1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/memblock.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kasan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/ratelimit.h> 33 #include <linux/oom.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/vmstat.h> 42 #include <linux/mempolicy.h> 43 #include <linux/memremap.h> 44 #include <linux/stop_machine.h> 45 #include <linux/sort.h> 46 #include <linux/pfn.h> 47 #include <linux/backing-dev.h> 48 #include <linux/fault-inject.h> 49 #include <linux/page-isolation.h> 50 #include <linux/page_ext.h> 51 #include <linux/debugobjects.h> 52 #include <linux/kmemleak.h> 53 #include <linux/compaction.h> 54 #include <trace/events/kmem.h> 55 #include <trace/events/oom.h> 56 #include <linux/prefetch.h> 57 #include <linux/mm_inline.h> 58 #include <linux/migrate.h> 59 #include <linux/hugetlb.h> 60 #include <linux/sched/rt.h> 61 #include <linux/sched/mm.h> 62 #include <linux/page_owner.h> 63 #include <linux/kthread.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/lockdep.h> 67 #include <linux/nmi.h> 68 #include <linux/psi.h> 69 70 #include <asm/sections.h> 71 #include <asm/tlbflush.h> 72 #include <asm/div64.h> 73 #include "internal.h" 74 75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 76 static DEFINE_MUTEX(pcp_batch_high_lock); 77 #define MIN_PERCPU_PAGELIST_FRACTION (8) 78 79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 80 DEFINE_PER_CPU(int, numa_node); 81 EXPORT_PER_CPU_SYMBOL(numa_node); 82 #endif 83 84 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 85 86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 87 /* 88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 91 * defined in <linux/topology.h>. 92 */ 93 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 94 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 95 int _node_numa_mem_[MAX_NUMNODES]; 96 #endif 97 98 /* work_structs for global per-cpu drains */ 99 DEFINE_MUTEX(pcpu_drain_mutex); 100 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 101 102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 103 volatile unsigned long latent_entropy __latent_entropy; 104 EXPORT_SYMBOL(latent_entropy); 105 #endif 106 107 /* 108 * Array of node states. 109 */ 110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 111 [N_POSSIBLE] = NODE_MASK_ALL, 112 [N_ONLINE] = { { [0] = 1UL } }, 113 #ifndef CONFIG_NUMA 114 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 115 #ifdef CONFIG_HIGHMEM 116 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 117 #endif 118 [N_MEMORY] = { { [0] = 1UL } }, 119 [N_CPU] = { { [0] = 1UL } }, 120 #endif /* NUMA */ 121 }; 122 EXPORT_SYMBOL(node_states); 123 124 /* Protect totalram_pages and zone->managed_pages */ 125 static DEFINE_SPINLOCK(managed_page_count_lock); 126 127 unsigned long totalram_pages __read_mostly; 128 unsigned long totalreserve_pages __read_mostly; 129 unsigned long totalcma_pages __read_mostly; 130 131 int percpu_pagelist_fraction; 132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 133 134 /* 135 * A cached value of the page's pageblock's migratetype, used when the page is 136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 137 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 138 * Also the migratetype set in the page does not necessarily match the pcplist 139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 140 * other index - this ensures that it will be put on the correct CMA freelist. 141 */ 142 static inline int get_pcppage_migratetype(struct page *page) 143 { 144 return page->index; 145 } 146 147 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 148 { 149 page->index = migratetype; 150 } 151 152 #ifdef CONFIG_PM_SLEEP 153 /* 154 * The following functions are used by the suspend/hibernate code to temporarily 155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 156 * while devices are suspended. To avoid races with the suspend/hibernate code, 157 * they should always be called with system_transition_mutex held 158 * (gfp_allowed_mask also should only be modified with system_transition_mutex 159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 160 * with that modification). 161 */ 162 163 static gfp_t saved_gfp_mask; 164 165 void pm_restore_gfp_mask(void) 166 { 167 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 168 if (saved_gfp_mask) { 169 gfp_allowed_mask = saved_gfp_mask; 170 saved_gfp_mask = 0; 171 } 172 } 173 174 void pm_restrict_gfp_mask(void) 175 { 176 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 177 WARN_ON(saved_gfp_mask); 178 saved_gfp_mask = gfp_allowed_mask; 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 180 } 181 182 bool pm_suspended_storage(void) 183 { 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 185 return false; 186 return true; 187 } 188 #endif /* CONFIG_PM_SLEEP */ 189 190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 191 unsigned int pageblock_order __read_mostly; 192 #endif 193 194 static void __free_pages_ok(struct page *page, unsigned int order); 195 196 /* 197 * results with 256, 32 in the lowmem_reserve sysctl: 198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 199 * 1G machine -> (16M dma, 784M normal, 224M high) 200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 203 * 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally 205 * don't need any ZONE_NORMAL reservation 206 */ 207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 208 #ifdef CONFIG_ZONE_DMA 209 [ZONE_DMA] = 256, 210 #endif 211 #ifdef CONFIG_ZONE_DMA32 212 [ZONE_DMA32] = 256, 213 #endif 214 [ZONE_NORMAL] = 32, 215 #ifdef CONFIG_HIGHMEM 216 [ZONE_HIGHMEM] = 0, 217 #endif 218 [ZONE_MOVABLE] = 0, 219 }; 220 221 EXPORT_SYMBOL(totalram_pages); 222 223 static char * const zone_names[MAX_NR_ZONES] = { 224 #ifdef CONFIG_ZONE_DMA 225 "DMA", 226 #endif 227 #ifdef CONFIG_ZONE_DMA32 228 "DMA32", 229 #endif 230 "Normal", 231 #ifdef CONFIG_HIGHMEM 232 "HighMem", 233 #endif 234 "Movable", 235 #ifdef CONFIG_ZONE_DEVICE 236 "Device", 237 #endif 238 }; 239 240 char * const migratetype_names[MIGRATE_TYPES] = { 241 "Unmovable", 242 "Movable", 243 "Reclaimable", 244 "HighAtomic", 245 #ifdef CONFIG_CMA 246 "CMA", 247 #endif 248 #ifdef CONFIG_MEMORY_ISOLATION 249 "Isolate", 250 #endif 251 }; 252 253 compound_page_dtor * const compound_page_dtors[] = { 254 NULL, 255 free_compound_page, 256 #ifdef CONFIG_HUGETLB_PAGE 257 free_huge_page, 258 #endif 259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 260 free_transhuge_page, 261 #endif 262 }; 263 264 int min_free_kbytes = 1024; 265 int user_min_free_kbytes = -1; 266 int watermark_scale_factor = 10; 267 268 static unsigned long nr_kernel_pages __meminitdata; 269 static unsigned long nr_all_pages __meminitdata; 270 static unsigned long dma_reserve __meminitdata; 271 272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata; 274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata; 275 static unsigned long required_kernelcore __initdata; 276 static unsigned long required_kernelcore_percent __initdata; 277 static unsigned long required_movablecore __initdata; 278 static unsigned long required_movablecore_percent __initdata; 279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata; 280 static bool mirrored_kernelcore __meminitdata; 281 282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 283 int movable_zone; 284 EXPORT_SYMBOL(movable_zone); 285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 286 287 #if MAX_NUMNODES > 1 288 int nr_node_ids __read_mostly = MAX_NUMNODES; 289 int nr_online_nodes __read_mostly = 1; 290 EXPORT_SYMBOL(nr_node_ids); 291 EXPORT_SYMBOL(nr_online_nodes); 292 #endif 293 294 int page_group_by_mobility_disabled __read_mostly; 295 296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 297 /* Returns true if the struct page for the pfn is uninitialised */ 298 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 299 { 300 int nid = early_pfn_to_nid(pfn); 301 302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 303 return true; 304 305 return false; 306 } 307 308 /* 309 * Returns true when the remaining initialisation should be deferred until 310 * later in the boot cycle when it can be parallelised. 311 */ 312 static bool __meminit 313 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 314 { 315 static unsigned long prev_end_pfn, nr_initialised; 316 317 /* 318 * prev_end_pfn static that contains the end of previous zone 319 * No need to protect because called very early in boot before smp_init. 320 */ 321 if (prev_end_pfn != end_pfn) { 322 prev_end_pfn = end_pfn; 323 nr_initialised = 0; 324 } 325 326 /* Always populate low zones for address-constrained allocations */ 327 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 328 return false; 329 nr_initialised++; 330 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) && 331 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 332 NODE_DATA(nid)->first_deferred_pfn = pfn; 333 return true; 334 } 335 return false; 336 } 337 #else 338 static inline bool early_page_uninitialised(unsigned long pfn) 339 { 340 return false; 341 } 342 343 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 344 { 345 return false; 346 } 347 #endif 348 349 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 350 static inline unsigned long *get_pageblock_bitmap(struct page *page, 351 unsigned long pfn) 352 { 353 #ifdef CONFIG_SPARSEMEM 354 return __pfn_to_section(pfn)->pageblock_flags; 355 #else 356 return page_zone(page)->pageblock_flags; 357 #endif /* CONFIG_SPARSEMEM */ 358 } 359 360 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 361 { 362 #ifdef CONFIG_SPARSEMEM 363 pfn &= (PAGES_PER_SECTION-1); 364 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 365 #else 366 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 368 #endif /* CONFIG_SPARSEMEM */ 369 } 370 371 /** 372 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 373 * @page: The page within the block of interest 374 * @pfn: The target page frame number 375 * @end_bitidx: The last bit of interest to retrieve 376 * @mask: mask of bits that the caller is interested in 377 * 378 * Return: pageblock_bits flags 379 */ 380 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 381 unsigned long pfn, 382 unsigned long end_bitidx, 383 unsigned long mask) 384 { 385 unsigned long *bitmap; 386 unsigned long bitidx, word_bitidx; 387 unsigned long word; 388 389 bitmap = get_pageblock_bitmap(page, pfn); 390 bitidx = pfn_to_bitidx(page, pfn); 391 word_bitidx = bitidx / BITS_PER_LONG; 392 bitidx &= (BITS_PER_LONG-1); 393 394 word = bitmap[word_bitidx]; 395 bitidx += end_bitidx; 396 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 397 } 398 399 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 400 unsigned long end_bitidx, 401 unsigned long mask) 402 { 403 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 404 } 405 406 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 407 { 408 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 409 } 410 411 /** 412 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 413 * @page: The page within the block of interest 414 * @flags: The flags to set 415 * @pfn: The target page frame number 416 * @end_bitidx: The last bit of interest 417 * @mask: mask of bits that the caller is interested in 418 */ 419 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 420 unsigned long pfn, 421 unsigned long end_bitidx, 422 unsigned long mask) 423 { 424 unsigned long *bitmap; 425 unsigned long bitidx, word_bitidx; 426 unsigned long old_word, word; 427 428 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 429 430 bitmap = get_pageblock_bitmap(page, pfn); 431 bitidx = pfn_to_bitidx(page, pfn); 432 word_bitidx = bitidx / BITS_PER_LONG; 433 bitidx &= (BITS_PER_LONG-1); 434 435 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 436 437 bitidx += end_bitidx; 438 mask <<= (BITS_PER_LONG - bitidx - 1); 439 flags <<= (BITS_PER_LONG - bitidx - 1); 440 441 word = READ_ONCE(bitmap[word_bitidx]); 442 for (;;) { 443 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 444 if (word == old_word) 445 break; 446 word = old_word; 447 } 448 } 449 450 void set_pageblock_migratetype(struct page *page, int migratetype) 451 { 452 if (unlikely(page_group_by_mobility_disabled && 453 migratetype < MIGRATE_PCPTYPES)) 454 migratetype = MIGRATE_UNMOVABLE; 455 456 set_pageblock_flags_group(page, (unsigned long)migratetype, 457 PB_migrate, PB_migrate_end); 458 } 459 460 #ifdef CONFIG_DEBUG_VM 461 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 462 { 463 int ret = 0; 464 unsigned seq; 465 unsigned long pfn = page_to_pfn(page); 466 unsigned long sp, start_pfn; 467 468 do { 469 seq = zone_span_seqbegin(zone); 470 start_pfn = zone->zone_start_pfn; 471 sp = zone->spanned_pages; 472 if (!zone_spans_pfn(zone, pfn)) 473 ret = 1; 474 } while (zone_span_seqretry(zone, seq)); 475 476 if (ret) 477 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 478 pfn, zone_to_nid(zone), zone->name, 479 start_pfn, start_pfn + sp); 480 481 return ret; 482 } 483 484 static int page_is_consistent(struct zone *zone, struct page *page) 485 { 486 if (!pfn_valid_within(page_to_pfn(page))) 487 return 0; 488 if (zone != page_zone(page)) 489 return 0; 490 491 return 1; 492 } 493 /* 494 * Temporary debugging check for pages not lying within a given zone. 495 */ 496 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 497 { 498 if (page_outside_zone_boundaries(zone, page)) 499 return 1; 500 if (!page_is_consistent(zone, page)) 501 return 1; 502 503 return 0; 504 } 505 #else 506 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 507 { 508 return 0; 509 } 510 #endif 511 512 static void bad_page(struct page *page, const char *reason, 513 unsigned long bad_flags) 514 { 515 static unsigned long resume; 516 static unsigned long nr_shown; 517 static unsigned long nr_unshown; 518 519 /* 520 * Allow a burst of 60 reports, then keep quiet for that minute; 521 * or allow a steady drip of one report per second. 