xref: /openbmc/linux/mm/page_alloc.c (revision e6c81cce)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
73 
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78 
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84  * defined in <linux/topology.h>.
85  */
86 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90 
91 /*
92  * Array of node states.
93  */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 	[N_POSSIBLE] = NODE_MASK_ALL,
96 	[N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 	[N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 	[N_CPU] = { { [0] = 1UL } },
106 #endif	/* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109 
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112 
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117  * When calculating the number of globally allowed dirty pages, there
118  * is a certain number of per-zone reserves that should not be
119  * considered dirtyable memory.  This is the sum of those reserves
120  * over all existing zones that contribute dirtyable memory.
121  */
122 unsigned long dirty_balance_reserve __read_mostly;
123 
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126 
127 #ifdef CONFIG_PM_SLEEP
128 /*
129  * The following functions are used by the suspend/hibernate code to temporarily
130  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131  * while devices are suspended.  To avoid races with the suspend/hibernate code,
132  * they should always be called with pm_mutex held (gfp_allowed_mask also should
133  * only be modified with pm_mutex held, unless the suspend/hibernate code is
134  * guaranteed not to run in parallel with that modification).
135  */
136 
137 static gfp_t saved_gfp_mask;
138 
139 void pm_restore_gfp_mask(void)
140 {
141 	WARN_ON(!mutex_is_locked(&pm_mutex));
142 	if (saved_gfp_mask) {
143 		gfp_allowed_mask = saved_gfp_mask;
144 		saved_gfp_mask = 0;
145 	}
146 }
147 
148 void pm_restrict_gfp_mask(void)
149 {
150 	WARN_ON(!mutex_is_locked(&pm_mutex));
151 	WARN_ON(saved_gfp_mask);
152 	saved_gfp_mask = gfp_allowed_mask;
153 	gfp_allowed_mask &= ~GFP_IOFS;
154 }
155 
156 bool pm_suspended_storage(void)
157 {
158 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 		return false;
160 	return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163 
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167 
168 static void __free_pages_ok(struct page *page, unsigned int order);
169 
170 /*
171  * results with 256, 32 in the lowmem_reserve sysctl:
172  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173  *	1G machine -> (16M dma, 784M normal, 224M high)
174  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177  *
178  * TBD: should special case ZONE_DMA32 machines here - in those we normally
179  * don't need any ZONE_NORMAL reservation
180  */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 	 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 	 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 	 32,
190 #endif
191 	 32,
192 };
193 
194 EXPORT_SYMBOL(totalram_pages);
195 
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 	 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 	 "DMA32",
202 #endif
203 	 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 	 "HighMem",
206 #endif
207 	 "Movable",
208 };
209 
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212 
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216 
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223 
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228 
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235 
236 int page_group_by_mobility_disabled __read_mostly;
237 
238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 	if (unlikely(page_group_by_mobility_disabled &&
241 		     migratetype < MIGRATE_PCPTYPES))
242 		migratetype = MIGRATE_UNMOVABLE;
243 
244 	set_pageblock_flags_group(page, (unsigned long)migratetype,
245 					PB_migrate, PB_migrate_end);
246 }
247 
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 	int ret = 0;
252 	unsigned seq;
253 	unsigned long pfn = page_to_pfn(page);
254 	unsigned long sp, start_pfn;
255 
256 	do {
257 		seq = zone_span_seqbegin(zone);
258 		start_pfn = zone->zone_start_pfn;
259 		sp = zone->spanned_pages;
260 		if (!zone_spans_pfn(zone, pfn))
261 			ret = 1;
262 	} while (zone_span_seqretry(zone, seq));
263 
264 	if (ret)
265 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 			pfn, zone_to_nid(zone), zone->name,
267 			start_pfn, start_pfn + sp);
268 
269 	return ret;
270 }
271 
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 	if (!pfn_valid_within(page_to_pfn(page)))
275 		return 0;
276 	if (zone != page_zone(page))
277 		return 0;
278 
279 	return 1;
280 }
281 /*
282  * Temporary debugging check for pages not lying within a given zone.
283  */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 	if (page_outside_zone_boundaries(zone, page))
287 		return 1;
288 	if (!page_is_consistent(zone, page))
289 		return 1;
290 
291 	return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 	return 0;
297 }
298 #endif
299 
300 static void bad_page(struct page *page, const char *reason,
301 		unsigned long bad_flags)
302 {
303 	static unsigned long resume;
304 	static unsigned long nr_shown;
305 	static unsigned long nr_unshown;
306 
307 	/* Don't complain about poisoned pages */
308 	if (PageHWPoison(page)) {
309 		page_mapcount_reset(page); /* remove PageBuddy */
310 		return;
311 	}
312 
313 	/*
314 	 * Allow a burst of 60 reports, then keep quiet for that minute;
315 	 * or allow a steady drip of one report per second.
316 	 */
317 	if (nr_shown == 60) {
318 		if (time_before(jiffies, resume)) {
319 			nr_unshown++;
320 			goto out;
321 		}
322 		if (nr_unshown) {
323 			printk(KERN_ALERT
324 			      "BUG: Bad page state: %lu messages suppressed\n",
325 				nr_unshown);
326 			nr_unshown = 0;
327 		}
328 		nr_shown = 0;
329 	}
330 	if (nr_shown++ == 0)
331 		resume = jiffies + 60 * HZ;
332 
333 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
334 		current->comm, page_to_pfn(page));
335 	dump_page_badflags(page, reason, bad_flags);
336 
337 	print_modules();
338 	dump_stack();
339 out:
340 	/* Leave bad fields for debug, except PageBuddy could make trouble */
341 	page_mapcount_reset(page); /* remove PageBuddy */
342 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344 
345 /*
346  * Higher-order pages are called "compound pages".  They are structured thusly:
347  *
348  * The first PAGE_SIZE page is called the "head page".
349  *
350  * The remaining PAGE_SIZE pages are called "tail pages".
351  *
352  * All pages have PG_compound set.  All tail pages have their ->first_page
353  * pointing at the head page.
354  *
355  * The first tail page's ->lru.next holds the address of the compound page's
356  * put_page() function.  Its ->lru.prev holds the order of allocation.
357  * This usage means that zero-order pages may not be compound.
358  */
359 
360 static void free_compound_page(struct page *page)
361 {
362 	__free_pages_ok(page, compound_order(page));
363 }
364 
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 
370 	set_compound_page_dtor(page, free_compound_page);
371 	set_compound_order(page, order);
372 	__SetPageHead(page);
373 	for (i = 1; i < nr_pages; i++) {
374 		struct page *p = page + i;
375 		set_page_count(p, 0);
376 		p->first_page = page;
377 		/* Make sure p->first_page is always valid for PageTail() */
378 		smp_wmb();
379 		__SetPageTail(p);
380 	}
381 }
382 
383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 							gfp_t gfp_flags)
385 {
386 	int i;
387 
388 	/*
389 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 	 */
392 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 	for (i = 0; i < (1 << order); i++)
394 		clear_highpage(page + i);
395 }
396 
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401 
402 static int __init early_debug_pagealloc(char *buf)
403 {
404 	if (!buf)
405 		return -EINVAL;
406 
407 	if (strcmp(buf, "on") == 0)
408 		_debug_pagealloc_enabled = true;
409 
410 	return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413 
414 static bool need_debug_guardpage(void)
415 {
416 	/* If we don't use debug_pagealloc, we don't need guard page */
417 	if (!debug_pagealloc_enabled())
418 		return false;
419 
420 	return true;
421 }
422 
423 static void init_debug_guardpage(void)
424 {
425 	if (!debug_pagealloc_enabled())
426 		return;
427 
428 	_debug_guardpage_enabled = true;
429 }
430 
431 struct page_ext_operations debug_guardpage_ops = {
432 	.need = need_debug_guardpage,
433 	.init = init_debug_guardpage,
434 };
435 
436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 	unsigned long res;
439 
440 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
441 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 		return 0;
443 	}
444 	_debug_guardpage_minorder = res;
445 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 	return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449 
450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 				unsigned int order, int migratetype)
452 {
453 	struct page_ext *page_ext;
454 
455 	if (!debug_guardpage_enabled())
456 		return;
457 
458 	page_ext = lookup_page_ext(page);
459 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460 
461 	INIT_LIST_HEAD(&page->lru);
462 	set_page_private(page, order);
463 	/* Guard pages are not available for any usage */
464 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466 
467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 				unsigned int order, int migratetype)
469 {
470 	struct page_ext *page_ext;
471 
472 	if (!debug_guardpage_enabled())
473 		return;
474 
475 	page_ext = lookup_page_ext(page);
476 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477 
478 	set_page_private(page, 0);
479 	if (!is_migrate_isolate(migratetype))
480 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 				unsigned int order, int migratetype) {}
486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 				unsigned int order, int migratetype) {}
488 #endif
489 
490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 	set_page_private(page, order);
493 	__SetPageBuddy(page);
494 }
495 
496 static inline void rmv_page_order(struct page *page)
497 {
498 	__ClearPageBuddy(page);
499 	set_page_private(page, 0);
500 }
501 
502 /*
503  * This function checks whether a page is free && is the buddy
504  * we can do coalesce a page and its buddy if
505  * (a) the buddy is not in a hole &&
506  * (b) the buddy is in the buddy system &&
507  * (c) a page and its buddy have the same order &&
508  * (d) a page and its buddy are in the same zone.
509  *
510  * For recording whether a page is in the buddy system, we set ->_mapcount
511  * PAGE_BUDDY_MAPCOUNT_VALUE.
512  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513  * serialized by zone->lock.
514  *
515  * For recording page's order, we use page_private(page).
516  */
517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 							unsigned int order)
519 {
520 	if (!pfn_valid_within(page_to_pfn(buddy)))
521 		return 0;
522 
523 	if (page_is_guard(buddy) && page_order(buddy) == order) {
524 		if (page_zone_id(page) != page_zone_id(buddy))
525 			return 0;
526 
527 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528 
529 		return 1;
530 	}
531 
532 	if (PageBuddy(buddy) && page_order(buddy) == order) {
533 		/*
534 		 * zone check is done late to avoid uselessly
535 		 * calculating zone/node ids for pages that could
536 		 * never merge.
537 		 */
538 		if (page_zone_id(page) != page_zone_id(buddy))
539 			return 0;
540 
541 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542 
543 		return 1;
544 	}
545 	return 0;
546 }
547 
548 /*
549  * Freeing function for a buddy system allocator.
550  *
551  * The concept of a buddy system is to maintain direct-mapped table
552  * (containing bit values) for memory blocks of various "orders".
553  * The bottom level table contains the map for the smallest allocatable
554  * units of memory (here, pages), and each level above it describes
555  * pairs of units from the levels below, hence, "buddies".
556  * At a high level, all that happens here is marking the table entry
557  * at the bottom level available, and propagating the changes upward
558  * as necessary, plus some accounting needed to play nicely with other
559  * parts of the VM system.
560  * At each level, we keep a list of pages, which are heads of continuous
561  * free pages of length of (1 << order) and marked with _mapcount
562  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563  * field.
564  * So when we are allocating or freeing one, we can derive the state of the
565  * other.  That is, if we allocate a small block, and both were
566  * free, the remainder of the region must be split into blocks.
567  * If a block is freed, and its buddy is also free, then this
568  * triggers coalescing into a block of larger size.
569  *
570  * -- nyc
571  */
572 
573 static inline void __free_one_page(struct page *page,
574 		unsigned long pfn,
575 		struct zone *zone, unsigned int order,
576 		int migratetype)
577 {
578 	unsigned long page_idx;
579 	unsigned long combined_idx;
580 	unsigned long uninitialized_var(buddy_idx);
581 	struct page *buddy;
582 	int max_order = MAX_ORDER;
583 
584 	VM_BUG_ON(!zone_is_initialized(zone));
585 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
586 
587 	VM_BUG_ON(migratetype == -1);
588 	if (is_migrate_isolate(migratetype)) {
589 		/*
590 		 * We restrict max order of merging to prevent merge
591 		 * between freepages on isolate pageblock and normal
592 		 * pageblock. Without this, pageblock isolation
593 		 * could cause incorrect freepage accounting.
594 		 */
595 		max_order = min(MAX_ORDER, pageblock_order + 1);
596 	} else {
597 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
598 	}
599 
600 	page_idx = pfn & ((1 << max_order) - 1);
601 
602 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
604 
605 	while (order < max_order - 1) {
606 		buddy_idx = __find_buddy_index(page_idx, order);
607 		buddy = page + (buddy_idx - page_idx);
608 		if (!page_is_buddy(page, buddy, order))
609 			break;
610 		/*
611 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 		 * merge with it and move up one order.
613 		 */
614 		if (page_is_guard(buddy)) {
615 			clear_page_guard(zone, buddy, order, migratetype);
616 		} else {
617 			list_del(&buddy->lru);
618 			zone->free_area[order].nr_free--;
619 			rmv_page_order(buddy);
620 		}
621 		combined_idx = buddy_idx & page_idx;
622 		page = page + (combined_idx - page_idx);
623 		page_idx = combined_idx;
624 		order++;
625 	}
626 	set_page_order(page, order);
627 
628 	/*
629 	 * If this is not the largest possible page, check if the buddy
630 	 * of the next-highest order is free. If it is, it's possible
631 	 * that pages are being freed that will coalesce soon. In case,
632 	 * that is happening, add the free page to the tail of the list
633 	 * so it's less likely to be used soon and more likely to be merged
634 	 * as a higher order page
635 	 */
636 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
637 		struct page *higher_page, *higher_buddy;
638 		combined_idx = buddy_idx & page_idx;
639 		higher_page = page + (combined_idx - page_idx);
640 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
641 		higher_buddy = higher_page + (buddy_idx - combined_idx);
642 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 			list_add_tail(&page->lru,
644 				&zone->free_area[order].free_list[migratetype]);
645 			goto out;
646 		}
647 	}
648 
649 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650 out:
651 	zone->free_area[order].nr_free++;
652 }
653 
654 static inline int free_pages_check(struct page *page)
655 {
656 	const char *bad_reason = NULL;
657 	unsigned long bad_flags = 0;
658 
659 	if (unlikely(page_mapcount(page)))
660 		bad_reason = "nonzero mapcount";
661 	if (unlikely(page->mapping != NULL))
662 		bad_reason = "non-NULL mapping";
663 	if (unlikely(atomic_read(&page->_count) != 0))
664 		bad_reason = "nonzero _count";
665 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 	}
669 #ifdef CONFIG_MEMCG
670 	if (unlikely(page->mem_cgroup))
671 		bad_reason = "page still charged to cgroup";
672 #endif
673 	if (unlikely(bad_reason)) {
674 		bad_page(page, bad_reason, bad_flags);
675 		return 1;
676 	}
677 	page_cpupid_reset_last(page);
678 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 	return 0;
681 }
682 
683 /*
684  * Frees a number of pages from the PCP lists
685  * Assumes all pages on list are in same zone, and of same order.
686  * count is the number of pages to free.
687  *
688  * If the zone was previously in an "all pages pinned" state then look to
689  * see if this freeing clears that state.
690  *
691  * And clear the zone's pages_scanned counter, to hold off the "all pages are
692  * pinned" detection logic.
693  */
694 static void free_pcppages_bulk(struct zone *zone, int count,
695 					struct per_cpu_pages *pcp)
696 {
697 	int migratetype = 0;
698 	int batch_free = 0;
699 	int to_free = count;
700 	unsigned long nr_scanned;
701 
702 	spin_lock(&zone->lock);
703 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 	if (nr_scanned)
705 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
706 
707 	while (to_free) {
708 		struct page *page;
709 		struct list_head *list;
710 
711 		/*
712 		 * Remove pages from lists in a round-robin fashion. A
713 		 * batch_free count is maintained that is incremented when an
714 		 * empty list is encountered.  This is so more pages are freed
715 		 * off fuller lists instead of spinning excessively around empty
716 		 * lists
717 		 */
718 		do {
719 			batch_free++;
720 			if (++migratetype == MIGRATE_PCPTYPES)
721 				migratetype = 0;
722 			list = &pcp->lists[migratetype];
723 		} while (list_empty(list));
724 
725 		/* This is the only non-empty list. Free them all. */
726 		if (batch_free == MIGRATE_PCPTYPES)
727 			batch_free = to_free;
728 
729 		do {
730 			int mt;	/* migratetype of the to-be-freed page */
731 
732 			page = list_entry(list->prev, struct page, lru);
733 			/* must delete as __free_one_page list manipulates */
734 			list_del(&page->lru);
735 			mt = get_freepage_migratetype(page);
736 			if (unlikely(has_isolate_pageblock(zone)))
737 				mt = get_pageblock_migratetype(page);
738 
739 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
740 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
741 			trace_mm_page_pcpu_drain(page, 0, mt);
742 		} while (--to_free && --batch_free && !list_empty(list));
743 	}
744 	spin_unlock(&zone->lock);
745 }
746 
747 static void free_one_page(struct zone *zone,
748 				struct page *page, unsigned long pfn,
749 				unsigned int order,
750 				int migratetype)
751 {
752 	unsigned long nr_scanned;
753 	spin_lock(&zone->lock);
754 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 	if (nr_scanned)
756 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
757 
758 	if (unlikely(has_isolate_pageblock(zone) ||
759 		is_migrate_isolate(migratetype))) {
760 		migratetype = get_pfnblock_migratetype(page, pfn);
761 	}
762 	__free_one_page(page, pfn, zone, order, migratetype);
763 	spin_unlock(&zone->lock);
764 }
765 
766 static int free_tail_pages_check(struct page *head_page, struct page *page)
767 {
768 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 		return 0;
770 	if (unlikely(!PageTail(page))) {
771 		bad_page(page, "PageTail not set", 0);
772 		return 1;
773 	}
774 	if (unlikely(page->first_page != head_page)) {
775 		bad_page(page, "first_page not consistent", 0);
776 		return 1;
777 	}
778 	return 0;
779 }
780 
781 static bool free_pages_prepare(struct page *page, unsigned int order)
782 {
783 	bool compound = PageCompound(page);
784 	int i, bad = 0;
785 
786 	VM_BUG_ON_PAGE(PageTail(page), page);
787 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
788 
789 	trace_mm_page_free(page, order);
790 	kmemcheck_free_shadow(page, order);
791 	kasan_free_pages(page, order);
792 
793 	if (PageAnon(page))
794 		page->mapping = NULL;
795 	bad += free_pages_check(page);
796 	for (i = 1; i < (1 << order); i++) {
797 		if (compound)
798 			bad += free_tail_pages_check(page, page + i);
799 		bad += free_pages_check(page + i);
800 	}
801 	if (bad)
802 		return false;
803 
804 	reset_page_owner(page, order);
805 
806 	if (!PageHighMem(page)) {
807 		debug_check_no_locks_freed(page_address(page),
808 					   PAGE_SIZE << order);
809 		debug_check_no_obj_freed(page_address(page),
810 					   PAGE_SIZE << order);
811 	}
812 	arch_free_page(page, order);
813 	kernel_map_pages(page, 1 << order, 0);
814 
815 	return true;
816 }
817 
818 static void __free_pages_ok(struct page *page, unsigned int order)
819 {
820 	unsigned long flags;
821 	int migratetype;
822 	unsigned long pfn = page_to_pfn(page);
823 
824 	if (!free_pages_prepare(page, order))
825 		return;
826 
827 	migratetype = get_pfnblock_migratetype(page, pfn);
828 	local_irq_save(flags);
829 	__count_vm_events(PGFREE, 1 << order);
830 	set_freepage_migratetype(page, migratetype);
831 	free_one_page(page_zone(page), page, pfn, order, migratetype);
832 	local_irq_restore(flags);
833 }
834 
835 void __init __free_pages_bootmem(struct page *page, unsigned int order)
836 {
837 	unsigned int nr_pages = 1 << order;
838 	struct page *p = page;
839 	unsigned int loop;
840 
841 	prefetchw(p);
842 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 		prefetchw(p + 1);
844 		__ClearPageReserved(p);
845 		set_page_count(p, 0);
846 	}
847 	__ClearPageReserved(p);
848 	set_page_count(p, 0);
849 
850 	page_zone(page)->managed_pages += nr_pages;
851 	set_page_refcounted(page);
852 	__free_pages(page, order);
853 }
854 
855 #ifdef CONFIG_CMA
856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
857 void __init init_cma_reserved_pageblock(struct page *page)
858 {
859 	unsigned i = pageblock_nr_pages;
860 	struct page *p = page;
861 
862 	do {
863 		__ClearPageReserved(p);
864 		set_page_count(p, 0);
865 	} while (++p, --i);
866 
867 	set_pageblock_migratetype(page, MIGRATE_CMA);
868 
869 	if (pageblock_order >= MAX_ORDER) {
870 		i = pageblock_nr_pages;
871 		p = page;
872 		do {
873 			set_page_refcounted(p);
874 			__free_pages(p, MAX_ORDER - 1);
875 			p += MAX_ORDER_NR_PAGES;
876 		} while (i -= MAX_ORDER_NR_PAGES);
877 	} else {
878 		set_page_refcounted(page);
879 		__free_pages(page, pageblock_order);
880 	}
881 
882 	adjust_managed_page_count(page, pageblock_nr_pages);
883 }
884 #endif
885 
886 /*
887  * The order of subdivision here is critical for the IO subsystem.
888  * Please do not alter this order without good reasons and regression
889  * testing. Specifically, as large blocks of memory are subdivided,
890  * the order in which smaller blocks are delivered depends on the order
891  * they're subdivided in this function. This is the primary factor
892  * influencing the order in which pages are delivered to the IO
893  * subsystem according to empirical testing, and this is also justified
894  * by considering the behavior of a buddy system containing a single
895  * large block of memory acted on by a series of small allocations.
896  * This behavior is a critical factor in sglist merging's success.
897  *
898  * -- nyc
899  */
900 static inline void expand(struct zone *zone, struct page *page,
901 	int low, int high, struct free_area *area,
902 	int migratetype)
903 {
904 	unsigned long size = 1 << high;
905 
906 	while (high > low) {
907 		area--;
908 		high--;
909 		size >>= 1;
910 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
911 
912 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
913 			debug_guardpage_enabled() &&
914 			high < debug_guardpage_minorder()) {
915 			/*
916 			 * Mark as guard pages (or page), that will allow to
917 			 * merge back to allocator when buddy will be freed.
918 			 * Corresponding page table entries will not be touched,
919 			 * pages will stay not present in virtual address space
920 			 */
921 			set_page_guard(zone, &page[size], high, migratetype);
922 			continue;
923 		}
924 		list_add(&page[size].lru, &area->free_list[migratetype]);
925 		area->nr_free++;
926 		set_page_order(&page[size], high);
927 	}
928 }
929 
930 /*
931  * This page is about to be returned from the page allocator
932  */
933 static inline int check_new_page(struct page *page)
934 {
935 	const char *bad_reason = NULL;
936 	unsigned long bad_flags = 0;
937 
938 	if (unlikely(page_mapcount(page)))
939 		bad_reason = "nonzero mapcount";
940 	if (unlikely(page->mapping != NULL))
941 		bad_reason = "non-NULL mapping";
942 	if (unlikely(atomic_read(&page->_count) != 0))
943 		bad_reason = "nonzero _count";
944 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 	}
948 #ifdef CONFIG_MEMCG
949 	if (unlikely(page->mem_cgroup))
950 		bad_reason = "page still charged to cgroup";
951 #endif
952 	if (unlikely(bad_reason)) {
953 		bad_page(page, bad_reason, bad_flags);
954 		return 1;
955 	}
956 	return 0;
957 }
958 
959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 								int alloc_flags)
961 {
962 	int i;
963 
964 	for (i = 0; i < (1 << order); i++) {
965 		struct page *p = page + i;
966 		if (unlikely(check_new_page(p)))
967 			return 1;
968 	}
969 
970 	set_page_private(page, 0);
971 	set_page_refcounted(page);
972 
973 	arch_alloc_page(page, order);
974 	kernel_map_pages(page, 1 << order, 1);
975 	kasan_alloc_pages(page, order);
976 
977 	if (gfp_flags & __GFP_ZERO)
978 		prep_zero_page(page, order, gfp_flags);
979 
980 	if (order && (gfp_flags & __GFP_COMP))
981 		prep_compound_page(page, order);
982 
983 	set_page_owner(page, order, gfp_flags);
984 
985 	/*
986 	 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 	 * allocate the page. The expectation is that the caller is taking
988 	 * steps that will free more memory. The caller should avoid the page
989 	 * being used for !PFMEMALLOC purposes.
990 	 */
991 	page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992 
993 	return 0;
994 }
995 
996 /*
997  * Go through the free lists for the given migratetype and remove
998  * the smallest available page from the freelists
999  */
1000 static inline
1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1002 						int migratetype)
1003 {
1004 	unsigned int current_order;
1005 	struct free_area *area;
1006 	struct page *page;
1007 
1008 	/* Find a page of the appropriate size in the preferred list */
1009 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 		area = &(zone->free_area[current_order]);
1011 		if (list_empty(&area->free_list[migratetype]))
1012 			continue;
1013 
1014 		page = list_entry(area->free_list[migratetype].next,
1015 							struct page, lru);
1016 		list_del(&page->lru);
1017 		rmv_page_order(page);
1018 		area->nr_free--;
1019 		expand(zone, page, order, current_order, area, migratetype);
1020 		set_freepage_migratetype(page, migratetype);
1021 		return page;
1022 	}
1023 
1024 	return NULL;
1025 }
1026 
1027 
1028 /*
1029  * This array describes the order lists are fallen back to when
1030  * the free lists for the desirable migrate type are depleted
1031  */
1032 static int fallbacks[MIGRATE_TYPES][4] = {
1033 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1034 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1035 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1036 #ifdef CONFIG_CMA
1037 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1038 #endif
1039 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1040 #ifdef CONFIG_MEMORY_ISOLATION
1041 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1042 #endif
1043 };
1044 
1045 #ifdef CONFIG_CMA
1046 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1047 					unsigned int order)
1048 {
1049 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1050 }
1051 #else
1052 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1053 					unsigned int order) { return NULL; }
1054 #endif
1055 
1056 /*
1057  * Move the free pages in a range to the free lists of the requested type.
