xref: /openbmc/linux/mm/page_alloc.c (revision e75d5ae8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 #include "swap.h"
85 
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
88 
89 /* No special request */
90 #define FPI_NONE		((__force fpi_t)0)
91 
92 /*
93  * Skip free page reporting notification for the (possibly merged) page.
94  * This does not hinder free page reporting from grabbing the page,
95  * reporting it and marking it "reported" -  it only skips notifying
96  * the free page reporting infrastructure about a newly freed page. For
97  * example, used when temporarily pulling a page from a freelist and
98  * putting it back unmodified.
99  */
100 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
101 
102 /*
103  * Place the (possibly merged) page to the tail of the freelist. Will ignore
104  * page shuffling (relevant code - e.g., memory onlining - is expected to
105  * shuffle the whole zone).
106  *
107  * Note: No code should rely on this flag for correctness - it's purely
108  *       to allow for optimizations when handing back either fresh pages
109  *       (memory onlining) or untouched pages (page isolation, free page
110  *       reporting).
111  */
112 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
113 
114 /*
115  * Don't poison memory with KASAN (only for the tag-based modes).
116  * During boot, all non-reserved memblock memory is exposed to page_alloc.
117  * Poisoning all that memory lengthens boot time, especially on systems with
118  * large amount of RAM. This flag is used to skip that poisoning.
119  * This is only done for the tag-based KASAN modes, as those are able to
120  * detect memory corruptions with the memory tags assigned by default.
121  * All memory allocated normally after boot gets poisoned as usual.
122  */
123 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
124 
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128 
129 struct pagesets {
130 	local_lock_t lock;
131 };
132 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
133 	.lock = INIT_LOCAL_LOCK(lock),
134 };
135 
136 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
137 DEFINE_PER_CPU(int, numa_node);
138 EXPORT_PER_CPU_SYMBOL(numa_node);
139 #endif
140 
141 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142 
143 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
144 /*
145  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
146  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
147  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
148  * defined in <linux/topology.h>.
149  */
150 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
151 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
152 #endif
153 
154 /* work_structs for global per-cpu drains */
155 struct pcpu_drain {
156 	struct zone *zone;
157 	struct work_struct work;
158 };
159 static DEFINE_MUTEX(pcpu_drain_mutex);
160 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
161 
162 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
163 volatile unsigned long latent_entropy __latent_entropy;
164 EXPORT_SYMBOL(latent_entropy);
165 #endif
166 
167 /*
168  * Array of node states.
169  */
170 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
171 	[N_POSSIBLE] = NODE_MASK_ALL,
172 	[N_ONLINE] = { { [0] = 1UL } },
173 #ifndef CONFIG_NUMA
174 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
175 #ifdef CONFIG_HIGHMEM
176 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
177 #endif
178 	[N_MEMORY] = { { [0] = 1UL } },
179 	[N_CPU] = { { [0] = 1UL } },
180 #endif	/* NUMA */
181 };
182 EXPORT_SYMBOL(node_states);
183 
184 atomic_long_t _totalram_pages __read_mostly;
185 EXPORT_SYMBOL(_totalram_pages);
186 unsigned long totalreserve_pages __read_mostly;
187 unsigned long totalcma_pages __read_mostly;
188 
189 int percpu_pagelist_high_fraction;
190 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
191 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
192 EXPORT_SYMBOL(init_on_alloc);
193 
194 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
195 EXPORT_SYMBOL(init_on_free);
196 
197 static bool _init_on_alloc_enabled_early __read_mostly
198 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
199 static int __init early_init_on_alloc(char *buf)
200 {
201 
202 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
203 }
204 early_param("init_on_alloc", early_init_on_alloc);
205 
206 static bool _init_on_free_enabled_early __read_mostly
207 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
208 static int __init early_init_on_free(char *buf)
209 {
210 	return kstrtobool(buf, &_init_on_free_enabled_early);
211 }
212 early_param("init_on_free", early_init_on_free);
213 
214 /*
215  * A cached value of the page's pageblock's migratetype, used when the page is
216  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
217  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
218  * Also the migratetype set in the page does not necessarily match the pcplist
219  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
220  * other index - this ensures that it will be put on the correct CMA freelist.
221  */
222 static inline int get_pcppage_migratetype(struct page *page)
223 {
224 	return page->index;
225 }
226 
227 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228 {
229 	page->index = migratetype;
230 }
231 
232 #ifdef CONFIG_PM_SLEEP
233 /*
234  * The following functions are used by the suspend/hibernate code to temporarily
235  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
236  * while devices are suspended.  To avoid races with the suspend/hibernate code,
237  * they should always be called with system_transition_mutex held
238  * (gfp_allowed_mask also should only be modified with system_transition_mutex
239  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
240  * with that modification).
241  */
242 
243 static gfp_t saved_gfp_mask;
244 
245 void pm_restore_gfp_mask(void)
246 {
247 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 	if (saved_gfp_mask) {
249 		gfp_allowed_mask = saved_gfp_mask;
250 		saved_gfp_mask = 0;
251 	}
252 }
253 
254 void pm_restrict_gfp_mask(void)
255 {
256 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
257 	WARN_ON(saved_gfp_mask);
258 	saved_gfp_mask = gfp_allowed_mask;
259 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
260 }
261 
262 bool pm_suspended_storage(void)
263 {
264 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
265 		return false;
266 	return true;
267 }
268 #endif /* CONFIG_PM_SLEEP */
269 
270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
271 unsigned int pageblock_order __read_mostly;
272 #endif
273 
274 static void __free_pages_ok(struct page *page, unsigned int order,
275 			    fpi_t fpi_flags);
276 
277 /*
278  * results with 256, 32 in the lowmem_reserve sysctl:
279  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
280  *	1G machine -> (16M dma, 784M normal, 224M high)
281  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
282  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
283  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
284  *
285  * TBD: should special case ZONE_DMA32 machines here - in those we normally
286  * don't need any ZONE_NORMAL reservation
287  */
288 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
289 #ifdef CONFIG_ZONE_DMA
290 	[ZONE_DMA] = 256,
291 #endif
292 #ifdef CONFIG_ZONE_DMA32
293 	[ZONE_DMA32] = 256,
294 #endif
295 	[ZONE_NORMAL] = 32,
296 #ifdef CONFIG_HIGHMEM
297 	[ZONE_HIGHMEM] = 0,
298 #endif
299 	[ZONE_MOVABLE] = 0,
300 };
301 
302 static char * const zone_names[MAX_NR_ZONES] = {
303 #ifdef CONFIG_ZONE_DMA
304 	 "DMA",
305 #endif
306 #ifdef CONFIG_ZONE_DMA32
307 	 "DMA32",
308 #endif
309 	 "Normal",
310 #ifdef CONFIG_HIGHMEM
311 	 "HighMem",
312 #endif
313 	 "Movable",
314 #ifdef CONFIG_ZONE_DEVICE
315 	 "Device",
316 #endif
317 };
318 
319 const char * const migratetype_names[MIGRATE_TYPES] = {
320 	"Unmovable",
321 	"Movable",
322 	"Reclaimable",
323 	"HighAtomic",
324 #ifdef CONFIG_CMA
325 	"CMA",
326 #endif
327 #ifdef CONFIG_MEMORY_ISOLATION
328 	"Isolate",
329 #endif
330 };
331 
332 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
333 	[NULL_COMPOUND_DTOR] = NULL,
334 	[COMPOUND_PAGE_DTOR] = free_compound_page,
335 #ifdef CONFIG_HUGETLB_PAGE
336 	[HUGETLB_PAGE_DTOR] = free_huge_page,
337 #endif
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
340 #endif
341 };
342 
343 int min_free_kbytes = 1024;
344 int user_min_free_kbytes = -1;
345 int watermark_boost_factor __read_mostly = 15000;
346 int watermark_scale_factor = 10;
347 
348 static unsigned long nr_kernel_pages __initdata;
349 static unsigned long nr_all_pages __initdata;
350 static unsigned long dma_reserve __initdata;
351 
352 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
354 static unsigned long required_kernelcore __initdata;
355 static unsigned long required_kernelcore_percent __initdata;
356 static unsigned long required_movablecore __initdata;
357 static unsigned long required_movablecore_percent __initdata;
358 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
359 static bool mirrored_kernelcore __meminitdata;
360 
361 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362 int movable_zone;
363 EXPORT_SYMBOL(movable_zone);
364 
365 #if MAX_NUMNODES > 1
366 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
367 unsigned int nr_online_nodes __read_mostly = 1;
368 EXPORT_SYMBOL(nr_node_ids);
369 EXPORT_SYMBOL(nr_online_nodes);
370 #endif
371 
372 int page_group_by_mobility_disabled __read_mostly;
373 
374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
375 /*
376  * During boot we initialize deferred pages on-demand, as needed, but once
377  * page_alloc_init_late() has finished, the deferred pages are all initialized,
378  * and we can permanently disable that path.
379  */
380 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381 
382 static inline bool deferred_pages_enabled(void)
383 {
384 	return static_branch_unlikely(&deferred_pages);
385 }
386 
387 /* Returns true if the struct page for the pfn is uninitialised */
388 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
389 {
390 	int nid = early_pfn_to_nid(pfn);
391 
392 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
393 		return true;
394 
395 	return false;
396 }
397 
398 /*
399  * Returns true when the remaining initialisation should be deferred until
400  * later in the boot cycle when it can be parallelised.
401  */
402 static bool __meminit
403 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
404 {
405 	static unsigned long prev_end_pfn, nr_initialised;
406 
407 	/*
408 	 * prev_end_pfn static that contains the end of previous zone
409 	 * No need to protect because called very early in boot before smp_init.
410 	 */
411 	if (prev_end_pfn != end_pfn) {
412 		prev_end_pfn = end_pfn;
413 		nr_initialised = 0;
414 	}
415 
416 	/* Always populate low zones for address-constrained allocations */
417 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
418 		return false;
419 
420 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
421 		return true;
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 static inline bool deferred_pages_enabled(void)
436 {
437 	return false;
438 }
439 
440 static inline bool early_page_uninitialised(unsigned long pfn)
441 {
442 	return false;
443 }
444 
445 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
446 {
447 	return false;
448 }
449 #endif
450 
451 /* Return a pointer to the bitmap storing bits affecting a block of pages */
452 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
453 							unsigned long pfn)
454 {
455 #ifdef CONFIG_SPARSEMEM
456 	return section_to_usemap(__pfn_to_section(pfn));
457 #else
458 	return page_zone(page)->pageblock_flags;
459 #endif /* CONFIG_SPARSEMEM */
460 }
461 
462 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
463 {
464 #ifdef CONFIG_SPARSEMEM
465 	pfn &= (PAGES_PER_SECTION-1);
466 #else
467 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
468 #endif /* CONFIG_SPARSEMEM */
469 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
470 }
471 
472 static __always_inline
473 unsigned long __get_pfnblock_flags_mask(const struct page *page,
474 					unsigned long pfn,
475 					unsigned long mask)
476 {
477 	unsigned long *bitmap;
478 	unsigned long bitidx, word_bitidx;
479 	unsigned long word;
480 
481 	bitmap = get_pageblock_bitmap(page, pfn);
482 	bitidx = pfn_to_bitidx(page, pfn);
483 	word_bitidx = bitidx / BITS_PER_LONG;
484 	bitidx &= (BITS_PER_LONG-1);
485 	/*
486 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
487 	 * a consistent read of the memory array, so that results, even though
488 	 * racy, are not corrupted.
489 	 */
490 	word = READ_ONCE(bitmap[word_bitidx]);
491 	return (word >> bitidx) & mask;
492 }
493 
494 /**
495  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
496  * @page: The page within the block of interest
497  * @pfn: The target page frame number
498  * @mask: mask of bits that the caller is interested in
499  *
500  * Return: pageblock_bits flags
501  */
502 unsigned long get_pfnblock_flags_mask(const struct page *page,
503 					unsigned long pfn, unsigned long mask)
504 {
505 	return __get_pfnblock_flags_mask(page, pfn, mask);
506 }
507 
508 static __always_inline int get_pfnblock_migratetype(const struct page *page,
509 					unsigned long pfn)
510 {
511 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
512 }
513 
514 /**
515  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
516  * @page: The page within the block of interest
517  * @flags: The flags to set
518  * @pfn: The target page frame number
519  * @mask: mask of bits that the caller is interested in
520  */
521 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
522 					unsigned long pfn,
523 					unsigned long mask)
524 {
525 	unsigned long *bitmap;
526 	unsigned long bitidx, word_bitidx;
527 	unsigned long old_word, word;
528 
529 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
530 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
531 
532 	bitmap = get_pageblock_bitmap(page, pfn);
533 	bitidx = pfn_to_bitidx(page, pfn);
534 	word_bitidx = bitidx / BITS_PER_LONG;
535 	bitidx &= (BITS_PER_LONG-1);
536 
537 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
538 
539 	mask <<= bitidx;
540 	flags <<= bitidx;
541 
542 	word = READ_ONCE(bitmap[word_bitidx]);
543 	for (;;) {
544 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
545 		if (word == old_word)
546 			break;
547 		word = old_word;
548 	}
549 }
550 
551 void set_pageblock_migratetype(struct page *page, int migratetype)
552 {
553 	if (unlikely(page_group_by_mobility_disabled &&
554 		     migratetype < MIGRATE_PCPTYPES))
555 		migratetype = MIGRATE_UNMOVABLE;
556 
557 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
558 				page_to_pfn(page), MIGRATETYPE_MASK);
559 }
560 
561 #ifdef CONFIG_DEBUG_VM
562 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
563 {
564 	int ret = 0;
565 	unsigned seq;
566 	unsigned long pfn = page_to_pfn(page);
567 	unsigned long sp, start_pfn;
568 
569 	do {
570 		seq = zone_span_seqbegin(zone);
571 		start_pfn = zone->zone_start_pfn;
572 		sp = zone->spanned_pages;
573 		if (!zone_spans_pfn(zone, pfn))
574 			ret = 1;
575 	} while (zone_span_seqretry(zone, seq));
576 
577 	if (ret)
578 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
579 			pfn, zone_to_nid(zone), zone->name,
580 			start_pfn, start_pfn + sp);
581 
582 	return ret;
583 }
584 
585 static int page_is_consistent(struct zone *zone, struct page *page)
586 {
587 	if (zone != page_zone(page))
588 		return 0;
589 
590 	return 1;
591 }
592 /*
593  * Temporary debugging check for pages not lying within a given zone.
594  */
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596 {
597 	if (page_outside_zone_boundaries(zone, page))
598 		return 1;
599 	if (!page_is_consistent(zone, page))
600 		return 1;
601 
602 	return 0;
603 }
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 	return 0;
608 }
609 #endif
610 
611 static void bad_page(struct page *page, const char *reason)
612 {
613 	static unsigned long resume;
614 	static unsigned long nr_shown;
615 	static unsigned long nr_unshown;
616 
617 	/*
618 	 * Allow a burst of 60 reports, then keep quiet for that minute;
619 	 * or allow a steady drip of one report per second.
620 	 */
621 	if (nr_shown == 60) {
622 		if (time_before(jiffies, resume)) {
623 			nr_unshown++;
624 			goto out;
625 		}
626 		if (nr_unshown) {
627 			pr_alert(
628 			      "BUG: Bad page state: %lu messages suppressed\n",
629 				nr_unshown);
630 			nr_unshown = 0;
631 		}
632 		nr_shown = 0;
633 	}
634 	if (nr_shown++ == 0)
635 		resume = jiffies + 60 * HZ;
636 
637 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
638 		current->comm, page_to_pfn(page));
639 	dump_page(page, reason);
640 
641 	print_modules();
642 	dump_stack();
643 out:
644 	/* Leave bad fields for debug, except PageBuddy could make trouble */
645 	page_mapcount_reset(page); /* remove PageBuddy */
646 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
647 }
648 
649 static inline unsigned int order_to_pindex(int migratetype, int order)
650 {
651 	int base = order;
652 
653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
654 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
655 		VM_BUG_ON(order != pageblock_order);
656 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
657 	}
658 #else
659 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
660 #endif
661 
662 	return (MIGRATE_PCPTYPES * base) + migratetype;
663 }
664 
665 static inline int pindex_to_order(unsigned int pindex)
666 {
667 	int order = pindex / MIGRATE_PCPTYPES;
668 
669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
670 	if (order > PAGE_ALLOC_COSTLY_ORDER)
671 		order = pageblock_order;
672 #else
673 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
674 #endif
675 
676 	return order;
677 }
678 
679 static inline bool pcp_allowed_order(unsigned int order)
680 {
681 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
682 		return true;
683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 	if (order == pageblock_order)
685 		return true;
686 #endif
687 	return false;
688 }
689 
690 static inline void free_the_page(struct page *page, unsigned int order)
691 {
692 	if (pcp_allowed_order(order))		/* Via pcp? */
693 		free_unref_page(page, order);
694 	else
695 		__free_pages_ok(page, order, FPI_NONE);
696 }
697 
698 /*
699  * Higher-order pages are called "compound pages".  They are structured thusly:
700  *
701  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
702  *
703  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
704  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
705  *
706  * The first tail page's ->compound_dtor holds the offset in array of compound
707  * page destructors. See compound_page_dtors.
708  *
709  * The first tail page's ->compound_order holds the order of allocation.
710  * This usage means that zero-order pages may not be compound.
711  */
712 
713 void free_compound_page(struct page *page)
714 {
715 	mem_cgroup_uncharge(page_folio(page));
716 	free_the_page(page, compound_order(page));
717 }
718 
719 static void prep_compound_head(struct page *page, unsigned int order)
720 {
721 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
722 	set_compound_order(page, order);
723 	atomic_set(compound_mapcount_ptr(page), -1);
724 	atomic_set(compound_pincount_ptr(page), 0);
725 }
726 
727 static void prep_compound_tail(struct page *head, int tail_idx)
728 {
729 	struct page *p = head + tail_idx;
730 
731 	p->mapping = TAIL_MAPPING;
732 	set_compound_head(p, head);
733 }
734 
735 void prep_compound_page(struct page *page, unsigned int order)
736 {
737 	int i;
738 	int nr_pages = 1 << order;
739 
740 	__SetPageHead(page);
741 	for (i = 1; i < nr_pages; i++)
742 		prep_compound_tail(page, i);
743 
744 	prep_compound_head(page, order);
745 }
746 
747 #ifdef CONFIG_DEBUG_PAGEALLOC
748 unsigned int _debug_guardpage_minorder;
749 
750 bool _debug_pagealloc_enabled_early __read_mostly
751 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
752 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
753 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
754 EXPORT_SYMBOL(_debug_pagealloc_enabled);
755 
756 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
757 
758 static int __init early_debug_pagealloc(char *buf)
759 {
760 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
761 }
762 early_param("debug_pagealloc", early_debug_pagealloc);
763 
764 static int __init debug_guardpage_minorder_setup(char *buf)
765 {
766 	unsigned long res;
767 
768 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
769 		pr_err("Bad debug_guardpage_minorder value\n");
770 		return 0;
771 	}
772 	_debug_guardpage_minorder = res;
773 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
774 	return 0;
775 }
776 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
777 
778 static inline bool set_page_guard(struct zone *zone, struct page *page,
779 				unsigned int order, int migratetype)
780 {
781 	if (!debug_guardpage_enabled())
782 		return false;
783 
784 	if (order >= debug_guardpage_minorder())
785 		return false;
786 
787 	__SetPageGuard(page);
788 	INIT_LIST_HEAD(&page->lru);
789 	set_page_private(page, order);
790 	/* Guard pages are not available for any usage */
791 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
792 
793 	return true;
794 }
795 
796 static inline void clear_page_guard(struct zone *zone, struct page *page,
797 				unsigned int order, int migratetype)
798 {
799 	if (!debug_guardpage_enabled())
800 		return;
801 
802 	__ClearPageGuard(page);
803 
804 	set_page_private(page, 0);
805 	if (!is_migrate_isolate(migratetype))
806 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
807 }
808 #else
809 static inline bool set_page_guard(struct zone *zone, struct page *page,
810 			unsigned int order, int migratetype) { return false; }
811 static inline void clear_page_guard(struct zone *zone, struct page *page,
812 				unsigned int order, int migratetype) {}
813 #endif
814 
815 /*
816  * Enable static keys related to various memory debugging and hardening options.
817  * Some override others, and depend on early params that are evaluated in the
818  * order of appearance. So we need to first gather the full picture of what was
819  * enabled, and then make decisions.
820  */
821 void init_mem_debugging_and_hardening(void)
822 {
823 	bool page_poisoning_requested = false;
824 
825 #ifdef CONFIG_PAGE_POISONING
826 	/*
827 	 * Page poisoning is debug page alloc for some arches. If
828 	 * either of those options are enabled, enable poisoning.
829 	 */
830 	if (page_poisoning_enabled() ||
831 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
832 	      debug_pagealloc_enabled())) {
833 		static_branch_enable(&_page_poisoning_enabled);
834 		page_poisoning_requested = true;
835 	}
836 #endif
837 
838 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
839 	    page_poisoning_requested) {
840 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
841 			"will take precedence over init_on_alloc and init_on_free\n");
842 		_init_on_alloc_enabled_early = false;
843 		_init_on_free_enabled_early = false;
844 	}
845 
846 	if (_init_on_alloc_enabled_early)
847 		static_branch_enable(&init_on_alloc);
848 	else
849 		static_branch_disable(&init_on_alloc);
850 
851 	if (_init_on_free_enabled_early)
852 		static_branch_enable(&init_on_free);
853 	else
854 		static_branch_disable(&init_on_free);
855 
856 #ifdef CONFIG_DEBUG_PAGEALLOC
857 	if (!debug_pagealloc_enabled())
858 		return;
859 
860 	static_branch_enable(&_debug_pagealloc_enabled);
861 
862 	if (!debug_guardpage_minorder())
863 		return;
864 
865 	static_branch_enable(&_debug_guardpage_enabled);
866 #endif
867 }
868 
869 static inline void set_buddy_order(struct page *page, unsigned int order)
870 {
871 	set_page_private(page, order);
872 	__SetPageBuddy(page);
873 }
874 
875 #ifdef CONFIG_COMPACTION
876 static inline struct capture_control *task_capc(struct zone *zone)
877 {
878 	struct capture_control *capc = current->capture_control;
879 
880 	return unlikely(capc) &&
881 		!(current->flags & PF_KTHREAD) &&
882 		!capc->page &&
883 		capc->cc->zone == zone ? capc : NULL;
884 }
885 
886 static inline bool
887 compaction_capture(struct capture_control *capc, struct page *page,
888 		   int order, int migratetype)
889 {
890 	if (!capc || order != capc->cc->order)
891 		return false;
892 
893 	/* Do not accidentally pollute CMA or isolated regions*/
894 	if (is_migrate_cma(migratetype) ||
895 	    is_migrate_isolate(migratetype))
896 		return false;
897 
898 	/*
899 	 * Do not let lower order allocations pollute a movable pageblock.
900 	 * This might let an unmovable request use a reclaimable pageblock
901 	 * and vice-versa but no more than normal fallback logic which can
902 	 * have trouble finding a high-order free page.
903 	 */
904 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
905 		return false;
906 
907 	capc->page = page;
908 	return true;
909 }
910 
911 #else
912 static inline struct capture_control *task_capc(struct zone *zone)
913 {
914 	return NULL;
915 }
916 
917 static inline bool
918 compaction_capture(struct capture_control *capc, struct page *page,
919 		   int order, int migratetype)
920 {
921 	return false;
922 }
923 #endif /* CONFIG_COMPACTION */
924 
925 /* Used for pages not on another list */
926 static inline void add_to_free_list(struct page *page, struct zone *zone,
927 				    unsigned int order, int migratetype)
928 {
929 	struct free_area *area = &zone->free_area[order];
930 
931 	list_add(&page->lru, &area->free_list[migratetype]);
932 	area->nr_free++;
933 }
934 
935 /* Used for pages not on another list */
936 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
937 					 unsigned int order, int migratetype)
938 {
939 	struct free_area *area = &zone->free_area[order];
940 
941 	list_add_tail(&page->lru, &area->free_list[migratetype]);
942 	area->nr_free++;
943 }
944 
945 /*
946  * Used for pages which are on another list. Move the pages to the tail
947  * of the list - so the moved pages won't immediately be considered for
948  * allocation again (e.g., optimization for memory onlining).
949  */
950 static inline void move_to_free_list(struct page *page, struct zone *zone,
951 				     unsigned int order, int migratetype)
952 {
953 	struct free_area *area = &zone->free_area[order];
954 
955 	list_move_tail(&page->lru, &area->free_list[migratetype]);
956 }
957 
958 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
959 					   unsigned int order)
960 {
961 	/* clear reported state and update reported page count */
962 	if (page_reported(page))
963 		__ClearPageReported(page);
964 
965 	list_del(&page->lru);
966 	__ClearPageBuddy(page);
967 	set_page_private(page, 0);
968 	zone->free_area[order].nr_free--;
969 }
970 
971 /*
972  * If this is not the largest possible page, check if the buddy
973  * of the next-highest order is free. If it is, it's possible
974  * that pages are being freed that will coalesce soon. In case,
975  * that is happening, add the free page to the tail of the list
976  * so it's less likely to be used soon and more likely to be merged
977  * as a higher order page
978  */
979 static inline bool
980 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
981 		   struct page *page, unsigned int order)
982 {
983 	unsigned long higher_page_pfn;
984 	struct page *higher_page;
985 
986 	if (order >= MAX_ORDER - 2)
987 		return false;
988 
989 	higher_page_pfn = buddy_pfn & pfn;
990 	higher_page = page + (higher_page_pfn - pfn);
991 
992 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
993 			NULL) != NULL;
994 }
995 
996 /*
997  * Freeing function for a buddy system allocator.
998  *
999  * The concept of a buddy system is to maintain direct-mapped table
1000  * (containing bit values) for memory blocks of various "orders".
1001  * The bottom level table contains the map for the smallest allocatable
1002  * units of memory (here, pages), and each level above it describes
1003  * pairs of units from the levels below, hence, "buddies".
1004  * At a high level, all that happens here is marking the table entry
1005  * at the bottom level available, and propagating the changes upward
1006  * as necessary, plus some accounting needed to play nicely with other
1007  * parts of the VM system.
1008  * At each level, we keep a list of pages, which are heads of continuous
1009  * free pages of length of (1 << order) and marked with PageBuddy.
1010  * Page's order is recorded in page_private(page) field.
1011  * So when we are allocating or freeing one, we can derive the state of the
1012  * other.  That is, if we allocate a small block, and both were
1013  * free, the remainder of the region must be split into blocks.
1014  * If a block is freed, and its buddy is also free, then this
1015  * triggers coalescing into a block of larger size.
1016  *
1017  * -- nyc
1018  */
1019 
1020 static inline void __free_one_page(struct page *page,
1021 		unsigned long pfn,
1022 		struct zone *zone, unsigned int order,
1023 		int migratetype, fpi_t fpi_flags)
1024 {
1025 	struct capture_control *capc = task_capc(zone);
1026 	unsigned long buddy_pfn;
1027 	unsigned long combined_pfn;
1028 	struct page *buddy;
1029 	bool to_tail;
1030 
1031 	VM_BUG_ON(!zone_is_initialized(zone));
1032 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1033 
1034 	VM_BUG_ON(migratetype == -1);
1035 	if (likely(!is_migrate_isolate(migratetype)))
1036 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1037 
1038 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1039 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1040 
1041 	while (order < MAX_ORDER - 1) {
1042 		if (compaction_capture(capc, page, order, migratetype)) {
1043 			__mod_zone_freepage_state(zone, -(1 << order),
1044 								migratetype);
1045 			return;
1046 		}
1047 
1048 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1049 		if (!buddy)
1050 			goto done_merging;
1051 
1052 		if (unlikely(order >= pageblock_order)) {
1053 			/*
1054 			 * We want to prevent merge between freepages on pageblock
1055 			 * without fallbacks and normal pageblock. Without this,
1056 			 * pageblock isolation could cause incorrect freepage or CMA
1057 			 * accounting or HIGHATOMIC accounting.
1058 			 */
1059 			int buddy_mt = get_pageblock_migratetype(buddy);
1060 
1061 			if (migratetype != buddy_mt
1062 					&& (!migratetype_is_mergeable(migratetype) ||
1063 						!migratetype_is_mergeable(buddy_mt)))
1064 				goto done_merging;
1065 		}
1066 
1067 		/*
1068 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1069 		 * merge with it and move up one order.
1070 		 */
1071 		if (page_is_guard(buddy))
1072 			clear_page_guard(zone, buddy, order, migratetype);
1073 		else
1074 			del_page_from_free_list(buddy, zone, order);
1075 		combined_pfn = buddy_pfn & pfn;
1076 		page = page + (combined_pfn - pfn);
1077 		pfn = combined_pfn;
1078 		order++;
1079 	}
1080 
1081 done_merging:
1082 	set_buddy_order(page, order);
1083 
1084 	if (fpi_flags & FPI_TO_TAIL)
1085 		to_tail = true;
1086 	else if (is_shuffle_order(order))
1087 		to_tail = shuffle_pick_tail();
1088 	else
1089 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1090 
1091 	if (to_tail)
1092 		add_to_free_list_tail(page, zone, order, migratetype);
1093 	else
1094 		add_to_free_list(page, zone, order, migratetype);
1095 
1096 	/* Notify page reporting subsystem of freed page */
1097 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1098 		page_reporting_notify_free(order);
1099 }
1100 
1101 /**
1102  * split_free_page() -- split a free page at split_pfn_offset
1103  * @free_page:		the original free page
1104  * @order:		the order of the page
1105  * @split_pfn_offset:	split offset within the page
1106  *
1107  * Return -ENOENT if the free page is changed, otherwise 0
1108  *
1109  * It is used when the free page crosses two pageblocks with different migratetypes
1110  * at split_pfn_offset within the page. The split free page will be put into
1111  * separate migratetype lists afterwards. Otherwise, the function achieves
1112  * nothing.
1113  */
1114 int split_free_page(struct page *free_page,
1115 			unsigned int order, unsigned long split_pfn_offset)
1116 {
1117 	struct zone *zone = page_zone(free_page);
1118 	unsigned long free_page_pfn = page_to_pfn(free_page);
1119 	unsigned long pfn;
1120 	unsigned long flags;
1121 	int free_page_order;
1122 	int mt;
1123 	int ret = 0;
1124 
1125 	if (split_pfn_offset == 0)
1126 		return ret;
1127 
1128 	spin_lock_irqsave(&zone->lock, flags);
1129 
1130 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1131 		ret = -ENOENT;
1132 		goto out;
1133 	}
1134 
1135 	mt = get_pageblock_migratetype(free_page);
1136 	if (likely(!is_migrate_isolate(mt)))
1137 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1138 
1139 	del_page_from_free_list(free_page, zone, order);
1140 	for (pfn = free_page_pfn;
1141 	     pfn < free_page_pfn + (1UL << order);) {
1142 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1143 
1144 		free_page_order = min_t(unsigned int,
1145 					pfn ? __ffs(pfn) : order,
1146 					__fls(split_pfn_offset));
1147 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1148 				mt, FPI_NONE);
1149 		pfn += 1UL << free_page_order;
1150 		split_pfn_offset -= (1UL << free_page_order);
1151 		/* we have done the first part, now switch to second part */
1152 		if (split_pfn_offset == 0)
1153 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1154 	}
1155 out:
1156 	spin_unlock_irqrestore(&zone->lock, flags);
1157 	return ret;
1158 }
1159 /*
1160  * A bad page could be due to a number of fields. Instead of multiple branches,
1161  * try and check multiple fields with one check. The caller must do a detailed
1162  * check if necessary.
1163  */
1164 static inline bool page_expected_state(struct page *page,
1165 					unsigned long check_flags)
1166 {
1167 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1168 		return false;
1169 
1170 	if (unlikely((unsigned long)page->mapping |
1171 			page_ref_count(page) |
1172 #ifdef CONFIG_MEMCG
1173 			page->memcg_data |
1174 #endif
1175 			(page->flags & check_flags)))
1176 		return false;
1177 
1178 	return true;
1179 }
1180 
1181 static const char *page_bad_reason(struct page *page, unsigned long flags)
1182 {
1183 	const char *bad_reason = NULL;
1184 
1185 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1186 		bad_reason = "nonzero mapcount";
1187 	if (unlikely(page->mapping != NULL))
1188 		bad_reason = "non-NULL mapping";
1189 	if (unlikely(page_ref_count(page) != 0))
1190 		bad_reason = "nonzero _refcount";
1191 	if (unlikely(page->flags & flags)) {
1192 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1193 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1194 		else
1195 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1196 	}
1197 #ifdef CONFIG_MEMCG
1198 	if (unlikely(page->memcg_data))
1199 		bad_reason = "page still charged to cgroup";
1200 #endif
1201 	return bad_reason;
1202 }
1203 
1204 static void check_free_page_bad(struct page *page)
1205 {
1206 	bad_page(page,
1207 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1208 }
1209 
1210 static inline int check_free_page(struct page *page)
1211 {
1212 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1213 		return 0;
1214 
1215 	/* Something has gone sideways, find it */
1216 	check_free_page_bad(page);
1217 	return 1;
1218 }
1219 
1220 static int free_tail_pages_check(struct page *head_page, struct page *page)
1221 {
1222 	int ret = 1;
1223 
1224 	/*
1225 	 * We rely page->lru.next never has bit 0 set, unless the page
1226 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1227 	 */
1228 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1229 
1230 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1231 		ret = 0;
1232 		goto out;
1233 	}
1234 	switch (page - head_page) {
1235 	case 1:
1236 		/* the first tail page: ->mapping may be compound_mapcount() */
1237 		if (unlikely(compound_mapcount(page))) {
1238 			bad_page(page, "nonzero compound_mapcount");
1239 			goto out;
1240 		}
1241 		break;
1242 	case 2:
1243 		/*
1244 		 * the second tail page: ->mapping is
1245 		 * deferred_list.next -- ignore value.
1246 		 */
1247 		break;
1248 	default:
1249 		if (page->mapping != TAIL_MAPPING) {
1250 			bad_page(page, "corrupted mapping in tail page");
1251 			goto out;
1252 		}
1253 		break;
1254 	}
1255 	if (unlikely(!PageTail(page))) {
1256 		bad_page(page, "PageTail not set");
1257 		goto out;
1258 	}
1259 	if (unlikely(compound_head(page) != head_page)) {
1260 		bad_page(page, "compound_head not consistent");
1261 		goto out;
1262 	}
1263 	ret = 0;
1264 out:
1265 	page->mapping = NULL;
1266 	clear_compound_head(page);
1267 	return ret;
1268 }
1269 
1270 /*
1271  * Skip KASAN memory poisoning when either:
1272  *
1273  * 1. Deferred memory initialization has not yet completed,
1274  *    see the explanation below.
1275  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1276  *    see the comment next to it.
1277  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1278  *    see the comment next to it.
1279  *
1280  * Poisoning pages during deferred memory init will greatly lengthen the
1281  * process and cause problem in large memory systems as the deferred pages
1282  * initialization is done with interrupt disabled.
1283  *
1284  * Assuming that there will be no reference to those newly initialized
1285  * pages before they are ever allocated, this should have no effect on
1286  * KASAN memory tracking as the poison will be properly inserted at page
1287  * allocation time. The only corner case is when pages are allocated by
1288  * on-demand allocation and then freed again before the deferred pages
1289  * initialization is done, but this is not likely to happen.
1290  */
1291 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1292 {
1293 	return deferred_pages_enabled() ||
1294 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1295 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1296 	       PageSkipKASanPoison(page);
1297 }
1298 
1299 static void kernel_init_free_pages(struct page *page, int numpages)
1300 {
1301 	int i;
1302 
1303 	/* s390's use of memset() could override KASAN redzones. */
1304 	kasan_disable_current();
1305 	for (i = 0; i < numpages; i++) {
1306 		u8 tag = page_kasan_tag(page + i);
1307 		page_kasan_tag_reset(page + i);
1308 		clear_highpage(page + i);
1309 		page_kasan_tag_set(page + i, tag);
1310 	}
1311 	kasan_enable_current();
1312 }
1313 
1314 static __always_inline bool free_pages_prepare(struct page *page,
1315 			unsigned int order, bool check_free, fpi_t fpi_flags)
1316 {
1317 	int bad = 0;
1318 	bool init = want_init_on_free();
1319 
1320 	VM_BUG_ON_PAGE(PageTail(page), page);
1321 
1322 	trace_mm_page_free(page, order);
1323 
1324 	if (unlikely(PageHWPoison(page)) && !order) {
1325 		/*
1326 		 * Do not let hwpoison pages hit pcplists/buddy
1327 		 * Untie memcg state and reset page's owner
1328 		 */
1329 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 			__memcg_kmem_uncharge_page(page, order);
1331 		reset_page_owner(page, order);
1332 		page_table_check_free(page, order);
1333 		return false;
1334 	}
1335 
1336 	/*
1337 	 * Check tail pages before head page information is cleared to
1338 	 * avoid checking PageCompound for order-0 pages.