522 */ 523 if (nr_shown == 60) { 524 if (time_before(jiffies, resume)) { 525 nr_unshown++; 526 goto out; 527 } 528 if (nr_unshown) { 529 pr_alert( 530 "BUG: Bad page state: %lu messages suppressed\n", 531 nr_unshown); 532 nr_unshown = 0; 533 } 534 nr_shown = 0; 535 } 536 if (nr_shown++ == 0) 537 resume = jiffies + 60 * HZ; 538 539 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 540 current->comm, page_to_pfn(page)); 541 __dump_page(page, reason); 542 bad_flags &= page->flags; 543 if (bad_flags) 544 pr_alert("bad because of flags: %#lx(%pGp)\n", 545 bad_flags, &bad_flags); 546 dump_page_owner(page); 547 548 print_modules(); 549 dump_stack(); 550 out: 551 /* Leave bad fields for debug, except PageBuddy could make trouble */ 552 page_mapcount_reset(page); /* remove PageBuddy */ 553 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 554 } 555 556 /* 557 * Higher-order pages are called "compound pages". They are structured thusly: 558 * 559 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 560 * 561 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 562 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 563 * 564 * The first tail page's ->compound_dtor holds the offset in array of compound 565 * page destructors. See compound_page_dtors. 566 * 567 * The first tail page's ->compound_order holds the order of allocation. 568 * This usage means that zero-order pages may not be compound. 569 */ 570 571 void free_compound_page(struct page *page) 572 { 573 __free_pages_ok(page, compound_order(page)); 574 } 575 576 void prep_compound_page(struct page *page, unsigned int order) 577 { 578 int i; 579 int nr_pages = 1 << order; 580 581 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 582 set_compound_order(page, order); 583 __SetPageHead(page); 584 for (i = 1; i < nr_pages; i++) { 585 struct page *p = page + i; 586 set_page_count(p, 0); 587 p->mapping = TAIL_MAPPING; 588 set_compound_head(p, page); 589 } 590 atomic_set(compound_mapcount_ptr(page), -1); 591 } 592 593 #ifdef CONFIG_DEBUG_PAGEALLOC 594 unsigned int _debug_guardpage_minorder; 595 bool _debug_pagealloc_enabled __read_mostly 596 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 597 EXPORT_SYMBOL(_debug_pagealloc_enabled); 598 bool _debug_guardpage_enabled __read_mostly; 599 600 static int __init early_debug_pagealloc(char *buf) 601 { 602 if (!buf) 603 return -EINVAL; 604 return kstrtobool(buf, &_debug_pagealloc_enabled); 605 } 606 early_param("debug_pagealloc", early_debug_pagealloc); 607 608 static bool need_debug_guardpage(void) 609 { 610 /* If we don't use debug_pagealloc, we don't need guard page */ 611 if (!debug_pagealloc_enabled()) 612 return false; 613 614 if (!debug_guardpage_minorder()) 615 return false; 616 617 return true; 618 } 619 620 static void init_debug_guardpage(void) 621 { 622 if (!debug_pagealloc_enabled()) 623 return; 624 625 if (!debug_guardpage_minorder()) 626 return; 627 628 _debug_guardpage_enabled = true; 629 } 630 631 struct page_ext_operations debug_guardpage_ops = { 632 .need = need_debug_guardpage, 633 .init = init_debug_guardpage, 634 }; 635 636 static int __init debug_guardpage_minorder_setup(char *buf) 637 { 638 unsigned long res; 639 640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 641 pr_err("Bad debug_guardpage_minorder value\n"); 642 return 0; 643 } 644 _debug_guardpage_minorder = res; 645 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 646 return 0; 647 } 648 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 649 650 static inline bool set_page_guard(struct zone *zone, struct page *page, 651 unsigned int order, int migratetype) 652 { 653 struct page_ext *page_ext; 654 655 if (!debug_guardpage_enabled()) 656 return false; 657 658 if (order >= debug_guardpage_minorder()) 659 return false; 660 661 page_ext = lookup_page_ext(page); 662 if (unlikely(!page_ext)) 663 return false; 664 665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 666 667 INIT_LIST_HEAD(&page->lru); 668 set_page_private(page, order); 669 /* Guard pages are not available for any usage */ 670 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 671 672 return true; 673 } 674 675 static inline void clear_page_guard(struct zone *zone, struct page *page, 676 unsigned int order, int migratetype) 677 { 678 struct page_ext *page_ext; 679 680 if (!debug_guardpage_enabled()) 681 return; 682 683 page_ext = lookup_page_ext(page); 684 if (unlikely(!page_ext)) 685 return; 686 687 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 688 689 set_page_private(page, 0); 690 if (!is_migrate_isolate(migratetype)) 691 __mod_zone_freepage_state(zone, (1 << order), migratetype); 692 } 693 #else 694 struct page_ext_operations debug_guardpage_ops; 695 static inline bool set_page_guard(struct zone *zone, struct page *page, 696 unsigned int order, int migratetype) { return false; } 697 static inline void clear_page_guard(struct zone *zone, struct page *page, 698 unsigned int order, int migratetype) {} 699 #endif 700 701 static inline void set_page_order(struct page *page, unsigned int order) 702 { 703 set_page_private(page, order); 704 __SetPageBuddy(page); 705 } 706 707 static inline void rmv_page_order(struct page *page) 708 { 709 __ClearPageBuddy(page); 710 set_page_private(page, 0); 711 } 712 713 /* 714 * This function checks whether a page is free && is the buddy 715 * we can coalesce a page and its buddy if 716 * (a) the buddy is not in a hole (check before calling!) && 717 * (b) the buddy is in the buddy system && 718 * (c) a page and its buddy have the same order && 719 * (d) a page and its buddy are in the same zone. 720 * 721 * For recording whether a page is in the buddy system, we set PageBuddy. 722 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 723 * 724 * For recording page's order, we use page_private(page). 725 */ 726 static inline int page_is_buddy(struct page *page, struct page *buddy, 727 unsigned int order) 728 { 729 if (page_is_guard(buddy) && page_order(buddy) == order) { 730 if (page_zone_id(page) != page_zone_id(buddy)) 731 return 0; 732 733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 734 735 return 1; 736 } 737 738 if (PageBuddy(buddy) && page_order(buddy) == order) { 739 /* 740 * zone check is done late to avoid uselessly 741 * calculating zone/node ids for pages that could 742 * never merge. 743 */ 744 if (page_zone_id(page) != page_zone_id(buddy)) 745 return 0; 746 747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 748 749 return 1; 750 } 751 return 0; 752 } 753 754 /* 755 * Freeing function for a buddy system allocator. 756 * 757 * The concept of a buddy system is to maintain direct-mapped table 758 * (containing bit values) for memory blocks of various "orders". 759 * The bottom level table contains the map for the smallest allocatable 760 * units of memory (here, pages), and each level above it describes 761 * pairs of units from the levels below, hence, "buddies". 762 * At a high level, all that happens here is marking the table entry 763 * at the bottom level available, and propagating the changes upward 764 * as necessary, plus some accounting needed to play nicely with other 765 * parts of the VM system. 766 * At each level, we keep a list of pages, which are heads of continuous 767 * free pages of length of (1 << order) and marked with PageBuddy. 768 * Page's order is recorded in page_private(page) field. 769 * So when we are allocating or freeing one, we can derive the state of the 770 * other. That is, if we allocate a small block, and both were 771 * free, the remainder of the region must be split into blocks. 772 * If a block is freed, and its buddy is also free, then this 773 * triggers coalescing into a block of larger size. 774 * 775 * -- nyc 776 */ 777 778 static inline void __free_one_page(struct page *page, 779 unsigned long pfn, 780 struct zone *zone, unsigned int order, 781 int migratetype) 782 { 783 unsigned long combined_pfn; 784 unsigned long uninitialized_var(buddy_pfn); 785 struct page *buddy; 786 unsigned int max_order; 787 788 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 789 790 VM_BUG_ON(!zone_is_initialized(zone)); 791 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 792 793 VM_BUG_ON(migratetype == -1); 794 if (likely(!is_migrate_isolate(migratetype))) 795 __mod_zone_freepage_state(zone, 1 << order, migratetype); 796 797 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 798 VM_BUG_ON_PAGE(bad_range(zone, page), page); 799 800 continue_merging: 801 while (order < max_order - 1) { 802 buddy_pfn = __find_buddy_pfn(pfn, order); 803 buddy = page + (buddy_pfn - pfn); 804 805 if (!pfn_valid_within(buddy_pfn)) 806 goto done_merging; 807 if (!page_is_buddy(page, buddy, order)) 808 goto done_merging; 809 /* 810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 811 * merge with it and move up one order. 812 */ 813 if (page_is_guard(buddy)) { 814 clear_page_guard(zone, buddy, order, migratetype); 815 } else { 816 list_del(&buddy->lru); 817 zone->free_area[order].nr_free--; 818 rmv_page_order(buddy); 819 } 820 combined_pfn = buddy_pfn & pfn; 821 page = page + (combined_pfn - pfn); 822 pfn = combined_pfn; 823 order++; 824 } 825 if (max_order < MAX_ORDER) { 826 /* If we are here, it means order is >= pageblock_order. 827 * We want to prevent merge between freepages on isolate 828 * pageblock and normal pageblock. Without this, pageblock 829 * isolation could cause incorrect freepage or CMA accounting. 830 * 831 * We don't want to hit this code for the more frequent 832 * low-order merging. 833 */ 834 if (unlikely(has_isolate_pageblock(zone))) { 835 int buddy_mt; 836 837 buddy_pfn = __find_buddy_pfn(pfn, order); 838 buddy = page + (buddy_pfn - pfn); 839 buddy_mt = get_pageblock_migratetype(buddy); 840 841 if (migratetype != buddy_mt 842 && (is_migrate_isolate(migratetype) || 843 is_migrate_isolate(buddy_mt))) 844 goto done_merging; 845 } 846 max_order++; 847 goto continue_merging; 848 } 849 850 done_merging: 851 set_page_order(page, order); 852 853 /* 854 * If this is not the largest possible page, check if the buddy 855 * of the next-highest order is free. If it is, it's possible 856 * that pages are being freed that will coalesce soon. In case, 857 * that is happening, add the free page to the tail of the list 858 * so it's less likely to be used soon and more likely to be merged 859 * as a higher order page 860 */ 861 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 862 struct page *higher_page, *higher_buddy; 863 combined_pfn = buddy_pfn & pfn; 864 higher_page = page + (combined_pfn - pfn); 865 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 866 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 867 if (pfn_valid_within(buddy_pfn) && 868 page_is_buddy(higher_page, higher_buddy, order + 1)) { 869 list_add_tail(&page->lru, 870 &zone->free_area[order].free_list[migratetype]); 871 goto out; 872 } 873 } 874 875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 876 out: 877 zone->free_area[order].nr_free++; 878 } 879 880 /* 881 * A bad page could be due to a number of fields. Instead of multiple branches, 882 * try and check multiple fields with one check. The caller must do a detailed 883 * check if necessary. 884 */ 885 static inline bool page_expected_state(struct page *page, 886 unsigned long check_flags) 887 { 888 if (unlikely(atomic_read(&page->_mapcount) != -1)) 889 return false; 890 891 if (unlikely((unsigned long)page->mapping | 892 page_ref_count(page) | 893 #ifdef CONFIG_MEMCG 894 (unsigned long)page->mem_cgroup | 895 #endif 896 (page->flags & check_flags))) 897 return false; 898 899 return true; 900 } 901 902 static void free_pages_check_bad(struct page *page) 903 { 904 const char *bad_reason; 905 unsigned long bad_flags; 906 907 bad_reason = NULL; 908 bad_flags = 0; 909 910 if (unlikely(atomic_read(&page->_mapcount) != -1)) 911 bad_reason = "nonzero mapcount"; 912 if (unlikely(page->mapping != NULL)) 913 bad_reason = "non-NULL mapping"; 914 if (unlikely(page_ref_count(page) != 0)) 915 bad_reason = "nonzero _refcount"; 916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 919 } 920 #ifdef CONFIG_MEMCG 921 if (unlikely(page->mem_cgroup)) 922 bad_reason = "page still charged to cgroup"; 923 #endif 924 bad_page(page, bad_reason, bad_flags); 925 } 926 927 static inline int free_pages_check(struct page *page) 928 { 929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 930 return 0; 931 932 /* Something has gone sideways, find it */ 933 free_pages_check_bad(page); 934 return 1; 935 } 936 937 static int free_tail_pages_check(struct page *head_page, struct page *page) 938 { 939 int ret = 1; 940 941 /* 942 * We rely page->lru.next never has bit 0 set, unless the page 943 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 944 */ 945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 946 947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 948 ret = 0; 949 goto out; 950 } 951 switch (page - head_page) { 952 case 1: 953 /* the first tail page: ->mapping may be compound_mapcount() */ 954 if (unlikely(compound_mapcount(page))) { 955 bad_page(page, "nonzero compound_mapcount", 0); 956 goto out; 957 } 958 break; 959 case 2: 960 /* 961 * the second tail page: ->mapping is 962 * deferred_list.next -- ignore value. 