction considers all the zone as desperately out of memory
4587 	 * so it doesn't really make much sense to retry except when the
4588 	 * failure could be caused by insufficient priority
4589 	 */
4590 	if (compaction_failed(compact_result))
4591 		goto check_priority;
4592 
4593 	/*
4594 	 * compaction was skipped because there are not enough order-0 pages
4595 	 * to work with, so we retry only if it looks like reclaim can help.
4596 	 */
4597 	if (compaction_needs_reclaim(compact_result)) {
4598 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4599 		goto out;
4600 	}
4601 
4602 	/*
4603 	 * make sure the compaction wasn't deferred or didn't bail out early
4604 	 * due to locks contention before we declare that we should give up.
4605 	 * But the next retry should use a higher priority if allowed, so
4606 	 * we don't just keep bailing out endlessly.
4607 	 */
4608 	if (compaction_withdrawn(compact_result)) {
4609 		goto check_priority;
4610 	}
4611 
4612 	/*
4613 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4614 	 * costly ones because they are de facto nofail and invoke OOM
4615 	 * killer to move on while costly can fail and users are ready
4616 	 * to cope with that. 1/4 retries is rather arbitrary but we
4617 	 * would need much more detailed feedback from compaction to
4618 	 * make a better decision.
4619 	 */
4620 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4621 		max_retries /= 4;
4622 	if (*compaction_retries <= max_retries) {
4623 		ret = true;
4624 		goto out;
4625 	}
4626 
4627 	/*
4628 	 * Make sure there are attempts at the highest priority if we exhausted
4629 	 * all retries or failed at the lower priorities.
4630 	 */
4631 check_priority:
4632 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4633 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4634 
4635 	if (*compact_priority > min_priority) {
4636 		(*compact_priority)--;
4637 		*compaction_retries = 0;
4638 		ret = true;
4639 	}
4640 out:
4641 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4642 	return ret;
4643 }
4644 #else
4645 static inline struct page *
4646 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4647 		unsigned int alloc_flags, const struct alloc_context *ac,
4648 		enum compact_priority prio, enum compact_result *compact_result)
4649 {
4650 	*compact_result = COMPACT_SKIPPED;
4651 	return NULL;
4652 }
4653 
4654 static inline bool
4655 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4656 		     enum compact_result compact_result,
4657 		     enum compact_priority *compact_priority,
4658 		     int *compaction_retries)
4659 {
4660 	struct zone *zone;
4661 	struct zoneref *z;
4662 
4663 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4664 		return false;
4665 
4666 	/*
4667 	 * There are setups with compaction disabled which would prefer to loop
4668 	 * inside the allocator rather than hit the oom killer prematurely.
4669 	 * Let's give them a good hope and keep retrying while the order-0
4670 	 * watermarks are OK.
4671 	 */
4672 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4673 				ac->highest_zoneidx, ac->nodemask) {
4674 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4675 					ac->highest_zoneidx, alloc_flags))
4676 			return true;
4677 	}
4678 	return false;
4679 }
4680 #endif /* CONFIG_COMPACTION */
4681 
4682 #ifdef CONFIG_LOCKDEP
4683 static struct lockdep_map __fs_reclaim_map =
4684 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4685 
4686 static bool __need_reclaim(gfp_t gfp_mask)
4687 {
4688 	/* no reclaim without waiting on it */
4689 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4690 		return false;
4691 
4692 	/* this guy won't enter reclaim */
4693 	if (current->flags & PF_MEMALLOC)
4694 		return false;
4695 
4696 	if (gfp_mask & __GFP_NOLOCKDEP)
4697 		return false;
4698 
4699 	return true;
4700 }
4701 
4702 void __fs_reclaim_acquire(unsigned long ip)
4703 {
4704 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4705 }
4706 
4707 void __fs_reclaim_release(unsigned long ip)
4708 {
4709 	lock_release(&__fs_reclaim_map, ip);
4710 }
4711 
4712 void fs_reclaim_acquire(gfp_t gfp_mask)
4713 {
4714 	gfp_mask = current_gfp_context(gfp_mask);
4715 
4716 	if (__need_reclaim(gfp_mask)) {
4717 		if (gfp_mask & __GFP_FS)
4718 			__fs_reclaim_acquire(_RET_IP_);
4719 
4720 #ifdef CONFIG_MMU_NOTIFIER
4721 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4722 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4723 #endif
4724 
4725 	}
4726 }
4727 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4728 
4729 void fs_reclaim_release(gfp_t gfp_mask)
4730 {
4731 	gfp_mask = current_gfp_context(gfp_mask);
4732 
4733 	if (__need_reclaim(gfp_mask)) {
4734 		if (gfp_mask & __GFP_FS)
4735 			__fs_reclaim_release(_RET_IP_);
4736 	}
4737 }
4738 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4739 #endif
4740 
4741 /*
4742  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4743  * have been rebuilt so allocation retries. Reader side does not lock and
4744  * retries the allocation if zonelist changes. Writer side is protected by the
4745  * embedded spin_lock.
4746  */
4747 static DEFINE_SEQLOCK(zonelist_update_seq);
4748 
4749 static unsigned int zonelist_iter_begin(void)
4750 {
4751 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4752 		return read_seqbegin(&zonelist_update_seq);
4753 
4754 	return 0;
4755 }
4756 
4757 static unsigned int check_retry_zonelist(unsigned int seq)
4758 {
4759 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4760 		return read_seqretry(&zonelist_update_seq, seq);
4761 
4762 	return seq;
4763 }
4764 
4765 /* Perform direct synchronous page reclaim */
4766 static unsigned long
4767 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4768 					const struct alloc_context *ac)
4769 {
4770 	unsigned int noreclaim_flag;
4771 	unsigned long progress;
4772 
4773 	cond_resched();
4774 
4775 	/* We now go into synchronous reclaim */
4776 	cpuset_memory_pressure_bump();
4777 	fs_reclaim_acquire(gfp_mask);
4778 	noreclaim_flag = memalloc_noreclaim_save();
4779 
4780 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4781 								ac->nodemask);
4782 
4783 	memalloc_noreclaim_restore(noreclaim_flag);
4784 	fs_reclaim_release(gfp_mask);
4785 
4786 	cond_resched();
4787 
4788 	return progress;
4789 }
4790 
4791 /* The really slow allocator path where we enter direct reclaim */
4792 static inline struct page *
4793 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4794 		unsigned int alloc_flags, const struct alloc_context *ac,
4795 		unsigned long *did_some_progress)
4796 {
4797 	struct page *page = NULL;
4798 	unsigned long pflags;
4799 	bool drained = false;
4800 
4801 	psi_memstall_enter(&pflags);
4802 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4803 	if (unlikely(!(*did_some_progress)))
4804 		goto out;
4805 
4806 retry:
4807 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4808 
4809 	/*
4810 	 * If an allocation failed after direct reclaim, it could be because
4811 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4812 	 * Shrink them and try again
4813 	 */
4814 	if (!page && !drained) {
4815 		unreserve_highatomic_pageblock(ac, false);
4816 		drain_all_pages(NULL);
4817 		drained = true;
4818 		goto retry;
4819 	}
4820 out:
4821 	psi_memstall_leave(&pflags);
4822 
4823 	return page;
4824 }
4825 
4826 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4827 			     const struct alloc_context *ac)
4828 {
4829 	struct zoneref *z;
4830 	struct zone *zone;
4831 	pg_data_t *last_pgdat = NULL;
4832 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4833 
4834 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4835 					ac->nodemask) {
4836 		if (!managed_zone(zone))
4837 			continue;
4838 		if (last_pgdat != zone->zone_pgdat) {
4839 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4840 			last_pgdat = zone->zone_pgdat;
4841 		}
4842 	}
4843 }
4844 
4845 static inline unsigned int
4846 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4847 {
4848 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4849 
4850 	/*
4851 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4852 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4853 	 * to save two branches.
4854 	 */
4855 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4856 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4857 
4858 	/*
4859 	 * The caller may dip into page reserves a bit more if the caller
4860 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4861 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4862 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_MIN_RESERVE(__GFP_HIGH).
4863 	 */
4864 	alloc_flags |= (__force int)
4865 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4866 
4867 	if (gfp_mask & __GFP_ATOMIC) {
4868 		/*
4869 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4870 		 * if it can't schedule.
4871 		 */
4872 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4873 			alloc_flags |= ALLOC_HARDER;
4874 
4875 			if (order > 0)
4876 				alloc_flags |= ALLOC_HIGHATOMIC;
4877 		}
4878 
4879 		/*
4880 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4881 		 * comment for __cpuset_node_allowed().
4882 		 */
4883 		alloc_flags &= ~ALLOC_CPUSET;
4884 	} else if (unlikely(rt_task(current)) && in_task())
4885 		alloc_flags |= ALLOC_MIN_RESERVE;
4886 
4887 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4888 
4889 	return alloc_flags;
4890 }
4891 
4892 static bool oom_reserves_allowed(struct task_struct *tsk)
4893 {
4894 	if (!tsk_is_oom_victim(tsk))
4895 		return false;
4896 
4897 	/*
4898 	 * !MMU doesn't have oom reaper so give access to memory reserves
4899 	 * only to the thread with TIF_MEMDIE set
4900 	 */
4901 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4902 		return false;
4903 
4904 	return true;
4905 }
4906 
4907 /*
4908  * Distinguish requests which really need access to full memory
4909  * reserves from oom victims which can live with a portion of it
4910  */
4911 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4912 {
4913 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4914 		return 0;
4915 	if (gfp_mask & __GFP_MEMALLOC)
4916 		return ALLOC_NO_WATERMARKS;
4917 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4918 		return ALLOC_NO_WATERMARKS;
4919 	if (!in_interrupt()) {
4920 		if (current->flags & PF_MEMALLOC)
4921 			return ALLOC_NO_WATERMARKS;
4922 		else if (oom_reserves_allowed(current))
4923 			return ALLOC_OOM;
4924 	}
4925 
4926 	return 0;
4927 }
4928 
4929 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4930 {
4931 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4932 }
4933 
4934 /*
4935  * Checks whether it makes sense to retry the reclaim to make a forward progress
4936  * for the given allocation request.
4937  *
4938  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4939  * without success, or when we couldn't even meet the watermark if we
4940  * reclaimed all remaining pages on the LRU lists.
4941  *
4942  * Returns true if a retry is viable or false to enter the oom path.
4943  */
4944 static inline bool
4945 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4946 		     struct alloc_context *ac, int alloc_flags,
4947 		     bool did_some_progress, int *no_progress_loops)
4948 {
4949 	struct zone *zone;
4950 	struct zoneref *z;
4951 	bool ret = false;
4952 
4953 	/*
4954 	 * Costly allocations might have made a progress but this doesn't mean
4955 	 * their order will become available due to high fragmentation so
4956 	 * always increment the no progress counter for them
4957 	 */
4958 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4959 		*no_progress_loops = 0;
4960 	else
4961 		(*no_progress_loops)++;
4962 
4963 	/*
4964 	 * Make sure we converge to OOM if we cannot make any progress
4965 	 * several times in the row.
4966 	 */
4967 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4968 		/* Before OOM, exhaust highatomic_reserve */
4969 		return unreserve_highatomic_pageblock(ac, true);
4970 	}
4971 
4972 	/*
4973 	 * Keep reclaiming pages while there is a chance this will lead
4974 	 * somewhere.  If none of the target zones can satisfy our allocation
4975 	 * request even if all reclaimable pages are considered then we are
4976 	 * screwed and have to go OOM.
4977 	 */
4978 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4979 				ac->highest_zoneidx, ac->nodemask) {
4980 		unsigned long available;
4981 		unsigned long reclaimable;
4982 		unsigned long min_wmark = min_wmark_pages(zone);
4983 		bool wmark;
4984 
4985 		available = reclaimable = zone_reclaimable_pages(zone);
4986 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4987 
4988 		/*
4989 		 * Would the allocation succeed if we reclaimed all
4990 		 * reclaimable pages?
4991 		 */
4992 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4993 				ac->highest_zoneidx, alloc_flags, available);
4994 		trace_reclaim_retry_zone(z, order, reclaimable,
4995 				available, min_wmark, *no_progress_loops, wmark);
4996 		if (wmark) {
4997 			ret = true;
4998 			break;
4999 		}
5000 	}
5001 
5002 	/*
5003 	 * Memory allocation/reclaim might be called from a WQ context and the
5004 	 * current implementation of the WQ concurrency control doesn't
5005 	 * recognize that a particular WQ is congested if the worker thread is
5006 	 * looping without ever sleeping. Therefore we have to do a short sleep
5007 	 * here rather than calling cond_resched().
5008 	 */
5009 	if (current->flags & PF_WQ_WORKER)
5010 		schedule_timeout_uninterruptible(1);
5011 	else
5012 		cond_resched();
5013 	return ret;
5014 }
5015 
5016 static inline bool
5017 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5018 {
5019 	/*
5020 	 * It's possible that cpuset's mems_allowed and the nodemask from
5021 	 * mempolicy don't intersect. This should be normally dealt with by
5022 	 * policy_nodemask(), but it's possible to race with cpuset update in
5023 	 * such a way the check therein was true, and then it became false
5024 	 * before we got our cpuset_mems_cookie here.
5025 	 * This assumes that for all allocations, ac->nodemask can come only
5026 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5027 	 * when it does not intersect with the cpuset restrictions) or the
5028 	 * caller can deal with a violated nodemask.
5029 	 */
5030 	if (cpusets_enabled() && ac->nodemask &&
5031 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5032 		ac->nodemask = NULL;
5033 		return true;
5034 	}
5035 
5036 	/*
5037 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5038 	 * possible to race with parallel threads in such a way that our
5039 	 * allocation can fail while the mask is being updated. If we are about
5040 	 * to fail, check if the cpuset changed during allocation and if so,
5041 	 * retry.
5042 	 */
5043 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5044 		return true;
5045 
5046 	return false;
5047 }
5048 
5049 static inline struct page *
5050 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5051 						struct alloc_context *ac)
5052 {
5053 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5054 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5055 	struct page *page = NULL;
5056 	unsigned int alloc_flags;
5057 	unsigned long did_some_progress;
5058 	enum compact_priority compact_priority;
5059 	enum compact_result compact_result;
5060 	int compaction_retries;
5061 	int no_progress_loops;
5062 	unsigned int cpuset_mems_cookie;
5063 	unsigned int zonelist_iter_cookie;
5064 	int reserve_flags;
5065 
5066 	/*
5067 	 * We also sanity check to catch abuse of atomic reserves being used by
5068 	 * callers that are not in atomic context.
5069 	 */
5070 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5071 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5072 		gfp_mask &= ~__GFP_ATOMIC;
5073 
5074 restart:
5075 	compaction_retries = 0;
5076 	no_progress_loops = 0;
5077 	compact_priority = DEF_COMPACT_PRIORITY;
5078 	cpuset_mems_cookie = read_mems_allowed_begin();
5079 	zonelist_iter_cookie = zonelist_iter_begin();
5080 
5081 	/*
5082 	 * The fast path uses conservative alloc_flags to succeed only until
5083 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5084 	 * alloc_flags precisely. So we do that now.
5085 	 */
5086 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
5087 
5088 	/*
5089 	 * We need to recalculate the starting point for the zonelist iterator
5090 	 * because we might have used different nodemask in the fast path, or
5091 	 * there was a cpuset modification and we are retrying - otherwise we
5092 	 * could end up iterating over non-eligible zones endlessly.
5093 	 */
5094 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5095 					ac->highest_zoneidx, ac->nodemask);
5096 	if (!ac->preferred_zoneref->zone)
5097 		goto nopage;
5098 
5099 	/*
5100 	 * Check for insane configurations where the cpuset doesn't contain
5101 	 * any suitable zone to satisfy the request - e.g. non-movable
5102 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5103 	 */
5104 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5105 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5106 					ac->highest_zoneidx,
5107 					&cpuset_current_mems_allowed);
5108 		if (!z->zone)
5109 			goto nopage;
5110 	}
5111 
5112 	if (alloc_flags & ALLOC_KSWAPD)
5113 		wake_all_kswapds(order, gfp_mask, ac);
5114 
5115 	/*
5116 	 * The adjusted alloc_flags might result in immediate success, so try
5117 	 * that first
5118 	 */
5119 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5120 	if (page)
5121 		goto got_pg;
5122 
5123 	/*
5124 	 * For costly allocations, try direct compaction first, as it's likely
5125 	 * that we have enough base pages and don't need to reclaim. For non-
5126 	 * movable high-order allocations, do that as well, as compaction will
5127 	 * try prevent permanent fragmentation by migrating from blocks of the
5128 	 * same migratetype.
5129 	 * Don't try this for allocations that are allowed to ignore
5130 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5131 	 */
5132 	if (can_direct_reclaim &&
5133 			(costly_order ||
5134 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5135 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5136 		page = __alloc_pages_direct_compact(gfp_mask, order,
5137 						alloc_flags, ac,
5138 						INIT_COMPACT_PRIORITY,
5139 						&compact_result);
5140 		if (page)
5141 			goto got_pg;
5142 
5143 		/*
5144 		 * Checks for costly allocations with __GFP_NORETRY, which
5145 		 * includes some THP page fault allocations
5146 		 */
5147 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5148 			/*
5149 			 * If allocating entire pageblock(s) and compaction
5150 			 * failed because all zones are below low watermarks
5151 			 * or is prohibited because it recently failed at this
5152 			 * order, fail immediately unless the allocator has
5153 			 * requested compaction and reclaim retry.
5154 			 *
5155 			 * Reclaim is
5156 			 *  - potentially very expensive because zones are far
5157 			 *    below their low watermarks or this is part of very
5158 			 *    bursty high order allocations,
5159 			 *  - not guaranteed to help because isolate_freepages()
5160 			 *    may not iterate over freed pages as part of its
5161 			 *    linear scan, and
5162 			 *  - unlikely to make entire pageblocks free on its
5163 			 *    own.
5164 			 */
5165 			if (compact_result == COMPACT_SKIPPED ||
5166 			    compact_result == COMPACT_DEFERRED)
5167 				goto nopage;
5168 
5169 			/*
5170 			 * Looks like reclaim/compaction is worth trying, but
5171 			 * sync compaction could be very expensive, so keep
5172 			 * using async compaction.
5173 			 */
5174 			compact_priority = INIT_COMPACT_PRIORITY;
5175 		}
5176 	}
5177 
5178 retry:
5179 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5180 	if (alloc_flags & ALLOC_KSWAPD)
5181 		wake_all_kswapds(order, gfp_mask, ac);
5182 
5183 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5184 	if (reserve_flags)
5185 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5186 					  (alloc_flags & ALLOC_KSWAPD);
5187 
5188 	/*
5189 	 * Reset the nodemask and zonelist iterators if memory policies can be
5190 	 * ignored. These allocations are high priority and system rather than
5191 	 * user oriented.
5192 	 */
5193 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5194 		ac->nodemask = NULL;
5195 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5196 					ac->highest_zoneidx, ac->nodemask);
5197 	}
5198 
5199 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5200 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5201 	if (page)
5202 		goto got_pg;
5203 
5204 	/* Caller is not willing to reclaim, we can't balance anything */
5205 	if (!can_direct_reclaim)
5206 		goto nopage;
5207 
5208 	/* Avoid recursion of direct reclaim */
5209 	if (current->flags & PF_MEMALLOC)
5210 		goto nopage;
5211 
5212 	/* Try direct reclaim and then allocating */
5213 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5214 							&did_some_progress);
5215 	if (page)
5216 		goto got_pg;
5217 
5218 	/* Try direct compaction and then allocating */
5219 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5220 					compact_priority, &compact_result);
5221 	if (page)
5222 		goto got_pg;
5223 
5224 	/* Do not loop if specifically requested */
5225 	if (gfp_mask & __GFP_NORETRY)
5226 		goto nopage;
5227 
5228 	/*
5229 	 * Do not retry costly high order allocations unless they are
5230 	 * __GFP_RETRY_MAYFAIL
5231 	 */
5232 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5233 		goto nopage;
5234 
5235 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5236 				 did_some_progress > 0, &no_progress_loops))
5237 		goto retry;
5238 
5239 	/*
5240 	 * It doesn't make any sense to retry for the compaction if the order-0
5241 	 * reclaim is not able to make any progress because the current
5242 	 * implementation of the compaction depends on the sufficient amount
5243 	 * of free memory (see __compaction_suitable)
5244 	 */
5245 	if (did_some_progress > 0 &&
5246 			should_compact_retry(ac, order, alloc_flags,
5247 				compact_result, &compact_priority,
5248 				&compaction_retries))
5249 		goto retry;
5250 
5251 
5252 	/*
5253 	 * Deal with possible cpuset update races or zonelist updates to avoid
5254 	 * a unnecessary OOM kill.