1339 	 */
1340 	if (unlikely(order)) {
1341 		bool compound = PageCompound(page);
1342 		int i;
1343 
1344 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1345 
1346 		if (compound) {
1347 			ClearPageDoubleMap(page);
1348 			ClearPageHasHWPoisoned(page);
1349 		}
1350 		for (i = 1; i < (1 << order); i++) {
1351 			if (compound)
1352 				bad += free_tail_pages_check(page, page + i);
1353 			if (unlikely(check_free_page(page + i))) {
1354 				bad++;
1355 				continue;
1356 			}
1357 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1358 		}
1359 	}
1360 	if (PageMappingFlags(page))
1361 		page->mapping = NULL;
1362 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1363 		__memcg_kmem_uncharge_page(page, order);
1364 	if (check_free)
1365 		bad += check_free_page(page);
1366 	if (bad)
1367 		return false;
1368 
1369 	page_cpupid_reset_last(page);
1370 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1371 	reset_page_owner(page, order);
1372 	page_table_check_free(page, order);
1373 
1374 	if (!PageHighMem(page)) {
1375 		debug_check_no_locks_freed(page_address(page),
1376 					   PAGE_SIZE << order);
1377 		debug_check_no_obj_freed(page_address(page),
1378 					   PAGE_SIZE << order);
1379 	}
1380 
1381 	kernel_poison_pages(page, 1 << order);
1382 
1383 	/*
1384 	 * As memory initialization might be integrated into KASAN,
1385 	 * KASAN poisoning and memory initialization code must be
1386 	 * kept together to avoid discrepancies in behavior.
1387 	 *
1388 	 * With hardware tag-based KASAN, memory tags must be set before the
1389 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1390 	 */
1391 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1392 		kasan_poison_pages(page, order, init);
1393 
1394 		/* Memory is already initialized if KASAN did it internally. */
1395 		if (kasan_has_integrated_init())
1396 			init = false;
1397 	}
1398 	if (init)
1399 		kernel_init_free_pages(page, 1 << order);
1400 
1401 	/*
1402 	 * arch_free_page() can make the page's contents inaccessible.  s390
1403 	 * does this.  So nothing which can access the page's contents should
1404 	 * happen after this.
1405 	 */
1406 	arch_free_page(page, order);
1407 
1408 	debug_pagealloc_unmap_pages(page, 1 << order);
1409 
1410 	return true;
1411 }
1412 
1413 #ifdef CONFIG_DEBUG_VM
1414 /*
1415  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1416  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1417  * moved from pcp lists to free lists.
1418  */
1419 static bool free_pcp_prepare(struct page *page, unsigned int order)
1420 {
1421 	return free_pages_prepare(page, order, true, FPI_NONE);
1422 }
1423 
1424 static bool bulkfree_pcp_prepare(struct page *page)
1425 {
1426 	if (debug_pagealloc_enabled_static())
1427 		return check_free_page(page);
1428 	else
1429 		return false;
1430 }
1431 #else
1432 /*
1433  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1434  * moving from pcp lists to free list in order to reduce overhead. With
1435  * debug_pagealloc enabled, they are checked also immediately when being freed
1436  * to the pcp lists.
1437  */
1438 static bool free_pcp_prepare(struct page *page, unsigned int order)
1439 {
1440 	if (debug_pagealloc_enabled_static())
1441 		return free_pages_prepare(page, order, true, FPI_NONE);
1442 	else
1443 		return free_pages_prepare(page, order, false, FPI_NONE);
1444 }
1445 
1446 static bool bulkfree_pcp_prepare(struct page *page)
1447 {
1448 	return check_free_page(page);
1449 }
1450 #endif /* CONFIG_DEBUG_VM */
1451 
1452 /*
1453  * Frees a number of pages from the PCP lists
1454  * Assumes all pages on list are in same zone.
1455  * count is the number of pages to free.
1456  */
1457 static void free_pcppages_bulk(struct zone *zone, int count,
1458 					struct per_cpu_pages *pcp,
1459 					int pindex)
1460 {
1461 	int min_pindex = 0;
1462 	int max_pindex = NR_PCP_LISTS - 1;
1463 	unsigned int order;
1464 	bool isolated_pageblocks;
1465 	struct page *page;
1466 
1467 	/*
1468 	 * Ensure proper count is passed which otherwise would stuck in the
1469 	 * below while (list_empty(list)) loop.
1470 	 */
1471 	count = min(pcp->count, count);
1472 
1473 	/* Ensure requested pindex is drained first. */
1474 	pindex = pindex - 1;
1475 
1476 	/*
1477 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1478 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1479 	 */
1480 	spin_lock(&zone->lock);
1481 	isolated_pageblocks = has_isolate_pageblock(zone);
1482 
1483 	while (count > 0) {
1484 		struct list_head *list;
1485 		int nr_pages;
1486 
1487 		/* Remove pages from lists in a round-robin fashion. */
1488 		do {
1489 			if (++pindex > max_pindex)
1490 				pindex = min_pindex;
1491 			list = &pcp->lists[pindex];
1492 			if (!list_empty(list))
1493 				break;
1494 
1495 			if (pindex == max_pindex)
1496 				max_pindex--;
1497 			if (pindex == min_pindex)
1498 				min_pindex++;
1499 		} while (1);
1500 
1501 		order = pindex_to_order(pindex);
1502 		nr_pages = 1 << order;
1503 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1504 		do {
1505 			int mt;
1506 
1507 			page = list_last_entry(list, struct page, lru);
1508 			mt = get_pcppage_migratetype(page);
1509 
1510 			/* must delete to avoid corrupting pcp list */
1511 			list_del(&page->lru);
1512 			count -= nr_pages;
1513 			pcp->count -= nr_pages;
1514 
1515 			if (bulkfree_pcp_prepare(page))
1516 				continue;
1517 
1518 			/* MIGRATE_ISOLATE page should not go to pcplists */
1519 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1520 			/* Pageblock could have been isolated meanwhile */
1521 			if (unlikely(isolated_pageblocks))
1522 				mt = get_pageblock_migratetype(page);
1523 
1524 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1525 			trace_mm_page_pcpu_drain(page, order, mt);
1526 		} while (count > 0 && !list_empty(list));
1527 	}
1528 
1529 	spin_unlock(&zone->lock);
1530 }
1531 
1532 static void free_one_page(struct zone *zone,
1533 				struct page *page, unsigned long pfn,
1534 				unsigned int order,
1535 				int migratetype, fpi_t fpi_flags)
1536 {
1537 	unsigned long flags;
1538 
1539 	spin_lock_irqsave(&zone->lock, flags);
1540 	if (unlikely(has_isolate_pageblock(zone) ||
1541 		is_migrate_isolate(migratetype))) {
1542 		migratetype = get_pfnblock_migratetype(page, pfn);
1543 	}
1544 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1545 	spin_unlock_irqrestore(&zone->lock, flags);
1546 }
1547 
1548 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1549 				unsigned long zone, int nid)
1550 {
1551 	mm_zero_struct_page(page);
1552 	set_page_links(page, zone, nid, pfn);
1553 	init_page_count(page);
1554 	page_mapcount_reset(page);
1555 	page_cpupid_reset_last(page);
1556 	page_kasan_tag_reset(page);
1557 
1558 	INIT_LIST_HEAD(&page->lru);
1559 #ifdef WANT_PAGE_VIRTUAL
1560 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1561 	if (!is_highmem_idx(zone))
1562 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1563 #endif
1564 }
1565 
1566 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1567 static void __meminit init_reserved_page(unsigned long pfn)
1568 {
1569 	pg_data_t *pgdat;
1570 	int nid, zid;
1571 
1572 	if (!early_page_uninitialised(pfn))
1573 		return;
1574 
1575 	nid = early_pfn_to_nid(pfn);
1576 	pgdat = NODE_DATA(nid);
1577 
1578 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 		struct zone *zone = &pgdat->node_zones[zid];
1580 
1581 		if (zone_spans_pfn(zone, pfn))
1582 			break;
1583 	}
1584 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1585 }
1586 #else
1587 static inline void init_reserved_page(unsigned long pfn)
1588 {
1589 }
1590 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1591 
1592 /*
1593  * Initialised pages do not have PageReserved set. This function is
1594  * called for each range allocated by the bootmem allocator and
1595  * marks the pages PageReserved. The remaining valid pages are later
1596  * sent to the buddy page allocator.
1597  */
1598 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1599 {
1600 	unsigned long start_pfn = PFN_DOWN(start);
1601 	unsigned long end_pfn = PFN_UP(end);
1602 
1603 	for (; start_pfn < end_pfn; start_pfn++) {
1604 		if (pfn_valid(start_pfn)) {
1605 			struct page *page = pfn_to_page(start_pfn);
1606 
1607 			init_reserved_page(start_pfn);
1608 
1609 			/* Avoid false-positive PageTail() */
1610 			INIT_LIST_HEAD(&page->lru);
1611 
1612 			/*
1613 			 * no need for atomic set_bit because the struct
1614 			 * page is not visible yet so nobody should
1615 			 * access it yet.
1616 			 */
1617 			__SetPageReserved(page);
1618 		}
1619 	}
1620 }
1621 
1622 static void __free_pages_ok(struct page *page, unsigned int order,
1623 			    fpi_t fpi_flags)
1624 {
1625 	unsigned long flags;
1626 	int migratetype;
1627 	unsigned long pfn = page_to_pfn(page);
1628 	struct zone *zone = page_zone(page);
1629 
1630 	if (!free_pages_prepare(page, order, true, fpi_flags))
1631 		return;
1632 
1633 	migratetype = get_pfnblock_migratetype(page, pfn);
1634 
1635 	spin_lock_irqsave(&zone->lock, flags);
1636 	if (unlikely(has_isolate_pageblock(zone) ||
1637 		is_migrate_isolate(migratetype))) {
1638 		migratetype = get_pfnblock_migratetype(page, pfn);
1639 	}
1640 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1641 	spin_unlock_irqrestore(&zone->lock, flags);
1642 
1643 	__count_vm_events(PGFREE, 1 << order);
1644 }
1645 
1646 void __free_pages_core(struct page *page, unsigned int order)
1647 {
1648 	unsigned int nr_pages = 1 << order;
1649 	struct page *p = page;
1650 	unsigned int loop;
1651 
1652 	/*
1653 	 * When initializing the memmap, __init_single_page() sets the refcount
1654 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1655 	 * refcount of all involved pages to 0.
1656 	 */
1657 	prefetchw(p);
1658 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1659 		prefetchw(p + 1);
1660 		__ClearPageReserved(p);
1661 		set_page_count(p, 0);
1662 	}
1663 	__ClearPageReserved(p);
1664 	set_page_count(p, 0);
1665 
1666 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1667 
1668 	/*
1669 	 * Bypass PCP and place fresh pages right to the tail, primarily
1670 	 * relevant for memory onlining.
1671 	 */
1672 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1673 }
1674 
1675 #ifdef CONFIG_NUMA
1676 
1677 /*
1678  * During memory init memblocks map pfns to nids. The search is expensive and
1679  * this caches recent lookups. The implementation of __early_pfn_to_nid
1680  * treats start/end as pfns.
1681  */
1682 struct mminit_pfnnid_cache {
1683 	unsigned long last_start;
1684 	unsigned long last_end;
1685 	int last_nid;
1686 };
1687 
1688 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1689 
1690 /*
1691  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1692  */
1693 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1694 					struct mminit_pfnnid_cache *state)
1695 {
1696 	unsigned long start_pfn, end_pfn;
1697 	int nid;
1698 
1699 	if (state->last_start <= pfn && pfn < state->last_end)
1700 		return state->last_nid;
1701 
1702 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1703 	if (nid != NUMA_NO_NODE) {
1704 		state->last_start = start_pfn;
1705 		state->last_end = end_pfn;
1706 		state->last_nid = nid;
1707 	}
1708 
1709 	return nid;
1710 }
1711 
1712 int __meminit early_pfn_to_nid(unsigned long pfn)
1713 {
1714 	static DEFINE_SPINLOCK(early_pfn_lock);
1715 	int nid;
1716 
1717 	spin_lock(&early_pfn_lock);
1718 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1719 	if (nid < 0)
1720 		nid = first_online_node;
1721 	spin_unlock(&early_pfn_lock);
1722 
1723 	return nid;
1724 }
1725 #endif /* CONFIG_NUMA */
1726 
1727 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1728 							unsigned int order)
1729 {
1730 	if (early_page_uninitialised(pfn))
1731 		return;
1732 	__free_pages_core(page, order);
1733 }
1734 
1735 /*
1736  * Check that the whole (or subset of) a pageblock given by the interval of
1737  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1738  * with the migration of free compaction scanner.
1739  *
1740  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1741  *
1742  * It's possible on some configurations to have a setup like node0 node1 node0
1743  * i.e. it's possible that all pages within a zones range of pages do not
1744  * belong to a single zone. We assume that a border between node0 and node1
1745  * can occur within a single pageblock, but not a node0 node1 node0
1746  * interleaving within a single pageblock. It is therefore sufficient to check
1747  * the first and last page of a pageblock and avoid checking each individual
1748  * page in a pageblock.
1749  */
1750 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1751 				     unsigned long end_pfn, struct zone *zone)
1752 {
1753 	struct page *start_page;
1754 	struct page *end_page;
1755 
1756 	/* end_pfn is one past the range we are checking */
1757 	end_pfn--;
1758 
1759 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1760 		return NULL;
1761 
1762 	start_page = pfn_to_online_page(start_pfn);
1763 	if (!start_page)
1764 		return NULL;
1765 
1766 	if (page_zone(start_page) != zone)
1767 		return NULL;
1768 
1769 	end_page = pfn_to_page(end_pfn);
1770 
1771 	/* This gives a shorter code than deriving page_zone(end_page) */
1772 	if (page_zone_id(start_page) != page_zone_id(end_page))
1773 		return NULL;
1774 
1775 	return start_page;
1776 }
1777 
1778 void set_zone_contiguous(struct zone *zone)
1779 {
1780 	unsigned long block_start_pfn = zone->zone_start_pfn;
1781 	unsigned long block_end_pfn;
1782 
1783 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1784 	for (; block_start_pfn < zone_end_pfn(zone);
1785 			block_start_pfn = block_end_pfn,
1786 			 block_end_pfn += pageblock_nr_pages) {
1787 
1788 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1789 
1790 		if (!__pageblock_pfn_to_page(block_start_pfn,
1791 					     block_end_pfn, zone))
1792 			return;
1793 		cond_resched();
1794 	}
1795 
1796 	/* We confirm that there is no hole */
1797 	zone->contiguous = true;
1798 }
1799 
1800 void clear_zone_contiguous(struct zone *zone)
1801 {
1802 	zone->contiguous = false;
1803 }
1804 
1805 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1806 static void __init deferred_free_range(unsigned long pfn,
1807 				       unsigned long nr_pages)
1808 {
1809 	struct page *page;
1810 	unsigned long i;
1811 
1812 	if (!nr_pages)
1813 		return;
1814 
1815 	page = pfn_to_page(pfn);
1816 
1817 	/* Free a large naturally-aligned chunk if possible */
1818 	if (nr_pages == pageblock_nr_pages &&
1819 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1820 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1821 		__free_pages_core(page, pageblock_order);
1822 		return;
1823 	}
1824 
1825 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1826 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1827 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1828 		__free_pages_core(page, 0);
1829 	}
1830 }
1831 
1832 /* Completion tracking for deferred_init_memmap() threads */
1833 static atomic_t pgdat_init_n_undone __initdata;
1834 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1835 
1836 static inline void __init pgdat_init_report_one_done(void)
1837 {
1838 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1839 		complete(&pgdat_init_all_done_comp);
1840 }
1841 
1842 /*
1843  * Returns true if page needs to be initialized or freed to buddy allocator.
1844  *
1845  * First we check if pfn is valid on architectures where it is possible to have
1846  * holes within pageblock_nr_pages. On systems where it is not possible, this
1847  * function is optimized out.
1848  *
1849  * Then, we check if a current large page is valid by only checking the validity
1850  * of the head pfn.
1851  */
1852 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1853 {
1854 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1855 		return false;
1856 	return true;
1857 }
1858 
1859 /*
1860  * Free pages to buddy allocator. Try to free aligned pages in
1861  * pageblock_nr_pages sizes.
1862  */
1863 static void __init deferred_free_pages(unsigned long pfn,
1864 				       unsigned long end_pfn)
1865 {
1866 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1867 	unsigned long nr_free = 0;
1868 
1869 	for (; pfn < end_pfn; pfn++) {
1870 		if (!deferred_pfn_valid(pfn)) {
1871 			deferred_free_range(pfn - nr_free, nr_free);
1872 			nr_free = 0;
1873 		} else if (!(pfn & nr_pgmask)) {
1874 			deferred_free_range(pfn - nr_free, nr_free);
1875 			nr_free = 1;
1876 		} else {
1877 			nr_free++;
1878 		}
1879 	}
1880 	/* Free the last block of pages to allocator */
1881 	deferred_free_range(pfn - nr_free, nr_free);
1882 }
1883 
1884 /*
1885  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1886  * by performing it only once every pageblock_nr_pages.
1887  * Return number of pages initialized.
1888  */
1889 static unsigned long  __init deferred_init_pages(struct zone *zone,
1890 						 unsigned long pfn,
1891 						 unsigned long end_pfn)
1892 {
1893 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1894 	int nid = zone_to_nid(zone);
1895 	unsigned long nr_pages = 0;
1896 	int zid = zone_idx(zone);
1897 	struct page *page = NULL;
1898 
1899 	for (; pfn < end_pfn; pfn++) {
1900 		if (!deferred_pfn_valid(pfn)) {
1901 			page = NULL;
1902 			continue;
1903 		} else if (!page || !(pfn & nr_pgmask)) {
1904 			page = pfn_to_page(pfn);
1905 		} else {
1906 			page++;
1907 		}
1908 		__init_single_page(page, pfn, zid, nid);
1909 		nr_pages++;
1910 	}
1911 	return (nr_pages);
1912 }
1913 
1914 /*
1915  * This function is meant to pre-load the iterator for the zone init.
1916  * Specifically it walks through the ranges until we are caught up to the
1917  * first_init_pfn value and exits there. If we never encounter the value we
1918  * return false indicating there are no valid ranges left.
1919  */
1920 static bool __init
1921 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1922 				    unsigned long *spfn, unsigned long *epfn,
1923 				    unsigned long first_init_pfn)
1924 {
1925 	u64 j;
1926 
1927 	/*
1928 	 * Start out by walking through the ranges in this zone that have
1929 	 * already been initialized. We don't need to do anything with them
1930 	 * so we just need to flush them out of the system.
1931 	 */
1932 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1933 		if (*epfn <= first_init_pfn)
1934 			continue;
1935 		if (*spfn < first_init_pfn)
1936 			*spfn = first_init_pfn;
1937 		*i = j;
1938 		return true;
1939 	}
1940 
1941 	return false;
1942 }
1943 
1944 /*
1945  * Initialize and free pages. We do it in two loops: first we initialize
1946  * struct page, then free to buddy allocator, because while we are
1947  * freeing pages we can access pages that are ahead (computing buddy
1948  * page in __free_one_page()).
1949  *
1950  * In order to try and keep some memory in the cache we have the loop
1951  * broken along max page order boundaries. This way we will not cause
1952  * any issues with the buddy page computation.
1953  */
1954 static unsigned long __init
1955 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1956 		       unsigned long *end_pfn)
1957 {
1958 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1959 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1960 	unsigned long nr_pages = 0;
1961 	u64 j = *i;
1962 
1963 	/* First we loop through and initialize the page values */
1964 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1965 		unsigned long t;
1966 
1967 		if (mo_pfn <= *start_pfn)
1968 			break;
1969 
1970 		t = min(mo_pfn, *end_pfn);
1971 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1972 
1973 		if (mo_pfn < *end_pfn) {
1974 			*start_pfn = mo_pfn;
1975 			break;
1976 		}
1977 	}
1978 
1979 	/* Reset values and now loop through freeing pages as needed */
1980 	swap(j, *i);
1981 
1982 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1983 		unsigned long t;
1984 
1985 		if (mo_pfn <= spfn)
1986 			break;
1987 
1988 		t = min(mo_pfn, epfn);
1989 		deferred_free_pages(spfn, t);
1990 
1991 		if (mo_pfn <= epfn)
1992 			break;
1993 	}
1994 
1995 	return nr_pages;
1996 }
1997 
1998 static void __init
1999 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2000 			   void *arg)
2001 {
2002 	unsigned long spfn, epfn;
2003 	struct zone *zone = arg;
2004 	u64 i;
2005 
2006 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2007 
2008 	/*
2009 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2010 	 * can avoid introducing any issues with the buddy allocator.
2011 	 */
2012 	while (spfn < end_pfn) {
2013 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2014 		cond_resched();
2015 	}
2016 }
2017 
2018 /* An arch may override for more concurrency. */
2019 __weak int __init
2020 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2021 {
2022 	return 1;
2023 }
2024 
2025 /* Initialise remaining memory on a node */
2026 static int __init deferred_init_memmap(void *data)
2027 {
2028 	pg_data_t *pgdat = data;
2029 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2030 	unsigned long spfn = 0, epfn = 0;
2031 	unsigned long first_init_pfn, flags;
2032 	unsigned long start = jiffies;
2033 	struct zone *zone;
2034 	int zid, max_threads;
2035 	u64 i;
2036 
2037 	/* Bind memory initialisation thread to a local node if possible */
2038 	if (!cpumask_empty(cpumask))
2039 		set_cpus_allowed_ptr(current, cpumask);
2040 
2041 	pgdat_resize_lock(pgdat, &flags);
2042 	first_init_pfn = pgdat->first_deferred_pfn;
2043 	if (first_init_pfn == ULONG_MAX) {
2044 		pgdat_resize_unlock(pgdat, &flags);
2045 		pgdat_init_report_one_done();
2046 		return 0;
2047 	}
2048 
2049 	/* Sanity check boundaries */
2050 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2051 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2052 	pgdat->first_deferred_pfn = ULONG_MAX;
2053 
2054 	/*
2055 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2056 	 * interrupt thread must allocate this early in boot, zone must be
2057 	 * pre-grown prior to start of deferred page initialization.
2058 	 */
2059 	pgdat_resize_unlock(pgdat, &flags);
2060 
2061 	/* Only the highest zone is deferred so find it */
2062 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2063 		zone = pgdat->node_zones + zid;
2064 		if (first_init_pfn < zone_end_pfn(zone))
2065 			break;
2066 	}
2067 
2068 	/* If the zone is empty somebody else may have cleared out the zone */
2069 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2070 						 first_init_pfn))
2071 		goto zone_empty;
2072 
2073 	max_threads = deferred_page_init_max_threads(cpumask);
2074 
2075 	while (spfn < epfn) {
2076 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2077 		struct padata_mt_job job = {
2078 			.thread_fn   = deferred_init_memmap_chunk,
2079 			.fn_arg      = zone,
2080 			.start       = spfn,
2081 			.size        = epfn_align - spfn,
2082 			.align       = PAGES_PER_SECTION,
2083 			.min_chunk   = PAGES_PER_SECTION,
2084 			.max_threads = max_threads,
2085 		};
2086 
2087 		padata_do_multithreaded(&job);
2088 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2089 						    epfn_align);
2090 	}
2091 zone_empty:
2092 	/* Sanity check that the next zone really is unpopulated */
2093 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2094 
2095 	pr_info("node %d deferred pages initialised in %ums\n",
2096 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2097 
2098 	pgdat_init_report_one_done();
2099 	return 0;
2100 }
2101 
2102 /*
2103  * If this zone has deferred pages, try to grow it by initializing enough
2104  * deferred pages to satisfy the allocation specified by order, rounded up to
2105  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2106  * of SECTION_SIZE bytes by initializing struct pages in increments of
2107  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2108  *
2109  * Return true when zone was grown, otherwise return false. We return true even
2110  * when we grow less than requested, to let the caller decide if there are
2111  * enough pages to satisfy the allocation.
2112  *
2113  * Note: We use noinline because this function is needed only during boot, and
2114  * it is called from a __ref function _deferred_grow_zone. This way we are
2115  * making sure that it is not inlined into permanent text section.
2116  */
2117 static noinline bool __init
2118 deferred_grow_zone(struct zone *zone, unsigned int order)
2119 {
2120 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2121 	pg_data_t *pgdat = zone->zone_pgdat;
2122 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2123 	unsigned long spfn, epfn, flags;
2124 	unsigned long nr_pages = 0;
2125 	u64 i;
2126 
2127 	/* Only the last zone may have deferred pages */
2128 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2129 		return false;
2130 
2131 	pgdat_resize_lock(pgdat, &flags);
2132 
2133 	/*
2134 	 * If someone grew this zone while we were waiting for spinlock, return
2135 	 * true, as there might be enough pages already.
2136 	 */
2137 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2138 		pgdat_resize_unlock(pgdat, &flags);
2139 		return true;
2140 	}
2141 
2142 	/* If the zone is empty somebody else may have cleared out the zone */
2143 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2144 						 first_deferred_pfn)) {
2145 		pgdat->first_deferred_pfn = ULONG_MAX;
2146 		pgdat_resize_unlock(pgdat, &flags);
2147 		/* Retry only once. */
2148 		return first_deferred_pfn != ULONG_MAX;
2149 	}
2150 
2151 	/*
2152 	 * Initialize and free pages in MAX_ORDER sized increments so
2153 	 * that we can avoid introducing any issues with the buddy
2154 	 * allocator.
2155 	 */
2156 	while (spfn < epfn) {
2157 		/* update our first deferred PFN for this section */
2158 		first_deferred_pfn = spfn;
2159 
2160 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2161 		touch_nmi_watchdog();
2162 
2163 		/* We should only stop along section boundaries */
2164 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2165 			continue;
2166 
2167 		/* If our quota has been met we can stop here */
2168 		if (nr_pages >= nr_pages_needed)
2169 			break;
2170 	}
2171 
2172 	pgdat->first_deferred_pfn = spfn;
2173 	pgdat_resize_unlock(pgdat, &flags);
2174 
2175 	return nr_pages > 0;
2176 }
2177 
2178 /*
2179  * deferred_grow_zone() is __init, but it is called from
2180  * get_page_from_freelist() during early boot until deferred_pages permanently
2181  * disables this call. This is why we have refdata wrapper to avoid warning,
2182  * and to ensure that the function body gets unloaded.
2183  */
2184 static bool __ref
2185 _deferred_grow_zone(struct zone *zone, unsigned int order)
2186 {
2187 	return deferred_grow_zone(zone, order);
2188 }
2189 
2190 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2191 
2192 void __init page_alloc_init_late(void)
2193 {
2194 	struct zone *zone;
2195 	int nid;
2196 
2197 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2198 
2199 	/* There will be num_node_state(N_MEMORY) threads */
2200 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2201 	for_each_node_state(nid, N_MEMORY) {
2202 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2203 	}
2204 
2205 	/* Block until all are initialised */
2206 	wait_for_completion(&pgdat_init_all_done_comp);
2207 
2208 	/*
2209 	 * We initialized the rest of the deferred pages.  Permanently disable
2210 	 * on-demand struct page initialization.
2211 	 */
2212 	static_branch_disable(&deferred_pages);
2213 
2214 	/* Reinit limits that are based on free pages after the kernel is up */
2215 	files_maxfiles_init();
2216 #endif
2217 
2218 	buffer_init();
2219 
2220 	/* Discard memblock private memory */
2221 	memblock_discard();
2222 
2223 	for_each_node_state(nid, N_MEMORY)
2224 		shuffle_free_memory(NODE_DATA(nid));
2225 
2226 	for_each_populated_zone(zone)
2227 		set_zone_contiguous(zone);
2228 }
2229 
2230 #ifdef CONFIG_CMA
2231 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2232 void __init init_cma_reserved_pageblock(struct page *page)
2233 {
2234 	unsigned i = pageblock_nr_pages;
2235 	struct page *p = page;
2236 
2237 	do {
2238 		__ClearPageReserved(p);
2239 		set_page_count(p, 0);
2240 	} while (++p, --i);
2241 
2242 	set_pageblock_migratetype(page, MIGRATE_CMA);
2243 	set_page_refcounted(page);
2244 	__free_pages(page, pageblock_order);
2245 
2246 	adjust_managed_page_count(page, pageblock_nr_pages);
2247 	page_zone(page)->cma_pages += pageblock_nr_pages;
2248 }
2249 #endif
2250 
2251 /*
2252  * The order of subdivision here is critical for the IO subsystem.
2253  * Please do not alter this order without good reasons and regression
2254  * testing. Specifically, as large blocks of memory are subdivided,
2255  * the order in which smaller blocks are delivered depends on the order
2256  * they're subdivided in this function. This is the primary factor
2257  * influencing the order in which pages are delivered to the IO
2258  * subsystem according to empirical testing, and this is also justified
2259  * by considering the behavior of a buddy system containing a single
2260  * large block of memory acted on by a series of small allocations.
2261  * This behavior is a critical factor in sglist merging's success.
2262  *
2263  * -- nyc
2264  */
2265 static inline void expand(struct zone *zone, struct page *page,
2266 	int low, int high, int migratetype)
2267 {
2268 	unsigned long size = 1 << high;
2269 
2270 	while (high > low) {
2271 		high--;
2272 		size >>= 1;
2273 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2274 
2275 		/*
2276 		 * Mark as guard pages (or page), that will allow to
2277 		 * merge back to allocator when buddy will be freed.
2278 		 * Corresponding page table entries will not be touched,
2279 		 * pages will stay not present in virtual address space
2280 		 */
2281 		if (set_page_guard(zone, &page[size], high, migratetype))
2282 			continue;
2283 
2284 		add_to_free_list(&page[size], zone, high, migratetype);
2285 		set_buddy_order(&page[size], high);
2286 	}
2287 }
2288 
2289 static void check_new_page_bad(struct page *page)
2290 {
2291 	if (unlikely(page->flags & __PG_HWPOISON)) {
2292 		/* Don't complain about hwpoisoned pages */
2293 		page_mapcount_reset(page); /* remove PageBuddy */
2294 		return;
2295 	}
2296 
2297 	bad_page(page,
2298 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2299 }
2300 
2301 /*
2302  * This page is about to be returned from the page allocator
2303  */
2304 static inline int check_new_page(struct page *page)
2305 {
2306 	if (likely(page_expected_state(page,
2307 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2308 		return 0;
2309 
2310 	check_new_page_bad(page);
2311 	return 1;
2312 }
2313 
2314 static bool check_new_pages(struct page *page, unsigned int order)
2315 {
2316 	int i;
2317 	for (i = 0; i < (1 << order); i++) {
2318 		struct page *p = page + i;
2319 
2320 		if (unlikely(check_new_page(p)))
2321 			return true;
2322 	}
2323 
2324 	return false;
2325 }
2326 
2327 #ifdef CONFIG_DEBUG_VM
2328 /*
2329  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2330  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2331  * also checked when pcp lists are refilled from the free lists.
2332  */
2333 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2334 {
2335 	if (debug_pagealloc_enabled_static())
2336 		return check_new_pages(page, order);
2337 	else
2338 		return false;
2339 }
2340 
2341 static inline bool check_new_pcp(struct page *page, unsigned int order)
2342 {
2343 	return check_new_pages(page, order);
2344 }
2345 #else
2346 /*
2347  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2348  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2349  * enabled, they are also checked when being allocated from the pcp lists.
2350  */
2351 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2352 {
2353 	return check_new_pages(page, order);
2354 }
2355 static inline bool check_new_pcp(struct page *page, unsigned int order)
2356 {
2357 	if (debug_pagealloc_enabled_static())
2358 		return check_new_pages(page, order);
2359 	else
2360 		return false;
2361 }
2362 #endif /* CONFIG_DEBUG_VM */
2363 
2364 static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2365 {
2366 	/* Don't skip if a software KASAN mode is enabled. */
2367 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2368 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2369 		return false;
2370 
2371 	/* Skip, if hardware tag-based KASAN is not enabled. */
2372 	if (!kasan_hw_tags_enabled())
2373 		return true;
2374 
2375 	/*
2376 	 * With hardware tag-based KASAN enabled, skip if either:
2377 	 *
2378 	 * 1. Memory tags have already been cleared via tag_clear_highpage().
2379 	 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2380 	 */
2381 	return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2382 }
2383 
2384 static inline bool should_skip_init(gfp_t flags)
2385 {
2386 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2387 	if (!kasan_hw_tags_enabled())
2388 		return false;
2389 
2390 	/* For hardware tag-based KASAN, skip if requested. */
2391 	return (flags & __GFP_SKIP_ZERO);
2392 }
2393 
2394 inline void post_alloc_hook(struct page *page, unsigned int order,
2395 				gfp_t gfp_flags)
2396 {
2397 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2398 			!should_skip_init(gfp_flags);
2399 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2400 
2401 	set_page_private(page, 0);
2402 	set_page_refcounted(page);
2403 
2404 	arch_alloc_page(page, order);
2405 	debug_pagealloc_map_pages(page, 1 << order);
2406 
2407 	/*
2408 	 * Page unpoisoning must happen before memory initialization.
2409 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2410 	 * allocations and the page unpoisoning code will complain.
2411 	 */
2412 	kernel_unpoison_pages(page, 1 << order);
2413 
2414 	/*
2415 	 * As memory initialization might be integrated into KASAN,
2416 	 * KASAN unpoisoning and memory initializion code must be
2417 	 * kept together to avoid discrepancies in behavior.
2418 	 */
2419 
2420 	/*
2421 	 * If memory tags should be zeroed (which happens only when memory
2422 	 * should be initialized as well).
2423 	 */
2424 	if (init_tags) {
2425 		int i;
2426 
2427 		/* Initialize both memory and tags. */
2428 		for (i = 0; i != 1 << order; ++i)
2429 			tag_clear_highpage(page + i);
2430 
2431 		/* Note that memory is already initialized by the loop above. */
2432 		init = false;
2433 	}
2434 	if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2435 		/* Unpoison shadow memory or set memory tags. */
2436 		kasan_unpoison_pages(page, order, init);
2437 
2438 		/* Note that memory is already initialized by KASAN. */
2439 		if (kasan_has_integrated_init())
2440 			init = false;
2441 	}
2442 	/* If memory is still not initialized, do it now. */
2443 	if (init)
2444 		kernel_init_free_pages(page, 1 << order);
2445 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2446 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2447 		SetPageSkipKASanPoison(page);
2448 
2449 	set_page_owner(page, order, gfp_flags);
2450 	page_table_check_alloc(page, order);
2451 }
2452 
2453 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2454 							unsigned int alloc_flags)
2455 {
2456 	post_alloc_hook(page, order, gfp_flags);
2457 
2458 	if (order && (gfp_flags & __GFP_COMP))
2459 		prep_compound_page(page, order);
2460 
2461 	/*
2462 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2463 	 * allocate the page. The expectation is that the caller is taking
2464 	 * steps that will free more memory. The caller should avoid the page
2465 	 * being used for !PFMEMALLOC purposes.
2466 	 */
2467 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2468 		set_page_pfmemalloc(page);
2469 	else
2470 		clear_page_pfmemalloc(page);
2471 }
2472 
2473 /*
2474  * Go through the free lists for the given migratetype and remove
2475  * the smallest available page from the freelists
2476  */
2477 static __always_inline
2478 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2479 						int migratetype)
2480 {
2481 	unsigned int current_order;
2482 	struct free_area *area;
2483 	struct page *page;
2484 
2485 	/* Find a page of the appropriate size in the preferred list */
2486 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2487 		area = &(zone->free_area[current_order]);
2488 		page = get_page_from_free_area(area, migratetype);
2489 		if (!page)
2490 			continue;
2491 		del_page_from_free_list(page, zone, current_order);
2492 		expand(zone, page, order, current_order, migratetype);
2493 		set_pcppage_migratetype(page, migratetype);
2494 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2495 				pcp_allowed_order(order) &&
2496 				migratetype < MIGRATE_PCPTYPES);
2497 		return page;
2498 	}
2499 
2500 	return NULL;
2501 }
2502 
2503 
2504 /*
2505  * This array describes the order lists are fallen back to when
2506  * the free lists for the desirable migrate type are depleted
2507  *
2508  * The other migratetypes do not have fallbacks.
2509  */
2510 static int fallbacks[MIGRATE_TYPES][3] = {
2511 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2512 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2513 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2514 };
2515 
2516 #ifdef CONFIG_CMA
2517 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2518 					unsigned int order)
2519 {
2520 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2521 }
2522 #else
2523 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2524 					unsigned int order) { return NULL; }
2525 #endif
2526 
2527 /*
2528  * Move the free pages in a range to the freelist tail of the requested type.
