xref: /openbmc/linux/mm/page_alloc.c (revision e8f6f3b4)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page_ext.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/page_owner.h>
63 
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68 
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
72 
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77 
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83  * defined in <linux/topology.h>.
84  */
85 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 int _node_numa_mem_[MAX_NUMNODES];
88 #endif
89 
90 /*
91  * Array of node states.
92  */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 	[N_POSSIBLE] = NODE_MASK_ALL,
95 	[N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 	[N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 	[N_CPU] = { { [0] = 1UL } },
105 #endif	/* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108 
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111 
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 unsigned long totalcma_pages __read_mostly;
115 /*
116  * When calculating the number of globally allowed dirty pages, there
117  * is a certain number of per-zone reserves that should not be
118  * considered dirtyable memory.  This is the sum of those reserves
119  * over all existing zones that contribute dirtyable memory.
120  */
121 unsigned long dirty_balance_reserve __read_mostly;
122 
123 int percpu_pagelist_fraction;
124 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
125 
126 #ifdef CONFIG_PM_SLEEP
127 /*
128  * The following functions are used by the suspend/hibernate code to temporarily
129  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130  * while devices are suspended.  To avoid races with the suspend/hibernate code,
131  * they should always be called with pm_mutex held (gfp_allowed_mask also should
132  * only be modified with pm_mutex held, unless the suspend/hibernate code is
133  * guaranteed not to run in parallel with that modification).
134  */
135 
136 static gfp_t saved_gfp_mask;
137 
138 void pm_restore_gfp_mask(void)
139 {
140 	WARN_ON(!mutex_is_locked(&pm_mutex));
141 	if (saved_gfp_mask) {
142 		gfp_allowed_mask = saved_gfp_mask;
143 		saved_gfp_mask = 0;
144 	}
145 }
146 
147 void pm_restrict_gfp_mask(void)
148 {
149 	WARN_ON(!mutex_is_locked(&pm_mutex));
150 	WARN_ON(saved_gfp_mask);
151 	saved_gfp_mask = gfp_allowed_mask;
152 	gfp_allowed_mask &= ~GFP_IOFS;
153 }
154 
155 bool pm_suspended_storage(void)
156 {
157 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 		return false;
159 	return true;
160 }
161 #endif /* CONFIG_PM_SLEEP */
162 
163 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164 int pageblock_order __read_mostly;
165 #endif
166 
167 static void __free_pages_ok(struct page *page, unsigned int order);
168 
169 /*
170  * results with 256, 32 in the lowmem_reserve sysctl:
171  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172  *	1G machine -> (16M dma, 784M normal, 224M high)
173  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176  *
177  * TBD: should special case ZONE_DMA32 machines here - in those we normally
178  * don't need any ZONE_NORMAL reservation
179  */
180 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
181 #ifdef CONFIG_ZONE_DMA
182 	 256,
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 	 256,
186 #endif
187 #ifdef CONFIG_HIGHMEM
188 	 32,
189 #endif
190 	 32,
191 };
192 
193 EXPORT_SYMBOL(totalram_pages);
194 
195 static char * const zone_names[MAX_NR_ZONES] = {
196 #ifdef CONFIG_ZONE_DMA
197 	 "DMA",
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 	 "DMA32",
201 #endif
202 	 "Normal",
203 #ifdef CONFIG_HIGHMEM
204 	 "HighMem",
205 #endif
206 	 "Movable",
207 };
208 
209 int min_free_kbytes = 1024;
210 int user_min_free_kbytes = -1;
211 
212 static unsigned long __meminitdata nr_kernel_pages;
213 static unsigned long __meminitdata nr_all_pages;
214 static unsigned long __meminitdata dma_reserve;
215 
216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __initdata required_kernelcore;
220 static unsigned long __initdata required_movablecore;
221 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222 
223 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 int movable_zone;
225 EXPORT_SYMBOL(movable_zone);
226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227 
228 #if MAX_NUMNODES > 1
229 int nr_node_ids __read_mostly = MAX_NUMNODES;
230 int nr_online_nodes __read_mostly = 1;
231 EXPORT_SYMBOL(nr_node_ids);
232 EXPORT_SYMBOL(nr_online_nodes);
233 #endif
234 
235 int page_group_by_mobility_disabled __read_mostly;
236 
237 void set_pageblock_migratetype(struct page *page, int migratetype)
238 {
239 	if (unlikely(page_group_by_mobility_disabled &&
240 		     migratetype < MIGRATE_PCPTYPES))
241 		migratetype = MIGRATE_UNMOVABLE;
242 
243 	set_pageblock_flags_group(page, (unsigned long)migratetype,
244 					PB_migrate, PB_migrate_end);
245 }
246 
247 bool oom_killer_disabled __read_mostly;
248 
249 #ifdef CONFIG_DEBUG_VM
250 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 {
252 	int ret = 0;
253 	unsigned seq;
254 	unsigned long pfn = page_to_pfn(page);
255 	unsigned long sp, start_pfn;
256 
257 	do {
258 		seq = zone_span_seqbegin(zone);
259 		start_pfn = zone->zone_start_pfn;
260 		sp = zone->spanned_pages;
261 		if (!zone_spans_pfn(zone, pfn))
262 			ret = 1;
263 	} while (zone_span_seqretry(zone, seq));
264 
265 	if (ret)
266 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 			pfn, zone_to_nid(zone), zone->name,
268 			start_pfn, start_pfn + sp);
269 
270 	return ret;
271 }
272 
273 static int page_is_consistent(struct zone *zone, struct page *page)
274 {
275 	if (!pfn_valid_within(page_to_pfn(page)))
276 		return 0;
277 	if (zone != page_zone(page))
278 		return 0;
279 
280 	return 1;
281 }
282 /*
283  * Temporary debugging check for pages not lying within a given zone.
284  */
285 static int bad_range(struct zone *zone, struct page *page)
286 {
287 	if (page_outside_zone_boundaries(zone, page))
288 		return 1;
289 	if (!page_is_consistent(zone, page))
290 		return 1;
291 
292 	return 0;
293 }
294 #else
295 static inline int bad_range(struct zone *zone, struct page *page)
296 {
297 	return 0;
298 }
299 #endif
300 
301 static void bad_page(struct page *page, const char *reason,
302 		unsigned long bad_flags)
303 {
304 	static unsigned long resume;
305 	static unsigned long nr_shown;
306 	static unsigned long nr_unshown;
307 
308 	/* Don't complain about poisoned pages */
309 	if (PageHWPoison(page)) {
310 		page_mapcount_reset(page); /* remove PageBuddy */
311 		return;
312 	}
313 
314 	/*
315 	 * Allow a burst of 60 reports, then keep quiet for that minute;
316 	 * or allow a steady drip of one report per second.
317 	 */
318 	if (nr_shown == 60) {
319 		if (time_before(jiffies, resume)) {
320 			nr_unshown++;
321 			goto out;
322 		}
323 		if (nr_unshown) {
324 			printk(KERN_ALERT
325 			      "BUG: Bad page state: %lu messages suppressed\n",
326 				nr_unshown);
327 			nr_unshown = 0;
328 		}
329 		nr_shown = 0;
330 	}
331 	if (nr_shown++ == 0)
332 		resume = jiffies + 60 * HZ;
333 
334 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
335 		current->comm, page_to_pfn(page));
336 	dump_page_badflags(page, reason, bad_flags);
337 
338 	print_modules();
339 	dump_stack();
340 out:
341 	/* Leave bad fields for debug, except PageBuddy could make trouble */
342 	page_mapcount_reset(page); /* remove PageBuddy */
343 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
344 }
345 
346 /*
347  * Higher-order pages are called "compound pages".  They are structured thusly:
348  *
349  * The first PAGE_SIZE page is called the "head page".
350  *
351  * The remaining PAGE_SIZE pages are called "tail pages".
352  *
353  * All pages have PG_compound set.  All tail pages have their ->first_page
354  * pointing at the head page.
355  *
356  * The first tail page's ->lru.next holds the address of the compound page's
357  * put_page() function.  Its ->lru.prev holds the order of allocation.
358  * This usage means that zero-order pages may not be compound.
359  */
360 
361 static void free_compound_page(struct page *page)
362 {
363 	__free_pages_ok(page, compound_order(page));
364 }
365 
366 void prep_compound_page(struct page *page, unsigned long order)
367 {
368 	int i;
369 	int nr_pages = 1 << order;
370 
371 	set_compound_page_dtor(page, free_compound_page);
372 	set_compound_order(page, order);
373 	__SetPageHead(page);
374 	for (i = 1; i < nr_pages; i++) {
375 		struct page *p = page + i;
376 		set_page_count(p, 0);
377 		p->first_page = page;
378 		/* Make sure p->first_page is always valid for PageTail() */
379 		smp_wmb();
380 		__SetPageTail(p);
381 	}
382 }
383 
384 /* update __split_huge_page_refcount if you change this function */
385 static int destroy_compound_page(struct page *page, unsigned long order)
386 {
387 	int i;
388 	int nr_pages = 1 << order;
389 	int bad = 0;
390 
391 	if (unlikely(compound_order(page) != order)) {
392 		bad_page(page, "wrong compound order", 0);
393 		bad++;
394 	}
395 
396 	__ClearPageHead(page);
397 
398 	for (i = 1; i < nr_pages; i++) {
399 		struct page *p = page + i;
400 
401 		if (unlikely(!PageTail(p))) {
402 			bad_page(page, "PageTail not set", 0);
403 			bad++;
404 		} else if (unlikely(p->first_page != page)) {
405 			bad_page(page, "first_page not consistent", 0);
406 			bad++;
407 		}
408 		__ClearPageTail(p);
409 	}
410 
411 	return bad;
412 }
413 
414 static inline void prep_zero_page(struct page *page, unsigned int order,
415 							gfp_t gfp_flags)
416 {
417 	int i;
418 
419 	/*
420 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
421 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
422 	 */
423 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
424 	for (i = 0; i < (1 << order); i++)
425 		clear_highpage(page + i);
426 }
427 
428 #ifdef CONFIG_DEBUG_PAGEALLOC
429 unsigned int _debug_guardpage_minorder;
430 bool _debug_pagealloc_enabled __read_mostly;
431 bool _debug_guardpage_enabled __read_mostly;
432 
433 static int __init early_debug_pagealloc(char *buf)
434 {
435 	if (!buf)
436 		return -EINVAL;
437 
438 	if (strcmp(buf, "on") == 0)
439 		_debug_pagealloc_enabled = true;
440 
441 	return 0;
442 }
443 early_param("debug_pagealloc", early_debug_pagealloc);
444 
445 static bool need_debug_guardpage(void)
446 {
447 	/* If we don't use debug_pagealloc, we don't need guard page */
448 	if (!debug_pagealloc_enabled())
449 		return false;
450 
451 	return true;
452 }
453 
454 static void init_debug_guardpage(void)
455 {
456 	if (!debug_pagealloc_enabled())
457 		return;
458 
459 	_debug_guardpage_enabled = true;
460 }
461 
462 struct page_ext_operations debug_guardpage_ops = {
463 	.need = need_debug_guardpage,
464 	.init = init_debug_guardpage,
465 };
466 
467 static int __init debug_guardpage_minorder_setup(char *buf)
468 {
469 	unsigned long res;
470 
471 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
472 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
473 		return 0;
474 	}
475 	_debug_guardpage_minorder = res;
476 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
477 	return 0;
478 }
479 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
480 
481 static inline void set_page_guard(struct zone *zone, struct page *page,
482 				unsigned int order, int migratetype)
483 {
484 	struct page_ext *page_ext;
485 
486 	if (!debug_guardpage_enabled())
487 		return;
488 
489 	page_ext = lookup_page_ext(page);
490 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
491 
492 	INIT_LIST_HEAD(&page->lru);
493 	set_page_private(page, order);
494 	/* Guard pages are not available for any usage */
495 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
496 }
497 
498 static inline void clear_page_guard(struct zone *zone, struct page *page,
499 				unsigned int order, int migratetype)
500 {
501 	struct page_ext *page_ext;
502 
503 	if (!debug_guardpage_enabled())
504 		return;
505 
506 	page_ext = lookup_page_ext(page);
507 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
508 
509 	set_page_private(page, 0);
510 	if (!is_migrate_isolate(migratetype))
511 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
512 }
513 #else
514 struct page_ext_operations debug_guardpage_ops = { NULL, };
515 static inline void set_page_guard(struct zone *zone, struct page *page,
516 				unsigned int order, int migratetype) {}
517 static inline void clear_page_guard(struct zone *zone, struct page *page,
518 				unsigned int order, int migratetype) {}
519 #endif
520 
521 static inline void set_page_order(struct page *page, unsigned int order)
522 {
523 	set_page_private(page, order);
524 	__SetPageBuddy(page);
525 }
526 
527 static inline void rmv_page_order(struct page *page)
528 {
529 	__ClearPageBuddy(page);
530 	set_page_private(page, 0);
531 }
532 
533 /*
534  * This function checks whether a page is free && is the buddy
535  * we can do coalesce a page and its buddy if
536  * (a) the buddy is not in a hole &&
537  * (b) the buddy is in the buddy system &&
538  * (c) a page and its buddy have the same order &&
539  * (d) a page and its buddy are in the same zone.
540  *
541  * For recording whether a page is in the buddy system, we set ->_mapcount
542  * PAGE_BUDDY_MAPCOUNT_VALUE.
543  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
544  * serialized by zone->lock.
545  *
546  * For recording page's order, we use page_private(page).
547  */
548 static inline int page_is_buddy(struct page *page, struct page *buddy,
549 							unsigned int order)
550 {
551 	if (!pfn_valid_within(page_to_pfn(buddy)))
552 		return 0;
553 
554 	if (page_is_guard(buddy) && page_order(buddy) == order) {
555 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
556 
557 		if (page_zone_id(page) != page_zone_id(buddy))
558 			return 0;
559 
560 		return 1;
561 	}
562 
563 	if (PageBuddy(buddy) && page_order(buddy) == order) {
564 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
565 
566 		/*
567 		 * zone check is done late to avoid uselessly
568 		 * calculating zone/node ids for pages that could
569 		 * never merge.
570 		 */
571 		if (page_zone_id(page) != page_zone_id(buddy))
572 			return 0;
573 
574 		return 1;
575 	}
576 	return 0;
577 }
578 
579 /*
580  * Freeing function for a buddy system allocator.
581  *
582  * The concept of a buddy system is to maintain direct-mapped table
583  * (containing bit values) for memory blocks of various "orders".
584  * The bottom level table contains the map for the smallest allocatable
585  * units of memory (here, pages), and each level above it describes
586  * pairs of units from the levels below, hence, "buddies".
587  * At a high level, all that happens here is marking the table entry
588  * at the bottom level available, and propagating the changes upward
589  * as necessary, plus some accounting needed to play nicely with other
590  * parts of the VM system.
591  * At each level, we keep a list of pages, which are heads of continuous
592  * free pages of length of (1 << order) and marked with _mapcount
593  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
594  * field.
595  * So when we are allocating or freeing one, we can derive the state of the
596  * other.  That is, if we allocate a small block, and both were
597  * free, the remainder of the region must be split into blocks.
598  * If a block is freed, and its buddy is also free, then this
599  * triggers coalescing into a block of larger size.
600  *
601  * -- nyc
602  */
603 
604 static inline void __free_one_page(struct page *page,
605 		unsigned long pfn,
606 		struct zone *zone, unsigned int order,
607 		int migratetype)
608 {
609 	unsigned long page_idx;
610 	unsigned long combined_idx;
611 	unsigned long uninitialized_var(buddy_idx);
612 	struct page *buddy;
613 	int max_order = MAX_ORDER;
614 
615 	VM_BUG_ON(!zone_is_initialized(zone));
616 
617 	if (unlikely(PageCompound(page)))
618 		if (unlikely(destroy_compound_page(page, order)))
619 			return;
620 
621 	VM_BUG_ON(migratetype == -1);
622 	if (is_migrate_isolate(migratetype)) {
623 		/*
624 		 * We restrict max order of merging to prevent merge
625 		 * between freepages on isolate pageblock and normal
626 		 * pageblock. Without this, pageblock isolation
627 		 * could cause incorrect freepage accounting.
628 		 */
629 		max_order = min(MAX_ORDER, pageblock_order + 1);
630 	} else {
631 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
632 	}
633 
634 	page_idx = pfn & ((1 << max_order) - 1);
635 
636 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
637 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
638 
639 	while (order < max_order - 1) {
640 		buddy_idx = __find_buddy_index(page_idx, order);
641 		buddy = page + (buddy_idx - page_idx);
642 		if (!page_is_buddy(page, buddy, order))
643 			break;
644 		/*
645 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
646 		 * merge with it and move up one order.
647 		 */
648 		if (page_is_guard(buddy)) {
649 			clear_page_guard(zone, buddy, order, migratetype);
650 		} else {
651 			list_del(&buddy->lru);
652 			zone->free_area[order].nr_free--;
653 			rmv_page_order(buddy);
654 		}
655 		combined_idx = buddy_idx & page_idx;
656 		page = page + (combined_idx - page_idx);
657 		page_idx = combined_idx;
658 		order++;
659 	}
660 	set_page_order(page, order);
661 
662 	/*
663 	 * If this is not the largest possible page, check if the buddy
664 	 * of the next-highest order is free. If it is, it's possible
665 	 * that pages are being freed that will coalesce soon. In case,
666 	 * that is happening, add the free page to the tail of the list
667 	 * so it's less likely to be used soon and more likely to be merged
668 	 * as a higher order page
669 	 */
670 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
671 		struct page *higher_page, *higher_buddy;
672 		combined_idx = buddy_idx & page_idx;
673 		higher_page = page + (combined_idx - page_idx);
674 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
675 		higher_buddy = higher_page + (buddy_idx - combined_idx);
676 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
677 			list_add_tail(&page->lru,
678 				&zone->free_area[order].free_list[migratetype]);
679 			goto out;
680 		}
681 	}
682 
683 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
684 out:
685 	zone->free_area[order].nr_free++;
686 }
687 
688 static inline int free_pages_check(struct page *page)
689 {
690 	const char *bad_reason = NULL;
691 	unsigned long bad_flags = 0;
692 
693 	if (unlikely(page_mapcount(page)))
694 		bad_reason = "nonzero mapcount";
695 	if (unlikely(page->mapping != NULL))
696 		bad_reason = "non-NULL mapping";
697 	if (unlikely(atomic_read(&page->_count) != 0))
698 		bad_reason = "nonzero _count";
699 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
700 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
701 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
702 	}
703 #ifdef CONFIG_MEMCG
704 	if (unlikely(page->mem_cgroup))
705 		bad_reason = "page still charged to cgroup";
706 #endif
707 	if (unlikely(bad_reason)) {
708 		bad_page(page, bad_reason, bad_flags);
709 		return 1;
710 	}
711 	page_cpupid_reset_last(page);
712 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
713 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
714 	return 0;
715 }
716 
717 /*
718  * Frees a number of pages from the PCP lists
719  * Assumes all pages on list are in same zone, and of same order.
720  * count is the number of pages to free.
721  *
722  * If the zone was previously in an "all pages pinned" state then look to
723  * see if this freeing clears that state.
724  *
725  * And clear the zone's pages_scanned counter, to hold off the "all pages are
726  * pinned" detection logic.
727  */
728 static void free_pcppages_bulk(struct zone *zone, int count,
729 					struct per_cpu_pages *pcp)
730 {
731 	int migratetype = 0;
732 	int batch_free = 0;
733 	int to_free = count;
734 	unsigned long nr_scanned;
735 
736 	spin_lock(&zone->lock);
737 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
738 	if (nr_scanned)
739 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
740 
741 	while (to_free) {
742 		struct page *page;
743 		struct list_head *list;
744 
745 		/*
746 		 * Remove pages from lists in a round-robin fashion. A
747 		 * batch_free count is maintained that is incremented when an
748 		 * empty list is encountered.  This is so more pages are freed
749 		 * off fuller lists instead of spinning excessively around empty
750 		 * lists
751 		 */
752 		do {
753 			batch_free++;
754 			if (++migratetype == MIGRATE_PCPTYPES)
755 				migratetype = 0;
756 			list = &pcp->lists[migratetype];
757 		} while (list_empty(list));
758 
759 		/* This is the only non-empty list. Free them all. */
760 		if (batch_free == MIGRATE_PCPTYPES)
761 			batch_free = to_free;
762 
763 		do {
764 			int mt;	/* migratetype of the to-be-freed page */
765 
766 			page = list_entry(list->prev, struct page, lru);
767 			/* must delete as __free_one_page list manipulates */
768 			list_del(&page->lru);
769 			mt = get_freepage_migratetype(page);
770 			if (unlikely(has_isolate_pageblock(zone)))
771 				mt = get_pageblock_migratetype(page);
772 
773 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
774 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
775 			trace_mm_page_pcpu_drain(page, 0, mt);
776 		} while (--to_free && --batch_free && !list_empty(list));
777 	}
778 	spin_unlock(&zone->lock);
779 }
780 
781 static void free_one_page(struct zone *zone,
782 				struct page *page, unsigned long pfn,
783 				unsigned int order,
784 				int migratetype)
785 {
786 	unsigned long nr_scanned;
787 	spin_lock(&zone->lock);
788 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
789 	if (nr_scanned)
790 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
791 
792 	if (unlikely(has_isolate_pageblock(zone) ||
793 		is_migrate_isolate(migratetype))) {
794 		migratetype = get_pfnblock_migratetype(page, pfn);
795 	}
796 	__free_one_page(page, pfn, zone, order, migratetype);
797 	spin_unlock(&zone->lock);
798 }
799 
800 static bool free_pages_prepare(struct page *page, unsigned int order)
801 {
802 	int i;
803 	int bad = 0;
804 
805 	VM_BUG_ON_PAGE(PageTail(page), page);
806 	VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
807 
808 	trace_mm_page_free(page, order);
809 	kmemcheck_free_shadow(page, order);
810 
811 	if (PageAnon(page))
812 		page->mapping = NULL;
813 	for (i = 0; i < (1 << order); i++)
814 		bad += free_pages_check(page + i);
815 	if (bad)
816 		return false;
817 
818 	reset_page_owner(page, order);
819 
820 	if (!PageHighMem(page)) {
821 		debug_check_no_locks_freed(page_address(page),
822 					   PAGE_SIZE << order);
823 		debug_check_no_obj_freed(page_address(page),
824 					   PAGE_SIZE << order);
825 	}
826 	arch_free_page(page, order);
827 	kernel_map_pages(page, 1 << order, 0);
828 
829 	return true;
830 }
831 
832 static void __free_pages_ok(struct page *page, unsigned int order)
833 {
834 	unsigned long flags;
835 	int migratetype;
836 	unsigned long pfn = page_to_pfn(page);
837 
838 	if (!free_pages_prepare(page, order))
839 		return;
840 
841 	migratetype = get_pfnblock_migratetype(page, pfn);
842 	local_irq_save(flags);
843 	__count_vm_events(PGFREE, 1 << order);
844 	set_freepage_migratetype(page, migratetype);
845 	free_one_page(page_zone(page), page, pfn, order, migratetype);
846 	local_irq_restore(flags);
847 }
848 
849 void __init __free_pages_bootmem(struct page *page, unsigned int order)
850 {
851 	unsigned int nr_pages = 1 << order;
852 	struct page *p = page;
853 	unsigned int loop;
854 
855 	prefetchw(p);
856 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
857 		prefetchw(p + 1);
858 		__ClearPageReserved(p);
859 		set_page_count(p, 0);
860 	}
861 	__ClearPageReserved(p);
862 	set_page_count(p, 0);
863 
864 	page_zone(page)->managed_pages += nr_pages;
865 	set_page_refcounted(page);
866 	__free_pages(page, order);
867 }
868 
869 #ifdef CONFIG_CMA
870 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
871 void __init init_cma_reserved_pageblock(struct page *page)
872 {
873 	unsigned i = pageblock_nr_pages;
874 	struct page *p = page;
875 
876 	do {
877 		__ClearPageReserved(p);
878 		set_page_count(p, 0);
879 	} while (++p, --i);
880 
881 	set_pageblock_migratetype(page, MIGRATE_CMA);
882 
883 	if (pageblock_order >= MAX_ORDER) {
884 		i = pageblock_nr_pages;
885 		p = page;
886 		do {
887 			set_page_refcounted(p);
888 			__free_pages(p, MAX_ORDER - 1);
889 			p += MAX_ORDER_NR_PAGES;
890 		} while (i -= MAX_ORDER_NR_PAGES);
891 	} else {
892 		set_page_refcounted(page);
893 		__free_pages(page, pageblock_order);
894 	}
895 
896 	adjust_managed_page_count(page, pageblock_nr_pages);
897 }
898 #endif
899 
900 /*
901  * The order of subdivision here is critical for the IO subsystem.
902  * Please do not alter this order without good reasons and regression
903  * testing. Specifically, as large blocks of memory are subdivided,
904  * the order in which smaller blocks are delivered depends on the order
905  * they're subdivided in this function. This is the primary factor
906  * influencing the order in which pages are delivered to the IO
907  * subsystem according to empirical testing, and this is also justified
908  * by considering the behavior of a buddy system containing a single
909  * large block of memory acted on by a series of small allocations.
910  * This behavior is a critical factor in sglist merging's success.
911  *
912  * -- nyc
913  */
914 static inline void expand(struct zone *zone, struct page *page,
915 	int low, int high, struct free_area *area,
916 	int migratetype)
917 {
918 	unsigned long size = 1 << high;
919 
920 	while (high > low) {
921 		area--;
922 		high--;
923 		size >>= 1;
924 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
925 
926 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
927 			debug_guardpage_enabled() &&
928 			high < debug_guardpage_minorder()) {
929 			/*
930 			 * Mark as guard pages (or page), that will allow to
931 			 * merge back to allocator when buddy will be freed.
