1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmstat.h> 38 #include <linux/fault-inject.h> 39 #include <linux/compaction.h> 40 #include <trace/events/kmem.h> 41 #include <trace/events/oom.h> 42 #include <linux/prefetch.h> 43 #include <linux/mm_inline.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/migrate.h> 46 #include <linux/sched/mm.h> 47 #include <linux/page_owner.h> 48 #include <linux/page_table_check.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/lockdep.h> 52 #include <linux/psi.h> 53 #include <linux/khugepaged.h> 54 #include <linux/delayacct.h> 55 #include <asm/div64.h> 56 #include "internal.h" 57 #include "shuffle.h" 58 #include "page_reporting.h" 59 60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 61 typedef int __bitwise fpi_t; 62 63 /* No special request */ 64 #define FPI_NONE ((__force fpi_t)0) 65 66 /* 67 * Skip free page reporting notification for the (possibly merged) page. 68 * This does not hinder free page reporting from grabbing the page, 69 * reporting it and marking it "reported" - it only skips notifying 70 * the free page reporting infrastructure about a newly freed page. For 71 * example, used when temporarily pulling a page from a freelist and 72 * putting it back unmodified. 73 */ 74 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 75 76 /* 77 * Place the (possibly merged) page to the tail of the freelist. Will ignore 78 * page shuffling (relevant code - e.g., memory onlining - is expected to 79 * shuffle the whole zone). 80 * 81 * Note: No code should rely on this flag for correctness - it's purely 82 * to allow for optimizations when handing back either fresh pages 83 * (memory onlining) or untouched pages (page isolation, free page 84 * reporting). 85 */ 86 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 87 88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 89 static DEFINE_MUTEX(pcp_batch_high_lock); 90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 91 92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 93 /* 94 * On SMP, spin_trylock is sufficient protection. 95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 96 */ 97 #define pcp_trylock_prepare(flags) do { } while (0) 98 #define pcp_trylock_finish(flag) do { } while (0) 99 #else 100 101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 102 #define pcp_trylock_prepare(flags) local_irq_save(flags) 103 #define pcp_trylock_finish(flags) local_irq_restore(flags) 104 #endif 105 106 /* 107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 108 * a migration causing the wrong PCP to be locked and remote memory being 109 * potentially allocated, pin the task to the CPU for the lookup+lock. 110 * preempt_disable is used on !RT because it is faster than migrate_disable. 111 * migrate_disable is used on RT because otherwise RT spinlock usage is 112 * interfered with and a high priority task cannot preempt the allocator. 113 */ 114 #ifndef CONFIG_PREEMPT_RT 115 #define pcpu_task_pin() preempt_disable() 116 #define pcpu_task_unpin() preempt_enable() 117 #else 118 #define pcpu_task_pin() migrate_disable() 119 #define pcpu_task_unpin() migrate_enable() 120 #endif 121 122 /* 123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 124 * Return value should be used with equivalent unlock helper. 125 */ 126 #define pcpu_spin_lock(type, member, ptr) \ 127 ({ \ 128 type *_ret; \ 129 pcpu_task_pin(); \ 130 _ret = this_cpu_ptr(ptr); \ 131 spin_lock(&_ret->member); \ 132 _ret; \ 133 }) 134 135 #define pcpu_spin_trylock(type, member, ptr) \ 136 ({ \ 137 type *_ret; \ 138 pcpu_task_pin(); \ 139 _ret = this_cpu_ptr(ptr); \ 140 if (!spin_trylock(&_ret->member)) { \ 141 pcpu_task_unpin(); \ 142 _ret = NULL; \ 143 } \ 144 _ret; \ 145 }) 146 147 #define pcpu_spin_unlock(member, ptr) \ 148 ({ \ 149 spin_unlock(&ptr->member); \ 150 pcpu_task_unpin(); \ 151 }) 152 153 /* struct per_cpu_pages specific helpers. */ 154 #define pcp_spin_lock(ptr) \ 155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 156 157 #define pcp_spin_trylock(ptr) \ 158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_unlock(ptr) \ 161 pcpu_spin_unlock(lock, ptr) 162 163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 164 DEFINE_PER_CPU(int, numa_node); 165 EXPORT_PER_CPU_SYMBOL(numa_node); 166 #endif 167 168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 169 170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 171 /* 172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 175 * defined in <linux/topology.h>. 176 */ 177 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 178 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 179 #endif 180 181 static DEFINE_MUTEX(pcpu_drain_mutex); 182 183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 184 volatile unsigned long latent_entropy __latent_entropy; 185 EXPORT_SYMBOL(latent_entropy); 186 #endif 187 188 /* 189 * Array of node states. 190 */ 191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 192 [N_POSSIBLE] = NODE_MASK_ALL, 193 [N_ONLINE] = { { [0] = 1UL } }, 194 #ifndef CONFIG_NUMA 195 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 196 #ifdef CONFIG_HIGHMEM 197 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 198 #endif 199 [N_MEMORY] = { { [0] = 1UL } }, 200 [N_CPU] = { { [0] = 1UL } }, 201 #endif /* NUMA */ 202 }; 203 EXPORT_SYMBOL(node_states); 204 205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 206 207 /* 208 * A cached value of the page's pageblock's migratetype, used when the page is 209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 210 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 211 * Also the migratetype set in the page does not necessarily match the pcplist 212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 213 * other index - this ensures that it will be put on the correct CMA freelist. 214 */ 215 static inline int get_pcppage_migratetype(struct page *page) 216 { 217 return page->index; 218 } 219 220 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 221 { 222 page->index = migratetype; 223 } 224 225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 226 unsigned int pageblock_order __read_mostly; 227 #endif 228 229 static void __free_pages_ok(struct page *page, unsigned int order, 230 fpi_t fpi_flags); 231 232 /* 233 * results with 256, 32 in the lowmem_reserve sysctl: 234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 235 * 1G machine -> (16M dma, 784M normal, 224M high) 236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 239 * 240 * TBD: should special case ZONE_DMA32 machines here - in those we normally 241 * don't need any ZONE_NORMAL reservation 242 */ 243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 244 #ifdef CONFIG_ZONE_DMA 245 [ZONE_DMA] = 256, 246 #endif 247 #ifdef CONFIG_ZONE_DMA32 248 [ZONE_DMA32] = 256, 249 #endif 250 [ZONE_NORMAL] = 32, 251 #ifdef CONFIG_HIGHMEM 252 [ZONE_HIGHMEM] = 0, 253 #endif 254 [ZONE_MOVABLE] = 0, 255 }; 256 257 char * const zone_names[MAX_NR_ZONES] = { 258 #ifdef CONFIG_ZONE_DMA 259 "DMA", 260 #endif 261 #ifdef CONFIG_ZONE_DMA32 262 "DMA32", 263 #endif 264 "Normal", 265 #ifdef CONFIG_HIGHMEM 266 "HighMem", 267 #endif 268 "Movable", 269 #ifdef CONFIG_ZONE_DEVICE 270 "Device", 271 #endif 272 }; 273 274 const char * const migratetype_names[MIGRATE_TYPES] = { 275 "Unmovable", 276 "Movable", 277 "Reclaimable", 278 "HighAtomic", 279 #ifdef CONFIG_CMA 280 "CMA", 281 #endif 282 #ifdef CONFIG_MEMORY_ISOLATION 283 "Isolate", 284 #endif 285 }; 286 287 int min_free_kbytes = 1024; 288 int user_min_free_kbytes = -1; 289 static int watermark_boost_factor __read_mostly = 15000; 290 static int watermark_scale_factor = 10; 291 292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 293 int movable_zone; 294 EXPORT_SYMBOL(movable_zone); 295 296 #if MAX_NUMNODES > 1 297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 298 unsigned int nr_online_nodes __read_mostly = 1; 299 EXPORT_SYMBOL(nr_node_ids); 300 EXPORT_SYMBOL(nr_online_nodes); 301 #endif 302 303 static bool page_contains_unaccepted(struct page *page, unsigned int order); 304 static void accept_page(struct page *page, unsigned int order); 305 static bool cond_accept_memory(struct zone *zone, unsigned int order); 306 static inline bool has_unaccepted_memory(void); 307 static bool __free_unaccepted(struct page *page); 308 309 int page_group_by_mobility_disabled __read_mostly; 310 311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 312 /* 313 * During boot we initialize deferred pages on-demand, as needed, but once 314 * page_alloc_init_late() has finished, the deferred pages are all initialized, 315 * and we can permanently disable that path. 316 */ 317 DEFINE_STATIC_KEY_TRUE(deferred_pages); 318 319 static inline bool deferred_pages_enabled(void) 320 { 321 return static_branch_unlikely(&deferred_pages); 322 } 323 324 /* 325 * deferred_grow_zone() is __init, but it is called from 326 * get_page_from_freelist() during early boot until deferred_pages permanently 327 * disables this call. This is why we have refdata wrapper to avoid warning, 328 * and to ensure that the function body gets unloaded. 329 */ 330 static bool __ref 331 _deferred_grow_zone(struct zone *zone, unsigned int order) 332 { 333 return deferred_grow_zone(zone, order); 334 } 335 #else 336 static inline bool deferred_pages_enabled(void) 337 { 338 return false; 339 } 340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 341 342 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 343 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 344 unsigned long pfn) 345 { 346 #ifdef CONFIG_SPARSEMEM 347 return section_to_usemap(__pfn_to_section(pfn)); 348 #else 349 return page_zone(page)->pageblock_flags; 350 #endif /* CONFIG_SPARSEMEM */ 351 } 352 353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 354 { 355 #ifdef CONFIG_SPARSEMEM 356 pfn &= (PAGES_PER_SECTION-1); 357 #else 358 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 359 #endif /* CONFIG_SPARSEMEM */ 360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 361 } 362 363 /** 364 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 365 * @page: The page within the block of interest 366 * @pfn: The target page frame number 367 * @mask: mask of bits that the caller is interested in 368 * 369 * Return: pageblock_bits flags 370 */ 371 unsigned long get_pfnblock_flags_mask(const struct page *page, 372 unsigned long pfn, unsigned long mask) 373 { 374 unsigned long *bitmap; 375 unsigned long bitidx, word_bitidx; 376 unsigned long word; 377 378 bitmap = get_pageblock_bitmap(page, pfn); 379 bitidx = pfn_to_bitidx(page, pfn); 380 word_bitidx = bitidx / BITS_PER_LONG; 381 bitidx &= (BITS_PER_LONG-1); 382 /* 383 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 384 * a consistent read of the memory array, so that results, even though 385 * racy, are not corrupted. 386 */ 387 word = READ_ONCE(bitmap[word_bitidx]); 388 return (word >> bitidx) & mask; 389 } 390 391 static __always_inline int get_pfnblock_migratetype(const struct page *page, 392 unsigned long pfn) 393 { 394 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 395 } 396 397 /** 398 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 399 * @page: The page within the block of interest 400 * @flags: The flags to set 401 * @pfn: The target page frame number 402 * @mask: mask of bits that the caller is interested in 403 */ 404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 405 unsigned long pfn, 406 unsigned long mask) 407 { 408 unsigned long *bitmap; 409 unsigned long bitidx, word_bitidx; 410 unsigned long word; 411 412 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 413 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 414 415 bitmap = get_pageblock_bitmap(page, pfn); 416 bitidx = pfn_to_bitidx(page, pfn); 417 word_bitidx = bitidx / BITS_PER_LONG; 418 bitidx &= (BITS_PER_LONG-1); 419 420 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 421 422 mask <<= bitidx; 423 flags <<= bitidx; 424 425 word = READ_ONCE(bitmap[word_bitidx]); 426 do { 427 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 428 } 429 430 void set_pageblock_migratetype(struct page *page, int migratetype) 431 { 432 if (unlikely(page_group_by_mobility_disabled && 433 migratetype < MIGRATE_PCPTYPES)) 434 migratetype = MIGRATE_UNMOVABLE; 435 436 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 437 page_to_pfn(page), MIGRATETYPE_MASK); 438 } 439 440 #ifdef CONFIG_DEBUG_VM 441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 442 { 443 int ret; 444 unsigned seq; 445 unsigned long pfn = page_to_pfn(page); 446 unsigned long sp, start_pfn; 447 448 do { 449 seq = zone_span_seqbegin(zone); 450 start_pfn = zone->zone_start_pfn; 451 sp = zone->spanned_pages; 452 ret = !zone_spans_pfn(zone, pfn); 453 } while (zone_span_seqretry(zone, seq)); 454 455 if (ret) 456 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 457 pfn, zone_to_nid(zone), zone->name, 458 start_pfn, start_pfn + sp); 459 460 return ret; 461 } 462 463 /* 464 * Temporary debugging check for pages not lying within a given zone. 465 */ 466 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 467 { 468 if (page_outside_zone_boundaries(zone, page)) 469 return 1; 470 if (zone != page_zone(page)) 471 return 1; 472 473 return 0; 474 } 475 #else 476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 477 { 478 return 0; 479 } 480 #endif 481 482 static void bad_page(struct page *page, const char *reason) 483 { 484 static unsigned long resume; 485 static unsigned long nr_shown; 486 static unsigned long nr_unshown; 487 488 /* 489 * Allow a burst of 60 reports, then keep quiet for that minute; 490 * or allow a steady drip of one report per second. 491 */ 492 if (nr_shown == 60) { 493 if (time_before(jiffies, resume)) { 494 nr_unshown++; 495 goto out; 496 } 497 if (nr_unshown) { 498 pr_alert( 499 "BUG: Bad page state: %lu messages suppressed\n", 500 nr_unshown); 501 nr_unshown = 0; 502 } 503 nr_shown = 0; 504 } 505 if (nr_shown++ == 0) 506 resume = jiffies + 60 * HZ; 507 508 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 509 current->comm, page_to_pfn(page)); 510 dump_page(page, reason); 511 512 print_modules(); 513 dump_stack(); 514 out: 515 /* Leave bad fields for debug, except PageBuddy could make trouble */ 516 page_mapcount_reset(page); /* remove PageBuddy */ 517 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 518 } 519 520 static inline unsigned int order_to_pindex(int migratetype, int order) 521 { 522 bool __maybe_unused movable; 523 524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 525 if (order > PAGE_ALLOC_COSTLY_ORDER) { 526 VM_BUG_ON(order != pageblock_order); 527 528 movable = migratetype == MIGRATE_MOVABLE; 529 530 return NR_LOWORDER_PCP_LISTS + movable; 531 } 532 #else 533 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 534 #endif 535 536 return (MIGRATE_PCPTYPES * order) + migratetype; 537 } 538 539 static inline int pindex_to_order(unsigned int pindex) 540 { 541 int order = pindex / MIGRATE_PCPTYPES; 542 543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 544 if (pindex >= NR_LOWORDER_PCP_LISTS) 545 order = pageblock_order; 546 #else 547 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 548 #endif 549 550 return order; 551 } 552 553 static inline bool pcp_allowed_order(unsigned int order) 554 { 555 if (order <= PAGE_ALLOC_COSTLY_ORDER) 556 return true; 557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 558 if (order == pageblock_order) 559 return true; 560 #endif 561 return false; 562 } 563 564 static inline void free_the_page(struct page *page, unsigned int order) 565 { 566 if (pcp_allowed_order(order)) /* Via pcp? */ 567 free_unref_page(page, order); 568 else 569 __free_pages_ok(page, order, FPI_NONE); 570 } 571 572 /* 573 * Higher-order pages are called "compound pages". They are structured thusly: 574 * 575 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 576 * 577 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 578 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 579 * 580 * The first tail page's ->compound_order holds the order of allocation. 581 * This usage means that zero-order pages may not be compound. 582 */ 583 584 void prep_compound_page(struct page *page, unsigned int order) 585 { 586 int i; 587 int nr_pages = 1 << order; 588 589 __SetPageHead(page); 590 for (i = 1; i < nr_pages; i++) 591 prep_compound_tail(page, i); 592 593 prep_compound_head(page, order); 594 } 595 596 void destroy_large_folio(struct folio *folio) 597 { 598 if (folio_test_hugetlb(folio)) { 599 free_huge_folio(folio); 600 return; 601 } 602 603 folio_unqueue_deferred_split(folio); 604 mem_cgroup_uncharge(folio); 605 free_the_page(&folio->page, folio_order(folio)); 606 } 607 608 static inline void set_buddy_order(struct page *page, unsigned int order) 609 { 610 set_page_private(page, order); 611 __SetPageBuddy(page); 612 } 613 614 #ifdef CONFIG_COMPACTION 615 static inline struct capture_control *task_capc(struct zone *zone) 616 { 617 struct capture_control *capc = current->capture_control; 618 619 return unlikely(capc) && 620 !(current->flags & PF_KTHREAD) && 621 !capc->page && 622 capc->cc->zone == zone ? capc : NULL; 623 } 624 625 static inline bool 626 compaction_capture(struct capture_control *capc, struct page *page, 627 int order, int migratetype) 628 { 629 if (!capc || order != capc->cc->order) 630 return false; 631 632 /* Do not accidentally pollute CMA or isolated regions*/ 633 if (is_migrate_cma(migratetype) || 634 is_migrate_isolate(migratetype)) 635 return false; 636 637 /* 638 * Do not let lower order allocations pollute a movable pageblock. 639 * This might let an unmovable request use a reclaimable pageblock 640 * and vice-versa but no more than normal fallback logic which can 641 * have trouble finding a high-order free page. 642 */ 643 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 644 return false; 645 646 capc->page = page; 647 return true; 648 } 649 650 #else 651 static inline struct capture_control *task_capc(struct zone *zone) 652 { 653 return NULL; 654 } 655 656 static inline bool 657 compaction_capture(struct capture_control *capc, struct page *page, 658 int order, int migratetype) 659 { 660 return false; 661 } 662 #endif /* CONFIG_COMPACTION */ 663 664 /* Used for pages not on another list */ 665 static inline void add_to_free_list(struct page *page, struct zone *zone, 666 unsigned int order, int migratetype) 667 { 668 struct free_area *area = &zone->free_area[order]; 669 670 list_add(&page->buddy_list, &area->free_list[migratetype]); 671 area->nr_free++; 672 } 673 674 /* Used for pages not on another list */ 675 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 676 unsigned int order, int migratetype) 677 { 678 struct free_area *area = &zone->free_area[order]; 679 680 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 681 area->nr_free++; 682 } 683 684 /* 685 * Used for pages which are on another list. Move the pages to the tail 686 * of the list - so the moved pages won't immediately be considered for 687 * allocation again (e.g., optimization for memory onlining). 688 */ 689 static inline void move_to_free_list(struct page *page, struct zone *zone, 690 unsigned int order, int migratetype) 691 { 692 struct free_area *area = &zone->free_area[order]; 693 694 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 695 } 696 697 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 698 unsigned int order) 699 { 700 /* clear reported state and update reported page count */ 701 if (page_reported(page)) 702 __ClearPageReported(page); 703 704 list_del(&page->buddy_list); 705 __ClearPageBuddy(page); 706 set_page_private(page, 0); 707 zone->free_area[order].nr_free--; 708 } 709 710 static inline struct page *get_page_from_free_area(struct free_area *area, 711 int migratetype) 712 { 713 return list_first_entry_or_null(&area->free_list[migratetype], 714 struct page, buddy_list); 715 } 716 717 /* 718 * If this is not the largest possible page, check if the buddy 719 * of the next-highest order is free. If it is, it's possible 720 * that pages are being freed that will coalesce soon. In case, 721 * that is happening, add the free page to the tail of the list 722 * so it's less likely to be used soon and more likely to be merged 723 * as a higher order page 724 */ 725 static inline bool 726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 727 struct page *page, unsigned int order) 728 { 729 unsigned long higher_page_pfn; 730 struct page *higher_page; 731 732 if (order >= MAX_ORDER - 1) 733 return false; 734 735 higher_page_pfn = buddy_pfn & pfn; 736 higher_page = page + (higher_page_pfn - pfn); 737 738 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 739 NULL) != NULL; 740 } 741 742 /* 743 * Freeing function for a buddy system allocator. 744 * 745 * The concept of a buddy system is to maintain direct-mapped table 746 * (containing bit values) for memory blocks of various "orders". 747 * The bottom level table contains the map for the smallest allocatable 748 * units of memory (here, pages), and each level above it describes 749 * pairs of units from the levels below, hence, "buddies". 750 * At a high level, all that happens here is marking the table entry 751 * at the bottom level available, and propagating the changes upward 752 * as necessary, plus some accounting needed to play nicely with other 753 * parts of the VM system. 754 * At each level, we keep a list of pages, which are heads of continuous 755 * free pages of length of (1 << order) and marked with PageBuddy. 756 * Page's order is recorded in page_private(page) field. 757 * So when we are allocating or freeing one, we can derive the state of the 758 * other. That is, if we allocate a small block, and both were 759 * free, the remainder of the region must be split into blocks. 760 * If a block is freed, and its buddy is also free, then this 761 * triggers coalescing into a block of larger size. 762 * 763 * -- nyc 764 */ 765 766 static inline void __free_one_page(struct page *page, 767 unsigned long pfn, 768 struct zone *zone, unsigned int order, 769 int migratetype, fpi_t fpi_flags) 770 { 771 struct capture_control *capc = task_capc(zone); 772 unsigned long buddy_pfn = 0; 773 unsigned long combined_pfn; 774 struct page *buddy; 775 bool to_tail; 776 777 VM_BUG_ON(!zone_is_initialized(zone)); 778 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 779 780 VM_BUG_ON(migratetype == -1); 781 if (likely(!is_migrate_isolate(migratetype))) 782 __mod_zone_freepage_state(zone, 1 << order, migratetype); 783 784 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 785 VM_BUG_ON_PAGE(bad_range(zone, page), page); 786 787 while (order < MAX_ORDER) { 788 if (compaction_capture(capc, page, order, migratetype)) { 789 __mod_zone_freepage_state(zone, -(1 << order), 790 migratetype); 791 return; 792 } 793 794 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 795 if (!buddy) 796 goto done_merging; 797 798 if (unlikely(order >= pageblock_order)) { 799 /* 800 * We want to prevent merge between freepages on pageblock 801 * without fallbacks and normal pageblock. Without this, 802 * pageblock isolation could cause incorrect freepage or CMA 803 * accounting or HIGHATOMIC accounting. 804 */ 805 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 806 807 if (migratetype != buddy_mt 808 && (!migratetype_is_mergeable(migratetype) || 809 !migratetype_is_mergeable(buddy_mt))) 810 goto done_merging; 811 } 812 813 /* 814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 815 * merge with it and move up one order. 816 */ 817 if (page_is_guard(buddy)) 818 clear_page_guard(zone, buddy, order, migratetype); 819 else 820 del_page_from_free_list(buddy, zone, order); 821 combined_pfn = buddy_pfn & pfn; 822 page = page + (combined_pfn - pfn); 823 pfn = combined_pfn; 824 order++; 825 } 826 827 done_merging: 828 set_buddy_order(page, order); 829 830 if (fpi_flags & FPI_TO_TAIL) 831 to_tail = true; 832 else if (is_shuffle_order(order)) 833 to_tail = shuffle_pick_tail(); 834 else 835 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 836 837 if (to_tail) 838 add_to_free_list_tail(page, zone, order, migratetype); 839 else 840 add_to_free_list(page, zone, order, migratetype); 841 842 /* Notify page reporting subsystem of freed page */ 843 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 844 page_reporting_notify_free(order); 845 } 846 847 /** 848 * split_free_page() -- split a free page at split_pfn_offset 849 * @free_page: the original free page 850 * @order: the order of the page 851 * @split_pfn_offset: split offset within the page 852 * 853 * Return -ENOENT if the free page is changed, otherwise 0 854 * 855 * It is used when the free page crosses two pageblocks with different migratetypes 856 * at split_pfn_offset within the page. The split free page will be put into 857 * separate migratetype lists afterwards. Otherwise, the function achieves 858 * nothing. 