2529  * Note that start_page and end_pages are not aligned on a pageblock
2530  * boundary. If alignment is required, use move_freepages_block()
2531  */
2532 static int move_freepages(struct zone *zone,
2533 			  unsigned long start_pfn, unsigned long end_pfn,
2534 			  int migratetype, int *num_movable)
2535 {
2536 	struct page *page;
2537 	unsigned long pfn;
2538 	unsigned int order;
2539 	int pages_moved = 0;
2540 
2541 	for (pfn = start_pfn; pfn <= end_pfn;) {
2542 		page = pfn_to_page(pfn);
2543 		if (!PageBuddy(page)) {
2544 			/*
2545 			 * We assume that pages that could be isolated for
2546 			 * migration are movable. But we don't actually try
2547 			 * isolating, as that would be expensive.
2548 			 */
2549 			if (num_movable &&
2550 					(PageLRU(page) || __PageMovable(page)))
2551 				(*num_movable)++;
2552 			pfn++;
2553 			continue;
2554 		}
2555 
2556 		/* Make sure we are not inadvertently changing nodes */
2557 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2558 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2559 
2560 		order = buddy_order(page);
2561 		move_to_free_list(page, zone, order, migratetype);
2562 		pfn += 1 << order;
2563 		pages_moved += 1 << order;
2564 	}
2565 
2566 	return pages_moved;
2567 }
2568 
2569 int move_freepages_block(struct zone *zone, struct page *page,
2570 				int migratetype, int *num_movable)
2571 {
2572 	unsigned long start_pfn, end_pfn, pfn;
2573 
2574 	if (num_movable)
2575 		*num_movable = 0;
2576 
2577 	pfn = page_to_pfn(page);
2578 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2579 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2580 
2581 	/* Do not cross zone boundaries */
2582 	if (!zone_spans_pfn(zone, start_pfn))
2583 		start_pfn = pfn;
2584 	if (!zone_spans_pfn(zone, end_pfn))
2585 		return 0;
2586 
2587 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2588 								num_movable);
2589 }
2590 
2591 static void change_pageblock_range(struct page *pageblock_page,
2592 					int start_order, int migratetype)
2593 {
2594 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2595 
2596 	while (nr_pageblocks--) {
2597 		set_pageblock_migratetype(pageblock_page, migratetype);
2598 		pageblock_page += pageblock_nr_pages;
2599 	}
2600 }
2601 
2602 /*
2603  * When we are falling back to another migratetype during allocation, try to
2604  * steal extra free pages from the same pageblocks to satisfy further
2605  * allocations, instead of polluting multiple pageblocks.
2606  *
2607  * If we are stealing a relatively large buddy page, it is likely there will
2608  * be more free pages in the pageblock, so try to steal them all. For
2609  * reclaimable and unmovable allocations, we steal regardless of page size,
2610  * as fragmentation caused by those allocations polluting movable pageblocks
2611  * is worse than movable allocations stealing from unmovable and reclaimable
2612  * pageblocks.
2613  */
2614 static bool can_steal_fallback(unsigned int order, int start_mt)
2615 {
2616 	/*
2617 	 * Leaving this order check is intended, although there is
2618 	 * relaxed order check in next check. The reason is that
2619 	 * we can actually steal whole pageblock if this condition met,
2620 	 * but, below check doesn't guarantee it and that is just heuristic
2621 	 * so could be changed anytime.
2622 	 */
2623 	if (order >= pageblock_order)
2624 		return true;
2625 
2626 	if (order >= pageblock_order / 2 ||
2627 		start_mt == MIGRATE_RECLAIMABLE ||
2628 		start_mt == MIGRATE_UNMOVABLE ||
2629 		page_group_by_mobility_disabled)
2630 		return true;
2631 
2632 	return false;
2633 }
2634 
2635 static inline bool boost_watermark(struct zone *zone)
2636 {
2637 	unsigned long max_boost;
2638 
2639 	if (!watermark_boost_factor)
2640 		return false;
2641 	/*
2642 	 * Don't bother in zones that are unlikely to produce results.
2643 	 * On small machines, including kdump capture kernels running
2644 	 * in a small area, boosting the watermark can cause an out of
2645 	 * memory situation immediately.
2646 	 */
2647 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2648 		return false;
2649 
2650 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2651 			watermark_boost_factor, 10000);
2652 
2653 	/*
2654 	 * high watermark may be uninitialised if fragmentation occurs
2655 	 * very early in boot so do not boost. We do not fall
2656 	 * through and boost by pageblock_nr_pages as failing
2657 	 * allocations that early means that reclaim is not going
2658 	 * to help and it may even be impossible to reclaim the
2659 	 * boosted watermark resulting in a hang.
2660 	 */
2661 	if (!max_boost)
2662 		return false;
2663 
2664 	max_boost = max(pageblock_nr_pages, max_boost);
2665 
2666 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2667 		max_boost);
2668 
2669 	return true;
2670 }
2671 
2672 /*
2673  * This function implements actual steal behaviour. If order is large enough,
2674  * we can steal whole pageblock. If not, we first move freepages in this
2675  * pageblock to our migratetype and determine how many already-allocated pages
2676  * are there in the pageblock with a compatible migratetype. If at least half
2677  * of pages are free or compatible, we can change migratetype of the pageblock
2678  * itself, so pages freed in the future will be put on the correct free list.
2679  */
2680 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2681 		unsigned int alloc_flags, int start_type, bool whole_block)
2682 {
2683 	unsigned int current_order = buddy_order(page);
2684 	int free_pages, movable_pages, alike_pages;
2685 	int old_block_type;
2686 
2687 	old_block_type = get_pageblock_migratetype(page);
2688 
2689 	/*
2690 	 * This can happen due to races and we want to prevent broken
2691 	 * highatomic accounting.
2692 	 */
2693 	if (is_migrate_highatomic(old_block_type))
2694 		goto single_page;
2695 
2696 	/* Take ownership for orders >= pageblock_order */
2697 	if (current_order >= pageblock_order) {
2698 		change_pageblock_range(page, current_order, start_type);
2699 		goto single_page;
2700 	}
2701 
2702 	/*
2703 	 * Boost watermarks to increase reclaim pressure to reduce the
2704 	 * likelihood of future fallbacks. Wake kswapd now as the node
2705 	 * may be balanced overall and kswapd will not wake naturally.
2706 	 */
2707 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2708 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2709 
2710 	/* We are not allowed to try stealing from the whole block */
2711 	if (!whole_block)
2712 		goto single_page;
2713 
2714 	free_pages = move_freepages_block(zone, page, start_type,
2715 						&movable_pages);
2716 	/*
2717 	 * Determine how many pages are compatible with our allocation.
2718 	 * For movable allocation, it's the number of movable pages which
2719 	 * we just obtained. For other types it's a bit more tricky.
2720 	 */
2721 	if (start_type == MIGRATE_MOVABLE) {
2722 		alike_pages = movable_pages;
2723 	} else {
2724 		/*
2725 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2726 		 * to MOVABLE pageblock, consider all non-movable pages as
2727 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2728 		 * vice versa, be conservative since we can't distinguish the
2729 		 * exact migratetype of non-movable pages.
2730 		 */
2731 		if (old_block_type == MIGRATE_MOVABLE)
2732 			alike_pages = pageblock_nr_pages
2733 						- (free_pages + movable_pages);
2734 		else
2735 			alike_pages = 0;
2736 	}
2737 
2738 	/* moving whole block can fail due to zone boundary conditions */
2739 	if (!free_pages)
2740 		goto single_page;
2741 
2742 	/*
2743 	 * If a sufficient number of pages in the block are either free or of
2744 	 * comparable migratability as our allocation, claim the whole block.
2745 	 */
2746 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2747 			page_group_by_mobility_disabled)
2748 		set_pageblock_migratetype(page, start_type);
2749 
2750 	return;
2751 
2752 single_page:
2753 	move_to_free_list(page, zone, current_order, start_type);
2754 }
2755 
2756 /*
2757  * Check whether there is a suitable fallback freepage with requested order.
2758  * If only_stealable is true, this function returns fallback_mt only if
2759  * we can steal other freepages all together. This would help to reduce
2760  * fragmentation due to mixed migratetype pages in one pageblock.
2761  */
2762 int find_suitable_fallback(struct free_area *area, unsigned int order,
2763 			int migratetype, bool only_stealable, bool *can_steal)
2764 {
2765 	int i;
2766 	int fallback_mt;
2767 
2768 	if (area->nr_free == 0)
2769 		return -1;
2770 
2771 	*can_steal = false;
2772 	for (i = 0;; i++) {
2773 		fallback_mt = fallbacks[migratetype][i];
2774 		if (fallback_mt == MIGRATE_TYPES)
2775 			break;
2776 
2777 		if (free_area_empty(area, fallback_mt))
2778 			continue;
2779 
2780 		if (can_steal_fallback(order, migratetype))
2781 			*can_steal = true;
2782 
2783 		if (!only_stealable)
2784 			return fallback_mt;
2785 
2786 		if (*can_steal)
2787 			return fallback_mt;
2788 	}
2789 
2790 	return -1;
2791 }
2792 
2793 /*
2794  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2795  * there are no empty page blocks that contain a page with a suitable order
2796  */
2797 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2798 				unsigned int alloc_order)
2799 {
2800 	int mt;
2801 	unsigned long max_managed, flags;
2802 
2803 	/*
2804 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2805 	 * Check is race-prone but harmless.
2806 	 */
2807 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2808 	if (zone->nr_reserved_highatomic >= max_managed)
2809 		return;
2810 
2811 	spin_lock_irqsave(&zone->lock, flags);
2812 
2813 	/* Recheck the nr_reserved_highatomic limit under the lock */
2814 	if (zone->nr_reserved_highatomic >= max_managed)
2815 		goto out_unlock;
2816 
2817 	/* Yoink! */
2818 	mt = get_pageblock_migratetype(page);
2819 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2820 	if (migratetype_is_mergeable(mt)) {
2821 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2822 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2823 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2824 	}
2825 
2826 out_unlock:
2827 	spin_unlock_irqrestore(&zone->lock, flags);
2828 }
2829 
2830 /*
2831  * Used when an allocation is about to fail under memory pressure. This
2832  * potentially hurts the reliability of high-order allocations when under
2833  * intense memory pressure but failed atomic allocations should be easier
2834  * to recover from than an OOM.
2835  *
2836  * If @force is true, try to unreserve a pageblock even though highatomic
2837  * pageblock is exhausted.
2838  */
2839 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2840 						bool force)
2841 {
2842 	struct zonelist *zonelist = ac->zonelist;
2843 	unsigned long flags;
2844 	struct zoneref *z;
2845 	struct zone *zone;
2846 	struct page *page;
2847 	int order;
2848 	bool ret;
2849 
2850 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2851 								ac->nodemask) {
2852 		/*
2853 		 * Preserve at least one pageblock unless memory pressure
2854 		 * is really high.
2855 		 */
2856 		if (!force && zone->nr_reserved_highatomic <=
2857 					pageblock_nr_pages)
2858 			continue;
2859 
2860 		spin_lock_irqsave(&zone->lock, flags);
2861 		for (order = 0; order < MAX_ORDER; order++) {
2862 			struct free_area *area = &(zone->free_area[order]);
2863 
2864 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2865 			if (!page)
2866 				continue;
2867 
2868 			/*
2869 			 * In page freeing path, migratetype change is racy so
2870 			 * we can counter several free pages in a pageblock
2871 			 * in this loop although we changed the pageblock type
2872 			 * from highatomic to ac->migratetype. So we should
2873 			 * adjust the count once.
2874 			 */
2875 			if (is_migrate_highatomic_page(page)) {
2876 				/*
2877 				 * It should never happen but changes to
2878 				 * locking could inadvertently allow a per-cpu
2879 				 * drain to add pages to MIGRATE_HIGHATOMIC
2880 				 * while unreserving so be safe and watch for
2881 				 * underflows.
2882 				 */
2883 				zone->nr_reserved_highatomic -= min(
2884 						pageblock_nr_pages,
2885 						zone->nr_reserved_highatomic);
2886 			}
2887 
2888 			/*
2889 			 * Convert to ac->migratetype and avoid the normal
2890 			 * pageblock stealing heuristics. Minimally, the caller
2891 			 * is doing the work and needs the pages. More
2892 			 * importantly, if the block was always converted to
2893 			 * MIGRATE_UNMOVABLE or another type then the number
2894 			 * of pageblocks that cannot be completely freed
2895 			 * may increase.
2896 			 */
2897 			set_pageblock_migratetype(page, ac->migratetype);
2898 			ret = move_freepages_block(zone, page, ac->migratetype,
2899 									NULL);
2900 			if (ret) {
2901 				spin_unlock_irqrestore(&zone->lock, flags);
2902 				return ret;
2903 			}
2904 		}
2905 		spin_unlock_irqrestore(&zone->lock, flags);
2906 	}
2907 
2908 	return false;
2909 }
2910 
2911 /*
2912  * Try finding a free buddy page on the fallback list and put it on the free
2913  * list of requested migratetype, possibly along with other pages from the same
2914  * block, depending on fragmentation avoidance heuristics. Returns true if
2915  * fallback was found so that __rmqueue_smallest() can grab it.
2916  *
2917  * The use of signed ints for order and current_order is a deliberate
2918  * deviation from the rest of this file, to make the for loop
2919  * condition simpler.
2920  */
2921 static __always_inline bool
2922 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2923 						unsigned int alloc_flags)
2924 {
2925 	struct free_area *area;
2926 	int current_order;
2927 	int min_order = order;
2928 	struct page *page;
2929 	int fallback_mt;
2930 	bool can_steal;
2931 
2932 	/*
2933 	 * Do not steal pages from freelists belonging to other pageblocks
2934 	 * i.e. orders < pageblock_order. If there are no local zones free,
2935 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2936 	 */
2937 	if (alloc_flags & ALLOC_NOFRAGMENT)
2938 		min_order = pageblock_order;
2939 
2940 	/*
2941 	 * Find the largest available free page in the other list. This roughly
2942 	 * approximates finding the pageblock with the most free pages, which
2943 	 * would be too costly to do exactly.
2944 	 */
2945 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2946 				--current_order) {
2947 		area = &(zone->free_area[current_order]);
2948 		fallback_mt = find_suitable_fallback(area, current_order,
2949 				start_migratetype, false, &can_steal);
2950 		if (fallback_mt == -1)
2951 			continue;
2952 
2953 		/*
2954 		 * We cannot steal all free pages from the pageblock and the
2955 		 * requested migratetype is movable. In that case it's better to
2956 		 * steal and split the smallest available page instead of the
2957 		 * largest available page, because even if the next movable
2958 		 * allocation falls back into a different pageblock than this
2959 		 * one, it won't cause permanent fragmentation.
2960 		 */
2961 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2962 					&& current_order > order)
2963 			goto find_smallest;
2964 
2965 		goto do_steal;
2966 	}
2967 
2968 	return false;
2969 
2970 find_smallest:
2971 	for (current_order = order; current_order < MAX_ORDER;
2972 							current_order++) {
2973 		area = &(zone->free_area[current_order]);
2974 		fallback_mt = find_suitable_fallback(area, current_order,
2975 				start_migratetype, false, &can_steal);
2976 		if (fallback_mt != -1)
2977 			break;
2978 	}
2979 
2980 	/*
2981 	 * This should not happen - we already found a suitable fallback
2982 	 * when looking for the largest page.
2983 	 */
2984 	VM_BUG_ON(current_order == MAX_ORDER);
2985 
2986 do_steal:
2987 	page = get_page_from_free_area(area, fallback_mt);
2988 
2989 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2990 								can_steal);
2991 
2992 	trace_mm_page_alloc_extfrag(page, order, current_order,
2993 		start_migratetype, fallback_mt);
2994 
2995 	return true;
2996 
2997 }
2998 
2999 /*
3000  * Do the hard work of removing an element from the buddy allocator.
3001  * Call me with the zone->lock already held.
3002  */
3003 static __always_inline struct page *
3004 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3005 						unsigned int alloc_flags)
3006 {
3007 	struct page *page;
3008 
3009 	if (IS_ENABLED(CONFIG_CMA)) {
3010 		/*
3011 		 * Balance movable allocations between regular and CMA areas by
3012 		 * allocating from CMA when over half of the zone's free memory
3013 		 * is in the CMA area.
3014 		 */
3015 		if (alloc_flags & ALLOC_CMA &&
3016 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3017 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3018 			page = __rmqueue_cma_fallback(zone, order);
3019 			if (page)
3020 				return page;
3021 		}
3022 	}
3023 retry:
3024 	page = __rmqueue_smallest(zone, order, migratetype);
3025 	if (unlikely(!page)) {
3026 		if (alloc_flags & ALLOC_CMA)
3027 			page = __rmqueue_cma_fallback(zone, order);
3028 
3029 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3030 								alloc_flags))
3031 			goto retry;
3032 	}
3033 	return page;
3034 }
3035 
3036 /*
3037  * Obtain a specified number of elements from the buddy allocator, all under
3038  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3039  * Returns the number of new pages which were placed at *list.
3040  */
3041 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3042 			unsigned long count, struct list_head *list,
3043 			int migratetype, unsigned int alloc_flags)
3044 {
3045 	int i, allocated = 0;
3046 
3047 	/*
3048 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3049 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3050 	 */
3051 	spin_lock(&zone->lock);
3052 	for (i = 0; i < count; ++i) {
3053 		struct page *page = __rmqueue(zone, order, migratetype,
3054 								alloc_flags);
3055 		if (unlikely(page == NULL))
3056 			break;
3057 
3058 		if (unlikely(check_pcp_refill(page, order)))
3059 			continue;
3060 
3061 		/*
3062 		 * Split buddy pages returned by expand() are received here in
3063 		 * physical page order. The page is added to the tail of
3064 		 * caller's list. From the callers perspective, the linked list
3065 		 * is ordered by page number under some conditions. This is
3066 		 * useful for IO devices that can forward direction from the
3067 		 * head, thus also in the physical page order. This is useful
3068 		 * for IO devices that can merge IO requests if the physical
3069 		 * pages are ordered properly.
3070 		 */
3071 		list_add_tail(&page->lru, list);
3072 		allocated++;
3073 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3074 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3075 					      -(1 << order));
3076 	}
3077 
3078 	/*
3079 	 * i pages were removed from the buddy list even if some leak due
3080 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3081 	 * on i. Do not confuse with 'allocated' which is the number of
3082 	 * pages added to the pcp list.
3083 	 */
3084 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3085 	spin_unlock(&zone->lock);
3086 	return allocated;
3087 }
3088 
3089 #ifdef CONFIG_NUMA
3090 /*
3091  * Called from the vmstat counter updater to drain pagesets of this
3092  * currently executing processor on remote nodes after they have
3093  * expired.
3094  *
3095  * Note that this function must be called with the thread pinned to
3096  * a single processor.
3097  */
3098 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3099 {
3100 	unsigned long flags;
3101 	int to_drain, batch;
3102 
3103 	local_lock_irqsave(&pagesets.lock, flags);
3104 	batch = READ_ONCE(pcp->batch);
3105 	to_drain = min(pcp->count, batch);
3106 	if (to_drain > 0)
3107 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3108 	local_unlock_irqrestore(&pagesets.lock, flags);
3109 }
3110 #endif
3111 
3112 /*
3113  * Drain pcplists of the indicated processor and zone.
3114  *
3115  * The processor must either be the current processor and the
3116  * thread pinned to the current processor or a processor that
3117  * is not online.
3118  */
3119 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3120 {
3121 	unsigned long flags;
3122 	struct per_cpu_pages *pcp;
3123 
3124 	local_lock_irqsave(&pagesets.lock, flags);
3125 
3126 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3127 	if (pcp->count)
3128 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3129 
3130 	local_unlock_irqrestore(&pagesets.lock, flags);
3131 }
3132 
3133 /*
3134  * Drain pcplists of all zones on the indicated processor.
3135  *
3136  * The processor must either be the current processor and the
3137  * thread pinned to the current processor or a processor that
3138  * is not online.
3139  */
3140 static void drain_pages(unsigned int cpu)
3141 {
3142 	struct zone *zone;
3143 
3144 	for_each_populated_zone(zone) {
3145 		drain_pages_zone(cpu, zone);
3146 	}
3147 }
3148 
3149 /*
3150  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3151  *
3152  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3153  * the single zone's pages.
3154  */
3155 void drain_local_pages(struct zone *zone)
3156 {
3157 	int cpu = smp_processor_id();
3158 
3159 	if (zone)
3160 		drain_pages_zone(cpu, zone);
3161 	else
3162 		drain_pages(cpu);
3163 }
3164 
3165 static void drain_local_pages_wq(struct work_struct *work)
3166 {
3167 	struct pcpu_drain *drain;
3168 
3169 	drain = container_of(work, struct pcpu_drain, work);
3170 
3171 	/*
3172 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3173 	 * we can race with cpu offline when the WQ can move this from
3174 	 * a cpu pinned worker to an unbound one. We can operate on a different
3175 	 * cpu which is alright but we also have to make sure to not move to
3176 	 * a different one.
3177 	 */
3178 	migrate_disable();
3179 	drain_local_pages(drain->zone);
3180 	migrate_enable();
3181 }
3182 
3183 /*
3184  * The implementation of drain_all_pages(), exposing an extra parameter to
3185  * drain on all cpus.
3186  *
3187  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3188  * not empty. The check for non-emptiness can however race with a free to
3189  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3190  * that need the guarantee that every CPU has drained can disable the
3191  * optimizing racy check.
3192  */
3193 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3194 {
3195 	int cpu;
3196 
3197 	/*
3198 	 * Allocate in the BSS so we won't require allocation in
3199 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3200 	 */
3201 	static cpumask_t cpus_with_pcps;
3202 
3203 	/*
3204 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3205 	 * initialized.
3206 	 */
3207 	if (WARN_ON_ONCE(!mm_percpu_wq))
3208 		return;
3209 
3210 	/*
3211 	 * Do not drain if one is already in progress unless it's specific to
3212 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3213 	 * the drain to be complete when the call returns.
3214 	 */
3215 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3216 		if (!zone)
3217 			return;
3218 		mutex_lock(&pcpu_drain_mutex);
3219 	}
3220 
3221 	/*
3222 	 * We don't care about racing with CPU hotplug event
3223 	 * as offline notification will cause the notified
3224 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3225 	 * disables preemption as part of its processing
3226 	 */
3227 	for_each_online_cpu(cpu) {
3228 		struct per_cpu_pages *pcp;
3229 		struct zone *z;
3230 		bool has_pcps = false;
3231 
3232 		if (force_all_cpus) {
3233 			/*
3234 			 * The pcp.count check is racy, some callers need a
3235 			 * guarantee that no cpu is missed.
3236 			 */
3237 			has_pcps = true;
3238 		} else if (zone) {
3239 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3240 			if (pcp->count)
3241 				has_pcps = true;
3242 		} else {
3243 			for_each_populated_zone(z) {
3244 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3245 				if (pcp->count) {
3246 					has_pcps = true;
3247 					break;
3248 				}
3249 			}
3250 		}
3251 
3252 		if (has_pcps)
3253 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3254 		else
3255 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3256 	}
3257 
3258 	for_each_cpu(cpu, &cpus_with_pcps) {
3259 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3260 
3261 		drain->zone = zone;
3262 		INIT_WORK(&drain->work, drain_local_pages_wq);
3263 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3264 	}
3265 	for_each_cpu(cpu, &cpus_with_pcps)
3266 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3267 
3268 	mutex_unlock(&pcpu_drain_mutex);
3269 }
3270 
3271 /*
3272  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3273  *
3274  * When zone parameter is non-NULL, spill just the single zone's pages.
3275  *
3276  * Note that this can be extremely slow as the draining happens in a workqueue.
3277  */
3278 void drain_all_pages(struct zone *zone)
3279 {
3280 	__drain_all_pages(zone, false);
3281 }
3282 
3283 #ifdef CONFIG_HIBERNATION
3284 
3285 /*
3286  * Touch the watchdog for every WD_PAGE_COUNT pages.
3287  */
3288 #define WD_PAGE_COUNT	(128*1024)
3289 
3290 void mark_free_pages(struct zone *zone)
3291 {
3292 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3293 	unsigned long flags;
3294 	unsigned int order, t;
3295 	struct page *page;
3296 
3297 	if (zone_is_empty(zone))
3298 		return;
3299 
3300 	spin_lock_irqsave(&zone->lock, flags);
3301 
3302 	max_zone_pfn = zone_end_pfn(zone);
3303 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3304 		if (pfn_valid(pfn)) {
3305 			page = pfn_to_page(pfn);
3306 
3307 			if (!--page_count) {
3308 				touch_nmi_watchdog();
3309 				page_count = WD_PAGE_COUNT;
3310 			}
3311 
3312 			if (page_zone(page) != zone)
3313 				continue;
3314 
3315 			if (!swsusp_page_is_forbidden(page))
3316 				swsusp_unset_page_free(page);
3317 		}
3318 
3319 	for_each_migratetype_order(order, t) {
3320 		list_for_each_entry(page,
3321 				&zone->free_area[order].free_list[t], lru) {
3322 			unsigned long i;
3323 
3324 			pfn = page_to_pfn(page);
3325 			for (i = 0; i < (1UL << order); i++) {
3326 				if (!--page_count) {
3327 					touch_nmi_watchdog();
3328 					page_count = WD_PAGE_COUNT;
3329 				}
3330 				swsusp_set_page_free(pfn_to_page(pfn + i));
3331 			}
3332 		}
3333 	}
3334 	spin_unlock_irqrestore(&zone->lock, flags);
3335 }
3336 #endif /* CONFIG_PM */
3337 
3338 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3339 							unsigned int order)
3340 {
3341 	int migratetype;
3342 
3343 	if (!free_pcp_prepare(page, order))
3344 		return false;
3345 
3346 	migratetype = get_pfnblock_migratetype(page, pfn);
3347 	set_pcppage_migratetype(page, migratetype);
3348 	return true;
3349 }
3350 
3351 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3352 		       bool free_high)
3353 {
3354 	int min_nr_free, max_nr_free;
3355 
3356 	/* Free everything if batch freeing high-order pages. */
3357 	if (unlikely(free_high))
3358 		return pcp->count;
3359 
3360 	/* Check for PCP disabled or boot pageset */
3361 	if (unlikely(high < batch))
3362 		return 1;
3363 
3364 	/* Leave at least pcp->batch pages on the list */
3365 	min_nr_free = batch;
3366 	max_nr_free = high - batch;
3367 
3368 	/*
3369 	 * Double the number of pages freed each time there is subsequent
3370 	 * freeing of pages without any allocation.
3371 	 */
3372 	batch <<= pcp->free_factor;
3373 	if (batch < max_nr_free)
3374 		pcp->free_factor++;
3375 	batch = clamp(batch, min_nr_free, max_nr_free);
3376 
3377 	return batch;
3378 }
3379 
3380 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3381 		       bool free_high)
3382 {
3383 	int high = READ_ONCE(pcp->high);
3384 
3385 	if (unlikely(!high || free_high))
3386 		return 0;
3387 
3388 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3389 		return high;
3390 
3391 	/*
3392 	 * If reclaim is active, limit the number of pages that can be
3393 	 * stored on pcp lists
3394 	 */
3395 	return min(READ_ONCE(pcp->batch) << 2, high);
3396 }
3397 
3398 static void free_unref_page_commit(struct page *page, int migratetype,
3399 				   unsigned int order)
3400 {
3401 	struct zone *zone = page_zone(page);
3402 	struct per_cpu_pages *pcp;
3403 	int high;
3404 	int pindex;
3405 	bool free_high;
3406 
3407 	__count_vm_event(PGFREE);
3408 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3409 	pindex = order_to_pindex(migratetype, order);
3410 	list_add(&page->lru, &pcp->lists[pindex]);
3411 	pcp->count += 1 << order;
3412 
3413 	/*
3414 	 * As high-order pages other than THP's stored on PCP can contribute
3415 	 * to fragmentation, limit the number stored when PCP is heavily
3416 	 * freeing without allocation. The remainder after bulk freeing
3417 	 * stops will be drained from vmstat refresh context.
3418 	 */
3419 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3420 
3421 	high = nr_pcp_high(pcp, zone, free_high);
3422 	if (pcp->count >= high) {
3423 		int batch = READ_ONCE(pcp->batch);
3424 
3425 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3426 	}
3427 }
3428 
3429 /*
3430  * Free a pcp page
3431  */
3432 void free_unref_page(struct page *page, unsigned int order)
3433 {
3434 	unsigned long flags;
3435 	unsigned long pfn = page_to_pfn(page);
3436 	int migratetype;
3437 
3438 	if (!free_unref_page_prepare(page, pfn, order))
3439 		return;
3440 
3441 	/*
3442 	 * We only track unmovable, reclaimable and movable on pcp lists.
3443 	 * Place ISOLATE pages on the isolated list because they are being
3444 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3445 	 * areas back if necessary. Otherwise, we may have to free
3446 	 * excessively into the page allocator
3447 	 */
3448 	migratetype = get_pcppage_migratetype(page);
3449 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3450 		if (unlikely(is_migrate_isolate(migratetype))) {
3451 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3452 			return;
3453 		}
3454 		migratetype = MIGRATE_MOVABLE;
3455 	}
3456 
3457 	local_lock_irqsave(&pagesets.lock, flags);
3458 	free_unref_page_commit(page, migratetype, order);
3459 	local_unlock_irqrestore(&pagesets.lock, flags);
3460 }
3461 
3462 /*
3463  * Free a list of 0-order pages
3464  */
3465 void free_unref_page_list(struct list_head *list)
3466 {
3467 	struct page *page, *next;
3468 	unsigned long flags;
3469 	int batch_count = 0;
3470 	int migratetype;
3471 
3472 	/* Prepare pages for freeing */
3473 	list_for_each_entry_safe(page, next, list, lru) {
3474 		unsigned long pfn = page_to_pfn(page);
3475 		if (!free_unref_page_prepare(page, pfn, 0)) {
3476 			list_del(&page->lru);
3477 			continue;
3478 		}
3479 
3480 		/*
3481 		 * Free isolated pages directly to the allocator, see
3482 		 * comment in free_unref_page.
3483 		 */
3484 		migratetype = get_pcppage_migratetype(page);
3485 		if (unlikely(is_migrate_isolate(migratetype))) {
3486 			list_del(&page->lru);
3487 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3488 			continue;
3489 		}
3490 	}
3491 
3492 	local_lock_irqsave(&pagesets.lock, flags);
3493 	list_for_each_entry_safe(page, next, list, lru) {
3494 		/*
3495 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3496 		 * to the MIGRATE_MOVABLE pcp list.
3497 		 */
3498 		migratetype = get_pcppage_migratetype(page);
3499 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3500 			migratetype = MIGRATE_MOVABLE;
3501 
3502 		trace_mm_page_free_batched(page);
3503 		free_unref_page_commit(page, migratetype, 0);
3504 
3505 		/*
3506 		 * Guard against excessive IRQ disabled times when we get
3507 		 * a large list of pages to free.
3508 		 */
3509 		if (++batch_count == SWAP_CLUSTER_MAX) {
3510 			local_unlock_irqrestore(&pagesets.lock, flags);
3511 			batch_count = 0;
3512 			local_lock_irqsave(&pagesets.lock, flags);
3513 		}
3514 	}
3515 	local_unlock_irqrestore(&pagesets.lock, flags);
3516 }
3517 
3518 /*
3519  * split_page takes a non-compound higher-order page, and splits it into
3520  * n (1<<order) sub-pages: page[0..n]
3521  * Each sub-page must be freed individually.
3522  *
3523  * Note: this is probably too low level an operation for use in drivers.
3524  * Please consult with lkml before using this in your driver.
3525  */
3526 void split_page(struct page *page, unsigned int order)
3527 {
3528 	int i;
3529 
3530 	VM_BUG_ON_PAGE(PageCompound(page), page);
3531 	VM_BUG_ON_PAGE(!page_count(page), page);
3532 
3533 	for (i = 1; i < (1 << order); i++)
3534 		set_page_refcounted(page + i);
3535 	split_page_owner(page, 1 << order);
3536 	split_page_memcg(page, 1 << order);
3537 }
3538 EXPORT_SYMBOL_GPL(split_page);
3539 
3540 int __isolate_free_page(struct page *page, unsigned int order)
3541 {
3542 	unsigned long watermark;
3543 	struct zone *zone;
3544 	int mt;
3545 
3546 	BUG_ON(!PageBuddy(page));
3547 
3548 	zone = page_zone(page);
3549 	mt = get_pageblock_migratetype(page);
3550 
3551 	if (!is_migrate_isolate(mt)) {
3552 		/*
3553 		 * Obey watermarks as if the page was being allocated. We can
3554 		 * emulate a high-order watermark check with a raised order-0
3555 		 * watermark, because we already know our high-order page
3556 		 * exists.
3557 		 */
3558 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3559 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3560 			return 0;
3561 
3562 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3563 	}
3564 
3565 	/* Remove page from free list */
3566 
3567 	del_page_from_free_list(page, zone, order);
3568 
3569 	/*
3570 	 * Set the pageblock if the isolated page is at least half of a
3571 	 * pageblock
3572 	 */
3573 	if (order >= pageblock_order - 1) {
3574 		struct page *endpage = page + (1 << order) - 1;
3575 		for (; page < endpage; page += pageblock_nr_pages) {
3576 			int mt = get_pageblock_migratetype(page);
3577 			/*
3578 			 * Only change normal pageblocks (i.e., they can merge
3579 			 * with others)
3580 			 */
3581 			if (migratetype_is_mergeable(mt))
3582 				set_pageblock_migratetype(page,
3583 							  MIGRATE_MOVABLE);
3584 		}
3585 	}
3586 
3587 
3588 	return 1UL << order;
3589 }
3590 
3591 /**
3592  * __putback_isolated_page - Return a now-isolated page back where we got it
3593  * @page: Page that was isolated
3594  * @order: Order of the isolated page
3595  * @mt: The page's pageblock's migratetype
3596  *
3597  * This function is meant to return a page pulled from the free lists via
3598  * __isolate_free_page back to the free lists they were pulled from.
3599  */
3600 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3601 {
3602 	struct zone *zone = page_zone(page);
3603 
3604 	/* zone lock should be held when this function is called */
3605 	lockdep_assert_held(&zone->lock);
3606 
3607 	/* Return isolated page to tail of freelist. */
3608 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3609 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3610 }
3611 
3612 /*
3613  * Update NUMA hit/miss statistics
3614  *
3615  * Must be called with interrupts disabled.
3616  */
3617 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3618 				   long nr_account)
3619 {
3620 #ifdef CONFIG_NUMA
3621 	enum numa_stat_item local_stat = NUMA_LOCAL;
3622 
3623 	/* skip numa counters update if numa stats is disabled */
3624 	if (!static_branch_likely(&vm_numa_stat_key))
3625 		return;
3626 
3627 	if (zone_to_nid(z) != numa_node_id())
3628 		local_stat = NUMA_OTHER;
3629 
3630 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3631 		__count_numa_events(z, NUMA_HIT, nr_account);
3632 	else {
3633 		__count_numa_events(z, NUMA_MISS, nr_account);
3634 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3635 	}
3636 	__count_numa_events(z, local_stat, nr_account);
3637 #endif
3638 }
3639 
3640 /* Remove page from the per-cpu list, caller must protect the list */
3641 static inline
3642 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3643 			int migratetype,
3644 			unsigned int alloc_flags,
3645 			struct per_cpu_pages *pcp,
3646 			struct list_head *list)
3647 {
3648 	struct page *page;
3649 
3650 	do {
3651 		if (list_empty(list)) {
3652 			int batch = READ_ONCE(pcp->batch);
3653 			int alloced;
3654 
3655 			/*
3656 			 * Scale batch relative to order if batch implies
3657 			 * free pages can be stored on the PCP. Batch can
3658 			 * be 1 for small zones or for boot pagesets which
3659 			 * should never store free pages as the pages may
3660 			 * belong to arbitrary zones.
3661 			 */
3662 			if (batch > 1)
3663 				batch = max(batch >> order, 2);
3664 			alloced = rmqueue_bulk(zone, order,
3665 					batch, list,
3666 					migratetype, alloc_flags);
3667 
3668 			pcp->count += alloced << order;
3669 			if (unlikely(list_empty(list)))
3670 				return NULL;
3671 		}
3672 
3673 		page = list_first_entry(list, struct page, lru);
3674 		list_del(&page->lru);
3675 		pcp->count -= 1 << order;
3676 	} while (check_new_pcp(page, order));
3677 
3678 	return page;
3679 }
3680 
3681 /* Lock and remove page from the per-cpu list */
3682 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3683 			struct zone *zone, unsigned int order,
3684 			gfp_t gfp_flags, int migratetype,
3685 			unsigned int alloc_flags)
3686 {
3687 	struct per_cpu_pages *pcp;
3688 	struct list_head *list;
3689 	struct page *page;
3690 	unsigned long flags;
3691 
3692 	local_lock_irqsave(&pagesets.lock, flags);
3693 
3694 	/*
3695 	 * On allocation, reduce the number of pages that are batch freed.