1058  * Note that start_page and end_pages are not aligned on a pageblock
1059  * boundary. If alignment is required, use move_freepages_block()
1060  */
1061 int move_freepages(struct zone *zone,
1062 			  struct page *start_page, struct page *end_page,
1063 			  int migratetype)
1064 {
1065 	struct page *page;
1066 	unsigned long order;
1067 	int pages_moved = 0;
1068 
1069 #ifndef CONFIG_HOLES_IN_ZONE
1070 	/*
1071 	 * page_zone is not safe to call in this context when
1072 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1073 	 * anyway as we check zone boundaries in move_freepages_block().
1074 	 * Remove at a later date when no bug reports exist related to
1075 	 * grouping pages by mobility
1076 	 */
1077 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1078 #endif
1079 
1080 	for (page = start_page; page <= end_page;) {
1081 		/* Make sure we are not inadvertently changing nodes */
1082 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1083 
1084 		if (!pfn_valid_within(page_to_pfn(page))) {
1085 			page++;
1086 			continue;
1087 		}
1088 
1089 		if (!PageBuddy(page)) {
1090 			page++;
1091 			continue;
1092 		}
1093 
1094 		order = page_order(page);
1095 		list_move(&page->lru,
1096 			  &zone->free_area[order].free_list[migratetype]);
1097 		set_freepage_migratetype(page, migratetype);
1098 		page += 1 << order;
1099 		pages_moved += 1 << order;
1100 	}
1101 
1102 	return pages_moved;
1103 }
1104 
1105 int move_freepages_block(struct zone *zone, struct page *page,
1106 				int migratetype)
1107 {
1108 	unsigned long start_pfn, end_pfn;
1109 	struct page *start_page, *end_page;
1110 
1111 	start_pfn = page_to_pfn(page);
1112 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1113 	start_page = pfn_to_page(start_pfn);
1114 	end_page = start_page + pageblock_nr_pages - 1;
1115 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1116 
1117 	/* Do not cross zone boundaries */
1118 	if (!zone_spans_pfn(zone, start_pfn))
1119 		start_page = page;
1120 	if (!zone_spans_pfn(zone, end_pfn))
1121 		return 0;
1122 
1123 	return move_freepages(zone, start_page, end_page, migratetype);
1124 }
1125 
1126 static void change_pageblock_range(struct page *pageblock_page,
1127 					int start_order, int migratetype)
1128 {
1129 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1130 
1131 	while (nr_pageblocks--) {
1132 		set_pageblock_migratetype(pageblock_page, migratetype);
1133 		pageblock_page += pageblock_nr_pages;
1134 	}
1135 }
1136 
1137 /*
1138  * When we are falling back to another migratetype during allocation, try to
1139  * steal extra free pages from the same pageblocks to satisfy further
1140  * allocations, instead of polluting multiple pageblocks.
1141  *
1142  * If we are stealing a relatively large buddy page, it is likely there will
1143  * be more free pages in the pageblock, so try to steal them all. For
1144  * reclaimable and unmovable allocations, we steal regardless of page size,
1145  * as fragmentation caused by those allocations polluting movable pageblocks
1146  * is worse than movable allocations stealing from unmovable and reclaimable
1147  * pageblocks.
1148  */
1149 static bool can_steal_fallback(unsigned int order, int start_mt)
1150 {
1151 	/*
1152 	 * Leaving this order check is intended, although there is
1153 	 * relaxed order check in next check. The reason is that
1154 	 * we can actually steal whole pageblock if this condition met,
1155 	 * but, below check doesn't guarantee it and that is just heuristic
1156 	 * so could be changed anytime.
1157 	 */
1158 	if (order >= pageblock_order)
1159 		return true;
1160 
1161 	if (order >= pageblock_order / 2 ||
1162 		start_mt == MIGRATE_RECLAIMABLE ||
1163 		start_mt == MIGRATE_UNMOVABLE ||
1164 		page_group_by_mobility_disabled)
1165 		return true;
1166 
1167 	return false;
1168 }
1169 
1170 /*
1171  * This function implements actual steal behaviour. If order is large enough,
1172  * we can steal whole pageblock. If not, we first move freepages in this
1173  * pageblock and check whether half of pages are moved or not. If half of
1174  * pages are moved, we can change migratetype of pageblock and permanently
1175  * use it's pages as requested migratetype in the future.
1176  */
1177 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1178 							  int start_type)
1179 {
1180 	int current_order = page_order(page);
1181 	int pages;
1182 
1183 	/* Take ownership for orders >= pageblock_order */
1184 	if (current_order >= pageblock_order) {
1185 		change_pageblock_range(page, current_order, start_type);
1186 		return;
1187 	}
1188 
1189 	pages = move_freepages_block(zone, page, start_type);
1190 
1191 	/* Claim the whole block if over half of it is free */
1192 	if (pages >= (1 << (pageblock_order-1)) ||
1193 			page_group_by_mobility_disabled)
1194 		set_pageblock_migratetype(page, start_type);
1195 }
1196 
1197 /*
1198  * Check whether there is a suitable fallback freepage with requested order.
1199  * If only_stealable is true, this function returns fallback_mt only if
1200  * we can steal other freepages all together. This would help to reduce
1201  * fragmentation due to mixed migratetype pages in one pageblock.
1202  */
1203 int find_suitable_fallback(struct free_area *area, unsigned int order,
1204 			int migratetype, bool only_stealable, bool *can_steal)
1205 {
1206 	int i;
1207 	int fallback_mt;
1208 
1209 	if (area->nr_free == 0)
1210 		return -1;
1211 
1212 	*can_steal = false;
1213 	for (i = 0;; i++) {
1214 		fallback_mt = fallbacks[migratetype][i];
1215 		if (fallback_mt == MIGRATE_RESERVE)
1216 			break;
1217 
1218 		if (list_empty(&area->free_list[fallback_mt]))
1219 			continue;
1220 
1221 		if (can_steal_fallback(order, migratetype))
1222 			*can_steal = true;
1223 
1224 		if (!only_stealable)
1225 			return fallback_mt;
1226 
1227 		if (*can_steal)
1228 			return fallback_mt;
1229 	}
1230 
1231 	return -1;
1232 }
1233 
1234 /* Remove an element from the buddy allocator from the fallback list */
1235 static inline struct page *
1236 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1237 {
1238 	struct free_area *area;
1239 	unsigned int current_order;
1240 	struct page *page;
1241 	int fallback_mt;
1242 	bool can_steal;
1243 
1244 	/* Find the largest possible block of pages in the other list */
1245 	for (current_order = MAX_ORDER-1;
1246 				current_order >= order && current_order <= MAX_ORDER-1;
1247 				--current_order) {
1248 		area = &(zone->free_area[current_order]);
1249 		fallback_mt = find_suitable_fallback(area, current_order,
1250 				start_migratetype, false, &can_steal);
1251 		if (fallback_mt == -1)
1252 			continue;
1253 
1254 		page = list_entry(area->free_list[fallback_mt].next,
1255 						struct page, lru);
1256 		if (can_steal)
1257 			steal_suitable_fallback(zone, page, start_migratetype);
1258 
1259 		/* Remove the page from the freelists */
1260 		area->nr_free--;
1261 		list_del(&page->lru);
1262 		rmv_page_order(page);
1263 
1264 		expand(zone, page, order, current_order, area,
1265 					start_migratetype);
1266 		/*
1267 		 * The freepage_migratetype may differ from pageblock's
1268 		 * migratetype depending on the decisions in
1269 		 * try_to_steal_freepages(). This is OK as long as it
1270 		 * does not differ for MIGRATE_CMA pageblocks. For CMA
1271 		 * we need to make sure unallocated pages flushed from
1272 		 * pcp lists are returned to the correct freelist.
1273 		 */
1274 		set_freepage_migratetype(page, start_migratetype);
1275 
1276 		trace_mm_page_alloc_extfrag(page, order, current_order,
1277 			start_migratetype, fallback_mt);
1278 
1279 		return page;
1280 	}
1281 
1282 	return NULL;
1283 }
1284 
1285 /*
1286  * Do the hard work of removing an element from the buddy allocator.
1287  * Call me with the zone->lock already held.
1288  */
1289 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1290 						int migratetype)
1291 {
1292 	struct page *page;
1293 
1294 retry_reserve:
1295 	page = __rmqueue_smallest(zone, order, migratetype);
1296 
1297 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1298 		if (migratetype == MIGRATE_MOVABLE)
1299 			page = __rmqueue_cma_fallback(zone, order);
1300 
1301 		if (!page)
1302 			page = __rmqueue_fallback(zone, order, migratetype);
1303 
1304 		/*
1305 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1306 		 * is used because __rmqueue_smallest is an inline function
1307 		 * and we want just one call site
1308 		 */
1309 		if (!page) {
1310 			migratetype = MIGRATE_RESERVE;
1311 			goto retry_reserve;
1312 		}
1313 	}
1314 
1315 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1316 	return page;
1317 }
1318 
1319 /*
1320  * Obtain a specified number of elements from the buddy allocator, all under
1321  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1322  * Returns the number of new pages which were placed at *list.
1323  */
1324 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1325 			unsigned long count, struct list_head *list,
1326 			int migratetype, bool cold)
1327 {
1328 	int i;
1329 
1330 	spin_lock(&zone->lock);
1331 	for (i = 0; i < count; ++i) {
1332 		struct page *page = __rmqueue(zone, order, migratetype);
1333 		if (unlikely(page == NULL))
1334 			break;
1335 
1336 		/*
1337 		 * Split buddy pages returned by expand() are received here
1338 		 * in physical page order. The page is added to the callers and
1339 		 * list and the list head then moves forward. From the callers
1340 		 * perspective, the linked list is ordered by page number in
1341 		 * some conditions. This is useful for IO devices that can
1342 		 * merge IO requests if the physical pages are ordered
1343 		 * properly.
1344 		 */
1345 		if (likely(!cold))
1346 			list_add(&page->lru, list);
1347 		else
1348 			list_add_tail(&page->lru, list);
1349 		list = &page->lru;
1350 		if (is_migrate_cma(get_freepage_migratetype(page)))
1351 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1352 					      -(1 << order));
1353 	}
1354 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1355 	spin_unlock(&zone->lock);
1356 	return i;
1357 }
1358 
1359 #ifdef CONFIG_NUMA
1360 /*
1361  * Called from the vmstat counter updater to drain pagesets of this
1362  * currently executing processor on remote nodes after they have
1363  * expired.
1364  *
1365  * Note that this function must be called with the thread pinned to
1366  * a single processor.
1367  */
1368 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1369 {
1370 	unsigned long flags;
1371 	int to_drain, batch;
1372 
1373 	local_irq_save(flags);
1374 	batch = READ_ONCE(pcp->batch);
1375 	to_drain = min(pcp->count, batch);
1376 	if (to_drain > 0) {
1377 		free_pcppages_bulk(zone, to_drain, pcp);
1378 		pcp->count -= to_drain;
1379 	}
1380 	local_irq_restore(flags);
1381 }
1382 #endif
1383 
1384 /*
1385  * Drain pcplists of the indicated processor and zone.
1386  *
1387  * The processor must either be the current processor and the
1388  * thread pinned to the current processor or a processor that
1389  * is not online.
1390  */
1391 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1392 {
1393 	unsigned long flags;
1394 	struct per_cpu_pageset *pset;
1395 	struct per_cpu_pages *pcp;
1396 
1397 	local_irq_save(flags);
1398 	pset = per_cpu_ptr(zone->pageset, cpu);
1399 
1400 	pcp = &pset->pcp;
1401 	if (pcp->count) {
1402 		free_pcppages_bulk(zone, pcp->count, pcp);
1403 		pcp->count = 0;
1404 	}
1405 	local_irq_restore(flags);
1406 }
1407 
1408 /*
1409  * Drain pcplists of all zones on the indicated processor.
1410  *
1411  * The processor must either be the current processor and the
1412  * thread pinned to the current processor or a processor that
1413  * is not online.
1414  */
1415 static void drain_pages(unsigned int cpu)
1416 {
1417 	struct zone *zone;
1418 
1419 	for_each_populated_zone(zone) {
1420 		drain_pages_zone(cpu, zone);
1421 	}
1422 }
1423 
1424 /*
1425  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1426  *
1427  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1428  * the single zone's pages.
1429  */
1430 void drain_local_pages(struct zone *zone)
1431 {
1432 	int cpu = smp_processor_id();
1433 
1434 	if (zone)
1435 		drain_pages_zone(cpu, zone);
1436 	else
1437 		drain_pages(cpu);
1438 }
1439 
1440 /*
1441  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1442  *
1443  * When zone parameter is non-NULL, spill just the single zone's pages.
1444  *
1445  * Note that this code is protected against sending an IPI to an offline
1446  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1447  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1448  * nothing keeps CPUs from showing up after we populated the cpumask and
1449  * before the call to on_each_cpu_mask().
1450  */
1451 void drain_all_pages(struct zone *zone)
1452 {
1453 	int cpu;
1454 
1455 	/*
1456 	 * Allocate in the BSS so we wont require allocation in
1457 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1458 	 */
1459 	static cpumask_t cpus_with_pcps;
1460 
1461 	/*
1462 	 * We don't care about racing with CPU hotplug event
1463 	 * as offline notification will cause the notified
1464 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1465 	 * disables preemption as part of its processing
1466 	 */
1467 	for_each_online_cpu(cpu) {
1468 		struct per_cpu_pageset *pcp;
1469 		struct zone *z;
1470 		bool has_pcps = false;
1471 
1472 		if (zone) {
1473 			pcp = per_cpu_ptr(zone->pageset, cpu);
1474 			if (pcp->pcp.count)
1475 				has_pcps = true;
1476 		} else {
1477 			for_each_populated_zone(z) {
1478 				pcp = per_cpu_ptr(z->pageset, cpu);
1479 				if (pcp->pcp.count) {
1480 					has_pcps = true;
1481 					break;
1482 				}
1483 			}
1484 		}
1485 
1486 		if (has_pcps)
1487 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1488 		else
1489 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1490 	}
1491 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1492 								zone, 1);
1493 }
1494 
1495 #ifdef CONFIG_HIBERNATION
1496 
1497 void mark_free_pages(struct zone *zone)
1498 {
1499 	unsigned long pfn, max_zone_pfn;
1500 	unsigned long flags;
1501 	unsigned int order, t;
1502 	struct list_head *curr;
1503 
1504 	if (zone_is_empty(zone))
1505 		return;
1506 
1507 	spin_lock_irqsave(&zone->lock, flags);
1508 
1509 	max_zone_pfn = zone_end_pfn(zone);
1510 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1511 		if (pfn_valid(pfn)) {
1512 			struct page *page = pfn_to_page(pfn);
1513 
1514 			if (!swsusp_page_is_forbidden(page))
1515 				swsusp_unset_page_free(page);
1516 		}
1517 
1518 	for_each_migratetype_order(order, t) {
1519 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1520 			unsigned long i;
1521 
1522 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1523 			for (i = 0; i < (1UL << order); i++)
1524 				swsusp_set_page_free(pfn_to_page(pfn + i));
1525 		}
1526 	}
1527 	spin_unlock_irqrestore(&zone->lock, flags);
1528 }
1529 #endif /* CONFIG_PM */
1530 
1531 /*
1532  * Free a 0-order page
1533  * cold == true ? free a cold page : free a hot page
1534  */
1535 void free_hot_cold_page(struct page *page, bool cold)
1536 {
1537 	struct zone *zone = page_zone(page);
1538 	struct per_cpu_pages *pcp;
1539 	unsigned long flags;
1540 	unsigned long pfn = page_to_pfn(page);
1541 	int migratetype;
1542 
1543 	if (!free_pages_prepare(page, 0))
1544 		return;
1545 
1546 	migratetype = get_pfnblock_migratetype(page, pfn);
1547 	set_freepage_migratetype(page, migratetype);
1548 	local_irq_save(flags);
1549 	__count_vm_event(PGFREE);
1550 
1551 	/*
1552 	 * We only track unmovable, reclaimable and movable on pcp lists.
1553 	 * Free ISOLATE pages back to the allocator because they are being
1554 	 * offlined but treat RESERVE as movable pages so we can get those
1555 	 * areas back if necessary. Otherwise, we may have to free
1556 	 * excessively into the page allocator
1557 	 */
1558 	if (migratetype >= MIGRATE_PCPTYPES) {
1559 		if (unlikely(is_migrate_isolate(migratetype))) {
1560 			free_one_page(zone, page, pfn, 0, migratetype);
1561 			goto out;
1562 		}
1563 		migratetype = MIGRATE_MOVABLE;
1564 	}
1565 
1566 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1567 	if (!cold)
1568 		list_add(&page->lru, &pcp->lists[migratetype]);
1569 	else
1570 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1571 	pcp->count++;
1572 	if (pcp->count >= pcp->high) {
1573 		unsigned long batch = READ_ONCE(pcp->batch);
1574 		free_pcppages_bulk(zone, batch, pcp);
1575 		pcp->count -= batch;
1576 	}
1577 
1578 out:
1579 	local_irq_restore(flags);
1580 }
1581 
1582 /*
1583  * Free a list of 0-order pages
1584  */
1585 void free_hot_cold_page_list(struct list_head *list, bool cold)
1586 {
1587 	struct page *page, *next;
1588 
1589 	list_for_each_entry_safe(page, next, list, lru) {
1590 		trace_mm_page_free_batched(page, cold);
1591 		free_hot_cold_page(page, cold);
1592 	}
1593 }
1594 
1595 /*
1596  * split_page takes a non-compound higher-order page, and splits it into
1597  * n (1<<order) sub-pages: page[0..n]
1598  * Each sub-page must be freed individually.
1599  *
1600  * Note: this is probably too low level an operation for use in drivers.
1601  * Please consult with lkml before using this in your driver.
1602  */
1603 void split_page(struct page *page, unsigned int order)
1604 {
1605 	int i;
1606 
1607 	VM_BUG_ON_PAGE(PageCompound(page), page);
1608 	VM_BUG_ON_PAGE(!page_count(page), page);
1609 
1610 #ifdef CONFIG_KMEMCHECK
1611 	/*
1612 	 * Split shadow pages too, because free(page[0]) would
1613 	 * otherwise free the whole shadow.
1614 	 */
1615 	if (kmemcheck_page_is_tracked(page))
1616 		split_page(virt_to_page(page[0].shadow), order);
1617 #endif
1618 
1619 	set_page_owner(page, 0, 0);
1620 	for (i = 1; i < (1 << order); i++) {
1621 		set_page_refcounted(page + i);
1622 		set_page_owner(page + i, 0, 0);
1623 	}
1624 }
1625 EXPORT_SYMBOL_GPL(split_page);
1626 
1627 int __isolate_free_page(struct page *page, unsigned int order)
1628 {
1629 	unsigned long watermark;
1630 	struct zone *zone;
1631 	int mt;
1632 
1633 	BUG_ON(!PageBuddy(page));
1634 
1635 	zone = page_zone(page);
1636 	mt = get_pageblock_migratetype(page);
1637 
1638 	if (!is_migrate_isolate(mt)) {
1639 		/* Obey watermarks as if the page was being allocated */
1640 		watermark = low_wmark_pages(zone) + (1 << order);
1641 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1642 			return 0;
1643 
1644 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1645 	}
1646 
1647 	/* Remove page from free list */
1648 	list_del(&page->lru);
1649 	zone->free_area[order].nr_free--;
1650 	rmv_page_order(page);
1651 
1652 	/* Set the pageblock if the isolated page is at least a pageblock */
1653 	if (order >= pageblock_order - 1) {
1654 		struct page *endpage = page + (1 << order) - 1;
1655 		for (; page < endpage; page += pageblock_nr_pages) {
1656 			int mt = get_pageblock_migratetype(page);
1657 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1658 				set_pageblock_migratetype(page,
1659 							  MIGRATE_MOVABLE);
1660 		}
1661 	}
1662 
1663 	set_page_owner(page, order, 0);
1664 	return 1UL << order;
1665 }
1666 
1667 /*
1668  * Similar to split_page except the page is already free. As this is only
1669  * being used for migration, the migratetype of the block also changes.
1670  * As this is called with interrupts disabled, the caller is responsible
1671  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1672  * are enabled.
1673  *
1674  * Note: this is probably too low level an operation for use in drivers.
1675  * Please consult with lkml before using this in your driver.
1676  */
1677 int split_free_page(struct page *page)
1678 {
1679 	unsigned int order;
1680 	int nr_pages;
1681 
1682 	order = page_order(page);
1683 
1684 	nr_pages = __isolate_free_page(page, order);
1685 	if (!nr_pages)
1686 		return 0;
1687 
1688 	/* Split into individual pages */
1689 	set_page_refcounted(page);
1690 	split_page(page, order);
1691 	return nr_pages;
1692 }
1693 
1694 /*
1695  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1696  */
1697 static inline
1698 struct page *buffered_rmqueue(struct zone *preferred_zone,
1699 			struct zone *zone, unsigned int order,
1700 			gfp_t gfp_flags, int migratetype)
1701 {
1702 	unsigned long flags;
1703 	struct page *page;
1704 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1705 
1706 	if (likely(order == 0)) {
1707 		struct per_cpu_pages *pcp;
1708 		struct list_head *list;
1709 
1710 		local_irq_save(flags);
1711 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1712 		list = &pcp->lists[migratetype];
1713 		if (list_empty(list)) {
1714 			pcp->count += rmqueue_bulk(zone, 0,
1715 					pcp->batch, list,
1716 					migratetype, cold);
1717 			if (unlikely(list_empty(list)))
1718 				goto failed;
1719 		}
1720 
1721 		if (cold)
1722 			page = list_entry(list->prev, struct page, lru);
1723 		else
1724 			page = list_entry(list->next, struct page, lru);
1725 
1726 		list_del(&page->lru);
1727 		pcp->count--;
1728 	} else {
1729 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1730 			/*
1731 			 * __GFP_NOFAIL is not to be used in new code.
1732 			 *
1733 			 * All __GFP_NOFAIL callers should be fixed so that they
1734 			 * properly detect and handle allocation failures.
1735 			 *
1736 			 * We most definitely don't want callers attempting to
1737 			 * allocate greater than order-1 page units with
1738 			 * __GFP_NOFAIL.
1739 			 */
1740 			WARN_ON_ONCE(order > 1);
1741 		}
1742 		spin_lock_irqsave(&zone->lock, flags);
1743 		page = __rmqueue(zone, order, migratetype);
1744 		spin_unlock(&zone->lock);
1745 		if (!page)
1746 			goto failed;
1747 		__mod_zone_freepage_state(zone, -(1 << order),
1748 					  get_freepage_migratetype(page));
1749 	}
1750 
1751 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1752 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1753 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1754 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1755 
1756 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1757 	zone_statistics(preferred_zone, zone, gfp_flags);
1758 	local_irq_restore(flags);
1759 
1760 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1761 	return page;
1762 
1763 failed:
1764 	local_irq_restore(flags);
1765 	return NULL;
1766 }
1767 
1768 #ifdef CONFIG_FAIL_PAGE_ALLOC
1769 
1770 static struct {
1771 	struct fault_attr attr;
1772 
1773 	u32 ignore_gfp_highmem;
1774 	u32 ignore_gfp_wait;
1775 	u32 min_order;
1776 } fail_page_alloc = {
1777 	.attr = FAULT_ATTR_INITIALIZER,
1778 	.ignore_gfp_wait = 1,
1779 	.ignore_gfp_highmem = 1,
1780 	.min_order = 1,
1781 };
1782 
1783 static int __init setup_fail_page_alloc(char *str)
1784 {
1785 	return setup_fault_attr(&fail_page_alloc.attr, str);
1786 }
1787 __setup("fail_page_alloc=", setup_fail_page_alloc);
1788 
1789 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1790 {
1791 	if (order < fail_page_alloc.min_order)
1792 		return false;
1793 	if (gfp_mask & __GFP_NOFAIL)
1794 		return false;
1795 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1796 		return false;
1797 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1798 		return false;
1799 
1800 	return should_fail(&fail_page_alloc.attr, 1 << order);
1801 }
1802 
1803 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1804 
1805 static int __init fail_page_alloc_debugfs(void)
1806 {
1807 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1808 	struct dentry *dir;
1809 
1810 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1811 					&fail_page_alloc.attr);
1812 	if (IS_ERR(dir))
1813 		return PTR_ERR(dir);
1814 
1815 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1816 				&fail_page_alloc.ignore_gfp_wait))
1817 		goto fail;
1818 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1819 				&fail_page_alloc.ignore_gfp_highmem))
1820 		goto fail;
1821 	if (!debugfs_create_u32("min-order", mode, dir,
1822 				&fail_page_alloc.min_order))
1823 		goto fail;
1824 
1825 	return 0;
1826 fail:
1827 	debugfs_remove_recursive(dir);
1828 
1829 	return -ENOMEM;
1830 }
1831 
1832 late_initcall(fail_page_alloc_debugfs);
1833 
1834 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1835 
1836 #else /* CONFIG_FAIL_PAGE_ALLOC */
1837 
1838 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1839 {
1840 	return false;
1841 }
1842 
1843 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1844 
1845 /*
1846  * Return true if free pages are above 'mark'. This takes into account the order
1847  * of the allocation.