859 */ 860 int split_free_page(struct page *free_page, 861 unsigned int order, unsigned long split_pfn_offset) 862 { 863 struct zone *zone = page_zone(free_page); 864 unsigned long free_page_pfn = page_to_pfn(free_page); 865 unsigned long pfn; 866 unsigned long flags; 867 int free_page_order; 868 int mt; 869 int ret = 0; 870 871 if (split_pfn_offset == 0) 872 return ret; 873 874 spin_lock_irqsave(&zone->lock, flags); 875 876 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 877 ret = -ENOENT; 878 goto out; 879 } 880 881 mt = get_pfnblock_migratetype(free_page, free_page_pfn); 882 if (likely(!is_migrate_isolate(mt))) 883 __mod_zone_freepage_state(zone, -(1UL << order), mt); 884 885 del_page_from_free_list(free_page, zone, order); 886 for (pfn = free_page_pfn; 887 pfn < free_page_pfn + (1UL << order);) { 888 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 889 890 free_page_order = min_t(unsigned int, 891 pfn ? __ffs(pfn) : order, 892 __fls(split_pfn_offset)); 893 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 894 mt, FPI_NONE); 895 pfn += 1UL << free_page_order; 896 split_pfn_offset -= (1UL << free_page_order); 897 /* we have done the first part, now switch to second part */ 898 if (split_pfn_offset == 0) 899 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 900 } 901 out: 902 spin_unlock_irqrestore(&zone->lock, flags); 903 return ret; 904 } 905 /* 906 * A bad page could be due to a number of fields. Instead of multiple branches, 907 * try and check multiple fields with one check. The caller must do a detailed 908 * check if necessary. 909 */ 910 static inline bool page_expected_state(struct page *page, 911 unsigned long check_flags) 912 { 913 if (unlikely(atomic_read(&page->_mapcount) != -1)) 914 return false; 915 916 if (unlikely((unsigned long)page->mapping | 917 page_ref_count(page) | 918 #ifdef CONFIG_MEMCG 919 page->memcg_data | 920 #endif 921 (page->flags & check_flags))) 922 return false; 923 924 return true; 925 } 926 927 static const char *page_bad_reason(struct page *page, unsigned long flags) 928 { 929 const char *bad_reason = NULL; 930 931 if (unlikely(atomic_read(&page->_mapcount) != -1)) 932 bad_reason = "nonzero mapcount"; 933 if (unlikely(page->mapping != NULL)) 934 bad_reason = "non-NULL mapping"; 935 if (unlikely(page_ref_count(page) != 0)) 936 bad_reason = "nonzero _refcount"; 937 if (unlikely(page->flags & flags)) { 938 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 939 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 940 else 941 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 942 } 943 #ifdef CONFIG_MEMCG 944 if (unlikely(page->memcg_data)) 945 bad_reason = "page still charged to cgroup"; 946 #endif 947 return bad_reason; 948 } 949 950 static void free_page_is_bad_report(struct page *page) 951 { 952 bad_page(page, 953 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 954 } 955 956 static inline bool free_page_is_bad(struct page *page) 957 { 958 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 959 return false; 960 961 /* Something has gone sideways, find it */ 962 free_page_is_bad_report(page); 963 return true; 964 } 965 966 static inline bool is_check_pages_enabled(void) 967 { 968 return static_branch_unlikely(&check_pages_enabled); 969 } 970 971 static int free_tail_page_prepare(struct page *head_page, struct page *page) 972 { 973 struct folio *folio = (struct folio *)head_page; 974 int ret = 1; 975 976 /* 977 * We rely page->lru.next never has bit 0 set, unless the page 978 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 979 */ 980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 981 982 if (!is_check_pages_enabled()) { 983 ret = 0; 984 goto out; 985 } 986 switch (page - head_page) { 987 case 1: 988 /* the first tail page: these may be in place of ->mapping */ 989 if (unlikely(folio_entire_mapcount(folio))) { 990 bad_page(page, "nonzero entire_mapcount"); 991 goto out; 992 } 993 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 994 bad_page(page, "nonzero nr_pages_mapped"); 995 goto out; 996 } 997 if (unlikely(atomic_read(&folio->_pincount))) { 998 bad_page(page, "nonzero pincount"); 999 goto out; 1000 } 1001 break; 1002 case 2: 1003 /* the second tail page: deferred_list overlaps ->mapping */ 1004 if (unlikely(!list_empty(&folio->_deferred_list))) { 1005 bad_page(page, "on deferred list"); 1006 goto out; 1007 } 1008 break; 1009 default: 1010 if (page->mapping != TAIL_MAPPING) { 1011 bad_page(page, "corrupted mapping in tail page"); 1012 goto out; 1013 } 1014 break; 1015 } 1016 if (unlikely(!PageTail(page))) { 1017 bad_page(page, "PageTail not set"); 1018 goto out; 1019 } 1020 if (unlikely(compound_head(page) != head_page)) { 1021 bad_page(page, "compound_head not consistent"); 1022 goto out; 1023 } 1024 ret = 0; 1025 out: 1026 page->mapping = NULL; 1027 clear_compound_head(page); 1028 return ret; 1029 } 1030 1031 /* 1032 * Skip KASAN memory poisoning when either: 1033 * 1034 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1035 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1036 * using page tags instead (see below). 1037 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1038 * that error detection is disabled for accesses via the page address. 1039 * 1040 * Pages will have match-all tags in the following circumstances: 1041 * 1042 * 1. Pages are being initialized for the first time, including during deferred 1043 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1044 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1045 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1046 * 3. The allocation was excluded from being checked due to sampling, 1047 * see the call to kasan_unpoison_pages. 1048 * 1049 * Poisoning pages during deferred memory init will greatly lengthen the 1050 * process and cause problem in large memory systems as the deferred pages 1051 * initialization is done with interrupt disabled. 1052 * 1053 * Assuming that there will be no reference to those newly initialized 1054 * pages before they are ever allocated, this should have no effect on 1055 * KASAN memory tracking as the poison will be properly inserted at page 1056 * allocation time. The only corner case is when pages are allocated by 1057 * on-demand allocation and then freed again before the deferred pages 1058 * initialization is done, but this is not likely to happen. 1059 */ 1060 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1061 { 1062 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1063 return deferred_pages_enabled(); 1064 1065 return page_kasan_tag(page) == 0xff; 1066 } 1067 1068 static void kernel_init_pages(struct page *page, int numpages) 1069 { 1070 int i; 1071 1072 /* s390's use of memset() could override KASAN redzones. */ 1073 kasan_disable_current(); 1074 for (i = 0; i < numpages; i++) 1075 clear_highpage_kasan_tagged(page + i); 1076 kasan_enable_current(); 1077 } 1078 1079 static __always_inline bool free_pages_prepare(struct page *page, 1080 unsigned int order, fpi_t fpi_flags) 1081 { 1082 int bad = 0; 1083 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1084 bool init = want_init_on_free(); 1085 1086 VM_BUG_ON_PAGE(PageTail(page), page); 1087 1088 trace_mm_page_free(page, order); 1089 kmsan_free_page(page, order); 1090 1091 if (unlikely(PageHWPoison(page)) && !order) { 1092 /* 1093 * Do not let hwpoison pages hit pcplists/buddy 1094 * Untie memcg state and reset page's owner 1095 */ 1096 if (memcg_kmem_online() && PageMemcgKmem(page)) 1097 __memcg_kmem_uncharge_page(page, order); 1098 reset_page_owner(page, order); 1099 page_table_check_free(page, order); 1100 return false; 1101 } 1102 1103 /* 1104 * Check tail pages before head page information is cleared to 1105 * avoid checking PageCompound for order-0 pages. 1106 */ 1107 if (unlikely(order)) { 1108 bool compound = PageCompound(page); 1109 int i; 1110 1111 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1112 1113 if (compound) 1114 page[1].flags &= ~PAGE_FLAGS_SECOND; 1115 for (i = 1; i < (1 << order); i++) { 1116 if (compound) 1117 bad += free_tail_page_prepare(page, page + i); 1118 if (is_check_pages_enabled()) { 1119 if (free_page_is_bad(page + i)) { 1120 bad++; 1121 continue; 1122 } 1123 } 1124 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1125 } 1126 } 1127 if (PageMappingFlags(page)) 1128 page->mapping = NULL; 1129 if (memcg_kmem_online() && PageMemcgKmem(page)) 1130 __memcg_kmem_uncharge_page(page, order); 1131 if (is_check_pages_enabled()) { 1132 if (free_page_is_bad(page)) 1133 bad++; 1134 if (bad) 1135 return false; 1136 } 1137 1138 page_cpupid_reset_last(page); 1139 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1140 reset_page_owner(page, order); 1141 page_table_check_free(page, order); 1142 1143 if (!PageHighMem(page)) { 1144 debug_check_no_locks_freed(page_address(page), 1145 PAGE_SIZE << order); 1146 debug_check_no_obj_freed(page_address(page), 1147 PAGE_SIZE << order); 1148 } 1149 1150 kernel_poison_pages(page, 1 << order); 1151 1152 /* 1153 * As memory initialization might be integrated into KASAN, 1154 * KASAN poisoning and memory initialization code must be 1155 * kept together to avoid discrepancies in behavior. 1156 * 1157 * With hardware tag-based KASAN, memory tags must be set before the 1158 * page becomes unavailable via debug_pagealloc or arch_free_page. 1159 */ 1160 if (!skip_kasan_poison) { 1161 kasan_poison_pages(page, order, init); 1162 1163 /* Memory is already initialized if KASAN did it internally. */ 1164 if (kasan_has_integrated_init()) 1165 init = false; 1166 } 1167 if (init) 1168 kernel_init_pages(page, 1 << order); 1169 1170 /* 1171 * arch_free_page() can make the page's contents inaccessible. s390 1172 * does this. So nothing which can access the page's contents should 1173 * happen after this. 1174 */ 1175 arch_free_page(page, order); 1176 1177 debug_pagealloc_unmap_pages(page, 1 << order); 1178 1179 return true; 1180 } 1181 1182 /* 1183 * Frees a number of pages from the PCP lists 1184 * Assumes all pages on list are in same zone. 1185 * count is the number of pages to free. 1186 */ 1187 static void free_pcppages_bulk(struct zone *zone, int count, 1188 struct per_cpu_pages *pcp, 1189 int pindex) 1190 { 1191 unsigned long flags; 1192 unsigned int order; 1193 bool isolated_pageblocks; 1194 struct page *page; 1195 1196 /* 1197 * Ensure proper count is passed which otherwise would stuck in the 1198 * below while (list_empty(list)) loop. 1199 */ 1200 count = min(pcp->count, count); 1201 1202 /* Ensure requested pindex is drained first. */ 1203 pindex = pindex - 1; 1204 1205 spin_lock_irqsave(&zone->lock, flags); 1206 isolated_pageblocks = has_isolate_pageblock(zone); 1207 1208 while (count > 0) { 1209 struct list_head *list; 1210 int nr_pages; 1211 1212 /* Remove pages from lists in a round-robin fashion. */ 1213 do { 1214 if (++pindex > NR_PCP_LISTS - 1) 1215 pindex = 0; 1216 list = &pcp->lists[pindex]; 1217 } while (list_empty(list)); 1218 1219 order = pindex_to_order(pindex); 1220 nr_pages = 1 << order; 1221 do { 1222 int mt; 1223 1224 page = list_last_entry(list, struct page, pcp_list); 1225 mt = get_pcppage_migratetype(page); 1226 1227 /* must delete to avoid corrupting pcp list */ 1228 list_del(&page->pcp_list); 1229 count -= nr_pages; 1230 pcp->count -= nr_pages; 1231 1232 /* MIGRATE_ISOLATE page should not go to pcplists */ 1233 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1234 /* Pageblock could have been isolated meanwhile */ 1235 if (unlikely(isolated_pageblocks)) 1236 mt = get_pageblock_migratetype(page); 1237 1238 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1239 trace_mm_page_pcpu_drain(page, order, mt); 1240 } while (count > 0 && !list_empty(list)); 1241 } 1242 1243 spin_unlock_irqrestore(&zone->lock, flags); 1244 } 1245 1246 static void free_one_page(struct zone *zone, 1247 struct page *page, unsigned long pfn, 1248 unsigned int order, 1249 int migratetype, fpi_t fpi_flags) 1250 { 1251 unsigned long flags; 1252 1253 spin_lock_irqsave(&zone->lock, flags); 1254 if (unlikely(has_isolate_pageblock(zone) || 1255 is_migrate_isolate(migratetype))) { 1256 migratetype = get_pfnblock_migratetype(page, pfn); 1257 } 1258 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1259 spin_unlock_irqrestore(&zone->lock, flags); 1260 } 1261 1262 static void __free_pages_ok(struct page *page, unsigned int order, 1263 fpi_t fpi_flags) 1264 { 1265 unsigned long flags; 1266 int migratetype; 1267 unsigned long pfn = page_to_pfn(page); 1268 struct zone *zone = page_zone(page); 1269 1270 if (!free_pages_prepare(page, order, fpi_flags)) 1271 return; 1272 1273 /* 1274 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1275 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1276 * This will reduce the lock holding time. 1277 */ 1278 migratetype = get_pfnblock_migratetype(page, pfn); 1279 1280 spin_lock_irqsave(&zone->lock, flags); 1281 if (unlikely(has_isolate_pageblock(zone) || 1282 is_migrate_isolate(migratetype))) { 1283 migratetype = get_pfnblock_migratetype(page, pfn); 1284 } 1285 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1286 spin_unlock_irqrestore(&zone->lock, flags); 1287 1288 __count_vm_events(PGFREE, 1 << order); 1289 } 1290 1291 void __free_pages_core(struct page *page, unsigned int order) 1292 { 1293 unsigned int nr_pages = 1 << order; 1294 struct page *p = page; 1295 unsigned int loop; 1296 1297 /* 1298 * When initializing the memmap, __init_single_page() sets the refcount 1299 * of all pages to 1 ("allocated"/"not free"). We have to set the 1300 * refcount of all involved pages to 0. 1301 */ 1302 prefetchw(p); 1303 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1304 prefetchw(p + 1); 1305 __ClearPageReserved(p); 1306 set_page_count(p, 0); 1307 } 1308 __ClearPageReserved(p); 1309 set_page_count(p, 0); 1310 1311 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1312 1313 if (page_contains_unaccepted(page, order)) { 1314 if (order == MAX_ORDER && __free_unaccepted(page)) 1315 return; 1316 1317 accept_page(page, order); 1318 } 1319 1320 /* 1321 * Bypass PCP and place fresh pages right to the tail, primarily 1322 * relevant for memory onlining. 1323 */ 1324 __free_pages_ok(page, order, FPI_TO_TAIL); 1325 } 1326 1327 /* 1328 * Check that the whole (or subset of) a pageblock given by the interval of 1329 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1330 * with the migration of free compaction scanner. 1331 * 1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1333 * 1334 * It's possible on some configurations to have a setup like node0 node1 node0 1335 * i.e. it's possible that all pages within a zones range of pages do not 1336 * belong to a single zone. We assume that a border between node0 and node1 1337 * can occur within a single pageblock, but not a node0 node1 node0 1338 * interleaving within a single pageblock. It is therefore sufficient to check 1339 * the first and last page of a pageblock and avoid checking each individual 1340 * page in a pageblock. 1341 * 1342 * Note: the function may return non-NULL struct page even for a page block 1343 * which contains a memory hole (i.e. there is no physical memory for a subset 1344 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which 1345 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1346 * even though the start pfn is online and valid. This should be safe most of 1347 * the time because struct pages are still initialized via init_unavailable_range() 1348 * and pfn walkers shouldn't touch any physical memory range for which they do 1349 * not recognize any specific metadata in struct pages. 1350 */ 1351 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1352 unsigned long end_pfn, struct zone *zone) 1353 { 1354 struct page *start_page; 1355 struct page *end_page; 1356 1357 /* end_pfn is one past the range we are checking */ 1358 end_pfn--; 1359 1360 if (!pfn_valid(end_pfn)) 1361 return NULL; 1362 1363 start_page = pfn_to_online_page(start_pfn); 1364 if (!start_page) 1365 return NULL; 1366 1367 if (page_zone(start_page) != zone) 1368 return NULL; 1369 1370 end_page = pfn_to_page(end_pfn); 1371 1372 /* This gives a shorter code than deriving page_zone(end_page) */ 1373 if (page_zone_id(start_page) != page_zone_id(end_page)) 1374 return NULL; 1375 1376 return start_page; 1377 } 1378 1379 /* 1380 * The order of subdivision here is critical for the IO subsystem. 1381 * Please do not alter this order without good reasons and regression 1382 * testing. Specifically, as large blocks of memory are subdivided, 1383 * the order in which smaller blocks are delivered depends on the order 1384 * they're subdivided in this function. This is the primary factor 1385 * influencing the order in which pages are delivered to the IO 1386 * subsystem according to empirical testing, and this is also justified 1387 * by considering the behavior of a buddy system containing a single 1388 * large block of memory acted on by a series of small allocations. 1389 * This behavior is a critical factor in sglist merging's success. 1390 * 1391 * -- nyc 1392 */ 1393 static inline void expand(struct zone *zone, struct page *page, 1394 int low, int high, int migratetype) 1395 { 1396 unsigned long size = 1 << high; 1397 1398 while (high > low) { 1399 high--; 1400 size >>= 1; 1401 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1402 1403 /* 1404 * Mark as guard pages (or page), that will allow to 1405 * merge back to allocator when buddy will be freed. 1406 * Corresponding page table entries will not be touched, 1407 * pages will stay not present in virtual address space 1408 */ 1409 if (set_page_guard(zone, &page[size], high, migratetype)) 1410 continue; 1411 1412 add_to_free_list(&page[size], zone, high, migratetype); 1413 set_buddy_order(&page[size], high); 1414 } 1415 } 1416 1417 static void check_new_page_bad(struct page *page) 1418 { 1419 if (unlikely(page->flags & __PG_HWPOISON)) { 1420 /* Don't complain about hwpoisoned pages */ 1421 page_mapcount_reset(page); /* remove PageBuddy */ 1422 return; 1423 } 1424 1425 bad_page(page, 1426 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1427 } 1428 1429 /* 1430 * This page is about to be returned from the page allocator 1431 */ 1432 static int check_new_page(struct page *page) 1433 { 1434 if (likely(page_expected_state(page, 1435 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1436 return 0; 1437 1438 check_new_page_bad(page); 1439 return 1; 1440 } 1441 1442 static inline bool check_new_pages(struct page *page, unsigned int order) 1443 { 1444 if (is_check_pages_enabled()) { 1445 for (int i = 0; i < (1 << order); i++) { 1446 struct page *p = page + i; 1447 1448 if (check_new_page(p)) 1449 return true; 1450 } 1451 } 1452 1453 return false; 1454 } 1455 1456 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1457 { 1458 /* Don't skip if a software KASAN mode is enabled. */ 1459 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1460 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1461 return false; 1462 1463 /* Skip, if hardware tag-based KASAN is not enabled. */ 1464 if (!kasan_hw_tags_enabled()) 1465 return true; 1466 1467 /* 1468 * With hardware tag-based KASAN enabled, skip if this has been 1469 * requested via __GFP_SKIP_KASAN. 1470 */ 1471 return flags & __GFP_SKIP_KASAN; 1472 } 1473 1474 static inline bool should_skip_init(gfp_t flags) 1475 { 1476 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1477 if (!kasan_hw_tags_enabled()) 1478 return false; 1479 1480 /* For hardware tag-based KASAN, skip if requested. */ 1481 return (flags & __GFP_SKIP_ZERO); 1482 } 1483 1484 inline void post_alloc_hook(struct page *page, unsigned int order, 1485 gfp_t gfp_flags) 1486 { 1487 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1488 !should_skip_init(gfp_flags); 1489 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1490 int i; 1491 1492 set_page_private(page, 0); 1493 set_page_refcounted(page); 1494 1495 arch_alloc_page(page, order); 1496 debug_pagealloc_map_pages(page, 1 << order); 1497 1498 /* 1499 * Page unpoisoning must happen before memory initialization. 1500 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1501 * allocations and the page unpoisoning code will complain. 1502 */ 1503 kernel_unpoison_pages(page, 1 << order); 1504 1505 /* 1506 * As memory initialization might be integrated into KASAN, 1507 * KASAN unpoisoning and memory initializion code must be 1508 * kept together to avoid discrepancies in behavior. 1509 */ 1510 1511 /* 1512 * If memory tags should be zeroed 1513 * (which happens only when memory should be initialized as well). 1514 */ 1515 if (zero_tags) { 1516 /* Initialize both memory and memory tags. */ 1517 for (i = 0; i != 1 << order; ++i) 1518 tag_clear_highpage(page + i); 1519 1520 /* Take note that memory was initialized by the loop above. */ 1521 init = false; 1522 } 1523 if (!should_skip_kasan_unpoison(gfp_flags) && 1524 kasan_unpoison_pages(page, order, init)) { 1525 /* Take note that memory was initialized by KASAN. */ 1526 if (kasan_has_integrated_init()) 1527 init = false; 1528 } else { 1529 /* 1530 * If memory tags have not been set by KASAN, reset the page 1531 * tags to ensure page_address() dereferencing does not fault. 1532 */ 1533 for (i = 0; i != 1 << order; ++i) 1534 page_kasan_tag_reset(page + i); 1535 } 1536 /* If memory is still not initialized, initialize it now. */ 1537 if (init) 1538 kernel_init_pages(page, 1 << order); 1539 1540 set_page_owner(page, order, gfp_flags); 1541 page_table_check_alloc(page, order); 1542 } 1543 1544 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1545 unsigned int alloc_flags) 1546 { 1547 post_alloc_hook(page, order, gfp_flags); 1548 1549 if (order && (gfp_flags & __GFP_COMP)) 1550 prep_compound_page(page, order); 1551 1552 /* 1553 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1554 * allocate the page. The expectation is that the caller is taking 1555 * steps that will free more memory. The caller should avoid the page 1556 * being used for !PFMEMALLOC purposes. 1557 */ 1558 if (alloc_flags & ALLOC_NO_WATERMARKS) 1559 set_page_pfmemalloc(page); 1560 else 1561 clear_page_pfmemalloc(page); 1562 } 1563 1564 /* 1565 * Go through the free lists for the given migratetype and remove 1566 * the smallest available page from the freelists 1567 */ 1568 static __always_inline 1569 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1570 int migratetype) 1571 { 1572 unsigned int current_order; 1573 struct free_area *area; 1574 struct page *page; 1575 1576 /* Find a page of the appropriate size in the preferred list */ 1577 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1578 area = &(zone->free_area[current_order]); 1579 page = get_page_from_free_area(area, migratetype); 1580 if (!page) 1581 continue; 1582 del_page_from_free_list(page, zone, current_order); 1583 expand(zone, page, order, current_order, migratetype); 1584 set_pcppage_migratetype(page, migratetype); 1585 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1586 pcp_allowed_order(order) && 1587 migratetype < MIGRATE_PCPTYPES); 1588 return page; 1589 } 1590 1591 return NULL; 1592 } 1593 1594 1595 /* 1596 * This array describes the order lists are fallen back to when 1597 * the free lists for the desirable migrate type are depleted 1598 * 1599 * The other migratetypes do not have fallbacks. 1600 */ 1601 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1602 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1603 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1604 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1605 }; 1606 1607 #ifdef CONFIG_CMA 1608 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1609 unsigned int order) 1610 { 1611 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1612 } 1613 #else 1614 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1615 unsigned int order) { return NULL; } 1616 #endif 1617 1618 /* 1619 * Move the free pages in a range to the freelist tail of the requested type. 1620 * Note that start_page and end_pages are not aligned on a pageblock 1621 * boundary. If alignment is required, use move_freepages_block() 1622 */ 1623 static int move_freepages(struct zone *zone, 1624 unsigned long start_pfn, unsigned long end_pfn, 1625 int migratetype, int *num_movable) 1626 { 1627 struct page *page; 1628 unsigned long pfn; 1629 unsigned int order; 1630 int pages_moved = 0; 1631 1632 for (pfn = start_pfn; pfn <= end_pfn;) { 1633 page = pfn_to_page(pfn); 1634 if (!PageBuddy(page)) { 1635 /* 1636 * We assume that pages that could be isolated for 1637 * migration are movable. But we don't actually try 1638 * isolating, as that would be expensive. 1639 */ 1640 if (num_movable && 1641 (PageLRU(page) || __PageMovable(page))) 1642 (*num_movable)++; 1643 pfn++; 1644 continue; 1645 } 1646 1647 /* Make sure we are not inadvertently changing nodes */ 1648 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1649 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1650 1651 order = buddy_order(page); 1652 move_to_free_list(page, zone, order, migratetype); 1653 pfn += 1 << order; 1654 pages_moved += 1 << order; 1655 } 1656 1657 return pages_moved; 1658 } 1659 1660 int move_freepages_block(struct zone *zone, struct page *page, 1661 int migratetype, int *num_movable) 1662 { 1663 unsigned long start_pfn, end_pfn, pfn; 1664 1665 if (num_movable) 1666 *num_movable = 0; 1667 1668 pfn = page_to_pfn(page); 1669 start_pfn = pageblock_start_pfn(pfn); 1670 end_pfn = pageblock_end_pfn(pfn) - 1; 1671 1672 /* Do not cross zone boundaries */ 1673 if (!zone_spans_pfn(zone, start_pfn)) 1674 start_pfn = pfn; 1675 if (!zone_spans_pfn(zone, end_pfn)) 1676 return 0; 1677 1678 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1679 num_movable); 1680 } 1681 1682 static void change_pageblock_range(struct page *pageblock_page, 1683 int start_order, int migratetype) 1684 { 1685 int nr_pageblocks = 1 << (start_order - pageblock_order); 1686 1687 while (nr_pageblocks--) { 1688 set_pageblock_migratetype(pageblock_page, migratetype); 1689 pageblock_page += pageblock_nr_pages; 1690 } 1691 } 1692 1693 /* 1694 * When we are falling back to another migratetype during allocation, try to 1695 * steal extra free pages from the same pageblocks to satisfy further 1696 * allocations, instead of polluting multiple pageblocks. 