xref: /openbmc/linux/mm/page_alloc.c (revision e8e0929d)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
56 
57 /*
58  * Array of node states.
59  */
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 	[N_POSSIBLE] = NODE_MASK_ALL,
62 	[N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 	[N_CPU] = { { [0] = 1UL } },
69 #endif	/* NUMA */
70 };
71 EXPORT_SYMBOL(node_states);
72 
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77 
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81 
82 static void __free_pages_ok(struct page *page, unsigned int order);
83 
84 /*
85  * results with 256, 32 in the lowmem_reserve sysctl:
86  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87  *	1G machine -> (16M dma, 784M normal, 224M high)
88  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91  *
92  * TBD: should special case ZONE_DMA32 machines here - in those we normally
93  * don't need any ZONE_NORMAL reservation
94  */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 	 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 	 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 	 32,
104 #endif
105 	 32,
106 };
107 
108 EXPORT_SYMBOL(totalram_pages);
109 
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 	 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 	 "DMA32",
116 #endif
117 	 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 	 "HighMem",
120 #endif
121 	 "Movable",
122 };
123 
124 int min_free_kbytes = 1024;
125 
126 static unsigned long __meminitdata nr_kernel_pages;
127 static unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129 
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131   /*
132    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133    * ranges of memory (RAM) that may be registered with add_active_range().
134    * Ranges passed to add_active_range() will be merged if possible
135    * so the number of times add_active_range() can be called is
136    * related to the number of nodes and the number of holes
137    */
138   #ifdef CONFIG_MAX_ACTIVE_REGIONS
139     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141   #else
142     #if MAX_NUMNODES >= 32
143       /* If there can be many nodes, allow up to 50 holes per node */
144       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145     #else
146       /* By default, allow up to 256 distinct regions */
147       #define MAX_ACTIVE_REGIONS 256
148     #endif
149   #endif
150 
151   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152   static int __meminitdata nr_nodemap_entries;
153   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155   static unsigned long __initdata required_kernelcore;
156   static unsigned long __initdata required_movablecore;
157   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158 
159   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160   int movable_zone;
161   EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170 
171 int page_group_by_mobility_disabled __read_mostly;
172 
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175 
176 	if (unlikely(page_group_by_mobility_disabled))
177 		migratetype = MIGRATE_UNMOVABLE;
178 
179 	set_pageblock_flags_group(page, (unsigned long)migratetype,
180 					PB_migrate, PB_migrate_end);
181 }
182 
183 bool oom_killer_disabled __read_mostly;
184 
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 	int ret = 0;
189 	unsigned seq;
190 	unsigned long pfn = page_to_pfn(page);
191 
192 	do {
193 		seq = zone_span_seqbegin(zone);
194 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 			ret = 1;
196 		else if (pfn < zone->zone_start_pfn)
197 			ret = 1;
198 	} while (zone_span_seqretry(zone, seq));
199 
200 	return ret;
201 }
202 
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 	if (!pfn_valid_within(page_to_pfn(page)))
206 		return 0;
207 	if (zone != page_zone(page))
208 		return 0;
209 
210 	return 1;
211 }
212 /*
213  * Temporary debugging check for pages not lying within a given zone.
214  */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 	if (page_outside_zone_boundaries(zone, page))
218 		return 1;
219 	if (!page_is_consistent(zone, page))
220 		return 1;
221 
222 	return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 	return 0;
228 }
229 #endif
230 
231 static void bad_page(struct page *page)
232 {
233 	static unsigned long resume;
234 	static unsigned long nr_shown;
235 	static unsigned long nr_unshown;
236 
237 	/* Don't complain about poisoned pages */
238 	if (PageHWPoison(page)) {
239 		__ClearPageBuddy(page);
240 		return;
241 	}
242 
243 	/*
244 	 * Allow a burst of 60 reports, then keep quiet for that minute;
245 	 * or allow a steady drip of one report per second.
246 	 */
247 	if (nr_shown == 60) {
248 		if (time_before(jiffies, resume)) {
249 			nr_unshown++;
250 			goto out;
251 		}
252 		if (nr_unshown) {
253 			printk(KERN_ALERT
254 			      "BUG: Bad page state: %lu messages suppressed\n",
255 				nr_unshown);
256 			nr_unshown = 0;
257 		}
258 		nr_shown = 0;
259 	}
260 	if (nr_shown++ == 0)
261 		resume = jiffies + 60 * HZ;
262 
263 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
264 		current->comm, page_to_pfn(page));
265 	printk(KERN_ALERT
266 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 		page, (void *)page->flags, page_count(page),
268 		page_mapcount(page), page->mapping, page->index);
269 
270 	dump_stack();
271 out:
272 	/* Leave bad fields for debug, except PageBuddy could make trouble */
273 	__ClearPageBuddy(page);
274 	add_taint(TAINT_BAD_PAGE);
275 }
276 
277 /*
278  * Higher-order pages are called "compound pages".  They are structured thusly:
279  *
280  * The first PAGE_SIZE page is called the "head page".
281  *
282  * The remaining PAGE_SIZE pages are called "tail pages".
283  *
284  * All pages have PG_compound set.  All pages have their ->private pointing at
285  * the head page (even the head page has this).
286  *
287  * The first tail page's ->lru.next holds the address of the compound page's
288  * put_page() function.  Its ->lru.prev holds the order of allocation.
289  * This usage means that zero-order pages may not be compound.
290  */
291 
292 static void free_compound_page(struct page *page)
293 {
294 	__free_pages_ok(page, compound_order(page));
295 }
296 
297 void prep_compound_page(struct page *page, unsigned long order)
298 {
299 	int i;
300 	int nr_pages = 1 << order;
301 
302 	set_compound_page_dtor(page, free_compound_page);
303 	set_compound_order(page, order);
304 	__SetPageHead(page);
305 	for (i = 1; i < nr_pages; i++) {
306 		struct page *p = page + i;
307 
308 		__SetPageTail(p);
309 		p->first_page = page;
310 	}
311 }
312 
313 static int destroy_compound_page(struct page *page, unsigned long order)
314 {
315 	int i;
316 	int nr_pages = 1 << order;
317 	int bad = 0;
318 
319 	if (unlikely(compound_order(page) != order) ||
320 	    unlikely(!PageHead(page))) {
321 		bad_page(page);
322 		bad++;
323 	}
324 
325 	__ClearPageHead(page);
326 
327 	for (i = 1; i < nr_pages; i++) {
328 		struct page *p = page + i;
329 
330 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
331 			bad_page(page);
332 			bad++;
333 		}
334 		__ClearPageTail(p);
335 	}
336 
337 	return bad;
338 }
339 
340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
341 {
342 	int i;
343 
344 	/*
345 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
347 	 */
348 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
349 	for (i = 0; i < (1 << order); i++)
350 		clear_highpage(page + i);
351 }
352 
353 static inline void set_page_order(struct page *page, int order)
354 {
355 	set_page_private(page, order);
356 	__SetPageBuddy(page);
357 }
358 
359 static inline void rmv_page_order(struct page *page)
360 {
361 	__ClearPageBuddy(page);
362 	set_page_private(page, 0);
363 }
364 
365 /*
366  * Locate the struct page for both the matching buddy in our
367  * pair (buddy1) and the combined O(n+1) page they form (page).
368  *
369  * 1) Any buddy B1 will have an order O twin B2 which satisfies
370  * the following equation:
371  *     B2 = B1 ^ (1 << O)
372  * For example, if the starting buddy (buddy2) is #8 its order
373  * 1 buddy is #10:
374  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
375  *
376  * 2) Any buddy B will have an order O+1 parent P which
377  * satisfies the following equation:
378  *     P = B & ~(1 << O)
379  *
380  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
381  */
382 static inline struct page *
383 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
384 {
385 	unsigned long buddy_idx = page_idx ^ (1 << order);
386 
387 	return page + (buddy_idx - page_idx);
388 }
389 
390 static inline unsigned long
391 __find_combined_index(unsigned long page_idx, unsigned int order)
392 {
393 	return (page_idx & ~(1 << order));
394 }
395 
396 /*
397  * This function checks whether a page is free && is the buddy
398  * we can do coalesce a page and its buddy if
399  * (a) the buddy is not in a hole &&
400  * (b) the buddy is in the buddy system &&
401  * (c) a page and its buddy have the same order &&
402  * (d) a page and its buddy are in the same zone.
403  *
404  * For recording whether a page is in the buddy system, we use PG_buddy.
405  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
406  *
407  * For recording page's order, we use page_private(page).
408  */
409 static inline int page_is_buddy(struct page *page, struct page *buddy,
410 								int order)
411 {
412 	if (!pfn_valid_within(page_to_pfn(buddy)))
413 		return 0;
414 
415 	if (page_zone_id(page) != page_zone_id(buddy))
416 		return 0;
417 
418 	if (PageBuddy(buddy) && page_order(buddy) == order) {
419 		VM_BUG_ON(page_count(buddy) != 0);
420 		return 1;
421 	}
422 	return 0;
423 }
424 
425 /*
426  * Freeing function for a buddy system allocator.
427  *
428  * The concept of a buddy system is to maintain direct-mapped table
429  * (containing bit values) for memory blocks of various "orders".
430  * The bottom level table contains the map for the smallest allocatable
431  * units of memory (here, pages), and each level above it describes
432  * pairs of units from the levels below, hence, "buddies".
433  * At a high level, all that happens here is marking the table entry
434  * at the bottom level available, and propagating the changes upward
435  * as necessary, plus some accounting needed to play nicely with other
436  * parts of the VM system.
437  * At each level, we keep a list of pages, which are heads of continuous
438  * free pages of length of (1 << order) and marked with PG_buddy. Page's
439  * order is recorded in page_private(page) field.
440  * So when we are allocating or freeing one, we can derive the state of the
441  * other.  That is, if we allocate a small block, and both were
442  * free, the remainder of the region must be split into blocks.
443  * If a block is freed, and its buddy is also free, then this
444  * triggers coalescing into a block of larger size.
445  *
446  * -- wli
447  */
448 
449 static inline void __free_one_page(struct page *page,
450 		struct zone *zone, unsigned int order,
451 		int migratetype)
452 {
453 	unsigned long page_idx;
454 
455 	if (unlikely(PageCompound(page)))
456 		if (unlikely(destroy_compound_page(page, order)))
457 			return;
458 
459 	VM_BUG_ON(migratetype == -1);
460 
461 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
462 
463 	VM_BUG_ON(page_idx & ((1 << order) - 1));
464 	VM_BUG_ON(bad_range(zone, page));
465 
466 	while (order < MAX_ORDER-1) {
467 		unsigned long combined_idx;
468 		struct page *buddy;
469 
470 		buddy = __page_find_buddy(page, page_idx, order);
471 		if (!page_is_buddy(page, buddy, order))
472 			break;
473 
474 		/* Our buddy is free, merge with it and move up one order. */
475 		list_del(&buddy->lru);
476 		zone->free_area[order].nr_free--;
477 		rmv_page_order(buddy);
478 		combined_idx = __find_combined_index(page_idx, order);
479 		page = page + (combined_idx - page_idx);
480 		page_idx = combined_idx;
481 		order++;
482 	}
483 	set_page_order(page, order);
484 	list_add(&page->lru,
485 		&zone->free_area[order].free_list[migratetype]);
486 	zone->free_area[order].nr_free++;
487 }
488 
489 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
490 /*
491  * free_page_mlock() -- clean up attempts to free and mlocked() page.
492  * Page should not be on lru, so no need to fix that up.
493  * free_pages_check() will verify...
494  */
495 static inline void free_page_mlock(struct page *page)
496 {
497 	__dec_zone_page_state(page, NR_MLOCK);
498 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
499 }
500 #else
501 static void free_page_mlock(struct page *page) { }
502 #endif
503 
504 static inline int free_pages_check(struct page *page)
505 {
506 	if (unlikely(page_mapcount(page) |
507 		(page->mapping != NULL)  |
508 		(atomic_read(&page->_count) != 0) |
509 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
510 		bad_page(page);
511 		return 1;
512 	}
513 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
514 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
515 	return 0;
516 }
517 
518 /*
519  * Frees a number of pages from the PCP lists
520  * Assumes all pages on list are in same zone, and of same order.
521  * count is the number of pages to free.
522  *
523  * If the zone was previously in an "all pages pinned" state then look to
524  * see if this freeing clears that state.
525  *
526  * And clear the zone's pages_scanned counter, to hold off the "all pages are
527  * pinned" detection logic.
528  */
529 static void free_pcppages_bulk(struct zone *zone, int count,
530 					struct per_cpu_pages *pcp)
531 {
532 	int migratetype = 0;
533 	int batch_free = 0;
534 
535 	spin_lock(&zone->lock);
536 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
537 	zone->pages_scanned = 0;
538 
539 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
540 	while (count) {
541 		struct page *page;
542 		struct list_head *list;
543 
544 		/*
545 		 * Remove pages from lists in a round-robin fashion. A
546 		 * batch_free count is maintained that is incremented when an
547 		 * empty list is encountered.  This is so more pages are freed
548 		 * off fuller lists instead of spinning excessively around empty
549 		 * lists
550 		 */
551 		do {
552 			batch_free++;
553 			if (++migratetype == MIGRATE_PCPTYPES)
554 				migratetype = 0;
555 			list = &pcp->lists[migratetype];
556 		} while (list_empty(list));
557 
558 		do {
559 			page = list_entry(list->prev, struct page, lru);
560 			/* must delete as __free_one_page list manipulates */
561 			list_del(&page->lru);
562 			__free_one_page(page, zone, 0, migratetype);
563 			trace_mm_page_pcpu_drain(page, 0, migratetype);
564 		} while (--count && --batch_free && !list_empty(list));
565 	}
566 	spin_unlock(&zone->lock);
567 }
568 
569 static void free_one_page(struct zone *zone, struct page *page, int order,
570 				int migratetype)
571 {
572 	spin_lock(&zone->lock);
573 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
574 	zone->pages_scanned = 0;
575 
576 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
577 	__free_one_page(page, zone, order, migratetype);
578 	spin_unlock(&zone->lock);
579 }
580 
581 static void __free_pages_ok(struct page *page, unsigned int order)
582 {
583 	unsigned long flags;
584 	int i;
585 	int bad = 0;
586 	int wasMlocked = __TestClearPageMlocked(page);
587 
588 	kmemcheck_free_shadow(page, order);
589 
590 	for (i = 0 ; i < (1 << order) ; ++i)
591 		bad += free_pages_check(page + i);
592 	if (bad)
593 		return;
594 
595 	if (!PageHighMem(page)) {
596 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
597 		debug_check_no_obj_freed(page_address(page),
598 					   PAGE_SIZE << order);
599 	}
600 	arch_free_page(page, order);
601 	kernel_map_pages(page, 1 << order, 0);
602 
603 	local_irq_save(flags);
604 	if (unlikely(wasMlocked))
605 		free_page_mlock(page);
606 	__count_vm_events(PGFREE, 1 << order);
607 	free_one_page(page_zone(page), page, order,
608 					get_pageblock_migratetype(page));
609 	local_irq_restore(flags);
610 }
611 
612 /*
613  * permit the bootmem allocator to evade page validation on high-order frees
614  */
615 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
616 {
617 	if (order == 0) {
618 		__ClearPageReserved(page);
619 		set_page_count(page, 0);
620 		set_page_refcounted(page);
621 		__free_page(page);
622 	} else {
623 		int loop;
624 
625 		prefetchw(page);
626 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
627 			struct page *p = &page[loop];
628 
629 			if (loop + 1 < BITS_PER_LONG)
630 				prefetchw(p + 1);
631 			__ClearPageReserved(p);
632 			set_page_count(p, 0);
633 		}
634 
635 		set_page_refcounted(page);
636 		__free_pages(page, order);
637 	}
638 }
639 
640 
641 /*
642  * The order of subdivision here is critical for the IO subsystem.
643  * Please do not alter this order without good reasons and regression
644  * testing. Specifically, as large blocks of memory are subdivided,
645  * the order in which smaller blocks are delivered depends on the order
646  * they're subdivided in this function. This is the primary factor
647  * influencing the order in which pages are delivered to the IO
648  * subsystem according to empirical testing, and this is also justified
649  * by considering the behavior of a buddy system containing a single
650  * large block of memory acted on by a series of small allocations.
651  * This behavior is a critical factor in sglist merging's success.
652  *
653  * -- wli
654  */
655 static inline void expand(struct zone *zone, struct page *page,
656 	int low, int high, struct free_area *area,
657 	int migratetype)
658 {
659 	unsigned long size = 1 << high;
660 
661 	while (high > low) {
662 		area--;
663 		high--;
664 		size >>= 1;
665 		VM_BUG_ON(bad_range(zone, &page[size]));
666 		list_add(&page[size].lru, &area->free_list[migratetype]);
667 		area->nr_free++;
668 		set_page_order(&page[size], high);
669 	}
670 }
671 
672 /*
673  * This page is about to be returned from the page allocator
674  */
675 static inline int check_new_page(struct page *page)
676 {
677 	if (unlikely(page_mapcount(page) |
678 		(page->mapping != NULL)  |
679 		(atomic_read(&page->_count) != 0)  |
680 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
681 		bad_page(page);
682 		return 1;
683 	}
684 	return 0;
685 }
686 
687 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
688 {
689 	int i;
690 
691 	for (i = 0; i < (1 << order); i++) {
692 		struct page *p = page + i;
693 		if (unlikely(check_new_page(p)))
694 			return 1;
695 	}
696 
697 	set_page_private(page, 0);
698 	set_page_refcounted(page);
699 
700 	arch_alloc_page(page, order);
701 	kernel_map_pages(page, 1 << order, 1);
702 
703 	if (gfp_flags & __GFP_ZERO)
704 		prep_zero_page(page, order, gfp_flags);
705 
706 	if (order && (gfp_flags & __GFP_COMP))
707 		prep_compound_page(page, order);
708 
709 	return 0;
710 }
711 
712 /*
713  * Go through the free lists for the given migratetype and remove
714  * the smallest available page from the freelists
715  */
716 static inline
717 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
718 						int migratetype)
719 {
720 	unsigned int current_order;
721 	struct free_area * area;
722 	struct page *page;
723 
724 	/* Find a page of the appropriate size in the preferred list */
725 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
726 		area = &(zone->free_area[current_order]);
727 		if (list_empty(&area->free_list[migratetype]))
728 			continue;
729 
730 		page = list_entry(area->free_list[migratetype].next,
731 							struct page, lru);
732 		list_del(&page->lru);
733 		rmv_page_order(page);
734 		area->nr_free--;
735 		expand(zone, page, order, current_order, area, migratetype);
736 		return page;
737 	}
738 
739 	return NULL;
740 }
741 
742 
743 /*
744  * This array describes the order lists are fallen back to when
745  * the free lists for the desirable migrate type are depleted
746  */
747 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
748 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
749 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
750 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
751 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
752 };
753 
754 /*
755  * Move the free pages in a range to the free lists of the requested type.
756  * Note that start_page and end_pages are not aligned on a pageblock
757  * boundary. If alignment is required, use move_freepages_block()
758  */
759 static int move_freepages(struct zone *zone,
760 			  struct page *start_page, struct page *end_page,
761 			  int migratetype)
762 {
763 	struct page *page;
764 	unsigned long order;
765 	int pages_moved = 0;
766 
767 #ifndef CONFIG_HOLES_IN_ZONE
768 	/*
769 	 * page_zone is not safe to call in this context when
770 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
771 	 * anyway as we check zone boundaries in move_freepages_block().
