xref: /openbmc/linux/mm/page_alloc.c (revision e5242c5f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291 
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295 
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302 
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool cond_accept_memory(struct zone *zone, unsigned int order);
306 static inline bool has_unaccepted_memory(void);
307 static bool __free_unaccepted(struct page *page);
308 
309 int page_group_by_mobility_disabled __read_mostly;
310 
311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
312 /*
313  * During boot we initialize deferred pages on-demand, as needed, but once
314  * page_alloc_init_late() has finished, the deferred pages are all initialized,
315  * and we can permanently disable that path.
316  */
317 DEFINE_STATIC_KEY_TRUE(deferred_pages);
318 
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return static_branch_unlikely(&deferred_pages);
322 }
323 
324 /*
325  * deferred_grow_zone() is __init, but it is called from
326  * get_page_from_freelist() during early boot until deferred_pages permanently
327  * disables this call. This is why we have refdata wrapper to avoid warning,
328  * and to ensure that the function body gets unloaded.
329  */
330 static bool __ref
331 _deferred_grow_zone(struct zone *zone, unsigned int order)
332 {
333        return deferred_grow_zone(zone, order);
334 }
335 #else
336 static inline bool deferred_pages_enabled(void)
337 {
338 	return false;
339 }
340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
341 
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
344 							unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 	return section_to_usemap(__pfn_to_section(pfn));
348 #else
349 	return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352 
353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 	pfn &= (PAGES_PER_SECTION-1);
357 #else
358 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
359 #endif /* CONFIG_SPARSEMEM */
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 }
362 
363 /**
364  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
365  * @page: The page within the block of interest
366  * @pfn: The target page frame number
367  * @mask: mask of bits that the caller is interested in
368  *
369  * Return: pageblock_bits flags
370  */
371 unsigned long get_pfnblock_flags_mask(const struct page *page,
372 					unsigned long pfn, unsigned long mask)
373 {
374 	unsigned long *bitmap;
375 	unsigned long bitidx, word_bitidx;
376 	unsigned long word;
377 
378 	bitmap = get_pageblock_bitmap(page, pfn);
379 	bitidx = pfn_to_bitidx(page, pfn);
380 	word_bitidx = bitidx / BITS_PER_LONG;
381 	bitidx &= (BITS_PER_LONG-1);
382 	/*
383 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
384 	 * a consistent read of the memory array, so that results, even though
385 	 * racy, are not corrupted.
386 	 */
387 	word = READ_ONCE(bitmap[word_bitidx]);
388 	return (word >> bitidx) & mask;
389 }
390 
391 static __always_inline int get_pfnblock_migratetype(const struct page *page,
392 					unsigned long pfn)
393 {
394 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
395 }
396 
397 /**
398  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
399  * @page: The page within the block of interest
400  * @flags: The flags to set
401  * @pfn: The target page frame number
402  * @mask: mask of bits that the caller is interested in
403  */
404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
405 					unsigned long pfn,
406 					unsigned long mask)
407 {
408 	unsigned long *bitmap;
409 	unsigned long bitidx, word_bitidx;
410 	unsigned long word;
411 
412 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
413 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
414 
415 	bitmap = get_pageblock_bitmap(page, pfn);
416 	bitidx = pfn_to_bitidx(page, pfn);
417 	word_bitidx = bitidx / BITS_PER_LONG;
418 	bitidx &= (BITS_PER_LONG-1);
419 
420 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
421 
422 	mask <<= bitidx;
423 	flags <<= bitidx;
424 
425 	word = READ_ONCE(bitmap[word_bitidx]);
426 	do {
427 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
428 }
429 
430 void set_pageblock_migratetype(struct page *page, int migratetype)
431 {
432 	if (unlikely(page_group_by_mobility_disabled &&
433 		     migratetype < MIGRATE_PCPTYPES))
434 		migratetype = MIGRATE_UNMOVABLE;
435 
436 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
437 				page_to_pfn(page), MIGRATETYPE_MASK);
438 }
439 
440 #ifdef CONFIG_DEBUG_VM
441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
442 {
443 	int ret;
444 	unsigned seq;
445 	unsigned long pfn = page_to_pfn(page);
446 	unsigned long sp, start_pfn;
447 
448 	do {
449 		seq = zone_span_seqbegin(zone);
450 		start_pfn = zone->zone_start_pfn;
451 		sp = zone->spanned_pages;
452 		ret = !zone_spans_pfn(zone, pfn);
453 	} while (zone_span_seqretry(zone, seq));
454 
455 	if (ret)
456 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
457 			pfn, zone_to_nid(zone), zone->name,
458 			start_pfn, start_pfn + sp);
459 
460 	return ret;
461 }
462 
463 /*
464  * Temporary debugging check for pages not lying within a given zone.
465  */
466 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
467 {
468 	if (page_outside_zone_boundaries(zone, page))
469 		return 1;
470 	if (zone != page_zone(page))
471 		return 1;
472 
473 	return 0;
474 }
475 #else
476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
477 {
478 	return 0;
479 }
480 #endif
481 
482 static void bad_page(struct page *page, const char *reason)
483 {
484 	static unsigned long resume;
485 	static unsigned long nr_shown;
486 	static unsigned long nr_unshown;
487 
488 	/*
489 	 * Allow a burst of 60 reports, then keep quiet for that minute;
490 	 * or allow a steady drip of one report per second.
491 	 */
492 	if (nr_shown == 60) {
493 		if (time_before(jiffies, resume)) {
494 			nr_unshown++;
495 			goto out;
496 		}
497 		if (nr_unshown) {
498 			pr_alert(
499 			      "BUG: Bad page state: %lu messages suppressed\n",
500 				nr_unshown);
501 			nr_unshown = 0;
502 		}
503 		nr_shown = 0;
504 	}
505 	if (nr_shown++ == 0)
506 		resume = jiffies + 60 * HZ;
507 
508 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
509 		current->comm, page_to_pfn(page));
510 	dump_page(page, reason);
511 
512 	print_modules();
513 	dump_stack();
514 out:
515 	/* Leave bad fields for debug, except PageBuddy could make trouble */
516 	page_mapcount_reset(page); /* remove PageBuddy */
517 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
518 }
519 
520 static inline unsigned int order_to_pindex(int migratetype, int order)
521 {
522 	bool __maybe_unused movable;
523 
524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
525 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
526 		VM_BUG_ON(order != pageblock_order);
527 
528 		movable = migratetype == MIGRATE_MOVABLE;
529 
530 		return NR_LOWORDER_PCP_LISTS + movable;
531 	}
532 #else
533 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
534 #endif
535 
536 	return (MIGRATE_PCPTYPES * order) + migratetype;
537 }
538 
539 static inline int pindex_to_order(unsigned int pindex)
540 {
541 	int order = pindex / MIGRATE_PCPTYPES;
542 
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 	if (pindex >= NR_LOWORDER_PCP_LISTS)
545 		order = pageblock_order;
546 #else
547 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
548 #endif
549 
550 	return order;
551 }
552 
553 static inline bool pcp_allowed_order(unsigned int order)
554 {
555 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
556 		return true;
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 	if (order == pageblock_order)
559 		return true;
560 #endif
561 	return false;
562 }
563 
564 static inline void free_the_page(struct page *page, unsigned int order)
565 {
566 	if (pcp_allowed_order(order))		/* Via pcp? */
567 		free_unref_page(page, order);
568 	else
569 		__free_pages_ok(page, order, FPI_NONE);
570 }
571 
572 /*
573  * Higher-order pages are called "compound pages".  They are structured thusly:
574  *
575  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
576  *
577  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
579  *
580  * The first tail page's ->compound_order holds the order of allocation.
581  * This usage means that zero-order pages may not be compound.
582  */
583 
584 void prep_compound_page(struct page *page, unsigned int order)
585 {
586 	int i;
587 	int nr_pages = 1 << order;
588 
589 	__SetPageHead(page);
590 	for (i = 1; i < nr_pages; i++)
591 		prep_compound_tail(page, i);
592 
593 	prep_compound_head(page, order);
594 }
595 
596 void destroy_large_folio(struct folio *folio)
597 {
598 	if (folio_test_hugetlb(folio)) {
599 		free_huge_folio(folio);
600 		return;
601 	}
602 
603 	folio_unqueue_deferred_split(folio);
604 	mem_cgroup_uncharge(folio);
605 	free_the_page(&folio->page, folio_order(folio));
606 }
607 
608 static inline void set_buddy_order(struct page *page, unsigned int order)
609 {
610 	set_page_private(page, order);
611 	__SetPageBuddy(page);
612 }
613 
614 #ifdef CONFIG_COMPACTION
615 static inline struct capture_control *task_capc(struct zone *zone)
616 {
617 	struct capture_control *capc = current->capture_control;
618 
619 	return unlikely(capc) &&
620 		!(current->flags & PF_KTHREAD) &&
621 		!capc->page &&
622 		capc->cc->zone == zone ? capc : NULL;
623 }
624 
625 static inline bool
626 compaction_capture(struct capture_control *capc, struct page *page,
627 		   int order, int migratetype)
628 {
629 	if (!capc || order != capc->cc->order)
630 		return false;
631 
632 	/* Do not accidentally pollute CMA or isolated regions*/
633 	if (is_migrate_cma(migratetype) ||
634 	    is_migrate_isolate(migratetype))
635 		return false;
636 
637 	/*
638 	 * Do not let lower order allocations pollute a movable pageblock.
639 	 * This might let an unmovable request use a reclaimable pageblock
640 	 * and vice-versa but no more than normal fallback logic which can
641 	 * have trouble finding a high-order free page.
642 	 */
643 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
644 		return false;
645 
646 	capc->page = page;
647 	return true;
648 }
649 
650 #else
651 static inline struct capture_control *task_capc(struct zone *zone)
652 {
653 	return NULL;
654 }
655 
656 static inline bool
657 compaction_capture(struct capture_control *capc, struct page *page,
658 		   int order, int migratetype)
659 {
660 	return false;
661 }
662 #endif /* CONFIG_COMPACTION */
663 
664 /* Used for pages not on another list */
665 static inline void add_to_free_list(struct page *page, struct zone *zone,
666 				    unsigned int order, int migratetype)
667 {
668 	struct free_area *area = &zone->free_area[order];
669 
670 	list_add(&page->buddy_list, &area->free_list[migratetype]);
671 	area->nr_free++;
672 }
673 
674 /* Used for pages not on another list */
675 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
676 					 unsigned int order, int migratetype)
677 {
678 	struct free_area *area = &zone->free_area[order];
679 
680 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
681 	area->nr_free++;
682 }
683 
684 /*
685  * Used for pages which are on another list. Move the pages to the tail
686  * of the list - so the moved pages won't immediately be considered for
687  * allocation again (e.g., optimization for memory onlining).
688  */
689 static inline void move_to_free_list(struct page *page, struct zone *zone,
690 				     unsigned int order, int migratetype)
691 {
692 	struct free_area *area = &zone->free_area[order];
693 
694 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
695 }
696 
697 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
698 					   unsigned int order)
699 {
700 	/* clear reported state and update reported page count */
701 	if (page_reported(page))
702 		__ClearPageReported(page);
703 
704 	list_del(&page->buddy_list);
705 	__ClearPageBuddy(page);
706 	set_page_private(page, 0);
707 	zone->free_area[order].nr_free--;
708 }
709 
710 static inline struct page *get_page_from_free_area(struct free_area *area,
711 					    int migratetype)
712 {
713 	return list_first_entry_or_null(&area->free_list[migratetype],
714 					struct page, buddy_list);
715 }
716 
717 /*
718  * If this is not the largest possible page, check if the buddy
719  * of the next-highest order is free. If it is, it's possible
720  * that pages are being freed that will coalesce soon. In case,
721  * that is happening, add the free page to the tail of the list
722  * so it's less likely to be used soon and more likely to be merged
723  * as a higher order page
724  */
725 static inline bool
726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
727 		   struct page *page, unsigned int order)
728 {
729 	unsigned long higher_page_pfn;
730 	struct page *higher_page;
731 
732 	if (order >= MAX_ORDER - 1)
733 		return false;
734 
735 	higher_page_pfn = buddy_pfn & pfn;
736 	higher_page = page + (higher_page_pfn - pfn);
737 
738 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
739 			NULL) != NULL;
740 }
741 
742 /*
743  * Freeing function for a buddy system allocator.
744  *
745  * The concept of a buddy system is to maintain direct-mapped table
746  * (containing bit values) for memory blocks of various "orders".
747  * The bottom level table contains the map for the smallest allocatable
748  * units of memory (here, pages), and each level above it describes
749  * pairs of units from the levels below, hence, "buddies".
750  * At a high level, all that happens here is marking the table entry
751  * at the bottom level available, and propagating the changes upward
752  * as necessary, plus some accounting needed to play nicely with other
753  * parts of the VM system.
754  * At each level, we keep a list of pages, which are heads of continuous
755  * free pages of length of (1 << order) and marked with PageBuddy.
756  * Page's order is recorded in page_private(page) field.
757  * So when we are allocating or freeing one, we can derive the state of the
758  * other.  That is, if we allocate a small block, and both were
759  * free, the remainder of the region must be split into blocks.
760  * If a block is freed, and its buddy is also free, then this
761  * triggers coalescing into a block of larger size.
762  *
763  * -- nyc
764  */
765 
766 static inline void __free_one_page(struct page *page,
767 		unsigned long pfn,
768 		struct zone *zone, unsigned int order,
769 		int migratetype, fpi_t fpi_flags)
770 {
771 	struct capture_control *capc = task_capc(zone);
772 	unsigned long buddy_pfn = 0;
773 	unsigned long combined_pfn;
774 	struct page *buddy;
775 	bool to_tail;
776 
777 	VM_BUG_ON(!zone_is_initialized(zone));
778 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
779 
780 	VM_BUG_ON(migratetype == -1);
781 	if (likely(!is_migrate_isolate(migratetype)))
782 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
783 
784 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
785 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
786 
787 	while (order < MAX_ORDER) {
788 		if (compaction_capture(capc, page, order, migratetype)) {
789 			__mod_zone_freepage_state(zone, -(1 << order),
790 								migratetype);
791 			return;
792 		}
793 
794 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
795 		if (!buddy)
796 			goto done_merging;
797 
798 		if (unlikely(order >= pageblock_order)) {
799 			/*
800 			 * We want to prevent merge between freepages on pageblock
801 			 * without fallbacks and normal pageblock. Without this,
802 			 * pageblock isolation could cause incorrect freepage or CMA
803 			 * accounting or HIGHATOMIC accounting.
804 			 */
805 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
806 
807 			if (migratetype != buddy_mt
808 					&& (!migratetype_is_mergeable(migratetype) ||
809 						!migratetype_is_mergeable(buddy_mt)))
810 				goto done_merging;
811 		}
812 
813 		/*
814 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 		 * merge with it and move up one order.
816 		 */
817 		if (page_is_guard(buddy))
818 			clear_page_guard(zone, buddy, order, migratetype);
819 		else
820 			del_page_from_free_list(buddy, zone, order);
821 		combined_pfn = buddy_pfn & pfn;
822 		page = page + (combined_pfn - pfn);
823 		pfn = combined_pfn;
824 		order++;
825 	}
826 
827 done_merging:
828 	set_buddy_order(page, order);
829 
830 	if (fpi_flags & FPI_TO_TAIL)
831 		to_tail = true;
832 	else if (is_shuffle_order(order))
833 		to_tail = shuffle_pick_tail();
834 	else
835 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
836 
837 	if (to_tail)
838 		add_to_free_list_tail(page, zone, order, migratetype);
839 	else
840 		add_to_free_list(page, zone, order, migratetype);
841 
842 	/* Notify page reporting subsystem of freed page */
843 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
844 		page_reporting_notify_free(order);
845 }
846 
847 /**
848  * split_free_page() -- split a free page at split_pfn_offset
849  * @free_page:		the original free page
850  * @order:		the order of the page
851  * @split_pfn_offset:	split offset within the page
852  *
853  * Return -ENOENT if the free page is changed, otherwise 0
854  *
855  * It is used when the free page crosses two pageblocks with different migratetypes
856  * at split_pfn_offset within the page. The split free page will be put into
857  * separate migratetype lists afterwards. Otherwise, the function achieves
858  * nothing.
859  */
860 int split_free_page(struct page *free_page,
861 			unsigned int order, unsigned long split_pfn_offset)
862 {
863 	struct zone *zone = page_zone(free_page);
864 	unsigned long free_page_pfn = page_to_pfn(free_page);
865 	unsigned long pfn;
866 	unsigned long flags;
867 	int free_page_order;
868 	int mt;
869 	int ret = 0;
870 
871 	if (split_pfn_offset == 0)
872 		return ret;
873 
874 	spin_lock_irqsave(&zone->lock, flags);
875 
876 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
877 		ret = -ENOENT;
878 		goto out;
879 	}
880 
881 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
882 	if (likely(!is_migrate_isolate(mt)))
883 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
884 
885 	del_page_from_free_list(free_page, zone, order);
886 	for (pfn = free_page_pfn;
887 	     pfn < free_page_pfn + (1UL << order);) {
888 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
889 
890 		free_page_order = min_t(unsigned int,
891 					pfn ? __ffs(pfn) : order,
892 					__fls(split_pfn_offset));
893 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
894 				mt, FPI_NONE);
895 		pfn += 1UL << free_page_order;
896 		split_pfn_offset -= (1UL << free_page_order);
897 		/* we have done the first part, now switch to second part */
898 		if (split_pfn_offset == 0)
899 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
900 	}
901 out:
902 	spin_unlock_irqrestore(&zone->lock, flags);
903 	return ret;
904 }
905 /*
906  * A bad page could be due to a number of fields. Instead of multiple branches,
907  * try and check multiple fields with one check. The caller must do a detailed
908  * check if necessary.
909  */
910 static inline bool page_expected_state(struct page *page,
911 					unsigned long check_flags)
912 {
913 	if (unlikely(atomic_read(&page->_mapcount) != -1))
914 		return false;
915 
916 	if (unlikely((unsigned long)page->mapping |
917 			page_ref_count(page) |
918 #ifdef CONFIG_MEMCG
919 			page->memcg_data |
920 #endif
921 			(page->flags & check_flags)))
922 		return false;
923 
924 	return true;
925 }
926 
927 static const char *page_bad_reason(struct page *page, unsigned long flags)
928 {
929 	const char *bad_reason = NULL;
930 
931 	if (unlikely(atomic_read(&page->_mapcount) != -1))
932 		bad_reason = "nonzero mapcount";
933 	if (unlikely(page->mapping != NULL))
934 		bad_reason = "non-NULL mapping";
935 	if (unlikely(page_ref_count(page) != 0))
936 		bad_reason = "nonzero _refcount";
937 	if (unlikely(page->flags & flags)) {
938 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
939 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
940 		else
941 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
942 	}
943 #ifdef CONFIG_MEMCG
944 	if (unlikely(page->memcg_data))
945 		bad_reason = "page still charged to cgroup";
946 #endif
947 	return bad_reason;
948 }
949 
950 static void free_page_is_bad_report(struct page *page)
951 {
952 	bad_page(page,
953 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
954 }
955 
956 static inline bool free_page_is_bad(struct page *page)
957 {
958 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
959 		return false;
960 
961 	/* Something has gone sideways, find it */
962 	free_page_is_bad_report(page);
963 	return true;
964 }
965 
966 static inline bool is_check_pages_enabled(void)
967 {
968 	return static_branch_unlikely(&check_pages_enabled);
969 }
970 
971 static int free_tail_page_prepare(struct page *head_page, struct page *page)
972 {
973 	struct folio *folio = (struct folio *)head_page;
974 	int ret = 1;
975 
976 	/*
977 	 * We rely page->lru.next never has bit 0 set, unless the page
978 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 	 */
980 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981 
982 	if (!is_check_pages_enabled()) {
983 		ret = 0;
984 		goto out;
985 	}
986 	switch (page - head_page) {
987 	case 1:
988 		/* the first tail page: these may be in place of ->mapping */
989 		if (unlikely(folio_entire_mapcount(folio))) {
990 			bad_page(page, "nonzero entire_mapcount");
991 			goto out;
992 		}
993 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
994 			bad_page(page, "nonzero nr_pages_mapped");
995 			goto out;
996 		}
997 		if (unlikely(atomic_read(&folio->_pincount))) {
998 			bad_page(page, "nonzero pincount");
999 			goto out;
1000 		}
1001 		break;
1002 	case 2:
1003 		/* the second tail page: deferred_list overlaps ->mapping */
1004 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1005 			bad_page(page, "on deferred list");
1006 			goto out;
1007 		}
1008 		break;
1009 	default:
1010 		if (page->mapping != TAIL_MAPPING) {
1011 			bad_page(page, "corrupted mapping in tail page");
1012 			goto out;
1013 		}
1014 		break;
1015 	}
1016 	if (unlikely(!PageTail(page))) {
1017 		bad_page(page, "PageTail not set");
1018 		goto out;
1019 	}
1020 	if (unlikely(compound_head(page) != head_page)) {
1021 		bad_page(page, "compound_head not consistent");
1022 		goto out;
1023 	}
1024 	ret = 0;
1025 out:
1026 	page->mapping = NULL;
1027 	clear_compound_head(page);
1028 	return ret;
1029 }
1030 
1031 /*
1032  * Skip KASAN memory poisoning when either:
1033  *
1034  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1035  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1036  *    using page tags instead (see below).
1037  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1038  *    that error detection is disabled for accesses via the page address.
1039  *
1040  * Pages will have match-all tags in the following circumstances:
1041  *
1042  * 1. Pages are being initialized for the first time, including during deferred
1043  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1044  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1045  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1046  * 3. The allocation was excluded from being checked due to sampling,
1047  *    see the call to kasan_unpoison_pages.
1048  *
1049  * Poisoning pages during deferred memory init will greatly lengthen the
1050  * process and cause problem in large memory systems as the deferred pages
1051  * initialization is done with interrupt disabled.
1052  *
1053  * Assuming that there will be no reference to those newly initialized
1054  * pages before they are ever allocated, this should have no effect on
1055  * KASAN memory tracking as the poison will be properly inserted at page
1056  * allocation time. The only corner case is when pages are allocated by
1057  * on-demand allocation and then freed again before the deferred pages
1058  * initialization is done, but this is not likely to happen.
1059  */
1060 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1061 {
1062 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1063 		return deferred_pages_enabled();
1064 
1065 	return page_kasan_tag(page) == 0xff;
1066 }
1067 
1068 static void kernel_init_pages(struct page *page, int numpages)
1069 {
1070 	int i;
1071 
1072 	/* s390's use of memset() could override KASAN redzones. */
1073 	kasan_disable_current();
1074 	for (i = 0; i < numpages; i++)
1075 		clear_highpage_kasan_tagged(page + i);
1076 	kasan_enable_current();
1077 }
1078 
1079 static __always_inline bool free_pages_prepare(struct page *page,
1080 			unsigned int order, fpi_t fpi_flags)
1081 {
1082 	int bad = 0;
1083 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1084 	bool init = want_init_on_free();
1085 
1086 	VM_BUG_ON_PAGE(PageTail(page), page);
1087 
1088 	trace_mm_page_free(page, order);
1089 	kmsan_free_page(page, order);
1090 
1091 	if (unlikely(PageHWPoison(page)) && !order) {
1092 		/*
1093 		 * Do not let hwpoison pages hit pcplists/buddy
1094 		 * Untie memcg state and reset page's owner
1095 		 */
1096 		if (memcg_kmem_online() && PageMemcgKmem(page))
1097 			__memcg_kmem_uncharge_page(page, order);
1098 		reset_page_owner(page, order);
1099 		page_table_check_free(page, order);
1100 		return false;
1101 	}
1102 
1103 	/*
1104 	 * Check tail pages before head page information is cleared to
1105 	 * avoid checking PageCompound for order-0 pages.
1106 	 */
1107 	if (unlikely(order)) {
1108 		bool compound = PageCompound(page);
1109 		int i;
1110 
1111 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1112 
1113 		if (compound)
1114 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1115 		for (i = 1; i < (1 << order); i++) {
1116 			if (compound)
1117 				bad += free_tail_page_prepare(page, page + i);
1118 			if (is_check_pages_enabled()) {
1119 				if (free_page_is_bad(page + i)) {
1120 					bad++;
1121 					continue;
1122 				}
1123 			}
1124 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1125 		}
1126 	}
1127 	if (PageMappingFlags(page))
1128 		page->mapping = NULL;
1129 	if (memcg_kmem_online() && PageMemcgKmem(page))
1130 		__memcg_kmem_uncharge_page(page, order);
1131 	if (is_check_pages_enabled()) {
1132 		if (free_page_is_bad(page))
1133 			bad++;
1134 		if (bad)
1135 			return false;
1136 	}
1137 
1138 	page_cpupid_reset_last(page);
1139 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1140 	reset_page_owner(page, order);
1141 	page_table_check_free(page, order);
1142 
1143 	if (!PageHighMem(page)) {
1144 		debug_check_no_locks_freed(page_address(page),
1145 					   PAGE_SIZE << order);
1146 		debug_check_no_obj_freed(page_address(page),
1147 					   PAGE_SIZE << order);
1148 	}
1149 
1150 	kernel_poison_pages(page, 1 << order);
1151 
1152 	/*
1153 	 * As memory initialization might be integrated into KASAN,
1154 	 * KASAN poisoning and memory initialization code must be
1155 	 * kept together to avoid discrepancies in behavior.