5255 	 */
5256 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5257 	    check_retry_zonelist(zonelist_iter_cookie))
5258 		goto restart;
5259 
5260 	/* Reclaim has failed us, start killing things */
5261 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5262 	if (page)
5263 		goto got_pg;
5264 
5265 	/* Avoid allocations with no watermarks from looping endlessly */
5266 	if (tsk_is_oom_victim(current) &&
5267 	    (alloc_flags & ALLOC_OOM ||
5268 	     (gfp_mask & __GFP_NOMEMALLOC)))
5269 		goto nopage;
5270 
5271 	/* Retry as long as the OOM killer is making progress */
5272 	if (did_some_progress) {
5273 		no_progress_loops = 0;
5274 		goto retry;
5275 	}
5276 
5277 nopage:
5278 	/*
5279 	 * Deal with possible cpuset update races or zonelist updates to avoid
5280 	 * a unnecessary OOM kill.
5281 	 */
5282 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5283 	    check_retry_zonelist(zonelist_iter_cookie))
5284 		goto restart;
5285 
5286 	/*
5287 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5288 	 * we always retry
5289 	 */
5290 	if (gfp_mask & __GFP_NOFAIL) {
5291 		/*
5292 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5293 		 * of any new users that actually require GFP_NOWAIT
5294 		 */
5295 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5296 			goto fail;
5297 
5298 		/*
5299 		 * PF_MEMALLOC request from this context is rather bizarre
5300 		 * because we cannot reclaim anything and only can loop waiting
5301 		 * for somebody to do a work for us
5302 		 */
5303 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5304 
5305 		/*
5306 		 * non failing costly orders are a hard requirement which we
5307 		 * are not prepared for much so let's warn about these users
5308 		 * so that we can identify them and convert them to something
5309 		 * else.
5310 		 */
5311 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5312 
5313 		/*
5314 		 * Help non-failing allocations by giving them access to memory
5315 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5316 		 * could deplete whole memory reserves which would just make
5317 		 * the situation worse
5318 		 */
5319 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5320 		if (page)
5321 			goto got_pg;
5322 
5323 		cond_resched();
5324 		goto retry;
5325 	}
5326 fail:
5327 	warn_alloc(gfp_mask, ac->nodemask,
5328 			"page allocation failure: order:%u", order);
5329 got_pg:
5330 	return page;
5331 }
5332 
5333 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5334 		int preferred_nid, nodemask_t *nodemask,
5335 		struct alloc_context *ac, gfp_t *alloc_gfp,
5336 		unsigned int *alloc_flags)
5337 {
5338 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5339 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5340 	ac->nodemask = nodemask;
5341 	ac->migratetype = gfp_migratetype(gfp_mask);
5342 
5343 	if (cpusets_enabled()) {
5344 		*alloc_gfp |= __GFP_HARDWALL;
5345 		/*
5346 		 * When we are in the interrupt context, it is irrelevant
5347 		 * to the current task context. It means that any node ok.
5348 		 */
5349 		if (in_task() && !ac->nodemask)
5350 			ac->nodemask = &cpuset_current_mems_allowed;
5351 		else
5352 			*alloc_flags |= ALLOC_CPUSET;
5353 	}
5354 
5355 	might_alloc(gfp_mask);
5356 
5357 	if (should_fail_alloc_page(gfp_mask, order))
5358 		return false;
5359 
5360 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5361 
5362 	/* Dirty zone balancing only done in the fast path */
5363 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5364 
5365 	/*
5366 	 * The preferred zone is used for statistics but crucially it is
5367 	 * also used as the starting point for the zonelist iterator. It
5368 	 * may get reset for allocations that ignore memory policies.
5369 	 */
5370 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5371 					ac->highest_zoneidx, ac->nodemask);
5372 
5373 	return true;
5374 }
5375 
5376 /*
5377  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5378  * @gfp: GFP flags for the allocation
5379  * @preferred_nid: The preferred NUMA node ID to allocate from
5380  * @nodemask: Set of nodes to allocate from, may be NULL
5381  * @nr_pages: The number of pages desired on the list or array
5382  * @page_list: Optional list to store the allocated pages
5383  * @page_array: Optional array to store the pages
5384  *
5385  * This is a batched version of the page allocator that attempts to
5386  * allocate nr_pages quickly. Pages are added to page_list if page_list
5387  * is not NULL, otherwise it is assumed that the page_array is valid.
5388  *
5389  * For lists, nr_pages is the number of pages that should be allocated.
5390  *
5391  * For arrays, only NULL elements are populated with pages and nr_pages
5392  * is the maximum number of pages that will be stored in the array.
5393  *
5394  * Returns the number of pages on the list or array.
5395  */
5396 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5397 			nodemask_t *nodemask, int nr_pages,
5398 			struct list_head *page_list,
5399 			struct page **page_array)
5400 {
5401 	struct page *page;
5402 	unsigned long __maybe_unused UP_flags;
5403 	struct zone *zone;
5404 	struct zoneref *z;
5405 	struct per_cpu_pages *pcp;
5406 	struct list_head *pcp_list;
5407 	struct alloc_context ac;
5408 	gfp_t alloc_gfp;
5409 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5410 	int nr_populated = 0, nr_account = 0;
5411 
5412 	/*
5413 	 * Skip populated array elements to determine if any pages need
5414 	 * to be allocated before disabling IRQs.
5415 	 */
5416 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5417 		nr_populated++;
5418 
5419 	/* No pages requested? */
5420 	if (unlikely(nr_pages <= 0))
5421 		goto out;
5422 
5423 	/* Already populated array? */
5424 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5425 		goto out;
5426 
5427 	/* Bulk allocator does not support memcg accounting. */
5428 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5429 		goto failed;
5430 
5431 	/* Use the single page allocator for one page. */
5432 	if (nr_pages - nr_populated == 1)
5433 		goto failed;
5434 
5435 #ifdef CONFIG_PAGE_OWNER
5436 	/*
5437 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5438 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5439 	 * removes much of the performance benefit of bulk allocation so
5440 	 * force the caller to allocate one page at a time as it'll have
5441 	 * similar performance to added complexity to the bulk allocator.
5442 	 */
5443 	if (static_branch_unlikely(&page_owner_inited))
5444 		goto failed;
5445 #endif
5446 
5447 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5448 	gfp &= gfp_allowed_mask;
5449 	alloc_gfp = gfp;
5450 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5451 		goto out;
5452 	gfp = alloc_gfp;
5453 
5454 	/* Find an allowed local zone that meets the low watermark. */
5455 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5456 		unsigned long mark;
5457 
5458 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5459 		    !__cpuset_zone_allowed(zone, gfp)) {
5460 			continue;
5461 		}
5462 
5463 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5464 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5465 			goto failed;
5466 		}
5467 
5468 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5469 		if (zone_watermark_fast(zone, 0,  mark,
5470 				zonelist_zone_idx(ac.preferred_zoneref),
5471 				alloc_flags, gfp)) {
5472 			break;
5473 		}
5474 	}
5475 
5476 	/*
5477 	 * If there are no allowed local zones that meets the watermarks then
5478 	 * try to allocate a single page and reclaim if necessary.
5479 	 */
5480 	if (unlikely(!zone))
5481 		goto failed;
5482 
5483 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5484 	pcp_trylock_prepare(UP_flags);
5485 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5486 	if (!pcp)
5487 		goto failed_irq;
5488 
5489 	/* Attempt the batch allocation */
5490 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5491 	while (nr_populated < nr_pages) {
5492 
5493 		/* Skip existing pages */
5494 		if (page_array && page_array[nr_populated]) {
5495 			nr_populated++;
5496 			continue;
5497 		}
5498 
5499 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5500 								pcp, pcp_list);
5501 		if (unlikely(!page)) {
5502 			/* Try and allocate at least one page */
5503 			if (!nr_account) {
5504 				pcp_spin_unlock(pcp);
5505 				goto failed_irq;
5506 			}
5507 			break;
5508 		}
5509 		nr_account++;
5510 
5511 		prep_new_page(page, 0, gfp, 0);
5512 		if (page_list)
5513 			list_add(&page->lru, page_list);
5514 		else
5515 			page_array[nr_populated] = page;
5516 		nr_populated++;
5517 	}
5518 
5519 	pcp_spin_unlock(pcp);
5520 	pcp_trylock_finish(UP_flags);
5521 
5522 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5523 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5524 
5525 out:
5526 	return nr_populated;
5527 
5528 failed_irq:
5529 	pcp_trylock_finish(UP_flags);
5530 
5531 failed:
5532 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5533 	if (page) {
5534 		if (page_list)
5535 			list_add(&page->lru, page_list);
5536 		else
5537 			page_array[nr_populated] = page;
5538 		nr_populated++;
5539 	}
5540 
5541 	goto out;
5542 }
5543 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5544 
5545 /*
5546  * This is the 'heart' of the zoned buddy allocator.
5547  */
5548 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5549 							nodemask_t *nodemask)
5550 {
5551 	struct page *page;
5552 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5553 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5554 	struct alloc_context ac = { };
5555 
5556 	/*
5557 	 * There are several places where we assume that the order value is sane
5558 	 * so bail out early if the request is out of bound.
5559 	 */
5560 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5561 		return NULL;
5562 
5563 	gfp &= gfp_allowed_mask;
5564 	/*
5565 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5566 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5567 	 * from a particular context which has been marked by
5568 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5569 	 * movable zones are not used during allocation.
5570 	 */
5571 	gfp = current_gfp_context(gfp);
5572 	alloc_gfp = gfp;
5573 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5574 			&alloc_gfp, &alloc_flags))
5575 		return NULL;
5576 
5577 	/*
5578 	 * Forbid the first pass from falling back to types that fragment
5579 	 * memory until all local zones are considered.
5580 	 */
5581 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5582 
5583 	/* First allocation attempt */
5584 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5585 	if (likely(page))
5586 		goto out;
5587 
5588 	alloc_gfp = gfp;
5589 	ac.spread_dirty_pages = false;
5590 
5591 	/*
5592 	 * Restore the original nodemask if it was potentially replaced with
5593 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5594 	 */
5595 	ac.nodemask = nodemask;
5596 
5597 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5598 
5599 out:
5600 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5601 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5602 		__free_pages(page, order);
5603 		page = NULL;
5604 	}
5605 
5606 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5607 	kmsan_alloc_page(page, order, alloc_gfp);
5608 
5609 	return page;
5610 }
5611 EXPORT_SYMBOL(__alloc_pages);
5612 
5613 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5614 		nodemask_t *nodemask)
5615 {
5616 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5617 			preferred_nid, nodemask);
5618 
5619 	if (page && order > 1)
5620 		prep_transhuge_page(page);
5621 	return (struct folio *)page;
5622 }
5623 EXPORT_SYMBOL(__folio_alloc);
5624 
5625 /*
5626  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5627  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5628  * you need to access high mem.
5629  */
5630 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5631 {
5632 	struct page *page;
5633 
5634 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5635 	if (!page)
5636 		return 0;
5637 	return (unsigned long) page_address(page);
5638 }
5639 EXPORT_SYMBOL(__get_free_pages);
5640 
5641 unsigned long get_zeroed_page(gfp_t gfp_mask)
5642 {
5643 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5644 }
5645 EXPORT_SYMBOL(get_zeroed_page);
5646 
5647 /**
5648  * __free_pages - Free pages allocated with alloc_pages().
5649  * @page: The page pointer returned from alloc_pages().
5650  * @order: The order of the allocation.
5651  *
5652  * This function can free multi-page allocations that are not compound
5653  * pages.  It does not check that the @order passed in matches that of
5654  * the allocation, so it is easy to leak memory.  Freeing more memory
5655  * than was allocated will probably emit a warning.
5656  *
5657  * If the last reference to this page is speculative, it will be released
5658  * by put_page() which only frees the first page of a non-compound
5659  * allocation.  To prevent the remaining pages from being leaked, we free
5660  * the subsequent pages here.  If you want to use the page's reference
5661  * count to decide when to free the allocation, you should allocate a
5662  * compound page, and use put_page() instead of __free_pages().
5663  *
5664  * Context: May be called in interrupt context or while holding a normal
5665  * spinlock, but not in NMI context or while holding a raw spinlock.
5666  */
5667 void __free_pages(struct page *page, unsigned int order)
5668 {
5669 	if (put_page_testzero(page))
5670 		free_the_page(page, order);
5671 	else if (!PageHead(page))
5672 		while (order-- > 0)
5673 			free_the_page(page + (1 << order), order);
5674 }
5675 EXPORT_SYMBOL(__free_pages);
5676 
5677 void free_pages(unsigned long addr, unsigned int order)
5678 {
5679 	if (addr != 0) {
5680 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5681 		__free_pages(virt_to_page((void *)addr), order);
5682 	}
5683 }
5684 
5685 EXPORT_SYMBOL(free_pages);
5686 
5687 /*
5688  * Page Fragment:
5689  *  An arbitrary-length arbitrary-offset area of memory which resides
5690  *  within a 0 or higher order page.  Multiple fragments within that page
5691  *  are individually refcounted, in the page's reference counter.
5692  *
5693  * The page_frag functions below provide a simple allocation framework for
5694  * page fragments.  This is used by the network stack and network device
5695  * drivers to provide a backing region of memory for use as either an
5696  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5697  */
5698 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5699 					     gfp_t gfp_mask)
5700 {
5701 	struct page *page = NULL;
5702 	gfp_t gfp = gfp_mask;
5703 
5704 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5705 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5706 		    __GFP_NOMEMALLOC;
5707 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5708 				PAGE_FRAG_CACHE_MAX_ORDER);
5709 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5710 #endif
5711 	if (unlikely(!page))
5712 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5713 
5714 	nc->va = page ? page_address(page) : NULL;
5715 
5716 	return page;
5717 }
5718 
5719 void __page_frag_cache_drain(struct page *page, unsigned int count)
5720 {
5721 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5722 
5723 	if (page_ref_sub_and_test(page, count))
5724 		free_the_page(page, compound_order(page));
5725 }
5726 EXPORT_SYMBOL(__page_frag_cache_drain);
5727 
5728 void *page_frag_alloc_align(struct page_frag_cache *nc,
5729 		      unsigned int fragsz, gfp_t gfp_mask,
5730 		      unsigned int align_mask)
5731 {
5732 	unsigned int size = PAGE_SIZE;
5733 	struct page *page;
5734 	int offset;
5735 
5736 	if (unlikely(!nc->va)) {
5737 refill:
5738 		page = __page_frag_cache_refill(nc, gfp_mask);
5739 		if (!page)
5740 			return NULL;
5741 
5742 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5743 		/* if size can vary use size else just use PAGE_SIZE */
5744 		size = nc->size;
5745 #endif
5746 		/* Even if we own the page, we do not use atomic_set().
5747 		 * This would break get_page_unless_zero() users.
5748 		 */
5749 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5750 
5751 		/* reset page count bias and offset to start of new frag */
5752 		nc->pfmemalloc = page_is_pfmemalloc(page);
5753 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5754 		nc->offset = size;
5755 	}
5756 
5757 	offset = nc->offset - fragsz;
5758 	if (unlikely(offset < 0)) {
5759 		page = virt_to_page(nc->va);
5760 
5761 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5762 			goto refill;
5763 
5764 		if (unlikely(nc->pfmemalloc)) {
5765 			free_the_page(page, compound_order(page));
5766 			goto refill;
5767 		}
5768 
5769 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5770 		/* if size can vary use size else just use PAGE_SIZE */
5771 		size = nc->size;
5772 #endif
5773 		/* OK, page count is 0, we can safely set it */
5774 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5775 
5776 		/* reset page count bias and offset to start of new frag */
5777 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5778 		offset = size - fragsz;
5779 		if (unlikely(offset < 0)) {
5780 			/*
5781 			 * The caller is trying to allocate a fragment
5782 			 * with fragsz > PAGE_SIZE but the cache isn't big
5783 			 * enough to satisfy the request, this may
5784 			 * happen in low memory conditions.
5785 			 * We don't release the cache page because
5786 			 * it could make memory pressure worse
5787 			 * so we simply return NULL here.
5788 			 */
5789 			return NULL;
5790 		}
5791 	}
5792 
5793 	nc->pagecnt_bias--;
5794 	offset &= align_mask;
5795 	nc->offset = offset;
5796 
5797 	return nc->va + offset;
5798 }
5799 EXPORT_SYMBOL(page_frag_alloc_align);
5800 
5801 /*
5802  * Frees a page fragment allocated out of either a compound or order 0 page.
5803  */
5804 void page_frag_free(void *addr)
5805 {
5806 	struct page *page = virt_to_head_page(addr);
5807 
5808 	if (unlikely(put_page_testzero(page)))
5809 		free_the_page(page, compound_order(page));
5810 }
5811 EXPORT_SYMBOL(page_frag_free);
5812 
5813 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5814 		size_t size)
5815 {
5816 	if (addr) {
5817 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5818 		struct page *page = virt_to_page((void *)addr);
5819 		struct page *last = page + nr;
5820 
5821 		split_page_owner(page, 1 << order);
5822 		split_page_memcg(page, 1 << order);
5823 		while (page < --last)
5824 			set_page_refcounted(last);
5825 
5826 		last = page + (1UL << order);
5827 		for (page += nr; page < last; page++)
5828 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5829 	}
5830 	return (void *)addr;
5831 }
5832 
5833 /**
5834  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5835  * @size: the number of bytes to allocate
5836  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5837  *
5838  * This function is similar to alloc_pages(), except that it allocates the
5839  * minimum number of pages to satisfy the request.  alloc_pages() can only
5840  * allocate memory in power-of-two pages.
5841  *
5842  * This function is also limited by MAX_ORDER.
5843  *
5844  * Memory allocated by this function must be released by free_pages_exact().
5845  *
5846  * Return: pointer to the allocated area or %NULL in case of error.
5847  */
5848 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5849 {
5850 	unsigned int order = get_order(size);
5851 	unsigned long addr;
5852 
5853 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5854 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5855 
5856 	addr = __get_free_pages(gfp_mask, order);
5857 	return make_alloc_exact(addr, order, size);
5858 }
5859 EXPORT_SYMBOL(alloc_pages_exact);
5860 
5861 /**
5862  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5863  *			   pages on a node.
5864  * @nid: the preferred node ID where memory should be allocated
5865  * @size: the number of bytes to allocate
5866  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5867  *
5868  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5869  * back.
5870  *
5871  * Return: pointer to the allocated area or %NULL in case of error.
5872  */
5873 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5874 {
5875 	unsigned int order = get_order(size);
5876 	struct page *p;
5877 
5878 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5879 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5880 
5881 	p = alloc_pages_node(nid, gfp_mask, order);
5882 	if (!p)
5883 		return NULL;
5884 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5885 }
5886 
5887 /**
5888  * free_pages_exact - release memory allocated via alloc_pages_exact()
5889  * @virt: the value returned by alloc_pages_exact.
5890  * @size: size of allocation, same value as passed to alloc_pages_exact().
5891  *
5892  * Release the memory allocated by a previous call to alloc_pages_exact.
5893  */
5894 void free_pages_exact(void *virt, size_t size)
5895 {
5896 	unsigned long addr = (unsigned long)virt;
5897 	unsigned long end = addr + PAGE_ALIGN(size);
5898 
5899 	while (addr < end) {
5900 		free_page(addr);
5901 		addr += PAGE_SIZE;
5902 	}
5903 }
5904 EXPORT_SYMBOL(free_pages_exact);
5905 
5906 /**
5907  * nr_free_zone_pages - count number of pages beyond high watermark
5908  * @offset: The zone index of the highest zone
5909  *
5910  * nr_free_zone_pages() counts the number of pages which are beyond the
5911  * high watermark within all zones at or below a given zone index.  For each
5912  * zone, the number of pages is calculated as:
5913  *
5914  *     nr_free_zone_pages = managed_pages - high_pages
5915  *
5916  * Return: number of pages beyond high watermark.
5917  */
5918 static unsigned long nr_free_zone_pages(int offset)
5919 {
5920 	struct zoneref *z;
5921 	struct zone *zone;
5922 
5923 	/* Just pick one node, since fallback list is circular */
5924 	unsigned long sum = 0;
5925 
5926 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5927 
5928 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5929 		unsigned long size = zone_managed_pages(zone);
5930 		unsigned long high = high_wmark_pages(zone);
5931 		if (size > high)
5932 			sum += size - high;
5933 	}
5934 
5935 	return sum;
5936 }
5937 
5938 /**
5939  * nr_free_buffer_pages - count number of pages beyond high watermark
5940  *
5941  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5942  * watermark within ZONE_DMA and ZONE_NORMAL.