3696 	 * See nr_pcp_free() where free_factor is increased for subsequent
3697 	 * frees.
3698 	 */
3699 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3700 	pcp->free_factor >>= 1;
3701 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3702 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3703 	local_unlock_irqrestore(&pagesets.lock, flags);
3704 	if (page) {
3705 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3706 		zone_statistics(preferred_zone, zone, 1);
3707 	}
3708 	return page;
3709 }
3710 
3711 /*
3712  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3713  */
3714 static inline
3715 struct page *rmqueue(struct zone *preferred_zone,
3716 			struct zone *zone, unsigned int order,
3717 			gfp_t gfp_flags, unsigned int alloc_flags,
3718 			int migratetype)
3719 {
3720 	unsigned long flags;
3721 	struct page *page;
3722 
3723 	if (likely(pcp_allowed_order(order))) {
3724 		/*
3725 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3726 		 * we need to skip it when CMA area isn't allowed.
3727 		 */
3728 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3729 				migratetype != MIGRATE_MOVABLE) {
3730 			page = rmqueue_pcplist(preferred_zone, zone, order,
3731 					gfp_flags, migratetype, alloc_flags);
3732 			goto out;
3733 		}
3734 	}
3735 
3736 	/*
3737 	 * We most definitely don't want callers attempting to
3738 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3739 	 */
3740 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3741 
3742 	do {
3743 		page = NULL;
3744 		spin_lock_irqsave(&zone->lock, flags);
3745 		/*
3746 		 * order-0 request can reach here when the pcplist is skipped
3747 		 * due to non-CMA allocation context. HIGHATOMIC area is
3748 		 * reserved for high-order atomic allocation, so order-0
3749 		 * request should skip it.
3750 		 */
3751 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3752 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3753 		if (!page) {
3754 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3755 			if (!page)
3756 				goto failed;
3757 		}
3758 		__mod_zone_freepage_state(zone, -(1 << order),
3759 					  get_pcppage_migratetype(page));
3760 		spin_unlock_irqrestore(&zone->lock, flags);
3761 	} while (check_new_pages(page, order));
3762 
3763 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3764 	zone_statistics(preferred_zone, zone, 1);
3765 
3766 out:
3767 	/* Separate test+clear to avoid unnecessary atomics */
3768 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3769 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3770 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3771 	}
3772 
3773 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3774 	return page;
3775 
3776 failed:
3777 	spin_unlock_irqrestore(&zone->lock, flags);
3778 	return NULL;
3779 }
3780 
3781 #ifdef CONFIG_FAIL_PAGE_ALLOC
3782 
3783 static struct {
3784 	struct fault_attr attr;
3785 
3786 	bool ignore_gfp_highmem;
3787 	bool ignore_gfp_reclaim;
3788 	u32 min_order;
3789 } fail_page_alloc = {
3790 	.attr = FAULT_ATTR_INITIALIZER,
3791 	.ignore_gfp_reclaim = true,
3792 	.ignore_gfp_highmem = true,
3793 	.min_order = 1,
3794 };
3795 
3796 static int __init setup_fail_page_alloc(char *str)
3797 {
3798 	return setup_fault_attr(&fail_page_alloc.attr, str);
3799 }
3800 __setup("fail_page_alloc=", setup_fail_page_alloc);
3801 
3802 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3803 {
3804 	if (order < fail_page_alloc.min_order)
3805 		return false;
3806 	if (gfp_mask & __GFP_NOFAIL)
3807 		return false;
3808 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3809 		return false;
3810 	if (fail_page_alloc.ignore_gfp_reclaim &&
3811 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3812 		return false;
3813 
3814 	if (gfp_mask & __GFP_NOWARN)
3815 		fail_page_alloc.attr.no_warn = true;
3816 
3817 	return should_fail(&fail_page_alloc.attr, 1 << order);
3818 }
3819 
3820 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3821 
3822 static int __init fail_page_alloc_debugfs(void)
3823 {
3824 	umode_t mode = S_IFREG | 0600;
3825 	struct dentry *dir;
3826 
3827 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3828 					&fail_page_alloc.attr);
3829 
3830 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3831 			    &fail_page_alloc.ignore_gfp_reclaim);
3832 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3833 			    &fail_page_alloc.ignore_gfp_highmem);
3834 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3835 
3836 	return 0;
3837 }
3838 
3839 late_initcall(fail_page_alloc_debugfs);
3840 
3841 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3842 
3843 #else /* CONFIG_FAIL_PAGE_ALLOC */
3844 
3845 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3846 {
3847 	return false;
3848 }
3849 
3850 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3851 
3852 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3853 {
3854 	return __should_fail_alloc_page(gfp_mask, order);
3855 }
3856 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3857 
3858 static inline long __zone_watermark_unusable_free(struct zone *z,
3859 				unsigned int order, unsigned int alloc_flags)
3860 {
3861 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3862 	long unusable_free = (1 << order) - 1;
3863 
3864 	/*
3865 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3866 	 * the high-atomic reserves. This will over-estimate the size of the
3867 	 * atomic reserve but it avoids a search.
3868 	 */
3869 	if (likely(!alloc_harder))
3870 		unusable_free += z->nr_reserved_highatomic;
3871 
3872 #ifdef CONFIG_CMA
3873 	/* If allocation can't use CMA areas don't use free CMA pages */
3874 	if (!(alloc_flags & ALLOC_CMA))
3875 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3876 #endif
3877 
3878 	return unusable_free;
3879 }
3880 
3881 /*
3882  * Return true if free base pages are above 'mark'. For high-order checks it
3883  * will return true of the order-0 watermark is reached and there is at least
3884  * one free page of a suitable size. Checking now avoids taking the zone lock
3885  * to check in the allocation paths if no pages are free.
3886  */
3887 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3888 			 int highest_zoneidx, unsigned int alloc_flags,
3889 			 long free_pages)
3890 {
3891 	long min = mark;
3892 	int o;
3893 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3894 
3895 	/* free_pages may go negative - that's OK */
3896 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3897 
3898 	if (alloc_flags & ALLOC_HIGH)
3899 		min -= min / 2;
3900 
3901 	if (unlikely(alloc_harder)) {
3902 		/*
3903 		 * OOM victims can try even harder than normal ALLOC_HARDER
3904 		 * users on the grounds that it's definitely going to be in
3905 		 * the exit path shortly and free memory. Any allocation it
3906 		 * makes during the free path will be small and short-lived.
3907 		 */
3908 		if (alloc_flags & ALLOC_OOM)
3909 			min -= min / 2;
3910 		else
3911 			min -= min / 4;
3912 	}
3913 
3914 	/*
3915 	 * Check watermarks for an order-0 allocation request. If these
3916 	 * are not met, then a high-order request also cannot go ahead
3917 	 * even if a suitable page happened to be free.
3918 	 */
3919 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3920 		return false;
3921 
3922 	/* If this is an order-0 request then the watermark is fine */
3923 	if (!order)
3924 		return true;
3925 
3926 	/* For a high-order request, check at least one suitable page is free */
3927 	for (o = order; o < MAX_ORDER; o++) {
3928 		struct free_area *area = &z->free_area[o];
3929 		int mt;
3930 
3931 		if (!area->nr_free)
3932 			continue;
3933 
3934 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3935 			if (!free_area_empty(area, mt))
3936 				return true;
3937 		}
3938 
3939 #ifdef CONFIG_CMA
3940 		if ((alloc_flags & ALLOC_CMA) &&
3941 		    !free_area_empty(area, MIGRATE_CMA)) {
3942 			return true;
3943 		}
3944 #endif
3945 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3946 			return true;
3947 	}
3948 	return false;
3949 }
3950 
3951 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3952 		      int highest_zoneidx, unsigned int alloc_flags)
3953 {
3954 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3955 					zone_page_state(z, NR_FREE_PAGES));
3956 }
3957 
3958 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3959 				unsigned long mark, int highest_zoneidx,
3960 				unsigned int alloc_flags, gfp_t gfp_mask)
3961 {
3962 	long free_pages;
3963 
3964 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3965 
3966 	/*
3967 	 * Fast check for order-0 only. If this fails then the reserves
3968 	 * need to be calculated.
3969 	 */
3970 	if (!order) {
3971 		long usable_free;
3972 		long reserved;
3973 
3974 		usable_free = free_pages;
3975 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3976 
3977 		/* reserved may over estimate high-atomic reserves. */
3978 		usable_free -= min(usable_free, reserved);
3979 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3980 			return true;
3981 	}
3982 
3983 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3984 					free_pages))
3985 		return true;
3986 	/*
3987 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3988 	 * when checking the min watermark. The min watermark is the
3989 	 * point where boosting is ignored so that kswapd is woken up
3990 	 * when below the low watermark.
3991 	 */
3992 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3993 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3994 		mark = z->_watermark[WMARK_MIN];
3995 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3996 					alloc_flags, free_pages);
3997 	}
3998 
3999 	return false;
4000 }
4001 
4002 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4003 			unsigned long mark, int highest_zoneidx)
4004 {
4005 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4006 
4007 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4008 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4009 
4010 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4011 								free_pages);
4012 }
4013 
4014 #ifdef CONFIG_NUMA
4015 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4016 
4017 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4018 {
4019 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4020 				node_reclaim_distance;
4021 }
4022 #else	/* CONFIG_NUMA */
4023 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4024 {
4025 	return true;
4026 }
4027 #endif	/* CONFIG_NUMA */
4028 
4029 /*
4030  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4031  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4032  * premature use of a lower zone may cause lowmem pressure problems that
4033  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4034  * probably too small. It only makes sense to spread allocations to avoid
4035  * fragmentation between the Normal and DMA32 zones.
4036  */
4037 static inline unsigned int
4038 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4039 {
4040 	unsigned int alloc_flags;
4041 
4042 	/*
4043 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4044 	 * to save a branch.
4045 	 */
4046 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4047 
4048 #ifdef CONFIG_ZONE_DMA32
4049 	if (!zone)
4050 		return alloc_flags;
4051 
4052 	if (zone_idx(zone) != ZONE_NORMAL)
4053 		return alloc_flags;
4054 
4055 	/*
4056 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4057 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4058 	 * on UMA that if Normal is populated then so is DMA32.
4059 	 */
4060 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4061 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4062 		return alloc_flags;
4063 
4064 	alloc_flags |= ALLOC_NOFRAGMENT;
4065 #endif /* CONFIG_ZONE_DMA32 */
4066 	return alloc_flags;
4067 }
4068 
4069 /* Must be called after current_gfp_context() which can change gfp_mask */
4070 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4071 						  unsigned int alloc_flags)
4072 {
4073 #ifdef CONFIG_CMA
4074 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4075 		alloc_flags |= ALLOC_CMA;
4076 #endif
4077 	return alloc_flags;
4078 }
4079 
4080 /*
4081  * get_page_from_freelist goes through the zonelist trying to allocate
4082  * a page.
4083  */
4084 static struct page *
4085 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4086 						const struct alloc_context *ac)
4087 {
4088 	struct zoneref *z;
4089 	struct zone *zone;
4090 	struct pglist_data *last_pgdat = NULL;
4091 	bool last_pgdat_dirty_ok = false;
4092 	bool no_fallback;
4093 
4094 retry:
4095 	/*
4096 	 * Scan zonelist, looking for a zone with enough free.
4097 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4098 	 */
4099 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4100 	z = ac->preferred_zoneref;
4101 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4102 					ac->nodemask) {
4103 		struct page *page;
4104 		unsigned long mark;
4105 
4106 		if (cpusets_enabled() &&
4107 			(alloc_flags & ALLOC_CPUSET) &&
4108 			!__cpuset_zone_allowed(zone, gfp_mask))
4109 				continue;
4110 		/*
4111 		 * When allocating a page cache page for writing, we
4112 		 * want to get it from a node that is within its dirty
4113 		 * limit, such that no single node holds more than its
4114 		 * proportional share of globally allowed dirty pages.
4115 		 * The dirty limits take into account the node's
4116 		 * lowmem reserves and high watermark so that kswapd
4117 		 * should be able to balance it without having to
4118 		 * write pages from its LRU list.
4119 		 *
4120 		 * XXX: For now, allow allocations to potentially
4121 		 * exceed the per-node dirty limit in the slowpath
4122 		 * (spread_dirty_pages unset) before going into reclaim,
4123 		 * which is important when on a NUMA setup the allowed
4124 		 * nodes are together not big enough to reach the
4125 		 * global limit.  The proper fix for these situations
4126 		 * will require awareness of nodes in the
4127 		 * dirty-throttling and the flusher threads.
4128 		 */
4129 		if (ac->spread_dirty_pages) {
4130 			if (last_pgdat != zone->zone_pgdat) {
4131 				last_pgdat = zone->zone_pgdat;
4132 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4133 			}
4134 
4135 			if (!last_pgdat_dirty_ok)
4136 				continue;
4137 		}
4138 
4139 		if (no_fallback && nr_online_nodes > 1 &&
4140 		    zone != ac->preferred_zoneref->zone) {
4141 			int local_nid;
4142 
4143 			/*
4144 			 * If moving to a remote node, retry but allow
4145 			 * fragmenting fallbacks. Locality is more important
4146 			 * than fragmentation avoidance.
4147 			 */
4148 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4149 			if (zone_to_nid(zone) != local_nid) {
4150 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4151 				goto retry;
4152 			}
4153 		}
4154 
4155 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4156 		if (!zone_watermark_fast(zone, order, mark,
4157 				       ac->highest_zoneidx, alloc_flags,
4158 				       gfp_mask)) {
4159 			int ret;
4160 
4161 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4162 			/*
4163 			 * Watermark failed for this zone, but see if we can
4164 			 * grow this zone if it contains deferred pages.
4165 			 */
4166 			if (static_branch_unlikely(&deferred_pages)) {
4167 				if (_deferred_grow_zone(zone, order))
4168 					goto try_this_zone;
4169 			}
4170 #endif
4171 			/* Checked here to keep the fast path fast */
4172 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4173 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4174 				goto try_this_zone;
4175 
4176 			if (!node_reclaim_enabled() ||
4177 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4178 				continue;
4179 
4180 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4181 			switch (ret) {
4182 			case NODE_RECLAIM_NOSCAN:
4183 				/* did not scan */
4184 				continue;
4185 			case NODE_RECLAIM_FULL:
4186 				/* scanned but unreclaimable */
4187 				continue;
4188 			default:
4189 				/* did we reclaim enough */
4190 				if (zone_watermark_ok(zone, order, mark,
4191 					ac->highest_zoneidx, alloc_flags))
4192 					goto try_this_zone;
4193 
4194 				continue;
4195 			}
4196 		}
4197 
4198 try_this_zone:
4199 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4200 				gfp_mask, alloc_flags, ac->migratetype);
4201 		if (page) {
4202 			prep_new_page(page, order, gfp_mask, alloc_flags);
4203 
4204 			/*
4205 			 * If this is a high-order atomic allocation then check
4206 			 * if the pageblock should be reserved for the future
4207 			 */
4208 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4209 				reserve_highatomic_pageblock(page, zone, order);
4210 
4211 			return page;
4212 		} else {
4213 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4214 			/* Try again if zone has deferred pages */
4215 			if (static_branch_unlikely(&deferred_pages)) {
4216 				if (_deferred_grow_zone(zone, order))
4217 					goto try_this_zone;
4218 			}
4219 #endif
4220 		}
4221 	}
4222 
4223 	/*
4224 	 * It's possible on a UMA machine to get through all zones that are
4225 	 * fragmented. If avoiding fragmentation, reset and try again.
4226 	 */
4227 	if (no_fallback) {
4228 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4229 		goto retry;
4230 	}
4231 
4232 	return NULL;
4233 }
4234 
4235 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4236 {
4237 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4238 
4239 	/*
4240 	 * This documents exceptions given to allocations in certain
4241 	 * contexts that are allowed to allocate outside current's set
4242 	 * of allowed nodes.
4243 	 */
4244 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4245 		if (tsk_is_oom_victim(current) ||
4246 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4247 			filter &= ~SHOW_MEM_FILTER_NODES;
4248 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4249 		filter &= ~SHOW_MEM_FILTER_NODES;
4250 
4251 	show_mem(filter, nodemask);
4252 }
4253 
4254 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4255 {
4256 	struct va_format vaf;
4257 	va_list args;
4258 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4259 
4260 	if ((gfp_mask & __GFP_NOWARN) ||
4261 	     !__ratelimit(&nopage_rs) ||
4262 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4263 		return;
4264 
4265 	va_start(args, fmt);
4266 	vaf.fmt = fmt;
4267 	vaf.va = &args;
4268 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4269 			current->comm, &vaf, gfp_mask, &gfp_mask,
4270 			nodemask_pr_args(nodemask));
4271 	va_end(args);
4272 
4273 	cpuset_print_current_mems_allowed();
4274 	pr_cont("\n");
4275 	dump_stack();
4276 	warn_alloc_show_mem(gfp_mask, nodemask);
4277 }
4278 
4279 static inline struct page *
4280 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4281 			      unsigned int alloc_flags,
4282 			      const struct alloc_context *ac)
4283 {
4284 	struct page *page;
4285 
4286 	page = get_page_from_freelist(gfp_mask, order,
4287 			alloc_flags|ALLOC_CPUSET, ac);
4288 	/*
4289 	 * fallback to ignore cpuset restriction if our nodes
4290 	 * are depleted
4291 	 */
4292 	if (!page)
4293 		page = get_page_from_freelist(gfp_mask, order,
4294 				alloc_flags, ac);
4295 
4296 	return page;
4297 }
4298 
4299 static inline struct page *
4300 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4301 	const struct alloc_context *ac, unsigned long *did_some_progress)
4302 {
4303 	struct oom_control oc = {
4304 		.zonelist = ac->zonelist,
4305 		.nodemask = ac->nodemask,
4306 		.memcg = NULL,
4307 		.gfp_mask = gfp_mask,
4308 		.order = order,
4309 	};
4310 	struct page *page;
4311 
4312 	*did_some_progress = 0;
4313 
4314 	/*
4315 	 * Acquire the oom lock.  If that fails, somebody else is
4316 	 * making progress for us.
4317 	 */
4318 	if (!mutex_trylock(&oom_lock)) {
4319 		*did_some_progress = 1;
4320 		schedule_timeout_uninterruptible(1);
4321 		return NULL;
4322 	}
4323 
4324 	/*
4325 	 * Go through the zonelist yet one more time, keep very high watermark
4326 	 * here, this is only to catch a parallel oom killing, we must fail if
4327 	 * we're still under heavy pressure. But make sure that this reclaim
4328 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4329 	 * allocation which will never fail due to oom_lock already held.
4330 	 */
4331 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4332 				      ~__GFP_DIRECT_RECLAIM, order,
4333 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4334 	if (page)
4335 		goto out;
4336 
4337 	/* Coredumps can quickly deplete all memory reserves */
4338 	if (current->flags & PF_DUMPCORE)
4339 		goto out;
4340 	/* The OOM killer will not help higher order allocs */
4341 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4342 		goto out;
4343 	/*
4344 	 * We have already exhausted all our reclaim opportunities without any
4345 	 * success so it is time to admit defeat. We will skip the OOM killer
4346 	 * because it is very likely that the caller has a more reasonable
4347 	 * fallback than shooting a random task.
4348 	 *
4349 	 * The OOM killer may not free memory on a specific node.
4350 	 */
4351 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4352 		goto out;
4353 	/* The OOM killer does not needlessly kill tasks for lowmem */
4354 	if (ac->highest_zoneidx < ZONE_NORMAL)
4355 		goto out;
4356 	if (pm_suspended_storage())
4357 		goto out;
4358 	/*
4359 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4360 	 * other request to make a forward progress.
4361 	 * We are in an unfortunate situation where out_of_memory cannot
4362 	 * do much for this context but let's try it to at least get
4363 	 * access to memory reserved if the current task is killed (see
4364 	 * out_of_memory). Once filesystems are ready to handle allocation
4365 	 * failures more gracefully we should just bail out here.
4366 	 */
4367 
4368 	/* Exhausted what can be done so it's blame time */
4369 	if (out_of_memory(&oc) ||
4370 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4371 		*did_some_progress = 1;
4372 
4373 		/*
4374 		 * Help non-failing allocations by giving them access to memory
4375 		 * reserves
4376 		 */
4377 		if (gfp_mask & __GFP_NOFAIL)
4378 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4379 					ALLOC_NO_WATERMARKS, ac);
4380 	}
4381 out:
4382 	mutex_unlock(&oom_lock);
4383 	return page;
4384 }
4385 
4386 /*
4387  * Maximum number of compaction retries with a progress before OOM
4388  * killer is consider as the only way to move forward.
4389  */
4390 #define MAX_COMPACT_RETRIES 16
4391 
4392 #ifdef CONFIG_COMPACTION
4393 /* Try memory compaction for high-order allocations before reclaim */
4394 static struct page *
4395 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4396 		unsigned int alloc_flags, const struct alloc_context *ac,
4397 		enum compact_priority prio, enum compact_result *compact_result)
4398 {
4399 	struct page *page = NULL;
4400 	unsigned long pflags;
4401 	unsigned int noreclaim_flag;
4402 
4403 	if (!order)
4404 		return NULL;
4405 
4406 	psi_memstall_enter(&pflags);
4407 	delayacct_compact_start();
4408 	noreclaim_flag = memalloc_noreclaim_save();
4409 
4410 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4411 								prio, &page);
4412 
4413 	memalloc_noreclaim_restore(noreclaim_flag);
4414 	psi_memstall_leave(&pflags);
4415 	delayacct_compact_end();
4416 
4417 	if (*compact_result == COMPACT_SKIPPED)
4418 		return NULL;
4419 	/*
4420 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4421 	 * count a compaction stall
4422 	 */
4423 	count_vm_event(COMPACTSTALL);
4424 
4425 	/* Prep a captured page if available */
4426 	if (page)
4427 		prep_new_page(page, order, gfp_mask, alloc_flags);
4428 
4429 	/* Try get a page from the freelist if available */
4430 	if (!page)
4431 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4432 
4433 	if (page) {
4434 		struct zone *zone = page_zone(page);
4435 
4436 		zone->compact_blockskip_flush = false;
4437 		compaction_defer_reset(zone, order, true);
4438 		count_vm_event(COMPACTSUCCESS);
4439 		return page;
4440 	}
4441 
4442 	/*
4443 	 * It's bad if compaction run occurs and fails. The most likely reason
4444 	 * is that pages exist, but not enough to satisfy watermarks.
4445 	 */
4446 	count_vm_event(COMPACTFAIL);
4447 
4448 	cond_resched();
4449 
4450 	return NULL;
4451 }
4452 
4453 static inline bool
4454 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4455 		     enum compact_result compact_result,
4456 		     enum compact_priority *compact_priority,
4457 		     int *compaction_retries)
4458 {
4459 	int max_retries = MAX_COMPACT_RETRIES;
4460 	int min_priority;
4461 	bool ret = false;
4462 	int retries = *compaction_retries;
4463 	enum compact_priority priority = *compact_priority;
4464 
4465 	if (!order)
4466 		return false;
4467 
4468 	if (fatal_signal_pending(current))
4469 		return false;
4470 
4471 	if (compaction_made_progress(compact_result))
4472 		(*compaction_retries)++;
4473 
4474 	/*
4475 	 * compaction considers all the zone as desperately out of memory
4476 	 * so it doesn't really make much sense to retry except when the
4477 	 * failure could be caused by insufficient priority
4478 	 */
4479 	if (compaction_failed(compact_result))
4480 		goto check_priority;
4481 
4482 	/*
4483 	 * compaction was skipped because there are not enough order-0 pages
4484 	 * to work with, so we retry only if it looks like reclaim can help.
4485 	 */
4486 	if (compaction_needs_reclaim(compact_result)) {
4487 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4488 		goto out;
4489 	}
4490 
4491 	/*
4492 	 * make sure the compaction wasn't deferred or didn't bail out early
4493 	 * due to locks contention before we declare that we should give up.
4494 	 * But the next retry should use a higher priority if allowed, so
4495 	 * we don't just keep bailing out endlessly.
4496 	 */
4497 	if (compaction_withdrawn(compact_result)) {
4498 		goto check_priority;
4499 	}
4500 
4501 	/*
4502 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4503 	 * costly ones because they are de facto nofail and invoke OOM
4504 	 * killer to move on while costly can fail and users are ready
4505 	 * to cope with that. 1/4 retries is rather arbitrary but we
4506 	 * would need much more detailed feedback from compaction to
4507 	 * make a better decision.
4508 	 */
4509 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4510 		max_retries /= 4;
4511 	if (*compaction_retries <= max_retries) {
4512 		ret = true;
4513 		goto out;
4514 	}
4515 
4516 	/*
4517 	 * Make sure there are attempts at the highest priority if we exhausted
4518 	 * all retries or failed at the lower priorities.
4519 	 */
4520 check_priority:
4521 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4522 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4523 
4524 	if (*compact_priority > min_priority) {
4525 		(*compact_priority)--;
4526 		*compaction_retries = 0;
4527 		ret = true;
4528 	}
4529 out:
4530 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4531 	return ret;
4532 }
4533 #else
4534 static inline struct page *
4535 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4536 		unsigned int alloc_flags, const struct alloc_context *ac,
4537 		enum compact_priority prio, enum compact_result *compact_result)
4538 {
4539 	*compact_result = COMPACT_SKIPPED;
4540 	return NULL;
4541 }
4542 
4543 static inline bool
4544 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4545 		     enum compact_result compact_result,
4546 		     enum compact_priority *compact_priority,
4547 		     int *compaction_retries)
4548 {
4549 	struct zone *zone;
4550 	struct zoneref *z;
4551 
4552 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4553 		return false;
4554 
4555 	/*
4556 	 * There are setups with compaction disabled which would prefer to loop
4557 	 * inside the allocator rather than hit the oom killer prematurely.
4558 	 * Let's give them a good hope and keep retrying while the order-0
4559 	 * watermarks are OK.
4560 	 */
4561 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4562 				ac->highest_zoneidx, ac->nodemask) {
4563 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4564 					ac->highest_zoneidx, alloc_flags))
4565 			return true;
4566 	}
4567 	return false;
4568 }
4569 #endif /* CONFIG_COMPACTION */
4570 
4571 #ifdef CONFIG_LOCKDEP
4572 static struct lockdep_map __fs_reclaim_map =
4573 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4574 
4575 static bool __need_reclaim(gfp_t gfp_mask)
4576 {
4577 	/* no reclaim without waiting on it */
4578 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4579 		return false;
4580 
4581 	/* this guy won't enter reclaim */
4582 	if (current->flags & PF_MEMALLOC)
4583 		return false;
4584 
4585 	if (gfp_mask & __GFP_NOLOCKDEP)
4586 		return false;
4587 
4588 	return true;
4589 }
4590 
4591 void __fs_reclaim_acquire(unsigned long ip)
4592 {
4593 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4594 }
4595 
4596 void __fs_reclaim_release(unsigned long ip)
4597 {
4598 	lock_release(&__fs_reclaim_map, ip);
4599 }
4600 
4601 void fs_reclaim_acquire(gfp_t gfp_mask)
4602 {
4603 	gfp_mask = current_gfp_context(gfp_mask);
4604 
4605 	if (__need_reclaim(gfp_mask)) {
4606 		if (gfp_mask & __GFP_FS)
4607 			__fs_reclaim_acquire(_RET_IP_);
4608 
4609 #ifdef CONFIG_MMU_NOTIFIER
4610 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4611 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4612 #endif
4613 
4614 	}
4615 }
4616 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4617 
4618 void fs_reclaim_release(gfp_t gfp_mask)
4619 {
4620 	gfp_mask = current_gfp_context(gfp_mask);
4621 
4622 	if (__need_reclaim(gfp_mask)) {
4623 		if (gfp_mask & __GFP_FS)
4624 			__fs_reclaim_release(_RET_IP_);
4625 	}
4626 }
4627 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4628 #endif
4629 
4630 /* Perform direct synchronous page reclaim */
4631 static unsigned long
4632 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4633 					const struct alloc_context *ac)
4634 {
4635 	unsigned int noreclaim_flag;
4636 	unsigned long progress;
4637 
4638 	cond_resched();
4639 
4640 	/* We now go into synchronous reclaim */
4641 	cpuset_memory_pressure_bump();
4642 	fs_reclaim_acquire(gfp_mask);
4643 	noreclaim_flag = memalloc_noreclaim_save();
4644 
4645 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4646 								ac->nodemask);
4647 
4648 	memalloc_noreclaim_restore(noreclaim_flag);
4649 	fs_reclaim_release(gfp_mask);
4650 
4651 	cond_resched();
4652 
4653 	return progress;
4654 }
4655 
4656 /* The really slow allocator path where we enter direct reclaim */
4657 static inline struct page *
4658 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4659 		unsigned int alloc_flags, const struct alloc_context *ac,
4660 		unsigned long *did_some_progress)
4661 {
4662 	struct page *page = NULL;
4663 	unsigned long pflags;
4664 	bool drained = false;
4665 
4666 	psi_memstall_enter(&pflags);
4667 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4668 	if (unlikely(!(*did_some_progress)))
4669 		goto out;
4670 
4671 retry:
4672 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4673 
4674 	/*
4675 	 * If an allocation failed after direct reclaim, it could be because
4676 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4677 	 * Shrink them and try again
4678 	 */
4679 	if (!page && !drained) {
4680 		unreserve_highatomic_pageblock(ac, false);
4681 		drain_all_pages(NULL);
4682 		drained = true;
4683 		goto retry;
4684 	}
4685 out:
4686 	psi_memstall_leave(&pflags);
4687 
4688 	return page;
4689 }
4690 
4691 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4692 			     const struct alloc_context *ac)
4693 {
4694 	struct zoneref *z;
4695 	struct zone *zone;
4696 	pg_data_t *last_pgdat = NULL;
4697 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4698 
4699 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4700 					ac->nodemask) {
4701 		if (!managed_zone(zone))
4702 			continue;
4703 		if (last_pgdat != zone->zone_pgdat) {
4704 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4705 			last_pgdat = zone->zone_pgdat;
4706 		}
4707 	}
4708 }
4709 
4710 static inline unsigned int
4711 gfp_to_alloc_flags(gfp_t gfp_mask)
4712 {
4713 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4714 
4715 	/*
4716 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4717 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4718 	 * to save two branches.
4719 	 */
4720 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4721 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4722 
4723 	/*
4724 	 * The caller may dip into page reserves a bit more if the caller
4725 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4726 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4727 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4728 	 */
4729 	alloc_flags |= (__force int)
4730 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4731 
4732 	if (gfp_mask & __GFP_ATOMIC) {
4733 		/*
4734 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4735 		 * if it can't schedule.
4736 		 */
4737 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4738 			alloc_flags |= ALLOC_HARDER;
4739 		/*
4740 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4741 		 * comment for __cpuset_node_allowed().
4742 		 */
4743 		alloc_flags &= ~ALLOC_CPUSET;
4744 	} else if (unlikely(rt_task(current)) && in_task())
4745 		alloc_flags |= ALLOC_HARDER;
4746 
4747 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4748 
4749 	return alloc_flags;
4750 }
4751 
4752 static bool oom_reserves_allowed(struct task_struct *tsk)
4753 {
4754 	if (!tsk_is_oom_victim(tsk))
4755 		return false;
4756 
4757 	/*
4758 	 * !MMU doesn't have oom reaper so give access to memory reserves
4759 	 * only to the thread with TIF_MEMDIE set
4760 	 */
4761 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4762 		return false;
4763 
4764 	return true;
4765 }
4766 
4767 /*
4768  * Distinguish requests which really need access to full memory
4769  * reserves from oom victims which can live with a portion of it
4770  */
4771 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4772 {
4773 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4774 		return 0;
4775 	if (gfp_mask & __GFP_MEMALLOC)
4776 		return ALLOC_NO_WATERMARKS;
4777 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4778 		return ALLOC_NO_WATERMARKS;
4779 	if (!in_interrupt()) {
4780 		if (current->flags & PF_MEMALLOC)
4781 			return ALLOC_NO_WATERMARKS;
4782 		else if (oom_reserves_allowed(current))
4783 			return ALLOC_OOM;
4784 	}
4785 
4786 	return 0;
4787 }
4788 
4789 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4790 {
4791 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4792 }
4793 
4794 /*
4795  * Checks whether it makes sense to retry the reclaim to make a forward progress
4796  * for the given allocation request.
4797  *
4798  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4799  * without success, or when we couldn't even meet the watermark if we
4800  * reclaimed all remaining pages on the LRU lists.
4801  *
4802  * Returns true if a retry is viable or false to enter the oom path.
4803  */
4804 static inline bool
4805 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4806 		     struct alloc_context *ac, int alloc_flags,
4807 		     bool did_some_progress, int *no_progress_loops)
4808 {
4809 	struct zone *zone;
4810 	struct zoneref *z;
4811 	bool ret = false;
4812 
4813 	/*
4814 	 * Costly allocations might have made a progress but this doesn't mean
4815 	 * their order will become available due to high fragmentation so
4816 	 * always increment the no progress counter for them
4817 	 */
4818 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4819 		*no_progress_loops = 0;
4820 	else
4821 		(*no_progress_loops)++;
4822 
4823 	/*
4824 	 * Make sure we converge to OOM if we cannot make any progress
4825 	 * several times in the row.
4826 	 */
4827 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4828 		/* Before OOM, exhaust highatomic_reserve */
4829 		return unreserve_highatomic_pageblock(ac, true);
4830 	}
4831 
4832 	/*
4833 	 * Keep reclaiming pages while there is a chance this will lead
4834 	 * somewhere.  If none of the target zones can satisfy our allocation
4835 	 * request even if all reclaimable pages are considered then we are
4836 	 * screwed and have to go OOM.
4837 	 */
4838 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4839 				ac->highest_zoneidx, ac->nodemask) {
4840 		unsigned long available;
4841 		unsigned long reclaimable;
4842 		unsigned long min_wmark = min_wmark_pages(zone);
4843 		bool wmark;
4844 
4845 		available = reclaimable = zone_reclaimable_pages(zone);
4846 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4847 
4848 		/*
4849 		 * Would the allocation succeed if we reclaimed all
4850 		 * reclaimable pages?
4851 		 */
4852 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4853 				ac->highest_zoneidx, alloc_flags, available);
4854 		trace_reclaim_retry_zone(z, order, reclaimable,
4855 				available, min_wmark, *no_progress_loops, wmark);
4856 		if (wmark) {
4857 			ret = true;
4858 			break;
4859 		}
4860 	}
4861 
4862 	/*
4863 	 * Memory allocation/reclaim might be called from a WQ context and the
4864 	 * current implementation of the WQ concurrency control doesn't
4865 	 * recognize that a particular WQ is congested if the worker thread is
4866 	 * looping without ever sleeping. Therefore we have to do a short sleep
4867 	 * here rather than calling cond_resched().
4868 	 */
4869 	if (current->flags & PF_WQ_WORKER)
4870 		schedule_timeout_uninterruptible(1);
4871 	else
4872 		cond_resched();
4873 	return ret;
4874 }
4875 
4876 static inline bool
4877 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4878 {
4879 	/*
4880 	 * It's possible that cpuset's mems_allowed and the nodemask from
4881 	 * mempolicy don't intersect. This should be normally dealt with by
4882 	 * policy_nodemask(), but it's possible to race with cpuset update in
4883 	 * such a way the check therein was true, and then it became false
4884 	 * before we got our cpuset_mems_cookie here.
4885 	 * This assumes that for all allocations, ac->nodemask can come only
4886 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4887 	 * when it does not intersect with the cpuset restrictions) or the
4888 	 * caller can deal with a violated nodemask.
4889 	 */
4890 	if (cpusets_enabled() && ac->nodemask &&
4891 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4892 		ac->nodemask = NULL;
4893 		return true;
4894 	}
4895 
4896 	/*
4897 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4898 	 * possible to race with parallel threads in such a way that our
4899 	 * allocation can fail while the mask is being updated. If we are about
4900 	 * to fail, check if the cpuset changed during allocation and if so,
4901 	 * retry.
4902 	 */
4903 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4904 		return true;
4905 
4906 	return false;
4907 }
4908 
4909 static inline struct page *
4910 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4911 						struct alloc_context *ac)
4912 {
4913 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4914 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4915 	struct page *page = NULL;
4916 	unsigned int alloc_flags;
4917 	unsigned long did_some_progress;
4918 	enum compact_priority compact_priority;
4919 	enum compact_result compact_result;
4920 	int compaction_retries;
4921 	int no_progress_loops;
4922 	unsigned int cpuset_mems_cookie;
4923 	int reserve_flags;
4924 
4925 	/*
4926 	 * We also sanity check to catch abuse of atomic reserves being used by
4927 	 * callers that are not in atomic context.