963 */ 964 break; 965 default: 966 if (page->mapping != TAIL_MAPPING) { 967 bad_page(page, "corrupted mapping in tail page", 0); 968 goto out; 969 } 970 break; 971 } 972 if (unlikely(!PageTail(page))) { 973 bad_page(page, "PageTail not set", 0); 974 goto out; 975 } 976 if (unlikely(compound_head(page) != head_page)) { 977 bad_page(page, "compound_head not consistent", 0); 978 goto out; 979 } 980 ret = 0; 981 out: 982 page->mapping = NULL; 983 clear_compound_head(page); 984 return ret; 985 } 986 987 static __always_inline bool free_pages_prepare(struct page *page, 988 unsigned int order, bool check_free) 989 { 990 int bad = 0; 991 992 VM_BUG_ON_PAGE(PageTail(page), page); 993 994 trace_mm_page_free(page, order); 995 996 /* 997 * Check tail pages before head page information is cleared to 998 * avoid checking PageCompound for order-0 pages. 999 */ 1000 if (unlikely(order)) { 1001 bool compound = PageCompound(page); 1002 int i; 1003 1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1005 1006 if (compound) 1007 ClearPageDoubleMap(page); 1008 for (i = 1; i < (1 << order); i++) { 1009 if (compound) 1010 bad += free_tail_pages_check(page, page + i); 1011 if (unlikely(free_pages_check(page + i))) { 1012 bad++; 1013 continue; 1014 } 1015 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1016 } 1017 } 1018 if (PageMappingFlags(page)) 1019 page->mapping = NULL; 1020 if (memcg_kmem_enabled() && PageKmemcg(page)) 1021 memcg_kmem_uncharge(page, order); 1022 if (check_free) 1023 bad += free_pages_check(page); 1024 if (bad) 1025 return false; 1026 1027 page_cpupid_reset_last(page); 1028 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1029 reset_page_owner(page, order); 1030 1031 if (!PageHighMem(page)) { 1032 debug_check_no_locks_freed(page_address(page), 1033 PAGE_SIZE << order); 1034 debug_check_no_obj_freed(page_address(page), 1035 PAGE_SIZE << order); 1036 } 1037 arch_free_page(page, order); 1038 kernel_poison_pages(page, 1 << order, 0); 1039 kernel_map_pages(page, 1 << order, 0); 1040 kasan_free_pages(page, order); 1041 1042 return true; 1043 } 1044 1045 #ifdef CONFIG_DEBUG_VM 1046 static inline bool free_pcp_prepare(struct page *page) 1047 { 1048 return free_pages_prepare(page, 0, true); 1049 } 1050 1051 static inline bool bulkfree_pcp_prepare(struct page *page) 1052 { 1053 return false; 1054 } 1055 #else 1056 static bool free_pcp_prepare(struct page *page) 1057 { 1058 return free_pages_prepare(page, 0, false); 1059 } 1060 1061 static bool bulkfree_pcp_prepare(struct page *page) 1062 { 1063 return free_pages_check(page); 1064 } 1065 #endif /* CONFIG_DEBUG_VM */ 1066 1067 static inline void prefetch_buddy(struct page *page) 1068 { 1069 unsigned long pfn = page_to_pfn(page); 1070 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1071 struct page *buddy = page + (buddy_pfn - pfn); 1072 1073 prefetch(buddy); 1074 } 1075 1076 /* 1077 * Frees a number of pages from the PCP lists 1078 * Assumes all pages on list are in same zone, and of same order. 1079 * count is the number of pages to free. 1080 * 1081 * If the zone was previously in an "all pages pinned" state then look to 1082 * see if this freeing clears that state. 1083 * 1084 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1085 * pinned" detection logic. 1086 */ 1087 static void free_pcppages_bulk(struct zone *zone, int count, 1088 struct per_cpu_pages *pcp) 1089 { 1090 int migratetype = 0; 1091 int batch_free = 0; 1092 int prefetch_nr = 0; 1093 bool isolated_pageblocks; 1094 struct page *page, *tmp; 1095 LIST_HEAD(head); 1096 1097 while (count) { 1098 struct list_head *list; 1099 1100 /* 1101 * Remove pages from lists in a round-robin fashion. A 1102 * batch_free count is maintained that is incremented when an 1103 * empty list is encountered. This is so more pages are freed 1104 * off fuller lists instead of spinning excessively around empty 1105 * lists 1106 */ 1107 do { 1108 batch_free++; 1109 if (++migratetype == MIGRATE_PCPTYPES) 1110 migratetype = 0; 1111 list = &pcp->lists[migratetype]; 1112 } while (list_empty(list)); 1113 1114 /* This is the only non-empty list. Free them all. */ 1115 if (batch_free == MIGRATE_PCPTYPES) 1116 batch_free = count; 1117 1118 do { 1119 page = list_last_entry(list, struct page, lru); 1120 /* must delete to avoid corrupting pcp list */ 1121 list_del(&page->lru); 1122 pcp->count--; 1123 1124 if (bulkfree_pcp_prepare(page)) 1125 continue; 1126 1127 list_add_tail(&page->lru, &head); 1128 1129 /* 1130 * We are going to put the page back to the global 1131 * pool, prefetch its buddy to speed up later access 1132 * under zone->lock. It is believed the overhead of 1133 * an additional test and calculating buddy_pfn here 1134 * can be offset by reduced memory latency later. To 1135 * avoid excessive prefetching due to large count, only 1136 * prefetch buddy for the first pcp->batch nr of pages. 1137 */ 1138 if (prefetch_nr++ < pcp->batch) 1139 prefetch_buddy(page); 1140 } while (--count && --batch_free && !list_empty(list)); 1141 } 1142 1143 spin_lock(&zone->lock); 1144 isolated_pageblocks = has_isolate_pageblock(zone); 1145 1146 /* 1147 * Use safe version since after __free_one_page(), 1148 * page->lru.next will not point to original list. 1149 */ 1150 list_for_each_entry_safe(page, tmp, &head, lru) { 1151 int mt = get_pcppage_migratetype(page); 1152 /* MIGRATE_ISOLATE page should not go to pcplists */ 1153 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1154 /* Pageblock could have been isolated meanwhile */ 1155 if (unlikely(isolated_pageblocks)) 1156 mt = get_pageblock_migratetype(page); 1157 1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1159 trace_mm_page_pcpu_drain(page, 0, mt); 1160 } 1161 spin_unlock(&zone->lock); 1162 } 1163 1164 static void free_one_page(struct zone *zone, 1165 struct page *page, unsigned long pfn, 1166 unsigned int order, 1167 int migratetype) 1168 { 1169 spin_lock(&zone->lock); 1170 if (unlikely(has_isolate_pageblock(zone) || 1171 is_migrate_isolate(migratetype))) { 1172 migratetype = get_pfnblock_migratetype(page, pfn); 1173 } 1174 __free_one_page(page, pfn, zone, order, migratetype); 1175 spin_unlock(&zone->lock); 1176 } 1177 1178 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1179 unsigned long zone, int nid) 1180 { 1181 mm_zero_struct_page(page); 1182 set_page_links(page, zone, nid, pfn); 1183 init_page_count(page); 1184 page_mapcount_reset(page); 1185 page_cpupid_reset_last(page); 1186 1187 INIT_LIST_HEAD(&page->lru); 1188 #ifdef WANT_PAGE_VIRTUAL 1189 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1190 if (!is_highmem_idx(zone)) 1191 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1192 #endif 1193 } 1194 1195 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1196 static void __meminit init_reserved_page(unsigned long pfn) 1197 { 1198 pg_data_t *pgdat; 1199 int nid, zid; 1200 1201 if (!early_page_uninitialised(pfn)) 1202 return; 1203 1204 nid = early_pfn_to_nid(pfn); 1205 pgdat = NODE_DATA(nid); 1206 1207 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1208 struct zone *zone = &pgdat->node_zones[zid]; 1209 1210 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1211 break; 1212 } 1213 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1214 } 1215 #else 1216 static inline void init_reserved_page(unsigned long pfn) 1217 { 1218 } 1219 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1220 1221 /* 1222 * Initialised pages do not have PageReserved set. This function is 1223 * called for each range allocated by the bootmem allocator and 1224 * marks the pages PageReserved. The remaining valid pages are later 1225 * sent to the buddy page allocator. 1226 */ 1227 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1228 { 1229 unsigned long start_pfn = PFN_DOWN(start); 1230 unsigned long end_pfn = PFN_UP(end); 1231 1232 for (; start_pfn < end_pfn; start_pfn++) { 1233 if (pfn_valid(start_pfn)) { 1234 struct page *page = pfn_to_page(start_pfn); 1235 1236 init_reserved_page(start_pfn); 1237 1238 /* Avoid false-positive PageTail() */ 1239 INIT_LIST_HEAD(&page->lru); 1240 1241 /* 1242 * no need for atomic set_bit because the struct 1243 * page is not visible yet so nobody should 1244 * access it yet. 1245 */ 1246 __SetPageReserved(page); 1247 } 1248 } 1249 } 1250 1251 static void __free_pages_ok(struct page *page, unsigned int order) 1252 { 1253 unsigned long flags; 1254 int migratetype; 1255 unsigned long pfn = page_to_pfn(page); 1256 1257 if (!free_pages_prepare(page, order, true)) 1258 return; 1259 1260 migratetype = get_pfnblock_migratetype(page, pfn); 1261 local_irq_save(flags); 1262 __count_vm_events(PGFREE, 1 << order); 1263 free_one_page(page_zone(page), page, pfn, order, migratetype); 1264 local_irq_restore(flags); 1265 } 1266 1267 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1268 { 1269 unsigned int nr_pages = 1 << order; 1270 struct page *p = page; 1271 unsigned int loop; 1272 1273 prefetchw(p); 1274 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1275 prefetchw(p + 1); 1276 __ClearPageReserved(p); 1277 set_page_count(p, 0); 1278 } 1279 __ClearPageReserved(p); 1280 set_page_count(p, 0); 1281 1282 page_zone(page)->managed_pages += nr_pages; 1283 set_page_refcounted(page); 1284 __free_pages(page, order); 1285 } 1286 1287 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1288 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1289 1290 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1291 1292 int __meminit early_pfn_to_nid(unsigned long pfn) 1293 { 1294 static DEFINE_SPINLOCK(early_pfn_lock); 1295 int nid; 1296 1297 spin_lock(&early_pfn_lock); 1298 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1299 if (nid < 0) 1300 nid = first_online_node; 1301 spin_unlock(&early_pfn_lock); 1302 1303 return nid; 1304 } 1305 #endif 1306 1307 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1308 static inline bool __meminit __maybe_unused 1309 meminit_pfn_in_nid(unsigned long pfn, int node, 1310 struct mminit_pfnnid_cache *state) 1311 { 1312 int nid; 1313 1314 nid = __early_pfn_to_nid(pfn, state); 1315 if (nid >= 0 && nid != node) 1316 return false; 1317 return true; 1318 } 1319 1320 /* Only safe to use early in boot when initialisation is single-threaded */ 1321 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1322 { 1323 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1324 } 1325 1326 #else 1327 1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1329 { 1330 return true; 1331 } 1332 static inline bool __meminit __maybe_unused 1333 meminit_pfn_in_nid(unsigned long pfn, int node, 1334 struct mminit_pfnnid_cache *state) 1335 { 1336 return true; 1337 } 1338 #endif 1339 1340 1341 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1342 unsigned int order) 1343 { 1344 if (early_page_uninitialised(pfn)) 1345 return; 1346 return __free_pages_boot_core(page, order); 1347 } 1348 1349 /* 1350 * Check that the whole (or subset of) a pageblock given by the interval of 1351 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1352 * with the migration of free compaction scanner. The scanners then need to 1353 * use only pfn_valid_within() check for arches that allow holes within 1354 * pageblocks. 1355 * 1356 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1357 * 1358 * It's possible on some configurations to have a setup like node0 node1 node0 1359 * i.e. it's possible that all pages within a zones range of pages do not 1360 * belong to a single zone. We assume that a border between node0 and node1 1361 * can occur within a single pageblock, but not a node0 node1 node0 1362 * interleaving within a single pageblock. It is therefore sufficient to check 1363 * the first and last page of a pageblock and avoid checking each individual 1364 * page in a pageblock. 1365 */ 1366 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1367 unsigned long end_pfn, struct zone *zone) 1368 { 1369 struct page *start_page; 1370 struct page *end_page; 1371 1372 /* end_pfn is one past the range we are checking */ 1373 end_pfn--; 1374 1375 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1376 return NULL; 1377 1378 start_page = pfn_to_online_page(start_pfn); 1379 if (!start_page) 1380 return NULL; 1381 1382 if (page_zone(start_page) != zone) 1383 return NULL; 1384 1385 end_page = pfn_to_page(end_pfn); 1386 1387 /* This gives a shorter code than deriving page_zone(end_page) */ 1388 if (page_zone_id(start_page) != page_zone_id(end_page)) 1389 return NULL; 1390 1391 return start_page; 1392 } 1393 1394 void set_zone_contiguous(struct zone *zone) 1395 { 1396 unsigned long block_start_pfn = zone->zone_start_pfn; 1397 unsigned long block_end_pfn; 1398 1399 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1400 for (; block_start_pfn < zone_end_pfn(zone); 1401 block_start_pfn = block_end_pfn, 1402 block_end_pfn += pageblock_nr_pages) { 1403 1404 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1405 1406 if (!