5943  *
5944  * Return: number of pages beyond high watermark within ZONE_DMA and
5945  * ZONE_NORMAL.
5946  */
5947 unsigned long nr_free_buffer_pages(void)
5948 {
5949 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5950 }
5951 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5952 
5953 static inline void show_node(struct zone *zone)
5954 {
5955 	if (IS_ENABLED(CONFIG_NUMA))
5956 		printk("Node %d ", zone_to_nid(zone));
5957 }
5958 
5959 long si_mem_available(void)
5960 {
5961 	long available;
5962 	unsigned long pagecache;
5963 	unsigned long wmark_low = 0;
5964 	unsigned long pages[NR_LRU_LISTS];
5965 	unsigned long reclaimable;
5966 	struct zone *zone;
5967 	int lru;
5968 
5969 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5970 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5971 
5972 	for_each_zone(zone)
5973 		wmark_low += low_wmark_pages(zone);
5974 
5975 	/*
5976 	 * Estimate the amount of memory available for userspace allocations,
5977 	 * without causing swapping or OOM.
5978 	 */
5979 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5980 
5981 	/*
5982 	 * Not all the page cache can be freed, otherwise the system will
5983 	 * start swapping or thrashing. Assume at least half of the page
5984 	 * cache, or the low watermark worth of cache, needs to stay.
5985 	 */
5986 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5987 	pagecache -= min(pagecache / 2, wmark_low);
5988 	available += pagecache;
5989 
5990 	/*
5991 	 * Part of the reclaimable slab and other kernel memory consists of
5992 	 * items that are in use, and cannot be freed. Cap this estimate at the
5993 	 * low watermark.
5994 	 */
5995 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5996 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5997 	available += reclaimable - min(reclaimable / 2, wmark_low);
5998 
5999 	if (available < 0)
6000 		available = 0;
6001 	return available;
6002 }
6003 EXPORT_SYMBOL_GPL(si_mem_available);
6004 
6005 void si_meminfo(struct sysinfo *val)
6006 {
6007 	val->totalram = totalram_pages();
6008 	val->sharedram = global_node_page_state(NR_SHMEM);
6009 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
6010 	val->bufferram = nr_blockdev_pages();
6011 	val->totalhigh = totalhigh_pages();
6012 	val->freehigh = nr_free_highpages();
6013 	val->mem_unit = PAGE_SIZE;
6014 }
6015 
6016 EXPORT_SYMBOL(si_meminfo);
6017 
6018 #ifdef CONFIG_NUMA
6019 void si_meminfo_node(struct sysinfo *val, int nid)
6020 {
6021 	int zone_type;		/* needs to be signed */
6022 	unsigned long managed_pages = 0;
6023 	unsigned long managed_highpages = 0;
6024 	unsigned long free_highpages = 0;
6025 	pg_data_t *pgdat = NODE_DATA(nid);
6026 
6027 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6028 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6029 	val->totalram = managed_pages;
6030 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
6031 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6032 #ifdef CONFIG_HIGHMEM
6033 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6034 		struct zone *zone = &pgdat->node_zones[zone_type];
6035 
6036 		if (is_highmem(zone)) {
6037 			managed_highpages += zone_managed_pages(zone);
6038 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6039 		}
6040 	}
6041 	val->totalhigh = managed_highpages;
6042 	val->freehigh = free_highpages;
6043 #else
6044 	val->totalhigh = managed_highpages;
6045 	val->freehigh = free_highpages;
6046 #endif
6047 	val->mem_unit = PAGE_SIZE;
6048 }
6049 #endif
6050 
6051 /*
6052  * Determine whether the node should be displayed or not, depending on whether
6053  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6054  */
6055 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6056 {
6057 	if (!(flags & SHOW_MEM_FILTER_NODES))
6058 		return false;
6059 
6060 	/*
6061 	 * no node mask - aka implicit memory numa policy. Do not bother with
6062 	 * the synchronization - read_mems_allowed_begin - because we do not
6063 	 * have to be precise here.
6064 	 */
6065 	if (!nodemask)
6066 		nodemask = &cpuset_current_mems_allowed;
6067 
6068 	return !node_isset(nid, *nodemask);
6069 }
6070 
6071 #define K(x) ((x) << (PAGE_SHIFT-10))
6072 
6073 static void show_migration_types(unsigned char type)
6074 {
6075 	static const char types[MIGRATE_TYPES] = {
6076 		[MIGRATE_UNMOVABLE]	= 'U',
6077 		[MIGRATE_MOVABLE]	= 'M',
6078 		[MIGRATE_RECLAIMABLE]	= 'E',
6079 		[MIGRATE_HIGHATOMIC]	= 'H',
6080 #ifdef CONFIG_CMA
6081 		[MIGRATE_CMA]		= 'C',
6082 #endif
6083 #ifdef CONFIG_MEMORY_ISOLATION
6084 		[MIGRATE_ISOLATE]	= 'I',
6085 #endif
6086 	};
6087 	char tmp[MIGRATE_TYPES + 1];
6088 	char *p = tmp;
6089 	int i;
6090 
6091 	for (i = 0; i < MIGRATE_TYPES; i++) {
6092 		if (type & (1 << i))
6093 			*p++ = types[i];
6094 	}
6095 
6096 	*p = '\0';
6097 	printk(KERN_CONT "(%s) ", tmp);
6098 }
6099 
6100 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6101 {
6102 	int zone_idx;
6103 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6104 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6105 			return true;
6106 	return false;
6107 }
6108 
6109 /*
6110  * Show free area list (used inside shift_scroll-lock stuff)
6111  * We also calculate the percentage fragmentation. We do this by counting the
6112  * memory on each free list with the exception of the first item on the list.
6113  *
6114  * Bits in @filter:
6115  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6116  *   cpuset.
6117  */
6118 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6119 {
6120 	unsigned long free_pcp = 0;
6121 	int cpu, nid;
6122 	struct zone *zone;
6123 	pg_data_t *pgdat;
6124 
6125 	for_each_populated_zone(zone) {
6126 		if (zone_idx(zone) > max_zone_idx)
6127 			continue;
6128 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6129 			continue;
6130 
6131 		for_each_online_cpu(cpu)
6132 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6133 	}
6134 
6135 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6136 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6137 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6138 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6139 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6140 		" sec_pagetables:%lu bounce:%lu\n"
6141 		" kernel_misc_reclaimable:%lu\n"
6142 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6143 		global_node_page_state(NR_ACTIVE_ANON),
6144 		global_node_page_state(NR_INACTIVE_ANON),
6145 		global_node_page_state(NR_ISOLATED_ANON),
6146 		global_node_page_state(NR_ACTIVE_FILE),
6147 		global_node_page_state(NR_INACTIVE_FILE),
6148 		global_node_page_state(NR_ISOLATED_FILE),
6149 		global_node_page_state(NR_UNEVICTABLE),
6150 		global_node_page_state(NR_FILE_DIRTY),
6151 		global_node_page_state(NR_WRITEBACK),
6152 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6153 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6154 		global_node_page_state(NR_FILE_MAPPED),
6155 		global_node_page_state(NR_SHMEM),
6156 		global_node_page_state(NR_PAGETABLE),
6157 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6158 		global_zone_page_state(NR_BOUNCE),
6159 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6160 		global_zone_page_state(NR_FREE_PAGES),
6161 		free_pcp,
6162 		global_zone_page_state(NR_FREE_CMA_PAGES));
6163 
6164 	for_each_online_pgdat(pgdat) {
6165 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6166 			continue;
6167 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6168 			continue;
6169 
6170 		printk("Node %d"
6171 			" active_anon:%lukB"
6172 			" inactive_anon:%lukB"
6173 			" active_file:%lukB"
6174 			" inactive_file:%lukB"
6175 			" unevictable:%lukB"
6176 			" isolated(anon):%lukB"
6177 			" isolated(file):%lukB"
6178 			" mapped:%lukB"
6179 			" dirty:%lukB"
6180 			" writeback:%lukB"
6181 			" shmem:%lukB"
6182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6183 			" shmem_thp: %lukB"
6184 			" shmem_pmdmapped: %lukB"
6185 			" anon_thp: %lukB"
6186 #endif
6187 			" writeback_tmp:%lukB"
6188 			" kernel_stack:%lukB"
6189 #ifdef CONFIG_SHADOW_CALL_STACK
6190 			" shadow_call_stack:%lukB"
6191 #endif
6192 			" pagetables:%lukB"
6193 			" sec_pagetables:%lukB"
6194 			" all_unreclaimable? %s"
6195 			"\n",
6196 			pgdat->node_id,
6197 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6198 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6199 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6200 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6201 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6202 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6203 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6204 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6205 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6206 			K(node_page_state(pgdat, NR_WRITEBACK)),
6207 			K(node_page_state(pgdat, NR_SHMEM)),
6208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6209 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6210 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6211 			K(node_page_state(pgdat, NR_ANON_THPS)),
6212 #endif
6213 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6214 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6215 #ifdef CONFIG_SHADOW_CALL_STACK
6216 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6217 #endif
6218 			K(node_page_state(pgdat, NR_PAGETABLE)),
6219 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6220 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6221 				"yes" : "no");
6222 	}
6223 
6224 	for_each_populated_zone(zone) {
6225 		int i;
6226 
6227 		if (zone_idx(zone) > max_zone_idx)
6228 			continue;
6229 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6230 			continue;
6231 
6232 		free_pcp = 0;
6233 		for_each_online_cpu(cpu)
6234 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6235 
6236 		show_node(zone);
6237 		printk(KERN_CONT
6238 			"%s"
6239 			" free:%lukB"
6240 			" boost:%lukB"
6241 			" min:%lukB"
6242 			" low:%lukB"
6243 			" high:%lukB"
6244 			" reserved_highatomic:%luKB"
6245 			" active_anon:%lukB"
6246 			" inactive_anon:%lukB"
6247 			" active_file:%lukB"
6248 			" inactive_file:%lukB"
6249 			" unevictable:%lukB"
6250 			" writepending:%lukB"
6251 			" present:%lukB"
6252 			" managed:%lukB"
6253 			" mlocked:%lukB"
6254 			" bounce:%lukB"
6255 			" free_pcp:%lukB"
6256 			" local_pcp:%ukB"
6257 			" free_cma:%lukB"
6258 			"\n",
6259 			zone->name,
6260 			K(zone_page_state(zone, NR_FREE_PAGES)),
6261 			K(zone->watermark_boost),
6262 			K(min_wmark_pages(zone)),
6263 			K(low_wmark_pages(zone)),
6264 			K(high_wmark_pages(zone)),
6265 			K(zone->nr_reserved_highatomic),
6266 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6267 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6268 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6269 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6270 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6271 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6272 			K(zone->present_pages),
6273 			K(zone_managed_pages(zone)),
6274 			K(zone_page_state(zone, NR_MLOCK)),
6275 			K(zone_page_state(zone, NR_BOUNCE)),
6276 			K(free_pcp),
6277 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6278 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6279 		printk("lowmem_reserve[]:");
6280 		for (i = 0; i < MAX_NR_ZONES; i++)
6281 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6282 		printk(KERN_CONT "\n");
6283 	}
6284 
6285 	for_each_populated_zone(zone) {
6286 		unsigned int order;
6287 		unsigned long nr[MAX_ORDER], flags, total = 0;
6288 		unsigned char types[MAX_ORDER];
6289 
6290 		if (zone_idx(zone) > max_zone_idx)
6291 			continue;
6292 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6293 			continue;
6294 		show_node(zone);
6295 		printk(KERN_CONT "%s: ", zone->name);
6296 
6297 		spin_lock_irqsave(&zone->lock, flags);
6298 		for (order = 0; order < MAX_ORDER; order++) {
6299 			struct free_area *area = &zone->free_area[order];
6300 			int type;
6301 
6302 			nr[order] = area->nr_free;
6303 			total += nr[order] << order;
6304 
6305 			types[order] = 0;
6306 			for (type = 0; type < MIGRATE_TYPES; type++) {
6307 				if (!free_area_empty(area, type))
6308 					types[order] |= 1 << type;
6309 			}
6310 		}
6311 		spin_unlock_irqrestore(&zone->lock, flags);
6312 		for (order = 0; order < MAX_ORDER; order++) {
6313 			printk(KERN_CONT "%lu*%lukB ",
6314 			       nr[order], K(1UL) << order);
6315 			if (nr[order])
6316 				show_migration_types(types[order]);
6317 		}
6318 		printk(KERN_CONT "= %lukB\n", K(total));
6319 	}
6320 
6321 	for_each_online_node(nid) {
6322 		if (show_mem_node_skip(filter, nid, nodemask))
6323 			continue;
6324 		hugetlb_show_meminfo_node(nid);
6325 	}
6326 
6327 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6328 
6329 	show_swap_cache_info();
6330 }
6331 
6332 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6333 {
6334 	zoneref->zone = zone;
6335 	zoneref->zone_idx = zone_idx(zone);
6336 }
6337 
6338 /*
6339  * Builds allocation fallback zone lists.
6340  *
6341  * Add all populated zones of a node to the zonelist.
6342  */
6343 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6344 {
6345 	struct zone *zone;
6346 	enum zone_type zone_type = MAX_NR_ZONES;
6347 	int nr_zones = 0;
6348 
6349 	do {
6350 		zone_type--;
6351 		zone = pgdat->node_zones + zone_type;
6352 		if (populated_zone(zone)) {
6353 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6354 			check_highest_zone(zone_type);
6355 		}
6356 	} while (zone_type);
6357 
6358 	return nr_zones;
6359 }
6360 
6361 #ifdef CONFIG_NUMA
6362 
6363 static int __parse_numa_zonelist_order(char *s)
6364 {
6365 	/*
6366 	 * We used to support different zonelists modes but they turned
6367 	 * out to be just not useful. Let's keep the warning in place
6368 	 * if somebody still use the cmd line parameter so that we do
6369 	 * not fail it silently
6370 	 */
6371 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6372 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6373 		return -EINVAL;
6374 	}
6375 	return 0;
6376 }
6377 
6378 char numa_zonelist_order[] = "Node";
6379 
6380 /*
6381  * sysctl handler for numa_zonelist_order
6382  */
6383 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6384 		void *buffer, size_t *length, loff_t *ppos)
6385 {
6386 	if (write)
6387 		return __parse_numa_zonelist_order(buffer);
6388 	return proc_dostring(table, write, buffer, length, ppos);
6389 }
6390 
6391 
6392 static int node_load[MAX_NUMNODES];
6393 
6394 /**
6395  * find_next_best_node - find the next node that should appear in a given node's fallback list
6396  * @node: node whose fallback list we're appending
6397  * @used_node_mask: nodemask_t of already used nodes
6398  *
6399  * We use a number of factors to determine which is the next node that should
6400  * appear on a given node's fallback list.  The node should not have appeared
6401  * already in @node's fallback list, and it should be the next closest node
6402  * according to the distance array (which contains arbitrary distance values
6403  * from each node to each node in the system), and should also prefer nodes
6404  * with no CPUs, since presumably they'll have very little allocation pressure
6405  * on them otherwise.
6406  *
6407  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6408  */
6409 int find_next_best_node(int node, nodemask_t *used_node_mask)
6410 {
6411 	int n, val;
6412 	int min_val = INT_MAX;
6413 	int best_node = NUMA_NO_NODE;
6414 
6415 	/* Use the local node if we haven't already */
6416 	if (!node_isset(node, *used_node_mask)) {
6417 		node_set(node, *used_node_mask);
6418 		return node;
6419 	}
6420 
6421 	for_each_node_state(n, N_MEMORY) {
6422 
6423 		/* Don't want a node to appear more than once */
6424 		if (node_isset(n, *used_node_mask))
6425 			continue;
6426 
6427 		/* Use the distance array to find the distance */
6428 		val = node_distance(node, n);
6429 
6430 		/* Penalize nodes under us ("prefer the next node") */
6431 		val += (n < node);
6432 
6433 		/* Give preference to headless and unused nodes */
6434 		if (!cpumask_empty(cpumask_of_node(n)))
6435 			val += PENALTY_FOR_NODE_WITH_CPUS;
6436 
6437 		/* Slight preference for less loaded node */
6438 		val *= MAX_NUMNODES;
6439 		val += node_load[n];
6440 
6441 		if (val < min_val) {
6442 			min_val = val;
6443 			best_node = n;
6444 		}
6445 	}
6446 
6447 	if (best_node >= 0)
6448 		node_set(best_node, *used_node_mask);
6449 
6450 	return best_node;
6451 }
6452 
6453 
6454 /*
6455  * Build zonelists ordered by node and zones within node.
6456  * This results in maximum locality--normal zone overflows into local
6457  * DMA zone, if any--but risks exhausting DMA zone.
6458  */
6459 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6460 		unsigned nr_nodes)
6461 {
6462 	struct zoneref *zonerefs;
6463 	int i;
6464 
6465 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6466 
6467 	for (i = 0; i < nr_nodes; i++) {
6468 		int nr_zones;
6469 
6470 		pg_data_t *node = NODE_DATA(node_order[i]);
6471 
6472 		nr_zones = build_zonerefs_node(node, zonerefs);
6473 		zonerefs += nr_zones;
6474 	}
6475 	zonerefs->zone = NULL;
6476 	zonerefs->zone_idx = 0;
6477 }
6478 
6479 /*
6480  * Build gfp_thisnode zonelists
6481  */
6482 static void build_thisnode_zonelists(pg_data_t *pgdat)
6483 {
6484 	struct zoneref *zonerefs;
6485 	int nr_zones;
6486 
6487 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6488 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6489 	zonerefs += nr_zones;
6490 	zonerefs->zone = NULL;
6491 	zonerefs->zone_idx = 0;
6492 }
6493 
6494 /*
6495  * Build zonelists ordered by zone and nodes within zones.
6496  * This results in conserving DMA zone[s] until all Normal memory is
6497  * exhausted, but results in overflowing to remote node while memory
6498  * may still exist in local DMA zone.
6499  */
6500 
6501 static void build_zonelists(pg_data_t *pgdat)
6502 {
6503 	static int node_order[MAX_NUMNODES];
6504 	int node, nr_nodes = 0;
6505 	nodemask_t used_mask = NODE_MASK_NONE;
6506 	int local_node, prev_node;
6507 
6508 	/* NUMA-aware ordering of nodes */
6509 	local_node = pgdat->node_id;
6510 	prev_node = local_node;
6511 
6512 	memset(node_order, 0, sizeof(node_order));
6513 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6514 		/*
6515 		 * We don't want to pressure a particular node.
6516 		 * So adding penalty to the first node in same
6517 		 * distance group to make it round-robin.
6518 		 */
6519 		if (node_distance(local_node, node) !=
6520 		    node_distance(local_node, prev_node))
6521 			node_load[node] += 1;
6522 
6523 		node_order[nr_nodes++] = node;
6524 		prev_node = node;
6525 	}
6526 
6527 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6528 	build_thisnode_zonelists(pgdat);
6529 	pr_info("Fallback order for Node %d: ", local_node);
6530 	for (node = 0; node < nr_nodes; node++)
6531 		pr_cont("%d ", node_order[node]);
6532 	pr_cont("\n");
6533 }
6534 
6535 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6536 /*
6537  * Return node id of node used for "local" allocations.
6538  * I.e., first node id of first zone in arg node's generic zonelist.
6539  * Used for initializing percpu 'numa_mem', which is used primarily
6540  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6541  */
6542 int local_memory_node(int node)
6543 {
6544 	struct zoneref *z;
6545 
6546 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6547 				   gfp_zone(GFP_KERNEL),
6548 				   NULL);
6549 	return zone_to_nid(z->zone);
6550 }
6551 #endif
6552 
6553 static void setup_min_unmapped_ratio(void);
6554 static void setup_min_slab_ratio(void);
6555 #else	/* CONFIG_NUMA */
6556 
6557 static void build_zonelists(pg_data_t *pgdat)
6558 {
6559 	int node, local_node;
6560 	struct zoneref *zonerefs;
6561 	int nr_zones;
6562 
6563 	local_node = pgdat->node_id;
6564 
6565 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6566 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6567 	zonerefs += nr_zones;
6568 
6569 	/*
6570 	 * Now we build the zonelist so that it contains the zones
6571 	 * of all the other nodes.