4928 	 */
4929 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4930 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4931 		gfp_mask &= ~__GFP_ATOMIC;
4932 
4933 retry_cpuset:
4934 	compaction_retries = 0;
4935 	no_progress_loops = 0;
4936 	compact_priority = DEF_COMPACT_PRIORITY;
4937 	cpuset_mems_cookie = read_mems_allowed_begin();
4938 
4939 	/*
4940 	 * The fast path uses conservative alloc_flags to succeed only until
4941 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4942 	 * alloc_flags precisely. So we do that now.
4943 	 */
4944 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4945 
4946 	/*
4947 	 * We need to recalculate the starting point for the zonelist iterator
4948 	 * because we might have used different nodemask in the fast path, or
4949 	 * there was a cpuset modification and we are retrying - otherwise we
4950 	 * could end up iterating over non-eligible zones endlessly.
4951 	 */
4952 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4953 					ac->highest_zoneidx, ac->nodemask);
4954 	if (!ac->preferred_zoneref->zone)
4955 		goto nopage;
4956 
4957 	/*
4958 	 * Check for insane configurations where the cpuset doesn't contain
4959 	 * any suitable zone to satisfy the request - e.g. non-movable
4960 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4961 	 */
4962 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4963 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4964 					ac->highest_zoneidx,
4965 					&cpuset_current_mems_allowed);
4966 		if (!z->zone)
4967 			goto nopage;
4968 	}
4969 
4970 	if (alloc_flags & ALLOC_KSWAPD)
4971 		wake_all_kswapds(order, gfp_mask, ac);
4972 
4973 	/*
4974 	 * The adjusted alloc_flags might result in immediate success, so try
4975 	 * that first
4976 	 */
4977 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4978 	if (page)
4979 		goto got_pg;
4980 
4981 	/*
4982 	 * For costly allocations, try direct compaction first, as it's likely
4983 	 * that we have enough base pages and don't need to reclaim. For non-
4984 	 * movable high-order allocations, do that as well, as compaction will
4985 	 * try prevent permanent fragmentation by migrating from blocks of the
4986 	 * same migratetype.
4987 	 * Don't try this for allocations that are allowed to ignore
4988 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4989 	 */
4990 	if (can_direct_reclaim &&
4991 			(costly_order ||
4992 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4993 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4994 		page = __alloc_pages_direct_compact(gfp_mask, order,
4995 						alloc_flags, ac,
4996 						INIT_COMPACT_PRIORITY,
4997 						&compact_result);
4998 		if (page)
4999 			goto got_pg;
5000 
5001 		/*
5002 		 * Checks for costly allocations with __GFP_NORETRY, which
5003 		 * includes some THP page fault allocations
5004 		 */
5005 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5006 			/*
5007 			 * If allocating entire pageblock(s) and compaction
5008 			 * failed because all zones are below low watermarks
5009 			 * or is prohibited because it recently failed at this
5010 			 * order, fail immediately unless the allocator has
5011 			 * requested compaction and reclaim retry.
5012 			 *
5013 			 * Reclaim is
5014 			 *  - potentially very expensive because zones are far
5015 			 *    below their low watermarks or this is part of very
5016 			 *    bursty high order allocations,
5017 			 *  - not guaranteed to help because isolate_freepages()
5018 			 *    may not iterate over freed pages as part of its
5019 			 *    linear scan, and
5020 			 *  - unlikely to make entire pageblocks free on its
5021 			 *    own.
5022 			 */
5023 			if (compact_result == COMPACT_SKIPPED ||
5024 			    compact_result == COMPACT_DEFERRED)
5025 				goto nopage;
5026 
5027 			/*
5028 			 * Looks like reclaim/compaction is worth trying, but
5029 			 * sync compaction could be very expensive, so keep
5030 			 * using async compaction.
5031 			 */
5032 			compact_priority = INIT_COMPACT_PRIORITY;
5033 		}
5034 	}
5035 
5036 retry:
5037 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5038 	if (alloc_flags & ALLOC_KSWAPD)
5039 		wake_all_kswapds(order, gfp_mask, ac);
5040 
5041 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5042 	if (reserve_flags)
5043 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5044 
5045 	/*
5046 	 * Reset the nodemask and zonelist iterators if memory policies can be
5047 	 * ignored. These allocations are high priority and system rather than
5048 	 * user oriented.
5049 	 */
5050 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5051 		ac->nodemask = NULL;
5052 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5053 					ac->highest_zoneidx, ac->nodemask);
5054 	}
5055 
5056 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5057 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5058 	if (page)
5059 		goto got_pg;
5060 
5061 	/* Caller is not willing to reclaim, we can't balance anything */
5062 	if (!can_direct_reclaim)
5063 		goto nopage;
5064 
5065 	/* Avoid recursion of direct reclaim */
5066 	if (current->flags & PF_MEMALLOC)
5067 		goto nopage;
5068 
5069 	/* Try direct reclaim and then allocating */
5070 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5071 							&did_some_progress);
5072 	if (page)
5073 		goto got_pg;
5074 
5075 	/* Try direct compaction and then allocating */
5076 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5077 					compact_priority, &compact_result);
5078 	if (page)
5079 		goto got_pg;
5080 
5081 	/* Do not loop if specifically requested */
5082 	if (gfp_mask & __GFP_NORETRY)
5083 		goto nopage;
5084 
5085 	/*
5086 	 * Do not retry costly high order allocations unless they are
5087 	 * __GFP_RETRY_MAYFAIL
5088 	 */
5089 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5090 		goto nopage;
5091 
5092 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5093 				 did_some_progress > 0, &no_progress_loops))
5094 		goto retry;
5095 
5096 	/*
5097 	 * It doesn't make any sense to retry for the compaction if the order-0
5098 	 * reclaim is not able to make any progress because the current
5099 	 * implementation of the compaction depends on the sufficient amount
5100 	 * of free memory (see __compaction_suitable)
5101 	 */
5102 	if (did_some_progress > 0 &&
5103 			should_compact_retry(ac, order, alloc_flags,
5104 				compact_result, &compact_priority,
5105 				&compaction_retries))
5106 		goto retry;
5107 
5108 
5109 	/* Deal with possible cpuset update races before we start OOM killing */
5110 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5111 		goto retry_cpuset;
5112 
5113 	/* Reclaim has failed us, start killing things */
5114 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5115 	if (page)
5116 		goto got_pg;
5117 
5118 	/* Avoid allocations with no watermarks from looping endlessly */
5119 	if (tsk_is_oom_victim(current) &&
5120 	    (alloc_flags & ALLOC_OOM ||
5121 	     (gfp_mask & __GFP_NOMEMALLOC)))
5122 		goto nopage;
5123 
5124 	/* Retry as long as the OOM killer is making progress */
5125 	if (did_some_progress) {
5126 		no_progress_loops = 0;
5127 		goto retry;
5128 	}
5129 
5130 nopage:
5131 	/* Deal with possible cpuset update races before we fail */
5132 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5133 		goto retry_cpuset;
5134 
5135 	/*
5136 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5137 	 * we always retry
5138 	 */
5139 	if (gfp_mask & __GFP_NOFAIL) {
5140 		/*
5141 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5142 		 * of any new users that actually require GFP_NOWAIT
5143 		 */
5144 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5145 			goto fail;
5146 
5147 		/*
5148 		 * PF_MEMALLOC request from this context is rather bizarre
5149 		 * because we cannot reclaim anything and only can loop waiting
5150 		 * for somebody to do a work for us
5151 		 */
5152 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5153 
5154 		/*
5155 		 * non failing costly orders are a hard requirement which we
5156 		 * are not prepared for much so let's warn about these users
5157 		 * so that we can identify them and convert them to something
5158 		 * else.
5159 		 */
5160 		WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5161 
5162 		/*
5163 		 * Help non-failing allocations by giving them access to memory
5164 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5165 		 * could deplete whole memory reserves which would just make
5166 		 * the situation worse
5167 		 */
5168 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5169 		if (page)
5170 			goto got_pg;
5171 
5172 		cond_resched();
5173 		goto retry;
5174 	}
5175 fail:
5176 	warn_alloc(gfp_mask, ac->nodemask,
5177 			"page allocation failure: order:%u", order);
5178 got_pg:
5179 	return page;
5180 }
5181 
5182 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5183 		int preferred_nid, nodemask_t *nodemask,
5184 		struct alloc_context *ac, gfp_t *alloc_gfp,
5185 		unsigned int *alloc_flags)
5186 {
5187 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5188 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5189 	ac->nodemask = nodemask;
5190 	ac->migratetype = gfp_migratetype(gfp_mask);
5191 
5192 	if (cpusets_enabled()) {
5193 		*alloc_gfp |= __GFP_HARDWALL;
5194 		/*
5195 		 * When we are in the interrupt context, it is irrelevant
5196 		 * to the current task context. It means that any node ok.
5197 		 */
5198 		if (in_task() && !ac->nodemask)
5199 			ac->nodemask = &cpuset_current_mems_allowed;
5200 		else
5201 			*alloc_flags |= ALLOC_CPUSET;
5202 	}
5203 
5204 	fs_reclaim_acquire(gfp_mask);
5205 	fs_reclaim_release(gfp_mask);
5206 
5207 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5208 
5209 	if (should_fail_alloc_page(gfp_mask, order))
5210 		return false;
5211 
5212 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5213 
5214 	/* Dirty zone balancing only done in the fast path */
5215 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5216 
5217 	/*
5218 	 * The preferred zone is used for statistics but crucially it is
5219 	 * also used as the starting point for the zonelist iterator. It
5220 	 * may get reset for allocations that ignore memory policies.
5221 	 */
5222 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5223 					ac->highest_zoneidx, ac->nodemask);
5224 
5225 	return true;
5226 }
5227 
5228 /*
5229  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5230  * @gfp: GFP flags for the allocation
5231  * @preferred_nid: The preferred NUMA node ID to allocate from
5232  * @nodemask: Set of nodes to allocate from, may be NULL
5233  * @nr_pages: The number of pages desired on the list or array
5234  * @page_list: Optional list to store the allocated pages
5235  * @page_array: Optional array to store the pages
5236  *
5237  * This is a batched version of the page allocator that attempts to
5238  * allocate nr_pages quickly. Pages are added to page_list if page_list
5239  * is not NULL, otherwise it is assumed that the page_array is valid.
5240  *
5241  * For lists, nr_pages is the number of pages that should be allocated.
5242  *
5243  * For arrays, only NULL elements are populated with pages and nr_pages
5244  * is the maximum number of pages that will be stored in the array.
5245  *
5246  * Returns the number of pages on the list or array.
5247  */
5248 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5249 			nodemask_t *nodemask, int nr_pages,
5250 			struct list_head *page_list,
5251 			struct page **page_array)
5252 {
5253 	struct page *page;
5254 	unsigned long flags;
5255 	struct zone *zone;
5256 	struct zoneref *z;
5257 	struct per_cpu_pages *pcp;
5258 	struct list_head *pcp_list;
5259 	struct alloc_context ac;
5260 	gfp_t alloc_gfp;
5261 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5262 	int nr_populated = 0, nr_account = 0;
5263 
5264 	/*
5265 	 * Skip populated array elements to determine if any pages need
5266 	 * to be allocated before disabling IRQs.
5267 	 */
5268 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5269 		nr_populated++;
5270 
5271 	/* No pages requested? */
5272 	if (unlikely(nr_pages <= 0))
5273 		goto out;
5274 
5275 	/* Already populated array? */
5276 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5277 		goto out;
5278 
5279 	/* Bulk allocator does not support memcg accounting. */
5280 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5281 		goto failed;
5282 
5283 	/* Use the single page allocator for one page. */
5284 	if (nr_pages - nr_populated == 1)
5285 		goto failed;
5286 
5287 #ifdef CONFIG_PAGE_OWNER
5288 	/*
5289 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5290 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5291 	 * removes much of the performance benefit of bulk allocation so
5292 	 * force the caller to allocate one page at a time as it'll have
5293 	 * similar performance to added complexity to the bulk allocator.
5294 	 */
5295 	if (static_branch_unlikely(&page_owner_inited))
5296 		goto failed;
5297 #endif
5298 
5299 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5300 	gfp &= gfp_allowed_mask;
5301 	alloc_gfp = gfp;
5302 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5303 		goto out;
5304 	gfp = alloc_gfp;
5305 
5306 	/* Find an allowed local zone that meets the low watermark. */
5307 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5308 		unsigned long mark;
5309 
5310 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5311 		    !__cpuset_zone_allowed(zone, gfp)) {
5312 			continue;
5313 		}
5314 
5315 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5316 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5317 			goto failed;
5318 		}
5319 
5320 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5321 		if (zone_watermark_fast(zone, 0,  mark,
5322 				zonelist_zone_idx(ac.preferred_zoneref),
5323 				alloc_flags, gfp)) {
5324 			break;
5325 		}
5326 	}
5327 
5328 	/*
5329 	 * If there are no allowed local zones that meets the watermarks then
5330 	 * try to allocate a single page and reclaim if necessary.
5331 	 */
5332 	if (unlikely(!zone))
5333 		goto failed;
5334 
5335 	/* Attempt the batch allocation */
5336 	local_lock_irqsave(&pagesets.lock, flags);
5337 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5338 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5339 
5340 	while (nr_populated < nr_pages) {
5341 
5342 		/* Skip existing pages */
5343 		if (page_array && page_array[nr_populated]) {
5344 			nr_populated++;
5345 			continue;
5346 		}
5347 
5348 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5349 								pcp, pcp_list);
5350 		if (unlikely(!page)) {
5351 			/* Try and allocate at least one page */
5352 			if (!nr_account)
5353 				goto failed_irq;
5354 			break;
5355 		}
5356 		nr_account++;
5357 
5358 		prep_new_page(page, 0, gfp, 0);
5359 		if (page_list)
5360 			list_add(&page->lru, page_list);
5361 		else
5362 			page_array[nr_populated] = page;
5363 		nr_populated++;
5364 	}
5365 
5366 	local_unlock_irqrestore(&pagesets.lock, flags);
5367 
5368 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5369 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5370 
5371 out:
5372 	return nr_populated;
5373 
5374 failed_irq:
5375 	local_unlock_irqrestore(&pagesets.lock, flags);
5376 
5377 failed:
5378 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5379 	if (page) {
5380 		if (page_list)
5381 			list_add(&page->lru, page_list);
5382 		else
5383 			page_array[nr_populated] = page;
5384 		nr_populated++;
5385 	}
5386 
5387 	goto out;
5388 }
5389 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5390 
5391 /*
5392  * This is the 'heart' of the zoned buddy allocator.
5393  */
5394 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5395 							nodemask_t *nodemask)
5396 {
5397 	struct page *page;
5398 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5399 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5400 	struct alloc_context ac = { };
5401 
5402 	/*
5403 	 * There are several places where we assume that the order value is sane
5404 	 * so bail out early if the request is out of bound.
5405 	 */
5406 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5407 		return NULL;
5408 
5409 	gfp &= gfp_allowed_mask;
5410 	/*
5411 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5412 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5413 	 * from a particular context which has been marked by
5414 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5415 	 * movable zones are not used during allocation.
5416 	 */
5417 	gfp = current_gfp_context(gfp);
5418 	alloc_gfp = gfp;
5419 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5420 			&alloc_gfp, &alloc_flags))
5421 		return NULL;
5422 
5423 	/*
5424 	 * Forbid the first pass from falling back to types that fragment
5425 	 * memory until all local zones are considered.
5426 	 */
5427 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5428 
5429 	/* First allocation attempt */
5430 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5431 	if (likely(page))
5432 		goto out;
5433 
5434 	alloc_gfp = gfp;
5435 	ac.spread_dirty_pages = false;
5436 
5437 	/*
5438 	 * Restore the original nodemask if it was potentially replaced with
5439 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5440 	 */
5441 	ac.nodemask = nodemask;
5442 
5443 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5444 
5445 out:
5446 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5447 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5448 		__free_pages(page, order);
5449 		page = NULL;
5450 	}
5451 
5452 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5453 
5454 	return page;
5455 }
5456 EXPORT_SYMBOL(__alloc_pages);
5457 
5458 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5459 		nodemask_t *nodemask)
5460 {
5461 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5462 			preferred_nid, nodemask);
5463 
5464 	if (page && order > 1)
5465 		prep_transhuge_page(page);
5466 	return (struct folio *)page;
5467 }
5468 EXPORT_SYMBOL(__folio_alloc);
5469 
5470 /*
5471  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5472  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5473  * you need to access high mem.
5474  */
5475 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5476 {
5477 	struct page *page;
5478 
5479 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5480 	if (!page)
5481 		return 0;
5482 	return (unsigned long) page_address(page);
5483 }
5484 EXPORT_SYMBOL(__get_free_pages);
5485 
5486 unsigned long get_zeroed_page(gfp_t gfp_mask)
5487 {
5488 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5489 }
5490 EXPORT_SYMBOL(get_zeroed_page);
5491 
5492 /**
5493  * __free_pages - Free pages allocated with alloc_pages().
5494  * @page: The page pointer returned from alloc_pages().
5495  * @order: The order of the allocation.
5496  *
5497  * This function can free multi-page allocations that are not compound
5498  * pages.  It does not check that the @order passed in matches that of
5499  * the allocation, so it is easy to leak memory.  Freeing more memory
5500  * than was allocated will probably emit a warning.
5501  *
5502  * If the last reference to this page is speculative, it will be released
5503  * by put_page() which only frees the first page of a non-compound
5504  * allocation.  To prevent the remaining pages from being leaked, we free
5505  * the subsequent pages here.  If you want to use the page's reference
5506  * count to decide when to free the allocation, you should allocate a
5507  * compound page, and use put_page() instead of __free_pages().
5508  *
5509  * Context: May be called in interrupt context or while holding a normal
5510  * spinlock, but not in NMI context or while holding a raw spinlock.
5511  */
5512 void __free_pages(struct page *page, unsigned int order)
5513 {
5514 	if (put_page_testzero(page))
5515 		free_the_page(page, order);
5516 	else if (!PageHead(page))
5517 		while (order-- > 0)
5518 			free_the_page(page + (1 << order), order);
5519 }
5520 EXPORT_SYMBOL(__free_pages);
5521 
5522 void free_pages(unsigned long addr, unsigned int order)
5523 {
5524 	if (addr != 0) {
5525 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5526 		__free_pages(virt_to_page((void *)addr), order);
5527 	}
5528 }
5529 
5530 EXPORT_SYMBOL(free_pages);
5531 
5532 /*
5533  * Page Fragment:
5534  *  An arbitrary-length arbitrary-offset area of memory which resides
5535  *  within a 0 or higher order page.  Multiple fragments within that page
5536  *  are individually refcounted, in the page's reference counter.
5537  *
5538  * The page_frag functions below provide a simple allocation framework for
5539  * page fragments.  This is used by the network stack and network device
5540  * drivers to provide a backing region of memory for use as either an
5541  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5542  */
5543 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5544 					     gfp_t gfp_mask)
5545 {
5546 	struct page *page = NULL;
5547 	gfp_t gfp = gfp_mask;
5548 
5549 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5550 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5551 		    __GFP_NOMEMALLOC;
5552 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5553 				PAGE_FRAG_CACHE_MAX_ORDER);
5554 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5555 #endif
5556 	if (unlikely(!page))
5557 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5558 
5559 	nc->va = page ? page_address(page) : NULL;
5560 
5561 	return page;
5562 }
5563 
5564 void __page_frag_cache_drain(struct page *page, unsigned int count)
5565 {
5566 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5567 
5568 	if (page_ref_sub_and_test(page, count))
5569 		free_the_page(page, compound_order(page));
5570 }
5571 EXPORT_SYMBOL(__page_frag_cache_drain);
5572 
5573 void *page_frag_alloc_align(struct page_frag_cache *nc,
5574 		      unsigned int fragsz, gfp_t gfp_mask,
5575 		      unsigned int align_mask)
5576 {
5577 	unsigned int size = PAGE_SIZE;
5578 	struct page *page;
5579 	int offset;
5580 
5581 	if (unlikely(!nc->va)) {
5582 refill:
5583 		page = __page_frag_cache_refill(nc, gfp_mask);
5584 		if (!page)
5585 			return NULL;
5586 
5587 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5588 		/* if size can vary use size else just use PAGE_SIZE */
5589 		size = nc->size;
5590 #endif
5591 		/* Even if we own the page, we do not use atomic_set().
5592 		 * This would break get_page_unless_zero() users.
5593 		 */
5594 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5595 
5596 		/* reset page count bias and offset to start of new frag */
5597 		nc->pfmemalloc = page_is_pfmemalloc(page);
5598 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5599 		nc->offset = size;
5600 	}
5601 
5602 	offset = nc->offset - fragsz;
5603 	if (unlikely(offset < 0)) {
5604 		page = virt_to_page(nc->va);
5605 
5606 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5607 			goto refill;
5608 
5609 		if (unlikely(nc->pfmemalloc)) {
5610 			free_the_page(page, compound_order(page));
5611 			goto refill;
5612 		}
5613 
5614 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5615 		/* if size can vary use size else just use PAGE_SIZE */
5616 		size = nc->size;
5617 #endif
5618 		/* OK, page count is 0, we can safely set it */
5619 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5620 
5621 		/* reset page count bias and offset to start of new frag */
5622 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5623 		offset = size - fragsz;
5624 	}
5625 
5626 	nc->pagecnt_bias--;
5627 	offset &= align_mask;
5628 	nc->offset = offset;
5629 
5630 	return nc->va + offset;
5631 }
5632 EXPORT_SYMBOL(page_frag_alloc_align);
5633 
5634 /*
5635  * Frees a page fragment allocated out of either a compound or order 0 page.
5636  */
5637 void page_frag_free(void *addr)
5638 {
5639 	struct page *page = virt_to_head_page(addr);
5640 
5641 	if (unlikely(put_page_testzero(page)))
5642 		free_the_page(page, compound_order(page));
5643 }
5644 EXPORT_SYMBOL(page_frag_free);
5645 
5646 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5647 		size_t size)
5648 {
5649 	if (addr) {
5650 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5651 		unsigned long used = addr + PAGE_ALIGN(size);
5652 
5653 		split_page(virt_to_page((void *)addr), order);
5654 		while (used < alloc_end) {
5655 			free_page(used);
5656 			used += PAGE_SIZE;
5657 		}
5658 	}
5659 	return (void *)addr;
5660 }
5661 
5662 /**
5663  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5664  * @size: the number of bytes to allocate
5665  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5666  *
5667  * This function is similar to alloc_pages(), except that it allocates the
5668  * minimum number of pages to satisfy the request.  alloc_pages() can only
5669  * allocate memory in power-of-two pages.
5670  *
5671  * This function is also limited by MAX_ORDER.
5672  *
5673  * Memory allocated by this function must be released by free_pages_exact().
5674  *
5675  * Return: pointer to the allocated area or %NULL in case of error.
5676  */
5677 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5678 {
5679 	unsigned int order = get_order(size);
5680 	unsigned long addr;
5681 
5682 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5683 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5684 
5685 	addr = __get_free_pages(gfp_mask, order);
5686 	return make_alloc_exact(addr, order, size);
5687 }
5688 EXPORT_SYMBOL(alloc_pages_exact);
5689 
5690 /**
5691  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5692  *			   pages on a node.
5693  * @nid: the preferred node ID where memory should be allocated
5694  * @size: the number of bytes to allocate
5695  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5696  *
5697  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5698  * back.
5699  *
5700  * Return: pointer to the allocated area or %NULL in case of error.
5701  */
5702 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5703 {
5704 	unsigned int order = get_order(size);
5705 	struct page *p;
5706 
5707 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5708 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5709 
5710 	p = alloc_pages_node(nid, gfp_mask, order);
5711 	if (!p)
5712 		return NULL;
5713 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5714 }
5715 
5716 /**
5717  * free_pages_exact - release memory allocated via alloc_pages_exact()
5718  * @virt: the value returned by alloc_pages_exact.
5719  * @size: size of allocation, same value as passed to alloc_pages_exact().
5720  *
5721  * Release the memory allocated by a previous call to alloc_pages_exact.
5722  */
5723 void free_pages_exact(void *virt, size_t size)
5724 {
5725 	unsigned long addr = (unsigned long)virt;
5726 	unsigned long end = addr + PAGE_ALIGN(size);
5727 
5728 	while (addr < end) {
5729 		free_page(addr);
5730 		addr += PAGE_SIZE;
5731 	}
5732 }
5733 EXPORT_SYMBOL(free_pages_exact);
5734 
5735 /**
5736  * nr_free_zone_pages - count number of pages beyond high watermark
5737  * @offset: The zone index of the highest zone
5738  *
5739  * nr_free_zone_pages() counts the number of pages which are beyond the
5740  * high watermark within all zones at or below a given zone index.  For each
5741  * zone, the number of pages is calculated as:
5742  *
5743  *     nr_free_zone_pages = managed_pages - high_pages
5744  *
5745  * Return: number of pages beyond high watermark.
5746  */
5747 static unsigned long nr_free_zone_pages(int offset)
5748 {
5749 	struct zoneref *z;
5750 	struct zone *zone;
5751 
5752 	/* Just pick one node, since fallback list is circular */
5753 	unsigned long sum = 0;
5754 
5755 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5756 
5757 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5758 		unsigned long size = zone_managed_pages(zone);
5759 		unsigned long high = high_wmark_pages(zone);
5760 		if (size > high)
5761 			sum += size - high;
5762 	}
5763 
5764 	return sum;
5765 }
5766 
5767 /**
5768  * nr_free_buffer_pages - count number of pages beyond high watermark
5769  *
5770  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5771  * watermark within ZONE_DMA and ZONE_NORMAL.
5772  *
5773  * Return: number of pages beyond high watermark within ZONE_DMA and
5774  * ZONE_NORMAL.
5775  */
5776 unsigned long nr_free_buffer_pages(void)
5777 {
5778 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5779 }
5780 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5781 
5782 static inline void show_node(struct zone *zone)
5783 {
5784 	if (IS_ENABLED(CONFIG_NUMA))
5785 		printk("Node %d ", zone_to_nid(zone));
5786 }
5787 
5788 long si_mem_available(void)
5789 {
5790 	long available;
5791 	unsigned long pagecache;
5792 	unsigned long wmark_low = 0;
5793 	unsigned long pages[NR_LRU_LISTS];
5794 	unsigned long reclaimable;
5795 	struct zone *zone;
5796 	int lru;
5797 
5798 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5799 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5800 
5801 	for_each_zone(zone)
5802 		wmark_low += low_wmark_pages(zone);
5803 
5804 	/*
5805 	 * Estimate the amount of memory available for userspace allocations,
5806 	 * without causing swapping.
5807 	 */
5808 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5809 
5810 	/*
5811 	 * Not all the page cache can be freed, otherwise the system will
5812 	 * start swapping. Assume at least half of the page cache, or the
5813 	 * low watermark worth of cache, needs to stay.
5814 	 */
5815 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5816 	pagecache -= min(pagecache / 2, wmark_low);
5817 	available += pagecache;
5818 
5819 	/*
5820 	 * Part of the reclaimable slab and other kernel memory consists of
5821 	 * items that are in use, and cannot be freed. Cap this estimate at the
5822 	 * low watermark.
5823 	 */
5824 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5825 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5826 	available += reclaimable - min(reclaimable / 2, wmark_low);
5827 
5828 	if (available < 0)
5829 		available = 0;
5830 	return available;
5831 }
5832 EXPORT_SYMBOL_GPL(si_mem_available);
5833 
5834 void si_meminfo(struct sysinfo *val)
5835 {
5836 	val->totalram = totalram_pages();
5837 	val->sharedram = global_node_page_state(NR_SHMEM);
5838 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5839 	val->bufferram = nr_blockdev_pages();
5840 	val->totalhigh = totalhigh_pages();
5841 	val->freehigh = nr_free_highpages();
5842 	val->mem_unit = PAGE_SIZE;
5843 }
5844 
5845 EXPORT_SYMBOL(si_meminfo);
5846 
5847 #ifdef CONFIG_NUMA
5848 void si_meminfo_node(struct sysinfo *val, int nid)
5849 {
5850 	int zone_type;		/* needs to be signed */
5851 	unsigned long managed_pages = 0;
5852 	unsigned long managed_highpages = 0;
5853 	unsigned long free_highpages = 0;
5854 	pg_data_t *pgdat = NODE_DATA(nid);
5855 
5856 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5857 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5858 	val->totalram = managed_pages;
5859 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5860 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5861 #ifdef CONFIG_HIGHMEM
5862 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5863 		struct zone *zone = &pgdat->node_zones[zone_type];
5864 
5865 		if (is_highmem(zone)) {
5866 			managed_highpages += zone_managed_pages(zone);
5867 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5868 		}
5869 	}
5870 	val->totalhigh = managed_highpages;
5871 	val->freehigh = free_highpages;
5872 #else
5873 	val->totalhigh = managed_highpages;
5874 	val->freehigh = free_highpages;
5875 #endif
5876 	val->mem_unit = PAGE_SIZE;
5877 }
5878 #endif
5879 
5880 /*
5881  * Determine whether the node should be displayed or not, depending on whether
5882  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5883  */
5884 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5885 {
5886 	if (!(flags & SHOW_MEM_FILTER_NODES))
5887 		return false;
5888 
5889 	/*
5890 	 * no node mask - aka implicit memory numa policy. Do not bother with
5891 	 * the synchronization - read_mems_allowed_begin - because we do not
5892 	 * have to be precise here.
5893 	 */
5894 	if (!nodemask)
5895 		nodemask = &cpuset_current_mems_allowed;
5896 
5897 	return !node_isset(nid, *nodemask);
5898 }
5899 
5900 #define K(x) ((x) << (PAGE_SHIFT-10))
5901 
5902 static void show_migration_types(unsigned char type)
5903 {
5904 	static const char types[MIGRATE_TYPES] = {
5905 		[MIGRATE_UNMOVABLE]	= 'U',
5906 		[MIGRATE_MOVABLE]	= 'M',
5907 		[MIGRATE_RECLAIMABLE]	= 'E',
5908 		[MIGRATE_HIGHATOMIC]	= 'H',
5909 #ifdef CONFIG_CMA
5910 		[MIGRATE_CMA]		= 'C',
5911 #endif
5912 #ifdef CONFIG_MEMORY_ISOLATION
5913 		[MIGRATE_ISOLATE]	= 'I',
5914 #endif
5915 	};
5916 	char tmp[MIGRATE_TYPES + 1];
5917 	char *p = tmp;
5918 	int i;
5919 
5920 	for (i = 0; i < MIGRATE_TYPES; i++) {
5921 		if (type & (1 << i))
5922 			*p++ = types[i];
5923 	}
5924 
5925 	*p = '\0';
5926 	printk(KERN_CONT "(%s) ", tmp);
5927 }
5928 
5929 /*
5930  * Show free area list (used inside shift_scroll-lock stuff)
5931  * We also calculate the percentage fragmentation. We do this by counting the
5932  * memory on each free list with the exception of the first item on the list.
5933  *
5934  * Bits in @filter:
5935  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5936  *   cpuset.
5937  */
5938 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5939 {
5940 	unsigned long free_pcp = 0;
5941 	int cpu;
5942 	struct zone *zone;
5943 	pg_data_t *pgdat;
5944 
5945 	for_each_populated_zone(zone) {
5946 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5947 			continue;
5948 
5949 		for_each_online_cpu(cpu)
5950 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5951 	}
5952 
5953 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5954 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5955 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5956 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5957 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5958 		" kernel_misc_reclaimable:%lu\n"
5959 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5960 		global_node_page_state(NR_ACTIVE_ANON),
5961 		global_node_page_state(NR_INACTIVE_ANON),
5962 		global_node_page_state(NR_ISOLATED_ANON),
5963 		global_node_page_state(NR_ACTIVE_FILE),
5964 		global_node_page_state(NR_INACTIVE_FILE),
5965 		global_node_page_state(NR_ISOLATED_FILE),
5966 		global_node_page_state(NR_UNEVICTABLE),
5967 		global_node_page_state(NR_FILE_DIRTY),
5968 		global_node_page_state(NR_WRITEBACK),
5969 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5970 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5971 		global_node_page_state(NR_FILE_MAPPED),
5972 		global_node_page_state(NR_SHMEM),
5973 		global_node_page_state(NR_PAGETABLE),
5974 		global_zone_page_state(NR_BOUNCE),
5975 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5976 		global_zone_page_state(NR_FREE_PAGES),
5977 		free_pcp,
5978 		global_zone_page_state(NR_FREE_CMA_PAGES));
5979 
5980 	for_each_online_pgdat(pgdat) {
5981 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5982 			continue;
5983 
5984 		printk("Node %d"
5985 			" active_anon:%lukB"
5986 			" inactive_anon:%lukB"
5987 			" active_file:%lukB"
5988 			" inactive_file:%lukB"
5989 			" unevictable:%lukB"
5990 			" isolated(anon):%lukB"
5991 			" isolated(file):%lukB"
5992 			" mapped:%lukB"
5993 			" dirty:%lukB"
5994 			" writeback:%lukB"
5995 			" shmem:%lukB"
5996 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5997 			" shmem_thp: %lukB"
5998 			" shmem_pmdmapped: %lukB"
5999 			" anon_thp: %lukB"
6000 #endif
6001 			" writeback_tmp:%lukB"
6002 			" kernel_stack:%lukB"
6003 #ifdef CONFIG_SHADOW_CALL_STACK
6004 			" shadow_call_stack:%lukB"
6005 #endif
6006 			" pagetables:%lukB"
6007 			" all_unreclaimable? %s"
6008 			"\n",
6009 			pgdat->node_id,
6010 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6011 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6012 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6013 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6014 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6015 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6016 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6017 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6018 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6019 			K(node_page_state(pgdat, NR_WRITEBACK)),
6020 			K(node_page_state(pgdat, NR_SHMEM)),
6021 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6022 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6023 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6024 			K(node_page_state(pgdat, NR_ANON_THPS)),
6025 #endif
6026 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6027 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6028 #ifdef CONFIG_SHADOW_CALL_STACK
6029 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6030 #endif
6031 			K(node_page_state(pgdat, NR_PAGETABLE)),
6032 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6033 				"yes" : "no");
6034 	}
6035 
6036 	for_each_populated_zone(zone) {
6037 		int i;
6038 
6039 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6040 			continue;
6041 
6042 		free_pcp = 0;
6043 		for_each_online_cpu(cpu)
6044 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6045 
6046 		show_node(zone);
6047 		printk(KERN_CONT
6048 			"%s"
6049 			" free:%lukB"
6050 			" boost:%lukB"
6051 			" min:%lukB"
6052 			" low:%lukB"
6053 			" high:%lukB"
6054 			" reserved_highatomic:%luKB"
6055 			" active_anon:%lukB"
6056 			" inactive_anon:%lukB"
6057 			" active_file:%lukB"
6058 			" inactive_file:%lukB"
6059 			" unevictable:%lukB"
6060 			" writepending:%lukB"
6061 			" present:%lukB"
6062 			" managed:%lukB"
6063 			" mlocked:%lukB"
6064 			" bounce:%lukB"
6065 			" free_pcp:%lukB"
6066 			" local_pcp:%ukB"
6067 			" free_cma:%lukB"
6068 			"\n",
6069 			zone->name,
6070 			K(zone_page_state(zone, NR_FREE_PAGES)),
6071 			K(zone->watermark_boost),
6072 			K(min_wmark_pages(zone)),
6073 			K(low_wmark_pages(zone)),
6074 			K(high_wmark_pages(zone)),
6075 			K(zone->nr_reserved_highatomic),
6076 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6077 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6078 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6079 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6080 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6081 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6082 			K(zone->present_pages),
6083 			K(zone_managed_pages(zone)),
6084 			K(zone_page_state(zone, NR_MLOCK)),
6085 			K(zone_page_state(zone, NR_BOUNCE)),
6086 			K(free_pcp),
6087 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6088 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6089 		printk("lowmem_reserve[]:");
6090 		for (i = 0; i < MAX_NR_ZONES; i++)
6091 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6092 		printk(KERN_CONT "\n");
6093 	}
6094 
6095 	for_each_populated_zone(zone) {
6096 		unsigned int order;
6097 		unsigned long nr[MAX_ORDER], flags, total = 0;
6098 		unsigned char types[MAX_ORDER];
6099 
6100 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6101 			continue;
6102 		show_node(zone);
6103 		printk(KERN_CONT "%s: ", zone->name);
6104 
6105 		spin_lock_irqsave(&zone->lock, flags);
6106 		for (order = 0; order < MAX_ORDER; order++) {
6107 			struct free_area *area = &zone->free_area[order];
6108 			int type;
6109 
6110 			nr[order] = area->nr_free;
6111 			total += nr[order] << order;
6112 
6113 			types[order] = 0;
6114 			for (type = 0; type < MIGRATE_TYPES; type++) {
6115 				if (!free_area_empty(area, type))
6116 					types[order] |= 1 << type;
6117 			}
6118 		}
6119 		spin_unlock_irqrestore(&zone->lock, flags);
6120 		for (order = 0; order < MAX_ORDER; order++) {
6121 			printk(KERN_CONT "%lu*%lukB ",
6122 			       nr[order], K(1UL) << order);
6123 			if (nr[order])
6124 				show_migration_types(types[order]);
6125 		}
6126 		printk(KERN_CONT "= %lukB\n", K(total));
6127 	}
6128 
6129 	hugetlb_show_meminfo();
6130 
6131 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6132 
6133 	show_swap_cache_info();
6134 }
6135 
6136 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6137 {
6138 	zoneref->zone = zone;
6139 	zoneref->zone_idx = zone_idx(zone);
6140 }
6141 
6142 /*
6143  * Builds allocation fallback zone lists.
