1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 #include <trace/events/kmem.h> 52 53 #include <asm/tlbflush.h> 54 #include <asm/div64.h> 55 #include "internal.h" 56 57 /* 58 * Array of node states. 59 */ 60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 61 [N_POSSIBLE] = NODE_MASK_ALL, 62 [N_ONLINE] = { { [0] = 1UL } }, 63 #ifndef CONFIG_NUMA 64 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 65 #ifdef CONFIG_HIGHMEM 66 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 67 #endif 68 [N_CPU] = { { [0] = 1UL } }, 69 #endif /* NUMA */ 70 }; 71 EXPORT_SYMBOL(node_states); 72 73 unsigned long totalram_pages __read_mostly; 74 unsigned long totalreserve_pages __read_mostly; 75 int percpu_pagelist_fraction; 76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 77 78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 79 int pageblock_order __read_mostly; 80 #endif 81 82 static void __free_pages_ok(struct page *page, unsigned int order); 83 84 /* 85 * results with 256, 32 in the lowmem_reserve sysctl: 86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 87 * 1G machine -> (16M dma, 784M normal, 224M high) 88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 91 * 92 * TBD: should special case ZONE_DMA32 machines here - in those we normally 93 * don't need any ZONE_NORMAL reservation 94 */ 95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 96 #ifdef CONFIG_ZONE_DMA 97 256, 98 #endif 99 #ifdef CONFIG_ZONE_DMA32 100 256, 101 #endif 102 #ifdef CONFIG_HIGHMEM 103 32, 104 #endif 105 32, 106 }; 107 108 EXPORT_SYMBOL(totalram_pages); 109 110 static char * const zone_names[MAX_NR_ZONES] = { 111 #ifdef CONFIG_ZONE_DMA 112 "DMA", 113 #endif 114 #ifdef CONFIG_ZONE_DMA32 115 "DMA32", 116 #endif 117 "Normal", 118 #ifdef CONFIG_HIGHMEM 119 "HighMem", 120 #endif 121 "Movable", 122 }; 123 124 int min_free_kbytes = 1024; 125 126 static unsigned long __meminitdata nr_kernel_pages; 127 static unsigned long __meminitdata nr_all_pages; 128 static unsigned long __meminitdata dma_reserve; 129 130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 131 /* 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 133 * ranges of memory (RAM) that may be registered with add_active_range(). 134 * Ranges passed to add_active_range() will be merged if possible 135 * so the number of times add_active_range() can be called is 136 * related to the number of nodes and the number of holes 137 */ 138 #ifdef CONFIG_MAX_ACTIVE_REGIONS 139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 141 #else 142 #if MAX_NUMNODES >= 32 143 /* If there can be many nodes, allow up to 50 holes per node */ 144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 145 #else 146 /* By default, allow up to 256 distinct regions */ 147 #define MAX_ACTIVE_REGIONS 256 148 #endif 149 #endif 150 151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 152 static int __meminitdata nr_nodemap_entries; 153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 155 static unsigned long __initdata required_kernelcore; 156 static unsigned long __initdata required_movablecore; 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 158 159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 160 int movable_zone; 161 EXPORT_SYMBOL(movable_zone); 162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 163 164 #if MAX_NUMNODES > 1 165 int nr_node_ids __read_mostly = MAX_NUMNODES; 166 int nr_online_nodes __read_mostly = 1; 167 EXPORT_SYMBOL(nr_node_ids); 168 EXPORT_SYMBOL(nr_online_nodes); 169 #endif 170 171 int page_group_by_mobility_disabled __read_mostly; 172 173 static void set_pageblock_migratetype(struct page *page, int migratetype) 174 { 175 176 if (unlikely(page_group_by_mobility_disabled)) 177 migratetype = MIGRATE_UNMOVABLE; 178 179 set_pageblock_flags_group(page, (unsigned long)migratetype, 180 PB_migrate, PB_migrate_end); 181 } 182 183 bool oom_killer_disabled __read_mostly; 184 185 #ifdef CONFIG_DEBUG_VM 186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 187 { 188 int ret = 0; 189 unsigned seq; 190 unsigned long pfn = page_to_pfn(page); 191 192 do { 193 seq = zone_span_seqbegin(zone); 194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 195 ret = 1; 196 else if (pfn < zone->zone_start_pfn) 197 ret = 1; 198 } while (zone_span_seqretry(zone, seq)); 199 200 return ret; 201 } 202 203 static int page_is_consistent(struct zone *zone, struct page *page) 204 { 205 if (!pfn_valid_within(page_to_pfn(page))) 206 return 0; 207 if (zone != page_zone(page)) 208 return 0; 209 210 return 1; 211 } 212 /* 213 * Temporary debugging check for pages not lying within a given zone. 214 */ 215 static int bad_range(struct zone *zone, struct page *page) 216 { 217 if (page_outside_zone_boundaries(zone, page)) 218 return 1; 219 if (!page_is_consistent(zone, page)) 220 return 1; 221 222 return 0; 223 } 224 #else 225 static inline int bad_range(struct zone *zone, struct page *page) 226 { 227 return 0; 228 } 229 #endif 230 231 static void bad_page(struct page *page) 232 { 233 static unsigned long resume; 234 static unsigned long nr_shown; 235 static unsigned long nr_unshown; 236 237 /* Don't complain about poisoned pages */ 238 if (PageHWPoison(page)) { 239 __ClearPageBuddy(page); 240 return; 241 } 242 243 /* 244 * Allow a burst of 60 reports, then keep quiet for that minute; 245 * or allow a steady drip of one report per second. 246 */ 247 if (nr_shown == 60) { 248 if (time_before(jiffies, resume)) { 249 nr_unshown++; 250 goto out; 251 } 252 if (nr_unshown) { 253 printk(KERN_ALERT 254 "BUG: Bad page state: %lu messages suppressed\n", 255 nr_unshown); 256 nr_unshown = 0; 257 } 258 nr_shown = 0; 259 } 260 if (nr_shown++ == 0) 261 resume = jiffies + 60 * HZ; 262 263 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 264 current->comm, page_to_pfn(page)); 265 printk(KERN_ALERT 266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 267 page, (void *)page->flags, page_count(page), 268 page_mapcount(page), page->mapping, page->index); 269 270 dump_stack(); 271 out: 272 /* Leave bad fields for debug, except PageBuddy could make trouble */ 273 __ClearPageBuddy(page); 274 add_taint(TAINT_BAD_PAGE); 275 } 276 277 /* 278 * Higher-order pages are called "compound pages". They are structured thusly: 279 * 280 * The first PAGE_SIZE page is called the "head page". 281 * 282 * The remaining PAGE_SIZE pages are called "tail pages". 283 * 284 * All pages have PG_compound set. All pages have their ->private pointing at 285 * the head page (even the head page has this). 286 * 287 * The first tail page's ->lru.next holds the address of the compound page's 288 * put_page() function. Its ->lru.prev holds the order of allocation. 289 * This usage means that zero-order pages may not be compound. 290 */ 291 292 static void free_compound_page(struct page *page) 293 { 294 __free_pages_ok(page, compound_order(page)); 295 } 296 297 void prep_compound_page(struct page *page, unsigned long order) 298 { 299 int i; 300 int nr_pages = 1 << order; 301 302 set_compound_page_dtor(page, free_compound_page); 303 set_compound_order(page, order); 304 __SetPageHead(page); 305 for (i = 1; i < nr_pages; i++) { 306 struct page *p = page + i; 307 308 __SetPageTail(p); 309 p->first_page = page; 310 } 311 } 312 313 static int destroy_compound_page(struct page *page, unsigned long order) 314 { 315 int i; 316 int nr_pages = 1 << order; 317 int bad = 0; 318 319 if (unlikely(compound_order(page) != order) || 320 unlikely(!PageHead(page))) { 321 bad_page(page); 322 bad++; 323 } 324 325 __ClearPageHead(page); 326 327 for (i = 1; i < nr_pages; i++) { 328 struct page *p = page + i; 329 330 if (unlikely(!PageTail(p) || (p->first_page != page))) { 331 bad_page(page); 332 bad++; 333 } 334 __ClearPageTail(p); 335 } 336 337 return bad; 338 } 339 340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 341 { 342 int i; 343 344 /* 345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 346 * and __GFP_HIGHMEM from hard or soft interrupt context. 347 */ 348 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 349 for (i = 0; i < (1 << order); i++) 350 clear_highpage(page + i); 351 } 352 353 static inline void set_page_order(struct page *page, int order) 354 { 355 set_page_private(page, order); 356 __SetPageBuddy(page); 357 } 358 359 static inline void rmv_page_order(struct page *page) 360 { 361 __ClearPageBuddy(page); 362 set_page_private(page, 0); 363 } 364 365 /* 366 * Locate the struct page for both the matching buddy in our 367 * pair (buddy1) and the combined O(n+1) page they form (page). 368 * 369 * 1) Any buddy B1 will have an order O twin B2 which satisfies 370 * the following equation: 371 * B2 = B1 ^ (1 << O) 372 * For example, if the starting buddy (buddy2) is #8 its order 373 * 1 buddy is #10: 374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 375 * 376 * 2) Any buddy B will have an order O+1 parent P which 377 * satisfies the following equation: 378 * P = B & ~(1 << O) 379 * 380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 381 */ 382 static inline struct page * 383 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 384 { 385 unsigned long buddy_idx = page_idx ^ (1 << order); 386 387 return page + (buddy_idx - page_idx); 388 } 389 390 static inline unsigned long 391 __find_combined_index(unsigned long page_idx, unsigned int order) 392 { 393 return (page_idx & ~(1 << order)); 394 } 395 396 /* 397 * This function checks whether a page is free && is the buddy 398 * we can do coalesce a page and its buddy if 399 * (a) the buddy is not in a hole && 400 * (b) the buddy is in the buddy system && 401 * (c) a page and its buddy have the same order && 402 * (d) a page and its buddy are in the same zone. 403 * 404 * For recording whether a page is in the buddy system, we use PG_buddy. 405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 406 * 407 * For recording page's order, we use page_private(page). 408 */ 409 static inline int page_is_buddy(struct page *page, struct page *buddy, 410 int order) 411 { 412 if (!pfn_valid_within(page_to_pfn(buddy))) 413 return 0; 414 415 if (page_zone_id(page) != page_zone_id(buddy)) 416 return 0; 417 418 if (PageBuddy(buddy) && page_order(buddy) == order) { 419 VM_BUG_ON(page_count(buddy) != 0); 420 return 1; 421 } 422 return 0; 423 } 424 425 /* 426 * Freeing function for a buddy system allocator. 427 * 428 * The concept of a buddy system is to maintain direct-mapped table 429 * (containing bit values) for memory blocks of various "orders". 430 * The bottom level table contains the map for the smallest allocatable 431 * units of memory (here, pages), and each level above it describes 432 * pairs of units from the levels below, hence, "buddies". 433 * At a high level, all that happens here is marking the table entry 434 * at the bottom level available, and propagating the changes upward 435 * as necessary, plus some accounting needed to play nicely with other 436 * parts of the VM system. 437 * At each level, we keep a list of pages, which are heads of continuous 438 * free pages of length of (1 << order) and marked with PG_buddy. Page's 439 * order is recorded in page_private(page) field. 440 * So when we are allocating or freeing one, we can derive the state of the 441 * other. That is, if we allocate a small block, and both were 442 * free, the remainder of the region must be split into blocks. 443 * If a block is freed, and its buddy is also free, then this 444 * triggers coalescing into a block of larger size. 445 * 446 * -- wli 447 */ 448 449 static inline void __free_one_page(struct page *page, 450 struct zone *zone, unsigned int order, 451 int migratetype) 452 { 453 unsigned long page_idx; 454 455 if (unlikely(PageCompound(page))) 456 if (unlikely(destroy_compound_page(page, order))) 457 return; 458 459 VM_BUG_ON(migratetype == -1); 460 461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 462 463 VM_BUG_ON(page_idx & ((1 << order) - 1)); 464 VM_BUG_ON(bad_range(zone, page)); 465 466 while (order < MAX_ORDER-1) { 467 unsigned long combined_idx; 468 struct page *buddy; 469 470 buddy = __page_find_buddy(page, page_idx, order); 471 if (!page_is_buddy(page, buddy, order)) 472 break; 473 474 /* Our buddy is free, merge with it and move up one order. */ 475 list_del(&buddy->lru); 476 zone->free_area[order].nr_free--; 477 rmv_page_order(buddy); 478 combined_idx = __find_combined_index(page_idx, order); 479 page = page + (combined_idx - page_idx); 480 page_idx = combined_idx; 481 order++; 482 } 483 set_page_order(page, order); 484 list_add(&page->lru, 485 &zone->free_area[order].free_list[migratetype]); 486 zone->free_area[order].nr_free++; 487 } 488 489 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT 490 /* 491 * free_page_mlock() -- clean up attempts to free and mlocked() page. 492 * Page should not be on lru, so no need to fix that up. 493 * free_pages_check() will verify... 494 */ 495 static inline void free_page_mlock(struct page *page) 496 { 497 __dec_zone_page_state(page, NR_MLOCK); 498 __count_vm_event(UNEVICTABLE_MLOCKFREED); 499 } 500 #else 501 static void free_page_mlock(struct page *page) { } 502 #endif 503 504 static inline int free_pages_check(struct page *page) 505 { 506 if (unlikely(page_mapcount(page) | 507 (page->mapping != NULL) | 508 (atomic_read(&page->_count) != 0) | 509 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 510 bad_page(page); 511 return 1; 512 } 513 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 514 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 515 return 0; 516 } 517 518 /* 519 * Frees a number of pages from the PCP lists 520 * Assumes all pages on list are in same zone, and of same order. 521 * count is the number of pages to free. 522 * 523 * If the zone was previously in an "all pages pinned" state then look to 524 * see if this freeing clears that state. 525 * 526 * And clear the zone's pages_scanned counter, to hold off the "all pages are 527 * pinned" detection logic. 528 */ 529 static void free_pcppages_bulk(struct zone *zone, int count, 530 struct per_cpu_pages *pcp) 531 { 532 int migratetype = 0; 533 int batch_free = 0; 534 535 spin_lock(&zone->lock); 536 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 537 zone->pages_scanned = 0; 538 539 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 540 while (count) { 541 struct page *page; 542 struct list_head *list; 543 544 /* 545 * Remove pages from lists in a round-robin fashion. A 546 * batch_free count is maintained that is incremented when an 547 * empty list is encountered. This is so more pages are freed 548 * off fuller lists instead of spinning excessively around empty 549 * lists 550 */ 551 do { 552 batch_free++; 553 if (++migratetype == MIGRATE_PCPTYPES) 554 migratetype = 0; 555 list = &pcp->lists[migratetype]; 556 } while (list_empty(list)); 557 558 do { 559 page = list_entry(list->prev, struct page, lru); 560 /* must delete as __free_one_page list manipulates */ 561 list_del(&page->lru); 562 __free_one_page(page, zone, 0, migratetype); 563 trace_mm_page_pcpu_drain(page, 0, migratetype); 564 } while (--count && --batch_free && !list_empty(list)); 565 } 566 spin_unlock(&zone->lock); 567 } 568 569 static void free_one_page(struct zone *zone, struct page *page, int order, 570 int migratetype) 571 { 572 spin_lock(&zone->lock); 573 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 574 zone->pages_scanned = 0; 575 576 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 577 __free_one_page(page, zone, order, migratetype); 578 spin_unlock(&zone->lock); 579 } 580 581 static void __free_pages_ok(struct page *page, unsigned int order) 582 { 583 unsigned long flags; 584 int i; 585 int bad = 0; 586 int wasMlocked = __TestClearPageMlocked(page); 587 588 kmemcheck_free_shadow(page, order); 589 590 for (i = 0 ; i < (1 << order) ; ++i) 591 bad += free_pages_check(page + i); 592 if (bad) 593 return; 594 595 if (!PageHighMem(page)) { 596 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 597 debug_check_no_obj_freed(page_address(page), 598 PAGE_SIZE << order); 599 } 600 arch_free_page(page, order); 601 kernel_map_pages(page, 1 << order, 0); 602 603 local_irq_save(flags); 604 if (unlikely(wasMlocked)) 605 free_page_mlock(page); 606 __count_vm_events(PGFREE, 1 << order); 607 free_one_page(page_zone(page), page, order, 608 get_pageblock_migratetype(page)); 609 local_irq_restore(flags); 610 } 611 612 /* 613 * permit the bootmem allocator to evade page validation on high-order frees 614 */ 615 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 616 { 617 if (order == 0) { 618 __ClearPageReserved(page); 619 set_page_count(page, 0); 620 set_page_refcounted(page); 621 __free_page(page); 622 } else { 623 int loop; 624 625 prefetchw(page); 626 for (loop = 0; loop < BITS_PER_LONG; loop++) { 627 struct page *p = &page[loop]; 628 629 if (loop + 1 < BITS_PER_LONG) 630 prefetchw(p + 1); 631 __ClearPageReserved(p); 632 set_page_count(p, 0); 633 } 634 635 set_page_refcounted(page); 636 __free_pages(page, order); 637 } 638 } 639 640 641 /* 642 * The order of subdivision here is critical for the IO subsystem. 643 * Please do not alter this order without good reasons and regression 644 * testing. Specifically, as large blocks of memory are subdivided, 645 * the order in which smaller blocks are delivered depends on the order 646 * they're subdivided in this function. This is the primary factor 647 * influencing the order in which pages are delivered to the IO 648 * subsystem according to empirical testing, and this is also justified 649 * by considering the behavior of a buddy system containing a single 650 * large block of memory acted on by a series of small allocations. 651 * This behavior is a critical factor in sglist merging's success. 