6572 	 * We don't want to pressure a particular node, so when
6573 	 * building the zones for node N, we make sure that the
6574 	 * zones coming right after the local ones are those from
6575 	 * node N+1 (modulo N)
6576 	 */
6577 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6578 		if (!node_online(node))
6579 			continue;
6580 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6581 		zonerefs += nr_zones;
6582 	}
6583 	for (node = 0; node < local_node; node++) {
6584 		if (!node_online(node))
6585 			continue;
6586 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6587 		zonerefs += nr_zones;
6588 	}
6589 
6590 	zonerefs->zone = NULL;
6591 	zonerefs->zone_idx = 0;
6592 }
6593 
6594 #endif	/* CONFIG_NUMA */
6595 
6596 /*
6597  * Boot pageset table. One per cpu which is going to be used for all
6598  * zones and all nodes. The parameters will be set in such a way
6599  * that an item put on a list will immediately be handed over to
6600  * the buddy list. This is safe since pageset manipulation is done
6601  * with interrupts disabled.
6602  *
6603  * The boot_pagesets must be kept even after bootup is complete for
6604  * unused processors and/or zones. They do play a role for bootstrapping
6605  * hotplugged processors.
6606  *
6607  * zoneinfo_show() and maybe other functions do
6608  * not check if the processor is online before following the pageset pointer.
6609  * Other parts of the kernel may not check if the zone is available.
6610  */
6611 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6612 /* These effectively disable the pcplists in the boot pageset completely */
6613 #define BOOT_PAGESET_HIGH	0
6614 #define BOOT_PAGESET_BATCH	1
6615 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6616 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6617 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6618 
6619 static void __build_all_zonelists(void *data)
6620 {
6621 	int nid;
6622 	int __maybe_unused cpu;
6623 	pg_data_t *self = data;
6624 
6625 	write_seqlock(&zonelist_update_seq);
6626 
6627 #ifdef CONFIG_NUMA
6628 	memset(node_load, 0, sizeof(node_load));
6629 #endif
6630 
6631 	/*
6632 	 * This node is hotadded and no memory is yet present.   So just
6633 	 * building zonelists is fine - no need to touch other nodes.
6634 	 */
6635 	if (self && !node_online(self->node_id)) {
6636 		build_zonelists(self);
6637 	} else {
6638 		/*
6639 		 * All possible nodes have pgdat preallocated
6640 		 * in free_area_init
6641 		 */
6642 		for_each_node(nid) {
6643 			pg_data_t *pgdat = NODE_DATA(nid);
6644 
6645 			build_zonelists(pgdat);
6646 		}
6647 
6648 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6649 		/*
6650 		 * We now know the "local memory node" for each node--
6651 		 * i.e., the node of the first zone in the generic zonelist.
6652 		 * Set up numa_mem percpu variable for on-line cpus.  During
6653 		 * boot, only the boot cpu should be on-line;  we'll init the
6654 		 * secondary cpus' numa_mem as they come on-line.  During
6655 		 * node/memory hotplug, we'll fixup all on-line cpus.
6656 		 */
6657 		for_each_online_cpu(cpu)
6658 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6659 #endif
6660 	}
6661 
6662 	write_sequnlock(&zonelist_update_seq);
6663 }
6664 
6665 static noinline void __init
6666 build_all_zonelists_init(void)
6667 {
6668 	int cpu;
6669 
6670 	__build_all_zonelists(NULL);
6671 
6672 	/*
6673 	 * Initialize the boot_pagesets that are going to be used
6674 	 * for bootstrapping processors. The real pagesets for
6675 	 * each zone will be allocated later when the per cpu
6676 	 * allocator is available.
6677 	 *
6678 	 * boot_pagesets are used also for bootstrapping offline
6679 	 * cpus if the system is already booted because the pagesets
6680 	 * are needed to initialize allocators on a specific cpu too.
6681 	 * F.e. the percpu allocator needs the page allocator which
6682 	 * needs the percpu allocator in order to allocate its pagesets
6683 	 * (a chicken-egg dilemma).
6684 	 */
6685 	for_each_possible_cpu(cpu)
6686 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6687 
6688 	mminit_verify_zonelist();
6689 	cpuset_init_current_mems_allowed();
6690 }
6691 
6692 /*
6693  * unless system_state == SYSTEM_BOOTING.
6694  *
6695  * __ref due to call of __init annotated helper build_all_zonelists_init
6696  * [protected by SYSTEM_BOOTING].
6697  */
6698 void __ref build_all_zonelists(pg_data_t *pgdat)
6699 {
6700 	unsigned long vm_total_pages;
6701 
6702 	if (system_state == SYSTEM_BOOTING) {
6703 		build_all_zonelists_init();
6704 	} else {
6705 		__build_all_zonelists(pgdat);
6706 		/* cpuset refresh routine should be here */
6707 	}
6708 	/* Get the number of free pages beyond high watermark in all zones. */
6709 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6710 	/*
6711 	 * Disable grouping by mobility if the number of pages in the
6712 	 * system is too low to allow the mechanism to work. It would be
6713 	 * more accurate, but expensive to check per-zone. This check is
6714 	 * made on memory-hotadd so a system can start with mobility
6715 	 * disabled and enable it later
6716 	 */
6717 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6718 		page_group_by_mobility_disabled = 1;
6719 	else
6720 		page_group_by_mobility_disabled = 0;
6721 
6722 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6723 		nr_online_nodes,
6724 		page_group_by_mobility_disabled ? "off" : "on",
6725 		vm_total_pages);
6726 #ifdef CONFIG_NUMA
6727 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6728 #endif
6729 }
6730 
6731 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6732 static bool __meminit
6733 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6734 {
6735 	static struct memblock_region *r;
6736 
6737 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6738 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6739 			for_each_mem_region(r) {
6740 				if (*pfn < memblock_region_memory_end_pfn(r))
6741 					break;
6742 			}
6743 		}
6744 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6745 		    memblock_is_mirror(r)) {
6746 			*pfn = memblock_region_memory_end_pfn(r);
6747 			return true;
6748 		}
6749 	}
6750 	return false;
6751 }
6752 
6753 /*
6754  * Initially all pages are reserved - free ones are freed
6755  * up by memblock_free_all() once the early boot process is
6756  * done. Non-atomic initialization, single-pass.
6757  *
6758  * All aligned pageblocks are initialized to the specified migratetype
6759  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6760  * zone stats (e.g., nr_isolate_pageblock) are touched.
6761  */
6762 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6763 		unsigned long start_pfn, unsigned long zone_end_pfn,
6764 		enum meminit_context context,
6765 		struct vmem_altmap *altmap, int migratetype)
6766 {
6767 	unsigned long pfn, end_pfn = start_pfn + size;
6768 	struct page *page;
6769 
6770 	if (highest_memmap_pfn < end_pfn - 1)
6771 		highest_memmap_pfn = end_pfn - 1;
6772 
6773 #ifdef CONFIG_ZONE_DEVICE
6774 	/*
6775 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6776 	 * memory. We limit the total number of pages to initialize to just
6777 	 * those that might contain the memory mapping. We will defer the
6778 	 * ZONE_DEVICE page initialization until after we have released
6779 	 * the hotplug lock.
6780 	 */
6781 	if (zone == ZONE_DEVICE) {
6782 		if (!altmap)
6783 			return;
6784 
6785 		if (start_pfn == altmap->base_pfn)
6786 			start_pfn += altmap->reserve;
6787 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6788 	}
6789 #endif
6790 
6791 	for (pfn = start_pfn; pfn < end_pfn; ) {
6792 		/*
6793 		 * There can be holes in boot-time mem_map[]s handed to this
6794 		 * function.  They do not exist on hotplugged memory.
6795 		 */
6796 		if (context == MEMINIT_EARLY) {
6797 			if (overlap_memmap_init(zone, &pfn))
6798 				continue;
6799 			if (defer_init(nid, pfn, zone_end_pfn))
6800 				break;
6801 		}
6802 
6803 		page = pfn_to_page(pfn);
6804 		__init_single_page(page, pfn, zone, nid);
6805 		if (context == MEMINIT_HOTPLUG)
6806 			__SetPageReserved(page);
6807 
6808 		/*
6809 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6810 		 * such that unmovable allocations won't be scattered all
6811 		 * over the place during system boot.
6812 		 */
6813 		if (pageblock_aligned(pfn)) {
6814 			set_pageblock_migratetype(page, migratetype);
6815 			cond_resched();
6816 		}
6817 		pfn++;
6818 	}
6819 }
6820 
6821 #ifdef CONFIG_ZONE_DEVICE
6822 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6823 					  unsigned long zone_idx, int nid,
6824 					  struct dev_pagemap *pgmap)
6825 {
6826 
6827 	__init_single_page(page, pfn, zone_idx, nid);
6828 
6829 	/*
6830 	 * Mark page reserved as it will need to wait for onlining
6831 	 * phase for it to be fully associated with a zone.
6832 	 *
6833 	 * We can use the non-atomic __set_bit operation for setting
6834 	 * the flag as we are still initializing the pages.
6835 	 */
6836 	__SetPageReserved(page);
6837 
6838 	/*
6839 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6840 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6841 	 * ever freed or placed on a driver-private list.
6842 	 */
6843 	page->pgmap = pgmap;
6844 	page->zone_device_data = NULL;
6845 
6846 	/*
6847 	 * Mark the block movable so that blocks are reserved for
6848 	 * movable at startup. This will force kernel allocations
6849 	 * to reserve their blocks rather than leaking throughout
6850 	 * the address space during boot when many long-lived
6851 	 * kernel allocations are made.
6852 	 *
6853 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6854 	 * because this is done early in section_activate()
6855 	 */
6856 	if (pageblock_aligned(pfn)) {
6857 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6858 		cond_resched();
6859 	}
6860 
6861 	/*
6862 	 * ZONE_DEVICE pages are released directly to the driver page allocator
6863 	 * which will set the page count to 1 when allocating the page.
6864 	 */
6865 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6866 	    pgmap->type == MEMORY_DEVICE_COHERENT)
6867 		set_page_count(page, 0);
6868 }
6869 
6870 /*
6871  * With compound page geometry and when struct pages are stored in ram most
6872  * tail pages are reused. Consequently, the amount of unique struct pages to
6873  * initialize is a lot smaller that the total amount of struct pages being
6874  * mapped. This is a paired / mild layering violation with explicit knowledge
6875  * of how the sparse_vmemmap internals handle compound pages in the lack
6876  * of an altmap. See vmemmap_populate_compound_pages().
6877  */
6878 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6879 					      unsigned long nr_pages)
6880 {
6881 	return is_power_of_2(sizeof(struct page)) &&
6882 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6883 }
6884 
6885 static void __ref memmap_init_compound(struct page *head,
6886 				       unsigned long head_pfn,
6887 				       unsigned long zone_idx, int nid,
6888 				       struct dev_pagemap *pgmap,
6889 				       unsigned long nr_pages)
6890 {
6891 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6892 	unsigned int order = pgmap->vmemmap_shift;
6893 
6894 	__SetPageHead(head);
6895 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6896 		struct page *page = pfn_to_page(pfn);
6897 
6898 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6899 		prep_compound_tail(head, pfn - head_pfn);
6900 		set_page_count(page, 0);
6901 
6902 		/*
6903 		 * The first tail page stores important compound page info.
6904 		 * Call prep_compound_head() after the first tail page has
6905 		 * been initialized, to not have the data overwritten.
6906 		 */
6907 		if (pfn == head_pfn + 1)
6908 			prep_compound_head(head, order);
6909 	}
6910 }
6911 
6912 void __ref memmap_init_zone_device(struct zone *zone,
6913 				   unsigned long start_pfn,
6914 				   unsigned long nr_pages,
6915 				   struct dev_pagemap *pgmap)
6916 {
6917 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6918 	struct pglist_data *pgdat = zone->zone_pgdat;
6919 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6920 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6921 	unsigned long zone_idx = zone_idx(zone);
6922 	unsigned long start = jiffies;
6923 	int nid = pgdat->node_id;
6924 
6925 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6926 		return;
6927 
6928 	/*
6929 	 * The call to memmap_init should have already taken care
6930 	 * of the pages reserved for the memmap, so we can just jump to
6931 	 * the end of that region and start processing the device pages.
6932 	 */
6933 	if (altmap) {
6934 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6935 		nr_pages = end_pfn - start_pfn;
6936 	}
6937 
6938 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6939 		struct page *page = pfn_to_page(pfn);
6940 
6941 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6942 
6943 		if (pfns_per_compound == 1)
6944 			continue;
6945 
6946 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6947 				     compound_nr_pages(altmap, pfns_per_compound));
6948 	}
6949 
6950 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6951 		nr_pages, jiffies_to_msecs(jiffies - start));
6952 }
6953 
6954 #endif
6955 static void __meminit zone_init_free_lists(struct zone *zone)
6956 {
6957 	unsigned int order, t;
6958 	for_each_migratetype_order(order, t) {
6959 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6960 		zone->free_area[order].nr_free = 0;
6961 	}
6962 }
6963 
6964 /*
6965  * Only struct pages that correspond to ranges defined by memblock.memory
6966  * are zeroed and initialized by going through __init_single_page() during
6967  * memmap_init_zone_range().
6968  *
6969  * But, there could be struct pages that correspond to holes in
6970  * memblock.memory. This can happen because of the following reasons:
6971  * - physical memory bank size is not necessarily the exact multiple of the
6972  *   arbitrary section size
6973  * - early reserved memory may not be listed in memblock.memory
6974  * - memory layouts defined with memmap= kernel parameter may not align
6975  *   nicely with memmap sections
6976  *
6977  * Explicitly initialize those struct pages so that:
6978  * - PG_Reserved is set
6979  * - zone and node links point to zone and node that span the page if the
6980  *   hole is in the middle of a zone
6981  * - zone and node links point to adjacent zone/node if the hole falls on
6982  *   the zone boundary; the pages in such holes will be prepended to the
6983  *   zone/node above the hole except for the trailing pages in the last
6984  *   section that will be appended to the zone/node below.
6985  */
6986 static void __init init_unavailable_range(unsigned long spfn,
6987 					  unsigned long epfn,
6988 					  int zone, int node)
6989 {
6990 	unsigned long pfn;
6991 	u64 pgcnt = 0;
6992 
6993 	for (pfn = spfn; pfn < epfn; pfn++) {
6994 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6995 			pfn = pageblock_end_pfn(pfn) - 1;
6996 			continue;
6997 		}
6998 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6999 		__SetPageReserved(pfn_to_page(pfn));
7000 		pgcnt++;
7001 	}
7002 
7003 	if (pgcnt)
7004 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7005 			node, zone_names[zone], pgcnt);
7006 }
7007 
7008 static void __init memmap_init_zone_range(struct zone *zone,
7009 					  unsigned long start_pfn,
7010 					  unsigned long end_pfn,
7011 					  unsigned long *hole_pfn)
7012 {
7013 	unsigned long zone_start_pfn = zone->zone_start_pfn;
7014 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7015 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7016 
7017 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7018 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7019 
7020 	if (start_pfn >= end_pfn)
7021 		return;
7022 
7023 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7024 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7025 
7026 	if (*hole_pfn < start_pfn)
7027 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7028 
7029 	*hole_pfn = end_pfn;
7030 }
7031 
7032 static void __init memmap_init(void)
7033 {
7034 	unsigned long start_pfn, end_pfn;
7035 	unsigned long hole_pfn = 0;
7036 	int i, j, zone_id = 0, nid;
7037 
7038 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7039 		struct pglist_data *node = NODE_DATA(nid);
7040 
7041 		for (j = 0; j < MAX_NR_ZONES; j++) {
7042 			struct zone *zone = node->node_zones + j;
7043 
7044 			if (!populated_zone(zone))
7045 				continue;
7046 
7047 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7048 					       &hole_pfn);
7049 			zone_id = j;
7050 		}
7051 	}
7052 
7053 #ifdef CONFIG_SPARSEMEM
7054 	/*
7055 	 * Initialize the memory map for hole in the range [memory_end,
7056 	 * section_end].
7057 	 * Append the pages in this hole to the highest zone in the last
7058 	 * node.
7059 	 * The call to init_unavailable_range() is outside the ifdef to
7060 	 * silence the compiler warining about zone_id set but not used;
7061 	 * for FLATMEM it is a nop anyway
7062 	 */
7063 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7064 	if (hole_pfn < end_pfn)
7065 #endif
7066 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7067 }
7068 
7069 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7070 			  phys_addr_t min_addr, int nid, bool exact_nid)
7071 {
7072 	void *ptr;
7073 
7074 	if (exact_nid)
7075 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7076 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7077 						   nid);
7078 	else
7079 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7080 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7081 						 nid);
7082 
7083 	if (ptr && size > 0)
7084 		page_init_poison(ptr, size);
7085 
7086 	return ptr;
7087 }
7088 
7089 static int zone_batchsize(struct zone *zone)
7090 {
7091 #ifdef CONFIG_MMU
7092 	int batch;
7093 
7094 	/*
7095 	 * The number of pages to batch allocate is either ~0.1%
7096 	 * of the zone or 1MB, whichever is smaller. The batch
7097 	 * size is striking a balance between allocation latency
7098 	 * and zone lock contention.
7099 	 */
7100 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7101 	batch /= 4;		/* We effectively *= 4 below */
7102 	if (batch < 1)
7103 		batch = 1;
7104 
7105 	/*
7106 	 * Clamp the batch to a 2^n - 1 value. Having a power
7107 	 * of 2 value was found to be more likely to have
7108 	 * suboptimal cache aliasing properties in some cases.
7109 	 *
7110 	 * For example if 2 tasks are alternately allocating
7111 	 * batches of pages, one task can end up with a lot
7112 	 * of pages of one half of the possible page colors
7113 	 * and the other with pages of the other colors.
7114 	 */
7115 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7116 
7117 	return batch;
7118 
7119 #else
7120 	/* The deferral and batching of frees should be suppressed under NOMMU
7121 	 * conditions.
7122 	 *
7123 	 * The problem is that NOMMU needs to be able to allocate large chunks
7124 	 * of contiguous memory as there's no hardware page translation to
7125 	 * assemble apparent contiguous memory from discontiguous pages.
7126 	 *
7127 	 * Queueing large contiguous runs of pages for batching, however,
7128 	 * causes the pages to actually be freed in smaller chunks.  As there
7129 	 * can be a significant delay between the individual batches being
7130 	 * recycled, this leads to the once large chunks of space being
7131 	 * fragmented and becoming unavailable for high-order allocations.
7132 	 */
7133 	return 0;
7134 #endif
7135 }
7136 
7137 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7138 {
7139 #ifdef CONFIG_MMU
7140 	int high;
7141 	int nr_split_cpus;
7142 	unsigned long total_pages;
7143 
7144 	if (!percpu_pagelist_high_fraction) {
7145 		/*
7146 		 * By default, the high value of the pcp is based on the zone
7147 		 * low watermark so that if they are full then background
7148 		 * reclaim will not be started prematurely.
7149 		 */
7150 		total_pages = low_wmark_pages(zone);
7151 	} else {
7152 		/*
7153 		 * If percpu_pagelist_high_fraction is configured, the high
7154 		 * value is based on a fraction of the managed pages in the
7155 		 * zone.
7156 		 */
7157 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7158 	}
7159 
7160 	/*
7161 	 * Split the high value across all online CPUs local to the zone. Note
7162 	 * that early in boot that CPUs may not be online yet and that during
7163 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7164 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7165 	 * all online CPUs to mitigate the risk that reclaim is triggered
7166 	 * prematurely due to pages stored on pcp lists.
7167 	 */
7168 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7169 	if (!nr_split_cpus)
7170 		nr_split_cpus = num_online_cpus();
7171 	high = total_pages / nr_split_cpus;
7172 
7173 	/*
7174 	 * Ensure high is at least batch*4. The multiple is based on the
7175 	 * historical relationship between high and batch.
7176 	 */
7177 	high = max(high, batch << 2);
7178 
7179 	return high;
7180 #else
7181 	return 0;
7182 #endif
7183 }
7184 
7185 /*
7186  * pcp->high and pcp->batch values are related and generally batch is lower
7187  * than high. They are also related to pcp->count such that count is lower
7188  * than high, and as soon as it reaches high, the pcplist is flushed.
7189  *
7190  * However, guaranteeing these relations at all times would require e.g. write
7191  * barriers here but also careful usage of read barriers at the read side, and
7192  * thus be prone to error and bad for performance. Thus the update only prevents
7193  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7194  * can cope with those fields changing asynchronously, and fully trust only the
7195  * pcp->count field on the local CPU with interrupts disabled.
7196  *
7197  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7198  * outside of boot time (or some other assurance that no concurrent updaters
7199  * exist).