1156 	 *
1157 	 * With hardware tag-based KASAN, memory tags must be set before the
1158 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1159 	 */
1160 	if (!skip_kasan_poison) {
1161 		kasan_poison_pages(page, order, init);
1162 
1163 		/* Memory is already initialized if KASAN did it internally. */
1164 		if (kasan_has_integrated_init())
1165 			init = false;
1166 	}
1167 	if (init)
1168 		kernel_init_pages(page, 1 << order);
1169 
1170 	/*
1171 	 * arch_free_page() can make the page's contents inaccessible.  s390
1172 	 * does this.  So nothing which can access the page's contents should
1173 	 * happen after this.
1174 	 */
1175 	arch_free_page(page, order);
1176 
1177 	debug_pagealloc_unmap_pages(page, 1 << order);
1178 
1179 	return true;
1180 }
1181 
1182 /*
1183  * Frees a number of pages from the PCP lists
1184  * Assumes all pages on list are in same zone.
1185  * count is the number of pages to free.
1186  */
1187 static void free_pcppages_bulk(struct zone *zone, int count,
1188 					struct per_cpu_pages *pcp,
1189 					int pindex)
1190 {
1191 	unsigned long flags;
1192 	unsigned int order;
1193 	bool isolated_pageblocks;
1194 	struct page *page;
1195 
1196 	/*
1197 	 * Ensure proper count is passed which otherwise would stuck in the
1198 	 * below while (list_empty(list)) loop.
1199 	 */
1200 	count = min(pcp->count, count);
1201 
1202 	/* Ensure requested pindex is drained first. */
1203 	pindex = pindex - 1;
1204 
1205 	spin_lock_irqsave(&zone->lock, flags);
1206 	isolated_pageblocks = has_isolate_pageblock(zone);
1207 
1208 	while (count > 0) {
1209 		struct list_head *list;
1210 		int nr_pages;
1211 
1212 		/* Remove pages from lists in a round-robin fashion. */
1213 		do {
1214 			if (++pindex > NR_PCP_LISTS - 1)
1215 				pindex = 0;
1216 			list = &pcp->lists[pindex];
1217 		} while (list_empty(list));
1218 
1219 		order = pindex_to_order(pindex);
1220 		nr_pages = 1 << order;
1221 		do {
1222 			int mt;
1223 
1224 			page = list_last_entry(list, struct page, pcp_list);
1225 			mt = get_pcppage_migratetype(page);
1226 
1227 			/* must delete to avoid corrupting pcp list */
1228 			list_del(&page->pcp_list);
1229 			count -= nr_pages;
1230 			pcp->count -= nr_pages;
1231 
1232 			/* MIGRATE_ISOLATE page should not go to pcplists */
1233 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1234 			/* Pageblock could have been isolated meanwhile */
1235 			if (unlikely(isolated_pageblocks))
1236 				mt = get_pageblock_migratetype(page);
1237 
1238 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1239 			trace_mm_page_pcpu_drain(page, order, mt);
1240 		} while (count > 0 && !list_empty(list));
1241 	}
1242 
1243 	spin_unlock_irqrestore(&zone->lock, flags);
1244 }
1245 
1246 static void free_one_page(struct zone *zone,
1247 				struct page *page, unsigned long pfn,
1248 				unsigned int order,
1249 				int migratetype, fpi_t fpi_flags)
1250 {
1251 	unsigned long flags;
1252 
1253 	spin_lock_irqsave(&zone->lock, flags);
1254 	if (unlikely(has_isolate_pageblock(zone) ||
1255 		is_migrate_isolate(migratetype))) {
1256 		migratetype = get_pfnblock_migratetype(page, pfn);
1257 	}
1258 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1259 	spin_unlock_irqrestore(&zone->lock, flags);
1260 }
1261 
1262 static void __free_pages_ok(struct page *page, unsigned int order,
1263 			    fpi_t fpi_flags)
1264 {
1265 	unsigned long flags;
1266 	int migratetype;
1267 	unsigned long pfn = page_to_pfn(page);
1268 	struct zone *zone = page_zone(page);
1269 
1270 	if (!free_pages_prepare(page, order, fpi_flags))
1271 		return;
1272 
1273 	/*
1274 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1275 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1276 	 * This will reduce the lock holding time.
1277 	 */
1278 	migratetype = get_pfnblock_migratetype(page, pfn);
1279 
1280 	spin_lock_irqsave(&zone->lock, flags);
1281 	if (unlikely(has_isolate_pageblock(zone) ||
1282 		is_migrate_isolate(migratetype))) {
1283 		migratetype = get_pfnblock_migratetype(page, pfn);
1284 	}
1285 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1286 	spin_unlock_irqrestore(&zone->lock, flags);
1287 
1288 	__count_vm_events(PGFREE, 1 << order);
1289 }
1290 
1291 void __free_pages_core(struct page *page, unsigned int order)
1292 {
1293 	unsigned int nr_pages = 1 << order;
1294 	struct page *p = page;
1295 	unsigned int loop;
1296 
1297 	/*
1298 	 * When initializing the memmap, __init_single_page() sets the refcount
1299 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1300 	 * refcount of all involved pages to 0.
1301 	 */
1302 	prefetchw(p);
1303 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1304 		prefetchw(p + 1);
1305 		__ClearPageReserved(p);
1306 		set_page_count(p, 0);
1307 	}
1308 	__ClearPageReserved(p);
1309 	set_page_count(p, 0);
1310 
1311 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1312 
1313 	if (page_contains_unaccepted(page, order)) {
1314 		if (order == MAX_ORDER && __free_unaccepted(page))
1315 			return;
1316 
1317 		accept_page(page, order);
1318 	}
1319 
1320 	/*
1321 	 * Bypass PCP and place fresh pages right to the tail, primarily
1322 	 * relevant for memory onlining.
1323 	 */
1324 	__free_pages_ok(page, order, FPI_TO_TAIL);
1325 }
1326 
1327 /*
1328  * Check that the whole (or subset of) a pageblock given by the interval of
1329  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1330  * with the migration of free compaction scanner.
1331  *
1332  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333  *
1334  * It's possible on some configurations to have a setup like node0 node1 node0
1335  * i.e. it's possible that all pages within a zones range of pages do not
1336  * belong to a single zone. We assume that a border between node0 and node1
1337  * can occur within a single pageblock, but not a node0 node1 node0
1338  * interleaving within a single pageblock. It is therefore sufficient to check
1339  * the first and last page of a pageblock and avoid checking each individual
1340  * page in a pageblock.
1341  *
1342  * Note: the function may return non-NULL struct page even for a page block
1343  * which contains a memory hole (i.e. there is no physical memory for a subset
1344  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1345  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1346  * even though the start pfn is online and valid. This should be safe most of
1347  * the time because struct pages are still initialized via init_unavailable_range()
1348  * and pfn walkers shouldn't touch any physical memory range for which they do
1349  * not recognize any specific metadata in struct pages.
1350  */
1351 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1352 				     unsigned long end_pfn, struct zone *zone)
1353 {
1354 	struct page *start_page;
1355 	struct page *end_page;
1356 
1357 	/* end_pfn is one past the range we are checking */
1358 	end_pfn--;
1359 
1360 	if (!pfn_valid(end_pfn))
1361 		return NULL;
1362 
1363 	start_page = pfn_to_online_page(start_pfn);
1364 	if (!start_page)
1365 		return NULL;
1366 
1367 	if (page_zone(start_page) != zone)
1368 		return NULL;
1369 
1370 	end_page = pfn_to_page(end_pfn);
1371 
1372 	/* This gives a shorter code than deriving page_zone(end_page) */
1373 	if (page_zone_id(start_page) != page_zone_id(end_page))
1374 		return NULL;
1375 
1376 	return start_page;
1377 }
1378 
1379 /*
1380  * The order of subdivision here is critical for the IO subsystem.
1381  * Please do not alter this order without good reasons and regression
1382  * testing. Specifically, as large blocks of memory are subdivided,
1383  * the order in which smaller blocks are delivered depends on the order
1384  * they're subdivided in this function. This is the primary factor
1385  * influencing the order in which pages are delivered to the IO
1386  * subsystem according to empirical testing, and this is also justified
1387  * by considering the behavior of a buddy system containing a single
1388  * large block of memory acted on by a series of small allocations.
1389  * This behavior is a critical factor in sglist merging's success.
1390  *
1391  * -- nyc
1392  */
1393 static inline void expand(struct zone *zone, struct page *page,
1394 	int low, int high, int migratetype)
1395 {
1396 	unsigned long size = 1 << high;
1397 
1398 	while (high > low) {
1399 		high--;
1400 		size >>= 1;
1401 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1402 
1403 		/*
1404 		 * Mark as guard pages (or page), that will allow to
1405 		 * merge back to allocator when buddy will be freed.
1406 		 * Corresponding page table entries will not be touched,
1407 		 * pages will stay not present in virtual address space
1408 		 */
1409 		if (set_page_guard(zone, &page[size], high, migratetype))
1410 			continue;
1411 
1412 		add_to_free_list(&page[size], zone, high, migratetype);
1413 		set_buddy_order(&page[size], high);
1414 	}
1415 }
1416 
1417 static void check_new_page_bad(struct page *page)
1418 {
1419 	if (unlikely(page->flags & __PG_HWPOISON)) {
1420 		/* Don't complain about hwpoisoned pages */
1421 		page_mapcount_reset(page); /* remove PageBuddy */
1422 		return;
1423 	}
1424 
1425 	bad_page(page,
1426 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1427 }
1428 
1429 /*
1430  * This page is about to be returned from the page allocator
1431  */
1432 static int check_new_page(struct page *page)
1433 {
1434 	if (likely(page_expected_state(page,
1435 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1436 		return 0;
1437 
1438 	check_new_page_bad(page);
1439 	return 1;
1440 }
1441 
1442 static inline bool check_new_pages(struct page *page, unsigned int order)
1443 {
1444 	if (is_check_pages_enabled()) {
1445 		for (int i = 0; i < (1 << order); i++) {
1446 			struct page *p = page + i;
1447 
1448 			if (check_new_page(p))
1449 				return true;
1450 		}
1451 	}
1452 
1453 	return false;
1454 }
1455 
1456 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1457 {
1458 	/* Don't skip if a software KASAN mode is enabled. */
1459 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1460 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1461 		return false;
1462 
1463 	/* Skip, if hardware tag-based KASAN is not enabled. */
1464 	if (!kasan_hw_tags_enabled())
1465 		return true;
1466 
1467 	/*
1468 	 * With hardware tag-based KASAN enabled, skip if this has been
1469 	 * requested via __GFP_SKIP_KASAN.
1470 	 */
1471 	return flags & __GFP_SKIP_KASAN;
1472 }
1473 
1474 static inline bool should_skip_init(gfp_t flags)
1475 {
1476 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1477 	if (!kasan_hw_tags_enabled())
1478 		return false;
1479 
1480 	/* For hardware tag-based KASAN, skip if requested. */
1481 	return (flags & __GFP_SKIP_ZERO);
1482 }
1483 
1484 inline void post_alloc_hook(struct page *page, unsigned int order,
1485 				gfp_t gfp_flags)
1486 {
1487 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1488 			!should_skip_init(gfp_flags);
1489 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1490 	int i;
1491 
1492 	set_page_private(page, 0);
1493 	set_page_refcounted(page);
1494 
1495 	arch_alloc_page(page, order);
1496 	debug_pagealloc_map_pages(page, 1 << order);
1497 
1498 	/*
1499 	 * Page unpoisoning must happen before memory initialization.
1500 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1501 	 * allocations and the page unpoisoning code will complain.
1502 	 */
1503 	kernel_unpoison_pages(page, 1 << order);
1504 
1505 	/*
1506 	 * As memory initialization might be integrated into KASAN,
1507 	 * KASAN unpoisoning and memory initializion code must be
1508 	 * kept together to avoid discrepancies in behavior.
1509 	 */
1510 
1511 	/*
1512 	 * If memory tags should be zeroed
1513 	 * (which happens only when memory should be initialized as well).
1514 	 */
1515 	if (zero_tags) {
1516 		/* Initialize both memory and memory tags. */
1517 		for (i = 0; i != 1 << order; ++i)
1518 			tag_clear_highpage(page + i);
1519 
1520 		/* Take note that memory was initialized by the loop above. */
1521 		init = false;
1522 	}
1523 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1524 	    kasan_unpoison_pages(page, order, init)) {
1525 		/* Take note that memory was initialized by KASAN. */
1526 		if (kasan_has_integrated_init())
1527 			init = false;
1528 	} else {
1529 		/*
1530 		 * If memory tags have not been set by KASAN, reset the page
1531 		 * tags to ensure page_address() dereferencing does not fault.
1532 		 */
1533 		for (i = 0; i != 1 << order; ++i)
1534 			page_kasan_tag_reset(page + i);
1535 	}
1536 	/* If memory is still not initialized, initialize it now. */
1537 	if (init)
1538 		kernel_init_pages(page, 1 << order);
1539 
1540 	set_page_owner(page, order, gfp_flags);
1541 	page_table_check_alloc(page, order);
1542 }
1543 
1544 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1545 							unsigned int alloc_flags)
1546 {
1547 	post_alloc_hook(page, order, gfp_flags);
1548 
1549 	if (order && (gfp_flags & __GFP_COMP))
1550 		prep_compound_page(page, order);
1551 
1552 	/*
1553 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1554 	 * allocate the page. The expectation is that the caller is taking
1555 	 * steps that will free more memory. The caller should avoid the page
1556 	 * being used for !PFMEMALLOC purposes.
1557 	 */
1558 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1559 		set_page_pfmemalloc(page);
1560 	else
1561 		clear_page_pfmemalloc(page);
1562 }
1563 
1564 /*
1565  * Go through the free lists for the given migratetype and remove
1566  * the smallest available page from the freelists
1567  */
1568 static __always_inline
1569 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1570 						int migratetype)
1571 {
1572 	unsigned int current_order;
1573 	struct free_area *area;
1574 	struct page *page;
1575 
1576 	/* Find a page of the appropriate size in the preferred list */
1577 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1578 		area = &(zone->free_area[current_order]);
1579 		page = get_page_from_free_area(area, migratetype);
1580 		if (!page)
1581 			continue;
1582 		del_page_from_free_list(page, zone, current_order);
1583 		expand(zone, page, order, current_order, migratetype);
1584 		set_pcppage_migratetype(page, migratetype);
1585 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1586 				pcp_allowed_order(order) &&
1587 				migratetype < MIGRATE_PCPTYPES);
1588 		return page;
1589 	}
1590 
1591 	return NULL;
1592 }
1593 
1594 
1595 /*
1596  * This array describes the order lists are fallen back to when
1597  * the free lists for the desirable migrate type are depleted
1598  *
1599  * The other migratetypes do not have fallbacks.
1600  */
1601 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1602 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1603 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1604 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1605 };
1606 
1607 #ifdef CONFIG_CMA
1608 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1609 					unsigned int order)
1610 {
1611 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1612 }
1613 #else
1614 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1615 					unsigned int order) { return NULL; }
1616 #endif
1617 
1618 /*
1619  * Move the free pages in a range to the freelist tail of the requested type.
1620  * Note that start_page and end_pages are not aligned on a pageblock
1621  * boundary. If alignment is required, use move_freepages_block()
1622  */
1623 static int move_freepages(struct zone *zone,
1624 			  unsigned long start_pfn, unsigned long end_pfn,
1625 			  int migratetype, int *num_movable)
1626 {
1627 	struct page *page;
1628 	unsigned long pfn;
1629 	unsigned int order;
1630 	int pages_moved = 0;
1631 
1632 	for (pfn = start_pfn; pfn <= end_pfn;) {
1633 		page = pfn_to_page(pfn);
1634 		if (!PageBuddy(page)) {
1635 			/*
1636 			 * We assume that pages that could be isolated for
1637 			 * migration are movable. But we don't actually try
1638 			 * isolating, as that would be expensive.
1639 			 */
1640 			if (num_movable &&
1641 					(PageLRU(page) || __PageMovable(page)))
1642 				(*num_movable)++;
1643 			pfn++;
1644 			continue;
1645 		}
1646 
1647 		/* Make sure we are not inadvertently changing nodes */
1648 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1649 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1650 
1651 		order = buddy_order(page);
1652 		move_to_free_list(page, zone, order, migratetype);
1653 		pfn += 1 << order;
1654 		pages_moved += 1 << order;
1655 	}
1656 
1657 	return pages_moved;
1658 }
1659 
1660 int move_freepages_block(struct zone *zone, struct page *page,
1661 				int migratetype, int *num_movable)
1662 {
1663 	unsigned long start_pfn, end_pfn, pfn;
1664 
1665 	if (num_movable)
1666 		*num_movable = 0;
1667 
1668 	pfn = page_to_pfn(page);
1669 	start_pfn = pageblock_start_pfn(pfn);
1670 	end_pfn = pageblock_end_pfn(pfn) - 1;
1671 
1672 	/* Do not cross zone boundaries */
1673 	if (!zone_spans_pfn(zone, start_pfn))
1674 		start_pfn = pfn;
1675 	if (!zone_spans_pfn(zone, end_pfn))
1676 		return 0;
1677 
1678 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1679 								num_movable);
1680 }
1681 
1682 static void change_pageblock_range(struct page *pageblock_page,
1683 					int start_order, int migratetype)
1684 {
1685 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1686 
1687 	while (nr_pageblocks--) {
1688 		set_pageblock_migratetype(pageblock_page, migratetype);
1689 		pageblock_page += pageblock_nr_pages;
1690 	}
1691 }
1692 
1693 /*
1694  * When we are falling back to another migratetype during allocation, try to
1695  * steal extra free pages from the same pageblocks to satisfy further
1696  * allocations, instead of polluting multiple pageblocks.
1697  *
1698  * If we are stealing a relatively large buddy page, it is likely there will
1699  * be more free pages in the pageblock, so try to steal them all. For
1700  * reclaimable and unmovable allocations, we steal regardless of page size,
1701  * as fragmentation caused by those allocations polluting movable pageblocks
1702  * is worse than movable allocations stealing from unmovable and reclaimable
1703  * pageblocks.
1704  */
1705 static bool can_steal_fallback(unsigned int order, int start_mt)
1706 {
1707 	/*
1708 	 * Leaving this order check is intended, although there is
1709 	 * relaxed order check in next check. The reason is that
1710 	 * we can actually steal whole pageblock if this condition met,
1711 	 * but, below check doesn't guarantee it and that is just heuristic
1712 	 * so could be changed anytime.
1713 	 */
1714 	if (order >= pageblock_order)
1715 		return true;
1716 
1717 	if (order >= pageblock_order / 2 ||
1718 		start_mt == MIGRATE_RECLAIMABLE ||
1719 		start_mt == MIGRATE_UNMOVABLE ||
1720 		page_group_by_mobility_disabled)
1721 		return true;
1722 
1723 	return false;
1724 }
1725 
1726 static inline bool boost_watermark(struct zone *zone)
1727 {
1728 	unsigned long max_boost;
1729 
1730 	if (!watermark_boost_factor)
1731 		return false;
1732 	/*
1733 	 * Don't bother in zones that are unlikely to produce results.
1734 	 * On small machines, including kdump capture kernels running
1735 	 * in a small area, boosting the watermark can cause an out of
1736 	 * memory situation immediately.
1737 	 */
1738 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1739 		return false;
1740 
1741 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1742 			watermark_boost_factor, 10000);
1743 
1744 	/*
1745 	 * high watermark may be uninitialised if fragmentation occurs
1746 	 * very early in boot so do not boost. We do not fall
1747 	 * through and boost by pageblock_nr_pages as failing
1748 	 * allocations that early means that reclaim is not going
1749 	 * to help and it may even be impossible to reclaim the
1750 	 * boosted watermark resulting in a hang.
1751 	 */
1752 	if (!max_boost)
1753 		return false;
1754 
1755 	max_boost = max(pageblock_nr_pages, max_boost);
1756 
1757 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1758 		max_boost);
1759 
1760 	return true;
1761 }
1762 
1763 /*
1764  * This function implements actual steal behaviour. If order is large enough,
1765  * we can steal whole pageblock. If not, we first move freepages in this
1766  * pageblock to our migratetype and determine how many already-allocated pages
1767  * are there in the pageblock with a compatible migratetype. If at least half
1768  * of pages are free or compatible, we can change migratetype of the pageblock
1769  * itself, so pages freed in the future will be put on the correct free list.
1770  */
1771 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1772 		unsigned int alloc_flags, int start_type, bool whole_block)
1773 {
1774 	unsigned int current_order = buddy_order(page);
1775 	int free_pages, movable_pages, alike_pages;
1776 	int old_block_type;
1777 
1778 	old_block_type = get_pageblock_migratetype(page);
1779 
1780 	/*
1781 	 * This can happen due to races and we want to prevent broken
1782 	 * highatomic accounting.
1783 	 */
1784 	if (is_migrate_highatomic(old_block_type))
1785 		goto single_page;
1786 
1787 	/* Take ownership for orders >= pageblock_order */
1788 	if (current_order >= pageblock_order) {
1789 		change_pageblock_range(page, current_order, start_type);
1790 		goto single_page;
1791 	}
1792 
1793 	/*
1794 	 * Boost watermarks to increase reclaim pressure to reduce the
1795 	 * likelihood of future fallbacks. Wake kswapd now as the node
1796 	 * may be balanced overall and kswapd will not wake naturally.
1797 	 */
1798 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1799 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1800 
1801 	/* We are not allowed to try stealing from the whole block */
1802 	if (!whole_block)
1803 		goto single_page;
1804 
1805 	free_pages = move_freepages_block(zone, page, start_type,
1806 						&movable_pages);
1807 	/* moving whole block can fail due to zone boundary conditions */
1808 	if (!free_pages)
1809 		goto single_page;
1810 
1811 	/*
1812 	 * Determine how many pages are compatible with our allocation.
1813 	 * For movable allocation, it's the number of movable pages which
1814 	 * we just obtained. For other types it's a bit more tricky.
1815 	 */
1816 	if (start_type == MIGRATE_MOVABLE) {
1817 		alike_pages = movable_pages;
1818 	} else {
1819 		/*
1820 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1821 		 * to MOVABLE pageblock, consider all non-movable pages as
1822 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1823 		 * vice versa, be conservative since we can't distinguish the
1824 		 * exact migratetype of non-movable pages.
1825 		 */
1826 		if (old_block_type == MIGRATE_MOVABLE)
1827 			alike_pages = pageblock_nr_pages
1828 						- (free_pages + movable_pages);
1829 		else
1830 			alike_pages = 0;
1831 	}
1832 	/*
1833 	 * If a sufficient number of pages in the block are either free or of
1834 	 * compatible migratability as our allocation, claim the whole block.
1835 	 */
1836 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1837 			page_group_by_mobility_disabled)
1838 		set_pageblock_migratetype(page, start_type);
1839 
1840 	return;
1841 
1842 single_page:
1843 	move_to_free_list(page, zone, current_order, start_type);
1844 }
1845 
1846 /*
1847  * Check whether there is a suitable fallback freepage with requested order.
1848  * If only_stealable is true, this function returns fallback_mt only if
1849  * we can steal other freepages all together. This would help to reduce
1850  * fragmentation due to mixed migratetype pages in one pageblock.
1851  */
1852 int find_suitable_fallback(struct free_area *area, unsigned int order,
1853 			int migratetype, bool only_stealable, bool *can_steal)
1854 {
1855 	int i;
1856 	int fallback_mt;
1857 
1858 	if (area->nr_free == 0)
1859 		return -1;
1860 
1861 	*can_steal = false;
1862 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1863 		fallback_mt = fallbacks[migratetype][i];
1864 		if (free_area_empty(area, fallback_mt))
1865 			continue;
1866 
1867 		if (can_steal_fallback(order, migratetype))
1868 			*can_steal = true;
1869 
1870 		if (!only_stealable)
1871 			return fallback_mt;
1872 
1873 		if (*can_steal)
1874 			return fallback_mt;
1875 	}
1876 
1877 	return -1;
1878 }
1879 
1880 /*
1881  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1882  * there are no empty page blocks that contain a page with a suitable order
1883  */
1884 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1885 {
1886 	int mt;
1887 	unsigned long max_managed, flags;
1888 
1889 	/*
1890 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1891 	 * Check is race-prone but harmless.