932 			 * Corresponding page table entries will not be touched,
933 			 * pages will stay not present in virtual address space
934 			 */
935 			set_page_guard(zone, &page[size], high, migratetype);
936 			continue;
937 		}
938 		list_add(&page[size].lru, &area->free_list[migratetype]);
939 		area->nr_free++;
940 		set_page_order(&page[size], high);
941 	}
942 }
943 
944 /*
945  * This page is about to be returned from the page allocator
946  */
947 static inline int check_new_page(struct page *page)
948 {
949 	const char *bad_reason = NULL;
950 	unsigned long bad_flags = 0;
951 
952 	if (unlikely(page_mapcount(page)))
953 		bad_reason = "nonzero mapcount";
954 	if (unlikely(page->mapping != NULL))
955 		bad_reason = "non-NULL mapping";
956 	if (unlikely(atomic_read(&page->_count) != 0))
957 		bad_reason = "nonzero _count";
958 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
959 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
960 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
961 	}
962 #ifdef CONFIG_MEMCG
963 	if (unlikely(page->mem_cgroup))
964 		bad_reason = "page still charged to cgroup";
965 #endif
966 	if (unlikely(bad_reason)) {
967 		bad_page(page, bad_reason, bad_flags);
968 		return 1;
969 	}
970 	return 0;
971 }
972 
973 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
974 {
975 	int i;
976 
977 	for (i = 0; i < (1 << order); i++) {
978 		struct page *p = page + i;
979 		if (unlikely(check_new_page(p)))
980 			return 1;
981 	}
982 
983 	set_page_private(page, 0);
984 	set_page_refcounted(page);
985 
986 	arch_alloc_page(page, order);
987 	kernel_map_pages(page, 1 << order, 1);
988 
989 	if (gfp_flags & __GFP_ZERO)
990 		prep_zero_page(page, order, gfp_flags);
991 
992 	if (order && (gfp_flags & __GFP_COMP))
993 		prep_compound_page(page, order);
994 
995 	set_page_owner(page, order, gfp_flags);
996 
997 	return 0;
998 }
999 
1000 /*
1001  * Go through the free lists for the given migratetype and remove
1002  * the smallest available page from the freelists
1003  */
1004 static inline
1005 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1006 						int migratetype)
1007 {
1008 	unsigned int current_order;
1009 	struct free_area *area;
1010 	struct page *page;
1011 
1012 	/* Find a page of the appropriate size in the preferred list */
1013 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1014 		area = &(zone->free_area[current_order]);
1015 		if (list_empty(&area->free_list[migratetype]))
1016 			continue;
1017 
1018 		page = list_entry(area->free_list[migratetype].next,
1019 							struct page, lru);
1020 		list_del(&page->lru);
1021 		rmv_page_order(page);
1022 		area->nr_free--;
1023 		expand(zone, page, order, current_order, area, migratetype);
1024 		set_freepage_migratetype(page, migratetype);
1025 		return page;
1026 	}
1027 
1028 	return NULL;
1029 }
1030 
1031 
1032 /*
1033  * This array describes the order lists are fallen back to when
1034  * the free lists for the desirable migrate type are depleted
1035  */
1036 static int fallbacks[MIGRATE_TYPES][4] = {
1037 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1038 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1039 #ifdef CONFIG_CMA
1040 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1041 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1042 #else
1043 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1044 #endif
1045 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1046 #ifdef CONFIG_MEMORY_ISOLATION
1047 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1048 #endif
1049 };
1050 
1051 /*
1052  * Move the free pages in a range to the free lists of the requested type.
1053  * Note that start_page and end_pages are not aligned on a pageblock
1054  * boundary. If alignment is required, use move_freepages_block()
1055  */
1056 int move_freepages(struct zone *zone,
1057 			  struct page *start_page, struct page *end_page,
1058 			  int migratetype)
1059 {
1060 	struct page *page;
1061 	unsigned long order;
1062 	int pages_moved = 0;
1063 
1064 #ifndef CONFIG_HOLES_IN_ZONE
1065 	/*
1066 	 * page_zone is not safe to call in this context when
1067 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1068 	 * anyway as we check zone boundaries in move_freepages_block().
1069 	 * Remove at a later date when no bug reports exist related to
1070 	 * grouping pages by mobility
1071 	 */
1072 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1073 #endif
1074 
1075 	for (page = start_page; page <= end_page;) {
1076 		/* Make sure we are not inadvertently changing nodes */
1077 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1078 
1079 		if (!pfn_valid_within(page_to_pfn(page))) {
1080 			page++;
1081 			continue;
1082 		}
1083 
1084 		if (!PageBuddy(page)) {
1085 			page++;
1086 			continue;
1087 		}
1088 
1089 		order = page_order(page);
1090 		list_move(&page->lru,
1091 			  &zone->free_area[order].free_list[migratetype]);
1092 		set_freepage_migratetype(page, migratetype);
1093 		page += 1 << order;
1094 		pages_moved += 1 << order;
1095 	}
1096 
1097 	return pages_moved;
1098 }
1099 
1100 int move_freepages_block(struct zone *zone, struct page *page,
1101 				int migratetype)
1102 {
1103 	unsigned long start_pfn, end_pfn;
1104 	struct page *start_page, *end_page;
1105 
1106 	start_pfn = page_to_pfn(page);
1107 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1108 	start_page = pfn_to_page(start_pfn);
1109 	end_page = start_page + pageblock_nr_pages - 1;
1110 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1111 
1112 	/* Do not cross zone boundaries */
1113 	if (!zone_spans_pfn(zone, start_pfn))
1114 		start_page = page;
1115 	if (!zone_spans_pfn(zone, end_pfn))
1116 		return 0;
1117 
1118 	return move_freepages(zone, start_page, end_page, migratetype);
1119 }
1120 
1121 static void change_pageblock_range(struct page *pageblock_page,
1122 					int start_order, int migratetype)
1123 {
1124 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1125 
1126 	while (nr_pageblocks--) {
1127 		set_pageblock_migratetype(pageblock_page, migratetype);
1128 		pageblock_page += pageblock_nr_pages;
1129 	}
1130 }
1131 
1132 /*
1133  * If breaking a large block of pages, move all free pages to the preferred
1134  * allocation list. If falling back for a reclaimable kernel allocation, be
1135  * more aggressive about taking ownership of free pages.
1136  *
1137  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1138  * nor move CMA pages to different free lists. We don't want unmovable pages
1139  * to be allocated from MIGRATE_CMA areas.
1140  *
1141  * Returns the new migratetype of the pageblock (or the same old migratetype
1142  * if it was unchanged).
1143  */
1144 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1145 				  int start_type, int fallback_type)
1146 {
1147 	int current_order = page_order(page);
1148 
1149 	/*
1150 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1151 	 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1152 	 * is set to CMA so it is returned to the correct freelist in case
1153 	 * the page ends up being not actually allocated from the pcp lists.
1154 	 */
1155 	if (is_migrate_cma(fallback_type))
1156 		return fallback_type;
1157 
1158 	/* Take ownership for orders >= pageblock_order */
1159 	if (current_order >= pageblock_order) {
1160 		change_pageblock_range(page, current_order, start_type);
1161 		return start_type;
1162 	}
1163 
1164 	if (current_order >= pageblock_order / 2 ||
1165 	    start_type == MIGRATE_RECLAIMABLE ||
1166 	    page_group_by_mobility_disabled) {
1167 		int pages;
1168 
1169 		pages = move_freepages_block(zone, page, start_type);
1170 
1171 		/* Claim the whole block if over half of it is free */
1172 		if (pages >= (1 << (pageblock_order-1)) ||
1173 				page_group_by_mobility_disabled) {
1174 
1175 			set_pageblock_migratetype(page, start_type);
1176 			return start_type;
1177 		}
1178 
1179 	}
1180 
1181 	return fallback_type;
1182 }
1183 
1184 /* Remove an element from the buddy allocator from the fallback list */
1185 static inline struct page *
1186 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1187 {
1188 	struct free_area *area;
1189 	unsigned int current_order;
1190 	struct page *page;
1191 	int migratetype, new_type, i;
1192 
1193 	/* Find the largest possible block of pages in the other list */
1194 	for (current_order = MAX_ORDER-1;
1195 				current_order >= order && current_order <= MAX_ORDER-1;
1196 				--current_order) {
1197 		for (i = 0;; i++) {
1198 			migratetype = fallbacks[start_migratetype][i];
1199 
1200 			/* MIGRATE_RESERVE handled later if necessary */
1201 			if (migratetype == MIGRATE_RESERVE)
1202 				break;
1203 
1204 			area = &(zone->free_area[current_order]);
1205 			if (list_empty(&area->free_list[migratetype]))
1206 				continue;
1207 
1208 			page = list_entry(area->free_list[migratetype].next,
1209 					struct page, lru);
1210 			area->nr_free--;
1211 
1212 			new_type = try_to_steal_freepages(zone, page,
1213 							  start_migratetype,
1214 							  migratetype);
1215 
1216 			/* Remove the page from the freelists */
1217 			list_del(&page->lru);
1218 			rmv_page_order(page);
1219 
1220 			expand(zone, page, order, current_order, area,
1221 			       new_type);
1222 			/* The freepage_migratetype may differ from pageblock's
1223 			 * migratetype depending on the decisions in
1224 			 * try_to_steal_freepages. This is OK as long as it does
1225 			 * not differ for MIGRATE_CMA type.
1226 			 */
1227 			set_freepage_migratetype(page, new_type);
1228 
1229 			trace_mm_page_alloc_extfrag(page, order, current_order,
1230 				start_migratetype, migratetype, new_type);
1231 
1232 			return page;
1233 		}
1234 	}
1235 
1236 	return NULL;
1237 }
1238 
1239 /*
1240  * Do the hard work of removing an element from the buddy allocator.
1241  * Call me with the zone->lock already held.
1242  */
1243 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1244 						int migratetype)
1245 {
1246 	struct page *page;
1247 
1248 retry_reserve:
1249 	page = __rmqueue_smallest(zone, order, migratetype);
1250 
1251 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1252 		page = __rmqueue_fallback(zone, order, migratetype);
1253 
1254 		/*
1255 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1256 		 * is used because __rmqueue_smallest is an inline function
1257 		 * and we want just one call site
1258 		 */
1259 		if (!page) {
1260 			migratetype = MIGRATE_RESERVE;
1261 			goto retry_reserve;
1262 		}
1263 	}
1264 
1265 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1266 	return page;
1267 }
1268 
1269 /*
1270  * Obtain a specified number of elements from the buddy allocator, all under
1271  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1272  * Returns the number of new pages which were placed at *list.
1273  */
1274 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1275 			unsigned long count, struct list_head *list,
1276 			int migratetype, bool cold)
1277 {
1278 	int i;
1279 
1280 	spin_lock(&zone->lock);
1281 	for (i = 0; i < count; ++i) {
1282 		struct page *page = __rmqueue(zone, order, migratetype);
1283 		if (unlikely(page == NULL))
1284 			break;
1285 
1286 		/*
1287 		 * Split buddy pages returned by expand() are received here
1288 		 * in physical page order. The page is added to the callers and
1289 		 * list and the list head then moves forward. From the callers
1290 		 * perspective, the linked list is ordered by page number in
1291 		 * some conditions. This is useful for IO devices that can
1292 		 * merge IO requests if the physical pages are ordered
1293 		 * properly.
1294 		 */
1295 		if (likely(!cold))
1296 			list_add(&page->lru, list);
1297 		else
1298 			list_add_tail(&page->lru, list);
1299 		list = &page->lru;
1300 		if (is_migrate_cma(get_freepage_migratetype(page)))
1301 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1302 					      -(1 << order));
1303 	}
1304 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1305 	spin_unlock(&zone->lock);
1306 	return i;
1307 }
1308 
1309 #ifdef CONFIG_NUMA
1310 /*
1311  * Called from the vmstat counter updater to drain pagesets of this
1312  * currently executing processor on remote nodes after they have
1313  * expired.
1314  *
1315  * Note that this function must be called with the thread pinned to
1316  * a single processor.
1317  */
1318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1319 {
1320 	unsigned long flags;
1321 	int to_drain, batch;
1322 
1323 	local_irq_save(flags);
1324 	batch = ACCESS_ONCE(pcp->batch);
1325 	to_drain = min(pcp->count, batch);
1326 	if (to_drain > 0) {
1327 		free_pcppages_bulk(zone, to_drain, pcp);
1328 		pcp->count -= to_drain;
1329 	}
1330 	local_irq_restore(flags);
1331 }
1332 #endif
1333 
1334 /*
1335  * Drain pcplists of the indicated processor and zone.
1336  *
1337  * The processor must either be the current processor and the
1338  * thread pinned to the current processor or a processor that
1339  * is not online.
1340  */
1341 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1342 {
1343 	unsigned long flags;
1344 	struct per_cpu_pageset *pset;
1345 	struct per_cpu_pages *pcp;
1346 
1347 	local_irq_save(flags);
1348 	pset = per_cpu_ptr(zone->pageset, cpu);
1349 
1350 	pcp = &pset->pcp;
1351 	if (pcp->count) {
1352 		free_pcppages_bulk(zone, pcp->count, pcp);
1353 		pcp->count = 0;
1354 	}
1355 	local_irq_restore(flags);
1356 }
1357 
1358 /*
1359  * Drain pcplists of all zones on the indicated processor.
1360  *
1361  * The processor must either be the current processor and the
1362  * thread pinned to the current processor or a processor that
1363  * is not online.
1364  */
1365 static void drain_pages(unsigned int cpu)
1366 {
1367 	struct zone *zone;
1368 
1369 	for_each_populated_zone(zone) {
1370 		drain_pages_zone(cpu, zone);
1371 	}
1372 }
1373 
1374 /*
1375  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1376  *
1377  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1378  * the single zone's pages.
1379  */
1380 void drain_local_pages(struct zone *zone)
1381 {
1382 	int cpu = smp_processor_id();
1383 
1384 	if (zone)
1385 		drain_pages_zone(cpu, zone);
1386 	else
1387 		drain_pages(cpu);
1388 }
1389 
1390 /*
1391  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1392  *
1393  * When zone parameter is non-NULL, spill just the single zone's pages.
1394  *
1395  * Note that this code is protected against sending an IPI to an offline
1396  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1397  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1398  * nothing keeps CPUs from showing up after we populated the cpumask and
1399  * before the call to on_each_cpu_mask().
1400  */
1401 void drain_all_pages(struct zone *zone)
1402 {
1403 	int cpu;
1404 
1405 	/*
1406 	 * Allocate in the BSS so we wont require allocation in
1407 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1408 	 */
1409 	static cpumask_t cpus_with_pcps;
1410 
1411 	/*
1412 	 * We don't care about racing with CPU hotplug event
1413 	 * as offline notification will cause the notified
1414 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1415 	 * disables preemption as part of its processing
1416 	 */
1417 	for_each_online_cpu(cpu) {
1418 		struct per_cpu_pageset *pcp;
1419 		struct zone *z;
1420 		bool has_pcps = false;
1421 
1422 		if (zone) {
1423 			pcp = per_cpu_ptr(zone->pageset, cpu);
1424 			if (pcp->pcp.count)
1425 				has_pcps = true;
1426 		} else {
1427 			for_each_populated_zone(z) {
1428 				pcp = per_cpu_ptr(z->pageset, cpu);
1429 				if (pcp->pcp.count) {
1430 					has_pcps = true;
1431 					break;
1432 				}
1433 			}
1434 		}
1435 
1436 		if (has_pcps)
1437 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1438 		else
1439 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1440 	}
1441 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1442 								zone, 1);
1443 }
1444 
1445 #ifdef CONFIG_HIBERNATION
1446 
1447 void mark_free_pages(struct zone *zone)
1448 {
1449 	unsigned long pfn, max_zone_pfn;
1450 	unsigned long flags;
1451 	unsigned int order, t;
1452 	struct list_head *curr;
1453 
1454 	if (zone_is_empty(zone))
1455 		return;
1456 
1457 	spin_lock_irqsave(&zone->lock, flags);
1458 
1459 	max_zone_pfn = zone_end_pfn(zone);
1460 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1461 		if (pfn_valid(pfn)) {
1462 			struct page *page = pfn_to_page(pfn);
1463 
1464 			if (!swsusp_page_is_forbidden(page))
1465 				swsusp_unset_page_free(page);
1466 		}
1467 
1468 	for_each_migratetype_order(order, t) {
1469 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1470 			unsigned long i;
1471 
1472 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1473 			for (i = 0; i < (1UL << order); i++)
1474 				swsusp_set_page_free(pfn_to_page(pfn + i));
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&zone->lock, flags);
1478 }
1479 #endif /* CONFIG_PM */
1480 
1481 /*
1482  * Free a 0-order page
1483  * cold == true ? free a cold page : free a hot page
1484  */
1485 void free_hot_cold_page(struct page *page, bool cold)
1486 {
1487 	struct zone *zone = page_zone(page);
1488 	struct per_cpu_pages *pcp;
1489 	unsigned long flags;
1490 	unsigned long pfn = page_to_pfn(page);
1491 	int migratetype;
1492 
1493 	if (!free_pages_prepare(page, 0))
1494 		return;
1495 
1496 	migratetype = get_pfnblock_migratetype(page, pfn);
1497 	set_freepage_migratetype(page, migratetype);
1498 	local_irq_save(flags);
1499 	__count_vm_event(PGFREE);
1500 
1501 	/*
1502 	 * We only track unmovable, reclaimable and movable on pcp lists.
1503 	 * Free ISOLATE pages back to the allocator because they are being
1504 	 * offlined but treat RESERVE as movable pages so we can get those
1505 	 * areas back if necessary. Otherwise, we may have to free
1506 	 * excessively into the page allocator
1507 	 */
1508 	if (migratetype >= MIGRATE_PCPTYPES) {
1509 		if (unlikely(is_migrate_isolate(migratetype))) {
1510 			free_one_page(zone, page, pfn, 0, migratetype);
1511 			goto out;
1512 		}
1513 		migratetype = MIGRATE_MOVABLE;
1514 	}
1515 
1516 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1517 	if (!cold)
1518 		list_add(&page->lru, &pcp->lists[migratetype]);
1519 	else
1520 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1521 	pcp->count++;
1522 	if (pcp->count >= pcp->high) {
1523 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1524 		free_pcppages_bulk(zone, batch, pcp);
1525 		pcp->count -= batch;
1526 	}
1527 
1528 out:
1529 	local_irq_restore(flags);
1530 }
1531 
1532 /*
1533  * Free a list of 0-order pages
1534  */
1535 void free_hot_cold_page_list(struct list_head *list, bool cold)
1536 {
1537 	struct page *page, *next;
1538 
1539 	list_for_each_entry_safe(page, next, list, lru) {
1540 		trace_mm_page_free_batched(page, cold);
1541 		free_hot_cold_page(page, cold);
1542 	}
1543 }
1544 
1545 /*
1546  * split_page takes a non-compound higher-order page, and splits it into
1547  * n (1<<order) sub-pages: page[0..n]
1548  * Each sub-page must be freed individually.
1549  *
1550  * Note: this is probably too low level an operation for use in drivers.
1551  * Please consult with lkml before using this in your driver.
1552  */
1553 void split_page(struct page *page, unsigned int order)
1554 {
1555 	int i;
1556 
1557 	VM_BUG_ON_PAGE(PageCompound(page), page);
1558 	VM_BUG_ON_PAGE(!page_count(page), page);
1559 
1560 #ifdef CONFIG_KMEMCHECK
1561 	/*
1562 	 * Split shadow pages too, because free(page[0]) would
1563 	 * otherwise free the whole shadow.
1564 	 */
1565 	if (kmemcheck_page_is_tracked(page))
1566 		split_page(virt_to_page(page[0].shadow), order);
1567 #endif
1568 
1569 	set_page_owner(page, 0, 0);
1570 	for (i = 1; i < (1 << order); i++) {
1571 		set_page_refcounted(page + i);
1572 		set_page_owner(page + i, 0, 0);
1573 	}
1574 }
1575 EXPORT_SYMBOL_GPL(split_page);
1576 
1577 int __isolate_free_page(struct page *page, unsigned int order)
1578 {
1579 	unsigned long watermark;
1580 	struct zone *zone;
1581 	int mt;
1582 
1583 	BUG_ON(!PageBuddy(page));
1584 
1585 	zone = page_zone(page);
1586 	mt = get_pageblock_migratetype(page);
1587 
1588 	if (!is_migrate_isolate(mt)) {
1589 		/* Obey watermarks as if the page was being allocated */
1590 		watermark = low_wmark_pages(zone) + (1 << order);
1591 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1592 			return 0;
1593 
1594 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1595 	}
1596 
1597 	/* Remove page from free list */
1598 	list_del(&page->lru);
1599 	zone->free_area[order].nr_free--;
1600 	rmv_page_order(page);
1601 
1602 	/* Set the pageblock if the isolated page is at least a pageblock */
1603 	if (order >= pageblock_order - 1) {
1604 		struct page *endpage = page + (1 << order) - 1;
1605 		for (; page < endpage; page += pageblock_nr_pages) {
1606 			int mt = get_pageblock_migratetype(page);
1607 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1608 				set_pageblock_migratetype(page,
1609 							  MIGRATE_MOVABLE);
1610 		}
1611 	}
1612 
1613 	set_page_owner(page, order, 0);
1614 	return 1UL << order;
1615 }
1616 
1617 /*
1618  * Similar to split_page except the page is already free. As this is only
1619  * being used for migration, the migratetype of the block also changes.
1620  * As this is called with interrupts disabled, the caller is responsible
1621  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1622  * are enabled.
1623  *
1624  * Note: this is probably too low level an operation for use in drivers.
1625  * Please consult with lkml before using this in your driver.
1626  */
1627 int split_free_page(struct page *page)
1628 {
1629 	unsigned int order;
1630 	int nr_pages;
1631 
1632 	order = page_order(page);
1633 
1634 	nr_pages = __isolate_free_page(page, order);
1635 	if (!nr_pages)
1636 		return 0;
1637 
1638 	/* Split into individual pages */
1639 	set_page_refcounted(page);
1640 	split_page(page, order);
1641 	return nr_pages;
1642 }
1643 
1644 /*
1645  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1646  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1647  * or two.
1648  */
1649 static inline
1650 struct page *buffered_rmqueue(struct zone *preferred_zone,
1651 			struct zone *zone, unsigned int order,
1652 			gfp_t gfp_flags, int migratetype)
1653 {
1654 	unsigned long flags;
1655 	struct page *page;
1656 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1657 
1658 again:
1659 	if (likely(order == 0)) {
1660 		struct per_cpu_pages *pcp;
1661 		struct list_head *list;
1662 
1663 		local_irq_save(flags);
1664 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1665 		list = &pcp->lists[migratetype];
1666 		if (list_empty(list)) {
1667 			pcp->count += rmqueue_bulk(zone, 0,
1668 					pcp->batch, list,
1669 					migratetype, cold);
1670 			if (unlikely(list_empty(list)))
1671 				goto failed;
1672 		}
1673 
1674 		if (cold)
1675 			page = list_entry(list->prev, struct page, lru);
1676 		else
1677 			page = list_entry(list->next, struct page, lru);
1678 
1679 		list_del(&page->lru);
1680 		pcp->count--;
1681 	} else {
1682 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1683 			/*
1684 			 * __GFP_NOFAIL is not to be used in new code.
1685 			 *
1686 			 * All __GFP_NOFAIL callers should be fixed so that they
1687 			 * properly detect and handle allocation failures.
1688 			 *
1689 			 * We most definitely don't want callers attempting to
1690 			 * allocate greater than order-1 page units with
1691 			 * __GFP_NOFAIL.
1692 			 */
1693 			WARN_ON_ONCE(order > 1);
1694 		}
1695 		spin_lock_irqsave(&zone->lock, flags);
1696 		page = __rmqueue(zone, order, migratetype);
1697 		spin_unlock(&zone->lock);
1698 		if (!page)
1699 			goto failed;
1700 		__mod_zone_freepage_state(zone, -(1 << order),
1701 					  get_freepage_migratetype(page));
1702 	}
1703 
1704 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1705 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1706 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1707 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1708 
1709 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1710 	zone_statistics(preferred_zone, zone, gfp_flags);
1711 	local_irq_restore(flags);
1712 
1713 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1714 	if (prep_new_page(page, order, gfp_flags))
1715 		goto again;
1716 	return page;
1717 
1718 failed:
1719 	local_irq_restore(flags);
1720 	return NULL;
1721 }
1722 
1723 #ifdef CONFIG_FAIL_PAGE_ALLOC
1724 
1725 static struct {
1726 	struct fault_attr attr;
1727 
1728 	u32 ignore_gfp_highmem;
1729 	u32 ignore_gfp_wait;
1730 	u32 min_order;
1731 } fail_page_alloc = {
1732 	.attr = FAULT_ATTR_INITIALIZER,
1733 	.ignore_gfp_wait = 1,
1734 	.ignore_gfp_highmem = 1,
1735 	.min_order = 1,
1736 };
1737 
1738 static int __init setup_fail_page_alloc(char *str)
1739 {
1740 	return setup_fault_attr(&fail_page_alloc.attr, str);
1741 }
1742 __setup("fail_page_alloc=", setup_fail_page_alloc);
1743 
1744 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1745 {
1746 	if (order < fail_page_alloc.min_order)
1747 		return false;
1748 	if (gfp_mask & __GFP_NOFAIL)
1749 		return false;
1750 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1751 		return false;
1752 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1753 		return false;
1754 
1755 	return should_fail(&fail_page_alloc.attr, 1 << order);
1756 }
1757 
1758 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1759 
1760 static int __init fail_page_alloc_debugfs(void)
1761 {
1762 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1763 	struct dentry *dir;
1764 
1765 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1766 					&fail_page_alloc.attr);
1767 	if (IS_ERR(dir))
1768 		return PTR_ERR(dir);
1769 
1770 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1771 				&fail_page_alloc.ignore_gfp_wait))
1772 		goto fail;
1773 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1774 				&fail_page_alloc.ignore_gfp_highmem))
1775 		goto fail;
1776 	if (!debugfs_create_u32("min-order", mode, dir,
1777 				&fail_page_alloc.min_order))
1778 		goto fail;
1779 
1780 	return 0;
1781 fail:
1782 	debugfs_remove_recursive(dir);
1783 
1784 	return -ENOMEM;
1785 }
1786 
1787 late_initcall(fail_page_alloc_debugfs);
1788 
1789 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1790 
1791 #else /* CONFIG_FAIL_PAGE_ALLOC */
1792 
1793 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1794 {
1795 	return false;
1796 }
1797 
1798 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1799 
1800 /*
1801  * Return true if free pages are above 'mark'. This takes into account the order
1802  * of the allocation.