7200  */
7201 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7202 		unsigned long batch)
7203 {
7204 	WRITE_ONCE(pcp->batch, batch);
7205 	WRITE_ONCE(pcp->high, high);
7206 }
7207 
7208 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7209 {
7210 	int pindex;
7211 
7212 	memset(pcp, 0, sizeof(*pcp));
7213 	memset(pzstats, 0, sizeof(*pzstats));
7214 
7215 	spin_lock_init(&pcp->lock);
7216 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7217 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7218 
7219 	/*
7220 	 * Set batch and high values safe for a boot pageset. A true percpu
7221 	 * pageset's initialization will update them subsequently. Here we don't
7222 	 * need to be as careful as pageset_update() as nobody can access the
7223 	 * pageset yet.
7224 	 */
7225 	pcp->high = BOOT_PAGESET_HIGH;
7226 	pcp->batch = BOOT_PAGESET_BATCH;
7227 	pcp->free_factor = 0;
7228 }
7229 
7230 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7231 		unsigned long batch)
7232 {
7233 	struct per_cpu_pages *pcp;
7234 	int cpu;
7235 
7236 	for_each_possible_cpu(cpu) {
7237 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7238 		pageset_update(pcp, high, batch);
7239 	}
7240 }
7241 
7242 /*
7243  * Calculate and set new high and batch values for all per-cpu pagesets of a
7244  * zone based on the zone's size.
7245  */
7246 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7247 {
7248 	int new_high, new_batch;
7249 
7250 	new_batch = max(1, zone_batchsize(zone));
7251 	new_high = zone_highsize(zone, new_batch, cpu_online);
7252 
7253 	if (zone->pageset_high == new_high &&
7254 	    zone->pageset_batch == new_batch)
7255 		return;
7256 
7257 	zone->pageset_high = new_high;
7258 	zone->pageset_batch = new_batch;
7259 
7260 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7261 }
7262 
7263 void __meminit setup_zone_pageset(struct zone *zone)
7264 {
7265 	int cpu;
7266 
7267 	/* Size may be 0 on !SMP && !NUMA */
7268 	if (sizeof(struct per_cpu_zonestat) > 0)
7269 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7270 
7271 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7272 	for_each_possible_cpu(cpu) {
7273 		struct per_cpu_pages *pcp;
7274 		struct per_cpu_zonestat *pzstats;
7275 
7276 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7277 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7278 		per_cpu_pages_init(pcp, pzstats);
7279 	}
7280 
7281 	zone_set_pageset_high_and_batch(zone, 0);
7282 }
7283 
7284 /*
7285  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7286  * page high values need to be recalculated.
7287  */
7288 static void zone_pcp_update(struct zone *zone, int cpu_online)
7289 {
7290 	mutex_lock(&pcp_batch_high_lock);
7291 	zone_set_pageset_high_and_batch(zone, cpu_online);
7292 	mutex_unlock(&pcp_batch_high_lock);
7293 }
7294 
7295 /*
7296  * Allocate per cpu pagesets and initialize them.
7297  * Before this call only boot pagesets were available.
7298  */
7299 void __init setup_per_cpu_pageset(void)
7300 {
7301 	struct pglist_data *pgdat;
7302 	struct zone *zone;
7303 	int __maybe_unused cpu;
7304 
7305 	for_each_populated_zone(zone)
7306 		setup_zone_pageset(zone);
7307 
7308 #ifdef CONFIG_NUMA
7309 	/*
7310 	 * Unpopulated zones continue using the boot pagesets.
7311 	 * The numa stats for these pagesets need to be reset.
7312 	 * Otherwise, they will end up skewing the stats of
7313 	 * the nodes these zones are associated with.
7314 	 */
7315 	for_each_possible_cpu(cpu) {
7316 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7317 		memset(pzstats->vm_numa_event, 0,
7318 		       sizeof(pzstats->vm_numa_event));
7319 	}
7320 #endif
7321 
7322 	for_each_online_pgdat(pgdat)
7323 		pgdat->per_cpu_nodestats =
7324 			alloc_percpu(struct per_cpu_nodestat);
7325 }
7326 
7327 static __meminit void zone_pcp_init(struct zone *zone)
7328 {
7329 	/*
7330 	 * per cpu subsystem is not up at this point. The following code
7331 	 * relies on the ability of the linker to provide the
7332 	 * offset of a (static) per cpu variable into the per cpu area.
7333 	 */
7334 	zone->per_cpu_pageset = &boot_pageset;
7335 	zone->per_cpu_zonestats = &boot_zonestats;
7336 	zone->pageset_high = BOOT_PAGESET_HIGH;
7337 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7338 
7339 	if (populated_zone(zone))
7340 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7341 			 zone->present_pages, zone_batchsize(zone));
7342 }
7343 
7344 void __meminit init_currently_empty_zone(struct zone *zone,
7345 					unsigned long zone_start_pfn,
7346 					unsigned long size)
7347 {
7348 	struct pglist_data *pgdat = zone->zone_pgdat;
7349 	int zone_idx = zone_idx(zone) + 1;
7350 
7351 	if (zone_idx > pgdat->nr_zones)
7352 		pgdat->nr_zones = zone_idx;
7353 
7354 	zone->zone_start_pfn = zone_start_pfn;
7355 
7356 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7357 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7358 			pgdat->node_id,
7359 			(unsigned long)zone_idx(zone),
7360 			zone_start_pfn, (zone_start_pfn + size));
7361 
7362 	zone_init_free_lists(zone);
7363 	zone->initialized = 1;
7364 }
7365 
7366 /**
7367  * get_pfn_range_for_nid - Return the start and end page frames for a node
7368  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7369  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7370  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7371  *
7372  * It returns the start and end page frame of a node based on information
7373  * provided by memblock_set_node(). If called for a node
7374  * with no available memory, a warning is printed and the start and end
7375  * PFNs will be 0.
7376  */
7377 void __init get_pfn_range_for_nid(unsigned int nid,
7378 			unsigned long *start_pfn, unsigned long *end_pfn)
7379 {
7380 	unsigned long this_start_pfn, this_end_pfn;
7381 	int i;
7382 
7383 	*start_pfn = -1UL;
7384 	*end_pfn = 0;
7385 
7386 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7387 		*start_pfn = min(*start_pfn, this_start_pfn);
7388 		*end_pfn = max(*end_pfn, this_end_pfn);
7389 	}
7390 
7391 	if (*start_pfn == -1UL)
7392 		*start_pfn = 0;
7393 }
7394 
7395 /*
7396  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7397  * assumption is made that zones within a node are ordered in monotonic
7398  * increasing memory addresses so that the "highest" populated zone is used
7399  */
7400 static void __init find_usable_zone_for_movable(void)
7401 {
7402 	int zone_index;
7403 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7404 		if (zone_index == ZONE_MOVABLE)
7405 			continue;
7406 
7407 		if (arch_zone_highest_possible_pfn[zone_index] >
7408 				arch_zone_lowest_possible_pfn[zone_index])
7409 			break;
7410 	}
7411 
7412 	VM_BUG_ON(zone_index == -1);
7413 	movable_zone = zone_index;
7414 }
7415 
7416 /*
7417  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7418  * because it is sized independent of architecture. Unlike the other zones,
7419  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7420  * in each node depending on the size of each node and how evenly kernelcore
7421  * is distributed. This helper function adjusts the zone ranges
7422  * provided by the architecture for a given node by using the end of the
7423  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7424  * zones within a node are in order of monotonic increases memory addresses
7425  */
7426 static void __init adjust_zone_range_for_zone_movable(int nid,
7427 					unsigned long zone_type,
7428 					unsigned long node_start_pfn,
7429 					unsigned long node_end_pfn,
7430 					unsigned long *zone_start_pfn,
7431 					unsigned long *zone_end_pfn)
7432 {
7433 	/* Only adjust if ZONE_MOVABLE is on this node */
7434 	if (zone_movable_pfn[nid]) {
7435 		/* Size ZONE_MOVABLE */
7436 		if (zone_type == ZONE_MOVABLE) {
7437 			*zone_start_pfn = zone_movable_pfn[nid];
7438 			*zone_end_pfn = min(node_end_pfn,
7439 				arch_zone_highest_possible_pfn[movable_zone]);
7440 
7441 		/* Adjust for ZONE_MOVABLE starting within this range */
7442 		} else if (!mirrored_kernelcore &&
7443 			*zone_start_pfn < zone_movable_pfn[nid] &&
7444 			*zone_end_pfn > zone_movable_pfn[nid]) {
7445 			*zone_end_pfn = zone_movable_pfn[nid];
7446 
7447 		/* Check if this whole range is within ZONE_MOVABLE */
7448 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7449 			*zone_start_pfn = *zone_end_pfn;
7450 	}
7451 }
7452 
7453 /*
7454  * Return the number of pages a zone spans in a node, including holes
7455  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7456  */
7457 static unsigned long __init zone_spanned_pages_in_node(int nid,
7458 					unsigned long zone_type,
7459 					unsigned long node_start_pfn,
7460 					unsigned long node_end_pfn,
7461 					unsigned long *zone_start_pfn,
7462 					unsigned long *zone_end_pfn)
7463 {
7464 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7465 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7466 	/* When hotadd a new node from cpu_up(), the node should be empty */
7467 	if (!node_start_pfn && !node_end_pfn)
7468 		return 0;
7469 
7470 	/* Get the start and end of the zone */
7471 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7472 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7473 	adjust_zone_range_for_zone_movable(nid, zone_type,
7474 				node_start_pfn, node_end_pfn,
7475 				zone_start_pfn, zone_end_pfn);
7476 
7477 	/* Check that this node has pages within the zone's required range */
7478 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7479 		return 0;
7480 
7481 	/* Move the zone boundaries inside the node if necessary */
7482 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7483 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7484 
7485 	/* Return the spanned pages */
7486 	return *zone_end_pfn - *zone_start_pfn;
7487 }
7488 
7489 /*
7490  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7491  * then all holes in the requested range will be accounted for.
7492  */
7493 unsigned long __init __absent_pages_in_range(int nid,
7494 				unsigned long range_start_pfn,
7495 				unsigned long range_end_pfn)
7496 {
7497 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7498 	unsigned long start_pfn, end_pfn;
7499 	int i;
7500 
7501 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7502 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7503 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7504 		nr_absent -= end_pfn - start_pfn;
7505 	}
7506 	return nr_absent;
7507 }
7508 
7509 /**
7510  * absent_pages_in_range - Return number of page frames in holes within a range
7511  * @start_pfn: The start PFN to start searching for holes
7512  * @end_pfn: The end PFN to stop searching for holes
7513  *
7514  * Return: the number of pages frames in memory holes within a range.
7515  */
7516 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7517 							unsigned long end_pfn)
7518 {
7519 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7520 }
7521 
7522 /* Return the number of page frames in holes in a zone on a node */
7523 static unsigned long __init zone_absent_pages_in_node(int nid,
7524 					unsigned long zone_type,
7525 					unsigned long node_start_pfn,
7526 					unsigned long node_end_pfn)
7527 {
7528 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7529 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7530 	unsigned long zone_start_pfn, zone_end_pfn;
7531 	unsigned long nr_absent;
7532 
7533 	/* When hotadd a new node from cpu_up(), the node should be empty */
7534 	if (!node_start_pfn && !node_end_pfn)
7535 		return 0;
7536 
7537 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7538 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7539 
7540 	adjust_zone_range_for_zone_movable(nid, zone_type,
7541 			node_start_pfn, node_end_pfn,
7542 			&zone_start_pfn, &zone_end_pfn);
7543 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7544 
7545 	/*
7546 	 * ZONE_MOVABLE handling.
7547 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7548 	 * and vice versa.
7549 	 */
7550 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7551 		unsigned long start_pfn, end_pfn;
7552 		struct memblock_region *r;
7553 
7554 		for_each_mem_region(r) {
7555 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7556 					  zone_start_pfn, zone_end_pfn);
7557 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7558 					zone_start_pfn, zone_end_pfn);
7559 
7560 			if (zone_type == ZONE_MOVABLE &&
7561 			    memblock_is_mirror(r))
7562 				nr_absent += end_pfn - start_pfn;
7563 
7564 			if (zone_type == ZONE_NORMAL &&
7565 			    !memblock_is_mirror(r))
7566 				nr_absent += end_pfn - start_pfn;
7567 		}
7568 	}
7569 
7570 	return nr_absent;
7571 }
7572 
7573 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7574 						unsigned long node_start_pfn,
7575 						unsigned long node_end_pfn)
7576 {
7577 	unsigned long realtotalpages = 0, totalpages = 0;
7578 	enum zone_type i;
7579 
7580 	for (i = 0; i < MAX_NR_ZONES; i++) {
7581 		struct zone *zone = pgdat->node_zones + i;
7582 		unsigned long zone_start_pfn, zone_end_pfn;
7583 		unsigned long spanned, absent;
7584 		unsigned long size, real_size;
7585 
7586 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7587 						     node_start_pfn,
7588 						     node_end_pfn,
7589 						     &zone_start_pfn,
7590 						     &zone_end_pfn);
7591 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7592 						   node_start_pfn,
7593 						   node_end_pfn);
7594 
7595 		size = spanned;
7596 		real_size = size - absent;
7597 
7598 		if (size)
7599 			zone->zone_start_pfn = zone_start_pfn;
7600 		else
7601 			zone->zone_start_pfn = 0;
7602 		zone->spanned_pages = size;
7603 		zone->present_pages = real_size;
7604 #if defined(CONFIG_MEMORY_HOTPLUG)
7605 		zone->present_early_pages = real_size;
7606 #endif
7607 
7608 		totalpages += size;
7609 		realtotalpages += real_size;
7610 	}
7611 
7612 	pgdat->node_spanned_pages = totalpages;
7613 	pgdat->node_present_pages = realtotalpages;
7614 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7615 }
7616 
7617 #ifndef CONFIG_SPARSEMEM
7618 /*
7619  * Calculate the size of the zone->blockflags rounded to an unsigned long
7620  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7621  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7622  * round what is now in bits to nearest long in bits, then return it in
7623  * bytes.
7624  */
7625 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7626 {
7627 	unsigned long usemapsize;
7628 
7629 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7630 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7631 	usemapsize = usemapsize >> pageblock_order;
7632 	usemapsize *= NR_PAGEBLOCK_BITS;
7633 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7634 
7635 	return usemapsize / 8;
7636 }
7637 
7638 static void __ref setup_usemap(struct zone *zone)
7639 {
7640 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7641 					       zone->spanned_pages);
7642 	zone->pageblock_flags = NULL;
7643 	if (usemapsize) {
7644 		zone->pageblock_flags =
7645 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7646 					    zone_to_nid(zone));
7647 		if (!zone->pageblock_flags)
7648 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7649 			      usemapsize, zone->name, zone_to_nid(zone));
7650 	}
7651 }
7652 #else
7653 static inline void setup_usemap(struct zone *zone) {}
7654 #endif /* CONFIG_SPARSEMEM */
7655 
7656 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7657 
7658 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7659 void __init set_pageblock_order(void)
7660 {
7661 	unsigned int order = MAX_ORDER - 1;
7662 
7663 	/* Check that pageblock_nr_pages has not already been setup */
7664 	if (pageblock_order)
7665 		return;
7666 
7667 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7668 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7669 		order = HUGETLB_PAGE_ORDER;
7670 
7671 	/*
7672 	 * Assume the largest contiguous order of interest is a huge page.
7673 	 * This value may be variable depending on boot parameters on IA64 and
7674 	 * powerpc.
7675 	 */
7676 	pageblock_order = order;
7677 }
7678 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7679 
7680 /*
7681  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7682  * is unused as pageblock_order is set at compile-time. See
7683  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7684  * the kernel config
7685  */
7686 void __init set_pageblock_order(void)
7687 {
7688 }
7689 
7690 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7691 
7692 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7693 						unsigned long present_pages)
7694 {
7695 	unsigned long pages = spanned_pages;
7696 
7697 	/*
7698 	 * Provide a more accurate estimation if there are holes within
7699 	 * the zone and SPARSEMEM is in use. If there are holes within the
7700 	 * zone, each populated memory region may cost us one or two extra
7701 	 * memmap pages due to alignment because memmap pages for each
7702 	 * populated regions may not be naturally aligned on page boundary.
7703 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7704 	 */
7705 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7706 	    IS_ENABLED(CONFIG_SPARSEMEM))
7707 		pages = present_pages;
7708 
7709 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7710 }
7711 
7712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7713 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7714 {
7715 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7716 
7717 	spin_lock_init(&ds_queue->split_queue_lock);
7718 	INIT_LIST_HEAD(&ds_queue->split_queue);
7719 	ds_queue->split_queue_len = 0;
7720 }
7721 #else
7722 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7723 #endif
7724 
7725 #ifdef CONFIG_COMPACTION
7726 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7727 {
7728 	init_waitqueue_head(&pgdat->kcompactd_wait);
7729 }
7730 #else
7731 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7732 #endif
7733 
7734 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7735 {
7736 	int i;
7737 
7738 	pgdat_resize_init(pgdat);
7739 	pgdat_kswapd_lock_init(pgdat);
7740 
7741 	pgdat_init_split_queue(pgdat);
7742 	pgdat_init_kcompactd(pgdat);
7743 
7744 	init_waitqueue_head(&pgdat->kswapd_wait);
7745 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7746 
7747 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7748 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7749 
7750 	pgdat_page_ext_init(pgdat);
7751 	lruvec_init(&pgdat->__lruvec);
7752 }
7753 
7754 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7755 							unsigned long remaining_pages)
7756 {
7757 	atomic_long_set(&zone->managed_pages, remaining_pages);
7758 	zone_set_nid(zone, nid);
7759 	zone->name = zone_names[idx];
7760 	zone->zone_pgdat = NODE_DATA(nid);
7761 	spin_lock_init(&zone->lock);
7762 	zone_seqlock_init(zone);
7763 	zone_pcp_init(zone);
7764 }
7765 
7766 /*
7767  * Set up the zone data structures
7768  * - init pgdat internals
7769  * - init all zones belonging to this node
7770  *
7771  * NOTE: this function is only called during memory hotplug
7772  */
7773 #ifdef CONFIG_MEMORY_HOTPLUG
7774 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7775 {
7776 	int nid = pgdat->node_id;
7777 	enum zone_type z;
7778 	int cpu;
7779 
7780 	pgdat_init_internals(pgdat);
7781 
7782 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7783 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7784 
7785 	/*
7786 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7787 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7788 	 * when it starts in the near future.
7789 	 */
7790 	pgdat->nr_zones = 0;
7791 	pgdat->kswapd_order = 0;
7792 	pgdat->kswapd_highest_zoneidx = 0;
7793 	pgdat->node_start_pfn = 0;
7794 	for_each_online_cpu(cpu) {
7795 		struct per_cpu_nodestat *p;
7796 
7797 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7798 		memset(p, 0, sizeof(*p));
7799 	}
7800 
7801 	for (z = 0; z < MAX_NR_ZONES; z++)
7802 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7803 }
7804 #endif
7805 
7806 /*
7807  * Set up the zone data structures:
7808  *   - mark all pages reserved
7809  *   - mark all memory queues empty
7810  *   - clear the memory bitmaps
7811  *
7812  * NOTE: pgdat should get zeroed by caller.
7813  * NOTE: this function is only called during early init.
7814  */
7815 static void __init free_area_init_core(struct pglist_data *pgdat)
7816 {
7817 	enum zone_type j;
7818 	int nid = pgdat->node_id;
7819 
7820 	pgdat_init_internals(pgdat);
7821 	pgdat->per_cpu_nodestats = &boot_nodestats;
7822 
7823 	for (j = 0; j < MAX_NR_ZONES; j++) {
7824 		struct zone *zone = pgdat->node_zones + j;
7825 		unsigned long size, freesize, memmap_pages;
7826 
7827 		size = zone->spanned_pages;
7828 		freesize = zone->present_pages;
7829 
7830 		/*
7831 		 * Adjust freesize so that it accounts for how much memory
7832 		 * is used by this zone for memmap. This affects the watermark
7833 		 * and per-cpu initialisations
7834 		 */
7835 		memmap_pages = calc_memmap_size(size, freesize);
7836 		if (!is_highmem_idx(j)) {
7837 			if (freesize >= memmap_pages) {
7838 				freesize -= memmap_pages;
7839 				if (memmap_pages)
7840 					pr_debug("  %s zone: %lu pages used for memmap\n",
7841 						 zone_names[j], memmap_pages);
7842 			} else
7843 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7844 					zone_names[j], memmap_pages, freesize);
7845 		}
7846 
7847 		/* Account for reserved pages */
7848 		if (j == 0 && freesize > dma_reserve) {
7849 			freesize -= dma_reserve;
7850 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7851 		}
7852 
7853 		if (!is_highmem_idx(j))
7854 			nr_kernel_pages += freesize;
7855 		/* Charge for highmem memmap if there are enough kernel pages */
7856 		else if (nr_kernel_pages > memmap_pages * 2)
7857 			nr_kernel_pages -= memmap_pages;
7858 		nr_all_pages += freesize;
7859 
7860 		/*
7861 		 * Set an approximate value for lowmem here, it will be adjusted
7862 		 * when the bootmem allocator frees pages into the buddy system.