1892 	 */
1893 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1894 	if (zone->nr_reserved_highatomic >= max_managed)
1895 		return;
1896 
1897 	spin_lock_irqsave(&zone->lock, flags);
1898 
1899 	/* Recheck the nr_reserved_highatomic limit under the lock */
1900 	if (zone->nr_reserved_highatomic >= max_managed)
1901 		goto out_unlock;
1902 
1903 	/* Yoink! */
1904 	mt = get_pageblock_migratetype(page);
1905 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1906 	if (migratetype_is_mergeable(mt)) {
1907 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1908 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1909 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1910 	}
1911 
1912 out_unlock:
1913 	spin_unlock_irqrestore(&zone->lock, flags);
1914 }
1915 
1916 /*
1917  * Used when an allocation is about to fail under memory pressure. This
1918  * potentially hurts the reliability of high-order allocations when under
1919  * intense memory pressure but failed atomic allocations should be easier
1920  * to recover from than an OOM.
1921  *
1922  * If @force is true, try to unreserve a pageblock even though highatomic
1923  * pageblock is exhausted.
1924  */
1925 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1926 						bool force)
1927 {
1928 	struct zonelist *zonelist = ac->zonelist;
1929 	unsigned long flags;
1930 	struct zoneref *z;
1931 	struct zone *zone;
1932 	struct page *page;
1933 	int order;
1934 	bool ret;
1935 
1936 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1937 								ac->nodemask) {
1938 		/*
1939 		 * Preserve at least one pageblock unless memory pressure
1940 		 * is really high.
1941 		 */
1942 		if (!force && zone->nr_reserved_highatomic <=
1943 					pageblock_nr_pages)
1944 			continue;
1945 
1946 		spin_lock_irqsave(&zone->lock, flags);
1947 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1948 			struct free_area *area = &(zone->free_area[order]);
1949 
1950 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1951 			if (!page)
1952 				continue;
1953 
1954 			/*
1955 			 * In page freeing path, migratetype change is racy so
1956 			 * we can counter several free pages in a pageblock
1957 			 * in this loop although we changed the pageblock type
1958 			 * from highatomic to ac->migratetype. So we should
1959 			 * adjust the count once.
1960 			 */
1961 			if (is_migrate_highatomic_page(page)) {
1962 				/*
1963 				 * It should never happen but changes to
1964 				 * locking could inadvertently allow a per-cpu
1965 				 * drain to add pages to MIGRATE_HIGHATOMIC
1966 				 * while unreserving so be safe and watch for
1967 				 * underflows.
1968 				 */
1969 				zone->nr_reserved_highatomic -= min(
1970 						pageblock_nr_pages,
1971 						zone->nr_reserved_highatomic);
1972 			}
1973 
1974 			/*
1975 			 * Convert to ac->migratetype and avoid the normal
1976 			 * pageblock stealing heuristics. Minimally, the caller
1977 			 * is doing the work and needs the pages. More
1978 			 * importantly, if the block was always converted to
1979 			 * MIGRATE_UNMOVABLE or another type then the number
1980 			 * of pageblocks that cannot be completely freed
1981 			 * may increase.
1982 			 */
1983 			set_pageblock_migratetype(page, ac->migratetype);
1984 			ret = move_freepages_block(zone, page, ac->migratetype,
1985 									NULL);
1986 			if (ret) {
1987 				spin_unlock_irqrestore(&zone->lock, flags);
1988 				return ret;
1989 			}
1990 		}
1991 		spin_unlock_irqrestore(&zone->lock, flags);
1992 	}
1993 
1994 	return false;
1995 }
1996 
1997 /*
1998  * Try finding a free buddy page on the fallback list and put it on the free
1999  * list of requested migratetype, possibly along with other pages from the same
2000  * block, depending on fragmentation avoidance heuristics. Returns true if
2001  * fallback was found so that __rmqueue_smallest() can grab it.
2002  *
2003  * The use of signed ints for order and current_order is a deliberate
2004  * deviation from the rest of this file, to make the for loop
2005  * condition simpler.
2006  */
2007 static __always_inline bool
2008 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2009 						unsigned int alloc_flags)
2010 {
2011 	struct free_area *area;
2012 	int current_order;
2013 	int min_order = order;
2014 	struct page *page;
2015 	int fallback_mt;
2016 	bool can_steal;
2017 
2018 	/*
2019 	 * Do not steal pages from freelists belonging to other pageblocks
2020 	 * i.e. orders < pageblock_order. If there are no local zones free,
2021 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2022 	 */
2023 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2024 		min_order = pageblock_order;
2025 
2026 	/*
2027 	 * Find the largest available free page in the other list. This roughly
2028 	 * approximates finding the pageblock with the most free pages, which
2029 	 * would be too costly to do exactly.
2030 	 */
2031 	for (current_order = MAX_ORDER; current_order >= min_order;
2032 				--current_order) {
2033 		area = &(zone->free_area[current_order]);
2034 		fallback_mt = find_suitable_fallback(area, current_order,
2035 				start_migratetype, false, &can_steal);
2036 		if (fallback_mt == -1)
2037 			continue;
2038 
2039 		/*
2040 		 * We cannot steal all free pages from the pageblock and the
2041 		 * requested migratetype is movable. In that case it's better to
2042 		 * steal and split the smallest available page instead of the
2043 		 * largest available page, because even if the next movable
2044 		 * allocation falls back into a different pageblock than this
2045 		 * one, it won't cause permanent fragmentation.
2046 		 */
2047 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2048 					&& current_order > order)
2049 			goto find_smallest;
2050 
2051 		goto do_steal;
2052 	}
2053 
2054 	return false;
2055 
2056 find_smallest:
2057 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2058 		area = &(zone->free_area[current_order]);
2059 		fallback_mt = find_suitable_fallback(area, current_order,
2060 				start_migratetype, false, &can_steal);
2061 		if (fallback_mt != -1)
2062 			break;
2063 	}
2064 
2065 	/*
2066 	 * This should not happen - we already found a suitable fallback
2067 	 * when looking for the largest page.
2068 	 */
2069 	VM_BUG_ON(current_order > MAX_ORDER);
2070 
2071 do_steal:
2072 	page = get_page_from_free_area(area, fallback_mt);
2073 
2074 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2075 								can_steal);
2076 
2077 	trace_mm_page_alloc_extfrag(page, order, current_order,
2078 		start_migratetype, fallback_mt);
2079 
2080 	return true;
2081 
2082 }
2083 
2084 /*
2085  * Do the hard work of removing an element from the buddy allocator.
2086  * Call me with the zone->lock already held.
2087  */
2088 static __always_inline struct page *
2089 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2090 						unsigned int alloc_flags)
2091 {
2092 	struct page *page;
2093 
2094 	if (IS_ENABLED(CONFIG_CMA)) {
2095 		/*
2096 		 * Balance movable allocations between regular and CMA areas by
2097 		 * allocating from CMA when over half of the zone's free memory
2098 		 * is in the CMA area.
2099 		 */
2100 		if (alloc_flags & ALLOC_CMA &&
2101 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2102 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2103 			page = __rmqueue_cma_fallback(zone, order);
2104 			if (page)
2105 				return page;
2106 		}
2107 	}
2108 retry:
2109 	page = __rmqueue_smallest(zone, order, migratetype);
2110 	if (unlikely(!page)) {
2111 		if (alloc_flags & ALLOC_CMA)
2112 			page = __rmqueue_cma_fallback(zone, order);
2113 
2114 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2115 								alloc_flags))
2116 			goto retry;
2117 	}
2118 	return page;
2119 }
2120 
2121 /*
2122  * Obtain a specified number of elements from the buddy allocator, all under
2123  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2124  * Returns the number of new pages which were placed at *list.
2125  */
2126 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2127 			unsigned long count, struct list_head *list,
2128 			int migratetype, unsigned int alloc_flags)
2129 {
2130 	unsigned long flags;
2131 	int i;
2132 
2133 	spin_lock_irqsave(&zone->lock, flags);
2134 	for (i = 0; i < count; ++i) {
2135 		struct page *page = __rmqueue(zone, order, migratetype,
2136 								alloc_flags);
2137 		if (unlikely(page == NULL))
2138 			break;
2139 
2140 		/*
2141 		 * Split buddy pages returned by expand() are received here in
2142 		 * physical page order. The page is added to the tail of
2143 		 * caller's list. From the callers perspective, the linked list
2144 		 * is ordered by page number under some conditions. This is
2145 		 * useful for IO devices that can forward direction from the
2146 		 * head, thus also in the physical page order. This is useful
2147 		 * for IO devices that can merge IO requests if the physical
2148 		 * pages are ordered properly.
2149 		 */
2150 		list_add_tail(&page->pcp_list, list);
2151 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2152 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2153 					      -(1 << order));
2154 	}
2155 
2156 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2157 	spin_unlock_irqrestore(&zone->lock, flags);
2158 
2159 	return i;
2160 }
2161 
2162 #ifdef CONFIG_NUMA
2163 /*
2164  * Called from the vmstat counter updater to drain pagesets of this
2165  * currently executing processor on remote nodes after they have
2166  * expired.
2167  */
2168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2169 {
2170 	int to_drain, batch;
2171 
2172 	batch = READ_ONCE(pcp->batch);
2173 	to_drain = min(pcp->count, batch);
2174 	if (to_drain > 0) {
2175 		spin_lock(&pcp->lock);
2176 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2177 		spin_unlock(&pcp->lock);
2178 	}
2179 }
2180 #endif
2181 
2182 /*
2183  * Drain pcplists of the indicated processor and zone.
2184  */
2185 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2186 {
2187 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2188 	int count;
2189 
2190 	do {
2191 		spin_lock(&pcp->lock);
2192 		count = pcp->count;
2193 		if (count) {
2194 			int to_drain = min(count,
2195 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2196 
2197 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2198 			count -= to_drain;
2199 		}
2200 		spin_unlock(&pcp->lock);
2201 	} while (count);
2202 }
2203 
2204 /*
2205  * Drain pcplists of all zones on the indicated processor.
2206  */
2207 static void drain_pages(unsigned int cpu)
2208 {
2209 	struct zone *zone;
2210 
2211 	for_each_populated_zone(zone) {
2212 		drain_pages_zone(cpu, zone);
2213 	}
2214 }
2215 
2216 /*
2217  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2218  */
2219 void drain_local_pages(struct zone *zone)
2220 {
2221 	int cpu = smp_processor_id();
2222 
2223 	if (zone)
2224 		drain_pages_zone(cpu, zone);
2225 	else
2226 		drain_pages(cpu);
2227 }
2228 
2229 /*
2230  * The implementation of drain_all_pages(), exposing an extra parameter to
2231  * drain on all cpus.
2232  *
2233  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2234  * not empty. The check for non-emptiness can however race with a free to
2235  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2236  * that need the guarantee that every CPU has drained can disable the
2237  * optimizing racy check.
2238  */
2239 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2240 {
2241 	int cpu;
2242 
2243 	/*
2244 	 * Allocate in the BSS so we won't require allocation in
2245 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2246 	 */
2247 	static cpumask_t cpus_with_pcps;
2248 
2249 	/*
2250 	 * Do not drain if one is already in progress unless it's specific to
2251 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2252 	 * the drain to be complete when the call returns.
2253 	 */
2254 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2255 		if (!zone)
2256 			return;
2257 		mutex_lock(&pcpu_drain_mutex);
2258 	}
2259 
2260 	/*
2261 	 * We don't care about racing with CPU hotplug event
2262 	 * as offline notification will cause the notified
2263 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2264 	 * disables preemption as part of its processing
2265 	 */
2266 	for_each_online_cpu(cpu) {
2267 		struct per_cpu_pages *pcp;
2268 		struct zone *z;
2269 		bool has_pcps = false;
2270 
2271 		if (force_all_cpus) {
2272 			/*
2273 			 * The pcp.count check is racy, some callers need a
2274 			 * guarantee that no cpu is missed.
2275 			 */
2276 			has_pcps = true;
2277 		} else if (zone) {
2278 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2279 			if (pcp->count)
2280 				has_pcps = true;
2281 		} else {
2282 			for_each_populated_zone(z) {
2283 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2284 				if (pcp->count) {
2285 					has_pcps = true;
2286 					break;
2287 				}
2288 			}
2289 		}
2290 
2291 		if (has_pcps)
2292 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2293 		else
2294 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2295 	}
2296 
2297 	for_each_cpu(cpu, &cpus_with_pcps) {
2298 		if (zone)
2299 			drain_pages_zone(cpu, zone);
2300 		else
2301 			drain_pages(cpu);
2302 	}
2303 
2304 	mutex_unlock(&pcpu_drain_mutex);
2305 }
2306 
2307 /*
2308  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2309  *
2310  * When zone parameter is non-NULL, spill just the single zone's pages.
2311  */
2312 void drain_all_pages(struct zone *zone)
2313 {
2314 	__drain_all_pages(zone, false);
2315 }
2316 
2317 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2318 							unsigned int order)
2319 {
2320 	int migratetype;
2321 
2322 	if (!free_pages_prepare(page, order, FPI_NONE))
2323 		return false;
2324 
2325 	migratetype = get_pfnblock_migratetype(page, pfn);
2326 	set_pcppage_migratetype(page, migratetype);
2327 	return true;
2328 }
2329 
2330 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2331 {
2332 	int min_nr_free, max_nr_free;
2333 	int batch = READ_ONCE(pcp->batch);
2334 
2335 	/* Free everything if batch freeing high-order pages. */
2336 	if (unlikely(free_high))
2337 		return pcp->count;
2338 
2339 	/* Check for PCP disabled or boot pageset */
2340 	if (unlikely(high < batch))
2341 		return 1;
2342 
2343 	/* Leave at least pcp->batch pages on the list */
2344 	min_nr_free = batch;
2345 	max_nr_free = high - batch;
2346 
2347 	/*
2348 	 * Double the number of pages freed each time there is subsequent
2349 	 * freeing of pages without any allocation.
2350 	 */
2351 	batch <<= pcp->free_factor;
2352 	if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2353 		pcp->free_factor++;
2354 	batch = clamp(batch, min_nr_free, max_nr_free);
2355 
2356 	return batch;
2357 }
2358 
2359 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2360 		       bool free_high)
2361 {
2362 	int high = READ_ONCE(pcp->high);
2363 
2364 	if (unlikely(!high || free_high))
2365 		return 0;
2366 
2367 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2368 		return high;
2369 
2370 	/*
2371 	 * If reclaim is active, limit the number of pages that can be
2372 	 * stored on pcp lists
2373 	 */
2374 	return min(READ_ONCE(pcp->batch) << 2, high);
2375 }
2376 
2377 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2378 				   struct page *page, int migratetype,
2379 				   unsigned int order)
2380 {
2381 	int high;
2382 	int pindex;
2383 	bool free_high;
2384 
2385 	__count_vm_events(PGFREE, 1 << order);
2386 	pindex = order_to_pindex(migratetype, order);
2387 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2388 	pcp->count += 1 << order;
2389 
2390 	/*
2391 	 * As high-order pages other than THP's stored on PCP can contribute
2392 	 * to fragmentation, limit the number stored when PCP is heavily
2393 	 * freeing without allocation. The remainder after bulk freeing
2394 	 * stops will be drained from vmstat refresh context.
2395 	 */
2396 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2397 
2398 	high = nr_pcp_high(pcp, zone, free_high);
2399 	if (pcp->count >= high) {
2400 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2401 	}
2402 }
2403 
2404 /*
2405  * Free a pcp page
2406  */
2407 void free_unref_page(struct page *page, unsigned int order)
2408 {
2409 	unsigned long __maybe_unused UP_flags;
2410 	struct per_cpu_pages *pcp;
2411 	struct zone *zone;
2412 	unsigned long pfn = page_to_pfn(page);
2413 	int migratetype, pcpmigratetype;
2414 
2415 	if (!free_unref_page_prepare(page, pfn, order))
2416 		return;
2417 
2418 	/*
2419 	 * We only track unmovable, reclaimable and movable on pcp lists.
2420 	 * Place ISOLATE pages on the isolated list because they are being
2421 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2422 	 * get those areas back if necessary. Otherwise, we may have to free
2423 	 * excessively into the page allocator
2424 	 */
2425 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2426 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2427 		if (unlikely(is_migrate_isolate(migratetype))) {
2428 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2429 			return;
2430 		}
2431 		pcpmigratetype = MIGRATE_MOVABLE;
2432 	}
2433 
2434 	zone = page_zone(page);
2435 	pcp_trylock_prepare(UP_flags);
2436 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2437 	if (pcp) {
2438 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2439 		pcp_spin_unlock(pcp);
2440 	} else {
2441 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2442 	}
2443 	pcp_trylock_finish(UP_flags);
2444 }
2445 
2446 /*
2447  * Free a list of 0-order pages
2448  */
2449 void free_unref_page_list(struct list_head *list)
2450 {
2451 	unsigned long __maybe_unused UP_flags;
2452 	struct page *page, *next;
2453 	struct per_cpu_pages *pcp = NULL;
2454 	struct zone *locked_zone = NULL;
2455 	int batch_count = 0;
2456 	int migratetype;
2457 
2458 	/* Prepare pages for freeing */
2459 	list_for_each_entry_safe(page, next, list, lru) {
2460 		unsigned long pfn = page_to_pfn(page);
2461 		if (!free_unref_page_prepare(page, pfn, 0)) {
2462 			list_del(&page->lru);
2463 			continue;
2464 		}
2465 
2466 		/*
2467 		 * Free isolated pages directly to the allocator, see
2468 		 * comment in free_unref_page.
2469 		 */
2470 		migratetype = get_pcppage_migratetype(page);
2471 		if (unlikely(is_migrate_isolate(migratetype))) {
2472 			list_del(&page->lru);
2473 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2474 			continue;
2475 		}
2476 	}
2477 
2478 	list_for_each_entry_safe(page, next, list, lru) {
2479 		struct zone *zone = page_zone(page);
2480 
2481 		list_del(&page->lru);
2482 		migratetype = get_pcppage_migratetype(page);
2483 
2484 		/*
2485 		 * Either different zone requiring a different pcp lock or
2486 		 * excessive lock hold times when freeing a large list of
2487 		 * pages.
2488 		 */
2489 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2490 			if (pcp) {
2491 				pcp_spin_unlock(pcp);
2492 				pcp_trylock_finish(UP_flags);
2493 			}
2494 
2495 			batch_count = 0;
2496 
2497 			/*
2498 			 * trylock is necessary as pages may be getting freed
2499 			 * from IRQ or SoftIRQ context after an IO completion.
2500 			 */
2501 			pcp_trylock_prepare(UP_flags);
2502 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2503 			if (unlikely(!pcp)) {
2504 				pcp_trylock_finish(UP_flags);
2505 				free_one_page(zone, page, page_to_pfn(page),
2506 					      0, migratetype, FPI_NONE);
2507 				locked_zone = NULL;
2508 				continue;
2509 			}
2510 			locked_zone = zone;
2511 		}
2512 
2513 		/*
2514 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2515 		 * to the MIGRATE_MOVABLE pcp list.
2516 		 */
2517 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2518 			migratetype = MIGRATE_MOVABLE;
2519 
2520 		trace_mm_page_free_batched(page);
2521 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2522 		batch_count++;
2523 	}
2524 
2525 	if (pcp) {
2526 		pcp_spin_unlock(pcp);
2527 		pcp_trylock_finish(UP_flags);
2528 	}
2529 }
2530 
2531 /*
2532  * split_page takes a non-compound higher-order page, and splits it into
2533  * n (1<<order) sub-pages: page[0..n]
2534  * Each sub-page must be freed individually.
2535  *
2536  * Note: this is probably too low level an operation for use in drivers.
2537  * Please consult with lkml before using this in your driver.
2538  */
2539 void split_page(struct page *page, unsigned int order)
2540 {
2541 	int i;
2542 
2543 	VM_BUG_ON_PAGE(PageCompound(page), page);
2544 	VM_BUG_ON_PAGE(!page_count(page), page);
2545 
2546 	for (i = 1; i < (1 << order); i++)
2547 		set_page_refcounted(page + i);
2548 	split_page_owner(page, 1 << order);
2549 	split_page_memcg(page, 1 << order);
2550 }
2551 EXPORT_SYMBOL_GPL(split_page);
2552 
2553 int __isolate_free_page(struct page *page, unsigned int order)
2554 {
2555 	struct zone *zone = page_zone(page);
2556 	int mt = get_pageblock_migratetype(page);
2557 
2558 	if (!is_migrate_isolate(mt)) {
2559 		unsigned long watermark;
2560 		/*
2561 		 * Obey watermarks as if the page was being allocated. We can
2562 		 * emulate a high-order watermark check with a raised order-0
2563 		 * watermark, because we already know our high-order page
2564 		 * exists.
2565 		 */
2566 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2567 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2568 			return 0;
2569 
2570 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2571 	}
2572 
2573 	del_page_from_free_list(page, zone, order);
2574 
2575 	/*
2576 	 * Set the pageblock if the isolated page is at least half of a
2577 	 * pageblock
2578 	 */
2579 	if (order >= pageblock_order - 1) {
2580 		struct page *endpage = page + (1 << order) - 1;
2581 		for (; page < endpage; page += pageblock_nr_pages) {
2582 			int mt = get_pageblock_migratetype(page);
2583 			/*
2584 			 * Only change normal pageblocks (i.e., they can merge
2585 			 * with others)
2586 			 */
2587 			if (migratetype_is_mergeable(mt))
2588 				set_pageblock_migratetype(page,
2589 							  MIGRATE_MOVABLE);
2590 		}
2591 	}
2592 
2593 	return 1UL << order;
2594 }
2595 
2596 /**
2597  * __putback_isolated_page - Return a now-isolated page back where we got it
2598  * @page: Page that was isolated
2599  * @order: Order of the isolated page
2600  * @mt: The page's pageblock's migratetype
2601  *
2602  * This function is meant to return a page pulled from the free lists via
2603  * __isolate_free_page back to the free lists they were pulled from.
2604  */
2605 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2606 {
2607 	struct zone *zone = page_zone(page);
2608 
2609 	/* zone lock should be held when this function is called */
2610 	lockdep_assert_held(&zone->lock);
2611 
2612 	/* Return isolated page to tail of freelist. */
2613 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2614 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2615 }
2616 
2617 /*
2618  * Update NUMA hit/miss statistics
2619  */
2620 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2621 				   long nr_account)
2622 {
2623 #ifdef CONFIG_NUMA
2624 	enum numa_stat_item local_stat = NUMA_LOCAL;
2625 
2626 	/* skip numa counters update if numa stats is disabled */
2627 	if (!static_branch_likely(&vm_numa_stat_key))
2628 		return;
2629 
2630 	if (zone_to_nid(z) != numa_node_id())
2631 		local_stat = NUMA_OTHER;
2632 
2633 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2634 		__count_numa_events(z, NUMA_HIT, nr_account);
2635 	else {
2636 		__count_numa_events(z, NUMA_MISS, nr_account);
2637 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2638 	}
2639 	__count_numa_events(z, local_stat, nr_account);
2640 #endif
2641 }
2642 
2643 static __always_inline
2644 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2645 			   unsigned int order, unsigned int alloc_flags,
2646 			   int migratetype)
2647 {
2648 	struct page *page;
2649 	unsigned long flags;
2650 
2651 	do {
2652 		page = NULL;
2653 		spin_lock_irqsave(&zone->lock, flags);
2654 		if (alloc_flags & ALLOC_HIGHATOMIC)
2655 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2656 		if (!page) {
2657 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2658 
2659 			/*
2660 			 * If the allocation fails, allow OOM handling and
2661 			 * order-0 (atomic) allocs access to HIGHATOMIC
2662 			 * reserves as failing now is worse than failing a
2663 			 * high-order atomic allocation in the future.
2664 			 */
2665 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2666 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2667 
2668 			if (!page) {
2669 				spin_unlock_irqrestore(&zone->lock, flags);
2670 				return NULL;
2671 			}
2672 		}
2673 		__mod_zone_freepage_state(zone, -(1 << order),
2674 					  get_pcppage_migratetype(page));
2675 		spin_unlock_irqrestore(&zone->lock, flags);
2676 	} while (check_new_pages(page, order));
2677 
2678 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2679 	zone_statistics(preferred_zone, zone, 1);
2680 
2681 	return page;
2682 }
2683 
2684 /* Remove page from the per-cpu list, caller must protect the list */
2685 static inline
2686 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2687 			int migratetype,
2688 			unsigned int alloc_flags,
2689 			struct per_cpu_pages *pcp,
2690 			struct list_head *list)
2691 {
2692 	struct page *page;
2693 
2694 	do {
2695 		if (list_empty(list)) {
2696 			int batch = READ_ONCE(pcp->batch);
2697 			int alloced;
2698 
2699 			/*
2700 			 * Scale batch relative to order if batch implies
2701 			 * free pages can be stored on the PCP. Batch can
2702 			 * be 1 for small zones or for boot pagesets which
2703 			 * should never store free pages as the pages may
2704 			 * belong to arbitrary zones.