6144  *
6145  * Add all populated zones of a node to the zonelist.
6146  */
6147 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6148 {
6149 	struct zone *zone;
6150 	enum zone_type zone_type = MAX_NR_ZONES;
6151 	int nr_zones = 0;
6152 
6153 	do {
6154 		zone_type--;
6155 		zone = pgdat->node_zones + zone_type;
6156 		if (populated_zone(zone)) {
6157 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6158 			check_highest_zone(zone_type);
6159 		}
6160 	} while (zone_type);
6161 
6162 	return nr_zones;
6163 }
6164 
6165 #ifdef CONFIG_NUMA
6166 
6167 static int __parse_numa_zonelist_order(char *s)
6168 {
6169 	/*
6170 	 * We used to support different zonelists modes but they turned
6171 	 * out to be just not useful. Let's keep the warning in place
6172 	 * if somebody still use the cmd line parameter so that we do
6173 	 * not fail it silently
6174 	 */
6175 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6176 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6177 		return -EINVAL;
6178 	}
6179 	return 0;
6180 }
6181 
6182 char numa_zonelist_order[] = "Node";
6183 
6184 /*
6185  * sysctl handler for numa_zonelist_order
6186  */
6187 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6188 		void *buffer, size_t *length, loff_t *ppos)
6189 {
6190 	if (write)
6191 		return __parse_numa_zonelist_order(buffer);
6192 	return proc_dostring(table, write, buffer, length, ppos);
6193 }
6194 
6195 
6196 static int node_load[MAX_NUMNODES];
6197 
6198 /**
6199  * find_next_best_node - find the next node that should appear in a given node's fallback list
6200  * @node: node whose fallback list we're appending
6201  * @used_node_mask: nodemask_t of already used nodes
6202  *
6203  * We use a number of factors to determine which is the next node that should
6204  * appear on a given node's fallback list.  The node should not have appeared
6205  * already in @node's fallback list, and it should be the next closest node
6206  * according to the distance array (which contains arbitrary distance values
6207  * from each node to each node in the system), and should also prefer nodes
6208  * with no CPUs, since presumably they'll have very little allocation pressure
6209  * on them otherwise.
6210  *
6211  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6212  */
6213 int find_next_best_node(int node, nodemask_t *used_node_mask)
6214 {
6215 	int n, val;
6216 	int min_val = INT_MAX;
6217 	int best_node = NUMA_NO_NODE;
6218 
6219 	/* Use the local node if we haven't already */
6220 	if (!node_isset(node, *used_node_mask)) {
6221 		node_set(node, *used_node_mask);
6222 		return node;
6223 	}
6224 
6225 	for_each_node_state(n, N_MEMORY) {
6226 
6227 		/* Don't want a node to appear more than once */
6228 		if (node_isset(n, *used_node_mask))
6229 			continue;
6230 
6231 		/* Use the distance array to find the distance */
6232 		val = node_distance(node, n);
6233 
6234 		/* Penalize nodes under us ("prefer the next node") */
6235 		val += (n < node);
6236 
6237 		/* Give preference to headless and unused nodes */
6238 		if (!cpumask_empty(cpumask_of_node(n)))
6239 			val += PENALTY_FOR_NODE_WITH_CPUS;
6240 
6241 		/* Slight preference for less loaded node */
6242 		val *= MAX_NUMNODES;
6243 		val += node_load[n];
6244 
6245 		if (val < min_val) {
6246 			min_val = val;
6247 			best_node = n;
6248 		}
6249 	}
6250 
6251 	if (best_node >= 0)
6252 		node_set(best_node, *used_node_mask);
6253 
6254 	return best_node;
6255 }
6256 
6257 
6258 /*
6259  * Build zonelists ordered by node and zones within node.
6260  * This results in maximum locality--normal zone overflows into local
6261  * DMA zone, if any--but risks exhausting DMA zone.
6262  */
6263 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6264 		unsigned nr_nodes)
6265 {
6266 	struct zoneref *zonerefs;
6267 	int i;
6268 
6269 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6270 
6271 	for (i = 0; i < nr_nodes; i++) {
6272 		int nr_zones;
6273 
6274 		pg_data_t *node = NODE_DATA(node_order[i]);
6275 
6276 		nr_zones = build_zonerefs_node(node, zonerefs);
6277 		zonerefs += nr_zones;
6278 	}
6279 	zonerefs->zone = NULL;
6280 	zonerefs->zone_idx = 0;
6281 }
6282 
6283 /*
6284  * Build gfp_thisnode zonelists
6285  */
6286 static void build_thisnode_zonelists(pg_data_t *pgdat)
6287 {
6288 	struct zoneref *zonerefs;
6289 	int nr_zones;
6290 
6291 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6292 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6293 	zonerefs += nr_zones;
6294 	zonerefs->zone = NULL;
6295 	zonerefs->zone_idx = 0;
6296 }
6297 
6298 /*
6299  * Build zonelists ordered by zone and nodes within zones.
6300  * This results in conserving DMA zone[s] until all Normal memory is
6301  * exhausted, but results in overflowing to remote node while memory
6302  * may still exist in local DMA zone.
6303  */
6304 
6305 static void build_zonelists(pg_data_t *pgdat)
6306 {
6307 	static int node_order[MAX_NUMNODES];
6308 	int node, nr_nodes = 0;
6309 	nodemask_t used_mask = NODE_MASK_NONE;
6310 	int local_node, prev_node;
6311 
6312 	/* NUMA-aware ordering of nodes */
6313 	local_node = pgdat->node_id;
6314 	prev_node = local_node;
6315 
6316 	memset(node_order, 0, sizeof(node_order));
6317 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6318 		/*
6319 		 * We don't want to pressure a particular node.
6320 		 * So adding penalty to the first node in same
6321 		 * distance group to make it round-robin.
6322 		 */
6323 		if (node_distance(local_node, node) !=
6324 		    node_distance(local_node, prev_node))
6325 			node_load[node] += 1;
6326 
6327 		node_order[nr_nodes++] = node;
6328 		prev_node = node;
6329 	}
6330 
6331 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6332 	build_thisnode_zonelists(pgdat);
6333 	pr_info("Fallback order for Node %d: ", local_node);
6334 	for (node = 0; node < nr_nodes; node++)
6335 		pr_cont("%d ", node_order[node]);
6336 	pr_cont("\n");
6337 }
6338 
6339 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6340 /*
6341  * Return node id of node used for "local" allocations.
6342  * I.e., first node id of first zone in arg node's generic zonelist.
6343  * Used for initializing percpu 'numa_mem', which is used primarily
6344  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6345  */
6346 int local_memory_node(int node)
6347 {
6348 	struct zoneref *z;
6349 
6350 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6351 				   gfp_zone(GFP_KERNEL),
6352 				   NULL);
6353 	return zone_to_nid(z->zone);
6354 }
6355 #endif
6356 
6357 static void setup_min_unmapped_ratio(void);
6358 static void setup_min_slab_ratio(void);
6359 #else	/* CONFIG_NUMA */
6360 
6361 static void build_zonelists(pg_data_t *pgdat)
6362 {
6363 	int node, local_node;
6364 	struct zoneref *zonerefs;
6365 	int nr_zones;
6366 
6367 	local_node = pgdat->node_id;
6368 
6369 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6370 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6371 	zonerefs += nr_zones;
6372 
6373 	/*
6374 	 * Now we build the zonelist so that it contains the zones
6375 	 * of all the other nodes.
6376 	 * We don't want to pressure a particular node, so when
6377 	 * building the zones for node N, we make sure that the
6378 	 * zones coming right after the local ones are those from
6379 	 * node N+1 (modulo N)
6380 	 */
6381 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6382 		if (!node_online(node))
6383 			continue;
6384 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6385 		zonerefs += nr_zones;
6386 	}
6387 	for (node = 0; node < local_node; node++) {
6388 		if (!node_online(node))
6389 			continue;
6390 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6391 		zonerefs += nr_zones;
6392 	}
6393 
6394 	zonerefs->zone = NULL;
6395 	zonerefs->zone_idx = 0;
6396 }
6397 
6398 #endif	/* CONFIG_NUMA */
6399 
6400 /*
6401  * Boot pageset table. One per cpu which is going to be used for all
6402  * zones and all nodes. The parameters will be set in such a way
6403  * that an item put on a list will immediately be handed over to
6404  * the buddy list. This is safe since pageset manipulation is done
6405  * with interrupts disabled.
6406  *
6407  * The boot_pagesets must be kept even after bootup is complete for
6408  * unused processors and/or zones. They do play a role for bootstrapping
6409  * hotplugged processors.
6410  *
6411  * zoneinfo_show() and maybe other functions do
6412  * not check if the processor is online before following the pageset pointer.
6413  * Other parts of the kernel may not check if the zone is available.
6414  */
6415 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6416 /* These effectively disable the pcplists in the boot pageset completely */
6417 #define BOOT_PAGESET_HIGH	0
6418 #define BOOT_PAGESET_BATCH	1
6419 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6420 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6421 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6422 
6423 static void __build_all_zonelists(void *data)
6424 {
6425 	int nid;
6426 	int __maybe_unused cpu;
6427 	pg_data_t *self = data;
6428 	static DEFINE_SPINLOCK(lock);
6429 
6430 	spin_lock(&lock);
6431 
6432 #ifdef CONFIG_NUMA
6433 	memset(node_load, 0, sizeof(node_load));
6434 #endif
6435 
6436 	/*
6437 	 * This node is hotadded and no memory is yet present.   So just
6438 	 * building zonelists is fine - no need to touch other nodes.
6439 	 */
6440 	if (self && !node_online(self->node_id)) {
6441 		build_zonelists(self);
6442 	} else {
6443 		/*
6444 		 * All possible nodes have pgdat preallocated
6445 		 * in free_area_init
6446 		 */
6447 		for_each_node(nid) {
6448 			pg_data_t *pgdat = NODE_DATA(nid);
6449 
6450 			build_zonelists(pgdat);
6451 		}
6452 
6453 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6454 		/*
6455 		 * We now know the "local memory node" for each node--
6456 		 * i.e., the node of the first zone in the generic zonelist.
6457 		 * Set up numa_mem percpu variable for on-line cpus.  During
6458 		 * boot, only the boot cpu should be on-line;  we'll init the
6459 		 * secondary cpus' numa_mem as they come on-line.  During
6460 		 * node/memory hotplug, we'll fixup all on-line cpus.
6461 		 */
6462 		for_each_online_cpu(cpu)
6463 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6464 #endif
6465 	}
6466 
6467 	spin_unlock(&lock);
6468 }
6469 
6470 static noinline void __init
6471 build_all_zonelists_init(void)
6472 {
6473 	int cpu;
6474 
6475 	__build_all_zonelists(NULL);
6476 
6477 	/*
6478 	 * Initialize the boot_pagesets that are going to be used
6479 	 * for bootstrapping processors. The real pagesets for
6480 	 * each zone will be allocated later when the per cpu
6481 	 * allocator is available.
6482 	 *
6483 	 * boot_pagesets are used also for bootstrapping offline
6484 	 * cpus if the system is already booted because the pagesets
6485 	 * are needed to initialize allocators on a specific cpu too.
6486 	 * F.e. the percpu allocator needs the page allocator which
6487 	 * needs the percpu allocator in order to allocate its pagesets
6488 	 * (a chicken-egg dilemma).
6489 	 */
6490 	for_each_possible_cpu(cpu)
6491 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6492 
6493 	mminit_verify_zonelist();
6494 	cpuset_init_current_mems_allowed();
6495 }
6496 
6497 /*
6498  * unless system_state == SYSTEM_BOOTING.
6499  *
6500  * __ref due to call of __init annotated helper build_all_zonelists_init
6501  * [protected by SYSTEM_BOOTING].
6502  */
6503 void __ref build_all_zonelists(pg_data_t *pgdat)
6504 {
6505 	unsigned long vm_total_pages;
6506 
6507 	if (system_state == SYSTEM_BOOTING) {
6508 		build_all_zonelists_init();
6509 	} else {
6510 		__build_all_zonelists(pgdat);
6511 		/* cpuset refresh routine should be here */
6512 	}
6513 	/* Get the number of free pages beyond high watermark in all zones. */
6514 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6515 	/*
6516 	 * Disable grouping by mobility if the number of pages in the
6517 	 * system is too low to allow the mechanism to work. It would be
6518 	 * more accurate, but expensive to check per-zone. This check is
6519 	 * made on memory-hotadd so a system can start with mobility
6520 	 * disabled and enable it later
6521 	 */
6522 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6523 		page_group_by_mobility_disabled = 1;
6524 	else
6525 		page_group_by_mobility_disabled = 0;
6526 
6527 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6528 		nr_online_nodes,
6529 		page_group_by_mobility_disabled ? "off" : "on",
6530 		vm_total_pages);
6531 #ifdef CONFIG_NUMA
6532 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6533 #endif
6534 }
6535 
6536 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6537 static bool __meminit
6538 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6539 {
6540 	static struct memblock_region *r;
6541 
6542 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6543 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6544 			for_each_mem_region(r) {
6545 				if (*pfn < memblock_region_memory_end_pfn(r))
6546 					break;
6547 			}
6548 		}
6549 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6550 		    memblock_is_mirror(r)) {
6551 			*pfn = memblock_region_memory_end_pfn(r);
6552 			return true;
6553 		}
6554 	}
6555 	return false;
6556 }
6557 
6558 /*
6559  * Initially all pages are reserved - free ones are freed
6560  * up by memblock_free_all() once the early boot process is
6561  * done. Non-atomic initialization, single-pass.
6562  *
6563  * All aligned pageblocks are initialized to the specified migratetype
6564  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6565  * zone stats (e.g., nr_isolate_pageblock) are touched.
6566  */
6567 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6568 		unsigned long start_pfn, unsigned long zone_end_pfn,
6569 		enum meminit_context context,
6570 		struct vmem_altmap *altmap, int migratetype)
6571 {
6572 	unsigned long pfn, end_pfn = start_pfn + size;
6573 	struct page *page;
6574 
6575 	if (highest_memmap_pfn < end_pfn - 1)
6576 		highest_memmap_pfn = end_pfn - 1;
6577 
6578 #ifdef CONFIG_ZONE_DEVICE
6579 	/*
6580 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6581 	 * memory. We limit the total number of pages to initialize to just
6582 	 * those that might contain the memory mapping. We will defer the
6583 	 * ZONE_DEVICE page initialization until after we have released
6584 	 * the hotplug lock.
6585 	 */
6586 	if (zone == ZONE_DEVICE) {
6587 		if (!altmap)
6588 			return;
6589 
6590 		if (start_pfn == altmap->base_pfn)
6591 			start_pfn += altmap->reserve;
6592 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6593 	}
6594 #endif
6595 
6596 	for (pfn = start_pfn; pfn < end_pfn; ) {
6597 		/*
6598 		 * There can be holes in boot-time mem_map[]s handed to this
6599 		 * function.  They do not exist on hotplugged memory.
6600 		 */
6601 		if (context == MEMINIT_EARLY) {
6602 			if (overlap_memmap_init(zone, &pfn))
6603 				continue;
6604 			if (defer_init(nid, pfn, zone_end_pfn))
6605 				break;
6606 		}
6607 
6608 		page = pfn_to_page(pfn);
6609 		__init_single_page(page, pfn, zone, nid);
6610 		if (context == MEMINIT_HOTPLUG)
6611 			__SetPageReserved(page);
6612 
6613 		/*
6614 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6615 		 * such that unmovable allocations won't be scattered all
6616 		 * over the place during system boot.
6617 		 */
6618 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6619 			set_pageblock_migratetype(page, migratetype);
6620 			cond_resched();
6621 		}
6622 		pfn++;
6623 	}
6624 }
6625 
6626 #ifdef CONFIG_ZONE_DEVICE
6627 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6628 					  unsigned long zone_idx, int nid,
6629 					  struct dev_pagemap *pgmap)
6630 {
6631 
6632 	__init_single_page(page, pfn, zone_idx, nid);
6633 
6634 	/*
6635 	 * Mark page reserved as it will need to wait for onlining
6636 	 * phase for it to be fully associated with a zone.
6637 	 *
6638 	 * We can use the non-atomic __set_bit operation for setting
6639 	 * the flag as we are still initializing the pages.
6640 	 */
6641 	__SetPageReserved(page);
6642 
6643 	/*
6644 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6645 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6646 	 * ever freed or placed on a driver-private list.
6647 	 */
6648 	page->pgmap = pgmap;
6649 	page->zone_device_data = NULL;
6650 
6651 	/*
6652 	 * Mark the block movable so that blocks are reserved for
6653 	 * movable at startup. This will force kernel allocations
6654 	 * to reserve their blocks rather than leaking throughout
6655 	 * the address space during boot when many long-lived
6656 	 * kernel allocations are made.
6657 	 *
6658 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6659 	 * because this is done early in section_activate()
6660 	 */
6661 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6662 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6663 		cond_resched();
6664 	}
6665 }
6666 
6667 /*
6668  * With compound page geometry and when struct pages are stored in ram most
6669  * tail pages are reused. Consequently, the amount of unique struct pages to
6670  * initialize is a lot smaller that the total amount of struct pages being
6671  * mapped. This is a paired / mild layering violation with explicit knowledge
6672  * of how the sparse_vmemmap internals handle compound pages in the lack
6673  * of an altmap. See vmemmap_populate_compound_pages().
6674  */
6675 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6676 					      unsigned long nr_pages)
6677 {
6678 	return is_power_of_2(sizeof(struct page)) &&
6679 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6680 }
6681 
6682 static void __ref memmap_init_compound(struct page *head,
6683 				       unsigned long head_pfn,
6684 				       unsigned long zone_idx, int nid,
6685 				       struct dev_pagemap *pgmap,
6686 				       unsigned long nr_pages)
6687 {
6688 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6689 	unsigned int order = pgmap->vmemmap_shift;
6690 
6691 	__SetPageHead(head);
6692 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6693 		struct page *page = pfn_to_page(pfn);
6694 
6695 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6696 		prep_compound_tail(head, pfn - head_pfn);
6697 		set_page_count(page, 0);
6698 
6699 		/*
6700 		 * The first tail page stores compound_mapcount_ptr() and
6701 		 * compound_order() and the second tail page stores
6702 		 * compound_pincount_ptr(). Call prep_compound_head() after
6703 		 * the first and second tail pages have been initialized to
6704 		 * not have the data overwritten.
6705 		 */
6706 		if (pfn == head_pfn + 2)
6707 			prep_compound_head(head, order);
6708 	}
6709 }
6710 
6711 void __ref memmap_init_zone_device(struct zone *zone,
6712 				   unsigned long start_pfn,
6713 				   unsigned long nr_pages,
6714 				   struct dev_pagemap *pgmap)
6715 {
6716 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6717 	struct pglist_data *pgdat = zone->zone_pgdat;
6718 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6719 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6720 	unsigned long zone_idx = zone_idx(zone);
6721 	unsigned long start = jiffies;
6722 	int nid = pgdat->node_id;
6723 
6724 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6725 		return;
6726 
6727 	/*
6728 	 * The call to memmap_init should have already taken care
6729 	 * of the pages reserved for the memmap, so we can just jump to
6730 	 * the end of that region and start processing the device pages.
6731 	 */
6732 	if (altmap) {
6733 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6734 		nr_pages = end_pfn - start_pfn;
6735 	}
6736 
6737 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6738 		struct page *page = pfn_to_page(pfn);
6739 
6740 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6741 
6742 		if (pfns_per_compound == 1)
6743 			continue;
6744 
6745 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6746 				     compound_nr_pages(altmap, pfns_per_compound));
6747 	}
6748 
6749 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6750 		nr_pages, jiffies_to_msecs(jiffies - start));
6751 }
6752 
6753 #endif
6754 static void __meminit zone_init_free_lists(struct zone *zone)
6755 {
6756 	unsigned int order, t;
6757 	for_each_migratetype_order(order, t) {
6758 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6759 		zone->free_area[order].nr_free = 0;
6760 	}
6761 }
6762 
6763 /*
6764  * Only struct pages that correspond to ranges defined by memblock.memory
6765  * are zeroed and initialized by going through __init_single_page() during
6766  * memmap_init_zone_range().
6767  *
6768  * But, there could be struct pages that correspond to holes in
6769  * memblock.memory. This can happen because of the following reasons:
6770  * - physical memory bank size is not necessarily the exact multiple of the
6771  *   arbitrary section size
6772  * - early reserved memory may not be listed in memblock.memory
6773  * - memory layouts defined with memmap= kernel parameter may not align
6774  *   nicely with memmap sections
6775  *
6776  * Explicitly initialize those struct pages so that:
6777  * - PG_Reserved is set
6778  * - zone and node links point to zone and node that span the page if the
6779  *   hole is in the middle of a zone
6780  * - zone and node links point to adjacent zone/node if the hole falls on
6781  *   the zone boundary; the pages in such holes will be prepended to the
6782  *   zone/node above the hole except for the trailing pages in the last
6783  *   section that will be appended to the zone/node below.
6784  */
6785 static void __init init_unavailable_range(unsigned long spfn,
6786 					  unsigned long epfn,
6787 					  int zone, int node)
6788 {
6789 	unsigned long pfn;
6790 	u64 pgcnt = 0;
6791 
6792 	for (pfn = spfn; pfn < epfn; pfn++) {
6793 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6794 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6795 				+ pageblock_nr_pages - 1;
6796 			continue;
6797 		}
6798 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6799 		__SetPageReserved(pfn_to_page(pfn));
6800 		pgcnt++;
6801 	}
6802 
6803 	if (pgcnt)
6804 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6805 			node, zone_names[zone], pgcnt);
6806 }
6807 
6808 static void __init memmap_init_zone_range(struct zone *zone,
6809 					  unsigned long start_pfn,
6810 					  unsigned long end_pfn,
6811 					  unsigned long *hole_pfn)
6812 {
6813 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6814 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6815 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6816 
6817 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6818 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6819 
6820 	if (start_pfn >= end_pfn)
6821 		return;
6822 
6823 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6824 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6825 
6826 	if (*hole_pfn < start_pfn)
6827 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6828 
6829 	*hole_pfn = end_pfn;
6830 }
6831 
6832 static void __init memmap_init(void)
6833 {
6834 	unsigned long start_pfn, end_pfn;
6835 	unsigned long hole_pfn = 0;
6836 	int i, j, zone_id = 0, nid;
6837 
6838 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6839 		struct pglist_data *node = NODE_DATA(nid);
6840 
6841 		for (j = 0; j < MAX_NR_ZONES; j++) {
6842 			struct zone *zone = node->node_zones + j;
6843 
6844 			if (!populated_zone(zone))
6845 				continue;
6846 
6847 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6848 					       &hole_pfn);
6849 			zone_id = j;
6850 		}
6851 	}
6852 
6853 #ifdef CONFIG_SPARSEMEM
6854 	/*
6855 	 * Initialize the memory map for hole in the range [memory_end,
6856 	 * section_end].
6857 	 * Append the pages in this hole to the highest zone in the last
6858 	 * node.
6859 	 * The call to init_unavailable_range() is outside the ifdef to
6860 	 * silence the compiler warining about zone_id set but not used;
6861 	 * for FLATMEM it is a nop anyway
6862 	 */
6863 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6864 	if (hole_pfn < end_pfn)
6865 #endif
6866 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6867 }
6868 
6869 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6870 			  phys_addr_t min_addr, int nid, bool exact_nid)
6871 {
6872 	void *ptr;
6873 
6874 	if (exact_nid)
6875 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6876 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6877 						   nid);
6878 	else
6879 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6880 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6881 						 nid);
6882 
6883 	if (ptr && size > 0)
6884 		page_init_poison(ptr, size);
6885 
6886 	return ptr;
6887 }
6888 
6889 static int zone_batchsize(struct zone *zone)
6890 {
6891 #ifdef CONFIG_MMU
6892 	int batch;
6893 
6894 	/*
6895 	 * The number of pages to batch allocate is either ~0.1%
6896 	 * of the zone or 1MB, whichever is smaller. The batch
6897 	 * size is striking a balance between allocation latency
6898 	 * and zone lock contention.
6899 	 */
6900 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6901 	batch /= 4;		/* We effectively *= 4 below */
6902 	if (batch < 1)
6903 		batch = 1;
6904 
6905 	/*
6906 	 * Clamp the batch to a 2^n - 1 value. Having a power
6907 	 * of 2 value was found to be more likely to have
6908 	 * suboptimal cache aliasing properties in some cases.
6909 	 *
6910 	 * For example if 2 tasks are alternately allocating
6911 	 * batches of pages, one task can end up with a lot
6912 	 * of pages of one half of the possible page colors
6913 	 * and the other with pages of the other colors.
6914 	 */
6915 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6916 
6917 	return batch;
6918 
6919 #else
6920 	/* The deferral and batching of frees should be suppressed under NOMMU
6921 	 * conditions.
6922 	 *
6923 	 * The problem is that NOMMU needs to be able to allocate large chunks
6924 	 * of contiguous memory as there's no hardware page translation to
6925 	 * assemble apparent contiguous memory from discontiguous pages.
6926 	 *
6927 	 * Queueing large contiguous runs of pages for batching, however,
6928 	 * causes the pages to actually be freed in smaller chunks.  As there
6929 	 * can be a significant delay between the individual batches being
6930 	 * recycled, this leads to the once large chunks of space being
6931 	 * fragmented and becoming unavailable for high-order allocations.
6932 	 */
6933 	return 0;
6934 #endif
6935 }
6936 
6937 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6938 {
6939 #ifdef CONFIG_MMU
6940 	int high;
6941 	int nr_split_cpus;
6942 	unsigned long total_pages;
6943 
6944 	if (!percpu_pagelist_high_fraction) {
6945 		/*
6946 		 * By default, the high value of the pcp is based on the zone
6947 		 * low watermark so that if they are full then background
6948 		 * reclaim will not be started prematurely.
6949 		 */
6950 		total_pages = low_wmark_pages(zone);
6951 	} else {
6952 		/*
6953 		 * If percpu_pagelist_high_fraction is configured, the high
6954 		 * value is based on a fraction of the managed pages in the
6955 		 * zone.
6956 		 */
6957 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6958 	}
6959 
6960 	/*
6961 	 * Split the high value across all online CPUs local to the zone. Note
6962 	 * that early in boot that CPUs may not be online yet and that during
6963 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6964 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6965 	 * all online CPUs to mitigate the risk that reclaim is triggered
6966 	 * prematurely due to pages stored on pcp lists.
6967 	 */
6968 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6969 	if (!nr_split_cpus)
6970 		nr_split_cpus = num_online_cpus();
6971 	high = total_pages / nr_split_cpus;
6972 
6973 	/*
6974 	 * Ensure high is at least batch*4. The multiple is based on the
6975 	 * historical relationship between high and batch.
6976 	 */
6977 	high = max(high, batch << 2);
6978 
6979 	return high;
6980 #else
6981 	return 0;
6982 #endif
6983 }
6984 
6985 /*
6986  * pcp->high and pcp->batch values are related and generally batch is lower
6987  * than high. They are also related to pcp->count such that count is lower
6988  * than high, and as soon as it reaches high, the pcplist is flushed.
6989  *
6990  * However, guaranteeing these relations at all times would require e.g. write
6991  * barriers here but also careful usage of read barriers at the read side, and
6992  * thus be prone to error and bad for performance. Thus the update only prevents
6993  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6994  * can cope with those fields changing asynchronously, and fully trust only the
6995  * pcp->count field on the local CPU with interrupts disabled.
6996  *
6997  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6998  * outside of boot time (or some other assurance that no concurrent updaters
6999  * exist).
7000  */
7001 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7002 		unsigned long batch)
7003 {
7004 	WRITE_ONCE(pcp->batch, batch);
7005 	WRITE_ONCE(pcp->high, high);
7006 }
7007 
7008 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7009 {
7010 	int pindex;
7011 
7012 	memset(pcp, 0, sizeof(*pcp));
7013 	memset(pzstats, 0, sizeof(*pzstats));
7014 
7015 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7016 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7017 
7018 	/*
7019 	 * Set batch and high values safe for a boot pageset. A true percpu
7020 	 * pageset's initialization will update them subsequently. Here we don't
7021 	 * need to be as careful as pageset_update() as nobody can access the
7022 	 * pageset yet.
7023 	 */
7024 	pcp->high = BOOT_PAGESET_HIGH;
7025 	pcp->batch = BOOT_PAGESET_BATCH;
7026 	pcp->free_factor = 0;
7027 }
7028 
7029 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7030 		unsigned long batch)
7031 {
7032 	struct per_cpu_pages *pcp;
7033 	int cpu;
7034 
7035 	for_each_possible_cpu(cpu) {
7036 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7037 		pageset_update(pcp, high, batch);
7038 	}
7039 }
7040 
7041 /*
7042  * Calculate and set new high and batch values for all per-cpu pagesets of a
7043  * zone based on the zone's size.
7044  */
7045 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7046 {
7047 	int new_high, new_batch;
7048 
7049 	new_batch = max(1, zone_batchsize(zone));
7050 	new_high = zone_highsize(zone, new_batch, cpu_online);
7051 
7052 	if (zone->pageset_high == new_high &&
7053 	    zone->pageset_batch == new_batch)
7054 		return;
7055 
7056 	zone->pageset_high = new_high;
7057 	zone->pageset_batch = new_batch;
7058 
7059 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7060 }
7061 
7062 void __meminit setup_zone_pageset(struct zone *zone)
7063 {
7064 	int cpu;
7065 
7066 	/* Size may be 0 on !SMP && !NUMA */
7067 	if (sizeof(struct per_cpu_zonestat) > 0)
7068 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7069 
7070 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7071 	for_each_possible_cpu(cpu) {
7072 		struct per_cpu_pages *pcp;
7073 		struct per_cpu_zonestat *pzstats;
7074 
7075 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7076 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7077 		per_cpu_pages_init(pcp, pzstats);
7078 	}
7079 
7080 	zone_set_pageset_high_and_batch(zone, 0);
7081 }
7082 
7083 /*
7084  * Allocate per cpu pagesets and initialize them.
7085  * Before this call only boot pagesets were available.
7086  */
7087 void __init setup_per_cpu_pageset(void)
7088 {
7089 	struct pglist_data *pgdat;
7090 	struct zone *zone;
7091 	int __maybe_unused cpu;
7092 
7093 	for_each_populated_zone(zone)
7094 		setup_zone_pageset(zone);
7095 
7096 #ifdef CONFIG_NUMA
7097 	/*
7098 	 * Unpopulated zones continue using the boot pagesets.
7099 	 * The numa stats for these pagesets need to be reset.
7100 	 * Otherwise, they will end up skewing the stats of
7101 	 * the nodes these zones are associated with.
7102 	 */
7103 	for_each_possible_cpu(cpu) {
7104 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7105 		memset(pzstats->vm_numa_event, 0,
7106 		       sizeof(pzstats->vm_numa_event));
7107 	}
7108 #endif
7109 
7110 	for_each_online_pgdat(pgdat)
7111 		pgdat->per_cpu_nodestats =
7112 			alloc_percpu(struct per_cpu_nodestat);
7113 }
7114 
7115 static __meminit void zone_pcp_init(struct zone *zone)
7116 {
7117 	/*
7118 	 * per cpu subsystem is not up at this point. The following code
7119 	 * relies on the ability of the linker to provide the
7120 	 * offset of a (static) per cpu variable into the per cpu area.
7121 	 */
7122 	zone->per_cpu_pageset = &boot_pageset;
7123 	zone->per_cpu_zonestats = &boot_zonestats;
7124 	zone->pageset_high = BOOT_PAGESET_HIGH;
7125 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7126 
7127 	if (populated_zone(zone))
7128 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7129 			 zone->present_pages, zone_batchsize(zone));
7130 }
7131 
7132 void __meminit init_currently_empty_zone(struct zone *zone,
7133 					unsigned long zone_start_pfn,
7134 					unsigned long size)
7135 {
7136 	struct pglist_data *pgdat = zone->zone_pgdat;
7137 	int zone_idx = zone_idx(zone) + 1;
7138 
7139 	if (zone_idx > pgdat->nr_zones)
7140 		pgdat->nr_zones = zone_idx;
7141 
7142 	zone->zone_start_pfn = zone_start_pfn;
7143 
7144 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7145 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7146 			pgdat->node_id,
7147 			(unsigned long)zone_idx(zone),
7148 			zone_start_pfn, (zone_start_pfn + size));
7149 
7150 	zone_init_free_lists(zone);
7151 	zone->initialized = 1;
7152 }
7153 
7154 /**
7155  * get_pfn_range_for_nid - Return the start and end page frames for a node
7156  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7157  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7158  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7159  *
7160  * It returns the start and end page frame of a node based on information
7161  * provided by memblock_set_node(). If called for a node
7162  * with no available memory, a warning is printed and the start and end
7163  * PFNs will be 0.
7164  */
7165 void __init get_pfn_range_for_nid(unsigned int nid,
7166 			unsigned long *start_pfn, unsigned long *end_pfn)
7167 {
7168 	unsigned long this_start_pfn, this_end_pfn;
7169 	int i;
7170 
7171 	*start_pfn = -1UL;
7172 	*end_pfn = 0;
7173 
7174 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7175 		*start_pfn = min(*start_pfn, this_start_pfn);
7176 		*end_pfn = max(*end_pfn, this_end_pfn);
7177 	}
7178 
7179 	if (*start_pfn == -1UL)
7180 		*start_pfn = 0;
7181 }
7182 
7183 /*
7184  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7185  * assumption is made that zones within a node are ordered in monotonic
7186  * increasing memory addresses so that the "highest" populated zone is used
7187  */
7188 static void __init find_usable_zone_for_movable(void)
7189 {
7190 	int zone_index;
7191 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7192 		if (zone_index == ZONE_MOVABLE)
7193 			continue;
7194 
7195 		if (arch_zone_highest_possible_pfn[zone_index] >
7196 				arch_zone_lowest_possible_pfn[zone_index])
7197 			break;
7198 	}
7199 
7200 	VM_BUG_ON(zone_index == -1);
7201 	movable_zone = zone_index;
7202 }
7203 
7204 /*
7205  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7206  * because it is sized independent of architecture. Unlike the other zones,
7207  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7208  * in each node depending on the size of each node and how evenly kernelcore
7209  * is distributed. This helper function adjusts the zone ranges
7210  * provided by the architecture for a given node by using the end of the
7211  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7212  * zones within a node are in order of monotonic increases memory addresses
7213  */
7214 static void __init adjust_zone_range_for_zone_movable(int nid,
7215 					unsigned long zone_type,
7216 					unsigned long node_start_pfn,
7217 					unsigned long node_end_pfn,
7218 					unsigned long *zone_start_pfn,
7219 					unsigned long *zone_end_pfn)
7220 {
7221 	/* Only adjust if ZONE_MOVABLE is on this node */
7222 	if (zone_movable_pfn[nid]) {
7223 		/* Size ZONE_MOVABLE */
7224 		if (zone_type == ZONE_MOVABLE) {
7225 			*zone_start_pfn = zone_movable_pfn[nid];
7226 			*zone_end_pfn = min(node_end_pfn,
7227 				arch_zone_highest_possible_pfn[movable_zone]);
7228 
7229 		/* Adjust for ZONE_MOVABLE starting within this range */
7230 		} else if (!mirrored_kernelcore &&
7231 			*zone_start_pfn < zone_movable_pfn[nid] &&
7232 			*zone_end_pfn > zone_movable_pfn[nid]) {
7233 			*zone_end_pfn = zone_movable_pfn[nid];
7234 
7235 		/* Check if this whole range is within ZONE_MOVABLE */
7236 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7237 			*zone_start_pfn = *zone_end_pfn;
7238 	}
7239 }
7240 
7241 /*
7242  * Return the number of pages a zone spans in a node, including holes
7243  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7244  */
7245 static unsigned long __init zone_spanned_pages_in_node(int nid,
7246 					unsigned long zone_type,
7247 					unsigned long node_start_pfn,
7248 					unsigned long node_end_pfn,
7249 					unsigned long *zone_start_pfn,
7250 					unsigned long *zone_end_pfn)
7251 {
7252 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7253 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7254 	/* When hotadd a new node from cpu_up(), the node should be empty */
7255 	if (!node_start_pfn && !node_end_pfn)
7256 		return 0;
7257 
7258 	/* Get the start and end of the zone */
7259 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7260 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7261 	adjust_zone_range_for_zone_movable(nid, zone_type,
7262 				node_start_pfn, node_end_pfn,
7263 				zone_start_pfn, zone_end_pfn);
7264 
7265 	/* Check that this node has pages within the zone's required range */
7266 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7267 		return 0;
7268 
7269 	/* Move the zone boundaries inside the node if necessary */
7270 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7271 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7272 
7273 	/* Return the spanned pages */
7274 	return *zone_end_pfn - *zone_start_pfn;
7275 }
7276 
7277 /*
7278  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7279  * then all holes in the requested range will be accounted for.