772 	 * Remove at a later date when no bug reports exist related to
773 	 * grouping pages by mobility
774 	 */
775 	BUG_ON(page_zone(start_page) != page_zone(end_page));
776 #endif
777 
778 	for (page = start_page; page <= end_page;) {
779 		/* Make sure we are not inadvertently changing nodes */
780 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
781 
782 		if (!pfn_valid_within(page_to_pfn(page))) {
783 			page++;
784 			continue;
785 		}
786 
787 		if (!PageBuddy(page)) {
788 			page++;
789 			continue;
790 		}
791 
792 		order = page_order(page);
793 		list_del(&page->lru);
794 		list_add(&page->lru,
795 			&zone->free_area[order].free_list[migratetype]);
796 		page += 1 << order;
797 		pages_moved += 1 << order;
798 	}
799 
800 	return pages_moved;
801 }
802 
803 static int move_freepages_block(struct zone *zone, struct page *page,
804 				int migratetype)
805 {
806 	unsigned long start_pfn, end_pfn;
807 	struct page *start_page, *end_page;
808 
809 	start_pfn = page_to_pfn(page);
810 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
811 	start_page = pfn_to_page(start_pfn);
812 	end_page = start_page + pageblock_nr_pages - 1;
813 	end_pfn = start_pfn + pageblock_nr_pages - 1;
814 
815 	/* Do not cross zone boundaries */
816 	if (start_pfn < zone->zone_start_pfn)
817 		start_page = page;
818 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
819 		return 0;
820 
821 	return move_freepages(zone, start_page, end_page, migratetype);
822 }
823 
824 static void change_pageblock_range(struct page *pageblock_page,
825 					int start_order, int migratetype)
826 {
827 	int nr_pageblocks = 1 << (start_order - pageblock_order);
828 
829 	while (nr_pageblocks--) {
830 		set_pageblock_migratetype(pageblock_page, migratetype);
831 		pageblock_page += pageblock_nr_pages;
832 	}
833 }
834 
835 /* Remove an element from the buddy allocator from the fallback list */
836 static inline struct page *
837 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
838 {
839 	struct free_area * area;
840 	int current_order;
841 	struct page *page;
842 	int migratetype, i;
843 
844 	/* Find the largest possible block of pages in the other list */
845 	for (current_order = MAX_ORDER-1; current_order >= order;
846 						--current_order) {
847 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
848 			migratetype = fallbacks[start_migratetype][i];
849 
850 			/* MIGRATE_RESERVE handled later if necessary */
851 			if (migratetype == MIGRATE_RESERVE)
852 				continue;
853 
854 			area = &(zone->free_area[current_order]);
855 			if (list_empty(&area->free_list[migratetype]))
856 				continue;
857 
858 			page = list_entry(area->free_list[migratetype].next,
859 					struct page, lru);
860 			area->nr_free--;
861 
862 			/*
863 			 * If breaking a large block of pages, move all free
864 			 * pages to the preferred allocation list. If falling
865 			 * back for a reclaimable kernel allocation, be more
866 			 * agressive about taking ownership of free pages
867 			 */
868 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
869 					start_migratetype == MIGRATE_RECLAIMABLE ||
870 					page_group_by_mobility_disabled) {
871 				unsigned long pages;
872 				pages = move_freepages_block(zone, page,
873 								start_migratetype);
874 
875 				/* Claim the whole block if over half of it is free */
876 				if (pages >= (1 << (pageblock_order-1)) ||
877 						page_group_by_mobility_disabled)
878 					set_pageblock_migratetype(page,
879 								start_migratetype);
880 
881 				migratetype = start_migratetype;
882 			}
883 
884 			/* Remove the page from the freelists */
885 			list_del(&page->lru);
886 			rmv_page_order(page);
887 
888 			/* Take ownership for orders >= pageblock_order */
889 			if (current_order >= pageblock_order)
890 				change_pageblock_range(page, current_order,
891 							start_migratetype);
892 
893 			expand(zone, page, order, current_order, area, migratetype);
894 
895 			trace_mm_page_alloc_extfrag(page, order, current_order,
896 				start_migratetype, migratetype);
897 
898 			return page;
899 		}
900 	}
901 
902 	return NULL;
903 }
904 
905 /*
906  * Do the hard work of removing an element from the buddy allocator.
907  * Call me with the zone->lock already held.
908  */
909 static struct page *__rmqueue(struct zone *zone, unsigned int order,
910 						int migratetype)
911 {
912 	struct page *page;
913 
914 retry_reserve:
915 	page = __rmqueue_smallest(zone, order, migratetype);
916 
917 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
918 		page = __rmqueue_fallback(zone, order, migratetype);
919 
920 		/*
921 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
922 		 * is used because __rmqueue_smallest is an inline function
923 		 * and we want just one call site
924 		 */
925 		if (!page) {
926 			migratetype = MIGRATE_RESERVE;
927 			goto retry_reserve;
928 		}
929 	}
930 
931 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
932 	return page;
933 }
934 
935 /*
936  * Obtain a specified number of elements from the buddy allocator, all under
937  * a single hold of the lock, for efficiency.  Add them to the supplied list.
938  * Returns the number of new pages which were placed at *list.
939  */
940 static int rmqueue_bulk(struct zone *zone, unsigned int order,
941 			unsigned long count, struct list_head *list,
942 			int migratetype, int cold)
943 {
944 	int i;
945 
946 	spin_lock(&zone->lock);
947 	for (i = 0; i < count; ++i) {
948 		struct page *page = __rmqueue(zone, order, migratetype);
949 		if (unlikely(page == NULL))
950 			break;
951 
952 		/*
953 		 * Split buddy pages returned by expand() are received here
954 		 * in physical page order. The page is added to the callers and
955 		 * list and the list head then moves forward. From the callers
956 		 * perspective, the linked list is ordered by page number in
957 		 * some conditions. This is useful for IO devices that can
958 		 * merge IO requests if the physical pages are ordered
959 		 * properly.
960 		 */
961 		if (likely(cold == 0))
962 			list_add(&page->lru, list);
963 		else
964 			list_add_tail(&page->lru, list);
965 		set_page_private(page, migratetype);
966 		list = &page->lru;
967 	}
968 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
969 	spin_unlock(&zone->lock);
970 	return i;
971 }
972 
973 #ifdef CONFIG_NUMA
974 /*
975  * Called from the vmstat counter updater to drain pagesets of this
976  * currently executing processor on remote nodes after they have
977  * expired.
978  *
979  * Note that this function must be called with the thread pinned to
980  * a single processor.
981  */
982 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
983 {
984 	unsigned long flags;
985 	int to_drain;
986 
987 	local_irq_save(flags);
988 	if (pcp->count >= pcp->batch)
989 		to_drain = pcp->batch;
990 	else
991 		to_drain = pcp->count;
992 	free_pcppages_bulk(zone, to_drain, pcp);
993 	pcp->count -= to_drain;
994 	local_irq_restore(flags);
995 }
996 #endif
997 
998 /*
999  * Drain pages of the indicated processor.
1000  *
1001  * The processor must either be the current processor and the
1002  * thread pinned to the current processor or a processor that
1003  * is not online.
1004  */
1005 static void drain_pages(unsigned int cpu)
1006 {
1007 	unsigned long flags;
1008 	struct zone *zone;
1009 
1010 	for_each_populated_zone(zone) {
1011 		struct per_cpu_pageset *pset;
1012 		struct per_cpu_pages *pcp;
1013 
1014 		pset = zone_pcp(zone, cpu);
1015 
1016 		pcp = &pset->pcp;
1017 		local_irq_save(flags);
1018 		free_pcppages_bulk(zone, pcp->count, pcp);
1019 		pcp->count = 0;
1020 		local_irq_restore(flags);
1021 	}
1022 }
1023 
1024 /*
1025  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1026  */
1027 void drain_local_pages(void *arg)
1028 {
1029 	drain_pages(smp_processor_id());
1030 }
1031 
1032 /*
1033  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1034  */
1035 void drain_all_pages(void)
1036 {
1037 	on_each_cpu(drain_local_pages, NULL, 1);
1038 }
1039 
1040 #ifdef CONFIG_HIBERNATION
1041 
1042 void mark_free_pages(struct zone *zone)
1043 {
1044 	unsigned long pfn, max_zone_pfn;
1045 	unsigned long flags;
1046 	int order, t;
1047 	struct list_head *curr;
1048 
1049 	if (!zone->spanned_pages)
1050 		return;
1051 
1052 	spin_lock_irqsave(&zone->lock, flags);
1053 
1054 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1055 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1056 		if (pfn_valid(pfn)) {
1057 			struct page *page = pfn_to_page(pfn);
1058 
1059 			if (!swsusp_page_is_forbidden(page))
1060 				swsusp_unset_page_free(page);
1061 		}
1062 
1063 	for_each_migratetype_order(order, t) {
1064 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1065 			unsigned long i;
1066 
1067 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1068 			for (i = 0; i < (1UL << order); i++)
1069 				swsusp_set_page_free(pfn_to_page(pfn + i));
1070 		}
1071 	}
1072 	spin_unlock_irqrestore(&zone->lock, flags);
1073 }
1074 #endif /* CONFIG_PM */
1075 
1076 /*
1077  * Free a 0-order page
1078  */
1079 static void free_hot_cold_page(struct page *page, int cold)
1080 {
1081 	struct zone *zone = page_zone(page);
1082 	struct per_cpu_pages *pcp;
1083 	unsigned long flags;
1084 	int migratetype;
1085 	int wasMlocked = __TestClearPageMlocked(page);
1086 
1087 	kmemcheck_free_shadow(page, 0);
1088 
1089 	if (PageAnon(page))
1090 		page->mapping = NULL;
1091 	if (free_pages_check(page))
1092 		return;
1093 
1094 	if (!PageHighMem(page)) {
1095 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1096 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1097 	}
1098 	arch_free_page(page, 0);
1099 	kernel_map_pages(page, 1, 0);
1100 
1101 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1102 	migratetype = get_pageblock_migratetype(page);
1103 	set_page_private(page, migratetype);
1104 	local_irq_save(flags);
1105 	if (unlikely(wasMlocked))
1106 		free_page_mlock(page);
1107 	__count_vm_event(PGFREE);
1108 
1109 	/*
1110 	 * We only track unmovable, reclaimable and movable on pcp lists.
1111 	 * Free ISOLATE pages back to the allocator because they are being
1112 	 * offlined but treat RESERVE as movable pages so we can get those
1113 	 * areas back if necessary. Otherwise, we may have to free
1114 	 * excessively into the page allocator
1115 	 */
1116 	if (migratetype >= MIGRATE_PCPTYPES) {
1117 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1118 			free_one_page(zone, page, 0, migratetype);
1119 			goto out;
1120 		}
1121 		migratetype = MIGRATE_MOVABLE;
1122 	}
1123 
1124 	if (cold)
1125 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1126 	else
1127 		list_add(&page->lru, &pcp->lists[migratetype]);
1128 	pcp->count++;
1129 	if (pcp->count >= pcp->high) {
1130 		free_pcppages_bulk(zone, pcp->batch, pcp);
1131 		pcp->count -= pcp->batch;
1132 	}
1133 
1134 out:
1135 	local_irq_restore(flags);
1136 	put_cpu();
1137 }
1138 
1139 void free_hot_page(struct page *page)
1140 {
1141 	trace_mm_page_free_direct(page, 0);
1142 	free_hot_cold_page(page, 0);
1143 }
1144 
1145 /*
1146  * split_page takes a non-compound higher-order page, and splits it into
1147  * n (1<<order) sub-pages: page[0..n]
1148  * Each sub-page must be freed individually.
1149  *
1150  * Note: this is probably too low level an operation for use in drivers.
1151  * Please consult with lkml before using this in your driver.
1152  */
1153 void split_page(struct page *page, unsigned int order)
1154 {
1155 	int i;
1156 
1157 	VM_BUG_ON(PageCompound(page));
1158 	VM_BUG_ON(!page_count(page));
1159 
1160 #ifdef CONFIG_KMEMCHECK
1161 	/*
1162 	 * Split shadow pages too, because free(page[0]) would
1163 	 * otherwise free the whole shadow.
1164 	 */
1165 	if (kmemcheck_page_is_tracked(page))
1166 		split_page(virt_to_page(page[0].shadow), order);
1167 #endif
1168 
1169 	for (i = 1; i < (1 << order); i++)
1170 		set_page_refcounted(page + i);
1171 }
1172 
1173 /*
1174  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1175  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1176  * or two.
1177  */
1178 static inline
1179 struct page *buffered_rmqueue(struct zone *preferred_zone,
1180 			struct zone *zone, int order, gfp_t gfp_flags,
1181 			int migratetype)
1182 {
1183 	unsigned long flags;
1184 	struct page *page;
1185 	int cold = !!(gfp_flags & __GFP_COLD);
1186 	int cpu;
1187 
1188 again:
1189 	cpu  = get_cpu();
1190 	if (likely(order == 0)) {
1191 		struct per_cpu_pages *pcp;
1192 		struct list_head *list;
1193 
1194 		pcp = &zone_pcp(zone, cpu)->pcp;
1195 		list = &pcp->lists[migratetype];
1196 		local_irq_save(flags);
1197 		if (list_empty(list)) {
1198 			pcp->count += rmqueue_bulk(zone, 0,
1199 					pcp->batch, list,
1200 					migratetype, cold);
1201 			if (unlikely(list_empty(list)))
1202 				goto failed;
1203 		}
1204 
1205 		if (cold)
1206 			page = list_entry(list->prev, struct page, lru);
1207 		else
1208 			page = list_entry(list->next, struct page, lru);
1209 
1210 		list_del(&page->lru);
1211 		pcp->count--;
1212 	} else {
1213 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1214 			/*
1215 			 * __GFP_NOFAIL is not to be used in new code.
1216 			 *
1217 			 * All __GFP_NOFAIL callers should be fixed so that they
1218 			 * properly detect and handle allocation failures.
1219 			 *
1220 			 * We most definitely don't want callers attempting to
1221 			 * allocate greater than order-1 page units with
1222 			 * __GFP_NOFAIL.
1223 			 */
1224 			WARN_ON_ONCE(order > 1);
1225 		}
1226 		spin_lock_irqsave(&zone->lock, flags);
1227 		page = __rmqueue(zone, order, migratetype);
1228 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1229 		spin_unlock(&zone->lock);
1230 		if (!page)
1231 			goto failed;
1232 	}
1233 
1234 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1235 	zone_statistics(preferred_zone, zone);
1236 	local_irq_restore(flags);
1237 	put_cpu();
1238 
1239 	VM_BUG_ON(bad_range(zone, page));
1240 	if (prep_new_page(page, order, gfp_flags))
1241 		goto again;
1242 	return page;
1243 
1244 failed:
1245 	local_irq_restore(flags);
1246 	put_cpu();
1247 	return NULL;
1248 }
1249 
1250 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1251 #define ALLOC_WMARK_MIN		WMARK_MIN
1252 #define ALLOC_WMARK_LOW		WMARK_LOW
1253 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1254 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1255 
1256 /* Mask to get the watermark bits */
1257 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1258 
1259 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1260 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1261 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1262 
1263 #ifdef CONFIG_FAIL_PAGE_ALLOC
1264 
1265 static struct fail_page_alloc_attr {
1266 	struct fault_attr attr;
1267 
1268 	u32 ignore_gfp_highmem;
1269 	u32 ignore_gfp_wait;
1270 	u32 min_order;
1271 
1272 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1273 
1274 	struct dentry *ignore_gfp_highmem_file;
1275 	struct dentry *ignore_gfp_wait_file;
1276 	struct dentry *min_order_file;
1277 
1278 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1279 
1280 } fail_page_alloc = {
1281 	.attr = FAULT_ATTR_INITIALIZER,
1282 	.ignore_gfp_wait = 1,
1283 	.ignore_gfp_highmem = 1,
1284 	.min_order = 1,
1285 };
1286 
1287 static int __init setup_fail_page_alloc(char *str)
1288 {
1289 	return setup_fault_attr(&fail_page_alloc.attr, str);
1290 }
1291 __setup("fail_page_alloc=", setup_fail_page_alloc);
1292 
1293 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1294 {
1295 	if (order < fail_page_alloc.min_order)
1296 		return 0;
1297 	if (gfp_mask & __GFP_NOFAIL)
1298 		return 0;
1299 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1300 		return 0;
1301 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1302 		return 0;
1303 
1304 	return should_fail(&fail_page_alloc.attr, 1 << order);
1305 }
1306 
1307 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1308 
1309 static int __init fail_page_alloc_debugfs(void)
1310 {
1311 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1312 	struct dentry *dir;
1313 	int err;
1314 
1315 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1316 				       "fail_page_alloc");
1317 	if (err)
1318 		return err;
1319 	dir = fail_page_alloc.attr.dentries.dir;
1320 
1321 	fail_page_alloc.ignore_gfp_wait_file =
1322 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1323 				      &fail_page_alloc.ignore_gfp_wait);
1324 
1325 	fail_page_alloc.ignore_gfp_highmem_file =
1326 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1327 				      &fail_page_alloc.ignore_gfp_highmem);
1328 	fail_page_alloc.min_order_file =
1329 		debugfs_create_u32("min-order", mode, dir,
1330 				   &fail_page_alloc.min_order);
1331 
1332 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1333             !fail_page_alloc.ignore_gfp_highmem_file ||
1334             !fail_page_alloc.min_order_file) {
1335 		err = -ENOMEM;
1336 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1337 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1338 		debugfs_remove(fail_page_alloc.min_order_file);
1339 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1340 	}
1341 
1342 	return err;
1343 }
1344 
1345 late_initcall(fail_page_alloc_debugfs);
1346 
1347 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1348 
1349 #else /* CONFIG_FAIL_PAGE_ALLOC */
1350 
1351 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1352 {
1353 	return 0;
1354 }
1355 
1356 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1357 
1358 /*
1359  * Return 1 if free pages are above 'mark'. This takes into account the order
1360  * of the allocation.
1361  */
1362 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1363 		      int classzone_idx, int alloc_flags)
1364 {
1365 	/* free_pages my go negative - that's OK */
1366 	long min = mark;
1367 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1368 	int o;
1369 
1370 	if (alloc_flags & ALLOC_HIGH)
1371 		min -= min / 2;
1372 	if (alloc_flags & ALLOC_HARDER)
1373 		min -= min / 4;
1374 
1375 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1376 		return 0;
1377 	for (o = 0; o < order; o++) {
1378 		/* At the next order, this order's pages become unavailable */
1379 		free_pages -= z->free_area[o].nr_free << o;
1380 
1381 		/* Require fewer higher order pages to be free */
1382 		min >>= 1;
1383 
1384 		if (free_pages <= min)
1385 			return 0;
1386 	}
1387 	return 1;
1388 }
1389 
1390 #ifdef CONFIG_NUMA
1391 /*
1392  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1393  * skip over zones that are not allowed by the cpuset, or that have
1394  * been recently (in last second) found to be nearly full.  See further
1395  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1396  * that have to skip over a lot of full or unallowed zones.
1397  *
1398  * If the zonelist cache is present in the passed in zonelist, then
1399  * returns a pointer to the allowed node mask (either the current
1400  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1401  *
1402  * If the zonelist cache is not available for this zonelist, does
1403  * nothing and returns NULL.
1404  *
1405  * If the fullzones BITMAP in the zonelist cache is stale (more than
1406  * a second since last zap'd) then we zap it out (clear its bits.)
1407  *
1408  * We hold off even calling zlc_setup, until after we've checked the
1409  * first zone in the zonelist, on the theory that most allocations will
1410  * be satisfied from that first zone, so best to examine that zone as
1411  * quickly as we can.