652 * 653 * -- wli 654 */ 655 static inline void expand(struct zone *zone, struct page *page, 656 int low, int high, struct free_area *area, 657 int migratetype) 658 { 659 unsigned long size = 1 << high; 660 661 while (high > low) { 662 area--; 663 high--; 664 size >>= 1; 665 VM_BUG_ON(bad_range(zone, &page[size])); 666 list_add(&page[size].lru, &area->free_list[migratetype]); 667 area->nr_free++; 668 set_page_order(&page[size], high); 669 } 670 } 671 672 /* 673 * This page is about to be returned from the page allocator 674 */ 675 static inline int check_new_page(struct page *page) 676 { 677 if (unlikely(page_mapcount(page) | 678 (page->mapping != NULL) | 679 (atomic_read(&page->_count) != 0) | 680 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 681 bad_page(page); 682 return 1; 683 } 684 return 0; 685 } 686 687 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 688 { 689 int i; 690 691 for (i = 0; i < (1 << order); i++) { 692 struct page *p = page + i; 693 if (unlikely(check_new_page(p))) 694 return 1; 695 } 696 697 set_page_private(page, 0); 698 set_page_refcounted(page); 699 700 arch_alloc_page(page, order); 701 kernel_map_pages(page, 1 << order, 1); 702 703 if (gfp_flags & __GFP_ZERO) 704 prep_zero_page(page, order, gfp_flags); 705 706 if (order && (gfp_flags & __GFP_COMP)) 707 prep_compound_page(page, order); 708 709 return 0; 710 } 711 712 /* 713 * Go through the free lists for the given migratetype and remove 714 * the smallest available page from the freelists 715 */ 716 static inline 717 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 718 int migratetype) 719 { 720 unsigned int current_order; 721 struct free_area * area; 722 struct page *page; 723 724 /* Find a page of the appropriate size in the preferred list */ 725 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 726 area = &(zone->free_area[current_order]); 727 if (list_empty(&area->free_list[migratetype])) 728 continue; 729 730 page = list_entry(area->free_list[migratetype].next, 731 struct page, lru); 732 list_del(&page->lru); 733 rmv_page_order(page); 734 area->nr_free--; 735 expand(zone, page, order, current_order, area, migratetype); 736 return page; 737 } 738 739 return NULL; 740 } 741 742 743 /* 744 * This array describes the order lists are fallen back to when 745 * the free lists for the desirable migrate type are depleted 746 */ 747 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 748 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 749 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 750 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 751 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 752 }; 753 754 /* 755 * Move the free pages in a range to the free lists of the requested type. 756 * Note that start_page and end_pages are not aligned on a pageblock 757 * boundary. If alignment is required, use move_freepages_block() 758 */ 759 static int move_freepages(struct zone *zone, 760 struct page *start_page, struct page *end_page, 761 int migratetype) 762 { 763 struct page *page; 764 unsigned long order; 765 int pages_moved = 0; 766 767 #ifndef CONFIG_HOLES_IN_ZONE 768 /* 769 * page_zone is not safe to call in this context when 770 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 771 * anyway as we check zone boundaries in move_freepages_block(). 772 * Remove at a later date when no bug reports exist related to 773 * grouping pages by mobility 774 */ 775 BUG_ON(page_zone(start_page) != page_zone(end_page)); 776 #endif 777 778 for (page = start_page; page <= end_page;) { 779 /* Make sure we are not inadvertently changing nodes */ 780 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 781 782 if (!pfn_valid_within(page_to_pfn(page))) { 783 page++; 784 continue; 785 } 786 787 if (!PageBuddy(page)) { 788 page++; 789 continue; 790 } 791 792 order = page_order(page); 793 list_del(&page->lru); 794 list_add(&page->lru, 795 &zone->free_area[order].free_list[migratetype]); 796 page += 1 << order; 797 pages_moved += 1 << order; 798 } 799 800 return pages_moved; 801 } 802 803 static int move_freepages_block(struct zone *zone, struct page *page, 804 int migratetype) 805 { 806 unsigned long start_pfn, end_pfn; 807 struct page *start_page, *end_page; 808 809 start_pfn = page_to_pfn(page); 810 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 811 start_page = pfn_to_page(start_pfn); 812 end_page = start_page + pageblock_nr_pages - 1; 813 end_pfn = start_pfn + pageblock_nr_pages - 1; 814 815 /* Do not cross zone boundaries */ 816 if (start_pfn < zone->zone_start_pfn) 817 start_page = page; 818 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 819 return 0; 820 821 return move_freepages(zone, start_page, end_page, migratetype); 822 } 823 824 static void change_pageblock_range(struct page *pageblock_page, 825 int start_order, int migratetype) 826 { 827 int nr_pageblocks = 1 << (start_order - pageblock_order); 828 829 while (nr_pageblocks--) { 830 set_pageblock_migratetype(pageblock_page, migratetype); 831 pageblock_page += pageblock_nr_pages; 832 } 833 } 834 835 /* Remove an element from the buddy allocator from the fallback list */ 836 static inline struct page * 837 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 838 { 839 struct free_area * area; 840 int current_order; 841 struct page *page; 842 int migratetype, i; 843 844 /* Find the largest possible block of pages in the other list */ 845 for (current_order = MAX_ORDER-1; current_order >= order; 846 --current_order) { 847 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 848 migratetype = fallbacks[start_migratetype][i]; 849 850 /* MIGRATE_RESERVE handled later if necessary */ 851 if (migratetype == MIGRATE_RESERVE) 852 continue; 853 854 area = &(zone->free_area[current_order]); 855 if (list_empty(&area->free_list[migratetype])) 856 continue; 857 858 page = list_entry(area->free_list[migratetype].next, 859 struct page, lru); 860 area->nr_free--; 861 862 /* 863 * If breaking a large block of pages, move all free 864 * pages to the preferred allocation list. If falling 865 * back for a reclaimable kernel allocation, be more 866 * agressive about taking ownership of free pages 867 */ 868 if (unlikely(current_order >= (pageblock_order >> 1)) || 869 start_migratetype == MIGRATE_RECLAIMABLE || 870 page_group_by_mobility_disabled) { 871 unsigned long pages; 872 pages = move_freepages_block(zone, page, 873 start_migratetype); 874 875 /* Claim the whole block if over half of it is free */ 876 if (pages >= (1 << (pageblock_order-1)) || 877 page_group_by_mobility_disabled) 878 set_pageblock_migratetype(page, 879 start_migratetype); 880 881 migratetype = start_migratetype; 882 } 883 884 /* Remove the page from the freelists */ 885 list_del(&page->lru); 886 rmv_page_order(page); 887 888 /* Take ownership for orders >= pageblock_order */ 889 if (current_order >= pageblock_order) 890 change_pageblock_range(page, current_order, 891 start_migratetype); 892 893 expand(zone, page, order, current_order, area, migratetype); 894 895 trace_mm_page_alloc_extfrag(page, order, current_order, 896 start_migratetype, migratetype); 897 898 return page; 899 } 900 } 901 902 return NULL; 903 } 904 905 /* 906 * Do the hard work of removing an element from the buddy allocator. 907 * Call me with the zone->lock already held. 908 */ 909 static struct page *__rmqueue(struct zone *zone, unsigned int order, 910 int migratetype) 911 { 912 struct page *page; 913 914 retry_reserve: 915 page = __rmqueue_smallest(zone, order, migratetype); 916 917 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 918 page = __rmqueue_fallback(zone, order, migratetype); 919 920 /* 921 * Use MIGRATE_RESERVE rather than fail an allocation. goto 922 * is used because __rmqueue_smallest is an inline function 923 * and we want just one call site 924 */ 925 if (!page) { 926 migratetype = MIGRATE_RESERVE; 927 goto retry_reserve; 928 } 929 } 930 931 trace_mm_page_alloc_zone_locked(page, order, migratetype); 932 return page; 933 } 934 935 /* 936 * Obtain a specified number of elements from the buddy allocator, all under 937 * a single hold of the lock, for efficiency. Add them to the supplied list. 938 * Returns the number of new pages which were placed at *list. 939 */ 940 static int rmqueue_bulk(struct zone *zone, unsigned int order, 941 unsigned long count, struct list_head *list, 942 int migratetype, int cold) 943 { 944 int i; 945 946 spin_lock(&zone->lock); 947 for (i = 0; i < count; ++i) { 948 struct page *page = __rmqueue(zone, order, migratetype); 949 if (unlikely(page == NULL)) 950 break; 951 952 /* 953 * Split buddy pages returned by expand() are received here 954 * in physical page order. The page is added to the callers and 955 * list and the list head then moves forward. From the callers 956 * perspective, the linked list is ordered by page number in 957 * some conditions. This is useful for IO devices that can 958 * merge IO requests if the physical pages are ordered 959 * properly. 960 */ 961 if (likely(cold == 0)) 962 list_add(&page->lru, list); 963 else 964 list_add_tail(&page->lru, list); 965 set_page_private(page, migratetype); 966 list = &page->lru; 967 } 968 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 969 spin_unlock(&zone->lock); 970 return i; 971 } 972 973 #ifdef CONFIG_NUMA 974 /* 975 * Called from the vmstat counter updater to drain pagesets of this 976 * currently executing processor on remote nodes after they have 977 * expired. 978 * 979 * Note that this function must be called with the thread pinned to 980 * a single processor. 981 */ 982 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 983 { 984 unsigned long flags; 985 int to_drain; 986 987 local_irq_save(flags); 988 if (pcp->count >= pcp->batch) 989 to_drain = pcp->batch; 990 else 991 to_drain = pcp->count; 992 free_pcppages_bulk(zone, to_drain, pcp); 993 pcp->count -= to_drain; 994 local_irq_restore(flags); 995 } 996 #endif 997 998 /* 999 * Drain pages of the indicated processor. 1000 * 1001 * The processor must either be the current processor and the 1002 * thread pinned to the current processor or a processor that 1003 * is not online. 1004 */ 1005 static void drain_pages(unsigned int cpu) 1006 { 1007 unsigned long flags; 1008 struct zone *zone; 1009 1010 for_each_populated_zone(zone) { 1011 struct per_cpu_pageset *pset; 1012 struct per_cpu_pages *pcp; 1013 1014 pset = zone_pcp(zone, cpu); 1015 1016 pcp = &pset->pcp; 1017 local_irq_save(flags); 1018 free_pcppages_bulk(zone, pcp->count, pcp); 1019 pcp->count = 0; 1020 local_irq_restore(flags); 1021 } 1022 } 1023 1024 /* 1025 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1026 */ 1027 void drain_local_pages(void *arg) 1028 { 1029 drain_pages(smp_processor_id()); 1030 } 1031 1032 /* 1033 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1034 */ 1035 void drain_all_pages(void) 1036 { 1037 on_each_cpu(drain_local_pages, NULL, 1); 1038 } 1039 1040 #ifdef CONFIG_HIBERNATION 1041 1042 void mark_free_pages(struct zone *zone) 1043 { 1044 unsigned long pfn, max_zone_pfn; 1045 unsigned long flags; 1046 int order, t; 1047 struct list_head *curr; 1048 1049 if (!zone->spanned_pages) 1050 return; 1051 1052 spin_lock_irqsave(&zone->lock, flags); 1053 1054 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1055 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1056 if (pfn_valid(pfn)) { 1057 struct page *page = pfn_to_page(pfn); 1058 1059 if (!swsusp_page_is_forbidden(page)) 1060 swsusp_unset_page_free(page); 1061 } 1062 1063 for_each_migratetype_order(order, t) { 1064 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1065 unsigned long i; 1066 1067 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1068 for (i = 0; i < (1UL << order); i++) 1069 swsusp_set_page_free(pfn_to_page(pfn + i)); 1070 } 1071 } 1072 spin_unlock_irqrestore(&zone->lock, flags); 1073 } 1074 #endif /* CONFIG_PM */ 1075 1076 /* 1077 * Free a 0-order page 1078 */ 1079 static void free_hot_cold_page(struct page *page, int cold) 1080 { 1081 struct zone *zone = page_zone(page); 1082 struct per_cpu_pages *pcp; 1083 unsigned long flags; 1084 int migratetype; 1085 int wasMlocked = __TestClearPageMlocked(page); 1086 1087 kmemcheck_free_shadow(page, 0); 1088 1089 if (PageAnon(page)) 1090 page->mapping = NULL; 1091 if (free_pages_check(page)) 1092 return; 1093 1094 if (!PageHighMem(page)) { 1095 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1096 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1097 } 1098 arch_free_page(page, 0); 1099 kernel_map_pages(page, 1, 0); 1100 1101 pcp = &zone_pcp(zone, get_cpu())->pcp; 1102 migratetype = get_pageblock_migratetype(page); 1103 set_page_private(page, migratetype); 1104 local_irq_save(flags); 1105 if (unlikely(wasMlocked)) 1106 free_page_mlock(page); 1107 __count_vm_event(PGFREE); 1108 1109 /* 1110 * We only track unmovable, reclaimable and movable on pcp lists. 1111 * Free ISOLATE pages back to the allocator because they are being 1112 * offlined but treat RESERVE as movable pages so we can get those 1113 * areas back if necessary. Otherwise, we may have to free 1114 * excessively into the page allocator 1115 */ 1116 if (migratetype >= MIGRATE_PCPTYPES) { 1117 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1118 free_one_page(zone, page, 0, migratetype); 1119 goto out; 1120 } 1121 migratetype = MIGRATE_MOVABLE; 1122 } 1123 1124 if (cold) 1125 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1126 else 1127 list_add(&page->lru, &pcp->lists[migratetype]); 1128 pcp->count++; 1129 if (pcp->count >= pcp->high) { 1130 free_pcppages_bulk(zone, pcp->batch, pcp); 1131 pcp->count -= pcp->batch; 1132 } 1133 1134 out: 1135 local_irq_restore(flags); 1136 put_cpu(); 1137 } 1138 1139 void free_hot_page(struct page *page) 1140 { 1141 trace_mm_page_free_direct(page, 0); 1142 free_hot_cold_page(page, 0); 1143 } 1144 1145 /* 1146 * split_page takes a non-compound higher-order page, and splits it into 1147 * n (1<<order) sub-pages: page[0..n] 1148 * Each sub-page must be freed individually. 1149 * 1150 * Note: this is probably too low level an operation for use in drivers. 1151 * Please consult with lkml before using this in your driver. 1152 */ 1153 void split_page(struct page *page, unsigned int order) 1154 { 1155 int i; 1156 1157 VM_BUG_ON(PageCompound(page)); 1158 VM_BUG_ON(!page_count(page)); 1159 1160 #ifdef CONFIG_KMEMCHECK 1161 /* 1162 * Split shadow pages too, because free(page[0]) would 1163 * otherwise free the whole shadow. 1164 */ 1165 if (kmemcheck_page_is_tracked(page)) 1166 split_page(virt_to_page(page[0].shadow), order); 1167 #endif 1168 1169 for (i = 1; i < (1 << order); i++) 1170 set_page_refcounted(page + i); 1171 } 1172 1173 /* 1174 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1175 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1176 * or two. 1177 */ 1178 static inline 1179 struct page *buffered_rmqueue(struct zone *preferred_zone, 1180 struct zone *zone, int order, gfp_t gfp_flags, 1181 int migratetype) 1182 { 1183 unsigned long flags; 1184 struct page *page; 1185 int cold = !!(gfp_flags & __GFP_COLD); 1186 int cpu; 1187 1188 again: 1189 cpu = get_cpu(); 1190 if (likely(order == 0)) { 1191 struct per_cpu_pages *pcp; 1192 struct list_head *list; 1193 1194 pcp = &zone_pcp(zone, cpu)->pcp; 1195 list = &pcp->lists[migratetype]; 1196 local_irq_save(flags); 1197 if (list_empty(list)) { 1198 pcp->count += rmqueue_bulk(zone, 0, 1199 pcp->batch, list, 1200 migratetype, cold); 1201 if (unlikely(list_empty(list))) 1202 goto failed; 1203 } 1204 1205 if (cold) 1206 page = list_entry(list->prev, struct page, lru); 1207 else 1208 page = list_entry(list->next, struct page, lru); 1209 1210 list_del(&page->lru); 1211 pcp->count--; 1212 } else { 1213 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1214 /* 1215 * __GFP_NOFAIL is not to be used in new code. 1216 * 1217 * All __GFP_NOFAIL callers should be fixed so that they 1218 * properly detect and handle allocation failures. 1219 * 1220 * We most definitely don't want callers attempting to 1221 * allocate greater than order-1 page units with 1222 * __GFP_NOFAIL. 1223 */ 1224 WARN_ON_ONCE(order > 1); 1225 } 1226 spin_lock_irqsave(&zone->lock, flags); 1227 page = __rmqueue(zone, order, migratetype); 1228 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1229 spin_unlock(&zone->lock); 1230 if (!page) 1231 goto failed; 1232 } 1233 1234 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1235 zone_statistics(preferred_zone, zone); 1236 local_irq_restore(flags); 1237 put_cpu(); 1238 1239 VM_BUG_ON(bad_range(zone, page)); 1240 if (prep_new_page(page, order, gfp_flags)) 1241 goto again; 1242 return page; 1243 1244 failed: 1245 local_irq_restore(flags); 1246 put_cpu(); 1247 return NULL; 1248 } 1249 1250 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1251 #define ALLOC_WMARK_MIN WMARK_MIN 1252 #define ALLOC_WMARK_LOW WMARK_LOW 1253 #define ALLOC_WMARK_HIGH WMARK_HIGH 1254 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1255 1256 /* Mask to get the watermark bits */ 1257 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1258 1259 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1260 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1261 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1262 1263 #ifdef CONFIG_FAIL_PAGE_ALLOC 1264 1265 static struct fail_page_alloc_attr { 1266 struct fault_attr attr; 1267 1268 u32 ignore_gfp_highmem; 1269 u32 ignore_gfp_wait; 1270 u32 min_order; 1271 1272 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1273 1274 struct dentry *ignore_gfp_highmem_file; 1275 struct dentry *ignore_gfp_wait_file; 1276 struct dentry *min_order_file; 1277 1278 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1279 1280 } fail_page_alloc = { 1281 .attr = FAULT_ATTR_INITIALIZER, 1282 .ignore_gfp_wait = 1, 1283 .ignore_gfp_highmem = 1, 1284 .min_order = 1, 1285 }; 1286 1287 static int __init setup_fail_page_alloc(char *str) 1288 { 1289 return setup_fault_attr(&fail_page_alloc.attr, str); 1290 } 1291 __setup("fail_page_alloc=", setup_fail_page_alloc); 1292 1293 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1294 { 1295 if (order < fail_page_alloc.min_order) 1296 return 0; 1297 if (gfp_mask & __GFP_NOFAIL) 1298 return 0; 1299 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1300 return 0; 1301 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1302 return 0; 1303 1304 return should_fail(&fail_page_alloc.attr, 1 << order); 1305 } 1306 1307 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1308 1309 static int __init fail_page_alloc_debugfs(void) 1310 { 1311 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1312 struct dentry *dir; 1313 int err; 1314 1315 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1316 "fail_page_alloc"); 1317 if (err) 1318 return err; 1319 dir = fail_page_alloc.attr.dentries.dir; 1320 1321 fail_page_alloc.ignore_gfp_wait_file = 1322 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1323 &fail_page_alloc.ignore_gfp_wait); 1324 1325 fail_page_alloc.ignore_gfp_highmem_file = 1326 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1327 &fail_page_alloc.ignore_gfp_highmem); 1328 fail_page_alloc.min_order_file = 1329 debugfs_create_u32("min-order", mode, dir, 1330 &fail_page_alloc.min_order); 1331 1332 if (!fail_page_alloc.ignore_gfp_wait_file || 1333 !fail_page_alloc.ignore_gfp_highmem_file || 1334 !fail_page_alloc.min_order_file) { 1335 err = -ENOMEM; 1336 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1337 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1338 debugfs_remove(fail_page_alloc.min_order_file); 1339 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1340 } 1341 1342 return err; 1343 } 1344 1345 late_initcall(fail_page_alloc_debugfs); 1346 1347 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1348 1349 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1350 1351 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1352 { 1353 return 0; 1354 } 1355 1356 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1357 1358 /* 1359 * Return 1 if free pages are above 'mark'. This takes into account the order 1360 * of the allocation. 