1697 * 1698 * If we are stealing a relatively large buddy page, it is likely there will 1699 * be more free pages in the pageblock, so try to steal them all. For 1700 * reclaimable and unmovable allocations, we steal regardless of page size, 1701 * as fragmentation caused by those allocations polluting movable pageblocks 1702 * is worse than movable allocations stealing from unmovable and reclaimable 1703 * pageblocks. 1704 */ 1705 static bool can_steal_fallback(unsigned int order, int start_mt) 1706 { 1707 /* 1708 * Leaving this order check is intended, although there is 1709 * relaxed order check in next check. The reason is that 1710 * we can actually steal whole pageblock if this condition met, 1711 * but, below check doesn't guarantee it and that is just heuristic 1712 * so could be changed anytime. 1713 */ 1714 if (order >= pageblock_order) 1715 return true; 1716 1717 if (order >= pageblock_order / 2 || 1718 start_mt == MIGRATE_RECLAIMABLE || 1719 start_mt == MIGRATE_UNMOVABLE || 1720 page_group_by_mobility_disabled) 1721 return true; 1722 1723 return false; 1724 } 1725 1726 static inline bool boost_watermark(struct zone *zone) 1727 { 1728 unsigned long max_boost; 1729 1730 if (!watermark_boost_factor) 1731 return false; 1732 /* 1733 * Don't bother in zones that are unlikely to produce results. 1734 * On small machines, including kdump capture kernels running 1735 * in a small area, boosting the watermark can cause an out of 1736 * memory situation immediately. 1737 */ 1738 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1739 return false; 1740 1741 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1742 watermark_boost_factor, 10000); 1743 1744 /* 1745 * high watermark may be uninitialised if fragmentation occurs 1746 * very early in boot so do not boost. We do not fall 1747 * through and boost by pageblock_nr_pages as failing 1748 * allocations that early means that reclaim is not going 1749 * to help and it may even be impossible to reclaim the 1750 * boosted watermark resulting in a hang. 1751 */ 1752 if (!max_boost) 1753 return false; 1754 1755 max_boost = max(pageblock_nr_pages, max_boost); 1756 1757 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1758 max_boost); 1759 1760 return true; 1761 } 1762 1763 /* 1764 * This function implements actual steal behaviour. If order is large enough, 1765 * we can steal whole pageblock. If not, we first move freepages in this 1766 * pageblock to our migratetype and determine how many already-allocated pages 1767 * are there in the pageblock with a compatible migratetype. If at least half 1768 * of pages are free or compatible, we can change migratetype of the pageblock 1769 * itself, so pages freed in the future will be put on the correct free list. 1770 */ 1771 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1772 unsigned int alloc_flags, int start_type, bool whole_block) 1773 { 1774 unsigned int current_order = buddy_order(page); 1775 int free_pages, movable_pages, alike_pages; 1776 int old_block_type; 1777 1778 old_block_type = get_pageblock_migratetype(page); 1779 1780 /* 1781 * This can happen due to races and we want to prevent broken 1782 * highatomic accounting. 1783 */ 1784 if (is_migrate_highatomic(old_block_type)) 1785 goto single_page; 1786 1787 /* Take ownership for orders >= pageblock_order */ 1788 if (current_order >= pageblock_order) { 1789 change_pageblock_range(page, current_order, start_type); 1790 goto single_page; 1791 } 1792 1793 /* 1794 * Boost watermarks to increase reclaim pressure to reduce the 1795 * likelihood of future fallbacks. Wake kswapd now as the node 1796 * may be balanced overall and kswapd will not wake naturally. 1797 */ 1798 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1799 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1800 1801 /* We are not allowed to try stealing from the whole block */ 1802 if (!whole_block) 1803 goto single_page; 1804 1805 free_pages = move_freepages_block(zone, page, start_type, 1806 &movable_pages); 1807 /* moving whole block can fail due to zone boundary conditions */ 1808 if (!free_pages) 1809 goto single_page; 1810 1811 /* 1812 * Determine how many pages are compatible with our allocation. 1813 * For movable allocation, it's the number of movable pages which 1814 * we just obtained. For other types it's a bit more tricky. 1815 */ 1816 if (start_type == MIGRATE_MOVABLE) { 1817 alike_pages = movable_pages; 1818 } else { 1819 /* 1820 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1821 * to MOVABLE pageblock, consider all non-movable pages as 1822 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1823 * vice versa, be conservative since we can't distinguish the 1824 * exact migratetype of non-movable pages. 1825 */ 1826 if (old_block_type == MIGRATE_MOVABLE) 1827 alike_pages = pageblock_nr_pages 1828 - (free_pages + movable_pages); 1829 else 1830 alike_pages = 0; 1831 } 1832 /* 1833 * If a sufficient number of pages in the block are either free or of 1834 * compatible migratability as our allocation, claim the whole block. 1835 */ 1836 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1837 page_group_by_mobility_disabled) 1838 set_pageblock_migratetype(page, start_type); 1839 1840 return; 1841 1842 single_page: 1843 move_to_free_list(page, zone, current_order, start_type); 1844 } 1845 1846 /* 1847 * Check whether there is a suitable fallback freepage with requested order. 1848 * If only_stealable is true, this function returns fallback_mt only if 1849 * we can steal other freepages all together. This would help to reduce 1850 * fragmentation due to mixed migratetype pages in one pageblock. 1851 */ 1852 int find_suitable_fallback(struct free_area *area, unsigned int order, 1853 int migratetype, bool only_stealable, bool *can_steal) 1854 { 1855 int i; 1856 int fallback_mt; 1857 1858 if (area->nr_free == 0) 1859 return -1; 1860 1861 *can_steal = false; 1862 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1863 fallback_mt = fallbacks[migratetype][i]; 1864 if (free_area_empty(area, fallback_mt)) 1865 continue; 1866 1867 if (can_steal_fallback(order, migratetype)) 1868 *can_steal = true; 1869 1870 if (!only_stealable) 1871 return fallback_mt; 1872 1873 if (*can_steal) 1874 return fallback_mt; 1875 } 1876 1877 return -1; 1878 } 1879 1880 /* 1881 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1882 * there are no empty page blocks that contain a page with a suitable order 1883 */ 1884 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1885 { 1886 int mt; 1887 unsigned long max_managed, flags; 1888 1889 /* 1890 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1891 * Check is race-prone but harmless. 1892 */ 1893 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 1894 if (zone->nr_reserved_highatomic >= max_managed) 1895 return; 1896 1897 spin_lock_irqsave(&zone->lock, flags); 1898 1899 /* Recheck the nr_reserved_highatomic limit under the lock */ 1900 if (zone->nr_reserved_highatomic >= max_managed) 1901 goto out_unlock; 1902 1903 /* Yoink! */ 1904 mt = get_pageblock_migratetype(page); 1905 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1906 if (migratetype_is_mergeable(mt)) { 1907 zone->nr_reserved_highatomic += pageblock_nr_pages; 1908 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1909 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1910 } 1911 1912 out_unlock: 1913 spin_unlock_irqrestore(&zone->lock, flags); 1914 } 1915 1916 /* 1917 * Used when an allocation is about to fail under memory pressure. This 1918 * potentially hurts the reliability of high-order allocations when under 1919 * intense memory pressure but failed atomic allocations should be easier 1920 * to recover from than an OOM. 1921 * 1922 * If @force is true, try to unreserve a pageblock even though highatomic 1923 * pageblock is exhausted. 1924 */ 1925 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1926 bool force) 1927 { 1928 struct zonelist *zonelist = ac->zonelist; 1929 unsigned long flags; 1930 struct zoneref *z; 1931 struct zone *zone; 1932 struct page *page; 1933 int order; 1934 bool ret; 1935 1936 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1937 ac->nodemask) { 1938 /* 1939 * Preserve at least one pageblock unless memory pressure 1940 * is really high. 1941 */ 1942 if (!force && zone->nr_reserved_highatomic <= 1943 pageblock_nr_pages) 1944 continue; 1945 1946 spin_lock_irqsave(&zone->lock, flags); 1947 for (order = 0; order < NR_PAGE_ORDERS; order++) { 1948 struct free_area *area = &(zone->free_area[order]); 1949 1950 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1951 if (!page) 1952 continue; 1953 1954 /* 1955 * In page freeing path, migratetype change is racy so 1956 * we can counter several free pages in a pageblock 1957 * in this loop although we changed the pageblock type 1958 * from highatomic to ac->migratetype. So we should 1959 * adjust the count once. 1960 */ 1961 if (is_migrate_highatomic_page(page)) { 1962 /* 1963 * It should never happen but changes to 1964 * locking could inadvertently allow a per-cpu 1965 * drain to add pages to MIGRATE_HIGHATOMIC 1966 * while unreserving so be safe and watch for 1967 * underflows. 1968 */ 1969 zone->nr_reserved_highatomic -= min( 1970 pageblock_nr_pages, 1971 zone->nr_reserved_highatomic); 1972 } 1973 1974 /* 1975 * Convert to ac->migratetype and avoid the normal 1976 * pageblock stealing heuristics. Minimally, the caller 1977 * is doing the work and needs the pages. More 1978 * importantly, if the block was always converted to 1979 * MIGRATE_UNMOVABLE or another type then the number 1980 * of pageblocks that cannot be completely freed 1981 * may increase. 1982 */ 1983 set_pageblock_migratetype(page, ac->migratetype); 1984 ret = move_freepages_block(zone, page, ac->migratetype, 1985 NULL); 1986 if (ret) { 1987 spin_unlock_irqrestore(&zone->lock, flags); 1988 return ret; 1989 } 1990 } 1991 spin_unlock_irqrestore(&zone->lock, flags); 1992 } 1993 1994 return false; 1995 } 1996 1997 /* 1998 * Try finding a free buddy page on the fallback list and put it on the free 1999 * list of requested migratetype, possibly along with other pages from the same 2000 * block, depending on fragmentation avoidance heuristics. Returns true if 2001 * fallback was found so that __rmqueue_smallest() can grab it. 2002 * 2003 * The use of signed ints for order and current_order is a deliberate 2004 * deviation from the rest of this file, to make the for loop 2005 * condition simpler. 2006 */ 2007 static __always_inline bool 2008 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2009 unsigned int alloc_flags) 2010 { 2011 struct free_area *area; 2012 int current_order; 2013 int min_order = order; 2014 struct page *page; 2015 int fallback_mt; 2016 bool can_steal; 2017 2018 /* 2019 * Do not steal pages from freelists belonging to other pageblocks 2020 * i.e. orders < pageblock_order. If there are no local zones free, 2021 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2022 */ 2023 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2024 min_order = pageblock_order; 2025 2026 /* 2027 * Find the largest available free page in the other list. This roughly 2028 * approximates finding the pageblock with the most free pages, which 2029 * would be too costly to do exactly. 2030 */ 2031 for (current_order = MAX_ORDER; current_order >= min_order; 2032 --current_order) { 2033 area = &(zone->free_area[current_order]); 2034 fallback_mt = find_suitable_fallback(area, current_order, 2035 start_migratetype, false, &can_steal); 2036 if (fallback_mt == -1) 2037 continue; 2038 2039 /* 2040 * We cannot steal all free pages from the pageblock and the 2041 * requested migratetype is movable. In that case it's better to 2042 * steal and split the smallest available page instead of the 2043 * largest available page, because even if the next movable 2044 * allocation falls back into a different pageblock than this 2045 * one, it won't cause permanent fragmentation. 2046 */ 2047 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2048 && current_order > order) 2049 goto find_smallest; 2050 2051 goto do_steal; 2052 } 2053 2054 return false; 2055 2056 find_smallest: 2057 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2058 area = &(zone->free_area[current_order]); 2059 fallback_mt = find_suitable_fallback(area, current_order, 2060 start_migratetype, false, &can_steal); 2061 if (fallback_mt != -1) 2062 break; 2063 } 2064 2065 /* 2066 * This should not happen - we already found a suitable fallback 2067 * when looking for the largest page. 2068 */ 2069 VM_BUG_ON(current_order > MAX_ORDER); 2070 2071 do_steal: 2072 page = get_page_from_free_area(area, fallback_mt); 2073 2074 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2075 can_steal); 2076 2077 trace_mm_page_alloc_extfrag(page, order, current_order, 2078 start_migratetype, fallback_mt); 2079 2080 return true; 2081 2082 } 2083 2084 /* 2085 * Do the hard work of removing an element from the buddy allocator. 2086 * Call me with the zone->lock already held. 2087 */ 2088 static __always_inline struct page * 2089 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2090 unsigned int alloc_flags) 2091 { 2092 struct page *page; 2093 2094 if (IS_ENABLED(CONFIG_CMA)) { 2095 /* 2096 * Balance movable allocations between regular and CMA areas by 2097 * allocating from CMA when over half of the zone's free memory 2098 * is in the CMA area. 2099 */ 2100 if (alloc_flags & ALLOC_CMA && 2101 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2102 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2103 page = __rmqueue_cma_fallback(zone, order); 2104 if (page) 2105 return page; 2106 } 2107 } 2108 retry: 2109 page = __rmqueue_smallest(zone, order, migratetype); 2110 if (unlikely(!page)) { 2111 if (alloc_flags & ALLOC_CMA) 2112 page = __rmqueue_cma_fallback(zone, order); 2113 2114 if (!page && __rmqueue_fallback(zone, order, migratetype, 2115 alloc_flags)) 2116 goto retry; 2117 } 2118 return page; 2119 } 2120 2121 /* 2122 * Obtain a specified number of elements from the buddy allocator, all under 2123 * a single hold of the lock, for efficiency. Add them to the supplied list. 2124 * Returns the number of new pages which were placed at *list. 2125 */ 2126 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2127 unsigned long count, struct list_head *list, 2128 int migratetype, unsigned int alloc_flags) 2129 { 2130 unsigned long flags; 2131 int i; 2132 2133 spin_lock_irqsave(&zone->lock, flags); 2134 for (i = 0; i < count; ++i) { 2135 struct page *page = __rmqueue(zone, order, migratetype, 2136 alloc_flags); 2137 if (unlikely(page == NULL)) 2138 break; 2139 2140 /* 2141 * Split buddy pages returned by expand() are received here in 2142 * physical page order. The page is added to the tail of 2143 * caller's list. From the callers perspective, the linked list 2144 * is ordered by page number under some conditions. This is 2145 * useful for IO devices that can forward direction from the 2146 * head, thus also in the physical page order. This is useful 2147 * for IO devices that can merge IO requests if the physical 2148 * pages are ordered properly. 2149 */ 2150 list_add_tail(&page->pcp_list, list); 2151 if (is_migrate_cma(get_pcppage_migratetype(page))) 2152 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2153 -(1 << order)); 2154 } 2155 2156 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2157 spin_unlock_irqrestore(&zone->lock, flags); 2158 2159 return i; 2160 } 2161 2162 #ifdef CONFIG_NUMA 2163 /* 2164 * Called from the vmstat counter updater to drain pagesets of this 2165 * currently executing processor on remote nodes after they have 2166 * expired. 2167 */ 2168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2169 { 2170 int to_drain, batch; 2171 2172 batch = READ_ONCE(pcp->batch); 2173 to_drain = min(pcp->count, batch); 2174 if (to_drain > 0) { 2175 spin_lock(&pcp->lock); 2176 free_pcppages_bulk(zone, to_drain, pcp, 0); 2177 spin_unlock(&pcp->lock); 2178 } 2179 } 2180 #endif 2181 2182 /* 2183 * Drain pcplists of the indicated processor and zone. 2184 */ 2185 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2186 { 2187 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2188 int count; 2189 2190 do { 2191 spin_lock(&pcp->lock); 2192 count = pcp->count; 2193 if (count) { 2194 int to_drain = min(count, 2195 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2196 2197 free_pcppages_bulk(zone, to_drain, pcp, 0); 2198 count -= to_drain; 2199 } 2200 spin_unlock(&pcp->lock); 2201 } while (count); 2202 } 2203 2204 /* 2205 * Drain pcplists of all zones on the indicated processor. 2206 */ 2207 static void drain_pages(unsigned int cpu) 2208 { 2209 struct zone *zone; 2210 2211 for_each_populated_zone(zone) { 2212 drain_pages_zone(cpu, zone); 2213 } 2214 } 2215 2216 /* 2217 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2218 */ 2219 void drain_local_pages(struct zone *zone) 2220 { 2221 int cpu = smp_processor_id(); 2222 2223 if (zone) 2224 drain_pages_zone(cpu, zone); 2225 else 2226 drain_pages(cpu); 2227 } 2228 2229 /* 2230 * The implementation of drain_all_pages(), exposing an extra parameter to 2231 * drain on all cpus. 2232 * 2233 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2234 * not empty. The check for non-emptiness can however race with a free to 2235 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2236 * that need the guarantee that every CPU has drained can disable the 2237 * optimizing racy check. 2238 */ 2239 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2240 { 2241 int cpu; 2242 2243 /* 2244 * Allocate in the BSS so we won't require allocation in 2245 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2246 */ 2247 static cpumask_t cpus_with_pcps; 2248 2249 /* 2250 * Do not drain if one is already in progress unless it's specific to 2251 * a zone. Such callers are primarily CMA and memory hotplug and need 2252 * the drain to be complete when the call returns. 2253 */ 2254 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2255 if (!zone) 2256 return; 2257 mutex_lock(&pcpu_drain_mutex); 2258 } 2259 2260 /* 2261 * We don't care about racing with CPU hotplug event 2262 * as offline notification will cause the notified 2263 * cpu to drain that CPU pcps and on_each_cpu_mask 2264 * disables preemption as part of its processing 2265 */ 2266 for_each_online_cpu(cpu) { 2267 struct per_cpu_pages *pcp; 2268 struct zone *z; 2269 bool has_pcps = false; 2270 2271 if (force_all_cpus) { 2272 /* 2273 * The pcp.count check is racy, some callers need a 2274 * guarantee that no cpu is missed. 2275 */ 2276 has_pcps = true; 2277 } else if (zone) { 2278 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2279 if (pcp->count) 2280 has_pcps = true; 2281 } else { 2282 for_each_populated_zone(z) { 2283 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2284 if (pcp->count) { 2285 has_pcps = true; 2286 break; 2287 } 2288 } 2289 } 2290 2291 if (has_pcps) 2292 cpumask_set_cpu(cpu, &cpus_with_pcps); 2293 else 2294 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2295 } 2296 2297 for_each_cpu(cpu, &cpus_with_pcps) { 2298 if (zone) 2299 drain_pages_zone(cpu, zone); 2300 else 2301 drain_pages(cpu); 2302 } 2303 2304 mutex_unlock(&pcpu_drain_mutex); 2305 } 2306 2307 /* 2308 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2309 * 2310 * When zone parameter is non-NULL, spill just the single zone's pages. 2311 */ 2312 void drain_all_pages(struct zone *zone) 2313 { 2314 __drain_all_pages(zone, false); 2315 } 2316 2317 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2318 unsigned int order) 2319 { 2320 int migratetype; 2321 2322 if (!free_pages_prepare(page, order, FPI_NONE)) 2323 return false; 2324 2325 migratetype = get_pfnblock_migratetype(page, pfn); 2326 set_pcppage_migratetype(page, migratetype); 2327 return true; 2328 } 2329 2330 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high) 2331 { 2332 int min_nr_free, max_nr_free; 2333 int batch = READ_ONCE(pcp->batch); 2334 2335 /* Free everything if batch freeing high-order pages. */ 2336 if (unlikely(free_high)) 2337 return pcp->count; 2338 2339 /* Check for PCP disabled or boot pageset */ 2340 if (unlikely(high < batch)) 2341 return 1; 2342 2343 /* Leave at least pcp->batch pages on the list */ 2344 min_nr_free = batch; 2345 max_nr_free = high - batch; 2346 2347 /* 2348 * Double the number of pages freed each time there is subsequent 2349 * freeing of pages without any allocation. 2350 */ 2351 batch <<= pcp->free_factor; 2352 if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2353 pcp->free_factor++; 2354 batch = clamp(batch, min_nr_free, max_nr_free); 2355 2356 return batch; 2357 } 2358 2359 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2360 bool free_high) 2361 { 2362 int high = READ_ONCE(pcp->high); 2363 2364 if (unlikely(!high || free_high)) 2365 return 0; 2366 2367 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 2368 return high; 2369 2370 /* 2371 * If reclaim is active, limit the number of pages that can be 2372 * stored on pcp lists 2373 */ 2374 return min(READ_ONCE(pcp->batch) << 2, high); 2375 } 2376 2377 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2378 struct page *page, int migratetype, 2379 unsigned int order) 2380 { 2381 int high; 2382 int pindex; 2383 bool free_high; 2384 2385 __count_vm_events(PGFREE, 1 << order); 2386 pindex = order_to_pindex(migratetype, order); 2387 list_add(&page->pcp_list, &pcp->lists[pindex]); 2388 pcp->count += 1 << order; 2389 2390 /* 2391 * As high-order pages other than THP's stored on PCP can contribute 2392 * to fragmentation, limit the number stored when PCP is heavily 2393 * freeing without allocation. The remainder after bulk freeing 2394 * stops will be drained from vmstat refresh context. 2395 */ 2396 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 2397 2398 high = nr_pcp_high(pcp, zone, free_high); 2399 if (pcp->count >= high) { 2400 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex); 2401 } 2402 } 2403 2404 /* 2405 * Free a pcp page 2406 */ 2407 void free_unref_page(struct page *page, unsigned int order) 2408 { 2409 unsigned long __maybe_unused UP_flags; 2410 struct per_cpu_pages *pcp; 2411 struct zone *zone; 2412 unsigned long pfn = page_to_pfn(page); 2413 int migratetype, pcpmigratetype; 2414 2415 if (!free_unref_page_prepare(page, pfn, order)) 2416 return; 2417 2418 /* 2419 * We only track unmovable, reclaimable and movable on pcp lists. 2420 * Place ISOLATE pages on the isolated list because they are being 2421 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2422 * get those areas back if necessary. Otherwise, we may have to free 2423 * excessively into the page allocator 2424 */ 2425 migratetype = pcpmigratetype = get_pcppage_migratetype(page); 2426 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2427 if (unlikely(is_migrate_isolate(migratetype))) { 2428 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2429 return; 2430 } 2431 pcpmigratetype = MIGRATE_MOVABLE; 2432 } 2433 2434 zone = page_zone(page); 2435 pcp_trylock_prepare(UP_flags); 2436 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2437 if (pcp) { 2438 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order); 2439 pcp_spin_unlock(pcp); 2440 } else { 2441 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2442 } 2443 pcp_trylock_finish(UP_flags); 2444 } 2445 2446 /* 2447 * Free a list of 0-order pages 2448 */ 2449 void free_unref_page_list(struct list_head *list) 2450 { 2451 unsigned long __maybe_unused UP_flags; 2452 struct page *page, *next; 2453 struct per_cpu_pages *pcp = NULL; 2454 struct zone *locked_zone = NULL; 2455 int batch_count = 0; 2456 int migratetype; 2457 2458 /* Prepare pages for freeing */ 2459 list_for_each_entry_safe(page, next, list, lru) { 2460 unsigned long pfn = page_to_pfn(page); 2461 if (!free_unref_page_prepare(page, pfn, 0)) { 2462 list_del(&page->lru); 2463 continue; 2464 } 2465 2466 /* 2467 * Free isolated pages directly to the allocator, see 2468 * comment in free_unref_page. 2469 */ 2470 migratetype = get_pcppage_migratetype(page); 2471 if (unlikely(is_migrate_isolate(migratetype))) { 2472 list_del(&page->lru); 2473 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2474 continue; 2475 } 2476 } 2477 2478 list_for_each_entry_safe(page, next, list, lru) { 2479 struct zone *zone = page_zone(page); 2480 2481 list_del(&page->lru); 2482 migratetype = get_pcppage_migratetype(page); 2483 2484 /* 2485 * Either different zone requiring a different pcp lock or 2486 * excessive lock hold times when freeing a large list of 2487 * pages. 2488 */ 2489 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2490 if (pcp) { 2491 pcp_spin_unlock(pcp); 2492 pcp_trylock_finish(UP_flags); 2493 } 2494 2495 batch_count = 0; 2496 2497 /* 2498 * trylock is necessary as pages may be getting freed 2499 * from IRQ or SoftIRQ context after an IO completion. 2500 */ 2501 pcp_trylock_prepare(UP_flags); 2502 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2503 if (unlikely(!pcp)) { 2504 pcp_trylock_finish(UP_flags); 2505 free_one_page(zone, page, page_to_pfn(page), 2506 0, migratetype, FPI_NONE); 2507 locked_zone = NULL; 2508 continue; 2509 } 2510 locked_zone = zone; 2511 } 2512 2513 /* 2514 * Non-isolated types over MIGRATE_PCPTYPES get added 2515 * to the MIGRATE_MOVABLE pcp list. 2516 */ 2517 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2518 migratetype = MIGRATE_MOVABLE; 2519 2520 trace_mm_page_free_batched(page); 2521 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2522 batch_count++; 2523 } 2524 2525 if (pcp) { 2526 pcp_spin_unlock(pcp); 2527 pcp_trylock_finish(UP_flags); 2528 } 2529 } 2530 2531 /* 2532 * split_page takes a non-compound higher-order page, and splits it into 2533 * n (1<<order) sub-pages: page[0..n] 2534 * Each sub-page must be freed individually. 