1803  */
1804 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1805 			unsigned long mark, int classzone_idx, int alloc_flags,
1806 			long free_pages)
1807 {
1808 	/* free_pages may go negative - that's OK */
1809 	long min = mark;
1810 	int o;
1811 	long free_cma = 0;
1812 
1813 	free_pages -= (1 << order) - 1;
1814 	if (alloc_flags & ALLOC_HIGH)
1815 		min -= min / 2;
1816 	if (alloc_flags & ALLOC_HARDER)
1817 		min -= min / 4;
1818 #ifdef CONFIG_CMA
1819 	/* If allocation can't use CMA areas don't use free CMA pages */
1820 	if (!(alloc_flags & ALLOC_CMA))
1821 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1822 #endif
1823 
1824 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1825 		return false;
1826 	for (o = 0; o < order; o++) {
1827 		/* At the next order, this order's pages become unavailable */
1828 		free_pages -= z->free_area[o].nr_free << o;
1829 
1830 		/* Require fewer higher order pages to be free */
1831 		min >>= 1;
1832 
1833 		if (free_pages <= min)
1834 			return false;
1835 	}
1836 	return true;
1837 }
1838 
1839 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1840 		      int classzone_idx, int alloc_flags)
1841 {
1842 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1843 					zone_page_state(z, NR_FREE_PAGES));
1844 }
1845 
1846 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1847 			unsigned long mark, int classzone_idx, int alloc_flags)
1848 {
1849 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1850 
1851 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1852 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1853 
1854 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1855 								free_pages);
1856 }
1857 
1858 #ifdef CONFIG_NUMA
1859 /*
1860  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1861  * skip over zones that are not allowed by the cpuset, or that have
1862  * been recently (in last second) found to be nearly full.  See further
1863  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1864  * that have to skip over a lot of full or unallowed zones.
1865  *
1866  * If the zonelist cache is present in the passed zonelist, then
1867  * returns a pointer to the allowed node mask (either the current
1868  * tasks mems_allowed, or node_states[N_MEMORY].)
1869  *
1870  * If the zonelist cache is not available for this zonelist, does
1871  * nothing and returns NULL.
1872  *
1873  * If the fullzones BITMAP in the zonelist cache is stale (more than
1874  * a second since last zap'd) then we zap it out (clear its bits.)
1875  *
1876  * We hold off even calling zlc_setup, until after we've checked the
1877  * first zone in the zonelist, on the theory that most allocations will
1878  * be satisfied from that first zone, so best to examine that zone as
1879  * quickly as we can.
1880  */
1881 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1882 {
1883 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1884 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1885 
1886 	zlc = zonelist->zlcache_ptr;
1887 	if (!zlc)
1888 		return NULL;
1889 
1890 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1891 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1892 		zlc->last_full_zap = jiffies;
1893 	}
1894 
1895 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1896 					&cpuset_current_mems_allowed :
1897 					&node_states[N_MEMORY];
1898 	return allowednodes;
1899 }
1900 
1901 /*
1902  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1903  * if it is worth looking at further for free memory:
1904  *  1) Check that the zone isn't thought to be full (doesn't have its
1905  *     bit set in the zonelist_cache fullzones BITMAP).
1906  *  2) Check that the zones node (obtained from the zonelist_cache
1907  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1908  * Return true (non-zero) if zone is worth looking at further, or
1909  * else return false (zero) if it is not.
1910  *
1911  * This check -ignores- the distinction between various watermarks,
1912  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1913  * found to be full for any variation of these watermarks, it will
1914  * be considered full for up to one second by all requests, unless
1915  * we are so low on memory on all allowed nodes that we are forced
1916  * into the second scan of the zonelist.
1917  *
1918  * In the second scan we ignore this zonelist cache and exactly
1919  * apply the watermarks to all zones, even it is slower to do so.
1920  * We are low on memory in the second scan, and should leave no stone
1921  * unturned looking for a free page.
1922  */
1923 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1924 						nodemask_t *allowednodes)
1925 {
1926 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1927 	int i;				/* index of *z in zonelist zones */
1928 	int n;				/* node that zone *z is on */
1929 
1930 	zlc = zonelist->zlcache_ptr;
1931 	if (!zlc)
1932 		return 1;
1933 
1934 	i = z - zonelist->_zonerefs;
1935 	n = zlc->z_to_n[i];
1936 
1937 	/* This zone is worth trying if it is allowed but not full */
1938 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1939 }
1940 
1941 /*
1942  * Given 'z' scanning a zonelist, set the corresponding bit in
1943  * zlc->fullzones, so that subsequent attempts to allocate a page
1944  * from that zone don't waste time re-examining it.
1945  */
1946 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1947 {
1948 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1949 	int i;				/* index of *z in zonelist zones */
1950 
1951 	zlc = zonelist->zlcache_ptr;
1952 	if (!zlc)
1953 		return;
1954 
1955 	i = z - zonelist->_zonerefs;
1956 
1957 	set_bit(i, zlc->fullzones);
1958 }
1959 
1960 /*
1961  * clear all zones full, called after direct reclaim makes progress so that
1962  * a zone that was recently full is not skipped over for up to a second
1963  */
1964 static void zlc_clear_zones_full(struct zonelist *zonelist)
1965 {
1966 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1967 
1968 	zlc = zonelist->zlcache_ptr;
1969 	if (!zlc)
1970 		return;
1971 
1972 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1973 }
1974 
1975 static bool zone_local(struct zone *local_zone, struct zone *zone)
1976 {
1977 	return local_zone->node == zone->node;
1978 }
1979 
1980 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1981 {
1982 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1983 				RECLAIM_DISTANCE;
1984 }
1985 
1986 #else	/* CONFIG_NUMA */
1987 
1988 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1989 {
1990 	return NULL;
1991 }
1992 
1993 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1994 				nodemask_t *allowednodes)
1995 {
1996 	return 1;
1997 }
1998 
1999 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2000 {
2001 }
2002 
2003 static void zlc_clear_zones_full(struct zonelist *zonelist)
2004 {
2005 }
2006 
2007 static bool zone_local(struct zone *local_zone, struct zone *zone)
2008 {
2009 	return true;
2010 }
2011 
2012 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2013 {
2014 	return true;
2015 }
2016 
2017 #endif	/* CONFIG_NUMA */
2018 
2019 static void reset_alloc_batches(struct zone *preferred_zone)
2020 {
2021 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2022 
2023 	do {
2024 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2025 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2026 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2027 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2028 	} while (zone++ != preferred_zone);
2029 }
2030 
2031 /*
2032  * get_page_from_freelist goes through the zonelist trying to allocate
2033  * a page.
2034  */
2035 static struct page *
2036 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
2037 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
2038 		struct zone *preferred_zone, int classzone_idx, int migratetype)
2039 {
2040 	struct zoneref *z;
2041 	struct page *page = NULL;
2042 	struct zone *zone;
2043 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2044 	int zlc_active = 0;		/* set if using zonelist_cache */
2045 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2046 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2047 				(gfp_mask & __GFP_WRITE);
2048 	int nr_fair_skipped = 0;
2049 	bool zonelist_rescan;
2050 
2051 zonelist_scan:
2052 	zonelist_rescan = false;
2053 
2054 	/*
2055 	 * Scan zonelist, looking for a zone with enough free.
2056 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2057 	 */
2058 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2059 						high_zoneidx, nodemask) {
2060 		unsigned long mark;
2061 
2062 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2063 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2064 				continue;
2065 		if (cpusets_enabled() &&
2066 			(alloc_flags & ALLOC_CPUSET) &&
2067 			!cpuset_zone_allowed(zone, gfp_mask))
2068 				continue;
2069 		/*
2070 		 * Distribute pages in proportion to the individual
2071 		 * zone size to ensure fair page aging.  The zone a
2072 		 * page was allocated in should have no effect on the
2073 		 * time the page has in memory before being reclaimed.
2074 		 */
2075 		if (alloc_flags & ALLOC_FAIR) {
2076 			if (!zone_local(preferred_zone, zone))
2077 				break;
2078 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2079 				nr_fair_skipped++;
2080 				continue;
2081 			}
2082 		}
2083 		/*
2084 		 * When allocating a page cache page for writing, we
2085 		 * want to get it from a zone that is within its dirty
2086 		 * limit, such that no single zone holds more than its
2087 		 * proportional share of globally allowed dirty pages.
2088 		 * The dirty limits take into account the zone's
2089 		 * lowmem reserves and high watermark so that kswapd
2090 		 * should be able to balance it without having to
2091 		 * write pages from its LRU list.
2092 		 *
2093 		 * This may look like it could increase pressure on
2094 		 * lower zones by failing allocations in higher zones
2095 		 * before they are full.  But the pages that do spill
2096 		 * over are limited as the lower zones are protected
2097 		 * by this very same mechanism.  It should not become
2098 		 * a practical burden to them.
2099 		 *
2100 		 * XXX: For now, allow allocations to potentially
2101 		 * exceed the per-zone dirty limit in the slowpath
2102 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2103 		 * which is important when on a NUMA setup the allowed
2104 		 * zones are together not big enough to reach the
2105 		 * global limit.  The proper fix for these situations
2106 		 * will require awareness of zones in the
2107 		 * dirty-throttling and the flusher threads.
2108 		 */
2109 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2110 			continue;
2111 
2112 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2113 		if (!zone_watermark_ok(zone, order, mark,
2114 				       classzone_idx, alloc_flags)) {
2115 			int ret;
2116 
2117 			/* Checked here to keep the fast path fast */
2118 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2119 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2120 				goto try_this_zone;
2121 
2122 			if (IS_ENABLED(CONFIG_NUMA) &&
2123 					!did_zlc_setup && nr_online_nodes > 1) {
2124 				/*
2125 				 * we do zlc_setup if there are multiple nodes
2126 				 * and before considering the first zone allowed
2127 				 * by the cpuset.
2128 				 */
2129 				allowednodes = zlc_setup(zonelist, alloc_flags);
2130 				zlc_active = 1;
2131 				did_zlc_setup = 1;
2132 			}
2133 
2134 			if (zone_reclaim_mode == 0 ||
2135 			    !zone_allows_reclaim(preferred_zone, zone))
2136 				goto this_zone_full;
2137 
2138 			/*
2139 			 * As we may have just activated ZLC, check if the first
2140 			 * eligible zone has failed zone_reclaim recently.
2141 			 */
2142 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2143 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2144 				continue;
2145 
2146 			ret = zone_reclaim(zone, gfp_mask, order);
2147 			switch (ret) {
2148 			case ZONE_RECLAIM_NOSCAN:
2149 				/* did not scan */
2150 				continue;
2151 			case ZONE_RECLAIM_FULL:
2152 				/* scanned but unreclaimable */
2153 				continue;
2154 			default:
2155 				/* did we reclaim enough */
2156 				if (zone_watermark_ok(zone, order, mark,
2157 						classzone_idx, alloc_flags))
2158 					goto try_this_zone;
2159 
2160 				/*
2161 				 * Failed to reclaim enough to meet watermark.
2162 				 * Only mark the zone full if checking the min
2163 				 * watermark or if we failed to reclaim just
2164 				 * 1<<order pages or else the page allocator
2165 				 * fastpath will prematurely mark zones full
2166 				 * when the watermark is between the low and
2167 				 * min watermarks.
2168 				 */
2169 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2170 				    ret == ZONE_RECLAIM_SOME)
2171 					goto this_zone_full;
2172 
2173 				continue;
2174 			}
2175 		}
2176 
2177 try_this_zone:
2178 		page = buffered_rmqueue(preferred_zone, zone, order,
2179 						gfp_mask, migratetype);
2180 		if (page)
2181 			break;
2182 this_zone_full:
2183 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2184 			zlc_mark_zone_full(zonelist, z);
2185 	}
2186 
2187 	if (page) {
2188 		/*
2189 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2190 		 * necessary to allocate the page. The expectation is
2191 		 * that the caller is taking steps that will free more
2192 		 * memory. The caller should avoid the page being used
2193 		 * for !PFMEMALLOC purposes.
2194 		 */
2195 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2196 		return page;
2197 	}
2198 
2199 	/*
2200 	 * The first pass makes sure allocations are spread fairly within the
2201 	 * local node.  However, the local node might have free pages left
2202 	 * after the fairness batches are exhausted, and remote zones haven't
2203 	 * even been considered yet.  Try once more without fairness, and
2204 	 * include remote zones now, before entering the slowpath and waking
2205 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2206 	 */
2207 	if (alloc_flags & ALLOC_FAIR) {
2208 		alloc_flags &= ~ALLOC_FAIR;
2209 		if (nr_fair_skipped) {
2210 			zonelist_rescan = true;
2211 			reset_alloc_batches(preferred_zone);
2212 		}
2213 		if (nr_online_nodes > 1)
2214 			zonelist_rescan = true;
2215 	}
2216 
2217 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2218 		/* Disable zlc cache for second zonelist scan */
2219 		zlc_active = 0;
2220 		zonelist_rescan = true;
2221 	}
2222 
2223 	if (zonelist_rescan)
2224 		goto zonelist_scan;
2225 
2226 	return NULL;
2227 }
2228 
2229 /*
2230  * Large machines with many possible nodes should not always dump per-node
2231  * meminfo in irq context.
2232  */
2233 static inline bool should_suppress_show_mem(void)
2234 {
2235 	bool ret = false;
2236 
2237 #if NODES_SHIFT > 8
2238 	ret = in_interrupt();
2239 #endif
2240 	return ret;
2241 }
2242 
2243 static DEFINE_RATELIMIT_STATE(nopage_rs,
2244 		DEFAULT_RATELIMIT_INTERVAL,
2245 		DEFAULT_RATELIMIT_BURST);
2246 
2247 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2248 {
2249 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2250 
2251 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2252 	    debug_guardpage_minorder() > 0)
2253 		return;
2254 
2255 	/*
2256 	 * This documents exceptions given to allocations in certain
2257 	 * contexts that are allowed to allocate outside current's set
2258 	 * of allowed nodes.
2259 	 */
2260 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2261 		if (test_thread_flag(TIF_MEMDIE) ||
2262 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2263 			filter &= ~SHOW_MEM_FILTER_NODES;
2264 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2265 		filter &= ~SHOW_MEM_FILTER_NODES;
2266 
2267 	if (fmt) {
2268 		struct va_format vaf;
2269 		va_list args;
2270 
2271 		va_start(args, fmt);
2272 
2273 		vaf.fmt = fmt;
2274 		vaf.va = &args;
2275 
2276 		pr_warn("%pV", &vaf);
2277 
2278 		va_end(args);
2279 	}
2280 
2281 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2282 		current->comm, order, gfp_mask);
2283 
2284 	dump_stack();
2285 	if (!should_suppress_show_mem())
2286 		show_mem(filter);
2287 }
2288 
2289 static inline int
2290 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2291 				unsigned long did_some_progress,
2292 				unsigned long pages_reclaimed)
2293 {
2294 	/* Do not loop if specifically requested */
2295 	if (gfp_mask & __GFP_NORETRY)
2296 		return 0;
2297 
2298 	/* Always retry if specifically requested */
2299 	if (gfp_mask & __GFP_NOFAIL)
2300 		return 1;
2301 
2302 	/*
2303 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2304 	 * making forward progress without invoking OOM. Suspend also disables
2305 	 * storage devices so kswapd will not help. Bail if we are suspending.
2306 	 */
2307 	if (!did_some_progress && pm_suspended_storage())
2308 		return 0;
2309 
2310 	/*
2311 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2312 	 * means __GFP_NOFAIL, but that may not be true in other
2313 	 * implementations.
2314 	 */
2315 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2316 		return 1;
2317 
2318 	/*
2319 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2320 	 * specified, then we retry until we no longer reclaim any pages
2321 	 * (above), or we've reclaimed an order of pages at least as
2322 	 * large as the allocation's order. In both cases, if the
2323 	 * allocation still fails, we stop retrying.
2324 	 */
2325 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2326 		return 1;
2327 
2328 	return 0;
2329 }
2330 
2331 static inline struct page *
2332 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2333 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2334 	nodemask_t *nodemask, struct zone *preferred_zone,
2335 	int classzone_idx, int migratetype)
2336 {
2337 	struct page *page;
2338 
2339 	/* Acquire the per-zone oom lock for each zone */
2340 	if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2341 		schedule_timeout_uninterruptible(1);
2342 		return NULL;
2343 	}
2344 
2345 	/*
2346 	 * PM-freezer should be notified that there might be an OOM killer on
2347 	 * its way to kill and wake somebody up. This is too early and we might
2348 	 * end up not killing anything but false positives are acceptable.
2349 	 * See freeze_processes.
2350 	 */
2351 	note_oom_kill();
2352 
2353 	/*
2354 	 * Go through the zonelist yet one more time, keep very high watermark
2355 	 * here, this is only to catch a parallel oom killing, we must fail if
2356 	 * we're still under heavy pressure.
2357 	 */
2358 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2359 		order, zonelist, high_zoneidx,
2360 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2361 		preferred_zone, classzone_idx, migratetype);
2362 	if (page)
2363 		goto out;
2364 
2365 	if (!(gfp_mask & __GFP_NOFAIL)) {
2366 		/* The OOM killer will not help higher order allocs */
2367 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2368 			goto out;
2369 		/* The OOM killer does not needlessly kill tasks for lowmem */
2370 		if (high_zoneidx < ZONE_NORMAL)
2371 			goto out;
2372 		/*
2373 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2374 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2375 		 * The caller should handle page allocation failure by itself if
2376 		 * it specifies __GFP_THISNODE.
2377 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2378 		 */
2379 		if (gfp_mask & __GFP_THISNODE)
2380 			goto out;
2381 	}
2382 	/* Exhausted what can be done so it's blamo time */
2383 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2384 
2385 out:
2386 	oom_zonelist_unlock(zonelist, gfp_mask);
2387 	return page;
2388 }
2389 
2390 #ifdef CONFIG_COMPACTION
2391 /* Try memory compaction for high-order allocations before reclaim */
2392 static struct page *
2393 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2394 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2395 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2396 	int classzone_idx, int migratetype, enum migrate_mode mode,
2397 	int *contended_compaction, bool *deferred_compaction)
2398 {
2399 	unsigned long compact_result;
2400 	struct page *page;
2401 
2402 	if (!order)
2403 		return NULL;
2404 
2405 	current->flags |= PF_MEMALLOC;
2406 	compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2407 						nodemask, mode,
2408 						contended_compaction,
2409 						alloc_flags, classzone_idx);
2410 	current->flags &= ~PF_MEMALLOC;
2411 
2412 	switch (compact_result) {
2413 	case COMPACT_DEFERRED:
2414 		*deferred_compaction = true;
2415 		/* fall-through */
2416 	case COMPACT_SKIPPED:
2417 		return NULL;
2418 	default:
2419 		break;
2420 	}
2421 
2422 	/*
2423 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2424 	 * count a compaction stall
2425 	 */
2426 	count_vm_event(COMPACTSTALL);
2427 
2428 	page = get_page_from_freelist(gfp_mask, nodemask,
2429 			order, zonelist, high_zoneidx,
2430 			alloc_flags & ~ALLOC_NO_WATERMARKS,
2431 			preferred_zone, classzone_idx, migratetype);
2432 
2433 	if (page) {
2434 		struct zone *zone = page_zone(page);
2435 
2436 		zone->compact_blockskip_flush = false;
2437 		compaction_defer_reset(zone, order, true);
2438 		count_vm_event(COMPACTSUCCESS);
2439 		return page;
2440 	}
2441 
2442 	/*
2443 	 * It's bad if compaction run occurs and fails. The most likely reason
2444 	 * is that pages exist, but not enough to satisfy watermarks.
2445 	 */
2446 	count_vm_event(COMPACTFAIL);
2447 
2448 	cond_resched();
2449 
2450 	return NULL;
2451 }
2452 #else
2453 static inline struct page *
2454 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2455 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2456 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2457 	int classzone_idx, int migratetype, enum migrate_mode mode,
2458 	int *contended_compaction, bool *deferred_compaction)
2459 {
2460 	return NULL;
2461 }
2462 #endif /* CONFIG_COMPACTION */
2463 
2464 /* Perform direct synchronous page reclaim */
2465 static int
2466 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2467 		  nodemask_t *nodemask)
2468 {
2469 	struct reclaim_state reclaim_state;
2470 	int progress;
2471 
2472 	cond_resched();
2473 
2474 	/* We now go into synchronous reclaim */
2475 	cpuset_memory_pressure_bump();
2476 	current->flags |= PF_MEMALLOC;
2477 	lockdep_set_current_reclaim_state(gfp_mask);
2478 	reclaim_state.reclaimed_slab = 0;
2479 	current->reclaim_state = &reclaim_state;
2480 
2481 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2482 
2483 	current->reclaim_state = NULL;
2484 	lockdep_clear_current_reclaim_state();
2485 	current->flags &= ~PF_MEMALLOC;
2486 
2487 	cond_resched();
2488 
2489 	return progress;
2490 }
2491 
2492 /* The really slow allocator path where we enter direct reclaim */
2493 static inline struct page *
2494 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2495 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2496 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2497 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2498 {
2499 	struct page *page = NULL;
2500 	bool drained = false;
2501 
2502 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2503 					       nodemask);
2504 	if (unlikely(!(*did_some_progress)))
2505 		return NULL;
2506 
2507 	/* After successful reclaim, reconsider all zones for allocation */
2508 	if (IS_ENABLED(CONFIG_NUMA))
2509 		zlc_clear_zones_full(zonelist);
2510 
2511 retry:
2512 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2513 					zonelist, high_zoneidx,
2514 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2515 					preferred_zone, classzone_idx,
2516 					migratetype);
2517 
2518 	/*
2519 	 * If an allocation failed after direct reclaim, it could be because
2520 	 * pages are pinned on the per-cpu lists. Drain them and try again
2521 	 */
2522 	if (!page && !drained) {
2523 		drain_all_pages(NULL);
2524 		drained = true;
2525 		goto retry;
2526 	}
2527 
2528 	return page;
2529 }
2530 
2531 /*
2532  * This is called in the allocator slow-path if the allocation request is of
2533  * sufficient urgency to ignore watermarks and take other desperate measures
2534  */
2535 static inline struct page *
2536 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2537 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2538 	nodemask_t *nodemask, struct zone *preferred_zone,
2539 	int classzone_idx, int migratetype)
2540 {
2541 	struct page *page;
2542 
2543 	do {
2544 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2545 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2546 			preferred_zone, classzone_idx, migratetype);
2547 
2548 		if (!page && gfp_mask & __GFP_NOFAIL)
2549 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2550 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2551 
2552 	return page;
2553 }
2554 
2555 static void wake_all_kswapds(unsigned int order,
2556 			     struct zonelist *zonelist,
2557 			     enum zone_type high_zoneidx,
2558 			     struct zone *preferred_zone,
2559 			     nodemask_t *nodemask)
2560 {
2561 	struct zoneref *z;
2562 	struct zone *zone;
2563 
2564 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2565 						high_zoneidx, nodemask)
2566 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2567 }
2568 
2569 static inline int
2570 gfp_to_alloc_flags(gfp_t gfp_mask)
2571 {
2572 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2573 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2574 
2575 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2576 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2577 
2578 	/*
2579 	 * The caller may dip into page reserves a bit more if the caller
2580 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2581 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2582 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2583 	 */
2584 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2585 
2586 	if (atomic) {
2587 		/*
2588 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2589 		 * if it can't schedule.
2590 		 */
2591 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2592 			alloc_flags |= ALLOC_HARDER;
2593 		/*
2594 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2595 		 * comment for __cpuset_node_allowed().
2596 		 */
2597 		alloc_flags &= ~ALLOC_CPUSET;
2598 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2599 		alloc_flags |= ALLOC_HARDER;
2600 
2601 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2602 		if (gfp_mask & __GFP_MEMALLOC)
2603 			alloc_flags |= ALLOC_NO_WATERMARKS;
2604 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2605 			alloc_flags |= ALLOC_NO_WATERMARKS;
2606 		else if (!in_interrupt() &&
2607 				((current->flags & PF_MEMALLOC) ||
2608 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2609 			alloc_flags |= ALLOC_NO_WATERMARKS;
2610 	}
2611 #ifdef CONFIG_CMA
2612 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2613 		alloc_flags |= ALLOC_CMA;
2614 #endif
2615 	return alloc_flags;
2616 }
2617 
2618 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2619 {
2620 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2621 }
2622 
2623 static inline struct page *
2624 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2625 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2626 	nodemask_t *nodemask, struct zone *preferred_zone,
2627 	int classzone_idx, int migratetype)
2628 {
2629 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2630 	struct page *page = NULL;
2631 	int alloc_flags;
2632 	unsigned long pages_reclaimed = 0;
2633 	unsigned long did_some_progress;
2634 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2635 	bool deferred_compaction = false;
2636 	int contended_compaction = COMPACT_CONTENDED_NONE;
2637 
2638 	/*
2639 	 * In the slowpath, we sanity check order to avoid ever trying to
2640 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2641 	 * be using allocators in order of preference for an area that is
2642 	 * too large.