1412  */
1413 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1414 {
1415 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1416 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1417 
1418 	zlc = zonelist->zlcache_ptr;
1419 	if (!zlc)
1420 		return NULL;
1421 
1422 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1423 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1424 		zlc->last_full_zap = jiffies;
1425 	}
1426 
1427 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1428 					&cpuset_current_mems_allowed :
1429 					&node_states[N_HIGH_MEMORY];
1430 	return allowednodes;
1431 }
1432 
1433 /*
1434  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1435  * if it is worth looking at further for free memory:
1436  *  1) Check that the zone isn't thought to be full (doesn't have its
1437  *     bit set in the zonelist_cache fullzones BITMAP).
1438  *  2) Check that the zones node (obtained from the zonelist_cache
1439  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1440  * Return true (non-zero) if zone is worth looking at further, or
1441  * else return false (zero) if it is not.
1442  *
1443  * This check -ignores- the distinction between various watermarks,
1444  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1445  * found to be full for any variation of these watermarks, it will
1446  * be considered full for up to one second by all requests, unless
1447  * we are so low on memory on all allowed nodes that we are forced
1448  * into the second scan of the zonelist.
1449  *
1450  * In the second scan we ignore this zonelist cache and exactly
1451  * apply the watermarks to all zones, even it is slower to do so.
1452  * We are low on memory in the second scan, and should leave no stone
1453  * unturned looking for a free page.
1454  */
1455 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1456 						nodemask_t *allowednodes)
1457 {
1458 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1459 	int i;				/* index of *z in zonelist zones */
1460 	int n;				/* node that zone *z is on */
1461 
1462 	zlc = zonelist->zlcache_ptr;
1463 	if (!zlc)
1464 		return 1;
1465 
1466 	i = z - zonelist->_zonerefs;
1467 	n = zlc->z_to_n[i];
1468 
1469 	/* This zone is worth trying if it is allowed but not full */
1470 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1471 }
1472 
1473 /*
1474  * Given 'z' scanning a zonelist, set the corresponding bit in
1475  * zlc->fullzones, so that subsequent attempts to allocate a page
1476  * from that zone don't waste time re-examining it.
1477  */
1478 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1479 {
1480 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1481 	int i;				/* index of *z in zonelist zones */
1482 
1483 	zlc = zonelist->zlcache_ptr;
1484 	if (!zlc)
1485 		return;
1486 
1487 	i = z - zonelist->_zonerefs;
1488 
1489 	set_bit(i, zlc->fullzones);
1490 }
1491 
1492 #else	/* CONFIG_NUMA */
1493 
1494 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1495 {
1496 	return NULL;
1497 }
1498 
1499 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1500 				nodemask_t *allowednodes)
1501 {
1502 	return 1;
1503 }
1504 
1505 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1506 {
1507 }
1508 #endif	/* CONFIG_NUMA */
1509 
1510 /*
1511  * get_page_from_freelist goes through the zonelist trying to allocate
1512  * a page.
1513  */
1514 static struct page *
1515 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1516 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1517 		struct zone *preferred_zone, int migratetype)
1518 {
1519 	struct zoneref *z;
1520 	struct page *page = NULL;
1521 	int classzone_idx;
1522 	struct zone *zone;
1523 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1524 	int zlc_active = 0;		/* set if using zonelist_cache */
1525 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1526 
1527 	classzone_idx = zone_idx(preferred_zone);
1528 zonelist_scan:
1529 	/*
1530 	 * Scan zonelist, looking for a zone with enough free.
1531 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1532 	 */
1533 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1534 						high_zoneidx, nodemask) {
1535 		if (NUMA_BUILD && zlc_active &&
1536 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1537 				continue;
1538 		if ((alloc_flags & ALLOC_CPUSET) &&
1539 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1540 				goto try_next_zone;
1541 
1542 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1543 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1544 			unsigned long mark;
1545 			int ret;
1546 
1547 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1548 			if (zone_watermark_ok(zone, order, mark,
1549 				    classzone_idx, alloc_flags))
1550 				goto try_this_zone;
1551 
1552 			if (zone_reclaim_mode == 0)
1553 				goto this_zone_full;
1554 
1555 			ret = zone_reclaim(zone, gfp_mask, order);
1556 			switch (ret) {
1557 			case ZONE_RECLAIM_NOSCAN:
1558 				/* did not scan */
1559 				goto try_next_zone;
1560 			case ZONE_RECLAIM_FULL:
1561 				/* scanned but unreclaimable */
1562 				goto this_zone_full;
1563 			default:
1564 				/* did we reclaim enough */
1565 				if (!zone_watermark_ok(zone, order, mark,
1566 						classzone_idx, alloc_flags))
1567 					goto this_zone_full;
1568 			}
1569 		}
1570 
1571 try_this_zone:
1572 		page = buffered_rmqueue(preferred_zone, zone, order,
1573 						gfp_mask, migratetype);
1574 		if (page)
1575 			break;
1576 this_zone_full:
1577 		if (NUMA_BUILD)
1578 			zlc_mark_zone_full(zonelist, z);
1579 try_next_zone:
1580 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1581 			/*
1582 			 * we do zlc_setup after the first zone is tried but only
1583 			 * if there are multiple nodes make it worthwhile
1584 			 */
1585 			allowednodes = zlc_setup(zonelist, alloc_flags);
1586 			zlc_active = 1;
1587 			did_zlc_setup = 1;
1588 		}
1589 	}
1590 
1591 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1592 		/* Disable zlc cache for second zonelist scan */
1593 		zlc_active = 0;
1594 		goto zonelist_scan;
1595 	}
1596 	return page;
1597 }
1598 
1599 static inline int
1600 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1601 				unsigned long pages_reclaimed)
1602 {
1603 	/* Do not loop if specifically requested */
1604 	if (gfp_mask & __GFP_NORETRY)
1605 		return 0;
1606 
1607 	/*
1608 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1609 	 * means __GFP_NOFAIL, but that may not be true in other
1610 	 * implementations.
1611 	 */
1612 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1613 		return 1;
1614 
1615 	/*
1616 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1617 	 * specified, then we retry until we no longer reclaim any pages
1618 	 * (above), or we've reclaimed an order of pages at least as
1619 	 * large as the allocation's order. In both cases, if the
1620 	 * allocation still fails, we stop retrying.
1621 	 */
1622 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1623 		return 1;
1624 
1625 	/*
1626 	 * Don't let big-order allocations loop unless the caller
1627 	 * explicitly requests that.
1628 	 */
1629 	if (gfp_mask & __GFP_NOFAIL)
1630 		return 1;
1631 
1632 	return 0;
1633 }
1634 
1635 static inline struct page *
1636 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1637 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1638 	nodemask_t *nodemask, struct zone *preferred_zone,
1639 	int migratetype)
1640 {
1641 	struct page *page;
1642 
1643 	/* Acquire the OOM killer lock for the zones in zonelist */
1644 	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1645 		schedule_timeout_uninterruptible(1);
1646 		return NULL;
1647 	}
1648 
1649 	/*
1650 	 * Go through the zonelist yet one more time, keep very high watermark
1651 	 * here, this is only to catch a parallel oom killing, we must fail if
1652 	 * we're still under heavy pressure.
1653 	 */
1654 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1655 		order, zonelist, high_zoneidx,
1656 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1657 		preferred_zone, migratetype);
1658 	if (page)
1659 		goto out;
1660 
1661 	/* The OOM killer will not help higher order allocs */
1662 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1663 		goto out;
1664 
1665 	/* Exhausted what can be done so it's blamo time */
1666 	out_of_memory(zonelist, gfp_mask, order);
1667 
1668 out:
1669 	clear_zonelist_oom(zonelist, gfp_mask);
1670 	return page;
1671 }
1672 
1673 /* The really slow allocator path where we enter direct reclaim */
1674 static inline struct page *
1675 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1676 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1677 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1678 	int migratetype, unsigned long *did_some_progress)
1679 {
1680 	struct page *page = NULL;
1681 	struct reclaim_state reclaim_state;
1682 	struct task_struct *p = current;
1683 
1684 	cond_resched();
1685 
1686 	/* We now go into synchronous reclaim */
1687 	cpuset_memory_pressure_bump();
1688 	p->flags |= PF_MEMALLOC;
1689 	lockdep_set_current_reclaim_state(gfp_mask);
1690 	reclaim_state.reclaimed_slab = 0;
1691 	p->reclaim_state = &reclaim_state;
1692 
1693 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1694 
1695 	p->reclaim_state = NULL;
1696 	lockdep_clear_current_reclaim_state();
1697 	p->flags &= ~PF_MEMALLOC;
1698 
1699 	cond_resched();
1700 
1701 	if (order != 0)
1702 		drain_all_pages();
1703 
1704 	if (likely(*did_some_progress))
1705 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1706 					zonelist, high_zoneidx,
1707 					alloc_flags, preferred_zone,
1708 					migratetype);
1709 	return page;
1710 }
1711 
1712 /*
1713  * This is called in the allocator slow-path if the allocation request is of
1714  * sufficient urgency to ignore watermarks and take other desperate measures
1715  */
1716 static inline struct page *
1717 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1718 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1719 	nodemask_t *nodemask, struct zone *preferred_zone,
1720 	int migratetype)
1721 {
1722 	struct page *page;
1723 
1724 	do {
1725 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1726 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1727 			preferred_zone, migratetype);
1728 
1729 		if (!page && gfp_mask & __GFP_NOFAIL)
1730 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1731 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1732 
1733 	return page;
1734 }
1735 
1736 static inline
1737 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1738 						enum zone_type high_zoneidx)
1739 {
1740 	struct zoneref *z;
1741 	struct zone *zone;
1742 
1743 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1744 		wakeup_kswapd(zone, order);
1745 }
1746 
1747 static inline int
1748 gfp_to_alloc_flags(gfp_t gfp_mask)
1749 {
1750 	struct task_struct *p = current;
1751 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1752 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1753 
1754 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1755 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1756 
1757 	/*
1758 	 * The caller may dip into page reserves a bit more if the caller
1759 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1760 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1761 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1762 	 */
1763 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1764 
1765 	if (!wait) {
1766 		alloc_flags |= ALLOC_HARDER;
1767 		/*
1768 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1769 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1770 		 */
1771 		alloc_flags &= ~ALLOC_CPUSET;
1772 	} else if (unlikely(rt_task(p)))
1773 		alloc_flags |= ALLOC_HARDER;
1774 
1775 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1776 		if (!in_interrupt() &&
1777 		    ((p->flags & PF_MEMALLOC) ||
1778 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1779 			alloc_flags |= ALLOC_NO_WATERMARKS;
1780 	}
1781 
1782 	return alloc_flags;
1783 }
1784 
1785 static inline struct page *
1786 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1787 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1788 	nodemask_t *nodemask, struct zone *preferred_zone,
1789 	int migratetype)
1790 {
1791 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1792 	struct page *page = NULL;
1793 	int alloc_flags;
1794 	unsigned long pages_reclaimed = 0;
1795 	unsigned long did_some_progress;
1796 	struct task_struct *p = current;
1797 
1798 	/*
1799 	 * In the slowpath, we sanity check order to avoid ever trying to
1800 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1801 	 * be using allocators in order of preference for an area that is
1802 	 * too large.
1803 	 */
1804 	if (order >= MAX_ORDER) {
1805 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1806 		return NULL;
1807 	}
1808 
1809 	/*
1810 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1811 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1812 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1813 	 * using a larger set of nodes after it has established that the
1814 	 * allowed per node queues are empty and that nodes are
1815 	 * over allocated.
1816 	 */
1817 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1818 		goto nopage;
1819 
1820 	wake_all_kswapd(order, zonelist, high_zoneidx);
1821 
1822 restart:
1823 	/*
1824 	 * OK, we're below the kswapd watermark and have kicked background
1825 	 * reclaim. Now things get more complex, so set up alloc_flags according
1826 	 * to how we want to proceed.
1827 	 */
1828 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1829 
1830 	/* This is the last chance, in general, before the goto nopage. */
1831 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1832 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1833 			preferred_zone, migratetype);
1834 	if (page)
1835 		goto got_pg;
1836 
1837 rebalance:
1838 	/* Allocate without watermarks if the context allows */
1839 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1840 		page = __alloc_pages_high_priority(gfp_mask, order,
1841 				zonelist, high_zoneidx, nodemask,
1842 				preferred_zone, migratetype);
1843 		if (page)
1844 			goto got_pg;
1845 	}
1846 
1847 	/* Atomic allocations - we can't balance anything */
1848 	if (!wait)
1849 		goto nopage;
1850 
1851 	/* Avoid recursion of direct reclaim */
1852 	if (p->flags & PF_MEMALLOC)
1853 		goto nopage;
1854 
1855 	/* Avoid allocations with no watermarks from looping endlessly */
1856 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1857 		goto nopage;
1858 
1859 	/* Try direct reclaim and then allocating */
1860 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1861 					zonelist, high_zoneidx,
1862 					nodemask,
1863 					alloc_flags, preferred_zone,
1864 					migratetype, &did_some_progress);
1865 	if (page)
1866 		goto got_pg;
1867 
1868 	/*
1869 	 * If we failed to make any progress reclaiming, then we are
1870 	 * running out of options and have to consider going OOM
1871 	 */
1872 	if (!did_some_progress) {
1873 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1874 			if (oom_killer_disabled)
1875 				goto nopage;
1876 			page = __alloc_pages_may_oom(gfp_mask, order,
1877 					zonelist, high_zoneidx,
1878 					nodemask, preferred_zone,
1879 					migratetype);
1880 			if (page)
1881 				goto got_pg;
1882 
1883 			/*
1884 			 * The OOM killer does not trigger for high-order
1885 			 * ~__GFP_NOFAIL allocations so if no progress is being
1886 			 * made, there are no other options and retrying is
1887 			 * unlikely to help.
1888 			 */
1889 			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1890 						!(gfp_mask & __GFP_NOFAIL))
1891 				goto nopage;
1892 
1893 			goto restart;
1894 		}
1895 	}
1896 
1897 	/* Check if we should retry the allocation */
1898 	pages_reclaimed += did_some_progress;
1899 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1900 		/* Wait for some write requests to complete then retry */
1901 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1902 		goto rebalance;
1903 	}
1904 
1905 nopage:
1906 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1907 		printk(KERN_WARNING "%s: page allocation failure."
1908 			" order:%d, mode:0x%x\n",
1909 			p->comm, order, gfp_mask);
1910 		dump_stack();
1911 		show_mem();
1912 	}
1913 	return page;
1914 got_pg:
1915 	if (kmemcheck_enabled)
1916 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1917 	return page;
1918 
1919 }
1920 
1921 /*
1922  * This is the 'heart' of the zoned buddy allocator.
1923  */
1924 struct page *
1925 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1926 			struct zonelist *zonelist, nodemask_t *nodemask)
1927 {
1928 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1929 	struct zone *preferred_zone;
1930 	struct page *page;
1931 	int migratetype = allocflags_to_migratetype(gfp_mask);
1932 
1933 	gfp_mask &= gfp_allowed_mask;
1934 
1935 	lockdep_trace_alloc(gfp_mask);
1936 
1937 	might_sleep_if(gfp_mask & __GFP_WAIT);
1938 
1939 	if (should_fail_alloc_page(gfp_mask, order))
1940 		return NULL;
1941 
1942 	/*
1943 	 * Check the zones suitable for the gfp_mask contain at least one
1944 	 * valid zone. It's possible to have an empty zonelist as a result
1945 	 * of GFP_THISNODE and a memoryless node
1946 	 */
1947 	if (unlikely(!zonelist->_zonerefs->zone))
1948 		return NULL;
1949 
1950 	/* The preferred zone is used for statistics later */
1951 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1952 	if (!preferred_zone)
1953 		return NULL;
1954 
1955 	/* First allocation attempt */
1956 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1957 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1958 			preferred_zone, migratetype);
1959 	if (unlikely(!page))
1960 		page = __alloc_pages_slowpath(gfp_mask, order,
1961 				zonelist, high_zoneidx, nodemask,
1962 				preferred_zone, migratetype);
1963 
1964 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1965 	return page;
1966 }
1967 EXPORT_SYMBOL(__alloc_pages_nodemask);
1968 
1969 /*
1970  * Common helper functions.
1971  */
1972 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1973 {
1974 	struct page *page;
1975 
1976 	/*
1977 	 * __get_free_pages() returns a 32-bit address, which cannot represent
1978 	 * a highmem page
1979 	 */
1980 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1981 
1982 	page = alloc_pages(gfp_mask, order);
1983 	if (!page)
1984 		return 0;
1985 	return (unsigned long) page_address(page);
1986 }
1987 EXPORT_SYMBOL(__get_free_pages);
1988 
1989 unsigned long get_zeroed_page(gfp_t gfp_mask)
1990 {
1991 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1992 }
1993 EXPORT_SYMBOL(get_zeroed_page);
1994 
1995 void __pagevec_free(struct pagevec *pvec)
1996 {
1997 	int i = pagevec_count(pvec);
1998 
1999 	while (--i >= 0) {
2000 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2001 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2002 	}
2003 }
2004 
2005 void __free_pages(struct page *page, unsigned int order)
2006 {
2007 	if (put_page_testzero(page)) {
2008 		trace_mm_page_free_direct(page, order);
2009 		if (order == 0)
2010 			free_hot_page(page);
2011 		else
2012 			__free_pages_ok(page, order);
2013 	}
2014 }
2015 
2016 EXPORT_SYMBOL(__free_pages);
2017 
2018 void free_pages(unsigned long addr, unsigned int order)
2019 {
2020 	if (addr != 0) {
2021 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2022 		__free_pages(virt_to_page((void *)addr), order);
2023 	}
2024 }
2025 
2026 EXPORT_SYMBOL(free_pages);
2027 
2028 /**
2029  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2030  * @size: the number of bytes to allocate
2031  * @gfp_mask: GFP flags for the allocation
2032  *
2033  * This function is similar to alloc_pages(), except that it allocates the
2034  * minimum number of pages to satisfy the request.  alloc_pages() can only
2035  * allocate memory in power-of-two pages.
2036  *
2037  * This function is also limited by MAX_ORDER.
2038  *
2039  * Memory allocated by this function must be released by free_pages_exact().
2040  */
2041 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2042 {
2043 	unsigned int order = get_order(size);
2044 	unsigned long addr;
2045 
2046 	addr = __get_free_pages(gfp_mask, order);
2047 	if (addr) {
2048 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2049 		unsigned long used = addr + PAGE_ALIGN(size);
2050 
2051 		split_page(virt_to_page((void *)addr), order);
2052 		while (used < alloc_end) {
2053 			free_page(used);
2054 			used += PAGE_SIZE;
2055 		}
2056 	}
2057 
2058 	return (void *)addr;
2059 }
2060 EXPORT_SYMBOL(alloc_pages_exact);
2061 
2062 /**
2063  * free_pages_exact - release memory allocated via alloc_pages_exact()
2064  * @virt: the value returned by alloc_pages_exact.
2065  * @size: size of allocation, same value as passed to alloc_pages_exact().
2066  *
2067  * Release the memory allocated by a previous call to alloc_pages_exact.