7863 		 * And all highmem pages will be managed by the buddy system.
7864 		 */
7865 		zone_init_internals(zone, j, nid, freesize);
7866 
7867 		if (!size)
7868 			continue;
7869 
7870 		set_pageblock_order();
7871 		setup_usemap(zone);
7872 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7873 	}
7874 }
7875 
7876 #ifdef CONFIG_FLATMEM
7877 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7878 {
7879 	unsigned long __maybe_unused start = 0;
7880 	unsigned long __maybe_unused offset = 0;
7881 
7882 	/* Skip empty nodes */
7883 	if (!pgdat->node_spanned_pages)
7884 		return;
7885 
7886 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7887 	offset = pgdat->node_start_pfn - start;
7888 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7889 	if (!pgdat->node_mem_map) {
7890 		unsigned long size, end;
7891 		struct page *map;
7892 
7893 		/*
7894 		 * The zone's endpoints aren't required to be MAX_ORDER
7895 		 * aligned but the node_mem_map endpoints must be in order
7896 		 * for the buddy allocator to function correctly.
7897 		 */
7898 		end = pgdat_end_pfn(pgdat);
7899 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7900 		size =  (end - start) * sizeof(struct page);
7901 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7902 				   pgdat->node_id, false);
7903 		if (!map)
7904 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7905 			      size, pgdat->node_id);
7906 		pgdat->node_mem_map = map + offset;
7907 	}
7908 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7909 				__func__, pgdat->node_id, (unsigned long)pgdat,
7910 				(unsigned long)pgdat->node_mem_map);
7911 #ifndef CONFIG_NUMA
7912 	/*
7913 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7914 	 */
7915 	if (pgdat == NODE_DATA(0)) {
7916 		mem_map = NODE_DATA(0)->node_mem_map;
7917 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7918 			mem_map -= offset;
7919 	}
7920 #endif
7921 }
7922 #else
7923 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7924 #endif /* CONFIG_FLATMEM */
7925 
7926 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7927 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7928 {
7929 	pgdat->first_deferred_pfn = ULONG_MAX;
7930 }
7931 #else
7932 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7933 #endif
7934 
7935 static void __init free_area_init_node(int nid)
7936 {
7937 	pg_data_t *pgdat = NODE_DATA(nid);
7938 	unsigned long start_pfn = 0;
7939 	unsigned long end_pfn = 0;
7940 
7941 	/* pg_data_t should be reset to zero when it's allocated */
7942 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7943 
7944 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7945 
7946 	pgdat->node_id = nid;
7947 	pgdat->node_start_pfn = start_pfn;
7948 	pgdat->per_cpu_nodestats = NULL;
7949 
7950 	if (start_pfn != end_pfn) {
7951 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7952 			(u64)start_pfn << PAGE_SHIFT,
7953 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7954 	} else {
7955 		pr_info("Initmem setup node %d as memoryless\n", nid);
7956 	}
7957 
7958 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7959 
7960 	alloc_node_mem_map(pgdat);
7961 	pgdat_set_deferred_range(pgdat);
7962 
7963 	free_area_init_core(pgdat);
7964 	lru_gen_init_pgdat(pgdat);
7965 }
7966 
7967 static void __init free_area_init_memoryless_node(int nid)
7968 {
7969 	free_area_init_node(nid);
7970 }
7971 
7972 #if MAX_NUMNODES > 1
7973 /*
7974  * Figure out the number of possible node ids.
7975  */
7976 void __init setup_nr_node_ids(void)
7977 {
7978 	unsigned int highest;
7979 
7980 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7981 	nr_node_ids = highest + 1;
7982 }
7983 #endif
7984 
7985 /**
7986  * node_map_pfn_alignment - determine the maximum internode alignment
7987  *
7988  * This function should be called after node map is populated and sorted.
7989  * It calculates the maximum power of two alignment which can distinguish
7990  * all the nodes.
7991  *
7992  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7993  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7994  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7995  * shifted, 1GiB is enough and this function will indicate so.
7996  *
7997  * This is used to test whether pfn -> nid mapping of the chosen memory
7998  * model has fine enough granularity to avoid incorrect mapping for the
7999  * populated node map.
8000  *
8001  * Return: the determined alignment in pfn's.  0 if there is no alignment
8002  * requirement (single node).
8003  */
8004 unsigned long __init node_map_pfn_alignment(void)
8005 {
8006 	unsigned long accl_mask = 0, last_end = 0;
8007 	unsigned long start, end, mask;
8008 	int last_nid = NUMA_NO_NODE;
8009 	int i, nid;
8010 
8011 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
8012 		if (!start || last_nid < 0 || last_nid == nid) {
8013 			last_nid = nid;
8014 			last_end = end;
8015 			continue;
8016 		}
8017 
8018 		/*
8019 		 * Start with a mask granular enough to pin-point to the
8020 		 * start pfn and tick off bits one-by-one until it becomes
8021 		 * too coarse to separate the current node from the last.
8022 		 */
8023 		mask = ~((1 << __ffs(start)) - 1);
8024 		while (mask && last_end <= (start & (mask << 1)))
8025 			mask <<= 1;
8026 
8027 		/* accumulate all internode masks */
8028 		accl_mask |= mask;
8029 	}
8030 
8031 	/* convert mask to number of pages */
8032 	return ~accl_mask + 1;
8033 }
8034 
8035 /*
8036  * early_calculate_totalpages()
8037  * Sum pages in active regions for movable zone.
8038  * Populate N_MEMORY for calculating usable_nodes.
8039  */
8040 static unsigned long __init early_calculate_totalpages(void)
8041 {
8042 	unsigned long totalpages = 0;
8043 	unsigned long start_pfn, end_pfn;
8044 	int i, nid;
8045 
8046 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8047 		unsigned long pages = end_pfn - start_pfn;
8048 
8049 		totalpages += pages;
8050 		if (pages)
8051 			node_set_state(nid, N_MEMORY);
8052 	}
8053 	return totalpages;
8054 }
8055 
8056 /*
8057  * Find the PFN the Movable zone begins in each node. Kernel memory
8058  * is spread evenly between nodes as long as the nodes have enough
8059  * memory. When they don't, some nodes will have more kernelcore than
8060  * others
8061  */
8062 static void __init find_zone_movable_pfns_for_nodes(void)
8063 {
8064 	int i, nid;
8065 	unsigned long usable_startpfn;
8066 	unsigned long kernelcore_node, kernelcore_remaining;
8067 	/* save the state before borrow the nodemask */
8068 	nodemask_t saved_node_state = node_states[N_MEMORY];
8069 	unsigned long totalpages = early_calculate_totalpages();
8070 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8071 	struct memblock_region *r;
8072 
8073 	/* Need to find movable_zone earlier when movable_node is specified. */
8074 	find_usable_zone_for_movable();
8075 
8076 	/*
8077 	 * If movable_node is specified, ignore kernelcore and movablecore
8078 	 * options.
8079 	 */
8080 	if (movable_node_is_enabled()) {
8081 		for_each_mem_region(r) {
8082 			if (!memblock_is_hotpluggable(r))
8083 				continue;
8084 
8085 			nid = memblock_get_region_node(r);
8086 
8087 			usable_startpfn = PFN_DOWN(r->base);
8088 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8089 				min(usable_startpfn, zone_movable_pfn[nid]) :
8090 				usable_startpfn;
8091 		}
8092 
8093 		goto out2;
8094 	}
8095 
8096 	/*
8097 	 * If kernelcore=mirror is specified, ignore movablecore option
8098 	 */
8099 	if (mirrored_kernelcore) {
8100 		bool mem_below_4gb_not_mirrored = false;
8101 
8102 		for_each_mem_region(r) {
8103 			if (memblock_is_mirror(r))
8104 				continue;
8105 
8106 			nid = memblock_get_region_node(r);
8107 
8108 			usable_startpfn = memblock_region_memory_base_pfn(r);
8109 
8110 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8111 				mem_below_4gb_not_mirrored = true;
8112 				continue;
8113 			}
8114 
8115 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8116 				min(usable_startpfn, zone_movable_pfn[nid]) :
8117 				usable_startpfn;
8118 		}
8119 
8120 		if (mem_below_4gb_not_mirrored)
8121 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8122 
8123 		goto out2;
8124 	}
8125 
8126 	/*
8127 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8128 	 * amount of necessary memory.
8129 	 */
8130 	if (required_kernelcore_percent)
8131 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8132 				       10000UL;
8133 	if (required_movablecore_percent)
8134 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8135 					10000UL;
8136 
8137 	/*
8138 	 * If movablecore= was specified, calculate what size of
8139 	 * kernelcore that corresponds so that memory usable for
8140 	 * any allocation type is evenly spread. If both kernelcore
8141 	 * and movablecore are specified, then the value of kernelcore
8142 	 * will be used for required_kernelcore if it's greater than
8143 	 * what movablecore would have allowed.
8144 	 */
8145 	if (required_movablecore) {
8146 		unsigned long corepages;
8147 
8148 		/*
8149 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8150 		 * was requested by the user
8151 		 */
8152 		required_movablecore =
8153 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8154 		required_movablecore = min(totalpages, required_movablecore);
8155 		corepages = totalpages - required_movablecore;
8156 
8157 		required_kernelcore = max(required_kernelcore, corepages);
8158 	}
8159 
8160 	/*
8161 	 * If kernelcore was not specified or kernelcore size is larger
8162 	 * than totalpages, there is no ZONE_MOVABLE.
8163 	 */
8164 	if (!required_kernelcore || required_kernelcore >= totalpages)
8165 		goto out;
8166 
8167 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8168 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8169 
8170 restart:
8171 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8172 	kernelcore_node = required_kernelcore / usable_nodes;
8173 	for_each_node_state(nid, N_MEMORY) {
8174 		unsigned long start_pfn, end_pfn;
8175 
8176 		/*
8177 		 * Recalculate kernelcore_node if the division per node
8178 		 * now exceeds what is necessary to satisfy the requested
8179 		 * amount of memory for the kernel
8180 		 */
8181 		if (required_kernelcore < kernelcore_node)
8182 			kernelcore_node = required_kernelcore / usable_nodes;
8183 
8184 		/*
8185 		 * As the map is walked, we track how much memory is usable
8186 		 * by the kernel using kernelcore_remaining. When it is
8187 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8188 		 */
8189 		kernelcore_remaining = kernelcore_node;
8190 
8191 		/* Go through each range of PFNs within this node */
8192 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8193 			unsigned long size_pages;
8194 
8195 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8196 			if (start_pfn >= end_pfn)
8197 				continue;
8198 
8199 			/* Account for what is only usable for kernelcore */
8200 			if (start_pfn < usable_startpfn) {
8201 				unsigned long kernel_pages;
8202 				kernel_pages = min(end_pfn, usable_startpfn)
8203 								- start_pfn;
8204 
8205 				kernelcore_remaining -= min(kernel_pages,
8206 							kernelcore_remaining);
8207 				required_kernelcore -= min(kernel_pages,
8208 							required_kernelcore);
8209 
8210 				/* Continue if range is now fully accounted */
8211 				if (end_pfn <= usable_startpfn) {
8212 
8213 					/*
8214 					 * Push zone_movable_pfn to the end so
8215 					 * that if we have to rebalance
8216 					 * kernelcore across nodes, we will
8217 					 * not double account here
8218 					 */
8219 					zone_movable_pfn[nid] = end_pfn;
8220 					continue;
8221 				}
8222 				start_pfn = usable_startpfn;
8223 			}
8224 
8225 			/*
8226 			 * The usable PFN range for ZONE_MOVABLE is from
8227 			 * start_pfn->end_pfn. Calculate size_pages as the
8228 			 * number of pages used as kernelcore
8229 			 */
8230 			size_pages = end_pfn - start_pfn;
8231 			if (size_pages > kernelcore_remaining)
8232 				size_pages = kernelcore_remaining;
8233 			zone_movable_pfn[nid] = start_pfn + size_pages;
8234 
8235 			/*
8236 			 * Some kernelcore has been met, update counts and
8237 			 * break if the kernelcore for this node has been
8238 			 * satisfied
8239 			 */
8240 			required_kernelcore -= min(required_kernelcore,
8241 								size_pages);
8242 			kernelcore_remaining -= size_pages;
8243 			if (!kernelcore_remaining)
8244 				break;
8245 		}
8246 	}
8247 
8248 	/*
8249 	 * If there is still required_kernelcore, we do another pass with one
8250 	 * less node in the count. This will push zone_movable_pfn[nid] further
8251 	 * along on the nodes that still have memory until kernelcore is
8252 	 * satisfied
8253 	 */
8254 	usable_nodes--;
8255 	if (usable_nodes && required_kernelcore > usable_nodes)
8256 		goto restart;
8257 
8258 out2:
8259 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8260 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8261 		unsigned long start_pfn, end_pfn;
8262 
8263 		zone_movable_pfn[nid] =
8264 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8265 
8266 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8267 		if (zone_movable_pfn[nid] >= end_pfn)
8268 			zone_movable_pfn[nid] = 0;
8269 	}
8270 
8271 out:
8272 	/* restore the node_state */
8273 	node_states[N_MEMORY] = saved_node_state;
8274 }
8275 
8276 /* Any regular or high memory on that node ? */
8277 static void check_for_memory(pg_data_t *pgdat, int nid)
8278 {
8279 	enum zone_type zone_type;
8280 
8281 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8282 		struct zone *zone = &pgdat->node_zones[zone_type];
8283 		if (populated_zone(zone)) {
8284 			if (IS_ENABLED(CONFIG_HIGHMEM))
8285 				node_set_state(nid, N_HIGH_MEMORY);
8286 			if (zone_type <= ZONE_NORMAL)
8287 				node_set_state(nid, N_NORMAL_MEMORY);
8288 			break;
8289 		}
8290 	}
8291 }
8292 
8293 /*
8294  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8295  * such cases we allow max_zone_pfn sorted in the descending order
8296  */
8297 bool __weak arch_has_descending_max_zone_pfns(void)
8298 {
8299 	return false;
8300 }
8301 
8302 /**
8303  * free_area_init - Initialise all pg_data_t and zone data
8304  * @max_zone_pfn: an array of max PFNs for each zone
8305  *
8306  * This will call free_area_init_node() for each active node in the system.
8307  * Using the page ranges provided by memblock_set_node(), the size of each
8308  * zone in each node and their holes is calculated. If the maximum PFN
8309  * between two adjacent zones match, it is assumed that the zone is empty.
8310  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8311  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8312  * starts where the previous one ended. For example, ZONE_DMA32 starts
8313  * at arch_max_dma_pfn.
8314  */
8315 void __init free_area_init(unsigned long *max_zone_pfn)
8316 {
8317 	unsigned long start_pfn, end_pfn;
8318 	int i, nid, zone;
8319 	bool descending;
8320 
8321 	/* Record where the zone boundaries are */
8322 	memset(arch_zone_lowest_possible_pfn, 0,
8323 				sizeof(arch_zone_lowest_possible_pfn));
8324 	memset(arch_zone_highest_possible_pfn, 0,
8325 				sizeof(arch_zone_highest_possible_pfn));
8326 
8327 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8328 	descending = arch_has_descending_max_zone_pfns();
8329 
8330 	for (i = 0; i < MAX_NR_ZONES; i++) {
8331 		if (descending)
8332 			zone = MAX_NR_ZONES - i - 1;
8333 		else
8334 			zone = i;
8335 
8336 		if (zone == ZONE_MOVABLE)
8337 			continue;
8338 
8339 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8340 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8341 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8342 
8343 		start_pfn = end_pfn;
8344 	}
8345 
8346 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8347 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8348 	find_zone_movable_pfns_for_nodes();
8349 
8350 	/* Print out the zone ranges */
8351 	pr_info("Zone ranges:\n");
8352 	for (i = 0; i < MAX_NR_ZONES; i++) {
8353 		if (i == ZONE_MOVABLE)
8354 			continue;
8355 		pr_info("  %-8s ", zone_names[i]);
8356 		if (arch_zone_lowest_possible_pfn[i] ==
8357 				arch_zone_highest_possible_pfn[i])
8358 			pr_cont("empty\n");
8359 		else
8360 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8361 				(u64)arch_zone_lowest_possible_pfn[i]
8362 					<< PAGE_SHIFT,
8363 				((u64)arch_zone_highest_possible_pfn[i]
8364 					<< PAGE_SHIFT) - 1);
8365 	}
8366 
8367 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8368 	pr_info("Movable zone start for each node\n");
8369 	for (i = 0; i < MAX_NUMNODES; i++) {
8370 		if (zone_movable_pfn[i])
8371 			pr_info("  Node %d: %#018Lx\n", i,
8372 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8373 	}
8374 
8375 	/*
8376 	 * Print out the early node map, and initialize the
8377 	 * subsection-map relative to active online memory ranges to
8378 	 * enable future "sub-section" extensions of the memory map.
8379 	 */
8380 	pr_info("Early memory node ranges\n");
8381 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8382 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8383 			(u64)start_pfn << PAGE_SHIFT,
8384 			((u64)end_pfn << PAGE_SHIFT) - 1);
8385 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8386 	}
8387 
8388 	/* Initialise every node */
8389 	mminit_verify_pageflags_layout();
8390 	setup_nr_node_ids();
8391 	for_each_node(nid) {
8392 		pg_data_t *pgdat;
8393 
8394 		if (!node_online(nid)) {
8395 			pr_info("Initializing node %d as memoryless\n", nid);
8396 
8397 			/* Allocator not initialized yet */
8398 			pgdat = arch_alloc_nodedata(nid);
8399 			if (!pgdat) {
8400 				pr_err("Cannot allocate %zuB for node %d.\n",
8401 						sizeof(*pgdat), nid);
8402 				continue;
8403 			}
8404 			arch_refresh_nodedata(nid, pgdat);
8405 			free_area_init_memoryless_node(nid);
8406 
8407 			/*
8408 			 * We do not want to confuse userspace by sysfs
8409 			 * files/directories for node without any memory
8410 			 * attached to it, so this node is not marked as
8411 			 * N_MEMORY and not marked online so that no sysfs
8412 			 * hierarchy will be created via register_one_node for
8413 			 * it. The pgdat will get fully initialized by
8414 			 * hotadd_init_pgdat() when memory is hotplugged into
8415 			 * this node.
8416 			 */
8417 			continue;
8418 		}
8419 
8420 		pgdat = NODE_DATA(nid);
8421 		free_area_init_node(nid);
8422 
8423 		/* Any memory on that node */
8424 		if (pgdat->node_present_pages)
8425 			node_set_state(nid, N_MEMORY);
8426 		check_for_memory(pgdat, nid);
8427 	}
8428 
8429 	memmap_init();
8430 }
8431 
8432 static int __init cmdline_parse_core(char *p, unsigned long *core,
8433 				     unsigned long *percent)
8434 {
8435 	unsigned long long coremem;
8436 	char *endptr;
8437 
8438 	if (!p)
8439 		return -EINVAL;
8440 
8441 	/* Value may be a percentage of total memory, otherwise bytes */
8442 	coremem = simple_strtoull(p, &endptr, 0);
8443 	if (*endptr == '%') {
8444 		/* Paranoid check for percent values greater than 100 */
8445 		WARN_ON(coremem > 100);
8446 
8447 		*percent = coremem;
8448 	} else {
8449 		coremem = memparse(p, &p);
8450 		/* Paranoid check that UL is enough for the coremem value */
8451 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8452 
8453 		*core = coremem >> PAGE_SHIFT;
8454 		*percent = 0UL;
8455 	}
8456 	return 0;
8457 }
8458 
8459 /*
8460  * kernelcore=size sets the amount of memory for use for allocations that
8461  * cannot be reclaimed or migrated.