2535 * 2536 * Note: this is probably too low level an operation for use in drivers. 2537 * Please consult with lkml before using this in your driver. 2538 */ 2539 void split_page(struct page *page, unsigned int order) 2540 { 2541 int i; 2542 2543 VM_BUG_ON_PAGE(PageCompound(page), page); 2544 VM_BUG_ON_PAGE(!page_count(page), page); 2545 2546 for (i = 1; i < (1 << order); i++) 2547 set_page_refcounted(page + i); 2548 split_page_owner(page, 1 << order); 2549 split_page_memcg(page, 1 << order); 2550 } 2551 EXPORT_SYMBOL_GPL(split_page); 2552 2553 int __isolate_free_page(struct page *page, unsigned int order) 2554 { 2555 struct zone *zone = page_zone(page); 2556 int mt = get_pageblock_migratetype(page); 2557 2558 if (!is_migrate_isolate(mt)) { 2559 unsigned long watermark; 2560 /* 2561 * Obey watermarks as if the page was being allocated. We can 2562 * emulate a high-order watermark check with a raised order-0 2563 * watermark, because we already know our high-order page 2564 * exists. 2565 */ 2566 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2567 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2568 return 0; 2569 2570 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2571 } 2572 2573 del_page_from_free_list(page, zone, order); 2574 2575 /* 2576 * Set the pageblock if the isolated page is at least half of a 2577 * pageblock 2578 */ 2579 if (order >= pageblock_order - 1) { 2580 struct page *endpage = page + (1 << order) - 1; 2581 for (; page < endpage; page += pageblock_nr_pages) { 2582 int mt = get_pageblock_migratetype(page); 2583 /* 2584 * Only change normal pageblocks (i.e., they can merge 2585 * with others) 2586 */ 2587 if (migratetype_is_mergeable(mt)) 2588 set_pageblock_migratetype(page, 2589 MIGRATE_MOVABLE); 2590 } 2591 } 2592 2593 return 1UL << order; 2594 } 2595 2596 /** 2597 * __putback_isolated_page - Return a now-isolated page back where we got it 2598 * @page: Page that was isolated 2599 * @order: Order of the isolated page 2600 * @mt: The page's pageblock's migratetype 2601 * 2602 * This function is meant to return a page pulled from the free lists via 2603 * __isolate_free_page back to the free lists they were pulled from. 2604 */ 2605 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2606 { 2607 struct zone *zone = page_zone(page); 2608 2609 /* zone lock should be held when this function is called */ 2610 lockdep_assert_held(&zone->lock); 2611 2612 /* Return isolated page to tail of freelist. */ 2613 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2614 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2615 } 2616 2617 /* 2618 * Update NUMA hit/miss statistics 2619 */ 2620 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2621 long nr_account) 2622 { 2623 #ifdef CONFIG_NUMA 2624 enum numa_stat_item local_stat = NUMA_LOCAL; 2625 2626 /* skip numa counters update if numa stats is disabled */ 2627 if (!static_branch_likely(&vm_numa_stat_key)) 2628 return; 2629 2630 if (zone_to_nid(z) != numa_node_id()) 2631 local_stat = NUMA_OTHER; 2632 2633 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2634 __count_numa_events(z, NUMA_HIT, nr_account); 2635 else { 2636 __count_numa_events(z, NUMA_MISS, nr_account); 2637 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2638 } 2639 __count_numa_events(z, local_stat, nr_account); 2640 #endif 2641 } 2642 2643 static __always_inline 2644 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2645 unsigned int order, unsigned int alloc_flags, 2646 int migratetype) 2647 { 2648 struct page *page; 2649 unsigned long flags; 2650 2651 do { 2652 page = NULL; 2653 spin_lock_irqsave(&zone->lock, flags); 2654 if (alloc_flags & ALLOC_HIGHATOMIC) 2655 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2656 if (!page) { 2657 page = __rmqueue(zone, order, migratetype, alloc_flags); 2658 2659 /* 2660 * If the allocation fails, allow OOM handling and 2661 * order-0 (atomic) allocs access to HIGHATOMIC 2662 * reserves as failing now is worse than failing a 2663 * high-order atomic allocation in the future. 2664 */ 2665 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 2666 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2667 2668 if (!page) { 2669 spin_unlock_irqrestore(&zone->lock, flags); 2670 return NULL; 2671 } 2672 } 2673 __mod_zone_freepage_state(zone, -(1 << order), 2674 get_pcppage_migratetype(page)); 2675 spin_unlock_irqrestore(&zone->lock, flags); 2676 } while (check_new_pages(page, order)); 2677 2678 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2679 zone_statistics(preferred_zone, zone, 1); 2680 2681 return page; 2682 } 2683 2684 /* Remove page from the per-cpu list, caller must protect the list */ 2685 static inline 2686 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2687 int migratetype, 2688 unsigned int alloc_flags, 2689 struct per_cpu_pages *pcp, 2690 struct list_head *list) 2691 { 2692 struct page *page; 2693 2694 do { 2695 if (list_empty(list)) { 2696 int batch = READ_ONCE(pcp->batch); 2697 int alloced; 2698 2699 /* 2700 * Scale batch relative to order if batch implies 2701 * free pages can be stored on the PCP. Batch can 2702 * be 1 for small zones or for boot pagesets which 2703 * should never store free pages as the pages may 2704 * belong to arbitrary zones. 2705 */ 2706 if (batch > 1) 2707 batch = max(batch >> order, 2); 2708 alloced = rmqueue_bulk(zone, order, 2709 batch, list, 2710 migratetype, alloc_flags); 2711 2712 pcp->count += alloced << order; 2713 if (unlikely(list_empty(list))) 2714 return NULL; 2715 } 2716 2717 page = list_first_entry(list, struct page, pcp_list); 2718 list_del(&page->pcp_list); 2719 pcp->count -= 1 << order; 2720 } while (check_new_pages(page, order)); 2721 2722 return page; 2723 } 2724 2725 /* Lock and remove page from the per-cpu list */ 2726 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2727 struct zone *zone, unsigned int order, 2728 int migratetype, unsigned int alloc_flags) 2729 { 2730 struct per_cpu_pages *pcp; 2731 struct list_head *list; 2732 struct page *page; 2733 unsigned long __maybe_unused UP_flags; 2734 2735 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2736 pcp_trylock_prepare(UP_flags); 2737 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2738 if (!pcp) { 2739 pcp_trylock_finish(UP_flags); 2740 return NULL; 2741 } 2742 2743 /* 2744 * On allocation, reduce the number of pages that are batch freed. 2745 * See nr_pcp_free() where free_factor is increased for subsequent 2746 * frees. 2747 */ 2748 pcp->free_factor >>= 1; 2749 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2750 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2751 pcp_spin_unlock(pcp); 2752 pcp_trylock_finish(UP_flags); 2753 if (page) { 2754 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2755 zone_statistics(preferred_zone, zone, 1); 2756 } 2757 return page; 2758 } 2759 2760 /* 2761 * Allocate a page from the given zone. 2762 * Use pcplists for THP or "cheap" high-order allocations. 2763 */ 2764 2765 /* 2766 * Do not instrument rmqueue() with KMSAN. This function may call 2767 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2768 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2769 * may call rmqueue() again, which will result in a deadlock. 2770 */ 2771 __no_sanitize_memory 2772 static inline 2773 struct page *rmqueue(struct zone *preferred_zone, 2774 struct zone *zone, unsigned int order, 2775 gfp_t gfp_flags, unsigned int alloc_flags, 2776 int migratetype) 2777 { 2778 struct page *page; 2779 2780 /* 2781 * We most definitely don't want callers attempting to 2782 * allocate greater than order-1 page units with __GFP_NOFAIL. 2783 */ 2784 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2785 2786 if (likely(pcp_allowed_order(order))) { 2787 page = rmqueue_pcplist(preferred_zone, zone, order, 2788 migratetype, alloc_flags); 2789 if (likely(page)) 2790 goto out; 2791 } 2792 2793 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2794 migratetype); 2795 2796 out: 2797 /* Separate test+clear to avoid unnecessary atomics */ 2798 if ((alloc_flags & ALLOC_KSWAPD) && 2799 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2800 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2801 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2802 } 2803 2804 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2805 return page; 2806 } 2807 2808 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2809 { 2810 return __should_fail_alloc_page(gfp_mask, order); 2811 } 2812 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2813 2814 static inline long __zone_watermark_unusable_free(struct zone *z, 2815 unsigned int order, unsigned int alloc_flags) 2816 { 2817 long unusable_free = (1 << order) - 1; 2818 2819 /* 2820 * If the caller does not have rights to reserves below the min 2821 * watermark then subtract the high-atomic reserves. This will 2822 * over-estimate the size of the atomic reserve but it avoids a search. 2823 */ 2824 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2825 unusable_free += z->nr_reserved_highatomic; 2826 2827 #ifdef CONFIG_CMA 2828 /* If allocation can't use CMA areas don't use free CMA pages */ 2829 if (!(alloc_flags & ALLOC_CMA)) 2830 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2831 #endif 2832 2833 return unusable_free; 2834 } 2835 2836 /* 2837 * Return true if free base pages are above 'mark'. For high-order checks it 2838 * will return true of the order-0 watermark is reached and there is at least 2839 * one free page of a suitable size. Checking now avoids taking the zone lock 2840 * to check in the allocation paths if no pages are free. 2841 */ 2842 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2843 int highest_zoneidx, unsigned int alloc_flags, 2844 long free_pages) 2845 { 2846 long min = mark; 2847 int o; 2848 2849 /* free_pages may go negative - that's OK */ 2850 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2851 2852 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2853 /* 2854 * __GFP_HIGH allows access to 50% of the min reserve as well 2855 * as OOM. 2856 */ 2857 if (alloc_flags & ALLOC_MIN_RESERVE) { 2858 min -= min / 2; 2859 2860 /* 2861 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2862 * access more reserves than just __GFP_HIGH. Other 2863 * non-blocking allocations requests such as GFP_NOWAIT 2864 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2865 * access to the min reserve. 2866 */ 2867 if (alloc_flags & ALLOC_NON_BLOCK) 2868 min -= min / 4; 2869 } 2870 2871 /* 2872 * OOM victims can try even harder than the normal reserve 2873 * users on the grounds that it's definitely going to be in 2874 * the exit path shortly and free memory. Any allocation it 2875 * makes during the free path will be small and short-lived. 2876 */ 2877 if (alloc_flags & ALLOC_OOM) 2878 min -= min / 2; 2879 } 2880 2881 /* 2882 * Check watermarks for an order-0 allocation request. If these 2883 * are not met, then a high-order request also cannot go ahead 2884 * even if a suitable page happened to be free. 2885 */ 2886 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 2887 return false; 2888 2889 /* If this is an order-0 request then the watermark is fine */ 2890 if (!order) 2891 return true; 2892 2893 /* For a high-order request, check at least one suitable page is free */ 2894 for (o = order; o < NR_PAGE_ORDERS; o++) { 2895 struct free_area *area = &z->free_area[o]; 2896 int mt; 2897 2898 if (!area->nr_free) 2899 continue; 2900 2901 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2902 if (!free_area_empty(area, mt)) 2903 return true; 2904 } 2905 2906 #ifdef CONFIG_CMA 2907 if ((alloc_flags & ALLOC_CMA) && 2908 !free_area_empty(area, MIGRATE_CMA)) { 2909 return true; 2910 } 2911 #endif 2912 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 2913 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 2914 return true; 2915 } 2916 } 2917 return false; 2918 } 2919 2920 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2921 int highest_zoneidx, unsigned int alloc_flags) 2922 { 2923 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 2924 zone_page_state(z, NR_FREE_PAGES)); 2925 } 2926 2927 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2928 unsigned long mark, int highest_zoneidx, 2929 unsigned int alloc_flags, gfp_t gfp_mask) 2930 { 2931 long free_pages; 2932 2933 free_pages = zone_page_state(z, NR_FREE_PAGES); 2934 2935 /* 2936 * Fast check for order-0 only. If this fails then the reserves 2937 * need to be calculated. 2938 */ 2939 if (!order) { 2940 long usable_free; 2941 long reserved; 2942 2943 usable_free = free_pages; 2944 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 2945 2946 /* reserved may over estimate high-atomic reserves. */ 2947 usable_free -= min(usable_free, reserved); 2948 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 2949 return true; 2950 } 2951 2952 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 2953 free_pages)) 2954 return true; 2955 2956 /* 2957 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 2958 * when checking the min watermark. The min watermark is the 2959 * point where boosting is ignored so that kswapd is woken up 2960 * when below the low watermark. 2961 */ 2962 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 2963 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 2964 mark = z->_watermark[WMARK_MIN]; 2965 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 2966 alloc_flags, free_pages); 2967 } 2968 2969 return false; 2970 } 2971 2972 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2973 unsigned long mark, int highest_zoneidx) 2974 { 2975 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2976 2977 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2978 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2979 2980 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 2981 free_pages); 2982 } 2983 2984 #ifdef CONFIG_NUMA 2985 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 2986 2987 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2988 { 2989 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 2990 node_reclaim_distance; 2991 } 2992 #else /* CONFIG_NUMA */ 2993 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2994 { 2995 return true; 2996 } 2997 #endif /* CONFIG_NUMA */ 2998 2999 /* 3000 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3001 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3002 * premature use of a lower zone may cause lowmem pressure problems that 3003 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3004 * probably too small. It only makes sense to spread allocations to avoid 3005 * fragmentation between the Normal and DMA32 zones. 3006 */ 3007 static inline unsigned int 3008 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3009 { 3010 unsigned int alloc_flags; 3011 3012 /* 3013 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3014 * to save a branch. 3015 */ 3016 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3017 3018 #ifdef CONFIG_ZONE_DMA32 3019 if (!zone) 3020 return alloc_flags; 3021 3022 if (zone_idx(zone) != ZONE_NORMAL) 3023 return alloc_flags; 3024 3025 /* 3026 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3027 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3028 * on UMA that if Normal is populated then so is DMA32. 3029 */ 3030 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3031 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3032 return alloc_flags; 3033 3034 alloc_flags |= ALLOC_NOFRAGMENT; 3035 #endif /* CONFIG_ZONE_DMA32 */ 3036 return alloc_flags; 3037 } 3038 3039 /* Must be called after current_gfp_context() which can change gfp_mask */ 3040 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3041 unsigned int alloc_flags) 3042 { 3043 #ifdef CONFIG_CMA 3044 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3045 alloc_flags |= ALLOC_CMA; 3046 #endif 3047 return alloc_flags; 3048 } 3049 3050 /* 3051 * get_page_from_freelist goes through the zonelist trying to allocate 3052 * a page. 3053 */ 3054 static struct page * 3055 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3056 const struct alloc_context *ac) 3057 { 3058 struct zoneref *z; 3059 struct zone *zone; 3060 struct pglist_data *last_pgdat = NULL; 3061 bool last_pgdat_dirty_ok = false; 3062 bool no_fallback; 3063 3064 retry: 3065 /* 3066 * Scan zonelist, looking for a zone with enough free. 3067 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3068 */ 3069 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3070 z = ac->preferred_zoneref; 3071 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3072 ac->nodemask) { 3073 struct page *page; 3074 unsigned long mark; 3075 3076 if (cpusets_enabled() && 3077 (alloc_flags & ALLOC_CPUSET) && 3078 !__cpuset_zone_allowed(zone, gfp_mask)) 3079 continue; 3080 /* 3081 * When allocating a page cache page for writing, we 3082 * want to get it from a node that is within its dirty 3083 * limit, such that no single node holds more than its 3084 * proportional share of globally allowed dirty pages. 3085 * The dirty limits take into account the node's 3086 * lowmem reserves and high watermark so that kswapd 3087 * should be able to balance it without having to 3088 * write pages from its LRU list. 3089 * 3090 * XXX: For now, allow allocations to potentially 3091 * exceed the per-node dirty limit in the slowpath 3092 * (spread_dirty_pages unset) before going into reclaim, 3093 * which is important when on a NUMA setup the allowed 3094 * nodes are together not big enough to reach the 3095 * global limit. The proper fix for these situations 3096 * will require awareness of nodes in the 3097 * dirty-throttling and the flusher threads. 3098 */ 3099 if (ac->spread_dirty_pages) { 3100 if (last_pgdat != zone->zone_pgdat) { 3101 last_pgdat = zone->zone_pgdat; 3102 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3103 } 3104 3105 if (!last_pgdat_dirty_ok) 3106 continue; 3107 } 3108 3109 if (no_fallback && nr_online_nodes > 1 && 3110 zone != ac->preferred_zoneref->zone) { 3111 int local_nid; 3112 3113 /* 3114 * If moving to a remote node, retry but allow 3115 * fragmenting fallbacks. Locality is more important 3116 * than fragmentation avoidance. 3117 */ 3118 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3119 if (zone_to_nid(zone) != local_nid) { 3120 alloc_flags &= ~ALLOC_NOFRAGMENT; 3121 goto retry; 3122 } 3123 } 3124 3125 cond_accept_memory(zone, order); 3126 3127 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3128 if (!zone_watermark_fast(zone, order, mark, 3129 ac->highest_zoneidx, alloc_flags, 3130 gfp_mask)) { 3131 int ret; 3132 3133 if (cond_accept_memory(zone, order)) 3134 goto try_this_zone; 3135 3136 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3137 /* 3138 * Watermark failed for this zone, but see if we can 3139 * grow this zone if it contains deferred pages. 3140 */ 3141 if (deferred_pages_enabled()) { 3142 if (_deferred_grow_zone(zone, order)) 3143 goto try_this_zone; 3144 } 3145 #endif 3146 /* Checked here to keep the fast path fast */ 3147 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3148 if (alloc_flags & ALLOC_NO_WATERMARKS) 3149 goto try_this_zone; 3150 3151 if (!node_reclaim_enabled() || 3152 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3153 continue; 3154 3155 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3156 switch (ret) { 3157 case NODE_RECLAIM_NOSCAN: 3158 /* did not scan */ 3159 continue; 3160 case NODE_RECLAIM_FULL: 3161 /* scanned but unreclaimable */ 3162 continue; 3163 default: 3164 /* did we reclaim enough */ 3165 if (zone_watermark_ok(zone, order, mark, 3166 ac->highest_zoneidx, alloc_flags)) 3167 goto try_this_zone; 3168 3169 continue; 3170 } 3171 } 3172 3173 try_this_zone: 3174 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3175 gfp_mask, alloc_flags, ac->migratetype); 3176 if (page) { 3177 prep_new_page(page, order, gfp_mask, alloc_flags); 3178 3179 /* 3180 * If this is a high-order atomic allocation then check 3181 * if the pageblock should be reserved for the future 3182 */ 3183 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3184 reserve_highatomic_pageblock(page, zone); 3185 3186 return page; 3187 } else { 3188 if (cond_accept_memory(zone, order)) 3189 goto try_this_zone; 3190 3191 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3192 /* Try again if zone has deferred pages */ 3193 if (deferred_pages_enabled()) { 3194 if (_deferred_grow_zone(zone, order)) 3195 goto try_this_zone; 3196 } 3197 #endif 3198 } 3199 } 3200 3201 /* 3202 * It's possible on a UMA machine to get through all zones that are 3203 * fragmented. If avoiding fragmentation, reset and try again. 3204 */ 3205 if (no_fallback) { 3206 alloc_flags &= ~ALLOC_NOFRAGMENT; 3207 goto retry; 3208 } 3209 3210 return NULL; 3211 } 3212 3213 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3214 { 3215 unsigned int filter = SHOW_MEM_FILTER_NODES; 3216 3217 /* 3218 * This documents exceptions given to allocations in certain 3219 * contexts that are allowed to allocate outside current's set 3220 * of allowed nodes. 3221 */ 3222 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3223 if (tsk_is_oom_victim(current) || 3224 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3225 filter &= ~SHOW_MEM_FILTER_NODES; 3226 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3227 filter &= ~SHOW_MEM_FILTER_NODES; 3228 3229 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3230 } 3231 3232 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3233 { 3234 struct va_format vaf; 3235 va_list args; 3236 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3237 3238 if ((gfp_mask & __GFP_NOWARN) || 3239 !__ratelimit(&nopage_rs) || 3240 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3241 return; 3242 3243 va_start(args, fmt); 3244 vaf.fmt = fmt; 3245 vaf.va = &args; 3246 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3247 current->comm, &vaf, gfp_mask, &gfp_mask, 3248 nodemask_pr_args(nodemask)); 3249 va_end(args); 3250 3251 cpuset_print_current_mems_allowed(); 3252 pr_cont("\n"); 3253 dump_stack(); 3254 warn_alloc_show_mem(gfp_mask, nodemask); 3255 } 3256 3257 static inline struct page * 3258 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3259 unsigned int alloc_flags, 3260 const struct alloc_context *ac) 3261 { 3262 struct page *page; 3263 3264 page = get_page_from_freelist(gfp_mask, order, 3265 alloc_flags|ALLOC_CPUSET, ac); 3266 /* 3267 * fallback to ignore cpuset restriction if our nodes 3268 * are depleted 3269 */ 3270 if (!page) 3271 page = get_page_from_freelist(gfp_mask, order, 3272 alloc_flags, ac); 3273 3274 return page; 3275 } 3276 3277 static inline struct page * 3278 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3279 const struct alloc_context *ac, unsigned long *did_some_progress) 3280 { 3281 struct oom_control oc = { 3282 .zonelist = ac->zonelist, 3283 .nodemask = ac->nodemask, 3284 .memcg = NULL, 3285 .gfp_mask = gfp_mask, 3286 .order = order, 3287 }; 3288 struct page *page; 3289 3290 *did_some_progress = 0; 3291 3292 /* 3293 * Acquire the oom lock. If that fails, somebody else is 3294 * making progress for us. 3295 */ 3296 if (!mutex_trylock(&oom_lock)) { 3297 *did_some_progress = 1; 3298 schedule_timeout_uninterruptible(1); 3299 return NULL; 3300 } 3301 3302 /* 3303 * Go through the zonelist yet one more time, keep very high watermark 3304 * here, this is only to catch a parallel oom killing, we must fail if 3305 * we're still under heavy pressure. But make sure that this reclaim 3306 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3307 * allocation which will never fail due to oom_lock already held. 3308 */ 3309 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3310 ~__GFP_DIRECT_RECLAIM, order, 3311 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3312 if (page) 3313 goto out; 3314 3315 /* Coredumps can quickly deplete all memory reserves */ 3316 if (current->flags & PF_DUMPCORE) 3317 goto out; 3318 /* The OOM killer will not help higher order allocs */ 3319 if (order > PAGE_ALLOC_COSTLY_ORDER) 3320 goto out; 3321 /* 3322 * We have already exhausted all our reclaim opportunities without any 3323 * success so it is time to admit defeat. We will skip the OOM killer 3324 * because it is very likely that the caller has a more reasonable 3325 * fallback than shooting a random task. 3326 * 3327 * The OOM killer may not free memory on a specific node. 3328 */ 3329 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3330 goto out; 3331 /* The OOM killer does not needlessly kill tasks for lowmem */ 3332 if (ac->highest_zoneidx < ZONE_NORMAL) 3333 goto out; 3334 if (pm_suspended_storage()) 3335 goto out; 3336 /* 3337 * XXX: GFP_NOFS allocations should rather fail than rely on 3338 * other request to make a forward progress. 3339 * We are in an unfortunate situation where out_of_memory cannot 3340 * do much for this context but let's try it to at least get 3341 * access to memory reserved if the current task is killed (see 3342 * out_of_memory). Once filesystems are ready to handle allocation 3343 * failures more gracefully we should just bail out here. 3344 */ 3345 3346 /* Exhausted what can be done so it's blame time */ 3347 if (out_of_memory(&oc) || 3348 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3349 *did_some_progress = 1; 3350 3351 /* 3352 * Help non-failing allocations by giving them access to memory 3353 * reserves 3354 */ 3355 if (gfp_mask & __GFP_NOFAIL) 3356 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3357 ALLOC_NO_WATERMARKS, ac); 3358 } 3359 out: 3360 mutex_unlock(&oom_lock); 3361 return page; 3362 } 3363 3364 /* 3365 * Maximum number of compaction retries with a progress before OOM 3366 * killer is consider as the only way to move forward. 