2705 			 */
2706 			if (batch > 1)
2707 				batch = max(batch >> order, 2);
2708 			alloced = rmqueue_bulk(zone, order,
2709 					batch, list,
2710 					migratetype, alloc_flags);
2711 
2712 			pcp->count += alloced << order;
2713 			if (unlikely(list_empty(list)))
2714 				return NULL;
2715 		}
2716 
2717 		page = list_first_entry(list, struct page, pcp_list);
2718 		list_del(&page->pcp_list);
2719 		pcp->count -= 1 << order;
2720 	} while (check_new_pages(page, order));
2721 
2722 	return page;
2723 }
2724 
2725 /* Lock and remove page from the per-cpu list */
2726 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2727 			struct zone *zone, unsigned int order,
2728 			int migratetype, unsigned int alloc_flags)
2729 {
2730 	struct per_cpu_pages *pcp;
2731 	struct list_head *list;
2732 	struct page *page;
2733 	unsigned long __maybe_unused UP_flags;
2734 
2735 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2736 	pcp_trylock_prepare(UP_flags);
2737 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2738 	if (!pcp) {
2739 		pcp_trylock_finish(UP_flags);
2740 		return NULL;
2741 	}
2742 
2743 	/*
2744 	 * On allocation, reduce the number of pages that are batch freed.
2745 	 * See nr_pcp_free() where free_factor is increased for subsequent
2746 	 * frees.
2747 	 */
2748 	pcp->free_factor >>= 1;
2749 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2750 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2751 	pcp_spin_unlock(pcp);
2752 	pcp_trylock_finish(UP_flags);
2753 	if (page) {
2754 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2755 		zone_statistics(preferred_zone, zone, 1);
2756 	}
2757 	return page;
2758 }
2759 
2760 /*
2761  * Allocate a page from the given zone.
2762  * Use pcplists for THP or "cheap" high-order allocations.
2763  */
2764 
2765 /*
2766  * Do not instrument rmqueue() with KMSAN. This function may call
2767  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2768  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2769  * may call rmqueue() again, which will result in a deadlock.
2770  */
2771 __no_sanitize_memory
2772 static inline
2773 struct page *rmqueue(struct zone *preferred_zone,
2774 			struct zone *zone, unsigned int order,
2775 			gfp_t gfp_flags, unsigned int alloc_flags,
2776 			int migratetype)
2777 {
2778 	struct page *page;
2779 
2780 	/*
2781 	 * We most definitely don't want callers attempting to
2782 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2783 	 */
2784 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2785 
2786 	if (likely(pcp_allowed_order(order))) {
2787 		page = rmqueue_pcplist(preferred_zone, zone, order,
2788 				       migratetype, alloc_flags);
2789 		if (likely(page))
2790 			goto out;
2791 	}
2792 
2793 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2794 							migratetype);
2795 
2796 out:
2797 	/* Separate test+clear to avoid unnecessary atomics */
2798 	if ((alloc_flags & ALLOC_KSWAPD) &&
2799 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2800 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2801 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2802 	}
2803 
2804 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2805 	return page;
2806 }
2807 
2808 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2809 {
2810 	return __should_fail_alloc_page(gfp_mask, order);
2811 }
2812 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2813 
2814 static inline long __zone_watermark_unusable_free(struct zone *z,
2815 				unsigned int order, unsigned int alloc_flags)
2816 {
2817 	long unusable_free = (1 << order) - 1;
2818 
2819 	/*
2820 	 * If the caller does not have rights to reserves below the min
2821 	 * watermark then subtract the high-atomic reserves. This will
2822 	 * over-estimate the size of the atomic reserve but it avoids a search.
2823 	 */
2824 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2825 		unusable_free += z->nr_reserved_highatomic;
2826 
2827 #ifdef CONFIG_CMA
2828 	/* If allocation can't use CMA areas don't use free CMA pages */
2829 	if (!(alloc_flags & ALLOC_CMA))
2830 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2831 #endif
2832 
2833 	return unusable_free;
2834 }
2835 
2836 /*
2837  * Return true if free base pages are above 'mark'. For high-order checks it
2838  * will return true of the order-0 watermark is reached and there is at least
2839  * one free page of a suitable size. Checking now avoids taking the zone lock
2840  * to check in the allocation paths if no pages are free.
2841  */
2842 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2843 			 int highest_zoneidx, unsigned int alloc_flags,
2844 			 long free_pages)
2845 {
2846 	long min = mark;
2847 	int o;
2848 
2849 	/* free_pages may go negative - that's OK */
2850 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2851 
2852 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2853 		/*
2854 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2855 		 * as OOM.
2856 		 */
2857 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2858 			min -= min / 2;
2859 
2860 			/*
2861 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2862 			 * access more reserves than just __GFP_HIGH. Other
2863 			 * non-blocking allocations requests such as GFP_NOWAIT
2864 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2865 			 * access to the min reserve.
2866 			 */
2867 			if (alloc_flags & ALLOC_NON_BLOCK)
2868 				min -= min / 4;
2869 		}
2870 
2871 		/*
2872 		 * OOM victims can try even harder than the normal reserve
2873 		 * users on the grounds that it's definitely going to be in
2874 		 * the exit path shortly and free memory. Any allocation it
2875 		 * makes during the free path will be small and short-lived.
2876 		 */
2877 		if (alloc_flags & ALLOC_OOM)
2878 			min -= min / 2;
2879 	}
2880 
2881 	/*
2882 	 * Check watermarks for an order-0 allocation request. If these
2883 	 * are not met, then a high-order request also cannot go ahead
2884 	 * even if a suitable page happened to be free.
2885 	 */
2886 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2887 		return false;
2888 
2889 	/* If this is an order-0 request then the watermark is fine */
2890 	if (!order)
2891 		return true;
2892 
2893 	/* For a high-order request, check at least one suitable page is free */
2894 	for (o = order; o < NR_PAGE_ORDERS; o++) {
2895 		struct free_area *area = &z->free_area[o];
2896 		int mt;
2897 
2898 		if (!area->nr_free)
2899 			continue;
2900 
2901 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2902 			if (!free_area_empty(area, mt))
2903 				return true;
2904 		}
2905 
2906 #ifdef CONFIG_CMA
2907 		if ((alloc_flags & ALLOC_CMA) &&
2908 		    !free_area_empty(area, MIGRATE_CMA)) {
2909 			return true;
2910 		}
2911 #endif
2912 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2913 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2914 			return true;
2915 		}
2916 	}
2917 	return false;
2918 }
2919 
2920 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2921 		      int highest_zoneidx, unsigned int alloc_flags)
2922 {
2923 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2924 					zone_page_state(z, NR_FREE_PAGES));
2925 }
2926 
2927 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2928 				unsigned long mark, int highest_zoneidx,
2929 				unsigned int alloc_flags, gfp_t gfp_mask)
2930 {
2931 	long free_pages;
2932 
2933 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2934 
2935 	/*
2936 	 * Fast check for order-0 only. If this fails then the reserves
2937 	 * need to be calculated.
2938 	 */
2939 	if (!order) {
2940 		long usable_free;
2941 		long reserved;
2942 
2943 		usable_free = free_pages;
2944 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2945 
2946 		/* reserved may over estimate high-atomic reserves. */
2947 		usable_free -= min(usable_free, reserved);
2948 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2949 			return true;
2950 	}
2951 
2952 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2953 					free_pages))
2954 		return true;
2955 
2956 	/*
2957 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2958 	 * when checking the min watermark. The min watermark is the
2959 	 * point where boosting is ignored so that kswapd is woken up
2960 	 * when below the low watermark.
2961 	 */
2962 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2963 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2964 		mark = z->_watermark[WMARK_MIN];
2965 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2966 					alloc_flags, free_pages);
2967 	}
2968 
2969 	return false;
2970 }
2971 
2972 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2973 			unsigned long mark, int highest_zoneidx)
2974 {
2975 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2976 
2977 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2978 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2979 
2980 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2981 								free_pages);
2982 }
2983 
2984 #ifdef CONFIG_NUMA
2985 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
2986 
2987 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2988 {
2989 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2990 				node_reclaim_distance;
2991 }
2992 #else	/* CONFIG_NUMA */
2993 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2994 {
2995 	return true;
2996 }
2997 #endif	/* CONFIG_NUMA */
2998 
2999 /*
3000  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3001  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3002  * premature use of a lower zone may cause lowmem pressure problems that
3003  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3004  * probably too small. It only makes sense to spread allocations to avoid
3005  * fragmentation between the Normal and DMA32 zones.
3006  */
3007 static inline unsigned int
3008 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3009 {
3010 	unsigned int alloc_flags;
3011 
3012 	/*
3013 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3014 	 * to save a branch.
3015 	 */
3016 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3017 
3018 #ifdef CONFIG_ZONE_DMA32
3019 	if (!zone)
3020 		return alloc_flags;
3021 
3022 	if (zone_idx(zone) != ZONE_NORMAL)
3023 		return alloc_flags;
3024 
3025 	/*
3026 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3027 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3028 	 * on UMA that if Normal is populated then so is DMA32.
3029 	 */
3030 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3031 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3032 		return alloc_flags;
3033 
3034 	alloc_flags |= ALLOC_NOFRAGMENT;
3035 #endif /* CONFIG_ZONE_DMA32 */
3036 	return alloc_flags;
3037 }
3038 
3039 /* Must be called after current_gfp_context() which can change gfp_mask */
3040 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3041 						  unsigned int alloc_flags)
3042 {
3043 #ifdef CONFIG_CMA
3044 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3045 		alloc_flags |= ALLOC_CMA;
3046 #endif
3047 	return alloc_flags;
3048 }
3049 
3050 /*
3051  * get_page_from_freelist goes through the zonelist trying to allocate
3052  * a page.
3053  */
3054 static struct page *
3055 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3056 						const struct alloc_context *ac)
3057 {
3058 	struct zoneref *z;
3059 	struct zone *zone;
3060 	struct pglist_data *last_pgdat = NULL;
3061 	bool last_pgdat_dirty_ok = false;
3062 	bool no_fallback;
3063 
3064 retry:
3065 	/*
3066 	 * Scan zonelist, looking for a zone with enough free.
3067 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3068 	 */
3069 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3070 	z = ac->preferred_zoneref;
3071 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3072 					ac->nodemask) {
3073 		struct page *page;
3074 		unsigned long mark;
3075 
3076 		if (cpusets_enabled() &&
3077 			(alloc_flags & ALLOC_CPUSET) &&
3078 			!__cpuset_zone_allowed(zone, gfp_mask))
3079 				continue;
3080 		/*
3081 		 * When allocating a page cache page for writing, we
3082 		 * want to get it from a node that is within its dirty
3083 		 * limit, such that no single node holds more than its
3084 		 * proportional share of globally allowed dirty pages.
3085 		 * The dirty limits take into account the node's
3086 		 * lowmem reserves and high watermark so that kswapd
3087 		 * should be able to balance it without having to
3088 		 * write pages from its LRU list.
3089 		 *
3090 		 * XXX: For now, allow allocations to potentially
3091 		 * exceed the per-node dirty limit in the slowpath
3092 		 * (spread_dirty_pages unset) before going into reclaim,
3093 		 * which is important when on a NUMA setup the allowed
3094 		 * nodes are together not big enough to reach the
3095 		 * global limit.  The proper fix for these situations
3096 		 * will require awareness of nodes in the
3097 		 * dirty-throttling and the flusher threads.
3098 		 */
3099 		if (ac->spread_dirty_pages) {
3100 			if (last_pgdat != zone->zone_pgdat) {
3101 				last_pgdat = zone->zone_pgdat;
3102 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3103 			}
3104 
3105 			if (!last_pgdat_dirty_ok)
3106 				continue;
3107 		}
3108 
3109 		if (no_fallback && nr_online_nodes > 1 &&
3110 		    zone != ac->preferred_zoneref->zone) {
3111 			int local_nid;
3112 
3113 			/*
3114 			 * If moving to a remote node, retry but allow
3115 			 * fragmenting fallbacks. Locality is more important
3116 			 * than fragmentation avoidance.
3117 			 */
3118 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3119 			if (zone_to_nid(zone) != local_nid) {
3120 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3121 				goto retry;
3122 			}
3123 		}
3124 
3125 		cond_accept_memory(zone, order);
3126 
3127 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3128 		if (!zone_watermark_fast(zone, order, mark,
3129 				       ac->highest_zoneidx, alloc_flags,
3130 				       gfp_mask)) {
3131 			int ret;
3132 
3133 			if (cond_accept_memory(zone, order))
3134 				goto try_this_zone;
3135 
3136 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3137 			/*
3138 			 * Watermark failed for this zone, but see if we can
3139 			 * grow this zone if it contains deferred pages.
3140 			 */
3141 			if (deferred_pages_enabled()) {
3142 				if (_deferred_grow_zone(zone, order))
3143 					goto try_this_zone;
3144 			}
3145 #endif
3146 			/* Checked here to keep the fast path fast */
3147 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3148 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3149 				goto try_this_zone;
3150 
3151 			if (!node_reclaim_enabled() ||
3152 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3153 				continue;
3154 
3155 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3156 			switch (ret) {
3157 			case NODE_RECLAIM_NOSCAN:
3158 				/* did not scan */
3159 				continue;
3160 			case NODE_RECLAIM_FULL:
3161 				/* scanned but unreclaimable */
3162 				continue;
3163 			default:
3164 				/* did we reclaim enough */
3165 				if (zone_watermark_ok(zone, order, mark,
3166 					ac->highest_zoneidx, alloc_flags))
3167 					goto try_this_zone;
3168 
3169 				continue;
3170 			}
3171 		}
3172 
3173 try_this_zone:
3174 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3175 				gfp_mask, alloc_flags, ac->migratetype);
3176 		if (page) {
3177 			prep_new_page(page, order, gfp_mask, alloc_flags);
3178 
3179 			/*
3180 			 * If this is a high-order atomic allocation then check
3181 			 * if the pageblock should be reserved for the future
3182 			 */
3183 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3184 				reserve_highatomic_pageblock(page, zone);
3185 
3186 			return page;
3187 		} else {
3188 			if (cond_accept_memory(zone, order))
3189 				goto try_this_zone;
3190 
3191 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3192 			/* Try again if zone has deferred pages */
3193 			if (deferred_pages_enabled()) {
3194 				if (_deferred_grow_zone(zone, order))
3195 					goto try_this_zone;
3196 			}
3197 #endif
3198 		}
3199 	}
3200 
3201 	/*
3202 	 * It's possible on a UMA machine to get through all zones that are
3203 	 * fragmented. If avoiding fragmentation, reset and try again.
3204 	 */
3205 	if (no_fallback) {
3206 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3207 		goto retry;
3208 	}
3209 
3210 	return NULL;
3211 }
3212 
3213 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3214 {
3215 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3216 
3217 	/*
3218 	 * This documents exceptions given to allocations in certain
3219 	 * contexts that are allowed to allocate outside current's set
3220 	 * of allowed nodes.
3221 	 */
3222 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3223 		if (tsk_is_oom_victim(current) ||
3224 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3225 			filter &= ~SHOW_MEM_FILTER_NODES;
3226 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3227 		filter &= ~SHOW_MEM_FILTER_NODES;
3228 
3229 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3230 }
3231 
3232 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3233 {
3234 	struct va_format vaf;
3235 	va_list args;
3236 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3237 
3238 	if ((gfp_mask & __GFP_NOWARN) ||
3239 	     !__ratelimit(&nopage_rs) ||
3240 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3241 		return;
3242 
3243 	va_start(args, fmt);
3244 	vaf.fmt = fmt;
3245 	vaf.va = &args;
3246 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3247 			current->comm, &vaf, gfp_mask, &gfp_mask,
3248 			nodemask_pr_args(nodemask));
3249 	va_end(args);
3250 
3251 	cpuset_print_current_mems_allowed();
3252 	pr_cont("\n");
3253 	dump_stack();
3254 	warn_alloc_show_mem(gfp_mask, nodemask);
3255 }
3256 
3257 static inline struct page *
3258 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3259 			      unsigned int alloc_flags,
3260 			      const struct alloc_context *ac)
3261 {
3262 	struct page *page;
3263 
3264 	page = get_page_from_freelist(gfp_mask, order,
3265 			alloc_flags|ALLOC_CPUSET, ac);
3266 	/*
3267 	 * fallback to ignore cpuset restriction if our nodes
3268 	 * are depleted
3269 	 */
3270 	if (!page)
3271 		page = get_page_from_freelist(gfp_mask, order,
3272 				alloc_flags, ac);
3273 
3274 	return page;
3275 }
3276 
3277 static inline struct page *
3278 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3279 	const struct alloc_context *ac, unsigned long *did_some_progress)
3280 {
3281 	struct oom_control oc = {
3282 		.zonelist = ac->zonelist,
3283 		.nodemask = ac->nodemask,
3284 		.memcg = NULL,
3285 		.gfp_mask = gfp_mask,
3286 		.order = order,
3287 	};
3288 	struct page *page;
3289 
3290 	*did_some_progress = 0;
3291 
3292 	/*
3293 	 * Acquire the oom lock.  If that fails, somebody else is
3294 	 * making progress for us.
3295 	 */
3296 	if (!mutex_trylock(&oom_lock)) {
3297 		*did_some_progress = 1;
3298 		schedule_timeout_uninterruptible(1);
3299 		return NULL;
3300 	}
3301 
3302 	/*
3303 	 * Go through the zonelist yet one more time, keep very high watermark
3304 	 * here, this is only to catch a parallel oom killing, we must fail if
3305 	 * we're still under heavy pressure. But make sure that this reclaim
3306 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3307 	 * allocation which will never fail due to oom_lock already held.
3308 	 */
3309 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3310 				      ~__GFP_DIRECT_RECLAIM, order,
3311 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3312 	if (page)
3313 		goto out;
3314 
3315 	/* Coredumps can quickly deplete all memory reserves */
3316 	if (current->flags & PF_DUMPCORE)
3317 		goto out;
3318 	/* The OOM killer will not help higher order allocs */
3319 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3320 		goto out;
3321 	/*
3322 	 * We have already exhausted all our reclaim opportunities without any
3323 	 * success so it is time to admit defeat. We will skip the OOM killer
3324 	 * because it is very likely that the caller has a more reasonable
3325 	 * fallback than shooting a random task.
3326 	 *
3327 	 * The OOM killer may not free memory on a specific node.
3328 	 */
3329 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3330 		goto out;
3331 	/* The OOM killer does not needlessly kill tasks for lowmem */
3332 	if (ac->highest_zoneidx < ZONE_NORMAL)
3333 		goto out;
3334 	if (pm_suspended_storage())
3335 		goto out;
3336 	/*
3337 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3338 	 * other request to make a forward progress.
3339 	 * We are in an unfortunate situation where out_of_memory cannot
3340 	 * do much for this context but let's try it to at least get
3341 	 * access to memory reserved if the current task is killed (see
3342 	 * out_of_memory). Once filesystems are ready to handle allocation
3343 	 * failures more gracefully we should just bail out here.
3344 	 */
3345 
3346 	/* Exhausted what can be done so it's blame time */
3347 	if (out_of_memory(&oc) ||
3348 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3349 		*did_some_progress = 1;
3350 
3351 		/*
3352 		 * Help non-failing allocations by giving them access to memory
3353 		 * reserves
3354 		 */
3355 		if (gfp_mask & __GFP_NOFAIL)
3356 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3357 					ALLOC_NO_WATERMARKS, ac);
3358 	}
3359 out:
3360 	mutex_unlock(&oom_lock);
3361 	return page;
3362 }
3363 
3364 /*
3365  * Maximum number of compaction retries with a progress before OOM
3366  * killer is consider as the only way to move forward.
3367  */
3368 #define MAX_COMPACT_RETRIES 16
3369 
3370 #ifdef CONFIG_COMPACTION
3371 /* Try memory compaction for high-order allocations before reclaim */
3372 static struct page *
3373 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3374 		unsigned int alloc_flags, const struct alloc_context *ac,
3375 		enum compact_priority prio, enum compact_result *compact_result)
3376 {
3377 	struct page *page = NULL;
3378 	unsigned long pflags;
3379 	unsigned int noreclaim_flag;
3380 
3381 	if (!order)
3382 		return NULL;
3383 
3384 	psi_memstall_enter(&pflags);
3385 	delayacct_compact_start();
3386 	noreclaim_flag = memalloc_noreclaim_save();
3387 
3388 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3389 								prio, &page);
3390 
3391 	memalloc_noreclaim_restore(noreclaim_flag);
3392 	psi_memstall_leave(&pflags);
3393 	delayacct_compact_end();
3394 
3395 	if (*compact_result == COMPACT_SKIPPED)
3396 		return NULL;
3397 	/*
3398 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3399 	 * count a compaction stall
3400 	 */
3401 	count_vm_event(COMPACTSTALL);
3402 
3403 	/* Prep a captured page if available */
3404 	if (page)
3405 		prep_new_page(page, order, gfp_mask, alloc_flags);
3406 
3407 	/* Try get a page from the freelist if available */
3408 	if (!page)
3409 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3410 
3411 	if (page) {
3412 		struct zone *zone = page_zone(page);
3413 
3414 		zone->compact_blockskip_flush = false;
3415 		compaction_defer_reset(zone, order, true);
3416 		count_vm_event(COMPACTSUCCESS);
3417 		return page;
3418 	}
3419 
3420 	/*
3421 	 * It's bad if compaction run occurs and fails. The most likely reason
3422 	 * is that pages exist, but not enough to satisfy watermarks.
3423 	 */
3424 	count_vm_event(COMPACTFAIL);
3425 
3426 	cond_resched();
3427 
3428 	return NULL;
3429 }
3430 
3431 static inline bool
3432 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3433 		     enum compact_result compact_result,
3434 		     enum compact_priority *compact_priority,
3435 		     int *compaction_retries)
3436 {
3437 	int max_retries = MAX_COMPACT_RETRIES;
3438 	int min_priority;
3439 	bool ret = false;
3440 	int retries = *compaction_retries;
3441 	enum compact_priority priority = *compact_priority;
3442 
3443 	if (!order)
3444 		return false;
3445 
3446 	if (fatal_signal_pending(current))
3447 		return false;
3448 
3449 	/*
3450 	 * Compaction was skipped due to a lack of free order-0
3451 	 * migration targets. Continue if reclaim can help.
3452 	 */
3453 	if (compact_result == COMPACT_SKIPPED) {
3454 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3455 		goto out;
3456 	}
3457 
3458 	/*
3459 	 * Compaction managed to coalesce some page blocks, but the
3460 	 * allocation failed presumably due to a race. Retry some.
3461 	 */
3462 	if (compact_result == COMPACT_SUCCESS) {
3463 		/*
3464 		 * !costly requests are much more important than
3465 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3466 		 * facto nofail and invoke OOM killer to move on while
3467 		 * costly can fail and users are ready to cope with
3468 		 * that. 1/4 retries is rather arbitrary but we would
3469 		 * need much more detailed feedback from compaction to
3470 		 * make a better decision.
3471 		 */
3472 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3473 			max_retries /= 4;
3474 
3475 		if (++(*compaction_retries) <= max_retries) {
3476 			ret = true;
3477 			goto out;
3478 		}
3479 	}
3480 
3481 	/*
3482 	 * Compaction failed. Retry with increasing priority.
3483 	 */
3484 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3485 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3486 
3487 	if (*compact_priority > min_priority) {
3488 		(*compact_priority)--;
3489 		*compaction_retries = 0;
3490 		ret = true;
3491 	}
3492 out:
3493 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3494 	return ret;
3495 }
3496 #else
3497 static inline struct page *
3498 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3499 		unsigned int alloc_flags, const struct alloc_context *ac,
3500 		enum compact_priority prio, enum compact_result *compact_result)
3501 {
3502 	*compact_result = COMPACT_SKIPPED;
3503 	return NULL;
3504 }
3505 
3506 static inline bool
3507 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3508 		     enum compact_result compact_result,
3509 		     enum compact_priority *compact_priority,
3510 		     int *compaction_retries)
3511 {
3512 	struct zone *zone;
3513 	struct zoneref *z;
3514 
3515 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3516 		return false;
3517 
3518 	/*
3519 	 * There are setups with compaction disabled which would prefer to loop
3520 	 * inside the allocator rather than hit the oom killer prematurely.
3521 	 * Let's give them a good hope and keep retrying while the order-0
3522 	 * watermarks are OK.