8462  */
8463 static int __init cmdline_parse_kernelcore(char *p)
8464 {
8465 	/* parse kernelcore=mirror */
8466 	if (parse_option_str(p, "mirror")) {
8467 		mirrored_kernelcore = true;
8468 		return 0;
8469 	}
8470 
8471 	return cmdline_parse_core(p, &required_kernelcore,
8472 				  &required_kernelcore_percent);
8473 }
8474 
8475 /*
8476  * movablecore=size sets the amount of memory for use for allocations that
8477  * can be reclaimed or migrated.
8478  */
8479 static int __init cmdline_parse_movablecore(char *p)
8480 {
8481 	return cmdline_parse_core(p, &required_movablecore,
8482 				  &required_movablecore_percent);
8483 }
8484 
8485 early_param("kernelcore", cmdline_parse_kernelcore);
8486 early_param("movablecore", cmdline_parse_movablecore);
8487 
8488 void adjust_managed_page_count(struct page *page, long count)
8489 {
8490 	atomic_long_add(count, &page_zone(page)->managed_pages);
8491 	totalram_pages_add(count);
8492 #ifdef CONFIG_HIGHMEM
8493 	if (PageHighMem(page))
8494 		totalhigh_pages_add(count);
8495 #endif
8496 }
8497 EXPORT_SYMBOL(adjust_managed_page_count);
8498 
8499 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8500 {
8501 	void *pos;
8502 	unsigned long pages = 0;
8503 
8504 	start = (void *)PAGE_ALIGN((unsigned long)start);
8505 	end = (void *)((unsigned long)end & PAGE_MASK);
8506 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8507 		struct page *page = virt_to_page(pos);
8508 		void *direct_map_addr;
8509 
8510 		/*
8511 		 * 'direct_map_addr' might be different from 'pos'
8512 		 * because some architectures' virt_to_page()
8513 		 * work with aliases.  Getting the direct map
8514 		 * address ensures that we get a _writeable_
8515 		 * alias for the memset().
8516 		 */
8517 		direct_map_addr = page_address(page);
8518 		/*
8519 		 * Perform a kasan-unchecked memset() since this memory
8520 		 * has not been initialized.
8521 		 */
8522 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8523 		if ((unsigned int)poison <= 0xFF)
8524 			memset(direct_map_addr, poison, PAGE_SIZE);
8525 
8526 		free_reserved_page(page);
8527 	}
8528 
8529 	if (pages && s)
8530 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8531 
8532 	return pages;
8533 }
8534 
8535 void __init mem_init_print_info(void)
8536 {
8537 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8538 	unsigned long init_code_size, init_data_size;
8539 
8540 	physpages = get_num_physpages();
8541 	codesize = _etext - _stext;
8542 	datasize = _edata - _sdata;
8543 	rosize = __end_rodata - __start_rodata;
8544 	bss_size = __bss_stop - __bss_start;
8545 	init_data_size = __init_end - __init_begin;
8546 	init_code_size = _einittext - _sinittext;
8547 
8548 	/*
8549 	 * Detect special cases and adjust section sizes accordingly:
8550 	 * 1) .init.* may be embedded into .data sections
8551 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8552 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8553 	 * 3) .rodata.* may be embedded into .text or .data sections.
8554 	 */
8555 #define adj_init_size(start, end, size, pos, adj) \
8556 	do { \
8557 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8558 			size -= adj; \
8559 	} while (0)
8560 
8561 	adj_init_size(__init_begin, __init_end, init_data_size,
8562 		     _sinittext, init_code_size);
8563 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8564 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8565 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8566 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8567 
8568 #undef	adj_init_size
8569 
8570 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8571 #ifdef	CONFIG_HIGHMEM
8572 		", %luK highmem"
8573 #endif
8574 		")\n",
8575 		K(nr_free_pages()), K(physpages),
8576 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8577 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8578 		K(physpages - totalram_pages() - totalcma_pages),
8579 		K(totalcma_pages)
8580 #ifdef	CONFIG_HIGHMEM
8581 		, K(totalhigh_pages())
8582 #endif
8583 		);
8584 }
8585 
8586 /**
8587  * set_dma_reserve - set the specified number of pages reserved in the first zone
8588  * @new_dma_reserve: The number of pages to mark reserved
8589  *
8590  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8591  * In the DMA zone, a significant percentage may be consumed by kernel image
8592  * and other unfreeable allocations which can skew the watermarks badly. This
8593  * function may optionally be used to account for unfreeable pages in the
8594  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8595  * smaller per-cpu batchsize.
8596  */
8597 void __init set_dma_reserve(unsigned long new_dma_reserve)
8598 {
8599 	dma_reserve = new_dma_reserve;
8600 }
8601 
8602 static int page_alloc_cpu_dead(unsigned int cpu)
8603 {
8604 	struct zone *zone;
8605 
8606 	lru_add_drain_cpu(cpu);
8607 	mlock_drain_remote(cpu);
8608 	drain_pages(cpu);
8609 
8610 	/*
8611 	 * Spill the event counters of the dead processor
8612 	 * into the current processors event counters.
8613 	 * This artificially elevates the count of the current
8614 	 * processor.
8615 	 */
8616 	vm_events_fold_cpu(cpu);
8617 
8618 	/*
8619 	 * Zero the differential counters of the dead processor
8620 	 * so that the vm statistics are consistent.
8621 	 *
8622 	 * This is only okay since the processor is dead and cannot
8623 	 * race with what we are doing.
8624 	 */
8625 	cpu_vm_stats_fold(cpu);
8626 
8627 	for_each_populated_zone(zone)
8628 		zone_pcp_update(zone, 0);
8629 
8630 	return 0;
8631 }
8632 
8633 static int page_alloc_cpu_online(unsigned int cpu)
8634 {
8635 	struct zone *zone;
8636 
8637 	for_each_populated_zone(zone)
8638 		zone_pcp_update(zone, 1);
8639 	return 0;
8640 }
8641 
8642 #ifdef CONFIG_NUMA
8643 int hashdist = HASHDIST_DEFAULT;
8644 
8645 static int __init set_hashdist(char *str)
8646 {
8647 	if (!str)
8648 		return 0;
8649 	hashdist = simple_strtoul(str, &str, 0);
8650 	return 1;
8651 }
8652 __setup("hashdist=", set_hashdist);
8653 #endif
8654 
8655 void __init page_alloc_init(void)
8656 {
8657 	int ret;
8658 
8659 #ifdef CONFIG_NUMA
8660 	if (num_node_state(N_MEMORY) == 1)
8661 		hashdist = 0;
8662 #endif
8663 
8664 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8665 					"mm/page_alloc:pcp",
8666 					page_alloc_cpu_online,
8667 					page_alloc_cpu_dead);
8668 	WARN_ON(ret < 0);
8669 }
8670 
8671 /*
8672  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8673  *	or min_free_kbytes changes.
8674  */
8675 static void calculate_totalreserve_pages(void)
8676 {
8677 	struct pglist_data *pgdat;
8678 	unsigned long reserve_pages = 0;
8679 	enum zone_type i, j;
8680 
8681 	for_each_online_pgdat(pgdat) {
8682 
8683 		pgdat->totalreserve_pages = 0;
8684 
8685 		for (i = 0; i < MAX_NR_ZONES; i++) {
8686 			struct zone *zone = pgdat->node_zones + i;
8687 			long max = 0;
8688 			unsigned long managed_pages = zone_managed_pages(zone);
8689 
8690 			/* Find valid and maximum lowmem_reserve in the zone */
8691 			for (j = i; j < MAX_NR_ZONES; j++) {
8692 				if (zone->lowmem_reserve[j] > max)
8693 					max = zone->lowmem_reserve[j];
8694 			}
8695 
8696 			/* we treat the high watermark as reserved pages. */
8697 			max += high_wmark_pages(zone);
8698 
8699 			if (max > managed_pages)
8700 				max = managed_pages;
8701 
8702 			pgdat->totalreserve_pages += max;
8703 
8704 			reserve_pages += max;
8705 		}
8706 	}
8707 	totalreserve_pages = reserve_pages;
8708 }
8709 
8710 /*
8711  * setup_per_zone_lowmem_reserve - called whenever
8712  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8713  *	has a correct pages reserved value, so an adequate number of
8714  *	pages are left in the zone after a successful __alloc_pages().
8715  */
8716 static void setup_per_zone_lowmem_reserve(void)
8717 {
8718 	struct pglist_data *pgdat;
8719 	enum zone_type i, j;
8720 
8721 	for_each_online_pgdat(pgdat) {
8722 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8723 			struct zone *zone = &pgdat->node_zones[i];
8724 			int ratio = sysctl_lowmem_reserve_ratio[i];
8725 			bool clear = !ratio || !zone_managed_pages(zone);
8726 			unsigned long managed_pages = 0;
8727 
8728 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8729 				struct zone *upper_zone = &pgdat->node_zones[j];
8730 
8731 				managed_pages += zone_managed_pages(upper_zone);
8732 
8733 				if (clear)
8734 					zone->lowmem_reserve[j] = 0;
8735 				else
8736 					zone->lowmem_reserve[j] = managed_pages / ratio;
8737 			}
8738 		}
8739 	}
8740 
8741 	/* update totalreserve_pages */
8742 	calculate_totalreserve_pages();
8743 }
8744 
8745 static void __setup_per_zone_wmarks(void)
8746 {
8747 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8748 	unsigned long lowmem_pages = 0;
8749 	struct zone *zone;
8750 	unsigned long flags;
8751 
8752 	/* Calculate total number of !ZONE_HIGHMEM pages */
8753 	for_each_zone(zone) {
8754 		if (!is_highmem(zone))
8755 			lowmem_pages += zone_managed_pages(zone);
8756 	}
8757 
8758 	for_each_zone(zone) {
8759 		u64 tmp;
8760 
8761 		spin_lock_irqsave(&zone->lock, flags);
8762 		tmp = (u64)pages_min * zone_managed_pages(zone);
8763 		do_div(tmp, lowmem_pages);
8764 		if (is_highmem(zone)) {
8765 			/*
8766 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8767 			 * need highmem pages, so cap pages_min to a small
8768 			 * value here.
8769 			 *
8770 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8771 			 * deltas control async page reclaim, and so should
8772 			 * not be capped for highmem.
8773 			 */
8774 			unsigned long min_pages;
8775 
8776 			min_pages = zone_managed_pages(zone) / 1024;
8777 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8778 			zone->_watermark[WMARK_MIN] = min_pages;
8779 		} else {
8780 			/*
8781 			 * If it's a lowmem zone, reserve a number of pages
8782 			 * proportionate to the zone's size.
8783 			 */
8784 			zone->_watermark[WMARK_MIN] = tmp;
8785 		}
8786 
8787 		/*
8788 		 * Set the kswapd watermarks distance according to the
8789 		 * scale factor in proportion to available memory, but
8790 		 * ensure a minimum size on small systems.
8791 		 */
8792 		tmp = max_t(u64, tmp >> 2,
8793 			    mult_frac(zone_managed_pages(zone),
8794 				      watermark_scale_factor, 10000));
8795 
8796 		zone->watermark_boost = 0;
8797 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8798 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8799 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8800 
8801 		spin_unlock_irqrestore(&zone->lock, flags);
8802 	}
8803 
8804 	/* update totalreserve_pages */
8805 	calculate_totalreserve_pages();
8806 }
8807 
8808 /**
8809  * setup_per_zone_wmarks - called when min_free_kbytes changes
8810  * or when memory is hot-{added|removed}
8811  *
8812  * Ensures that the watermark[min,low,high] values for each zone are set
8813  * correctly with respect to min_free_kbytes.
8814  */
8815 void setup_per_zone_wmarks(void)
8816 {
8817 	struct zone *zone;
8818 	static DEFINE_SPINLOCK(lock);
8819 
8820 	spin_lock(&lock);
8821 	__setup_per_zone_wmarks();
8822 	spin_unlock(&lock);
8823 
8824 	/*
8825 	 * The watermark size have changed so update the pcpu batch
8826 	 * and high limits or the limits may be inappropriate.
8827 	 */
8828 	for_each_zone(zone)
8829 		zone_pcp_update(zone, 0);
8830 }
8831 
8832 /*
8833  * Initialise min_free_kbytes.
8834  *
8835  * For small machines we want it small (128k min).  For large machines
8836  * we want it large (256MB max).  But it is not linear, because network
8837  * bandwidth does not increase linearly with machine size.  We use
8838  *
8839  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8840  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8841  *
8842  * which yields
8843  *
8844  * 16MB:	512k
8845  * 32MB:	724k
8846  * 64MB:	1024k
8847  * 128MB:	1448k
8848  * 256MB:	2048k
8849  * 512MB:	2896k
8850  * 1024MB:	4096k
8851  * 2048MB:	5792k
8852  * 4096MB:	8192k
8853  * 8192MB:	11584k
8854  * 16384MB:	16384k
8855  */
8856 void calculate_min_free_kbytes(void)
8857 {
8858 	unsigned long lowmem_kbytes;
8859 	int new_min_free_kbytes;
8860 
8861 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8862 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8863 
8864 	if (new_min_free_kbytes > user_min_free_kbytes)
8865 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8866 	else
8867 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8868 				new_min_free_kbytes, user_min_free_kbytes);
8869 
8870 }
8871 
8872 int __meminit init_per_zone_wmark_min(void)
8873 {
8874 	calculate_min_free_kbytes();
8875 	setup_per_zone_wmarks();
8876 	refresh_zone_stat_thresholds();
8877 	setup_per_zone_lowmem_reserve();
8878 
8879 #ifdef CONFIG_NUMA
8880 	setup_min_unmapped_ratio();
8881 	setup_min_slab_ratio();
8882 #endif
8883 
8884 	khugepaged_min_free_kbytes_update();
8885 
8886 	return 0;
8887 }
8888 postcore_initcall(init_per_zone_wmark_min)
8889 
8890 /*
8891  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8892  *	that we can call two helper functions whenever min_free_kbytes
8893  *	changes.
8894  */
8895 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8896 		void *buffer, size_t *length, loff_t *ppos)
8897 {
8898 	int rc;
8899 
8900 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8901 	if (rc)
8902 		return rc;
8903 
8904 	if (write) {
8905 		user_min_free_kbytes = min_free_kbytes;
8906 		setup_per_zone_wmarks();
8907 	}
8908 	return 0;
8909 }
8910 
8911 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8912 		void *buffer, size_t *length, loff_t *ppos)
8913 {
8914 	int rc;
8915 
8916 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8917 	if (rc)
8918 		return rc;
8919 
8920 	if (write)
8921 		setup_per_zone_wmarks();
8922 
8923 	return 0;
8924 }
8925 
8926 #ifdef CONFIG_NUMA
8927 static void setup_min_unmapped_ratio(void)
8928 {
8929 	pg_data_t *pgdat;
8930 	struct zone *zone;
8931 
8932 	for_each_online_pgdat(pgdat)
8933 		pgdat->min_unmapped_pages = 0;
8934 
8935 	for_each_zone(zone)
8936 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8937 						         sysctl_min_unmapped_ratio) / 100;
8938 }
8939 
8940 
8941 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8942 		void *buffer, size_t *length, loff_t *ppos)
8943 {
8944 	int rc;
8945 
8946 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8947 	if (rc)
8948 		return rc;
8949 
8950 	setup_min_unmapped_ratio();
8951 
8952 	return 0;
8953 }
8954 
8955 static void setup_min_slab_ratio(void)
8956 {
8957 	pg_data_t *pgdat;
8958 	struct zone *zone;
8959 
8960 	for_each_online_pgdat(pgdat)
8961 		pgdat->min_slab_pages = 0;
8962 
8963 	for_each_zone(zone)
8964 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8965 						     sysctl_min_slab_ratio) / 100;
8966 }
8967 
8968 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8969 		void *buffer, size_t *length, loff_t *ppos)
8970 {
8971 	int rc;
8972 
8973 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8974 	if (rc)
8975 		return rc;
8976 
8977 	setup_min_slab_ratio();
8978 
8979 	return 0;
8980 }
8981 #endif
8982 
8983 /*
8984  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8985  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8986  *	whenever sysctl_lowmem_reserve_ratio changes.
8987  *
8988  * The reserve ratio obviously has absolutely no relation with the
8989  * minimum watermarks. The lowmem reserve ratio can only make sense
8990  * if in function of the boot time zone sizes.
8991  */
8992 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8993 		void *buffer, size_t *length, loff_t *ppos)
8994 {
8995 	int i;
8996 
8997 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8998 
8999 	for (i = 0; i < MAX_NR_ZONES; i++) {
9000 		if (sysctl_lowmem_reserve_ratio[i] < 1)
9001 			sysctl_lowmem_reserve_ratio[i] = 0;
9002 	}
9003 
9004 	setup_per_zone_lowmem_reserve();
9005 	return 0;
9006 }
9007 
9008 /*
9009  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9010  * cpu. It is the fraction of total pages in each zone that a hot per cpu
9011  * pagelist can have before it gets flushed back to buddy allocator.
9012  */
9013 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9014 		int write, void *buffer, size_t *length, loff_t *ppos)
9015 {
9016 	struct zone *zone;
9017 	int old_percpu_pagelist_high_fraction;
9018 	int ret;
9019 
9020 	mutex_lock(&pcp_batch_high_lock);
9021 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
9022 
9023 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
9024 	if (!write || ret < 0)
9025 		goto out;
9026 
9027 	/* Sanity checking to avoid pcp imbalance */
9028 	if (percpu_pagelist_high_fraction &&
9029 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9030 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9031 		ret = -EINVAL;
9032 		goto out;
9033 	}
9034 
9035 	/* No change? */
9036 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9037 		goto out;
9038 
9039 	for_each_populated_zone(zone)
9040 		zone_set_pageset_high_and_batch(zone, 0);
9041 out:
9042 	mutex_unlock(&pcp_batch_high_lock);
9043 	return ret;
9044 }
9045 
9046 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9047 /*
9048  * Returns the number of pages that arch has reserved but
9049  * is not known to alloc_large_system_hash().
9050  */
9051 static unsigned long __init arch_reserved_kernel_pages(void)
9052 {
9053 	return 0;
9054 }
9055 #endif
9056 
9057 /*
9058  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9059  * machines. As memory size is increased the scale is also increased but at
9060  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9061  * quadruples the scale is increased by one, which means the size of hash table
9062  * only doubles, instead of quadrupling as well.
9063  * Because 32-bit systems cannot have large physical memory, where this scaling
9064  * makes sense, it is disabled on such platforms.