2068  */
2069 void free_pages_exact(void *virt, size_t size)
2070 {
2071 	unsigned long addr = (unsigned long)virt;
2072 	unsigned long end = addr + PAGE_ALIGN(size);
2073 
2074 	while (addr < end) {
2075 		free_page(addr);
2076 		addr += PAGE_SIZE;
2077 	}
2078 }
2079 EXPORT_SYMBOL(free_pages_exact);
2080 
2081 static unsigned int nr_free_zone_pages(int offset)
2082 {
2083 	struct zoneref *z;
2084 	struct zone *zone;
2085 
2086 	/* Just pick one node, since fallback list is circular */
2087 	unsigned int sum = 0;
2088 
2089 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2090 
2091 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2092 		unsigned long size = zone->present_pages;
2093 		unsigned long high = high_wmark_pages(zone);
2094 		if (size > high)
2095 			sum += size - high;
2096 	}
2097 
2098 	return sum;
2099 }
2100 
2101 /*
2102  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2103  */
2104 unsigned int nr_free_buffer_pages(void)
2105 {
2106 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2107 }
2108 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2109 
2110 /*
2111  * Amount of free RAM allocatable within all zones
2112  */
2113 unsigned int nr_free_pagecache_pages(void)
2114 {
2115 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2116 }
2117 
2118 static inline void show_node(struct zone *zone)
2119 {
2120 	if (NUMA_BUILD)
2121 		printk("Node %d ", zone_to_nid(zone));
2122 }
2123 
2124 void si_meminfo(struct sysinfo *val)
2125 {
2126 	val->totalram = totalram_pages;
2127 	val->sharedram = 0;
2128 	val->freeram = global_page_state(NR_FREE_PAGES);
2129 	val->bufferram = nr_blockdev_pages();
2130 	val->totalhigh = totalhigh_pages;
2131 	val->freehigh = nr_free_highpages();
2132 	val->mem_unit = PAGE_SIZE;
2133 }
2134 
2135 EXPORT_SYMBOL(si_meminfo);
2136 
2137 #ifdef CONFIG_NUMA
2138 void si_meminfo_node(struct sysinfo *val, int nid)
2139 {
2140 	pg_data_t *pgdat = NODE_DATA(nid);
2141 
2142 	val->totalram = pgdat->node_present_pages;
2143 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2144 #ifdef CONFIG_HIGHMEM
2145 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2146 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2147 			NR_FREE_PAGES);
2148 #else
2149 	val->totalhigh = 0;
2150 	val->freehigh = 0;
2151 #endif
2152 	val->mem_unit = PAGE_SIZE;
2153 }
2154 #endif
2155 
2156 #define K(x) ((x) << (PAGE_SHIFT-10))
2157 
2158 /*
2159  * Show free area list (used inside shift_scroll-lock stuff)
2160  * We also calculate the percentage fragmentation. We do this by counting the
2161  * memory on each free list with the exception of the first item on the list.
2162  */
2163 void show_free_areas(void)
2164 {
2165 	int cpu;
2166 	struct zone *zone;
2167 
2168 	for_each_populated_zone(zone) {
2169 		show_node(zone);
2170 		printk("%s per-cpu:\n", zone->name);
2171 
2172 		for_each_online_cpu(cpu) {
2173 			struct per_cpu_pageset *pageset;
2174 
2175 			pageset = zone_pcp(zone, cpu);
2176 
2177 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2178 			       cpu, pageset->pcp.high,
2179 			       pageset->pcp.batch, pageset->pcp.count);
2180 		}
2181 	}
2182 
2183 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2184 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2185 		" unevictable:%lu"
2186 		" dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2187 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2188 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2189 		global_page_state(NR_ACTIVE_ANON),
2190 		global_page_state(NR_INACTIVE_ANON),
2191 		global_page_state(NR_ISOLATED_ANON),
2192 		global_page_state(NR_ACTIVE_FILE),
2193 		global_page_state(NR_INACTIVE_FILE),
2194 		global_page_state(NR_ISOLATED_FILE),
2195 		global_page_state(NR_UNEVICTABLE),
2196 		global_page_state(NR_FILE_DIRTY),
2197 		global_page_state(NR_WRITEBACK),
2198 		global_page_state(NR_UNSTABLE_NFS),
2199 		nr_blockdev_pages(),
2200 		global_page_state(NR_FREE_PAGES),
2201 		global_page_state(NR_SLAB_RECLAIMABLE),
2202 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2203 		global_page_state(NR_FILE_MAPPED),
2204 		global_page_state(NR_SHMEM),
2205 		global_page_state(NR_PAGETABLE),
2206 		global_page_state(NR_BOUNCE));
2207 
2208 	for_each_populated_zone(zone) {
2209 		int i;
2210 
2211 		show_node(zone);
2212 		printk("%s"
2213 			" free:%lukB"
2214 			" min:%lukB"
2215 			" low:%lukB"
2216 			" high:%lukB"
2217 			" active_anon:%lukB"
2218 			" inactive_anon:%lukB"
2219 			" active_file:%lukB"
2220 			" inactive_file:%lukB"
2221 			" unevictable:%lukB"
2222 			" isolated(anon):%lukB"
2223 			" isolated(file):%lukB"
2224 			" present:%lukB"
2225 			" mlocked:%lukB"
2226 			" dirty:%lukB"
2227 			" writeback:%lukB"
2228 			" mapped:%lukB"
2229 			" shmem:%lukB"
2230 			" slab_reclaimable:%lukB"
2231 			" slab_unreclaimable:%lukB"
2232 			" kernel_stack:%lukB"
2233 			" pagetables:%lukB"
2234 			" unstable:%lukB"
2235 			" bounce:%lukB"
2236 			" writeback_tmp:%lukB"
2237 			" pages_scanned:%lu"
2238 			" all_unreclaimable? %s"
2239 			"\n",
2240 			zone->name,
2241 			K(zone_page_state(zone, NR_FREE_PAGES)),
2242 			K(min_wmark_pages(zone)),
2243 			K(low_wmark_pages(zone)),
2244 			K(high_wmark_pages(zone)),
2245 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2246 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2247 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2248 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2249 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2250 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2251 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2252 			K(zone->present_pages),
2253 			K(zone_page_state(zone, NR_MLOCK)),
2254 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2255 			K(zone_page_state(zone, NR_WRITEBACK)),
2256 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2257 			K(zone_page_state(zone, NR_SHMEM)),
2258 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2259 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2260 			zone_page_state(zone, NR_KERNEL_STACK) *
2261 				THREAD_SIZE / 1024,
2262 			K(zone_page_state(zone, NR_PAGETABLE)),
2263 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2264 			K(zone_page_state(zone, NR_BOUNCE)),
2265 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2266 			zone->pages_scanned,
2267 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2268 			);
2269 		printk("lowmem_reserve[]:");
2270 		for (i = 0; i < MAX_NR_ZONES; i++)
2271 			printk(" %lu", zone->lowmem_reserve[i]);
2272 		printk("\n");
2273 	}
2274 
2275 	for_each_populated_zone(zone) {
2276  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2277 
2278 		show_node(zone);
2279 		printk("%s: ", zone->name);
2280 
2281 		spin_lock_irqsave(&zone->lock, flags);
2282 		for (order = 0; order < MAX_ORDER; order++) {
2283 			nr[order] = zone->free_area[order].nr_free;
2284 			total += nr[order] << order;
2285 		}
2286 		spin_unlock_irqrestore(&zone->lock, flags);
2287 		for (order = 0; order < MAX_ORDER; order++)
2288 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2289 		printk("= %lukB\n", K(total));
2290 	}
2291 
2292 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2293 
2294 	show_swap_cache_info();
2295 }
2296 
2297 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2298 {
2299 	zoneref->zone = zone;
2300 	zoneref->zone_idx = zone_idx(zone);
2301 }
2302 
2303 /*
2304  * Builds allocation fallback zone lists.
2305  *
2306  * Add all populated zones of a node to the zonelist.
2307  */
2308 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2309 				int nr_zones, enum zone_type zone_type)
2310 {
2311 	struct zone *zone;
2312 
2313 	BUG_ON(zone_type >= MAX_NR_ZONES);
2314 	zone_type++;
2315 
2316 	do {
2317 		zone_type--;
2318 		zone = pgdat->node_zones + zone_type;
2319 		if (populated_zone(zone)) {
2320 			zoneref_set_zone(zone,
2321 				&zonelist->_zonerefs[nr_zones++]);
2322 			check_highest_zone(zone_type);
2323 		}
2324 
2325 	} while (zone_type);
2326 	return nr_zones;
2327 }
2328 
2329 
2330 /*
2331  *  zonelist_order:
2332  *  0 = automatic detection of better ordering.
2333  *  1 = order by ([node] distance, -zonetype)
2334  *  2 = order by (-zonetype, [node] distance)
2335  *
2336  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2337  *  the same zonelist. So only NUMA can configure this param.
2338  */
2339 #define ZONELIST_ORDER_DEFAULT  0
2340 #define ZONELIST_ORDER_NODE     1
2341 #define ZONELIST_ORDER_ZONE     2
2342 
2343 /* zonelist order in the kernel.
2344  * set_zonelist_order() will set this to NODE or ZONE.
2345  */
2346 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2347 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2348 
2349 
2350 #ifdef CONFIG_NUMA
2351 /* The value user specified ....changed by config */
2352 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2353 /* string for sysctl */
2354 #define NUMA_ZONELIST_ORDER_LEN	16
2355 char numa_zonelist_order[16] = "default";
2356 
2357 /*
2358  * interface for configure zonelist ordering.
2359  * command line option "numa_zonelist_order"
2360  *	= "[dD]efault	- default, automatic configuration.
2361  *	= "[nN]ode 	- order by node locality, then by zone within node
2362  *	= "[zZ]one      - order by zone, then by locality within zone
2363  */
2364 
2365 static int __parse_numa_zonelist_order(char *s)
2366 {
2367 	if (*s == 'd' || *s == 'D') {
2368 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2369 	} else if (*s == 'n' || *s == 'N') {
2370 		user_zonelist_order = ZONELIST_ORDER_NODE;
2371 	} else if (*s == 'z' || *s == 'Z') {
2372 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2373 	} else {
2374 		printk(KERN_WARNING
2375 			"Ignoring invalid numa_zonelist_order value:  "
2376 			"%s\n", s);
2377 		return -EINVAL;
2378 	}
2379 	return 0;
2380 }
2381 
2382 static __init int setup_numa_zonelist_order(char *s)
2383 {
2384 	if (s)
2385 		return __parse_numa_zonelist_order(s);
2386 	return 0;
2387 }
2388 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2389 
2390 /*
2391  * sysctl handler for numa_zonelist_order
2392  */
2393 int numa_zonelist_order_handler(ctl_table *table, int write,
2394 		void __user *buffer, size_t *length,
2395 		loff_t *ppos)
2396 {
2397 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2398 	int ret;
2399 
2400 	if (write)
2401 		strncpy(saved_string, (char*)table->data,
2402 			NUMA_ZONELIST_ORDER_LEN);
2403 	ret = proc_dostring(table, write, buffer, length, ppos);
2404 	if (ret)
2405 		return ret;
2406 	if (write) {
2407 		int oldval = user_zonelist_order;
2408 		if (__parse_numa_zonelist_order((char*)table->data)) {
2409 			/*
2410 			 * bogus value.  restore saved string
2411 			 */
2412 			strncpy((char*)table->data, saved_string,
2413 				NUMA_ZONELIST_ORDER_LEN);
2414 			user_zonelist_order = oldval;
2415 		} else if (oldval != user_zonelist_order)
2416 			build_all_zonelists();
2417 	}
2418 	return 0;
2419 }
2420 
2421 
2422 #define MAX_NODE_LOAD (nr_online_nodes)
2423 static int node_load[MAX_NUMNODES];
2424 
2425 /**
2426  * find_next_best_node - find the next node that should appear in a given node's fallback list
2427  * @node: node whose fallback list we're appending
2428  * @used_node_mask: nodemask_t of already used nodes
2429  *
2430  * We use a number of factors to determine which is the next node that should
2431  * appear on a given node's fallback list.  The node should not have appeared
2432  * already in @node's fallback list, and it should be the next closest node
2433  * according to the distance array (which contains arbitrary distance values
2434  * from each node to each node in the system), and should also prefer nodes
2435  * with no CPUs, since presumably they'll have very little allocation pressure
2436  * on them otherwise.
2437  * It returns -1 if no node is found.
2438  */
2439 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2440 {
2441 	int n, val;
2442 	int min_val = INT_MAX;
2443 	int best_node = -1;
2444 	const struct cpumask *tmp = cpumask_of_node(0);
2445 
2446 	/* Use the local node if we haven't already */
2447 	if (!node_isset(node, *used_node_mask)) {
2448 		node_set(node, *used_node_mask);
2449 		return node;
2450 	}
2451 
2452 	for_each_node_state(n, N_HIGH_MEMORY) {
2453 
2454 		/* Don't want a node to appear more than once */
2455 		if (node_isset(n, *used_node_mask))
2456 			continue;
2457 
2458 		/* Use the distance array to find the distance */
2459 		val = node_distance(node, n);
2460 
2461 		/* Penalize nodes under us ("prefer the next node") */
2462 		val += (n < node);
2463 
2464 		/* Give preference to headless and unused nodes */
2465 		tmp = cpumask_of_node(n);
2466 		if (!cpumask_empty(tmp))
2467 			val += PENALTY_FOR_NODE_WITH_CPUS;
2468 
2469 		/* Slight preference for less loaded node */
2470 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2471 		val += node_load[n];
2472 
2473 		if (val < min_val) {
2474 			min_val = val;
2475 			best_node = n;
2476 		}
2477 	}
2478 
2479 	if (best_node >= 0)
2480 		node_set(best_node, *used_node_mask);
2481 
2482 	return best_node;
2483 }
2484 
2485 
2486 /*
2487  * Build zonelists ordered by node and zones within node.
2488  * This results in maximum locality--normal zone overflows into local
2489  * DMA zone, if any--but risks exhausting DMA zone.
2490  */
2491 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2492 {
2493 	int j;
2494 	struct zonelist *zonelist;
2495 
2496 	zonelist = &pgdat->node_zonelists[0];
2497 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2498 		;
2499 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2500 							MAX_NR_ZONES - 1);
2501 	zonelist->_zonerefs[j].zone = NULL;
2502 	zonelist->_zonerefs[j].zone_idx = 0;
2503 }
2504 
2505 /*
2506  * Build gfp_thisnode zonelists
2507  */
2508 static void build_thisnode_zonelists(pg_data_t *pgdat)
2509 {
2510 	int j;
2511 	struct zonelist *zonelist;
2512 
2513 	zonelist = &pgdat->node_zonelists[1];
2514 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2515 	zonelist->_zonerefs[j].zone = NULL;
2516 	zonelist->_zonerefs[j].zone_idx = 0;
2517 }
2518 
2519 /*
2520  * Build zonelists ordered by zone and nodes within zones.
2521  * This results in conserving DMA zone[s] until all Normal memory is
2522  * exhausted, but results in overflowing to remote node while memory
2523  * may still exist in local DMA zone.
2524  */
2525 static int node_order[MAX_NUMNODES];
2526 
2527 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2528 {
2529 	int pos, j, node;
2530 	int zone_type;		/* needs to be signed */
2531 	struct zone *z;
2532 	struct zonelist *zonelist;
2533 
2534 	zonelist = &pgdat->node_zonelists[0];
2535 	pos = 0;
2536 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2537 		for (j = 0; j < nr_nodes; j++) {
2538 			node = node_order[j];
2539 			z = &NODE_DATA(node)->node_zones[zone_type];
2540 			if (populated_zone(z)) {
2541 				zoneref_set_zone(z,
2542 					&zonelist->_zonerefs[pos++]);
2543 				check_highest_zone(zone_type);
2544 			}
2545 		}
2546 	}
2547 	zonelist->_zonerefs[pos].zone = NULL;
2548 	zonelist->_zonerefs[pos].zone_idx = 0;
2549 }
2550 
2551 static int default_zonelist_order(void)
2552 {
2553 	int nid, zone_type;
2554 	unsigned long low_kmem_size,total_size;
2555 	struct zone *z;
2556 	int average_size;
2557 	/*
2558          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2559 	 * If they are really small and used heavily, the system can fall
2560 	 * into OOM very easily.
2561 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2562 	 */
2563 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2564 	low_kmem_size = 0;
2565 	total_size = 0;
2566 	for_each_online_node(nid) {
2567 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2568 			z = &NODE_DATA(nid)->node_zones[zone_type];
2569 			if (populated_zone(z)) {
2570 				if (zone_type < ZONE_NORMAL)
2571 					low_kmem_size += z->present_pages;
2572 				total_size += z->present_pages;
2573 			}
2574 		}
2575 	}
2576 	if (!low_kmem_size ||  /* there are no DMA area. */
2577 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2578 		return ZONELIST_ORDER_NODE;
2579 	/*
2580 	 * look into each node's config.
2581   	 * If there is a node whose DMA/DMA32 memory is very big area on
2582  	 * local memory, NODE_ORDER may be suitable.
2583          */
2584 	average_size = total_size /
2585 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2586 	for_each_online_node(nid) {
2587 		low_kmem_size = 0;
2588 		total_size = 0;
2589 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2590 			z = &NODE_DATA(nid)->node_zones[zone_type];
2591 			if (populated_zone(z)) {
2592 				if (zone_type < ZONE_NORMAL)
2593 					low_kmem_size += z->present_pages;
2594 				total_size += z->present_pages;
2595 			}
2596 		}
2597 		if (low_kmem_size &&
2598 		    total_size > average_size && /* ignore small node */
2599 		    low_kmem_size > total_size * 70/100)
2600 			return ZONELIST_ORDER_NODE;
2601 	}
2602 	return ZONELIST_ORDER_ZONE;
2603 }
2604 
2605 static void set_zonelist_order(void)
2606 {
2607 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2608 		current_zonelist_order = default_zonelist_order();
2609 	else
2610 		current_zonelist_order = user_zonelist_order;
2611 }
2612 
2613 static void build_zonelists(pg_data_t *pgdat)
2614 {
2615 	int j, node, load;
2616 	enum zone_type i;
2617 	nodemask_t used_mask;
2618 	int local_node, prev_node;
2619 	struct zonelist *zonelist;
2620 	int order = current_zonelist_order;
2621 
2622 	/* initialize zonelists */
2623 	for (i = 0; i < MAX_ZONELISTS; i++) {
2624 		zonelist = pgdat->node_zonelists + i;
2625 		zonelist->_zonerefs[0].zone = NULL;
2626 		zonelist->_zonerefs[0].zone_idx = 0;
2627 	}
2628 
2629 	/* NUMA-aware ordering of nodes */
2630 	local_node = pgdat->node_id;
2631 	load = nr_online_nodes;
2632 	prev_node = local_node;
2633 	nodes_clear(used_mask);
2634 
2635 	memset(node_order, 0, sizeof(node_order));
2636 	j = 0;
2637 
2638 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2639 		int distance = node_distance(local_node, node);
2640 
2641 		/*
2642 		 * If another node is sufficiently far away then it is better
2643 		 * to reclaim pages in a zone before going off node.
2644 		 */
2645 		if (distance > RECLAIM_DISTANCE)
2646 			zone_reclaim_mode = 1;
2647 
2648 		/*
2649 		 * We don't want to pressure a particular node.
2650 		 * So adding penalty to the first node in same
2651 		 * distance group to make it round-robin.
2652 		 */
2653 		if (distance != node_distance(local_node, prev_node))
2654 			node_load[node] = load;
2655 
2656 		prev_node = node;
2657 		load--;
2658 		if (order == ZONELIST_ORDER_NODE)
2659 			build_zonelists_in_node_order(pgdat, node);
2660 		else
2661 			node_order[j++] = node;	/* remember order */
2662 	}
2663 
2664 	if (order == ZONELIST_ORDER_ZONE) {
2665 		/* calculate node order -- i.e., DMA last! */
2666 		build_zonelists_in_zone_order(pgdat, j);
2667 	}
2668 
2669 	build_thisnode_zonelists(pgdat);
2670 }
2671 
2672 /* Construct the zonelist performance cache - see further mmzone.h */
2673 static void build_zonelist_cache(pg_data_t *pgdat)
2674 {
2675 	struct zonelist *zonelist;
2676 	struct zonelist_cache *zlc;
2677 	struct zoneref *z;
2678 
2679 	zonelist = &pgdat->node_zonelists[0];
2680 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2681 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2682 	for (z = zonelist->_zonerefs; z->zone; z++)
2683 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2684 }
2685 
2686 
2687 #else	/* CONFIG_NUMA */
2688 
2689 static void set_zonelist_order(void)
2690 {
2691 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2692 }
2693 
2694 static void build_zonelists(pg_data_t *pgdat)
2695 {
2696 	int node, local_node;
2697 	enum zone_type j;
2698 	struct zonelist *zonelist;
2699 
2700 	local_node = pgdat->node_id;
2701 
2702 	zonelist = &pgdat->node_zonelists[0];
2703 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2704 
2705 	/*
2706 	 * Now we build the zonelist so that it contains the zones
2707 	 * of all the other nodes.