__pageblock_pfn_to_page(block_start_pfn, 1407 block_end_pfn, zone)) 1408 return; 1409 } 1410 1411 /* We confirm that there is no hole */ 1412 zone->contiguous = true; 1413 } 1414 1415 void clear_zone_contiguous(struct zone *zone) 1416 { 1417 zone->contiguous = false; 1418 } 1419 1420 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1421 static void __init deferred_free_range(unsigned long pfn, 1422 unsigned long nr_pages) 1423 { 1424 struct page *page; 1425 unsigned long i; 1426 1427 if (!nr_pages) 1428 return; 1429 1430 page = pfn_to_page(pfn); 1431 1432 /* Free a large naturally-aligned chunk if possible */ 1433 if (nr_pages == pageblock_nr_pages && 1434 (pfn & (pageblock_nr_pages - 1)) == 0) { 1435 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1436 __free_pages_boot_core(page, pageblock_order); 1437 return; 1438 } 1439 1440 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1441 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1443 __free_pages_boot_core(page, 0); 1444 } 1445 } 1446 1447 /* Completion tracking for deferred_init_memmap() threads */ 1448 static atomic_t pgdat_init_n_undone __initdata; 1449 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1450 1451 static inline void __init pgdat_init_report_one_done(void) 1452 { 1453 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1454 complete(&pgdat_init_all_done_comp); 1455 } 1456 1457 /* 1458 * Returns true if page needs to be initialized or freed to buddy allocator. 1459 * 1460 * First we check if pfn is valid on architectures where it is possible to have 1461 * holes within pageblock_nr_pages. On systems where it is not possible, this 1462 * function is optimized out. 1463 * 1464 * Then, we check if a current large page is valid by only checking the validity 1465 * of the head pfn. 1466 * 1467 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1468 * within a node: a pfn is between start and end of a node, but does not belong 1469 * to this memory node. 1470 */ 1471 static inline bool __init 1472 deferred_pfn_valid(int nid, unsigned long pfn, 1473 struct mminit_pfnnid_cache *nid_init_state) 1474 { 1475 if (!pfn_valid_within(pfn)) 1476 return false; 1477 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1478 return false; 1479 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1480 return false; 1481 return true; 1482 } 1483 1484 /* 1485 * Free pages to buddy allocator. Try to free aligned pages in 1486 * pageblock_nr_pages sizes. 1487 */ 1488 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1489 unsigned long end_pfn) 1490 { 1491 struct mminit_pfnnid_cache nid_init_state = { }; 1492 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1493 unsigned long nr_free = 0; 1494 1495 for (; pfn < end_pfn; pfn++) { 1496 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1497 deferred_free_range(pfn - nr_free, nr_free); 1498 nr_free = 0; 1499 } else if (!(pfn & nr_pgmask)) { 1500 deferred_free_range(pfn - nr_free, nr_free); 1501 nr_free = 1; 1502 touch_nmi_watchdog(); 1503 } else { 1504 nr_free++; 1505 } 1506 } 1507 /* Free the last block of pages to allocator */ 1508 deferred_free_range(pfn - nr_free, nr_free); 1509 } 1510 1511 /* 1512 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1513 * by performing it only once every pageblock_nr_pages. 1514 * Return number of pages initialized. 1515 */ 1516 static unsigned long __init deferred_init_pages(int nid, int zid, 1517 unsigned long pfn, 1518 unsigned long end_pfn) 1519 { 1520 struct mminit_pfnnid_cache nid_init_state = { }; 1521 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1522 unsigned long nr_pages = 0; 1523 struct page *page = NULL; 1524 1525 for (; pfn < end_pfn; pfn++) { 1526 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1527 page = NULL; 1528 continue; 1529 } else if (!page || !(pfn & nr_pgmask)) { 1530 page = pfn_to_page(pfn); 1531 touch_nmi_watchdog(); 1532 } else { 1533 page++; 1534 } 1535 __init_single_page(page, pfn, zid, nid); 1536 nr_pages++; 1537 } 1538 return (nr_pages); 1539 } 1540 1541 /* Initialise remaining memory on a node */ 1542 static int __init deferred_init_memmap(void *data) 1543 { 1544 pg_data_t *pgdat = data; 1545 int nid = pgdat->node_id; 1546 unsigned long start = jiffies; 1547 unsigned long nr_pages = 0; 1548 unsigned long spfn, epfn, first_init_pfn, flags; 1549 phys_addr_t spa, epa; 1550 int zid; 1551 struct zone *zone; 1552 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1553 u64 i; 1554 1555 /* Bind memory initialisation thread to a local node if possible */ 1556 if (!cpumask_empty(cpumask)) 1557 set_cpus_allowed_ptr(current, cpumask); 1558 1559 pgdat_resize_lock(pgdat, &flags); 1560 first_init_pfn = pgdat->first_deferred_pfn; 1561 if (first_init_pfn == ULONG_MAX) { 1562 pgdat_resize_unlock(pgdat, &flags); 1563 pgdat_init_report_one_done(); 1564 return 0; 1565 } 1566 1567 /* Sanity check boundaries */ 1568 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1569 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1570 pgdat->first_deferred_pfn = ULONG_MAX; 1571 1572 /* Only the highest zone is deferred so find it */ 1573 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1574 zone = pgdat->node_zones + zid; 1575 if (first_init_pfn < zone_end_pfn(zone)) 1576 break; 1577 } 1578 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1579 1580 /* 1581 * Initialize and free pages. We do it in two loops: first we initialize 1582 * struct page, than free to buddy allocator, because while we are 1583 * freeing pages we can access pages that are ahead (computing buddy 1584 * page in __free_one_page()). 1585 */ 1586 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1587 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1588 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1589 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1590 } 1591 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1592 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1593 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1594 deferred_free_pages(nid, zid, spfn, epfn); 1595 } 1596 pgdat_resize_unlock(pgdat, &flags); 1597 1598 /* Sanity check that the next zone really is unpopulated */ 1599 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1600 1601 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1602 jiffies_to_msecs(jiffies - start)); 1603 1604 pgdat_init_report_one_done(); 1605 return 0; 1606 } 1607 1608 /* 1609 * During boot we initialize deferred pages on-demand, as needed, but once 1610 * page_alloc_init_late() has finished, the deferred pages are all initialized, 1611 * and we can permanently disable that path. 1612 */ 1613 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 1614 1615 /* 1616 * If this zone has deferred pages, try to grow it by initializing enough 1617 * deferred pages to satisfy the allocation specified by order, rounded up to 1618 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1619 * of SECTION_SIZE bytes by initializing struct pages in increments of 1620 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1621 * 1622 * Return true when zone was grown, otherwise return false. We return true even 1623 * when we grow less than requested, to let the caller decide if there are 1624 * enough pages to satisfy the allocation. 1625 * 1626 * Note: We use noinline because this function is needed only during boot, and 1627 * it is called from a __ref function _deferred_grow_zone. This way we are 1628 * making sure that it is not inlined into permanent text section. 1629 */ 1630 static noinline bool __init 1631 deferred_grow_zone(struct zone *zone, unsigned int order) 1632 { 1633 int zid = zone_idx(zone); 1634 int nid = zone_to_nid(zone); 1635 pg_data_t *pgdat = NODE_DATA(nid); 1636 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1637 unsigned long nr_pages = 0; 1638 unsigned long first_init_pfn, spfn, epfn, t, flags; 1639 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1640 phys_addr_t spa, epa; 1641 u64 i; 1642 1643 /* Only the last zone may have deferred pages */ 1644 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1645 return false; 1646 1647 pgdat_resize_lock(pgdat, &flags); 1648 1649 /* 1650 * If deferred pages have been initialized while we were waiting for 1651 * the lock, return true, as the zone was grown. The caller will retry 1652 * this zone. We won't return to this function since the caller also 1653 * has this static branch. 1654 */ 1655 if (!static_branch_unlikely(&deferred_pages)) { 1656 pgdat_resize_unlock(pgdat, &flags); 1657 return true; 1658 } 1659 1660 /* 1661 * If someone grew this zone while we were waiting for spinlock, return 1662 * true, as there might be enough pages already. 1663 */ 1664 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1665 pgdat_resize_unlock(pgdat, &flags); 1666 return true; 1667 } 1668 1669 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); 1670 1671 if (first_init_pfn >= pgdat_end_pfn(pgdat)) { 1672 pgdat_resize_unlock(pgdat, &flags); 1673 return false; 1674 } 1675 1676 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1677 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1678 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1679 1680 while (spfn < epfn && nr_pages < nr_pages_needed) { 1681 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); 1682 first_deferred_pfn = min(t, epfn); 1683 nr_pages += deferred_init_pages(nid, zid, spfn, 1684 first_deferred_pfn); 1685 spfn = first_deferred_pfn; 1686 } 1687 1688 if (nr_pages >= nr_pages_needed) 1689 break; 1690 } 1691 1692 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1693 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1694 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); 1695 deferred_free_pages(nid, zid, spfn, epfn); 1696 1697 if (first_deferred_pfn == epfn) 1698 break; 1699 } 1700 pgdat->first_deferred_pfn = first_deferred_pfn; 1701 pgdat_resize_unlock(pgdat, &flags); 1702 1703 return nr_pages > 0; 1704 } 1705 1706 /* 1707 * deferred_grow_zone() is __init, but it is called from 1708 * get_page_from_freelist() during early boot until deferred_pages permanently 1709 * disables this call. This is why we have refdata wrapper to avoid warning, 1710 * and to ensure that the function body gets unloaded. 1711 */ 1712 static bool __ref 1713 _deferred_grow_zone(struct zone *zone, unsigned int order) 1714 { 1715 return deferred_grow_zone(zone, order); 1716 } 1717 1718 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1719 1720 void __init page_alloc_init_late(void) 1721 { 1722 struct zone *zone; 1723 1724 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1725 int nid; 1726 1727 /* There will be num_node_state(N_MEMORY) threads */ 1728 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1729 for_each_node_state(nid, N_MEMORY) { 1730 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1731 } 1732 1733 /* Block until all are initialised */ 1734 wait_for_completion(&pgdat_init_all_done_comp); 1735 1736 /* 1737 * We initialized the rest of the deferred pages. Permanently disable 1738 * on-demand struct page initialization. 1739 */ 1740 static_branch_disable(&deferred_pages); 1741 1742 /* Reinit limits that are based on free pages after the kernel is up */ 1743 files_maxfiles_init(); 1744 #endif 1745 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1746 /* Discard memblock private memory */ 1747 memblock_discard(); 1748 #endif 1749 1750 for_each_populated_zone(zone) 1751 set_zone_contiguous(zone); 1752 } 1753 1754 #ifdef CONFIG_CMA 1755 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1756 void __init init_cma_reserved_pageblock(struct page *page) 1757 { 1758 unsigned i = pageblock_nr_pages; 1759 struct page *p = page; 1760 1761 do { 1762 __ClearPageReserved(p); 1763 set_page_count(p, 0); 1764 } while (++p, --i); 1765 1766 set_pageblock_migratetype(page, MIGRATE_CMA); 1767 1768 if (pageblock_order >= MAX_ORDER) { 1769 i = pageblock_nr_pages; 1770 p = page; 1771 do { 1772 set_page_refcounted(p); 1773 __free_pages(p, MAX_ORDER - 1); 1774 p += MAX_ORDER_NR_PAGES; 1775 } while (i -= MAX_ORDER_NR_PAGES); 1776 } else { 1777 set_page_refcounted(page); 1778 __free_pages(page, pageblock_order); 1779 } 1780 1781 adjust_managed_page_count(page, pageblock_nr_pages); 1782 } 1783 #endif 1784 1785 /* 1786 * The order of subdivision here is critical for the IO subsystem. 1787 * Please do not alter this order without good reasons and regression 1788 * testing. Specifically, as large blocks of memory are subdivided, 1789 * the order in which smaller blocks are delivered depends on the order 1790 * they're subdivided in this function. This is the primary factor 1791 * influencing the order in which pages are delivered to the IO 1792 * subsystem according to empirical testing, and this is also justified 1793 * by considering the behavior of a buddy system containing a single 1794 * large block of memory acted on by a series of small allocations. 1795 * This behavior is a critical factor in sglist merging's success. 