1361 */ 1362 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1363 int classzone_idx, int alloc_flags) 1364 { 1365 /* free_pages my go negative - that's OK */ 1366 long min = mark; 1367 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1368 int o; 1369 1370 if (alloc_flags & ALLOC_HIGH) 1371 min -= min / 2; 1372 if (alloc_flags & ALLOC_HARDER) 1373 min -= min / 4; 1374 1375 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1376 return 0; 1377 for (o = 0; o < order; o++) { 1378 /* At the next order, this order's pages become unavailable */ 1379 free_pages -= z->free_area[o].nr_free << o; 1380 1381 /* Require fewer higher order pages to be free */ 1382 min >>= 1; 1383 1384 if (free_pages <= min) 1385 return 0; 1386 } 1387 return 1; 1388 } 1389 1390 #ifdef CONFIG_NUMA 1391 /* 1392 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1393 * skip over zones that are not allowed by the cpuset, or that have 1394 * been recently (in last second) found to be nearly full. See further 1395 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1396 * that have to skip over a lot of full or unallowed zones. 1397 * 1398 * If the zonelist cache is present in the passed in zonelist, then 1399 * returns a pointer to the allowed node mask (either the current 1400 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1401 * 1402 * If the zonelist cache is not available for this zonelist, does 1403 * nothing and returns NULL. 1404 * 1405 * If the fullzones BITMAP in the zonelist cache is stale (more than 1406 * a second since last zap'd) then we zap it out (clear its bits.) 1407 * 1408 * We hold off even calling zlc_setup, until after we've checked the 1409 * first zone in the zonelist, on the theory that most allocations will 1410 * be satisfied from that first zone, so best to examine that zone as 1411 * quickly as we can. 1412 */ 1413 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1414 { 1415 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1416 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1417 1418 zlc = zonelist->zlcache_ptr; 1419 if (!zlc) 1420 return NULL; 1421 1422 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1423 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1424 zlc->last_full_zap = jiffies; 1425 } 1426 1427 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1428 &cpuset_current_mems_allowed : 1429 &node_states[N_HIGH_MEMORY]; 1430 return allowednodes; 1431 } 1432 1433 /* 1434 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1435 * if it is worth looking at further for free memory: 1436 * 1) Check that the zone isn't thought to be full (doesn't have its 1437 * bit set in the zonelist_cache fullzones BITMAP). 1438 * 2) Check that the zones node (obtained from the zonelist_cache 1439 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1440 * Return true (non-zero) if zone is worth looking at further, or 1441 * else return false (zero) if it is not. 1442 * 1443 * This check -ignores- the distinction between various watermarks, 1444 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1445 * found to be full for any variation of these watermarks, it will 1446 * be considered full for up to one second by all requests, unless 1447 * we are so low on memory on all allowed nodes that we are forced 1448 * into the second scan of the zonelist. 1449 * 1450 * In the second scan we ignore this zonelist cache and exactly 1451 * apply the watermarks to all zones, even it is slower to do so. 1452 * We are low on memory in the second scan, and should leave no stone 1453 * unturned looking for a free page. 1454 */ 1455 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1456 nodemask_t *allowednodes) 1457 { 1458 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1459 int i; /* index of *z in zonelist zones */ 1460 int n; /* node that zone *z is on */ 1461 1462 zlc = zonelist->zlcache_ptr; 1463 if (!zlc) 1464 return 1; 1465 1466 i = z - zonelist->_zonerefs; 1467 n = zlc->z_to_n[i]; 1468 1469 /* This zone is worth trying if it is allowed but not full */ 1470 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1471 } 1472 1473 /* 1474 * Given 'z' scanning a zonelist, set the corresponding bit in 1475 * zlc->fullzones, so that subsequent attempts to allocate a page 1476 * from that zone don't waste time re-examining it. 1477 */ 1478 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1479 { 1480 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1481 int i; /* index of *z in zonelist zones */ 1482 1483 zlc = zonelist->zlcache_ptr; 1484 if (!zlc) 1485 return; 1486 1487 i = z - zonelist->_zonerefs; 1488 1489 set_bit(i, zlc->fullzones); 1490 } 1491 1492 #else /* CONFIG_NUMA */ 1493 1494 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1495 { 1496 return NULL; 1497 } 1498 1499 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1500 nodemask_t *allowednodes) 1501 { 1502 return 1; 1503 } 1504 1505 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1506 { 1507 } 1508 #endif /* CONFIG_NUMA */ 1509 1510 /* 1511 * get_page_from_freelist goes through the zonelist trying to allocate 1512 * a page. 1513 */ 1514 static struct page * 1515 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1516 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1517 struct zone *preferred_zone, int migratetype) 1518 { 1519 struct zoneref *z; 1520 struct page *page = NULL; 1521 int classzone_idx; 1522 struct zone *zone; 1523 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1524 int zlc_active = 0; /* set if using zonelist_cache */ 1525 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1526 1527 classzone_idx = zone_idx(preferred_zone); 1528 zonelist_scan: 1529 /* 1530 * Scan zonelist, looking for a zone with enough free. 1531 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1532 */ 1533 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1534 high_zoneidx, nodemask) { 1535 if (NUMA_BUILD && zlc_active && 1536 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1537 continue; 1538 if ((alloc_flags & ALLOC_CPUSET) && 1539 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1540 goto try_next_zone; 1541 1542 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1543 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1544 unsigned long mark; 1545 int ret; 1546 1547 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1548 if (zone_watermark_ok(zone, order, mark, 1549 classzone_idx, alloc_flags)) 1550 goto try_this_zone; 1551 1552 if (zone_reclaim_mode == 0) 1553 goto this_zone_full; 1554 1555 ret = zone_reclaim(zone, gfp_mask, order); 1556 switch (ret) { 1557 case ZONE_RECLAIM_NOSCAN: 1558 /* did not scan */ 1559 goto try_next_zone; 1560 case ZONE_RECLAIM_FULL: 1561 /* scanned but unreclaimable */ 1562 goto this_zone_full; 1563 default: 1564 /* did we reclaim enough */ 1565 if (!zone_watermark_ok(zone, order, mark, 1566 classzone_idx, alloc_flags)) 1567 goto this_zone_full; 1568 } 1569 } 1570 1571 try_this_zone: 1572 page = buffered_rmqueue(preferred_zone, zone, order, 1573 gfp_mask, migratetype); 1574 if (page) 1575 break; 1576 this_zone_full: 1577 if (NUMA_BUILD) 1578 zlc_mark_zone_full(zonelist, z); 1579 try_next_zone: 1580 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1581 /* 1582 * we do zlc_setup after the first zone is tried but only 1583 * if there are multiple nodes make it worthwhile 1584 */ 1585 allowednodes = zlc_setup(zonelist, alloc_flags); 1586 zlc_active = 1; 1587 did_zlc_setup = 1; 1588 } 1589 } 1590 1591 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1592 /* Disable zlc cache for second zonelist scan */ 1593 zlc_active = 0; 1594 goto zonelist_scan; 1595 } 1596 return page; 1597 } 1598 1599 static inline int 1600 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1601 unsigned long pages_reclaimed) 1602 { 1603 /* Do not loop if specifically requested */ 1604 if (gfp_mask & __GFP_NORETRY) 1605 return 0; 1606 1607 /* 1608 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1609 * means __GFP_NOFAIL, but that may not be true in other 1610 * implementations. 1611 */ 1612 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1613 return 1; 1614 1615 /* 1616 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1617 * specified, then we retry until we no longer reclaim any pages 1618 * (above), or we've reclaimed an order of pages at least as 1619 * large as the allocation's order. In both cases, if the 1620 * allocation still fails, we stop retrying. 1621 */ 1622 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1623 return 1; 1624 1625 /* 1626 * Don't let big-order allocations loop unless the caller 1627 * explicitly requests that. 1628 */ 1629 if (gfp_mask & __GFP_NOFAIL) 1630 return 1; 1631 1632 return 0; 1633 } 1634 1635 static inline struct page * 1636 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1637 struct zonelist *zonelist, enum zone_type high_zoneidx, 1638 nodemask_t *nodemask, struct zone *preferred_zone, 1639 int migratetype) 1640 { 1641 struct page *page; 1642 1643 /* Acquire the OOM killer lock for the zones in zonelist */ 1644 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1645 schedule_timeout_uninterruptible(1); 1646 return NULL; 1647 } 1648 1649 /* 1650 * Go through the zonelist yet one more time, keep very high watermark 1651 * here, this is only to catch a parallel oom killing, we must fail if 1652 * we're still under heavy pressure. 1653 */ 1654 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1655 order, zonelist, high_zoneidx, 1656 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1657 preferred_zone, migratetype); 1658 if (page) 1659 goto out; 1660 1661 /* The OOM killer will not help higher order allocs */ 1662 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL)) 1663 goto out; 1664 1665 /* Exhausted what can be done so it's blamo time */ 1666 out_of_memory(zonelist, gfp_mask, order); 1667 1668 out: 1669 clear_zonelist_oom(zonelist, gfp_mask); 1670 return page; 1671 } 1672 1673 /* The really slow allocator path where we enter direct reclaim */ 1674 static inline struct page * 1675 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1676 struct zonelist *zonelist, enum zone_type high_zoneidx, 1677 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1678 int migratetype, unsigned long *did_some_progress) 1679 { 1680 struct page *page = NULL; 1681 struct reclaim_state reclaim_state; 1682 struct task_struct *p = current; 1683 1684 cond_resched(); 1685 1686 /* We now go into synchronous reclaim */ 1687 cpuset_memory_pressure_bump(); 1688 p->flags |= PF_MEMALLOC; 1689 lockdep_set_current_reclaim_state(gfp_mask); 1690 reclaim_state.reclaimed_slab = 0; 1691 p->reclaim_state = &reclaim_state; 1692 1693 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1694 1695 p->reclaim_state = NULL; 1696 lockdep_clear_current_reclaim_state(); 1697 p->flags &= ~PF_MEMALLOC; 1698 1699 cond_resched(); 1700 1701 if (order != 0) 1702 drain_all_pages(); 1703 1704 if (likely(*did_some_progress)) 1705 page = get_page_from_freelist(gfp_mask, nodemask, order, 1706 zonelist, high_zoneidx, 1707 alloc_flags, preferred_zone, 1708 migratetype); 1709 return page; 1710 } 1711 1712 /* 1713 * This is called in the allocator slow-path if the allocation request is of 1714 * sufficient urgency to ignore watermarks and take other desperate measures 1715 */ 1716 static inline struct page * 1717 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1718 struct zonelist *zonelist, enum zone_type high_zoneidx, 1719 nodemask_t *nodemask, struct zone *preferred_zone, 1720 int migratetype) 1721 { 1722 struct page *page; 1723 1724 do { 1725 page = get_page_from_freelist(gfp_mask, nodemask, order, 1726 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1727 preferred_zone, migratetype); 1728 1729 if (!page && gfp_mask & __GFP_NOFAIL) 1730 congestion_wait(BLK_RW_ASYNC, HZ/50); 1731 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1732 1733 return page; 1734 } 1735 1736 static inline 1737 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1738 enum zone_type high_zoneidx) 1739 { 1740 struct zoneref *z; 1741 struct zone *zone; 1742 1743 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1744 wakeup_kswapd(zone, order); 1745 } 1746 1747 static inline int 1748 gfp_to_alloc_flags(gfp_t gfp_mask) 1749 { 1750 struct task_struct *p = current; 1751 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1752 const gfp_t wait = gfp_mask & __GFP_WAIT; 1753 1754 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1755 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1756 1757 /* 1758 * The caller may dip into page reserves a bit more if the caller 1759 * cannot run direct reclaim, or if the caller has realtime scheduling 1760 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1761 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1762 */ 1763 alloc_flags |= (gfp_mask & __GFP_HIGH); 1764 1765 if (!wait) { 1766 alloc_flags |= ALLOC_HARDER; 1767 /* 1768 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1769 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1770 */ 1771 alloc_flags &= ~ALLOC_CPUSET; 1772 } else if (unlikely(rt_task(p))) 1773 alloc_flags |= ALLOC_HARDER; 1774 1775 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1776 if (!in_interrupt() && 1777 ((p->flags & PF_MEMALLOC) || 1778 unlikely(test_thread_flag(TIF_MEMDIE)))) 1779 alloc_flags |= ALLOC_NO_WATERMARKS; 1780 } 1781 1782 return alloc_flags; 1783 } 1784 1785 static inline struct page * 1786 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1787 struct zonelist *zonelist, enum zone_type high_zoneidx, 1788 nodemask_t *nodemask, struct zone *preferred_zone, 1789 int migratetype) 1790 { 1791 const gfp_t wait = gfp_mask & __GFP_WAIT; 1792 struct page *page = NULL; 1793 int alloc_flags; 1794 unsigned long pages_reclaimed = 0; 1795 unsigned long did_some_progress; 1796 struct task_struct *p = current; 1797 1798 /* 1799 * In the slowpath, we sanity check order to avoid ever trying to 1800 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1801 * be using allocators in order of preference for an area that is 1802 * too large. 1803 */ 1804 if (order >= MAX_ORDER) { 1805 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1806 return NULL; 1807 } 1808 1809 /* 1810 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1811 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1812 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1813 * using a larger set of nodes after it has established that the 1814 * allowed per node queues are empty and that nodes are 1815 * over allocated. 1816 */ 1817 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1818 goto nopage; 1819 1820 wake_all_kswapd(order, zonelist, high_zoneidx); 1821 1822 restart: 1823 /* 1824 * OK, we're below the kswapd watermark and have kicked background 1825 * reclaim. Now things get more complex, so set up alloc_flags according 1826 * to how we want to proceed. 1827 */ 1828 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1829 1830 /* This is the last chance, in general, before the goto nopage. */ 1831 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1832 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1833 preferred_zone, migratetype); 1834 if (page) 1835 goto got_pg; 1836 1837 rebalance: 1838 /* Allocate without watermarks if the context allows */ 1839 if (alloc_flags & ALLOC_NO_WATERMARKS) { 1840 page = __alloc_pages_high_priority(gfp_mask, order, 1841 zonelist, high_zoneidx, nodemask, 1842 preferred_zone, migratetype); 1843 if (page) 1844 goto got_pg; 1845 } 1846 1847 /* Atomic allocations - we can't balance anything */ 1848 if (!wait) 1849 goto nopage; 1850 1851 /* Avoid recursion of direct reclaim */ 1852 if (p->flags & PF_MEMALLOC) 1853 goto nopage; 1854 1855 /* Avoid allocations with no watermarks from looping endlessly */ 1856 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 1857 goto nopage; 1858 1859 /* Try direct reclaim and then allocating */ 1860 page = __alloc_pages_direct_reclaim(gfp_mask, order, 1861 zonelist, high_zoneidx, 1862 nodemask, 1863 alloc_flags, preferred_zone, 1864 migratetype, &did_some_progress); 1865 if (page) 1866 goto got_pg; 1867 1868 /* 1869 * If we failed to make any progress reclaiming, then we are 1870 * running out of options and have to consider going OOM 1871 */ 1872 if (!did_some_progress) { 1873 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1874 if (oom_killer_disabled) 1875 goto nopage; 1876 page = __alloc_pages_may_oom(gfp_mask, order, 1877 zonelist, high_zoneidx, 1878 nodemask, preferred_zone, 1879 migratetype); 1880 if (page) 1881 goto got_pg; 1882 1883 /* 1884 * The OOM killer does not trigger for high-order 1885 * ~__GFP_NOFAIL allocations so if no progress is being 1886 * made, there are no other options and retrying is 1887 * unlikely to help. 1888 */ 1889 if (order > PAGE_ALLOC_COSTLY_ORDER && 1890 !(gfp_mask & __GFP_NOFAIL)) 1891 goto nopage; 1892 1893 goto restart; 1894 } 1895 } 1896 1897 /* Check if we should retry the allocation */ 1898 pages_reclaimed += did_some_progress; 1899 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 1900 /* Wait for some write requests to complete then retry */ 1901 congestion_wait(BLK_RW_ASYNC, HZ/50); 1902 goto rebalance; 1903 } 1904 1905 nopage: 1906 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1907 printk(KERN_WARNING "%s: page allocation failure." 1908 " order:%d, mode:0x%x\n", 1909 p->comm, order, gfp_mask); 1910 dump_stack(); 1911 show_mem(); 1912 } 1913 return page; 1914 got_pg: 1915 if (kmemcheck_enabled) 1916 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 1917 return page; 1918 1919 } 1920 1921 /* 1922 * This is the 'heart' of the zoned buddy allocator. 1923 */ 1924 struct page * 1925 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 1926 struct zonelist *zonelist, nodemask_t *nodemask) 1927 { 1928 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1929 struct zone *preferred_zone; 1930 struct page *page; 1931 int migratetype = allocflags_to_migratetype(gfp_mask); 1932 1933 gfp_mask &= gfp_allowed_mask; 1934 1935 lockdep_trace_alloc(gfp_mask); 1936 1937 might_sleep_if(gfp_mask & __GFP_WAIT); 1938 1939 if (should_fail_alloc_page(gfp_mask, order)) 1940 return NULL; 1941 1942 /* 1943 * Check the zones suitable for the gfp_mask contain at least one 1944 * valid zone. It's possible to have an empty zonelist as a result 1945 * of GFP_THISNODE and a memoryless node 1946 */ 1947 if (unlikely(!zonelist->_zonerefs->zone)) 1948 return NULL; 1949 1950 /* The preferred zone is used for statistics later */ 1951 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 1952 if (!preferred_zone) 1953 return NULL; 1954 1955 /* First allocation attempt */ 1956 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1957 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 1958 preferred_zone, migratetype); 1959 if (unlikely(!page)) 1960 page = __alloc_pages_slowpath(gfp_mask, order, 1961 zonelist, high_zoneidx, nodemask, 1962 preferred_zone, migratetype); 1963 1964 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 1965 return page; 1966 } 1967 EXPORT_SYMBOL(__alloc_pages_nodemask); 1968 1969 /* 1970 * Common helper functions. 