3523 	 */
3524 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3525 				ac->highest_zoneidx, ac->nodemask) {
3526 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3527 					ac->highest_zoneidx, alloc_flags))
3528 			return true;
3529 	}
3530 	return false;
3531 }
3532 #endif /* CONFIG_COMPACTION */
3533 
3534 #ifdef CONFIG_LOCKDEP
3535 static struct lockdep_map __fs_reclaim_map =
3536 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3537 
3538 static bool __need_reclaim(gfp_t gfp_mask)
3539 {
3540 	/* no reclaim without waiting on it */
3541 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3542 		return false;
3543 
3544 	/* this guy won't enter reclaim */
3545 	if (current->flags & PF_MEMALLOC)
3546 		return false;
3547 
3548 	if (gfp_mask & __GFP_NOLOCKDEP)
3549 		return false;
3550 
3551 	return true;
3552 }
3553 
3554 void __fs_reclaim_acquire(unsigned long ip)
3555 {
3556 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3557 }
3558 
3559 void __fs_reclaim_release(unsigned long ip)
3560 {
3561 	lock_release(&__fs_reclaim_map, ip);
3562 }
3563 
3564 void fs_reclaim_acquire(gfp_t gfp_mask)
3565 {
3566 	gfp_mask = current_gfp_context(gfp_mask);
3567 
3568 	if (__need_reclaim(gfp_mask)) {
3569 		if (gfp_mask & __GFP_FS)
3570 			__fs_reclaim_acquire(_RET_IP_);
3571 
3572 #ifdef CONFIG_MMU_NOTIFIER
3573 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3574 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3575 #endif
3576 
3577 	}
3578 }
3579 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3580 
3581 void fs_reclaim_release(gfp_t gfp_mask)
3582 {
3583 	gfp_mask = current_gfp_context(gfp_mask);
3584 
3585 	if (__need_reclaim(gfp_mask)) {
3586 		if (gfp_mask & __GFP_FS)
3587 			__fs_reclaim_release(_RET_IP_);
3588 	}
3589 }
3590 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3591 #endif
3592 
3593 /*
3594  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3595  * have been rebuilt so allocation retries. Reader side does not lock and
3596  * retries the allocation if zonelist changes. Writer side is protected by the
3597  * embedded spin_lock.
3598  */
3599 static DEFINE_SEQLOCK(zonelist_update_seq);
3600 
3601 static unsigned int zonelist_iter_begin(void)
3602 {
3603 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3604 		return read_seqbegin(&zonelist_update_seq);
3605 
3606 	return 0;
3607 }
3608 
3609 static unsigned int check_retry_zonelist(unsigned int seq)
3610 {
3611 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3612 		return read_seqretry(&zonelist_update_seq, seq);
3613 
3614 	return seq;
3615 }
3616 
3617 /* Perform direct synchronous page reclaim */
3618 static unsigned long
3619 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3620 					const struct alloc_context *ac)
3621 {
3622 	unsigned int noreclaim_flag;
3623 	unsigned long progress;
3624 
3625 	cond_resched();
3626 
3627 	/* We now go into synchronous reclaim */
3628 	cpuset_memory_pressure_bump();
3629 	fs_reclaim_acquire(gfp_mask);
3630 	noreclaim_flag = memalloc_noreclaim_save();
3631 
3632 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3633 								ac->nodemask);
3634 
3635 	memalloc_noreclaim_restore(noreclaim_flag);
3636 	fs_reclaim_release(gfp_mask);
3637 
3638 	cond_resched();
3639 
3640 	return progress;
3641 }
3642 
3643 /* The really slow allocator path where we enter direct reclaim */
3644 static inline struct page *
3645 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3646 		unsigned int alloc_flags, const struct alloc_context *ac,
3647 		unsigned long *did_some_progress)
3648 {
3649 	struct page *page = NULL;
3650 	unsigned long pflags;
3651 	bool drained = false;
3652 
3653 	psi_memstall_enter(&pflags);
3654 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3655 	if (unlikely(!(*did_some_progress)))
3656 		goto out;
3657 
3658 retry:
3659 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3660 
3661 	/*
3662 	 * If an allocation failed after direct reclaim, it could be because
3663 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3664 	 * Shrink them and try again
3665 	 */
3666 	if (!page && !drained) {
3667 		unreserve_highatomic_pageblock(ac, false);
3668 		drain_all_pages(NULL);
3669 		drained = true;
3670 		goto retry;
3671 	}
3672 out:
3673 	psi_memstall_leave(&pflags);
3674 
3675 	return page;
3676 }
3677 
3678 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3679 			     const struct alloc_context *ac)
3680 {
3681 	struct zoneref *z;
3682 	struct zone *zone;
3683 	pg_data_t *last_pgdat = NULL;
3684 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3685 
3686 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3687 					ac->nodemask) {
3688 		if (!managed_zone(zone))
3689 			continue;
3690 		if (last_pgdat != zone->zone_pgdat) {
3691 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3692 			last_pgdat = zone->zone_pgdat;
3693 		}
3694 	}
3695 }
3696 
3697 static inline unsigned int
3698 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3699 {
3700 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3701 
3702 	/*
3703 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3704 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3705 	 * to save two branches.
3706 	 */
3707 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3708 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3709 
3710 	/*
3711 	 * The caller may dip into page reserves a bit more if the caller
3712 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3713 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3714 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3715 	 */
3716 	alloc_flags |= (__force int)
3717 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3718 
3719 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3720 		/*
3721 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3722 		 * if it can't schedule.
3723 		 */
3724 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3725 			alloc_flags |= ALLOC_NON_BLOCK;
3726 
3727 			if (order > 0)
3728 				alloc_flags |= ALLOC_HIGHATOMIC;
3729 		}
3730 
3731 		/*
3732 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3733 		 * GFP_ATOMIC) rather than fail, see the comment for
3734 		 * cpuset_node_allowed().
3735 		 */
3736 		if (alloc_flags & ALLOC_MIN_RESERVE)
3737 			alloc_flags &= ~ALLOC_CPUSET;
3738 	} else if (unlikely(rt_task(current)) && in_task())
3739 		alloc_flags |= ALLOC_MIN_RESERVE;
3740 
3741 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3742 
3743 	return alloc_flags;
3744 }
3745 
3746 static bool oom_reserves_allowed(struct task_struct *tsk)
3747 {
3748 	if (!tsk_is_oom_victim(tsk))
3749 		return false;
3750 
3751 	/*
3752 	 * !MMU doesn't have oom reaper so give access to memory reserves
3753 	 * only to the thread with TIF_MEMDIE set
3754 	 */
3755 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3756 		return false;
3757 
3758 	return true;
3759 }
3760 
3761 /*
3762  * Distinguish requests which really need access to full memory
3763  * reserves from oom victims which can live with a portion of it
3764  */
3765 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3766 {
3767 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3768 		return 0;
3769 	if (gfp_mask & __GFP_MEMALLOC)
3770 		return ALLOC_NO_WATERMARKS;
3771 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3772 		return ALLOC_NO_WATERMARKS;
3773 	if (!in_interrupt()) {
3774 		if (current->flags & PF_MEMALLOC)
3775 			return ALLOC_NO_WATERMARKS;
3776 		else if (oom_reserves_allowed(current))
3777 			return ALLOC_OOM;
3778 	}
3779 
3780 	return 0;
3781 }
3782 
3783 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3784 {
3785 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3786 }
3787 
3788 /*
3789  * Checks whether it makes sense to retry the reclaim to make a forward progress
3790  * for the given allocation request.
3791  *
3792  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3793  * without success, or when we couldn't even meet the watermark if we
3794  * reclaimed all remaining pages on the LRU lists.
3795  *
3796  * Returns true if a retry is viable or false to enter the oom path.
3797  */
3798 static inline bool
3799 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3800 		     struct alloc_context *ac, int alloc_flags,
3801 		     bool did_some_progress, int *no_progress_loops)
3802 {
3803 	struct zone *zone;
3804 	struct zoneref *z;
3805 	bool ret = false;
3806 
3807 	/*
3808 	 * Costly allocations might have made a progress but this doesn't mean
3809 	 * their order will become available due to high fragmentation so
3810 	 * always increment the no progress counter for them
3811 	 */
3812 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3813 		*no_progress_loops = 0;
3814 	else
3815 		(*no_progress_loops)++;
3816 
3817 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3818 		goto out;
3819 
3820 
3821 	/*
3822 	 * Keep reclaiming pages while there is a chance this will lead
3823 	 * somewhere.  If none of the target zones can satisfy our allocation
3824 	 * request even if all reclaimable pages are considered then we are
3825 	 * screwed and have to go OOM.
3826 	 */
3827 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3828 				ac->highest_zoneidx, ac->nodemask) {
3829 		unsigned long available;
3830 		unsigned long reclaimable;
3831 		unsigned long min_wmark = min_wmark_pages(zone);
3832 		bool wmark;
3833 
3834 		available = reclaimable = zone_reclaimable_pages(zone);
3835 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3836 
3837 		/*
3838 		 * Would the allocation succeed if we reclaimed all
3839 		 * reclaimable pages?
3840 		 */
3841 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3842 				ac->highest_zoneidx, alloc_flags, available);
3843 		trace_reclaim_retry_zone(z, order, reclaimable,
3844 				available, min_wmark, *no_progress_loops, wmark);
3845 		if (wmark) {
3846 			ret = true;
3847 			break;
3848 		}
3849 	}
3850 
3851 	/*
3852 	 * Memory allocation/reclaim might be called from a WQ context and the
3853 	 * current implementation of the WQ concurrency control doesn't
3854 	 * recognize that a particular WQ is congested if the worker thread is
3855 	 * looping without ever sleeping. Therefore we have to do a short sleep
3856 	 * here rather than calling cond_resched().
3857 	 */
3858 	if (current->flags & PF_WQ_WORKER)
3859 		schedule_timeout_uninterruptible(1);
3860 	else
3861 		cond_resched();
3862 out:
3863 	/* Before OOM, exhaust highatomic_reserve */
3864 	if (!ret)
3865 		return unreserve_highatomic_pageblock(ac, true);
3866 
3867 	return ret;
3868 }
3869 
3870 static inline bool
3871 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3872 {
3873 	/*
3874 	 * It's possible that cpuset's mems_allowed and the nodemask from
3875 	 * mempolicy don't intersect. This should be normally dealt with by
3876 	 * policy_nodemask(), but it's possible to race with cpuset update in
3877 	 * such a way the check therein was true, and then it became false
3878 	 * before we got our cpuset_mems_cookie here.
3879 	 * This assumes that for all allocations, ac->nodemask can come only
3880 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3881 	 * when it does not intersect with the cpuset restrictions) or the
3882 	 * caller can deal with a violated nodemask.
3883 	 */
3884 	if (cpusets_enabled() && ac->nodemask &&
3885 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3886 		ac->nodemask = NULL;
3887 		return true;
3888 	}
3889 
3890 	/*
3891 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3892 	 * possible to race with parallel threads in such a way that our
3893 	 * allocation can fail while the mask is being updated. If we are about
3894 	 * to fail, check if the cpuset changed during allocation and if so,
3895 	 * retry.
3896 	 */
3897 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3898 		return true;
3899 
3900 	return false;
3901 }
3902 
3903 static inline struct page *
3904 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3905 						struct alloc_context *ac)
3906 {
3907 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3908 	bool can_compact = gfp_compaction_allowed(gfp_mask);
3909 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3910 	struct page *page = NULL;
3911 	unsigned int alloc_flags;
3912 	unsigned long did_some_progress;
3913 	enum compact_priority compact_priority;
3914 	enum compact_result compact_result;
3915 	int compaction_retries;
3916 	int no_progress_loops;
3917 	unsigned int cpuset_mems_cookie;
3918 	unsigned int zonelist_iter_cookie;
3919 	int reserve_flags;
3920 
3921 restart:
3922 	compaction_retries = 0;
3923 	no_progress_loops = 0;
3924 	compact_priority = DEF_COMPACT_PRIORITY;
3925 	cpuset_mems_cookie = read_mems_allowed_begin();
3926 	zonelist_iter_cookie = zonelist_iter_begin();
3927 
3928 	/*
3929 	 * The fast path uses conservative alloc_flags to succeed only until
3930 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3931 	 * alloc_flags precisely. So we do that now.
3932 	 */
3933 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3934 
3935 	/*
3936 	 * We need to recalculate the starting point for the zonelist iterator
3937 	 * because we might have used different nodemask in the fast path, or
3938 	 * there was a cpuset modification and we are retrying - otherwise we
3939 	 * could end up iterating over non-eligible zones endlessly.
3940 	 */
3941 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3942 					ac->highest_zoneidx, ac->nodemask);
3943 	if (!ac->preferred_zoneref->zone)
3944 		goto nopage;
3945 
3946 	/*
3947 	 * Check for insane configurations where the cpuset doesn't contain
3948 	 * any suitable zone to satisfy the request - e.g. non-movable
3949 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3950 	 */
3951 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3952 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3953 					ac->highest_zoneidx,
3954 					&cpuset_current_mems_allowed);
3955 		if (!z->zone)
3956 			goto nopage;
3957 	}
3958 
3959 	if (alloc_flags & ALLOC_KSWAPD)
3960 		wake_all_kswapds(order, gfp_mask, ac);
3961 
3962 	/*
3963 	 * The adjusted alloc_flags might result in immediate success, so try
3964 	 * that first
3965 	 */
3966 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3967 	if (page)
3968 		goto got_pg;
3969 
3970 	/*
3971 	 * For costly allocations, try direct compaction first, as it's likely
3972 	 * that we have enough base pages and don't need to reclaim. For non-
3973 	 * movable high-order allocations, do that as well, as compaction will
3974 	 * try prevent permanent fragmentation by migrating from blocks of the
3975 	 * same migratetype.
3976 	 * Don't try this for allocations that are allowed to ignore
3977 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3978 	 */
3979 	if (can_direct_reclaim && can_compact &&
3980 			(costly_order ||
3981 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3982 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3983 		page = __alloc_pages_direct_compact(gfp_mask, order,
3984 						alloc_flags, ac,
3985 						INIT_COMPACT_PRIORITY,
3986 						&compact_result);
3987 		if (page)
3988 			goto got_pg;
3989 
3990 		/*
3991 		 * Checks for costly allocations with __GFP_NORETRY, which
3992 		 * includes some THP page fault allocations
3993 		 */
3994 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3995 			/*
3996 			 * If allocating entire pageblock(s) and compaction
3997 			 * failed because all zones are below low watermarks
3998 			 * or is prohibited because it recently failed at this
3999 			 * order, fail immediately unless the allocator has
4000 			 * requested compaction and reclaim retry.
4001 			 *
4002 			 * Reclaim is
4003 			 *  - potentially very expensive because zones are far
4004 			 *    below their low watermarks or this is part of very
4005 			 *    bursty high order allocations,
4006 			 *  - not guaranteed to help because isolate_freepages()
4007 			 *    may not iterate over freed pages as part of its
4008 			 *    linear scan, and
4009 			 *  - unlikely to make entire pageblocks free on its
4010 			 *    own.
4011 			 */
4012 			if (compact_result == COMPACT_SKIPPED ||
4013 			    compact_result == COMPACT_DEFERRED)
4014 				goto nopage;
4015 
4016 			/*
4017 			 * Looks like reclaim/compaction is worth trying, but
4018 			 * sync compaction could be very expensive, so keep
4019 			 * using async compaction.
4020 			 */
4021 			compact_priority = INIT_COMPACT_PRIORITY;
4022 		}
4023 	}
4024 
4025 retry:
4026 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4027 	if (alloc_flags & ALLOC_KSWAPD)
4028 		wake_all_kswapds(order, gfp_mask, ac);
4029 
4030 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4031 	if (reserve_flags)
4032 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4033 					  (alloc_flags & ALLOC_KSWAPD);
4034 
4035 	/*
4036 	 * Reset the nodemask and zonelist iterators if memory policies can be
4037 	 * ignored. These allocations are high priority and system rather than
4038 	 * user oriented.
4039 	 */
4040 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4041 		ac->nodemask = NULL;
4042 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4043 					ac->highest_zoneidx, ac->nodemask);
4044 	}
4045 
4046 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4047 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4048 	if (page)
4049 		goto got_pg;
4050 
4051 	/* Caller is not willing to reclaim, we can't balance anything */
4052 	if (!can_direct_reclaim)
4053 		goto nopage;
4054 
4055 	/* Avoid recursion of direct reclaim */
4056 	if (current->flags & PF_MEMALLOC)
4057 		goto nopage;
4058 
4059 	/* Try direct reclaim and then allocating */
4060 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4061 							&did_some_progress);
4062 	if (page)
4063 		goto got_pg;
4064 
4065 	/* Try direct compaction and then allocating */
4066 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4067 					compact_priority, &compact_result);
4068 	if (page)
4069 		goto got_pg;
4070 
4071 	/* Do not loop if specifically requested */
4072 	if (gfp_mask & __GFP_NORETRY)
4073 		goto nopage;
4074 
4075 	/*
4076 	 * Do not retry costly high order allocations unless they are
4077 	 * __GFP_RETRY_MAYFAIL and we can compact
4078 	 */
4079 	if (costly_order && (!can_compact ||
4080 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4081 		goto nopage;
4082 
4083 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4084 				 did_some_progress > 0, &no_progress_loops))
4085 		goto retry;
4086 
4087 	/*
4088 	 * It doesn't make any sense to retry for the compaction if the order-0
4089 	 * reclaim is not able to make any progress because the current
4090 	 * implementation of the compaction depends on the sufficient amount
4091 	 * of free memory (see __compaction_suitable)
4092 	 */
4093 	if (did_some_progress > 0 && can_compact &&
4094 			should_compact_retry(ac, order, alloc_flags,
4095 				compact_result, &compact_priority,
4096 				&compaction_retries))
4097 		goto retry;
4098 
4099 
4100 	/*
4101 	 * Deal with possible cpuset update races or zonelist updates to avoid
4102 	 * a unnecessary OOM kill.
4103 	 */
4104 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4105 	    check_retry_zonelist(zonelist_iter_cookie))
4106 		goto restart;
4107 
4108 	/* Reclaim has failed us, start killing things */
4109 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4110 	if (page)
4111 		goto got_pg;
4112 
4113 	/* Avoid allocations with no watermarks from looping endlessly */
4114 	if (tsk_is_oom_victim(current) &&
4115 	    (alloc_flags & ALLOC_OOM ||
4116 	     (gfp_mask & __GFP_NOMEMALLOC)))
4117 		goto nopage;
4118 
4119 	/* Retry as long as the OOM killer is making progress */
4120 	if (did_some_progress) {
4121 		no_progress_loops = 0;
4122 		goto retry;
4123 	}
4124 
4125 nopage:
4126 	/*
4127 	 * Deal with possible cpuset update races or zonelist updates to avoid
4128 	 * a unnecessary OOM kill.
4129 	 */
4130 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4131 	    check_retry_zonelist(zonelist_iter_cookie))
4132 		goto restart;
4133 
4134 	/*
4135 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4136 	 * we always retry
4137 	 */
4138 	if (gfp_mask & __GFP_NOFAIL) {
4139 		/*
4140 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4141 		 * of any new users that actually require GFP_NOWAIT
4142 		 */
4143 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4144 			goto fail;
4145 
4146 		/*
4147 		 * PF_MEMALLOC request from this context is rather bizarre
4148 		 * because we cannot reclaim anything and only can loop waiting
4149 		 * for somebody to do a work for us
4150 		 */
4151 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4152 
4153 		/*
4154 		 * non failing costly orders are a hard requirement which we
4155 		 * are not prepared for much so let's warn about these users
4156 		 * so that we can identify them and convert them to something
4157 		 * else.
4158 		 */
4159 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4160 
4161 		/*
4162 		 * Help non-failing allocations by giving some access to memory
4163 		 * reserves normally used for high priority non-blocking
4164 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4165 		 * could deplete whole memory reserves which would just make
4166 		 * the situation worse.
4167 		 */
4168 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4169 		if (page)
4170 			goto got_pg;
4171 
4172 		cond_resched();
4173 		goto retry;
4174 	}
4175 fail:
4176 	warn_alloc(gfp_mask, ac->nodemask,
4177 			"page allocation failure: order:%u", order);
4178 got_pg:
4179 	return page;
4180 }
4181 
4182 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4183 		int preferred_nid, nodemask_t *nodemask,
4184 		struct alloc_context *ac, gfp_t *alloc_gfp,
4185 		unsigned int *alloc_flags)
4186 {
4187 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4188 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4189 	ac->nodemask = nodemask;
4190 	ac->migratetype = gfp_migratetype(gfp_mask);
4191 
4192 	if (cpusets_enabled()) {
4193 		*alloc_gfp |= __GFP_HARDWALL;
4194 		/*
4195 		 * When we are in the interrupt context, it is irrelevant
4196 		 * to the current task context. It means that any node ok.
4197 		 */
4198 		if (in_task() && !ac->nodemask)
4199 			ac->nodemask = &cpuset_current_mems_allowed;
4200 		else
4201 			*alloc_flags |= ALLOC_CPUSET;
4202 	}
4203 
4204 	might_alloc(gfp_mask);
4205 
4206 	if (should_fail_alloc_page(gfp_mask, order))
4207 		return false;
4208 
4209 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4210 
4211 	/* Dirty zone balancing only done in the fast path */
4212 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4213 
4214 	/*
4215 	 * The preferred zone is used for statistics but crucially it is
4216 	 * also used as the starting point for the zonelist iterator. It
4217 	 * may get reset for allocations that ignore memory policies.
4218 	 */
4219 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4220 					ac->highest_zoneidx, ac->nodemask);
4221 
4222 	return true;
4223 }
4224 
4225 /*
4226  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4227  * @gfp: GFP flags for the allocation
4228  * @preferred_nid: The preferred NUMA node ID to allocate from
4229  * @nodemask: Set of nodes to allocate from, may be NULL
4230  * @nr_pages: The number of pages desired on the list or array
4231  * @page_list: Optional list to store the allocated pages
4232  * @page_array: Optional array to store the pages
4233  *
4234  * This is a batched version of the page allocator that attempts to
4235  * allocate nr_pages quickly. Pages are added to page_list if page_list
4236  * is not NULL, otherwise it is assumed that the page_array is valid.
4237  *
4238  * For lists, nr_pages is the number of pages that should be allocated.
4239  *
4240  * For arrays, only NULL elements are populated with pages and nr_pages
4241  * is the maximum number of pages that will be stored in the array.
4242  *
4243  * Returns the number of pages on the list or array.
4244  */
4245 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4246 			nodemask_t *nodemask, int nr_pages,
4247 			struct list_head *page_list,
4248 			struct page **page_array)
4249 {
4250 	struct page *page;
4251 	unsigned long __maybe_unused UP_flags;
4252 	struct zone *zone;
4253 	struct zoneref *z;
4254 	struct per_cpu_pages *pcp;
4255 	struct list_head *pcp_list;
4256 	struct alloc_context ac;
4257 	gfp_t alloc_gfp;
4258 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4259 	int nr_populated = 0, nr_account = 0;
4260 
4261 	/*
4262 	 * Skip populated array elements to determine if any pages need
4263 	 * to be allocated before disabling IRQs.
4264 	 */
4265 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4266 		nr_populated++;
4267 
4268 	/* No pages requested? */
4269 	if (unlikely(nr_pages <= 0))
4270 		goto out;
4271 
4272 	/* Already populated array? */
4273 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4274 		goto out;
4275 
4276 	/* Bulk allocator does not support memcg accounting. */
4277 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4278 		goto failed;
4279 
4280 	/* Use the single page allocator for one page. */
4281 	if (nr_pages - nr_populated == 1)
4282 		goto failed;
4283 
4284 #ifdef CONFIG_PAGE_OWNER
4285 	/*
4286 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4287 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4288 	 * removes much of the performance benefit of bulk allocation so
4289 	 * force the caller to allocate one page at a time as it'll have
4290 	 * similar performance to added complexity to the bulk allocator.
4291 	 */
4292 	if (static_branch_unlikely(&page_owner_inited))
4293 		goto failed;
4294 #endif
4295 
4296 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4297 	gfp &= gfp_allowed_mask;
4298 	alloc_gfp = gfp;
4299 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4300 		goto out;
4301 	gfp = alloc_gfp;
4302 
4303 	/* Find an allowed local zone that meets the low watermark. */
4304 	z = ac.preferred_zoneref;
4305 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4306 		unsigned long mark;
4307 
4308 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4309 		    !__cpuset_zone_allowed(zone, gfp)) {
4310 			continue;
4311 		}
4312 
4313 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4314 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4315 			goto failed;
4316 		}
4317 
4318 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4319 		if (zone_watermark_fast(zone, 0,  mark,
4320 				zonelist_zone_idx(ac.preferred_zoneref),
4321 				alloc_flags, gfp)) {
4322 			break;
4323 		}
4324 	}
4325 
4326 	/*
4327 	 * If there are no allowed local zones that meets the watermarks then
4328 	 * try to allocate a single page and reclaim if necessary.