2708 	 * We don't want to pressure a particular node, so when
2709 	 * building the zones for node N, we make sure that the
2710 	 * zones coming right after the local ones are those from
2711 	 * node N+1 (modulo N)
2712 	 */
2713 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2714 		if (!node_online(node))
2715 			continue;
2716 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2717 							MAX_NR_ZONES - 1);
2718 	}
2719 	for (node = 0; node < local_node; node++) {
2720 		if (!node_online(node))
2721 			continue;
2722 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2723 							MAX_NR_ZONES - 1);
2724 	}
2725 
2726 	zonelist->_zonerefs[j].zone = NULL;
2727 	zonelist->_zonerefs[j].zone_idx = 0;
2728 }
2729 
2730 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2731 static void build_zonelist_cache(pg_data_t *pgdat)
2732 {
2733 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2734 }
2735 
2736 #endif	/* CONFIG_NUMA */
2737 
2738 /* return values int ....just for stop_machine() */
2739 static int __build_all_zonelists(void *dummy)
2740 {
2741 	int nid;
2742 
2743 #ifdef CONFIG_NUMA
2744 	memset(node_load, 0, sizeof(node_load));
2745 #endif
2746 	for_each_online_node(nid) {
2747 		pg_data_t *pgdat = NODE_DATA(nid);
2748 
2749 		build_zonelists(pgdat);
2750 		build_zonelist_cache(pgdat);
2751 	}
2752 	return 0;
2753 }
2754 
2755 void build_all_zonelists(void)
2756 {
2757 	set_zonelist_order();
2758 
2759 	if (system_state == SYSTEM_BOOTING) {
2760 		__build_all_zonelists(NULL);
2761 		mminit_verify_zonelist();
2762 		cpuset_init_current_mems_allowed();
2763 	} else {
2764 		/* we have to stop all cpus to guarantee there is no user
2765 		   of zonelist */
2766 		stop_machine(__build_all_zonelists, NULL, NULL);
2767 		/* cpuset refresh routine should be here */
2768 	}
2769 	vm_total_pages = nr_free_pagecache_pages();
2770 	/*
2771 	 * Disable grouping by mobility if the number of pages in the
2772 	 * system is too low to allow the mechanism to work. It would be
2773 	 * more accurate, but expensive to check per-zone. This check is
2774 	 * made on memory-hotadd so a system can start with mobility
2775 	 * disabled and enable it later
2776 	 */
2777 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2778 		page_group_by_mobility_disabled = 1;
2779 	else
2780 		page_group_by_mobility_disabled = 0;
2781 
2782 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2783 		"Total pages: %ld\n",
2784 			nr_online_nodes,
2785 			zonelist_order_name[current_zonelist_order],
2786 			page_group_by_mobility_disabled ? "off" : "on",
2787 			vm_total_pages);
2788 #ifdef CONFIG_NUMA
2789 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2790 #endif
2791 }
2792 
2793 /*
2794  * Helper functions to size the waitqueue hash table.
2795  * Essentially these want to choose hash table sizes sufficiently
2796  * large so that collisions trying to wait on pages are rare.
2797  * But in fact, the number of active page waitqueues on typical
2798  * systems is ridiculously low, less than 200. So this is even
2799  * conservative, even though it seems large.
2800  *
2801  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2802  * waitqueues, i.e. the size of the waitq table given the number of pages.
2803  */
2804 #define PAGES_PER_WAITQUEUE	256
2805 
2806 #ifndef CONFIG_MEMORY_HOTPLUG
2807 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2808 {
2809 	unsigned long size = 1;
2810 
2811 	pages /= PAGES_PER_WAITQUEUE;
2812 
2813 	while (size < pages)
2814 		size <<= 1;
2815 
2816 	/*
2817 	 * Once we have dozens or even hundreds of threads sleeping
2818 	 * on IO we've got bigger problems than wait queue collision.
2819 	 * Limit the size of the wait table to a reasonable size.
2820 	 */
2821 	size = min(size, 4096UL);
2822 
2823 	return max(size, 4UL);
2824 }
2825 #else
2826 /*
2827  * A zone's size might be changed by hot-add, so it is not possible to determine
2828  * a suitable size for its wait_table.  So we use the maximum size now.
2829  *
2830  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2831  *
2832  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2833  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2834  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2835  *
2836  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2837  * or more by the traditional way. (See above).  It equals:
2838  *
2839  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2840  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2841  *    powerpc (64K page size)             : =  (32G +16M)byte.
2842  */
2843 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2844 {
2845 	return 4096UL;
2846 }
2847 #endif
2848 
2849 /*
2850  * This is an integer logarithm so that shifts can be used later
2851  * to extract the more random high bits from the multiplicative
2852  * hash function before the remainder is taken.
2853  */
2854 static inline unsigned long wait_table_bits(unsigned long size)
2855 {
2856 	return ffz(~size);
2857 }
2858 
2859 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2860 
2861 /*
2862  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2863  * of blocks reserved is based on min_wmark_pages(zone). The memory within
2864  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2865  * higher will lead to a bigger reserve which will get freed as contiguous
2866  * blocks as reclaim kicks in
2867  */
2868 static void setup_zone_migrate_reserve(struct zone *zone)
2869 {
2870 	unsigned long start_pfn, pfn, end_pfn;
2871 	struct page *page;
2872 	unsigned long block_migratetype;
2873 	int reserve;
2874 
2875 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2876 	start_pfn = zone->zone_start_pfn;
2877 	end_pfn = start_pfn + zone->spanned_pages;
2878 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2879 							pageblock_order;
2880 
2881 	/*
2882 	 * Reserve blocks are generally in place to help high-order atomic
2883 	 * allocations that are short-lived. A min_free_kbytes value that
2884 	 * would result in more than 2 reserve blocks for atomic allocations
2885 	 * is assumed to be in place to help anti-fragmentation for the
2886 	 * future allocation of hugepages at runtime.
2887 	 */
2888 	reserve = min(2, reserve);
2889 
2890 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2891 		if (!pfn_valid(pfn))
2892 			continue;
2893 		page = pfn_to_page(pfn);
2894 
2895 		/* Watch out for overlapping nodes */
2896 		if (page_to_nid(page) != zone_to_nid(zone))
2897 			continue;
2898 
2899 		/* Blocks with reserved pages will never free, skip them. */
2900 		if (PageReserved(page))
2901 			continue;
2902 
2903 		block_migratetype = get_pageblock_migratetype(page);
2904 
2905 		/* If this block is reserved, account for it */
2906 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2907 			reserve--;
2908 			continue;
2909 		}
2910 
2911 		/* Suitable for reserving if this block is movable */
2912 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2913 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2914 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2915 			reserve--;
2916 			continue;
2917 		}
2918 
2919 		/*
2920 		 * If the reserve is met and this is a previous reserved block,
2921 		 * take it back
2922 		 */
2923 		if (block_migratetype == MIGRATE_RESERVE) {
2924 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2925 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2926 		}
2927 	}
2928 }
2929 
2930 /*
2931  * Initially all pages are reserved - free ones are freed
2932  * up by free_all_bootmem() once the early boot process is
2933  * done. Non-atomic initialization, single-pass.
2934  */
2935 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2936 		unsigned long start_pfn, enum memmap_context context)
2937 {
2938 	struct page *page;
2939 	unsigned long end_pfn = start_pfn + size;
2940 	unsigned long pfn;
2941 	struct zone *z;
2942 
2943 	if (highest_memmap_pfn < end_pfn - 1)
2944 		highest_memmap_pfn = end_pfn - 1;
2945 
2946 	z = &NODE_DATA(nid)->node_zones[zone];
2947 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2948 		/*
2949 		 * There can be holes in boot-time mem_map[]s
2950 		 * handed to this function.  They do not
2951 		 * exist on hotplugged memory.
2952 		 */
2953 		if (context == MEMMAP_EARLY) {
2954 			if (!early_pfn_valid(pfn))
2955 				continue;
2956 			if (!early_pfn_in_nid(pfn, nid))
2957 				continue;
2958 		}
2959 		page = pfn_to_page(pfn);
2960 		set_page_links(page, zone, nid, pfn);
2961 		mminit_verify_page_links(page, zone, nid, pfn);
2962 		init_page_count(page);
2963 		reset_page_mapcount(page);
2964 		SetPageReserved(page);
2965 		/*
2966 		 * Mark the block movable so that blocks are reserved for
2967 		 * movable at startup. This will force kernel allocations
2968 		 * to reserve their blocks rather than leaking throughout
2969 		 * the address space during boot when many long-lived
2970 		 * kernel allocations are made. Later some blocks near
2971 		 * the start are marked MIGRATE_RESERVE by
2972 		 * setup_zone_migrate_reserve()
2973 		 *
2974 		 * bitmap is created for zone's valid pfn range. but memmap
2975 		 * can be created for invalid pages (for alignment)
2976 		 * check here not to call set_pageblock_migratetype() against
2977 		 * pfn out of zone.
2978 		 */
2979 		if ((z->zone_start_pfn <= pfn)
2980 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2981 		    && !(pfn & (pageblock_nr_pages - 1)))
2982 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2983 
2984 		INIT_LIST_HEAD(&page->lru);
2985 #ifdef WANT_PAGE_VIRTUAL
2986 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2987 		if (!is_highmem_idx(zone))
2988 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2989 #endif
2990 	}
2991 }
2992 
2993 static void __meminit zone_init_free_lists(struct zone *zone)
2994 {
2995 	int order, t;
2996 	for_each_migratetype_order(order, t) {
2997 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2998 		zone->free_area[order].nr_free = 0;
2999 	}
3000 }
3001 
3002 #ifndef __HAVE_ARCH_MEMMAP_INIT
3003 #define memmap_init(size, nid, zone, start_pfn) \
3004 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3005 #endif
3006 
3007 static int zone_batchsize(struct zone *zone)
3008 {
3009 #ifdef CONFIG_MMU
3010 	int batch;
3011 
3012 	/*
3013 	 * The per-cpu-pages pools are set to around 1000th of the
3014 	 * size of the zone.  But no more than 1/2 of a meg.
3015 	 *
3016 	 * OK, so we don't know how big the cache is.  So guess.
3017 	 */
3018 	batch = zone->present_pages / 1024;
3019 	if (batch * PAGE_SIZE > 512 * 1024)
3020 		batch = (512 * 1024) / PAGE_SIZE;
3021 	batch /= 4;		/* We effectively *= 4 below */
3022 	if (batch < 1)
3023 		batch = 1;
3024 
3025 	/*
3026 	 * Clamp the batch to a 2^n - 1 value. Having a power
3027 	 * of 2 value was found to be more likely to have
3028 	 * suboptimal cache aliasing properties in some cases.
3029 	 *
3030 	 * For example if 2 tasks are alternately allocating
3031 	 * batches of pages, one task can end up with a lot
3032 	 * of pages of one half of the possible page colors
3033 	 * and the other with pages of the other colors.
3034 	 */
3035 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3036 
3037 	return batch;
3038 
3039 #else
3040 	/* The deferral and batching of frees should be suppressed under NOMMU
3041 	 * conditions.
3042 	 *
3043 	 * The problem is that NOMMU needs to be able to allocate large chunks
3044 	 * of contiguous memory as there's no hardware page translation to
3045 	 * assemble apparent contiguous memory from discontiguous pages.
3046 	 *
3047 	 * Queueing large contiguous runs of pages for batching, however,
3048 	 * causes the pages to actually be freed in smaller chunks.  As there
3049 	 * can be a significant delay between the individual batches being
3050 	 * recycled, this leads to the once large chunks of space being
3051 	 * fragmented and becoming unavailable for high-order allocations.
3052 	 */
3053 	return 0;
3054 #endif
3055 }
3056 
3057 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3058 {
3059 	struct per_cpu_pages *pcp;
3060 	int migratetype;
3061 
3062 	memset(p, 0, sizeof(*p));
3063 
3064 	pcp = &p->pcp;
3065 	pcp->count = 0;
3066 	pcp->high = 6 * batch;
3067 	pcp->batch = max(1UL, 1 * batch);
3068 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3069 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3070 }
3071 
3072 /*
3073  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3074  * to the value high for the pageset p.
3075  */
3076 
3077 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3078 				unsigned long high)
3079 {
3080 	struct per_cpu_pages *pcp;
3081 
3082 	pcp = &p->pcp;
3083 	pcp->high = high;
3084 	pcp->batch = max(1UL, high/4);
3085 	if ((high/4) > (PAGE_SHIFT * 8))
3086 		pcp->batch = PAGE_SHIFT * 8;
3087 }
3088 
3089 
3090 #ifdef CONFIG_NUMA
3091 /*
3092  * Boot pageset table. One per cpu which is going to be used for all
3093  * zones and all nodes. The parameters will be set in such a way
3094  * that an item put on a list will immediately be handed over to
3095  * the buddy list. This is safe since pageset manipulation is done
3096  * with interrupts disabled.
3097  *
3098  * Some NUMA counter updates may also be caught by the boot pagesets.
3099  *
3100  * The boot_pagesets must be kept even after bootup is complete for
3101  * unused processors and/or zones. They do play a role for bootstrapping
3102  * hotplugged processors.
3103  *
3104  * zoneinfo_show() and maybe other functions do
3105  * not check if the processor is online before following the pageset pointer.
3106  * Other parts of the kernel may not check if the zone is available.
3107  */
3108 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3109 
3110 /*
3111  * Dynamically allocate memory for the
3112  * per cpu pageset array in struct zone.
3113  */
3114 static int __cpuinit process_zones(int cpu)
3115 {
3116 	struct zone *zone, *dzone;
3117 	int node = cpu_to_node(cpu);
3118 
3119 	node_set_state(node, N_CPU);	/* this node has a cpu */
3120 
3121 	for_each_populated_zone(zone) {
3122 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3123 					 GFP_KERNEL, node);
3124 		if (!zone_pcp(zone, cpu))
3125 			goto bad;
3126 
3127 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3128 
3129 		if (percpu_pagelist_fraction)
3130 			setup_pagelist_highmark(zone_pcp(zone, cpu),
3131 			 	(zone->present_pages / percpu_pagelist_fraction));
3132 	}
3133 
3134 	return 0;
3135 bad:
3136 	for_each_zone(dzone) {
3137 		if (!populated_zone(dzone))
3138 			continue;
3139 		if (dzone == zone)
3140 			break;
3141 		kfree(zone_pcp(dzone, cpu));
3142 		zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3143 	}
3144 	return -ENOMEM;
3145 }
3146 
3147 static inline void free_zone_pagesets(int cpu)
3148 {
3149 	struct zone *zone;
3150 
3151 	for_each_zone(zone) {
3152 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3153 
3154 		/* Free per_cpu_pageset if it is slab allocated */
3155 		if (pset != &boot_pageset[cpu])
3156 			kfree(pset);
3157 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3158 	}
3159 }
3160 
3161 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3162 		unsigned long action,
3163 		void *hcpu)
3164 {
3165 	int cpu = (long)hcpu;
3166 	int ret = NOTIFY_OK;
3167 
3168 	switch (action) {
3169 	case CPU_UP_PREPARE:
3170 	case CPU_UP_PREPARE_FROZEN:
3171 		if (process_zones(cpu))
3172 			ret = NOTIFY_BAD;
3173 		break;
3174 	case CPU_UP_CANCELED:
3175 	case CPU_UP_CANCELED_FROZEN:
3176 	case CPU_DEAD:
3177 	case CPU_DEAD_FROZEN:
3178 		free_zone_pagesets(cpu);
3179 		break;
3180 	default:
3181 		break;
3182 	}
3183 	return ret;
3184 }
3185 
3186 static struct notifier_block __cpuinitdata pageset_notifier =
3187 	{ &pageset_cpuup_callback, NULL, 0 };
3188 
3189 void __init setup_per_cpu_pageset(void)
3190 {
3191 	int err;
3192 
3193 	/* Initialize per_cpu_pageset for cpu 0.
3194 	 * A cpuup callback will do this for every cpu
3195 	 * as it comes online
3196 	 */
3197 	err = process_zones(smp_processor_id());
3198 	BUG_ON(err);
3199 	register_cpu_notifier(&pageset_notifier);
3200 }
3201 
3202 #endif
3203 
3204 static noinline __init_refok
3205 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3206 {
3207 	int i;
3208 	struct pglist_data *pgdat = zone->zone_pgdat;
3209 	size_t alloc_size;
3210 
3211 	/*
3212 	 * The per-page waitqueue mechanism uses hashed waitqueues
3213 	 * per zone.
3214 	 */
3215 	zone->wait_table_hash_nr_entries =
3216 		 wait_table_hash_nr_entries(zone_size_pages);
3217 	zone->wait_table_bits =
3218 		wait_table_bits(zone->wait_table_hash_nr_entries);
3219 	alloc_size = zone->wait_table_hash_nr_entries
3220 					* sizeof(wait_queue_head_t);
3221 
3222 	if (!slab_is_available()) {
3223 		zone->wait_table = (wait_queue_head_t *)
3224 			alloc_bootmem_node(pgdat, alloc_size);
3225 	} else {
3226 		/*
3227 		 * This case means that a zone whose size was 0 gets new memory
3228 		 * via memory hot-add.
3229 		 * But it may be the case that a new node was hot-added.  In
3230 		 * this case vmalloc() will not be able to use this new node's
3231 		 * memory - this wait_table must be initialized to use this new
3232 		 * node itself as well.
3233 		 * To use this new node's memory, further consideration will be
3234 		 * necessary.