1971 */ 1972 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1973 { 1974 struct page *page; 1975 1976 /* 1977 * __get_free_pages() returns a 32-bit address, which cannot represent 1978 * a highmem page 1979 */ 1980 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1981 1982 page = alloc_pages(gfp_mask, order); 1983 if (!page) 1984 return 0; 1985 return (unsigned long) page_address(page); 1986 } 1987 EXPORT_SYMBOL(__get_free_pages); 1988 1989 unsigned long get_zeroed_page(gfp_t gfp_mask) 1990 { 1991 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 1992 } 1993 EXPORT_SYMBOL(get_zeroed_page); 1994 1995 void __pagevec_free(struct pagevec *pvec) 1996 { 1997 int i = pagevec_count(pvec); 1998 1999 while (--i >= 0) { 2000 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2001 free_hot_cold_page(pvec->pages[i], pvec->cold); 2002 } 2003 } 2004 2005 void __free_pages(struct page *page, unsigned int order) 2006 { 2007 if (put_page_testzero(page)) { 2008 trace_mm_page_free_direct(page, order); 2009 if (order == 0) 2010 free_hot_page(page); 2011 else 2012 __free_pages_ok(page, order); 2013 } 2014 } 2015 2016 EXPORT_SYMBOL(__free_pages); 2017 2018 void free_pages(unsigned long addr, unsigned int order) 2019 { 2020 if (addr != 0) { 2021 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2022 __free_pages(virt_to_page((void *)addr), order); 2023 } 2024 } 2025 2026 EXPORT_SYMBOL(free_pages); 2027 2028 /** 2029 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2030 * @size: the number of bytes to allocate 2031 * @gfp_mask: GFP flags for the allocation 2032 * 2033 * This function is similar to alloc_pages(), except that it allocates the 2034 * minimum number of pages to satisfy the request. alloc_pages() can only 2035 * allocate memory in power-of-two pages. 2036 * 2037 * This function is also limited by MAX_ORDER. 2038 * 2039 * Memory allocated by this function must be released by free_pages_exact(). 2040 */ 2041 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2042 { 2043 unsigned int order = get_order(size); 2044 unsigned long addr; 2045 2046 addr = __get_free_pages(gfp_mask, order); 2047 if (addr) { 2048 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2049 unsigned long used = addr + PAGE_ALIGN(size); 2050 2051 split_page(virt_to_page((void *)addr), order); 2052 while (used < alloc_end) { 2053 free_page(used); 2054 used += PAGE_SIZE; 2055 } 2056 } 2057 2058 return (void *)addr; 2059 } 2060 EXPORT_SYMBOL(alloc_pages_exact); 2061 2062 /** 2063 * free_pages_exact - release memory allocated via alloc_pages_exact() 2064 * @virt: the value returned by alloc_pages_exact. 2065 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2066 * 2067 * Release the memory allocated by a previous call to alloc_pages_exact. 2068 */ 2069 void free_pages_exact(void *virt, size_t size) 2070 { 2071 unsigned long addr = (unsigned long)virt; 2072 unsigned long end = addr + PAGE_ALIGN(size); 2073 2074 while (addr < end) { 2075 free_page(addr); 2076 addr += PAGE_SIZE; 2077 } 2078 } 2079 EXPORT_SYMBOL(free_pages_exact); 2080 2081 static unsigned int nr_free_zone_pages(int offset) 2082 { 2083 struct zoneref *z; 2084 struct zone *zone; 2085 2086 /* Just pick one node, since fallback list is circular */ 2087 unsigned int sum = 0; 2088 2089 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2090 2091 for_each_zone_zonelist(zone, z, zonelist, offset) { 2092 unsigned long size = zone->present_pages; 2093 unsigned long high = high_wmark_pages(zone); 2094 if (size > high) 2095 sum += size - high; 2096 } 2097 2098 return sum; 2099 } 2100 2101 /* 2102 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2103 */ 2104 unsigned int nr_free_buffer_pages(void) 2105 { 2106 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2107 } 2108 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2109 2110 /* 2111 * Amount of free RAM allocatable within all zones 2112 */ 2113 unsigned int nr_free_pagecache_pages(void) 2114 { 2115 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2116 } 2117 2118 static inline void show_node(struct zone *zone) 2119 { 2120 if (NUMA_BUILD) 2121 printk("Node %d ", zone_to_nid(zone)); 2122 } 2123 2124 void si_meminfo(struct sysinfo *val) 2125 { 2126 val->totalram = totalram_pages; 2127 val->sharedram = 0; 2128 val->freeram = global_page_state(NR_FREE_PAGES); 2129 val->bufferram = nr_blockdev_pages(); 2130 val->totalhigh = totalhigh_pages; 2131 val->freehigh = nr_free_highpages(); 2132 val->mem_unit = PAGE_SIZE; 2133 } 2134 2135 EXPORT_SYMBOL(si_meminfo); 2136 2137 #ifdef CONFIG_NUMA 2138 void si_meminfo_node(struct sysinfo *val, int nid) 2139 { 2140 pg_data_t *pgdat = NODE_DATA(nid); 2141 2142 val->totalram = pgdat->node_present_pages; 2143 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2144 #ifdef CONFIG_HIGHMEM 2145 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2146 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2147 NR_FREE_PAGES); 2148 #else 2149 val->totalhigh = 0; 2150 val->freehigh = 0; 2151 #endif 2152 val->mem_unit = PAGE_SIZE; 2153 } 2154 #endif 2155 2156 #define K(x) ((x) << (PAGE_SHIFT-10)) 2157 2158 /* 2159 * Show free area list (used inside shift_scroll-lock stuff) 2160 * We also calculate the percentage fragmentation. We do this by counting the 2161 * memory on each free list with the exception of the first item on the list. 2162 */ 2163 void show_free_areas(void) 2164 { 2165 int cpu; 2166 struct zone *zone; 2167 2168 for_each_populated_zone(zone) { 2169 show_node(zone); 2170 printk("%s per-cpu:\n", zone->name); 2171 2172 for_each_online_cpu(cpu) { 2173 struct per_cpu_pageset *pageset; 2174 2175 pageset = zone_pcp(zone, cpu); 2176 2177 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2178 cpu, pageset->pcp.high, 2179 pageset->pcp.batch, pageset->pcp.count); 2180 } 2181 } 2182 2183 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2184 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2185 " unevictable:%lu" 2186 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n" 2187 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2188 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2189 global_page_state(NR_ACTIVE_ANON), 2190 global_page_state(NR_INACTIVE_ANON), 2191 global_page_state(NR_ISOLATED_ANON), 2192 global_page_state(NR_ACTIVE_FILE), 2193 global_page_state(NR_INACTIVE_FILE), 2194 global_page_state(NR_ISOLATED_FILE), 2195 global_page_state(NR_UNEVICTABLE), 2196 global_page_state(NR_FILE_DIRTY), 2197 global_page_state(NR_WRITEBACK), 2198 global_page_state(NR_UNSTABLE_NFS), 2199 nr_blockdev_pages(), 2200 global_page_state(NR_FREE_PAGES), 2201 global_page_state(NR_SLAB_RECLAIMABLE), 2202 global_page_state(NR_SLAB_UNRECLAIMABLE), 2203 global_page_state(NR_FILE_MAPPED), 2204 global_page_state(NR_SHMEM), 2205 global_page_state(NR_PAGETABLE), 2206 global_page_state(NR_BOUNCE)); 2207 2208 for_each_populated_zone(zone) { 2209 int i; 2210 2211 show_node(zone); 2212 printk("%s" 2213 " free:%lukB" 2214 " min:%lukB" 2215 " low:%lukB" 2216 " high:%lukB" 2217 " active_anon:%lukB" 2218 " inactive_anon:%lukB" 2219 " active_file:%lukB" 2220 " inactive_file:%lukB" 2221 " unevictable:%lukB" 2222 " isolated(anon):%lukB" 2223 " isolated(file):%lukB" 2224 " present:%lukB" 2225 " mlocked:%lukB" 2226 " dirty:%lukB" 2227 " writeback:%lukB" 2228 " mapped:%lukB" 2229 " shmem:%lukB" 2230 " slab_reclaimable:%lukB" 2231 " slab_unreclaimable:%lukB" 2232 " kernel_stack:%lukB" 2233 " pagetables:%lukB" 2234 " unstable:%lukB" 2235 " bounce:%lukB" 2236 " writeback_tmp:%lukB" 2237 " pages_scanned:%lu" 2238 " all_unreclaimable? %s" 2239 "\n", 2240 zone->name, 2241 K(zone_page_state(zone, NR_FREE_PAGES)), 2242 K(min_wmark_pages(zone)), 2243 K(low_wmark_pages(zone)), 2244 K(high_wmark_pages(zone)), 2245 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2246 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2247 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2248 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2249 K(zone_page_state(zone, NR_UNEVICTABLE)), 2250 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2251 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2252 K(zone->present_pages), 2253 K(zone_page_state(zone, NR_MLOCK)), 2254 K(zone_page_state(zone, NR_FILE_DIRTY)), 2255 K(zone_page_state(zone, NR_WRITEBACK)), 2256 K(zone_page_state(zone, NR_FILE_MAPPED)), 2257 K(zone_page_state(zone, NR_SHMEM)), 2258 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2259 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2260 zone_page_state(zone, NR_KERNEL_STACK) * 2261 THREAD_SIZE / 1024, 2262 K(zone_page_state(zone, NR_PAGETABLE)), 2263 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2264 K(zone_page_state(zone, NR_BOUNCE)), 2265 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2266 zone->pages_scanned, 2267 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 2268 ); 2269 printk("lowmem_reserve[]:"); 2270 for (i = 0; i < MAX_NR_ZONES; i++) 2271 printk(" %lu", zone->lowmem_reserve[i]); 2272 printk("\n"); 2273 } 2274 2275 for_each_populated_zone(zone) { 2276 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2277 2278 show_node(zone); 2279 printk("%s: ", zone->name); 2280 2281 spin_lock_irqsave(&zone->lock, flags); 2282 for (order = 0; order < MAX_ORDER; order++) { 2283 nr[order] = zone->free_area[order].nr_free; 2284 total += nr[order] << order; 2285 } 2286 spin_unlock_irqrestore(&zone->lock, flags); 2287 for (order = 0; order < MAX_ORDER; order++) 2288 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2289 printk("= %lukB\n", K(total)); 2290 } 2291 2292 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2293 2294 show_swap_cache_info(); 2295 } 2296 2297 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2298 { 2299 zoneref->zone = zone; 2300 zoneref->zone_idx = zone_idx(zone); 2301 } 2302 2303 /* 2304 * Builds allocation fallback zone lists. 2305 * 2306 * Add all populated zones of a node to the zonelist. 2307 */ 2308 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2309 int nr_zones, enum zone_type zone_type) 2310 { 2311 struct zone *zone; 2312 2313 BUG_ON(zone_type >= MAX_NR_ZONES); 2314 zone_type++; 2315 2316 do { 2317 zone_type--; 2318 zone = pgdat->node_zones + zone_type; 2319 if (populated_zone(zone)) { 2320 zoneref_set_zone(zone, 2321 &zonelist->_zonerefs[nr_zones++]); 2322 check_highest_zone(zone_type); 2323 } 2324 2325 } while (zone_type); 2326 return nr_zones; 2327 } 2328 2329 2330 /* 2331 * zonelist_order: 2332 * 0 = automatic detection of better ordering. 2333 * 1 = order by ([node] distance, -zonetype) 2334 * 2 = order by (-zonetype, [node] distance) 2335 * 2336 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2337 * the same zonelist. So only NUMA can configure this param. 2338 */ 2339 #define ZONELIST_ORDER_DEFAULT 0 2340 #define ZONELIST_ORDER_NODE 1 2341 #define ZONELIST_ORDER_ZONE 2 2342 2343 /* zonelist order in the kernel. 2344 * set_zonelist_order() will set this to NODE or ZONE. 2345 */ 2346 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2347 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2348 2349 2350 #ifdef CONFIG_NUMA 2351 /* The value user specified ....changed by config */ 2352 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2353 /* string for sysctl */ 2354 #define NUMA_ZONELIST_ORDER_LEN 16 2355 char numa_zonelist_order[16] = "default"; 2356 2357 /* 2358 * interface for configure zonelist ordering. 2359 * command line option "numa_zonelist_order" 2360 * = "[dD]efault - default, automatic configuration. 2361 * = "[nN]ode - order by node locality, then by zone within node 2362 * = "[zZ]one - order by zone, then by locality within zone 2363 */ 2364 2365 static int __parse_numa_zonelist_order(char *s) 2366 { 2367 if (*s == 'd' || *s == 'D') { 2368 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2369 } else if (*s == 'n' || *s == 'N') { 2370 user_zonelist_order = ZONELIST_ORDER_NODE; 2371 } else if (*s == 'z' || *s == 'Z') { 2372 user_zonelist_order = ZONELIST_ORDER_ZONE; 2373 } else { 2374 printk(KERN_WARNING 2375 "Ignoring invalid numa_zonelist_order value: " 2376 "%s\n", s); 2377 return -EINVAL; 2378 } 2379 return 0; 2380 } 2381 2382 static __init int setup_numa_zonelist_order(char *s) 2383 { 2384 if (s) 2385 return __parse_numa_zonelist_order(s); 2386 return 0; 2387 } 2388 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2389 2390 /* 2391 * sysctl handler for numa_zonelist_order 2392 */ 2393 int numa_zonelist_order_handler(ctl_table *table, int write, 2394 void __user *buffer, size_t *length, 2395 loff_t *ppos) 2396 { 2397 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2398 int ret; 2399 2400 if (write) 2401 strncpy(saved_string, (char*)table->data, 2402 NUMA_ZONELIST_ORDER_LEN); 2403 ret = proc_dostring(table, write, buffer, length, ppos); 2404 if (ret) 2405 return ret; 2406 if (write) { 2407 int oldval = user_zonelist_order; 2408 if (__parse_numa_zonelist_order((char*)table->data)) { 2409 /* 2410 * bogus value. restore saved string 2411 */ 2412 strncpy((char*)table->data, saved_string, 2413 NUMA_ZONELIST_ORDER_LEN); 2414 user_zonelist_order = oldval; 2415 } else if (oldval != user_zonelist_order) 2416 build_all_zonelists(); 2417 } 2418 return 0; 2419 } 2420 2421 2422 #define MAX_NODE_LOAD (nr_online_nodes) 2423 static int node_load[MAX_NUMNODES]; 2424 2425 /** 2426 * find_next_best_node - find the next node that should appear in a given node's fallback list 2427 * @node: node whose fallback list we're appending 2428 * @used_node_mask: nodemask_t of already used nodes 2429 * 2430 * We use a number of factors to determine which is the next node that should 2431 * appear on a given node's fallback list. The node should not have appeared 2432 * already in @node's fallback list, and it should be the next closest node 2433 * according to the distance array (which contains arbitrary distance values 2434 * from each node to each node in the system), and should also prefer nodes 2435 * with no CPUs, since presumably they'll have very little allocation pressure 2436 * on them otherwise. 2437 * It returns -1 if no node is found. 2438 */ 2439 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2440 { 2441 int n, val; 2442 int min_val = INT_MAX; 2443 int best_node = -1; 2444 const struct cpumask *tmp = cpumask_of_node(0); 2445 2446 /* Use the local node if we haven't already */ 2447 if (!node_isset(node, *used_node_mask)) { 2448 node_set(node, *used_node_mask); 2449 return node; 2450 } 2451 2452 for_each_node_state(n, N_HIGH_MEMORY) { 2453 2454 /* Don't want a node to appear more than once */ 2455 if (node_isset(n, *used_node_mask)) 2456 continue; 2457 2458 /* Use the distance array to find the distance */ 2459 val = node_distance(node, n); 2460 2461 /* Penalize nodes under us ("prefer the next node") */ 2462 val += (n < node); 2463 2464 /* Give preference to headless and unused nodes */ 2465 tmp = cpumask_of_node(n); 2466 if (!cpumask_empty(tmp)) 2467 val += PENALTY_FOR_NODE_WITH_CPUS; 2468 2469 /* Slight preference for less loaded node */ 2470 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2471 val += node_load[n]; 2472 2473 if (val < min_val) { 2474 min_val = val; 2475 best_node = n; 2476 } 2477 } 2478 2479 if (best_node >= 0) 2480 node_set(best_node, *used_node_mask); 2481 2482 return best_node; 2483 } 2484 2485 2486 /* 2487 * Build zonelists ordered by node and zones within node. 2488 * This results in maximum locality--normal zone overflows into local 2489 * DMA zone, if any--but risks exhausting DMA zone. 2490 */ 2491 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2492 { 2493 int j; 2494 struct zonelist *zonelist; 2495 2496 zonelist = &pgdat->node_zonelists[0]; 2497 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2498 ; 2499 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2500 MAX_NR_ZONES - 1); 2501 zonelist->_zonerefs[j].zone = NULL; 2502 zonelist->_zonerefs[j].zone_idx = 0; 2503 } 2504 2505 /* 2506 * Build gfp_thisnode zonelists 2507 */ 2508 static void build_thisnode_zonelists(pg_data_t *pgdat) 2509 { 2510 int j; 2511 struct zonelist *zonelist; 2512 2513 zonelist = &pgdat->node_zonelists[1]; 2514 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2515 zonelist->_zonerefs[j].zone = NULL; 2516 zonelist->_zonerefs[j].zone_idx = 0; 2517 } 2518 2519 /* 2520 * Build zonelists ordered by zone and nodes within zones. 2521 * This results in conserving DMA zone[s] until all Normal memory is 2522 * exhausted, but results in overflowing to remote node while memory 2523 * may still exist in local DMA zone. 2524 */ 2525 static int node_order[MAX_NUMNODES]; 2526 2527 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2528 { 2529 int pos, j, node; 2530 int zone_type; /* needs to be signed */ 2531 struct zone *z; 2532 struct zonelist *zonelist; 2533 2534 zonelist = &pgdat->node_zonelists[0]; 2535 pos = 0; 2536 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2537 for (j = 0; j < nr_nodes; j++) { 2538 node = node_order[j]; 2539 z = &NODE_DATA(node)->node_zones[zone_type]; 2540 if (populated_zone(z)) { 2541 zoneref_set_zone(z, 2542 &zonelist->_zonerefs[pos++]); 2543 check_highest_zone(zone_type); 2544 } 2545 } 2546 } 2547 zonelist->_zonerefs[pos].zone = NULL; 2548 zonelist->_zonerefs[pos].zone_idx = 0; 2549 } 2550 2551 static int default_zonelist_order(void) 2552 { 2553 int nid, zone_type; 2554 unsigned long low_kmem_size,total_size; 2555 struct zone *z; 2556 int average_size; 2557 /* 2558 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2559 * If they are really small and used heavily, the system can fall 2560 * into OOM very easily. 2561 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2562 */ 2563 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2564 low_kmem_size = 0; 2565 total_size = 0; 2566 for_each_online_node(nid) { 2567 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2568 z = &NODE_DATA(nid)->node_zones[zone_type]; 2569 if (populated_zone(z)) { 2570 if (zone_type < ZONE_NORMAL) 2571 low_kmem_size += z->present_pages; 2572 total_size += z->present_pages; 2573 } 2574 } 2575 } 2576 if (!low_kmem_size || /* there are no DMA area. */ 2577 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2578 return ZONELIST_ORDER_NODE; 2579 /* 2580 * look into each node's config. 2581 * If there is a node whose DMA/DMA32 memory is very big area on 2582 * local memory, NODE_ORDER may be suitable. 2583 */ 2584 average_size = total_size / 2585 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2586 for_each_online_node(nid) { 2587 low_kmem_size = 0; 2588 total_size = 0; 2589 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2590 z = &NODE_DATA(nid)->node_zones[zone_type]; 2591 if (populated_zone(z)) { 2592 if (zone_type < ZONE_NORMAL) 2593 low_kmem_size += z->present_pages; 2594 total_size += z->present_pages; 2595 } 2596 } 2597 if (low_kmem_size && 2598 total_size > average_size && /* ignore small node */ 2599 low_kmem_size > total_size * 70/100) 2600 return ZONELIST_ORDER_NODE; 2601 } 2602 return ZONELIST_ORDER_ZONE; 2603 } 2604 2605 static void set_zonelist_order(void) 2606 { 2607 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2608 current_zonelist_order = default_zonelist_order(); 2609 else 2610 current_zonelist_order = user_zonelist_order; 2611 } 2612 2613 static void build_zonelists(pg_data_t *pgdat) 2614 { 2615 int j, node, load; 2616 enum zone_type i; 2617 nodemask_t used_mask; 2618 int local_node, prev_node; 2619 struct zonelist *zonelist; 2620 int order = current_zonelist_order; 2621 2622 /* initialize zonelists */ 2623 for (i = 0; i < MAX_ZONELISTS; i++) { 2624 zonelist = pgdat->node_zonelists + i; 2625 zonelist->_zonerefs[0].zone = NULL; 2626 zonelist->_zonerefs[0].zone_idx = 0; 2627 } 2628 2629 /* NUMA-aware ordering of nodes */ 2630 local_node = pgdat->node_id; 2631 load = nr_online_nodes; 2632 prev_node = local_node; 2633 nodes_clear(used_mask); 2634 2635 memset(node_order, 0, sizeof(node_order)); 2636 j = 0; 2637 2638 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2639 int distance = node_distance(local_node, node); 2640 2641 /* 2642 * If another node is sufficiently far away then it is better 2643 * to reclaim pages in a zone before going off node. 2644 */ 2645 if (distance > RECLAIM_DISTANCE) 2646 zone_reclaim_mode = 1; 2647 2648 /* 2649 * We don't want to pressure a particular node. 2650 * So adding penalty to the first node in same 2651 * distance group to make it round-robin. 