1848  */
1849 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1850 			unsigned long mark, int classzone_idx, int alloc_flags,
1851 			long free_pages)
1852 {
1853 	/* free_pages may go negative - that's OK */
1854 	long min = mark;
1855 	int o;
1856 	long free_cma = 0;
1857 
1858 	free_pages -= (1 << order) - 1;
1859 	if (alloc_flags & ALLOC_HIGH)
1860 		min -= min / 2;
1861 	if (alloc_flags & ALLOC_HARDER)
1862 		min -= min / 4;
1863 #ifdef CONFIG_CMA
1864 	/* If allocation can't use CMA areas don't use free CMA pages */
1865 	if (!(alloc_flags & ALLOC_CMA))
1866 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1867 #endif
1868 
1869 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1870 		return false;
1871 	for (o = 0; o < order; o++) {
1872 		/* At the next order, this order's pages become unavailable */
1873 		free_pages -= z->free_area[o].nr_free << o;
1874 
1875 		/* Require fewer higher order pages to be free */
1876 		min >>= 1;
1877 
1878 		if (free_pages <= min)
1879 			return false;
1880 	}
1881 	return true;
1882 }
1883 
1884 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1885 		      int classzone_idx, int alloc_flags)
1886 {
1887 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1888 					zone_page_state(z, NR_FREE_PAGES));
1889 }
1890 
1891 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1892 			unsigned long mark, int classzone_idx, int alloc_flags)
1893 {
1894 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1895 
1896 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1897 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1898 
1899 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1900 								free_pages);
1901 }
1902 
1903 #ifdef CONFIG_NUMA
1904 /*
1905  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1906  * skip over zones that are not allowed by the cpuset, or that have
1907  * been recently (in last second) found to be nearly full.  See further
1908  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1909  * that have to skip over a lot of full or unallowed zones.
1910  *
1911  * If the zonelist cache is present in the passed zonelist, then
1912  * returns a pointer to the allowed node mask (either the current
1913  * tasks mems_allowed, or node_states[N_MEMORY].)
1914  *
1915  * If the zonelist cache is not available for this zonelist, does
1916  * nothing and returns NULL.
1917  *
1918  * If the fullzones BITMAP in the zonelist cache is stale (more than
1919  * a second since last zap'd) then we zap it out (clear its bits.)
1920  *
1921  * We hold off even calling zlc_setup, until after we've checked the
1922  * first zone in the zonelist, on the theory that most allocations will
1923  * be satisfied from that first zone, so best to examine that zone as
1924  * quickly as we can.
1925  */
1926 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1927 {
1928 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1929 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1930 
1931 	zlc = zonelist->zlcache_ptr;
1932 	if (!zlc)
1933 		return NULL;
1934 
1935 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1936 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1937 		zlc->last_full_zap = jiffies;
1938 	}
1939 
1940 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1941 					&cpuset_current_mems_allowed :
1942 					&node_states[N_MEMORY];
1943 	return allowednodes;
1944 }
1945 
1946 /*
1947  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1948  * if it is worth looking at further for free memory:
1949  *  1) Check that the zone isn't thought to be full (doesn't have its
1950  *     bit set in the zonelist_cache fullzones BITMAP).
1951  *  2) Check that the zones node (obtained from the zonelist_cache
1952  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1953  * Return true (non-zero) if zone is worth looking at further, or
1954  * else return false (zero) if it is not.
1955  *
1956  * This check -ignores- the distinction between various watermarks,
1957  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1958  * found to be full for any variation of these watermarks, it will
1959  * be considered full for up to one second by all requests, unless
1960  * we are so low on memory on all allowed nodes that we are forced
1961  * into the second scan of the zonelist.
1962  *
1963  * In the second scan we ignore this zonelist cache and exactly
1964  * apply the watermarks to all zones, even it is slower to do so.
1965  * We are low on memory in the second scan, and should leave no stone
1966  * unturned looking for a free page.
1967  */
1968 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1969 						nodemask_t *allowednodes)
1970 {
1971 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1972 	int i;				/* index of *z in zonelist zones */
1973 	int n;				/* node that zone *z is on */
1974 
1975 	zlc = zonelist->zlcache_ptr;
1976 	if (!zlc)
1977 		return 1;
1978 
1979 	i = z - zonelist->_zonerefs;
1980 	n = zlc->z_to_n[i];
1981 
1982 	/* This zone is worth trying if it is allowed but not full */
1983 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1984 }
1985 
1986 /*
1987  * Given 'z' scanning a zonelist, set the corresponding bit in
1988  * zlc->fullzones, so that subsequent attempts to allocate a page
1989  * from that zone don't waste time re-examining it.
1990  */
1991 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1992 {
1993 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1994 	int i;				/* index of *z in zonelist zones */
1995 
1996 	zlc = zonelist->zlcache_ptr;
1997 	if (!zlc)
1998 		return;
1999 
2000 	i = z - zonelist->_zonerefs;
2001 
2002 	set_bit(i, zlc->fullzones);
2003 }
2004 
2005 /*
2006  * clear all zones full, called after direct reclaim makes progress so that
2007  * a zone that was recently full is not skipped over for up to a second
2008  */
2009 static void zlc_clear_zones_full(struct zonelist *zonelist)
2010 {
2011 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2012 
2013 	zlc = zonelist->zlcache_ptr;
2014 	if (!zlc)
2015 		return;
2016 
2017 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2018 }
2019 
2020 static bool zone_local(struct zone *local_zone, struct zone *zone)
2021 {
2022 	return local_zone->node == zone->node;
2023 }
2024 
2025 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2026 {
2027 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2028 				RECLAIM_DISTANCE;
2029 }
2030 
2031 #else	/* CONFIG_NUMA */
2032 
2033 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2034 {
2035 	return NULL;
2036 }
2037 
2038 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2039 				nodemask_t *allowednodes)
2040 {
2041 	return 1;
2042 }
2043 
2044 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2045 {
2046 }
2047 
2048 static void zlc_clear_zones_full(struct zonelist *zonelist)
2049 {
2050 }
2051 
2052 static bool zone_local(struct zone *local_zone, struct zone *zone)
2053 {
2054 	return true;
2055 }
2056 
2057 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2058 {
2059 	return true;
2060 }
2061 
2062 #endif	/* CONFIG_NUMA */
2063 
2064 static void reset_alloc_batches(struct zone *preferred_zone)
2065 {
2066 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2067 
2068 	do {
2069 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2070 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2071 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2072 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2073 	} while (zone++ != preferred_zone);
2074 }
2075 
2076 /*
2077  * get_page_from_freelist goes through the zonelist trying to allocate
2078  * a page.
2079  */
2080 static struct page *
2081 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2082 						const struct alloc_context *ac)
2083 {
2084 	struct zonelist *zonelist = ac->zonelist;
2085 	struct zoneref *z;
2086 	struct page *page = NULL;
2087 	struct zone *zone;
2088 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2089 	int zlc_active = 0;		/* set if using zonelist_cache */
2090 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2091 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2092 				(gfp_mask & __GFP_WRITE);
2093 	int nr_fair_skipped = 0;
2094 	bool zonelist_rescan;
2095 
2096 zonelist_scan:
2097 	zonelist_rescan = false;
2098 
2099 	/*
2100 	 * Scan zonelist, looking for a zone with enough free.
2101 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2102 	 */
2103 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2104 								ac->nodemask) {
2105 		unsigned long mark;
2106 
2107 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2108 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2109 				continue;
2110 		if (cpusets_enabled() &&
2111 			(alloc_flags & ALLOC_CPUSET) &&
2112 			!cpuset_zone_allowed(zone, gfp_mask))
2113 				continue;
2114 		/*
2115 		 * Distribute pages in proportion to the individual
2116 		 * zone size to ensure fair page aging.  The zone a
2117 		 * page was allocated in should have no effect on the
2118 		 * time the page has in memory before being reclaimed.
2119 		 */
2120 		if (alloc_flags & ALLOC_FAIR) {
2121 			if (!zone_local(ac->preferred_zone, zone))
2122 				break;
2123 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2124 				nr_fair_skipped++;
2125 				continue;
2126 			}
2127 		}
2128 		/*
2129 		 * When allocating a page cache page for writing, we
2130 		 * want to get it from a zone that is within its dirty
2131 		 * limit, such that no single zone holds more than its
2132 		 * proportional share of globally allowed dirty pages.
2133 		 * The dirty limits take into account the zone's
2134 		 * lowmem reserves and high watermark so that kswapd
2135 		 * should be able to balance it without having to
2136 		 * write pages from its LRU list.
2137 		 *
2138 		 * This may look like it could increase pressure on
2139 		 * lower zones by failing allocations in higher zones
2140 		 * before they are full.  But the pages that do spill
2141 		 * over are limited as the lower zones are protected
2142 		 * by this very same mechanism.  It should not become
2143 		 * a practical burden to them.
2144 		 *
2145 		 * XXX: For now, allow allocations to potentially
2146 		 * exceed the per-zone dirty limit in the slowpath
2147 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2148 		 * which is important when on a NUMA setup the allowed
2149 		 * zones are together not big enough to reach the
2150 		 * global limit.  The proper fix for these situations
2151 		 * will require awareness of zones in the
2152 		 * dirty-throttling and the flusher threads.
2153 		 */
2154 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2155 			continue;
2156 
2157 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2158 		if (!zone_watermark_ok(zone, order, mark,
2159 				       ac->classzone_idx, alloc_flags)) {
2160 			int ret;
2161 
2162 			/* Checked here to keep the fast path fast */
2163 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2164 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2165 				goto try_this_zone;
2166 
2167 			if (IS_ENABLED(CONFIG_NUMA) &&
2168 					!did_zlc_setup && nr_online_nodes > 1) {
2169 				/*
2170 				 * we do zlc_setup if there are multiple nodes
2171 				 * and before considering the first zone allowed
2172 				 * by the cpuset.
2173 				 */
2174 				allowednodes = zlc_setup(zonelist, alloc_flags);
2175 				zlc_active = 1;
2176 				did_zlc_setup = 1;
2177 			}
2178 
2179 			if (zone_reclaim_mode == 0 ||
2180 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2181 				goto this_zone_full;
2182 
2183 			/*
2184 			 * As we may have just activated ZLC, check if the first
2185 			 * eligible zone has failed zone_reclaim recently.
2186 			 */
2187 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2188 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2189 				continue;
2190 
2191 			ret = zone_reclaim(zone, gfp_mask, order);
2192 			switch (ret) {
2193 			case ZONE_RECLAIM_NOSCAN:
2194 				/* did not scan */
2195 				continue;
2196 			case ZONE_RECLAIM_FULL:
2197 				/* scanned but unreclaimable */
2198 				continue;
2199 			default:
2200 				/* did we reclaim enough */
2201 				if (zone_watermark_ok(zone, order, mark,
2202 						ac->classzone_idx, alloc_flags))
2203 					goto try_this_zone;
2204 
2205 				/*
2206 				 * Failed to reclaim enough to meet watermark.
2207 				 * Only mark the zone full if checking the min
2208 				 * watermark or if we failed to reclaim just
2209 				 * 1<<order pages or else the page allocator
2210 				 * fastpath will prematurely mark zones full
2211 				 * when the watermark is between the low and
2212 				 * min watermarks.
2213 				 */
2214 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2215 				    ret == ZONE_RECLAIM_SOME)
2216 					goto this_zone_full;
2217 
2218 				continue;
2219 			}
2220 		}
2221 
2222 try_this_zone:
2223 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2224 						gfp_mask, ac->migratetype);
2225 		if (page) {
2226 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2227 				goto try_this_zone;
2228 			return page;
2229 		}
2230 this_zone_full:
2231 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2232 			zlc_mark_zone_full(zonelist, z);
2233 	}
2234 
2235 	/*
2236 	 * The first pass makes sure allocations are spread fairly within the
2237 	 * local node.  However, the local node might have free pages left
2238 	 * after the fairness batches are exhausted, and remote zones haven't
2239 	 * even been considered yet.  Try once more without fairness, and
2240 	 * include remote zones now, before entering the slowpath and waking
2241 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2242 	 */
2243 	if (alloc_flags & ALLOC_FAIR) {
2244 		alloc_flags &= ~ALLOC_FAIR;
2245 		if (nr_fair_skipped) {
2246 			zonelist_rescan = true;
2247 			reset_alloc_batches(ac->preferred_zone);
2248 		}
2249 		if (nr_online_nodes > 1)
2250 			zonelist_rescan = true;
2251 	}
2252 
2253 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2254 		/* Disable zlc cache for second zonelist scan */
2255 		zlc_active = 0;
2256 		zonelist_rescan = true;
2257 	}
2258 
2259 	if (zonelist_rescan)
2260 		goto zonelist_scan;
2261 
2262 	return NULL;
2263 }
2264 
2265 /*
2266  * Large machines with many possible nodes should not always dump per-node
2267  * meminfo in irq context.
2268  */
2269 static inline bool should_suppress_show_mem(void)
2270 {
2271 	bool ret = false;
2272 
2273 #if NODES_SHIFT > 8
2274 	ret = in_interrupt();
2275 #endif
2276 	return ret;
2277 }
2278 
2279 static DEFINE_RATELIMIT_STATE(nopage_rs,
2280 		DEFAULT_RATELIMIT_INTERVAL,
2281 		DEFAULT_RATELIMIT_BURST);
2282 
2283 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2284 {
2285 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2286 
2287 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2288 	    debug_guardpage_minorder() > 0)
2289 		return;
2290 
2291 	/*
2292 	 * This documents exceptions given to allocations in certain
2293 	 * contexts that are allowed to allocate outside current's set
2294 	 * of allowed nodes.
2295 	 */
2296 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2297 		if (test_thread_flag(TIF_MEMDIE) ||
2298 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2299 			filter &= ~SHOW_MEM_FILTER_NODES;
2300 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2301 		filter &= ~SHOW_MEM_FILTER_NODES;
2302 
2303 	if (fmt) {
2304 		struct va_format vaf;
2305 		va_list args;
2306 
2307 		va_start(args, fmt);
2308 
2309 		vaf.fmt = fmt;
2310 		vaf.va = &args;
2311 
2312 		pr_warn("%pV", &vaf);
2313 
2314 		va_end(args);
2315 	}
2316 
2317 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2318 		current->comm, order, gfp_mask);
2319 
2320 	dump_stack();
2321 	if (!should_suppress_show_mem())
2322 		show_mem(filter);
2323 }
2324 
2325 static inline int
2326 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2327 				unsigned long did_some_progress,
2328 				unsigned long pages_reclaimed)
2329 {
2330 	/* Do not loop if specifically requested */
2331 	if (gfp_mask & __GFP_NORETRY)
2332 		return 0;
2333 
2334 	/* Always retry if specifically requested */
2335 	if (gfp_mask & __GFP_NOFAIL)
2336 		return 1;
2337 
2338 	/*
2339 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2340 	 * making forward progress without invoking OOM. Suspend also disables
2341 	 * storage devices so kswapd will not help. Bail if we are suspending.
2342 	 */
2343 	if (!did_some_progress && pm_suspended_storage())
2344 		return 0;
2345 
2346 	/*
2347 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2348 	 * means __GFP_NOFAIL, but that may not be true in other
2349 	 * implementations.
2350 	 */
2351 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2352 		return 1;
2353 
2354 	/*
2355 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2356 	 * specified, then we retry until we no longer reclaim any pages
2357 	 * (above), or we've reclaimed an order of pages at least as
2358 	 * large as the allocation's order. In both cases, if the
2359 	 * allocation still fails, we stop retrying.
2360 	 */
2361 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2362 		return 1;
2363 
2364 	return 0;
2365 }
2366 
2367 static inline struct page *
2368 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2369 	const struct alloc_context *ac, unsigned long *did_some_progress)
2370 {
2371 	struct page *page;
2372 
2373 	*did_some_progress = 0;
2374 
2375 	/*
2376 	 * Acquire the per-zone oom lock for each zone.  If that
2377 	 * fails, somebody else is making progress for us.
2378 	 */
2379 	if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2380 		*did_some_progress = 1;
2381 		schedule_timeout_uninterruptible(1);
2382 		return NULL;
2383 	}
2384 
2385 	/*
2386 	 * Go through the zonelist yet one more time, keep very high watermark
2387 	 * here, this is only to catch a parallel oom killing, we must fail if
2388 	 * we're still under heavy pressure.
2389 	 */
2390 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2391 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2392 	if (page)
2393 		goto out;
2394 
2395 	if (!(gfp_mask & __GFP_NOFAIL)) {
2396 		/* Coredumps can quickly deplete all memory reserves */
2397 		if (current->flags & PF_DUMPCORE)
2398 			goto out;
2399 		/* The OOM killer will not help higher order allocs */
2400 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2401 			goto out;
2402 		/* The OOM killer does not needlessly kill tasks for lowmem */
2403 		if (ac->high_zoneidx < ZONE_NORMAL)
2404 			goto out;
2405 		/* The OOM killer does not compensate for light reclaim */
2406 		if (!(gfp_mask & __GFP_FS)) {
2407 			/*
2408 			 * XXX: Page reclaim didn't yield anything,
2409 			 * and the OOM killer can't be invoked, but
2410 			 * keep looping as per should_alloc_retry().
2411 			 */
2412 			*did_some_progress = 1;
2413 			goto out;
2414 		}
2415 		/* The OOM killer may not free memory on a specific node */
2416 		if (gfp_mask & __GFP_THISNODE)
2417 			goto out;
2418 	}
2419 	/* Exhausted what can be done so it's blamo time */
2420 	if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2421 			|| WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2422 		*did_some_progress = 1;
2423 out:
2424 	oom_zonelist_unlock(ac->zonelist, gfp_mask);
2425 	return page;
2426 }
2427 
2428 #ifdef CONFIG_COMPACTION
2429 /* Try memory compaction for high-order allocations before reclaim */
2430 static struct page *
2431 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2432 		int alloc_flags, const struct alloc_context *ac,
2433 		enum migrate_mode mode, int *contended_compaction,
2434 		bool *deferred_compaction)
2435 {
2436 	unsigned long compact_result;
2437 	struct page *page;
2438 
2439 	if (!order)
2440 		return NULL;
2441 
2442 	current->flags |= PF_MEMALLOC;
2443 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2444 						mode, contended_compaction);
2445 	current->flags &= ~PF_MEMALLOC;
2446 
2447 	switch (compact_result) {
2448 	case COMPACT_DEFERRED:
2449 		*deferred_compaction = true;
2450 		/* fall-through */
2451 	case COMPACT_SKIPPED:
2452 		return NULL;
2453 	default:
2454 		break;
2455 	}
2456 
2457 	/*
2458 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2459 	 * count a compaction stall
2460 	 */
2461 	count_vm_event(COMPACTSTALL);
2462 
2463 	page = get_page_from_freelist(gfp_mask, order,
2464 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2465 
2466 	if (page) {
2467 		struct zone *zone = page_zone(page);
2468 
2469 		zone->compact_blockskip_flush = false;
2470 		compaction_defer_reset(zone, order, true);
2471 		count_vm_event(COMPACTSUCCESS);
2472 		return page;
2473 	}
2474 
2475 	/*
2476 	 * It's bad if compaction run occurs and fails. The most likely reason
2477 	 * is that pages exist, but not enough to satisfy watermarks.
2478 	 */
2479 	count_vm_event(COMPACTFAIL);
2480 
2481 	cond_resched();
2482 
2483 	return NULL;
2484 }
2485 #else
2486 static inline struct page *
2487 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2488 		int alloc_flags, const struct alloc_context *ac,
2489 		enum migrate_mode mode, int *contended_compaction,
2490 		bool *deferred_compaction)
2491 {
2492 	return NULL;
2493 }
2494 #endif /* CONFIG_COMPACTION */
2495 
2496 /* Perform direct synchronous page reclaim */
2497 static int
2498 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2499 					const struct alloc_context *ac)
2500 {
2501 	struct reclaim_state reclaim_state;
2502 	int progress;
2503 
2504 	cond_resched();
2505 
2506 	/* We now go into synchronous reclaim */
2507 	cpuset_memory_pressure_bump();
2508 	current->flags |= PF_MEMALLOC;
2509 	lockdep_set_current_reclaim_state(gfp_mask);
2510 	reclaim_state.reclaimed_slab = 0;
2511 	current->reclaim_state = &reclaim_state;
2512 
2513 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2514 								ac->nodemask);
2515 
2516 	current->reclaim_state = NULL;
2517 	lockdep_clear_current_reclaim_state();
2518 	current->flags &= ~PF_MEMALLOC;
2519 
2520 	cond_resched();
2521 
2522 	return progress;
2523 }
2524 
2525 /* The really slow allocator path where we enter direct reclaim */
2526 static inline struct page *
2527 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2528 		int alloc_flags, const struct alloc_context *ac,
2529 		unsigned long *did_some_progress)
2530 {
2531 	struct page *page = NULL;
2532 	bool drained = false;
2533 
2534 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2535 	if (unlikely(!(*did_some_progress)))
2536 		return NULL;
2537 
2538 	/* After successful reclaim, reconsider all zones for allocation */
2539 	if (IS_ENABLED(CONFIG_NUMA))
2540 		zlc_clear_zones_full(ac->zonelist);
2541 
2542 retry:
2543 	page = get_page_from_freelist(gfp_mask, order,
2544 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2545 
2546 	/*
2547 	 * If an allocation failed after direct reclaim, it could be because
2548 	 * pages are pinned on the per-cpu lists. Drain them and try again
2549 	 */
2550 	if (!page && !drained) {
2551 		drain_all_pages(NULL);
2552 		drained = true;
2553 		goto retry;
2554 	}
2555 
2556 	return page;
2557 }
2558 
2559 /*
2560  * This is called in the allocator slow-path if the allocation request is of
2561  * sufficient urgency to ignore watermarks and take other desperate measures
2562  */
2563 static inline struct page *
2564 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2565 				const struct alloc_context *ac)
2566 {
2567 	struct page *page;
2568 
2569 	do {
2570 		page = get_page_from_freelist(gfp_mask, order,
2571 						ALLOC_NO_WATERMARKS, ac);
2572 
2573 		if (!page && gfp_mask & __GFP_NOFAIL)
2574 			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2575 									HZ/50);
2576 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2577 
2578 	return page;
2579 }
2580 
2581 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2582 {
2583 	struct zoneref *z;
2584 	struct zone *zone;
2585 
2586 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2587 						ac->high_zoneidx, ac->nodemask)
2588 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2589 }
2590 
2591 static inline int
2592 gfp_to_alloc_flags(gfp_t gfp_mask)
2593 {
2594 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2595 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2596 
2597 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2598 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2599 
2600 	/*
2601 	 * The caller may dip into page reserves a bit more if the caller
2602 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2603 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2604 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2605 	 */
2606 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2607 
2608 	if (atomic) {
2609 		/*
2610 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2611 		 * if it can't schedule.
2612 		 */
2613 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2614 			alloc_flags |= ALLOC_HARDER;
2615 		/*
2616 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2617 		 * comment for __cpuset_node_allowed().
2618 		 */
2619 		alloc_flags &= ~ALLOC_CPUSET;
2620 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2621 		alloc_flags |= ALLOC_HARDER;
2622 
2623 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2624 		if (gfp_mask & __GFP_MEMALLOC)
2625 			alloc_flags |= ALLOC_NO_WATERMARKS;
2626 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2627 			alloc_flags |= ALLOC_NO_WATERMARKS;
2628 		else if (!in_interrupt() &&
2629 				((current->flags & PF_MEMALLOC) ||
2630 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2631 			alloc_flags |= ALLOC_NO_WATERMARKS;
2632 	}
2633 #ifdef CONFIG_CMA
2634 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2635 		alloc_flags |= ALLOC_CMA;
2636 #endif
2637 	return alloc_flags;
2638 }
2639 
2640 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2641 {
2642 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2643 }
2644 
2645 static inline struct page *
2646 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2647 						struct alloc_context *ac)
2648 {
2649 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2650 	struct page *page = NULL;
2651 	int alloc_flags;
2652 	unsigned long pages_reclaimed = 0;
2653 	unsigned long did_some_progress;
2654 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2655 	bool deferred_compaction = false;
2656 	int contended_compaction = COMPACT_CONTENDED_NONE;
2657 
2658 	/*
2659 	 * In the slowpath, we sanity check order to avoid ever trying to
2660 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2661 	 * be using allocators in order of preference for an area that is
2662 	 * too large.
2663 	 */
2664 	if (order >= MAX_ORDER) {
2665 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2666 		return NULL;
2667 	}
2668 
2669 	/*
2670 	 * If this allocation cannot block and it is for a specific node, then
2671 	 * fail early.  There's no need to wakeup kswapd or retry for a
2672 	 * speculative node-specific allocation.
2673 	 */
2674 	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2675 		goto nopage;
2676 
2677 retry:
2678 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2679 		wake_all_kswapds(order, ac);
2680 
2681 	/*
2682 	 * OK, we're below the kswapd watermark and have kicked background
2683 	 * reclaim. Now things get more complex, so set up alloc_flags according
2684 	 * to how we want to proceed.