3367 */ 3368 #define MAX_COMPACT_RETRIES 16 3369 3370 #ifdef CONFIG_COMPACTION 3371 /* Try memory compaction for high-order allocations before reclaim */ 3372 static struct page * 3373 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3374 unsigned int alloc_flags, const struct alloc_context *ac, 3375 enum compact_priority prio, enum compact_result *compact_result) 3376 { 3377 struct page *page = NULL; 3378 unsigned long pflags; 3379 unsigned int noreclaim_flag; 3380 3381 if (!order) 3382 return NULL; 3383 3384 psi_memstall_enter(&pflags); 3385 delayacct_compact_start(); 3386 noreclaim_flag = memalloc_noreclaim_save(); 3387 3388 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3389 prio, &page); 3390 3391 memalloc_noreclaim_restore(noreclaim_flag); 3392 psi_memstall_leave(&pflags); 3393 delayacct_compact_end(); 3394 3395 if (*compact_result == COMPACT_SKIPPED) 3396 return NULL; 3397 /* 3398 * At least in one zone compaction wasn't deferred or skipped, so let's 3399 * count a compaction stall 3400 */ 3401 count_vm_event(COMPACTSTALL); 3402 3403 /* Prep a captured page if available */ 3404 if (page) 3405 prep_new_page(page, order, gfp_mask, alloc_flags); 3406 3407 /* Try get a page from the freelist if available */ 3408 if (!page) 3409 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3410 3411 if (page) { 3412 struct zone *zone = page_zone(page); 3413 3414 zone->compact_blockskip_flush = false; 3415 compaction_defer_reset(zone, order, true); 3416 count_vm_event(COMPACTSUCCESS); 3417 return page; 3418 } 3419 3420 /* 3421 * It's bad if compaction run occurs and fails. The most likely reason 3422 * is that pages exist, but not enough to satisfy watermarks. 3423 */ 3424 count_vm_event(COMPACTFAIL); 3425 3426 cond_resched(); 3427 3428 return NULL; 3429 } 3430 3431 static inline bool 3432 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3433 enum compact_result compact_result, 3434 enum compact_priority *compact_priority, 3435 int *compaction_retries) 3436 { 3437 int max_retries = MAX_COMPACT_RETRIES; 3438 int min_priority; 3439 bool ret = false; 3440 int retries = *compaction_retries; 3441 enum compact_priority priority = *compact_priority; 3442 3443 if (!order) 3444 return false; 3445 3446 if (fatal_signal_pending(current)) 3447 return false; 3448 3449 /* 3450 * Compaction was skipped due to a lack of free order-0 3451 * migration targets. Continue if reclaim can help. 3452 */ 3453 if (compact_result == COMPACT_SKIPPED) { 3454 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3455 goto out; 3456 } 3457 3458 /* 3459 * Compaction managed to coalesce some page blocks, but the 3460 * allocation failed presumably due to a race. Retry some. 3461 */ 3462 if (compact_result == COMPACT_SUCCESS) { 3463 /* 3464 * !costly requests are much more important than 3465 * __GFP_RETRY_MAYFAIL costly ones because they are de 3466 * facto nofail and invoke OOM killer to move on while 3467 * costly can fail and users are ready to cope with 3468 * that. 1/4 retries is rather arbitrary but we would 3469 * need much more detailed feedback from compaction to 3470 * make a better decision. 3471 */ 3472 if (order > PAGE_ALLOC_COSTLY_ORDER) 3473 max_retries /= 4; 3474 3475 if (++(*compaction_retries) <= max_retries) { 3476 ret = true; 3477 goto out; 3478 } 3479 } 3480 3481 /* 3482 * Compaction failed. Retry with increasing priority. 3483 */ 3484 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3485 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3486 3487 if (*compact_priority > min_priority) { 3488 (*compact_priority)--; 3489 *compaction_retries = 0; 3490 ret = true; 3491 } 3492 out: 3493 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3494 return ret; 3495 } 3496 #else 3497 static inline struct page * 3498 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3499 unsigned int alloc_flags, const struct alloc_context *ac, 3500 enum compact_priority prio, enum compact_result *compact_result) 3501 { 3502 *compact_result = COMPACT_SKIPPED; 3503 return NULL; 3504 } 3505 3506 static inline bool 3507 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3508 enum compact_result compact_result, 3509 enum compact_priority *compact_priority, 3510 int *compaction_retries) 3511 { 3512 struct zone *zone; 3513 struct zoneref *z; 3514 3515 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3516 return false; 3517 3518 /* 3519 * There are setups with compaction disabled which would prefer to loop 3520 * inside the allocator rather than hit the oom killer prematurely. 3521 * Let's give them a good hope and keep retrying while the order-0 3522 * watermarks are OK. 3523 */ 3524 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3525 ac->highest_zoneidx, ac->nodemask) { 3526 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3527 ac->highest_zoneidx, alloc_flags)) 3528 return true; 3529 } 3530 return false; 3531 } 3532 #endif /* CONFIG_COMPACTION */ 3533 3534 #ifdef CONFIG_LOCKDEP 3535 static struct lockdep_map __fs_reclaim_map = 3536 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3537 3538 static bool __need_reclaim(gfp_t gfp_mask) 3539 { 3540 /* no reclaim without waiting on it */ 3541 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3542 return false; 3543 3544 /* this guy won't enter reclaim */ 3545 if (current->flags & PF_MEMALLOC) 3546 return false; 3547 3548 if (gfp_mask & __GFP_NOLOCKDEP) 3549 return false; 3550 3551 return true; 3552 } 3553 3554 void __fs_reclaim_acquire(unsigned long ip) 3555 { 3556 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3557 } 3558 3559 void __fs_reclaim_release(unsigned long ip) 3560 { 3561 lock_release(&__fs_reclaim_map, ip); 3562 } 3563 3564 void fs_reclaim_acquire(gfp_t gfp_mask) 3565 { 3566 gfp_mask = current_gfp_context(gfp_mask); 3567 3568 if (__need_reclaim(gfp_mask)) { 3569 if (gfp_mask & __GFP_FS) 3570 __fs_reclaim_acquire(_RET_IP_); 3571 3572 #ifdef CONFIG_MMU_NOTIFIER 3573 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3574 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3575 #endif 3576 3577 } 3578 } 3579 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3580 3581 void fs_reclaim_release(gfp_t gfp_mask) 3582 { 3583 gfp_mask = current_gfp_context(gfp_mask); 3584 3585 if (__need_reclaim(gfp_mask)) { 3586 if (gfp_mask & __GFP_FS) 3587 __fs_reclaim_release(_RET_IP_); 3588 } 3589 } 3590 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3591 #endif 3592 3593 /* 3594 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3595 * have been rebuilt so allocation retries. Reader side does not lock and 3596 * retries the allocation if zonelist changes. Writer side is protected by the 3597 * embedded spin_lock. 3598 */ 3599 static DEFINE_SEQLOCK(zonelist_update_seq); 3600 3601 static unsigned int zonelist_iter_begin(void) 3602 { 3603 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3604 return read_seqbegin(&zonelist_update_seq); 3605 3606 return 0; 3607 } 3608 3609 static unsigned int check_retry_zonelist(unsigned int seq) 3610 { 3611 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3612 return read_seqretry(&zonelist_update_seq, seq); 3613 3614 return seq; 3615 } 3616 3617 /* Perform direct synchronous page reclaim */ 3618 static unsigned long 3619 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3620 const struct alloc_context *ac) 3621 { 3622 unsigned int noreclaim_flag; 3623 unsigned long progress; 3624 3625 cond_resched(); 3626 3627 /* We now go into synchronous reclaim */ 3628 cpuset_memory_pressure_bump(); 3629 fs_reclaim_acquire(gfp_mask); 3630 noreclaim_flag = memalloc_noreclaim_save(); 3631 3632 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3633 ac->nodemask); 3634 3635 memalloc_noreclaim_restore(noreclaim_flag); 3636 fs_reclaim_release(gfp_mask); 3637 3638 cond_resched(); 3639 3640 return progress; 3641 } 3642 3643 /* The really slow allocator path where we enter direct reclaim */ 3644 static inline struct page * 3645 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3646 unsigned int alloc_flags, const struct alloc_context *ac, 3647 unsigned long *did_some_progress) 3648 { 3649 struct page *page = NULL; 3650 unsigned long pflags; 3651 bool drained = false; 3652 3653 psi_memstall_enter(&pflags); 3654 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3655 if (unlikely(!(*did_some_progress))) 3656 goto out; 3657 3658 retry: 3659 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3660 3661 /* 3662 * If an allocation failed after direct reclaim, it could be because 3663 * pages are pinned on the per-cpu lists or in high alloc reserves. 3664 * Shrink them and try again 3665 */ 3666 if (!page && !drained) { 3667 unreserve_highatomic_pageblock(ac, false); 3668 drain_all_pages(NULL); 3669 drained = true; 3670 goto retry; 3671 } 3672 out: 3673 psi_memstall_leave(&pflags); 3674 3675 return page; 3676 } 3677 3678 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3679 const struct alloc_context *ac) 3680 { 3681 struct zoneref *z; 3682 struct zone *zone; 3683 pg_data_t *last_pgdat = NULL; 3684 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3685 3686 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3687 ac->nodemask) { 3688 if (!managed_zone(zone)) 3689 continue; 3690 if (last_pgdat != zone->zone_pgdat) { 3691 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3692 last_pgdat = zone->zone_pgdat; 3693 } 3694 } 3695 } 3696 3697 static inline unsigned int 3698 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3699 { 3700 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3701 3702 /* 3703 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3704 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3705 * to save two branches. 3706 */ 3707 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3708 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3709 3710 /* 3711 * The caller may dip into page reserves a bit more if the caller 3712 * cannot run direct reclaim, or if the caller has realtime scheduling 3713 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3714 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3715 */ 3716 alloc_flags |= (__force int) 3717 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3718 3719 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3720 /* 3721 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3722 * if it can't schedule. 3723 */ 3724 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3725 alloc_flags |= ALLOC_NON_BLOCK; 3726 3727 if (order > 0) 3728 alloc_flags |= ALLOC_HIGHATOMIC; 3729 } 3730 3731 /* 3732 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3733 * GFP_ATOMIC) rather than fail, see the comment for 3734 * cpuset_node_allowed(). 3735 */ 3736 if (alloc_flags & ALLOC_MIN_RESERVE) 3737 alloc_flags &= ~ALLOC_CPUSET; 3738 } else if (unlikely(rt_task(current)) && in_task()) 3739 alloc_flags |= ALLOC_MIN_RESERVE; 3740 3741 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3742 3743 return alloc_flags; 3744 } 3745 3746 static bool oom_reserves_allowed(struct task_struct *tsk) 3747 { 3748 if (!tsk_is_oom_victim(tsk)) 3749 return false; 3750 3751 /* 3752 * !MMU doesn't have oom reaper so give access to memory reserves 3753 * only to the thread with TIF_MEMDIE set 3754 */ 3755 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3756 return false; 3757 3758 return true; 3759 } 3760 3761 /* 3762 * Distinguish requests which really need access to full memory 3763 * reserves from oom victims which can live with a portion of it 3764 */ 3765 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3766 { 3767 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3768 return 0; 3769 if (gfp_mask & __GFP_MEMALLOC) 3770 return ALLOC_NO_WATERMARKS; 3771 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3772 return ALLOC_NO_WATERMARKS; 3773 if (!in_interrupt()) { 3774 if (current->flags & PF_MEMALLOC) 3775 return ALLOC_NO_WATERMARKS; 3776 else if (oom_reserves_allowed(current)) 3777 return ALLOC_OOM; 3778 } 3779 3780 return 0; 3781 } 3782 3783 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3784 { 3785 return !!__gfp_pfmemalloc_flags(gfp_mask); 3786 } 3787 3788 /* 3789 * Checks whether it makes sense to retry the reclaim to make a forward progress 3790 * for the given allocation request. 3791 * 3792 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3793 * without success, or when we couldn't even meet the watermark if we 3794 * reclaimed all remaining pages on the LRU lists. 3795 * 3796 * Returns true if a retry is viable or false to enter the oom path. 3797 */ 3798 static inline bool 3799 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3800 struct alloc_context *ac, int alloc_flags, 3801 bool did_some_progress, int *no_progress_loops) 3802 { 3803 struct zone *zone; 3804 struct zoneref *z; 3805 bool ret = false; 3806 3807 /* 3808 * Costly allocations might have made a progress but this doesn't mean 3809 * their order will become available due to high fragmentation so 3810 * always increment the no progress counter for them 3811 */ 3812 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3813 *no_progress_loops = 0; 3814 else 3815 (*no_progress_loops)++; 3816 3817 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 3818 goto out; 3819 3820 3821 /* 3822 * Keep reclaiming pages while there is a chance this will lead 3823 * somewhere. If none of the target zones can satisfy our allocation 3824 * request even if all reclaimable pages are considered then we are 3825 * screwed and have to go OOM. 3826 */ 3827 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3828 ac->highest_zoneidx, ac->nodemask) { 3829 unsigned long available; 3830 unsigned long reclaimable; 3831 unsigned long min_wmark = min_wmark_pages(zone); 3832 bool wmark; 3833 3834 available = reclaimable = zone_reclaimable_pages(zone); 3835 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3836 3837 /* 3838 * Would the allocation succeed if we reclaimed all 3839 * reclaimable pages? 3840 */ 3841 wmark = __zone_watermark_ok(zone, order, min_wmark, 3842 ac->highest_zoneidx, alloc_flags, available); 3843 trace_reclaim_retry_zone(z, order, reclaimable, 3844 available, min_wmark, *no_progress_loops, wmark); 3845 if (wmark) { 3846 ret = true; 3847 break; 3848 } 3849 } 3850 3851 /* 3852 * Memory allocation/reclaim might be called from a WQ context and the 3853 * current implementation of the WQ concurrency control doesn't 3854 * recognize that a particular WQ is congested if the worker thread is 3855 * looping without ever sleeping. Therefore we have to do a short sleep 3856 * here rather than calling cond_resched(). 3857 */ 3858 if (current->flags & PF_WQ_WORKER) 3859 schedule_timeout_uninterruptible(1); 3860 else 3861 cond_resched(); 3862 out: 3863 /* Before OOM, exhaust highatomic_reserve */ 3864 if (!ret) 3865 return unreserve_highatomic_pageblock(ac, true); 3866 3867 return ret; 3868 } 3869 3870 static inline bool 3871 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3872 { 3873 /* 3874 * It's possible that cpuset's mems_allowed and the nodemask from 3875 * mempolicy don't intersect. This should be normally dealt with by 3876 * policy_nodemask(), but it's possible to race with cpuset update in 3877 * such a way the check therein was true, and then it became false 3878 * before we got our cpuset_mems_cookie here. 3879 * This assumes that for all allocations, ac->nodemask can come only 3880 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3881 * when it does not intersect with the cpuset restrictions) or the 3882 * caller can deal with a violated nodemask. 3883 */ 3884 if (cpusets_enabled() && ac->nodemask && 3885 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3886 ac->nodemask = NULL; 3887 return true; 3888 } 3889 3890 /* 3891 * When updating a task's mems_allowed or mempolicy nodemask, it is 3892 * possible to race with parallel threads in such a way that our 3893 * allocation can fail while the mask is being updated. If we are about 3894 * to fail, check if the cpuset changed during allocation and if so, 3895 * retry. 3896 */ 3897 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3898 return true; 3899 3900 return false; 3901 } 3902 3903 static inline struct page * 3904 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3905 struct alloc_context *ac) 3906 { 3907 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3908 bool can_compact = gfp_compaction_allowed(gfp_mask); 3909 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3910 struct page *page = NULL; 3911 unsigned int alloc_flags; 3912 unsigned long did_some_progress; 3913 enum compact_priority compact_priority; 3914 enum compact_result compact_result; 3915 int compaction_retries; 3916 int no_progress_loops; 3917 unsigned int cpuset_mems_cookie; 3918 unsigned int zonelist_iter_cookie; 3919 int reserve_flags; 3920 3921 restart: 3922 compaction_retries = 0; 3923 no_progress_loops = 0; 3924 compact_priority = DEF_COMPACT_PRIORITY; 3925 cpuset_mems_cookie = read_mems_allowed_begin(); 3926 zonelist_iter_cookie = zonelist_iter_begin(); 3927 3928 /* 3929 * The fast path uses conservative alloc_flags to succeed only until 3930 * kswapd needs to be woken up, and to avoid the cost of setting up 3931 * alloc_flags precisely. So we do that now. 3932 */ 3933 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 3934 3935 /* 3936 * We need to recalculate the starting point for the zonelist iterator 3937 * because we might have used different nodemask in the fast path, or 3938 * there was a cpuset modification and we are retrying - otherwise we 3939 * could end up iterating over non-eligible zones endlessly. 3940 */ 3941 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3942 ac->highest_zoneidx, ac->nodemask); 3943 if (!ac->preferred_zoneref->zone) 3944 goto nopage; 3945 3946 /* 3947 * Check for insane configurations where the cpuset doesn't contain 3948 * any suitable zone to satisfy the request - e.g. non-movable 3949 * GFP_HIGHUSER allocations from MOVABLE nodes only. 3950 */ 3951 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 3952 struct zoneref *z = first_zones_zonelist(ac->zonelist, 3953 ac->highest_zoneidx, 3954 &cpuset_current_mems_allowed); 3955 if (!z->zone) 3956 goto nopage; 3957 } 3958 3959 if (alloc_flags & ALLOC_KSWAPD) 3960 wake_all_kswapds(order, gfp_mask, ac); 3961 3962 /* 3963 * The adjusted alloc_flags might result in immediate success, so try 3964 * that first 3965 */ 3966 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3967 if (page) 3968 goto got_pg; 3969 3970 /* 3971 * For costly allocations, try direct compaction first, as it's likely 3972 * that we have enough base pages and don't need to reclaim. For non- 3973 * movable high-order allocations, do that as well, as compaction will 3974 * try prevent permanent fragmentation by migrating from blocks of the 3975 * same migratetype. 3976 * Don't try this for allocations that are allowed to ignore 3977 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3978 */ 3979 if (can_direct_reclaim && can_compact && 3980 (costly_order || 3981 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3982 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3983 page = __alloc_pages_direct_compact(gfp_mask, order, 3984 alloc_flags, ac, 3985 INIT_COMPACT_PRIORITY, 3986 &compact_result); 3987 if (page) 3988 goto got_pg; 3989 3990 /* 3991 * Checks for costly allocations with __GFP_NORETRY, which 3992 * includes some THP page fault allocations 3993 */ 3994 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 3995 /* 3996 * If allocating entire pageblock(s) and compaction 3997 * failed because all zones are below low watermarks 3998 * or is prohibited because it recently failed at this 3999 * order, fail immediately unless the allocator has 4000 * requested compaction and reclaim retry. 4001 * 4002 * Reclaim is 4003 * - potentially very expensive because zones are far 4004 * below their low watermarks or this is part of very 4005 * bursty high order allocations, 4006 * - not guaranteed to help because isolate_freepages() 4007 * may not iterate over freed pages as part of its 4008 * linear scan, and 4009 * - unlikely to make entire pageblocks free on its 4010 * own. 4011 */ 4012 if (compact_result == COMPACT_SKIPPED || 4013 compact_result == COMPACT_DEFERRED) 4014 goto nopage; 4015 4016 /* 4017 * Looks like reclaim/compaction is worth trying, but 4018 * sync compaction could be very expensive, so keep 4019 * using async compaction. 4020 */ 4021 compact_priority = INIT_COMPACT_PRIORITY; 4022 } 4023 } 4024 4025 retry: 4026 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4027 if (alloc_flags & ALLOC_KSWAPD) 4028 wake_all_kswapds(order, gfp_mask, ac); 4029 4030 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4031 if (reserve_flags) 4032 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4033 (alloc_flags & ALLOC_KSWAPD); 4034 4035 /* 4036 * Reset the nodemask and zonelist iterators if memory policies can be 4037 * ignored. These allocations are high priority and system rather than 4038 * user oriented. 4039 */ 4040 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4041 ac->nodemask = NULL; 4042 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4043 ac->highest_zoneidx, ac->nodemask); 4044 } 4045 4046 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4047 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4048 if (page) 4049 goto got_pg; 4050 4051 /* Caller is not willing to reclaim, we can't balance anything */ 4052 if (!can_direct_reclaim) 4053 goto nopage; 4054 4055 /* Avoid recursion of direct reclaim */ 4056 if (current->flags & PF_MEMALLOC) 4057 goto nopage; 4058 4059 /* Try direct reclaim and then allocating */ 4060 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4061 &did_some_progress); 4062 if (page) 4063 goto got_pg; 4064 4065 /* Try direct compaction and then allocating */ 4066 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4067 compact_priority, &compact_result); 4068 if (page) 4069 goto got_pg; 4070 4071 /* Do not loop if specifically requested */ 4072 if (gfp_mask & __GFP_NORETRY) 4073 goto nopage; 4074 4075 /* 4076 * Do not retry costly high order allocations unless they are 4077 * __GFP_RETRY_MAYFAIL and we can compact 4078 */ 4079 if (costly_order && (!can_compact || 4080 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4081 goto nopage; 4082 4083 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4084 did_some_progress > 0, &no_progress_loops)) 4085 goto retry; 4086 4087 /* 4088 * It doesn't make any sense to retry for the compaction if the order-0 4089 * reclaim is not able to make any progress because the current 4090 * implementation of the compaction depends on the sufficient amount 4091 * of free memory (see __compaction_suitable) 4092 */ 4093 if (did_some_progress > 0 && can_compact && 4094 should_compact_retry(ac, order, alloc_flags, 4095 compact_result, &compact_priority, 4096 &compaction_retries)) 4097 goto retry; 4098 4099 4100 /* 4101 * Deal with possible cpuset update races or zonelist updates to avoid 4102 * a unnecessary OOM kill. 4103 */ 4104 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4105 check_retry_zonelist(zonelist_iter_cookie)) 4106 goto restart; 4107 4108 /* Reclaim has failed us, start killing things */ 4109 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4110 if (page) 4111 goto got_pg; 4112 4113 /* Avoid allocations with no watermarks from looping endlessly */ 4114 if (tsk_is_oom_victim(current) && 4115 (alloc_flags & ALLOC_OOM || 4116 (gfp_mask & __GFP_NOMEMALLOC))) 4117 goto nopage; 4118 4119 /* Retry as long as the OOM killer is making progress */ 4120 if (did_some_progress) { 4121 no_progress_loops = 0; 4122 goto retry; 4123 } 4124 4125 nopage: 4126 /* 4127 * Deal with possible cpuset update races or zonelist updates to avoid 4128 * a unnecessary OOM kill. 4129 */ 4130 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4131 check_retry_zonelist(zonelist_iter_cookie)) 4132 goto restart; 4133 4134 /* 4135 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4136 * we always retry 4137 */ 4138 if (gfp_mask & __GFP_NOFAIL) { 4139 /* 4140 * All existing users of the __GFP_NOFAIL are blockable, so warn 4141 * of any new users that actually require GFP_NOWAIT 4142 */ 4143 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4144 goto fail; 4145 4146 /* 4147 * PF_MEMALLOC request from this context is rather bizarre 4148 * because we cannot reclaim anything and only can loop waiting 4149 * for somebody to do a work for us 4150 */ 4151 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4152 4153 /* 4154 * non failing costly orders are a hard requirement which we 4155 * are not prepared for much so let's warn about these users 4156 * so that we can identify them and convert them to something 4157 * else. 4158 */ 4159 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4160 4161 /* 4162 * Help non-failing allocations by giving some access to memory 4163 * reserves normally used for high priority non-blocking 4164 * allocations but do not use ALLOC_NO_WATERMARKS because this 4165 * could deplete whole memory reserves which would just make 4166 * the situation worse. 