4329 	 */
4330 	if (unlikely(!zone))
4331 		goto failed;
4332 
4333 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4334 	pcp_trylock_prepare(UP_flags);
4335 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4336 	if (!pcp)
4337 		goto failed_irq;
4338 
4339 	/* Attempt the batch allocation */
4340 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4341 	while (nr_populated < nr_pages) {
4342 
4343 		/* Skip existing pages */
4344 		if (page_array && page_array[nr_populated]) {
4345 			nr_populated++;
4346 			continue;
4347 		}
4348 
4349 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4350 								pcp, pcp_list);
4351 		if (unlikely(!page)) {
4352 			/* Try and allocate at least one page */
4353 			if (!nr_account) {
4354 				pcp_spin_unlock(pcp);
4355 				goto failed_irq;
4356 			}
4357 			break;
4358 		}
4359 		nr_account++;
4360 
4361 		prep_new_page(page, 0, gfp, 0);
4362 		if (page_list)
4363 			list_add(&page->lru, page_list);
4364 		else
4365 			page_array[nr_populated] = page;
4366 		nr_populated++;
4367 	}
4368 
4369 	pcp_spin_unlock(pcp);
4370 	pcp_trylock_finish(UP_flags);
4371 
4372 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4373 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4374 
4375 out:
4376 	return nr_populated;
4377 
4378 failed_irq:
4379 	pcp_trylock_finish(UP_flags);
4380 
4381 failed:
4382 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4383 	if (page) {
4384 		if (page_list)
4385 			list_add(&page->lru, page_list);
4386 		else
4387 			page_array[nr_populated] = page;
4388 		nr_populated++;
4389 	}
4390 
4391 	goto out;
4392 }
4393 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4394 
4395 /*
4396  * This is the 'heart' of the zoned buddy allocator.
4397  */
4398 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4399 							nodemask_t *nodemask)
4400 {
4401 	struct page *page;
4402 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4403 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4404 	struct alloc_context ac = { };
4405 
4406 	/*
4407 	 * There are several places where we assume that the order value is sane
4408 	 * so bail out early if the request is out of bound.
4409 	 */
4410 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4411 		return NULL;
4412 
4413 	gfp &= gfp_allowed_mask;
4414 	/*
4415 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4416 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4417 	 * from a particular context which has been marked by
4418 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4419 	 * movable zones are not used during allocation.
4420 	 */
4421 	gfp = current_gfp_context(gfp);
4422 	alloc_gfp = gfp;
4423 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4424 			&alloc_gfp, &alloc_flags))
4425 		return NULL;
4426 
4427 	/*
4428 	 * Forbid the first pass from falling back to types that fragment
4429 	 * memory until all local zones are considered.
4430 	 */
4431 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4432 
4433 	/* First allocation attempt */
4434 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4435 	if (likely(page))
4436 		goto out;
4437 
4438 	alloc_gfp = gfp;
4439 	ac.spread_dirty_pages = false;
4440 
4441 	/*
4442 	 * Restore the original nodemask if it was potentially replaced with
4443 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4444 	 */
4445 	ac.nodemask = nodemask;
4446 
4447 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4448 
4449 out:
4450 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4451 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4452 		__free_pages(page, order);
4453 		page = NULL;
4454 	}
4455 
4456 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4457 	kmsan_alloc_page(page, order, alloc_gfp);
4458 
4459 	return page;
4460 }
4461 EXPORT_SYMBOL(__alloc_pages);
4462 
4463 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4464 		nodemask_t *nodemask)
4465 {
4466 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4467 					preferred_nid, nodemask);
4468 	return page_rmappable_folio(page);
4469 }
4470 EXPORT_SYMBOL(__folio_alloc);
4471 
4472 /*
4473  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4474  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4475  * you need to access high mem.
4476  */
4477 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4478 {
4479 	struct page *page;
4480 
4481 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4482 	if (!page)
4483 		return 0;
4484 	return (unsigned long) page_address(page);
4485 }
4486 EXPORT_SYMBOL(__get_free_pages);
4487 
4488 unsigned long get_zeroed_page(gfp_t gfp_mask)
4489 {
4490 	return __get_free_page(gfp_mask | __GFP_ZERO);
4491 }
4492 EXPORT_SYMBOL(get_zeroed_page);
4493 
4494 /**
4495  * __free_pages - Free pages allocated with alloc_pages().
4496  * @page: The page pointer returned from alloc_pages().
4497  * @order: The order of the allocation.
4498  *
4499  * This function can free multi-page allocations that are not compound
4500  * pages.  It does not check that the @order passed in matches that of
4501  * the allocation, so it is easy to leak memory.  Freeing more memory
4502  * than was allocated will probably emit a warning.
4503  *
4504  * If the last reference to this page is speculative, it will be released
4505  * by put_page() which only frees the first page of a non-compound
4506  * allocation.  To prevent the remaining pages from being leaked, we free
4507  * the subsequent pages here.  If you want to use the page's reference
4508  * count to decide when to free the allocation, you should allocate a
4509  * compound page, and use put_page() instead of __free_pages().
4510  *
4511  * Context: May be called in interrupt context or while holding a normal
4512  * spinlock, but not in NMI context or while holding a raw spinlock.
4513  */
4514 void __free_pages(struct page *page, unsigned int order)
4515 {
4516 	/* get PageHead before we drop reference */
4517 	int head = PageHead(page);
4518 
4519 	if (put_page_testzero(page))
4520 		free_the_page(page, order);
4521 	else if (!head)
4522 		while (order-- > 0)
4523 			free_the_page(page + (1 << order), order);
4524 }
4525 EXPORT_SYMBOL(__free_pages);
4526 
4527 void free_pages(unsigned long addr, unsigned int order)
4528 {
4529 	if (addr != 0) {
4530 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4531 		__free_pages(virt_to_page((void *)addr), order);
4532 	}
4533 }
4534 
4535 EXPORT_SYMBOL(free_pages);
4536 
4537 /*
4538  * Page Fragment:
4539  *  An arbitrary-length arbitrary-offset area of memory which resides
4540  *  within a 0 or higher order page.  Multiple fragments within that page
4541  *  are individually refcounted, in the page's reference counter.
4542  *
4543  * The page_frag functions below provide a simple allocation framework for
4544  * page fragments.  This is used by the network stack and network device
4545  * drivers to provide a backing region of memory for use as either an
4546  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4547  */
4548 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4549 					     gfp_t gfp_mask)
4550 {
4551 	struct page *page = NULL;
4552 	gfp_t gfp = gfp_mask;
4553 
4554 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4555 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4556 		    __GFP_NOMEMALLOC;
4557 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4558 				PAGE_FRAG_CACHE_MAX_ORDER);
4559 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4560 #endif
4561 	if (unlikely(!page))
4562 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4563 
4564 	nc->va = page ? page_address(page) : NULL;
4565 
4566 	return page;
4567 }
4568 
4569 void __page_frag_cache_drain(struct page *page, unsigned int count)
4570 {
4571 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4572 
4573 	if (page_ref_sub_and_test(page, count))
4574 		free_the_page(page, compound_order(page));
4575 }
4576 EXPORT_SYMBOL(__page_frag_cache_drain);
4577 
4578 void *page_frag_alloc_align(struct page_frag_cache *nc,
4579 		      unsigned int fragsz, gfp_t gfp_mask,
4580 		      unsigned int align_mask)
4581 {
4582 	unsigned int size = PAGE_SIZE;
4583 	struct page *page;
4584 	int offset;
4585 
4586 	if (unlikely(!nc->va)) {
4587 refill:
4588 		page = __page_frag_cache_refill(nc, gfp_mask);
4589 		if (!page)
4590 			return NULL;
4591 
4592 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4593 		/* if size can vary use size else just use PAGE_SIZE */
4594 		size = nc->size;
4595 #endif
4596 		/* Even if we own the page, we do not use atomic_set().
4597 		 * This would break get_page_unless_zero() users.
4598 		 */
4599 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4600 
4601 		/* reset page count bias and offset to start of new frag */
4602 		nc->pfmemalloc = page_is_pfmemalloc(page);
4603 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4604 		nc->offset = size;
4605 	}
4606 
4607 	offset = nc->offset - fragsz;
4608 	if (unlikely(offset < 0)) {
4609 		page = virt_to_page(nc->va);
4610 
4611 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4612 			goto refill;
4613 
4614 		if (unlikely(nc->pfmemalloc)) {
4615 			free_the_page(page, compound_order(page));
4616 			goto refill;
4617 		}
4618 
4619 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4620 		/* if size can vary use size else just use PAGE_SIZE */
4621 		size = nc->size;
4622 #endif
4623 		/* OK, page count is 0, we can safely set it */
4624 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4625 
4626 		/* reset page count bias and offset to start of new frag */
4627 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4628 		offset = size - fragsz;
4629 		if (unlikely(offset < 0)) {
4630 			/*
4631 			 * The caller is trying to allocate a fragment
4632 			 * with fragsz > PAGE_SIZE but the cache isn't big
4633 			 * enough to satisfy the request, this may
4634 			 * happen in low memory conditions.
4635 			 * We don't release the cache page because
4636 			 * it could make memory pressure worse
4637 			 * so we simply return NULL here.
4638 			 */
4639 			return NULL;
4640 		}
4641 	}
4642 
4643 	nc->pagecnt_bias--;
4644 	offset &= align_mask;
4645 	nc->offset = offset;
4646 
4647 	return nc->va + offset;
4648 }
4649 EXPORT_SYMBOL(page_frag_alloc_align);
4650 
4651 /*
4652  * Frees a page fragment allocated out of either a compound or order 0 page.
4653  */
4654 void page_frag_free(void *addr)
4655 {
4656 	struct page *page = virt_to_head_page(addr);
4657 
4658 	if (unlikely(put_page_testzero(page)))
4659 		free_the_page(page, compound_order(page));
4660 }
4661 EXPORT_SYMBOL(page_frag_free);
4662 
4663 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4664 		size_t size)
4665 {
4666 	if (addr) {
4667 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4668 		struct page *page = virt_to_page((void *)addr);
4669 		struct page *last = page + nr;
4670 
4671 		split_page_owner(page, 1 << order);
4672 		split_page_memcg(page, 1 << order);
4673 		while (page < --last)
4674 			set_page_refcounted(last);
4675 
4676 		last = page + (1UL << order);
4677 		for (page += nr; page < last; page++)
4678 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4679 	}
4680 	return (void *)addr;
4681 }
4682 
4683 /**
4684  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4685  * @size: the number of bytes to allocate
4686  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4687  *
4688  * This function is similar to alloc_pages(), except that it allocates the
4689  * minimum number of pages to satisfy the request.  alloc_pages() can only
4690  * allocate memory in power-of-two pages.
4691  *
4692  * This function is also limited by MAX_ORDER.
4693  *
4694  * Memory allocated by this function must be released by free_pages_exact().
4695  *
4696  * Return: pointer to the allocated area or %NULL in case of error.
4697  */
4698 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4699 {
4700 	unsigned int order = get_order(size);
4701 	unsigned long addr;
4702 
4703 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4704 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4705 
4706 	addr = __get_free_pages(gfp_mask, order);
4707 	return make_alloc_exact(addr, order, size);
4708 }
4709 EXPORT_SYMBOL(alloc_pages_exact);
4710 
4711 /**
4712  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4713  *			   pages on a node.
4714  * @nid: the preferred node ID where memory should be allocated
4715  * @size: the number of bytes to allocate
4716  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4717  *
4718  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4719  * back.
4720  *
4721  * Return: pointer to the allocated area or %NULL in case of error.
4722  */
4723 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4724 {
4725 	unsigned int order = get_order(size);
4726 	struct page *p;
4727 
4728 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4729 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4730 
4731 	p = alloc_pages_node(nid, gfp_mask, order);
4732 	if (!p)
4733 		return NULL;
4734 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4735 }
4736 
4737 /**
4738  * free_pages_exact - release memory allocated via alloc_pages_exact()
4739  * @virt: the value returned by alloc_pages_exact.
4740  * @size: size of allocation, same value as passed to alloc_pages_exact().
4741  *
4742  * Release the memory allocated by a previous call to alloc_pages_exact.
4743  */
4744 void free_pages_exact(void *virt, size_t size)
4745 {
4746 	unsigned long addr = (unsigned long)virt;
4747 	unsigned long end = addr + PAGE_ALIGN(size);
4748 
4749 	while (addr < end) {
4750 		free_page(addr);
4751 		addr += PAGE_SIZE;
4752 	}
4753 }
4754 EXPORT_SYMBOL(free_pages_exact);
4755 
4756 /**
4757  * nr_free_zone_pages - count number of pages beyond high watermark
4758  * @offset: The zone index of the highest zone
4759  *
4760  * nr_free_zone_pages() counts the number of pages which are beyond the
4761  * high watermark within all zones at or below a given zone index.  For each
4762  * zone, the number of pages is calculated as:
4763  *
4764  *     nr_free_zone_pages = managed_pages - high_pages
4765  *
4766  * Return: number of pages beyond high watermark.
4767  */
4768 static unsigned long nr_free_zone_pages(int offset)
4769 {
4770 	struct zoneref *z;
4771 	struct zone *zone;
4772 
4773 	/* Just pick one node, since fallback list is circular */
4774 	unsigned long sum = 0;
4775 
4776 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4777 
4778 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4779 		unsigned long size = zone_managed_pages(zone);
4780 		unsigned long high = high_wmark_pages(zone);
4781 		if (size > high)
4782 			sum += size - high;
4783 	}
4784 
4785 	return sum;
4786 }
4787 
4788 /**
4789  * nr_free_buffer_pages - count number of pages beyond high watermark
4790  *
4791  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4792  * watermark within ZONE_DMA and ZONE_NORMAL.
4793  *
4794  * Return: number of pages beyond high watermark within ZONE_DMA and
4795  * ZONE_NORMAL.
4796  */
4797 unsigned long nr_free_buffer_pages(void)
4798 {
4799 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4800 }
4801 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4802 
4803 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4804 {
4805 	zoneref->zone = zone;
4806 	zoneref->zone_idx = zone_idx(zone);
4807 }
4808 
4809 /*
4810  * Builds allocation fallback zone lists.
4811  *
4812  * Add all populated zones of a node to the zonelist.
4813  */
4814 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4815 {
4816 	struct zone *zone;
4817 	enum zone_type zone_type = MAX_NR_ZONES;
4818 	int nr_zones = 0;
4819 
4820 	do {
4821 		zone_type--;
4822 		zone = pgdat->node_zones + zone_type;
4823 		if (populated_zone(zone)) {
4824 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4825 			check_highest_zone(zone_type);
4826 		}
4827 	} while (zone_type);
4828 
4829 	return nr_zones;
4830 }
4831 
4832 #ifdef CONFIG_NUMA
4833 
4834 static int __parse_numa_zonelist_order(char *s)
4835 {
4836 	/*
4837 	 * We used to support different zonelists modes but they turned
4838 	 * out to be just not useful. Let's keep the warning in place
4839 	 * if somebody still use the cmd line parameter so that we do
4840 	 * not fail it silently
4841 	 */
4842 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4843 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4844 		return -EINVAL;
4845 	}
4846 	return 0;
4847 }
4848 
4849 static char numa_zonelist_order[] = "Node";
4850 #define NUMA_ZONELIST_ORDER_LEN	16
4851 /*
4852  * sysctl handler for numa_zonelist_order
4853  */
4854 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4855 		void *buffer, size_t *length, loff_t *ppos)
4856 {
4857 	if (write)
4858 		return __parse_numa_zonelist_order(buffer);
4859 	return proc_dostring(table, write, buffer, length, ppos);
4860 }
4861 
4862 static int node_load[MAX_NUMNODES];
4863 
4864 /**
4865  * find_next_best_node - find the next node that should appear in a given node's fallback list
4866  * @node: node whose fallback list we're appending
4867  * @used_node_mask: nodemask_t of already used nodes
4868  *
4869  * We use a number of factors to determine which is the next node that should
4870  * appear on a given node's fallback list.  The node should not have appeared
4871  * already in @node's fallback list, and it should be the next closest node
4872  * according to the distance array (which contains arbitrary distance values
4873  * from each node to each node in the system), and should also prefer nodes
4874  * with no CPUs, since presumably they'll have very little allocation pressure
4875  * on them otherwise.
4876  *
4877  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4878  */
4879 int find_next_best_node(int node, nodemask_t *used_node_mask)
4880 {
4881 	int n, val;
4882 	int min_val = INT_MAX;
4883 	int best_node = NUMA_NO_NODE;
4884 
4885 	/* Use the local node if we haven't already */
4886 	if (!node_isset(node, *used_node_mask)) {
4887 		node_set(node, *used_node_mask);
4888 		return node;
4889 	}
4890 
4891 	for_each_node_state(n, N_MEMORY) {
4892 
4893 		/* Don't want a node to appear more than once */
4894 		if (node_isset(n, *used_node_mask))
4895 			continue;
4896 
4897 		/* Use the distance array to find the distance */
4898 		val = node_distance(node, n);
4899 
4900 		/* Penalize nodes under us ("prefer the next node") */
4901 		val += (n < node);
4902 
4903 		/* Give preference to headless and unused nodes */
4904 		if (!cpumask_empty(cpumask_of_node(n)))
4905 			val += PENALTY_FOR_NODE_WITH_CPUS;
4906 
4907 		/* Slight preference for less loaded node */
4908 		val *= MAX_NUMNODES;
4909 		val += node_load[n];
4910 
4911 		if (val < min_val) {
4912 			min_val = val;
4913 			best_node = n;
4914 		}
4915 	}
4916 
4917 	if (best_node >= 0)
4918 		node_set(best_node, *used_node_mask);
4919 
4920 	return best_node;
4921 }
4922 
4923 
4924 /*
4925  * Build zonelists ordered by node and zones within node.
4926  * This results in maximum locality--normal zone overflows into local
4927  * DMA zone, if any--but risks exhausting DMA zone.
4928  */
4929 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4930 		unsigned nr_nodes)
4931 {
4932 	struct zoneref *zonerefs;
4933 	int i;
4934 
4935 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4936 
4937 	for (i = 0; i < nr_nodes; i++) {
4938 		int nr_zones;
4939 
4940 		pg_data_t *node = NODE_DATA(node_order[i]);
4941 
4942 		nr_zones = build_zonerefs_node(node, zonerefs);
4943 		zonerefs += nr_zones;
4944 	}
4945 	zonerefs->zone = NULL;
4946 	zonerefs->zone_idx = 0;
4947 }
4948 
4949 /*
4950  * Build gfp_thisnode zonelists
4951  */
4952 static void build_thisnode_zonelists(pg_data_t *pgdat)
4953 {
4954 	struct zoneref *zonerefs;
4955 	int nr_zones;
4956 
4957 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4958 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4959 	zonerefs += nr_zones;
4960 	zonerefs->zone = NULL;
4961 	zonerefs->zone_idx = 0;
4962 }
4963 
4964 /*
4965  * Build zonelists ordered by zone and nodes within zones.
4966  * This results in conserving DMA zone[s] until all Normal memory is
4967  * exhausted, but results in overflowing to remote node while memory
4968  * may still exist in local DMA zone.
4969  */
4970 
4971 static void build_zonelists(pg_data_t *pgdat)
4972 {
4973 	static int node_order[MAX_NUMNODES];
4974 	int node, nr_nodes = 0;
4975 	nodemask_t used_mask = NODE_MASK_NONE;
4976 	int local_node, prev_node;
4977 
4978 	/* NUMA-aware ordering of nodes */
4979 	local_node = pgdat->node_id;
4980 	prev_node = local_node;
4981 
4982 	memset(node_order, 0, sizeof(node_order));
4983 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4984 		/*
4985 		 * We don't want to pressure a particular node.
4986 		 * So adding penalty to the first node in same
4987 		 * distance group to make it round-robin.
4988 		 */
4989 		if (node_distance(local_node, node) !=
4990 		    node_distance(local_node, prev_node))
4991 			node_load[node] += 1;
4992 
4993 		node_order[nr_nodes++] = node;
4994 		prev_node = node;
4995 	}
4996 
4997 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
4998 	build_thisnode_zonelists(pgdat);
4999 	pr_info("Fallback order for Node %d: ", local_node);
5000 	for (node = 0; node < nr_nodes; node++)
5001 		pr_cont("%d ", node_order[node]);
5002 	pr_cont("\n");
5003 }
5004 
5005 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5006 /*
5007  * Return node id of node used for "local" allocations.
5008  * I.e., first node id of first zone in arg node's generic zonelist.
5009  * Used for initializing percpu 'numa_mem', which is used primarily
5010  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5011  */
5012 int local_memory_node(int node)
5013 {
5014 	struct zoneref *z;
5015 
5016 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5017 				   gfp_zone(GFP_KERNEL),
5018 				   NULL);
5019 	return zone_to_nid(z->zone);
5020 }
5021 #endif
5022 
5023 static void setup_min_unmapped_ratio(void);
5024 static void setup_min_slab_ratio(void);
5025 #else	/* CONFIG_NUMA */
5026 
5027 static void build_zonelists(pg_data_t *pgdat)
5028 {
5029 	int node, local_node;
5030 	struct zoneref *zonerefs;
5031 	int nr_zones;
5032 
5033 	local_node = pgdat->node_id;
5034 
5035 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5036 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5037 	zonerefs += nr_zones;
5038 
5039 	/*
5040 	 * Now we build the zonelist so that it contains the zones
5041 	 * of all the other nodes.
5042 	 * We don't want to pressure a particular node, so when
5043 	 * building the zones for node N, we make sure that the
5044 	 * zones coming right after the local ones are those from
5045 	 * node N+1 (modulo N)
5046 	 */
5047 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5048 		if (!node_online(node))
5049 			continue;
5050 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5051 		zonerefs += nr_zones;
5052 	}
5053 	for (node = 0; node < local_node; node++) {
5054 		if (!node_online(node))
5055 			continue;
5056 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5057 		zonerefs += nr_zones;
5058 	}
5059 
5060 	zonerefs->zone = NULL;
5061 	zonerefs->zone_idx = 0;
5062 }
5063 
5064 #endif	/* CONFIG_NUMA */
5065 
5066 /*
5067  * Boot pageset table. One per cpu which is going to be used for all
5068  * zones and all nodes. The parameters will be set in such a way
5069  * that an item put on a list will immediately be handed over to
5070  * the buddy list. This is safe since pageset manipulation is done
5071  * with interrupts disabled.
5072  *
5073  * The boot_pagesets must be kept even after bootup is complete for
5074  * unused processors and/or zones. They do play a role for bootstrapping
5075  * hotplugged processors.
5076  *
5077  * zoneinfo_show() and maybe other functions do
5078  * not check if the processor is online before following the pageset pointer.
5079  * Other parts of the kernel may not check if the zone is available.
5080  */
5081 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5082 /* These effectively disable the pcplists in the boot pageset completely */
5083 #define BOOT_PAGESET_HIGH	0
5084 #define BOOT_PAGESET_BATCH	1
5085 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5086 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5087 
5088 static void __build_all_zonelists(void *data)
5089 {
5090 	int nid;
5091 	int __maybe_unused cpu;
5092 	pg_data_t *self = data;
5093 	unsigned long flags;
5094 
5095 	/*
5096 	 * The zonelist_update_seq must be acquired with irqsave because the
5097 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5098 	 */
5099 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5100 	/*
5101 	 * Also disable synchronous printk() to prevent any printk() from
5102 	 * trying to hold port->lock, for
5103 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5104 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5105 	 */
5106 	printk_deferred_enter();
5107 
5108 #ifdef CONFIG_NUMA
5109 	memset(node_load, 0, sizeof(node_load));
5110 #endif
5111 
5112 	/*
5113 	 * This node is hotadded and no memory is yet present.   So just
5114 	 * building zonelists is fine - no need to touch other nodes.
5115 	 */
5116 	if (self && !node_online(self->node_id)) {
5117 		build_zonelists(self);
5118 	} else {
5119 		/*
5120 		 * All possible nodes have pgdat preallocated
5121 		 * in free_area_init
5122 		 */
5123 		for_each_node(nid) {
5124 			pg_data_t *pgdat = NODE_DATA(nid);
5125 
5126 			build_zonelists(pgdat);
5127 		}
5128 
5129 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5130 		/*
5131 		 * We now know the "local memory node" for each node--
5132 		 * i.e., the node of the first zone in the generic zonelist.
5133 		 * Set up numa_mem percpu variable for on-line cpus.  During
5134 		 * boot, only the boot cpu should be on-line;  we'll init the
5135 		 * secondary cpus' numa_mem as they come on-line.  During
5136 		 * node/memory hotplug, we'll fixup all on-line cpus.
5137 		 */
5138 		for_each_online_cpu(cpu)
5139 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5140 #endif
5141 	}
5142 
5143 	printk_deferred_exit();
5144 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5145 }
5146 
5147 static noinline void __init
5148 build_all_zonelists_init(void)
5149 {
5150 	int cpu;
5151 
5152 	__build_all_zonelists(NULL);
5153 
5154 	/*
5155 	 * Initialize the boot_pagesets that are going to be used
5156 	 * for bootstrapping processors. The real pagesets for
5157 	 * each zone will be allocated later when the per cpu
5158 	 * allocator is available.