2685 	 */
2686 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2687 
2688 	/*
2689 	 * Find the true preferred zone if the allocation is unconstrained by
2690 	 * cpusets.
2691 	 */
2692 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2693 		struct zoneref *preferred_zoneref;
2694 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
2695 				ac->high_zoneidx, NULL, &ac->preferred_zone);
2696 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2697 	}
2698 
2699 	/* This is the last chance, in general, before the goto nopage. */
2700 	page = get_page_from_freelist(gfp_mask, order,
2701 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2702 	if (page)
2703 		goto got_pg;
2704 
2705 	/* Allocate without watermarks if the context allows */
2706 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2707 		/*
2708 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2709 		 * the allocation is high priority and these type of
2710 		 * allocations are system rather than user orientated
2711 		 */
2712 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2713 
2714 		page = __alloc_pages_high_priority(gfp_mask, order, ac);
2715 
2716 		if (page) {
2717 			goto got_pg;
2718 		}
2719 	}
2720 
2721 	/* Atomic allocations - we can't balance anything */
2722 	if (!wait) {
2723 		/*
2724 		 * All existing users of the deprecated __GFP_NOFAIL are
2725 		 * blockable, so warn of any new users that actually allow this
2726 		 * type of allocation to fail.
2727 		 */
2728 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2729 		goto nopage;
2730 	}
2731 
2732 	/* Avoid recursion of direct reclaim */
2733 	if (current->flags & PF_MEMALLOC)
2734 		goto nopage;
2735 
2736 	/* Avoid allocations with no watermarks from looping endlessly */
2737 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2738 		goto nopage;
2739 
2740 	/*
2741 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2742 	 * attempts after direct reclaim are synchronous
2743 	 */
2744 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2745 					migration_mode,
2746 					&contended_compaction,
2747 					&deferred_compaction);
2748 	if (page)
2749 		goto got_pg;
2750 
2751 	/* Checks for THP-specific high-order allocations */
2752 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2753 		/*
2754 		 * If compaction is deferred for high-order allocations, it is
2755 		 * because sync compaction recently failed. If this is the case
2756 		 * and the caller requested a THP allocation, we do not want
2757 		 * to heavily disrupt the system, so we fail the allocation
2758 		 * instead of entering direct reclaim.
2759 		 */
2760 		if (deferred_compaction)
2761 			goto nopage;
2762 
2763 		/*
2764 		 * In all zones where compaction was attempted (and not
2765 		 * deferred or skipped), lock contention has been detected.
2766 		 * For THP allocation we do not want to disrupt the others
2767 		 * so we fallback to base pages instead.
2768 		 */
2769 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2770 			goto nopage;
2771 
2772 		/*
2773 		 * If compaction was aborted due to need_resched(), we do not
2774 		 * want to further increase allocation latency, unless it is
2775 		 * khugepaged trying to collapse.
2776 		 */
2777 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2778 			&& !(current->flags & PF_KTHREAD))
2779 			goto nopage;
2780 	}
2781 
2782 	/*
2783 	 * It can become very expensive to allocate transparent hugepages at
2784 	 * fault, so use asynchronous memory compaction for THP unless it is
2785 	 * khugepaged trying to collapse.
2786 	 */
2787 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2788 						(current->flags & PF_KTHREAD))
2789 		migration_mode = MIGRATE_SYNC_LIGHT;
2790 
2791 	/* Try direct reclaim and then allocating */
2792 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2793 							&did_some_progress);
2794 	if (page)
2795 		goto got_pg;
2796 
2797 	/* Check if we should retry the allocation */
2798 	pages_reclaimed += did_some_progress;
2799 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2800 						pages_reclaimed)) {
2801 		/*
2802 		 * If we fail to make progress by freeing individual
2803 		 * pages, but the allocation wants us to keep going,
2804 		 * start OOM killing tasks.
2805 		 */
2806 		if (!did_some_progress) {
2807 			page = __alloc_pages_may_oom(gfp_mask, order, ac,
2808 							&did_some_progress);
2809 			if (page)
2810 				goto got_pg;
2811 			if (!did_some_progress)
2812 				goto nopage;
2813 		}
2814 		/* Wait for some write requests to complete then retry */
2815 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2816 		goto retry;
2817 	} else {
2818 		/*
2819 		 * High-order allocations do not necessarily loop after
2820 		 * direct reclaim and reclaim/compaction depends on compaction
2821 		 * being called after reclaim so call directly if necessary
2822 		 */
2823 		page = __alloc_pages_direct_compact(gfp_mask, order,
2824 					alloc_flags, ac, migration_mode,
2825 					&contended_compaction,
2826 					&deferred_compaction);
2827 		if (page)
2828 			goto got_pg;
2829 	}
2830 
2831 nopage:
2832 	warn_alloc_failed(gfp_mask, order, NULL);
2833 got_pg:
2834 	return page;
2835 }
2836 
2837 /*
2838  * This is the 'heart' of the zoned buddy allocator.
2839  */
2840 struct page *
2841 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2842 			struct zonelist *zonelist, nodemask_t *nodemask)
2843 {
2844 	struct zoneref *preferred_zoneref;
2845 	struct page *page = NULL;
2846 	unsigned int cpuset_mems_cookie;
2847 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2848 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2849 	struct alloc_context ac = {
2850 		.high_zoneidx = gfp_zone(gfp_mask),
2851 		.nodemask = nodemask,
2852 		.migratetype = gfpflags_to_migratetype(gfp_mask),
2853 	};
2854 
2855 	gfp_mask &= gfp_allowed_mask;
2856 
2857 	lockdep_trace_alloc(gfp_mask);
2858 
2859 	might_sleep_if(gfp_mask & __GFP_WAIT);
2860 
2861 	if (should_fail_alloc_page(gfp_mask, order))
2862 		return NULL;
2863 
2864 	/*
2865 	 * Check the zones suitable for the gfp_mask contain at least one
2866 	 * valid zone. It's possible to have an empty zonelist as a result
2867 	 * of __GFP_THISNODE and a memoryless node
2868 	 */
2869 	if (unlikely(!zonelist->_zonerefs->zone))
2870 		return NULL;
2871 
2872 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2873 		alloc_flags |= ALLOC_CMA;
2874 
2875 retry_cpuset:
2876 	cpuset_mems_cookie = read_mems_allowed_begin();
2877 
2878 	/* We set it here, as __alloc_pages_slowpath might have changed it */
2879 	ac.zonelist = zonelist;
2880 	/* The preferred zone is used for statistics later */
2881 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2882 				ac.nodemask ? : &cpuset_current_mems_allowed,
2883 				&ac.preferred_zone);
2884 	if (!ac.preferred_zone)
2885 		goto out;
2886 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2887 
2888 	/* First allocation attempt */
2889 	alloc_mask = gfp_mask|__GFP_HARDWALL;
2890 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2891 	if (unlikely(!page)) {
2892 		/*
2893 		 * Runtime PM, block IO and its error handling path
2894 		 * can deadlock because I/O on the device might not
2895 		 * complete.
2896 		 */
2897 		alloc_mask = memalloc_noio_flags(gfp_mask);
2898 
2899 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2900 	}
2901 
2902 	if (kmemcheck_enabled && page)
2903 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2904 
2905 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2906 
2907 out:
2908 	/*
2909 	 * When updating a task's mems_allowed, it is possible to race with
2910 	 * parallel threads in such a way that an allocation can fail while
2911 	 * the mask is being updated. If a page allocation is about to fail,
2912 	 * check if the cpuset changed during allocation and if so, retry.
2913 	 */
2914 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2915 		goto retry_cpuset;
2916 
2917 	return page;
2918 }
2919 EXPORT_SYMBOL(__alloc_pages_nodemask);
2920 
2921 /*
2922  * Common helper functions.
2923  */
2924 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2925 {
2926 	struct page *page;
2927 
2928 	/*
2929 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2930 	 * a highmem page
2931 	 */
2932 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2933 
2934 	page = alloc_pages(gfp_mask, order);
2935 	if (!page)
2936 		return 0;
2937 	return (unsigned long) page_address(page);
2938 }
2939 EXPORT_SYMBOL(__get_free_pages);
2940 
2941 unsigned long get_zeroed_page(gfp_t gfp_mask)
2942 {
2943 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2944 }
2945 EXPORT_SYMBOL(get_zeroed_page);
2946 
2947 void __free_pages(struct page *page, unsigned int order)
2948 {
2949 	if (put_page_testzero(page)) {
2950 		if (order == 0)
2951 			free_hot_cold_page(page, false);
2952 		else
2953 			__free_pages_ok(page, order);
2954 	}
2955 }
2956 
2957 EXPORT_SYMBOL(__free_pages);
2958 
2959 void free_pages(unsigned long addr, unsigned int order)
2960 {
2961 	if (addr != 0) {
2962 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2963 		__free_pages(virt_to_page((void *)addr), order);
2964 	}
2965 }
2966 
2967 EXPORT_SYMBOL(free_pages);
2968 
2969 /*
2970  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2971  * of the current memory cgroup.
2972  *
2973  * It should be used when the caller would like to use kmalloc, but since the
2974  * allocation is large, it has to fall back to the page allocator.
2975  */
2976 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2977 {
2978 	struct page *page;
2979 	struct mem_cgroup *memcg = NULL;
2980 
2981 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2982 		return NULL;
2983 	page = alloc_pages(gfp_mask, order);
2984 	memcg_kmem_commit_charge(page, memcg, order);
2985 	return page;
2986 }
2987 
2988 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2989 {
2990 	struct page *page;
2991 	struct mem_cgroup *memcg = NULL;
2992 
2993 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2994 		return NULL;
2995 	page = alloc_pages_node(nid, gfp_mask, order);
2996 	memcg_kmem_commit_charge(page, memcg, order);
2997 	return page;
2998 }
2999 
3000 /*
3001  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3002  * alloc_kmem_pages.
3003  */
3004 void __free_kmem_pages(struct page *page, unsigned int order)
3005 {
3006 	memcg_kmem_uncharge_pages(page, order);
3007 	__free_pages(page, order);
3008 }
3009 
3010 void free_kmem_pages(unsigned long addr, unsigned int order)
3011 {
3012 	if (addr != 0) {
3013 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3014 		__free_kmem_pages(virt_to_page((void *)addr), order);
3015 	}
3016 }
3017 
3018 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3019 {
3020 	if (addr) {
3021 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3022 		unsigned long used = addr + PAGE_ALIGN(size);
3023 
3024 		split_page(virt_to_page((void *)addr), order);
3025 		while (used < alloc_end) {
3026 			free_page(used);
3027 			used += PAGE_SIZE;
3028 		}
3029 	}
3030 	return (void *)addr;
3031 }
3032 
3033 /**
3034  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3035  * @size: the number of bytes to allocate
3036  * @gfp_mask: GFP flags for the allocation
3037  *
3038  * This function is similar to alloc_pages(), except that it allocates the
3039  * minimum number of pages to satisfy the request.  alloc_pages() can only
3040  * allocate memory in power-of-two pages.
3041  *
3042  * This function is also limited by MAX_ORDER.
3043  *
3044  * Memory allocated by this function must be released by free_pages_exact().
3045  */
3046 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3047 {
3048 	unsigned int order = get_order(size);
3049 	unsigned long addr;
3050 
3051 	addr = __get_free_pages(gfp_mask, order);
3052 	return make_alloc_exact(addr, order, size);
3053 }
3054 EXPORT_SYMBOL(alloc_pages_exact);
3055 
3056 /**
3057  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3058  *			   pages on a node.
3059  * @nid: the preferred node ID where memory should be allocated
3060  * @size: the number of bytes to allocate
3061  * @gfp_mask: GFP flags for the allocation
3062  *
3063  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3064  * back.
3065  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3066  * but is not exact.
3067  */
3068 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3069 {
3070 	unsigned order = get_order(size);
3071 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3072 	if (!p)
3073 		return NULL;
3074 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3075 }
3076 
3077 /**
3078  * free_pages_exact - release memory allocated via alloc_pages_exact()
3079  * @virt: the value returned by alloc_pages_exact.
3080  * @size: size of allocation, same value as passed to alloc_pages_exact().
3081  *
3082  * Release the memory allocated by a previous call to alloc_pages_exact.
3083  */
3084 void free_pages_exact(void *virt, size_t size)
3085 {
3086 	unsigned long addr = (unsigned long)virt;
3087 	unsigned long end = addr + PAGE_ALIGN(size);
3088 
3089 	while (addr < end) {
3090 		free_page(addr);
3091 		addr += PAGE_SIZE;
3092 	}
3093 }
3094 EXPORT_SYMBOL(free_pages_exact);
3095 
3096 /**
3097  * nr_free_zone_pages - count number of pages beyond high watermark
3098  * @offset: The zone index of the highest zone
3099  *
3100  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3101  * high watermark within all zones at or below a given zone index.  For each
3102  * zone, the number of pages is calculated as:
3103  *     managed_pages - high_pages
3104  */
3105 static unsigned long nr_free_zone_pages(int offset)
3106 {
3107 	struct zoneref *z;
3108 	struct zone *zone;
3109 
3110 	/* Just pick one node, since fallback list is circular */
3111 	unsigned long sum = 0;
3112 
3113 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3114 
3115 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3116 		unsigned long size = zone->managed_pages;
3117 		unsigned long high = high_wmark_pages(zone);
3118 		if (size > high)
3119 			sum += size - high;
3120 	}
3121 
3122 	return sum;
3123 }
3124 
3125 /**
3126  * nr_free_buffer_pages - count number of pages beyond high watermark
3127  *
3128  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3129  * watermark within ZONE_DMA and ZONE_NORMAL.
3130  */
3131 unsigned long nr_free_buffer_pages(void)
3132 {
3133 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3134 }
3135 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3136 
3137 /**
3138  * nr_free_pagecache_pages - count number of pages beyond high watermark
3139  *
3140  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3141  * high watermark within all zones.
3142  */
3143 unsigned long nr_free_pagecache_pages(void)
3144 {
3145 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3146 }
3147 
3148 static inline void show_node(struct zone *zone)
3149 {
3150 	if (IS_ENABLED(CONFIG_NUMA))
3151 		printk("Node %d ", zone_to_nid(zone));
3152 }
3153 
3154 void si_meminfo(struct sysinfo *val)
3155 {
3156 	val->totalram = totalram_pages;
3157 	val->sharedram = global_page_state(NR_SHMEM);
3158 	val->freeram = global_page_state(NR_FREE_PAGES);
3159 	val->bufferram = nr_blockdev_pages();
3160 	val->totalhigh = totalhigh_pages;
3161 	val->freehigh = nr_free_highpages();
3162 	val->mem_unit = PAGE_SIZE;
3163 }
3164 
3165 EXPORT_SYMBOL(si_meminfo);
3166 
3167 #ifdef CONFIG_NUMA
3168 void si_meminfo_node(struct sysinfo *val, int nid)
3169 {
3170 	int zone_type;		/* needs to be signed */
3171 	unsigned long managed_pages = 0;
3172 	pg_data_t *pgdat = NODE_DATA(nid);
3173 
3174 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3175 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3176 	val->totalram = managed_pages;
3177 	val->sharedram = node_page_state(nid, NR_SHMEM);
3178 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3179 #ifdef CONFIG_HIGHMEM
3180 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3181 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3182 			NR_FREE_PAGES);
3183 #else
3184 	val->totalhigh = 0;
3185 	val->freehigh = 0;
3186 #endif
3187 	val->mem_unit = PAGE_SIZE;
3188 }
3189 #endif
3190 
3191 /*
3192  * Determine whether the node should be displayed or not, depending on whether
3193  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3194  */
3195 bool skip_free_areas_node(unsigned int flags, int nid)
3196 {
3197 	bool ret = false;
3198 	unsigned int cpuset_mems_cookie;
3199 
3200 	if (!(flags & SHOW_MEM_FILTER_NODES))
3201 		goto out;
3202 
3203 	do {
3204 		cpuset_mems_cookie = read_mems_allowed_begin();
3205 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3206 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3207 out:
3208 	return ret;
3209 }
3210 
3211 #define K(x) ((x) << (PAGE_SHIFT-10))
3212 
3213 static void show_migration_types(unsigned char type)
3214 {
3215 	static const char types[MIGRATE_TYPES] = {
3216 		[MIGRATE_UNMOVABLE]	= 'U',
3217 		[MIGRATE_RECLAIMABLE]	= 'E',
3218 		[MIGRATE_MOVABLE]	= 'M',
3219 		[MIGRATE_RESERVE]	= 'R',
3220 #ifdef CONFIG_CMA
3221 		[MIGRATE_CMA]		= 'C',
3222 #endif
3223 #ifdef CONFIG_MEMORY_ISOLATION
3224 		[MIGRATE_ISOLATE]	= 'I',
3225 #endif
3226 	};
3227 	char tmp[MIGRATE_TYPES + 1];
3228 	char *p = tmp;
3229 	int i;
3230 
3231 	for (i = 0; i < MIGRATE_TYPES; i++) {
3232 		if (type & (1 << i))
3233 			*p++ = types[i];
3234 	}
3235 
3236 	*p = '\0';
3237 	printk("(%s) ", tmp);
3238 }
3239 
3240 /*
3241  * Show free area list (used inside shift_scroll-lock stuff)
3242  * We also calculate the percentage fragmentation. We do this by counting the
3243  * memory on each free list with the exception of the first item on the list.
3244  *
3245  * Bits in @filter:
3246  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3247  *   cpuset.
3248  */
3249 void show_free_areas(unsigned int filter)
3250 {
3251 	unsigned long free_pcp = 0;
3252 	int cpu;
3253 	struct zone *zone;
3254 
3255 	for_each_populated_zone(zone) {
3256 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3257 			continue;
3258 
3259 		for_each_online_cpu(cpu)
3260 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3261 	}
3262 
3263 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3264 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3265 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3266 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3267 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3268 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3269 		global_page_state(NR_ACTIVE_ANON),
3270 		global_page_state(NR_INACTIVE_ANON),
3271 		global_page_state(NR_ISOLATED_ANON),
3272 		global_page_state(NR_ACTIVE_FILE),
3273 		global_page_state(NR_INACTIVE_FILE),
3274 		global_page_state(NR_ISOLATED_FILE),
3275 		global_page_state(NR_UNEVICTABLE),
3276 		global_page_state(NR_FILE_DIRTY),
3277 		global_page_state(NR_WRITEBACK),
3278 		global_page_state(NR_UNSTABLE_NFS),
3279 		global_page_state(NR_SLAB_RECLAIMABLE),
3280 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3281 		global_page_state(NR_FILE_MAPPED),
3282 		global_page_state(NR_SHMEM),
3283 		global_page_state(NR_PAGETABLE),
3284 		global_page_state(NR_BOUNCE),
3285 		global_page_state(NR_FREE_PAGES),
3286 		free_pcp,
3287 		global_page_state(NR_FREE_CMA_PAGES));
3288 
3289 	for_each_populated_zone(zone) {
3290 		int i;
3291 
3292 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3293 			continue;
3294 
3295 		free_pcp = 0;
3296 		for_each_online_cpu(cpu)
3297 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3298 
3299 		show_node(zone);
3300 		printk("%s"
3301 			" free:%lukB"
3302 			" min:%lukB"
3303 			" low:%lukB"
3304 			" high:%lukB"
3305 			" active_anon:%lukB"
3306 			" inactive_anon:%lukB"
3307 			" active_file:%lukB"
3308 			" inactive_file:%lukB"
3309 			" unevictable:%lukB"
3310 			" isolated(anon):%lukB"
3311 			" isolated(file):%lukB"
3312 			" present:%lukB"
3313 			" managed:%lukB"
3314 			" mlocked:%lukB"
3315 			" dirty:%lukB"
3316 			" writeback:%lukB"
3317 			" mapped:%lukB"
3318 			" shmem:%lukB"
3319 			" slab_reclaimable:%lukB"
3320 			" slab_unreclaimable:%lukB"
3321 			" kernel_stack:%lukB"
3322 			" pagetables:%lukB"
3323 			" unstable:%lukB"
3324 			" bounce:%lukB"
3325 			" free_pcp:%lukB"
3326 			" local_pcp:%ukB"
3327 			" free_cma:%lukB"
3328 			" writeback_tmp:%lukB"
3329 			" pages_scanned:%lu"
3330 			" all_unreclaimable? %s"
3331 			"\n",
3332 			zone->name,
3333 			K(zone_page_state(zone, NR_FREE_PAGES)),
3334 			K(min_wmark_pages(zone)),
3335 			K(low_wmark_pages(zone)),
3336 			K(high_wmark_pages(zone)),
3337 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3338 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3339 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3340 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3341 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3342 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3343 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3344 			K(zone->present_pages),
3345 			K(zone->managed_pages),
3346 			K(zone_page_state(zone, NR_MLOCK)),
3347 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3348 			K(zone_page_state(zone, NR_WRITEBACK)),
3349 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3350 			K(zone_page_state(zone, NR_SHMEM)),
3351 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3352 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3353 			zone_page_state(zone, NR_KERNEL_STACK) *
3354 				THREAD_SIZE / 1024,
3355 			K(zone_page_state(zone, NR_PAGETABLE)),
3356 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3357 			K(zone_page_state(zone, NR_BOUNCE)),
3358 			K(free_pcp),
3359 			K(this_cpu_read(zone->pageset->pcp.count)),
3360 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3361 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3362 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3363 			(!zone_reclaimable(zone) ? "yes" : "no")
3364 			);
3365 		printk("lowmem_reserve[]:");
3366 		for (i = 0; i < MAX_NR_ZONES; i++)
3367 			printk(" %ld", zone->lowmem_reserve[i]);
3368 		printk("\n");
3369 	}
3370 
3371 	for_each_populated_zone(zone) {
3372 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3373 		unsigned char types[MAX_ORDER];
3374 
3375 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3376 			continue;
3377 		show_node(zone);
3378 		printk("%s: ", zone->name);
3379 
3380 		spin_lock_irqsave(&zone->lock, flags);
3381 		for (order = 0; order < MAX_ORDER; order++) {
3382 			struct free_area *area = &zone->free_area[order];
3383 			int type;
3384 
3385 			nr[order] = area->nr_free;
3386 			total += nr[order] << order;
3387 
3388 			types[order] = 0;
3389 			for (type = 0; type < MIGRATE_TYPES; type++) {
3390 				if (!list_empty(&area->free_list[type]))
3391 					types[order] |= 1 << type;
3392 			}
3393 		}
3394 		spin_unlock_irqrestore(&zone->lock, flags);
3395 		for (order = 0; order < MAX_ORDER; order++) {
3396 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3397 			if (nr[order])
3398 				show_migration_types(types[order]);
3399 		}
3400 		printk("= %lukB\n", K(total));
3401 	}
3402 
3403 	hugetlb_show_meminfo();
3404 
3405 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3406 
3407 	show_swap_cache_info();
3408 }
3409 
3410 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3411 {
3412 	zoneref->zone = zone;
3413 	zoneref->zone_idx = zone_idx(zone);
3414 }
3415 
3416 /*
3417  * Builds allocation fallback zone lists.
3418  *
3419  * Add all populated zones of a node to the zonelist.
3420  */
3421 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3422 				int nr_zones)
3423 {
3424 	struct zone *zone;
3425 	enum zone_type zone_type = MAX_NR_ZONES;
3426 
3427 	do {
3428 		zone_type--;
3429 		zone = pgdat->node_zones + zone_type;
3430 		if (populated_zone(zone)) {
3431 			zoneref_set_zone(zone,
3432 				&zonelist->_zonerefs[nr_zones++]);
3433 			check_highest_zone(zone_type);
3434 		}
3435 	} while (zone_type);
3436 
3437 	return nr_zones;
3438 }
3439 
3440 
3441 /*
3442  *  zonelist_order:
3443  *  0 = automatic detection of better ordering.
3444  *  1 = order by ([node] distance, -zonetype)
3445  *  2 = order by (-zonetype, [node] distance)
3446  *
3447  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3448  *  the same zonelist. So only NUMA can configure this param.
3449  */
3450 #define ZONELIST_ORDER_DEFAULT  0
3451 #define ZONELIST_ORDER_NODE     1
3452 #define ZONELIST_ORDER_ZONE     2
3453 
3454 /* zonelist order in the kernel.
3455  * set_zonelist_order() will set this to NODE or ZONE.
3456  */
3457 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3458 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3459 
3460 
3461 #ifdef CONFIG_NUMA
3462 /* The value user specified ....changed by config */
3463 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3464 /* string for sysctl */
3465 #define NUMA_ZONELIST_ORDER_LEN	16
3466 char numa_zonelist_order[16] = "default";
3467 
3468 /*
3469  * interface for configure zonelist ordering.
3470  * command line option "numa_zonelist_order"
3471  *	= "[dD]efault	- default, automatic configuration.