4167 */ 4168 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4169 if (page) 4170 goto got_pg; 4171 4172 cond_resched(); 4173 goto retry; 4174 } 4175 fail: 4176 warn_alloc(gfp_mask, ac->nodemask, 4177 "page allocation failure: order:%u", order); 4178 got_pg: 4179 return page; 4180 } 4181 4182 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4183 int preferred_nid, nodemask_t *nodemask, 4184 struct alloc_context *ac, gfp_t *alloc_gfp, 4185 unsigned int *alloc_flags) 4186 { 4187 ac->highest_zoneidx = gfp_zone(gfp_mask); 4188 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4189 ac->nodemask = nodemask; 4190 ac->migratetype = gfp_migratetype(gfp_mask); 4191 4192 if (cpusets_enabled()) { 4193 *alloc_gfp |= __GFP_HARDWALL; 4194 /* 4195 * When we are in the interrupt context, it is irrelevant 4196 * to the current task context. It means that any node ok. 4197 */ 4198 if (in_task() && !ac->nodemask) 4199 ac->nodemask = &cpuset_current_mems_allowed; 4200 else 4201 *alloc_flags |= ALLOC_CPUSET; 4202 } 4203 4204 might_alloc(gfp_mask); 4205 4206 if (should_fail_alloc_page(gfp_mask, order)) 4207 return false; 4208 4209 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4210 4211 /* Dirty zone balancing only done in the fast path */ 4212 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4213 4214 /* 4215 * The preferred zone is used for statistics but crucially it is 4216 * also used as the starting point for the zonelist iterator. It 4217 * may get reset for allocations that ignore memory policies. 4218 */ 4219 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4220 ac->highest_zoneidx, ac->nodemask); 4221 4222 return true; 4223 } 4224 4225 /* 4226 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4227 * @gfp: GFP flags for the allocation 4228 * @preferred_nid: The preferred NUMA node ID to allocate from 4229 * @nodemask: Set of nodes to allocate from, may be NULL 4230 * @nr_pages: The number of pages desired on the list or array 4231 * @page_list: Optional list to store the allocated pages 4232 * @page_array: Optional array to store the pages 4233 * 4234 * This is a batched version of the page allocator that attempts to 4235 * allocate nr_pages quickly. Pages are added to page_list if page_list 4236 * is not NULL, otherwise it is assumed that the page_array is valid. 4237 * 4238 * For lists, nr_pages is the number of pages that should be allocated. 4239 * 4240 * For arrays, only NULL elements are populated with pages and nr_pages 4241 * is the maximum number of pages that will be stored in the array. 4242 * 4243 * Returns the number of pages on the list or array. 4244 */ 4245 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4246 nodemask_t *nodemask, int nr_pages, 4247 struct list_head *page_list, 4248 struct page **page_array) 4249 { 4250 struct page *page; 4251 unsigned long __maybe_unused UP_flags; 4252 struct zone *zone; 4253 struct zoneref *z; 4254 struct per_cpu_pages *pcp; 4255 struct list_head *pcp_list; 4256 struct alloc_context ac; 4257 gfp_t alloc_gfp; 4258 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4259 int nr_populated = 0, nr_account = 0; 4260 4261 /* 4262 * Skip populated array elements to determine if any pages need 4263 * to be allocated before disabling IRQs. 4264 */ 4265 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4266 nr_populated++; 4267 4268 /* No pages requested? */ 4269 if (unlikely(nr_pages <= 0)) 4270 goto out; 4271 4272 /* Already populated array? */ 4273 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4274 goto out; 4275 4276 /* Bulk allocator does not support memcg accounting. */ 4277 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4278 goto failed; 4279 4280 /* Use the single page allocator for one page. */ 4281 if (nr_pages - nr_populated == 1) 4282 goto failed; 4283 4284 #ifdef CONFIG_PAGE_OWNER 4285 /* 4286 * PAGE_OWNER may recurse into the allocator to allocate space to 4287 * save the stack with pagesets.lock held. Releasing/reacquiring 4288 * removes much of the performance benefit of bulk allocation so 4289 * force the caller to allocate one page at a time as it'll have 4290 * similar performance to added complexity to the bulk allocator. 4291 */ 4292 if (static_branch_unlikely(&page_owner_inited)) 4293 goto failed; 4294 #endif 4295 4296 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4297 gfp &= gfp_allowed_mask; 4298 alloc_gfp = gfp; 4299 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4300 goto out; 4301 gfp = alloc_gfp; 4302 4303 /* Find an allowed local zone that meets the low watermark. */ 4304 z = ac.preferred_zoneref; 4305 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4306 unsigned long mark; 4307 4308 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4309 !__cpuset_zone_allowed(zone, gfp)) { 4310 continue; 4311 } 4312 4313 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4314 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4315 goto failed; 4316 } 4317 4318 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4319 if (zone_watermark_fast(zone, 0, mark, 4320 zonelist_zone_idx(ac.preferred_zoneref), 4321 alloc_flags, gfp)) { 4322 break; 4323 } 4324 } 4325 4326 /* 4327 * If there are no allowed local zones that meets the watermarks then 4328 * try to allocate a single page and reclaim if necessary. 4329 */ 4330 if (unlikely(!zone)) 4331 goto failed; 4332 4333 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4334 pcp_trylock_prepare(UP_flags); 4335 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4336 if (!pcp) 4337 goto failed_irq; 4338 4339 /* Attempt the batch allocation */ 4340 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4341 while (nr_populated < nr_pages) { 4342 4343 /* Skip existing pages */ 4344 if (page_array && page_array[nr_populated]) { 4345 nr_populated++; 4346 continue; 4347 } 4348 4349 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4350 pcp, pcp_list); 4351 if (unlikely(!page)) { 4352 /* Try and allocate at least one page */ 4353 if (!nr_account) { 4354 pcp_spin_unlock(pcp); 4355 goto failed_irq; 4356 } 4357 break; 4358 } 4359 nr_account++; 4360 4361 prep_new_page(page, 0, gfp, 0); 4362 if (page_list) 4363 list_add(&page->lru, page_list); 4364 else 4365 page_array[nr_populated] = page; 4366 nr_populated++; 4367 } 4368 4369 pcp_spin_unlock(pcp); 4370 pcp_trylock_finish(UP_flags); 4371 4372 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4373 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4374 4375 out: 4376 return nr_populated; 4377 4378 failed_irq: 4379 pcp_trylock_finish(UP_flags); 4380 4381 failed: 4382 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4383 if (page) { 4384 if (page_list) 4385 list_add(&page->lru, page_list); 4386 else 4387 page_array[nr_populated] = page; 4388 nr_populated++; 4389 } 4390 4391 goto out; 4392 } 4393 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4394 4395 /* 4396 * This is the 'heart' of the zoned buddy allocator. 4397 */ 4398 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4399 nodemask_t *nodemask) 4400 { 4401 struct page *page; 4402 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4403 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4404 struct alloc_context ac = { }; 4405 4406 /* 4407 * There are several places where we assume that the order value is sane 4408 * so bail out early if the request is out of bound. 4409 */ 4410 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) 4411 return NULL; 4412 4413 gfp &= gfp_allowed_mask; 4414 /* 4415 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4416 * resp. GFP_NOIO which has to be inherited for all allocation requests 4417 * from a particular context which has been marked by 4418 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4419 * movable zones are not used during allocation. 4420 */ 4421 gfp = current_gfp_context(gfp); 4422 alloc_gfp = gfp; 4423 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4424 &alloc_gfp, &alloc_flags)) 4425 return NULL; 4426 4427 /* 4428 * Forbid the first pass from falling back to types that fragment 4429 * memory until all local zones are considered. 4430 */ 4431 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4432 4433 /* First allocation attempt */ 4434 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4435 if (likely(page)) 4436 goto out; 4437 4438 alloc_gfp = gfp; 4439 ac.spread_dirty_pages = false; 4440 4441 /* 4442 * Restore the original nodemask if it was potentially replaced with 4443 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4444 */ 4445 ac.nodemask = nodemask; 4446 4447 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4448 4449 out: 4450 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4451 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4452 __free_pages(page, order); 4453 page = NULL; 4454 } 4455 4456 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4457 kmsan_alloc_page(page, order, alloc_gfp); 4458 4459 return page; 4460 } 4461 EXPORT_SYMBOL(__alloc_pages); 4462 4463 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4464 nodemask_t *nodemask) 4465 { 4466 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4467 preferred_nid, nodemask); 4468 return page_rmappable_folio(page); 4469 } 4470 EXPORT_SYMBOL(__folio_alloc); 4471 4472 /* 4473 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4474 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4475 * you need to access high mem. 4476 */ 4477 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4478 { 4479 struct page *page; 4480 4481 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4482 if (!page) 4483 return 0; 4484 return (unsigned long) page_address(page); 4485 } 4486 EXPORT_SYMBOL(__get_free_pages); 4487 4488 unsigned long get_zeroed_page(gfp_t gfp_mask) 4489 { 4490 return __get_free_page(gfp_mask | __GFP_ZERO); 4491 } 4492 EXPORT_SYMBOL(get_zeroed_page); 4493 4494 /** 4495 * __free_pages - Free pages allocated with alloc_pages(). 4496 * @page: The page pointer returned from alloc_pages(). 4497 * @order: The order of the allocation. 4498 * 4499 * This function can free multi-page allocations that are not compound 4500 * pages. It does not check that the @order passed in matches that of 4501 * the allocation, so it is easy to leak memory. Freeing more memory 4502 * than was allocated will probably emit a warning. 4503 * 4504 * If the last reference to this page is speculative, it will be released 4505 * by put_page() which only frees the first page of a non-compound 4506 * allocation. To prevent the remaining pages from being leaked, we free 4507 * the subsequent pages here. If you want to use the page's reference 4508 * count to decide when to free the allocation, you should allocate a 4509 * compound page, and use put_page() instead of __free_pages(). 4510 * 4511 * Context: May be called in interrupt context or while holding a normal 4512 * spinlock, but not in NMI context or while holding a raw spinlock. 4513 */ 4514 void __free_pages(struct page *page, unsigned int order) 4515 { 4516 /* get PageHead before we drop reference */ 4517 int head = PageHead(page); 4518 4519 if (put_page_testzero(page)) 4520 free_the_page(page, order); 4521 else if (!head) 4522 while (order-- > 0) 4523 free_the_page(page + (1 << order), order); 4524 } 4525 EXPORT_SYMBOL(__free_pages); 4526 4527 void free_pages(unsigned long addr, unsigned int order) 4528 { 4529 if (addr != 0) { 4530 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4531 __free_pages(virt_to_page((void *)addr), order); 4532 } 4533 } 4534 4535 EXPORT_SYMBOL(free_pages); 4536 4537 /* 4538 * Page Fragment: 4539 * An arbitrary-length arbitrary-offset area of memory which resides 4540 * within a 0 or higher order page. Multiple fragments within that page 4541 * are individually refcounted, in the page's reference counter. 4542 * 4543 * The page_frag functions below provide a simple allocation framework for 4544 * page fragments. This is used by the network stack and network device 4545 * drivers to provide a backing region of memory for use as either an 4546 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4547 */ 4548 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4549 gfp_t gfp_mask) 4550 { 4551 struct page *page = NULL; 4552 gfp_t gfp = gfp_mask; 4553 4554 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4555 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4556 __GFP_NOMEMALLOC; 4557 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4558 PAGE_FRAG_CACHE_MAX_ORDER); 4559 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4560 #endif 4561 if (unlikely(!page)) 4562 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4563 4564 nc->va = page ? page_address(page) : NULL; 4565 4566 return page; 4567 } 4568 4569 void __page_frag_cache_drain(struct page *page, unsigned int count) 4570 { 4571 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4572 4573 if (page_ref_sub_and_test(page, count)) 4574 free_the_page(page, compound_order(page)); 4575 } 4576 EXPORT_SYMBOL(__page_frag_cache_drain); 4577 4578 void *page_frag_alloc_align(struct page_frag_cache *nc, 4579 unsigned int fragsz, gfp_t gfp_mask, 4580 unsigned int align_mask) 4581 { 4582 unsigned int size = PAGE_SIZE; 4583 struct page *page; 4584 int offset; 4585 4586 if (unlikely(!nc->va)) { 4587 refill: 4588 page = __page_frag_cache_refill(nc, gfp_mask); 4589 if (!page) 4590 return NULL; 4591 4592 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4593 /* if size can vary use size else just use PAGE_SIZE */ 4594 size = nc->size; 4595 #endif 4596 /* Even if we own the page, we do not use atomic_set(). 4597 * This would break get_page_unless_zero() users. 4598 */ 4599 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4600 4601 /* reset page count bias and offset to start of new frag */ 4602 nc->pfmemalloc = page_is_pfmemalloc(page); 4603 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4604 nc->offset = size; 4605 } 4606 4607 offset = nc->offset - fragsz; 4608 if (unlikely(offset < 0)) { 4609 page = virt_to_page(nc->va); 4610 4611 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4612 goto refill; 4613 4614 if (unlikely(nc->pfmemalloc)) { 4615 free_the_page(page, compound_order(page)); 4616 goto refill; 4617 } 4618 4619 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4620 /* if size can vary use size else just use PAGE_SIZE */ 4621 size = nc->size; 4622 #endif 4623 /* OK, page count is 0, we can safely set it */ 4624 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4625 4626 /* reset page count bias and offset to start of new frag */ 4627 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4628 offset = size - fragsz; 4629 if (unlikely(offset < 0)) { 4630 /* 4631 * The caller is trying to allocate a fragment 4632 * with fragsz > PAGE_SIZE but the cache isn't big 4633 * enough to satisfy the request, this may 4634 * happen in low memory conditions. 4635 * We don't release the cache page because 4636 * it could make memory pressure worse 4637 * so we simply return NULL here. 4638 */ 4639 return NULL; 4640 } 4641 } 4642 4643 nc->pagecnt_bias--; 4644 offset &= align_mask; 4645 nc->offset = offset; 4646 4647 return nc->va + offset; 4648 } 4649 EXPORT_SYMBOL(page_frag_alloc_align); 4650 4651 /* 4652 * Frees a page fragment allocated out of either a compound or order 0 page. 4653 */ 4654 void page_frag_free(void *addr) 4655 { 4656 struct page *page = virt_to_head_page(addr); 4657 4658 if (unlikely(put_page_testzero(page))) 4659 free_the_page(page, compound_order(page)); 4660 } 4661 EXPORT_SYMBOL(page_frag_free); 4662 4663 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4664 size_t size) 4665 { 4666 if (addr) { 4667 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4668 struct page *page = virt_to_page((void *)addr); 4669 struct page *last = page + nr; 4670 4671 split_page_owner(page, 1 << order); 4672 split_page_memcg(page, 1 << order); 4673 while (page < --last) 4674 set_page_refcounted(last); 4675 4676 last = page + (1UL << order); 4677 for (page += nr; page < last; page++) 4678 __free_pages_ok(page, 0, FPI_TO_TAIL); 4679 } 4680 return (void *)addr; 4681 } 4682 4683 /** 4684 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4685 * @size: the number of bytes to allocate 4686 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4687 * 4688 * This function is similar to alloc_pages(), except that it allocates the 4689 * minimum number of pages to satisfy the request. alloc_pages() can only 4690 * allocate memory in power-of-two pages. 4691 * 4692 * This function is also limited by MAX_ORDER. 4693 * 4694 * Memory allocated by this function must be released by free_pages_exact(). 4695 * 4696 * Return: pointer to the allocated area or %NULL in case of error. 4697 */ 4698 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4699 { 4700 unsigned int order = get_order(size); 4701 unsigned long addr; 4702 4703 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4704 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4705 4706 addr = __get_free_pages(gfp_mask, order); 4707 return make_alloc_exact(addr, order, size); 4708 } 4709 EXPORT_SYMBOL(alloc_pages_exact); 4710 4711 /** 4712 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4713 * pages on a node. 4714 * @nid: the preferred node ID where memory should be allocated 4715 * @size: the number of bytes to allocate 4716 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4717 * 4718 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4719 * back. 4720 * 4721 * Return: pointer to the allocated area or %NULL in case of error. 4722 */ 4723 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4724 { 4725 unsigned int order = get_order(size); 4726 struct page *p; 4727 4728 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4729 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4730 4731 p = alloc_pages_node(nid, gfp_mask, order); 4732 if (!p) 4733 return NULL; 4734 return make_alloc_exact((unsigned long)page_address(p), order, size); 4735 } 4736 4737 /** 4738 * free_pages_exact - release memory allocated via alloc_pages_exact() 4739 * @virt: the value returned by alloc_pages_exact. 4740 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4741 * 4742 * Release the memory allocated by a previous call to alloc_pages_exact. 4743 */ 4744 void free_pages_exact(void *virt, size_t size) 4745 { 4746 unsigned long addr = (unsigned long)virt; 4747 unsigned long end = addr + PAGE_ALIGN(size); 4748 4749 while (addr < end) { 4750 free_page(addr); 4751 addr += PAGE_SIZE; 4752 } 4753 } 4754 EXPORT_SYMBOL(free_pages_exact); 4755 4756 /** 4757 * nr_free_zone_pages - count number of pages beyond high watermark 4758 * @offset: The zone index of the highest zone 4759 * 4760 * nr_free_zone_pages() counts the number of pages which are beyond the 4761 * high watermark within all zones at or below a given zone index. For each 4762 * zone, the number of pages is calculated as: 4763 * 4764 * nr_free_zone_pages = managed_pages - high_pages 4765 * 4766 * Return: number of pages beyond high watermark. 4767 */ 4768 static unsigned long nr_free_zone_pages(int offset) 4769 { 4770 struct zoneref *z; 4771 struct zone *zone; 4772 4773 /* Just pick one node, since fallback list is circular */ 4774 unsigned long sum = 0; 4775 4776 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4777 4778 for_each_zone_zonelist(zone, z, zonelist, offset) { 4779 unsigned long size = zone_managed_pages(zone); 4780 unsigned long high = high_wmark_pages(zone); 4781 if (size > high) 4782 sum += size - high; 4783 } 4784 4785 return sum; 4786 } 4787 4788 /** 4789 * nr_free_buffer_pages - count number of pages beyond high watermark 4790 * 4791 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4792 * watermark within ZONE_DMA and ZONE_NORMAL. 4793 * 4794 * Return: number of pages beyond high watermark within ZONE_DMA and 4795 * ZONE_NORMAL. 4796 */ 4797 unsigned long nr_free_buffer_pages(void) 4798 { 4799 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4800 } 4801 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4802 4803 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4804 { 4805 zoneref->zone = zone; 4806 zoneref->zone_idx = zone_idx(zone); 4807 } 4808 4809 /* 4810 * Builds allocation fallback zone lists. 4811 * 4812 * Add all populated zones of a node to the zonelist. 4813 */ 4814 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4815 { 4816 struct zone *zone; 4817 enum zone_type zone_type = MAX_NR_ZONES; 4818 int nr_zones = 0; 4819 4820 do { 4821 zone_type--; 4822 zone = pgdat->node_zones + zone_type; 4823 if (populated_zone(zone)) { 4824 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4825 check_highest_zone(zone_type); 4826 } 4827 } while (zone_type); 4828 4829 return nr_zones; 4830 } 4831 4832 #ifdef CONFIG_NUMA 4833 4834 static int __parse_numa_zonelist_order(char *s) 4835 { 4836 /* 4837 * We used to support different zonelists modes but they turned 4838 * out to be just not useful. Let's keep the warning in place 4839 * if somebody still use the cmd line parameter so that we do 4840 * not fail it silently 4841 */ 4842 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4843 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4844 return -EINVAL; 4845 } 4846 return 0; 4847 } 4848 4849 static char numa_zonelist_order[] = "Node"; 4850 #define NUMA_ZONELIST_ORDER_LEN 16 4851 /* 4852 * sysctl handler for numa_zonelist_order 4853 */ 4854 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 4855 void *buffer, size_t *length, loff_t *ppos) 4856 { 4857 if (write) 4858 return __parse_numa_zonelist_order(buffer); 4859 return proc_dostring(table, write, buffer, length, ppos); 4860 } 4861 4862 static int node_load[MAX_NUMNODES]; 4863 4864 /** 4865 * find_next_best_node - find the next node that should appear in a given node's fallback list 4866 * @node: node whose fallback list we're appending 4867 * @used_node_mask: nodemask_t of already used nodes 4868 * 4869 * We use a number of factors to determine which is the next node that should 4870 * appear on a given node's fallback list. The node should not have appeared 4871 * already in @node's fallback list, and it should be the next closest node 4872 * according to the distance array (which contains arbitrary distance values 4873 * from each node to each node in the system), and should also prefer nodes 4874 * with no CPUs, since presumably they'll have very little allocation pressure 4875 * on them otherwise. 4876 * 4877 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 4878 */ 4879 int find_next_best_node(int node, nodemask_t *used_node_mask) 4880 { 4881 int n, val; 4882 int min_val = INT_MAX; 4883 int best_node = NUMA_NO_NODE; 4884 4885 /* Use the local node if we haven't already */ 4886 if (!node_isset(node, *used_node_mask)) { 4887 node_set(node, *used_node_mask); 4888 return node; 4889 } 4890 4891 for_each_node_state(n, N_MEMORY) { 4892 4893 /* Don't want a node to appear more than once */ 4894 if (node_isset(n, *used_node_mask)) 4895 continue; 4896 4897 /* Use the distance array to find the distance */ 4898 val = node_distance(node, n); 4899 4900 /* Penalize nodes under us ("prefer the next node") */ 4901 val += (n < node); 4902 4903 /* Give preference to headless and unused nodes */ 4904 if (!cpumask_empty(cpumask_of_node(n))) 4905 val += PENALTY_FOR_NODE_WITH_CPUS; 4906 4907 /* Slight preference for less loaded node */ 4908 val *= MAX_NUMNODES; 4909 val += node_load[n]; 4910 4911 if (val < min_val) { 4912 min_val = val; 4913 best_node = n; 4914 } 4915 } 4916 4917 if (best_node >= 0) 4918 node_set(best_node, *used_node_mask); 4919 4920 return best_node; 4921 } 4922 4923 4924 /* 4925 * Build zonelists ordered by node and zones within node. 4926 * This results in maximum locality--normal zone overflows into local 4927 * DMA zone, if any--but risks exhausting DMA zone. 4928 */ 4929 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 4930 unsigned nr_nodes) 4931 { 4932 struct zoneref *zonerefs; 4933 int i; 4934 4935 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 4936 4937 for (i = 0; i < nr_nodes; i++) { 4938 int nr_zones; 4939 4940 pg_data_t *node = NODE_DATA(node_order[i]); 4941 4942 nr_zones = build_zonerefs_node(node, zonerefs); 4943 zonerefs += nr_zones; 4944 } 4945 zonerefs->zone = NULL; 4946 zonerefs->zone_idx = 0; 4947 } 4948 4949 /* 4950 * Build gfp_thisnode zonelists 4951 */ 4952 static void build_thisnode_zonelists(pg_data_t *pgdat) 4953 { 4954 struct zoneref *zonerefs; 4955 int nr_zones; 4956 4957 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 4958 nr_zones = build_zonerefs_node(pgdat, zonerefs); 4959 zonerefs += nr_zones; 4960 zonerefs->zone = NULL; 4961 zonerefs->zone_idx = 0; 4962 } 4963 4964 /* 4965 * Build zonelists ordered by zone and nodes within zones. 4966 * This results in conserving DMA zone[s] until all Normal memory is 4967 * exhausted, but results in overflowing to remote node while memory 4968 * may still exist in local DMA zone. 4969 */ 4970 4971 static void build_zonelists(pg_data_t *pgdat) 4972 { 4973 static int node_order[MAX_NUMNODES]; 4974 int node, nr_nodes = 0; 4975 nodemask_t used_mask = NODE_MASK_NONE; 4976 int local_node, prev_node; 4977 4978 /* NUMA-aware ordering of nodes */ 4979 local_node = pgdat->node_id; 4980 prev_node = local_node; 4981 4982 memset(node_order, 0, sizeof(node_order)); 4983 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4984 /* 4985 * We don't want to pressure a particular node. 4986 * So adding penalty to the first node in same 4987 * distance group to make it round-robin. 4988 */ 4989 if (node_distance(local_node, node) != 4990 node_distance(local_node, prev_node)) 4991 node_load[node] += 1; 4992 4993 node_order[nr_nodes++] = node; 4994 prev_node = node; 4995 } 4996 4997 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 4998 build_thisnode_zonelists(pgdat); 4999 pr_info("Fallback order for Node %d: ", local_node); 5000 for (node = 0; node < nr_nodes; node++) 5001 pr_cont("%d ", node_order[node]); 5002 pr_cont("\n"); 5003 } 5004 5005 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5006 /* 5007 * Return node id of node used for "local" allocations. 