5159 	 *
5160 	 * boot_pagesets are used also for bootstrapping offline
5161 	 * cpus if the system is already booted because the pagesets
5162 	 * are needed to initialize allocators on a specific cpu too.
5163 	 * F.e. the percpu allocator needs the page allocator which
5164 	 * needs the percpu allocator in order to allocate its pagesets
5165 	 * (a chicken-egg dilemma).
5166 	 */
5167 	for_each_possible_cpu(cpu)
5168 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5169 
5170 	mminit_verify_zonelist();
5171 	cpuset_init_current_mems_allowed();
5172 }
5173 
5174 /*
5175  * unless system_state == SYSTEM_BOOTING.
5176  *
5177  * __ref due to call of __init annotated helper build_all_zonelists_init
5178  * [protected by SYSTEM_BOOTING].
5179  */
5180 void __ref build_all_zonelists(pg_data_t *pgdat)
5181 {
5182 	unsigned long vm_total_pages;
5183 
5184 	if (system_state == SYSTEM_BOOTING) {
5185 		build_all_zonelists_init();
5186 	} else {
5187 		__build_all_zonelists(pgdat);
5188 		/* cpuset refresh routine should be here */
5189 	}
5190 	/* Get the number of free pages beyond high watermark in all zones. */
5191 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5192 	/*
5193 	 * Disable grouping by mobility if the number of pages in the
5194 	 * system is too low to allow the mechanism to work. It would be
5195 	 * more accurate, but expensive to check per-zone. This check is
5196 	 * made on memory-hotadd so a system can start with mobility
5197 	 * disabled and enable it later
5198 	 */
5199 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5200 		page_group_by_mobility_disabled = 1;
5201 	else
5202 		page_group_by_mobility_disabled = 0;
5203 
5204 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5205 		nr_online_nodes,
5206 		page_group_by_mobility_disabled ? "off" : "on",
5207 		vm_total_pages);
5208 #ifdef CONFIG_NUMA
5209 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5210 #endif
5211 }
5212 
5213 static int zone_batchsize(struct zone *zone)
5214 {
5215 #ifdef CONFIG_MMU
5216 	int batch;
5217 
5218 	/*
5219 	 * The number of pages to batch allocate is either ~0.1%
5220 	 * of the zone or 1MB, whichever is smaller. The batch
5221 	 * size is striking a balance between allocation latency
5222 	 * and zone lock contention.
5223 	 */
5224 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5225 	batch /= 4;		/* We effectively *= 4 below */
5226 	if (batch < 1)
5227 		batch = 1;
5228 
5229 	/*
5230 	 * Clamp the batch to a 2^n - 1 value. Having a power
5231 	 * of 2 value was found to be more likely to have
5232 	 * suboptimal cache aliasing properties in some cases.
5233 	 *
5234 	 * For example if 2 tasks are alternately allocating
5235 	 * batches of pages, one task can end up with a lot
5236 	 * of pages of one half of the possible page colors
5237 	 * and the other with pages of the other colors.
5238 	 */
5239 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5240 
5241 	return batch;
5242 
5243 #else
5244 	/* The deferral and batching of frees should be suppressed under NOMMU
5245 	 * conditions.
5246 	 *
5247 	 * The problem is that NOMMU needs to be able to allocate large chunks
5248 	 * of contiguous memory as there's no hardware page translation to
5249 	 * assemble apparent contiguous memory from discontiguous pages.
5250 	 *
5251 	 * Queueing large contiguous runs of pages for batching, however,
5252 	 * causes the pages to actually be freed in smaller chunks.  As there
5253 	 * can be a significant delay between the individual batches being
5254 	 * recycled, this leads to the once large chunks of space being
5255 	 * fragmented and becoming unavailable for high-order allocations.
5256 	 */
5257 	return 0;
5258 #endif
5259 }
5260 
5261 static int percpu_pagelist_high_fraction;
5262 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5263 {
5264 #ifdef CONFIG_MMU
5265 	int high;
5266 	int nr_split_cpus;
5267 	unsigned long total_pages;
5268 
5269 	if (!percpu_pagelist_high_fraction) {
5270 		/*
5271 		 * By default, the high value of the pcp is based on the zone
5272 		 * low watermark so that if they are full then background
5273 		 * reclaim will not be started prematurely.
5274 		 */
5275 		total_pages = low_wmark_pages(zone);
5276 	} else {
5277 		/*
5278 		 * If percpu_pagelist_high_fraction is configured, the high
5279 		 * value is based on a fraction of the managed pages in the
5280 		 * zone.
5281 		 */
5282 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5283 	}
5284 
5285 	/*
5286 	 * Split the high value across all online CPUs local to the zone. Note
5287 	 * that early in boot that CPUs may not be online yet and that during
5288 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5289 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5290 	 * all online CPUs to mitigate the risk that reclaim is triggered
5291 	 * prematurely due to pages stored on pcp lists.
5292 	 */
5293 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5294 	if (!nr_split_cpus)
5295 		nr_split_cpus = num_online_cpus();
5296 	high = total_pages / nr_split_cpus;
5297 
5298 	/*
5299 	 * Ensure high is at least batch*4. The multiple is based on the
5300 	 * historical relationship between high and batch.
5301 	 */
5302 	high = max(high, batch << 2);
5303 
5304 	return high;
5305 #else
5306 	return 0;
5307 #endif
5308 }
5309 
5310 /*
5311  * pcp->high and pcp->batch values are related and generally batch is lower
5312  * than high. They are also related to pcp->count such that count is lower
5313  * than high, and as soon as it reaches high, the pcplist is flushed.
5314  *
5315  * However, guaranteeing these relations at all times would require e.g. write
5316  * barriers here but also careful usage of read barriers at the read side, and
5317  * thus be prone to error and bad for performance. Thus the update only prevents
5318  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5319  * can cope with those fields changing asynchronously, and fully trust only the
5320  * pcp->count field on the local CPU with interrupts disabled.
5321  *
5322  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5323  * outside of boot time (or some other assurance that no concurrent updaters
5324  * exist).
5325  */
5326 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5327 		unsigned long batch)
5328 {
5329 	WRITE_ONCE(pcp->batch, batch);
5330 	WRITE_ONCE(pcp->high, high);
5331 }
5332 
5333 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5334 {
5335 	int pindex;
5336 
5337 	memset(pcp, 0, sizeof(*pcp));
5338 	memset(pzstats, 0, sizeof(*pzstats));
5339 
5340 	spin_lock_init(&pcp->lock);
5341 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5342 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5343 
5344 	/*
5345 	 * Set batch and high values safe for a boot pageset. A true percpu
5346 	 * pageset's initialization will update them subsequently. Here we don't
5347 	 * need to be as careful as pageset_update() as nobody can access the
5348 	 * pageset yet.
5349 	 */
5350 	pcp->high = BOOT_PAGESET_HIGH;
5351 	pcp->batch = BOOT_PAGESET_BATCH;
5352 	pcp->free_factor = 0;
5353 }
5354 
5355 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5356 		unsigned long batch)
5357 {
5358 	struct per_cpu_pages *pcp;
5359 	int cpu;
5360 
5361 	for_each_possible_cpu(cpu) {
5362 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5363 		pageset_update(pcp, high, batch);
5364 	}
5365 }
5366 
5367 /*
5368  * Calculate and set new high and batch values for all per-cpu pagesets of a
5369  * zone based on the zone's size.
5370  */
5371 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5372 {
5373 	int new_high, new_batch;
5374 
5375 	new_batch = max(1, zone_batchsize(zone));
5376 	new_high = zone_highsize(zone, new_batch, cpu_online);
5377 
5378 	if (zone->pageset_high == new_high &&
5379 	    zone->pageset_batch == new_batch)
5380 		return;
5381 
5382 	zone->pageset_high = new_high;
5383 	zone->pageset_batch = new_batch;
5384 
5385 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5386 }
5387 
5388 void __meminit setup_zone_pageset(struct zone *zone)
5389 {
5390 	int cpu;
5391 
5392 	/* Size may be 0 on !SMP && !NUMA */
5393 	if (sizeof(struct per_cpu_zonestat) > 0)
5394 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5395 
5396 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5397 	for_each_possible_cpu(cpu) {
5398 		struct per_cpu_pages *pcp;
5399 		struct per_cpu_zonestat *pzstats;
5400 
5401 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5402 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5403 		per_cpu_pages_init(pcp, pzstats);
5404 	}
5405 
5406 	zone_set_pageset_high_and_batch(zone, 0);
5407 }
5408 
5409 /*
5410  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5411  * page high values need to be recalculated.
5412  */
5413 static void zone_pcp_update(struct zone *zone, int cpu_online)
5414 {
5415 	mutex_lock(&pcp_batch_high_lock);
5416 	zone_set_pageset_high_and_batch(zone, cpu_online);
5417 	mutex_unlock(&pcp_batch_high_lock);
5418 }
5419 
5420 /*
5421  * Allocate per cpu pagesets and initialize them.
5422  * Before this call only boot pagesets were available.
5423  */
5424 void __init setup_per_cpu_pageset(void)
5425 {
5426 	struct pglist_data *pgdat;
5427 	struct zone *zone;
5428 	int __maybe_unused cpu;
5429 
5430 	for_each_populated_zone(zone)
5431 		setup_zone_pageset(zone);
5432 
5433 #ifdef CONFIG_NUMA
5434 	/*
5435 	 * Unpopulated zones continue using the boot pagesets.
5436 	 * The numa stats for these pagesets need to be reset.
5437 	 * Otherwise, they will end up skewing the stats of
5438 	 * the nodes these zones are associated with.
5439 	 */
5440 	for_each_possible_cpu(cpu) {
5441 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5442 		memset(pzstats->vm_numa_event, 0,
5443 		       sizeof(pzstats->vm_numa_event));
5444 	}
5445 #endif
5446 
5447 	for_each_online_pgdat(pgdat)
5448 		pgdat->per_cpu_nodestats =
5449 			alloc_percpu(struct per_cpu_nodestat);
5450 }
5451 
5452 __meminit void zone_pcp_init(struct zone *zone)
5453 {
5454 	/*
5455 	 * per cpu subsystem is not up at this point. The following code
5456 	 * relies on the ability of the linker to provide the
5457 	 * offset of a (static) per cpu variable into the per cpu area.
5458 	 */
5459 	zone->per_cpu_pageset = &boot_pageset;
5460 	zone->per_cpu_zonestats = &boot_zonestats;
5461 	zone->pageset_high = BOOT_PAGESET_HIGH;
5462 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5463 
5464 	if (populated_zone(zone))
5465 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5466 			 zone->present_pages, zone_batchsize(zone));
5467 }
5468 
5469 void adjust_managed_page_count(struct page *page, long count)
5470 {
5471 	atomic_long_add(count, &page_zone(page)->managed_pages);
5472 	totalram_pages_add(count);
5473 #ifdef CONFIG_HIGHMEM
5474 	if (PageHighMem(page))
5475 		totalhigh_pages_add(count);
5476 #endif
5477 }
5478 EXPORT_SYMBOL(adjust_managed_page_count);
5479 
5480 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5481 {
5482 	void *pos;
5483 	unsigned long pages = 0;
5484 
5485 	start = (void *)PAGE_ALIGN((unsigned long)start);
5486 	end = (void *)((unsigned long)end & PAGE_MASK);
5487 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5488 		struct page *page = virt_to_page(pos);
5489 		void *direct_map_addr;
5490 
5491 		/*
5492 		 * 'direct_map_addr' might be different from 'pos'
5493 		 * because some architectures' virt_to_page()
5494 		 * work with aliases.  Getting the direct map
5495 		 * address ensures that we get a _writeable_
5496 		 * alias for the memset().
5497 		 */
5498 		direct_map_addr = page_address(page);
5499 		/*
5500 		 * Perform a kasan-unchecked memset() since this memory
5501 		 * has not been initialized.
5502 		 */
5503 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5504 		if ((unsigned int)poison <= 0xFF)
5505 			memset(direct_map_addr, poison, PAGE_SIZE);
5506 
5507 		free_reserved_page(page);
5508 	}
5509 
5510 	if (pages && s)
5511 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5512 
5513 	return pages;
5514 }
5515 
5516 static int page_alloc_cpu_dead(unsigned int cpu)
5517 {
5518 	struct zone *zone;
5519 
5520 	lru_add_drain_cpu(cpu);
5521 	mlock_drain_remote(cpu);
5522 	drain_pages(cpu);
5523 
5524 	/*
5525 	 * Spill the event counters of the dead processor
5526 	 * into the current processors event counters.
5527 	 * This artificially elevates the count of the current
5528 	 * processor.
5529 	 */
5530 	vm_events_fold_cpu(cpu);
5531 
5532 	/*
5533 	 * Zero the differential counters of the dead processor
5534 	 * so that the vm statistics are consistent.
5535 	 *
5536 	 * This is only okay since the processor is dead and cannot
5537 	 * race with what we are doing.
5538 	 */
5539 	cpu_vm_stats_fold(cpu);
5540 
5541 	for_each_populated_zone(zone)
5542 		zone_pcp_update(zone, 0);
5543 
5544 	return 0;
5545 }
5546 
5547 static int page_alloc_cpu_online(unsigned int cpu)
5548 {
5549 	struct zone *zone;
5550 
5551 	for_each_populated_zone(zone)
5552 		zone_pcp_update(zone, 1);
5553 	return 0;
5554 }
5555 
5556 void __init page_alloc_init_cpuhp(void)
5557 {
5558 	int ret;
5559 
5560 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5561 					"mm/page_alloc:pcp",
5562 					page_alloc_cpu_online,
5563 					page_alloc_cpu_dead);
5564 	WARN_ON(ret < 0);
5565 }
5566 
5567 /*
5568  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5569  *	or min_free_kbytes changes.
5570  */
5571 static void calculate_totalreserve_pages(void)
5572 {
5573 	struct pglist_data *pgdat;
5574 	unsigned long reserve_pages = 0;
5575 	enum zone_type i, j;
5576 
5577 	for_each_online_pgdat(pgdat) {
5578 
5579 		pgdat->totalreserve_pages = 0;
5580 
5581 		for (i = 0; i < MAX_NR_ZONES; i++) {
5582 			struct zone *zone = pgdat->node_zones + i;
5583 			long max = 0;
5584 			unsigned long managed_pages = zone_managed_pages(zone);
5585 
5586 			/* Find valid and maximum lowmem_reserve in the zone */
5587 			for (j = i; j < MAX_NR_ZONES; j++) {
5588 				if (zone->lowmem_reserve[j] > max)
5589 					max = zone->lowmem_reserve[j];
5590 			}
5591 
5592 			/* we treat the high watermark as reserved pages. */
5593 			max += high_wmark_pages(zone);
5594 
5595 			if (max > managed_pages)
5596 				max = managed_pages;
5597 
5598 			pgdat->totalreserve_pages += max;
5599 
5600 			reserve_pages += max;
5601 		}
5602 	}
5603 	totalreserve_pages = reserve_pages;
5604 }
5605 
5606 /*
5607  * setup_per_zone_lowmem_reserve - called whenever
5608  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5609  *	has a correct pages reserved value, so an adequate number of
5610  *	pages are left in the zone after a successful __alloc_pages().
5611  */
5612 static void setup_per_zone_lowmem_reserve(void)
5613 {
5614 	struct pglist_data *pgdat;
5615 	enum zone_type i, j;
5616 
5617 	for_each_online_pgdat(pgdat) {
5618 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5619 			struct zone *zone = &pgdat->node_zones[i];
5620 			int ratio = sysctl_lowmem_reserve_ratio[i];
5621 			bool clear = !ratio || !zone_managed_pages(zone);
5622 			unsigned long managed_pages = 0;
5623 
5624 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5625 				struct zone *upper_zone = &pgdat->node_zones[j];
5626 
5627 				managed_pages += zone_managed_pages(upper_zone);
5628 
5629 				if (clear)
5630 					zone->lowmem_reserve[j] = 0;
5631 				else
5632 					zone->lowmem_reserve[j] = managed_pages / ratio;
5633 			}
5634 		}
5635 	}
5636 
5637 	/* update totalreserve_pages */
5638 	calculate_totalreserve_pages();
5639 }
5640 
5641 static void __setup_per_zone_wmarks(void)
5642 {
5643 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5644 	unsigned long lowmem_pages = 0;
5645 	struct zone *zone;
5646 	unsigned long flags;
5647 
5648 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5649 	for_each_zone(zone) {
5650 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5651 			lowmem_pages += zone_managed_pages(zone);
5652 	}
5653 
5654 	for_each_zone(zone) {
5655 		u64 tmp;
5656 
5657 		spin_lock_irqsave(&zone->lock, flags);
5658 		tmp = (u64)pages_min * zone_managed_pages(zone);
5659 		do_div(tmp, lowmem_pages);
5660 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5661 			/*
5662 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5663 			 * need highmem and movable zones pages, so cap pages_min
5664 			 * to a small  value here.
5665 			 *
5666 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5667 			 * deltas control async page reclaim, and so should
5668 			 * not be capped for highmem and movable zones.
5669 			 */
5670 			unsigned long min_pages;
5671 
5672 			min_pages = zone_managed_pages(zone) / 1024;
5673 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5674 			zone->_watermark[WMARK_MIN] = min_pages;
5675 		} else {
5676 			/*
5677 			 * If it's a lowmem zone, reserve a number of pages
5678 			 * proportionate to the zone's size.
5679 			 */
5680 			zone->_watermark[WMARK_MIN] = tmp;
5681 		}
5682 
5683 		/*
5684 		 * Set the kswapd watermarks distance according to the
5685 		 * scale factor in proportion to available memory, but
5686 		 * ensure a minimum size on small systems.
5687 		 */
5688 		tmp = max_t(u64, tmp >> 2,
5689 			    mult_frac(zone_managed_pages(zone),
5690 				      watermark_scale_factor, 10000));
5691 
5692 		zone->watermark_boost = 0;
5693 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5694 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5695 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5696 
5697 		spin_unlock_irqrestore(&zone->lock, flags);
5698 	}
5699 
5700 	/* update totalreserve_pages */
5701 	calculate_totalreserve_pages();
5702 }
5703 
5704 /**
5705  * setup_per_zone_wmarks - called when min_free_kbytes changes
5706  * or when memory is hot-{added|removed}
5707  *
5708  * Ensures that the watermark[min,low,high] values for each zone are set
5709  * correctly with respect to min_free_kbytes.
5710  */
5711 void setup_per_zone_wmarks(void)
5712 {
5713 	struct zone *zone;
5714 	static DEFINE_SPINLOCK(lock);
5715 
5716 	spin_lock(&lock);
5717 	__setup_per_zone_wmarks();
5718 	spin_unlock(&lock);
5719 
5720 	/*
5721 	 * The watermark size have changed so update the pcpu batch
5722 	 * and high limits or the limits may be inappropriate.
5723 	 */
5724 	for_each_zone(zone)
5725 		zone_pcp_update(zone, 0);
5726 }
5727 
5728 /*
5729  * Initialise min_free_kbytes.
5730  *
5731  * For small machines we want it small (128k min).  For large machines
5732  * we want it large (256MB max).  But it is not linear, because network
5733  * bandwidth does not increase linearly with machine size.  We use
5734  *
5735  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5736  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5737  *
5738  * which yields
5739  *
5740  * 16MB:	512k
5741  * 32MB:	724k
5742  * 64MB:	1024k
5743  * 128MB:	1448k
5744  * 256MB:	2048k
5745  * 512MB:	2896k
5746  * 1024MB:	4096k
5747  * 2048MB:	5792k
5748  * 4096MB:	8192k
5749  * 8192MB:	11584k
5750  * 16384MB:	16384k
5751  */
5752 void calculate_min_free_kbytes(void)
5753 {
5754 	unsigned long lowmem_kbytes;
5755 	int new_min_free_kbytes;
5756 
5757 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5758 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5759 
5760 	if (new_min_free_kbytes > user_min_free_kbytes)
5761 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5762 	else
5763 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5764 				new_min_free_kbytes, user_min_free_kbytes);
5765 
5766 }
5767 
5768 int __meminit init_per_zone_wmark_min(void)
5769 {
5770 	calculate_min_free_kbytes();
5771 	setup_per_zone_wmarks();
5772 	refresh_zone_stat_thresholds();
5773 	setup_per_zone_lowmem_reserve();
5774 
5775 #ifdef CONFIG_NUMA
5776 	setup_min_unmapped_ratio();
5777 	setup_min_slab_ratio();
5778 #endif
5779 
5780 	khugepaged_min_free_kbytes_update();
5781 
5782 	return 0;
5783 }
5784 postcore_initcall(init_per_zone_wmark_min)
5785 
5786 /*
5787  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5788  *	that we can call two helper functions whenever min_free_kbytes
5789  *	changes.
5790  */
5791 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5792 		void *buffer, size_t *length, loff_t *ppos)
5793 {
5794 	int rc;
5795 
5796 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5797 	if (rc)
5798 		return rc;
5799 
5800 	if (write) {
5801 		user_min_free_kbytes = min_free_kbytes;
5802 		setup_per_zone_wmarks();
5803 	}
5804 	return 0;
5805 }
5806 
5807 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5808 		void *buffer, size_t *length, loff_t *ppos)
5809 {
5810 	int rc;
5811 
5812 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5813 	if (rc)
5814 		return rc;
5815 
5816 	if (write)
5817 		setup_per_zone_wmarks();
5818 
5819 	return 0;
5820 }
5821 
5822 #ifdef CONFIG_NUMA
5823 static void setup_min_unmapped_ratio(void)
5824 {
5825 	pg_data_t *pgdat;
5826 	struct zone *zone;
5827 
5828 	for_each_online_pgdat(pgdat)
5829 		pgdat->min_unmapped_pages = 0;
5830 
5831 	for_each_zone(zone)
5832 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5833 						         sysctl_min_unmapped_ratio) / 100;
5834 }
5835 
5836 
5837 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5838 		void *buffer, size_t *length, loff_t *ppos)
5839 {
5840 	int rc;
5841 
5842 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5843 	if (rc)
5844 		return rc;
5845 
5846 	setup_min_unmapped_ratio();
5847 
5848 	return 0;
5849 }
5850 
5851 static void setup_min_slab_ratio(void)
5852 {
5853 	pg_data_t *pgdat;
5854 	struct zone *zone;
5855 
5856 	for_each_online_pgdat(pgdat)
5857 		pgdat->min_slab_pages = 0;
5858 
5859 	for_each_zone(zone)
5860 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5861 						     sysctl_min_slab_ratio) / 100;
5862 }
5863 
5864 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5865 		void *buffer, size_t *length, loff_t *ppos)
5866 {
5867 	int rc;
5868 
5869 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5870 	if (rc)
5871 		return rc;
5872 
5873 	setup_min_slab_ratio();
5874 
5875 	return 0;
5876 }
5877 #endif
5878 
5879 /*
5880  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5881  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5882  *	whenever sysctl_lowmem_reserve_ratio changes.
5883  *
5884  * The reserve ratio obviously has absolutely no relation with the
5885  * minimum watermarks. The lowmem reserve ratio can only make sense
5886  * if in function of the boot time zone sizes.
5887  */
5888 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5889 		int write, void *buffer, size_t *length, loff_t *ppos)
5890 {
5891 	int i;
5892 
5893 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5894 
5895 	for (i = 0; i < MAX_NR_ZONES; i++) {
5896 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5897 			sysctl_lowmem_reserve_ratio[i] = 0;
5898 	}
5899 
5900 	setup_per_zone_lowmem_reserve();
5901 	return 0;
5902 }
5903 
5904 /*
5905  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5906  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5907  * pagelist can have before it gets flushed back to buddy allocator.