3472  *	= "[nN]ode 	- order by node locality, then by zone within node
3473  *	= "[zZ]one      - order by zone, then by locality within zone
3474  */
3475 
3476 static int __parse_numa_zonelist_order(char *s)
3477 {
3478 	if (*s == 'd' || *s == 'D') {
3479 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3480 	} else if (*s == 'n' || *s == 'N') {
3481 		user_zonelist_order = ZONELIST_ORDER_NODE;
3482 	} else if (*s == 'z' || *s == 'Z') {
3483 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3484 	} else {
3485 		printk(KERN_WARNING
3486 			"Ignoring invalid numa_zonelist_order value:  "
3487 			"%s\n", s);
3488 		return -EINVAL;
3489 	}
3490 	return 0;
3491 }
3492 
3493 static __init int setup_numa_zonelist_order(char *s)
3494 {
3495 	int ret;
3496 
3497 	if (!s)
3498 		return 0;
3499 
3500 	ret = __parse_numa_zonelist_order(s);
3501 	if (ret == 0)
3502 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3503 
3504 	return ret;
3505 }
3506 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3507 
3508 /*
3509  * sysctl handler for numa_zonelist_order
3510  */
3511 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3512 		void __user *buffer, size_t *length,
3513 		loff_t *ppos)
3514 {
3515 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3516 	int ret;
3517 	static DEFINE_MUTEX(zl_order_mutex);
3518 
3519 	mutex_lock(&zl_order_mutex);
3520 	if (write) {
3521 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3522 			ret = -EINVAL;
3523 			goto out;
3524 		}
3525 		strcpy(saved_string, (char *)table->data);
3526 	}
3527 	ret = proc_dostring(table, write, buffer, length, ppos);
3528 	if (ret)
3529 		goto out;
3530 	if (write) {
3531 		int oldval = user_zonelist_order;
3532 
3533 		ret = __parse_numa_zonelist_order((char *)table->data);
3534 		if (ret) {
3535 			/*
3536 			 * bogus value.  restore saved string
3537 			 */
3538 			strncpy((char *)table->data, saved_string,
3539 				NUMA_ZONELIST_ORDER_LEN);
3540 			user_zonelist_order = oldval;
3541 		} else if (oldval != user_zonelist_order) {
3542 			mutex_lock(&zonelists_mutex);
3543 			build_all_zonelists(NULL, NULL);
3544 			mutex_unlock(&zonelists_mutex);
3545 		}
3546 	}
3547 out:
3548 	mutex_unlock(&zl_order_mutex);
3549 	return ret;
3550 }
3551 
3552 
3553 #define MAX_NODE_LOAD (nr_online_nodes)
3554 static int node_load[MAX_NUMNODES];
3555 
3556 /**
3557  * find_next_best_node - find the next node that should appear in a given node's fallback list
3558  * @node: node whose fallback list we're appending
3559  * @used_node_mask: nodemask_t of already used nodes
3560  *
3561  * We use a number of factors to determine which is the next node that should
3562  * appear on a given node's fallback list.  The node should not have appeared
3563  * already in @node's fallback list, and it should be the next closest node
3564  * according to the distance array (which contains arbitrary distance values
3565  * from each node to each node in the system), and should also prefer nodes
3566  * with no CPUs, since presumably they'll have very little allocation pressure
3567  * on them otherwise.
3568  * It returns -1 if no node is found.
3569  */
3570 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3571 {
3572 	int n, val;
3573 	int min_val = INT_MAX;
3574 	int best_node = NUMA_NO_NODE;
3575 	const struct cpumask *tmp = cpumask_of_node(0);
3576 
3577 	/* Use the local node if we haven't already */
3578 	if (!node_isset(node, *used_node_mask)) {
3579 		node_set(node, *used_node_mask);
3580 		return node;
3581 	}
3582 
3583 	for_each_node_state(n, N_MEMORY) {
3584 
3585 		/* Don't want a node to appear more than once */
3586 		if (node_isset(n, *used_node_mask))
3587 			continue;
3588 
3589 		/* Use the distance array to find the distance */
3590 		val = node_distance(node, n);
3591 
3592 		/* Penalize nodes under us ("prefer the next node") */
3593 		val += (n < node);
3594 
3595 		/* Give preference to headless and unused nodes */
3596 		tmp = cpumask_of_node(n);
3597 		if (!cpumask_empty(tmp))
3598 			val += PENALTY_FOR_NODE_WITH_CPUS;
3599 
3600 		/* Slight preference for less loaded node */
3601 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3602 		val += node_load[n];
3603 
3604 		if (val < min_val) {
3605 			min_val = val;
3606 			best_node = n;
3607 		}
3608 	}
3609 
3610 	if (best_node >= 0)
3611 		node_set(best_node, *used_node_mask);
3612 
3613 	return best_node;
3614 }
3615 
3616 
3617 /*
3618  * Build zonelists ordered by node and zones within node.
3619  * This results in maximum locality--normal zone overflows into local
3620  * DMA zone, if any--but risks exhausting DMA zone.
3621  */
3622 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3623 {
3624 	int j;
3625 	struct zonelist *zonelist;
3626 
3627 	zonelist = &pgdat->node_zonelists[0];
3628 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3629 		;
3630 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3631 	zonelist->_zonerefs[j].zone = NULL;
3632 	zonelist->_zonerefs[j].zone_idx = 0;
3633 }
3634 
3635 /*
3636  * Build gfp_thisnode zonelists
3637  */
3638 static void build_thisnode_zonelists(pg_data_t *pgdat)
3639 {
3640 	int j;
3641 	struct zonelist *zonelist;
3642 
3643 	zonelist = &pgdat->node_zonelists[1];
3644 	j = build_zonelists_node(pgdat, zonelist, 0);
3645 	zonelist->_zonerefs[j].zone = NULL;
3646 	zonelist->_zonerefs[j].zone_idx = 0;
3647 }
3648 
3649 /*
3650  * Build zonelists ordered by zone and nodes within zones.
3651  * This results in conserving DMA zone[s] until all Normal memory is
3652  * exhausted, but results in overflowing to remote node while memory
3653  * may still exist in local DMA zone.
3654  */
3655 static int node_order[MAX_NUMNODES];
3656 
3657 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3658 {
3659 	int pos, j, node;
3660 	int zone_type;		/* needs to be signed */
3661 	struct zone *z;
3662 	struct zonelist *zonelist;
3663 
3664 	zonelist = &pgdat->node_zonelists[0];
3665 	pos = 0;
3666 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3667 		for (j = 0; j < nr_nodes; j++) {
3668 			node = node_order[j];
3669 			z = &NODE_DATA(node)->node_zones[zone_type];
3670 			if (populated_zone(z)) {
3671 				zoneref_set_zone(z,
3672 					&zonelist->_zonerefs[pos++]);
3673 				check_highest_zone(zone_type);
3674 			}
3675 		}
3676 	}
3677 	zonelist->_zonerefs[pos].zone = NULL;
3678 	zonelist->_zonerefs[pos].zone_idx = 0;
3679 }
3680 
3681 #if defined(CONFIG_64BIT)
3682 /*
3683  * Devices that require DMA32/DMA are relatively rare and do not justify a
3684  * penalty to every machine in case the specialised case applies. Default
3685  * to Node-ordering on 64-bit NUMA machines
3686  */
3687 static int default_zonelist_order(void)
3688 {
3689 	return ZONELIST_ORDER_NODE;
3690 }
3691 #else
3692 /*
3693  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3694  * by the kernel. If processes running on node 0 deplete the low memory zone
3695  * then reclaim will occur more frequency increasing stalls and potentially
3696  * be easier to OOM if a large percentage of the zone is under writeback or
3697  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3698  * Hence, default to zone ordering on 32-bit.
3699  */
3700 static int default_zonelist_order(void)
3701 {
3702 	return ZONELIST_ORDER_ZONE;
3703 }
3704 #endif /* CONFIG_64BIT */
3705 
3706 static void set_zonelist_order(void)
3707 {
3708 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3709 		current_zonelist_order = default_zonelist_order();
3710 	else
3711 		current_zonelist_order = user_zonelist_order;
3712 }
3713 
3714 static void build_zonelists(pg_data_t *pgdat)
3715 {
3716 	int j, node, load;
3717 	enum zone_type i;
3718 	nodemask_t used_mask;
3719 	int local_node, prev_node;
3720 	struct zonelist *zonelist;
3721 	int order = current_zonelist_order;
3722 
3723 	/* initialize zonelists */
3724 	for (i = 0; i < MAX_ZONELISTS; i++) {
3725 		zonelist = pgdat->node_zonelists + i;
3726 		zonelist->_zonerefs[0].zone = NULL;
3727 		zonelist->_zonerefs[0].zone_idx = 0;
3728 	}
3729 
3730 	/* NUMA-aware ordering of nodes */
3731 	local_node = pgdat->node_id;
3732 	load = nr_online_nodes;
3733 	prev_node = local_node;
3734 	nodes_clear(used_mask);
3735 
3736 	memset(node_order, 0, sizeof(node_order));
3737 	j = 0;
3738 
3739 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3740 		/*
3741 		 * We don't want to pressure a particular node.
3742 		 * So adding penalty to the first node in same
3743 		 * distance group to make it round-robin.
3744 		 */
3745 		if (node_distance(local_node, node) !=
3746 		    node_distance(local_node, prev_node))
3747 			node_load[node] = load;
3748 
3749 		prev_node = node;
3750 		load--;
3751 		if (order == ZONELIST_ORDER_NODE)
3752 			build_zonelists_in_node_order(pgdat, node);
3753 		else
3754 			node_order[j++] = node;	/* remember order */
3755 	}
3756 
3757 	if (order == ZONELIST_ORDER_ZONE) {
3758 		/* calculate node order -- i.e., DMA last! */
3759 		build_zonelists_in_zone_order(pgdat, j);
3760 	}
3761 
3762 	build_thisnode_zonelists(pgdat);
3763 }
3764 
3765 /* Construct the zonelist performance cache - see further mmzone.h */
3766 static void build_zonelist_cache(pg_data_t *pgdat)
3767 {
3768 	struct zonelist *zonelist;
3769 	struct zonelist_cache *zlc;
3770 	struct zoneref *z;
3771 
3772 	zonelist = &pgdat->node_zonelists[0];
3773 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3774 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3775 	for (z = zonelist->_zonerefs; z->zone; z++)
3776 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3777 }
3778 
3779 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3780 /*
3781  * Return node id of node used for "local" allocations.
3782  * I.e., first node id of first zone in arg node's generic zonelist.
3783  * Used for initializing percpu 'numa_mem', which is used primarily
3784  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3785  */
3786 int local_memory_node(int node)
3787 {
3788 	struct zone *zone;
3789 
3790 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3791 				   gfp_zone(GFP_KERNEL),
3792 				   NULL,
3793 				   &zone);
3794 	return zone->node;
3795 }
3796 #endif
3797 
3798 #else	/* CONFIG_NUMA */
3799 
3800 static void set_zonelist_order(void)
3801 {
3802 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3803 }
3804 
3805 static void build_zonelists(pg_data_t *pgdat)
3806 {
3807 	int node, local_node;
3808 	enum zone_type j;
3809 	struct zonelist *zonelist;
3810 
3811 	local_node = pgdat->node_id;
3812 
3813 	zonelist = &pgdat->node_zonelists[0];
3814 	j = build_zonelists_node(pgdat, zonelist, 0);
3815 
3816 	/*
3817 	 * Now we build the zonelist so that it contains the zones
3818 	 * of all the other nodes.
3819 	 * We don't want to pressure a particular node, so when
3820 	 * building the zones for node N, we make sure that the
3821 	 * zones coming right after the local ones are those from
3822 	 * node N+1 (modulo N)
3823 	 */
3824 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3825 		if (!node_online(node))
3826 			continue;
3827 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3828 	}
3829 	for (node = 0; node < local_node; node++) {
3830 		if (!node_online(node))
3831 			continue;
3832 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3833 	}
3834 
3835 	zonelist->_zonerefs[j].zone = NULL;
3836 	zonelist->_zonerefs[j].zone_idx = 0;
3837 }
3838 
3839 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3840 static void build_zonelist_cache(pg_data_t *pgdat)
3841 {
3842 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3843 }
3844 
3845 #endif	/* CONFIG_NUMA */
3846 
3847 /*
3848  * Boot pageset table. One per cpu which is going to be used for all
3849  * zones and all nodes. The parameters will be set in such a way
3850  * that an item put on a list will immediately be handed over to
3851  * the buddy list. This is safe since pageset manipulation is done
3852  * with interrupts disabled.
3853  *
3854  * The boot_pagesets must be kept even after bootup is complete for
3855  * unused processors and/or zones. They do play a role for bootstrapping
3856  * hotplugged processors.
3857  *
3858  * zoneinfo_show() and maybe other functions do
3859  * not check if the processor is online before following the pageset pointer.
3860  * Other parts of the kernel may not check if the zone is available.
3861  */
3862 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3863 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3864 static void setup_zone_pageset(struct zone *zone);
3865 
3866 /*
3867  * Global mutex to protect against size modification of zonelists
3868  * as well as to serialize pageset setup for the new populated zone.
3869  */
3870 DEFINE_MUTEX(zonelists_mutex);
3871 
3872 /* return values int ....just for stop_machine() */
3873 static int __build_all_zonelists(void *data)
3874 {
3875 	int nid;
3876 	int cpu;
3877 	pg_data_t *self = data;
3878 
3879 #ifdef CONFIG_NUMA
3880 	memset(node_load, 0, sizeof(node_load));
3881 #endif
3882 
3883 	if (self && !node_online(self->node_id)) {
3884 		build_zonelists(self);
3885 		build_zonelist_cache(self);
3886 	}
3887 
3888 	for_each_online_node(nid) {
3889 		pg_data_t *pgdat = NODE_DATA(nid);
3890 
3891 		build_zonelists(pgdat);
3892 		build_zonelist_cache(pgdat);
3893 	}
3894 
3895 	/*
3896 	 * Initialize the boot_pagesets that are going to be used
3897 	 * for bootstrapping processors. The real pagesets for
3898 	 * each zone will be allocated later when the per cpu
3899 	 * allocator is available.
3900 	 *
3901 	 * boot_pagesets are used also for bootstrapping offline
3902 	 * cpus if the system is already booted because the pagesets
3903 	 * are needed to initialize allocators on a specific cpu too.
3904 	 * F.e. the percpu allocator needs the page allocator which
3905 	 * needs the percpu allocator in order to allocate its pagesets
3906 	 * (a chicken-egg dilemma).
3907 	 */
3908 	for_each_possible_cpu(cpu) {
3909 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3910 
3911 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3912 		/*
3913 		 * We now know the "local memory node" for each node--
3914 		 * i.e., the node of the first zone in the generic zonelist.
3915 		 * Set up numa_mem percpu variable for on-line cpus.  During
3916 		 * boot, only the boot cpu should be on-line;  we'll init the
3917 		 * secondary cpus' numa_mem as they come on-line.  During
3918 		 * node/memory hotplug, we'll fixup all on-line cpus.
3919 		 */
3920 		if (cpu_online(cpu))
3921 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3922 #endif
3923 	}
3924 
3925 	return 0;
3926 }
3927 
3928 static noinline void __init
3929 build_all_zonelists_init(void)
3930 {
3931 	__build_all_zonelists(NULL);
3932 	mminit_verify_zonelist();
3933 	cpuset_init_current_mems_allowed();
3934 }
3935 
3936 /*
3937  * Called with zonelists_mutex held always
3938  * unless system_state == SYSTEM_BOOTING.
3939  *
3940  * __ref due to (1) call of __meminit annotated setup_zone_pageset
3941  * [we're only called with non-NULL zone through __meminit paths] and
3942  * (2) call of __init annotated helper build_all_zonelists_init
3943  * [protected by SYSTEM_BOOTING].
3944  */
3945 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3946 {
3947 	set_zonelist_order();
3948 
3949 	if (system_state == SYSTEM_BOOTING) {
3950 		build_all_zonelists_init();
3951 	} else {
3952 #ifdef CONFIG_MEMORY_HOTPLUG
3953 		if (zone)
3954 			setup_zone_pageset(zone);
3955 #endif
3956 		/* we have to stop all cpus to guarantee there is no user
3957 		   of zonelist */
3958 		stop_machine(__build_all_zonelists, pgdat, NULL);
3959 		/* cpuset refresh routine should be here */
3960 	}
3961 	vm_total_pages = nr_free_pagecache_pages();
3962 	/*
3963 	 * Disable grouping by mobility if the number of pages in the
3964 	 * system is too low to allow the mechanism to work. It would be
3965 	 * more accurate, but expensive to check per-zone. This check is
3966 	 * made on memory-hotadd so a system can start with mobility
3967 	 * disabled and enable it later
3968 	 */
3969 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3970 		page_group_by_mobility_disabled = 1;
3971 	else
3972 		page_group_by_mobility_disabled = 0;
3973 
3974 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
3975 		"Total pages: %ld\n",
3976 			nr_online_nodes,
3977 			zonelist_order_name[current_zonelist_order],
3978 			page_group_by_mobility_disabled ? "off" : "on",
3979 			vm_total_pages);
3980 #ifdef CONFIG_NUMA
3981 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3982 #endif
3983 }
3984 
3985 /*
3986  * Helper functions to size the waitqueue hash table.
3987  * Essentially these want to choose hash table sizes sufficiently
3988  * large so that collisions trying to wait on pages are rare.
3989  * But in fact, the number of active page waitqueues on typical
3990  * systems is ridiculously low, less than 200. So this is even
3991  * conservative, even though it seems large.
3992  *
3993  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3994  * waitqueues, i.e. the size of the waitq table given the number of pages.
3995  */
3996 #define PAGES_PER_WAITQUEUE	256
3997 
3998 #ifndef CONFIG_MEMORY_HOTPLUG
3999 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4000 {
4001 	unsigned long size = 1;
4002 
4003 	pages /= PAGES_PER_WAITQUEUE;
4004 
4005 	while (size < pages)
4006 		size <<= 1;
4007 
4008 	/*
4009 	 * Once we have dozens or even hundreds of threads sleeping
4010 	 * on IO we've got bigger problems than wait queue collision.
4011 	 * Limit the size of the wait table to a reasonable size.
4012 	 */
4013 	size = min(size, 4096UL);
4014 
4015 	return max(size, 4UL);
4016 }
4017 #else
4018 /*
4019  * A zone's size might be changed by hot-add, so it is not possible to determine
4020  * a suitable size for its wait_table.  So we use the maximum size now.
4021  *
4022  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4023  *
4024  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4025  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4026  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4027  *
4028  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4029  * or more by the traditional way. (See above).  It equals:
4030  *
4031  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4032  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4033  *    powerpc (64K page size)             : =  (32G +16M)byte.
4034  */
4035 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4036 {
4037 	return 4096UL;
4038 }
4039 #endif
4040 
4041 /*
4042  * This is an integer logarithm so that shifts can be used later
4043  * to extract the more random high bits from the multiplicative
4044  * hash function before the remainder is taken.
4045  */
4046 static inline unsigned long wait_table_bits(unsigned long size)
4047 {
4048 	return ffz(~size);
4049 }
4050 
4051 /*
4052  * Check if a pageblock contains reserved pages
4053  */
4054 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4055 {
4056 	unsigned long pfn;
4057 
4058 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4059 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4060 			return 1;
4061 	}
4062 	return 0;
4063 }
4064 
4065 /*
4066  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4067  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4068  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4069  * higher will lead to a bigger reserve which will get freed as contiguous
4070  * blocks as reclaim kicks in
4071  */
4072 static void setup_zone_migrate_reserve(struct zone *zone)
4073 {
4074 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4075 	struct page *page;
4076 	unsigned long block_migratetype;
4077 	int reserve;
4078 	int old_reserve;
4079 
4080 	/*
4081 	 * Get the start pfn, end pfn and the number of blocks to reserve
4082 	 * We have to be careful to be aligned to pageblock_nr_pages to
4083 	 * make sure that we always check pfn_valid for the first page in
4084 	 * the block.
4085 	 */
4086 	start_pfn = zone->zone_start_pfn;
4087 	end_pfn = zone_end_pfn(zone);
4088 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4089 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4090 							pageblock_order;
4091 
4092 	/*
4093 	 * Reserve blocks are generally in place to help high-order atomic
4094 	 * allocations that are short-lived. A min_free_kbytes value that
4095 	 * would result in more than 2 reserve blocks for atomic allocations
4096 	 * is assumed to be in place to help anti-fragmentation for the
4097 	 * future allocation of hugepages at runtime.
4098 	 */
4099 	reserve = min(2, reserve);
4100 	old_reserve = zone->nr_migrate_reserve_block;
4101 
4102 	/* When memory hot-add, we almost always need to do nothing */
4103 	if (reserve == old_reserve)
4104 		return;
4105 	zone->nr_migrate_reserve_block = reserve;
4106 
4107 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4108 		if (!pfn_valid(pfn))
4109 			continue;
4110 		page = pfn_to_page(pfn);
4111 
4112 		/* Watch out for overlapping nodes */
4113 		if (page_to_nid(page) != zone_to_nid(zone))
4114 			continue;
4115 
4116 		block_migratetype = get_pageblock_migratetype(page);
4117 
4118 		/* Only test what is necessary when the reserves are not met */
4119 		if (reserve > 0) {
4120 			/*
4121 			 * Blocks with reserved pages will never free, skip
4122 			 * them.
4123 			 */
4124 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4125 			if (pageblock_is_reserved(pfn, block_end_pfn))
4126 				continue;
4127 
4128 			/* If this block is reserved, account for it */
4129 			if (block_migratetype == MIGRATE_RESERVE) {
4130 				reserve--;
4131 				continue;
4132 			}
4133 
4134 			/* Suitable for reserving if this block is movable */
4135 			if (block_migratetype == MIGRATE_MOVABLE) {
4136 				set_pageblock_migratetype(page,
4137 							MIGRATE_RESERVE);
4138 				move_freepages_block(zone, page,
4139 							MIGRATE_RESERVE);
4140 				reserve--;
4141 				continue;
4142 			}
4143 		} else if (!old_reserve) {
4144 			/*
4145 			 * At boot time we don't need to scan the whole zone
4146 			 * for turning off MIGRATE_RESERVE.
4147 			 */
4148 			break;
4149 		}
4150 
4151 		/*
4152 		 * If the reserve is met and this is a previous reserved block,
4153 		 * take it back
4154 		 */
4155 		if (block_migratetype == MIGRATE_RESERVE) {
4156 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4157 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4158 		}
4159 	}
4160 }
4161 
4162 /*
4163  * Initially all pages are reserved - free ones are freed
4164  * up by free_all_bootmem() once the early boot process is
4165  * done. Non-atomic initialization, single-pass.
4166  */
4167 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4168 		unsigned long start_pfn, enum memmap_context context)
4169 {
4170 	struct page *page;
4171 	unsigned long end_pfn = start_pfn + size;
4172 	unsigned long pfn;
4173 	struct zone *z;
4174 
4175 	if (highest_memmap_pfn < end_pfn - 1)
4176 		highest_memmap_pfn = end_pfn - 1;
4177 
4178 	z = &NODE_DATA(nid)->node_zones[zone];
4179 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4180 		/*
4181 		 * There can be holes in boot-time mem_map[]s
4182 		 * handed to this function.  They do not
4183 		 * exist on hotplugged memory.
4184 		 */
4185 		if (context == MEMMAP_EARLY) {
4186 			if (!early_pfn_valid(pfn))
4187 				continue;
4188 			if (!early_pfn_in_nid(pfn, nid))
4189 				continue;
4190 		}
4191 		page = pfn_to_page(pfn);
4192 		set_page_links(page, zone, nid, pfn);
4193 		mminit_verify_page_links(page, zone, nid, pfn);
4194 		init_page_count(page);
4195 		page_mapcount_reset(page);
4196 		page_cpupid_reset_last(page);
4197 		SetPageReserved(page);
4198 		/*
4199 		 * Mark the block movable so that blocks are reserved for
4200 		 * movable at startup. This will force kernel allocations
4201 		 * to reserve their blocks rather than leaking throughout
4202 		 * the address space during boot when many long-lived
4203 		 * kernel allocations are made. Later some blocks near
4204 		 * the start are marked MIGRATE_RESERVE by
4205 		 * setup_zone_migrate_reserve()
4206 		 *
4207 		 * bitmap is created for zone's valid pfn range. but memmap
4208 		 * can be created for invalid pages (for alignment)
4209 		 * check here not to call set_pageblock_migratetype() against
4210 		 * pfn out of zone.
4211 		 */
4212 		if ((z->zone_start_pfn <= pfn)
4213 		    && (pfn < zone_end_pfn(z))
4214 		    && !(pfn & (pageblock_nr_pages - 1)))
4215 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4216 
4217 		INIT_LIST_HEAD(&page->lru);
4218 #ifdef WANT_PAGE_VIRTUAL
4219 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4220 		if (!is_highmem_idx(zone))
4221 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4222 #endif
4223 	}
4224 }
4225 
4226 static void __meminit zone_init_free_lists(struct zone *zone)
4227 {
4228 	unsigned int order, t;
4229 	for_each_migratetype_order(order, t) {
4230 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4231 		zone->free_area[order].nr_free = 0;
4232 	}
4233 }
4234 
4235 #ifndef __HAVE_ARCH_MEMMAP_INIT
4236 #define memmap_init(size, nid, zone, start_pfn) \
4237 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4238 #endif
4239 
4240 static int zone_batchsize(struct zone *zone)
4241 {
4242 #ifdef CONFIG_MMU
4243 	int batch;
4244 
4245 	/*
4246 	 * The per-cpu-pages pools are set to around 1000th of the
4247 	 * size of the zone.  But no more than 1/2 of a meg.
4248 	 *
4249 	 * OK, so we don't know how big the cache is.  So guess.