2643 	 */
2644 	if (order >= MAX_ORDER) {
2645 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2646 		return NULL;
2647 	}
2648 
2649 	/*
2650 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2651 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2652 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2653 	 * using a larger set of nodes after it has established that the
2654 	 * allowed per node queues are empty and that nodes are
2655 	 * over allocated.
2656 	 */
2657 	if (IS_ENABLED(CONFIG_NUMA) &&
2658 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2659 		goto nopage;
2660 
2661 restart:
2662 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2663 		wake_all_kswapds(order, zonelist, high_zoneidx,
2664 				preferred_zone, nodemask);
2665 
2666 	/*
2667 	 * OK, we're below the kswapd watermark and have kicked background
2668 	 * reclaim. Now things get more complex, so set up alloc_flags according
2669 	 * to how we want to proceed.
2670 	 */
2671 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2672 
2673 	/*
2674 	 * Find the true preferred zone if the allocation is unconstrained by
2675 	 * cpusets.
2676 	 */
2677 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2678 		struct zoneref *preferred_zoneref;
2679 		preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2680 				NULL, &preferred_zone);
2681 		classzone_idx = zonelist_zone_idx(preferred_zoneref);
2682 	}
2683 
2684 rebalance:
2685 	/* This is the last chance, in general, before the goto nopage. */
2686 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2687 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2688 			preferred_zone, classzone_idx, migratetype);
2689 	if (page)
2690 		goto got_pg;
2691 
2692 	/* Allocate without watermarks if the context allows */
2693 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2694 		/*
2695 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2696 		 * the allocation is high priority and these type of
2697 		 * allocations are system rather than user orientated
2698 		 */
2699 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2700 
2701 		page = __alloc_pages_high_priority(gfp_mask, order,
2702 				zonelist, high_zoneidx, nodemask,
2703 				preferred_zone, classzone_idx, migratetype);
2704 		if (page) {
2705 			goto got_pg;
2706 		}
2707 	}
2708 
2709 	/* Atomic allocations - we can't balance anything */
2710 	if (!wait) {
2711 		/*
2712 		 * All existing users of the deprecated __GFP_NOFAIL are
2713 		 * blockable, so warn of any new users that actually allow this
2714 		 * type of allocation to fail.
2715 		 */
2716 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2717 		goto nopage;
2718 	}
2719 
2720 	/* Avoid recursion of direct reclaim */
2721 	if (current->flags & PF_MEMALLOC)
2722 		goto nopage;
2723 
2724 	/* Avoid allocations with no watermarks from looping endlessly */
2725 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2726 		goto nopage;
2727 
2728 	/*
2729 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2730 	 * attempts after direct reclaim are synchronous
2731 	 */
2732 	page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2733 					high_zoneidx, nodemask, alloc_flags,
2734 					preferred_zone,
2735 					classzone_idx, migratetype,
2736 					migration_mode, &contended_compaction,
2737 					&deferred_compaction);
2738 	if (page)
2739 		goto got_pg;
2740 
2741 	/* Checks for THP-specific high-order allocations */
2742 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2743 		/*
2744 		 * If compaction is deferred for high-order allocations, it is
2745 		 * because sync compaction recently failed. If this is the case
2746 		 * and the caller requested a THP allocation, we do not want
2747 		 * to heavily disrupt the system, so we fail the allocation
2748 		 * instead of entering direct reclaim.
2749 		 */
2750 		if (deferred_compaction)
2751 			goto nopage;
2752 
2753 		/*
2754 		 * In all zones where compaction was attempted (and not
2755 		 * deferred or skipped), lock contention has been detected.
2756 		 * For THP allocation we do not want to disrupt the others
2757 		 * so we fallback to base pages instead.
2758 		 */
2759 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2760 			goto nopage;
2761 
2762 		/*
2763 		 * If compaction was aborted due to need_resched(), we do not
2764 		 * want to further increase allocation latency, unless it is
2765 		 * khugepaged trying to collapse.
2766 		 */
2767 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2768 			&& !(current->flags & PF_KTHREAD))
2769 			goto nopage;
2770 	}
2771 
2772 	/*
2773 	 * It can become very expensive to allocate transparent hugepages at
2774 	 * fault, so use asynchronous memory compaction for THP unless it is
2775 	 * khugepaged trying to collapse.
2776 	 */
2777 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2778 						(current->flags & PF_KTHREAD))
2779 		migration_mode = MIGRATE_SYNC_LIGHT;
2780 
2781 	/* Try direct reclaim and then allocating */
2782 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2783 					zonelist, high_zoneidx,
2784 					nodemask,
2785 					alloc_flags, preferred_zone,
2786 					classzone_idx, migratetype,
2787 					&did_some_progress);
2788 	if (page)
2789 		goto got_pg;
2790 
2791 	/*
2792 	 * If we failed to make any progress reclaiming, then we are
2793 	 * running out of options and have to consider going OOM
2794 	 */
2795 	if (!did_some_progress) {
2796 		if (oom_gfp_allowed(gfp_mask)) {
2797 			if (oom_killer_disabled)
2798 				goto nopage;
2799 			/* Coredumps can quickly deplete all memory reserves */
2800 			if ((current->flags & PF_DUMPCORE) &&
2801 			    !(gfp_mask & __GFP_NOFAIL))
2802 				goto nopage;
2803 			page = __alloc_pages_may_oom(gfp_mask, order,
2804 					zonelist, high_zoneidx,
2805 					nodemask, preferred_zone,
2806 					classzone_idx, migratetype);
2807 			if (page)
2808 				goto got_pg;
2809 
2810 			if (!(gfp_mask & __GFP_NOFAIL)) {
2811 				/*
2812 				 * The oom killer is not called for high-order
2813 				 * allocations that may fail, so if no progress
2814 				 * is being made, there are no other options and
2815 				 * retrying is unlikely to help.
2816 				 */
2817 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2818 					goto nopage;
2819 				/*
2820 				 * The oom killer is not called for lowmem
2821 				 * allocations to prevent needlessly killing
2822 				 * innocent tasks.
2823 				 */
2824 				if (high_zoneidx < ZONE_NORMAL)
2825 					goto nopage;
2826 			}
2827 
2828 			goto restart;
2829 		}
2830 	}
2831 
2832 	/* Check if we should retry the allocation */
2833 	pages_reclaimed += did_some_progress;
2834 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2835 						pages_reclaimed)) {
2836 		/* Wait for some write requests to complete then retry */
2837 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2838 		goto rebalance;
2839 	} else {
2840 		/*
2841 		 * High-order allocations do not necessarily loop after
2842 		 * direct reclaim and reclaim/compaction depends on compaction
2843 		 * being called after reclaim so call directly if necessary
2844 		 */
2845 		page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2846 					high_zoneidx, nodemask, alloc_flags,
2847 					preferred_zone,
2848 					classzone_idx, migratetype,
2849 					migration_mode, &contended_compaction,
2850 					&deferred_compaction);
2851 		if (page)
2852 			goto got_pg;
2853 	}
2854 
2855 nopage:
2856 	warn_alloc_failed(gfp_mask, order, NULL);
2857 	return page;
2858 got_pg:
2859 	if (kmemcheck_enabled)
2860 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2861 
2862 	return page;
2863 }
2864 
2865 /*
2866  * This is the 'heart' of the zoned buddy allocator.
2867  */
2868 struct page *
2869 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2870 			struct zonelist *zonelist, nodemask_t *nodemask)
2871 {
2872 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2873 	struct zone *preferred_zone;
2874 	struct zoneref *preferred_zoneref;
2875 	struct page *page = NULL;
2876 	int migratetype = gfpflags_to_migratetype(gfp_mask);
2877 	unsigned int cpuset_mems_cookie;
2878 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2879 	int classzone_idx;
2880 
2881 	gfp_mask &= gfp_allowed_mask;
2882 
2883 	lockdep_trace_alloc(gfp_mask);
2884 
2885 	might_sleep_if(gfp_mask & __GFP_WAIT);
2886 
2887 	if (should_fail_alloc_page(gfp_mask, order))
2888 		return NULL;
2889 
2890 	/*
2891 	 * Check the zones suitable for the gfp_mask contain at least one
2892 	 * valid zone. It's possible to have an empty zonelist as a result
2893 	 * of GFP_THISNODE and a memoryless node
2894 	 */
2895 	if (unlikely(!zonelist->_zonerefs->zone))
2896 		return NULL;
2897 
2898 	if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2899 		alloc_flags |= ALLOC_CMA;
2900 
2901 retry_cpuset:
2902 	cpuset_mems_cookie = read_mems_allowed_begin();
2903 
2904 	/* The preferred zone is used for statistics later */
2905 	preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2906 				nodemask ? : &cpuset_current_mems_allowed,
2907 				&preferred_zone);
2908 	if (!preferred_zone)
2909 		goto out;
2910 	classzone_idx = zonelist_zone_idx(preferred_zoneref);
2911 
2912 	/* First allocation attempt */
2913 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2914 			zonelist, high_zoneidx, alloc_flags,
2915 			preferred_zone, classzone_idx, migratetype);
2916 	if (unlikely(!page)) {
2917 		/*
2918 		 * Runtime PM, block IO and its error handling path
2919 		 * can deadlock because I/O on the device might not
2920 		 * complete.
2921 		 */
2922 		gfp_mask = memalloc_noio_flags(gfp_mask);
2923 		page = __alloc_pages_slowpath(gfp_mask, order,
2924 				zonelist, high_zoneidx, nodemask,
2925 				preferred_zone, classzone_idx, migratetype);
2926 	}
2927 
2928 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2929 
2930 out:
2931 	/*
2932 	 * When updating a task's mems_allowed, it is possible to race with
2933 	 * parallel threads in such a way that an allocation can fail while
2934 	 * the mask is being updated. If a page allocation is about to fail,
2935 	 * check if the cpuset changed during allocation and if so, retry.
2936 	 */
2937 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2938 		goto retry_cpuset;
2939 
2940 	return page;
2941 }
2942 EXPORT_SYMBOL(__alloc_pages_nodemask);
2943 
2944 /*
2945  * Common helper functions.
2946  */
2947 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2948 {
2949 	struct page *page;
2950 
2951 	/*
2952 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2953 	 * a highmem page
2954 	 */
2955 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2956 
2957 	page = alloc_pages(gfp_mask, order);
2958 	if (!page)
2959 		return 0;
2960 	return (unsigned long) page_address(page);
2961 }
2962 EXPORT_SYMBOL(__get_free_pages);
2963 
2964 unsigned long get_zeroed_page(gfp_t gfp_mask)
2965 {
2966 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2967 }
2968 EXPORT_SYMBOL(get_zeroed_page);
2969 
2970 void __free_pages(struct page *page, unsigned int order)
2971 {
2972 	if (put_page_testzero(page)) {
2973 		if (order == 0)
2974 			free_hot_cold_page(page, false);
2975 		else
2976 			__free_pages_ok(page, order);
2977 	}
2978 }
2979 
2980 EXPORT_SYMBOL(__free_pages);
2981 
2982 void free_pages(unsigned long addr, unsigned int order)
2983 {
2984 	if (addr != 0) {
2985 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2986 		__free_pages(virt_to_page((void *)addr), order);
2987 	}
2988 }
2989 
2990 EXPORT_SYMBOL(free_pages);
2991 
2992 /*
2993  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2994  * of the current memory cgroup.
2995  *
2996  * It should be used when the caller would like to use kmalloc, but since the
2997  * allocation is large, it has to fall back to the page allocator.
2998  */
2999 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3000 {
3001 	struct page *page;
3002 	struct mem_cgroup *memcg = NULL;
3003 
3004 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3005 		return NULL;
3006 	page = alloc_pages(gfp_mask, order);
3007 	memcg_kmem_commit_charge(page, memcg, order);
3008 	return page;
3009 }
3010 
3011 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3012 {
3013 	struct page *page;
3014 	struct mem_cgroup *memcg = NULL;
3015 
3016 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3017 		return NULL;
3018 	page = alloc_pages_node(nid, gfp_mask, order);
3019 	memcg_kmem_commit_charge(page, memcg, order);
3020 	return page;
3021 }
3022 
3023 /*
3024  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3025  * alloc_kmem_pages.
3026  */
3027 void __free_kmem_pages(struct page *page, unsigned int order)
3028 {
3029 	memcg_kmem_uncharge_pages(page, order);
3030 	__free_pages(page, order);
3031 }
3032 
3033 void free_kmem_pages(unsigned long addr, unsigned int order)
3034 {
3035 	if (addr != 0) {
3036 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3037 		__free_kmem_pages(virt_to_page((void *)addr), order);
3038 	}
3039 }
3040 
3041 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3042 {
3043 	if (addr) {
3044 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3045 		unsigned long used = addr + PAGE_ALIGN(size);
3046 
3047 		split_page(virt_to_page((void *)addr), order);
3048 		while (used < alloc_end) {
3049 			free_page(used);
3050 			used += PAGE_SIZE;
3051 		}
3052 	}
3053 	return (void *)addr;
3054 }
3055 
3056 /**
3057  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3058  * @size: the number of bytes to allocate
3059  * @gfp_mask: GFP flags for the allocation
3060  *
3061  * This function is similar to alloc_pages(), except that it allocates the
3062  * minimum number of pages to satisfy the request.  alloc_pages() can only
3063  * allocate memory in power-of-two pages.
3064  *
3065  * This function is also limited by MAX_ORDER.
3066  *
3067  * Memory allocated by this function must be released by free_pages_exact().
3068  */
3069 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3070 {
3071 	unsigned int order = get_order(size);
3072 	unsigned long addr;
3073 
3074 	addr = __get_free_pages(gfp_mask, order);
3075 	return make_alloc_exact(addr, order, size);
3076 }
3077 EXPORT_SYMBOL(alloc_pages_exact);
3078 
3079 /**
3080  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3081  *			   pages on a node.
3082  * @nid: the preferred node ID where memory should be allocated
3083  * @size: the number of bytes to allocate
3084  * @gfp_mask: GFP flags for the allocation
3085  *
3086  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3087  * back.
3088  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3089  * but is not exact.
3090  */
3091 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3092 {
3093 	unsigned order = get_order(size);
3094 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3095 	if (!p)
3096 		return NULL;
3097 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3098 }
3099 
3100 /**
3101  * free_pages_exact - release memory allocated via alloc_pages_exact()
3102  * @virt: the value returned by alloc_pages_exact.
3103  * @size: size of allocation, same value as passed to alloc_pages_exact().
3104  *
3105  * Release the memory allocated by a previous call to alloc_pages_exact.
3106  */
3107 void free_pages_exact(void *virt, size_t size)
3108 {
3109 	unsigned long addr = (unsigned long)virt;
3110 	unsigned long end = addr + PAGE_ALIGN(size);
3111 
3112 	while (addr < end) {
3113 		free_page(addr);
3114 		addr += PAGE_SIZE;
3115 	}
3116 }
3117 EXPORT_SYMBOL(free_pages_exact);
3118 
3119 /**
3120  * nr_free_zone_pages - count number of pages beyond high watermark
3121  * @offset: The zone index of the highest zone
3122  *
3123  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3124  * high watermark within all zones at or below a given zone index.  For each
3125  * zone, the number of pages is calculated as:
3126  *     managed_pages - high_pages
3127  */
3128 static unsigned long nr_free_zone_pages(int offset)
3129 {
3130 	struct zoneref *z;
3131 	struct zone *zone;
3132 
3133 	/* Just pick one node, since fallback list is circular */
3134 	unsigned long sum = 0;
3135 
3136 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3137 
3138 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3139 		unsigned long size = zone->managed_pages;
3140 		unsigned long high = high_wmark_pages(zone);
3141 		if (size > high)
3142 			sum += size - high;
3143 	}
3144 
3145 	return sum;
3146 }
3147 
3148 /**
3149  * nr_free_buffer_pages - count number of pages beyond high watermark
3150  *
3151  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3152  * watermark within ZONE_DMA and ZONE_NORMAL.
3153  */
3154 unsigned long nr_free_buffer_pages(void)
3155 {
3156 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3157 }
3158 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3159 
3160 /**
3161  * nr_free_pagecache_pages - count number of pages beyond high watermark
3162  *
3163  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3164  * high watermark within all zones.
3165  */
3166 unsigned long nr_free_pagecache_pages(void)
3167 {
3168 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3169 }
3170 
3171 static inline void show_node(struct zone *zone)
3172 {
3173 	if (IS_ENABLED(CONFIG_NUMA))
3174 		printk("Node %d ", zone_to_nid(zone));
3175 }
3176 
3177 void si_meminfo(struct sysinfo *val)
3178 {
3179 	val->totalram = totalram_pages;
3180 	val->sharedram = global_page_state(NR_SHMEM);
3181 	val->freeram = global_page_state(NR_FREE_PAGES);
3182 	val->bufferram = nr_blockdev_pages();
3183 	val->totalhigh = totalhigh_pages;
3184 	val->freehigh = nr_free_highpages();
3185 	val->mem_unit = PAGE_SIZE;
3186 }
3187 
3188 EXPORT_SYMBOL(si_meminfo);
3189 
3190 #ifdef CONFIG_NUMA
3191 void si_meminfo_node(struct sysinfo *val, int nid)
3192 {
3193 	int zone_type;		/* needs to be signed */
3194 	unsigned long managed_pages = 0;
3195 	pg_data_t *pgdat = NODE_DATA(nid);
3196 
3197 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3198 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3199 	val->totalram = managed_pages;
3200 	val->sharedram = node_page_state(nid, NR_SHMEM);
3201 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3202 #ifdef CONFIG_HIGHMEM
3203 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3204 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3205 			NR_FREE_PAGES);
3206 #else
3207 	val->totalhigh = 0;
3208 	val->freehigh = 0;
3209 #endif
3210 	val->mem_unit = PAGE_SIZE;
3211 }
3212 #endif
3213 
3214 /*
3215  * Determine whether the node should be displayed or not, depending on whether
3216  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3217  */
3218 bool skip_free_areas_node(unsigned int flags, int nid)
3219 {
3220 	bool ret = false;
3221 	unsigned int cpuset_mems_cookie;
3222 
3223 	if (!(flags & SHOW_MEM_FILTER_NODES))
3224 		goto out;
3225 
3226 	do {
3227 		cpuset_mems_cookie = read_mems_allowed_begin();
3228 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3229 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3230 out:
3231 	return ret;
3232 }
3233 
3234 #define K(x) ((x) << (PAGE_SHIFT-10))
3235 
3236 static void show_migration_types(unsigned char type)
3237 {
3238 	static const char types[MIGRATE_TYPES] = {
3239 		[MIGRATE_UNMOVABLE]	= 'U',
3240 		[MIGRATE_RECLAIMABLE]	= 'E',
3241 		[MIGRATE_MOVABLE]	= 'M',
3242 		[MIGRATE_RESERVE]	= 'R',
3243 #ifdef CONFIG_CMA
3244 		[MIGRATE_CMA]		= 'C',
3245 #endif
3246 #ifdef CONFIG_MEMORY_ISOLATION
3247 		[MIGRATE_ISOLATE]	= 'I',
3248 #endif
3249 	};
3250 	char tmp[MIGRATE_TYPES + 1];
3251 	char *p = tmp;
3252 	int i;
3253 
3254 	for (i = 0; i < MIGRATE_TYPES; i++) {
3255 		if (type & (1 << i))
3256 			*p++ = types[i];
3257 	}
3258 
3259 	*p = '\0';
3260 	printk("(%s) ", tmp);
3261 }
3262 
3263 /*
3264  * Show free area list (used inside shift_scroll-lock stuff)
3265  * We also calculate the percentage fragmentation. We do this by counting the
3266  * memory on each free list with the exception of the first item on the list.
3267  * Suppresses nodes that are not allowed by current's cpuset if
3268  * SHOW_MEM_FILTER_NODES is passed.
3269  */
3270 void show_free_areas(unsigned int filter)
3271 {
3272 	int cpu;
3273 	struct zone *zone;
3274 
3275 	for_each_populated_zone(zone) {
3276 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3277 			continue;
3278 		show_node(zone);
3279 		printk("%s per-cpu:\n", zone->name);
3280 
3281 		for_each_online_cpu(cpu) {
3282 			struct per_cpu_pageset *pageset;
3283 
3284 			pageset = per_cpu_ptr(zone->pageset, cpu);
3285 
3286 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3287 			       cpu, pageset->pcp.high,
3288 			       pageset->pcp.batch, pageset->pcp.count);
3289 		}
3290 	}
3291 
3292 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3293 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3294 		" unevictable:%lu"
3295 		" dirty:%lu writeback:%lu unstable:%lu\n"
3296 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3297 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3298 		" free_cma:%lu\n",
3299 		global_page_state(NR_ACTIVE_ANON),
3300 		global_page_state(NR_INACTIVE_ANON),
3301 		global_page_state(NR_ISOLATED_ANON),
3302 		global_page_state(NR_ACTIVE_FILE),
3303 		global_page_state(NR_INACTIVE_FILE),
3304 		global_page_state(NR_ISOLATED_FILE),
3305 		global_page_state(NR_UNEVICTABLE),
3306 		global_page_state(NR_FILE_DIRTY),
3307 		global_page_state(NR_WRITEBACK),
3308 		global_page_state(NR_UNSTABLE_NFS),
3309 		global_page_state(NR_FREE_PAGES),
3310 		global_page_state(NR_SLAB_RECLAIMABLE),
3311 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3312 		global_page_state(NR_FILE_MAPPED),
3313 		global_page_state(NR_SHMEM),
3314 		global_page_state(NR_PAGETABLE),
3315 		global_page_state(NR_BOUNCE),
3316 		global_page_state(NR_FREE_CMA_PAGES));
3317 
3318 	for_each_populated_zone(zone) {
3319 		int i;
3320 
3321 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3322 			continue;
3323 		show_node(zone);
3324 		printk("%s"
3325 			" free:%lukB"
3326 			" min:%lukB"
3327 			" low:%lukB"
3328 			" high:%lukB"
3329 			" active_anon:%lukB"
3330 			" inactive_anon:%lukB"
3331 			" active_file:%lukB"
3332 			" inactive_file:%lukB"
3333 			" unevictable:%lukB"
3334 			" isolated(anon):%lukB"
3335 			" isolated(file):%lukB"
3336 			" present:%lukB"
3337 			" managed:%lukB"
3338 			" mlocked:%lukB"
3339 			" dirty:%lukB"
3340 			" writeback:%lukB"
3341 			" mapped:%lukB"
3342 			" shmem:%lukB"
3343 			" slab_reclaimable:%lukB"
3344 			" slab_unreclaimable:%lukB"
3345 			" kernel_stack:%lukB"
3346 			" pagetables:%lukB"
3347 			" unstable:%lukB"
3348 			" bounce:%lukB"
3349 			" free_cma:%lukB"
3350 			" writeback_tmp:%lukB"
3351 			" pages_scanned:%lu"
3352 			" all_unreclaimable? %s"
3353 			"\n",
3354 			zone->name,
3355 			K(zone_page_state(zone, NR_FREE_PAGES)),
3356 			K(min_wmark_pages(zone)),
3357 			K(low_wmark_pages(zone)),
3358 			K(high_wmark_pages(zone)),
3359 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3360 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3361 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3362 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3363 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3364 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3365 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3366 			K(zone->present_pages),
3367 			K(zone->managed_pages),
3368 			K(zone_page_state(zone, NR_MLOCK)),
3369 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3370 			K(zone_page_state(zone, NR_WRITEBACK)),
3371 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3372 			K(zone_page_state(zone, NR_SHMEM)),
3373 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3374 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3375 			zone_page_state(zone, NR_KERNEL_STACK) *
3376 				THREAD_SIZE / 1024,
3377 			K(zone_page_state(zone, NR_PAGETABLE)),
3378 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3379 			K(zone_page_state(zone, NR_BOUNCE)),
3380 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3381 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3382 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3383 			(!zone_reclaimable(zone) ? "yes" : "no")
3384 			);
3385 		printk("lowmem_reserve[]:");
3386 		for (i = 0; i < MAX_NR_ZONES; i++)
3387 			printk(" %ld", zone->lowmem_reserve[i]);
3388 		printk("\n");
3389 	}
3390 
3391 	for_each_populated_zone(zone) {
3392 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3393 		unsigned char types[MAX_ORDER];
3394 
3395 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3396 			continue;
3397 		show_node(zone);
3398 		printk("%s: ", zone->name);
3399 
3400 		spin_lock_irqsave(&zone->lock, flags);
3401 		for (order = 0; order < MAX_ORDER; order++) {
3402 			struct free_area *area = &zone->free_area[order];
3403 			int type;
3404 
3405 			nr[order] = area->nr_free;
3406 			total += nr[order] << order;
3407 
3408 			types[order] = 0;
3409 			for (type = 0; type < MIGRATE_TYPES; type++) {
3410 				if (!list_empty(&area->free_list[type]))
3411 					types[order] |= 1 << type;
3412 			}
3413 		}
3414 		spin_unlock_irqrestore(&zone->lock, flags);
3415 		for (order = 0; order < MAX_ORDER; order++) {
3416 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3417 			if (nr[order])
3418 				show_migration_types(types[order]);
3419 		}
3420 		printk("= %lukB\n", K(total));
3421 	}
3422 
3423 	hugetlb_show_meminfo();
3424 
3425 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3426 
3427 	show_swap_cache_info();
3428 }
3429 
3430 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3431 {
3432 	zoneref->zone = zone;
3433 	zoneref->zone_idx = zone_idx(zone);
3434 }
3435 
3436 /*
3437  * Builds allocation fallback zone lists.
3438  *
3439  * Add all populated zones of a node to the zonelist.