1796 * 1797 * -- nyc 1798 */ 1799 static inline void expand(struct zone *zone, struct page *page, 1800 int low, int high, struct free_area *area, 1801 int migratetype) 1802 { 1803 unsigned long size = 1 << high; 1804 1805 while (high > low) { 1806 area--; 1807 high--; 1808 size >>= 1; 1809 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1810 1811 /* 1812 * Mark as guard pages (or page), that will allow to 1813 * merge back to allocator when buddy will be freed. 1814 * Corresponding page table entries will not be touched, 1815 * pages will stay not present in virtual address space 1816 */ 1817 if (set_page_guard(zone, &page[size], high, migratetype)) 1818 continue; 1819 1820 list_add(&page[size].lru, &area->free_list[migratetype]); 1821 area->nr_free++; 1822 set_page_order(&page[size], high); 1823 } 1824 } 1825 1826 static void check_new_page_bad(struct page *page) 1827 { 1828 const char *bad_reason = NULL; 1829 unsigned long bad_flags = 0; 1830 1831 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1832 bad_reason = "nonzero mapcount"; 1833 if (unlikely(page->mapping != NULL)) 1834 bad_reason = "non-NULL mapping"; 1835 if (unlikely(page_ref_count(page) != 0)) 1836 bad_reason = "nonzero _count"; 1837 if (unlikely(page->flags & __PG_HWPOISON)) { 1838 bad_reason = "HWPoisoned (hardware-corrupted)"; 1839 bad_flags = __PG_HWPOISON; 1840 /* Don't complain about hwpoisoned pages */ 1841 page_mapcount_reset(page); /* remove PageBuddy */ 1842 return; 1843 } 1844 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1845 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1846 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1847 } 1848 #ifdef CONFIG_MEMCG 1849 if (unlikely(page->mem_cgroup)) 1850 bad_reason = "page still charged to cgroup"; 1851 #endif 1852 bad_page(page, bad_reason, bad_flags); 1853 } 1854 1855 /* 1856 * This page is about to be returned from the page allocator 1857 */ 1858 static inline int check_new_page(struct page *page) 1859 { 1860 if (likely(page_expected_state(page, 1861 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1862 return 0; 1863 1864 check_new_page_bad(page); 1865 return 1; 1866 } 1867 1868 static inline bool free_pages_prezeroed(void) 1869 { 1870 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1871 page_poisoning_enabled(); 1872 } 1873 1874 #ifdef CONFIG_DEBUG_VM 1875 static bool check_pcp_refill(struct page *page) 1876 { 1877 return false; 1878 } 1879 1880 static bool check_new_pcp(struct page *page) 1881 { 1882 return check_new_page(page); 1883 } 1884 #else 1885 static bool check_pcp_refill(struct page *page) 1886 { 1887 return check_new_page(page); 1888 } 1889 static bool check_new_pcp(struct page *page) 1890 { 1891 return false; 1892 } 1893 #endif /* CONFIG_DEBUG_VM */ 1894 1895 static bool check_new_pages(struct page *page, unsigned int order) 1896 { 1897 int i; 1898 for (i = 0; i < (1 << order); i++) { 1899 struct page *p = page + i; 1900 1901 if (unlikely(check_new_page(p))) 1902 return true; 1903 } 1904 1905 return false; 1906 } 1907 1908 inline void post_alloc_hook(struct page *page, unsigned int order, 1909 gfp_t gfp_flags) 1910 { 1911 set_page_private(page, 0); 1912 set_page_refcounted(page); 1913 1914 arch_alloc_page(page, order); 1915 kernel_map_pages(page, 1 << order, 1); 1916 kernel_poison_pages(page, 1 << order, 1); 1917 kasan_alloc_pages(page, order); 1918 set_page_owner(page, order, gfp_flags); 1919 } 1920 1921 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1922 unsigned int alloc_flags) 1923 { 1924 int i; 1925 1926 post_alloc_hook(page, order, gfp_flags); 1927 1928 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1929 for (i = 0; i < (1 << order); i++) 1930 clear_highpage(page + i); 1931 1932 if (order && (gfp_flags & __GFP_COMP)) 1933 prep_compound_page(page, order); 1934 1935 /* 1936 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1937 * allocate the page. The expectation is that the caller is taking 1938 * steps that will free more memory. The caller should avoid the page 1939 * being used for !PFMEMALLOC purposes. 1940 */ 1941 if (alloc_flags & ALLOC_NO_WATERMARKS) 1942 set_page_pfmemalloc(page); 1943 else 1944 clear_page_pfmemalloc(page); 1945 } 1946 1947 /* 1948 * Go through the free lists for the given migratetype and remove 1949 * the smallest available page from the freelists 1950 */ 1951 static __always_inline 1952 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1953 int migratetype) 1954 { 1955 unsigned int current_order; 1956 struct free_area *area; 1957 struct page *page; 1958 1959 /* Find a page of the appropriate size in the preferred list */ 1960 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1961 area = &(zone->free_area[current_order]); 1962 page = list_first_entry_or_null(&area->free_list[migratetype], 1963 struct page, lru); 1964 if (!page) 1965 continue; 1966 list_del(&page->lru); 1967 rmv_page_order(page); 1968 area->nr_free--; 1969 expand(zone, page, order, current_order, area, migratetype); 1970 set_pcppage_migratetype(page, migratetype); 1971 return page; 1972 } 1973 1974 return NULL; 1975 } 1976 1977 1978 /* 1979 * This array describes the order lists are fallen back to when 1980 * the free lists for the desirable migrate type are depleted 1981 */ 1982 static int fallbacks[MIGRATE_TYPES][4] = { 1983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1984 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1985 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1986 #ifdef CONFIG_CMA 1987 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1988 #endif 1989 #ifdef CONFIG_MEMORY_ISOLATION 1990 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1991 #endif 1992 }; 1993 1994 #ifdef CONFIG_CMA 1995 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1996 unsigned int order) 1997 { 1998 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1999 } 2000 #else 2001 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2002 unsigned int order) { return NULL; } 2003 #endif 2004 2005 /* 2006 * Move the free pages in a range to the free lists of the requested type. 2007 * Note that start_page and end_pages are not aligned on a pageblock 2008 * boundary. If alignment is required, use move_freepages_block() 2009 */ 2010 static int move_freepages(struct zone *zone, 2011 struct page *start_page, struct page *end_page, 2012 int migratetype, int *num_movable) 2013 { 2014 struct page *page; 2015 unsigned int order; 2016 int pages_moved = 0; 2017 2018 #ifndef CONFIG_HOLES_IN_ZONE 2019 /* 2020 * page_zone is not safe to call in this context when 2021 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2022 * anyway as we check zone boundaries in move_freepages_block(). 2023 * Remove at a later date when no bug reports exist related to 2024 * grouping pages by mobility 2025 */ 2026 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2027 pfn_valid(page_to_pfn(end_page)) && 2028 page_zone(start_page) != page_zone(end_page)); 2029 #endif 2030 for (page = start_page; page <= end_page;) { 2031 if (!pfn_valid_within(page_to_pfn(page))) { 2032 page++; 2033 continue; 2034 } 2035 2036 /* Make sure we are not inadvertently changing nodes */ 2037 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2038 2039 if (!PageBuddy(page)) { 2040 /* 2041 * We assume that pages that could be isolated for 2042 * migration are movable. But we don't actually try 2043 * isolating, as that would be expensive. 2044 */ 2045 if (num_movable && 2046 (PageLRU(page) || __PageMovable(page))) 2047 (*num_movable)++; 2048 2049 page++; 2050 continue; 2051 } 2052 2053 order = page_order(page); 2054 list_move(&page->lru, 2055 &zone->free_area[order].free_list[migratetype]); 2056 page += 1 << order; 2057 pages_moved += 1 << order; 2058 } 2059 2060 return pages_moved; 2061 } 2062 2063 int move_freepages_block(struct zone *zone, struct page *page, 2064 int migratetype, int *num_movable) 2065 { 2066 unsigned long start_pfn, end_pfn; 2067 struct page *start_page, *end_page; 2068 2069 if (num_movable) 2070 *num_movable = 0; 2071 2072 start_pfn = page_to_pfn(page); 2073 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2074 start_page = pfn_to_page(start_pfn); 2075 end_page = start_page + pageblock_nr_pages - 1; 2076 end_pfn = start_pfn + pageblock_nr_pages - 1; 2077 2078 /* Do not cross zone boundaries */ 2079 if (!zone_spans_pfn(zone, start_pfn)) 2080 start_page = page; 2081 if (!zone_spans_pfn(zone, end_pfn)) 2082 return 0; 2083 2084 return move_freepages(zone, start_page, end_page, migratetype, 2085 num_movable); 2086 } 2087 2088 static void change_pageblock_range(struct page *pageblock_page, 2089 int start_order, int migratetype) 2090 { 2091 int nr_pageblocks = 1 << (start_order - pageblock_order); 2092 2093 while (nr_pageblocks--) { 2094 set_pageblock_migratetype(pageblock_page, migratetype); 2095 pageblock_page += pageblock_nr_pages; 2096 } 2097 } 2098 2099 /* 2100 * When we are falling back to another migratetype during allocation, try to 2101 * steal extra free pages from the same pageblocks to satisfy further 2102 * allocations, instead of polluting multiple pageblocks. 2103 * 2104 * If we are stealing a relatively large buddy page, it is likely there will 2105 * be more free pages in the pageblock, so try to steal them all. For 2106 * reclaimable and unmovable allocations, we steal regardless of page size, 2107 * as fragmentation caused by those allocations polluting movable pageblocks 2108 * is worse than movable allocations stealing from unmovable and reclaimable 2109 * pageblocks. 2110 */ 2111 static bool can_steal_fallback(unsigned int order, int start_mt) 2112 { 2113 /* 2114 * Leaving this order check is intended, although there is 2115 * relaxed order check in next check. The reason is that 2116 * we can actually steal whole pageblock if this condition met, 2117 * but, below check doesn't guarantee it and that is just heuristic 2118 * so could be changed anytime. 2119 */ 2120 if (order >= pageblock_order) 2121 return true; 2122 2123 if (order >= pageblock_order / 2 || 2124 start_mt == MIGRATE_RECLAIMABLE || 2125 start_mt == MIGRATE_UNMOVABLE || 2126 page_group_by_mobility_disabled) 2127 return true; 2128 2129 return false; 2130 } 2131 2132 /* 2133 * This function implements actual steal behaviour. If order is large enough, 2134 * we can steal whole pageblock. If not, we first move freepages in this 2135 * pageblock to our migratetype and determine how many already-allocated pages 2136 * are there in the pageblock with a compatible migratetype. If at least half 2137 * of pages are free or compatible, we can change migratetype of the pageblock 2138 * itself, so pages freed in the future will be put on the correct free list. 2139 */ 2140 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2141 int start_type, bool whole_block) 2142 { 2143 unsigned int current_order = page_order(page); 2144 struct free_area *area; 2145 int free_pages, movable_pages, alike_pages; 2146 int old_block_type; 2147 2148 old_block_type = get_pageblock_migratetype(page); 2149 2150 /* 2151 * This can happen due to races and we want to prevent broken 2152 * highatomic accounting. 2153 */ 2154 if (is_migrate_highatomic(old_block_type)) 2155 goto single_page; 2156 2157 /* Take ownership for orders >= pageblock_order */ 2158 if (current_order >= pageblock_order) { 2159 change_pageblock_range(page, current_order, start_type); 2160 goto single_page; 2161 } 2162 2163 /* We are not allowed to try stealing from the whole block */ 2164 if (!whole_block) 2165 goto single_page; 2166 2167 free_pages = move_freepages_block(zone, page, start_type, 2168 &movable_pages); 2169 /* 2170 * Determine how many pages are compatible with our allocation. 2171 * For movable allocation, it's the number of movable pages which 2172 * we just obtained. For other types it's a bit more tricky. 2173 */ 2174 if (start_type == MIGRATE_MOVABLE) { 2175 alike_pages = movable_pages; 2176 } else { 2177 /* 2178 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2179 * to MOVABLE pageblock, consider all non-movable pages as 2180 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2181 * vice versa, be conservative since we can't distinguish the 2182 * exact migratetype of non-movable pages. 2183 */ 2184 if (old_block_type == MIGRATE_MOVABLE) 2185 alike_pages = pageblock_nr_pages 2186 - (free_pages + movable_pages); 2187 else 2188 alike_pages = 0; 2189 } 2190 2191 /* moving whole block can fail due to zone boundary conditions */ 2192 if (!free_pages) 2193 goto single_page; 2194 2195 /* 2196 * If a sufficient number of pages in the block are either free or of 2197 * comparable migratability as our allocation, claim the whole block. 2198 */ 2199 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2200 page_group_by_mobility_disabled) 2201 set_pageblock_migratetype(page, start_type); 2202 2203 return; 2204 2205 single_page: 2206 area = &zone->free_area[current_order]; 2207 list_move(&page->lru, &area->free_list[start_type]); 2208 } 2209 2210 /* 2211 * Check whether there is a suitable fallback freepage with requested order. 2212 * If only_stealable is true, this function returns fallback_mt only if 2213 * we can steal other freepages all together. This would help to reduce 2214 * fragmentation due to mixed migratetype pages in one pageblock. 