4250 	 */
4251 	batch = zone->managed_pages / 1024;
4252 	if (batch * PAGE_SIZE > 512 * 1024)
4253 		batch = (512 * 1024) / PAGE_SIZE;
4254 	batch /= 4;		/* We effectively *= 4 below */
4255 	if (batch < 1)
4256 		batch = 1;
4257 
4258 	/*
4259 	 * Clamp the batch to a 2^n - 1 value. Having a power
4260 	 * of 2 value was found to be more likely to have
4261 	 * suboptimal cache aliasing properties in some cases.
4262 	 *
4263 	 * For example if 2 tasks are alternately allocating
4264 	 * batches of pages, one task can end up with a lot
4265 	 * of pages of one half of the possible page colors
4266 	 * and the other with pages of the other colors.
4267 	 */
4268 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4269 
4270 	return batch;
4271 
4272 #else
4273 	/* The deferral and batching of frees should be suppressed under NOMMU
4274 	 * conditions.
4275 	 *
4276 	 * The problem is that NOMMU needs to be able to allocate large chunks
4277 	 * of contiguous memory as there's no hardware page translation to
4278 	 * assemble apparent contiguous memory from discontiguous pages.
4279 	 *
4280 	 * Queueing large contiguous runs of pages for batching, however,
4281 	 * causes the pages to actually be freed in smaller chunks.  As there
4282 	 * can be a significant delay between the individual batches being
4283 	 * recycled, this leads to the once large chunks of space being
4284 	 * fragmented and becoming unavailable for high-order allocations.
4285 	 */
4286 	return 0;
4287 #endif
4288 }
4289 
4290 /*
4291  * pcp->high and pcp->batch values are related and dependent on one another:
4292  * ->batch must never be higher then ->high.
4293  * The following function updates them in a safe manner without read side
4294  * locking.
4295  *
4296  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4297  * those fields changing asynchronously (acording the the above rule).
4298  *
4299  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4300  * outside of boot time (or some other assurance that no concurrent updaters
4301  * exist).
4302  */
4303 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4304 		unsigned long batch)
4305 {
4306        /* start with a fail safe value for batch */
4307 	pcp->batch = 1;
4308 	smp_wmb();
4309 
4310        /* Update high, then batch, in order */
4311 	pcp->high = high;
4312 	smp_wmb();
4313 
4314 	pcp->batch = batch;
4315 }
4316 
4317 /* a companion to pageset_set_high() */
4318 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4319 {
4320 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4321 }
4322 
4323 static void pageset_init(struct per_cpu_pageset *p)
4324 {
4325 	struct per_cpu_pages *pcp;
4326 	int migratetype;
4327 
4328 	memset(p, 0, sizeof(*p));
4329 
4330 	pcp = &p->pcp;
4331 	pcp->count = 0;
4332 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4333 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4334 }
4335 
4336 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4337 {
4338 	pageset_init(p);
4339 	pageset_set_batch(p, batch);
4340 }
4341 
4342 /*
4343  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4344  * to the value high for the pageset p.
4345  */
4346 static void pageset_set_high(struct per_cpu_pageset *p,
4347 				unsigned long high)
4348 {
4349 	unsigned long batch = max(1UL, high / 4);
4350 	if ((high / 4) > (PAGE_SHIFT * 8))
4351 		batch = PAGE_SHIFT * 8;
4352 
4353 	pageset_update(&p->pcp, high, batch);
4354 }
4355 
4356 static void pageset_set_high_and_batch(struct zone *zone,
4357 				       struct per_cpu_pageset *pcp)
4358 {
4359 	if (percpu_pagelist_fraction)
4360 		pageset_set_high(pcp,
4361 			(zone->managed_pages /
4362 				percpu_pagelist_fraction));
4363 	else
4364 		pageset_set_batch(pcp, zone_batchsize(zone));
4365 }
4366 
4367 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4368 {
4369 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4370 
4371 	pageset_init(pcp);
4372 	pageset_set_high_and_batch(zone, pcp);
4373 }
4374 
4375 static void __meminit setup_zone_pageset(struct zone *zone)
4376 {
4377 	int cpu;
4378 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4379 	for_each_possible_cpu(cpu)
4380 		zone_pageset_init(zone, cpu);
4381 }
4382 
4383 /*
4384  * Allocate per cpu pagesets and initialize them.
4385  * Before this call only boot pagesets were available.
4386  */
4387 void __init setup_per_cpu_pageset(void)
4388 {
4389 	struct zone *zone;
4390 
4391 	for_each_populated_zone(zone)
4392 		setup_zone_pageset(zone);
4393 }
4394 
4395 static noinline __init_refok
4396 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4397 {
4398 	int i;
4399 	size_t alloc_size;
4400 
4401 	/*
4402 	 * The per-page waitqueue mechanism uses hashed waitqueues
4403 	 * per zone.
4404 	 */
4405 	zone->wait_table_hash_nr_entries =
4406 		 wait_table_hash_nr_entries(zone_size_pages);
4407 	zone->wait_table_bits =
4408 		wait_table_bits(zone->wait_table_hash_nr_entries);
4409 	alloc_size = zone->wait_table_hash_nr_entries
4410 					* sizeof(wait_queue_head_t);
4411 
4412 	if (!slab_is_available()) {
4413 		zone->wait_table = (wait_queue_head_t *)
4414 			memblock_virt_alloc_node_nopanic(
4415 				alloc_size, zone->zone_pgdat->node_id);
4416 	} else {
4417 		/*
4418 		 * This case means that a zone whose size was 0 gets new memory
4419 		 * via memory hot-add.
4420 		 * But it may be the case that a new node was hot-added.  In
4421 		 * this case vmalloc() will not be able to use this new node's
4422 		 * memory - this wait_table must be initialized to use this new
4423 		 * node itself as well.
4424 		 * To use this new node's memory, further consideration will be
4425 		 * necessary.
4426 		 */
4427 		zone->wait_table = vmalloc(alloc_size);
4428 	}
4429 	if (!zone->wait_table)
4430 		return -ENOMEM;
4431 
4432 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4433 		init_waitqueue_head(zone->wait_table + i);
4434 
4435 	return 0;
4436 }
4437 
4438 static __meminit void zone_pcp_init(struct zone *zone)
4439 {
4440 	/*
4441 	 * per cpu subsystem is not up at this point. The following code
4442 	 * relies on the ability of the linker to provide the
4443 	 * offset of a (static) per cpu variable into the per cpu area.
4444 	 */
4445 	zone->pageset = &boot_pageset;
4446 
4447 	if (populated_zone(zone))
4448 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4449 			zone->name, zone->present_pages,
4450 					 zone_batchsize(zone));
4451 }
4452 
4453 int __meminit init_currently_empty_zone(struct zone *zone,
4454 					unsigned long zone_start_pfn,
4455 					unsigned long size,
4456 					enum memmap_context context)
4457 {
4458 	struct pglist_data *pgdat = zone->zone_pgdat;
4459 	int ret;
4460 	ret = zone_wait_table_init(zone, size);
4461 	if (ret)
4462 		return ret;
4463 	pgdat->nr_zones = zone_idx(zone) + 1;
4464 
4465 	zone->zone_start_pfn = zone_start_pfn;
4466 
4467 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4468 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4469 			pgdat->node_id,
4470 			(unsigned long)zone_idx(zone),
4471 			zone_start_pfn, (zone_start_pfn + size));
4472 
4473 	zone_init_free_lists(zone);
4474 
4475 	return 0;
4476 }
4477 
4478 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4479 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4480 /*
4481  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4482  */
4483 int __meminit __early_pfn_to_nid(unsigned long pfn)
4484 {
4485 	unsigned long start_pfn, end_pfn;
4486 	int nid;
4487 	/*
4488 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4489 	 * when the kernel is running single-threaded.
4490 	 */
4491 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4492 	static int __meminitdata last_nid;
4493 
4494 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4495 		return last_nid;
4496 
4497 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4498 	if (nid != -1) {
4499 		last_start_pfn = start_pfn;
4500 		last_end_pfn = end_pfn;
4501 		last_nid = nid;
4502 	}
4503 
4504 	return nid;
4505 }
4506 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4507 
4508 int __meminit early_pfn_to_nid(unsigned long pfn)
4509 {
4510 	int nid;
4511 
4512 	nid = __early_pfn_to_nid(pfn);
4513 	if (nid >= 0)
4514 		return nid;
4515 	/* just returns 0 */
4516 	return 0;
4517 }
4518 
4519 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4520 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4521 {
4522 	int nid;
4523 
4524 	nid = __early_pfn_to_nid(pfn);
4525 	if (nid >= 0 && nid != node)
4526 		return false;
4527 	return true;
4528 }
4529 #endif
4530 
4531 /**
4532  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4533  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4534  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4535  *
4536  * If an architecture guarantees that all ranges registered contain no holes
4537  * and may be freed, this this function may be used instead of calling
4538  * memblock_free_early_nid() manually.
4539  */
4540 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4541 {
4542 	unsigned long start_pfn, end_pfn;
4543 	int i, this_nid;
4544 
4545 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4546 		start_pfn = min(start_pfn, max_low_pfn);
4547 		end_pfn = min(end_pfn, max_low_pfn);
4548 
4549 		if (start_pfn < end_pfn)
4550 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4551 					(end_pfn - start_pfn) << PAGE_SHIFT,
4552 					this_nid);
4553 	}
4554 }
4555 
4556 /**
4557  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4558  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4559  *
4560  * If an architecture guarantees that all ranges registered contain no holes and may
4561  * be freed, this function may be used instead of calling memory_present() manually.
4562  */
4563 void __init sparse_memory_present_with_active_regions(int nid)
4564 {
4565 	unsigned long start_pfn, end_pfn;
4566 	int i, this_nid;
4567 
4568 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4569 		memory_present(this_nid, start_pfn, end_pfn);
4570 }
4571 
4572 /**
4573  * get_pfn_range_for_nid - Return the start and end page frames for a node
4574  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4575  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4576  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4577  *
4578  * It returns the start and end page frame of a node based on information
4579  * provided by memblock_set_node(). If called for a node
4580  * with no available memory, a warning is printed and the start and end
4581  * PFNs will be 0.
4582  */
4583 void __meminit get_pfn_range_for_nid(unsigned int nid,
4584 			unsigned long *start_pfn, unsigned long *end_pfn)
4585 {
4586 	unsigned long this_start_pfn, this_end_pfn;
4587 	int i;
4588 
4589 	*start_pfn = -1UL;
4590 	*end_pfn = 0;
4591 
4592 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4593 		*start_pfn = min(*start_pfn, this_start_pfn);
4594 		*end_pfn = max(*end_pfn, this_end_pfn);
4595 	}
4596 
4597 	if (*start_pfn == -1UL)
4598 		*start_pfn = 0;
4599 }
4600 
4601 /*
4602  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4603  * assumption is made that zones within a node are ordered in monotonic
4604  * increasing memory addresses so that the "highest" populated zone is used
4605  */
4606 static void __init find_usable_zone_for_movable(void)
4607 {
4608 	int zone_index;
4609 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4610 		if (zone_index == ZONE_MOVABLE)
4611 			continue;
4612 
4613 		if (arch_zone_highest_possible_pfn[zone_index] >
4614 				arch_zone_lowest_possible_pfn[zone_index])
4615 			break;
4616 	}
4617 
4618 	VM_BUG_ON(zone_index == -1);
4619 	movable_zone = zone_index;
4620 }
4621 
4622 /*
4623  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4624  * because it is sized independent of architecture. Unlike the other zones,
4625  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4626  * in each node depending on the size of each node and how evenly kernelcore
4627  * is distributed. This helper function adjusts the zone ranges
4628  * provided by the architecture for a given node by using the end of the
4629  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4630  * zones within a node are in order of monotonic increases memory addresses
4631  */
4632 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4633 					unsigned long zone_type,
4634 					unsigned long node_start_pfn,
4635 					unsigned long node_end_pfn,
4636 					unsigned long *zone_start_pfn,
4637 					unsigned long *zone_end_pfn)
4638 {
4639 	/* Only adjust if ZONE_MOVABLE is on this node */
4640 	if (zone_movable_pfn[nid]) {
4641 		/* Size ZONE_MOVABLE */
4642 		if (zone_type == ZONE_MOVABLE) {
4643 			*zone_start_pfn = zone_movable_pfn[nid];
4644 			*zone_end_pfn = min(node_end_pfn,
4645 				arch_zone_highest_possible_pfn[movable_zone]);
4646 
4647 		/* Adjust for ZONE_MOVABLE starting within this range */
4648 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4649 				*zone_end_pfn > zone_movable_pfn[nid]) {
4650 			*zone_end_pfn = zone_movable_pfn[nid];
4651 
4652 		/* Check if this whole range is within ZONE_MOVABLE */
4653 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4654 			*zone_start_pfn = *zone_end_pfn;
4655 	}
4656 }
4657 
4658 /*
4659  * Return the number of pages a zone spans in a node, including holes
4660  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4661  */
4662 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4663 					unsigned long zone_type,
4664 					unsigned long node_start_pfn,
4665 					unsigned long node_end_pfn,
4666 					unsigned long *ignored)
4667 {
4668 	unsigned long zone_start_pfn, zone_end_pfn;
4669 
4670 	/* Get the start and end of the zone */
4671 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4672 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4673 	adjust_zone_range_for_zone_movable(nid, zone_type,
4674 				node_start_pfn, node_end_pfn,
4675 				&zone_start_pfn, &zone_end_pfn);
4676 
4677 	/* Check that this node has pages within the zone's required range */
4678 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4679 		return 0;
4680 
4681 	/* Move the zone boundaries inside the node if necessary */
4682 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4683 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4684 
4685 	/* Return the spanned pages */
4686 	return zone_end_pfn - zone_start_pfn;
4687 }
4688 
4689 /*
4690  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4691  * then all holes in the requested range will be accounted for.
4692  */
4693 unsigned long __meminit __absent_pages_in_range(int nid,
4694 				unsigned long range_start_pfn,
4695 				unsigned long range_end_pfn)
4696 {
4697 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4698 	unsigned long start_pfn, end_pfn;
4699 	int i;
4700 
4701 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4702 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4703 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4704 		nr_absent -= end_pfn - start_pfn;
4705 	}
4706 	return nr_absent;
4707 }
4708 
4709 /**
4710  * absent_pages_in_range - Return number of page frames in holes within a range
4711  * @start_pfn: The start PFN to start searching for holes
4712  * @end_pfn: The end PFN to stop searching for holes
4713  *
4714  * It returns the number of pages frames in memory holes within a range.
4715  */
4716 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4717 							unsigned long end_pfn)
4718 {
4719 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4720 }
4721 
4722 /* Return the number of page frames in holes in a zone on a node */
4723 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4724 					unsigned long zone_type,
4725 					unsigned long node_start_pfn,
4726 					unsigned long node_end_pfn,
4727 					unsigned long *ignored)
4728 {
4729 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4730 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4731 	unsigned long zone_start_pfn, zone_end_pfn;
4732 
4733 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4734 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4735 
4736 	adjust_zone_range_for_zone_movable(nid, zone_type,
4737 			node_start_pfn, node_end_pfn,
4738 			&zone_start_pfn, &zone_end_pfn);
4739 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4740 }
4741 
4742 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4743 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4744 					unsigned long zone_type,
4745 					unsigned long node_start_pfn,
4746 					unsigned long node_end_pfn,
4747 					unsigned long *zones_size)
4748 {
4749 	return zones_size[zone_type];
4750 }
4751 
4752 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4753 						unsigned long zone_type,
4754 						unsigned long node_start_pfn,
4755 						unsigned long node_end_pfn,
4756 						unsigned long *zholes_size)
4757 {
4758 	if (!zholes_size)
4759 		return 0;
4760 
4761 	return zholes_size[zone_type];
4762 }
4763 
4764 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4765 
4766 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4767 						unsigned long node_start_pfn,
4768 						unsigned long node_end_pfn,
4769 						unsigned long *zones_size,
4770 						unsigned long *zholes_size)
4771 {
4772 	unsigned long realtotalpages, totalpages = 0;
4773 	enum zone_type i;
4774 
4775 	for (i = 0; i < MAX_NR_ZONES; i++)
4776 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4777 							 node_start_pfn,
4778 							 node_end_pfn,
4779 							 zones_size);
4780 	pgdat->node_spanned_pages = totalpages;
4781 
4782 	realtotalpages = totalpages;
4783 	for (i = 0; i < MAX_NR_ZONES; i++)
4784 		realtotalpages -=
4785 			zone_absent_pages_in_node(pgdat->node_id, i,
4786 						  node_start_pfn, node_end_pfn,
4787 						  zholes_size);
4788 	pgdat->node_present_pages = realtotalpages;
4789 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4790 							realtotalpages);
4791 }
4792 
4793 #ifndef CONFIG_SPARSEMEM
4794 /*
4795  * Calculate the size of the zone->blockflags rounded to an unsigned long
4796  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4797  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4798  * round what is now in bits to nearest long in bits, then return it in
4799  * bytes.
4800  */
4801 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4802 {
4803 	unsigned long usemapsize;
4804 
4805 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4806 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4807 	usemapsize = usemapsize >> pageblock_order;
4808 	usemapsize *= NR_PAGEBLOCK_BITS;
4809 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4810 
4811 	return usemapsize / 8;
4812 }
4813 
4814 static void __init setup_usemap(struct pglist_data *pgdat,
4815 				struct zone *zone,
4816 				unsigned long zone_start_pfn,
4817 				unsigned long zonesize)
4818 {
4819 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4820 	zone->pageblock_flags = NULL;
4821 	if (usemapsize)
4822 		zone->pageblock_flags =
4823 			memblock_virt_alloc_node_nopanic(usemapsize,
4824 							 pgdat->node_id);
4825 }
4826 #else
4827 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4828 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4829 #endif /* CONFIG_SPARSEMEM */
4830 
4831 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4832 
4833 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4834 void __paginginit set_pageblock_order(void)
4835 {
4836 	unsigned int order;
4837 
4838 	/* Check that pageblock_nr_pages has not already been setup */
4839 	if (pageblock_order)
4840 		return;
4841 
4842 	if (HPAGE_SHIFT > PAGE_SHIFT)
4843 		order = HUGETLB_PAGE_ORDER;
4844 	else
4845 		order = MAX_ORDER - 1;
4846 
4847 	/*
4848 	 * Assume the largest contiguous order of interest is a huge page.
4849 	 * This value may be variable depending on boot parameters on IA64 and
4850 	 * powerpc.
4851 	 */
4852 	pageblock_order = order;
4853 }
4854 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4855 
4856 /*
4857  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4858  * is unused as pageblock_order is set at compile-time. See
4859  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4860  * the kernel config
4861  */
4862 void __paginginit set_pageblock_order(void)
4863 {
4864 }
4865 
4866 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4867 
4868 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4869 						   unsigned long present_pages)
4870 {
4871 	unsigned long pages = spanned_pages;
4872 
4873 	/*
4874 	 * Provide a more accurate estimation if there are holes within
4875 	 * the zone and SPARSEMEM is in use. If there are holes within the
4876 	 * zone, each populated memory region may cost us one or two extra
4877 	 * memmap pages due to alignment because memmap pages for each
4878 	 * populated regions may not naturally algined on page boundary.
4879 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4880 	 */
4881 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4882 	    IS_ENABLED(CONFIG_SPARSEMEM))
4883 		pages = present_pages;
4884 
4885 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4886 }
4887 
4888 /*
4889  * Set up the zone data structures:
4890  *   - mark all pages reserved
4891  *   - mark all memory queues empty
4892  *   - clear the memory bitmaps
4893  *
4894  * NOTE: pgdat should get zeroed by caller.
4895  */
4896 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4897 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4898 		unsigned long *zones_size, unsigned long *zholes_size)
4899 {
4900 	enum zone_type j;
4901 	int nid = pgdat->node_id;
4902 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4903 	int ret;
4904 
4905 	pgdat_resize_init(pgdat);
4906 #ifdef CONFIG_NUMA_BALANCING
4907 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4908 	pgdat->numabalancing_migrate_nr_pages = 0;
4909 	pgdat->numabalancing_migrate_next_window = jiffies;
4910 #endif
4911 	init_waitqueue_head(&pgdat->kswapd_wait);
4912 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4913 	pgdat_page_ext_init(pgdat);
4914 
4915 	for (j = 0; j < MAX_NR_ZONES; j++) {
4916 		struct zone *zone = pgdat->node_zones + j;
4917 		unsigned long size, realsize, freesize, memmap_pages;
4918 
4919 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4920 						  node_end_pfn, zones_size);
4921 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4922 								node_start_pfn,
4923 								node_end_pfn,
4924 								zholes_size);
4925 
4926 		/*
4927 		 * Adjust freesize so that it accounts for how much memory
4928 		 * is used by this zone for memmap. This affects the watermark
4929 		 * and per-cpu initialisations
4930 		 */
4931 		memmap_pages = calc_memmap_size(size, realsize);
4932 		if (!is_highmem_idx(j)) {
4933 			if (freesize >= memmap_pages) {
4934 				freesize -= memmap_pages;
4935 				if (memmap_pages)
4936 					printk(KERN_DEBUG
4937 					       "  %s zone: %lu pages used for memmap\n",
4938 					       zone_names[j], memmap_pages);
4939 			} else
4940 				printk(KERN_WARNING
4941 					"  %s zone: %lu pages exceeds freesize %lu\n",
4942 					zone_names[j], memmap_pages, freesize);
4943 		}
4944 
4945 		/* Account for reserved pages */
4946 		if (j == 0 && freesize > dma_reserve) {
4947 			freesize -= dma_reserve;
4948 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4949 					zone_names[0], dma_reserve);
4950 		}
4951 
4952 		if (!is_highmem_idx(j))
4953 			nr_kernel_pages += freesize;
4954 		/* Charge for highmem memmap if there are enough kernel pages */
4955 		else if (nr_kernel_pages > memmap_pages * 2)
4956 			nr_kernel_pages -= memmap_pages;
4957 		nr_all_pages += freesize;
4958 
4959 		zone->spanned_pages = size;
4960 		zone->present_pages = realsize;
4961 		/*
4962 		 * Set an approximate value for lowmem here, it will be adjusted
4963 		 * when the bootmem allocator frees pages into the buddy system.
4964 		 * And all highmem pages will be managed by the buddy system.
4965 		 */
4966 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4967 #ifdef CONFIG_NUMA
4968 		zone->node = nid;
4969 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4970 						/ 100;
4971 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4972 #endif
4973 		zone->name = zone_names[j];
4974 		spin_lock_init(&zone->lock);
4975 		spin_lock_init(&zone->lru_lock);
4976 		zone_seqlock_init(zone);
4977 		zone->zone_pgdat = pgdat;
4978 		zone_pcp_init(zone);
4979 
4980 		/* For bootup, initialized properly in watermark setup */
4981 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4982 
4983 		lruvec_init(&zone->lruvec);
4984 		if (!size)
4985 			continue;
4986 
4987 		set_pageblock_order();
4988 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4989 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4990 						size, MEMMAP_EARLY);
4991 		BUG_ON(ret);
4992 		memmap_init(size, nid, j, zone_start_pfn);
4993 		zone_start_pfn += size;
4994 	}
4995 }
4996 
4997 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4998 {
4999 	/* Skip empty nodes */
5000 	if (!pgdat->node_spanned_pages)
5001 		return;
5002 
5003 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5004 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5005 	if (!pgdat->node_mem_map) {
5006 		unsigned long size, start, end;
5007 		struct page *map;
5008 
5009 		/*
5010 		 * The zone's endpoints aren't required to be MAX_ORDER
5011 		 * aligned but the node_mem_map endpoints must be in order
5012 		 * for the buddy allocator to function correctly.
5013 		 */
5014 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5015 		end = pgdat_end_pfn(pgdat);
5016 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5017 		size =  (end - start) * sizeof(struct page);
5018 		map = alloc_remap(pgdat->node_id, size);
5019 		if (!map)
5020 			map = memblock_virt_alloc_node_nopanic(size,
5021 							       pgdat->node_id);
5022 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5023 	}
5024 #ifndef CONFIG_NEED_MULTIPLE_NODES
5025 	/*
5026 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5027 	 */
5028 	if (pgdat == NODE_DATA(0)) {
5029 		mem_map = NODE_DATA(0)->node_mem_map;
5030 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5031 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5032 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5033 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5034 	}
5035 #endif
5036 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5037 }
5038 
5039 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5040 		unsigned long node_start_pfn, unsigned long *zholes_size)
5041 {
5042 	pg_data_t *pgdat = NODE_DATA(nid);
5043 	unsigned long start_pfn = 0;
5044 	unsigned long end_pfn = 0;
5045 
5046 	/* pg_data_t should be reset to zero when it's allocated */
5047 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5048 
5049 	pgdat->node_id = nid;
5050 	pgdat->node_start_pfn = node_start_pfn;
5051 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5052 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5053 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5054 		(u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5055 #endif
5056 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5057 				  zones_size, zholes_size);
5058 
5059 	alloc_node_mem_map(pgdat);
5060 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5061 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5062 		nid, (unsigned long)pgdat,
5063 		(unsigned long)pgdat->node_mem_map);
5064 #endif
5065 
5066 	free_area_init_core(pgdat, start_pfn, end_pfn,
5067 			    zones_size, zholes_size);
5068 }
5069 
5070 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5071 
5072 #if MAX_NUMNODES > 1
5073 /*
5074  * Figure out the number of possible node ids.