9065  */
9066 #if __BITS_PER_LONG > 32
9067 #define ADAPT_SCALE_BASE	(64ul << 30)
9068 #define ADAPT_SCALE_SHIFT	2
9069 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9070 #endif
9071 
9072 /*
9073  * allocate a large system hash table from bootmem
9074  * - it is assumed that the hash table must contain an exact power-of-2
9075  *   quantity of entries
9076  * - limit is the number of hash buckets, not the total allocation size
9077  */
9078 void *__init alloc_large_system_hash(const char *tablename,
9079 				     unsigned long bucketsize,
9080 				     unsigned long numentries,
9081 				     int scale,
9082 				     int flags,
9083 				     unsigned int *_hash_shift,
9084 				     unsigned int *_hash_mask,
9085 				     unsigned long low_limit,
9086 				     unsigned long high_limit)
9087 {
9088 	unsigned long long max = high_limit;
9089 	unsigned long log2qty, size;
9090 	void *table;
9091 	gfp_t gfp_flags;
9092 	bool virt;
9093 	bool huge;
9094 
9095 	/* allow the kernel cmdline to have a say */
9096 	if (!numentries) {
9097 		/* round applicable memory size up to nearest megabyte */
9098 		numentries = nr_kernel_pages;
9099 		numentries -= arch_reserved_kernel_pages();
9100 
9101 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9102 		if (PAGE_SIZE < SZ_1M)
9103 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9104 
9105 #if __BITS_PER_LONG > 32
9106 		if (!high_limit) {
9107 			unsigned long adapt;
9108 
9109 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9110 			     adapt <<= ADAPT_SCALE_SHIFT)
9111 				scale++;
9112 		}
9113 #endif
9114 
9115 		/* limit to 1 bucket per 2^scale bytes of low memory */
9116 		if (scale > PAGE_SHIFT)
9117 			numentries >>= (scale - PAGE_SHIFT);
9118 		else
9119 			numentries <<= (PAGE_SHIFT - scale);
9120 
9121 		/* Make sure we've got at least a 0-order allocation.. */
9122 		if (unlikely(flags & HASH_SMALL)) {
9123 			/* Makes no sense without HASH_EARLY */
9124 			WARN_ON(!(flags & HASH_EARLY));
9125 			if (!(numentries >> *_hash_shift)) {
9126 				numentries = 1UL << *_hash_shift;
9127 				BUG_ON(!numentries);
9128 			}
9129 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9130 			numentries = PAGE_SIZE / bucketsize;
9131 	}
9132 	numentries = roundup_pow_of_two(numentries);
9133 
9134 	/* limit allocation size to 1/16 total memory by default */
9135 	if (max == 0) {
9136 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9137 		do_div(max, bucketsize);
9138 	}
9139 	max = min(max, 0x80000000ULL);
9140 
9141 	if (numentries < low_limit)
9142 		numentries = low_limit;
9143 	if (numentries > max)
9144 		numentries = max;
9145 
9146 	log2qty = ilog2(numentries);
9147 
9148 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9149 	do {
9150 		virt = false;
9151 		size = bucketsize << log2qty;
9152 		if (flags & HASH_EARLY) {
9153 			if (flags & HASH_ZERO)
9154 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9155 			else
9156 				table = memblock_alloc_raw(size,
9157 							   SMP_CACHE_BYTES);
9158 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9159 			table = vmalloc_huge(size, gfp_flags);
9160 			virt = true;
9161 			if (table)
9162 				huge = is_vm_area_hugepages(table);
9163 		} else {
9164 			/*
9165 			 * If bucketsize is not a power-of-two, we may free
9166 			 * some pages at the end of hash table which
9167 			 * alloc_pages_exact() automatically does
9168 			 */
9169 			table = alloc_pages_exact(size, gfp_flags);
9170 			kmemleak_alloc(table, size, 1, gfp_flags);
9171 		}
9172 	} while (!table && size > PAGE_SIZE && --log2qty);
9173 
9174 	if (!table)
9175 		panic("Failed to allocate %s hash table\n", tablename);
9176 
9177 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9178 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9179 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9180 
9181 	if (_hash_shift)
9182 		*_hash_shift = log2qty;
9183 	if (_hash_mask)
9184 		*_hash_mask = (1 << log2qty) - 1;
9185 
9186 	return table;
9187 }
9188 
9189 #ifdef CONFIG_CONTIG_ALLOC
9190 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9191 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9192 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9193 static void alloc_contig_dump_pages(struct list_head *page_list)
9194 {
9195 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9196 
9197 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9198 		struct page *page;
9199 
9200 		dump_stack();
9201 		list_for_each_entry(page, page_list, lru)
9202 			dump_page(page, "migration failure");
9203 	}
9204 }
9205 #else
9206 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9207 {
9208 }
9209 #endif
9210 
9211 /* [start, end) must belong to a single zone. */
9212 int __alloc_contig_migrate_range(struct compact_control *cc,
9213 					unsigned long start, unsigned long end)
9214 {
9215 	/* This function is based on compact_zone() from compaction.c. */
9216 	unsigned int nr_reclaimed;
9217 	unsigned long pfn = start;
9218 	unsigned int tries = 0;
9219 	int ret = 0;
9220 	struct migration_target_control mtc = {
9221 		.nid = zone_to_nid(cc->zone),
9222 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9223 	};
9224 
9225 	lru_cache_disable();
9226 
9227 	while (pfn < end || !list_empty(&cc->migratepages)) {
9228 		if (fatal_signal_pending(current)) {
9229 			ret = -EINTR;
9230 			break;
9231 		}
9232 
9233 		if (list_empty(&cc->migratepages)) {
9234 			cc->nr_migratepages = 0;
9235 			ret = isolate_migratepages_range(cc, pfn, end);
9236 			if (ret && ret != -EAGAIN)
9237 				break;
9238 			pfn = cc->migrate_pfn;
9239 			tries = 0;
9240 		} else if (++tries == 5) {
9241 			ret = -EBUSY;
9242 			break;
9243 		}
9244 
9245 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9246 							&cc->migratepages);
9247 		cc->nr_migratepages -= nr_reclaimed;
9248 
9249 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9250 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9251 
9252 		/*
9253 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9254 		 * to retry again over this error, so do the same here.
9255 		 */
9256 		if (ret == -ENOMEM)
9257 			break;
9258 	}
9259 
9260 	lru_cache_enable();
9261 	if (ret < 0) {
9262 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9263 			alloc_contig_dump_pages(&cc->migratepages);
9264 		putback_movable_pages(&cc->migratepages);
9265 		return ret;
9266 	}
9267 	return 0;
9268 }
9269 
9270 /**
9271  * alloc_contig_range() -- tries to allocate given range of pages
9272  * @start:	start PFN to allocate
9273  * @end:	one-past-the-last PFN to allocate
9274  * @migratetype:	migratetype of the underlying pageblocks (either
9275  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9276  *			in range must have the same migratetype and it must
9277  *			be either of the two.
9278  * @gfp_mask:	GFP mask to use during compaction
9279  *
9280  * The PFN range does not have to be pageblock aligned. The PFN range must
9281  * belong to a single zone.
9282  *
9283  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9284  * pageblocks in the range.  Once isolated, the pageblocks should not
9285  * be modified by others.
9286  *
9287  * Return: zero on success or negative error code.  On success all
9288  * pages which PFN is in [start, end) are allocated for the caller and
9289  * need to be freed with free_contig_range().
9290  */
9291 int alloc_contig_range(unsigned long start, unsigned long end,
9292 		       unsigned migratetype, gfp_t gfp_mask)
9293 {
9294 	unsigned long outer_start, outer_end;
9295 	int order;
9296 	int ret = 0;
9297 
9298 	struct compact_control cc = {
9299 		.nr_migratepages = 0,
9300 		.order = -1,
9301 		.zone = page_zone(pfn_to_page(start)),
9302 		.mode = MIGRATE_SYNC,
9303 		.ignore_skip_hint = true,
9304 		.no_set_skip_hint = true,
9305 		.gfp_mask = current_gfp_context(gfp_mask),
9306 		.alloc_contig = true,
9307 	};
9308 	INIT_LIST_HEAD(&cc.migratepages);
9309 
9310 	/*
9311 	 * What we do here is we mark all pageblocks in range as
9312 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9313 	 * have different sizes, and due to the way page allocator
9314 	 * work, start_isolate_page_range() has special handlings for this.
9315 	 *
9316 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9317 	 * migrate the pages from an unaligned range (ie. pages that
9318 	 * we are interested in). This will put all the pages in
9319 	 * range back to page allocator as MIGRATE_ISOLATE.
9320 	 *
9321 	 * When this is done, we take the pages in range from page
9322 	 * allocator removing them from the buddy system.  This way
9323 	 * page allocator will never consider using them.
9324 	 *
9325 	 * This lets us mark the pageblocks back as
9326 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9327 	 * aligned range but not in the unaligned, original range are
9328 	 * put back to page allocator so that buddy can use them.
9329 	 */
9330 
9331 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9332 	if (ret)
9333 		goto done;
9334 
9335 	drain_all_pages(cc.zone);
9336 
9337 	/*
9338 	 * In case of -EBUSY, we'd like to know which page causes problem.
9339 	 * So, just fall through. test_pages_isolated() has a tracepoint
9340 	 * which will report the busy page.
9341 	 *
9342 	 * It is possible that busy pages could become available before
9343 	 * the call to test_pages_isolated, and the range will actually be
9344 	 * allocated.  So, if we fall through be sure to clear ret so that
9345 	 * -EBUSY is not accidentally used or returned to caller.
9346 	 */
9347 	ret = __alloc_contig_migrate_range(&cc, start, end);
9348 	if (ret && ret != -EBUSY)
9349 		goto done;
9350 	ret = 0;
9351 
9352 	/*
9353 	 * Pages from [start, end) are within a pageblock_nr_pages
9354 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9355 	 * more, all pages in [start, end) are free in page allocator.
9356 	 * What we are going to do is to allocate all pages from
9357 	 * [start, end) (that is remove them from page allocator).
9358 	 *
9359 	 * The only problem is that pages at the beginning and at the
9360 	 * end of interesting range may be not aligned with pages that
9361 	 * page allocator holds, ie. they can be part of higher order
9362 	 * pages.  Because of this, we reserve the bigger range and
9363 	 * once this is done free the pages we are not interested in.
9364 	 *
9365 	 * We don't have to hold zone->lock here because the pages are
9366 	 * isolated thus they won't get removed from buddy.
9367 	 */
9368 
9369 	order = 0;
9370 	outer_start = start;
9371 	while (!PageBuddy(pfn_to_page(outer_start))) {
9372 		if (++order >= MAX_ORDER) {
9373 			outer_start = start;
9374 			break;
9375 		}
9376 		outer_start &= ~0UL << order;
9377 	}
9378 
9379 	if (outer_start != start) {
9380 		order = buddy_order(pfn_to_page(outer_start));
9381 
9382 		/*
9383 		 * outer_start page could be small order buddy page and
9384 		 * it doesn't include start page. Adjust outer_start
9385 		 * in this case to report failed page properly
9386 		 * on tracepoint in test_pages_isolated()
9387 		 */
9388 		if (outer_start + (1UL << order) <= start)
9389 			outer_start = start;
9390 	}
9391 
9392 	/* Make sure the range is really isolated. */
9393 	if (test_pages_isolated(outer_start, end, 0)) {
9394 		ret = -EBUSY;
9395 		goto done;
9396 	}
9397 
9398 	/* Grab isolated pages from freelists. */
9399 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9400 	if (!outer_end) {
9401 		ret = -EBUSY;
9402 		goto done;
9403 	}
9404 
9405 	/* Free head and tail (if any) */
9406 	if (start != outer_start)
9407 		free_contig_range(outer_start, start - outer_start);
9408 	if (end != outer_end)
9409 		free_contig_range(end, outer_end - end);
9410 
9411 done:
9412 	undo_isolate_page_range(start, end, migratetype);
9413 	return ret;
9414 }
9415 EXPORT_SYMBOL(alloc_contig_range);
9416 
9417 static int __alloc_contig_pages(unsigned long start_pfn,
9418 				unsigned long nr_pages, gfp_t gfp_mask)
9419 {
9420 	unsigned long end_pfn = start_pfn + nr_pages;
9421 
9422 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9423 				  gfp_mask);
9424 }
9425 
9426 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9427 				   unsigned long nr_pages)
9428 {
9429 	unsigned long i, end_pfn = start_pfn + nr_pages;
9430 	struct page *page;
9431 
9432 	for (i = start_pfn; i < end_pfn; i++) {
9433 		page = pfn_to_online_page(i);
9434 		if (!page)
9435 			return false;
9436 
9437 		if (page_zone(page) != z)
9438 			return false;
9439 
9440 		if (PageReserved(page))
9441 			return false;
9442 	}
9443 	return true;
9444 }
9445 
9446 static bool zone_spans_last_pfn(const struct zone *zone,
9447 				unsigned long start_pfn, unsigned long nr_pages)
9448 {
9449 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9450 
9451 	return zone_spans_pfn(zone, last_pfn);
9452 }
9453 
9454 /**
9455  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9456  * @nr_pages:	Number of contiguous pages to allocate
9457  * @gfp_mask:	GFP mask to limit search and used during compaction
9458  * @nid:	Target node
9459  * @nodemask:	Mask for other possible nodes
9460  *
9461  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9462  * on an applicable zonelist to find a contiguous pfn range which can then be
9463  * tried for allocation with alloc_contig_range(). This routine is intended
9464  * for allocation requests which can not be fulfilled with the buddy allocator.
9465  *
9466  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9467  * power of two, then allocated range is also guaranteed to be aligned to same
9468  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9469  *
9470  * Allocated pages can be freed with free_contig_range() or by manually calling
9471  * __free_page() on each allocated page.
9472  *
9473  * Return: pointer to contiguous pages on success, or NULL if not successful.
9474  */
9475 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9476 				int nid, nodemask_t *nodemask)
9477 {
9478 	unsigned long ret, pfn, flags;
9479 	struct zonelist *zonelist;
9480 	struct zone *zone;
9481 	struct zoneref *z;
9482 
9483 	zonelist = node_zonelist(nid, gfp_mask);
9484 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9485 					gfp_zone(gfp_mask), nodemask) {
9486 		spin_lock_irqsave(&zone->lock, flags);
9487 
9488 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9489 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9490 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9491 				/*
9492 				 * We release the zone lock here because
9493 				 * alloc_contig_range() will also lock the zone
9494 				 * at some point. If there's an allocation
9495 				 * spinning on this lock, it may win the race
9496 				 * and cause alloc_contig_range() to fail...
9497 				 */
9498 				spin_unlock_irqrestore(&zone->lock, flags);
9499 				ret = __alloc_contig_pages(pfn, nr_pages,
9500 							gfp_mask);
9501 				if (!ret)
9502 					return pfn_to_page(pfn);
9503 				spin_lock_irqsave(&zone->lock, flags);
9504 			}
9505 			pfn += nr_pages;
9506 		}
9507 		spin_unlock_irqrestore(&zone->lock, flags);
9508 	}
9509 	return NULL;
9510 }
9511 #endif /* CONFIG_CONTIG_ALLOC */
9512 
9513 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9514 {
9515 	unsigned long count = 0;
9516 
9517 	for (; nr_pages--; pfn++) {
9518 		struct page *page = pfn_to_page(pfn);
9519 
9520 		count += page_count(page) != 1;
9521 		__free_page(page);
9522 	}
9523 	WARN(count != 0, "%lu pages are still in use!\n", count);
9524 }
9525 EXPORT_SYMBOL(free_contig_range);
9526 
9527 /*
9528  * Effectively disable pcplists for the zone by setting the high limit to 0
9529  * and draining all cpus. A concurrent page freeing on another CPU that's about
9530  * to put the page on pcplist will either finish before the drain and the page
9531  * will be drained, or observe the new high limit and skip the pcplist.
9532  *
9533  * Must be paired with a call to zone_pcp_enable().
9534  */
9535 void zone_pcp_disable(struct zone *zone)
9536 {
9537 	mutex_lock(&pcp_batch_high_lock);
9538 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9539 	__drain_all_pages(zone, true);
9540 }
9541 
9542 void zone_pcp_enable(struct zone *zone)
9543 {
9544 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9545 	mutex_unlock(&pcp_batch_high_lock);
9546 }
9547 
9548 void zone_pcp_reset(struct zone *zone)
9549 {
9550 	int cpu;
9551 	struct per_cpu_zonestat *pzstats;
9552 
9553 	if (zone->per_cpu_pageset != &boot_pageset) {
9554 		for_each_online_cpu(cpu) {
9555 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9556 			drain_zonestat(zone, pzstats);
9557 		}
9558 		free_percpu(zone->per_cpu_pageset);
9559 		zone->per_cpu_pageset = &boot_pageset;
9560 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9561 			free_percpu(zone->per_cpu_zonestats);
9562 			zone->per_cpu_zonestats = &boot_zonestats;
9563 		}
9564 	}
9565 }
9566 
9567 #ifdef CONFIG_MEMORY_HOTREMOVE
9568 /*
9569  * All pages in the range must be in a single zone, must not contain holes,
9570  * must span full sections, and must be isolated before calling this function.
9571  */
9572 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9573 {
9574 	unsigned long pfn = start_pfn;
9575 	struct page *page;
9576 	struct zone *zone;
9577 	unsigned int order;
9578 	unsigned long flags;
9579 
9580 	offline_mem_sections(pfn, end_pfn);
9581 	zone = page_zone(pfn_to_page(pfn));
9582 	spin_lock_irqsave(&zone->lock, flags);
9583 	while (pfn < end_pfn) {
9584 		page = pfn_to_page(pfn);
9585 		/*
9586 		 * The HWPoisoned page may be not in buddy system, and
9587 		 * page_count() is not 0.
9588 		 */
9589 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9590 			pfn++;
9591 			continue;
9592 		}
9593 		/*
9594 		 * At this point all remaining PageOffline() pages have a
9595 		 * reference count of 0 and can simply be skipped.
9596 		 */
9597 		if (PageOffline(page)) {
9598 			BUG_ON(page_count(page));
9599 			BUG_ON(PageBuddy(page));
9600 			pfn++;
9601 			continue;
9602 		}
9603 
9604 		BUG_ON(page_count(page));
9605 		BUG_ON(!PageBuddy(page));
9606 		order = buddy_order(page);
9607 		del_page_from_free_list(page, zone, order);
9608 		pfn += (1 << order);
9609 	}
9610 	spin_unlock_irqrestore(&zone->lock, flags);
9611 }
9612 #endif
9613 
9614 /*
9615  * This function returns a stable result only if called under zone lock.
9616  */
9617 bool is_free_buddy_page(struct page *page)
9618 {
9619 	unsigned long pfn = page_to_pfn(page);
9620 	unsigned int order;
9621 
9622 	for (order = 0; order < MAX_ORDER; order++) {
9623 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9624 
9625 		if (PageBuddy(page_head) &&
9626 		    buddy_order_unsafe(page_head) >= order)
9627 			break;
9628 	}
9629 
9630 	return order < MAX_ORDER;
9631 }
9632 EXPORT_SYMBOL(is_free_buddy_page);
9633 
9634 #ifdef CONFIG_MEMORY_FAILURE
9635 /*
9636  * Break down a higher-order page in sub-pages, and keep our target out of
9637  * buddy allocator.
9638  */
9639 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9640 				   struct page *target, int low, int high,
9641 				   int migratetype)
9642 {
9643 	unsigned long size = 1 << high;
9644 	struct page *current_buddy, *next_page;
9645 
9646 	while (high > low) {
9647 		high--;
9648 		size >>= 1;
9649 
9650 		if (target >= &page[size]) {
9651 			next_page = page + size;
9652 			current_buddy = page;
9653 		} else {
9654 			next_page = page;
9655 			current_buddy = page + size;
9656 		}
9657 
9658 		if (set_page_guard(zone, current_buddy, high, migratetype))
9659 			continue;
9660 
9661 		if (current_buddy != target) {
9662 			add_to_free_list(current_buddy, zone, high, migratetype);
9663 			set_buddy_order(current_buddy, high);
9664 			page = next_page;
9665 		}
9666 	}
9667 }
9668 
9669 /*
9670  * Take a page that will be marked as poisoned off the buddy allocator.
9671  */
9672 bool take_page_off_buddy(struct page *page)
9673 {
9674 	struct zone *zone = page_zone(page);
9675 	unsigned long pfn = page_to_pfn(page);
9676 	unsigned long flags;
9677 	unsigned int order;
9678 	bool ret = false;
9679 
9680 	spin_lock_irqsave(&zone->lock, flags);
9681 	for (order = 0; order < MAX_ORDER; order++) {
9682 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9683 		int page_order = buddy_order(page_head);
9684 
9685 		if (PageBuddy(page_head) && page_order >= order) {
9686 			unsigned long pfn_head = page_to_pfn(page_head);
9687 			int migratetype = get_pfnblock_migratetype(page_head,
9688 								   pfn_head);
9689 
9690 			del_page_from_free_list(page_head, zone, page_order);
9691 			break_down_buddy_pages(zone, page_head, page, 0,
9692 						page_order, migratetype);
9693 			SetPageHWPoisonTakenOff(page);
9694 			if (!is_migrate_isolate(migratetype))
9695 				__mod_zone_freepage_state(zone, -1, migratetype);
9696 			ret = true;
9697 			break;
9698 		}
9699 		if (page_count(page_head) > 0)
9700 			break;
9701 	}
9702 	spin_unlock_irqrestore(&zone->lock, flags);
9703 	return ret;
9704 }
9705 
9706 /*
9707  * Cancel takeoff done by take_page_off_buddy().
9708  */
9709 bool put_page_back_buddy(struct page *page)
9710 {
9711 	struct zone *zone = page_zone(page);
9712 	unsigned long pfn = page_to_pfn(page);
9713 	unsigned long flags;
9714 	int migratetype = get_pfnblock_migratetype(page, pfn);
9715 	bool ret = false;
9716 
9717 	spin_lock_irqsave(&zone->lock, flags);
9718 	if (put_page_testzero(page)) {
9719 		ClearPageHWPoisonTakenOff(page);
9720 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9721 		if (TestClearPageHWPoison(page)) {
9722 			ret = true;
9723 		}
9724 	}
9725 	spin_unlock_irqrestore(&zone->lock, flags);
9726 
9727 	return ret;
9728 }
9729 #endif
9730 
9731 #ifdef CONFIG_ZONE_DMA
9732 bool has_managed_dma(void)
9733 {
9734 	struct pglist_data *pgdat;
9735 
9736 	for_each_online_pgdat(pgdat) {
9737 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9738 
9739 		if (managed_zone(zone))
9740 			return true;
9741 	}
9742 	return false;
9743 }
9744 #endif /* CONFIG_ZONE_DMA */
9745