3440  */
3441 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3442 				int nr_zones)
3443 {
3444 	struct zone *zone;
3445 	enum zone_type zone_type = MAX_NR_ZONES;
3446 
3447 	do {
3448 		zone_type--;
3449 		zone = pgdat->node_zones + zone_type;
3450 		if (populated_zone(zone)) {
3451 			zoneref_set_zone(zone,
3452 				&zonelist->_zonerefs[nr_zones++]);
3453 			check_highest_zone(zone_type);
3454 		}
3455 	} while (zone_type);
3456 
3457 	return nr_zones;
3458 }
3459 
3460 
3461 /*
3462  *  zonelist_order:
3463  *  0 = automatic detection of better ordering.
3464  *  1 = order by ([node] distance, -zonetype)
3465  *  2 = order by (-zonetype, [node] distance)
3466  *
3467  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3468  *  the same zonelist. So only NUMA can configure this param.
3469  */
3470 #define ZONELIST_ORDER_DEFAULT  0
3471 #define ZONELIST_ORDER_NODE     1
3472 #define ZONELIST_ORDER_ZONE     2
3473 
3474 /* zonelist order in the kernel.
3475  * set_zonelist_order() will set this to NODE or ZONE.
3476  */
3477 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3478 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3479 
3480 
3481 #ifdef CONFIG_NUMA
3482 /* The value user specified ....changed by config */
3483 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3484 /* string for sysctl */
3485 #define NUMA_ZONELIST_ORDER_LEN	16
3486 char numa_zonelist_order[16] = "default";
3487 
3488 /*
3489  * interface for configure zonelist ordering.
3490  * command line option "numa_zonelist_order"
3491  *	= "[dD]efault	- default, automatic configuration.
3492  *	= "[nN]ode 	- order by node locality, then by zone within node
3493  *	= "[zZ]one      - order by zone, then by locality within zone
3494  */
3495 
3496 static int __parse_numa_zonelist_order(char *s)
3497 {
3498 	if (*s == 'd' || *s == 'D') {
3499 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3500 	} else if (*s == 'n' || *s == 'N') {
3501 		user_zonelist_order = ZONELIST_ORDER_NODE;
3502 	} else if (*s == 'z' || *s == 'Z') {
3503 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3504 	} else {
3505 		printk(KERN_WARNING
3506 			"Ignoring invalid numa_zonelist_order value:  "
3507 			"%s\n", s);
3508 		return -EINVAL;
3509 	}
3510 	return 0;
3511 }
3512 
3513 static __init int setup_numa_zonelist_order(char *s)
3514 {
3515 	int ret;
3516 
3517 	if (!s)
3518 		return 0;
3519 
3520 	ret = __parse_numa_zonelist_order(s);
3521 	if (ret == 0)
3522 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3523 
3524 	return ret;
3525 }
3526 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3527 
3528 /*
3529  * sysctl handler for numa_zonelist_order
3530  */
3531 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3532 		void __user *buffer, size_t *length,
3533 		loff_t *ppos)
3534 {
3535 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3536 	int ret;
3537 	static DEFINE_MUTEX(zl_order_mutex);
3538 
3539 	mutex_lock(&zl_order_mutex);
3540 	if (write) {
3541 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3542 			ret = -EINVAL;
3543 			goto out;
3544 		}
3545 		strcpy(saved_string, (char *)table->data);
3546 	}
3547 	ret = proc_dostring(table, write, buffer, length, ppos);
3548 	if (ret)
3549 		goto out;
3550 	if (write) {
3551 		int oldval = user_zonelist_order;
3552 
3553 		ret = __parse_numa_zonelist_order((char *)table->data);
3554 		if (ret) {
3555 			/*
3556 			 * bogus value.  restore saved string
3557 			 */
3558 			strncpy((char *)table->data, saved_string,
3559 				NUMA_ZONELIST_ORDER_LEN);
3560 			user_zonelist_order = oldval;
3561 		} else if (oldval != user_zonelist_order) {
3562 			mutex_lock(&zonelists_mutex);
3563 			build_all_zonelists(NULL, NULL);
3564 			mutex_unlock(&zonelists_mutex);
3565 		}
3566 	}
3567 out:
3568 	mutex_unlock(&zl_order_mutex);
3569 	return ret;
3570 }
3571 
3572 
3573 #define MAX_NODE_LOAD (nr_online_nodes)
3574 static int node_load[MAX_NUMNODES];
3575 
3576 /**
3577  * find_next_best_node - find the next node that should appear in a given node's fallback list
3578  * @node: node whose fallback list we're appending
3579  * @used_node_mask: nodemask_t of already used nodes
3580  *
3581  * We use a number of factors to determine which is the next node that should
3582  * appear on a given node's fallback list.  The node should not have appeared
3583  * already in @node's fallback list, and it should be the next closest node
3584  * according to the distance array (which contains arbitrary distance values
3585  * from each node to each node in the system), and should also prefer nodes
3586  * with no CPUs, since presumably they'll have very little allocation pressure
3587  * on them otherwise.
3588  * It returns -1 if no node is found.
3589  */
3590 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3591 {
3592 	int n, val;
3593 	int min_val = INT_MAX;
3594 	int best_node = NUMA_NO_NODE;
3595 	const struct cpumask *tmp = cpumask_of_node(0);
3596 
3597 	/* Use the local node if we haven't already */
3598 	if (!node_isset(node, *used_node_mask)) {
3599 		node_set(node, *used_node_mask);
3600 		return node;
3601 	}
3602 
3603 	for_each_node_state(n, N_MEMORY) {
3604 
3605 		/* Don't want a node to appear more than once */
3606 		if (node_isset(n, *used_node_mask))
3607 			continue;
3608 
3609 		/* Use the distance array to find the distance */
3610 		val = node_distance(node, n);
3611 
3612 		/* Penalize nodes under us ("prefer the next node") */
3613 		val += (n < node);
3614 
3615 		/* Give preference to headless and unused nodes */
3616 		tmp = cpumask_of_node(n);
3617 		if (!cpumask_empty(tmp))
3618 			val += PENALTY_FOR_NODE_WITH_CPUS;
3619 
3620 		/* Slight preference for less loaded node */
3621 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3622 		val += node_load[n];
3623 
3624 		if (val < min_val) {
3625 			min_val = val;
3626 			best_node = n;
3627 		}
3628 	}
3629 
3630 	if (best_node >= 0)
3631 		node_set(best_node, *used_node_mask);
3632 
3633 	return best_node;
3634 }
3635 
3636 
3637 /*
3638  * Build zonelists ordered by node and zones within node.
3639  * This results in maximum locality--normal zone overflows into local
3640  * DMA zone, if any--but risks exhausting DMA zone.
3641  */
3642 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3643 {
3644 	int j;
3645 	struct zonelist *zonelist;
3646 
3647 	zonelist = &pgdat->node_zonelists[0];
3648 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3649 		;
3650 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3651 	zonelist->_zonerefs[j].zone = NULL;
3652 	zonelist->_zonerefs[j].zone_idx = 0;
3653 }
3654 
3655 /*
3656  * Build gfp_thisnode zonelists
3657  */
3658 static void build_thisnode_zonelists(pg_data_t *pgdat)
3659 {
3660 	int j;
3661 	struct zonelist *zonelist;
3662 
3663 	zonelist = &pgdat->node_zonelists[1];
3664 	j = build_zonelists_node(pgdat, zonelist, 0);
3665 	zonelist->_zonerefs[j].zone = NULL;
3666 	zonelist->_zonerefs[j].zone_idx = 0;
3667 }
3668 
3669 /*
3670  * Build zonelists ordered by zone and nodes within zones.
3671  * This results in conserving DMA zone[s] until all Normal memory is
3672  * exhausted, but results in overflowing to remote node while memory
3673  * may still exist in local DMA zone.
3674  */
3675 static int node_order[MAX_NUMNODES];
3676 
3677 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3678 {
3679 	int pos, j, node;
3680 	int zone_type;		/* needs to be signed */
3681 	struct zone *z;
3682 	struct zonelist *zonelist;
3683 
3684 	zonelist = &pgdat->node_zonelists[0];
3685 	pos = 0;
3686 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3687 		for (j = 0; j < nr_nodes; j++) {
3688 			node = node_order[j];
3689 			z = &NODE_DATA(node)->node_zones[zone_type];
3690 			if (populated_zone(z)) {
3691 				zoneref_set_zone(z,
3692 					&zonelist->_zonerefs[pos++]);
3693 				check_highest_zone(zone_type);
3694 			}
3695 		}
3696 	}
3697 	zonelist->_zonerefs[pos].zone = NULL;
3698 	zonelist->_zonerefs[pos].zone_idx = 0;
3699 }
3700 
3701 #if defined(CONFIG_64BIT)
3702 /*
3703  * Devices that require DMA32/DMA are relatively rare and do not justify a
3704  * penalty to every machine in case the specialised case applies. Default
3705  * to Node-ordering on 64-bit NUMA machines
3706  */
3707 static int default_zonelist_order(void)
3708 {
3709 	return ZONELIST_ORDER_NODE;
3710 }
3711 #else
3712 /*
3713  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3714  * by the kernel. If processes running on node 0 deplete the low memory zone
3715  * then reclaim will occur more frequency increasing stalls and potentially
3716  * be easier to OOM if a large percentage of the zone is under writeback or
3717  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3718  * Hence, default to zone ordering on 32-bit.
3719  */
3720 static int default_zonelist_order(void)
3721 {
3722 	return ZONELIST_ORDER_ZONE;
3723 }
3724 #endif /* CONFIG_64BIT */
3725 
3726 static void set_zonelist_order(void)
3727 {
3728 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3729 		current_zonelist_order = default_zonelist_order();
3730 	else
3731 		current_zonelist_order = user_zonelist_order;
3732 }
3733 
3734 static void build_zonelists(pg_data_t *pgdat)
3735 {
3736 	int j, node, load;
3737 	enum zone_type i;
3738 	nodemask_t used_mask;
3739 	int local_node, prev_node;
3740 	struct zonelist *zonelist;
3741 	int order = current_zonelist_order;
3742 
3743 	/* initialize zonelists */
3744 	for (i = 0; i < MAX_ZONELISTS; i++) {
3745 		zonelist = pgdat->node_zonelists + i;
3746 		zonelist->_zonerefs[0].zone = NULL;
3747 		zonelist->_zonerefs[0].zone_idx = 0;
3748 	}
3749 
3750 	/* NUMA-aware ordering of nodes */
3751 	local_node = pgdat->node_id;
3752 	load = nr_online_nodes;
3753 	prev_node = local_node;
3754 	nodes_clear(used_mask);
3755 
3756 	memset(node_order, 0, sizeof(node_order));
3757 	j = 0;
3758 
3759 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3760 		/*
3761 		 * We don't want to pressure a particular node.
3762 		 * So adding penalty to the first node in same
3763 		 * distance group to make it round-robin.
3764 		 */
3765 		if (node_distance(local_node, node) !=
3766 		    node_distance(local_node, prev_node))
3767 			node_load[node] = load;
3768 
3769 		prev_node = node;
3770 		load--;
3771 		if (order == ZONELIST_ORDER_NODE)
3772 			build_zonelists_in_node_order(pgdat, node);
3773 		else
3774 			node_order[j++] = node;	/* remember order */
3775 	}
3776 
3777 	if (order == ZONELIST_ORDER_ZONE) {
3778 		/* calculate node order -- i.e., DMA last! */
3779 		build_zonelists_in_zone_order(pgdat, j);
3780 	}
3781 
3782 	build_thisnode_zonelists(pgdat);
3783 }
3784 
3785 /* Construct the zonelist performance cache - see further mmzone.h */
3786 static void build_zonelist_cache(pg_data_t *pgdat)
3787 {
3788 	struct zonelist *zonelist;
3789 	struct zonelist_cache *zlc;
3790 	struct zoneref *z;
3791 
3792 	zonelist = &pgdat->node_zonelists[0];
3793 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3794 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3795 	for (z = zonelist->_zonerefs; z->zone; z++)
3796 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3797 }
3798 
3799 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3800 /*
3801  * Return node id of node used for "local" allocations.
3802  * I.e., first node id of first zone in arg node's generic zonelist.
3803  * Used for initializing percpu 'numa_mem', which is used primarily
3804  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3805  */
3806 int local_memory_node(int node)
3807 {
3808 	struct zone *zone;
3809 
3810 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3811 				   gfp_zone(GFP_KERNEL),
3812 				   NULL,
3813 				   &zone);
3814 	return zone->node;
3815 }
3816 #endif
3817 
3818 #else	/* CONFIG_NUMA */
3819 
3820 static void set_zonelist_order(void)
3821 {
3822 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3823 }
3824 
3825 static void build_zonelists(pg_data_t *pgdat)
3826 {
3827 	int node, local_node;
3828 	enum zone_type j;
3829 	struct zonelist *zonelist;
3830 
3831 	local_node = pgdat->node_id;
3832 
3833 	zonelist = &pgdat->node_zonelists[0];
3834 	j = build_zonelists_node(pgdat, zonelist, 0);
3835 
3836 	/*
3837 	 * Now we build the zonelist so that it contains the zones
3838 	 * of all the other nodes.
3839 	 * We don't want to pressure a particular node, so when
3840 	 * building the zones for node N, we make sure that the
3841 	 * zones coming right after the local ones are those from
3842 	 * node N+1 (modulo N)
3843 	 */
3844 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3845 		if (!node_online(node))
3846 			continue;
3847 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3848 	}
3849 	for (node = 0; node < local_node; node++) {
3850 		if (!node_online(node))
3851 			continue;
3852 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3853 	}
3854 
3855 	zonelist->_zonerefs[j].zone = NULL;
3856 	zonelist->_zonerefs[j].zone_idx = 0;
3857 }
3858 
3859 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3860 static void build_zonelist_cache(pg_data_t *pgdat)
3861 {
3862 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3863 }
3864 
3865 #endif	/* CONFIG_NUMA */
3866 
3867 /*
3868  * Boot pageset table. One per cpu which is going to be used for all
3869  * zones and all nodes. The parameters will be set in such a way
3870  * that an item put on a list will immediately be handed over to
3871  * the buddy list. This is safe since pageset manipulation is done
3872  * with interrupts disabled.
3873  *
3874  * The boot_pagesets must be kept even after bootup is complete for
3875  * unused processors and/or zones. They do play a role for bootstrapping
3876  * hotplugged processors.
3877  *
3878  * zoneinfo_show() and maybe other functions do
3879  * not check if the processor is online before following the pageset pointer.
3880  * Other parts of the kernel may not check if the zone is available.
3881  */
3882 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3883 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3884 static void setup_zone_pageset(struct zone *zone);
3885 
3886 /*
3887  * Global mutex to protect against size modification of zonelists
3888  * as well as to serialize pageset setup for the new populated zone.
3889  */
3890 DEFINE_MUTEX(zonelists_mutex);
3891 
3892 /* return values int ....just for stop_machine() */
3893 static int __build_all_zonelists(void *data)
3894 {
3895 	int nid;
3896 	int cpu;
3897 	pg_data_t *self = data;
3898 
3899 #ifdef CONFIG_NUMA
3900 	memset(node_load, 0, sizeof(node_load));
3901 #endif
3902 
3903 	if (self && !node_online(self->node_id)) {
3904 		build_zonelists(self);
3905 		build_zonelist_cache(self);
3906 	}
3907 
3908 	for_each_online_node(nid) {
3909 		pg_data_t *pgdat = NODE_DATA(nid);
3910 
3911 		build_zonelists(pgdat);
3912 		build_zonelist_cache(pgdat);
3913 	}
3914 
3915 	/*
3916 	 * Initialize the boot_pagesets that are going to be used
3917 	 * for bootstrapping processors. The real pagesets for
3918 	 * each zone will be allocated later when the per cpu
3919 	 * allocator is available.
3920 	 *
3921 	 * boot_pagesets are used also for bootstrapping offline
3922 	 * cpus if the system is already booted because the pagesets
3923 	 * are needed to initialize allocators on a specific cpu too.
3924 	 * F.e. the percpu allocator needs the page allocator which
3925 	 * needs the percpu allocator in order to allocate its pagesets
3926 	 * (a chicken-egg dilemma).
3927 	 */
3928 	for_each_possible_cpu(cpu) {
3929 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3930 
3931 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3932 		/*
3933 		 * We now know the "local memory node" for each node--
3934 		 * i.e., the node of the first zone in the generic zonelist.
3935 		 * Set up numa_mem percpu variable for on-line cpus.  During
3936 		 * boot, only the boot cpu should be on-line;  we'll init the
3937 		 * secondary cpus' numa_mem as they come on-line.  During
3938 		 * node/memory hotplug, we'll fixup all on-line cpus.
3939 		 */
3940 		if (cpu_online(cpu))
3941 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3942 #endif
3943 	}
3944 
3945 	return 0;
3946 }
3947 
3948 /*
3949  * Called with zonelists_mutex held always
3950  * unless system_state == SYSTEM_BOOTING.
3951  */
3952 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3953 {
3954 	set_zonelist_order();
3955 
3956 	if (system_state == SYSTEM_BOOTING) {
3957 		__build_all_zonelists(NULL);
3958 		mminit_verify_zonelist();
3959 		cpuset_init_current_mems_allowed();
3960 	} else {
3961 #ifdef CONFIG_MEMORY_HOTPLUG
3962 		if (zone)
3963 			setup_zone_pageset(zone);
3964 #endif
3965 		/* we have to stop all cpus to guarantee there is no user
3966 		   of zonelist */
3967 		stop_machine(__build_all_zonelists, pgdat, NULL);
3968 		/* cpuset refresh routine should be here */
3969 	}
3970 	vm_total_pages = nr_free_pagecache_pages();
3971 	/*
3972 	 * Disable grouping by mobility if the number of pages in the
3973 	 * system is too low to allow the mechanism to work. It would be
3974 	 * more accurate, but expensive to check per-zone. This check is
3975 	 * made on memory-hotadd so a system can start with mobility
3976 	 * disabled and enable it later
3977 	 */
3978 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3979 		page_group_by_mobility_disabled = 1;
3980 	else
3981 		page_group_by_mobility_disabled = 0;
3982 
3983 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
3984 		"Total pages: %ld\n",
3985 			nr_online_nodes,
3986 			zonelist_order_name[current_zonelist_order],
3987 			page_group_by_mobility_disabled ? "off" : "on",
3988 			vm_total_pages);
3989 #ifdef CONFIG_NUMA
3990 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3991 #endif
3992 }
3993 
3994 /*
3995  * Helper functions to size the waitqueue hash table.
3996  * Essentially these want to choose hash table sizes sufficiently
3997  * large so that collisions trying to wait on pages are rare.
3998  * But in fact, the number of active page waitqueues on typical
3999  * systems is ridiculously low, less than 200. So this is even
4000  * conservative, even though it seems large.
4001  *
4002  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4003  * waitqueues, i.e. the size of the waitq table given the number of pages.
4004  */
4005 #define PAGES_PER_WAITQUEUE	256
4006 
4007 #ifndef CONFIG_MEMORY_HOTPLUG
4008 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4009 {
4010 	unsigned long size = 1;
4011 
4012 	pages /= PAGES_PER_WAITQUEUE;
4013 
4014 	while (size < pages)
4015 		size <<= 1;
4016 
4017 	/*
4018 	 * Once we have dozens or even hundreds of threads sleeping
4019 	 * on IO we've got bigger problems than wait queue collision.
4020 	 * Limit the size of the wait table to a reasonable size.
4021 	 */
4022 	size = min(size, 4096UL);
4023 
4024 	return max(size, 4UL);
4025 }
4026 #else
4027 /*
4028  * A zone's size might be changed by hot-add, so it is not possible to determine
4029  * a suitable size for its wait_table.  So we use the maximum size now.
4030  *
4031  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4032  *
4033  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4034  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4035  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4036  *
4037  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4038  * or more by the traditional way. (See above).  It equals:
4039  *
4040  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4041  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4042  *    powerpc (64K page size)             : =  (32G +16M)byte.
4043  */
4044 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4045 {
4046 	return 4096UL;
4047 }
4048 #endif
4049 
4050 /*
4051  * This is an integer logarithm so that shifts can be used later
4052  * to extract the more random high bits from the multiplicative
4053  * hash function before the remainder is taken.
4054  */
4055 static inline unsigned long wait_table_bits(unsigned long size)
4056 {
4057 	return ffz(~size);
4058 }
4059 
4060 /*
4061  * Check if a pageblock contains reserved pages
4062  */
4063 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4064 {
4065 	unsigned long pfn;
4066 
4067 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4068 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4069 			return 1;
4070 	}
4071 	return 0;
4072 }
4073 
4074 /*
4075  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4076  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4077  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4078  * higher will lead to a bigger reserve which will get freed as contiguous
4079  * blocks as reclaim kicks in
4080  */
4081 static void setup_zone_migrate_reserve(struct zone *zone)
4082 {
4083 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4084 	struct page *page;
4085 	unsigned long block_migratetype;
4086 	int reserve;
4087 	int old_reserve;
4088 
4089 	/*
4090 	 * Get the start pfn, end pfn and the number of blocks to reserve
4091 	 * We have to be careful to be aligned to pageblock_nr_pages to
4092 	 * make sure that we always check pfn_valid for the first page in
4093 	 * the block.
4094 	 */
4095 	start_pfn = zone->zone_start_pfn;
4096 	end_pfn = zone_end_pfn(zone);
4097 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4098 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4099 							pageblock_order;
4100 
4101 	/*
4102 	 * Reserve blocks are generally in place to help high-order atomic
4103 	 * allocations that are short-lived. A min_free_kbytes value that
4104 	 * would result in more than 2 reserve blocks for atomic allocations
4105 	 * is assumed to be in place to help anti-fragmentation for the
4106 	 * future allocation of hugepages at runtime.
4107 	 */
4108 	reserve = min(2, reserve);
4109 	old_reserve = zone->nr_migrate_reserve_block;
4110 
4111 	/* When memory hot-add, we almost always need to do nothing */
4112 	if (reserve == old_reserve)
4113 		return;
4114 	zone->nr_migrate_reserve_block = reserve;
4115 
4116 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4117 		if (!pfn_valid(pfn))
4118 			continue;
4119 		page = pfn_to_page(pfn);
4120 
4121 		/* Watch out for overlapping nodes */
4122 		if (page_to_nid(page) != zone_to_nid(zone))
4123 			continue;
4124 
4125 		block_migratetype = get_pageblock_migratetype(page);
4126 
4127 		/* Only test what is necessary when the reserves are not met */
4128 		if (reserve > 0) {
4129 			/*
4130 			 * Blocks with reserved pages will never free, skip
4131 			 * them.
4132 			 */
4133 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4134 			if (pageblock_is_reserved(pfn, block_end_pfn))
4135 				continue;
4136 
4137 			/* If this block is reserved, account for it */
4138 			if (block_migratetype == MIGRATE_RESERVE) {
4139 				reserve--;
4140 				continue;
4141 			}
4142 
4143 			/* Suitable for reserving if this block is movable */
4144 			if (block_migratetype == MIGRATE_MOVABLE) {
4145 				set_pageblock_migratetype(page,
4146 							MIGRATE_RESERVE);
4147 				move_freepages_block(zone, page,
4148 							MIGRATE_RESERVE);
4149 				reserve--;
4150 				continue;
4151 			}
4152 		} else if (!old_reserve) {
4153 			/*
4154 			 * At boot time we don't need to scan the whole zone
4155 			 * for turning off MIGRATE_RESERVE.
4156 			 */
4157 			break;
4158 		}
4159 
4160 		/*
4161 		 * If the reserve is met and this is a previous reserved block,
4162 		 * take it back
4163 		 */
4164 		if (block_migratetype == MIGRATE_RESERVE) {
4165 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4166 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4167 		}
4168 	}
4169 }
4170 
4171 /*
4172  * Initially all pages are reserved - free ones are freed
4173  * up by free_all_bootmem() once the early boot process is
4174  * done. Non-atomic initialization, single-pass.
4175  */
4176 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4177 		unsigned long start_pfn, enum memmap_context context)
4178 {
4179 	struct page *page;
4180 	unsigned long end_pfn = start_pfn + size;
4181 	unsigned long pfn;
4182 	struct zone *z;
4183 
4184 	if (highest_memmap_pfn < end_pfn - 1)
4185 		highest_memmap_pfn = end_pfn - 1;
4186 
4187 	z = &NODE_DATA(nid)->node_zones[zone];
4188 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4189 		/*
4190 		 * There can be holes in boot-time mem_map[]s
4191 		 * handed to this function.  They do not
4192 		 * exist on hotplugged memory.
4193 		 */
4194 		if (context == MEMMAP_EARLY) {
4195 			if (!early_pfn_valid(pfn))
4196 				continue;
4197 			if (!early_pfn_in_nid(pfn, nid))
4198 				continue;
4199 		}
4200 		page = pfn_to_page(pfn);
4201 		set_page_links(page, zone, nid, pfn);
4202 		mminit_verify_page_links(page, zone, nid, pfn);
4203 		init_page_count(page);
4204 		page_mapcount_reset(page);
4205 		page_cpupid_reset_last(page);
4206 		SetPageReserved(page);
4207 		/*
4208 		 * Mark the block movable so that blocks are reserved for
4209 		 * movable at startup. This will force kernel allocations
4210 		 * to reserve their blocks rather than leaking throughout
4211 		 * the address space during boot when many long-lived
4212 		 * kernel allocations are made. Later some blocks near
4213 		 * the start are marked MIGRATE_RESERVE by
4214 		 * setup_zone_migrate_reserve()
4215 		 *
4216 		 * bitmap is created for zone's valid pfn range. but memmap
4217 		 * can be created for invalid pages (for alignment)
4218 		 * check here not to call set_pageblock_migratetype() against
4219 		 * pfn out of zone.