2652 */ 2653 if (distance != node_distance(local_node, prev_node)) 2654 node_load[node] = load; 2655 2656 prev_node = node; 2657 load--; 2658 if (order == ZONELIST_ORDER_NODE) 2659 build_zonelists_in_node_order(pgdat, node); 2660 else 2661 node_order[j++] = node; /* remember order */ 2662 } 2663 2664 if (order == ZONELIST_ORDER_ZONE) { 2665 /* calculate node order -- i.e., DMA last! */ 2666 build_zonelists_in_zone_order(pgdat, j); 2667 } 2668 2669 build_thisnode_zonelists(pgdat); 2670 } 2671 2672 /* Construct the zonelist performance cache - see further mmzone.h */ 2673 static void build_zonelist_cache(pg_data_t *pgdat) 2674 { 2675 struct zonelist *zonelist; 2676 struct zonelist_cache *zlc; 2677 struct zoneref *z; 2678 2679 zonelist = &pgdat->node_zonelists[0]; 2680 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2681 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2682 for (z = zonelist->_zonerefs; z->zone; z++) 2683 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2684 } 2685 2686 2687 #else /* CONFIG_NUMA */ 2688 2689 static void set_zonelist_order(void) 2690 { 2691 current_zonelist_order = ZONELIST_ORDER_ZONE; 2692 } 2693 2694 static void build_zonelists(pg_data_t *pgdat) 2695 { 2696 int node, local_node; 2697 enum zone_type j; 2698 struct zonelist *zonelist; 2699 2700 local_node = pgdat->node_id; 2701 2702 zonelist = &pgdat->node_zonelists[0]; 2703 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2704 2705 /* 2706 * Now we build the zonelist so that it contains the zones 2707 * of all the other nodes. 2708 * We don't want to pressure a particular node, so when 2709 * building the zones for node N, we make sure that the 2710 * zones coming right after the local ones are those from 2711 * node N+1 (modulo N) 2712 */ 2713 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2714 if (!node_online(node)) 2715 continue; 2716 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2717 MAX_NR_ZONES - 1); 2718 } 2719 for (node = 0; node < local_node; node++) { 2720 if (!node_online(node)) 2721 continue; 2722 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2723 MAX_NR_ZONES - 1); 2724 } 2725 2726 zonelist->_zonerefs[j].zone = NULL; 2727 zonelist->_zonerefs[j].zone_idx = 0; 2728 } 2729 2730 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2731 static void build_zonelist_cache(pg_data_t *pgdat) 2732 { 2733 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2734 } 2735 2736 #endif /* CONFIG_NUMA */ 2737 2738 /* return values int ....just for stop_machine() */ 2739 static int __build_all_zonelists(void *dummy) 2740 { 2741 int nid; 2742 2743 #ifdef CONFIG_NUMA 2744 memset(node_load, 0, sizeof(node_load)); 2745 #endif 2746 for_each_online_node(nid) { 2747 pg_data_t *pgdat = NODE_DATA(nid); 2748 2749 build_zonelists(pgdat); 2750 build_zonelist_cache(pgdat); 2751 } 2752 return 0; 2753 } 2754 2755 void build_all_zonelists(void) 2756 { 2757 set_zonelist_order(); 2758 2759 if (system_state == SYSTEM_BOOTING) { 2760 __build_all_zonelists(NULL); 2761 mminit_verify_zonelist(); 2762 cpuset_init_current_mems_allowed(); 2763 } else { 2764 /* we have to stop all cpus to guarantee there is no user 2765 of zonelist */ 2766 stop_machine(__build_all_zonelists, NULL, NULL); 2767 /* cpuset refresh routine should be here */ 2768 } 2769 vm_total_pages = nr_free_pagecache_pages(); 2770 /* 2771 * Disable grouping by mobility if the number of pages in the 2772 * system is too low to allow the mechanism to work. It would be 2773 * more accurate, but expensive to check per-zone. This check is 2774 * made on memory-hotadd so a system can start with mobility 2775 * disabled and enable it later 2776 */ 2777 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2778 page_group_by_mobility_disabled = 1; 2779 else 2780 page_group_by_mobility_disabled = 0; 2781 2782 printk("Built %i zonelists in %s order, mobility grouping %s. " 2783 "Total pages: %ld\n", 2784 nr_online_nodes, 2785 zonelist_order_name[current_zonelist_order], 2786 page_group_by_mobility_disabled ? "off" : "on", 2787 vm_total_pages); 2788 #ifdef CONFIG_NUMA 2789 printk("Policy zone: %s\n", zone_names[policy_zone]); 2790 #endif 2791 } 2792 2793 /* 2794 * Helper functions to size the waitqueue hash table. 2795 * Essentially these want to choose hash table sizes sufficiently 2796 * large so that collisions trying to wait on pages are rare. 2797 * But in fact, the number of active page waitqueues on typical 2798 * systems is ridiculously low, less than 200. So this is even 2799 * conservative, even though it seems large. 2800 * 2801 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2802 * waitqueues, i.e. the size of the waitq table given the number of pages. 2803 */ 2804 #define PAGES_PER_WAITQUEUE 256 2805 2806 #ifndef CONFIG_MEMORY_HOTPLUG 2807 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2808 { 2809 unsigned long size = 1; 2810 2811 pages /= PAGES_PER_WAITQUEUE; 2812 2813 while (size < pages) 2814 size <<= 1; 2815 2816 /* 2817 * Once we have dozens or even hundreds of threads sleeping 2818 * on IO we've got bigger problems than wait queue collision. 2819 * Limit the size of the wait table to a reasonable size. 2820 */ 2821 size = min(size, 4096UL); 2822 2823 return max(size, 4UL); 2824 } 2825 #else 2826 /* 2827 * A zone's size might be changed by hot-add, so it is not possible to determine 2828 * a suitable size for its wait_table. So we use the maximum size now. 2829 * 2830 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2831 * 2832 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2833 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2834 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2835 * 2836 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2837 * or more by the traditional way. (See above). It equals: 2838 * 2839 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2840 * ia64(16K page size) : = ( 8G + 4M)byte. 2841 * powerpc (64K page size) : = (32G +16M)byte. 2842 */ 2843 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2844 { 2845 return 4096UL; 2846 } 2847 #endif 2848 2849 /* 2850 * This is an integer logarithm so that shifts can be used later 2851 * to extract the more random high bits from the multiplicative 2852 * hash function before the remainder is taken. 2853 */ 2854 static inline unsigned long wait_table_bits(unsigned long size) 2855 { 2856 return ffz(~size); 2857 } 2858 2859 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2860 2861 /* 2862 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2863 * of blocks reserved is based on min_wmark_pages(zone). The memory within 2864 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 2865 * higher will lead to a bigger reserve which will get freed as contiguous 2866 * blocks as reclaim kicks in 2867 */ 2868 static void setup_zone_migrate_reserve(struct zone *zone) 2869 { 2870 unsigned long start_pfn, pfn, end_pfn; 2871 struct page *page; 2872 unsigned long block_migratetype; 2873 int reserve; 2874 2875 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2876 start_pfn = zone->zone_start_pfn; 2877 end_pfn = start_pfn + zone->spanned_pages; 2878 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 2879 pageblock_order; 2880 2881 /* 2882 * Reserve blocks are generally in place to help high-order atomic 2883 * allocations that are short-lived. A min_free_kbytes value that 2884 * would result in more than 2 reserve blocks for atomic allocations 2885 * is assumed to be in place to help anti-fragmentation for the 2886 * future allocation of hugepages at runtime. 2887 */ 2888 reserve = min(2, reserve); 2889 2890 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2891 if (!pfn_valid(pfn)) 2892 continue; 2893 page = pfn_to_page(pfn); 2894 2895 /* Watch out for overlapping nodes */ 2896 if (page_to_nid(page) != zone_to_nid(zone)) 2897 continue; 2898 2899 /* Blocks with reserved pages will never free, skip them. */ 2900 if (PageReserved(page)) 2901 continue; 2902 2903 block_migratetype = get_pageblock_migratetype(page); 2904 2905 /* If this block is reserved, account for it */ 2906 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2907 reserve--; 2908 continue; 2909 } 2910 2911 /* Suitable for reserving if this block is movable */ 2912 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2913 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2914 move_freepages_block(zone, page, MIGRATE_RESERVE); 2915 reserve--; 2916 continue; 2917 } 2918 2919 /* 2920 * If the reserve is met and this is a previous reserved block, 2921 * take it back 2922 */ 2923 if (block_migratetype == MIGRATE_RESERVE) { 2924 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2925 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2926 } 2927 } 2928 } 2929 2930 /* 2931 * Initially all pages are reserved - free ones are freed 2932 * up by free_all_bootmem() once the early boot process is 2933 * done. Non-atomic initialization, single-pass. 2934 */ 2935 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2936 unsigned long start_pfn, enum memmap_context context) 2937 { 2938 struct page *page; 2939 unsigned long end_pfn = start_pfn + size; 2940 unsigned long pfn; 2941 struct zone *z; 2942 2943 if (highest_memmap_pfn < end_pfn - 1) 2944 highest_memmap_pfn = end_pfn - 1; 2945 2946 z = &NODE_DATA(nid)->node_zones[zone]; 2947 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2948 /* 2949 * There can be holes in boot-time mem_map[]s 2950 * handed to this function. They do not 2951 * exist on hotplugged memory. 2952 */ 2953 if (context == MEMMAP_EARLY) { 2954 if (!early_pfn_valid(pfn)) 2955 continue; 2956 if (!early_pfn_in_nid(pfn, nid)) 2957 continue; 2958 } 2959 page = pfn_to_page(pfn); 2960 set_page_links(page, zone, nid, pfn); 2961 mminit_verify_page_links(page, zone, nid, pfn); 2962 init_page_count(page); 2963 reset_page_mapcount(page); 2964 SetPageReserved(page); 2965 /* 2966 * Mark the block movable so that blocks are reserved for 2967 * movable at startup. This will force kernel allocations 2968 * to reserve their blocks rather than leaking throughout 2969 * the address space during boot when many long-lived 2970 * kernel allocations are made. Later some blocks near 2971 * the start are marked MIGRATE_RESERVE by 2972 * setup_zone_migrate_reserve() 2973 * 2974 * bitmap is created for zone's valid pfn range. but memmap 2975 * can be created for invalid pages (for alignment) 2976 * check here not to call set_pageblock_migratetype() against 2977 * pfn out of zone. 2978 */ 2979 if ((z->zone_start_pfn <= pfn) 2980 && (pfn < z->zone_start_pfn + z->spanned_pages) 2981 && !(pfn & (pageblock_nr_pages - 1))) 2982 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2983 2984 INIT_LIST_HEAD(&page->lru); 2985 #ifdef WANT_PAGE_VIRTUAL 2986 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2987 if (!is_highmem_idx(zone)) 2988 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2989 #endif 2990 } 2991 } 2992 2993 static void __meminit zone_init_free_lists(struct zone *zone) 2994 { 2995 int order, t; 2996 for_each_migratetype_order(order, t) { 2997 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2998 zone->free_area[order].nr_free = 0; 2999 } 3000 } 3001 3002 #ifndef __HAVE_ARCH_MEMMAP_INIT 3003 #define memmap_init(size, nid, zone, start_pfn) \ 3004 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3005 #endif 3006 3007 static int zone_batchsize(struct zone *zone) 3008 { 3009 #ifdef CONFIG_MMU 3010 int batch; 3011 3012 /* 3013 * The per-cpu-pages pools are set to around 1000th of the 3014 * size of the zone. But no more than 1/2 of a meg. 3015 * 3016 * OK, so we don't know how big the cache is. So guess. 3017 */ 3018 batch = zone->present_pages / 1024; 3019 if (batch * PAGE_SIZE > 512 * 1024) 3020 batch = (512 * 1024) / PAGE_SIZE; 3021 batch /= 4; /* We effectively *= 4 below */ 3022 if (batch < 1) 3023 batch = 1; 3024 3025 /* 3026 * Clamp the batch to a 2^n - 1 value. Having a power 3027 * of 2 value was found to be more likely to have 3028 * suboptimal cache aliasing properties in some cases. 3029 * 3030 * For example if 2 tasks are alternately allocating 3031 * batches of pages, one task can end up with a lot 3032 * of pages of one half of the possible page colors 3033 * and the other with pages of the other colors. 3034 */ 3035 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3036 3037 return batch; 3038 3039 #else 3040 /* The deferral and batching of frees should be suppressed under NOMMU 3041 * conditions. 3042 * 3043 * The problem is that NOMMU needs to be able to allocate large chunks 3044 * of contiguous memory as there's no hardware page translation to 3045 * assemble apparent contiguous memory from discontiguous pages. 3046 * 3047 * Queueing large contiguous runs of pages for batching, however, 3048 * causes the pages to actually be freed in smaller chunks. As there 3049 * can be a significant delay between the individual batches being 3050 * recycled, this leads to the once large chunks of space being 3051 * fragmented and becoming unavailable for high-order allocations. 3052 */ 3053 return 0; 3054 #endif 3055 } 3056 3057 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3058 { 3059 struct per_cpu_pages *pcp; 3060 int migratetype; 3061 3062 memset(p, 0, sizeof(*p)); 3063 3064 pcp = &p->pcp; 3065 pcp->count = 0; 3066 pcp->high = 6 * batch; 3067 pcp->batch = max(1UL, 1 * batch); 3068 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3069 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3070 } 3071 3072 /* 3073 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3074 * to the value high for the pageset p. 3075 */ 3076 3077 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3078 unsigned long high) 3079 { 3080 struct per_cpu_pages *pcp; 3081 3082 pcp = &p->pcp; 3083 pcp->high = high; 3084 pcp->batch = max(1UL, high/4); 3085 if ((high/4) > (PAGE_SHIFT * 8)) 3086 pcp->batch = PAGE_SHIFT * 8; 3087 } 3088 3089 3090 #ifdef CONFIG_NUMA 3091 /* 3092 * Boot pageset table. One per cpu which is going to be used for all 3093 * zones and all nodes. The parameters will be set in such a way 3094 * that an item put on a list will immediately be handed over to 3095 * the buddy list. This is safe since pageset manipulation is done 3096 * with interrupts disabled. 3097 * 3098 * Some NUMA counter updates may also be caught by the boot pagesets. 3099 * 3100 * The boot_pagesets must be kept even after bootup is complete for 3101 * unused processors and/or zones. They do play a role for bootstrapping 3102 * hotplugged processors. 3103 * 3104 * zoneinfo_show() and maybe other functions do 3105 * not check if the processor is online before following the pageset pointer. 3106 * Other parts of the kernel may not check if the zone is available. 3107 */ 3108 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 3109 3110 /* 3111 * Dynamically allocate memory for the 3112 * per cpu pageset array in struct zone. 3113 */ 3114 static int __cpuinit process_zones(int cpu) 3115 { 3116 struct zone *zone, *dzone; 3117 int node = cpu_to_node(cpu); 3118 3119 node_set_state(node, N_CPU); /* this node has a cpu */ 3120 3121 for_each_populated_zone(zone) { 3122 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 3123 GFP_KERNEL, node); 3124 if (!zone_pcp(zone, cpu)) 3125 goto bad; 3126 3127 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 3128 3129 if (percpu_pagelist_fraction) 3130 setup_pagelist_highmark(zone_pcp(zone, cpu), 3131 (zone->present_pages / percpu_pagelist_fraction)); 3132 } 3133 3134 return 0; 3135 bad: 3136 for_each_zone(dzone) { 3137 if (!populated_zone(dzone)) 3138 continue; 3139 if (dzone == zone) 3140 break; 3141 kfree(zone_pcp(dzone, cpu)); 3142 zone_pcp(dzone, cpu) = &boot_pageset[cpu]; 3143 } 3144 return -ENOMEM; 3145 } 3146 3147 static inline void free_zone_pagesets(int cpu) 3148 { 3149 struct zone *zone; 3150 3151 for_each_zone(zone) { 3152 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 3153 3154 /* Free per_cpu_pageset if it is slab allocated */ 3155 if (pset != &boot_pageset[cpu]) 3156 kfree(pset); 3157 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3158 } 3159 } 3160 3161 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 3162 unsigned long action, 3163 void *hcpu) 3164 { 3165 int cpu = (long)hcpu; 3166 int ret = NOTIFY_OK; 3167 3168 switch (action) { 3169 case CPU_UP_PREPARE: 3170 case CPU_UP_PREPARE_FROZEN: 3171 if (process_zones(cpu)) 3172 ret = NOTIFY_BAD; 3173 break; 3174 case CPU_UP_CANCELED: 3175 case CPU_UP_CANCELED_FROZEN: 3176 case CPU_DEAD: 3177 case CPU_DEAD_FROZEN: 3178 free_zone_pagesets(cpu); 3179 break; 3180 default: 3181 break; 3182 } 3183 return ret; 3184 } 3185 3186 static struct notifier_block __cpuinitdata pageset_notifier = 3187 { &pageset_cpuup_callback, NULL, 0 }; 3188 3189 void __init setup_per_cpu_pageset(void) 3190 { 3191 int err; 3192 3193 /* Initialize per_cpu_pageset for cpu 0. 3194 * A cpuup callback will do this for every cpu 3195 * as it comes online 3196 */ 3197 err = process_zones(smp_processor_id()); 3198 BUG_ON(err); 3199 register_cpu_notifier(&pageset_notifier); 3200 } 3201 3202 #endif 3203 3204 static noinline __init_refok 3205 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3206 { 3207 int i; 3208 struct pglist_data *pgdat = zone->zone_pgdat; 3209 size_t alloc_size; 3210 3211 /* 3212 * The per-page waitqueue mechanism uses hashed waitqueues 3213 * per zone. 3214 */ 3215 zone->wait_table_hash_nr_entries = 3216 wait_table_hash_nr_entries(zone_size_pages); 3217 zone->wait_table_bits = 3218 wait_table_bits(zone->wait_table_hash_nr_entries); 3219 alloc_size = zone->wait_table_hash_nr_entries 3220 * sizeof(wait_queue_head_t); 3221 3222 if (!slab_is_available()) { 3223 zone->wait_table = (wait_queue_head_t *) 3224 alloc_bootmem_node(pgdat, alloc_size); 3225 } else { 3226 /* 3227 * This case means that a zone whose size was 0 gets new memory 3228 * via memory hot-add. 3229 * But it may be the case that a new node was hot-added. In 3230 * this case vmalloc() will not be able to use this new node's 3231 * memory - this wait_table must be initialized to use this new 3232 * node itself as well. 3233 * To use this new node's memory, further consideration will be 3234 * necessary. 