3235 		 */
3236 		zone->wait_table = vmalloc(alloc_size);
3237 	}
3238 	if (!zone->wait_table)
3239 		return -ENOMEM;
3240 
3241 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3242 		init_waitqueue_head(zone->wait_table + i);
3243 
3244 	return 0;
3245 }
3246 
3247 static int __zone_pcp_update(void *data)
3248 {
3249 	struct zone *zone = data;
3250 	int cpu;
3251 	unsigned long batch = zone_batchsize(zone), flags;
3252 
3253 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3254 		struct per_cpu_pageset *pset;
3255 		struct per_cpu_pages *pcp;
3256 
3257 		pset = zone_pcp(zone, cpu);
3258 		pcp = &pset->pcp;
3259 
3260 		local_irq_save(flags);
3261 		free_pcppages_bulk(zone, pcp->count, pcp);
3262 		setup_pageset(pset, batch);
3263 		local_irq_restore(flags);
3264 	}
3265 	return 0;
3266 }
3267 
3268 void zone_pcp_update(struct zone *zone)
3269 {
3270 	stop_machine(__zone_pcp_update, zone, NULL);
3271 }
3272 
3273 static __meminit void zone_pcp_init(struct zone *zone)
3274 {
3275 	int cpu;
3276 	unsigned long batch = zone_batchsize(zone);
3277 
3278 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3279 #ifdef CONFIG_NUMA
3280 		/* Early boot. Slab allocator not functional yet */
3281 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3282 		setup_pageset(&boot_pageset[cpu],0);
3283 #else
3284 		setup_pageset(zone_pcp(zone,cpu), batch);
3285 #endif
3286 	}
3287 	if (zone->present_pages)
3288 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3289 			zone->name, zone->present_pages, batch);
3290 }
3291 
3292 __meminit int init_currently_empty_zone(struct zone *zone,
3293 					unsigned long zone_start_pfn,
3294 					unsigned long size,
3295 					enum memmap_context context)
3296 {
3297 	struct pglist_data *pgdat = zone->zone_pgdat;
3298 	int ret;
3299 	ret = zone_wait_table_init(zone, size);
3300 	if (ret)
3301 		return ret;
3302 	pgdat->nr_zones = zone_idx(zone) + 1;
3303 
3304 	zone->zone_start_pfn = zone_start_pfn;
3305 
3306 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3307 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3308 			pgdat->node_id,
3309 			(unsigned long)zone_idx(zone),
3310 			zone_start_pfn, (zone_start_pfn + size));
3311 
3312 	zone_init_free_lists(zone);
3313 
3314 	return 0;
3315 }
3316 
3317 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3318 /*
3319  * Basic iterator support. Return the first range of PFNs for a node
3320  * Note: nid == MAX_NUMNODES returns first region regardless of node
3321  */
3322 static int __meminit first_active_region_index_in_nid(int nid)
3323 {
3324 	int i;
3325 
3326 	for (i = 0; i < nr_nodemap_entries; i++)
3327 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3328 			return i;
3329 
3330 	return -1;
3331 }
3332 
3333 /*
3334  * Basic iterator support. Return the next active range of PFNs for a node
3335  * Note: nid == MAX_NUMNODES returns next region regardless of node
3336  */
3337 static int __meminit next_active_region_index_in_nid(int index, int nid)
3338 {
3339 	for (index = index + 1; index < nr_nodemap_entries; index++)
3340 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3341 			return index;
3342 
3343 	return -1;
3344 }
3345 
3346 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3347 /*
3348  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3349  * Architectures may implement their own version but if add_active_range()
3350  * was used and there are no special requirements, this is a convenient
3351  * alternative
3352  */
3353 int __meminit __early_pfn_to_nid(unsigned long pfn)
3354 {
3355 	int i;
3356 
3357 	for (i = 0; i < nr_nodemap_entries; i++) {
3358 		unsigned long start_pfn = early_node_map[i].start_pfn;
3359 		unsigned long end_pfn = early_node_map[i].end_pfn;
3360 
3361 		if (start_pfn <= pfn && pfn < end_pfn)
3362 			return early_node_map[i].nid;
3363 	}
3364 	/* This is a memory hole */
3365 	return -1;
3366 }
3367 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3368 
3369 int __meminit early_pfn_to_nid(unsigned long pfn)
3370 {
3371 	int nid;
3372 
3373 	nid = __early_pfn_to_nid(pfn);
3374 	if (nid >= 0)
3375 		return nid;
3376 	/* just returns 0 */
3377 	return 0;
3378 }
3379 
3380 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3381 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3382 {
3383 	int nid;
3384 
3385 	nid = __early_pfn_to_nid(pfn);
3386 	if (nid >= 0 && nid != node)
3387 		return false;
3388 	return true;
3389 }
3390 #endif
3391 
3392 /* Basic iterator support to walk early_node_map[] */
3393 #define for_each_active_range_index_in_nid(i, nid) \
3394 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3395 				i = next_active_region_index_in_nid(i, nid))
3396 
3397 /**
3398  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3399  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3400  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3401  *
3402  * If an architecture guarantees that all ranges registered with
3403  * add_active_ranges() contain no holes and may be freed, this
3404  * this function may be used instead of calling free_bootmem() manually.
3405  */
3406 void __init free_bootmem_with_active_regions(int nid,
3407 						unsigned long max_low_pfn)
3408 {
3409 	int i;
3410 
3411 	for_each_active_range_index_in_nid(i, nid) {
3412 		unsigned long size_pages = 0;
3413 		unsigned long end_pfn = early_node_map[i].end_pfn;
3414 
3415 		if (early_node_map[i].start_pfn >= max_low_pfn)
3416 			continue;
3417 
3418 		if (end_pfn > max_low_pfn)
3419 			end_pfn = max_low_pfn;
3420 
3421 		size_pages = end_pfn - early_node_map[i].start_pfn;
3422 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3423 				PFN_PHYS(early_node_map[i].start_pfn),
3424 				size_pages << PAGE_SHIFT);
3425 	}
3426 }
3427 
3428 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3429 {
3430 	int i;
3431 	int ret;
3432 
3433 	for_each_active_range_index_in_nid(i, nid) {
3434 		ret = work_fn(early_node_map[i].start_pfn,
3435 			      early_node_map[i].end_pfn, data);
3436 		if (ret)
3437 			break;
3438 	}
3439 }
3440 /**
3441  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3442  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3443  *
3444  * If an architecture guarantees that all ranges registered with
3445  * add_active_ranges() contain no holes and may be freed, this
3446  * function may be used instead of calling memory_present() manually.
3447  */
3448 void __init sparse_memory_present_with_active_regions(int nid)
3449 {
3450 	int i;
3451 
3452 	for_each_active_range_index_in_nid(i, nid)
3453 		memory_present(early_node_map[i].nid,
3454 				early_node_map[i].start_pfn,
3455 				early_node_map[i].end_pfn);
3456 }
3457 
3458 /**
3459  * get_pfn_range_for_nid - Return the start and end page frames for a node
3460  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3461  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3462  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3463  *
3464  * It returns the start and end page frame of a node based on information
3465  * provided by an arch calling add_active_range(). If called for a node
3466  * with no available memory, a warning is printed and the start and end
3467  * PFNs will be 0.
3468  */
3469 void __meminit get_pfn_range_for_nid(unsigned int nid,
3470 			unsigned long *start_pfn, unsigned long *end_pfn)
3471 {
3472 	int i;
3473 	*start_pfn = -1UL;
3474 	*end_pfn = 0;
3475 
3476 	for_each_active_range_index_in_nid(i, nid) {
3477 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3478 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3479 	}
3480 
3481 	if (*start_pfn == -1UL)
3482 		*start_pfn = 0;
3483 }
3484 
3485 /*
3486  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3487  * assumption is made that zones within a node are ordered in monotonic
3488  * increasing memory addresses so that the "highest" populated zone is used
3489  */
3490 static void __init find_usable_zone_for_movable(void)
3491 {
3492 	int zone_index;
3493 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3494 		if (zone_index == ZONE_MOVABLE)
3495 			continue;
3496 
3497 		if (arch_zone_highest_possible_pfn[zone_index] >
3498 				arch_zone_lowest_possible_pfn[zone_index])
3499 			break;
3500 	}
3501 
3502 	VM_BUG_ON(zone_index == -1);
3503 	movable_zone = zone_index;
3504 }
3505 
3506 /*
3507  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3508  * because it is sized independant of architecture. Unlike the other zones,
3509  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3510  * in each node depending on the size of each node and how evenly kernelcore
3511  * is distributed. This helper function adjusts the zone ranges
3512  * provided by the architecture for a given node by using the end of the
3513  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3514  * zones within a node are in order of monotonic increases memory addresses
3515  */
3516 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3517 					unsigned long zone_type,
3518 					unsigned long node_start_pfn,
3519 					unsigned long node_end_pfn,
3520 					unsigned long *zone_start_pfn,
3521 					unsigned long *zone_end_pfn)
3522 {
3523 	/* Only adjust if ZONE_MOVABLE is on this node */
3524 	if (zone_movable_pfn[nid]) {
3525 		/* Size ZONE_MOVABLE */
3526 		if (zone_type == ZONE_MOVABLE) {
3527 			*zone_start_pfn = zone_movable_pfn[nid];
3528 			*zone_end_pfn = min(node_end_pfn,
3529 				arch_zone_highest_possible_pfn[movable_zone]);
3530 
3531 		/* Adjust for ZONE_MOVABLE starting within this range */
3532 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3533 				*zone_end_pfn > zone_movable_pfn[nid]) {
3534 			*zone_end_pfn = zone_movable_pfn[nid];
3535 
3536 		/* Check if this whole range is within ZONE_MOVABLE */
3537 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3538 			*zone_start_pfn = *zone_end_pfn;
3539 	}
3540 }
3541 
3542 /*
3543  * Return the number of pages a zone spans in a node, including holes
3544  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3545  */
3546 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3547 					unsigned long zone_type,
3548 					unsigned long *ignored)
3549 {
3550 	unsigned long node_start_pfn, node_end_pfn;
3551 	unsigned long zone_start_pfn, zone_end_pfn;
3552 
3553 	/* Get the start and end of the node and zone */
3554 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3555 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3556 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3557 	adjust_zone_range_for_zone_movable(nid, zone_type,
3558 				node_start_pfn, node_end_pfn,
3559 				&zone_start_pfn, &zone_end_pfn);
3560 
3561 	/* Check that this node has pages within the zone's required range */
3562 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3563 		return 0;
3564 
3565 	/* Move the zone boundaries inside the node if necessary */
3566 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3567 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3568 
3569 	/* Return the spanned pages */
3570 	return zone_end_pfn - zone_start_pfn;
3571 }
3572 
3573 /*
3574  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3575  * then all holes in the requested range will be accounted for.
3576  */
3577 static unsigned long __meminit __absent_pages_in_range(int nid,
3578 				unsigned long range_start_pfn,
3579 				unsigned long range_end_pfn)
3580 {
3581 	int i = 0;
3582 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3583 	unsigned long start_pfn;
3584 
3585 	/* Find the end_pfn of the first active range of pfns in the node */
3586 	i = first_active_region_index_in_nid(nid);
3587 	if (i == -1)
3588 		return 0;
3589 
3590 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3591 
3592 	/* Account for ranges before physical memory on this node */
3593 	if (early_node_map[i].start_pfn > range_start_pfn)
3594 		hole_pages = prev_end_pfn - range_start_pfn;
3595 
3596 	/* Find all holes for the zone within the node */
3597 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3598 
3599 		/* No need to continue if prev_end_pfn is outside the zone */
3600 		if (prev_end_pfn >= range_end_pfn)
3601 			break;
3602 
3603 		/* Make sure the end of the zone is not within the hole */
3604 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3605 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3606 
3607 		/* Update the hole size cound and move on */
3608 		if (start_pfn > range_start_pfn) {
3609 			BUG_ON(prev_end_pfn > start_pfn);
3610 			hole_pages += start_pfn - prev_end_pfn;
3611 		}
3612 		prev_end_pfn = early_node_map[i].end_pfn;
3613 	}
3614 
3615 	/* Account for ranges past physical memory on this node */
3616 	if (range_end_pfn > prev_end_pfn)
3617 		hole_pages += range_end_pfn -
3618 				max(range_start_pfn, prev_end_pfn);
3619 
3620 	return hole_pages;
3621 }
3622 
3623 /**
3624  * absent_pages_in_range - Return number of page frames in holes within a range
3625  * @start_pfn: The start PFN to start searching for holes
3626  * @end_pfn: The end PFN to stop searching for holes
3627  *
3628  * It returns the number of pages frames in memory holes within a range.
3629  */
3630 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3631 							unsigned long end_pfn)
3632 {
3633 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3634 }
3635 
3636 /* Return the number of page frames in holes in a zone on a node */
3637 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3638 					unsigned long zone_type,
3639 					unsigned long *ignored)
3640 {
3641 	unsigned long node_start_pfn, node_end_pfn;
3642 	unsigned long zone_start_pfn, zone_end_pfn;
3643 
3644 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3645 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3646 							node_start_pfn);
3647 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3648 							node_end_pfn);
3649 
3650 	adjust_zone_range_for_zone_movable(nid, zone_type,
3651 			node_start_pfn, node_end_pfn,
3652 			&zone_start_pfn, &zone_end_pfn);
3653 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3654 }
3655 
3656 #else
3657 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3658 					unsigned long zone_type,
3659 					unsigned long *zones_size)
3660 {
3661 	return zones_size[zone_type];
3662 }
3663 
3664 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3665 						unsigned long zone_type,
3666 						unsigned long *zholes_size)
3667 {
3668 	if (!zholes_size)
3669 		return 0;
3670 
3671 	return zholes_size[zone_type];
3672 }
3673 
3674 #endif
3675 
3676 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3677 		unsigned long *zones_size, unsigned long *zholes_size)
3678 {
3679 	unsigned long realtotalpages, totalpages = 0;
3680 	enum zone_type i;
3681 
3682 	for (i = 0; i < MAX_NR_ZONES; i++)
3683 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3684 								zones_size);
3685 	pgdat->node_spanned_pages = totalpages;
3686 
3687 	realtotalpages = totalpages;
3688 	for (i = 0; i < MAX_NR_ZONES; i++)
3689 		realtotalpages -=
3690 			zone_absent_pages_in_node(pgdat->node_id, i,
3691 								zholes_size);
3692 	pgdat->node_present_pages = realtotalpages;
3693 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3694 							realtotalpages);
3695 }
3696 
3697 #ifndef CONFIG_SPARSEMEM
3698 /*
3699  * Calculate the size of the zone->blockflags rounded to an unsigned long
3700  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3701  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3702  * round what is now in bits to nearest long in bits, then return it in
3703  * bytes.
3704  */
3705 static unsigned long __init usemap_size(unsigned long zonesize)
3706 {
3707 	unsigned long usemapsize;
3708 
3709 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3710 	usemapsize = usemapsize >> pageblock_order;
3711 	usemapsize *= NR_PAGEBLOCK_BITS;
3712 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3713 
3714 	return usemapsize / 8;
3715 }
3716 
3717 static void __init setup_usemap(struct pglist_data *pgdat,
3718 				struct zone *zone, unsigned long zonesize)
3719 {
3720 	unsigned long usemapsize = usemap_size(zonesize);
3721 	zone->pageblock_flags = NULL;
3722 	if (usemapsize)
3723 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3724 }
3725 #else
3726 static void inline setup_usemap(struct pglist_data *pgdat,
3727 				struct zone *zone, unsigned long zonesize) {}
3728 #endif /* CONFIG_SPARSEMEM */
3729 
3730 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3731 
3732 /* Return a sensible default order for the pageblock size. */
3733 static inline int pageblock_default_order(void)
3734 {
3735 	if (HPAGE_SHIFT > PAGE_SHIFT)
3736 		return HUGETLB_PAGE_ORDER;
3737 
3738 	return MAX_ORDER-1;
3739 }
3740 
3741 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3742 static inline void __init set_pageblock_order(unsigned int order)
3743 {
3744 	/* Check that pageblock_nr_pages has not already been setup */
3745 	if (pageblock_order)
3746 		return;
3747 
3748 	/*
3749 	 * Assume the largest contiguous order of interest is a huge page.
3750 	 * This value may be variable depending on boot parameters on IA64
3751 	 */
3752 	pageblock_order = order;
3753 }
3754 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3755 
3756 /*
3757  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3758  * and pageblock_default_order() are unused as pageblock_order is set
3759  * at compile-time. See include/linux/pageblock-flags.h for the values of
3760  * pageblock_order based on the kernel config
3761  */
3762 static inline int pageblock_default_order(unsigned int order)
3763 {
3764 	return MAX_ORDER-1;
3765 }
3766 #define set_pageblock_order(x)	do {} while (0)
3767 
3768 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3769 
3770 /*
3771  * Set up the zone data structures:
3772  *   - mark all pages reserved
3773  *   - mark all memory queues empty
3774  *   - clear the memory bitmaps
3775  */
3776 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3777 		unsigned long *zones_size, unsigned long *zholes_size)
3778 {
3779 	enum zone_type j;
3780 	int nid = pgdat->node_id;
3781 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3782 	int ret;
3783 
3784 	pgdat_resize_init(pgdat);
3785 	pgdat->nr_zones = 0;
3786 	init_waitqueue_head(&pgdat->kswapd_wait);
3787 	pgdat->kswapd_max_order = 0;
3788 	pgdat_page_cgroup_init(pgdat);
3789 
3790 	for (j = 0; j < MAX_NR_ZONES; j++) {
3791 		struct zone *zone = pgdat->node_zones + j;
3792 		unsigned long size, realsize, memmap_pages;
3793 		enum lru_list l;
3794 
3795 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3796 		realsize = size - zone_absent_pages_in_node(nid, j,
3797 								zholes_size);
3798 
3799 		/*
3800 		 * Adjust realsize so that it accounts for how much memory
3801 		 * is used by this zone for memmap. This affects the watermark
3802 		 * and per-cpu initialisations
3803 		 */
3804 		memmap_pages =
3805 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3806 		if (realsize >= memmap_pages) {
3807 			realsize -= memmap_pages;
3808 			if (memmap_pages)
3809 				printk(KERN_DEBUG
3810 				       "  %s zone: %lu pages used for memmap\n",
3811 				       zone_names[j], memmap_pages);
3812 		} else
3813 			printk(KERN_WARNING
3814 				"  %s zone: %lu pages exceeds realsize %lu\n",
3815 				zone_names[j], memmap_pages, realsize);
3816 
3817 		/* Account for reserved pages */
3818 		if (j == 0 && realsize > dma_reserve) {
3819 			realsize -= dma_reserve;
3820 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3821 					zone_names[0], dma_reserve);
3822 		}
3823 
3824 		if (!is_highmem_idx(j))
3825 			nr_kernel_pages += realsize;
3826 		nr_all_pages += realsize;
3827 
3828 		zone->spanned_pages = size;
3829 		zone->present_pages = realsize;
3830 #ifdef CONFIG_NUMA
3831 		zone->node = nid;
3832 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3833 						/ 100;
3834 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3835 #endif
3836 		zone->name = zone_names[j];
3837 		spin_lock_init(&zone->lock);
3838 		spin_lock_init(&zone->lru_lock);
3839 		zone_seqlock_init(zone);
3840 		zone->zone_pgdat = pgdat;
3841 
3842 		zone->prev_priority = DEF_PRIORITY;
3843 
3844 		zone_pcp_init(zone);
3845 		for_each_lru(l) {
3846 			INIT_LIST_HEAD(&zone->lru[l].list);
3847 			zone->reclaim_stat.nr_saved_scan[l] = 0;
3848 		}
3849 		zone->reclaim_stat.recent_rotated[0] = 0;
3850 		zone->reclaim_stat.recent_rotated[1] = 0;
3851 		zone->reclaim_stat.recent_scanned[0] = 0;
3852 		zone->reclaim_stat.recent_scanned[1] = 0;
3853 		zap_zone_vm_stats(zone);
3854 		zone->flags = 0;
3855 		if (!size)
3856 			continue;
3857 
3858 		set_pageblock_order(pageblock_default_order());
3859 		setup_usemap(pgdat, zone, size);
3860 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3861 						size, MEMMAP_EARLY);
3862 		BUG_ON(ret);
3863 		memmap_init(size, nid, j, zone_start_pfn);
3864 		zone_start_pfn += size;
3865 	}
3866 }
3867 
3868 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3869 {
3870 	/* Skip empty nodes */
3871 	if (!pgdat->node_spanned_pages)
3872 		return;
3873 
3874 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3875 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3876 	if (!pgdat->node_mem_map) {
3877 		unsigned long size, start, end;
3878 		struct page *map;
3879 
3880 		/*
3881 		 * The zone's endpoints aren't required to be MAX_ORDER
3882 		 * aligned but the node_mem_map endpoints must be in order
3883 		 * for the buddy allocator to function correctly.