5908  */
5909 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5910 		int write, void *buffer, size_t *length, loff_t *ppos)
5911 {
5912 	struct zone *zone;
5913 	int old_percpu_pagelist_high_fraction;
5914 	int ret;
5915 
5916 	mutex_lock(&pcp_batch_high_lock);
5917 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5918 
5919 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5920 	if (!write || ret < 0)
5921 		goto out;
5922 
5923 	/* Sanity checking to avoid pcp imbalance */
5924 	if (percpu_pagelist_high_fraction &&
5925 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5926 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5927 		ret = -EINVAL;
5928 		goto out;
5929 	}
5930 
5931 	/* No change? */
5932 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5933 		goto out;
5934 
5935 	for_each_populated_zone(zone)
5936 		zone_set_pageset_high_and_batch(zone, 0);
5937 out:
5938 	mutex_unlock(&pcp_batch_high_lock);
5939 	return ret;
5940 }
5941 
5942 static struct ctl_table page_alloc_sysctl_table[] = {
5943 	{
5944 		.procname	= "min_free_kbytes",
5945 		.data		= &min_free_kbytes,
5946 		.maxlen		= sizeof(min_free_kbytes),
5947 		.mode		= 0644,
5948 		.proc_handler	= min_free_kbytes_sysctl_handler,
5949 		.extra1		= SYSCTL_ZERO,
5950 	},
5951 	{
5952 		.procname	= "watermark_boost_factor",
5953 		.data		= &watermark_boost_factor,
5954 		.maxlen		= sizeof(watermark_boost_factor),
5955 		.mode		= 0644,
5956 		.proc_handler	= proc_dointvec_minmax,
5957 		.extra1		= SYSCTL_ZERO,
5958 	},
5959 	{
5960 		.procname	= "watermark_scale_factor",
5961 		.data		= &watermark_scale_factor,
5962 		.maxlen		= sizeof(watermark_scale_factor),
5963 		.mode		= 0644,
5964 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5965 		.extra1		= SYSCTL_ONE,
5966 		.extra2		= SYSCTL_THREE_THOUSAND,
5967 	},
5968 	{
5969 		.procname	= "percpu_pagelist_high_fraction",
5970 		.data		= &percpu_pagelist_high_fraction,
5971 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5972 		.mode		= 0644,
5973 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
5974 		.extra1		= SYSCTL_ZERO,
5975 	},
5976 	{
5977 		.procname	= "lowmem_reserve_ratio",
5978 		.data		= &sysctl_lowmem_reserve_ratio,
5979 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
5980 		.mode		= 0644,
5981 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
5982 	},
5983 #ifdef CONFIG_NUMA
5984 	{
5985 		.procname	= "numa_zonelist_order",
5986 		.data		= &numa_zonelist_order,
5987 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
5988 		.mode		= 0644,
5989 		.proc_handler	= numa_zonelist_order_handler,
5990 	},
5991 	{
5992 		.procname	= "min_unmapped_ratio",
5993 		.data		= &sysctl_min_unmapped_ratio,
5994 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
5995 		.mode		= 0644,
5996 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
5997 		.extra1		= SYSCTL_ZERO,
5998 		.extra2		= SYSCTL_ONE_HUNDRED,
5999 	},
6000 	{
6001 		.procname	= "min_slab_ratio",
6002 		.data		= &sysctl_min_slab_ratio,
6003 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6004 		.mode		= 0644,
6005 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6006 		.extra1		= SYSCTL_ZERO,
6007 		.extra2		= SYSCTL_ONE_HUNDRED,
6008 	},
6009 #endif
6010 	{}
6011 };
6012 
6013 void __init page_alloc_sysctl_init(void)
6014 {
6015 	register_sysctl_init("vm", page_alloc_sysctl_table);
6016 }
6017 
6018 #ifdef CONFIG_CONTIG_ALLOC
6019 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6020 static void alloc_contig_dump_pages(struct list_head *page_list)
6021 {
6022 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6023 
6024 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6025 		struct page *page;
6026 
6027 		dump_stack();
6028 		list_for_each_entry(page, page_list, lru)
6029 			dump_page(page, "migration failure");
6030 	}
6031 }
6032 
6033 /* [start, end) must belong to a single zone. */
6034 int __alloc_contig_migrate_range(struct compact_control *cc,
6035 					unsigned long start, unsigned long end)
6036 {
6037 	/* This function is based on compact_zone() from compaction.c. */
6038 	unsigned int nr_reclaimed;
6039 	unsigned long pfn = start;
6040 	unsigned int tries = 0;
6041 	int ret = 0;
6042 	struct migration_target_control mtc = {
6043 		.nid = zone_to_nid(cc->zone),
6044 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6045 	};
6046 
6047 	lru_cache_disable();
6048 
6049 	while (pfn < end || !list_empty(&cc->migratepages)) {
6050 		if (fatal_signal_pending(current)) {
6051 			ret = -EINTR;
6052 			break;
6053 		}
6054 
6055 		if (list_empty(&cc->migratepages)) {
6056 			cc->nr_migratepages = 0;
6057 			ret = isolate_migratepages_range(cc, pfn, end);
6058 			if (ret && ret != -EAGAIN)
6059 				break;
6060 			pfn = cc->migrate_pfn;
6061 			tries = 0;
6062 		} else if (++tries == 5) {
6063 			ret = -EBUSY;
6064 			break;
6065 		}
6066 
6067 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6068 							&cc->migratepages);
6069 		cc->nr_migratepages -= nr_reclaimed;
6070 
6071 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6072 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6073 
6074 		/*
6075 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6076 		 * to retry again over this error, so do the same here.
6077 		 */
6078 		if (ret == -ENOMEM)
6079 			break;
6080 	}
6081 
6082 	lru_cache_enable();
6083 	if (ret < 0) {
6084 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6085 			alloc_contig_dump_pages(&cc->migratepages);
6086 		putback_movable_pages(&cc->migratepages);
6087 		return ret;
6088 	}
6089 	return 0;
6090 }
6091 
6092 /**
6093  * alloc_contig_range() -- tries to allocate given range of pages
6094  * @start:	start PFN to allocate
6095  * @end:	one-past-the-last PFN to allocate
6096  * @migratetype:	migratetype of the underlying pageblocks (either
6097  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6098  *			in range must have the same migratetype and it must
6099  *			be either of the two.
6100  * @gfp_mask:	GFP mask to use during compaction
6101  *
6102  * The PFN range does not have to be pageblock aligned. The PFN range must
6103  * belong to a single zone.
6104  *
6105  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6106  * pageblocks in the range.  Once isolated, the pageblocks should not
6107  * be modified by others.
6108  *
6109  * Return: zero on success or negative error code.  On success all
6110  * pages which PFN is in [start, end) are allocated for the caller and
6111  * need to be freed with free_contig_range().
6112  */
6113 int alloc_contig_range(unsigned long start, unsigned long end,
6114 		       unsigned migratetype, gfp_t gfp_mask)
6115 {
6116 	unsigned long outer_start, outer_end;
6117 	int order;
6118 	int ret = 0;
6119 
6120 	struct compact_control cc = {
6121 		.nr_migratepages = 0,
6122 		.order = -1,
6123 		.zone = page_zone(pfn_to_page(start)),
6124 		.mode = MIGRATE_SYNC,
6125 		.ignore_skip_hint = true,
6126 		.no_set_skip_hint = true,
6127 		.gfp_mask = current_gfp_context(gfp_mask),
6128 		.alloc_contig = true,
6129 	};
6130 	INIT_LIST_HEAD(&cc.migratepages);
6131 
6132 	/*
6133 	 * What we do here is we mark all pageblocks in range as
6134 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6135 	 * have different sizes, and due to the way page allocator
6136 	 * work, start_isolate_page_range() has special handlings for this.
6137 	 *
6138 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6139 	 * migrate the pages from an unaligned range (ie. pages that
6140 	 * we are interested in). This will put all the pages in
6141 	 * range back to page allocator as MIGRATE_ISOLATE.
6142 	 *
6143 	 * When this is done, we take the pages in range from page
6144 	 * allocator removing them from the buddy system.  This way
6145 	 * page allocator will never consider using them.
6146 	 *
6147 	 * This lets us mark the pageblocks back as
6148 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6149 	 * aligned range but not in the unaligned, original range are
6150 	 * put back to page allocator so that buddy can use them.
6151 	 */
6152 
6153 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6154 	if (ret)
6155 		goto done;
6156 
6157 	drain_all_pages(cc.zone);
6158 
6159 	/*
6160 	 * In case of -EBUSY, we'd like to know which page causes problem.
6161 	 * So, just fall through. test_pages_isolated() has a tracepoint
6162 	 * which will report the busy page.
6163 	 *
6164 	 * It is possible that busy pages could become available before
6165 	 * the call to test_pages_isolated, and the range will actually be
6166 	 * allocated.  So, if we fall through be sure to clear ret so that
6167 	 * -EBUSY is not accidentally used or returned to caller.
6168 	 */
6169 	ret = __alloc_contig_migrate_range(&cc, start, end);
6170 	if (ret && ret != -EBUSY)
6171 		goto done;
6172 	ret = 0;
6173 
6174 	/*
6175 	 * Pages from [start, end) are within a pageblock_nr_pages
6176 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6177 	 * more, all pages in [start, end) are free in page allocator.
6178 	 * What we are going to do is to allocate all pages from
6179 	 * [start, end) (that is remove them from page allocator).
6180 	 *
6181 	 * The only problem is that pages at the beginning and at the
6182 	 * end of interesting range may be not aligned with pages that
6183 	 * page allocator holds, ie. they can be part of higher order
6184 	 * pages.  Because of this, we reserve the bigger range and
6185 	 * once this is done free the pages we are not interested in.
6186 	 *
6187 	 * We don't have to hold zone->lock here because the pages are
6188 	 * isolated thus they won't get removed from buddy.
6189 	 */
6190 
6191 	order = 0;
6192 	outer_start = start;
6193 	while (!PageBuddy(pfn_to_page(outer_start))) {
6194 		if (++order > MAX_ORDER) {
6195 			outer_start = start;
6196 			break;
6197 		}
6198 		outer_start &= ~0UL << order;
6199 	}
6200 
6201 	if (outer_start != start) {
6202 		order = buddy_order(pfn_to_page(outer_start));
6203 
6204 		/*
6205 		 * outer_start page could be small order buddy page and
6206 		 * it doesn't include start page. Adjust outer_start
6207 		 * in this case to report failed page properly
6208 		 * on tracepoint in test_pages_isolated()
6209 		 */
6210 		if (outer_start + (1UL << order) <= start)
6211 			outer_start = start;
6212 	}
6213 
6214 	/* Make sure the range is really isolated. */
6215 	if (test_pages_isolated(outer_start, end, 0)) {
6216 		ret = -EBUSY;
6217 		goto done;
6218 	}
6219 
6220 	/* Grab isolated pages from freelists. */
6221 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6222 	if (!outer_end) {
6223 		ret = -EBUSY;
6224 		goto done;
6225 	}
6226 
6227 	/* Free head and tail (if any) */
6228 	if (start != outer_start)
6229 		free_contig_range(outer_start, start - outer_start);
6230 	if (end != outer_end)
6231 		free_contig_range(end, outer_end - end);
6232 
6233 done:
6234 	undo_isolate_page_range(start, end, migratetype);
6235 	return ret;
6236 }
6237 EXPORT_SYMBOL(alloc_contig_range);
6238 
6239 static int __alloc_contig_pages(unsigned long start_pfn,
6240 				unsigned long nr_pages, gfp_t gfp_mask)
6241 {
6242 	unsigned long end_pfn = start_pfn + nr_pages;
6243 
6244 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6245 				  gfp_mask);
6246 }
6247 
6248 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6249 				   unsigned long nr_pages)
6250 {
6251 	unsigned long i, end_pfn = start_pfn + nr_pages;
6252 	struct page *page;
6253 
6254 	for (i = start_pfn; i < end_pfn; i++) {
6255 		page = pfn_to_online_page(i);
6256 		if (!page)
6257 			return false;
6258 
6259 		if (page_zone(page) != z)
6260 			return false;
6261 
6262 		if (PageReserved(page))
6263 			return false;
6264 
6265 		if (PageHuge(page))
6266 			return false;
6267 	}
6268 	return true;
6269 }
6270 
6271 static bool zone_spans_last_pfn(const struct zone *zone,
6272 				unsigned long start_pfn, unsigned long nr_pages)
6273 {
6274 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6275 
6276 	return zone_spans_pfn(zone, last_pfn);
6277 }
6278 
6279 /**
6280  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6281  * @nr_pages:	Number of contiguous pages to allocate
6282  * @gfp_mask:	GFP mask to limit search and used during compaction
6283  * @nid:	Target node
6284  * @nodemask:	Mask for other possible nodes
6285  *
6286  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6287  * on an applicable zonelist to find a contiguous pfn range which can then be
6288  * tried for allocation with alloc_contig_range(). This routine is intended
6289  * for allocation requests which can not be fulfilled with the buddy allocator.
6290  *
6291  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6292  * power of two, then allocated range is also guaranteed to be aligned to same
6293  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6294  *
6295  * Allocated pages can be freed with free_contig_range() or by manually calling
6296  * __free_page() on each allocated page.
6297  *
6298  * Return: pointer to contiguous pages on success, or NULL if not successful.
6299  */
6300 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6301 				int nid, nodemask_t *nodemask)
6302 {
6303 	unsigned long ret, pfn, flags;
6304 	struct zonelist *zonelist;
6305 	struct zone *zone;
6306 	struct zoneref *z;
6307 
6308 	zonelist = node_zonelist(nid, gfp_mask);
6309 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6310 					gfp_zone(gfp_mask), nodemask) {
6311 		spin_lock_irqsave(&zone->lock, flags);
6312 
6313 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6314 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6315 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6316 				/*
6317 				 * We release the zone lock here because
6318 				 * alloc_contig_range() will also lock the zone
6319 				 * at some point. If there's an allocation
6320 				 * spinning on this lock, it may win the race
6321 				 * and cause alloc_contig_range() to fail...
6322 				 */
6323 				spin_unlock_irqrestore(&zone->lock, flags);
6324 				ret = __alloc_contig_pages(pfn, nr_pages,
6325 							gfp_mask);
6326 				if (!ret)
6327 					return pfn_to_page(pfn);
6328 				spin_lock_irqsave(&zone->lock, flags);
6329 			}
6330 			pfn += nr_pages;
6331 		}
6332 		spin_unlock_irqrestore(&zone->lock, flags);
6333 	}
6334 	return NULL;
6335 }
6336 #endif /* CONFIG_CONTIG_ALLOC */
6337 
6338 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6339 {
6340 	unsigned long count = 0;
6341 
6342 	for (; nr_pages--; pfn++) {
6343 		struct page *page = pfn_to_page(pfn);
6344 
6345 		count += page_count(page) != 1;
6346 		__free_page(page);
6347 	}
6348 	WARN(count != 0, "%lu pages are still in use!\n", count);
6349 }
6350 EXPORT_SYMBOL(free_contig_range);
6351 
6352 /*
6353  * Effectively disable pcplists for the zone by setting the high limit to 0
6354  * and draining all cpus. A concurrent page freeing on another CPU that's about
6355  * to put the page on pcplist will either finish before the drain and the page
6356  * will be drained, or observe the new high limit and skip the pcplist.
6357  *
6358  * Must be paired with a call to zone_pcp_enable().
6359  */
6360 void zone_pcp_disable(struct zone *zone)
6361 {
6362 	mutex_lock(&pcp_batch_high_lock);
6363 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6364 	__drain_all_pages(zone, true);
6365 }
6366 
6367 void zone_pcp_enable(struct zone *zone)
6368 {
6369 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6370 	mutex_unlock(&pcp_batch_high_lock);
6371 }
6372 
6373 void zone_pcp_reset(struct zone *zone)
6374 {
6375 	int cpu;
6376 	struct per_cpu_zonestat *pzstats;
6377 
6378 	if (zone->per_cpu_pageset != &boot_pageset) {
6379 		for_each_online_cpu(cpu) {
6380 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6381 			drain_zonestat(zone, pzstats);
6382 		}
6383 		free_percpu(zone->per_cpu_pageset);
6384 		zone->per_cpu_pageset = &boot_pageset;
6385 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6386 			free_percpu(zone->per_cpu_zonestats);
6387 			zone->per_cpu_zonestats = &boot_zonestats;
6388 		}
6389 	}
6390 }
6391 
6392 #ifdef CONFIG_MEMORY_HOTREMOVE
6393 /*
6394  * All pages in the range must be in a single zone, must not contain holes,
6395  * must span full sections, and must be isolated before calling this function.
6396  */
6397 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6398 {
6399 	unsigned long pfn = start_pfn;
6400 	struct page *page;
6401 	struct zone *zone;
6402 	unsigned int order;
6403 	unsigned long flags;
6404 
6405 	offline_mem_sections(pfn, end_pfn);
6406 	zone = page_zone(pfn_to_page(pfn));
6407 	spin_lock_irqsave(&zone->lock, flags);
6408 	while (pfn < end_pfn) {
6409 		page = pfn_to_page(pfn);
6410 		/*
6411 		 * The HWPoisoned page may be not in buddy system, and
6412 		 * page_count() is not 0.
6413 		 */
6414 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6415 			pfn++;
6416 			continue;
6417 		}
6418 		/*
6419 		 * At this point all remaining PageOffline() pages have a
6420 		 * reference count of 0 and can simply be skipped.
6421 		 */
6422 		if (PageOffline(page)) {
6423 			BUG_ON(page_count(page));
6424 			BUG_ON(PageBuddy(page));
6425 			pfn++;
6426 			continue;
6427 		}
6428 
6429 		BUG_ON(page_count(page));
6430 		BUG_ON(!PageBuddy(page));
6431 		order = buddy_order(page);
6432 		del_page_from_free_list(page, zone, order);
6433 		pfn += (1 << order);
6434 	}
6435 	spin_unlock_irqrestore(&zone->lock, flags);
6436 }
6437 #endif
6438 
6439 /*
6440  * This function returns a stable result only if called under zone lock.
6441  */
6442 bool is_free_buddy_page(struct page *page)
6443 {
6444 	unsigned long pfn = page_to_pfn(page);
6445 	unsigned int order;
6446 
6447 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6448 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6449 
6450 		if (PageBuddy(page_head) &&
6451 		    buddy_order_unsafe(page_head) >= order)
6452 			break;
6453 	}
6454 
6455 	return order <= MAX_ORDER;
6456 }
6457 EXPORT_SYMBOL(is_free_buddy_page);
6458 
6459 #ifdef CONFIG_MEMORY_FAILURE
6460 /*
6461  * Break down a higher-order page in sub-pages, and keep our target out of
6462  * buddy allocator.
6463  */
6464 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6465 				   struct page *target, int low, int high,
6466 				   int migratetype)
6467 {
6468 	unsigned long size = 1 << high;
6469 	struct page *current_buddy, *next_page;
6470 
6471 	while (high > low) {
6472 		high--;
6473 		size >>= 1;
6474 
6475 		if (target >= &page[size]) {
6476 			next_page = page + size;
6477 			current_buddy = page;
6478 		} else {
6479 			next_page = page;
6480 			current_buddy = page + size;
6481 		}
6482 		page = next_page;
6483 
6484 		if (set_page_guard(zone, current_buddy, high, migratetype))
6485 			continue;
6486 
6487 		if (current_buddy != target) {
6488 			add_to_free_list(current_buddy, zone, high, migratetype);
6489 			set_buddy_order(current_buddy, high);
6490 		}
6491 	}
6492 }
6493 
6494 /*
6495  * Take a page that will be marked as poisoned off the buddy allocator.
6496  */
6497 bool take_page_off_buddy(struct page *page)
6498 {
6499 	struct zone *zone = page_zone(page);
6500 	unsigned long pfn = page_to_pfn(page);
6501 	unsigned long flags;
6502 	unsigned int order;
6503 	bool ret = false;
6504 
6505 	spin_lock_irqsave(&zone->lock, flags);
6506 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6507 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6508 		int page_order = buddy_order(page_head);
6509 
6510 		if (PageBuddy(page_head) && page_order >= order) {
6511 			unsigned long pfn_head = page_to_pfn(page_head);
6512 			int migratetype = get_pfnblock_migratetype(page_head,
6513 								   pfn_head);
6514 
6515 			del_page_from_free_list(page_head, zone, page_order);
6516 			break_down_buddy_pages(zone, page_head, page, 0,
6517 						page_order, migratetype);
6518 			SetPageHWPoisonTakenOff(page);
6519 			if (!is_migrate_isolate(migratetype))
6520 				__mod_zone_freepage_state(zone, -1, migratetype);
6521 			ret = true;
6522 			break;
6523 		}
6524 		if (page_count(page_head) > 0)
6525 			break;
6526 	}
6527 	spin_unlock_irqrestore(&zone->lock, flags);
6528 	return ret;
6529 }
6530 
6531 /*
6532  * Cancel takeoff done by take_page_off_buddy().
6533  */
6534 bool put_page_back_buddy(struct page *page)
6535 {
6536 	struct zone *zone = page_zone(page);
6537 	unsigned long pfn = page_to_pfn(page);
6538 	unsigned long flags;
6539 	int migratetype = get_pfnblock_migratetype(page, pfn);
6540 	bool ret = false;
6541 
6542 	spin_lock_irqsave(&zone->lock, flags);
6543 	if (put_page_testzero(page)) {
6544 		ClearPageHWPoisonTakenOff(page);
6545 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6546 		if (TestClearPageHWPoison(page)) {
6547 			ret = true;
6548 		}
6549 	}
6550 	spin_unlock_irqrestore(&zone->lock, flags);
6551 
6552 	return ret;
6553 }
6554 #endif
6555 
6556 #ifdef CONFIG_ZONE_DMA
6557 bool has_managed_dma(void)
6558 {
6559 	struct pglist_data *pgdat;
6560 
6561 	for_each_online_pgdat(pgdat) {
6562 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6563 
6564 		if (managed_zone(zone))
6565 			return true;
6566 	}
6567 	return false;
6568 }
6569 #endif /* CONFIG_ZONE_DMA */
6570 
6571 #ifdef CONFIG_UNACCEPTED_MEMORY
6572 
6573 /* Counts number of zones with unaccepted pages. */
6574 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6575 
6576 static bool lazy_accept = true;
6577 
6578 static int __init accept_memory_parse(char *p)
6579 {
6580 	if (!strcmp(p, "lazy")) {
6581 		lazy_accept = true;
6582 		return 0;
6583 	} else if (!strcmp(p, "eager")) {
6584 		lazy_accept = false;
6585 		return 0;
6586 	} else {
6587 		return -EINVAL;
6588 	}
6589 }
6590 early_param("accept_memory", accept_memory_parse);
6591 
6592 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6593 {
6594 	phys_addr_t start = page_to_phys(page);
6595 	phys_addr_t end = start + (PAGE_SIZE << order);
6596 
6597 	return range_contains_unaccepted_memory(start, end);
6598 }
6599 
6600 static void accept_page(struct page *page, unsigned int order)
6601 {
6602 	phys_addr_t start = page_to_phys(page);
6603 
6604 	accept_memory(start, start + (PAGE_SIZE << order));
6605 }
6606 
6607 static bool try_to_accept_memory_one(struct zone *zone)
6608 {
6609 	unsigned long flags;
6610 	struct page *page;
6611 	bool last;
6612 
6613 	spin_lock_irqsave(&zone->lock, flags);
6614 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6615 					struct page, lru);
6616 	if (!page) {
6617 		spin_unlock_irqrestore(&zone->lock, flags);
6618 		return false;
6619 	}
6620 
6621 	list_del(&page->lru);
6622 	last = list_empty(&zone->unaccepted_pages);
6623 
6624 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6625 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6626 	spin_unlock_irqrestore(&zone->lock, flags);
6627 
6628 	accept_page(page, MAX_ORDER);
6629 
6630 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6631 
6632 	if (last)
6633 		static_branch_dec(&zones_with_unaccepted_pages);
6634 
6635 	return true;
6636 }
6637 
6638 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6639 {
6640 	long to_accept;
6641 	bool ret = false;
6642 
6643 	if (!has_unaccepted_memory())
6644 		return false;
6645 
6646 	if (list_empty(&zone->unaccepted_pages))
6647 		return false;
6648 
6649 	/* How much to accept to get to high watermark? */
6650 	to_accept = high_wmark_pages(zone) -
6651 		    (zone_page_state(zone, NR_FREE_PAGES) -
6652 		    __zone_watermark_unusable_free(zone, order, 0) -
6653 		    zone_page_state(zone, NR_UNACCEPTED));
6654 
6655 	while (to_accept > 0) {
6656 		if (!try_to_accept_memory_one(zone))
6657 			break;
6658 		ret = true;
6659 		to_accept -= MAX_ORDER_NR_PAGES;
6660 	}
6661 
6662 	return ret;
6663 }
6664 
6665 static inline bool has_unaccepted_memory(void)
6666 {
6667 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6668 }
6669 
6670 static bool __free_unaccepted(struct page *page)
6671 {
6672 	struct zone *zone = page_zone(page);
6673 	unsigned long flags;
6674 	bool first = false;
6675 
6676 	if (!lazy_accept)
6677 		return false;
6678 
6679 	spin_lock_irqsave(&zone->lock, flags);
6680 	first = list_empty(&zone->unaccepted_pages);
6681 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6682 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6683 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6684 	spin_unlock_irqrestore(&zone->lock, flags);
6685 
6686 	if (first)
6687 		static_branch_inc(&zones_with_unaccepted_pages);
6688 
6689 	return true;
6690 }
6691 
6692 #else
6693 
6694 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6695 {
6696 	return false;
6697 }
6698 
6699 static void accept_page(struct page *page, unsigned int order)
6700 {
6701 }
6702 
6703 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6704 {
6705 	return false;
6706 }
6707 
6708 static inline bool has_unaccepted_memory(void)
6709 {
6710 	return false;
6711 }
6712 
6713 static bool __free_unaccepted(struct page *page)
6714 {
6715 	BUILD_BUG();
6716 	return false;
6717 }
6718 
6719 #endif /* CONFIG_UNACCEPTED_MEMORY */
6720