4220 		 */
4221 		if ((z->zone_start_pfn <= pfn)
4222 		    && (pfn < zone_end_pfn(z))
4223 		    && !(pfn & (pageblock_nr_pages - 1)))
4224 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4225 
4226 		INIT_LIST_HEAD(&page->lru);
4227 #ifdef WANT_PAGE_VIRTUAL
4228 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4229 		if (!is_highmem_idx(zone))
4230 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4231 #endif
4232 	}
4233 }
4234 
4235 static void __meminit zone_init_free_lists(struct zone *zone)
4236 {
4237 	unsigned int order, t;
4238 	for_each_migratetype_order(order, t) {
4239 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4240 		zone->free_area[order].nr_free = 0;
4241 	}
4242 }
4243 
4244 #ifndef __HAVE_ARCH_MEMMAP_INIT
4245 #define memmap_init(size, nid, zone, start_pfn) \
4246 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4247 #endif
4248 
4249 static int zone_batchsize(struct zone *zone)
4250 {
4251 #ifdef CONFIG_MMU
4252 	int batch;
4253 
4254 	/*
4255 	 * The per-cpu-pages pools are set to around 1000th of the
4256 	 * size of the zone.  But no more than 1/2 of a meg.
4257 	 *
4258 	 * OK, so we don't know how big the cache is.  So guess.
4259 	 */
4260 	batch = zone->managed_pages / 1024;
4261 	if (batch * PAGE_SIZE > 512 * 1024)
4262 		batch = (512 * 1024) / PAGE_SIZE;
4263 	batch /= 4;		/* We effectively *= 4 below */
4264 	if (batch < 1)
4265 		batch = 1;
4266 
4267 	/*
4268 	 * Clamp the batch to a 2^n - 1 value. Having a power
4269 	 * of 2 value was found to be more likely to have
4270 	 * suboptimal cache aliasing properties in some cases.
4271 	 *
4272 	 * For example if 2 tasks are alternately allocating
4273 	 * batches of pages, one task can end up with a lot
4274 	 * of pages of one half of the possible page colors
4275 	 * and the other with pages of the other colors.
4276 	 */
4277 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4278 
4279 	return batch;
4280 
4281 #else
4282 	/* The deferral and batching of frees should be suppressed under NOMMU
4283 	 * conditions.
4284 	 *
4285 	 * The problem is that NOMMU needs to be able to allocate large chunks
4286 	 * of contiguous memory as there's no hardware page translation to
4287 	 * assemble apparent contiguous memory from discontiguous pages.
4288 	 *
4289 	 * Queueing large contiguous runs of pages for batching, however,
4290 	 * causes the pages to actually be freed in smaller chunks.  As there
4291 	 * can be a significant delay between the individual batches being
4292 	 * recycled, this leads to the once large chunks of space being
4293 	 * fragmented and becoming unavailable for high-order allocations.
4294 	 */
4295 	return 0;
4296 #endif
4297 }
4298 
4299 /*
4300  * pcp->high and pcp->batch values are related and dependent on one another:
4301  * ->batch must never be higher then ->high.
4302  * The following function updates them in a safe manner without read side
4303  * locking.
4304  *
4305  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4306  * those fields changing asynchronously (acording the the above rule).
4307  *
4308  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4309  * outside of boot time (or some other assurance that no concurrent updaters
4310  * exist).
4311  */
4312 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4313 		unsigned long batch)
4314 {
4315        /* start with a fail safe value for batch */
4316 	pcp->batch = 1;
4317 	smp_wmb();
4318 
4319        /* Update high, then batch, in order */
4320 	pcp->high = high;
4321 	smp_wmb();
4322 
4323 	pcp->batch = batch;
4324 }
4325 
4326 /* a companion to pageset_set_high() */
4327 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4328 {
4329 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4330 }
4331 
4332 static void pageset_init(struct per_cpu_pageset *p)
4333 {
4334 	struct per_cpu_pages *pcp;
4335 	int migratetype;
4336 
4337 	memset(p, 0, sizeof(*p));
4338 
4339 	pcp = &p->pcp;
4340 	pcp->count = 0;
4341 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4342 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4343 }
4344 
4345 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4346 {
4347 	pageset_init(p);
4348 	pageset_set_batch(p, batch);
4349 }
4350 
4351 /*
4352  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4353  * to the value high for the pageset p.
4354  */
4355 static void pageset_set_high(struct per_cpu_pageset *p,
4356 				unsigned long high)
4357 {
4358 	unsigned long batch = max(1UL, high / 4);
4359 	if ((high / 4) > (PAGE_SHIFT * 8))
4360 		batch = PAGE_SHIFT * 8;
4361 
4362 	pageset_update(&p->pcp, high, batch);
4363 }
4364 
4365 static void pageset_set_high_and_batch(struct zone *zone,
4366 				       struct per_cpu_pageset *pcp)
4367 {
4368 	if (percpu_pagelist_fraction)
4369 		pageset_set_high(pcp,
4370 			(zone->managed_pages /
4371 				percpu_pagelist_fraction));
4372 	else
4373 		pageset_set_batch(pcp, zone_batchsize(zone));
4374 }
4375 
4376 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4377 {
4378 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4379 
4380 	pageset_init(pcp);
4381 	pageset_set_high_and_batch(zone, pcp);
4382 }
4383 
4384 static void __meminit setup_zone_pageset(struct zone *zone)
4385 {
4386 	int cpu;
4387 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4388 	for_each_possible_cpu(cpu)
4389 		zone_pageset_init(zone, cpu);
4390 }
4391 
4392 /*
4393  * Allocate per cpu pagesets and initialize them.
4394  * Before this call only boot pagesets were available.
4395  */
4396 void __init setup_per_cpu_pageset(void)
4397 {
4398 	struct zone *zone;
4399 
4400 	for_each_populated_zone(zone)
4401 		setup_zone_pageset(zone);
4402 }
4403 
4404 static noinline __init_refok
4405 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4406 {
4407 	int i;
4408 	size_t alloc_size;
4409 
4410 	/*
4411 	 * The per-page waitqueue mechanism uses hashed waitqueues
4412 	 * per zone.
4413 	 */
4414 	zone->wait_table_hash_nr_entries =
4415 		 wait_table_hash_nr_entries(zone_size_pages);
4416 	zone->wait_table_bits =
4417 		wait_table_bits(zone->wait_table_hash_nr_entries);
4418 	alloc_size = zone->wait_table_hash_nr_entries
4419 					* sizeof(wait_queue_head_t);
4420 
4421 	if (!slab_is_available()) {
4422 		zone->wait_table = (wait_queue_head_t *)
4423 			memblock_virt_alloc_node_nopanic(
4424 				alloc_size, zone->zone_pgdat->node_id);
4425 	} else {
4426 		/*
4427 		 * This case means that a zone whose size was 0 gets new memory
4428 		 * via memory hot-add.
4429 		 * But it may be the case that a new node was hot-added.  In
4430 		 * this case vmalloc() will not be able to use this new node's
4431 		 * memory - this wait_table must be initialized to use this new
4432 		 * node itself as well.
4433 		 * To use this new node's memory, further consideration will be
4434 		 * necessary.
4435 		 */
4436 		zone->wait_table = vmalloc(alloc_size);
4437 	}
4438 	if (!zone->wait_table)
4439 		return -ENOMEM;
4440 
4441 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4442 		init_waitqueue_head(zone->wait_table + i);
4443 
4444 	return 0;
4445 }
4446 
4447 static __meminit void zone_pcp_init(struct zone *zone)
4448 {
4449 	/*
4450 	 * per cpu subsystem is not up at this point. The following code
4451 	 * relies on the ability of the linker to provide the
4452 	 * offset of a (static) per cpu variable into the per cpu area.
4453 	 */
4454 	zone->pageset = &boot_pageset;
4455 
4456 	if (populated_zone(zone))
4457 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4458 			zone->name, zone->present_pages,
4459 					 zone_batchsize(zone));
4460 }
4461 
4462 int __meminit init_currently_empty_zone(struct zone *zone,
4463 					unsigned long zone_start_pfn,
4464 					unsigned long size,
4465 					enum memmap_context context)
4466 {
4467 	struct pglist_data *pgdat = zone->zone_pgdat;
4468 	int ret;
4469 	ret = zone_wait_table_init(zone, size);
4470 	if (ret)
4471 		return ret;
4472 	pgdat->nr_zones = zone_idx(zone) + 1;
4473 
4474 	zone->zone_start_pfn = zone_start_pfn;
4475 
4476 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4477 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4478 			pgdat->node_id,
4479 			(unsigned long)zone_idx(zone),
4480 			zone_start_pfn, (zone_start_pfn + size));
4481 
4482 	zone_init_free_lists(zone);
4483 
4484 	return 0;
4485 }
4486 
4487 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4488 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4489 /*
4490  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4491  */
4492 int __meminit __early_pfn_to_nid(unsigned long pfn)
4493 {
4494 	unsigned long start_pfn, end_pfn;
4495 	int nid;
4496 	/*
4497 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4498 	 * when the kernel is running single-threaded.
4499 	 */
4500 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4501 	static int __meminitdata last_nid;
4502 
4503 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4504 		return last_nid;
4505 
4506 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4507 	if (nid != -1) {
4508 		last_start_pfn = start_pfn;
4509 		last_end_pfn = end_pfn;
4510 		last_nid = nid;
4511 	}
4512 
4513 	return nid;
4514 }
4515 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4516 
4517 int __meminit early_pfn_to_nid(unsigned long pfn)
4518 {
4519 	int nid;
4520 
4521 	nid = __early_pfn_to_nid(pfn);
4522 	if (nid >= 0)
4523 		return nid;
4524 	/* just returns 0 */
4525 	return 0;
4526 }
4527 
4528 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4529 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4530 {
4531 	int nid;
4532 
4533 	nid = __early_pfn_to_nid(pfn);
4534 	if (nid >= 0 && nid != node)
4535 		return false;
4536 	return true;
4537 }
4538 #endif
4539 
4540 /**
4541  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4542  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4543  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4544  *
4545  * If an architecture guarantees that all ranges registered contain no holes
4546  * and may be freed, this this function may be used instead of calling
4547  * memblock_free_early_nid() manually.
4548  */
4549 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4550 {
4551 	unsigned long start_pfn, end_pfn;
4552 	int i, this_nid;
4553 
4554 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4555 		start_pfn = min(start_pfn, max_low_pfn);
4556 		end_pfn = min(end_pfn, max_low_pfn);
4557 
4558 		if (start_pfn < end_pfn)
4559 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4560 					(end_pfn - start_pfn) << PAGE_SHIFT,
4561 					this_nid);
4562 	}
4563 }
4564 
4565 /**
4566  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4567  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4568  *
4569  * If an architecture guarantees that all ranges registered contain no holes and may
4570  * be freed, this function may be used instead of calling memory_present() manually.
4571  */
4572 void __init sparse_memory_present_with_active_regions(int nid)
4573 {
4574 	unsigned long start_pfn, end_pfn;
4575 	int i, this_nid;
4576 
4577 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4578 		memory_present(this_nid, start_pfn, end_pfn);
4579 }
4580 
4581 /**
4582  * get_pfn_range_for_nid - Return the start and end page frames for a node
4583  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4584  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4585  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4586  *
4587  * It returns the start and end page frame of a node based on information
4588  * provided by memblock_set_node(). If called for a node
4589  * with no available memory, a warning is printed and the start and end
4590  * PFNs will be 0.
4591  */
4592 void __meminit get_pfn_range_for_nid(unsigned int nid,
4593 			unsigned long *start_pfn, unsigned long *end_pfn)
4594 {
4595 	unsigned long this_start_pfn, this_end_pfn;
4596 	int i;
4597 
4598 	*start_pfn = -1UL;
4599 	*end_pfn = 0;
4600 
4601 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4602 		*start_pfn = min(*start_pfn, this_start_pfn);
4603 		*end_pfn = max(*end_pfn, this_end_pfn);
4604 	}
4605 
4606 	if (*start_pfn == -1UL)
4607 		*start_pfn = 0;
4608 }
4609 
4610 /*
4611  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4612  * assumption is made that zones within a node are ordered in monotonic
4613  * increasing memory addresses so that the "highest" populated zone is used
4614  */
4615 static void __init find_usable_zone_for_movable(void)
4616 {
4617 	int zone_index;
4618 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4619 		if (zone_index == ZONE_MOVABLE)
4620 			continue;
4621 
4622 		if (arch_zone_highest_possible_pfn[zone_index] >
4623 				arch_zone_lowest_possible_pfn[zone_index])
4624 			break;
4625 	}
4626 
4627 	VM_BUG_ON(zone_index == -1);
4628 	movable_zone = zone_index;
4629 }
4630 
4631 /*
4632  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4633  * because it is sized independent of architecture. Unlike the other zones,
4634  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4635  * in each node depending on the size of each node and how evenly kernelcore
4636  * is distributed. This helper function adjusts the zone ranges
4637  * provided by the architecture for a given node by using the end of the
4638  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4639  * zones within a node are in order of monotonic increases memory addresses
4640  */
4641 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4642 					unsigned long zone_type,
4643 					unsigned long node_start_pfn,
4644 					unsigned long node_end_pfn,
4645 					unsigned long *zone_start_pfn,
4646 					unsigned long *zone_end_pfn)
4647 {
4648 	/* Only adjust if ZONE_MOVABLE is on this node */
4649 	if (zone_movable_pfn[nid]) {
4650 		/* Size ZONE_MOVABLE */
4651 		if (zone_type == ZONE_MOVABLE) {
4652 			*zone_start_pfn = zone_movable_pfn[nid];
4653 			*zone_end_pfn = min(node_end_pfn,
4654 				arch_zone_highest_possible_pfn[movable_zone]);
4655 
4656 		/* Adjust for ZONE_MOVABLE starting within this range */
4657 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4658 				*zone_end_pfn > zone_movable_pfn[nid]) {
4659 			*zone_end_pfn = zone_movable_pfn[nid];
4660 
4661 		/* Check if this whole range is within ZONE_MOVABLE */
4662 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4663 			*zone_start_pfn = *zone_end_pfn;
4664 	}
4665 }
4666 
4667 /*
4668  * Return the number of pages a zone spans in a node, including holes
4669  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4670  */
4671 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4672 					unsigned long zone_type,
4673 					unsigned long node_start_pfn,
4674 					unsigned long node_end_pfn,
4675 					unsigned long *ignored)
4676 {
4677 	unsigned long zone_start_pfn, zone_end_pfn;
4678 
4679 	/* Get the start and end of the zone */
4680 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4681 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4682 	adjust_zone_range_for_zone_movable(nid, zone_type,
4683 				node_start_pfn, node_end_pfn,
4684 				&zone_start_pfn, &zone_end_pfn);
4685 
4686 	/* Check that this node has pages within the zone's required range */
4687 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4688 		return 0;
4689 
4690 	/* Move the zone boundaries inside the node if necessary */
4691 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4692 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4693 
4694 	/* Return the spanned pages */
4695 	return zone_end_pfn - zone_start_pfn;
4696 }
4697 
4698 /*
4699  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4700  * then all holes in the requested range will be accounted for.
4701  */
4702 unsigned long __meminit __absent_pages_in_range(int nid,
4703 				unsigned long range_start_pfn,
4704 				unsigned long range_end_pfn)
4705 {
4706 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4707 	unsigned long start_pfn, end_pfn;
4708 	int i;
4709 
4710 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4711 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4712 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4713 		nr_absent -= end_pfn - start_pfn;
4714 	}
4715 	return nr_absent;
4716 }
4717 
4718 /**
4719  * absent_pages_in_range - Return number of page frames in holes within a range
4720  * @start_pfn: The start PFN to start searching for holes
4721  * @end_pfn: The end PFN to stop searching for holes
4722  *
4723  * It returns the number of pages frames in memory holes within a range.
4724  */
4725 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4726 							unsigned long end_pfn)
4727 {
4728 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4729 }
4730 
4731 /* Return the number of page frames in holes in a zone on a node */
4732 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4733 					unsigned long zone_type,
4734 					unsigned long node_start_pfn,
4735 					unsigned long node_end_pfn,
4736 					unsigned long *ignored)
4737 {
4738 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4739 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4740 	unsigned long zone_start_pfn, zone_end_pfn;
4741 
4742 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4743 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4744 
4745 	adjust_zone_range_for_zone_movable(nid, zone_type,
4746 			node_start_pfn, node_end_pfn,
4747 			&zone_start_pfn, &zone_end_pfn);
4748 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4749 }
4750 
4751 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4752 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4753 					unsigned long zone_type,
4754 					unsigned long node_start_pfn,
4755 					unsigned long node_end_pfn,
4756 					unsigned long *zones_size)
4757 {
4758 	return zones_size[zone_type];
4759 }
4760 
4761 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4762 						unsigned long zone_type,
4763 						unsigned long node_start_pfn,
4764 						unsigned long node_end_pfn,
4765 						unsigned long *zholes_size)
4766 {
4767 	if (!zholes_size)
4768 		return 0;
4769 
4770 	return zholes_size[zone_type];
4771 }
4772 
4773 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4774 
4775 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4776 						unsigned long node_start_pfn,
4777 						unsigned long node_end_pfn,
4778 						unsigned long *zones_size,
4779 						unsigned long *zholes_size)
4780 {
4781 	unsigned long realtotalpages, totalpages = 0;
4782 	enum zone_type i;
4783 
4784 	for (i = 0; i < MAX_NR_ZONES; i++)
4785 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4786 							 node_start_pfn,
4787 							 node_end_pfn,
4788 							 zones_size);
4789 	pgdat->node_spanned_pages = totalpages;
4790 
4791 	realtotalpages = totalpages;
4792 	for (i = 0; i < MAX_NR_ZONES; i++)
4793 		realtotalpages -=
4794 			zone_absent_pages_in_node(pgdat->node_id, i,
4795 						  node_start_pfn, node_end_pfn,
4796 						  zholes_size);
4797 	pgdat->node_present_pages = realtotalpages;
4798 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4799 							realtotalpages);
4800 }
4801 
4802 #ifndef CONFIG_SPARSEMEM
4803 /*
4804  * Calculate the size of the zone->blockflags rounded to an unsigned long
4805  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4806  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4807  * round what is now in bits to nearest long in bits, then return it in
4808  * bytes.
4809  */
4810 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4811 {
4812 	unsigned long usemapsize;
4813 
4814 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4815 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4816 	usemapsize = usemapsize >> pageblock_order;
4817 	usemapsize *= NR_PAGEBLOCK_BITS;
4818 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4819 
4820 	return usemapsize / 8;
4821 }
4822 
4823 static void __init setup_usemap(struct pglist_data *pgdat,
4824 				struct zone *zone,
4825 				unsigned long zone_start_pfn,
4826 				unsigned long zonesize)
4827 {
4828 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4829 	zone->pageblock_flags = NULL;
4830 	if (usemapsize)
4831 		zone->pageblock_flags =
4832 			memblock_virt_alloc_node_nopanic(usemapsize,
4833 							 pgdat->node_id);
4834 }
4835 #else
4836 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4837 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4838 #endif /* CONFIG_SPARSEMEM */
4839 
4840 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4841 
4842 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4843 void __paginginit set_pageblock_order(void)
4844 {
4845 	unsigned int order;
4846 
4847 	/* Check that pageblock_nr_pages has not already been setup */
4848 	if (pageblock_order)
4849 		return;
4850 
4851 	if (HPAGE_SHIFT > PAGE_SHIFT)
4852 		order = HUGETLB_PAGE_ORDER;
4853 	else
4854 		order = MAX_ORDER - 1;
4855 
4856 	/*
4857 	 * Assume the largest contiguous order of interest is a huge page.
4858 	 * This value may be variable depending on boot parameters on IA64 and
4859 	 * powerpc.
4860 	 */
4861 	pageblock_order = order;
4862 }
4863 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4864 
4865 /*
4866  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4867  * is unused as pageblock_order is set at compile-time. See
4868  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4869  * the kernel config
4870  */
4871 void __paginginit set_pageblock_order(void)
4872 {
4873 }
4874 
4875 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4876 
4877 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4878 						   unsigned long present_pages)
4879 {
4880 	unsigned long pages = spanned_pages;
4881 
4882 	/*
4883 	 * Provide a more accurate estimation if there are holes within
4884 	 * the zone and SPARSEMEM is in use. If there are holes within the
4885 	 * zone, each populated memory region may cost us one or two extra
4886 	 * memmap pages due to alignment because memmap pages for each
4887 	 * populated regions may not naturally algined on page boundary.
4888 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4889 	 */
4890 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4891 	    IS_ENABLED(CONFIG_SPARSEMEM))
4892 		pages = present_pages;
4893 
4894 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4895 }
4896 
4897 /*
4898  * Set up the zone data structures:
4899  *   - mark all pages reserved
4900  *   - mark all memory queues empty
4901  *   - clear the memory bitmaps
4902  *
4903  * NOTE: pgdat should get zeroed by caller.
4904  */
4905 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4906 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4907 		unsigned long *zones_size, unsigned long *zholes_size)
4908 {
4909 	enum zone_type j;
4910 	int nid = pgdat->node_id;
4911 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4912 	int ret;
4913 
4914 	pgdat_resize_init(pgdat);
4915 #ifdef CONFIG_NUMA_BALANCING
4916 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4917 	pgdat->numabalancing_migrate_nr_pages = 0;
4918 	pgdat->numabalancing_migrate_next_window = jiffies;
4919 #endif
4920 	init_waitqueue_head(&pgdat->kswapd_wait);
4921 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4922 	pgdat_page_ext_init(pgdat);
4923 
4924 	for (j = 0; j < MAX_NR_ZONES; j++) {
4925 		struct zone *zone = pgdat->node_zones + j;
4926 		unsigned long size, realsize, freesize, memmap_pages;
4927 
4928 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4929 						  node_end_pfn, zones_size);
4930 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4931 								node_start_pfn,
4932 								node_end_pfn,
4933 								zholes_size);
4934 
4935 		/*
4936 		 * Adjust freesize so that it accounts for how much memory
4937 		 * is used by this zone for memmap. This affects the watermark
4938 		 * and per-cpu initialisations
4939 		 */
4940 		memmap_pages = calc_memmap_size(size, realsize);
4941 		if (!is_highmem_idx(j)) {
4942 			if (freesize >= memmap_pages) {
4943 				freesize -= memmap_pages;
4944 				if (memmap_pages)
4945 					printk(KERN_DEBUG
4946 					       "  %s zone: %lu pages used for memmap\n",
4947 					       zone_names[j], memmap_pages);
4948 			} else
4949 				printk(KERN_WARNING
4950 					"  %s zone: %lu pages exceeds freesize %lu\n",
4951 					zone_names[j], memmap_pages, freesize);
4952 		}
4953 
4954 		/* Account for reserved pages */
4955 		if (j == 0 && freesize > dma_reserve) {
4956 			freesize -= dma_reserve;
4957 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4958 					zone_names[0], dma_reserve);
4959 		}
4960 
4961 		if (!is_highmem_idx(j))
4962 			nr_kernel_pages += freesize;
4963 		/* Charge for highmem memmap if there are enough kernel pages */
4964 		else if (nr_kernel_pages > memmap_pages * 2)
4965 			nr_kernel_pages -= memmap_pages;
4966 		nr_all_pages += freesize;
4967 
4968 		zone->spanned_pages = size;
4969 		zone->present_pages = realsize;
4970 		/*
4971 		 * Set an approximate value for lowmem here, it will be adjusted
4972 		 * when the bootmem allocator frees pages into the buddy system.
4973 		 * And all highmem pages will be managed by the buddy system.
4974 		 */
4975 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4976 #ifdef CONFIG_NUMA
4977 		zone->node = nid;
4978 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4979 						/ 100;
4980 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4981 #endif
4982 		zone->name = zone_names[j];
4983 		spin_lock_init(&zone->lock);
4984 		spin_lock_init(&zone->lru_lock);
4985 		zone_seqlock_init(zone);
4986 		zone->zone_pgdat = pgdat;
4987 		zone_pcp_init(zone);
4988 
4989 		/* For bootup, initialized properly in watermark setup */
4990 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4991 
4992 		lruvec_init(&zone->lruvec);
4993 		if (!size)
4994 			continue;
4995 
4996 		set_pageblock_order();
4997 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4998 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4999 						size, MEMMAP_EARLY);
5000 		BUG_ON(ret);
5001 		memmap_init(size, nid, j, zone_start_pfn);
5002 		zone_start_pfn += size;
5003 	}
5004 }
5005 
5006 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5007 {
5008 	/* Skip empty nodes */
5009 	if (!pgdat->node_spanned_pages)
5010 		return;
5011 
5012 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5013 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5014 	if (!pgdat->node_mem_map) {
5015 		unsigned long size, start, end;
5016 		struct page *map;
5017 
5018 		/*
5019 		 * The zone's endpoints aren't required to be MAX_ORDER
5020 		 * aligned but the node_mem_map endpoints must be in order
5021 		 * for the buddy allocator to function correctly.
5022 		 */
5023 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5024 		end = pgdat_end_pfn(pgdat);
5025 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5026 		size =  (end - start) * sizeof(struct page);
5027 		map = alloc_remap(pgdat->node_id, size);
5028 		if (!map)
5029 			map = memblock_virt_alloc_node_nopanic(size,
5030 							       pgdat->node_id);
5031 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5032 	}
5033 #ifndef CONFIG_NEED_MULTIPLE_NODES
5034 	/*
5035 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5036 	 */
5037 	if (pgdat == NODE_DATA(0)) {
5038 		mem_map = NODE_DATA(0)->node_mem_map;
5039 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5040 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5041 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5042 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5043 	}
5044 #endif
5045 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5046 }
5047 
5048 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5049 		unsigned long node_start_pfn, unsigned long *zholes_size)
5050 {
5051 	pg_data_t *pgdat = NODE_DATA(nid);
5052 	unsigned long start_pfn = 0;
5053 	unsigned long end_pfn = 0;
5054 
5055 	/* pg_data_t should be reset to zero when it's allocated */
5056 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5057 
5058 	pgdat->node_id = nid;
5059 	pgdat->node_start_pfn = node_start_pfn;
5060 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5061 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5062 	printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5063 			(u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
5064 #endif
5065 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5066 				  zones_size, zholes_size);
5067 
5068 	alloc_node_mem_map(pgdat);
5069 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5070 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5071 		nid, (unsigned long)pgdat,
5072 		(unsigned long)pgdat->node_mem_map);
5073 #endif
5074 
5075 	free_area_init_core(pgdat, start_pfn, end_pfn,
5076 			    zones_size, zholes_size);
5077 }
5078 
5079 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5080 
5081 #if MAX_NUMNODES > 1
5082 /*
5083  * Figure out the number of possible node ids.