3884 		 */
3885 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3886 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3887 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3888 		size =  (end - start) * sizeof(struct page);
3889 		map = alloc_remap(pgdat->node_id, size);
3890 		if (!map)
3891 			map = alloc_bootmem_node(pgdat, size);
3892 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3893 	}
3894 #ifndef CONFIG_NEED_MULTIPLE_NODES
3895 	/*
3896 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3897 	 */
3898 	if (pgdat == NODE_DATA(0)) {
3899 		mem_map = NODE_DATA(0)->node_mem_map;
3900 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3901 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3902 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3903 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3904 	}
3905 #endif
3906 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3907 }
3908 
3909 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3910 		unsigned long node_start_pfn, unsigned long *zholes_size)
3911 {
3912 	pg_data_t *pgdat = NODE_DATA(nid);
3913 
3914 	pgdat->node_id = nid;
3915 	pgdat->node_start_pfn = node_start_pfn;
3916 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3917 
3918 	alloc_node_mem_map(pgdat);
3919 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3920 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3921 		nid, (unsigned long)pgdat,
3922 		(unsigned long)pgdat->node_mem_map);
3923 #endif
3924 
3925 	free_area_init_core(pgdat, zones_size, zholes_size);
3926 }
3927 
3928 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3929 
3930 #if MAX_NUMNODES > 1
3931 /*
3932  * Figure out the number of possible node ids.
3933  */
3934 static void __init setup_nr_node_ids(void)
3935 {
3936 	unsigned int node;
3937 	unsigned int highest = 0;
3938 
3939 	for_each_node_mask(node, node_possible_map)
3940 		highest = node;
3941 	nr_node_ids = highest + 1;
3942 }
3943 #else
3944 static inline void setup_nr_node_ids(void)
3945 {
3946 }
3947 #endif
3948 
3949 /**
3950  * add_active_range - Register a range of PFNs backed by physical memory
3951  * @nid: The node ID the range resides on
3952  * @start_pfn: The start PFN of the available physical memory
3953  * @end_pfn: The end PFN of the available physical memory
3954  *
3955  * These ranges are stored in an early_node_map[] and later used by
3956  * free_area_init_nodes() to calculate zone sizes and holes. If the
3957  * range spans a memory hole, it is up to the architecture to ensure
3958  * the memory is not freed by the bootmem allocator. If possible
3959  * the range being registered will be merged with existing ranges.
3960  */
3961 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3962 						unsigned long end_pfn)
3963 {
3964 	int i;
3965 
3966 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3967 			"Entering add_active_range(%d, %#lx, %#lx) "
3968 			"%d entries of %d used\n",
3969 			nid, start_pfn, end_pfn,
3970 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3971 
3972 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3973 
3974 	/* Merge with existing active regions if possible */
3975 	for (i = 0; i < nr_nodemap_entries; i++) {
3976 		if (early_node_map[i].nid != nid)
3977 			continue;
3978 
3979 		/* Skip if an existing region covers this new one */
3980 		if (start_pfn >= early_node_map[i].start_pfn &&
3981 				end_pfn <= early_node_map[i].end_pfn)
3982 			return;
3983 
3984 		/* Merge forward if suitable */
3985 		if (start_pfn <= early_node_map[i].end_pfn &&
3986 				end_pfn > early_node_map[i].end_pfn) {
3987 			early_node_map[i].end_pfn = end_pfn;
3988 			return;
3989 		}
3990 
3991 		/* Merge backward if suitable */
3992 		if (start_pfn < early_node_map[i].end_pfn &&
3993 				end_pfn >= early_node_map[i].start_pfn) {
3994 			early_node_map[i].start_pfn = start_pfn;
3995 			return;
3996 		}
3997 	}
3998 
3999 	/* Check that early_node_map is large enough */
4000 	if (i >= MAX_ACTIVE_REGIONS) {
4001 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4002 							MAX_ACTIVE_REGIONS);
4003 		return;
4004 	}
4005 
4006 	early_node_map[i].nid = nid;
4007 	early_node_map[i].start_pfn = start_pfn;
4008 	early_node_map[i].end_pfn = end_pfn;
4009 	nr_nodemap_entries = i + 1;
4010 }
4011 
4012 /**
4013  * remove_active_range - Shrink an existing registered range of PFNs
4014  * @nid: The node id the range is on that should be shrunk
4015  * @start_pfn: The new PFN of the range
4016  * @end_pfn: The new PFN of the range
4017  *
4018  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4019  * The map is kept near the end physical page range that has already been
4020  * registered. This function allows an arch to shrink an existing registered
4021  * range.
4022  */
4023 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4024 				unsigned long end_pfn)
4025 {
4026 	int i, j;
4027 	int removed = 0;
4028 
4029 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4030 			  nid, start_pfn, end_pfn);
4031 
4032 	/* Find the old active region end and shrink */
4033 	for_each_active_range_index_in_nid(i, nid) {
4034 		if (early_node_map[i].start_pfn >= start_pfn &&
4035 		    early_node_map[i].end_pfn <= end_pfn) {
4036 			/* clear it */
4037 			early_node_map[i].start_pfn = 0;
4038 			early_node_map[i].end_pfn = 0;
4039 			removed = 1;
4040 			continue;
4041 		}
4042 		if (early_node_map[i].start_pfn < start_pfn &&
4043 		    early_node_map[i].end_pfn > start_pfn) {
4044 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4045 			early_node_map[i].end_pfn = start_pfn;
4046 			if (temp_end_pfn > end_pfn)
4047 				add_active_range(nid, end_pfn, temp_end_pfn);
4048 			continue;
4049 		}
4050 		if (early_node_map[i].start_pfn >= start_pfn &&
4051 		    early_node_map[i].end_pfn > end_pfn &&
4052 		    early_node_map[i].start_pfn < end_pfn) {
4053 			early_node_map[i].start_pfn = end_pfn;
4054 			continue;
4055 		}
4056 	}
4057 
4058 	if (!removed)
4059 		return;
4060 
4061 	/* remove the blank ones */
4062 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4063 		if (early_node_map[i].nid != nid)
4064 			continue;
4065 		if (early_node_map[i].end_pfn)
4066 			continue;
4067 		/* we found it, get rid of it */
4068 		for (j = i; j < nr_nodemap_entries - 1; j++)
4069 			memcpy(&early_node_map[j], &early_node_map[j+1],
4070 				sizeof(early_node_map[j]));
4071 		j = nr_nodemap_entries - 1;
4072 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4073 		nr_nodemap_entries--;
4074 	}
4075 }
4076 
4077 /**
4078  * remove_all_active_ranges - Remove all currently registered regions
4079  *
4080  * During discovery, it may be found that a table like SRAT is invalid
4081  * and an alternative discovery method must be used. This function removes
4082  * all currently registered regions.
4083  */
4084 void __init remove_all_active_ranges(void)
4085 {
4086 	memset(early_node_map, 0, sizeof(early_node_map));
4087 	nr_nodemap_entries = 0;
4088 }
4089 
4090 /* Compare two active node_active_regions */
4091 static int __init cmp_node_active_region(const void *a, const void *b)
4092 {
4093 	struct node_active_region *arange = (struct node_active_region *)a;
4094 	struct node_active_region *brange = (struct node_active_region *)b;
4095 
4096 	/* Done this way to avoid overflows */
4097 	if (arange->start_pfn > brange->start_pfn)
4098 		return 1;
4099 	if (arange->start_pfn < brange->start_pfn)
4100 		return -1;
4101 
4102 	return 0;
4103 }
4104 
4105 /* sort the node_map by start_pfn */
4106 static void __init sort_node_map(void)
4107 {
4108 	sort(early_node_map, (size_t)nr_nodemap_entries,
4109 			sizeof(struct node_active_region),
4110 			cmp_node_active_region, NULL);
4111 }
4112 
4113 /* Find the lowest pfn for a node */
4114 static unsigned long __init find_min_pfn_for_node(int nid)
4115 {
4116 	int i;
4117 	unsigned long min_pfn = ULONG_MAX;
4118 
4119 	/* Assuming a sorted map, the first range found has the starting pfn */
4120 	for_each_active_range_index_in_nid(i, nid)
4121 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4122 
4123 	if (min_pfn == ULONG_MAX) {
4124 		printk(KERN_WARNING
4125 			"Could not find start_pfn for node %d\n", nid);
4126 		return 0;
4127 	}
4128 
4129 	return min_pfn;
4130 }
4131 
4132 /**
4133  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4134  *
4135  * It returns the minimum PFN based on information provided via
4136  * add_active_range().
4137  */
4138 unsigned long __init find_min_pfn_with_active_regions(void)
4139 {
4140 	return find_min_pfn_for_node(MAX_NUMNODES);
4141 }
4142 
4143 /*
4144  * early_calculate_totalpages()
4145  * Sum pages in active regions for movable zone.
4146  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4147  */
4148 static unsigned long __init early_calculate_totalpages(void)
4149 {
4150 	int i;
4151 	unsigned long totalpages = 0;
4152 
4153 	for (i = 0; i < nr_nodemap_entries; i++) {
4154 		unsigned long pages = early_node_map[i].end_pfn -
4155 						early_node_map[i].start_pfn;
4156 		totalpages += pages;
4157 		if (pages)
4158 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4159 	}
4160   	return totalpages;
4161 }
4162 
4163 /*
4164  * Find the PFN the Movable zone begins in each node. Kernel memory
4165  * is spread evenly between nodes as long as the nodes have enough
4166  * memory. When they don't, some nodes will have more kernelcore than
4167  * others
4168  */
4169 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4170 {
4171 	int i, nid;
4172 	unsigned long usable_startpfn;
4173 	unsigned long kernelcore_node, kernelcore_remaining;
4174 	/* save the state before borrow the nodemask */
4175 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4176 	unsigned long totalpages = early_calculate_totalpages();
4177 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4178 
4179 	/*
4180 	 * If movablecore was specified, calculate what size of
4181 	 * kernelcore that corresponds so that memory usable for
4182 	 * any allocation type is evenly spread. If both kernelcore
4183 	 * and movablecore are specified, then the value of kernelcore
4184 	 * will be used for required_kernelcore if it's greater than
4185 	 * what movablecore would have allowed.
4186 	 */
4187 	if (required_movablecore) {
4188 		unsigned long corepages;
4189 
4190 		/*
4191 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4192 		 * was requested by the user
4193 		 */
4194 		required_movablecore =
4195 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4196 		corepages = totalpages - required_movablecore;
4197 
4198 		required_kernelcore = max(required_kernelcore, corepages);
4199 	}
4200 
4201 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4202 	if (!required_kernelcore)
4203 		goto out;
4204 
4205 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4206 	find_usable_zone_for_movable();
4207 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4208 
4209 restart:
4210 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4211 	kernelcore_node = required_kernelcore / usable_nodes;
4212 	for_each_node_state(nid, N_HIGH_MEMORY) {
4213 		/*
4214 		 * Recalculate kernelcore_node if the division per node
4215 		 * now exceeds what is necessary to satisfy the requested
4216 		 * amount of memory for the kernel
4217 		 */
4218 		if (required_kernelcore < kernelcore_node)
4219 			kernelcore_node = required_kernelcore / usable_nodes;
4220 
4221 		/*
4222 		 * As the map is walked, we track how much memory is usable
4223 		 * by the kernel using kernelcore_remaining. When it is
4224 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4225 		 */
4226 		kernelcore_remaining = kernelcore_node;
4227 
4228 		/* Go through each range of PFNs within this node */
4229 		for_each_active_range_index_in_nid(i, nid) {
4230 			unsigned long start_pfn, end_pfn;
4231 			unsigned long size_pages;
4232 
4233 			start_pfn = max(early_node_map[i].start_pfn,
4234 						zone_movable_pfn[nid]);
4235 			end_pfn = early_node_map[i].end_pfn;
4236 			if (start_pfn >= end_pfn)
4237 				continue;
4238 
4239 			/* Account for what is only usable for kernelcore */
4240 			if (start_pfn < usable_startpfn) {
4241 				unsigned long kernel_pages;
4242 				kernel_pages = min(end_pfn, usable_startpfn)
4243 								- start_pfn;
4244 
4245 				kernelcore_remaining -= min(kernel_pages,
4246 							kernelcore_remaining);
4247 				required_kernelcore -= min(kernel_pages,
4248 							required_kernelcore);
4249 
4250 				/* Continue if range is now fully accounted */
4251 				if (end_pfn <= usable_startpfn) {
4252 
4253 					/*
4254 					 * Push zone_movable_pfn to the end so
4255 					 * that if we have to rebalance
4256 					 * kernelcore across nodes, we will
4257 					 * not double account here
4258 					 */
4259 					zone_movable_pfn[nid] = end_pfn;
4260 					continue;
4261 				}
4262 				start_pfn = usable_startpfn;
4263 			}
4264 
4265 			/*
4266 			 * The usable PFN range for ZONE_MOVABLE is from
4267 			 * start_pfn->end_pfn. Calculate size_pages as the
4268 			 * number of pages used as kernelcore
4269 			 */
4270 			size_pages = end_pfn - start_pfn;
4271 			if (size_pages > kernelcore_remaining)
4272 				size_pages = kernelcore_remaining;
4273 			zone_movable_pfn[nid] = start_pfn + size_pages;
4274 
4275 			/*
4276 			 * Some kernelcore has been met, update counts and
4277 			 * break if the kernelcore for this node has been
4278 			 * satisified
4279 			 */
4280 			required_kernelcore -= min(required_kernelcore,
4281 								size_pages);
4282 			kernelcore_remaining -= size_pages;
4283 			if (!kernelcore_remaining)
4284 				break;
4285 		}
4286 	}
4287 
4288 	/*
4289 	 * If there is still required_kernelcore, we do another pass with one
4290 	 * less node in the count. This will push zone_movable_pfn[nid] further
4291 	 * along on the nodes that still have memory until kernelcore is
4292 	 * satisified
4293 	 */
4294 	usable_nodes--;
4295 	if (usable_nodes && required_kernelcore > usable_nodes)
4296 		goto restart;
4297 
4298 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4299 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4300 		zone_movable_pfn[nid] =
4301 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4302 
4303 out:
4304 	/* restore the node_state */
4305 	node_states[N_HIGH_MEMORY] = saved_node_state;
4306 }
4307 
4308 /* Any regular memory on that node ? */
4309 static void check_for_regular_memory(pg_data_t *pgdat)
4310 {
4311 #ifdef CONFIG_HIGHMEM
4312 	enum zone_type zone_type;
4313 
4314 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4315 		struct zone *zone = &pgdat->node_zones[zone_type];
4316 		if (zone->present_pages)
4317 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4318 	}
4319 #endif
4320 }
4321 
4322 /**
4323  * free_area_init_nodes - Initialise all pg_data_t and zone data
4324  * @max_zone_pfn: an array of max PFNs for each zone
4325  *
4326  * This will call free_area_init_node() for each active node in the system.
4327  * Using the page ranges provided by add_active_range(), the size of each
4328  * zone in each node and their holes is calculated. If the maximum PFN
4329  * between two adjacent zones match, it is assumed that the zone is empty.
4330  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4331  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4332  * starts where the previous one ended. For example, ZONE_DMA32 starts
4333  * at arch_max_dma_pfn.
4334  */
4335 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4336 {
4337 	unsigned long nid;
4338 	int i;
4339 
4340 	/* Sort early_node_map as initialisation assumes it is sorted */
4341 	sort_node_map();
4342 
4343 	/* Record where the zone boundaries are */
4344 	memset(arch_zone_lowest_possible_pfn, 0,
4345 				sizeof(arch_zone_lowest_possible_pfn));
4346 	memset(arch_zone_highest_possible_pfn, 0,
4347 				sizeof(arch_zone_highest_possible_pfn));
4348 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4349 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4350 	for (i = 1; i < MAX_NR_ZONES; i++) {
4351 		if (i == ZONE_MOVABLE)
4352 			continue;
4353 		arch_zone_lowest_possible_pfn[i] =
4354 			arch_zone_highest_possible_pfn[i-1];
4355 		arch_zone_highest_possible_pfn[i] =
4356 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4357 	}
4358 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4359 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4360 
4361 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4362 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4363 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4364 
4365 	/* Print out the zone ranges */
4366 	printk("Zone PFN ranges:\n");
4367 	for (i = 0; i < MAX_NR_ZONES; i++) {
4368 		if (i == ZONE_MOVABLE)
4369 			continue;
4370 		printk("  %-8s %0#10lx -> %0#10lx\n",
4371 				zone_names[i],
4372 				arch_zone_lowest_possible_pfn[i],
4373 				arch_zone_highest_possible_pfn[i]);
4374 	}
4375 
4376 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4377 	printk("Movable zone start PFN for each node\n");
4378 	for (i = 0; i < MAX_NUMNODES; i++) {
4379 		if (zone_movable_pfn[i])
4380 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4381 	}
4382 
4383 	/* Print out the early_node_map[] */
4384 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4385 	for (i = 0; i < nr_nodemap_entries; i++)
4386 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4387 						early_node_map[i].start_pfn,
4388 						early_node_map[i].end_pfn);
4389 
4390 	/* Initialise every node */
4391 	mminit_verify_pageflags_layout();
4392 	setup_nr_node_ids();
4393 	for_each_online_node(nid) {
4394 		pg_data_t *pgdat = NODE_DATA(nid);
4395 		free_area_init_node(nid, NULL,
4396 				find_min_pfn_for_node(nid), NULL);
4397 
4398 		/* Any memory on that node */
4399 		if (pgdat->node_present_pages)
4400 			node_set_state(nid, N_HIGH_MEMORY);
4401 		check_for_regular_memory(pgdat);
4402 	}
4403 }
4404 
4405 static int __init cmdline_parse_core(char *p, unsigned long *core)
4406 {
4407 	unsigned long long coremem;
4408 	if (!p)
4409 		return -EINVAL;
4410 
4411 	coremem = memparse(p, &p);
4412 	*core = coremem >> PAGE_SHIFT;
4413 
4414 	/* Paranoid check that UL is enough for the coremem value */
4415 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4416 
4417 	return 0;
4418 }
4419 
4420 /*
4421  * kernelcore=size sets the amount of memory for use for allocations that
4422  * cannot be reclaimed or migrated.
4423  */
4424 static int __init cmdline_parse_kernelcore(char *p)
4425 {
4426 	return cmdline_parse_core(p, &required_kernelcore);
4427 }
4428 
4429 /*
4430  * movablecore=size sets the amount of memory for use for allocations that
4431  * can be reclaimed or migrated.
4432  */
4433 static int __init cmdline_parse_movablecore(char *p)
4434 {
4435 	return cmdline_parse_core(p, &required_movablecore);
4436 }
4437 
4438 early_param("kernelcore", cmdline_parse_kernelcore);
4439 early_param("movablecore", cmdline_parse_movablecore);
4440 
4441 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4442 
4443 /**
4444  * set_dma_reserve - set the specified number of pages reserved in the first zone
4445  * @new_dma_reserve: The number of pages to mark reserved
4446  *
4447  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4448  * In the DMA zone, a significant percentage may be consumed by kernel image
4449  * and other unfreeable allocations which can skew the watermarks badly. This
4450  * function may optionally be used to account for unfreeable pages in the
4451  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4452  * smaller per-cpu batchsize.
4453  */
4454 void __init set_dma_reserve(unsigned long new_dma_reserve)
4455 {
4456 	dma_reserve = new_dma_reserve;
4457 }
4458 
4459 #ifndef CONFIG_NEED_MULTIPLE_NODES
4460 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4461 EXPORT_SYMBOL(contig_page_data);
4462 #endif
4463 
4464 void __init free_area_init(unsigned long *zones_size)
4465 {
4466 	free_area_init_node(0, zones_size,
4467 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4468 }
4469 
4470 static int page_alloc_cpu_notify(struct notifier_block *self,
4471 				 unsigned long action, void *hcpu)
4472 {
4473 	int cpu = (unsigned long)hcpu;
4474 
4475 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4476 		drain_pages(cpu);
4477 
4478 		/*
4479 		 * Spill the event counters of the dead processor
4480 		 * into the current processors event counters.