5008 * I.e., first node id of first zone in arg node's generic zonelist. 5009 * Used for initializing percpu 'numa_mem', which is used primarily 5010 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5011 */ 5012 int local_memory_node(int node) 5013 { 5014 struct zoneref *z; 5015 5016 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5017 gfp_zone(GFP_KERNEL), 5018 NULL); 5019 return zone_to_nid(z->zone); 5020 } 5021 #endif 5022 5023 static void setup_min_unmapped_ratio(void); 5024 static void setup_min_slab_ratio(void); 5025 #else /* CONFIG_NUMA */ 5026 5027 static void build_zonelists(pg_data_t *pgdat) 5028 { 5029 int node, local_node; 5030 struct zoneref *zonerefs; 5031 int nr_zones; 5032 5033 local_node = pgdat->node_id; 5034 5035 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5036 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5037 zonerefs += nr_zones; 5038 5039 /* 5040 * Now we build the zonelist so that it contains the zones 5041 * of all the other nodes. 5042 * We don't want to pressure a particular node, so when 5043 * building the zones for node N, we make sure that the 5044 * zones coming right after the local ones are those from 5045 * node N+1 (modulo N) 5046 */ 5047 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5048 if (!node_online(node)) 5049 continue; 5050 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5051 zonerefs += nr_zones; 5052 } 5053 for (node = 0; node < local_node; node++) { 5054 if (!node_online(node)) 5055 continue; 5056 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5057 zonerefs += nr_zones; 5058 } 5059 5060 zonerefs->zone = NULL; 5061 zonerefs->zone_idx = 0; 5062 } 5063 5064 #endif /* CONFIG_NUMA */ 5065 5066 /* 5067 * Boot pageset table. One per cpu which is going to be used for all 5068 * zones and all nodes. The parameters will be set in such a way 5069 * that an item put on a list will immediately be handed over to 5070 * the buddy list. This is safe since pageset manipulation is done 5071 * with interrupts disabled. 5072 * 5073 * The boot_pagesets must be kept even after bootup is complete for 5074 * unused processors and/or zones. They do play a role for bootstrapping 5075 * hotplugged processors. 5076 * 5077 * zoneinfo_show() and maybe other functions do 5078 * not check if the processor is online before following the pageset pointer. 5079 * Other parts of the kernel may not check if the zone is available. 5080 */ 5081 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5082 /* These effectively disable the pcplists in the boot pageset completely */ 5083 #define BOOT_PAGESET_HIGH 0 5084 #define BOOT_PAGESET_BATCH 1 5085 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5086 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5087 5088 static void __build_all_zonelists(void *data) 5089 { 5090 int nid; 5091 int __maybe_unused cpu; 5092 pg_data_t *self = data; 5093 unsigned long flags; 5094 5095 /* 5096 * The zonelist_update_seq must be acquired with irqsave because the 5097 * reader can be invoked from IRQ with GFP_ATOMIC. 5098 */ 5099 write_seqlock_irqsave(&zonelist_update_seq, flags); 5100 /* 5101 * Also disable synchronous printk() to prevent any printk() from 5102 * trying to hold port->lock, for 5103 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5104 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5105 */ 5106 printk_deferred_enter(); 5107 5108 #ifdef CONFIG_NUMA 5109 memset(node_load, 0, sizeof(node_load)); 5110 #endif 5111 5112 /* 5113 * This node is hotadded and no memory is yet present. So just 5114 * building zonelists is fine - no need to touch other nodes. 5115 */ 5116 if (self && !node_online(self->node_id)) { 5117 build_zonelists(self); 5118 } else { 5119 /* 5120 * All possible nodes have pgdat preallocated 5121 * in free_area_init 5122 */ 5123 for_each_node(nid) { 5124 pg_data_t *pgdat = NODE_DATA(nid); 5125 5126 build_zonelists(pgdat); 5127 } 5128 5129 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5130 /* 5131 * We now know the "local memory node" for each node-- 5132 * i.e., the node of the first zone in the generic zonelist. 5133 * Set up numa_mem percpu variable for on-line cpus. During 5134 * boot, only the boot cpu should be on-line; we'll init the 5135 * secondary cpus' numa_mem as they come on-line. During 5136 * node/memory hotplug, we'll fixup all on-line cpus. 5137 */ 5138 for_each_online_cpu(cpu) 5139 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5140 #endif 5141 } 5142 5143 printk_deferred_exit(); 5144 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5145 } 5146 5147 static noinline void __init 5148 build_all_zonelists_init(void) 5149 { 5150 int cpu; 5151 5152 __build_all_zonelists(NULL); 5153 5154 /* 5155 * Initialize the boot_pagesets that are going to be used 5156 * for bootstrapping processors. The real pagesets for 5157 * each zone will be allocated later when the per cpu 5158 * allocator is available. 5159 * 5160 * boot_pagesets are used also for bootstrapping offline 5161 * cpus if the system is already booted because the pagesets 5162 * are needed to initialize allocators on a specific cpu too. 5163 * F.e. the percpu allocator needs the page allocator which 5164 * needs the percpu allocator in order to allocate its pagesets 5165 * (a chicken-egg dilemma). 5166 */ 5167 for_each_possible_cpu(cpu) 5168 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5169 5170 mminit_verify_zonelist(); 5171 cpuset_init_current_mems_allowed(); 5172 } 5173 5174 /* 5175 * unless system_state == SYSTEM_BOOTING. 5176 * 5177 * __ref due to call of __init annotated helper build_all_zonelists_init 5178 * [protected by SYSTEM_BOOTING]. 5179 */ 5180 void __ref build_all_zonelists(pg_data_t *pgdat) 5181 { 5182 unsigned long vm_total_pages; 5183 5184 if (system_state == SYSTEM_BOOTING) { 5185 build_all_zonelists_init(); 5186 } else { 5187 __build_all_zonelists(pgdat); 5188 /* cpuset refresh routine should be here */ 5189 } 5190 /* Get the number of free pages beyond high watermark in all zones. */ 5191 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5192 /* 5193 * Disable grouping by mobility if the number of pages in the 5194 * system is too low to allow the mechanism to work. It would be 5195 * more accurate, but expensive to check per-zone. This check is 5196 * made on memory-hotadd so a system can start with mobility 5197 * disabled and enable it later 5198 */ 5199 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5200 page_group_by_mobility_disabled = 1; 5201 else 5202 page_group_by_mobility_disabled = 0; 5203 5204 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5205 nr_online_nodes, 5206 page_group_by_mobility_disabled ? "off" : "on", 5207 vm_total_pages); 5208 #ifdef CONFIG_NUMA 5209 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5210 #endif 5211 } 5212 5213 static int zone_batchsize(struct zone *zone) 5214 { 5215 #ifdef CONFIG_MMU 5216 int batch; 5217 5218 /* 5219 * The number of pages to batch allocate is either ~0.1% 5220 * of the zone or 1MB, whichever is smaller. The batch 5221 * size is striking a balance between allocation latency 5222 * and zone lock contention. 5223 */ 5224 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5225 batch /= 4; /* We effectively *= 4 below */ 5226 if (batch < 1) 5227 batch = 1; 5228 5229 /* 5230 * Clamp the batch to a 2^n - 1 value. Having a power 5231 * of 2 value was found to be more likely to have 5232 * suboptimal cache aliasing properties in some cases. 5233 * 5234 * For example if 2 tasks are alternately allocating 5235 * batches of pages, one task can end up with a lot 5236 * of pages of one half of the possible page colors 5237 * and the other with pages of the other colors. 5238 */ 5239 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5240 5241 return batch; 5242 5243 #else 5244 /* The deferral and batching of frees should be suppressed under NOMMU 5245 * conditions. 5246 * 5247 * The problem is that NOMMU needs to be able to allocate large chunks 5248 * of contiguous memory as there's no hardware page translation to 5249 * assemble apparent contiguous memory from discontiguous pages. 5250 * 5251 * Queueing large contiguous runs of pages for batching, however, 5252 * causes the pages to actually be freed in smaller chunks. As there 5253 * can be a significant delay between the individual batches being 5254 * recycled, this leads to the once large chunks of space being 5255 * fragmented and becoming unavailable for high-order allocations. 5256 */ 5257 return 0; 5258 #endif 5259 } 5260 5261 static int percpu_pagelist_high_fraction; 5262 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 5263 { 5264 #ifdef CONFIG_MMU 5265 int high; 5266 int nr_split_cpus; 5267 unsigned long total_pages; 5268 5269 if (!percpu_pagelist_high_fraction) { 5270 /* 5271 * By default, the high value of the pcp is based on the zone 5272 * low watermark so that if they are full then background 5273 * reclaim will not be started prematurely. 5274 */ 5275 total_pages = low_wmark_pages(zone); 5276 } else { 5277 /* 5278 * If percpu_pagelist_high_fraction is configured, the high 5279 * value is based on a fraction of the managed pages in the 5280 * zone. 5281 */ 5282 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 5283 } 5284 5285 /* 5286 * Split the high value across all online CPUs local to the zone. Note 5287 * that early in boot that CPUs may not be online yet and that during 5288 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5289 * onlined. For memory nodes that have no CPUs, split pcp->high across 5290 * all online CPUs to mitigate the risk that reclaim is triggered 5291 * prematurely due to pages stored on pcp lists. 5292 */ 5293 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5294 if (!nr_split_cpus) 5295 nr_split_cpus = num_online_cpus(); 5296 high = total_pages / nr_split_cpus; 5297 5298 /* 5299 * Ensure high is at least batch*4. The multiple is based on the 5300 * historical relationship between high and batch. 5301 */ 5302 high = max(high, batch << 2); 5303 5304 return high; 5305 #else 5306 return 0; 5307 #endif 5308 } 5309 5310 /* 5311 * pcp->high and pcp->batch values are related and generally batch is lower 5312 * than high. They are also related to pcp->count such that count is lower 5313 * than high, and as soon as it reaches high, the pcplist is flushed. 5314 * 5315 * However, guaranteeing these relations at all times would require e.g. write 5316 * barriers here but also careful usage of read barriers at the read side, and 5317 * thus be prone to error and bad for performance. Thus the update only prevents 5318 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 5319 * can cope with those fields changing asynchronously, and fully trust only the 5320 * pcp->count field on the local CPU with interrupts disabled. 5321 * 5322 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5323 * outside of boot time (or some other assurance that no concurrent updaters 5324 * exist). 5325 */ 5326 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5327 unsigned long batch) 5328 { 5329 WRITE_ONCE(pcp->batch, batch); 5330 WRITE_ONCE(pcp->high, high); 5331 } 5332 5333 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5334 { 5335 int pindex; 5336 5337 memset(pcp, 0, sizeof(*pcp)); 5338 memset(pzstats, 0, sizeof(*pzstats)); 5339 5340 spin_lock_init(&pcp->lock); 5341 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5342 INIT_LIST_HEAD(&pcp->lists[pindex]); 5343 5344 /* 5345 * Set batch and high values safe for a boot pageset. A true percpu 5346 * pageset's initialization will update them subsequently. Here we don't 5347 * need to be as careful as pageset_update() as nobody can access the 5348 * pageset yet. 5349 */ 5350 pcp->high = BOOT_PAGESET_HIGH; 5351 pcp->batch = BOOT_PAGESET_BATCH; 5352 pcp->free_factor = 0; 5353 } 5354 5355 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 5356 unsigned long batch) 5357 { 5358 struct per_cpu_pages *pcp; 5359 int cpu; 5360 5361 for_each_possible_cpu(cpu) { 5362 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5363 pageset_update(pcp, high, batch); 5364 } 5365 } 5366 5367 /* 5368 * Calculate and set new high and batch values for all per-cpu pagesets of a 5369 * zone based on the zone's size. 5370 */ 5371 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5372 { 5373 int new_high, new_batch; 5374 5375 new_batch = max(1, zone_batchsize(zone)); 5376 new_high = zone_highsize(zone, new_batch, cpu_online); 5377 5378 if (zone->pageset_high == new_high && 5379 zone->pageset_batch == new_batch) 5380 return; 5381 5382 zone->pageset_high = new_high; 5383 zone->pageset_batch = new_batch; 5384 5385 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 5386 } 5387 5388 void __meminit setup_zone_pageset(struct zone *zone) 5389 { 5390 int cpu; 5391 5392 /* Size may be 0 on !SMP && !NUMA */ 5393 if (sizeof(struct per_cpu_zonestat) > 0) 5394 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5395 5396 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5397 for_each_possible_cpu(cpu) { 5398 struct per_cpu_pages *pcp; 5399 struct per_cpu_zonestat *pzstats; 5400 5401 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5402 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5403 per_cpu_pages_init(pcp, pzstats); 5404 } 5405 5406 zone_set_pageset_high_and_batch(zone, 0); 5407 } 5408 5409 /* 5410 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5411 * page high values need to be recalculated. 5412 */ 5413 static void zone_pcp_update(struct zone *zone, int cpu_online) 5414 { 5415 mutex_lock(&pcp_batch_high_lock); 5416 zone_set_pageset_high_and_batch(zone, cpu_online); 5417 mutex_unlock(&pcp_batch_high_lock); 5418 } 5419 5420 /* 5421 * Allocate per cpu pagesets and initialize them. 5422 * Before this call only boot pagesets were available. 5423 */ 5424 void __init setup_per_cpu_pageset(void) 5425 { 5426 struct pglist_data *pgdat; 5427 struct zone *zone; 5428 int __maybe_unused cpu; 5429 5430 for_each_populated_zone(zone) 5431 setup_zone_pageset(zone); 5432 5433 #ifdef CONFIG_NUMA 5434 /* 5435 * Unpopulated zones continue using the boot pagesets. 5436 * The numa stats for these pagesets need to be reset. 5437 * Otherwise, they will end up skewing the stats of 5438 * the nodes these zones are associated with. 5439 */ 5440 for_each_possible_cpu(cpu) { 5441 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5442 memset(pzstats->vm_numa_event, 0, 5443 sizeof(pzstats->vm_numa_event)); 5444 } 5445 #endif 5446 5447 for_each_online_pgdat(pgdat) 5448 pgdat->per_cpu_nodestats = 5449 alloc_percpu(struct per_cpu_nodestat); 5450 } 5451 5452 __meminit void zone_pcp_init(struct zone *zone) 5453 { 5454 /* 5455 * per cpu subsystem is not up at this point. The following code 5456 * relies on the ability of the linker to provide the 5457 * offset of a (static) per cpu variable into the per cpu area. 5458 */ 5459 zone->per_cpu_pageset = &boot_pageset; 5460 zone->per_cpu_zonestats = &boot_zonestats; 5461 zone->pageset_high = BOOT_PAGESET_HIGH; 5462 zone->pageset_batch = BOOT_PAGESET_BATCH; 5463 5464 if (populated_zone(zone)) 5465 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5466 zone->present_pages, zone_batchsize(zone)); 5467 } 5468 5469 void adjust_managed_page_count(struct page *page, long count) 5470 { 5471 atomic_long_add(count, &page_zone(page)->managed_pages); 5472 totalram_pages_add(count); 5473 #ifdef CONFIG_HIGHMEM 5474 if (PageHighMem(page)) 5475 totalhigh_pages_add(count); 5476 #endif 5477 } 5478 EXPORT_SYMBOL(adjust_managed_page_count); 5479 5480 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5481 { 5482 void *pos; 5483 unsigned long pages = 0; 5484 5485 start = (void *)PAGE_ALIGN((unsigned long)start); 5486 end = (void *)((unsigned long)end & PAGE_MASK); 5487 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5488 struct page *page = virt_to_page(pos); 5489 void *direct_map_addr; 5490 5491 /* 5492 * 'direct_map_addr' might be different from 'pos' 5493 * because some architectures' virt_to_page() 5494 * work with aliases. Getting the direct map 5495 * address ensures that we get a _writeable_ 5496 * alias for the memset(). 5497 */ 5498 direct_map_addr = page_address(page); 5499 /* 5500 * Perform a kasan-unchecked memset() since this memory 5501 * has not been initialized. 5502 */ 5503 direct_map_addr = kasan_reset_tag(direct_map_addr); 5504 if ((unsigned int)poison <= 0xFF) 5505 memset(direct_map_addr, poison, PAGE_SIZE); 5506 5507 free_reserved_page(page); 5508 } 5509 5510 if (pages && s) 5511 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5512 5513 return pages; 5514 } 5515 5516 static int page_alloc_cpu_dead(unsigned int cpu) 5517 { 5518 struct zone *zone; 5519 5520 lru_add_drain_cpu(cpu); 5521 mlock_drain_remote(cpu); 5522 drain_pages(cpu); 5523 5524 /* 5525 * Spill the event counters of the dead processor 5526 * into the current processors event counters. 5527 * This artificially elevates the count of the current 5528 * processor. 5529 */ 5530 vm_events_fold_cpu(cpu); 5531 5532 /* 5533 * Zero the differential counters of the dead processor 5534 * so that the vm statistics are consistent. 5535 * 5536 * This is only okay since the processor is dead and cannot 5537 * race with what we are doing. 5538 */ 5539 cpu_vm_stats_fold(cpu); 5540 5541 for_each_populated_zone(zone) 5542 zone_pcp_update(zone, 0); 5543 5544 return 0; 5545 } 5546 5547 static int page_alloc_cpu_online(unsigned int cpu) 5548 { 5549 struct zone *zone; 5550 5551 for_each_populated_zone(zone) 5552 zone_pcp_update(zone, 1); 5553 return 0; 5554 } 5555 5556 void __init page_alloc_init_cpuhp(void) 5557 { 5558 int ret; 5559 5560 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5561 "mm/page_alloc:pcp", 5562 page_alloc_cpu_online, 5563 page_alloc_cpu_dead); 5564 WARN_ON(ret < 0); 5565 } 5566 5567 /* 5568 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5569 * or min_free_kbytes changes. 5570 */ 5571 static void calculate_totalreserve_pages(void) 5572 { 5573 struct pglist_data *pgdat; 5574 unsigned long reserve_pages = 0; 5575 enum zone_type i, j; 5576 5577 for_each_online_pgdat(pgdat) { 5578 5579 pgdat->totalreserve_pages = 0; 5580 5581 for (i = 0; i < MAX_NR_ZONES; i++) { 5582 struct zone *zone = pgdat->node_zones + i; 5583 long max = 0; 5584 unsigned long managed_pages = zone_managed_pages(zone); 5585 5586 /* Find valid and maximum lowmem_reserve in the zone */ 5587 for (j = i; j < MAX_NR_ZONES; j++) { 5588 if (zone->lowmem_reserve[j] > max) 5589 max = zone->lowmem_reserve[j]; 5590 } 5591 5592 /* we treat the high watermark as reserved pages. */ 5593 max += high_wmark_pages(zone); 5594 5595 if (max > managed_pages) 5596 max = managed_pages; 5597 5598 pgdat->totalreserve_pages += max; 5599 5600 reserve_pages += max; 5601 } 5602 } 5603 totalreserve_pages = reserve_pages; 5604 } 5605 5606 /* 5607 * setup_per_zone_lowmem_reserve - called whenever 5608 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5609 * has a correct pages reserved value, so an adequate number of 5610 * pages are left in the zone after a successful __alloc_pages(). 5611 */ 5612 static void setup_per_zone_lowmem_reserve(void) 5613 { 5614 struct pglist_data *pgdat; 5615 enum zone_type i, j; 5616 5617 for_each_online_pgdat(pgdat) { 5618 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5619 struct zone *zone = &pgdat->node_zones[i]; 5620 int ratio = sysctl_lowmem_reserve_ratio[i]; 5621 bool clear = !ratio || !zone_managed_pages(zone); 5622 unsigned long managed_pages = 0; 5623 5624 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5625 struct zone *upper_zone = &pgdat->node_zones[j]; 5626 5627 managed_pages += zone_managed_pages(upper_zone); 5628 5629 if (clear) 5630 zone->lowmem_reserve[j] = 0; 5631 else 5632 zone->lowmem_reserve[j] = managed_pages / ratio; 5633 } 5634 } 5635 } 5636 5637 /* update totalreserve_pages */ 5638 calculate_totalreserve_pages(); 5639 } 5640 5641 static void __setup_per_zone_wmarks(void) 5642 { 5643 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5644 unsigned long lowmem_pages = 0; 5645 struct zone *zone; 5646 unsigned long flags; 5647 5648 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5649 for_each_zone(zone) { 5650 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5651 lowmem_pages += zone_managed_pages(zone); 5652 } 5653 5654 for_each_zone(zone) { 5655 u64 tmp; 5656 5657 spin_lock_irqsave(&zone->lock, flags); 5658 tmp = (u64)pages_min * zone_managed_pages(zone); 5659 do_div(tmp, lowmem_pages); 5660 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5661 /* 5662 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5663 * need highmem and movable zones pages, so cap pages_min 5664 * to a small value here. 5665 * 5666 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5667 * deltas control async page reclaim, and so should 5668 * not be capped for highmem and movable zones. 5669 */ 5670 unsigned long min_pages; 5671 5672 min_pages = zone_managed_pages(zone) / 1024; 5673 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5674 zone->_watermark[WMARK_MIN] = min_pages; 5675 } else { 5676 /* 5677 * If it's a lowmem zone, reserve a number of pages 5678 * proportionate to the zone's size. 5679 */ 5680 zone->_watermark[WMARK_MIN] = tmp; 5681 } 5682 5683 /* 5684 * Set the kswapd watermarks distance according to the 5685 * scale factor in proportion to available memory, but 5686 * ensure a minimum size on small systems. 5687 */ 5688 tmp = max_t(u64, tmp >> 2, 5689 mult_frac(zone_managed_pages(zone), 5690 watermark_scale_factor, 10000)); 5691 5692 zone->watermark_boost = 0; 5693 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5694 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5695 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5696 5697 spin_unlock_irqrestore(&zone->lock, flags); 5698 } 5699 5700 /* update totalreserve_pages */ 5701 calculate_totalreserve_pages(); 5702 } 5703 5704 /** 5705 * setup_per_zone_wmarks - called when min_free_kbytes changes 5706 * or when memory is hot-{added|removed} 5707 * 5708 * Ensures that the watermark[min,low,high] values for each zone are set 5709 * correctly with respect to min_free_kbytes. 5710 */ 5711 void setup_per_zone_wmarks(void) 5712 { 5713 struct zone *zone; 5714 static DEFINE_SPINLOCK(lock); 5715 5716 spin_lock(&lock); 5717 __setup_per_zone_wmarks(); 5718 spin_unlock(&lock); 5719 5720 /* 5721 * The watermark size have changed so update the pcpu batch 5722 * and high limits or the limits may be inappropriate. 5723 */ 5724 for_each_zone(zone) 5725 zone_pcp_update(zone, 0); 5726 } 5727 5728 /* 5729 * Initialise min_free_kbytes. 5730 * 5731 * For small machines we want it small (128k min). For large machines 5732 * we want it large (256MB max). But it is not linear, because network 5733 * bandwidth does not increase linearly with machine size. We use 5734 * 5735 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5736 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5737 * 5738 * which yields 5739 * 5740 * 16MB: 512k 5741 * 32MB: 724k 5742 * 64MB: 1024k 5743 * 128MB: 1448k 5744 * 256MB: 2048k 5745 * 512MB: 2896k 5746 * 1024MB: 4096k 5747 * 2048MB: 5792k 5748 * 4096MB: 8192k 5749 * 8192MB: 11584k 5750 * 16384MB: 16384k 5751 */ 5752 void calculate_min_free_kbytes(void) 5753 { 5754 unsigned long lowmem_kbytes; 5755 int new_min_free_kbytes; 5756 5757 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5758 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5759 5760 if (new_min_free_kbytes > user_min_free_kbytes) 5761 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5762 else 5763 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5764 new_min_free_kbytes, user_min_free_kbytes); 5765 5766 } 5767 5768 int __meminit init_per_zone_wmark_min(void) 5769 { 5770 calculate_min_free_kbytes(); 5771 setup_per_zone_wmarks(); 5772 refresh_zone_stat_thresholds(); 5773 setup_per_zone_lowmem_reserve(); 5774 5775 #ifdef CONFIG_NUMA 5776 setup_min_unmapped_ratio(); 5777 setup_min_slab_ratio(); 5778 #endif 5779 5780 khugepaged_min_free_kbytes_update(); 5781 5782 return 0; 5783 } 5784 postcore_initcall(init_per_zone_wmark_min) 5785 5786 /* 5787 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5788 * that we can call two helper functions whenever min_free_kbytes 5789 * changes. 5790 */ 5791 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5792 void *buffer, size_t *length, loff_t *ppos) 5793 { 5794 int rc; 5795 5796 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5797 if (rc) 5798 return rc; 5799 5800 if (write) { 5801 user_min_free_kbytes = min_free_kbytes; 5802 setup_per_zone_wmarks(); 5803 } 5804 return 0; 5805 } 5806 5807 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 5808 void *buffer, size_t *length, loff_t *ppos) 5809 { 5810 int rc; 5811 5812 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5813 if (rc) 5814 return rc; 5815 5816 if (write) 5817 setup_per_zone_wmarks(); 5818 5819 return 0; 5820 } 5821 5822 #ifdef CONFIG_NUMA 5823 static void setup_min_unmapped_ratio(void) 5824 { 5825 pg_data_t *pgdat; 5826 struct zone *zone; 5827 5828 for_each_online_pgdat(pgdat) 5829 pgdat->min_unmapped_pages = 0; 5830 5831 for_each_zone(zone) 5832 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 5833 sysctl_min_unmapped_ratio) / 100; 5834 } 5835 5836 5837 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5838 void *buffer, size_t *length, loff_t *ppos) 5839 { 5840 int rc; 5841 5842 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5843 if (rc) 5844 return rc; 5845 5846 setup_min_unmapped_ratio(); 5847 5848 return 0; 5849 } 5850 5851 static void setup_min_slab_ratio(void) 5852 { 5853 pg_data_t *pgdat; 5854 struct zone *zone; 5855 5856 for_each_online_pgdat(pgdat) 5857 pgdat->min_slab_pages = 0; 5858 5859 for_each_zone(zone) 5860 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 5861 sysctl_min_slab_ratio) / 100; 5862 } 5863 5864 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5865 void *buffer, size_t *length, loff_t *ppos) 5866 { 5867 int rc; 5868 5869 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5870 if (rc) 5871 return rc; 5872 5873 setup_min_slab_ratio(); 5874 5875 return 0; 5876 } 5877 #endif 5878 5879 /* 5880 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5881 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5882 * whenever sysctl_lowmem_reserve_ratio changes. 