3235 */ 3236 zone->wait_table = vmalloc(alloc_size); 3237 } 3238 if (!zone->wait_table) 3239 return -ENOMEM; 3240 3241 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3242 init_waitqueue_head(zone->wait_table + i); 3243 3244 return 0; 3245 } 3246 3247 static int __zone_pcp_update(void *data) 3248 { 3249 struct zone *zone = data; 3250 int cpu; 3251 unsigned long batch = zone_batchsize(zone), flags; 3252 3253 for (cpu = 0; cpu < NR_CPUS; cpu++) { 3254 struct per_cpu_pageset *pset; 3255 struct per_cpu_pages *pcp; 3256 3257 pset = zone_pcp(zone, cpu); 3258 pcp = &pset->pcp; 3259 3260 local_irq_save(flags); 3261 free_pcppages_bulk(zone, pcp->count, pcp); 3262 setup_pageset(pset, batch); 3263 local_irq_restore(flags); 3264 } 3265 return 0; 3266 } 3267 3268 void zone_pcp_update(struct zone *zone) 3269 { 3270 stop_machine(__zone_pcp_update, zone, NULL); 3271 } 3272 3273 static __meminit void zone_pcp_init(struct zone *zone) 3274 { 3275 int cpu; 3276 unsigned long batch = zone_batchsize(zone); 3277 3278 for (cpu = 0; cpu < NR_CPUS; cpu++) { 3279 #ifdef CONFIG_NUMA 3280 /* Early boot. Slab allocator not functional yet */ 3281 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3282 setup_pageset(&boot_pageset[cpu],0); 3283 #else 3284 setup_pageset(zone_pcp(zone,cpu), batch); 3285 #endif 3286 } 3287 if (zone->present_pages) 3288 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 3289 zone->name, zone->present_pages, batch); 3290 } 3291 3292 __meminit int init_currently_empty_zone(struct zone *zone, 3293 unsigned long zone_start_pfn, 3294 unsigned long size, 3295 enum memmap_context context) 3296 { 3297 struct pglist_data *pgdat = zone->zone_pgdat; 3298 int ret; 3299 ret = zone_wait_table_init(zone, size); 3300 if (ret) 3301 return ret; 3302 pgdat->nr_zones = zone_idx(zone) + 1; 3303 3304 zone->zone_start_pfn = zone_start_pfn; 3305 3306 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3307 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3308 pgdat->node_id, 3309 (unsigned long)zone_idx(zone), 3310 zone_start_pfn, (zone_start_pfn + size)); 3311 3312 zone_init_free_lists(zone); 3313 3314 return 0; 3315 } 3316 3317 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3318 /* 3319 * Basic iterator support. Return the first range of PFNs for a node 3320 * Note: nid == MAX_NUMNODES returns first region regardless of node 3321 */ 3322 static int __meminit first_active_region_index_in_nid(int nid) 3323 { 3324 int i; 3325 3326 for (i = 0; i < nr_nodemap_entries; i++) 3327 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3328 return i; 3329 3330 return -1; 3331 } 3332 3333 /* 3334 * Basic iterator support. Return the next active range of PFNs for a node 3335 * Note: nid == MAX_NUMNODES returns next region regardless of node 3336 */ 3337 static int __meminit next_active_region_index_in_nid(int index, int nid) 3338 { 3339 for (index = index + 1; index < nr_nodemap_entries; index++) 3340 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3341 return index; 3342 3343 return -1; 3344 } 3345 3346 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3347 /* 3348 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3349 * Architectures may implement their own version but if add_active_range() 3350 * was used and there are no special requirements, this is a convenient 3351 * alternative 3352 */ 3353 int __meminit __early_pfn_to_nid(unsigned long pfn) 3354 { 3355 int i; 3356 3357 for (i = 0; i < nr_nodemap_entries; i++) { 3358 unsigned long start_pfn = early_node_map[i].start_pfn; 3359 unsigned long end_pfn = early_node_map[i].end_pfn; 3360 3361 if (start_pfn <= pfn && pfn < end_pfn) 3362 return early_node_map[i].nid; 3363 } 3364 /* This is a memory hole */ 3365 return -1; 3366 } 3367 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3368 3369 int __meminit early_pfn_to_nid(unsigned long pfn) 3370 { 3371 int nid; 3372 3373 nid = __early_pfn_to_nid(pfn); 3374 if (nid >= 0) 3375 return nid; 3376 /* just returns 0 */ 3377 return 0; 3378 } 3379 3380 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3381 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3382 { 3383 int nid; 3384 3385 nid = __early_pfn_to_nid(pfn); 3386 if (nid >= 0 && nid != node) 3387 return false; 3388 return true; 3389 } 3390 #endif 3391 3392 /* Basic iterator support to walk early_node_map[] */ 3393 #define for_each_active_range_index_in_nid(i, nid) \ 3394 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3395 i = next_active_region_index_in_nid(i, nid)) 3396 3397 /** 3398 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3399 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3400 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3401 * 3402 * If an architecture guarantees that all ranges registered with 3403 * add_active_ranges() contain no holes and may be freed, this 3404 * this function may be used instead of calling free_bootmem() manually. 3405 */ 3406 void __init free_bootmem_with_active_regions(int nid, 3407 unsigned long max_low_pfn) 3408 { 3409 int i; 3410 3411 for_each_active_range_index_in_nid(i, nid) { 3412 unsigned long size_pages = 0; 3413 unsigned long end_pfn = early_node_map[i].end_pfn; 3414 3415 if (early_node_map[i].start_pfn >= max_low_pfn) 3416 continue; 3417 3418 if (end_pfn > max_low_pfn) 3419 end_pfn = max_low_pfn; 3420 3421 size_pages = end_pfn - early_node_map[i].start_pfn; 3422 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3423 PFN_PHYS(early_node_map[i].start_pfn), 3424 size_pages << PAGE_SHIFT); 3425 } 3426 } 3427 3428 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3429 { 3430 int i; 3431 int ret; 3432 3433 for_each_active_range_index_in_nid(i, nid) { 3434 ret = work_fn(early_node_map[i].start_pfn, 3435 early_node_map[i].end_pfn, data); 3436 if (ret) 3437 break; 3438 } 3439 } 3440 /** 3441 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3442 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3443 * 3444 * If an architecture guarantees that all ranges registered with 3445 * add_active_ranges() contain no holes and may be freed, this 3446 * function may be used instead of calling memory_present() manually. 3447 */ 3448 void __init sparse_memory_present_with_active_regions(int nid) 3449 { 3450 int i; 3451 3452 for_each_active_range_index_in_nid(i, nid) 3453 memory_present(early_node_map[i].nid, 3454 early_node_map[i].start_pfn, 3455 early_node_map[i].end_pfn); 3456 } 3457 3458 /** 3459 * get_pfn_range_for_nid - Return the start and end page frames for a node 3460 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3461 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3462 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3463 * 3464 * It returns the start and end page frame of a node based on information 3465 * provided by an arch calling add_active_range(). If called for a node 3466 * with no available memory, a warning is printed and the start and end 3467 * PFNs will be 0. 3468 */ 3469 void __meminit get_pfn_range_for_nid(unsigned int nid, 3470 unsigned long *start_pfn, unsigned long *end_pfn) 3471 { 3472 int i; 3473 *start_pfn = -1UL; 3474 *end_pfn = 0; 3475 3476 for_each_active_range_index_in_nid(i, nid) { 3477 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3478 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3479 } 3480 3481 if (*start_pfn == -1UL) 3482 *start_pfn = 0; 3483 } 3484 3485 /* 3486 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3487 * assumption is made that zones within a node are ordered in monotonic 3488 * increasing memory addresses so that the "highest" populated zone is used 3489 */ 3490 static void __init find_usable_zone_for_movable(void) 3491 { 3492 int zone_index; 3493 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3494 if (zone_index == ZONE_MOVABLE) 3495 continue; 3496 3497 if (arch_zone_highest_possible_pfn[zone_index] > 3498 arch_zone_lowest_possible_pfn[zone_index]) 3499 break; 3500 } 3501 3502 VM_BUG_ON(zone_index == -1); 3503 movable_zone = zone_index; 3504 } 3505 3506 /* 3507 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3508 * because it is sized independant of architecture. Unlike the other zones, 3509 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3510 * in each node depending on the size of each node and how evenly kernelcore 3511 * is distributed. This helper function adjusts the zone ranges 3512 * provided by the architecture for a given node by using the end of the 3513 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3514 * zones within a node are in order of monotonic increases memory addresses 3515 */ 3516 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3517 unsigned long zone_type, 3518 unsigned long node_start_pfn, 3519 unsigned long node_end_pfn, 3520 unsigned long *zone_start_pfn, 3521 unsigned long *zone_end_pfn) 3522 { 3523 /* Only adjust if ZONE_MOVABLE is on this node */ 3524 if (zone_movable_pfn[nid]) { 3525 /* Size ZONE_MOVABLE */ 3526 if (zone_type == ZONE_MOVABLE) { 3527 *zone_start_pfn = zone_movable_pfn[nid]; 3528 *zone_end_pfn = min(node_end_pfn, 3529 arch_zone_highest_possible_pfn[movable_zone]); 3530 3531 /* Adjust for ZONE_MOVABLE starting within this range */ 3532 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3533 *zone_end_pfn > zone_movable_pfn[nid]) { 3534 *zone_end_pfn = zone_movable_pfn[nid]; 3535 3536 /* Check if this whole range is within ZONE_MOVABLE */ 3537 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3538 *zone_start_pfn = *zone_end_pfn; 3539 } 3540 } 3541 3542 /* 3543 * Return the number of pages a zone spans in a node, including holes 3544 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3545 */ 3546 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3547 unsigned long zone_type, 3548 unsigned long *ignored) 3549 { 3550 unsigned long node_start_pfn, node_end_pfn; 3551 unsigned long zone_start_pfn, zone_end_pfn; 3552 3553 /* Get the start and end of the node and zone */ 3554 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3555 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3556 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3557 adjust_zone_range_for_zone_movable(nid, zone_type, 3558 node_start_pfn, node_end_pfn, 3559 &zone_start_pfn, &zone_end_pfn); 3560 3561 /* Check that this node has pages within the zone's required range */ 3562 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3563 return 0; 3564 3565 /* Move the zone boundaries inside the node if necessary */ 3566 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3567 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3568 3569 /* Return the spanned pages */ 3570 return zone_end_pfn - zone_start_pfn; 3571 } 3572 3573 /* 3574 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3575 * then all holes in the requested range will be accounted for. 3576 */ 3577 static unsigned long __meminit __absent_pages_in_range(int nid, 3578 unsigned long range_start_pfn, 3579 unsigned long range_end_pfn) 3580 { 3581 int i = 0; 3582 unsigned long prev_end_pfn = 0, hole_pages = 0; 3583 unsigned long start_pfn; 3584 3585 /* Find the end_pfn of the first active range of pfns in the node */ 3586 i = first_active_region_index_in_nid(nid); 3587 if (i == -1) 3588 return 0; 3589 3590 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3591 3592 /* Account for ranges before physical memory on this node */ 3593 if (early_node_map[i].start_pfn > range_start_pfn) 3594 hole_pages = prev_end_pfn - range_start_pfn; 3595 3596 /* Find all holes for the zone within the node */ 3597 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3598 3599 /* No need to continue if prev_end_pfn is outside the zone */ 3600 if (prev_end_pfn >= range_end_pfn) 3601 break; 3602 3603 /* Make sure the end of the zone is not within the hole */ 3604 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3605 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3606 3607 /* Update the hole size cound and move on */ 3608 if (start_pfn > range_start_pfn) { 3609 BUG_ON(prev_end_pfn > start_pfn); 3610 hole_pages += start_pfn - prev_end_pfn; 3611 } 3612 prev_end_pfn = early_node_map[i].end_pfn; 3613 } 3614 3615 /* Account for ranges past physical memory on this node */ 3616 if (range_end_pfn > prev_end_pfn) 3617 hole_pages += range_end_pfn - 3618 max(range_start_pfn, prev_end_pfn); 3619 3620 return hole_pages; 3621 } 3622 3623 /** 3624 * absent_pages_in_range - Return number of page frames in holes within a range 3625 * @start_pfn: The start PFN to start searching for holes 3626 * @end_pfn: The end PFN to stop searching for holes 3627 * 3628 * It returns the number of pages frames in memory holes within a range. 3629 */ 3630 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3631 unsigned long end_pfn) 3632 { 3633 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3634 } 3635 3636 /* Return the number of page frames in holes in a zone on a node */ 3637 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3638 unsigned long zone_type, 3639 unsigned long *ignored) 3640 { 3641 unsigned long node_start_pfn, node_end_pfn; 3642 unsigned long zone_start_pfn, zone_end_pfn; 3643 3644 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3645 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3646 node_start_pfn); 3647 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3648 node_end_pfn); 3649 3650 adjust_zone_range_for_zone_movable(nid, zone_type, 3651 node_start_pfn, node_end_pfn, 3652 &zone_start_pfn, &zone_end_pfn); 3653 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3654 } 3655 3656 #else 3657 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3658 unsigned long zone_type, 3659 unsigned long *zones_size) 3660 { 3661 return zones_size[zone_type]; 3662 } 3663 3664 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3665 unsigned long zone_type, 3666 unsigned long *zholes_size) 3667 { 3668 if (!zholes_size) 3669 return 0; 3670 3671 return zholes_size[zone_type]; 3672 } 3673 3674 #endif 3675 3676 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3677 unsigned long *zones_size, unsigned long *zholes_size) 3678 { 3679 unsigned long realtotalpages, totalpages = 0; 3680 enum zone_type i; 3681 3682 for (i = 0; i < MAX_NR_ZONES; i++) 3683 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3684 zones_size); 3685 pgdat->node_spanned_pages = totalpages; 3686 3687 realtotalpages = totalpages; 3688 for (i = 0; i < MAX_NR_ZONES; i++) 3689 realtotalpages -= 3690 zone_absent_pages_in_node(pgdat->node_id, i, 3691 zholes_size); 3692 pgdat->node_present_pages = realtotalpages; 3693 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3694 realtotalpages); 3695 } 3696 3697 #ifndef CONFIG_SPARSEMEM 3698 /* 3699 * Calculate the size of the zone->blockflags rounded to an unsigned long 3700 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3701 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3702 * round what is now in bits to nearest long in bits, then return it in 3703 * bytes. 3704 */ 3705 static unsigned long __init usemap_size(unsigned long zonesize) 3706 { 3707 unsigned long usemapsize; 3708 3709 usemapsize = roundup(zonesize, pageblock_nr_pages); 3710 usemapsize = usemapsize >> pageblock_order; 3711 usemapsize *= NR_PAGEBLOCK_BITS; 3712 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3713 3714 return usemapsize / 8; 3715 } 3716 3717 static void __init setup_usemap(struct pglist_data *pgdat, 3718 struct zone *zone, unsigned long zonesize) 3719 { 3720 unsigned long usemapsize = usemap_size(zonesize); 3721 zone->pageblock_flags = NULL; 3722 if (usemapsize) 3723 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3724 } 3725 #else 3726 static void inline setup_usemap(struct pglist_data *pgdat, 3727 struct zone *zone, unsigned long zonesize) {} 3728 #endif /* CONFIG_SPARSEMEM */ 3729 3730 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3731 3732 /* Return a sensible default order for the pageblock size. */ 3733 static inline int pageblock_default_order(void) 3734 { 3735 if (HPAGE_SHIFT > PAGE_SHIFT) 3736 return HUGETLB_PAGE_ORDER; 3737 3738 return MAX_ORDER-1; 3739 } 3740 3741 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3742 static inline void __init set_pageblock_order(unsigned int order) 3743 { 3744 /* Check that pageblock_nr_pages has not already been setup */ 3745 if (pageblock_order) 3746 return; 3747 3748 /* 3749 * Assume the largest contiguous order of interest is a huge page. 3750 * This value may be variable depending on boot parameters on IA64 3751 */ 3752 pageblock_order = order; 3753 } 3754 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3755 3756 /* 3757 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3758 * and pageblock_default_order() are unused as pageblock_order is set 3759 * at compile-time. See include/linux/pageblock-flags.h for the values of 3760 * pageblock_order based on the kernel config 3761 */ 3762 static inline int pageblock_default_order(unsigned int order) 3763 { 3764 return MAX_ORDER-1; 3765 } 3766 #define set_pageblock_order(x) do {} while (0) 3767 3768 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3769 3770 /* 3771 * Set up the zone data structures: 3772 * - mark all pages reserved 3773 * - mark all memory queues empty 3774 * - clear the memory bitmaps 3775 */ 3776 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3777 unsigned long *zones_size, unsigned long *zholes_size) 3778 { 3779 enum zone_type j; 3780 int nid = pgdat->node_id; 3781 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3782 int ret; 3783 3784 pgdat_resize_init(pgdat); 3785 pgdat->nr_zones = 0; 3786 init_waitqueue_head(&pgdat->kswapd_wait); 3787 pgdat->kswapd_max_order = 0; 3788 pgdat_page_cgroup_init(pgdat); 3789 3790 for (j = 0; j < MAX_NR_ZONES; j++) { 3791 struct zone *zone = pgdat->node_zones + j; 3792 unsigned long size, realsize, memmap_pages; 3793 enum lru_list l; 3794 3795 size = zone_spanned_pages_in_node(nid, j, zones_size); 3796 realsize = size - zone_absent_pages_in_node(nid, j, 3797 zholes_size); 3798 3799 /* 3800 * Adjust realsize so that it accounts for how much memory 3801 * is used by this zone for memmap. This affects the watermark 3802 * and per-cpu initialisations 3803 */ 3804 memmap_pages = 3805 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3806 if (realsize >= memmap_pages) { 3807 realsize -= memmap_pages; 3808 if (memmap_pages) 3809 printk(KERN_DEBUG 3810 " %s zone: %lu pages used for memmap\n", 3811 zone_names[j], memmap_pages); 3812 } else 3813 printk(KERN_WARNING 3814 " %s zone: %lu pages exceeds realsize %lu\n", 3815 zone_names[j], memmap_pages, realsize); 3816 3817 /* Account for reserved pages */ 3818 if (j == 0 && realsize > dma_reserve) { 3819 realsize -= dma_reserve; 3820 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3821 zone_names[0], dma_reserve); 3822 } 3823 3824 if (!is_highmem_idx(j)) 3825 nr_kernel_pages += realsize; 3826 nr_all_pages += realsize; 3827 3828 zone->spanned_pages = size; 3829 zone->present_pages = realsize; 3830 #ifdef CONFIG_NUMA 3831 zone->node = nid; 3832 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3833 / 100; 3834 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3835 #endif 3836 zone->name = zone_names[j]; 3837 spin_lock_init(&zone->lock); 3838 spin_lock_init(&zone->lru_lock); 3839 zone_seqlock_init(zone); 3840 zone->zone_pgdat = pgdat; 3841 3842 zone->prev_priority = DEF_PRIORITY; 3843 3844 zone_pcp_init(zone); 3845 for_each_lru(l) { 3846 INIT_LIST_HEAD(&zone->lru[l].list); 3847 zone->reclaim_stat.nr_saved_scan[l] = 0; 3848 } 3849 zone->reclaim_stat.recent_rotated[0] = 0; 3850 zone->reclaim_stat.recent_rotated[1] = 0; 3851 zone->reclaim_stat.recent_scanned[0] = 0; 3852 zone->reclaim_stat.recent_scanned[1] = 0; 3853 zap_zone_vm_stats(zone); 3854 zone->flags = 0; 3855 if (!size) 3856 continue; 3857 3858 set_pageblock_order(pageblock_default_order()); 3859 setup_usemap(pgdat, zone, size); 3860 ret = init_currently_empty_zone(zone, zone_start_pfn, 3861 size, MEMMAP_EARLY); 3862 BUG_ON(ret); 3863 memmap_init(size, nid, j, zone_start_pfn); 3864 zone_start_pfn += size; 3865 } 3866 } 3867 3868 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3869 { 3870 /* Skip empty nodes */ 3871 if (!pgdat->node_spanned_pages) 3872 return; 3873 3874 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3875 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3876 if (!pgdat->node_mem_map) { 3877 unsigned long size, start, end; 3878 struct page *map; 3879 3880 /* 3881 * The zone's endpoints aren't required to be MAX_ORDER 3882 * aligned but the node_mem_map endpoints must be in order 3883 * for the buddy allocator to function correctly. 