4481 		 * This artificially elevates the count of the current
4482 		 * processor.
4483 		 */
4484 		vm_events_fold_cpu(cpu);
4485 
4486 		/*
4487 		 * Zero the differential counters of the dead processor
4488 		 * so that the vm statistics are consistent.
4489 		 *
4490 		 * This is only okay since the processor is dead and cannot
4491 		 * race with what we are doing.
4492 		 */
4493 		refresh_cpu_vm_stats(cpu);
4494 	}
4495 	return NOTIFY_OK;
4496 }
4497 
4498 void __init page_alloc_init(void)
4499 {
4500 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4501 }
4502 
4503 /*
4504  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4505  *	or min_free_kbytes changes.
4506  */
4507 static void calculate_totalreserve_pages(void)
4508 {
4509 	struct pglist_data *pgdat;
4510 	unsigned long reserve_pages = 0;
4511 	enum zone_type i, j;
4512 
4513 	for_each_online_pgdat(pgdat) {
4514 		for (i = 0; i < MAX_NR_ZONES; i++) {
4515 			struct zone *zone = pgdat->node_zones + i;
4516 			unsigned long max = 0;
4517 
4518 			/* Find valid and maximum lowmem_reserve in the zone */
4519 			for (j = i; j < MAX_NR_ZONES; j++) {
4520 				if (zone->lowmem_reserve[j] > max)
4521 					max = zone->lowmem_reserve[j];
4522 			}
4523 
4524 			/* we treat the high watermark as reserved pages. */
4525 			max += high_wmark_pages(zone);
4526 
4527 			if (max > zone->present_pages)
4528 				max = zone->present_pages;
4529 			reserve_pages += max;
4530 		}
4531 	}
4532 	totalreserve_pages = reserve_pages;
4533 }
4534 
4535 /*
4536  * setup_per_zone_lowmem_reserve - called whenever
4537  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4538  *	has a correct pages reserved value, so an adequate number of
4539  *	pages are left in the zone after a successful __alloc_pages().
4540  */
4541 static void setup_per_zone_lowmem_reserve(void)
4542 {
4543 	struct pglist_data *pgdat;
4544 	enum zone_type j, idx;
4545 
4546 	for_each_online_pgdat(pgdat) {
4547 		for (j = 0; j < MAX_NR_ZONES; j++) {
4548 			struct zone *zone = pgdat->node_zones + j;
4549 			unsigned long present_pages = zone->present_pages;
4550 
4551 			zone->lowmem_reserve[j] = 0;
4552 
4553 			idx = j;
4554 			while (idx) {
4555 				struct zone *lower_zone;
4556 
4557 				idx--;
4558 
4559 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4560 					sysctl_lowmem_reserve_ratio[idx] = 1;
4561 
4562 				lower_zone = pgdat->node_zones + idx;
4563 				lower_zone->lowmem_reserve[j] = present_pages /
4564 					sysctl_lowmem_reserve_ratio[idx];
4565 				present_pages += lower_zone->present_pages;
4566 			}
4567 		}
4568 	}
4569 
4570 	/* update totalreserve_pages */
4571 	calculate_totalreserve_pages();
4572 }
4573 
4574 /**
4575  * setup_per_zone_wmarks - called when min_free_kbytes changes
4576  * or when memory is hot-{added|removed}
4577  *
4578  * Ensures that the watermark[min,low,high] values for each zone are set
4579  * correctly with respect to min_free_kbytes.
4580  */
4581 void setup_per_zone_wmarks(void)
4582 {
4583 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4584 	unsigned long lowmem_pages = 0;
4585 	struct zone *zone;
4586 	unsigned long flags;
4587 
4588 	/* Calculate total number of !ZONE_HIGHMEM pages */
4589 	for_each_zone(zone) {
4590 		if (!is_highmem(zone))
4591 			lowmem_pages += zone->present_pages;
4592 	}
4593 
4594 	for_each_zone(zone) {
4595 		u64 tmp;
4596 
4597 		spin_lock_irqsave(&zone->lock, flags);
4598 		tmp = (u64)pages_min * zone->present_pages;
4599 		do_div(tmp, lowmem_pages);
4600 		if (is_highmem(zone)) {
4601 			/*
4602 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4603 			 * need highmem pages, so cap pages_min to a small
4604 			 * value here.
4605 			 *
4606 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4607 			 * deltas controls asynch page reclaim, and so should
4608 			 * not be capped for highmem.
4609 			 */
4610 			int min_pages;
4611 
4612 			min_pages = zone->present_pages / 1024;
4613 			if (min_pages < SWAP_CLUSTER_MAX)
4614 				min_pages = SWAP_CLUSTER_MAX;
4615 			if (min_pages > 128)
4616 				min_pages = 128;
4617 			zone->watermark[WMARK_MIN] = min_pages;
4618 		} else {
4619 			/*
4620 			 * If it's a lowmem zone, reserve a number of pages
4621 			 * proportionate to the zone's size.
4622 			 */
4623 			zone->watermark[WMARK_MIN] = tmp;
4624 		}
4625 
4626 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4627 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4628 		setup_zone_migrate_reserve(zone);
4629 		spin_unlock_irqrestore(&zone->lock, flags);
4630 	}
4631 
4632 	/* update totalreserve_pages */
4633 	calculate_totalreserve_pages();
4634 }
4635 
4636 /*
4637  * The inactive anon list should be small enough that the VM never has to
4638  * do too much work, but large enough that each inactive page has a chance
4639  * to be referenced again before it is swapped out.
4640  *
4641  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4642  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4643  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4644  * the anonymous pages are kept on the inactive list.
4645  *
4646  * total     target    max
4647  * memory    ratio     inactive anon
4648  * -------------------------------------
4649  *   10MB       1         5MB
4650  *  100MB       1        50MB
4651  *    1GB       3       250MB
4652  *   10GB      10       0.9GB
4653  *  100GB      31         3GB
4654  *    1TB     101        10GB
4655  *   10TB     320        32GB
4656  */
4657 void calculate_zone_inactive_ratio(struct zone *zone)
4658 {
4659 	unsigned int gb, ratio;
4660 
4661 	/* Zone size in gigabytes */
4662 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4663 	if (gb)
4664 		ratio = int_sqrt(10 * gb);
4665 	else
4666 		ratio = 1;
4667 
4668 	zone->inactive_ratio = ratio;
4669 }
4670 
4671 static void __init setup_per_zone_inactive_ratio(void)
4672 {
4673 	struct zone *zone;
4674 
4675 	for_each_zone(zone)
4676 		calculate_zone_inactive_ratio(zone);
4677 }
4678 
4679 /*
4680  * Initialise min_free_kbytes.
4681  *
4682  * For small machines we want it small (128k min).  For large machines
4683  * we want it large (64MB max).  But it is not linear, because network
4684  * bandwidth does not increase linearly with machine size.  We use
4685  *
4686  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4687  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4688  *
4689  * which yields
4690  *
4691  * 16MB:	512k
4692  * 32MB:	724k
4693  * 64MB:	1024k
4694  * 128MB:	1448k
4695  * 256MB:	2048k
4696  * 512MB:	2896k
4697  * 1024MB:	4096k
4698  * 2048MB:	5792k
4699  * 4096MB:	8192k
4700  * 8192MB:	11584k
4701  * 16384MB:	16384k
4702  */
4703 static int __init init_per_zone_wmark_min(void)
4704 {
4705 	unsigned long lowmem_kbytes;
4706 
4707 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4708 
4709 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4710 	if (min_free_kbytes < 128)
4711 		min_free_kbytes = 128;
4712 	if (min_free_kbytes > 65536)
4713 		min_free_kbytes = 65536;
4714 	setup_per_zone_wmarks();
4715 	setup_per_zone_lowmem_reserve();
4716 	setup_per_zone_inactive_ratio();
4717 	return 0;
4718 }
4719 module_init(init_per_zone_wmark_min)
4720 
4721 /*
4722  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4723  *	that we can call two helper functions whenever min_free_kbytes
4724  *	changes.
4725  */
4726 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4727 	void __user *buffer, size_t *length, loff_t *ppos)
4728 {
4729 	proc_dointvec(table, write, buffer, length, ppos);
4730 	if (write)
4731 		setup_per_zone_wmarks();
4732 	return 0;
4733 }
4734 
4735 #ifdef CONFIG_NUMA
4736 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4737 	void __user *buffer, size_t *length, loff_t *ppos)
4738 {
4739 	struct zone *zone;
4740 	int rc;
4741 
4742 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4743 	if (rc)
4744 		return rc;
4745 
4746 	for_each_zone(zone)
4747 		zone->min_unmapped_pages = (zone->present_pages *
4748 				sysctl_min_unmapped_ratio) / 100;
4749 	return 0;
4750 }
4751 
4752 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4753 	void __user *buffer, size_t *length, loff_t *ppos)
4754 {
4755 	struct zone *zone;
4756 	int rc;
4757 
4758 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4759 	if (rc)
4760 		return rc;
4761 
4762 	for_each_zone(zone)
4763 		zone->min_slab_pages = (zone->present_pages *
4764 				sysctl_min_slab_ratio) / 100;
4765 	return 0;
4766 }
4767 #endif
4768 
4769 /*
4770  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4771  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4772  *	whenever sysctl_lowmem_reserve_ratio changes.
4773  *
4774  * The reserve ratio obviously has absolutely no relation with the
4775  * minimum watermarks. The lowmem reserve ratio can only make sense
4776  * if in function of the boot time zone sizes.
4777  */
4778 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4779 	void __user *buffer, size_t *length, loff_t *ppos)
4780 {
4781 	proc_dointvec_minmax(table, write, buffer, length, ppos);
4782 	setup_per_zone_lowmem_reserve();
4783 	return 0;
4784 }
4785 
4786 /*
4787  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4788  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4789  * can have before it gets flushed back to buddy allocator.
4790  */
4791 
4792 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4793 	void __user *buffer, size_t *length, loff_t *ppos)
4794 {
4795 	struct zone *zone;
4796 	unsigned int cpu;
4797 	int ret;
4798 
4799 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4800 	if (!write || (ret == -EINVAL))
4801 		return ret;
4802 	for_each_populated_zone(zone) {
4803 		for_each_online_cpu(cpu) {
4804 			unsigned long  high;
4805 			high = zone->present_pages / percpu_pagelist_fraction;
4806 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4807 		}
4808 	}
4809 	return 0;
4810 }
4811 
4812 int hashdist = HASHDIST_DEFAULT;
4813 
4814 #ifdef CONFIG_NUMA
4815 static int __init set_hashdist(char *str)
4816 {
4817 	if (!str)
4818 		return 0;
4819 	hashdist = simple_strtoul(str, &str, 0);
4820 	return 1;
4821 }
4822 __setup("hashdist=", set_hashdist);
4823 #endif
4824 
4825 /*
4826  * allocate a large system hash table from bootmem
4827  * - it is assumed that the hash table must contain an exact power-of-2
4828  *   quantity of entries
4829  * - limit is the number of hash buckets, not the total allocation size
4830  */
4831 void *__init alloc_large_system_hash(const char *tablename,
4832 				     unsigned long bucketsize,
4833 				     unsigned long numentries,
4834 				     int scale,
4835 				     int flags,
4836 				     unsigned int *_hash_shift,
4837 				     unsigned int *_hash_mask,
4838 				     unsigned long limit)
4839 {
4840 	unsigned long long max = limit;
4841 	unsigned long log2qty, size;
4842 	void *table = NULL;
4843 
4844 	/* allow the kernel cmdline to have a say */
4845 	if (!numentries) {
4846 		/* round applicable memory size up to nearest megabyte */
4847 		numentries = nr_kernel_pages;
4848 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4849 		numentries >>= 20 - PAGE_SHIFT;
4850 		numentries <<= 20 - PAGE_SHIFT;
4851 
4852 		/* limit to 1 bucket per 2^scale bytes of low memory */
4853 		if (scale > PAGE_SHIFT)
4854 			numentries >>= (scale - PAGE_SHIFT);
4855 		else
4856 			numentries <<= (PAGE_SHIFT - scale);
4857 
4858 		/* Make sure we've got at least a 0-order allocation.. */
4859 		if (unlikely(flags & HASH_SMALL)) {
4860 			/* Makes no sense without HASH_EARLY */
4861 			WARN_ON(!(flags & HASH_EARLY));
4862 			if (!(numentries >> *_hash_shift)) {
4863 				numentries = 1UL << *_hash_shift;
4864 				BUG_ON(!numentries);
4865 			}
4866 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4867 			numentries = PAGE_SIZE / bucketsize;
4868 	}
4869 	numentries = roundup_pow_of_two(numentries);
4870 
4871 	/* limit allocation size to 1/16 total memory by default */
4872 	if (max == 0) {
4873 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4874 		do_div(max, bucketsize);
4875 	}
4876 
4877 	if (numentries > max)
4878 		numentries = max;
4879 
4880 	log2qty = ilog2(numentries);
4881 
4882 	do {
4883 		size = bucketsize << log2qty;
4884 		if (flags & HASH_EARLY)
4885 			table = alloc_bootmem_nopanic(size);
4886 		else if (hashdist)
4887 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4888 		else {
4889 			/*
4890 			 * If bucketsize is not a power-of-two, we may free
4891 			 * some pages at the end of hash table which
4892 			 * alloc_pages_exact() automatically does
4893 			 */
4894 			if (get_order(size) < MAX_ORDER) {
4895 				table = alloc_pages_exact(size, GFP_ATOMIC);
4896 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4897 			}
4898 		}
4899 	} while (!table && size > PAGE_SIZE && --log2qty);
4900 
4901 	if (!table)
4902 		panic("Failed to allocate %s hash table\n", tablename);
4903 
4904 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4905 	       tablename,
4906 	       (1U << log2qty),
4907 	       ilog2(size) - PAGE_SHIFT,
4908 	       size);
4909 
4910 	if (_hash_shift)
4911 		*_hash_shift = log2qty;
4912 	if (_hash_mask)
4913 		*_hash_mask = (1 << log2qty) - 1;
4914 
4915 	return table;
4916 }
4917 
4918 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4919 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4920 							unsigned long pfn)
4921 {
4922 #ifdef CONFIG_SPARSEMEM
4923 	return __pfn_to_section(pfn)->pageblock_flags;
4924 #else
4925 	return zone->pageblock_flags;
4926 #endif /* CONFIG_SPARSEMEM */
4927 }
4928 
4929 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4930 {
4931 #ifdef CONFIG_SPARSEMEM
4932 	pfn &= (PAGES_PER_SECTION-1);
4933 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4934 #else
4935 	pfn = pfn - zone->zone_start_pfn;
4936 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4937 #endif /* CONFIG_SPARSEMEM */
4938 }
4939 
4940 /**
4941  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4942  * @page: The page within the block of interest
4943  * @start_bitidx: The first bit of interest to retrieve
4944  * @end_bitidx: The last bit of interest
4945  * returns pageblock_bits flags
4946  */
4947 unsigned long get_pageblock_flags_group(struct page *page,
4948 					int start_bitidx, int end_bitidx)
4949 {
4950 	struct zone *zone;
4951 	unsigned long *bitmap;
4952 	unsigned long pfn, bitidx;
4953 	unsigned long flags = 0;
4954 	unsigned long value = 1;
4955 
4956 	zone = page_zone(page);
4957 	pfn = page_to_pfn(page);
4958 	bitmap = get_pageblock_bitmap(zone, pfn);
4959 	bitidx = pfn_to_bitidx(zone, pfn);
4960 
4961 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4962 		if (test_bit(bitidx + start_bitidx, bitmap))
4963 			flags |= value;
4964 
4965 	return flags;
4966 }
4967 
4968 /**
4969  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4970  * @page: The page within the block of interest
4971  * @start_bitidx: The first bit of interest
4972  * @end_bitidx: The last bit of interest
4973  * @flags: The flags to set
4974  */
4975 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4976 					int start_bitidx, int end_bitidx)
4977 {
4978 	struct zone *zone;
4979 	unsigned long *bitmap;
4980 	unsigned long pfn, bitidx;
4981 	unsigned long value = 1;
4982 
4983 	zone = page_zone(page);
4984 	pfn = page_to_pfn(page);
4985 	bitmap = get_pageblock_bitmap(zone, pfn);
4986 	bitidx = pfn_to_bitidx(zone, pfn);
4987 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4988 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4989 
4990 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4991 		if (flags & value)
4992 			__set_bit(bitidx + start_bitidx, bitmap);
4993 		else
4994 			__clear_bit(bitidx + start_bitidx, bitmap);
4995 }
4996 
4997 /*
4998  * This is designed as sub function...plz see page_isolation.c also.
4999  * set/clear page block's type to be ISOLATE.
5000  * page allocater never alloc memory from ISOLATE block.
5001  */
5002 
5003 int set_migratetype_isolate(struct page *page)
5004 {
5005 	struct zone *zone;
5006 	unsigned long flags;
5007 	int ret = -EBUSY;
5008 	int zone_idx;
5009 
5010 	zone = page_zone(page);
5011 	zone_idx = zone_idx(zone);
5012 	spin_lock_irqsave(&zone->lock, flags);
5013 	/*
5014 	 * In future, more migrate types will be able to be isolation target.
5015 	 */
5016 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5017 	    zone_idx != ZONE_MOVABLE)
5018 		goto out;
5019 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5020 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
5021 	ret = 0;
5022 out:
5023 	spin_unlock_irqrestore(&zone->lock, flags);
5024 	if (!ret)
5025 		drain_all_pages();
5026 	return ret;
5027 }
5028 
5029 void unset_migratetype_isolate(struct page *page)
5030 {
5031 	struct zone *zone;
5032 	unsigned long flags;
5033 	zone = page_zone(page);
5034 	spin_lock_irqsave(&zone->lock, flags);
5035 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5036 		goto out;
5037 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5038 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5039 out:
5040 	spin_unlock_irqrestore(&zone->lock, flags);
5041 }
5042 
5043 #ifdef CONFIG_MEMORY_HOTREMOVE
5044 /*
5045  * All pages in the range must be isolated before calling this.
5046  */
5047 void
5048 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5049 {
5050 	struct page *page;
5051 	struct zone *zone;
5052 	int order, i;
5053 	unsigned long pfn;
5054 	unsigned long flags;
5055 	/* find the first valid pfn */
5056 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5057 		if (pfn_valid(pfn))
5058 			break;
5059 	if (pfn == end_pfn)
5060 		return;
5061 	zone = page_zone(pfn_to_page(pfn));
5062 	spin_lock_irqsave(&zone->lock, flags);
5063 	pfn = start_pfn;
5064 	while (pfn < end_pfn) {
5065 		if (!pfn_valid(pfn)) {
5066 			pfn++;
5067 			continue;
5068 		}
5069 		page = pfn_to_page(pfn);
5070 		BUG_ON(page_count(page));
5071 		BUG_ON(!PageBuddy(page));
5072 		order = page_order(page);
5073 #ifdef CONFIG_DEBUG_VM
5074 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5075 		       pfn, 1 << order, end_pfn);
5076 #endif
5077 		list_del(&page->lru);
5078 		rmv_page_order(page);
5079 		zone->free_area[order].nr_free--;
5080 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5081 				      - (1UL << order));
5082 		for (i = 0; i < (1 << order); i++)
5083 			SetPageReserved((page+i));
5084 		pfn += (1 << order);
5085 	}
5086 	spin_unlock_irqrestore(&zone->lock, flags);
5087 }
5088 #endif
5089