2215 */ 2216 int find_suitable_fallback(struct free_area *area, unsigned int order, 2217 int migratetype, bool only_stealable, bool *can_steal) 2218 { 2219 int i; 2220 int fallback_mt; 2221 2222 if (area->nr_free == 0) 2223 return -1; 2224 2225 *can_steal = false; 2226 for (i = 0;; i++) { 2227 fallback_mt = fallbacks[migratetype][i]; 2228 if (fallback_mt == MIGRATE_TYPES) 2229 break; 2230 2231 if (list_empty(&area->free_list[fallback_mt])) 2232 continue; 2233 2234 if (can_steal_fallback(order, migratetype)) 2235 *can_steal = true; 2236 2237 if (!only_stealable) 2238 return fallback_mt; 2239 2240 if (*can_steal) 2241 return fallback_mt; 2242 } 2243 2244 return -1; 2245 } 2246 2247 /* 2248 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2249 * there are no empty page blocks that contain a page with a suitable order 2250 */ 2251 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2252 unsigned int alloc_order) 2253 { 2254 int mt; 2255 unsigned long max_managed, flags; 2256 2257 /* 2258 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2259 * Check is race-prone but harmless. 2260 */ 2261 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2262 if (zone->nr_reserved_highatomic >= max_managed) 2263 return; 2264 2265 spin_lock_irqsave(&zone->lock, flags); 2266 2267 /* Recheck the nr_reserved_highatomic limit under the lock */ 2268 if (zone->nr_reserved_highatomic >= max_managed) 2269 goto out_unlock; 2270 2271 /* Yoink! */ 2272 mt = get_pageblock_migratetype(page); 2273 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2274 && !is_migrate_cma(mt)) { 2275 zone->nr_reserved_highatomic += pageblock_nr_pages; 2276 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2277 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2278 } 2279 2280 out_unlock: 2281 spin_unlock_irqrestore(&zone->lock, flags); 2282 } 2283 2284 /* 2285 * Used when an allocation is about to fail under memory pressure. This 2286 * potentially hurts the reliability of high-order allocations when under 2287 * intense memory pressure but failed atomic allocations should be easier 2288 * to recover from than an OOM. 2289 * 2290 * If @force is true, try to unreserve a pageblock even though highatomic 2291 * pageblock is exhausted. 2292 */ 2293 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2294 bool force) 2295 { 2296 struct zonelist *zonelist = ac->zonelist; 2297 unsigned long flags; 2298 struct zoneref *z; 2299 struct zone *zone; 2300 struct page *page; 2301 int order; 2302 bool ret; 2303 2304 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2305 ac->nodemask) { 2306 /* 2307 * Preserve at least one pageblock unless memory pressure 2308 * is really high. 2309 */ 2310 if (!force && zone->nr_reserved_highatomic <= 2311 pageblock_nr_pages) 2312 continue; 2313 2314 spin_lock_irqsave(&zone->lock, flags); 2315 for (order = 0; order < MAX_ORDER; order++) { 2316 struct free_area *area = &(zone->free_area[order]); 2317 2318 page = list_first_entry_or_null( 2319 &area->free_list[MIGRATE_HIGHATOMIC], 2320 struct page, lru); 2321 if (!page) 2322 continue; 2323 2324 /* 2325 * In page freeing path, migratetype change is racy so 2326 * we can counter several free pages in a pageblock 2327 * in this loop althoug we changed the pageblock type 2328 * from highatomic to ac->migratetype. So we should 2329 * adjust the count once. 2330 */ 2331 if (is_migrate_highatomic_page(page)) { 2332 /* 2333 * It should never happen but changes to 2334 * locking could inadvertently allow a per-cpu 2335 * drain to add pages to MIGRATE_HIGHATOMIC 2336 * while unreserving so be safe and watch for 2337 * underflows. 2338 */ 2339 zone->nr_reserved_highatomic -= min( 2340 pageblock_nr_pages, 2341 zone->nr_reserved_highatomic); 2342 } 2343 2344 /* 2345 * Convert to ac->migratetype and avoid the normal 2346 * pageblock stealing heuristics. Minimally, the caller 2347 * is doing the work and needs the pages. More 2348 * importantly, if the block was always converted to 2349 * MIGRATE_UNMOVABLE or another type then the number 2350 * of pageblocks that cannot be completely freed 2351 * may increase. 2352 */ 2353 set_pageblock_migratetype(page, ac->migratetype); 2354 ret = move_freepages_block(zone, page, ac->migratetype, 2355 NULL); 2356 if (ret) { 2357 spin_unlock_irqrestore(&zone->lock, flags); 2358 return ret; 2359 } 2360 } 2361 spin_unlock_irqrestore(&zone->lock, flags); 2362 } 2363 2364 return false; 2365 } 2366 2367 /* 2368 * Try finding a free buddy page on the fallback list and put it on the free 2369 * list of requested migratetype, possibly along with other pages from the same 2370 * block, depending on fragmentation avoidance heuristics. Returns true if 2371 * fallback was found so that __rmqueue_smallest() can grab it. 2372 * 2373 * The use of signed ints for order and current_order is a deliberate 2374 * deviation from the rest of this file, to make the for loop 2375 * condition simpler. 2376 */ 2377 static __always_inline bool 2378 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2379 { 2380 struct free_area *area; 2381 int current_order; 2382 struct page *page; 2383 int fallback_mt; 2384 bool can_steal; 2385 2386 /* 2387 * Find the largest available free page in the other list. This roughly 2388 * approximates finding the pageblock with the most free pages, which 2389 * would be too costly to do exactly. 2390 */ 2391 for (current_order = MAX_ORDER - 1; current_order >= order; 2392 --current_order) { 2393 area = &(zone->free_area[current_order]); 2394 fallback_mt = find_suitable_fallback(area, current_order, 2395 start_migratetype, false, &can_steal); 2396 if (fallback_mt == -1) 2397 continue; 2398 2399 /* 2400 * We cannot steal all free pages from the pageblock and the 2401 * requested migratetype is movable. In that case it's better to 2402 * steal and split the smallest available page instead of the 2403 * largest available page, because even if the next movable 2404 * allocation falls back into a different pageblock than this 2405 * one, it won't cause permanent fragmentation. 2406 */ 2407 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2408 && current_order > order) 2409 goto find_smallest; 2410 2411 goto do_steal; 2412 } 2413 2414 return false; 2415 2416 find_smallest: 2417 for (current_order = order; current_order < MAX_ORDER; 2418 current_order++) { 2419 area = &(zone->free_area[current_order]); 2420 fallback_mt = find_suitable_fallback(area, current_order, 2421 start_migratetype, false, &can_steal); 2422 if (fallback_mt != -1) 2423 break; 2424 } 2425 2426 /* 2427 * This should not happen - we already found a suitable fallback 2428 * when looking for the largest page. 2429 */ 2430 VM_BUG_ON(current_order == MAX_ORDER); 2431 2432 do_steal: 2433 page = list_first_entry(&area->free_list[fallback_mt], 2434 struct page, lru); 2435 2436 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2437 2438 trace_mm_page_alloc_extfrag(page, order, current_order, 2439 start_migratetype, fallback_mt); 2440 2441 return true; 2442 2443 } 2444 2445 /* 2446 * Do the hard work of removing an element from the buddy allocator. 2447 * Call me with the zone->lock already held. 2448 */ 2449 static __always_inline struct page * 2450 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2451 { 2452 struct page *page; 2453 2454 retry: 2455 page = __rmqueue_smallest(zone, order, migratetype); 2456 if (unlikely(!page)) { 2457 if (migratetype == MIGRATE_MOVABLE) 2458 page = __rmqueue_cma_fallback(zone, order); 2459 2460 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2461 goto retry; 2462 } 2463 2464 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2465 return page; 2466 } 2467 2468 /* 2469 * Obtain a specified number of elements from the buddy allocator, all under 2470 * a single hold of the lock, for efficiency. Add them to the supplied list. 2471 * Returns the number of new pages which were placed at *list. 2472 */ 2473 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2474 unsigned long count, struct list_head *list, 2475 int migratetype) 2476 { 2477 int i, alloced = 0; 2478 2479 spin_lock(&zone->lock); 2480 for (i = 0; i < count; ++i) { 2481 struct page *page = __rmqueue(zone, order, migratetype); 2482 if (unlikely(page == NULL)) 2483 break; 2484 2485 if (unlikely(check_pcp_refill(page))) 2486 continue; 2487 2488 /* 2489 * Split buddy pages returned by expand() are received here in 2490 * physical page order. The page is added to the tail of 2491 * caller's list. From the callers perspective, the linked list 2492 * is ordered by page number under some conditions. This is 2493 * useful for IO devices that can forward direction from the 2494 * head, thus also in the physical page order. This is useful 2495 * for IO devices that can merge IO requests if the physical 2496 * pages are ordered properly. 2497 */ 2498 list_add_tail(&page->lru, list); 2499 alloced++; 2500 if (is_migrate_cma(get_pcppage_migratetype(page))) 2501 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2502 -(1 << order)); 2503 } 2504 2505 /* 2506 * i pages were removed from the buddy list even if some leak due 2507 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2508 * on i. Do not confuse with 'alloced' which is the number of 2509 * pages added to the pcp list. 2510 */ 2511 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2512 spin_unlock(&zone->lock); 2513 return alloced; 2514 } 2515 2516 #ifdef CONFIG_NUMA 2517 /* 2518 * Called from the vmstat counter updater to drain pagesets of this 2519 * currently executing processor on remote nodes after they have 2520 * expired. 2521 * 2522 * Note that this function must be called with the thread pinned to 2523 * a single processor. 2524 */ 2525 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2526 { 2527 unsigned long flags; 2528 int to_drain, batch; 2529 2530 local_irq_save(flags); 2531 batch = READ_ONCE(pcp->batch); 2532 to_drain = min(pcp->count, batch); 2533 if (to_drain > 0) 2534 free_pcppages_bulk(zone, to_drain, pcp); 2535 local_irq_restore(flags); 2536 } 2537 #endif 2538 2539 /* 2540 * Drain pcplists of the indicated processor and zone. 2541 * 2542 * The processor must either be the current processor and the 2543 * thread pinned to the current processor or a processor that 2544 * is not online. 2545 */ 2546 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2547 { 2548 unsigned long flags; 2549 struct per_cpu_pageset *pset; 2550 struct per_cpu_pages *pcp; 2551 2552 local_irq_save(flags); 2553 pset = per_cpu_ptr(zone->pageset, cpu); 2554 2555 pcp = &pset->pcp; 2556 if (pcp->count) 2557 free_pcppages_bulk(zone, pcp->count, pcp); 2558 local_irq_restore(flags); 2559 } 2560 2561 /* 2562 * Drain pcplists of all zones on the indicated processor. 2563 * 2564 * The processor must either be the current processor and the 2565 * thread pinned to the current processor or a processor that 2566 * is not online. 2567 */ 2568 static void drain_pages(unsigned int cpu) 2569 { 2570 struct zone *zone; 2571 2572 for_each_populated_zone(zone) { 2573 drain_pages_zone(cpu, zone); 2574 } 2575 } 2576 2577 /* 2578 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2579 * 2580 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2581 * the single zone's pages. 2582 */ 2583 void drain_local_pages(struct zone *zone) 2584 { 2585 int cpu = smp_processor_id(); 2586 2587 if (zone) 2588 drain_pages_zone(cpu, zone); 2589 else 2590 drain_pages(cpu); 2591 } 2592 2593 static void drain_local_pages_wq(struct work_struct *work) 2594 { 2595 /* 2596 * drain_all_pages doesn't use proper cpu hotplug protection so 2597 * we can race with cpu offline when the WQ can move this from 2598 * a cpu pinned worker to an unbound one. We can operate on a different 2599 * cpu which is allright but we also have to make sure to not move to 2600 * a different one. 2601 */ 2602 preempt_disable(); 2603 drain_local_pages(NULL); 2604 preempt_enable(); 2605 } 2606 2607 /* 2608 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2609 * 2610 * When zone parameter is non-NULL, spill just the single zone's pages. 2611 * 2612 * Note that this can be extremely slow as the draining happens in a workqueue. 2613 */ 2614 void drain_all_pages(struct zone *zone) 2615 { 2616 int cpu; 2617 2618 /* 2619 * Allocate in the BSS so we wont require allocation in 2620 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2621 */ 2622 static cpumask_t cpus_with_pcps; 2623 2624 /* 2625 * Make sure nobody triggers this path before mm_percpu_wq is fully 2626 * initialized. 2627 */ 2628 if (WARN_ON_ONCE(!mm_percpu_wq)) 2629 return; 2630 2631 /* 2632 * Do not drain if one is already in progress unless it's specific to 2633 * a zone. Such callers are primarily CMA and memory hotplug and need 2634 * the drain to be complete when the call returns. 