3884 */ 3885 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3886 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3887 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3888 size = (end - start) * sizeof(struct page); 3889 map = alloc_remap(pgdat->node_id, size); 3890 if (!map) 3891 map = alloc_bootmem_node(pgdat, size); 3892 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3893 } 3894 #ifndef CONFIG_NEED_MULTIPLE_NODES 3895 /* 3896 * With no DISCONTIG, the global mem_map is just set as node 0's 3897 */ 3898 if (pgdat == NODE_DATA(0)) { 3899 mem_map = NODE_DATA(0)->node_mem_map; 3900 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3901 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3902 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3903 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3904 } 3905 #endif 3906 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3907 } 3908 3909 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3910 unsigned long node_start_pfn, unsigned long *zholes_size) 3911 { 3912 pg_data_t *pgdat = NODE_DATA(nid); 3913 3914 pgdat->node_id = nid; 3915 pgdat->node_start_pfn = node_start_pfn; 3916 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3917 3918 alloc_node_mem_map(pgdat); 3919 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3920 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3921 nid, (unsigned long)pgdat, 3922 (unsigned long)pgdat->node_mem_map); 3923 #endif 3924 3925 free_area_init_core(pgdat, zones_size, zholes_size); 3926 } 3927 3928 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3929 3930 #if MAX_NUMNODES > 1 3931 /* 3932 * Figure out the number of possible node ids. 3933 */ 3934 static void __init setup_nr_node_ids(void) 3935 { 3936 unsigned int node; 3937 unsigned int highest = 0; 3938 3939 for_each_node_mask(node, node_possible_map) 3940 highest = node; 3941 nr_node_ids = highest + 1; 3942 } 3943 #else 3944 static inline void setup_nr_node_ids(void) 3945 { 3946 } 3947 #endif 3948 3949 /** 3950 * add_active_range - Register a range of PFNs backed by physical memory 3951 * @nid: The node ID the range resides on 3952 * @start_pfn: The start PFN of the available physical memory 3953 * @end_pfn: The end PFN of the available physical memory 3954 * 3955 * These ranges are stored in an early_node_map[] and later used by 3956 * free_area_init_nodes() to calculate zone sizes and holes. If the 3957 * range spans a memory hole, it is up to the architecture to ensure 3958 * the memory is not freed by the bootmem allocator. If possible 3959 * the range being registered will be merged with existing ranges. 3960 */ 3961 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3962 unsigned long end_pfn) 3963 { 3964 int i; 3965 3966 mminit_dprintk(MMINIT_TRACE, "memory_register", 3967 "Entering add_active_range(%d, %#lx, %#lx) " 3968 "%d entries of %d used\n", 3969 nid, start_pfn, end_pfn, 3970 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3971 3972 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3973 3974 /* Merge with existing active regions if possible */ 3975 for (i = 0; i < nr_nodemap_entries; i++) { 3976 if (early_node_map[i].nid != nid) 3977 continue; 3978 3979 /* Skip if an existing region covers this new one */ 3980 if (start_pfn >= early_node_map[i].start_pfn && 3981 end_pfn <= early_node_map[i].end_pfn) 3982 return; 3983 3984 /* Merge forward if suitable */ 3985 if (start_pfn <= early_node_map[i].end_pfn && 3986 end_pfn > early_node_map[i].end_pfn) { 3987 early_node_map[i].end_pfn = end_pfn; 3988 return; 3989 } 3990 3991 /* Merge backward if suitable */ 3992 if (start_pfn < early_node_map[i].end_pfn && 3993 end_pfn >= early_node_map[i].start_pfn) { 3994 early_node_map[i].start_pfn = start_pfn; 3995 return; 3996 } 3997 } 3998 3999 /* Check that early_node_map is large enough */ 4000 if (i >= MAX_ACTIVE_REGIONS) { 4001 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4002 MAX_ACTIVE_REGIONS); 4003 return; 4004 } 4005 4006 early_node_map[i].nid = nid; 4007 early_node_map[i].start_pfn = start_pfn; 4008 early_node_map[i].end_pfn = end_pfn; 4009 nr_nodemap_entries = i + 1; 4010 } 4011 4012 /** 4013 * remove_active_range - Shrink an existing registered range of PFNs 4014 * @nid: The node id the range is on that should be shrunk 4015 * @start_pfn: The new PFN of the range 4016 * @end_pfn: The new PFN of the range 4017 * 4018 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4019 * The map is kept near the end physical page range that has already been 4020 * registered. This function allows an arch to shrink an existing registered 4021 * range. 4022 */ 4023 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4024 unsigned long end_pfn) 4025 { 4026 int i, j; 4027 int removed = 0; 4028 4029 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4030 nid, start_pfn, end_pfn); 4031 4032 /* Find the old active region end and shrink */ 4033 for_each_active_range_index_in_nid(i, nid) { 4034 if (early_node_map[i].start_pfn >= start_pfn && 4035 early_node_map[i].end_pfn <= end_pfn) { 4036 /* clear it */ 4037 early_node_map[i].start_pfn = 0; 4038 early_node_map[i].end_pfn = 0; 4039 removed = 1; 4040 continue; 4041 } 4042 if (early_node_map[i].start_pfn < start_pfn && 4043 early_node_map[i].end_pfn > start_pfn) { 4044 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4045 early_node_map[i].end_pfn = start_pfn; 4046 if (temp_end_pfn > end_pfn) 4047 add_active_range(nid, end_pfn, temp_end_pfn); 4048 continue; 4049 } 4050 if (early_node_map[i].start_pfn >= start_pfn && 4051 early_node_map[i].end_pfn > end_pfn && 4052 early_node_map[i].start_pfn < end_pfn) { 4053 early_node_map[i].start_pfn = end_pfn; 4054 continue; 4055 } 4056 } 4057 4058 if (!removed) 4059 return; 4060 4061 /* remove the blank ones */ 4062 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4063 if (early_node_map[i].nid != nid) 4064 continue; 4065 if (early_node_map[i].end_pfn) 4066 continue; 4067 /* we found it, get rid of it */ 4068 for (j = i; j < nr_nodemap_entries - 1; j++) 4069 memcpy(&early_node_map[j], &early_node_map[j+1], 4070 sizeof(early_node_map[j])); 4071 j = nr_nodemap_entries - 1; 4072 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4073 nr_nodemap_entries--; 4074 } 4075 } 4076 4077 /** 4078 * remove_all_active_ranges - Remove all currently registered regions 4079 * 4080 * During discovery, it may be found that a table like SRAT is invalid 4081 * and an alternative discovery method must be used. This function removes 4082 * all currently registered regions. 4083 */ 4084 void __init remove_all_active_ranges(void) 4085 { 4086 memset(early_node_map, 0, sizeof(early_node_map)); 4087 nr_nodemap_entries = 0; 4088 } 4089 4090 /* Compare two active node_active_regions */ 4091 static int __init cmp_node_active_region(const void *a, const void *b) 4092 { 4093 struct node_active_region *arange = (struct node_active_region *)a; 4094 struct node_active_region *brange = (struct node_active_region *)b; 4095 4096 /* Done this way to avoid overflows */ 4097 if (arange->start_pfn > brange->start_pfn) 4098 return 1; 4099 if (arange->start_pfn < brange->start_pfn) 4100 return -1; 4101 4102 return 0; 4103 } 4104 4105 /* sort the node_map by start_pfn */ 4106 static void __init sort_node_map(void) 4107 { 4108 sort(early_node_map, (size_t)nr_nodemap_entries, 4109 sizeof(struct node_active_region), 4110 cmp_node_active_region, NULL); 4111 } 4112 4113 /* Find the lowest pfn for a node */ 4114 static unsigned long __init find_min_pfn_for_node(int nid) 4115 { 4116 int i; 4117 unsigned long min_pfn = ULONG_MAX; 4118 4119 /* Assuming a sorted map, the first range found has the starting pfn */ 4120 for_each_active_range_index_in_nid(i, nid) 4121 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4122 4123 if (min_pfn == ULONG_MAX) { 4124 printk(KERN_WARNING 4125 "Could not find start_pfn for node %d\n", nid); 4126 return 0; 4127 } 4128 4129 return min_pfn; 4130 } 4131 4132 /** 4133 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4134 * 4135 * It returns the minimum PFN based on information provided via 4136 * add_active_range(). 4137 */ 4138 unsigned long __init find_min_pfn_with_active_regions(void) 4139 { 4140 return find_min_pfn_for_node(MAX_NUMNODES); 4141 } 4142 4143 /* 4144 * early_calculate_totalpages() 4145 * Sum pages in active regions for movable zone. 4146 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4147 */ 4148 static unsigned long __init early_calculate_totalpages(void) 4149 { 4150 int i; 4151 unsigned long totalpages = 0; 4152 4153 for (i = 0; i < nr_nodemap_entries; i++) { 4154 unsigned long pages = early_node_map[i].end_pfn - 4155 early_node_map[i].start_pfn; 4156 totalpages += pages; 4157 if (pages) 4158 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4159 } 4160 return totalpages; 4161 } 4162 4163 /* 4164 * Find the PFN the Movable zone begins in each node. Kernel memory 4165 * is spread evenly between nodes as long as the nodes have enough 4166 * memory. When they don't, some nodes will have more kernelcore than 4167 * others 4168 */ 4169 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4170 { 4171 int i, nid; 4172 unsigned long usable_startpfn; 4173 unsigned long kernelcore_node, kernelcore_remaining; 4174 /* save the state before borrow the nodemask */ 4175 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4176 unsigned long totalpages = early_calculate_totalpages(); 4177 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4178 4179 /* 4180 * If movablecore was specified, calculate what size of 4181 * kernelcore that corresponds so that memory usable for 4182 * any allocation type is evenly spread. If both kernelcore 4183 * and movablecore are specified, then the value of kernelcore 4184 * will be used for required_kernelcore if it's greater than 4185 * what movablecore would have allowed. 4186 */ 4187 if (required_movablecore) { 4188 unsigned long corepages; 4189 4190 /* 4191 * Round-up so that ZONE_MOVABLE is at least as large as what 4192 * was requested by the user 4193 */ 4194 required_movablecore = 4195 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4196 corepages = totalpages - required_movablecore; 4197 4198 required_kernelcore = max(required_kernelcore, corepages); 4199 } 4200 4201 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4202 if (!required_kernelcore) 4203 goto out; 4204 4205 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4206 find_usable_zone_for_movable(); 4207 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4208 4209 restart: 4210 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4211 kernelcore_node = required_kernelcore / usable_nodes; 4212 for_each_node_state(nid, N_HIGH_MEMORY) { 4213 /* 4214 * Recalculate kernelcore_node if the division per node 4215 * now exceeds what is necessary to satisfy the requested 4216 * amount of memory for the kernel 4217 */ 4218 if (required_kernelcore < kernelcore_node) 4219 kernelcore_node = required_kernelcore / usable_nodes; 4220 4221 /* 4222 * As the map is walked, we track how much memory is usable 4223 * by the kernel using kernelcore_remaining. When it is 4224 * 0, the rest of the node is usable by ZONE_MOVABLE 4225 */ 4226 kernelcore_remaining = kernelcore_node; 4227 4228 /* Go through each range of PFNs within this node */ 4229 for_each_active_range_index_in_nid(i, nid) { 4230 unsigned long start_pfn, end_pfn; 4231 unsigned long size_pages; 4232 4233 start_pfn = max(early_node_map[i].start_pfn, 4234 zone_movable_pfn[nid]); 4235 end_pfn = early_node_map[i].end_pfn; 4236 if (start_pfn >= end_pfn) 4237 continue; 4238 4239 /* Account for what is only usable for kernelcore */ 4240 if (start_pfn < usable_startpfn) { 4241 unsigned long kernel_pages; 4242 kernel_pages = min(end_pfn, usable_startpfn) 4243 - start_pfn; 4244 4245 kernelcore_remaining -= min(kernel_pages, 4246 kernelcore_remaining); 4247 required_kernelcore -= min(kernel_pages, 4248 required_kernelcore); 4249 4250 /* Continue if range is now fully accounted */ 4251 if (end_pfn <= usable_startpfn) { 4252 4253 /* 4254 * Push zone_movable_pfn to the end so 4255 * that if we have to rebalance 4256 * kernelcore across nodes, we will 4257 * not double account here 4258 */ 4259 zone_movable_pfn[nid] = end_pfn; 4260 continue; 4261 } 4262 start_pfn = usable_startpfn; 4263 } 4264 4265 /* 4266 * The usable PFN range for ZONE_MOVABLE is from 4267 * start_pfn->end_pfn. Calculate size_pages as the 4268 * number of pages used as kernelcore 4269 */ 4270 size_pages = end_pfn - start_pfn; 4271 if (size_pages > kernelcore_remaining) 4272 size_pages = kernelcore_remaining; 4273 zone_movable_pfn[nid] = start_pfn + size_pages; 4274 4275 /* 4276 * Some kernelcore has been met, update counts and 4277 * break if the kernelcore for this node has been 4278 * satisified 4279 */ 4280 required_kernelcore -= min(required_kernelcore, 4281 size_pages); 4282 kernelcore_remaining -= size_pages; 4283 if (!kernelcore_remaining) 4284 break; 4285 } 4286 } 4287 4288 /* 4289 * If there is still required_kernelcore, we do another pass with one 4290 * less node in the count. This will push zone_movable_pfn[nid] further 4291 * along on the nodes that still have memory until kernelcore is 4292 * satisified 4293 */ 4294 usable_nodes--; 4295 if (usable_nodes && required_kernelcore > usable_nodes) 4296 goto restart; 4297 4298 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4299 for (nid = 0; nid < MAX_NUMNODES; nid++) 4300 zone_movable_pfn[nid] = 4301 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4302 4303 out: 4304 /* restore the node_state */ 4305 node_states[N_HIGH_MEMORY] = saved_node_state; 4306 } 4307 4308 /* Any regular memory on that node ? */ 4309 static void check_for_regular_memory(pg_data_t *pgdat) 4310 { 4311 #ifdef CONFIG_HIGHMEM 4312 enum zone_type zone_type; 4313 4314 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4315 struct zone *zone = &pgdat->node_zones[zone_type]; 4316 if (zone->present_pages) 4317 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4318 } 4319 #endif 4320 } 4321 4322 /** 4323 * free_area_init_nodes - Initialise all pg_data_t and zone data 4324 * @max_zone_pfn: an array of max PFNs for each zone 4325 * 4326 * This will call free_area_init_node() for each active node in the system. 4327 * Using the page ranges provided by add_active_range(), the size of each 4328 * zone in each node and their holes is calculated. If the maximum PFN 4329 * between two adjacent zones match, it is assumed that the zone is empty. 4330 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4331 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4332 * starts where the previous one ended. For example, ZONE_DMA32 starts 4333 * at arch_max_dma_pfn. 4334 */ 4335 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4336 { 4337 unsigned long nid; 4338 int i; 4339 4340 /* Sort early_node_map as initialisation assumes it is sorted */ 4341 sort_node_map(); 4342 4343 /* Record where the zone boundaries are */ 4344 memset(arch_zone_lowest_possible_pfn, 0, 4345 sizeof(arch_zone_lowest_possible_pfn)); 4346 memset(arch_zone_highest_possible_pfn, 0, 4347 sizeof(arch_zone_highest_possible_pfn)); 4348 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4349 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4350 for (i = 1; i < MAX_NR_ZONES; i++) { 4351 if (i == ZONE_MOVABLE) 4352 continue; 4353 arch_zone_lowest_possible_pfn[i] = 4354 arch_zone_highest_possible_pfn[i-1]; 4355 arch_zone_highest_possible_pfn[i] = 4356 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4357 } 4358 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4359 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4360 4361 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4362 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4363 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4364 4365 /* Print out the zone ranges */ 4366 printk("Zone PFN ranges:\n"); 4367 for (i = 0; i < MAX_NR_ZONES; i++) { 4368 if (i == ZONE_MOVABLE) 4369 continue; 4370 printk(" %-8s %0#10lx -> %0#10lx\n", 4371 zone_names[i], 4372 arch_zone_lowest_possible_pfn[i], 4373 arch_zone_highest_possible_pfn[i]); 4374 } 4375 4376 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4377 printk("Movable zone start PFN for each node\n"); 4378 for (i = 0; i < MAX_NUMNODES; i++) { 4379 if (zone_movable_pfn[i]) 4380 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4381 } 4382 4383 /* Print out the early_node_map[] */ 4384 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4385 for (i = 0; i < nr_nodemap_entries; i++) 4386 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4387 early_node_map[i].start_pfn, 4388 early_node_map[i].end_pfn); 4389 4390 /* Initialise every node */ 4391 mminit_verify_pageflags_layout(); 4392 setup_nr_node_ids(); 4393 for_each_online_node(nid) { 4394 pg_data_t *pgdat = NODE_DATA(nid); 4395 free_area_init_node(nid, NULL, 4396 find_min_pfn_for_node(nid), NULL); 4397 4398 /* Any memory on that node */ 4399 if (pgdat->node_present_pages) 4400 node_set_state(nid, N_HIGH_MEMORY); 4401 check_for_regular_memory(pgdat); 4402 } 4403 } 4404 4405 static int __init cmdline_parse_core(char *p, unsigned long *core) 4406 { 4407 unsigned long long coremem; 4408 if (!p) 4409 return -EINVAL; 4410 4411 coremem = memparse(p, &p); 4412 *core = coremem >> PAGE_SHIFT; 4413 4414 /* Paranoid check that UL is enough for the coremem value */ 4415 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4416 4417 return 0; 4418 } 4419 4420 /* 4421 * kernelcore=size sets the amount of memory for use for allocations that 4422 * cannot be reclaimed or migrated. 4423 */ 4424 static int __init cmdline_parse_kernelcore(char *p) 4425 { 4426 return cmdline_parse_core(p, &required_kernelcore); 4427 } 4428 4429 /* 4430 * movablecore=size sets the amount of memory for use for allocations that 4431 * can be reclaimed or migrated. 