7280  */
7281 unsigned long __init __absent_pages_in_range(int nid,
7282 				unsigned long range_start_pfn,
7283 				unsigned long range_end_pfn)
7284 {
7285 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7286 	unsigned long start_pfn, end_pfn;
7287 	int i;
7288 
7289 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7290 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7291 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7292 		nr_absent -= end_pfn - start_pfn;
7293 	}
7294 	return nr_absent;
7295 }
7296 
7297 /**
7298  * absent_pages_in_range - Return number of page frames in holes within a range
7299  * @start_pfn: The start PFN to start searching for holes
7300  * @end_pfn: The end PFN to stop searching for holes
7301  *
7302  * Return: the number of pages frames in memory holes within a range.
7303  */
7304 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7305 							unsigned long end_pfn)
7306 {
7307 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7308 }
7309 
7310 /* Return the number of page frames in holes in a zone on a node */
7311 static unsigned long __init zone_absent_pages_in_node(int nid,
7312 					unsigned long zone_type,
7313 					unsigned long node_start_pfn,
7314 					unsigned long node_end_pfn)
7315 {
7316 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7317 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7318 	unsigned long zone_start_pfn, zone_end_pfn;
7319 	unsigned long nr_absent;
7320 
7321 	/* When hotadd a new node from cpu_up(), the node should be empty */
7322 	if (!node_start_pfn && !node_end_pfn)
7323 		return 0;
7324 
7325 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7326 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7327 
7328 	adjust_zone_range_for_zone_movable(nid, zone_type,
7329 			node_start_pfn, node_end_pfn,
7330 			&zone_start_pfn, &zone_end_pfn);
7331 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7332 
7333 	/*
7334 	 * ZONE_MOVABLE handling.
7335 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7336 	 * and vice versa.
7337 	 */
7338 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7339 		unsigned long start_pfn, end_pfn;
7340 		struct memblock_region *r;
7341 
7342 		for_each_mem_region(r) {
7343 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7344 					  zone_start_pfn, zone_end_pfn);
7345 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7346 					zone_start_pfn, zone_end_pfn);
7347 
7348 			if (zone_type == ZONE_MOVABLE &&
7349 			    memblock_is_mirror(r))
7350 				nr_absent += end_pfn - start_pfn;
7351 
7352 			if (zone_type == ZONE_NORMAL &&
7353 			    !memblock_is_mirror(r))
7354 				nr_absent += end_pfn - start_pfn;
7355 		}
7356 	}
7357 
7358 	return nr_absent;
7359 }
7360 
7361 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7362 						unsigned long node_start_pfn,
7363 						unsigned long node_end_pfn)
7364 {
7365 	unsigned long realtotalpages = 0, totalpages = 0;
7366 	enum zone_type i;
7367 
7368 	for (i = 0; i < MAX_NR_ZONES; i++) {
7369 		struct zone *zone = pgdat->node_zones + i;
7370 		unsigned long zone_start_pfn, zone_end_pfn;
7371 		unsigned long spanned, absent;
7372 		unsigned long size, real_size;
7373 
7374 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7375 						     node_start_pfn,
7376 						     node_end_pfn,
7377 						     &zone_start_pfn,
7378 						     &zone_end_pfn);
7379 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7380 						   node_start_pfn,
7381 						   node_end_pfn);
7382 
7383 		size = spanned;
7384 		real_size = size - absent;
7385 
7386 		if (size)
7387 			zone->zone_start_pfn = zone_start_pfn;
7388 		else
7389 			zone->zone_start_pfn = 0;
7390 		zone->spanned_pages = size;
7391 		zone->present_pages = real_size;
7392 #if defined(CONFIG_MEMORY_HOTPLUG)
7393 		zone->present_early_pages = real_size;
7394 #endif
7395 
7396 		totalpages += size;
7397 		realtotalpages += real_size;
7398 	}
7399 
7400 	pgdat->node_spanned_pages = totalpages;
7401 	pgdat->node_present_pages = realtotalpages;
7402 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7403 }
7404 
7405 #ifndef CONFIG_SPARSEMEM
7406 /*
7407  * Calculate the size of the zone->blockflags rounded to an unsigned long
7408  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7409  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7410  * round what is now in bits to nearest long in bits, then return it in
7411  * bytes.
7412  */
7413 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7414 {
7415 	unsigned long usemapsize;
7416 
7417 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7418 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7419 	usemapsize = usemapsize >> pageblock_order;
7420 	usemapsize *= NR_PAGEBLOCK_BITS;
7421 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7422 
7423 	return usemapsize / 8;
7424 }
7425 
7426 static void __ref setup_usemap(struct zone *zone)
7427 {
7428 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7429 					       zone->spanned_pages);
7430 	zone->pageblock_flags = NULL;
7431 	if (usemapsize) {
7432 		zone->pageblock_flags =
7433 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7434 					    zone_to_nid(zone));
7435 		if (!zone->pageblock_flags)
7436 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7437 			      usemapsize, zone->name, zone_to_nid(zone));
7438 	}
7439 }
7440 #else
7441 static inline void setup_usemap(struct zone *zone) {}
7442 #endif /* CONFIG_SPARSEMEM */
7443 
7444 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7445 
7446 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7447 void __init set_pageblock_order(void)
7448 {
7449 	unsigned int order = MAX_ORDER - 1;
7450 
7451 	/* Check that pageblock_nr_pages has not already been setup */
7452 	if (pageblock_order)
7453 		return;
7454 
7455 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7456 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7457 		order = HUGETLB_PAGE_ORDER;
7458 
7459 	/*
7460 	 * Assume the largest contiguous order of interest is a huge page.
7461 	 * This value may be variable depending on boot parameters on IA64 and
7462 	 * powerpc.
7463 	 */
7464 	pageblock_order = order;
7465 }
7466 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7467 
7468 /*
7469  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7470  * is unused as pageblock_order is set at compile-time. See
7471  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7472  * the kernel config
7473  */
7474 void __init set_pageblock_order(void)
7475 {
7476 }
7477 
7478 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7479 
7480 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7481 						unsigned long present_pages)
7482 {
7483 	unsigned long pages = spanned_pages;
7484 
7485 	/*
7486 	 * Provide a more accurate estimation if there are holes within
7487 	 * the zone and SPARSEMEM is in use. If there are holes within the
7488 	 * zone, each populated memory region may cost us one or two extra
7489 	 * memmap pages due to alignment because memmap pages for each
7490 	 * populated regions may not be naturally aligned on page boundary.
7491 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7492 	 */
7493 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7494 	    IS_ENABLED(CONFIG_SPARSEMEM))
7495 		pages = present_pages;
7496 
7497 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7498 }
7499 
7500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7501 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7502 {
7503 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7504 
7505 	spin_lock_init(&ds_queue->split_queue_lock);
7506 	INIT_LIST_HEAD(&ds_queue->split_queue);
7507 	ds_queue->split_queue_len = 0;
7508 }
7509 #else
7510 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7511 #endif
7512 
7513 #ifdef CONFIG_COMPACTION
7514 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7515 {
7516 	init_waitqueue_head(&pgdat->kcompactd_wait);
7517 }
7518 #else
7519 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7520 #endif
7521 
7522 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7523 {
7524 	int i;
7525 
7526 	pgdat_resize_init(pgdat);
7527 
7528 	pgdat_init_split_queue(pgdat);
7529 	pgdat_init_kcompactd(pgdat);
7530 
7531 	init_waitqueue_head(&pgdat->kswapd_wait);
7532 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7533 
7534 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7535 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7536 
7537 	pgdat_page_ext_init(pgdat);
7538 	lruvec_init(&pgdat->__lruvec);
7539 }
7540 
7541 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7542 							unsigned long remaining_pages)
7543 {
7544 	atomic_long_set(&zone->managed_pages, remaining_pages);
7545 	zone_set_nid(zone, nid);
7546 	zone->name = zone_names[idx];
7547 	zone->zone_pgdat = NODE_DATA(nid);
7548 	spin_lock_init(&zone->lock);
7549 	zone_seqlock_init(zone);
7550 	zone_pcp_init(zone);
7551 }
7552 
7553 /*
7554  * Set up the zone data structures
7555  * - init pgdat internals
7556  * - init all zones belonging to this node
7557  *
7558  * NOTE: this function is only called during memory hotplug
7559  */
7560 #ifdef CONFIG_MEMORY_HOTPLUG
7561 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7562 {
7563 	int nid = pgdat->node_id;
7564 	enum zone_type z;
7565 	int cpu;
7566 
7567 	pgdat_init_internals(pgdat);
7568 
7569 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7570 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7571 
7572 	/*
7573 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7574 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7575 	 * when it starts in the near future.
7576 	 */
7577 	pgdat->nr_zones = 0;
7578 	pgdat->kswapd_order = 0;
7579 	pgdat->kswapd_highest_zoneidx = 0;
7580 	pgdat->node_start_pfn = 0;
7581 	for_each_online_cpu(cpu) {
7582 		struct per_cpu_nodestat *p;
7583 
7584 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7585 		memset(p, 0, sizeof(*p));
7586 	}
7587 
7588 	for (z = 0; z < MAX_NR_ZONES; z++)
7589 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7590 }
7591 #endif
7592 
7593 /*
7594  * Set up the zone data structures:
7595  *   - mark all pages reserved
7596  *   - mark all memory queues empty
7597  *   - clear the memory bitmaps
7598  *
7599  * NOTE: pgdat should get zeroed by caller.
7600  * NOTE: this function is only called during early init.
7601  */
7602 static void __init free_area_init_core(struct pglist_data *pgdat)
7603 {
7604 	enum zone_type j;
7605 	int nid = pgdat->node_id;
7606 
7607 	pgdat_init_internals(pgdat);
7608 	pgdat->per_cpu_nodestats = &boot_nodestats;
7609 
7610 	for (j = 0; j < MAX_NR_ZONES; j++) {
7611 		struct zone *zone = pgdat->node_zones + j;
7612 		unsigned long size, freesize, memmap_pages;
7613 
7614 		size = zone->spanned_pages;
7615 		freesize = zone->present_pages;
7616 
7617 		/*
7618 		 * Adjust freesize so that it accounts for how much memory
7619 		 * is used by this zone for memmap. This affects the watermark
7620 		 * and per-cpu initialisations
7621 		 */
7622 		memmap_pages = calc_memmap_size(size, freesize);
7623 		if (!is_highmem_idx(j)) {
7624 			if (freesize >= memmap_pages) {
7625 				freesize -= memmap_pages;
7626 				if (memmap_pages)
7627 					pr_debug("  %s zone: %lu pages used for memmap\n",
7628 						 zone_names[j], memmap_pages);
7629 			} else
7630 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7631 					zone_names[j], memmap_pages, freesize);
7632 		}
7633 
7634 		/* Account for reserved pages */
7635 		if (j == 0 && freesize > dma_reserve) {
7636 			freesize -= dma_reserve;
7637 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7638 		}
7639 
7640 		if (!is_highmem_idx(j))
7641 			nr_kernel_pages += freesize;
7642 		/* Charge for highmem memmap if there are enough kernel pages */
7643 		else if (nr_kernel_pages > memmap_pages * 2)
7644 			nr_kernel_pages -= memmap_pages;
7645 		nr_all_pages += freesize;
7646 
7647 		/*
7648 		 * Set an approximate value for lowmem here, it will be adjusted
7649 		 * when the bootmem allocator frees pages into the buddy system.
7650 		 * And all highmem pages will be managed by the buddy system.
7651 		 */
7652 		zone_init_internals(zone, j, nid, freesize);
7653 
7654 		if (!size)
7655 			continue;
7656 
7657 		set_pageblock_order();
7658 		setup_usemap(zone);
7659 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7660 	}
7661 }
7662 
7663 #ifdef CONFIG_FLATMEM
7664 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7665 {
7666 	unsigned long __maybe_unused start = 0;
7667 	unsigned long __maybe_unused offset = 0;
7668 
7669 	/* Skip empty nodes */
7670 	if (!pgdat->node_spanned_pages)
7671 		return;
7672 
7673 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7674 	offset = pgdat->node_start_pfn - start;
7675 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7676 	if (!pgdat->node_mem_map) {
7677 		unsigned long size, end;
7678 		struct page *map;
7679 
7680 		/*
7681 		 * The zone's endpoints aren't required to be MAX_ORDER
7682 		 * aligned but the node_mem_map endpoints must be in order
7683 		 * for the buddy allocator to function correctly.
7684 		 */
7685 		end = pgdat_end_pfn(pgdat);
7686 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7687 		size =  (end - start) * sizeof(struct page);
7688 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7689 				   pgdat->node_id, false);
7690 		if (!map)
7691 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7692 			      size, pgdat->node_id);
7693 		pgdat->node_mem_map = map + offset;
7694 	}
7695 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7696 				__func__, pgdat->node_id, (unsigned long)pgdat,
7697 				(unsigned long)pgdat->node_mem_map);
7698 #ifndef CONFIG_NUMA
7699 	/*
7700 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7701 	 */
7702 	if (pgdat == NODE_DATA(0)) {
7703 		mem_map = NODE_DATA(0)->node_mem_map;
7704 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7705 			mem_map -= offset;
7706 	}
7707 #endif
7708 }
7709 #else
7710 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7711 #endif /* CONFIG_FLATMEM */
7712 
7713 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7714 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7715 {
7716 	pgdat->first_deferred_pfn = ULONG_MAX;
7717 }
7718 #else
7719 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7720 #endif
7721 
7722 static void __init free_area_init_node(int nid)
7723 {
7724 	pg_data_t *pgdat = NODE_DATA(nid);
7725 	unsigned long start_pfn = 0;
7726 	unsigned long end_pfn = 0;
7727 
7728 	/* pg_data_t should be reset to zero when it's allocated */
7729 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7730 
7731 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7732 
7733 	pgdat->node_id = nid;
7734 	pgdat->node_start_pfn = start_pfn;
7735 	pgdat->per_cpu_nodestats = NULL;
7736 
7737 	if (start_pfn != end_pfn) {
7738 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7739 			(u64)start_pfn << PAGE_SHIFT,
7740 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7741 	} else {
7742 		pr_info("Initmem setup node %d as memoryless\n", nid);
7743 	}
7744 
7745 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7746 
7747 	alloc_node_mem_map(pgdat);
7748 	pgdat_set_deferred_range(pgdat);
7749 
7750 	free_area_init_core(pgdat);
7751 }
7752 
7753 static void __init free_area_init_memoryless_node(int nid)
7754 {
7755 	free_area_init_node(nid);
7756 }
7757 
7758 #if MAX_NUMNODES > 1
7759 /*
7760  * Figure out the number of possible node ids.
7761  */
7762 void __init setup_nr_node_ids(void)
7763 {
7764 	unsigned int highest;
7765 
7766 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7767 	nr_node_ids = highest + 1;
7768 }
7769 #endif
7770 
7771 /**
7772  * node_map_pfn_alignment - determine the maximum internode alignment
7773  *
7774  * This function should be called after node map is populated and sorted.
7775  * It calculates the maximum power of two alignment which can distinguish
7776  * all the nodes.
7777  *
7778  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7779  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7780  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7781  * shifted, 1GiB is enough and this function will indicate so.
7782  *
7783  * This is used to test whether pfn -> nid mapping of the chosen memory
7784  * model has fine enough granularity to avoid incorrect mapping for the
7785  * populated node map.
7786  *
7787  * Return: the determined alignment in pfn's.  0 if there is no alignment
7788  * requirement (single node).
7789  */
7790 unsigned long __init node_map_pfn_alignment(void)
7791 {
7792 	unsigned long accl_mask = 0, last_end = 0;
7793 	unsigned long start, end, mask;
7794 	int last_nid = NUMA_NO_NODE;
7795 	int i, nid;
7796 
7797 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7798 		if (!start || last_nid < 0 || last_nid == nid) {
7799 			last_nid = nid;
7800 			last_end = end;
7801 			continue;
7802 		}
7803 
7804 		/*
7805 		 * Start with a mask granular enough to pin-point to the
7806 		 * start pfn and tick off bits one-by-one until it becomes
7807 		 * too coarse to separate the current node from the last.
7808 		 */
7809 		mask = ~((1 << __ffs(start)) - 1);
7810 		while (mask && last_end <= (start & (mask << 1)))
7811 			mask <<= 1;
7812 
7813 		/* accumulate all internode masks */
7814 		accl_mask |= mask;
7815 	}
7816 
7817 	/* convert mask to number of pages */
7818 	return ~accl_mask + 1;
7819 }
7820 
7821 /**
7822  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7823  *
7824  * Return: the minimum PFN based on information provided via
7825  * memblock_set_node().
7826  */
7827 unsigned long __init find_min_pfn_with_active_regions(void)
7828 {
7829 	return PHYS_PFN(memblock_start_of_DRAM());
7830 }
7831 
7832 /*
7833  * early_calculate_totalpages()
7834  * Sum pages in active regions for movable zone.
7835  * Populate N_MEMORY for calculating usable_nodes.
7836  */
7837 static unsigned long __init early_calculate_totalpages(void)
7838 {
7839 	unsigned long totalpages = 0;
7840 	unsigned long start_pfn, end_pfn;
7841 	int i, nid;
7842 
7843 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7844 		unsigned long pages = end_pfn - start_pfn;
7845 
7846 		totalpages += pages;
7847 		if (pages)
7848 			node_set_state(nid, N_MEMORY);
7849 	}
7850 	return totalpages;
7851 }
7852 
7853 /*
7854  * Find the PFN the Movable zone begins in each node. Kernel memory
7855  * is spread evenly between nodes as long as the nodes have enough
7856  * memory. When they don't, some nodes will have more kernelcore than
7857  * others
7858  */
7859 static void __init find_zone_movable_pfns_for_nodes(void)
7860 {
7861 	int i, nid;
7862 	unsigned long usable_startpfn;
7863 	unsigned long kernelcore_node, kernelcore_remaining;
7864 	/* save the state before borrow the nodemask */
7865 	nodemask_t saved_node_state = node_states[N_MEMORY];
7866 	unsigned long totalpages = early_calculate_totalpages();
7867 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7868 	struct memblock_region *r;
7869 
7870 	/* Need to find movable_zone earlier when movable_node is specified. */
7871 	find_usable_zone_for_movable();
7872 
7873 	/*
7874 	 * If movable_node is specified, ignore kernelcore and movablecore
7875 	 * options.
7876 	 */
7877 	if (movable_node_is_enabled()) {
7878 		for_each_mem_region(r) {
7879 			if (!memblock_is_hotpluggable(r))
7880 				continue;
7881 
7882 			nid = memblock_get_region_node(r);
7883 
7884 			usable_startpfn = PFN_DOWN(r->base);
7885 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7886 				min(usable_startpfn, zone_movable_pfn[nid]) :
7887 				usable_startpfn;
7888 		}
7889 
7890 		goto out2;
7891 	}
7892 
7893 	/*
7894 	 * If kernelcore=mirror is specified, ignore movablecore option
7895 	 */
7896 	if (mirrored_kernelcore) {
7897 		bool mem_below_4gb_not_mirrored = false;
7898 
7899 		for_each_mem_region(r) {
7900 			if (memblock_is_mirror(r))
7901 				continue;
7902 
7903 			nid = memblock_get_region_node(r);
7904 
7905 			usable_startpfn = memblock_region_memory_base_pfn(r);
7906 
7907 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7908 				mem_below_4gb_not_mirrored = true;
7909 				continue;
7910 			}
7911 
7912 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7913 				min(usable_startpfn, zone_movable_pfn[nid]) :
7914 				usable_startpfn;
7915 		}
7916 
7917 		if (mem_below_4gb_not_mirrored)
7918 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7919 
7920 		goto out2;
7921 	}
7922 
7923 	/*
7924 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7925 	 * amount of necessary memory.
7926 	 */
7927 	if (required_kernelcore_percent)
7928 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7929 				       10000UL;
7930 	if (required_movablecore_percent)
7931 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7932 					10000UL;
7933 
7934 	/*
7935 	 * If movablecore= was specified, calculate what size of
7936 	 * kernelcore that corresponds so that memory usable for
7937 	 * any allocation type is evenly spread. If both kernelcore
7938 	 * and movablecore are specified, then the value of kernelcore
7939 	 * will be used for required_kernelcore if it's greater than
7940 	 * what movablecore would have allowed.
7941 	 */
7942 	if (required_movablecore) {
7943 		unsigned long corepages;
7944 
7945 		/*
7946 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7947 		 * was requested by the user
7948 		 */
7949 		required_movablecore =
7950 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7951 		required_movablecore = min(totalpages, required_movablecore);
7952 		corepages = totalpages - required_movablecore;
7953 
7954 		required_kernelcore = max(required_kernelcore, corepages);
7955 	}
7956 
7957 	/*
7958 	 * If kernelcore was not specified or kernelcore size is larger
7959 	 * than totalpages, there is no ZONE_MOVABLE.
7960 	 */
7961 	if (!required_kernelcore || required_kernelcore >= totalpages)
7962 		goto out;
7963 
7964 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7965 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7966 
7967 restart:
7968 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7969 	kernelcore_node = required_kernelcore / usable_nodes;
7970 	for_each_node_state(nid, N_MEMORY) {
7971 		unsigned long start_pfn, end_pfn;
7972 
7973 		/*
7974 		 * Recalculate kernelcore_node if the division per node
7975 		 * now exceeds what is necessary to satisfy the requested
7976 		 * amount of memory for the kernel
7977 		 */
7978 		if (required_kernelcore < kernelcore_node)
7979 			kernelcore_node = required_kernelcore / usable_nodes;
7980 
7981 		/*
7982 		 * As the map is walked, we track how much memory is usable
7983 		 * by the kernel using kernelcore_remaining. When it is
7984 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7985 		 */
7986 		kernelcore_remaining = kernelcore_node;
7987 
7988 		/* Go through each range of PFNs within this node */
7989 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7990 			unsigned long size_pages;
7991 
7992 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7993 			if (start_pfn >= end_pfn)
7994 				continue;
7995 
7996 			/* Account for what is only usable for kernelcore */
7997 			if (start_pfn < usable_startpfn) {
7998 				unsigned long kernel_pages;
7999 				kernel_pages = min(end_pfn, usable_startpfn)
8000 								- start_pfn;
8001 
8002 				kernelcore_remaining -= min(kernel_pages,
8003 							kernelcore_remaining);
8004 				required_kernelcore -= min(kernel_pages,
8005 							required_kernelcore);
8006 
8007 				/* Continue if range is now fully accounted */
8008 				if (end_pfn <= usable_startpfn) {
8009 
8010 					/*
8011 					 * Push zone_movable_pfn to the end so
8012 					 * that if we have to rebalance
8013 					 * kernelcore across nodes, we will
8014 					 * not double account here
8015 					 */
8016 					zone_movable_pfn[nid] = end_pfn;
8017 					continue;
8018 				}
8019 				start_pfn = usable_startpfn;
8020 			}
8021 
8022 			/*
8023 			 * The usable PFN range for ZONE_MOVABLE is from
8024 			 * start_pfn->end_pfn. Calculate size_pages as the
8025 			 * number of pages used as kernelcore
8026 			 */
8027 			size_pages = end_pfn - start_pfn;
8028 			if (size_pages > kernelcore_remaining)
8029 				size_pages = kernelcore_remaining;
8030 			zone_movable_pfn[nid] = start_pfn + size_pages;
8031 
8032 			/*
8033 			 * Some kernelcore has been met, update counts and
8034 			 * break if the kernelcore for this node has been
8035 			 * satisfied
8036 			 */
8037 			required_kernelcore -= min(required_kernelcore,
8038 								size_pages);
8039 			kernelcore_remaining -= size_pages;
8040 			if (!kernelcore_remaining)
8041 				break;
8042 		}
8043 	}
8044 
8045 	/*
8046 	 * If there is still required_kernelcore, we do another pass with one
8047 	 * less node in the count. This will push zone_movable_pfn[nid] further
8048 	 * along on the nodes that still have memory until kernelcore is
8049 	 * satisfied
8050 	 */
8051 	usable_nodes--;
8052 	if (usable_nodes && required_kernelcore > usable_nodes)
8053 		goto restart;
8054 
8055 out2:
8056 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8057 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8058 		unsigned long start_pfn, end_pfn;
8059 
8060 		zone_movable_pfn[nid] =
8061 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8062 
8063 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8064 		if (zone_movable_pfn[nid] >= end_pfn)
8065 			zone_movable_pfn[nid] = 0;
8066 	}
8067 
8068 out:
8069 	/* restore the node_state */
8070 	node_states[N_MEMORY] = saved_node_state;
8071 }
8072 
8073 /* Any regular or high memory on that node ? */
8074 static void check_for_memory(pg_data_t *pgdat, int nid)
8075 {
8076 	enum zone_type zone_type;
8077 
8078 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8079 		struct zone *zone = &pgdat->node_zones[zone_type];
8080 		if (populated_zone(zone)) {
8081 			if (IS_ENABLED(CONFIG_HIGHMEM))
8082 				node_set_state(nid, N_HIGH_MEMORY);
8083 			if (zone_type <= ZONE_NORMAL)
8084 				node_set_state(nid, N_NORMAL_MEMORY);
8085 			break;
8086 		}
8087 	}
8088 }
8089 
8090 /*
8091  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8092  * such cases we allow max_zone_pfn sorted in the descending order
8093  */
8094 bool __weak arch_has_descending_max_zone_pfns(void)
8095 {
8096 	return false;
8097 }
8098 
8099 /**
8100  * free_area_init - Initialise all pg_data_t and zone data
8101  * @max_zone_pfn: an array of max PFNs for each zone
8102  *
8103  * This will call free_area_init_node() for each active node in the system.
8104  * Using the page ranges provided by memblock_set_node(), the size of each
8105  * zone in each node and their holes is calculated. If the maximum PFN
8106  * between two adjacent zones match, it is assumed that the zone is empty.
8107  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8108  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8109  * starts where the previous one ended. For example, ZONE_DMA32 starts
8110  * at arch_max_dma_pfn.
8111  */
8112 void __init free_area_init(unsigned long *max_zone_pfn)
8113 {
8114 	unsigned long start_pfn, end_pfn;
8115 	int i, nid, zone;
8116 	bool descending;
8117 
8118 	/* Record where the zone boundaries are */
8119 	memset(arch_zone_lowest_possible_pfn, 0,
8120 				sizeof(arch_zone_lowest_possible_pfn));
8121 	memset(arch_zone_highest_possible_pfn, 0,
8122 				sizeof(arch_zone_highest_possible_pfn));
8123 
8124 	start_pfn = find_min_pfn_with_active_regions();
8125 	descending = arch_has_descending_max_zone_pfns();
8126 
8127 	for (i = 0; i < MAX_NR_ZONES; i++) {
8128 		if (descending)
8129 			zone = MAX_NR_ZONES - i - 1;
8130 		else
8131 			zone = i;
8132 
8133 		if (zone == ZONE_MOVABLE)
8134 			continue;
8135 
8136 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8137 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8138 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8139 
8140 		start_pfn = end_pfn;
8141 	}
8142 
8143 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8144 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8145 	find_zone_movable_pfns_for_nodes();
8146 
8147 	/* Print out the zone ranges */
8148 	pr_info("Zone ranges:\n");
8149 	for (i = 0; i < MAX_NR_ZONES; i++) {
8150 		if (i == ZONE_MOVABLE)
8151 			continue;
8152 		pr_info("  %-8s ", zone_names[i]);
8153 		if (arch_zone_lowest_possible_pfn[i] ==
8154 				arch_zone_highest_possible_pfn[i])
8155 			pr_cont("empty\n");
8156 		else
8157 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8158 				(u64)arch_zone_lowest_possible_pfn[i]
8159 					<< PAGE_SHIFT,
8160 				((u64)arch_zone_highest_possible_pfn[i]
8161 					<< PAGE_SHIFT) - 1);
8162 	}
8163 
8164 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8165 	pr_info("Movable zone start for each node\n");
8166 	for (i = 0; i < MAX_NUMNODES; i++) {
8167 		if (zone_movable_pfn[i])
8168 			pr_info("  Node %d: %#018Lx\n", i,
8169 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8170 	}
8171 
8172 	/*
8173 	 * Print out the early node map, and initialize the
8174 	 * subsection-map relative to active online memory ranges to
8175 	 * enable future "sub-section" extensions of the memory map.
8176 	 */
8177 	pr_info("Early memory node ranges\n");
8178 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8179 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8180 			(u64)start_pfn << PAGE_SHIFT,
8181 			((u64)end_pfn << PAGE_SHIFT) - 1);
8182 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8183 	}
8184 
8185 	/* Initialise every node */
8186 	mminit_verify_pageflags_layout();
8187 	setup_nr_node_ids();
8188 	for_each_node(nid) {
8189 		pg_data_t *pgdat;
8190 
8191 		if (!node_online(nid)) {
8192 			pr_info("Initializing node %d as memoryless\n", nid);
8193 
8194 			/* Allocator not initialized yet */
8195 			pgdat = arch_alloc_nodedata(nid);
8196 			if (!pgdat) {
8197 				pr_err("Cannot allocate %zuB for node %d.\n",
8198 						sizeof(*pgdat), nid);
8199 				continue;
8200 			}
8201 			arch_refresh_nodedata(nid, pgdat);
8202 			free_area_init_memoryless_node(nid);
8203 
8204 			/*
8205 			 * We do not want to confuse userspace by sysfs
8206 			 * files/directories for node without any memory
8207 			 * attached to it, so this node is not marked as
8208 			 * N_MEMORY and not marked online so that no sysfs
8209 			 * hierarchy will be created via register_one_node for
8210 			 * it. The pgdat will get fully initialized by
8211 			 * hotadd_init_pgdat() when memory is hotplugged into
8212 			 * this node.
8213 			 */
8214 			continue;
8215 		}
8216 
8217 		pgdat = NODE_DATA(nid);
8218 		free_area_init_node(nid);
8219 
8220 		/* Any memory on that node */
8221 		if (pgdat->node_present_pages)
8222 			node_set_state(nid, N_MEMORY);
8223 		check_for_memory(pgdat, nid);
8224 	}
8225 
8226 	memmap_init();
8227 }
8228 
8229 static int __init cmdline_parse_core(char *p, unsigned long *core,
8230 				     unsigned long *percent)
8231 {
8232 	unsigned long long coremem;
8233 	char *endptr;
8234 
8235 	if (!p)
8236 		return -EINVAL;
8237 
8238 	/* Value may be a percentage of total memory, otherwise bytes */
8239 	coremem = simple_strtoull(p, &endptr, 0);
8240 	if (*endptr == '%') {
8241 		/* Paranoid check for percent values greater than 100 */
8242 		WARN_ON(coremem > 100);
8243 
8244 		*percent = coremem;
8245 	} else {
8246 		coremem = memparse(p, &p);
8247 		/* Paranoid check that UL is enough for the coremem value */
8248 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8249 
8250 		*core = coremem >> PAGE_SHIFT;
8251 		*percent = 0UL;
8252 	}
8253 	return 0;
8254 }
8255 
8256 /*
8257  * kernelcore=size sets the amount of memory for use for allocations that
8258  * cannot be reclaimed or migrated.
8259  */
8260 static int __init cmdline_parse_kernelcore(char *p)
8261 {
8262 	/* parse kernelcore=mirror */
8263 	if (parse_option_str(p, "mirror")) {
8264 		mirrored_kernelcore = true;
8265 		return 0;
8266 	}
8267 
8268 	return cmdline_parse_core(p, &required_kernelcore,
8269 				  &required_kernelcore_percent);
8270 }
8271 
8272 /*
8273  * movablecore=size sets the amount of memory for use for allocations that
8274  * can be reclaimed or migrated.
8275  */
8276 static int __init cmdline_parse_movablecore(char *p)
8277 {
8278 	return cmdline_parse_core(p, &required_movablecore,
8279 				  &required_movablecore_percent);
8280 }
8281 
8282 early_param("kernelcore", cmdline_parse_kernelcore);
8283 early_param("movablecore", cmdline_parse_movablecore);
8284 
8285 void adjust_managed_page_count(struct page *page, long count)
8286 {
8287 	atomic_long_add(count, &page_zone(page)->managed_pages);
8288 	totalram_pages_add(count);
8289 #ifdef CONFIG_HIGHMEM
8290 	if (PageHighMem(page))
8291 		totalhigh_pages_add(count);
8292 #endif
8293 }
8294 EXPORT_SYMBOL(adjust_managed_page_count);
8295 
8296 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8297 {
8298 	void *pos;
8299 	unsigned long pages = 0;
8300 
8301 	start = (void *)PAGE_ALIGN((unsigned long)start);
8302 	end = (void *)((unsigned long)end & PAGE_MASK);
8303 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8304 		struct page *page = virt_to_page(pos);
8305 		void *direct_map_addr;
8306 
8307 		/*
8308 		 * 'direct_map_addr' might be different from 'pos'
8309 		 * because some architectures' virt_to_page()
8310 		 * work with aliases.  Getting the direct map
8311 		 * address ensures that we get a _writeable_
8312 		 * alias for the memset().
8313 		 */
8314 		direct_map_addr = page_address(page);
8315 		/*
8316 		 * Perform a kasan-unchecked memset() since this memory
8317 		 * has not been initialized.
8318 		 */
8319 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8320 		if ((unsigned int)poison <= 0xFF)
8321 			memset(direct_map_addr, poison, PAGE_SIZE);
8322 
8323 		free_reserved_page(page);
8324 	}
8325 
8326 	if (pages && s)
8327 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8328 
8329 	return pages;
8330 }
8331 
8332 void __init mem_init_print_info(void)
8333 {
8334 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8335 	unsigned long init_code_size, init_data_size;
8336 
8337 	physpages = get_num_physpages();
8338 	codesize = _etext - _stext;
8339 	datasize = _edata - _sdata;
8340 	rosize = __end_rodata - __start_rodata;
8341 	bss_size = __bss_stop - __bss_start;
8342 	init_data_size = __init_end - __init_begin;
8343 	init_code_size = _einittext - _sinittext;
8344 
8345 	/*
8346 	 * Detect special cases and adjust section sizes accordingly:
8347 	 * 1) .init.* may be embedded into .data sections
8348 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8349 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8350 	 * 3) .rodata.* may be embedded into .text or .data sections.
8351 	 */
8352 #define adj_init_size(start, end, size, pos, adj) \
8353 	do { \
8354 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8355 			size -= adj; \
8356 	} while (0)
8357 
8358 	adj_init_size(__init_begin, __init_end, init_data_size,
8359 		     _sinittext, init_code_size);
8360 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8361 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8362 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8363 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8364 
8365 #undef	adj_init_size
8366 
8367 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8368 #ifdef	CONFIG_HIGHMEM
8369 		", %luK highmem"
8370 #endif
8371 		")\n",
8372 		K(nr_free_pages()), K(physpages),
8373 		codesize >> 10, datasize >> 10, rosize >> 10,
8374 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8375 		K(physpages - totalram_pages() - totalcma_pages),
8376 		K(totalcma_pages)
8377 #ifdef	CONFIG_HIGHMEM
8378 		, K(totalhigh_pages())
8379 #endif
8380 		);
8381 }
8382 
8383 /**
8384  * set_dma_reserve - set the specified number of pages reserved in the first zone
8385  * @new_dma_reserve: The number of pages to mark reserved
8386  *
8387  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8388  * In the DMA zone, a significant percentage may be consumed by kernel image
8389  * and other unfreeable allocations which can skew the watermarks badly. This
8390  * function may optionally be used to account for unfreeable pages in the
8391  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8392  * smaller per-cpu batchsize.