2635 */ 2636 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2637 if (!zone) 2638 return; 2639 mutex_lock(&pcpu_drain_mutex); 2640 } 2641 2642 /* 2643 * We don't care about racing with CPU hotplug event 2644 * as offline notification will cause the notified 2645 * cpu to drain that CPU pcps and on_each_cpu_mask 2646 * disables preemption as part of its processing 2647 */ 2648 for_each_online_cpu(cpu) { 2649 struct per_cpu_pageset *pcp; 2650 struct zone *z; 2651 bool has_pcps = false; 2652 2653 if (zone) { 2654 pcp = per_cpu_ptr(zone->pageset, cpu); 2655 if (pcp->pcp.count) 2656 has_pcps = true; 2657 } else { 2658 for_each_populated_zone(z) { 2659 pcp = per_cpu_ptr(z->pageset, cpu); 2660 if (pcp->pcp.count) { 2661 has_pcps = true; 2662 break; 2663 } 2664 } 2665 } 2666 2667 if (has_pcps) 2668 cpumask_set_cpu(cpu, &cpus_with_pcps); 2669 else 2670 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2671 } 2672 2673 for_each_cpu(cpu, &cpus_with_pcps) { 2674 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2675 INIT_WORK(work, drain_local_pages_wq); 2676 queue_work_on(cpu, mm_percpu_wq, work); 2677 } 2678 for_each_cpu(cpu, &cpus_with_pcps) 2679 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2680 2681 mutex_unlock(&pcpu_drain_mutex); 2682 } 2683 2684 #ifdef CONFIG_HIBERNATION 2685 2686 /* 2687 * Touch the watchdog for every WD_PAGE_COUNT pages. 2688 */ 2689 #define WD_PAGE_COUNT (128*1024) 2690 2691 void mark_free_pages(struct zone *zone) 2692 { 2693 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2694 unsigned long flags; 2695 unsigned int order, t; 2696 struct page *page; 2697 2698 if (zone_is_empty(zone)) 2699 return; 2700 2701 spin_lock_irqsave(&zone->lock, flags); 2702 2703 max_zone_pfn = zone_end_pfn(zone); 2704 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2705 if (pfn_valid(pfn)) { 2706 page = pfn_to_page(pfn); 2707 2708 if (!--page_count) { 2709 touch_nmi_watchdog(); 2710 page_count = WD_PAGE_COUNT; 2711 } 2712 2713 if (page_zone(page) != zone) 2714 continue; 2715 2716 if (!swsusp_page_is_forbidden(page)) 2717 swsusp_unset_page_free(page); 2718 } 2719 2720 for_each_migratetype_order(order, t) { 2721 list_for_each_entry(page, 2722 &zone->free_area[order].free_list[t], lru) { 2723 unsigned long i; 2724 2725 pfn = page_to_pfn(page); 2726 for (i = 0; i < (1UL << order); i++) { 2727 if (!--page_count) { 2728 touch_nmi_watchdog(); 2729 page_count = WD_PAGE_COUNT; 2730 } 2731 swsusp_set_page_free(pfn_to_page(pfn + i)); 2732 } 2733 } 2734 } 2735 spin_unlock_irqrestore(&zone->lock, flags); 2736 } 2737 #endif /* CONFIG_PM */ 2738 2739 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2740 { 2741 int migratetype; 2742 2743 if (!free_pcp_prepare(page)) 2744 return false; 2745 2746 migratetype = get_pfnblock_migratetype(page, pfn); 2747 set_pcppage_migratetype(page, migratetype); 2748 return true; 2749 } 2750 2751 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2752 { 2753 struct zone *zone = page_zone(page); 2754 struct per_cpu_pages *pcp; 2755 int migratetype; 2756 2757 migratetype = get_pcppage_migratetype(page); 2758 __count_vm_event(PGFREE); 2759 2760 /* 2761 * We only track unmovable, reclaimable and movable on pcp lists. 2762 * Free ISOLATE pages back to the allocator because they are being 2763 * offlined but treat HIGHATOMIC as movable pages so we can get those 2764 * areas back if necessary. Otherwise, we may have to free 2765 * excessively into the page allocator 2766 */ 2767 if (migratetype >= MIGRATE_PCPTYPES) { 2768 if (unlikely(is_migrate_isolate(migratetype))) { 2769 free_one_page(zone, page, pfn, 0, migratetype); 2770 return; 2771 } 2772 migratetype = MIGRATE_MOVABLE; 2773 } 2774 2775 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2776 list_add(&page->lru, &pcp->lists[migratetype]); 2777 pcp->count++; 2778 if (pcp->count >= pcp->high) { 2779 unsigned long batch = READ_ONCE(pcp->batch); 2780 free_pcppages_bulk(zone, batch, pcp); 2781 } 2782 } 2783 2784 /* 2785 * Free a 0-order page 2786 */ 2787 void free_unref_page(struct page *page) 2788 { 2789 unsigned long flags; 2790 unsigned long pfn = page_to_pfn(page); 2791 2792 if (!free_unref_page_prepare(page, pfn)) 2793 return; 2794 2795 local_irq_save(flags); 2796 free_unref_page_commit(page, pfn); 2797 local_irq_restore(flags); 2798 } 2799 2800 /* 2801 * Free a list of 0-order pages 2802 */ 2803 void free_unref_page_list(struct list_head *list) 2804 { 2805 struct page *page, *next; 2806 unsigned long flags, pfn; 2807 int batch_count = 0; 2808 2809 /* Prepare pages for freeing */ 2810 list_for_each_entry_safe(page, next, list, lru) { 2811 pfn = page_to_pfn(page); 2812 if (!free_unref_page_prepare(page, pfn)) 2813 list_del(&page->lru); 2814 set_page_private(page, pfn); 2815 } 2816 2817 local_irq_save(flags); 2818 list_for_each_entry_safe(page, next, list, lru) { 2819 unsigned long pfn = page_private(page); 2820 2821 set_page_private(page, 0); 2822 trace_mm_page_free_batched(page); 2823 free_unref_page_commit(page, pfn); 2824 2825 /* 2826 * Guard against excessive IRQ disabled times when we get 2827 * a large list of pages to free. 2828 */ 2829 if (++batch_count == SWAP_CLUSTER_MAX) { 2830 local_irq_restore(flags); 2831 batch_count = 0; 2832 local_irq_save(flags); 2833 } 2834 } 2835 local_irq_restore(flags); 2836 } 2837 2838 /* 2839 * split_page takes a non-compound higher-order page, and splits it into 2840 * n (1<<order) sub-pages: page[0..n] 2841 * Each sub-page must be freed individually. 2842 * 2843 * Note: this is probably too low level an operation for use in drivers. 2844 * Please consult with lkml before using this in your driver. 2845 */ 2846 void split_page(struct page *page, unsigned int order) 2847 { 2848 int i; 2849 2850 VM_BUG_ON_PAGE(PageCompound(page), page); 2851 VM_BUG_ON_PAGE(!page_count(page), page); 2852 2853 for (i = 1; i < (1 << order); i++) 2854 set_page_refcounted(page + i); 2855 split_page_owner(page, order); 2856 } 2857 EXPORT_SYMBOL_GPL(split_page); 2858 2859 int __isolate_free_page(struct page *page, unsigned int order) 2860 { 2861 unsigned long watermark; 2862 struct zone *zone; 2863 int mt; 2864 2865 BUG_ON(!PageBuddy(page)); 2866 2867 zone = page_zone(page); 2868 mt = get_pageblock_migratetype(page); 2869 2870 if (!is_migrate_isolate(mt)) { 2871 /* 2872 * Obey watermarks as if the page was being allocated. We can 2873 * emulate a high-order watermark check with a raised order-0 2874 * watermark, because we already know our high-order page 2875 * exists. 2876 */ 2877 watermark = min_wmark_pages(zone) + (1UL << order); 2878 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2879 return 0; 2880 2881 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2882 } 2883 2884 /* Remove page from free list */ 2885 list_del(&page->lru); 2886 zone->free_area[order].nr_free--; 2887 rmv_page_order(page); 2888 2889 /* 2890 * Set the pageblock if the isolated page is at least half of a 2891 * pageblock 2892 */ 2893 if (order >= pageblock_order - 1) { 2894 struct page *endpage = page + (1 << order) - 1; 2895 for (; page < endpage; page += pageblock_nr_pages) { 2896 int mt = get_pageblock_migratetype(page); 2897 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2898 && !is_migrate_highatomic(mt)) 2899 set_pageblock_migratetype(page, 2900 MIGRATE_MOVABLE); 2901 } 2902 } 2903 2904 2905 return 1UL << order; 2906 } 2907 2908 /* 2909 * Update NUMA hit/miss statistics 2910 * 2911 * Must be called with interrupts disabled. 2912 */ 2913 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2914 { 2915 #ifdef CONFIG_NUMA 2916 enum numa_stat_item local_stat = NUMA_LOCAL; 2917 2918 /* skip numa counters update if numa stats is disabled */ 2919 if (!static_branch_likely(&vm_numa_stat_key)) 2920 return; 2921 2922 if (zone_to_nid(z) != numa_node_id()) 2923 local_stat = NUMA_OTHER; 2924 2925 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2926 __inc_numa_state(z, NUMA_HIT); 2927 else { 2928 __inc_numa_state(z, NUMA_MISS); 2929 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2930 } 2931 __inc_numa_state(z, local_stat); 2932 #endif 2933 } 2934 2935 /* Remove page from the per-cpu list, caller must protect the list */ 2936 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2937 struct per_cpu_pages *pcp, 2938 struct list_head *list) 2939 { 2940 struct page *page; 2941 2942 do { 2943 if (list_empty(list)) { 2944 pcp->count += rmqueue_bulk(zone, 0, 2945 pcp->batch, list, 2946 migratetype); 2947 if (unlikely(list_empty(list))) 2948 return NULL; 2949 } 2950 2951 page = list_first_entry(list, struct page, lru); 2952 list_del(&page->lru); 2953 pcp->count--; 2954 } while (check_new_pcp(page)); 2955 2956 return page; 2957 } 2958 2959 /* Lock and remove page from the per-cpu list */ 2960 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2961 struct zone *zone, unsigned int order, 2962 gfp_t gfp_flags, int migratetype) 2963 { 2964 struct per_cpu_pages *pcp; 2965 struct list_head *list; 2966 struct page *page; 2967 unsigned long flags; 2968 2969 local_irq_save(flags); 2970 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2971 list = &pcp->lists[migratetype]; 2972 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2973 if (page) { 2974 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2975 zone_statistics(preferred_zone, zone); 2976 } 2977 local_irq_restore(flags); 2978 return page; 2979 } 2980 2981 /* 2982 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2983 */ 2984 static inline 2985 struct page *rmqueue(struct zone *preferred_zone, 2986 struct zone *zone, unsigned int order, 2987 gfp_t gfp_flags, unsigned int alloc_flags, 2988 int migratetype) 2989 { 2990 unsigned long flags; 2991 struct page *page; 2992 2993 if (likely(order == 0)) { 2994 page = rmqueue_pcplist(preferred_zone, zone, order, 2995 gfp_flags, migratetype); 2996 goto out; 2997 } 2998 2999 /* 3000 * We most definitely don't want callers attempting to 3001 * allocate greater than order-1 page units with __GFP_NOFAIL. 3002 */ 3003 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3004 spin_lock_irqsave(&zone->lock, flags); 3005 3006 do { 3007 page = NULL; 3008 if (alloc_flags & ALLOC_HARDER) { 3009 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3010 if (page) 3011 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3012 } 3013 if (!page) 3014 page = __rmqueue(zone, order, migratetype); 3015 } while (page && check_new_pages(page, order)); 3016 spin_unlock(&zone->lock); 3017 if (!page) 3018 goto failed; 3019 __mod_zone_freepage_state(zone, -(1 << order), 3020 get_pcppage_migratetype(page)); 3021 3022 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3023 zone_statistics(preferred_zone, zone); 3024 local_irq_restore(flags); 3025 3026 out: 3027 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3028 return page; 3029 3030 failed: 3031 local_irq_restore(flags); 3032 return NULL; 3033 } 3034 3035 #ifdef CONFIG_FAIL_PAGE_ALLOC 3036 3037 static struct { 3038 struct fault_attr attr; 3039 3040 bool ignore_gfp_highmem; 3041 bool ignore_gfp_reclaim; 3042 u32 min_order; 3043 } fail_page_alloc = { 3044 .attr = FAULT_ATTR_INITIALIZER, 3045 .ignore_gfp_reclaim = true, 3046 .ignore_gfp_highmem = true, 3047 .min_order = 1, 3048 }; 3049 3050 static int __init setup_fail_page_alloc(char *str) 3051 { 3052 return setup_fault_attr(&fail_page_alloc.attr, str); 3053 } 3054 __setup("fail_page_alloc=", setup_fail_page_alloc); 3055 3056 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3057 { 3058 if (order < fail_page_alloc.min_order) 3059 return false; 3060 if (gfp_mask & __GFP_NOFAIL) 3061 return false; 3062 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3063 return false; 3064 if (fail_page_alloc.ignore_gfp_reclaim && 3065 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3066 return false; 3067 3068 return should_fail(&fail_page_alloc.attr, 1 << order); 3069 } 3070 3071 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3072 3073 static int __init fail_page_alloc_debugfs(void) 3074 { 3075 umode_t mode = S_IFREG | 0600; 3076 struct dentry *dir; 3077 3078 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3079 &fail_page_alloc.attr); 3080 if (IS_ERR(dir)) 3081 return PTR_ERR(dir); 3082 3083 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 3084 &fail_page_alloc.ignore_gfp_reclaim)) 3085 goto fail; 3086 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3087 &fail_page_alloc.ignore_gfp_highmem)) 3088 goto fail; 3089 if (!debugfs_create_u32("min-order", mode, dir, 3090 &fail_page_alloc.min_order)) 3091 goto fail; 3092 3093 return 0; 3094 fail: 3095 debugfs_remove_recursive(dir); 3096 3097 return -ENOMEM; 3098 } 3099 3100 late_initcall(fail_page_alloc_debugfs); 3101 3102 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3103 3104 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3105 3106 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3107 { 3108 return false; 3109 } 3110 3111 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3112 3113 /* 3114 * Return true if free base pages are above 'mark'. For high-order checks it 3115 * will return true of the order-0 watermark is reached and there is at least 3116 * one free page of a suitable size. Checking now avoids taking the zone lock 3117 * to check in the allocation paths if no pages are free. 3118 */ 3119 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3120 int classzone_idx, unsigned int alloc_flags, 3121 long free_pages) 3122 { 3123 long min = mark; 3124 int o; 3125 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3126 3127 /* free_pages may go negative - that's OK */ 3128 free_pages -= (1 << order) - 1; 3129 3130 if (alloc_flags & ALLOC_HIGH) 3131 min -= min / 2; 3132 3133 /* 3134 * If the caller does not have rights to ALLOC_HARDER then subtract 3135 * the high-atomic reserves. This will over-estimate the size of the 3136 * atomic reserve but it avoids a search. 