4432 */ 4433 static int __init cmdline_parse_movablecore(char *p) 4434 { 4435 return cmdline_parse_core(p, &required_movablecore); 4436 } 4437 4438 early_param("kernelcore", cmdline_parse_kernelcore); 4439 early_param("movablecore", cmdline_parse_movablecore); 4440 4441 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4442 4443 /** 4444 * set_dma_reserve - set the specified number of pages reserved in the first zone 4445 * @new_dma_reserve: The number of pages to mark reserved 4446 * 4447 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4448 * In the DMA zone, a significant percentage may be consumed by kernel image 4449 * and other unfreeable allocations which can skew the watermarks badly. This 4450 * function may optionally be used to account for unfreeable pages in the 4451 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4452 * smaller per-cpu batchsize. 4453 */ 4454 void __init set_dma_reserve(unsigned long new_dma_reserve) 4455 { 4456 dma_reserve = new_dma_reserve; 4457 } 4458 4459 #ifndef CONFIG_NEED_MULTIPLE_NODES 4460 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4461 EXPORT_SYMBOL(contig_page_data); 4462 #endif 4463 4464 void __init free_area_init(unsigned long *zones_size) 4465 { 4466 free_area_init_node(0, zones_size, 4467 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4468 } 4469 4470 static int page_alloc_cpu_notify(struct notifier_block *self, 4471 unsigned long action, void *hcpu) 4472 { 4473 int cpu = (unsigned long)hcpu; 4474 4475 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4476 drain_pages(cpu); 4477 4478 /* 4479 * Spill the event counters of the dead processor 4480 * into the current processors event counters. 4481 * This artificially elevates the count of the current 4482 * processor. 4483 */ 4484 vm_events_fold_cpu(cpu); 4485 4486 /* 4487 * Zero the differential counters of the dead processor 4488 * so that the vm statistics are consistent. 4489 * 4490 * This is only okay since the processor is dead and cannot 4491 * race with what we are doing. 4492 */ 4493 refresh_cpu_vm_stats(cpu); 4494 } 4495 return NOTIFY_OK; 4496 } 4497 4498 void __init page_alloc_init(void) 4499 { 4500 hotcpu_notifier(page_alloc_cpu_notify, 0); 4501 } 4502 4503 /* 4504 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4505 * or min_free_kbytes changes. 4506 */ 4507 static void calculate_totalreserve_pages(void) 4508 { 4509 struct pglist_data *pgdat; 4510 unsigned long reserve_pages = 0; 4511 enum zone_type i, j; 4512 4513 for_each_online_pgdat(pgdat) { 4514 for (i = 0; i < MAX_NR_ZONES; i++) { 4515 struct zone *zone = pgdat->node_zones + i; 4516 unsigned long max = 0; 4517 4518 /* Find valid and maximum lowmem_reserve in the zone */ 4519 for (j = i; j < MAX_NR_ZONES; j++) { 4520 if (zone->lowmem_reserve[j] > max) 4521 max = zone->lowmem_reserve[j]; 4522 } 4523 4524 /* we treat the high watermark as reserved pages. */ 4525 max += high_wmark_pages(zone); 4526 4527 if (max > zone->present_pages) 4528 max = zone->present_pages; 4529 reserve_pages += max; 4530 } 4531 } 4532 totalreserve_pages = reserve_pages; 4533 } 4534 4535 /* 4536 * setup_per_zone_lowmem_reserve - called whenever 4537 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4538 * has a correct pages reserved value, so an adequate number of 4539 * pages are left in the zone after a successful __alloc_pages(). 4540 */ 4541 static void setup_per_zone_lowmem_reserve(void) 4542 { 4543 struct pglist_data *pgdat; 4544 enum zone_type j, idx; 4545 4546 for_each_online_pgdat(pgdat) { 4547 for (j = 0; j < MAX_NR_ZONES; j++) { 4548 struct zone *zone = pgdat->node_zones + j; 4549 unsigned long present_pages = zone->present_pages; 4550 4551 zone->lowmem_reserve[j] = 0; 4552 4553 idx = j; 4554 while (idx) { 4555 struct zone *lower_zone; 4556 4557 idx--; 4558 4559 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4560 sysctl_lowmem_reserve_ratio[idx] = 1; 4561 4562 lower_zone = pgdat->node_zones + idx; 4563 lower_zone->lowmem_reserve[j] = present_pages / 4564 sysctl_lowmem_reserve_ratio[idx]; 4565 present_pages += lower_zone->present_pages; 4566 } 4567 } 4568 } 4569 4570 /* update totalreserve_pages */ 4571 calculate_totalreserve_pages(); 4572 } 4573 4574 /** 4575 * setup_per_zone_wmarks - called when min_free_kbytes changes 4576 * or when memory is hot-{added|removed} 4577 * 4578 * Ensures that the watermark[min,low,high] values for each zone are set 4579 * correctly with respect to min_free_kbytes. 4580 */ 4581 void setup_per_zone_wmarks(void) 4582 { 4583 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4584 unsigned long lowmem_pages = 0; 4585 struct zone *zone; 4586 unsigned long flags; 4587 4588 /* Calculate total number of !ZONE_HIGHMEM pages */ 4589 for_each_zone(zone) { 4590 if (!is_highmem(zone)) 4591 lowmem_pages += zone->present_pages; 4592 } 4593 4594 for_each_zone(zone) { 4595 u64 tmp; 4596 4597 spin_lock_irqsave(&zone->lock, flags); 4598 tmp = (u64)pages_min * zone->present_pages; 4599 do_div(tmp, lowmem_pages); 4600 if (is_highmem(zone)) { 4601 /* 4602 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4603 * need highmem pages, so cap pages_min to a small 4604 * value here. 4605 * 4606 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4607 * deltas controls asynch page reclaim, and so should 4608 * not be capped for highmem. 4609 */ 4610 int min_pages; 4611 4612 min_pages = zone->present_pages / 1024; 4613 if (min_pages < SWAP_CLUSTER_MAX) 4614 min_pages = SWAP_CLUSTER_MAX; 4615 if (min_pages > 128) 4616 min_pages = 128; 4617 zone->watermark[WMARK_MIN] = min_pages; 4618 } else { 4619 /* 4620 * If it's a lowmem zone, reserve a number of pages 4621 * proportionate to the zone's size. 4622 */ 4623 zone->watermark[WMARK_MIN] = tmp; 4624 } 4625 4626 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4627 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4628 setup_zone_migrate_reserve(zone); 4629 spin_unlock_irqrestore(&zone->lock, flags); 4630 } 4631 4632 /* update totalreserve_pages */ 4633 calculate_totalreserve_pages(); 4634 } 4635 4636 /* 4637 * The inactive anon list should be small enough that the VM never has to 4638 * do too much work, but large enough that each inactive page has a chance 4639 * to be referenced again before it is swapped out. 4640 * 4641 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4642 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4643 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4644 * the anonymous pages are kept on the inactive list. 4645 * 4646 * total target max 4647 * memory ratio inactive anon 4648 * ------------------------------------- 4649 * 10MB 1 5MB 4650 * 100MB 1 50MB 4651 * 1GB 3 250MB 4652 * 10GB 10 0.9GB 4653 * 100GB 31 3GB 4654 * 1TB 101 10GB 4655 * 10TB 320 32GB 4656 */ 4657 void calculate_zone_inactive_ratio(struct zone *zone) 4658 { 4659 unsigned int gb, ratio; 4660 4661 /* Zone size in gigabytes */ 4662 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4663 if (gb) 4664 ratio = int_sqrt(10 * gb); 4665 else 4666 ratio = 1; 4667 4668 zone->inactive_ratio = ratio; 4669 } 4670 4671 static void __init setup_per_zone_inactive_ratio(void) 4672 { 4673 struct zone *zone; 4674 4675 for_each_zone(zone) 4676 calculate_zone_inactive_ratio(zone); 4677 } 4678 4679 /* 4680 * Initialise min_free_kbytes. 4681 * 4682 * For small machines we want it small (128k min). For large machines 4683 * we want it large (64MB max). But it is not linear, because network 4684 * bandwidth does not increase linearly with machine size. We use 4685 * 4686 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4687 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4688 * 4689 * which yields 4690 * 4691 * 16MB: 512k 4692 * 32MB: 724k 4693 * 64MB: 1024k 4694 * 128MB: 1448k 4695 * 256MB: 2048k 4696 * 512MB: 2896k 4697 * 1024MB: 4096k 4698 * 2048MB: 5792k 4699 * 4096MB: 8192k 4700 * 8192MB: 11584k 4701 * 16384MB: 16384k 4702 */ 4703 static int __init init_per_zone_wmark_min(void) 4704 { 4705 unsigned long lowmem_kbytes; 4706 4707 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4708 4709 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4710 if (min_free_kbytes < 128) 4711 min_free_kbytes = 128; 4712 if (min_free_kbytes > 65536) 4713 min_free_kbytes = 65536; 4714 setup_per_zone_wmarks(); 4715 setup_per_zone_lowmem_reserve(); 4716 setup_per_zone_inactive_ratio(); 4717 return 0; 4718 } 4719 module_init(init_per_zone_wmark_min) 4720 4721 /* 4722 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4723 * that we can call two helper functions whenever min_free_kbytes 4724 * changes. 4725 */ 4726 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4727 void __user *buffer, size_t *length, loff_t *ppos) 4728 { 4729 proc_dointvec(table, write, buffer, length, ppos); 4730 if (write) 4731 setup_per_zone_wmarks(); 4732 return 0; 4733 } 4734 4735 #ifdef CONFIG_NUMA 4736 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4737 void __user *buffer, size_t *length, loff_t *ppos) 4738 { 4739 struct zone *zone; 4740 int rc; 4741 4742 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4743 if (rc) 4744 return rc; 4745 4746 for_each_zone(zone) 4747 zone->min_unmapped_pages = (zone->present_pages * 4748 sysctl_min_unmapped_ratio) / 100; 4749 return 0; 4750 } 4751 4752 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4753 void __user *buffer, size_t *length, loff_t *ppos) 4754 { 4755 struct zone *zone; 4756 int rc; 4757 4758 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4759 if (rc) 4760 return rc; 4761 4762 for_each_zone(zone) 4763 zone->min_slab_pages = (zone->present_pages * 4764 sysctl_min_slab_ratio) / 100; 4765 return 0; 4766 } 4767 #endif 4768 4769 /* 4770 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4771 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4772 * whenever sysctl_lowmem_reserve_ratio changes. 4773 * 4774 * The reserve ratio obviously has absolutely no relation with the 4775 * minimum watermarks. The lowmem reserve ratio can only make sense 4776 * if in function of the boot time zone sizes. 4777 */ 4778 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4779 void __user *buffer, size_t *length, loff_t *ppos) 4780 { 4781 proc_dointvec_minmax(table, write, buffer, length, ppos); 4782 setup_per_zone_lowmem_reserve(); 4783 return 0; 4784 } 4785 4786 /* 4787 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4788 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4789 * can have before it gets flushed back to buddy allocator. 4790 */ 4791 4792 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4793 void __user *buffer, size_t *length, loff_t *ppos) 4794 { 4795 struct zone *zone; 4796 unsigned int cpu; 4797 int ret; 4798 4799 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 4800 if (!write || (ret == -EINVAL)) 4801 return ret; 4802 for_each_populated_zone(zone) { 4803 for_each_online_cpu(cpu) { 4804 unsigned long high; 4805 high = zone->present_pages / percpu_pagelist_fraction; 4806 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4807 } 4808 } 4809 return 0; 4810 } 4811 4812 int hashdist = HASHDIST_DEFAULT; 4813 4814 #ifdef CONFIG_NUMA 4815 static int __init set_hashdist(char *str) 4816 { 4817 if (!str) 4818 return 0; 4819 hashdist = simple_strtoul(str, &str, 0); 4820 return 1; 4821 } 4822 __setup("hashdist=", set_hashdist); 4823 #endif 4824 4825 /* 4826 * allocate a large system hash table from bootmem 4827 * - it is assumed that the hash table must contain an exact power-of-2 4828 * quantity of entries 4829 * - limit is the number of hash buckets, not the total allocation size 4830 */ 4831 void *__init alloc_large_system_hash(const char *tablename, 4832 unsigned long bucketsize, 4833 unsigned long numentries, 4834 int scale, 4835 int flags, 4836 unsigned int *_hash_shift, 4837 unsigned int *_hash_mask, 4838 unsigned long limit) 4839 { 4840 unsigned long long max = limit; 4841 unsigned long log2qty, size; 4842 void *table = NULL; 4843 4844 /* allow the kernel cmdline to have a say */ 4845 if (!numentries) { 4846 /* round applicable memory size up to nearest megabyte */ 4847 numentries = nr_kernel_pages; 4848 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4849 numentries >>= 20 - PAGE_SHIFT; 4850 numentries <<= 20 - PAGE_SHIFT; 4851 4852 /* limit to 1 bucket per 2^scale bytes of low memory */ 4853 if (scale > PAGE_SHIFT) 4854 numentries >>= (scale - PAGE_SHIFT); 4855 else 4856 numentries <<= (PAGE_SHIFT - scale); 4857 4858 /* Make sure we've got at least a 0-order allocation.. */ 4859 if (unlikely(flags & HASH_SMALL)) { 4860 /* Makes no sense without HASH_EARLY */ 4861 WARN_ON(!(flags & HASH_EARLY)); 4862 if (!(numentries >> *_hash_shift)) { 4863 numentries = 1UL << *_hash_shift; 4864 BUG_ON(!numentries); 4865 } 4866 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4867 numentries = PAGE_SIZE / bucketsize; 4868 } 4869 numentries = roundup_pow_of_two(numentries); 4870 4871 /* limit allocation size to 1/16 total memory by default */ 4872 if (max == 0) { 4873 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4874 do_div(max, bucketsize); 4875 } 4876 4877 if (numentries > max) 4878 numentries = max; 4879 4880 log2qty = ilog2(numentries); 4881 4882 do { 4883 size = bucketsize << log2qty; 4884 if (flags & HASH_EARLY) 4885 table = alloc_bootmem_nopanic(size); 4886 else if (hashdist) 4887 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4888 else { 4889 /* 4890 * If bucketsize is not a power-of-two, we may free 4891 * some pages at the end of hash table which 4892 * alloc_pages_exact() automatically does 4893 */ 4894 if (get_order(size) < MAX_ORDER) { 4895 table = alloc_pages_exact(size, GFP_ATOMIC); 4896 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 4897 } 4898 } 4899 } while (!table && size > PAGE_SIZE && --log2qty); 4900 4901 if (!table) 4902 panic("Failed to allocate %s hash table\n", tablename); 4903 4904 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4905 tablename, 4906 (1U << log2qty), 4907 ilog2(size) - PAGE_SHIFT, 4908 size); 4909 4910 if (_hash_shift) 4911 *_hash_shift = log2qty; 4912 if (_hash_mask) 4913 *_hash_mask = (1 << log2qty) - 1; 4914 4915 return table; 4916 } 4917 4918 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4919 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4920 unsigned long pfn) 4921 { 4922 #ifdef CONFIG_SPARSEMEM 4923 return __pfn_to_section(pfn)->pageblock_flags; 4924 #else 4925 return zone->pageblock_flags; 4926 #endif /* CONFIG_SPARSEMEM */ 4927 } 4928 4929 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4930 { 4931 #ifdef CONFIG_SPARSEMEM 4932 pfn &= (PAGES_PER_SECTION-1); 4933 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4934 #else 4935 pfn = pfn - zone->zone_start_pfn; 4936 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4937 #endif /* CONFIG_SPARSEMEM */ 4938 } 4939 4940 /** 4941 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4942 * @page: The page within the block of interest 4943 * @start_bitidx: The first bit of interest to retrieve 4944 * @end_bitidx: The last bit of interest 4945 * returns pageblock_bits flags 4946 */ 4947 unsigned long get_pageblock_flags_group(struct page *page, 4948 int start_bitidx, int end_bitidx) 4949 { 4950 struct zone *zone; 4951 unsigned long *bitmap; 4952 unsigned long pfn, bitidx; 4953 unsigned long flags = 0; 4954 unsigned long value = 1; 4955 4956 zone = page_zone(page); 4957 pfn = page_to_pfn(page); 4958 bitmap = get_pageblock_bitmap(zone, pfn); 4959 bitidx = pfn_to_bitidx(zone, pfn); 4960 4961 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4962 if (test_bit(bitidx + start_bitidx, bitmap)) 4963 flags |= value; 4964 4965 return flags; 4966 } 4967 4968 /** 4969 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4970 * @page: The page within the block of interest 4971 * @start_bitidx: The first bit of interest 4972 * @end_bitidx: The last bit of interest 4973 * @flags: The flags to set 4974 */ 4975 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4976 int start_bitidx, int end_bitidx) 4977 { 4978 struct zone *zone; 4979 unsigned long *bitmap; 4980 unsigned long pfn, bitidx; 4981 unsigned long value = 1; 4982 4983 zone = page_zone(page); 4984 pfn = page_to_pfn(page); 4985 bitmap = get_pageblock_bitmap(zone, pfn); 4986 bitidx = pfn_to_bitidx(zone, pfn); 4987 VM_BUG_ON(pfn < zone->zone_start_pfn); 4988 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4989 4990 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4991 if (flags & value) 4992 __set_bit(bitidx + start_bitidx, bitmap); 4993 else 4994 __clear_bit(bitidx + start_bitidx, bitmap); 4995 } 4996 4997 /* 4998 * This is designed as sub function...plz see page_isolation.c also. 4999 * set/clear page block's type to be ISOLATE. 5000 * page allocater never alloc memory from ISOLATE block. 5001 */ 5002 5003 int set_migratetype_isolate(struct page *page) 5004 { 5005 struct zone *zone; 5006 unsigned long flags; 5007 int ret = -EBUSY; 5008 int zone_idx; 5009 5010 zone = page_zone(page); 5011 zone_idx = zone_idx(zone); 5012 spin_lock_irqsave(&zone->lock, flags); 5013 /* 5014 * In future, more migrate types will be able to be isolation target. 5015 */ 5016 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE && 5017 zone_idx != ZONE_MOVABLE) 5018 goto out; 5019 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5020 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5021 ret = 0; 5022 out: 5023 spin_unlock_irqrestore(&zone->lock, flags); 5024 if (!ret) 5025 drain_all_pages(); 5026 return ret; 5027 } 5028 5029 void unset_migratetype_isolate(struct page *page) 5030 { 5031 struct zone *zone; 5032 unsigned long flags; 5033 zone = page_zone(page); 5034 spin_lock_irqsave(&zone->lock, flags); 5035 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5036 goto out; 5037 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5038 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5039 out: 5040 spin_unlock_irqrestore(&zone->lock, flags); 5041 } 5042 5043 #ifdef CONFIG_MEMORY_HOTREMOVE 5044 /* 5045 * All pages in the range must be isolated before calling this. 5046 */ 5047 void 5048 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5049 { 5050 struct page *page; 5051 struct zone *zone; 5052 int order, i; 5053 unsigned long pfn; 5054 unsigned long flags; 5055 /* find the first valid pfn */ 5056 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5057 if (pfn_valid(pfn)) 5058 break; 5059 if (pfn == end_pfn) 5060 return; 5061 zone = page_zone(pfn_to_page(pfn)); 5062 spin_lock_irqsave(&zone->lock, flags); 5063 pfn = start_pfn; 5064 while (pfn < end_pfn) { 5065 if (!pfn_valid(pfn)) { 5066 pfn++; 5067 continue; 5068 } 5069 page = pfn_to_page(pfn); 5070 BUG_ON(page_count(page)); 5071 BUG_ON(!PageBuddy(page)); 5072 order = page_order(page); 5073 #ifdef CONFIG_DEBUG_VM 5074 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5075 pfn, 1 << order, end_pfn); 5076 #endif 5077 list_del(&page->lru); 5078 rmv_page_order(page); 5079 zone->free_area[order].nr_free--; 5080 __mod_zone_page_state(zone, NR_FREE_PAGES, 5081 - (1UL << order)); 5082 for (i = 0; i < (1 << order); i++) 5083 SetPageReserved((page+i)); 5084 pfn += (1 << order); 5085 } 5086 spin_unlock_irqrestore(&zone->lock, flags); 5087 } 5088 #endif 5089