5084  */
5085 void __init setup_nr_node_ids(void)
5086 {
5087 	unsigned int node;
5088 	unsigned int highest = 0;
5089 
5090 	for_each_node_mask(node, node_possible_map)
5091 		highest = node;
5092 	nr_node_ids = highest + 1;
5093 }
5094 #endif
5095 
5096 /**
5097  * node_map_pfn_alignment - determine the maximum internode alignment
5098  *
5099  * This function should be called after node map is populated and sorted.
5100  * It calculates the maximum power of two alignment which can distinguish
5101  * all the nodes.
5102  *
5103  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5104  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5105  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5106  * shifted, 1GiB is enough and this function will indicate so.
5107  *
5108  * This is used to test whether pfn -> nid mapping of the chosen memory
5109  * model has fine enough granularity to avoid incorrect mapping for the
5110  * populated node map.
5111  *
5112  * Returns the determined alignment in pfn's.  0 if there is no alignment
5113  * requirement (single node).
5114  */
5115 unsigned long __init node_map_pfn_alignment(void)
5116 {
5117 	unsigned long accl_mask = 0, last_end = 0;
5118 	unsigned long start, end, mask;
5119 	int last_nid = -1;
5120 	int i, nid;
5121 
5122 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5123 		if (!start || last_nid < 0 || last_nid == nid) {
5124 			last_nid = nid;
5125 			last_end = end;
5126 			continue;
5127 		}
5128 
5129 		/*
5130 		 * Start with a mask granular enough to pin-point to the
5131 		 * start pfn and tick off bits one-by-one until it becomes
5132 		 * too coarse to separate the current node from the last.
5133 		 */
5134 		mask = ~((1 << __ffs(start)) - 1);
5135 		while (mask && last_end <= (start & (mask << 1)))
5136 			mask <<= 1;
5137 
5138 		/* accumulate all internode masks */
5139 		accl_mask |= mask;
5140 	}
5141 
5142 	/* convert mask to number of pages */
5143 	return ~accl_mask + 1;
5144 }
5145 
5146 /* Find the lowest pfn for a node */
5147 static unsigned long __init find_min_pfn_for_node(int nid)
5148 {
5149 	unsigned long min_pfn = ULONG_MAX;
5150 	unsigned long start_pfn;
5151 	int i;
5152 
5153 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5154 		min_pfn = min(min_pfn, start_pfn);
5155 
5156 	if (min_pfn == ULONG_MAX) {
5157 		printk(KERN_WARNING
5158 			"Could not find start_pfn for node %d\n", nid);
5159 		return 0;
5160 	}
5161 
5162 	return min_pfn;
5163 }
5164 
5165 /**
5166  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5167  *
5168  * It returns the minimum PFN based on information provided via
5169  * memblock_set_node().
5170  */
5171 unsigned long __init find_min_pfn_with_active_regions(void)
5172 {
5173 	return find_min_pfn_for_node(MAX_NUMNODES);
5174 }
5175 
5176 /*
5177  * early_calculate_totalpages()
5178  * Sum pages in active regions for movable zone.
5179  * Populate N_MEMORY for calculating usable_nodes.
5180  */
5181 static unsigned long __init early_calculate_totalpages(void)
5182 {
5183 	unsigned long totalpages = 0;
5184 	unsigned long start_pfn, end_pfn;
5185 	int i, nid;
5186 
5187 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5188 		unsigned long pages = end_pfn - start_pfn;
5189 
5190 		totalpages += pages;
5191 		if (pages)
5192 			node_set_state(nid, N_MEMORY);
5193 	}
5194 	return totalpages;
5195 }
5196 
5197 /*
5198  * Find the PFN the Movable zone begins in each node. Kernel memory
5199  * is spread evenly between nodes as long as the nodes have enough
5200  * memory. When they don't, some nodes will have more kernelcore than
5201  * others
5202  */
5203 static void __init find_zone_movable_pfns_for_nodes(void)
5204 {
5205 	int i, nid;
5206 	unsigned long usable_startpfn;
5207 	unsigned long kernelcore_node, kernelcore_remaining;
5208 	/* save the state before borrow the nodemask */
5209 	nodemask_t saved_node_state = node_states[N_MEMORY];
5210 	unsigned long totalpages = early_calculate_totalpages();
5211 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5212 	struct memblock_region *r;
5213 
5214 	/* Need to find movable_zone earlier when movable_node is specified. */
5215 	find_usable_zone_for_movable();
5216 
5217 	/*
5218 	 * If movable_node is specified, ignore kernelcore and movablecore
5219 	 * options.
5220 	 */
5221 	if (movable_node_is_enabled()) {
5222 		for_each_memblock(memory, r) {
5223 			if (!memblock_is_hotpluggable(r))
5224 				continue;
5225 
5226 			nid = r->nid;
5227 
5228 			usable_startpfn = PFN_DOWN(r->base);
5229 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5230 				min(usable_startpfn, zone_movable_pfn[nid]) :
5231 				usable_startpfn;
5232 		}
5233 
5234 		goto out2;
5235 	}
5236 
5237 	/*
5238 	 * If movablecore=nn[KMG] was specified, calculate what size of
5239 	 * kernelcore that corresponds so that memory usable for
5240 	 * any allocation type is evenly spread. If both kernelcore
5241 	 * and movablecore are specified, then the value of kernelcore
5242 	 * will be used for required_kernelcore if it's greater than
5243 	 * what movablecore would have allowed.
5244 	 */
5245 	if (required_movablecore) {
5246 		unsigned long corepages;
5247 
5248 		/*
5249 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5250 		 * was requested by the user
5251 		 */
5252 		required_movablecore =
5253 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5254 		corepages = totalpages - required_movablecore;
5255 
5256 		required_kernelcore = max(required_kernelcore, corepages);
5257 	}
5258 
5259 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5260 	if (!required_kernelcore)
5261 		goto out;
5262 
5263 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5264 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5265 
5266 restart:
5267 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5268 	kernelcore_node = required_kernelcore / usable_nodes;
5269 	for_each_node_state(nid, N_MEMORY) {
5270 		unsigned long start_pfn, end_pfn;
5271 
5272 		/*
5273 		 * Recalculate kernelcore_node if the division per node
5274 		 * now exceeds what is necessary to satisfy the requested
5275 		 * amount of memory for the kernel
5276 		 */
5277 		if (required_kernelcore < kernelcore_node)
5278 			kernelcore_node = required_kernelcore / usable_nodes;
5279 
5280 		/*
5281 		 * As the map is walked, we track how much memory is usable
5282 		 * by the kernel using kernelcore_remaining. When it is
5283 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5284 		 */
5285 		kernelcore_remaining = kernelcore_node;
5286 
5287 		/* Go through each range of PFNs within this node */
5288 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5289 			unsigned long size_pages;
5290 
5291 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5292 			if (start_pfn >= end_pfn)
5293 				continue;
5294 
5295 			/* Account for what is only usable for kernelcore */
5296 			if (start_pfn < usable_startpfn) {
5297 				unsigned long kernel_pages;
5298 				kernel_pages = min(end_pfn, usable_startpfn)
5299 								- start_pfn;
5300 
5301 				kernelcore_remaining -= min(kernel_pages,
5302 							kernelcore_remaining);
5303 				required_kernelcore -= min(kernel_pages,
5304 							required_kernelcore);
5305 
5306 				/* Continue if range is now fully accounted */
5307 				if (end_pfn <= usable_startpfn) {
5308 
5309 					/*
5310 					 * Push zone_movable_pfn to the end so
5311 					 * that if we have to rebalance
5312 					 * kernelcore across nodes, we will
5313 					 * not double account here
5314 					 */
5315 					zone_movable_pfn[nid] = end_pfn;
5316 					continue;
5317 				}
5318 				start_pfn = usable_startpfn;
5319 			}
5320 
5321 			/*
5322 			 * The usable PFN range for ZONE_MOVABLE is from
5323 			 * start_pfn->end_pfn. Calculate size_pages as the
5324 			 * number of pages used as kernelcore
5325 			 */
5326 			size_pages = end_pfn - start_pfn;
5327 			if (size_pages > kernelcore_remaining)
5328 				size_pages = kernelcore_remaining;
5329 			zone_movable_pfn[nid] = start_pfn + size_pages;
5330 
5331 			/*
5332 			 * Some kernelcore has been met, update counts and
5333 			 * break if the kernelcore for this node has been
5334 			 * satisfied
5335 			 */
5336 			required_kernelcore -= min(required_kernelcore,
5337 								size_pages);
5338 			kernelcore_remaining -= size_pages;
5339 			if (!kernelcore_remaining)
5340 				break;
5341 		}
5342 	}
5343 
5344 	/*
5345 	 * If there is still required_kernelcore, we do another pass with one
5346 	 * less node in the count. This will push zone_movable_pfn[nid] further
5347 	 * along on the nodes that still have memory until kernelcore is
5348 	 * satisfied
5349 	 */
5350 	usable_nodes--;
5351 	if (usable_nodes && required_kernelcore > usable_nodes)
5352 		goto restart;
5353 
5354 out2:
5355 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5356 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5357 		zone_movable_pfn[nid] =
5358 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5359 
5360 out:
5361 	/* restore the node_state */
5362 	node_states[N_MEMORY] = saved_node_state;
5363 }
5364 
5365 /* Any regular or high memory on that node ? */
5366 static void check_for_memory(pg_data_t *pgdat, int nid)
5367 {
5368 	enum zone_type zone_type;
5369 
5370 	if (N_MEMORY == N_NORMAL_MEMORY)
5371 		return;
5372 
5373 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5374 		struct zone *zone = &pgdat->node_zones[zone_type];
5375 		if (populated_zone(zone)) {
5376 			node_set_state(nid, N_HIGH_MEMORY);
5377 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5378 			    zone_type <= ZONE_NORMAL)
5379 				node_set_state(nid, N_NORMAL_MEMORY);
5380 			break;
5381 		}
5382 	}
5383 }
5384 
5385 /**
5386  * free_area_init_nodes - Initialise all pg_data_t and zone data
5387  * @max_zone_pfn: an array of max PFNs for each zone
5388  *
5389  * This will call free_area_init_node() for each active node in the system.
5390  * Using the page ranges provided by memblock_set_node(), the size of each
5391  * zone in each node and their holes is calculated. If the maximum PFN
5392  * between two adjacent zones match, it is assumed that the zone is empty.
5393  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5394  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5395  * starts where the previous one ended. For example, ZONE_DMA32 starts
5396  * at arch_max_dma_pfn.
5397  */
5398 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5399 {
5400 	unsigned long start_pfn, end_pfn;
5401 	int i, nid;
5402 
5403 	/* Record where the zone boundaries are */
5404 	memset(arch_zone_lowest_possible_pfn, 0,
5405 				sizeof(arch_zone_lowest_possible_pfn));
5406 	memset(arch_zone_highest_possible_pfn, 0,
5407 				sizeof(arch_zone_highest_possible_pfn));
5408 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5409 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5410 	for (i = 1; i < MAX_NR_ZONES; i++) {
5411 		if (i == ZONE_MOVABLE)
5412 			continue;
5413 		arch_zone_lowest_possible_pfn[i] =
5414 			arch_zone_highest_possible_pfn[i-1];
5415 		arch_zone_highest_possible_pfn[i] =
5416 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5417 	}
5418 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5419 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5420 
5421 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5422 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5423 	find_zone_movable_pfns_for_nodes();
5424 
5425 	/* Print out the zone ranges */
5426 	pr_info("Zone ranges:\n");
5427 	for (i = 0; i < MAX_NR_ZONES; i++) {
5428 		if (i == ZONE_MOVABLE)
5429 			continue;
5430 		pr_info("  %-8s ", zone_names[i]);
5431 		if (arch_zone_lowest_possible_pfn[i] ==
5432 				arch_zone_highest_possible_pfn[i])
5433 			pr_cont("empty\n");
5434 		else
5435 			pr_cont("[mem %0#10lx-%0#10lx]\n",
5436 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5437 				(arch_zone_highest_possible_pfn[i]
5438 					<< PAGE_SHIFT) - 1);
5439 	}
5440 
5441 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5442 	pr_info("Movable zone start for each node\n");
5443 	for (i = 0; i < MAX_NUMNODES; i++) {
5444 		if (zone_movable_pfn[i])
5445 			pr_info("  Node %d: %#010lx\n", i,
5446 			       zone_movable_pfn[i] << PAGE_SHIFT);
5447 	}
5448 
5449 	/* Print out the early node map */
5450 	pr_info("Early memory node ranges\n");
5451 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5452 		pr_info("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5453 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5454 
5455 	/* Initialise every node */
5456 	mminit_verify_pageflags_layout();
5457 	setup_nr_node_ids();
5458 	for_each_online_node(nid) {
5459 		pg_data_t *pgdat = NODE_DATA(nid);
5460 		free_area_init_node(nid, NULL,
5461 				find_min_pfn_for_node(nid), NULL);
5462 
5463 		/* Any memory on that node */
5464 		if (pgdat->node_present_pages)
5465 			node_set_state(nid, N_MEMORY);
5466 		check_for_memory(pgdat, nid);
5467 	}
5468 }
5469 
5470 static int __init cmdline_parse_core(char *p, unsigned long *core)
5471 {
5472 	unsigned long long coremem;
5473 	if (!p)
5474 		return -EINVAL;
5475 
5476 	coremem = memparse(p, &p);
5477 	*core = coremem >> PAGE_SHIFT;
5478 
5479 	/* Paranoid check that UL is enough for the coremem value */
5480 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5481 
5482 	return 0;
5483 }
5484 
5485 /*
5486  * kernelcore=size sets the amount of memory for use for allocations that
5487  * cannot be reclaimed or migrated.
5488  */
5489 static int __init cmdline_parse_kernelcore(char *p)
5490 {
5491 	return cmdline_parse_core(p, &required_kernelcore);
5492 }
5493 
5494 /*
5495  * movablecore=size sets the amount of memory for use for allocations that
5496  * can be reclaimed or migrated.
5497  */
5498 static int __init cmdline_parse_movablecore(char *p)
5499 {
5500 	return cmdline_parse_core(p, &required_movablecore);
5501 }
5502 
5503 early_param("kernelcore", cmdline_parse_kernelcore);
5504 early_param("movablecore", cmdline_parse_movablecore);
5505 
5506 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5507 
5508 void adjust_managed_page_count(struct page *page, long count)
5509 {
5510 	spin_lock(&managed_page_count_lock);
5511 	page_zone(page)->managed_pages += count;
5512 	totalram_pages += count;
5513 #ifdef CONFIG_HIGHMEM
5514 	if (PageHighMem(page))
5515 		totalhigh_pages += count;
5516 #endif
5517 	spin_unlock(&managed_page_count_lock);
5518 }
5519 EXPORT_SYMBOL(adjust_managed_page_count);
5520 
5521 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5522 {
5523 	void *pos;
5524 	unsigned long pages = 0;
5525 
5526 	start = (void *)PAGE_ALIGN((unsigned long)start);
5527 	end = (void *)((unsigned long)end & PAGE_MASK);
5528 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5529 		if ((unsigned int)poison <= 0xFF)
5530 			memset(pos, poison, PAGE_SIZE);
5531 		free_reserved_page(virt_to_page(pos));
5532 	}
5533 
5534 	if (pages && s)
5535 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5536 			s, pages << (PAGE_SHIFT - 10), start, end);
5537 
5538 	return pages;
5539 }
5540 EXPORT_SYMBOL(free_reserved_area);
5541 
5542 #ifdef	CONFIG_HIGHMEM
5543 void free_highmem_page(struct page *page)
5544 {
5545 	__free_reserved_page(page);
5546 	totalram_pages++;
5547 	page_zone(page)->managed_pages++;
5548 	totalhigh_pages++;
5549 }
5550 #endif
5551 
5552 
5553 void __init mem_init_print_info(const char *str)
5554 {
5555 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5556 	unsigned long init_code_size, init_data_size;
5557 
5558 	physpages = get_num_physpages();
5559 	codesize = _etext - _stext;
5560 	datasize = _edata - _sdata;
5561 	rosize = __end_rodata - __start_rodata;
5562 	bss_size = __bss_stop - __bss_start;
5563 	init_data_size = __init_end - __init_begin;
5564 	init_code_size = _einittext - _sinittext;
5565 
5566 	/*
5567 	 * Detect special cases and adjust section sizes accordingly:
5568 	 * 1) .init.* may be embedded into .data sections
5569 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5570 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5571 	 * 3) .rodata.* may be embedded into .text or .data sections.
5572 	 */
5573 #define adj_init_size(start, end, size, pos, adj) \
5574 	do { \
5575 		if (start <= pos && pos < end && size > adj) \
5576 			size -= adj; \
5577 	} while (0)
5578 
5579 	adj_init_size(__init_begin, __init_end, init_data_size,
5580 		     _sinittext, init_code_size);
5581 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5582 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5583 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5584 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5585 
5586 #undef	adj_init_size
5587 
5588 	pr_info("Memory: %luK/%luK available "
5589 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5590 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5591 #ifdef	CONFIG_HIGHMEM
5592 	       ", %luK highmem"
5593 #endif
5594 	       "%s%s)\n",
5595 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5596 	       codesize >> 10, datasize >> 10, rosize >> 10,
5597 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5598 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5599 	       totalcma_pages << (PAGE_SHIFT-10),
5600 #ifdef	CONFIG_HIGHMEM
5601 	       totalhigh_pages << (PAGE_SHIFT-10),
5602 #endif
5603 	       str ? ", " : "", str ? str : "");
5604 }
5605 
5606 /**
5607  * set_dma_reserve - set the specified number of pages reserved in the first zone
5608  * @new_dma_reserve: The number of pages to mark reserved
5609  *
5610  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5611  * In the DMA zone, a significant percentage may be consumed by kernel image
5612  * and other unfreeable allocations which can skew the watermarks badly. This
5613  * function may optionally be used to account for unfreeable pages in the
5614  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5615  * smaller per-cpu batchsize.
5616  */
5617 void __init set_dma_reserve(unsigned long new_dma_reserve)
5618 {
5619 	dma_reserve = new_dma_reserve;
5620 }
5621 
5622 void __init free_area_init(unsigned long *zones_size)
5623 {
5624 	free_area_init_node(0, zones_size,
5625 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5626 }
5627 
5628 static int page_alloc_cpu_notify(struct notifier_block *self,
5629 				 unsigned long action, void *hcpu)
5630 {
5631 	int cpu = (unsigned long)hcpu;
5632 
5633 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5634 		lru_add_drain_cpu(cpu);
5635 		drain_pages(cpu);
5636 
5637 		/*
5638 		 * Spill the event counters of the dead processor
5639 		 * into the current processors event counters.
5640 		 * This artificially elevates the count of the current
5641 		 * processor.
5642 		 */
5643 		vm_events_fold_cpu(cpu);
5644 
5645 		/*
5646 		 * Zero the differential counters of the dead processor
5647 		 * so that the vm statistics are consistent.
5648 		 *
5649 		 * This is only okay since the processor is dead and cannot
5650 		 * race with what we are doing.
5651 		 */
5652 		cpu_vm_stats_fold(cpu);
5653 	}
5654 	return NOTIFY_OK;
5655 }
5656 
5657 void __init page_alloc_init(void)
5658 {
5659 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5660 }
5661 
5662 /*
5663  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5664  *	or min_free_kbytes changes.
5665  */
5666 static void calculate_totalreserve_pages(void)
5667 {
5668 	struct pglist_data *pgdat;
5669 	unsigned long reserve_pages = 0;
5670 	enum zone_type i, j;
5671 
5672 	for_each_online_pgdat(pgdat) {
5673 		for (i = 0; i < MAX_NR_ZONES; i++) {
5674 			struct zone *zone = pgdat->node_zones + i;
5675 			long max = 0;
5676 
5677 			/* Find valid and maximum lowmem_reserve in the zone */
5678 			for (j = i; j < MAX_NR_ZONES; j++) {
5679 				if (zone->lowmem_reserve[j] > max)
5680 					max = zone->lowmem_reserve[j];
5681 			}
5682 
5683 			/* we treat the high watermark as reserved pages. */
5684 			max += high_wmark_pages(zone);
5685 
5686 			if (max > zone->managed_pages)
5687 				max = zone->managed_pages;
5688 			reserve_pages += max;
5689 			/*
5690 			 * Lowmem reserves are not available to
5691 			 * GFP_HIGHUSER page cache allocations and
5692 			 * kswapd tries to balance zones to their high
5693 			 * watermark.  As a result, neither should be
5694 			 * regarded as dirtyable memory, to prevent a
5695 			 * situation where reclaim has to clean pages
5696 			 * in order to balance the zones.
5697 			 */
5698 			zone->dirty_balance_reserve = max;
5699 		}
5700 	}
5701 	dirty_balance_reserve = reserve_pages;
5702 	totalreserve_pages = reserve_pages;
5703 }
5704 
5705 /*
5706  * setup_per_zone_lowmem_reserve - called whenever
5707  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5708  *	has a correct pages reserved value, so an adequate number of
5709  *	pages are left in the zone after a successful __alloc_pages().
5710  */
5711 static void setup_per_zone_lowmem_reserve(void)
5712 {
5713 	struct pglist_data *pgdat;
5714 	enum zone_type j, idx;
5715 
5716 	for_each_online_pgdat(pgdat) {
5717 		for (j = 0; j < MAX_NR_ZONES; j++) {
5718 			struct zone *zone = pgdat->node_zones + j;
5719 			unsigned long managed_pages = zone->managed_pages;
5720 
5721 			zone->lowmem_reserve[j] = 0;
5722 
5723 			idx = j;
5724 			while (idx) {
5725 				struct zone *lower_zone;
5726 
5727 				idx--;
5728 
5729 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5730 					sysctl_lowmem_reserve_ratio[idx] = 1;
5731 
5732 				lower_zone = pgdat->node_zones + idx;
5733 				lower_zone->lowmem_reserve[j] = managed_pages /
5734 					sysctl_lowmem_reserve_ratio[idx];
5735 				managed_pages += lower_zone->managed_pages;
5736 			}
5737 		}
5738 	}
5739 
5740 	/* update totalreserve_pages */
5741 	calculate_totalreserve_pages();
5742 }
5743 
5744 static void __setup_per_zone_wmarks(void)
5745 {
5746 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5747 	unsigned long lowmem_pages = 0;
5748 	struct zone *zone;
5749 	unsigned long flags;
5750 
5751 	/* Calculate total number of !ZONE_HIGHMEM pages */
5752 	for_each_zone(zone) {
5753 		if (!is_highmem(zone))
5754 			lowmem_pages += zone->managed_pages;
5755 	}
5756 
5757 	for_each_zone(zone) {
5758 		u64 tmp;
5759 
5760 		spin_lock_irqsave(&zone->lock, flags);
5761 		tmp = (u64)pages_min * zone->managed_pages;
5762 		do_div(tmp, lowmem_pages);
5763 		if (is_highmem(zone)) {
5764 			/*
5765 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5766 			 * need highmem pages, so cap pages_min to a small
5767 			 * value here.
5768 			 *
5769 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5770 			 * deltas controls asynch page reclaim, and so should
5771 			 * not be capped for highmem.
5772 			 */
5773 			unsigned long min_pages;
5774 
5775 			min_pages = zone->managed_pages / 1024;
5776 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5777 			zone->watermark[WMARK_MIN] = min_pages;
5778 		} else {
5779 			/*
5780 			 * If it's a lowmem zone, reserve a number of pages
5781 			 * proportionate to the zone's size.
5782 			 */
5783 			zone->watermark[WMARK_MIN] = tmp;
5784 		}
5785 
5786 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5787 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5788 
5789 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5790 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5791 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5792 
5793 		setup_zone_migrate_reserve(zone);
5794 		spin_unlock_irqrestore(&zone->lock, flags);
5795 	}
5796 
5797 	/* update totalreserve_pages */
5798 	calculate_totalreserve_pages();
5799 }
5800 
5801 /**
5802  * setup_per_zone_wmarks - called when min_free_kbytes changes
5803  * or when memory is hot-{added|removed}
5804  *
5805  * Ensures that the watermark[min,low,high] values for each zone are set
5806  * correctly with respect to min_free_kbytes.
5807  */
5808 void setup_per_zone_wmarks(void)
5809 {
5810 	mutex_lock(&zonelists_mutex);
5811 	__setup_per_zone_wmarks();
5812 	mutex_unlock(&zonelists_mutex);
5813 }
5814 
5815 /*
5816  * The inactive anon list should be small enough that the VM never has to
5817  * do too much work, but large enough that each inactive page has a chance
5818  * to be referenced again before it is swapped out.
5819  *
5820  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5821  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5822  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5823  * the anonymous pages are kept on the inactive list.