5075  */
5076 void __init setup_nr_node_ids(void)
5077 {
5078 	unsigned int node;
5079 	unsigned int highest = 0;
5080 
5081 	for_each_node_mask(node, node_possible_map)
5082 		highest = node;
5083 	nr_node_ids = highest + 1;
5084 }
5085 #endif
5086 
5087 /**
5088  * node_map_pfn_alignment - determine the maximum internode alignment
5089  *
5090  * This function should be called after node map is populated and sorted.
5091  * It calculates the maximum power of two alignment which can distinguish
5092  * all the nodes.
5093  *
5094  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5095  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5096  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5097  * shifted, 1GiB is enough and this function will indicate so.
5098  *
5099  * This is used to test whether pfn -> nid mapping of the chosen memory
5100  * model has fine enough granularity to avoid incorrect mapping for the
5101  * populated node map.
5102  *
5103  * Returns the determined alignment in pfn's.  0 if there is no alignment
5104  * requirement (single node).
5105  */
5106 unsigned long __init node_map_pfn_alignment(void)
5107 {
5108 	unsigned long accl_mask = 0, last_end = 0;
5109 	unsigned long start, end, mask;
5110 	int last_nid = -1;
5111 	int i, nid;
5112 
5113 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5114 		if (!start || last_nid < 0 || last_nid == nid) {
5115 			last_nid = nid;
5116 			last_end = end;
5117 			continue;
5118 		}
5119 
5120 		/*
5121 		 * Start with a mask granular enough to pin-point to the
5122 		 * start pfn and tick off bits one-by-one until it becomes
5123 		 * too coarse to separate the current node from the last.
5124 		 */
5125 		mask = ~((1 << __ffs(start)) - 1);
5126 		while (mask && last_end <= (start & (mask << 1)))
5127 			mask <<= 1;
5128 
5129 		/* accumulate all internode masks */
5130 		accl_mask |= mask;
5131 	}
5132 
5133 	/* convert mask to number of pages */
5134 	return ~accl_mask + 1;
5135 }
5136 
5137 /* Find the lowest pfn for a node */
5138 static unsigned long __init find_min_pfn_for_node(int nid)
5139 {
5140 	unsigned long min_pfn = ULONG_MAX;
5141 	unsigned long start_pfn;
5142 	int i;
5143 
5144 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5145 		min_pfn = min(min_pfn, start_pfn);
5146 
5147 	if (min_pfn == ULONG_MAX) {
5148 		printk(KERN_WARNING
5149 			"Could not find start_pfn for node %d\n", nid);
5150 		return 0;
5151 	}
5152 
5153 	return min_pfn;
5154 }
5155 
5156 /**
5157  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5158  *
5159  * It returns the minimum PFN based on information provided via
5160  * memblock_set_node().
5161  */
5162 unsigned long __init find_min_pfn_with_active_regions(void)
5163 {
5164 	return find_min_pfn_for_node(MAX_NUMNODES);
5165 }
5166 
5167 /*
5168  * early_calculate_totalpages()
5169  * Sum pages in active regions for movable zone.
5170  * Populate N_MEMORY for calculating usable_nodes.
5171  */
5172 static unsigned long __init early_calculate_totalpages(void)
5173 {
5174 	unsigned long totalpages = 0;
5175 	unsigned long start_pfn, end_pfn;
5176 	int i, nid;
5177 
5178 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5179 		unsigned long pages = end_pfn - start_pfn;
5180 
5181 		totalpages += pages;
5182 		if (pages)
5183 			node_set_state(nid, N_MEMORY);
5184 	}
5185 	return totalpages;
5186 }
5187 
5188 /*
5189  * Find the PFN the Movable zone begins in each node. Kernel memory
5190  * is spread evenly between nodes as long as the nodes have enough
5191  * memory. When they don't, some nodes will have more kernelcore than
5192  * others
5193  */
5194 static void __init find_zone_movable_pfns_for_nodes(void)
5195 {
5196 	int i, nid;
5197 	unsigned long usable_startpfn;
5198 	unsigned long kernelcore_node, kernelcore_remaining;
5199 	/* save the state before borrow the nodemask */
5200 	nodemask_t saved_node_state = node_states[N_MEMORY];
5201 	unsigned long totalpages = early_calculate_totalpages();
5202 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5203 	struct memblock_region *r;
5204 
5205 	/* Need to find movable_zone earlier when movable_node is specified. */
5206 	find_usable_zone_for_movable();
5207 
5208 	/*
5209 	 * If movable_node is specified, ignore kernelcore and movablecore
5210 	 * options.
5211 	 */
5212 	if (movable_node_is_enabled()) {
5213 		for_each_memblock(memory, r) {
5214 			if (!memblock_is_hotpluggable(r))
5215 				continue;
5216 
5217 			nid = r->nid;
5218 
5219 			usable_startpfn = PFN_DOWN(r->base);
5220 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5221 				min(usable_startpfn, zone_movable_pfn[nid]) :
5222 				usable_startpfn;
5223 		}
5224 
5225 		goto out2;
5226 	}
5227 
5228 	/*
5229 	 * If movablecore=nn[KMG] was specified, calculate what size of
5230 	 * kernelcore that corresponds so that memory usable for
5231 	 * any allocation type is evenly spread. If both kernelcore
5232 	 * and movablecore are specified, then the value of kernelcore
5233 	 * will be used for required_kernelcore if it's greater than
5234 	 * what movablecore would have allowed.
5235 	 */
5236 	if (required_movablecore) {
5237 		unsigned long corepages;
5238 
5239 		/*
5240 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5241 		 * was requested by the user
5242 		 */
5243 		required_movablecore =
5244 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5245 		corepages = totalpages - required_movablecore;
5246 
5247 		required_kernelcore = max(required_kernelcore, corepages);
5248 	}
5249 
5250 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5251 	if (!required_kernelcore)
5252 		goto out;
5253 
5254 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5255 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5256 
5257 restart:
5258 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5259 	kernelcore_node = required_kernelcore / usable_nodes;
5260 	for_each_node_state(nid, N_MEMORY) {
5261 		unsigned long start_pfn, end_pfn;
5262 
5263 		/*
5264 		 * Recalculate kernelcore_node if the division per node
5265 		 * now exceeds what is necessary to satisfy the requested
5266 		 * amount of memory for the kernel
5267 		 */
5268 		if (required_kernelcore < kernelcore_node)
5269 			kernelcore_node = required_kernelcore / usable_nodes;
5270 
5271 		/*
5272 		 * As the map is walked, we track how much memory is usable
5273 		 * by the kernel using kernelcore_remaining. When it is
5274 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5275 		 */
5276 		kernelcore_remaining = kernelcore_node;
5277 
5278 		/* Go through each range of PFNs within this node */
5279 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5280 			unsigned long size_pages;
5281 
5282 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5283 			if (start_pfn >= end_pfn)
5284 				continue;
5285 
5286 			/* Account for what is only usable for kernelcore */
5287 			if (start_pfn < usable_startpfn) {
5288 				unsigned long kernel_pages;
5289 				kernel_pages = min(end_pfn, usable_startpfn)
5290 								- start_pfn;
5291 
5292 				kernelcore_remaining -= min(kernel_pages,
5293 							kernelcore_remaining);
5294 				required_kernelcore -= min(kernel_pages,
5295 							required_kernelcore);
5296 
5297 				/* Continue if range is now fully accounted */
5298 				if (end_pfn <= usable_startpfn) {
5299 
5300 					/*
5301 					 * Push zone_movable_pfn to the end so
5302 					 * that if we have to rebalance
5303 					 * kernelcore across nodes, we will
5304 					 * not double account here
5305 					 */
5306 					zone_movable_pfn[nid] = end_pfn;
5307 					continue;
5308 				}
5309 				start_pfn = usable_startpfn;
5310 			}
5311 
5312 			/*
5313 			 * The usable PFN range for ZONE_MOVABLE is from
5314 			 * start_pfn->end_pfn. Calculate size_pages as the
5315 			 * number of pages used as kernelcore
5316 			 */
5317 			size_pages = end_pfn - start_pfn;
5318 			if (size_pages > kernelcore_remaining)
5319 				size_pages = kernelcore_remaining;
5320 			zone_movable_pfn[nid] = start_pfn + size_pages;
5321 
5322 			/*
5323 			 * Some kernelcore has been met, update counts and
5324 			 * break if the kernelcore for this node has been
5325 			 * satisfied
5326 			 */
5327 			required_kernelcore -= min(required_kernelcore,
5328 								size_pages);
5329 			kernelcore_remaining -= size_pages;
5330 			if (!kernelcore_remaining)
5331 				break;
5332 		}
5333 	}
5334 
5335 	/*
5336 	 * If there is still required_kernelcore, we do another pass with one
5337 	 * less node in the count. This will push zone_movable_pfn[nid] further
5338 	 * along on the nodes that still have memory until kernelcore is
5339 	 * satisfied
5340 	 */
5341 	usable_nodes--;
5342 	if (usable_nodes && required_kernelcore > usable_nodes)
5343 		goto restart;
5344 
5345 out2:
5346 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5347 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5348 		zone_movable_pfn[nid] =
5349 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5350 
5351 out:
5352 	/* restore the node_state */
5353 	node_states[N_MEMORY] = saved_node_state;
5354 }
5355 
5356 /* Any regular or high memory on that node ? */
5357 static void check_for_memory(pg_data_t *pgdat, int nid)
5358 {
5359 	enum zone_type zone_type;
5360 
5361 	if (N_MEMORY == N_NORMAL_MEMORY)
5362 		return;
5363 
5364 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5365 		struct zone *zone = &pgdat->node_zones[zone_type];
5366 		if (populated_zone(zone)) {
5367 			node_set_state(nid, N_HIGH_MEMORY);
5368 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5369 			    zone_type <= ZONE_NORMAL)
5370 				node_set_state(nid, N_NORMAL_MEMORY);
5371 			break;
5372 		}
5373 	}
5374 }
5375 
5376 /**
5377  * free_area_init_nodes - Initialise all pg_data_t and zone data
5378  * @max_zone_pfn: an array of max PFNs for each zone
5379  *
5380  * This will call free_area_init_node() for each active node in the system.
5381  * Using the page ranges provided by memblock_set_node(), the size of each
5382  * zone in each node and their holes is calculated. If the maximum PFN
5383  * between two adjacent zones match, it is assumed that the zone is empty.
5384  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5385  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5386  * starts where the previous one ended. For example, ZONE_DMA32 starts
5387  * at arch_max_dma_pfn.
5388  */
5389 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5390 {
5391 	unsigned long start_pfn, end_pfn;
5392 	int i, nid;
5393 
5394 	/* Record where the zone boundaries are */
5395 	memset(arch_zone_lowest_possible_pfn, 0,
5396 				sizeof(arch_zone_lowest_possible_pfn));
5397 	memset(arch_zone_highest_possible_pfn, 0,
5398 				sizeof(arch_zone_highest_possible_pfn));
5399 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5400 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5401 	for (i = 1; i < MAX_NR_ZONES; i++) {
5402 		if (i == ZONE_MOVABLE)
5403 			continue;
5404 		arch_zone_lowest_possible_pfn[i] =
5405 			arch_zone_highest_possible_pfn[i-1];
5406 		arch_zone_highest_possible_pfn[i] =
5407 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5408 	}
5409 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5410 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5411 
5412 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5413 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5414 	find_zone_movable_pfns_for_nodes();
5415 
5416 	/* Print out the zone ranges */
5417 	pr_info("Zone ranges:\n");
5418 	for (i = 0; i < MAX_NR_ZONES; i++) {
5419 		if (i == ZONE_MOVABLE)
5420 			continue;
5421 		pr_info("  %-8s ", zone_names[i]);
5422 		if (arch_zone_lowest_possible_pfn[i] ==
5423 				arch_zone_highest_possible_pfn[i])
5424 			pr_cont("empty\n");
5425 		else
5426 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5427 				(u64)arch_zone_lowest_possible_pfn[i]
5428 					<< PAGE_SHIFT,
5429 				((u64)arch_zone_highest_possible_pfn[i]
5430 					<< PAGE_SHIFT) - 1);
5431 	}
5432 
5433 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5434 	pr_info("Movable zone start for each node\n");
5435 	for (i = 0; i < MAX_NUMNODES; i++) {
5436 		if (zone_movable_pfn[i])
5437 			pr_info("  Node %d: %#018Lx\n", i,
5438 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5439 	}
5440 
5441 	/* Print out the early node map */
5442 	pr_info("Early memory node ranges\n");
5443 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5444 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5445 			(u64)start_pfn << PAGE_SHIFT,
5446 			((u64)end_pfn << PAGE_SHIFT) - 1);
5447 
5448 	/* Initialise every node */
5449 	mminit_verify_pageflags_layout();
5450 	setup_nr_node_ids();
5451 	for_each_online_node(nid) {
5452 		pg_data_t *pgdat = NODE_DATA(nid);
5453 		free_area_init_node(nid, NULL,
5454 				find_min_pfn_for_node(nid), NULL);
5455 
5456 		/* Any memory on that node */
5457 		if (pgdat->node_present_pages)
5458 			node_set_state(nid, N_MEMORY);
5459 		check_for_memory(pgdat, nid);
5460 	}
5461 }
5462 
5463 static int __init cmdline_parse_core(char *p, unsigned long *core)
5464 {
5465 	unsigned long long coremem;
5466 	if (!p)
5467 		return -EINVAL;
5468 
5469 	coremem = memparse(p, &p);
5470 	*core = coremem >> PAGE_SHIFT;
5471 
5472 	/* Paranoid check that UL is enough for the coremem value */
5473 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5474 
5475 	return 0;
5476 }
5477 
5478 /*
5479  * kernelcore=size sets the amount of memory for use for allocations that
5480  * cannot be reclaimed or migrated.
5481  */
5482 static int __init cmdline_parse_kernelcore(char *p)
5483 {
5484 	return cmdline_parse_core(p, &required_kernelcore);
5485 }
5486 
5487 /*
5488  * movablecore=size sets the amount of memory for use for allocations that
5489  * can be reclaimed or migrated.
5490  */
5491 static int __init cmdline_parse_movablecore(char *p)
5492 {
5493 	return cmdline_parse_core(p, &required_movablecore);
5494 }
5495 
5496 early_param("kernelcore", cmdline_parse_kernelcore);
5497 early_param("movablecore", cmdline_parse_movablecore);
5498 
5499 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5500 
5501 void adjust_managed_page_count(struct page *page, long count)
5502 {
5503 	spin_lock(&managed_page_count_lock);
5504 	page_zone(page)->managed_pages += count;
5505 	totalram_pages += count;
5506 #ifdef CONFIG_HIGHMEM
5507 	if (PageHighMem(page))
5508 		totalhigh_pages += count;
5509 #endif
5510 	spin_unlock(&managed_page_count_lock);
5511 }
5512 EXPORT_SYMBOL(adjust_managed_page_count);
5513 
5514 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5515 {
5516 	void *pos;
5517 	unsigned long pages = 0;
5518 
5519 	start = (void *)PAGE_ALIGN((unsigned long)start);
5520 	end = (void *)((unsigned long)end & PAGE_MASK);
5521 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5522 		if ((unsigned int)poison <= 0xFF)
5523 			memset(pos, poison, PAGE_SIZE);
5524 		free_reserved_page(virt_to_page(pos));
5525 	}
5526 
5527 	if (pages && s)
5528 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5529 			s, pages << (PAGE_SHIFT - 10), start, end);
5530 
5531 	return pages;
5532 }
5533 EXPORT_SYMBOL(free_reserved_area);
5534 
5535 #ifdef	CONFIG_HIGHMEM
5536 void free_highmem_page(struct page *page)
5537 {
5538 	__free_reserved_page(page);
5539 	totalram_pages++;
5540 	page_zone(page)->managed_pages++;
5541 	totalhigh_pages++;
5542 }
5543 #endif
5544 
5545 
5546 void __init mem_init_print_info(const char *str)
5547 {
5548 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5549 	unsigned long init_code_size, init_data_size;
5550 
5551 	physpages = get_num_physpages();
5552 	codesize = _etext - _stext;
5553 	datasize = _edata - _sdata;
5554 	rosize = __end_rodata - __start_rodata;
5555 	bss_size = __bss_stop - __bss_start;
5556 	init_data_size = __init_end - __init_begin;
5557 	init_code_size = _einittext - _sinittext;
5558 
5559 	/*
5560 	 * Detect special cases and adjust section sizes accordingly:
5561 	 * 1) .init.* may be embedded into .data sections
5562 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5563 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5564 	 * 3) .rodata.* may be embedded into .text or .data sections.
5565 	 */
5566 #define adj_init_size(start, end, size, pos, adj) \
5567 	do { \
5568 		if (start <= pos && pos < end && size > adj) \
5569 			size -= adj; \
5570 	} while (0)
5571 
5572 	adj_init_size(__init_begin, __init_end, init_data_size,
5573 		     _sinittext, init_code_size);
5574 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5575 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5576 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5577 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5578 
5579 #undef	adj_init_size
5580 
5581 	pr_info("Memory: %luK/%luK available "
5582 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5583 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5584 #ifdef	CONFIG_HIGHMEM
5585 	       ", %luK highmem"
5586 #endif
5587 	       "%s%s)\n",
5588 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5589 	       codesize >> 10, datasize >> 10, rosize >> 10,
5590 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5591 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5592 	       totalcma_pages << (PAGE_SHIFT-10),
5593 #ifdef	CONFIG_HIGHMEM
5594 	       totalhigh_pages << (PAGE_SHIFT-10),
5595 #endif
5596 	       str ? ", " : "", str ? str : "");
5597 }
5598 
5599 /**
5600  * set_dma_reserve - set the specified number of pages reserved in the first zone
5601  * @new_dma_reserve: The number of pages to mark reserved
5602  *
5603  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5604  * In the DMA zone, a significant percentage may be consumed by kernel image
5605  * and other unfreeable allocations which can skew the watermarks badly. This
5606  * function may optionally be used to account for unfreeable pages in the
5607  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5608  * smaller per-cpu batchsize.
5609  */
5610 void __init set_dma_reserve(unsigned long new_dma_reserve)
5611 {
5612 	dma_reserve = new_dma_reserve;
5613 }
5614 
5615 void __init free_area_init(unsigned long *zones_size)
5616 {
5617 	free_area_init_node(0, zones_size,
5618 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5619 }
5620 
5621 static int page_alloc_cpu_notify(struct notifier_block *self,
5622 				 unsigned long action, void *hcpu)
5623 {
5624 	int cpu = (unsigned long)hcpu;
5625 
5626 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5627 		lru_add_drain_cpu(cpu);
5628 		drain_pages(cpu);
5629 
5630 		/*
5631 		 * Spill the event counters of the dead processor
5632 		 * into the current processors event counters.
5633 		 * This artificially elevates the count of the current
5634 		 * processor.
5635 		 */
5636 		vm_events_fold_cpu(cpu);
5637 
5638 		/*
5639 		 * Zero the differential counters of the dead processor
5640 		 * so that the vm statistics are consistent.
5641 		 *
5642 		 * This is only okay since the processor is dead and cannot
5643 		 * race with what we are doing.
5644 		 */
5645 		cpu_vm_stats_fold(cpu);
5646 	}
5647 	return NOTIFY_OK;
5648 }
5649 
5650 void __init page_alloc_init(void)
5651 {
5652 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5653 }
5654 
5655 /*
5656  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5657  *	or min_free_kbytes changes.
5658  */
5659 static void calculate_totalreserve_pages(void)
5660 {
5661 	struct pglist_data *pgdat;
5662 	unsigned long reserve_pages = 0;
5663 	enum zone_type i, j;
5664 
5665 	for_each_online_pgdat(pgdat) {
5666 		for (i = 0; i < MAX_NR_ZONES; i++) {
5667 			struct zone *zone = pgdat->node_zones + i;
5668 			long max = 0;
5669 
5670 			/* Find valid and maximum lowmem_reserve in the zone */
5671 			for (j = i; j < MAX_NR_ZONES; j++) {
5672 				if (zone->lowmem_reserve[j] > max)
5673 					max = zone->lowmem_reserve[j];
5674 			}
5675 
5676 			/* we treat the high watermark as reserved pages. */
5677 			max += high_wmark_pages(zone);
5678 
5679 			if (max > zone->managed_pages)
5680 				max = zone->managed_pages;
5681 			reserve_pages += max;
5682 			/*
5683 			 * Lowmem reserves are not available to
5684 			 * GFP_HIGHUSER page cache allocations and
5685 			 * kswapd tries to balance zones to their high
5686 			 * watermark.  As a result, neither should be
5687 			 * regarded as dirtyable memory, to prevent a
5688 			 * situation where reclaim has to clean pages
5689 			 * in order to balance the zones.
5690 			 */
5691 			zone->dirty_balance_reserve = max;
5692 		}
5693 	}
5694 	dirty_balance_reserve = reserve_pages;
5695 	totalreserve_pages = reserve_pages;
5696 }
5697 
5698 /*
5699  * setup_per_zone_lowmem_reserve - called whenever
5700  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5701  *	has a correct pages reserved value, so an adequate number of
5702  *	pages are left in the zone after a successful __alloc_pages().
5703  */
5704 static void setup_per_zone_lowmem_reserve(void)
5705 {
5706 	struct pglist_data *pgdat;
5707 	enum zone_type j, idx;
5708 
5709 	for_each_online_pgdat(pgdat) {
5710 		for (j = 0; j < MAX_NR_ZONES; j++) {
5711 			struct zone *zone = pgdat->node_zones + j;
5712 			unsigned long managed_pages = zone->managed_pages;
5713 
5714 			zone->lowmem_reserve[j] = 0;
5715 
5716 			idx = j;
5717 			while (idx) {
5718 				struct zone *lower_zone;
5719 
5720 				idx--;
5721 
5722 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5723 					sysctl_lowmem_reserve_ratio[idx] = 1;
5724 
5725 				lower_zone = pgdat->node_zones + idx;
5726 				lower_zone->lowmem_reserve[j] = managed_pages /
5727 					sysctl_lowmem_reserve_ratio[idx];
5728 				managed_pages += lower_zone->managed_pages;
5729 			}
5730 		}
5731 	}
5732 
5733 	/* update totalreserve_pages */
5734 	calculate_totalreserve_pages();
5735 }
5736 
5737 static void __setup_per_zone_wmarks(void)
5738 {
5739 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5740 	unsigned long lowmem_pages = 0;
5741 	struct zone *zone;
5742 	unsigned long flags;
5743 
5744 	/* Calculate total number of !ZONE_HIGHMEM pages */
5745 	for_each_zone(zone) {
5746 		if (!is_highmem(zone))
5747 			lowmem_pages += zone->managed_pages;
5748 	}
5749 
5750 	for_each_zone(zone) {
5751 		u64 tmp;
5752 
5753 		spin_lock_irqsave(&zone->lock, flags);
5754 		tmp = (u64)pages_min * zone->managed_pages;
5755 		do_div(tmp, lowmem_pages);
5756 		if (is_highmem(zone)) {
5757 			/*
5758 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5759 			 * need highmem pages, so cap pages_min to a small
5760 			 * value here.
5761 			 *
5762 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5763 			 * deltas control asynch page reclaim, and so should
5764 			 * not be capped for highmem.
5765 			 */
5766 			unsigned long min_pages;
5767 
5768 			min_pages = zone->managed_pages / 1024;
5769 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5770 			zone->watermark[WMARK_MIN] = min_pages;
5771 		} else {
5772 			/*
5773 			 * If it's a lowmem zone, reserve a number of pages
5774 			 * proportionate to the zone's size.
5775 			 */
5776 			zone->watermark[WMARK_MIN] = tmp;
5777 		}
5778 
5779 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5780 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5781 
5782 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5783 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5784 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5785 
5786 		setup_zone_migrate_reserve(zone);
5787 		spin_unlock_irqrestore(&zone->lock, flags);
5788 	}
5789 
5790 	/* update totalreserve_pages */
5791 	calculate_totalreserve_pages();
5792 }
5793 
5794 /**
5795  * setup_per_zone_wmarks - called when min_free_kbytes changes
5796  * or when memory is hot-{added|removed}
5797  *
5798  * Ensures that the watermark[min,low,high] values for each zone are set
5799  * correctly with respect to min_free_kbytes.
5800  */
5801 void setup_per_zone_wmarks(void)
5802 {
5803 	mutex_lock(&zonelists_mutex);
5804 	__setup_per_zone_wmarks();
5805 	mutex_unlock(&zonelists_mutex);
5806 }
5807 
5808 /*
5809  * The inactive anon list should be small enough that the VM never has to
5810  * do too much work, but large enough that each inactive page has a chance
5811  * to be referenced again before it is swapped out.
5812  *
5813  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5814  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5815  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5816  * the anonymous pages are kept on the inactive list.
5817  *
5818  * total     target    max
5819  * memory    ratio     inactive anon
5820  * -------------------------------------
5821  *   10MB       1         5MB
5822  *  100MB       1        50MB
5823  *    1GB       3       250MB
5824  *   10GB      10       0.9GB
5825  *  100GB      31         3GB
5826  *    1TB     101        10GB
5827  *   10TB     320        32GB
5828  */
5829 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5830 {
5831 	unsigned int gb, ratio;
5832 
5833 	/* Zone size in gigabytes */
5834 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5835 	if (gb)
5836 		ratio = int_sqrt(10 * gb);
5837 	else
5838 		ratio = 1;
5839 
5840 	zone->inactive_ratio = ratio;
5841 }
5842 
5843 static void __meminit setup_per_zone_inactive_ratio(void)
5844 {
5845 	struct zone *zone;
5846 
5847 	for_each_zone(zone)
5848 		calculate_zone_inactive_ratio(zone);
5849 }
5850 
5851 /*
5852  * Initialise min_free_kbytes.