5883 * 5884 * The reserve ratio obviously has absolutely no relation with the 5885 * minimum watermarks. The lowmem reserve ratio can only make sense 5886 * if in function of the boot time zone sizes. 5887 */ 5888 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 5889 int write, void *buffer, size_t *length, loff_t *ppos) 5890 { 5891 int i; 5892 5893 proc_dointvec_minmax(table, write, buffer, length, ppos); 5894 5895 for (i = 0; i < MAX_NR_ZONES; i++) { 5896 if (sysctl_lowmem_reserve_ratio[i] < 1) 5897 sysctl_lowmem_reserve_ratio[i] = 0; 5898 } 5899 5900 setup_per_zone_lowmem_reserve(); 5901 return 0; 5902 } 5903 5904 /* 5905 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 5906 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5907 * pagelist can have before it gets flushed back to buddy allocator. 5908 */ 5909 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 5910 int write, void *buffer, size_t *length, loff_t *ppos) 5911 { 5912 struct zone *zone; 5913 int old_percpu_pagelist_high_fraction; 5914 int ret; 5915 5916 mutex_lock(&pcp_batch_high_lock); 5917 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 5918 5919 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5920 if (!write || ret < 0) 5921 goto out; 5922 5923 /* Sanity checking to avoid pcp imbalance */ 5924 if (percpu_pagelist_high_fraction && 5925 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 5926 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 5927 ret = -EINVAL; 5928 goto out; 5929 } 5930 5931 /* No change? */ 5932 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 5933 goto out; 5934 5935 for_each_populated_zone(zone) 5936 zone_set_pageset_high_and_batch(zone, 0); 5937 out: 5938 mutex_unlock(&pcp_batch_high_lock); 5939 return ret; 5940 } 5941 5942 static struct ctl_table page_alloc_sysctl_table[] = { 5943 { 5944 .procname = "min_free_kbytes", 5945 .data = &min_free_kbytes, 5946 .maxlen = sizeof(min_free_kbytes), 5947 .mode = 0644, 5948 .proc_handler = min_free_kbytes_sysctl_handler, 5949 .extra1 = SYSCTL_ZERO, 5950 }, 5951 { 5952 .procname = "watermark_boost_factor", 5953 .data = &watermark_boost_factor, 5954 .maxlen = sizeof(watermark_boost_factor), 5955 .mode = 0644, 5956 .proc_handler = proc_dointvec_minmax, 5957 .extra1 = SYSCTL_ZERO, 5958 }, 5959 { 5960 .procname = "watermark_scale_factor", 5961 .data = &watermark_scale_factor, 5962 .maxlen = sizeof(watermark_scale_factor), 5963 .mode = 0644, 5964 .proc_handler = watermark_scale_factor_sysctl_handler, 5965 .extra1 = SYSCTL_ONE, 5966 .extra2 = SYSCTL_THREE_THOUSAND, 5967 }, 5968 { 5969 .procname = "percpu_pagelist_high_fraction", 5970 .data = &percpu_pagelist_high_fraction, 5971 .maxlen = sizeof(percpu_pagelist_high_fraction), 5972 .mode = 0644, 5973 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 5974 .extra1 = SYSCTL_ZERO, 5975 }, 5976 { 5977 .procname = "lowmem_reserve_ratio", 5978 .data = &sysctl_lowmem_reserve_ratio, 5979 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 5980 .mode = 0644, 5981 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 5982 }, 5983 #ifdef CONFIG_NUMA 5984 { 5985 .procname = "numa_zonelist_order", 5986 .data = &numa_zonelist_order, 5987 .maxlen = NUMA_ZONELIST_ORDER_LEN, 5988 .mode = 0644, 5989 .proc_handler = numa_zonelist_order_handler, 5990 }, 5991 { 5992 .procname = "min_unmapped_ratio", 5993 .data = &sysctl_min_unmapped_ratio, 5994 .maxlen = sizeof(sysctl_min_unmapped_ratio), 5995 .mode = 0644, 5996 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 5997 .extra1 = SYSCTL_ZERO, 5998 .extra2 = SYSCTL_ONE_HUNDRED, 5999 }, 6000 { 6001 .procname = "min_slab_ratio", 6002 .data = &sysctl_min_slab_ratio, 6003 .maxlen = sizeof(sysctl_min_slab_ratio), 6004 .mode = 0644, 6005 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6006 .extra1 = SYSCTL_ZERO, 6007 .extra2 = SYSCTL_ONE_HUNDRED, 6008 }, 6009 #endif 6010 {} 6011 }; 6012 6013 void __init page_alloc_sysctl_init(void) 6014 { 6015 register_sysctl_init("vm", page_alloc_sysctl_table); 6016 } 6017 6018 #ifdef CONFIG_CONTIG_ALLOC 6019 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6020 static void alloc_contig_dump_pages(struct list_head *page_list) 6021 { 6022 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6023 6024 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6025 struct page *page; 6026 6027 dump_stack(); 6028 list_for_each_entry(page, page_list, lru) 6029 dump_page(page, "migration failure"); 6030 } 6031 } 6032 6033 /* [start, end) must belong to a single zone. */ 6034 int __alloc_contig_migrate_range(struct compact_control *cc, 6035 unsigned long start, unsigned long end) 6036 { 6037 /* This function is based on compact_zone() from compaction.c. */ 6038 unsigned int nr_reclaimed; 6039 unsigned long pfn = start; 6040 unsigned int tries = 0; 6041 int ret = 0; 6042 struct migration_target_control mtc = { 6043 .nid = zone_to_nid(cc->zone), 6044 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6045 }; 6046 6047 lru_cache_disable(); 6048 6049 while (pfn < end || !list_empty(&cc->migratepages)) { 6050 if (fatal_signal_pending(current)) { 6051 ret = -EINTR; 6052 break; 6053 } 6054 6055 if (list_empty(&cc->migratepages)) { 6056 cc->nr_migratepages = 0; 6057 ret = isolate_migratepages_range(cc, pfn, end); 6058 if (ret && ret != -EAGAIN) 6059 break; 6060 pfn = cc->migrate_pfn; 6061 tries = 0; 6062 } else if (++tries == 5) { 6063 ret = -EBUSY; 6064 break; 6065 } 6066 6067 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6068 &cc->migratepages); 6069 cc->nr_migratepages -= nr_reclaimed; 6070 6071 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6072 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6073 6074 /* 6075 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6076 * to retry again over this error, so do the same here. 6077 */ 6078 if (ret == -ENOMEM) 6079 break; 6080 } 6081 6082 lru_cache_enable(); 6083 if (ret < 0) { 6084 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6085 alloc_contig_dump_pages(&cc->migratepages); 6086 putback_movable_pages(&cc->migratepages); 6087 return ret; 6088 } 6089 return 0; 6090 } 6091 6092 /** 6093 * alloc_contig_range() -- tries to allocate given range of pages 6094 * @start: start PFN to allocate 6095 * @end: one-past-the-last PFN to allocate 6096 * @migratetype: migratetype of the underlying pageblocks (either 6097 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6098 * in range must have the same migratetype and it must 6099 * be either of the two. 6100 * @gfp_mask: GFP mask to use during compaction 6101 * 6102 * The PFN range does not have to be pageblock aligned. The PFN range must 6103 * belong to a single zone. 6104 * 6105 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6106 * pageblocks in the range. Once isolated, the pageblocks should not 6107 * be modified by others. 6108 * 6109 * Return: zero on success or negative error code. On success all 6110 * pages which PFN is in [start, end) are allocated for the caller and 6111 * need to be freed with free_contig_range(). 6112 */ 6113 int alloc_contig_range(unsigned long start, unsigned long end, 6114 unsigned migratetype, gfp_t gfp_mask) 6115 { 6116 unsigned long outer_start, outer_end; 6117 int order; 6118 int ret = 0; 6119 6120 struct compact_control cc = { 6121 .nr_migratepages = 0, 6122 .order = -1, 6123 .zone = page_zone(pfn_to_page(start)), 6124 .mode = MIGRATE_SYNC, 6125 .ignore_skip_hint = true, 6126 .no_set_skip_hint = true, 6127 .gfp_mask = current_gfp_context(gfp_mask), 6128 .alloc_contig = true, 6129 }; 6130 INIT_LIST_HEAD(&cc.migratepages); 6131 6132 /* 6133 * What we do here is we mark all pageblocks in range as 6134 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6135 * have different sizes, and due to the way page allocator 6136 * work, start_isolate_page_range() has special handlings for this. 6137 * 6138 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6139 * migrate the pages from an unaligned range (ie. pages that 6140 * we are interested in). This will put all the pages in 6141 * range back to page allocator as MIGRATE_ISOLATE. 6142 * 6143 * When this is done, we take the pages in range from page 6144 * allocator removing them from the buddy system. This way 6145 * page allocator will never consider using them. 6146 * 6147 * This lets us mark the pageblocks back as 6148 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6149 * aligned range but not in the unaligned, original range are 6150 * put back to page allocator so that buddy can use them. 6151 */ 6152 6153 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6154 if (ret) 6155 goto done; 6156 6157 drain_all_pages(cc.zone); 6158 6159 /* 6160 * In case of -EBUSY, we'd like to know which page causes problem. 6161 * So, just fall through. test_pages_isolated() has a tracepoint 6162 * which will report the busy page. 6163 * 6164 * It is possible that busy pages could become available before 6165 * the call to test_pages_isolated, and the range will actually be 6166 * allocated. So, if we fall through be sure to clear ret so that 6167 * -EBUSY is not accidentally used or returned to caller. 6168 */ 6169 ret = __alloc_contig_migrate_range(&cc, start, end); 6170 if (ret && ret != -EBUSY) 6171 goto done; 6172 ret = 0; 6173 6174 /* 6175 * Pages from [start, end) are within a pageblock_nr_pages 6176 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6177 * more, all pages in [start, end) are free in page allocator. 6178 * What we are going to do is to allocate all pages from 6179 * [start, end) (that is remove them from page allocator). 6180 * 6181 * The only problem is that pages at the beginning and at the 6182 * end of interesting range may be not aligned with pages that 6183 * page allocator holds, ie. they can be part of higher order 6184 * pages. Because of this, we reserve the bigger range and 6185 * once this is done free the pages we are not interested in. 6186 * 6187 * We don't have to hold zone->lock here because the pages are 6188 * isolated thus they won't get removed from buddy. 6189 */ 6190 6191 order = 0; 6192 outer_start = start; 6193 while (!PageBuddy(pfn_to_page(outer_start))) { 6194 if (++order > MAX_ORDER) { 6195 outer_start = start; 6196 break; 6197 } 6198 outer_start &= ~0UL << order; 6199 } 6200 6201 if (outer_start != start) { 6202 order = buddy_order(pfn_to_page(outer_start)); 6203 6204 /* 6205 * outer_start page could be small order buddy page and 6206 * it doesn't include start page. Adjust outer_start 6207 * in this case to report failed page properly 6208 * on tracepoint in test_pages_isolated() 6209 */ 6210 if (outer_start + (1UL << order) <= start) 6211 outer_start = start; 6212 } 6213 6214 /* Make sure the range is really isolated. */ 6215 if (test_pages_isolated(outer_start, end, 0)) { 6216 ret = -EBUSY; 6217 goto done; 6218 } 6219 6220 /* Grab isolated pages from freelists. */ 6221 outer_end = isolate_freepages_range(&cc, outer_start, end); 6222 if (!outer_end) { 6223 ret = -EBUSY; 6224 goto done; 6225 } 6226 6227 /* Free head and tail (if any) */ 6228 if (start != outer_start) 6229 free_contig_range(outer_start, start - outer_start); 6230 if (end != outer_end) 6231 free_contig_range(end, outer_end - end); 6232 6233 done: 6234 undo_isolate_page_range(start, end, migratetype); 6235 return ret; 6236 } 6237 EXPORT_SYMBOL(alloc_contig_range); 6238 6239 static int __alloc_contig_pages(unsigned long start_pfn, 6240 unsigned long nr_pages, gfp_t gfp_mask) 6241 { 6242 unsigned long end_pfn = start_pfn + nr_pages; 6243 6244 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6245 gfp_mask); 6246 } 6247 6248 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6249 unsigned long nr_pages) 6250 { 6251 unsigned long i, end_pfn = start_pfn + nr_pages; 6252 struct page *page; 6253 6254 for (i = start_pfn; i < end_pfn; i++) { 6255 page = pfn_to_online_page(i); 6256 if (!page) 6257 return false; 6258 6259 if (page_zone(page) != z) 6260 return false; 6261 6262 if (PageReserved(page)) 6263 return false; 6264 6265 if (PageHuge(page)) 6266 return false; 6267 } 6268 return true; 6269 } 6270 6271 static bool zone_spans_last_pfn(const struct zone *zone, 6272 unsigned long start_pfn, unsigned long nr_pages) 6273 { 6274 unsigned long last_pfn = start_pfn + nr_pages - 1; 6275 6276 return zone_spans_pfn(zone, last_pfn); 6277 } 6278 6279 /** 6280 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6281 * @nr_pages: Number of contiguous pages to allocate 6282 * @gfp_mask: GFP mask to limit search and used during compaction 6283 * @nid: Target node 6284 * @nodemask: Mask for other possible nodes 6285 * 6286 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6287 * on an applicable zonelist to find a contiguous pfn range which can then be 6288 * tried for allocation with alloc_contig_range(). This routine is intended 6289 * for allocation requests which can not be fulfilled with the buddy allocator. 6290 * 6291 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6292 * power of two, then allocated range is also guaranteed to be aligned to same 6293 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6294 * 6295 * Allocated pages can be freed with free_contig_range() or by manually calling 6296 * __free_page() on each allocated page. 6297 * 6298 * Return: pointer to contiguous pages on success, or NULL if not successful. 6299 */ 6300 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6301 int nid, nodemask_t *nodemask) 6302 { 6303 unsigned long ret, pfn, flags; 6304 struct zonelist *zonelist; 6305 struct zone *zone; 6306 struct zoneref *z; 6307 6308 zonelist = node_zonelist(nid, gfp_mask); 6309 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6310 gfp_zone(gfp_mask), nodemask) { 6311 spin_lock_irqsave(&zone->lock, flags); 6312 6313 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6314 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6315 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6316 /* 6317 * We release the zone lock here because 6318 * alloc_contig_range() will also lock the zone 6319 * at some point. If there's an allocation 6320 * spinning on this lock, it may win the race 6321 * and cause alloc_contig_range() to fail... 6322 */ 6323 spin_unlock_irqrestore(&zone->lock, flags); 6324 ret = __alloc_contig_pages(pfn, nr_pages, 6325 gfp_mask); 6326 if (!ret) 6327 return pfn_to_page(pfn); 6328 spin_lock_irqsave(&zone->lock, flags); 6329 } 6330 pfn += nr_pages; 6331 } 6332 spin_unlock_irqrestore(&zone->lock, flags); 6333 } 6334 return NULL; 6335 } 6336 #endif /* CONFIG_CONTIG_ALLOC */ 6337 6338 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6339 { 6340 unsigned long count = 0; 6341 6342 for (; nr_pages--; pfn++) { 6343 struct page *page = pfn_to_page(pfn); 6344 6345 count += page_count(page) != 1; 6346 __free_page(page); 6347 } 6348 WARN(count != 0, "%lu pages are still in use!\n", count); 6349 } 6350 EXPORT_SYMBOL(free_contig_range); 6351 6352 /* 6353 * Effectively disable pcplists for the zone by setting the high limit to 0 6354 * and draining all cpus. A concurrent page freeing on another CPU that's about 6355 * to put the page on pcplist will either finish before the drain and the page 6356 * will be drained, or observe the new high limit and skip the pcplist. 6357 * 6358 * Must be paired with a call to zone_pcp_enable(). 6359 */ 6360 void zone_pcp_disable(struct zone *zone) 6361 { 6362 mutex_lock(&pcp_batch_high_lock); 6363 __zone_set_pageset_high_and_batch(zone, 0, 1); 6364 __drain_all_pages(zone, true); 6365 } 6366 6367 void zone_pcp_enable(struct zone *zone) 6368 { 6369 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 6370 mutex_unlock(&pcp_batch_high_lock); 6371 } 6372 6373 void zone_pcp_reset(struct zone *zone) 6374 { 6375 int cpu; 6376 struct per_cpu_zonestat *pzstats; 6377 6378 if (zone->per_cpu_pageset != &boot_pageset) { 6379 for_each_online_cpu(cpu) { 6380 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6381 drain_zonestat(zone, pzstats); 6382 } 6383 free_percpu(zone->per_cpu_pageset); 6384 zone->per_cpu_pageset = &boot_pageset; 6385 if (zone->per_cpu_zonestats != &boot_zonestats) { 6386 free_percpu(zone->per_cpu_zonestats); 6387 zone->per_cpu_zonestats = &boot_zonestats; 6388 } 6389 } 6390 } 6391 6392 #ifdef CONFIG_MEMORY_HOTREMOVE 6393 /* 6394 * All pages in the range must be in a single zone, must not contain holes, 6395 * must span full sections, and must be isolated before calling this function. 6396 */ 6397 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6398 { 6399 unsigned long pfn = start_pfn; 6400 struct page *page; 6401 struct zone *zone; 6402 unsigned int order; 6403 unsigned long flags; 6404 6405 offline_mem_sections(pfn, end_pfn); 6406 zone = page_zone(pfn_to_page(pfn)); 6407 spin_lock_irqsave(&zone->lock, flags); 6408 while (pfn < end_pfn) { 6409 page = pfn_to_page(pfn); 6410 /* 6411 * The HWPoisoned page may be not in buddy system, and 6412 * page_count() is not 0. 6413 */ 6414 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6415 pfn++; 6416 continue; 6417 } 6418 /* 6419 * At this point all remaining PageOffline() pages have a 6420 * reference count of 0 and can simply be skipped. 6421 */ 6422 if (PageOffline(page)) { 6423 BUG_ON(page_count(page)); 6424 BUG_ON(PageBuddy(page)); 6425 pfn++; 6426 continue; 6427 } 6428 6429 BUG_ON(page_count(page)); 6430 BUG_ON(!PageBuddy(page)); 6431 order = buddy_order(page); 6432 del_page_from_free_list(page, zone, order); 6433 pfn += (1 << order); 6434 } 6435 spin_unlock_irqrestore(&zone->lock, flags); 6436 } 6437 #endif 6438 6439 /* 6440 * This function returns a stable result only if called under zone lock. 6441 */ 6442 bool is_free_buddy_page(struct page *page) 6443 { 6444 unsigned long pfn = page_to_pfn(page); 6445 unsigned int order; 6446 6447 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6448 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6449 6450 if (PageBuddy(page_head) && 6451 buddy_order_unsafe(page_head) >= order) 6452 break; 6453 } 6454 6455 return order <= MAX_ORDER; 6456 } 6457 EXPORT_SYMBOL(is_free_buddy_page); 6458 6459 #ifdef CONFIG_MEMORY_FAILURE 6460 /* 6461 * Break down a higher-order page in sub-pages, and keep our target out of 6462 * buddy allocator. 6463 */ 6464 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6465 struct page *target, int low, int high, 6466 int migratetype) 6467 { 6468 unsigned long size = 1 << high; 6469 struct page *current_buddy, *next_page; 6470 6471 while (high > low) { 6472 high--; 6473 size >>= 1; 6474 6475 if (target >= &page[size]) { 6476 next_page = page + size; 6477 current_buddy = page; 6478 } else { 6479 next_page = page; 6480 current_buddy = page + size; 6481 } 6482 page = next_page; 6483 6484 if (set_page_guard(zone, current_buddy, high, migratetype)) 6485 continue; 6486 6487 if (current_buddy != target) { 6488 add_to_free_list(current_buddy, zone, high, migratetype); 6489 set_buddy_order(current_buddy, high); 6490 } 6491 } 6492 } 6493 6494 /* 6495 * Take a page that will be marked as poisoned off the buddy allocator. 6496 */ 6497 bool take_page_off_buddy(struct page *page) 6498 { 6499 struct zone *zone = page_zone(page); 6500 unsigned long pfn = page_to_pfn(page); 6501 unsigned long flags; 6502 unsigned int order; 6503 bool ret = false; 6504 6505 spin_lock_irqsave(&zone->lock, flags); 6506 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6507 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6508 int page_order = buddy_order(page_head); 6509 6510 if (PageBuddy(page_head) && page_order >= order) { 6511 unsigned long pfn_head = page_to_pfn(page_head); 6512 int migratetype = get_pfnblock_migratetype(page_head, 6513 pfn_head); 6514 6515 del_page_from_free_list(page_head, zone, page_order); 6516 break_down_buddy_pages(zone, page_head, page, 0, 6517 page_order, migratetype); 6518 SetPageHWPoisonTakenOff(page); 6519 if (!is_migrate_isolate(migratetype)) 6520 __mod_zone_freepage_state(zone, -1, migratetype); 6521 ret = true; 6522 break; 6523 } 6524 if (page_count(page_head) > 0) 6525 break; 6526 } 6527 spin_unlock_irqrestore(&zone->lock, flags); 6528 return ret; 6529 } 6530 6531 /* 6532 * Cancel takeoff done by take_page_off_buddy(). 6533 */ 6534 bool put_page_back_buddy(struct page *page) 6535 { 6536 struct zone *zone = page_zone(page); 6537 unsigned long pfn = page_to_pfn(page); 6538 unsigned long flags; 6539 int migratetype = get_pfnblock_migratetype(page, pfn); 6540 bool ret = false; 6541 6542 spin_lock_irqsave(&zone->lock, flags); 6543 if (put_page_testzero(page)) { 6544 ClearPageHWPoisonTakenOff(page); 6545 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6546 if (TestClearPageHWPoison(page)) { 6547 ret = true; 6548 } 6549 } 6550 spin_unlock_irqrestore(&zone->lock, flags); 6551 6552 return ret; 6553 } 6554 #endif 6555 6556 #ifdef CONFIG_ZONE_DMA 6557 bool has_managed_dma(void) 6558 { 6559 struct pglist_data *pgdat; 6560 6561 for_each_online_pgdat(pgdat) { 6562 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6563 6564 if (managed_zone(zone)) 6565 return true; 6566 } 6567 return false; 6568 } 6569 #endif /* CONFIG_ZONE_DMA */ 6570 6571 #ifdef CONFIG_UNACCEPTED_MEMORY 6572 6573 /* Counts number of zones with unaccepted pages. */ 6574 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6575 6576 static bool lazy_accept = true; 6577 6578 static int __init accept_memory_parse(char *p) 6579 { 6580 if (!strcmp(p, "lazy")) { 6581 lazy_accept = true; 6582 return 0; 6583 } else if (!strcmp(p, "eager")) { 6584 lazy_accept = false; 6585 return 0; 6586 } else { 6587 return -EINVAL; 6588 } 6589 } 6590 early_param("accept_memory", accept_memory_parse); 6591 6592 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6593 { 6594 phys_addr_t start = page_to_phys(page); 6595 phys_addr_t end = start + (PAGE_SIZE << order); 6596 6597 return range_contains_unaccepted_memory(start, end); 6598 } 6599 6600 static void accept_page(struct page *page, unsigned int order) 6601 { 6602 phys_addr_t start = page_to_phys(page); 6603 6604 accept_memory(start, start + (PAGE_SIZE << order)); 6605 } 6606 6607 static bool try_to_accept_memory_one(struct zone *zone) 6608 { 6609 unsigned long flags; 6610 struct page *page; 6611 bool last; 6612 6613 spin_lock_irqsave(&zone->lock, flags); 6614 page = list_first_entry_or_null(&zone->unaccepted_pages, 6615 struct page, lru); 6616 if (!page) { 6617 spin_unlock_irqrestore(&zone->lock, flags); 6618 return false; 6619 } 6620 6621 list_del(&page->lru); 6622 last = list_empty(&zone->unaccepted_pages); 6623 6624 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6625 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6626 spin_unlock_irqrestore(&zone->lock, flags); 6627 6628 accept_page(page, MAX_ORDER); 6629 6630 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL); 6631 6632 if (last) 6633 static_branch_dec(&zones_with_unaccepted_pages); 6634 6635 return true; 6636 } 6637 6638 static bool cond_accept_memory(struct zone *zone, unsigned int order) 6639 { 6640 long to_accept; 6641 bool ret = false; 6642 6643 if (!has_unaccepted_memory()) 6644 return false; 6645 6646 if (list_empty(&zone->unaccepted_pages)) 6647 return false; 6648 6649 /* How much to accept to get to high watermark? */ 6650 to_accept = high_wmark_pages(zone) - 6651 (zone_page_state(zone, NR_FREE_PAGES) - 6652 __zone_watermark_unusable_free(zone, order, 0) - 6653 zone_page_state(zone, NR_UNACCEPTED)); 6654 6655 while (to_accept > 0) { 6656 if (!try_to_accept_memory_one(zone)) 6657 break; 6658 ret = true; 6659 to_accept -= MAX_ORDER_NR_PAGES; 6660 } 6661 6662 return ret; 6663 } 6664 6665 static inline bool has_unaccepted_memory(void) 6666 { 6667 return static_branch_unlikely(&zones_with_unaccepted_pages); 6668 } 6669 6670 static bool __free_unaccepted(struct page *page) 6671 { 6672 struct zone *zone = page_zone(page); 6673 unsigned long flags; 6674 bool first = false; 6675 6676 if (!lazy_accept) 6677 return false; 6678 6679 spin_lock_irqsave(&zone->lock, flags); 6680 first = list_empty(&zone->unaccepted_pages); 6681 list_add_tail(&page->lru, &zone->unaccepted_pages); 6682 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6683 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6684 spin_unlock_irqrestore(&zone->lock, flags); 6685 6686 if (first) 6687 static_branch_inc(&zones_with_unaccepted_pages); 6688 6689 return true; 6690 } 6691 6692 #else 6693 6694 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6695 { 6696 return false; 6697 } 6698 6699 static void accept_page(struct page *page, unsigned int order) 6700 { 6701 } 6702 6703 static bool cond_accept_memory(struct zone *zone, unsigned int order) 6704 { 6705 return false; 6706 } 6707 6708 static inline bool has_unaccepted_memory(void) 6709 { 6710 return false; 6711 } 6712 6713 static bool __free_unaccepted(struct page *page) 6714 { 6715 BUILD_BUG(); 6716 return false; 6717 } 6718 6719 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6720