8393  */
8394 void __init set_dma_reserve(unsigned long new_dma_reserve)
8395 {
8396 	dma_reserve = new_dma_reserve;
8397 }
8398 
8399 static int page_alloc_cpu_dead(unsigned int cpu)
8400 {
8401 	struct zone *zone;
8402 
8403 	lru_add_drain_cpu(cpu);
8404 	mlock_page_drain_remote(cpu);
8405 	drain_pages(cpu);
8406 
8407 	/*
8408 	 * Spill the event counters of the dead processor
8409 	 * into the current processors event counters.
8410 	 * This artificially elevates the count of the current
8411 	 * processor.
8412 	 */
8413 	vm_events_fold_cpu(cpu);
8414 
8415 	/*
8416 	 * Zero the differential counters of the dead processor
8417 	 * so that the vm statistics are consistent.
8418 	 *
8419 	 * This is only okay since the processor is dead and cannot
8420 	 * race with what we are doing.
8421 	 */
8422 	cpu_vm_stats_fold(cpu);
8423 
8424 	for_each_populated_zone(zone)
8425 		zone_pcp_update(zone, 0);
8426 
8427 	return 0;
8428 }
8429 
8430 static int page_alloc_cpu_online(unsigned int cpu)
8431 {
8432 	struct zone *zone;
8433 
8434 	for_each_populated_zone(zone)
8435 		zone_pcp_update(zone, 1);
8436 	return 0;
8437 }
8438 
8439 #ifdef CONFIG_NUMA
8440 int hashdist = HASHDIST_DEFAULT;
8441 
8442 static int __init set_hashdist(char *str)
8443 {
8444 	if (!str)
8445 		return 0;
8446 	hashdist = simple_strtoul(str, &str, 0);
8447 	return 1;
8448 }
8449 __setup("hashdist=", set_hashdist);
8450 #endif
8451 
8452 void __init page_alloc_init(void)
8453 {
8454 	int ret;
8455 
8456 #ifdef CONFIG_NUMA
8457 	if (num_node_state(N_MEMORY) == 1)
8458 		hashdist = 0;
8459 #endif
8460 
8461 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8462 					"mm/page_alloc:pcp",
8463 					page_alloc_cpu_online,
8464 					page_alloc_cpu_dead);
8465 	WARN_ON(ret < 0);
8466 }
8467 
8468 /*
8469  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8470  *	or min_free_kbytes changes.
8471  */
8472 static void calculate_totalreserve_pages(void)
8473 {
8474 	struct pglist_data *pgdat;
8475 	unsigned long reserve_pages = 0;
8476 	enum zone_type i, j;
8477 
8478 	for_each_online_pgdat(pgdat) {
8479 
8480 		pgdat->totalreserve_pages = 0;
8481 
8482 		for (i = 0; i < MAX_NR_ZONES; i++) {
8483 			struct zone *zone = pgdat->node_zones + i;
8484 			long max = 0;
8485 			unsigned long managed_pages = zone_managed_pages(zone);
8486 
8487 			/* Find valid and maximum lowmem_reserve in the zone */
8488 			for (j = i; j < MAX_NR_ZONES; j++) {
8489 				if (zone->lowmem_reserve[j] > max)
8490 					max = zone->lowmem_reserve[j];
8491 			}
8492 
8493 			/* we treat the high watermark as reserved pages. */
8494 			max += high_wmark_pages(zone);
8495 
8496 			if (max > managed_pages)
8497 				max = managed_pages;
8498 
8499 			pgdat->totalreserve_pages += max;
8500 
8501 			reserve_pages += max;
8502 		}
8503 	}
8504 	totalreserve_pages = reserve_pages;
8505 }
8506 
8507 /*
8508  * setup_per_zone_lowmem_reserve - called whenever
8509  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8510  *	has a correct pages reserved value, so an adequate number of
8511  *	pages are left in the zone after a successful __alloc_pages().
8512  */
8513 static void setup_per_zone_lowmem_reserve(void)
8514 {
8515 	struct pglist_data *pgdat;
8516 	enum zone_type i, j;
8517 
8518 	for_each_online_pgdat(pgdat) {
8519 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8520 			struct zone *zone = &pgdat->node_zones[i];
8521 			int ratio = sysctl_lowmem_reserve_ratio[i];
8522 			bool clear = !ratio || !zone_managed_pages(zone);
8523 			unsigned long managed_pages = 0;
8524 
8525 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8526 				struct zone *upper_zone = &pgdat->node_zones[j];
8527 
8528 				managed_pages += zone_managed_pages(upper_zone);
8529 
8530 				if (clear)
8531 					zone->lowmem_reserve[j] = 0;
8532 				else
8533 					zone->lowmem_reserve[j] = managed_pages / ratio;
8534 			}
8535 		}
8536 	}
8537 
8538 	/* update totalreserve_pages */
8539 	calculate_totalreserve_pages();
8540 }
8541 
8542 static void __setup_per_zone_wmarks(void)
8543 {
8544 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8545 	unsigned long lowmem_pages = 0;
8546 	struct zone *zone;
8547 	unsigned long flags;
8548 
8549 	/* Calculate total number of !ZONE_HIGHMEM pages */
8550 	for_each_zone(zone) {
8551 		if (!is_highmem(zone))
8552 			lowmem_pages += zone_managed_pages(zone);
8553 	}
8554 
8555 	for_each_zone(zone) {
8556 		u64 tmp;
8557 
8558 		spin_lock_irqsave(&zone->lock, flags);
8559 		tmp = (u64)pages_min * zone_managed_pages(zone);
8560 		do_div(tmp, lowmem_pages);
8561 		if (is_highmem(zone)) {
8562 			/*
8563 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8564 			 * need highmem pages, so cap pages_min to a small
8565 			 * value here.
8566 			 *
8567 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8568 			 * deltas control async page reclaim, and so should
8569 			 * not be capped for highmem.
8570 			 */
8571 			unsigned long min_pages;
8572 
8573 			min_pages = zone_managed_pages(zone) / 1024;
8574 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8575 			zone->_watermark[WMARK_MIN] = min_pages;
8576 		} else {
8577 			/*
8578 			 * If it's a lowmem zone, reserve a number of pages
8579 			 * proportionate to the zone's size.
8580 			 */
8581 			zone->_watermark[WMARK_MIN] = tmp;
8582 		}
8583 
8584 		/*
8585 		 * Set the kswapd watermarks distance according to the
8586 		 * scale factor in proportion to available memory, but
8587 		 * ensure a minimum size on small systems.
8588 		 */
8589 		tmp = max_t(u64, tmp >> 2,
8590 			    mult_frac(zone_managed_pages(zone),
8591 				      watermark_scale_factor, 10000));
8592 
8593 		zone->watermark_boost = 0;
8594 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8595 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8596 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8597 
8598 		spin_unlock_irqrestore(&zone->lock, flags);
8599 	}
8600 
8601 	/* update totalreserve_pages */
8602 	calculate_totalreserve_pages();
8603 }
8604 
8605 /**
8606  * setup_per_zone_wmarks - called when min_free_kbytes changes
8607  * or when memory is hot-{added|removed}
8608  *
8609  * Ensures that the watermark[min,low,high] values for each zone are set
8610  * correctly with respect to min_free_kbytes.
8611  */
8612 void setup_per_zone_wmarks(void)
8613 {
8614 	struct zone *zone;
8615 	static DEFINE_SPINLOCK(lock);
8616 
8617 	spin_lock(&lock);
8618 	__setup_per_zone_wmarks();
8619 	spin_unlock(&lock);
8620 
8621 	/*
8622 	 * The watermark size have changed so update the pcpu batch
8623 	 * and high limits or the limits may be inappropriate.
8624 	 */
8625 	for_each_zone(zone)
8626 		zone_pcp_update(zone, 0);
8627 }
8628 
8629 /*
8630  * Initialise min_free_kbytes.
8631  *
8632  * For small machines we want it small (128k min).  For large machines
8633  * we want it large (256MB max).  But it is not linear, because network
8634  * bandwidth does not increase linearly with machine size.  We use
8635  *
8636  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8637  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8638  *
8639  * which yields
8640  *
8641  * 16MB:	512k
8642  * 32MB:	724k
8643  * 64MB:	1024k
8644  * 128MB:	1448k
8645  * 256MB:	2048k
8646  * 512MB:	2896k
8647  * 1024MB:	4096k
8648  * 2048MB:	5792k
8649  * 4096MB:	8192k
8650  * 8192MB:	11584k
8651  * 16384MB:	16384k
8652  */
8653 void calculate_min_free_kbytes(void)
8654 {
8655 	unsigned long lowmem_kbytes;
8656 	int new_min_free_kbytes;
8657 
8658 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8659 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8660 
8661 	if (new_min_free_kbytes > user_min_free_kbytes)
8662 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8663 	else
8664 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8665 				new_min_free_kbytes, user_min_free_kbytes);
8666 
8667 }
8668 
8669 int __meminit init_per_zone_wmark_min(void)
8670 {
8671 	calculate_min_free_kbytes();
8672 	setup_per_zone_wmarks();
8673 	refresh_zone_stat_thresholds();
8674 	setup_per_zone_lowmem_reserve();
8675 
8676 #ifdef CONFIG_NUMA
8677 	setup_min_unmapped_ratio();
8678 	setup_min_slab_ratio();
8679 #endif
8680 
8681 	khugepaged_min_free_kbytes_update();
8682 
8683 	return 0;
8684 }
8685 postcore_initcall(init_per_zone_wmark_min)
8686 
8687 /*
8688  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8689  *	that we can call two helper functions whenever min_free_kbytes
8690  *	changes.
8691  */
8692 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8693 		void *buffer, size_t *length, loff_t *ppos)
8694 {
8695 	int rc;
8696 
8697 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8698 	if (rc)
8699 		return rc;
8700 
8701 	if (write) {
8702 		user_min_free_kbytes = min_free_kbytes;
8703 		setup_per_zone_wmarks();
8704 	}
8705 	return 0;
8706 }
8707 
8708 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8709 		void *buffer, size_t *length, loff_t *ppos)
8710 {
8711 	int rc;
8712 
8713 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8714 	if (rc)
8715 		return rc;
8716 
8717 	if (write)
8718 		setup_per_zone_wmarks();
8719 
8720 	return 0;
8721 }
8722 
8723 #ifdef CONFIG_NUMA
8724 static void setup_min_unmapped_ratio(void)
8725 {
8726 	pg_data_t *pgdat;
8727 	struct zone *zone;
8728 
8729 	for_each_online_pgdat(pgdat)
8730 		pgdat->min_unmapped_pages = 0;
8731 
8732 	for_each_zone(zone)
8733 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8734 						         sysctl_min_unmapped_ratio) / 100;
8735 }
8736 
8737 
8738 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8739 		void *buffer, size_t *length, loff_t *ppos)
8740 {
8741 	int rc;
8742 
8743 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8744 	if (rc)
8745 		return rc;
8746 
8747 	setup_min_unmapped_ratio();
8748 
8749 	return 0;
8750 }
8751 
8752 static void setup_min_slab_ratio(void)
8753 {
8754 	pg_data_t *pgdat;
8755 	struct zone *zone;
8756 
8757 	for_each_online_pgdat(pgdat)
8758 		pgdat->min_slab_pages = 0;
8759 
8760 	for_each_zone(zone)
8761 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8762 						     sysctl_min_slab_ratio) / 100;
8763 }
8764 
8765 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8766 		void *buffer, size_t *length, loff_t *ppos)
8767 {
8768 	int rc;
8769 
8770 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8771 	if (rc)
8772 		return rc;
8773 
8774 	setup_min_slab_ratio();
8775 
8776 	return 0;
8777 }
8778 #endif
8779 
8780 /*
8781  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8782  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8783  *	whenever sysctl_lowmem_reserve_ratio changes.
8784  *
8785  * The reserve ratio obviously has absolutely no relation with the
8786  * minimum watermarks. The lowmem reserve ratio can only make sense
8787  * if in function of the boot time zone sizes.
8788  */
8789 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8790 		void *buffer, size_t *length, loff_t *ppos)
8791 {
8792 	int i;
8793 
8794 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8795 
8796 	for (i = 0; i < MAX_NR_ZONES; i++) {
8797 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8798 			sysctl_lowmem_reserve_ratio[i] = 0;
8799 	}
8800 
8801 	setup_per_zone_lowmem_reserve();
8802 	return 0;
8803 }
8804 
8805 /*
8806  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8807  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8808  * pagelist can have before it gets flushed back to buddy allocator.
8809  */
8810 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8811 		int write, void *buffer, size_t *length, loff_t *ppos)
8812 {
8813 	struct zone *zone;
8814 	int old_percpu_pagelist_high_fraction;
8815 	int ret;
8816 
8817 	mutex_lock(&pcp_batch_high_lock);
8818 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8819 
8820 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8821 	if (!write || ret < 0)
8822 		goto out;
8823 
8824 	/* Sanity checking to avoid pcp imbalance */
8825 	if (percpu_pagelist_high_fraction &&
8826 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8827 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8828 		ret = -EINVAL;
8829 		goto out;
8830 	}
8831 
8832 	/* No change? */
8833 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8834 		goto out;
8835 
8836 	for_each_populated_zone(zone)
8837 		zone_set_pageset_high_and_batch(zone, 0);
8838 out:
8839 	mutex_unlock(&pcp_batch_high_lock);
8840 	return ret;
8841 }
8842 
8843 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8844 /*
8845  * Returns the number of pages that arch has reserved but
8846  * is not known to alloc_large_system_hash().
8847  */
8848 static unsigned long __init arch_reserved_kernel_pages(void)
8849 {
8850 	return 0;
8851 }
8852 #endif
8853 
8854 /*
8855  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8856  * machines. As memory size is increased the scale is also increased but at
8857  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8858  * quadruples the scale is increased by one, which means the size of hash table
8859  * only doubles, instead of quadrupling as well.
8860  * Because 32-bit systems cannot have large physical memory, where this scaling
8861  * makes sense, it is disabled on such platforms.
8862  */
8863 #if __BITS_PER_LONG > 32
8864 #define ADAPT_SCALE_BASE	(64ul << 30)
8865 #define ADAPT_SCALE_SHIFT	2
8866 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8867 #endif
8868 
8869 /*
8870  * allocate a large system hash table from bootmem
8871  * - it is assumed that the hash table must contain an exact power-of-2
8872  *   quantity of entries
8873  * - limit is the number of hash buckets, not the total allocation size
8874  */
8875 void *__init alloc_large_system_hash(const char *tablename,
8876 				     unsigned long bucketsize,
8877 				     unsigned long numentries,
8878 				     int scale,
8879 				     int flags,
8880 				     unsigned int *_hash_shift,
8881 				     unsigned int *_hash_mask,
8882 				     unsigned long low_limit,
8883 				     unsigned long high_limit)
8884 {
8885 	unsigned long long max = high_limit;
8886 	unsigned long log2qty, size;
8887 	void *table = NULL;
8888 	gfp_t gfp_flags;
8889 	bool virt;
8890 	bool huge;
8891 
8892 	/* allow the kernel cmdline to have a say */
8893 	if (!numentries) {
8894 		/* round applicable memory size up to nearest megabyte */
8895 		numentries = nr_kernel_pages;
8896 		numentries -= arch_reserved_kernel_pages();
8897 
8898 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8899 		if (PAGE_SHIFT < 20)
8900 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8901 
8902 #if __BITS_PER_LONG > 32
8903 		if (!high_limit) {
8904 			unsigned long adapt;
8905 
8906 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8907 			     adapt <<= ADAPT_SCALE_SHIFT)
8908 				scale++;
8909 		}
8910 #endif
8911 
8912 		/* limit to 1 bucket per 2^scale bytes of low memory */
8913 		if (scale > PAGE_SHIFT)
8914 			numentries >>= (scale - PAGE_SHIFT);
8915 		else
8916 			numentries <<= (PAGE_SHIFT - scale);
8917 
8918 		/* Make sure we've got at least a 0-order allocation.. */
8919 		if (unlikely(flags & HASH_SMALL)) {
8920 			/* Makes no sense without HASH_EARLY */
8921 			WARN_ON(!(flags & HASH_EARLY));
8922 			if (!(numentries >> *_hash_shift)) {
8923 				numentries = 1UL << *_hash_shift;
8924 				BUG_ON(!numentries);
8925 			}
8926 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8927 			numentries = PAGE_SIZE / bucketsize;
8928 	}
8929 	numentries = roundup_pow_of_two(numentries);
8930 
8931 	/* limit allocation size to 1/16 total memory by default */
8932 	if (max == 0) {
8933 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8934 		do_div(max, bucketsize);
8935 	}
8936 	max = min(max, 0x80000000ULL);
8937 
8938 	if (numentries < low_limit)
8939 		numentries = low_limit;
8940 	if (numentries > max)
8941 		numentries = max;
8942 
8943 	log2qty = ilog2(numentries);
8944 
8945 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8946 	do {
8947 		virt = false;
8948 		size = bucketsize << log2qty;
8949 		if (flags & HASH_EARLY) {
8950 			if (flags & HASH_ZERO)
8951 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8952 			else
8953 				table = memblock_alloc_raw(size,
8954 							   SMP_CACHE_BYTES);
8955 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8956 			table = vmalloc_huge(size, gfp_flags);
8957 			virt = true;
8958 			if (table)
8959 				huge = is_vm_area_hugepages(table);
8960 		} else {
8961 			/*
8962 			 * If bucketsize is not a power-of-two, we may free
8963 			 * some pages at the end of hash table which
8964 			 * alloc_pages_exact() automatically does
8965 			 */
8966 			table = alloc_pages_exact(size, gfp_flags);
8967 			kmemleak_alloc(table, size, 1, gfp_flags);
8968 		}
8969 	} while (!table && size > PAGE_SIZE && --log2qty);
8970 
8971 	if (!table)
8972 		panic("Failed to allocate %s hash table\n", tablename);
8973 
8974 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8975 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8976 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8977 
8978 	if (_hash_shift)
8979 		*_hash_shift = log2qty;
8980 	if (_hash_mask)
8981 		*_hash_mask = (1 << log2qty) - 1;
8982 
8983 	return table;
8984 }
8985 
8986 #ifdef CONFIG_CONTIG_ALLOC
8987 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8988 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8989 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8990 static void alloc_contig_dump_pages(struct list_head *page_list)
8991 {
8992 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8993 
8994 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8995 		struct page *page;
8996 
8997 		dump_stack();
8998 		list_for_each_entry(page, page_list, lru)
8999 			dump_page(page, "migration failure");
9000 	}
9001 }
9002 #else
9003 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9004 {
9005 }
9006 #endif
9007 
9008 /* [start, end) must belong to a single zone. */
9009 int __alloc_contig_migrate_range(struct compact_control *cc,
9010 					unsigned long start, unsigned long end)
9011 {
9012 	/* This function is based on compact_zone() from compaction.c. */
9013 	unsigned int nr_reclaimed;
9014 	unsigned long pfn = start;
9015 	unsigned int tries = 0;
9016 	int ret = 0;
9017 	struct migration_target_control mtc = {
9018 		.nid = zone_to_nid(cc->zone),
9019 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9020 	};
9021 
9022 	lru_cache_disable();
9023 
9024 	while (pfn < end || !list_empty(&cc->migratepages)) {
9025 		if (fatal_signal_pending(current)) {
9026 			ret = -EINTR;
9027 			break;
9028 		}
9029 
9030 		if (list_empty(&cc->migratepages)) {
9031 			cc->nr_migratepages = 0;
9032 			ret = isolate_migratepages_range(cc, pfn, end);
9033 			if (ret && ret != -EAGAIN)
9034 				break;
9035 			pfn = cc->migrate_pfn;
9036 			tries = 0;
9037 		} else if (++tries == 5) {
9038 			ret = -EBUSY;
9039 			break;
9040 		}
9041 
9042 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9043 							&cc->migratepages);
9044 		cc->nr_migratepages -= nr_reclaimed;
9045 
9046 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9047 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9048 
9049 		/*
9050 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9051 		 * to retry again over this error, so do the same here.
9052 		 */
9053 		if (ret == -ENOMEM)
9054 			break;
9055 	}
9056 
9057 	lru_cache_enable();
9058 	if (ret < 0) {
9059 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9060 			alloc_contig_dump_pages(&cc->migratepages);
9061 		putback_movable_pages(&cc->migratepages);
9062 		return ret;
9063 	}
9064 	return 0;
9065 }
9066 
9067 /**
9068  * alloc_contig_range() -- tries to allocate given range of pages
9069  * @start:	start PFN to allocate
9070  * @end:	one-past-the-last PFN to allocate
9071  * @migratetype:	migratetype of the underlying pageblocks (either
9072  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9073  *			in range must have the same migratetype and it must
9074  *			be either of the two.
9075  * @gfp_mask:	GFP mask to use during compaction
9076  *
9077  * The PFN range does not have to be pageblock aligned. The PFN range must
9078  * belong to a single zone.
9079  *
9080  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9081  * pageblocks in the range.  Once isolated, the pageblocks should not
9082  * be modified by others.
9083  *
9084  * Return: zero on success or negative error code.  On success all
9085  * pages which PFN is in [start, end) are allocated for the caller and
9086  * need to be freed with free_contig_range().
9087  */
9088 int alloc_contig_range(unsigned long start, unsigned long end,
9089 		       unsigned migratetype, gfp_t gfp_mask)
9090 {
9091 	unsigned long outer_start, outer_end;
9092 	int order;
9093 	int ret = 0;
9094 
9095 	struct compact_control cc = {
9096 		.nr_migratepages = 0,
9097 		.order = -1,
9098 		.zone = page_zone(pfn_to_page(start)),
9099 		.mode = MIGRATE_SYNC,
9100 		.ignore_skip_hint = true,
9101 		.no_set_skip_hint = true,
9102 		.gfp_mask = current_gfp_context(gfp_mask),
9103 		.alloc_contig = true,
9104 	};
9105 	INIT_LIST_HEAD(&cc.migratepages);
9106 
9107 	/*
9108 	 * What we do here is we mark all pageblocks in range as
9109 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9110 	 * have different sizes, and due to the way page allocator
9111 	 * work, start_isolate_page_range() has special handlings for this.
9112 	 *
9113 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9114 	 * migrate the pages from an unaligned range (ie. pages that
9115 	 * we are interested in). This will put all the pages in
9116 	 * range back to page allocator as MIGRATE_ISOLATE.
9117 	 *
9118 	 * When this is done, we take the pages in range from page
9119 	 * allocator removing them from the buddy system.  This way
9120 	 * page allocator will never consider using them.
9121 	 *
9122 	 * This lets us mark the pageblocks back as
9123 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9124 	 * aligned range but not in the unaligned, original range are
9125 	 * put back to page allocator so that buddy can use them.
9126 	 */
9127 
9128 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9129 	if (ret)
9130 		goto done;
9131 
9132 	drain_all_pages(cc.zone);
9133 
9134 	/*
9135 	 * In case of -EBUSY, we'd like to know which page causes problem.
9136 	 * So, just fall through. test_pages_isolated() has a tracepoint
9137 	 * which will report the busy page.
9138 	 *
9139 	 * It is possible that busy pages could become available before
9140 	 * the call to test_pages_isolated, and the range will actually be
9141 	 * allocated.  So, if we fall through be sure to clear ret so that
9142 	 * -EBUSY is not accidentally used or returned to caller.
9143 	 */
9144 	ret = __alloc_contig_migrate_range(&cc, start, end);
9145 	if (ret && ret != -EBUSY)
9146 		goto done;
9147 	ret = 0;
9148 
9149 	/*
9150 	 * Pages from [start, end) are within a pageblock_nr_pages
9151 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9152 	 * more, all pages in [start, end) are free in page allocator.
9153 	 * What we are going to do is to allocate all pages from
9154 	 * [start, end) (that is remove them from page allocator).
9155 	 *
9156 	 * The only problem is that pages at the beginning and at the
9157 	 * end of interesting range may be not aligned with pages that
9158 	 * page allocator holds, ie. they can be part of higher order
9159 	 * pages.  Because of this, we reserve the bigger range and
9160 	 * once this is done free the pages we are not interested in.
9161 	 *
9162 	 * We don't have to hold zone->lock here because the pages are
9163 	 * isolated thus they won't get removed from buddy.
9164 	 */
9165 
9166 	order = 0;
9167 	outer_start = start;
9168 	while (!PageBuddy(pfn_to_page(outer_start))) {
9169 		if (++order >= MAX_ORDER) {
9170 			outer_start = start;
9171 			break;
9172 		}
9173 		outer_start &= ~0UL << order;
9174 	}
9175 
9176 	if (outer_start != start) {
9177 		order = buddy_order(pfn_to_page(outer_start));
9178 
9179 		/*
9180 		 * outer_start page could be small order buddy page and
9181 		 * it doesn't include start page. Adjust outer_start
9182 		 * in this case to report failed page properly
9183 		 * on tracepoint in test_pages_isolated()
9184 		 */
9185 		if (outer_start + (1UL << order) <= start)
9186 			outer_start = start;
9187 	}
9188 
9189 	/* Make sure the range is really isolated. */
9190 	if (test_pages_isolated(outer_start, end, 0)) {
9191 		ret = -EBUSY;
9192 		goto done;
9193 	}
9194 
9195 	/* Grab isolated pages from freelists. */
9196 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9197 	if (!outer_end) {
9198 		ret = -EBUSY;
9199 		goto done;
9200 	}
9201 
9202 	/* Free head and tail (if any) */
9203 	if (start != outer_start)
9204 		free_contig_range(outer_start, start - outer_start);
9205 	if (end != outer_end)
9206 		free_contig_range(end, outer_end - end);
9207 
9208 done:
9209 	undo_isolate_page_range(start, end, migratetype);
9210 	return ret;
9211 }
9212 EXPORT_SYMBOL(alloc_contig_range);
9213 
9214 static int __alloc_contig_pages(unsigned long start_pfn,
9215 				unsigned long nr_pages, gfp_t gfp_mask)
9216 {
9217 	unsigned long end_pfn = start_pfn + nr_pages;
9218 
9219 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9220 				  gfp_mask);
9221 }
9222 
9223 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9224 				   unsigned long nr_pages)
9225 {
9226 	unsigned long i, end_pfn = start_pfn + nr_pages;
9227 	struct page *page;
9228 
9229 	for (i = start_pfn; i < end_pfn; i++) {
9230 		page = pfn_to_online_page(i);
9231 		if (!page)
9232 			return false;
9233 
9234 		if (page_zone(page) != z)
9235 			return false;
9236 
9237 		if (PageReserved(page))
9238 			return false;
9239 	}
9240 	return true;
9241 }
9242 
9243 static bool zone_spans_last_pfn(const struct zone *zone,
9244 				unsigned long start_pfn, unsigned long nr_pages)
9245 {
9246 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9247 
9248 	return zone_spans_pfn(zone, last_pfn);
9249 }
9250 
9251 /**
9252  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9253  * @nr_pages:	Number of contiguous pages to allocate
9254  * @gfp_mask:	GFP mask to limit search and used during compaction
9255  * @nid:	Target node
9256  * @nodemask:	Mask for other possible nodes
9257  *
9258  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9259  * on an applicable zonelist to find a contiguous pfn range which can then be
9260  * tried for allocation with alloc_contig_range(). This routine is intended
9261  * for allocation requests which can not be fulfilled with the buddy allocator.
9262  *
9263  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9264  * power of two, then allocated range is also guaranteed to be aligned to same
9265  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9266  *
9267  * Allocated pages can be freed with free_contig_range() or by manually calling
9268  * __free_page() on each allocated page.
9269  *
9270  * Return: pointer to contiguous pages on success, or NULL if not successful.
9271  */
9272 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9273 				int nid, nodemask_t *nodemask)
9274 {
9275 	unsigned long ret, pfn, flags;
9276 	struct zonelist *zonelist;
9277 	struct zone *zone;
9278 	struct zoneref *z;
9279 
9280 	zonelist = node_zonelist(nid, gfp_mask);
9281 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9282 					gfp_zone(gfp_mask), nodemask) {
9283 		spin_lock_irqsave(&zone->lock, flags);
9284 
9285 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9286 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9287 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9288 				/*
9289 				 * We release the zone lock here because
9290 				 * alloc_contig_range() will also lock the zone
9291 				 * at some point. If there's an allocation
9292 				 * spinning on this lock, it may win the race
9293 				 * and cause alloc_contig_range() to fail...
9294 				 */
9295 				spin_unlock_irqrestore(&zone->lock, flags);
9296 				ret = __alloc_contig_pages(pfn, nr_pages,
9297 							gfp_mask);
9298 				if (!ret)
9299 					return pfn_to_page(pfn);
9300 				spin_lock_irqsave(&zone->lock, flags);
9301 			}
9302 			pfn += nr_pages;
9303 		}
9304 		spin_unlock_irqrestore(&zone->lock, flags);
9305 	}
9306 	return NULL;
9307 }
9308 #endif /* CONFIG_CONTIG_ALLOC */
9309 
9310 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9311 {
9312 	unsigned long count = 0;
9313 
9314 	for (; nr_pages--; pfn++) {
9315 		struct page *page = pfn_to_page(pfn);
9316 
9317 		count += page_count(page) != 1;
9318 		__free_page(page);
9319 	}
9320 	WARN(count != 0, "%lu pages are still in use!\n", count);
9321 }
9322 EXPORT_SYMBOL(free_contig_range);
9323 
9324 /*
9325  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9326  * page high values need to be recalculated.
9327  */
9328 void zone_pcp_update(struct zone *zone, int cpu_online)
9329 {
9330 	mutex_lock(&pcp_batch_high_lock);
9331 	zone_set_pageset_high_and_batch(zone, cpu_online);
9332 	mutex_unlock(&pcp_batch_high_lock);
9333 }
9334 
9335 /*
9336  * Effectively disable pcplists for the zone by setting the high limit to 0
9337  * and draining all cpus. A concurrent page freeing on another CPU that's about
9338  * to put the page on pcplist will either finish before the drain and the page
9339  * will be drained, or observe the new high limit and skip the pcplist.
9340  *
9341  * Must be paired with a call to zone_pcp_enable().
9342  */
9343 void zone_pcp_disable(struct zone *zone)
9344 {
9345 	mutex_lock(&pcp_batch_high_lock);
9346 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9347 	__drain_all_pages(zone, true);
9348 }
9349 
9350 void zone_pcp_enable(struct zone *zone)
9351 {
9352 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9353 	mutex_unlock(&pcp_batch_high_lock);
9354 }
9355 
9356 void zone_pcp_reset(struct zone *zone)
9357 {
9358 	int cpu;
9359 	struct per_cpu_zonestat *pzstats;
9360 
9361 	if (zone->per_cpu_pageset != &boot_pageset) {
9362 		for_each_online_cpu(cpu) {
9363 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9364 			drain_zonestat(zone, pzstats);
9365 		}
9366 		free_percpu(zone->per_cpu_pageset);
9367 		free_percpu(zone->per_cpu_zonestats);
9368 		zone->per_cpu_pageset = &boot_pageset;
9369 		zone->per_cpu_zonestats = &boot_zonestats;
9370 	}
9371 }
9372 
9373 #ifdef CONFIG_MEMORY_HOTREMOVE
9374 /*
9375  * All pages in the range must be in a single zone, must not contain holes,
9376  * must span full sections, and must be isolated before calling this function.
9377  */
9378 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9379 {
9380 	unsigned long pfn = start_pfn;
9381 	struct page *page;
9382 	struct zone *zone;
9383 	unsigned int order;
9384 	unsigned long flags;
9385 
9386 	offline_mem_sections(pfn, end_pfn);
9387 	zone = page_zone(pfn_to_page(pfn));
9388 	spin_lock_irqsave(&zone->lock, flags);
9389 	while (pfn < end_pfn) {
9390 		page = pfn_to_page(pfn);
9391 		/*
9392 		 * The HWPoisoned page may be not in buddy system, and
9393 		 * page_count() is not 0.
9394 		 */
9395 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9396 			pfn++;
9397 			continue;
9398 		}
9399 		/*
9400 		 * At this point all remaining PageOffline() pages have a
9401 		 * reference count of 0 and can simply be skipped.
9402 		 */
9403 		if (PageOffline(page)) {
9404 			BUG_ON(page_count(page));
9405 			BUG_ON(PageBuddy(page));
9406 			pfn++;
9407 			continue;
9408 		}
9409 
9410 		BUG_ON(page_count(page));
9411 		BUG_ON(!PageBuddy(page));
9412 		order = buddy_order(page);
9413 		del_page_from_free_list(page, zone, order);
9414 		pfn += (1 << order);
9415 	}
9416 	spin_unlock_irqrestore(&zone->lock, flags);
9417 }
9418 #endif
9419 
9420 /*
9421  * This function returns a stable result only if called under zone lock.
9422  */
9423 bool is_free_buddy_page(struct page *page)
9424 {
9425 	unsigned long pfn = page_to_pfn(page);
9426 	unsigned int order;
9427 
9428 	for (order = 0; order < MAX_ORDER; order++) {
9429 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9430 
9431 		if (PageBuddy(page_head) &&
9432 		    buddy_order_unsafe(page_head) >= order)
9433 			break;
9434 	}
9435 
9436 	return order < MAX_ORDER;
9437 }
9438 EXPORT_SYMBOL(is_free_buddy_page);
9439 
9440 #ifdef CONFIG_MEMORY_FAILURE
9441 /*
9442  * Break down a higher-order page in sub-pages, and keep our target out of
9443  * buddy allocator.
9444  */
9445 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9446 				   struct page *target, int low, int high,
9447 				   int migratetype)
9448 {
9449 	unsigned long size = 1 << high;
9450 	struct page *current_buddy, *next_page;
9451 
9452 	while (high > low) {
9453 		high--;
9454 		size >>= 1;
9455 
9456 		if (target >= &page[size]) {
9457 			next_page = page + size;
9458 			current_buddy = page;
9459 		} else {
9460 			next_page = page;
9461 			current_buddy = page + size;
9462 		}
9463 
9464 		if (set_page_guard(zone, current_buddy, high, migratetype))
9465 			continue;
9466 
9467 		if (current_buddy != target) {
9468 			add_to_free_list(current_buddy, zone, high, migratetype);
9469 			set_buddy_order(current_buddy, high);
9470 			page = next_page;
9471 		}
9472 	}
9473 }
9474 
9475 /*
9476  * Take a page that will be marked as poisoned off the buddy allocator.
9477  */
9478 bool take_page_off_buddy(struct page *page)
9479 {
9480 	struct zone *zone = page_zone(page);
9481 	unsigned long pfn = page_to_pfn(page);
9482 	unsigned long flags;
9483 	unsigned int order;
9484 	bool ret = false;
9485 
9486 	spin_lock_irqsave(&zone->lock, flags);
9487 	for (order = 0; order < MAX_ORDER; order++) {
9488 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9489 		int page_order = buddy_order(page_head);
9490 
9491 		if (PageBuddy(page_head) && page_order >= order) {
9492 			unsigned long pfn_head = page_to_pfn(page_head);
9493 			int migratetype = get_pfnblock_migratetype(page_head,
9494 								   pfn_head);
9495 
9496 			del_page_from_free_list(page_head, zone, page_order);
9497 			break_down_buddy_pages(zone, page_head, page, 0,
9498 						page_order, migratetype);
9499 			SetPageHWPoisonTakenOff(page);
9500 			if (!is_migrate_isolate(migratetype))
9501 				__mod_zone_freepage_state(zone, -1, migratetype);
9502 			ret = true;
9503 			break;
9504 		}
9505 		if (page_count(page_head) > 0)
9506 			break;
9507 	}
9508 	spin_unlock_irqrestore(&zone->lock, flags);
9509 	return ret;
9510 }
9511 
9512 /*
9513  * Cancel takeoff done by take_page_off_buddy().
9514  */
9515 bool put_page_back_buddy(struct page *page)
9516 {
9517 	struct zone *zone = page_zone(page);
9518 	unsigned long pfn = page_to_pfn(page);
9519 	unsigned long flags;
9520 	int migratetype = get_pfnblock_migratetype(page, pfn);
9521 	bool ret = false;
9522 
9523 	spin_lock_irqsave(&zone->lock, flags);
9524 	if (put_page_testzero(page)) {
9525 		ClearPageHWPoisonTakenOff(page);
9526 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9527 		if (TestClearPageHWPoison(page)) {
9528 			ret = true;
9529 		}
9530 	}
9531 	spin_unlock_irqrestore(&zone->lock, flags);
9532 
9533 	return ret;
9534 }
9535 #endif
9536 
9537 #ifdef CONFIG_ZONE_DMA
9538 bool has_managed_dma(void)
9539 {
9540 	struct pglist_data *pgdat;
9541 
9542 	for_each_online_pgdat(pgdat) {
9543 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9544 
9545 		if (managed_zone(zone))
9546 			return true;
9547 	}
9548 	return false;
9549 }
9550 #endif /* CONFIG_ZONE_DMA */
9551