5853  *
5854  * For small machines we want it small (128k min).  For large machines
5855  * we want it large (64MB max).  But it is not linear, because network
5856  * bandwidth does not increase linearly with machine size.  We use
5857  *
5858  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5859  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5860  *
5861  * which yields
5862  *
5863  * 16MB:	512k
5864  * 32MB:	724k
5865  * 64MB:	1024k
5866  * 128MB:	1448k
5867  * 256MB:	2048k
5868  * 512MB:	2896k
5869  * 1024MB:	4096k
5870  * 2048MB:	5792k
5871  * 4096MB:	8192k
5872  * 8192MB:	11584k
5873  * 16384MB:	16384k
5874  */
5875 int __meminit init_per_zone_wmark_min(void)
5876 {
5877 	unsigned long lowmem_kbytes;
5878 	int new_min_free_kbytes;
5879 
5880 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5881 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5882 
5883 	if (new_min_free_kbytes > user_min_free_kbytes) {
5884 		min_free_kbytes = new_min_free_kbytes;
5885 		if (min_free_kbytes < 128)
5886 			min_free_kbytes = 128;
5887 		if (min_free_kbytes > 65536)
5888 			min_free_kbytes = 65536;
5889 	} else {
5890 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5891 				new_min_free_kbytes, user_min_free_kbytes);
5892 	}
5893 	setup_per_zone_wmarks();
5894 	refresh_zone_stat_thresholds();
5895 	setup_per_zone_lowmem_reserve();
5896 	setup_per_zone_inactive_ratio();
5897 	return 0;
5898 }
5899 module_init(init_per_zone_wmark_min)
5900 
5901 /*
5902  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5903  *	that we can call two helper functions whenever min_free_kbytes
5904  *	changes.
5905  */
5906 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5907 	void __user *buffer, size_t *length, loff_t *ppos)
5908 {
5909 	int rc;
5910 
5911 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5912 	if (rc)
5913 		return rc;
5914 
5915 	if (write) {
5916 		user_min_free_kbytes = min_free_kbytes;
5917 		setup_per_zone_wmarks();
5918 	}
5919 	return 0;
5920 }
5921 
5922 #ifdef CONFIG_NUMA
5923 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5924 	void __user *buffer, size_t *length, loff_t *ppos)
5925 {
5926 	struct zone *zone;
5927 	int rc;
5928 
5929 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5930 	if (rc)
5931 		return rc;
5932 
5933 	for_each_zone(zone)
5934 		zone->min_unmapped_pages = (zone->managed_pages *
5935 				sysctl_min_unmapped_ratio) / 100;
5936 	return 0;
5937 }
5938 
5939 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5940 	void __user *buffer, size_t *length, loff_t *ppos)
5941 {
5942 	struct zone *zone;
5943 	int rc;
5944 
5945 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5946 	if (rc)
5947 		return rc;
5948 
5949 	for_each_zone(zone)
5950 		zone->min_slab_pages = (zone->managed_pages *
5951 				sysctl_min_slab_ratio) / 100;
5952 	return 0;
5953 }
5954 #endif
5955 
5956 /*
5957  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5958  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5959  *	whenever sysctl_lowmem_reserve_ratio changes.
5960  *
5961  * The reserve ratio obviously has absolutely no relation with the
5962  * minimum watermarks. The lowmem reserve ratio can only make sense
5963  * if in function of the boot time zone sizes.
5964  */
5965 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5966 	void __user *buffer, size_t *length, loff_t *ppos)
5967 {
5968 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5969 	setup_per_zone_lowmem_reserve();
5970 	return 0;
5971 }
5972 
5973 /*
5974  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5975  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5976  * pagelist can have before it gets flushed back to buddy allocator.
5977  */
5978 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5979 	void __user *buffer, size_t *length, loff_t *ppos)
5980 {
5981 	struct zone *zone;
5982 	int old_percpu_pagelist_fraction;
5983 	int ret;
5984 
5985 	mutex_lock(&pcp_batch_high_lock);
5986 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5987 
5988 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5989 	if (!write || ret < 0)
5990 		goto out;
5991 
5992 	/* Sanity checking to avoid pcp imbalance */
5993 	if (percpu_pagelist_fraction &&
5994 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5995 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5996 		ret = -EINVAL;
5997 		goto out;
5998 	}
5999 
6000 	/* No change? */
6001 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6002 		goto out;
6003 
6004 	for_each_populated_zone(zone) {
6005 		unsigned int cpu;
6006 
6007 		for_each_possible_cpu(cpu)
6008 			pageset_set_high_and_batch(zone,
6009 					per_cpu_ptr(zone->pageset, cpu));
6010 	}
6011 out:
6012 	mutex_unlock(&pcp_batch_high_lock);
6013 	return ret;
6014 }
6015 
6016 int hashdist = HASHDIST_DEFAULT;
6017 
6018 #ifdef CONFIG_NUMA
6019 static int __init set_hashdist(char *str)
6020 {
6021 	if (!str)
6022 		return 0;
6023 	hashdist = simple_strtoul(str, &str, 0);
6024 	return 1;
6025 }
6026 __setup("hashdist=", set_hashdist);
6027 #endif
6028 
6029 /*
6030  * allocate a large system hash table from bootmem
6031  * - it is assumed that the hash table must contain an exact power-of-2
6032  *   quantity of entries
6033  * - limit is the number of hash buckets, not the total allocation size
6034  */
6035 void *__init alloc_large_system_hash(const char *tablename,
6036 				     unsigned long bucketsize,
6037 				     unsigned long numentries,
6038 				     int scale,
6039 				     int flags,
6040 				     unsigned int *_hash_shift,
6041 				     unsigned int *_hash_mask,
6042 				     unsigned long low_limit,
6043 				     unsigned long high_limit)
6044 {
6045 	unsigned long long max = high_limit;
6046 	unsigned long log2qty, size;
6047 	void *table = NULL;
6048 
6049 	/* allow the kernel cmdline to have a say */
6050 	if (!numentries) {
6051 		/* round applicable memory size up to nearest megabyte */
6052 		numentries = nr_kernel_pages;
6053 
6054 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6055 		if (PAGE_SHIFT < 20)
6056 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6057 
6058 		/* limit to 1 bucket per 2^scale bytes of low memory */
6059 		if (scale > PAGE_SHIFT)
6060 			numentries >>= (scale - PAGE_SHIFT);
6061 		else
6062 			numentries <<= (PAGE_SHIFT - scale);
6063 
6064 		/* Make sure we've got at least a 0-order allocation.. */
6065 		if (unlikely(flags & HASH_SMALL)) {
6066 			/* Makes no sense without HASH_EARLY */
6067 			WARN_ON(!(flags & HASH_EARLY));
6068 			if (!(numentries >> *_hash_shift)) {
6069 				numentries = 1UL << *_hash_shift;
6070 				BUG_ON(!numentries);
6071 			}
6072 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6073 			numentries = PAGE_SIZE / bucketsize;
6074 	}
6075 	numentries = roundup_pow_of_two(numentries);
6076 
6077 	/* limit allocation size to 1/16 total memory by default */
6078 	if (max == 0) {
6079 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6080 		do_div(max, bucketsize);
6081 	}
6082 	max = min(max, 0x80000000ULL);
6083 
6084 	if (numentries < low_limit)
6085 		numentries = low_limit;
6086 	if (numentries > max)
6087 		numentries = max;
6088 
6089 	log2qty = ilog2(numentries);
6090 
6091 	do {
6092 		size = bucketsize << log2qty;
6093 		if (flags & HASH_EARLY)
6094 			table = memblock_virt_alloc_nopanic(size, 0);
6095 		else if (hashdist)
6096 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6097 		else {
6098 			/*
6099 			 * If bucketsize is not a power-of-two, we may free
6100 			 * some pages at the end of hash table which
6101 			 * alloc_pages_exact() automatically does
6102 			 */
6103 			if (get_order(size) < MAX_ORDER) {
6104 				table = alloc_pages_exact(size, GFP_ATOMIC);
6105 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6106 			}
6107 		}
6108 	} while (!table && size > PAGE_SIZE && --log2qty);
6109 
6110 	if (!table)
6111 		panic("Failed to allocate %s hash table\n", tablename);
6112 
6113 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6114 	       tablename,
6115 	       (1UL << log2qty),
6116 	       ilog2(size) - PAGE_SHIFT,
6117 	       size);
6118 
6119 	if (_hash_shift)
6120 		*_hash_shift = log2qty;
6121 	if (_hash_mask)
6122 		*_hash_mask = (1 << log2qty) - 1;
6123 
6124 	return table;
6125 }
6126 
6127 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6128 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6129 							unsigned long pfn)
6130 {
6131 #ifdef CONFIG_SPARSEMEM
6132 	return __pfn_to_section(pfn)->pageblock_flags;
6133 #else
6134 	return zone->pageblock_flags;
6135 #endif /* CONFIG_SPARSEMEM */
6136 }
6137 
6138 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6139 {
6140 #ifdef CONFIG_SPARSEMEM
6141 	pfn &= (PAGES_PER_SECTION-1);
6142 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6143 #else
6144 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6145 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6146 #endif /* CONFIG_SPARSEMEM */
6147 }
6148 
6149 /**
6150  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6151  * @page: The page within the block of interest
6152  * @pfn: The target page frame number
6153  * @end_bitidx: The last bit of interest to retrieve
6154  * @mask: mask of bits that the caller is interested in
6155  *
6156  * Return: pageblock_bits flags
6157  */
6158 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6159 					unsigned long end_bitidx,
6160 					unsigned long mask)
6161 {
6162 	struct zone *zone;
6163 	unsigned long *bitmap;
6164 	unsigned long bitidx, word_bitidx;
6165 	unsigned long word;
6166 
6167 	zone = page_zone(page);
6168 	bitmap = get_pageblock_bitmap(zone, pfn);
6169 	bitidx = pfn_to_bitidx(zone, pfn);
6170 	word_bitidx = bitidx / BITS_PER_LONG;
6171 	bitidx &= (BITS_PER_LONG-1);
6172 
6173 	word = bitmap[word_bitidx];
6174 	bitidx += end_bitidx;
6175 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6176 }
6177 
6178 /**
6179  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6180  * @page: The page within the block of interest
6181  * @flags: The flags to set
6182  * @pfn: The target page frame number
6183  * @end_bitidx: The last bit of interest
6184  * @mask: mask of bits that the caller is interested in
6185  */
6186 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6187 					unsigned long pfn,
6188 					unsigned long end_bitidx,
6189 					unsigned long mask)
6190 {
6191 	struct zone *zone;
6192 	unsigned long *bitmap;
6193 	unsigned long bitidx, word_bitidx;
6194 	unsigned long old_word, word;
6195 
6196 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6197 
6198 	zone = page_zone(page);
6199 	bitmap = get_pageblock_bitmap(zone, pfn);
6200 	bitidx = pfn_to_bitidx(zone, pfn);
6201 	word_bitidx = bitidx / BITS_PER_LONG;
6202 	bitidx &= (BITS_PER_LONG-1);
6203 
6204 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6205 
6206 	bitidx += end_bitidx;
6207 	mask <<= (BITS_PER_LONG - bitidx - 1);
6208 	flags <<= (BITS_PER_LONG - bitidx - 1);
6209 
6210 	word = READ_ONCE(bitmap[word_bitidx]);
6211 	for (;;) {
6212 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6213 		if (word == old_word)
6214 			break;
6215 		word = old_word;
6216 	}
6217 }
6218 
6219 /*
6220  * This function checks whether pageblock includes unmovable pages or not.
6221  * If @count is not zero, it is okay to include less @count unmovable pages
6222  *
6223  * PageLRU check without isolation or lru_lock could race so that
6224  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6225  * expect this function should be exact.
6226  */
6227 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6228 			 bool skip_hwpoisoned_pages)
6229 {
6230 	unsigned long pfn, iter, found;
6231 	int mt;
6232 
6233 	/*
6234 	 * For avoiding noise data, lru_add_drain_all() should be called
6235 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6236 	 */
6237 	if (zone_idx(zone) == ZONE_MOVABLE)
6238 		return false;
6239 	mt = get_pageblock_migratetype(page);
6240 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6241 		return false;
6242 
6243 	pfn = page_to_pfn(page);
6244 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6245 		unsigned long check = pfn + iter;
6246 
6247 		if (!pfn_valid_within(check))
6248 			continue;
6249 
6250 		page = pfn_to_page(check);
6251 
6252 		/*
6253 		 * Hugepages are not in LRU lists, but they're movable.
6254 		 * We need not scan over tail pages bacause we don't
6255 		 * handle each tail page individually in migration.
6256 		 */
6257 		if (PageHuge(page)) {
6258 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6259 			continue;
6260 		}
6261 
6262 		/*
6263 		 * We can't use page_count without pin a page
6264 		 * because another CPU can free compound page.
6265 		 * This check already skips compound tails of THP
6266 		 * because their page->_count is zero at all time.
6267 		 */
6268 		if (!atomic_read(&page->_count)) {
6269 			if (PageBuddy(page))
6270 				iter += (1 << page_order(page)) - 1;
6271 			continue;
6272 		}
6273 
6274 		/*
6275 		 * The HWPoisoned page may be not in buddy system, and
6276 		 * page_count() is not 0.
6277 		 */
6278 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6279 			continue;
6280 
6281 		if (!PageLRU(page))
6282 			found++;
6283 		/*
6284 		 * If there are RECLAIMABLE pages, we need to check
6285 		 * it.  But now, memory offline itself doesn't call
6286 		 * shrink_node_slabs() and it still to be fixed.
6287 		 */
6288 		/*
6289 		 * If the page is not RAM, page_count()should be 0.
6290 		 * we don't need more check. This is an _used_ not-movable page.
6291 		 *
6292 		 * The problematic thing here is PG_reserved pages. PG_reserved
6293 		 * is set to both of a memory hole page and a _used_ kernel
6294 		 * page at boot.
6295 		 */
6296 		if (found > count)
6297 			return true;
6298 	}
6299 	return false;
6300 }
6301 
6302 bool is_pageblock_removable_nolock(struct page *page)
6303 {
6304 	struct zone *zone;
6305 	unsigned long pfn;
6306 
6307 	/*
6308 	 * We have to be careful here because we are iterating over memory
6309 	 * sections which are not zone aware so we might end up outside of
6310 	 * the zone but still within the section.
6311 	 * We have to take care about the node as well. If the node is offline
6312 	 * its NODE_DATA will be NULL - see page_zone.
6313 	 */
6314 	if (!node_online(page_to_nid(page)))
6315 		return false;
6316 
6317 	zone = page_zone(page);
6318 	pfn = page_to_pfn(page);
6319 	if (!zone_spans_pfn(zone, pfn))
6320 		return false;
6321 
6322 	return !has_unmovable_pages(zone, page, 0, true);
6323 }
6324 
6325 #ifdef CONFIG_CMA
6326 
6327 static unsigned long pfn_max_align_down(unsigned long pfn)
6328 {
6329 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6330 			     pageblock_nr_pages) - 1);
6331 }
6332 
6333 static unsigned long pfn_max_align_up(unsigned long pfn)
6334 {
6335 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6336 				pageblock_nr_pages));
6337 }
6338 
6339 /* [start, end) must belong to a single zone. */
6340 static int __alloc_contig_migrate_range(struct compact_control *cc,
6341 					unsigned long start, unsigned long end)
6342 {
6343 	/* This function is based on compact_zone() from compaction.c. */
6344 	unsigned long nr_reclaimed;
6345 	unsigned long pfn = start;
6346 	unsigned int tries = 0;
6347 	int ret = 0;
6348 
6349 	migrate_prep();
6350 
6351 	while (pfn < end || !list_empty(&cc->migratepages)) {
6352 		if (fatal_signal_pending(current)) {
6353 			ret = -EINTR;
6354 			break;
6355 		}
6356 
6357 		if (list_empty(&cc->migratepages)) {
6358 			cc->nr_migratepages = 0;
6359 			pfn = isolate_migratepages_range(cc, pfn, end);
6360 			if (!pfn) {
6361 				ret = -EINTR;
6362 				break;
6363 			}
6364 			tries = 0;
6365 		} else if (++tries == 5) {
6366 			ret = ret < 0 ? ret : -EBUSY;
6367 			break;
6368 		}
6369 
6370 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6371 							&cc->migratepages);
6372 		cc->nr_migratepages -= nr_reclaimed;
6373 
6374 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6375 				    NULL, 0, cc->mode, MR_CMA);
6376 	}
6377 	if (ret < 0) {
6378 		putback_movable_pages(&cc->migratepages);
6379 		return ret;
6380 	}
6381 	return 0;
6382 }
6383 
6384 /**
6385  * alloc_contig_range() -- tries to allocate given range of pages
6386  * @start:	start PFN to allocate
6387  * @end:	one-past-the-last PFN to allocate
6388  * @migratetype:	migratetype of the underlaying pageblocks (either
6389  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6390  *			in range must have the same migratetype and it must
6391  *			be either of the two.
6392  *
6393  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6394  * aligned, however it's the caller's responsibility to guarantee that
6395  * we are the only thread that changes migrate type of pageblocks the
6396  * pages fall in.
6397  *
6398  * The PFN range must belong to a single zone.
6399  *
6400  * Returns zero on success or negative error code.  On success all
6401  * pages which PFN is in [start, end) are allocated for the caller and
6402  * need to be freed with free_contig_range().
6403  */
6404 int alloc_contig_range(unsigned long start, unsigned long end,
6405 		       unsigned migratetype)
6406 {
6407 	unsigned long outer_start, outer_end;
6408 	int ret = 0, order;
6409 
6410 	struct compact_control cc = {
6411 		.nr_migratepages = 0,
6412 		.order = -1,
6413 		.zone = page_zone(pfn_to_page(start)),
6414 		.mode = MIGRATE_SYNC,
6415 		.ignore_skip_hint = true,
6416 	};
6417 	INIT_LIST_HEAD(&cc.migratepages);
6418 
6419 	/*
6420 	 * What we do here is we mark all pageblocks in range as
6421 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6422 	 * have different sizes, and due to the way page allocator
6423 	 * work, we align the range to biggest of the two pages so
6424 	 * that page allocator won't try to merge buddies from
6425 	 * different pageblocks and change MIGRATE_ISOLATE to some
6426 	 * other migration type.
6427 	 *
6428 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6429 	 * migrate the pages from an unaligned range (ie. pages that
6430 	 * we are interested in).  This will put all the pages in
6431 	 * range back to page allocator as MIGRATE_ISOLATE.
6432 	 *
6433 	 * When this is done, we take the pages in range from page
6434 	 * allocator removing them from the buddy system.  This way
6435 	 * page allocator will never consider using them.
6436 	 *
6437 	 * This lets us mark the pageblocks back as
6438 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6439 	 * aligned range but not in the unaligned, original range are
6440 	 * put back to page allocator so that buddy can use them.
6441 	 */
6442 
6443 	ret = start_isolate_page_range(pfn_max_align_down(start),
6444 				       pfn_max_align_up(end), migratetype,
6445 				       false);
6446 	if (ret)
6447 		return ret;
6448 
6449 	ret = __alloc_contig_migrate_range(&cc, start, end);
6450 	if (ret)
6451 		goto done;
6452 
6453 	/*
6454 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6455 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6456 	 * more, all pages in [start, end) are free in page allocator.
6457 	 * What we are going to do is to allocate all pages from
6458 	 * [start, end) (that is remove them from page allocator).
6459 	 *
6460 	 * The only problem is that pages at the beginning and at the
6461 	 * end of interesting range may be not aligned with pages that
6462 	 * page allocator holds, ie. they can be part of higher order
6463 	 * pages.  Because of this, we reserve the bigger range and
6464 	 * once this is done free the pages we are not interested in.
6465 	 *
6466 	 * We don't have to hold zone->lock here because the pages are
6467 	 * isolated thus they won't get removed from buddy.
6468 	 */
6469 
6470 	lru_add_drain_all();
6471 	drain_all_pages(cc.zone);
6472 
6473 	order = 0;
6474 	outer_start = start;
6475 	while (!PageBuddy(pfn_to_page(outer_start))) {
6476 		if (++order >= MAX_ORDER) {
6477 			ret = -EBUSY;
6478 			goto done;
6479 		}
6480 		outer_start &= ~0UL << order;
6481 	}
6482 
6483 	/* Make sure the range is really isolated. */
6484 	if (test_pages_isolated(outer_start, end, false)) {
6485 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6486 			__func__, outer_start, end);
6487 		ret = -EBUSY;
6488 		goto done;
6489 	}
6490 
6491 	/* Grab isolated pages from freelists. */
6492 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6493 	if (!outer_end) {
6494 		ret = -EBUSY;
6495 		goto done;
6496 	}
6497 
6498 	/* Free head and tail (if any) */
6499 	if (start != outer_start)
6500 		free_contig_range(outer_start, start - outer_start);
6501 	if (end != outer_end)
6502 		free_contig_range(end, outer_end - end);
6503 
6504 done:
6505 	undo_isolate_page_range(pfn_max_align_down(start),
6506 				pfn_max_align_up(end), migratetype);
6507 	return ret;
6508 }
6509 
6510 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6511 {
6512 	unsigned int count = 0;
6513 
6514 	for (; nr_pages--; pfn++) {
6515 		struct page *page = pfn_to_page(pfn);
6516 
6517 		count += page_count(page) != 1;
6518 		__free_page(page);
6519 	}
6520 	WARN(count != 0, "%d pages are still in use!\n", count);
6521 }
6522 #endif
6523 
6524 #ifdef CONFIG_MEMORY_HOTPLUG
6525 /*
6526  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6527  * page high values need to be recalulated.
6528  */
6529 void __meminit zone_pcp_update(struct zone *zone)
6530 {
6531 	unsigned cpu;
6532 	mutex_lock(&pcp_batch_high_lock);
6533 	for_each_possible_cpu(cpu)
6534 		pageset_set_high_and_batch(zone,
6535 				per_cpu_ptr(zone->pageset, cpu));
6536 	mutex_unlock(&pcp_batch_high_lock);
6537 }
6538 #endif
6539 
6540 void zone_pcp_reset(struct zone *zone)
6541 {
6542 	unsigned long flags;
6543 	int cpu;
6544 	struct per_cpu_pageset *pset;
6545 
6546 	/* avoid races with drain_pages()  */
6547 	local_irq_save(flags);
6548 	if (zone->pageset != &boot_pageset) {
6549 		for_each_online_cpu(cpu) {
6550 			pset = per_cpu_ptr(zone->pageset, cpu);
6551 			drain_zonestat(zone, pset);
6552 		}
6553 		free_percpu(zone->pageset);
6554 		zone->pageset = &boot_pageset;
6555 	}
6556 	local_irq_restore(flags);
6557 }
6558 
6559 #ifdef CONFIG_MEMORY_HOTREMOVE
6560 /*
6561  * All pages in the range must be isolated before calling this.
6562  */
6563 void
6564 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6565 {
6566 	struct page *page;
6567 	struct zone *zone;
6568 	unsigned int order, i;
6569 	unsigned long pfn;
6570 	unsigned long flags;
6571 	/* find the first valid pfn */
6572 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6573 		if (pfn_valid(pfn))
6574 			break;
6575 	if (pfn == end_pfn)
6576 		return;
6577 	zone = page_zone(pfn_to_page(pfn));
6578 	spin_lock_irqsave(&zone->lock, flags);
6579 	pfn = start_pfn;
6580 	while (pfn < end_pfn) {
6581 		if (!pfn_valid(pfn)) {
6582 			pfn++;
6583 			continue;
6584 		}
6585 		page = pfn_to_page(pfn);
6586 		/*
6587 		 * The HWPoisoned page may be not in buddy system, and
6588 		 * page_count() is not 0.
6589 		 */
6590 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6591 			pfn++;
6592 			SetPageReserved(page);
6593 			continue;
6594 		}
6595 
6596 		BUG_ON(page_count(page));
6597 		BUG_ON(!PageBuddy(page));
6598 		order = page_order(page);
6599 #ifdef CONFIG_DEBUG_VM
6600 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6601 		       pfn, 1 << order, end_pfn);
6602 #endif
6603 		list_del(&page->lru);
6604 		rmv_page_order(page);
6605 		zone->free_area[order].nr_free--;
6606 		for (i = 0; i < (1 << order); i++)
6607 			SetPageReserved((page+i));
6608 		pfn += (1 << order);
6609 	}
6610 	spin_unlock_irqrestore(&zone->lock, flags);
6611 }
6612 #endif
6613 
6614 #ifdef CONFIG_MEMORY_FAILURE
6615 bool is_free_buddy_page(struct page *page)
6616 {
6617 	struct zone *zone = page_zone(page);
6618 	unsigned long pfn = page_to_pfn(page);
6619 	unsigned long flags;
6620 	unsigned int order;
6621 
6622 	spin_lock_irqsave(&zone->lock, flags);
6623 	for (order = 0; order < MAX_ORDER; order++) {
6624 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6625 
6626 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6627 			break;
6628 	}
6629 	spin_unlock_irqrestore(&zone->lock, flags);
6630 
6631 	return order < MAX_ORDER;
6632 }
6633 #endif
6634