5824  *
5825  * total     target    max
5826  * memory    ratio     inactive anon
5827  * -------------------------------------
5828  *   10MB       1         5MB
5829  *  100MB       1        50MB
5830  *    1GB       3       250MB
5831  *   10GB      10       0.9GB
5832  *  100GB      31         3GB
5833  *    1TB     101        10GB
5834  *   10TB     320        32GB
5835  */
5836 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5837 {
5838 	unsigned int gb, ratio;
5839 
5840 	/* Zone size in gigabytes */
5841 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5842 	if (gb)
5843 		ratio = int_sqrt(10 * gb);
5844 	else
5845 		ratio = 1;
5846 
5847 	zone->inactive_ratio = ratio;
5848 }
5849 
5850 static void __meminit setup_per_zone_inactive_ratio(void)
5851 {
5852 	struct zone *zone;
5853 
5854 	for_each_zone(zone)
5855 		calculate_zone_inactive_ratio(zone);
5856 }
5857 
5858 /*
5859  * Initialise min_free_kbytes.
5860  *
5861  * For small machines we want it small (128k min).  For large machines
5862  * we want it large (64MB max).  But it is not linear, because network
5863  * bandwidth does not increase linearly with machine size.  We use
5864  *
5865  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5866  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5867  *
5868  * which yields
5869  *
5870  * 16MB:	512k
5871  * 32MB:	724k
5872  * 64MB:	1024k
5873  * 128MB:	1448k
5874  * 256MB:	2048k
5875  * 512MB:	2896k
5876  * 1024MB:	4096k
5877  * 2048MB:	5792k
5878  * 4096MB:	8192k
5879  * 8192MB:	11584k
5880  * 16384MB:	16384k
5881  */
5882 int __meminit init_per_zone_wmark_min(void)
5883 {
5884 	unsigned long lowmem_kbytes;
5885 	int new_min_free_kbytes;
5886 
5887 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5888 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5889 
5890 	if (new_min_free_kbytes > user_min_free_kbytes) {
5891 		min_free_kbytes = new_min_free_kbytes;
5892 		if (min_free_kbytes < 128)
5893 			min_free_kbytes = 128;
5894 		if (min_free_kbytes > 65536)
5895 			min_free_kbytes = 65536;
5896 	} else {
5897 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5898 				new_min_free_kbytes, user_min_free_kbytes);
5899 	}
5900 	setup_per_zone_wmarks();
5901 	refresh_zone_stat_thresholds();
5902 	setup_per_zone_lowmem_reserve();
5903 	setup_per_zone_inactive_ratio();
5904 	return 0;
5905 }
5906 module_init(init_per_zone_wmark_min)
5907 
5908 /*
5909  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5910  *	that we can call two helper functions whenever min_free_kbytes
5911  *	changes.
5912  */
5913 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5914 	void __user *buffer, size_t *length, loff_t *ppos)
5915 {
5916 	int rc;
5917 
5918 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5919 	if (rc)
5920 		return rc;
5921 
5922 	if (write) {
5923 		user_min_free_kbytes = min_free_kbytes;
5924 		setup_per_zone_wmarks();
5925 	}
5926 	return 0;
5927 }
5928 
5929 #ifdef CONFIG_NUMA
5930 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5931 	void __user *buffer, size_t *length, loff_t *ppos)
5932 {
5933 	struct zone *zone;
5934 	int rc;
5935 
5936 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5937 	if (rc)
5938 		return rc;
5939 
5940 	for_each_zone(zone)
5941 		zone->min_unmapped_pages = (zone->managed_pages *
5942 				sysctl_min_unmapped_ratio) / 100;
5943 	return 0;
5944 }
5945 
5946 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5947 	void __user *buffer, size_t *length, loff_t *ppos)
5948 {
5949 	struct zone *zone;
5950 	int rc;
5951 
5952 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5953 	if (rc)
5954 		return rc;
5955 
5956 	for_each_zone(zone)
5957 		zone->min_slab_pages = (zone->managed_pages *
5958 				sysctl_min_slab_ratio) / 100;
5959 	return 0;
5960 }
5961 #endif
5962 
5963 /*
5964  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5965  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5966  *	whenever sysctl_lowmem_reserve_ratio changes.
5967  *
5968  * The reserve ratio obviously has absolutely no relation with the
5969  * minimum watermarks. The lowmem reserve ratio can only make sense
5970  * if in function of the boot time zone sizes.
5971  */
5972 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5973 	void __user *buffer, size_t *length, loff_t *ppos)
5974 {
5975 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5976 	setup_per_zone_lowmem_reserve();
5977 	return 0;
5978 }
5979 
5980 /*
5981  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5982  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5983  * pagelist can have before it gets flushed back to buddy allocator.
5984  */
5985 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5986 	void __user *buffer, size_t *length, loff_t *ppos)
5987 {
5988 	struct zone *zone;
5989 	int old_percpu_pagelist_fraction;
5990 	int ret;
5991 
5992 	mutex_lock(&pcp_batch_high_lock);
5993 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5994 
5995 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5996 	if (!write || ret < 0)
5997 		goto out;
5998 
5999 	/* Sanity checking to avoid pcp imbalance */
6000 	if (percpu_pagelist_fraction &&
6001 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6002 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6003 		ret = -EINVAL;
6004 		goto out;
6005 	}
6006 
6007 	/* No change? */
6008 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6009 		goto out;
6010 
6011 	for_each_populated_zone(zone) {
6012 		unsigned int cpu;
6013 
6014 		for_each_possible_cpu(cpu)
6015 			pageset_set_high_and_batch(zone,
6016 					per_cpu_ptr(zone->pageset, cpu));
6017 	}
6018 out:
6019 	mutex_unlock(&pcp_batch_high_lock);
6020 	return ret;
6021 }
6022 
6023 int hashdist = HASHDIST_DEFAULT;
6024 
6025 #ifdef CONFIG_NUMA
6026 static int __init set_hashdist(char *str)
6027 {
6028 	if (!str)
6029 		return 0;
6030 	hashdist = simple_strtoul(str, &str, 0);
6031 	return 1;
6032 }
6033 __setup("hashdist=", set_hashdist);
6034 #endif
6035 
6036 /*
6037  * allocate a large system hash table from bootmem
6038  * - it is assumed that the hash table must contain an exact power-of-2
6039  *   quantity of entries
6040  * - limit is the number of hash buckets, not the total allocation size
6041  */
6042 void *__init alloc_large_system_hash(const char *tablename,
6043 				     unsigned long bucketsize,
6044 				     unsigned long numentries,
6045 				     int scale,
6046 				     int flags,
6047 				     unsigned int *_hash_shift,
6048 				     unsigned int *_hash_mask,
6049 				     unsigned long low_limit,
6050 				     unsigned long high_limit)
6051 {
6052 	unsigned long long max = high_limit;
6053 	unsigned long log2qty, size;
6054 	void *table = NULL;
6055 
6056 	/* allow the kernel cmdline to have a say */
6057 	if (!numentries) {
6058 		/* round applicable memory size up to nearest megabyte */
6059 		numentries = nr_kernel_pages;
6060 
6061 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6062 		if (PAGE_SHIFT < 20)
6063 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6064 
6065 		/* limit to 1 bucket per 2^scale bytes of low memory */
6066 		if (scale > PAGE_SHIFT)
6067 			numentries >>= (scale - PAGE_SHIFT);
6068 		else
6069 			numentries <<= (PAGE_SHIFT - scale);
6070 
6071 		/* Make sure we've got at least a 0-order allocation.. */
6072 		if (unlikely(flags & HASH_SMALL)) {
6073 			/* Makes no sense without HASH_EARLY */
6074 			WARN_ON(!(flags & HASH_EARLY));
6075 			if (!(numentries >> *_hash_shift)) {
6076 				numentries = 1UL << *_hash_shift;
6077 				BUG_ON(!numentries);
6078 			}
6079 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6080 			numentries = PAGE_SIZE / bucketsize;
6081 	}
6082 	numentries = roundup_pow_of_two(numentries);
6083 
6084 	/* limit allocation size to 1/16 total memory by default */
6085 	if (max == 0) {
6086 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6087 		do_div(max, bucketsize);
6088 	}
6089 	max = min(max, 0x80000000ULL);
6090 
6091 	if (numentries < low_limit)
6092 		numentries = low_limit;
6093 	if (numentries > max)
6094 		numentries = max;
6095 
6096 	log2qty = ilog2(numentries);
6097 
6098 	do {
6099 		size = bucketsize << log2qty;
6100 		if (flags & HASH_EARLY)
6101 			table = memblock_virt_alloc_nopanic(size, 0);
6102 		else if (hashdist)
6103 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6104 		else {
6105 			/*
6106 			 * If bucketsize is not a power-of-two, we may free
6107 			 * some pages at the end of hash table which
6108 			 * alloc_pages_exact() automatically does
6109 			 */
6110 			if (get_order(size) < MAX_ORDER) {
6111 				table = alloc_pages_exact(size, GFP_ATOMIC);
6112 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6113 			}
6114 		}
6115 	} while (!table && size > PAGE_SIZE && --log2qty);
6116 
6117 	if (!table)
6118 		panic("Failed to allocate %s hash table\n", tablename);
6119 
6120 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6121 	       tablename,
6122 	       (1UL << log2qty),
6123 	       ilog2(size) - PAGE_SHIFT,
6124 	       size);
6125 
6126 	if (_hash_shift)
6127 		*_hash_shift = log2qty;
6128 	if (_hash_mask)
6129 		*_hash_mask = (1 << log2qty) - 1;
6130 
6131 	return table;
6132 }
6133 
6134 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6135 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6136 							unsigned long pfn)
6137 {
6138 #ifdef CONFIG_SPARSEMEM
6139 	return __pfn_to_section(pfn)->pageblock_flags;
6140 #else
6141 	return zone->pageblock_flags;
6142 #endif /* CONFIG_SPARSEMEM */
6143 }
6144 
6145 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6146 {
6147 #ifdef CONFIG_SPARSEMEM
6148 	pfn &= (PAGES_PER_SECTION-1);
6149 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6150 #else
6151 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6152 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6153 #endif /* CONFIG_SPARSEMEM */
6154 }
6155 
6156 /**
6157  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6158  * @page: The page within the block of interest
6159  * @pfn: The target page frame number
6160  * @end_bitidx: The last bit of interest to retrieve
6161  * @mask: mask of bits that the caller is interested in
6162  *
6163  * Return: pageblock_bits flags
6164  */
6165 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6166 					unsigned long end_bitidx,
6167 					unsigned long mask)
6168 {
6169 	struct zone *zone;
6170 	unsigned long *bitmap;
6171 	unsigned long bitidx, word_bitidx;
6172 	unsigned long word;
6173 
6174 	zone = page_zone(page);
6175 	bitmap = get_pageblock_bitmap(zone, pfn);
6176 	bitidx = pfn_to_bitidx(zone, pfn);
6177 	word_bitidx = bitidx / BITS_PER_LONG;
6178 	bitidx &= (BITS_PER_LONG-1);
6179 
6180 	word = bitmap[word_bitidx];
6181 	bitidx += end_bitidx;
6182 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6183 }
6184 
6185 /**
6186  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6187  * @page: The page within the block of interest
6188  * @flags: The flags to set
6189  * @pfn: The target page frame number
6190  * @end_bitidx: The last bit of interest
6191  * @mask: mask of bits that the caller is interested in
6192  */
6193 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6194 					unsigned long pfn,
6195 					unsigned long end_bitidx,
6196 					unsigned long mask)
6197 {
6198 	struct zone *zone;
6199 	unsigned long *bitmap;
6200 	unsigned long bitidx, word_bitidx;
6201 	unsigned long old_word, word;
6202 
6203 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6204 
6205 	zone = page_zone(page);
6206 	bitmap = get_pageblock_bitmap(zone, pfn);
6207 	bitidx = pfn_to_bitidx(zone, pfn);
6208 	word_bitidx = bitidx / BITS_PER_LONG;
6209 	bitidx &= (BITS_PER_LONG-1);
6210 
6211 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6212 
6213 	bitidx += end_bitidx;
6214 	mask <<= (BITS_PER_LONG - bitidx - 1);
6215 	flags <<= (BITS_PER_LONG - bitidx - 1);
6216 
6217 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6218 	for (;;) {
6219 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6220 		if (word == old_word)
6221 			break;
6222 		word = old_word;
6223 	}
6224 }
6225 
6226 /*
6227  * This function checks whether pageblock includes unmovable pages or not.
6228  * If @count is not zero, it is okay to include less @count unmovable pages
6229  *
6230  * PageLRU check without isolation or lru_lock could race so that
6231  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6232  * expect this function should be exact.
6233  */
6234 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6235 			 bool skip_hwpoisoned_pages)
6236 {
6237 	unsigned long pfn, iter, found;
6238 	int mt;
6239 
6240 	/*
6241 	 * For avoiding noise data, lru_add_drain_all() should be called
6242 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6243 	 */
6244 	if (zone_idx(zone) == ZONE_MOVABLE)
6245 		return false;
6246 	mt = get_pageblock_migratetype(page);
6247 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6248 		return false;
6249 
6250 	pfn = page_to_pfn(page);
6251 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6252 		unsigned long check = pfn + iter;
6253 
6254 		if (!pfn_valid_within(check))
6255 			continue;
6256 
6257 		page = pfn_to_page(check);
6258 
6259 		/*
6260 		 * Hugepages are not in LRU lists, but they're movable.
6261 		 * We need not scan over tail pages bacause we don't
6262 		 * handle each tail page individually in migration.
6263 		 */
6264 		if (PageHuge(page)) {
6265 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6266 			continue;
6267 		}
6268 
6269 		/*
6270 		 * We can't use page_count without pin a page
6271 		 * because another CPU can free compound page.
6272 		 * This check already skips compound tails of THP
6273 		 * because their page->_count is zero at all time.
6274 		 */
6275 		if (!atomic_read(&page->_count)) {
6276 			if (PageBuddy(page))
6277 				iter += (1 << page_order(page)) - 1;
6278 			continue;
6279 		}
6280 
6281 		/*
6282 		 * The HWPoisoned page may be not in buddy system, and
6283 		 * page_count() is not 0.
6284 		 */
6285 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6286 			continue;
6287 
6288 		if (!PageLRU(page))
6289 			found++;
6290 		/*
6291 		 * If there are RECLAIMABLE pages, we need to check
6292 		 * it.  But now, memory offline itself doesn't call
6293 		 * shrink_node_slabs() and it still to be fixed.
6294 		 */
6295 		/*
6296 		 * If the page is not RAM, page_count()should be 0.
6297 		 * we don't need more check. This is an _used_ not-movable page.
6298 		 *
6299 		 * The problematic thing here is PG_reserved pages. PG_reserved
6300 		 * is set to both of a memory hole page and a _used_ kernel
6301 		 * page at boot.
6302 		 */
6303 		if (found > count)
6304 			return true;
6305 	}
6306 	return false;
6307 }
6308 
6309 bool is_pageblock_removable_nolock(struct page *page)
6310 {
6311 	struct zone *zone;
6312 	unsigned long pfn;
6313 
6314 	/*
6315 	 * We have to be careful here because we are iterating over memory
6316 	 * sections which are not zone aware so we might end up outside of
6317 	 * the zone but still within the section.
6318 	 * We have to take care about the node as well. If the node is offline
6319 	 * its NODE_DATA will be NULL - see page_zone.
6320 	 */
6321 	if (!node_online(page_to_nid(page)))
6322 		return false;
6323 
6324 	zone = page_zone(page);
6325 	pfn = page_to_pfn(page);
6326 	if (!zone_spans_pfn(zone, pfn))
6327 		return false;
6328 
6329 	return !has_unmovable_pages(zone, page, 0, true);
6330 }
6331 
6332 #ifdef CONFIG_CMA
6333 
6334 static unsigned long pfn_max_align_down(unsigned long pfn)
6335 {
6336 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6337 			     pageblock_nr_pages) - 1);
6338 }
6339 
6340 static unsigned long pfn_max_align_up(unsigned long pfn)
6341 {
6342 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6343 				pageblock_nr_pages));
6344 }
6345 
6346 /* [start, end) must belong to a single zone. */
6347 static int __alloc_contig_migrate_range(struct compact_control *cc,
6348 					unsigned long start, unsigned long end)
6349 {
6350 	/* This function is based on compact_zone() from compaction.c. */
6351 	unsigned long nr_reclaimed;
6352 	unsigned long pfn = start;
6353 	unsigned int tries = 0;
6354 	int ret = 0;
6355 
6356 	migrate_prep();
6357 
6358 	while (pfn < end || !list_empty(&cc->migratepages)) {
6359 		if (fatal_signal_pending(current)) {
6360 			ret = -EINTR;
6361 			break;
6362 		}
6363 
6364 		if (list_empty(&cc->migratepages)) {
6365 			cc->nr_migratepages = 0;
6366 			pfn = isolate_migratepages_range(cc, pfn, end);
6367 			if (!pfn) {
6368 				ret = -EINTR;
6369 				break;
6370 			}
6371 			tries = 0;
6372 		} else if (++tries == 5) {
6373 			ret = ret < 0 ? ret : -EBUSY;
6374 			break;
6375 		}
6376 
6377 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6378 							&cc->migratepages);
6379 		cc->nr_migratepages -= nr_reclaimed;
6380 
6381 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6382 				    NULL, 0, cc->mode, MR_CMA);
6383 	}
6384 	if (ret < 0) {
6385 		putback_movable_pages(&cc->migratepages);
6386 		return ret;
6387 	}
6388 	return 0;
6389 }
6390 
6391 /**
6392  * alloc_contig_range() -- tries to allocate given range of pages
6393  * @start:	start PFN to allocate
6394  * @end:	one-past-the-last PFN to allocate
6395  * @migratetype:	migratetype of the underlaying pageblocks (either
6396  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6397  *			in range must have the same migratetype and it must
6398  *			be either of the two.
6399  *
6400  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6401  * aligned, however it's the caller's responsibility to guarantee that
6402  * we are the only thread that changes migrate type of pageblocks the
6403  * pages fall in.
6404  *
6405  * The PFN range must belong to a single zone.
6406  *
6407  * Returns zero on success or negative error code.  On success all
6408  * pages which PFN is in [start, end) are allocated for the caller and
6409  * need to be freed with free_contig_range().
6410  */
6411 int alloc_contig_range(unsigned long start, unsigned long end,
6412 		       unsigned migratetype)
6413 {
6414 	unsigned long outer_start, outer_end;
6415 	int ret = 0, order;
6416 
6417 	struct compact_control cc = {
6418 		.nr_migratepages = 0,
6419 		.order = -1,
6420 		.zone = page_zone(pfn_to_page(start)),
6421 		.mode = MIGRATE_SYNC,
6422 		.ignore_skip_hint = true,
6423 	};
6424 	INIT_LIST_HEAD(&cc.migratepages);
6425 
6426 	/*
6427 	 * What we do here is we mark all pageblocks in range as
6428 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6429 	 * have different sizes, and due to the way page allocator
6430 	 * work, we align the range to biggest of the two pages so
6431 	 * that page allocator won't try to merge buddies from
6432 	 * different pageblocks and change MIGRATE_ISOLATE to some
6433 	 * other migration type.
6434 	 *
6435 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6436 	 * migrate the pages from an unaligned range (ie. pages that
6437 	 * we are interested in).  This will put all the pages in
6438 	 * range back to page allocator as MIGRATE_ISOLATE.
6439 	 *
6440 	 * When this is done, we take the pages in range from page
6441 	 * allocator removing them from the buddy system.  This way
6442 	 * page allocator will never consider using them.
6443 	 *
6444 	 * This lets us mark the pageblocks back as
6445 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6446 	 * aligned range but not in the unaligned, original range are
6447 	 * put back to page allocator so that buddy can use them.
6448 	 */
6449 
6450 	ret = start_isolate_page_range(pfn_max_align_down(start),
6451 				       pfn_max_align_up(end), migratetype,
6452 				       false);
6453 	if (ret)
6454 		return ret;
6455 
6456 	ret = __alloc_contig_migrate_range(&cc, start, end);
6457 	if (ret)
6458 		goto done;
6459 
6460 	/*
6461 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6462 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6463 	 * more, all pages in [start, end) are free in page allocator.
6464 	 * What we are going to do is to allocate all pages from
6465 	 * [start, end) (that is remove them from page allocator).
6466 	 *
6467 	 * The only problem is that pages at the beginning and at the
6468 	 * end of interesting range may be not aligned with pages that
6469 	 * page allocator holds, ie. they can be part of higher order
6470 	 * pages.  Because of this, we reserve the bigger range and
6471 	 * once this is done free the pages we are not interested in.
6472 	 *
6473 	 * We don't have to hold zone->lock here because the pages are
6474 	 * isolated thus they won't get removed from buddy.
6475 	 */
6476 
6477 	lru_add_drain_all();
6478 	drain_all_pages(cc.zone);
6479 
6480 	order = 0;
6481 	outer_start = start;
6482 	while (!PageBuddy(pfn_to_page(outer_start))) {
6483 		if (++order >= MAX_ORDER) {
6484 			ret = -EBUSY;
6485 			goto done;
6486 		}
6487 		outer_start &= ~0UL << order;
6488 	}
6489 
6490 	/* Make sure the range is really isolated. */
6491 	if (test_pages_isolated(outer_start, end, false)) {
6492 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6493 			__func__, outer_start, end);
6494 		ret = -EBUSY;
6495 		goto done;
6496 	}
6497 
6498 	/* Grab isolated pages from freelists. */
6499 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6500 	if (!outer_end) {
6501 		ret = -EBUSY;
6502 		goto done;
6503 	}
6504 
6505 	/* Free head and tail (if any) */
6506 	if (start != outer_start)
6507 		free_contig_range(outer_start, start - outer_start);
6508 	if (end != outer_end)
6509 		free_contig_range(end, outer_end - end);
6510 
6511 done:
6512 	undo_isolate_page_range(pfn_max_align_down(start),
6513 				pfn_max_align_up(end), migratetype);
6514 	return ret;
6515 }
6516 
6517 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6518 {
6519 	unsigned int count = 0;
6520 
6521 	for (; nr_pages--; pfn++) {
6522 		struct page *page = pfn_to_page(pfn);
6523 
6524 		count += page_count(page) != 1;
6525 		__free_page(page);
6526 	}
6527 	WARN(count != 0, "%d pages are still in use!\n", count);
6528 }
6529 #endif
6530 
6531 #ifdef CONFIG_MEMORY_HOTPLUG
6532 /*
6533  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6534  * page high values need to be recalulated.
6535  */
6536 void __meminit zone_pcp_update(struct zone *zone)
6537 {
6538 	unsigned cpu;
6539 	mutex_lock(&pcp_batch_high_lock);
6540 	for_each_possible_cpu(cpu)
6541 		pageset_set_high_and_batch(zone,
6542 				per_cpu_ptr(zone->pageset, cpu));
6543 	mutex_unlock(&pcp_batch_high_lock);
6544 }
6545 #endif
6546 
6547 void zone_pcp_reset(struct zone *zone)
6548 {
6549 	unsigned long flags;
6550 	int cpu;
6551 	struct per_cpu_pageset *pset;
6552 
6553 	/* avoid races with drain_pages()  */
6554 	local_irq_save(flags);
6555 	if (zone->pageset != &boot_pageset) {
6556 		for_each_online_cpu(cpu) {
6557 			pset = per_cpu_ptr(zone->pageset, cpu);
6558 			drain_zonestat(zone, pset);
6559 		}
6560 		free_percpu(zone->pageset);
6561 		zone->pageset = &boot_pageset;
6562 	}
6563 	local_irq_restore(flags);
6564 }
6565 
6566 #ifdef CONFIG_MEMORY_HOTREMOVE
6567 /*
6568  * All pages in the range must be isolated before calling this.
6569  */
6570 void
6571 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6572 {
6573 	struct page *page;
6574 	struct zone *zone;
6575 	unsigned int order, i;
6576 	unsigned long pfn;
6577 	unsigned long flags;
6578 	/* find the first valid pfn */
6579 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6580 		if (pfn_valid(pfn))
6581 			break;
6582 	if (pfn == end_pfn)
6583 		return;
6584 	zone = page_zone(pfn_to_page(pfn));
6585 	spin_lock_irqsave(&zone->lock, flags);
6586 	pfn = start_pfn;
6587 	while (pfn < end_pfn) {
6588 		if (!pfn_valid(pfn)) {
6589 			pfn++;
6590 			continue;
6591 		}
6592 		page = pfn_to_page(pfn);
6593 		/*
6594 		 * The HWPoisoned page may be not in buddy system, and
6595 		 * page_count() is not 0.
6596 		 */
6597 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6598 			pfn++;
6599 			SetPageReserved(page);
6600 			continue;
6601 		}
6602 
6603 		BUG_ON(page_count(page));
6604 		BUG_ON(!PageBuddy(page));
6605 		order = page_order(page);
6606 #ifdef CONFIG_DEBUG_VM
6607 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6608 		       pfn, 1 << order, end_pfn);
6609 #endif
6610 		list_del(&page->lru);
6611 		rmv_page_order(page);
6612 		zone->free_area[order].nr_free--;
6613 		for (i = 0; i < (1 << order); i++)
6614 			SetPageReserved((page+i));
6615 		pfn += (1 << order);
6616 	}
6617 	spin_unlock_irqrestore(&zone->lock, flags);
6618 }
6619 #endif
6620 
6621 #ifdef CONFIG_MEMORY_FAILURE
6622 bool is_free_buddy_page(struct page *page)
6623 {
6624 	struct zone *zone = page_zone(page);
6625 	unsigned long pfn = page_to_pfn(page);
6626 	unsigned long flags;
6627 	unsigned int order;
6628 
6629 	spin_lock_irqsave(&zone->lock, flags);
6630 	for (order = 0; order < MAX_ORDER; order++) {
6631 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6632 
6633 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6634 			break;
6635 	}
6636 	spin_unlock_irqrestore(&zone->lock, flags);
6637 
6638 	return order < MAX_ORDER;
6639 }
6640 #endif
6641