3137 */ 3138 if (likely(!alloc_harder)) { 3139 free_pages -= z->nr_reserved_highatomic; 3140 } else { 3141 /* 3142 * OOM victims can try even harder than normal ALLOC_HARDER 3143 * users on the grounds that it's definitely going to be in 3144 * the exit path shortly and free memory. Any allocation it 3145 * makes during the free path will be small and short-lived. 3146 */ 3147 if (alloc_flags & ALLOC_OOM) 3148 min -= min / 2; 3149 else 3150 min -= min / 4; 3151 } 3152 3153 3154 #ifdef CONFIG_CMA 3155 /* If allocation can't use CMA areas don't use free CMA pages */ 3156 if (!(alloc_flags & ALLOC_CMA)) 3157 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3158 #endif 3159 3160 /* 3161 * Check watermarks for an order-0 allocation request. If these 3162 * are not met, then a high-order request also cannot go ahead 3163 * even if a suitable page happened to be free. 3164 */ 3165 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3166 return false; 3167 3168 /* If this is an order-0 request then the watermark is fine */ 3169 if (!order) 3170 return true; 3171 3172 /* For a high-order request, check at least one suitable page is free */ 3173 for (o = order; o < MAX_ORDER; o++) { 3174 struct free_area *area = &z->free_area[o]; 3175 int mt; 3176 3177 if (!area->nr_free) 3178 continue; 3179 3180 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3181 if (!list_empty(&area->free_list[mt])) 3182 return true; 3183 } 3184 3185 #ifdef CONFIG_CMA 3186 if ((alloc_flags & ALLOC_CMA) && 3187 !list_empty(&area->free_list[MIGRATE_CMA])) { 3188 return true; 3189 } 3190 #endif 3191 if (alloc_harder && 3192 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3193 return true; 3194 } 3195 return false; 3196 } 3197 3198 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3199 int classzone_idx, unsigned int alloc_flags) 3200 { 3201 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3202 zone_page_state(z, NR_FREE_PAGES)); 3203 } 3204 3205 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3206 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3207 { 3208 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3209 long cma_pages = 0; 3210 3211 #ifdef CONFIG_CMA 3212 /* If allocation can't use CMA areas don't use free CMA pages */ 3213 if (!(alloc_flags & ALLOC_CMA)) 3214 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3215 #endif 3216 3217 /* 3218 * Fast check for order-0 only. If this fails then the reserves 3219 * need to be calculated. There is a corner case where the check 3220 * passes but only the high-order atomic reserve are free. If 3221 * the caller is !atomic then it'll uselessly search the free 3222 * list. That corner case is then slower but it is harmless. 3223 */ 3224 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3225 return true; 3226 3227 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3228 free_pages); 3229 } 3230 3231 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3232 unsigned long mark, int classzone_idx) 3233 { 3234 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3235 3236 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3237 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3238 3239 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3240 free_pages); 3241 } 3242 3243 #ifdef CONFIG_NUMA 3244 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3245 { 3246 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3247 RECLAIM_DISTANCE; 3248 } 3249 #else /* CONFIG_NUMA */ 3250 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3251 { 3252 return true; 3253 } 3254 #endif /* CONFIG_NUMA */ 3255 3256 /* 3257 * get_page_from_freelist goes through the zonelist trying to allocate 3258 * a page. 3259 */ 3260 static struct page * 3261 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3262 const struct alloc_context *ac) 3263 { 3264 struct zoneref *z = ac->preferred_zoneref; 3265 struct zone *zone; 3266 struct pglist_data *last_pgdat_dirty_limit = NULL; 3267 3268 /* 3269 * Scan zonelist, looking for a zone with enough free. 3270 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3271 */ 3272 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3273 ac->nodemask) { 3274 struct page *page; 3275 unsigned long mark; 3276 3277 if (cpusets_enabled() && 3278 (alloc_flags & ALLOC_CPUSET) && 3279 !__cpuset_zone_allowed(zone, gfp_mask)) 3280 continue; 3281 /* 3282 * When allocating a page cache page for writing, we 3283 * want to get it from a node that is within its dirty 3284 * limit, such that no single node holds more than its 3285 * proportional share of globally allowed dirty pages. 3286 * The dirty limits take into account the node's 3287 * lowmem reserves and high watermark so that kswapd 3288 * should be able to balance it without having to 3289 * write pages from its LRU list. 3290 * 3291 * XXX: For now, allow allocations to potentially 3292 * exceed the per-node dirty limit in the slowpath 3293 * (spread_dirty_pages unset) before going into reclaim, 3294 * which is important when on a NUMA setup the allowed 3295 * nodes are together not big enough to reach the 3296 * global limit. The proper fix for these situations 3297 * will require awareness of nodes in the 3298 * dirty-throttling and the flusher threads. 3299 */ 3300 if (ac->spread_dirty_pages) { 3301 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3302 continue; 3303 3304 if (!node_dirty_ok(zone->zone_pgdat)) { 3305 last_pgdat_dirty_limit = zone->zone_pgdat; 3306 continue; 3307 } 3308 } 3309 3310 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3311 if (!zone_watermark_fast(zone, order, mark, 3312 ac_classzone_idx(ac), alloc_flags)) { 3313 int ret; 3314 3315 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3316 /* 3317 * Watermark failed for this zone, but see if we can 3318 * grow this zone if it contains deferred pages. 3319 */ 3320 if (static_branch_unlikely(&deferred_pages)) { 3321 if (_deferred_grow_zone(zone, order)) 3322 goto try_this_zone; 3323 } 3324 #endif 3325 /* Checked here to keep the fast path fast */ 3326 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3327 if (alloc_flags & ALLOC_NO_WATERMARKS) 3328 goto try_this_zone; 3329 3330 if (node_reclaim_mode == 0 || 3331 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3332 continue; 3333 3334 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3335 switch (ret) { 3336 case NODE_RECLAIM_NOSCAN: 3337 /* did not scan */ 3338 continue; 3339 case NODE_RECLAIM_FULL: 3340 /* scanned but unreclaimable */ 3341 continue; 3342 default: 3343 /* did we reclaim enough */ 3344 if (zone_watermark_ok(zone, order, mark, 3345 ac_classzone_idx(ac), alloc_flags)) 3346 goto try_this_zone; 3347 3348 continue; 3349 } 3350 } 3351 3352 try_this_zone: 3353 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3354 gfp_mask, alloc_flags, ac->migratetype); 3355 if (page) { 3356 prep_new_page(page, order, gfp_mask, alloc_flags); 3357 3358 /* 3359 * If this is a high-order atomic allocation then check 3360 * if the pageblock should be reserved for the future 3361 */ 3362 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3363 reserve_highatomic_pageblock(page, zone, order); 3364 3365 return page; 3366 } else { 3367 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3368 /* Try again if zone has deferred pages */ 3369 if (static_branch_unlikely(&deferred_pages)) { 3370 if (_deferred_grow_zone(zone, order)) 3371 goto try_this_zone; 3372 } 3373 #endif 3374 } 3375 } 3376 3377 return NULL; 3378 } 3379 3380 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3381 { 3382 unsigned int filter = SHOW_MEM_FILTER_NODES; 3383 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3384 3385 if (!__ratelimit(&show_mem_rs)) 3386 return; 3387 3388 /* 3389 * This documents exceptions given to allocations in certain 3390 * contexts that are allowed to allocate outside current's set 3391 * of allowed nodes. 3392 */ 3393 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3394 if (tsk_is_oom_victim(current) || 3395 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3396 filter &= ~SHOW_MEM_FILTER_NODES; 3397 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3398 filter &= ~SHOW_MEM_FILTER_NODES; 3399 3400 show_mem(filter, nodemask); 3401 } 3402 3403 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3404 { 3405 struct va_format vaf; 3406 va_list args; 3407 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3408 DEFAULT_RATELIMIT_BURST); 3409 3410 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3411 return; 3412 3413 va_start(args, fmt); 3414 vaf.fmt = fmt; 3415 vaf.va = &args; 3416 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3417 current->comm, &vaf, gfp_mask, &gfp_mask, 3418 nodemask_pr_args(nodemask)); 3419 va_end(args); 3420 3421 cpuset_print_current_mems_allowed(); 3422 3423 dump_stack(); 3424 warn_alloc_show_mem(gfp_mask, nodemask); 3425 } 3426 3427 static inline struct page * 3428 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3429 unsigned int alloc_flags, 3430 const struct alloc_context *ac) 3431 { 3432 struct page *page; 3433 3434 page = get_page_from_freelist(gfp_mask, order, 3435 alloc_flags|ALLOC_CPUSET, ac); 3436 /* 3437 * fallback to ignore cpuset restriction if our nodes 3438 * are depleted 3439 */ 3440 if (!page) 3441 page = get_page_from_freelist(gfp_mask, order, 3442 alloc_flags, ac); 3443 3444 return page; 3445 } 3446 3447 static inline struct page * 3448 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3449 const struct alloc_context *ac, unsigned long *did_some_progress) 3450 { 3451 struct oom_control oc = { 3452 .zonelist = ac->zonelist, 3453 .nodemask = ac->nodemask, 3454 .memcg = NULL, 3455 .gfp_mask = gfp_mask, 3456 .order = order, 3457 }; 3458 struct page *page; 3459 3460 *did_some_progress = 0; 3461 3462 /* 3463 * Acquire the oom lock. If that fails, somebody else is 3464 * making progress for us. 3465 */ 3466 if (!mutex_trylock(&oom_lock)) { 3467 *did_some_progress = 1; 3468 schedule_timeout_uninterruptible(1); 3469 return NULL; 3470 } 3471 3472 /* 3473 * Go through the zonelist yet one more time, keep very high watermark 3474 * here, this is only to catch a parallel oom killing, we must fail if 3475 * we're still under heavy pressure. But make sure that this reclaim 3476 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3477 * allocation which will never fail due to oom_lock already held. 3478 */ 3479 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3480 ~__GFP_DIRECT_RECLAIM, order, 3481 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3482 if (page) 3483 goto out; 3484 3485 /* Coredumps can quickly deplete all memory reserves */ 3486 if (current->flags & PF_DUMPCORE) 3487 goto out; 3488 /* The OOM killer will not help higher order allocs */ 3489 if (order > PAGE_ALLOC_COSTLY_ORDER) 3490 goto out; 3491 /* 3492 * We have already exhausted all our reclaim opportunities without any 3493 * success so it is time to admit defeat. We will skip the OOM killer 3494 * because it is very likely that the caller has a more reasonable 3495 * fallback than shooting a random task. 3496 */ 3497 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3498 goto out; 3499 /* The OOM killer does not needlessly kill tasks for lowmem */ 3500 if (ac->high_zoneidx < ZONE_NORMAL) 3501 goto out; 3502 if (pm_suspended_storage()) 3503 goto out; 3504 /* 3505 * XXX: GFP_NOFS allocations should rather fail than rely on 3506 * other request to make a forward progress. 3507 * We are in an unfortunate situation where out_of_memory cannot 3508 * do much for this context but let's try it to at least get 3509 * access to memory reserved if the current task is killed (see 3510 * out_of_memory). Once filesystems are ready to handle allocation 3511 * failures more gracefully we should just bail out here. 3512 */ 3513 3514 /* The OOM killer may not free memory on a specific node */ 3515 if (gfp_mask & __GFP_THISNODE) 3516 goto out; 3517 3518 /* Exhausted what can be done so it's blame time */ 3519 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3520 *did_some_progress = 1; 3521 3522 /* 3523 * Help non-failing allocations by giving them access to memory 3524 * reserves 3525 */ 3526 if (gfp_mask & __GFP_NOFAIL) 3527 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3528 ALLOC_NO_WATERMARKS, ac); 3529 } 3530 out: 3531 mutex_unlock(&oom_lock); 3532 return page; 3533 } 3534 3535 /* 3536 * Maximum number of compaction retries wit a progress before OOM 3537 * killer is consider as the only way to move forward. 3538 */ 3539 #define MAX_COMPACT_RETRIES 16 3540 3541 #ifdef CONFIG_COMPACTION 3542 /* Try memory compaction for high-order allocations before reclaim */ 3543 static struct page * 3544 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3545 unsigned int alloc_flags, const struct alloc_context *ac, 3546 enum compact_priority prio, enum compact_result *compact_result) 3547 { 3548 struct page *page; 3549 unsigned long pflags; 3550 unsigned int noreclaim_flag; 3551 3552 if (!order) 3553 return NULL; 3554 3555 psi_memstall_enter(&pflags); 3556 noreclaim_flag = memalloc_noreclaim_save(); 3557 3558 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3559 prio); 3560 3561 memalloc_noreclaim_restore(noreclaim_flag); 3562 psi_memstall_leave(&pflags); 3563 3564 if (*compact_result <= COMPACT_INACTIVE) 3565 return NULL; 3566 3567 /* 3568 * At least in one zone compaction wasn't deferred or skipped, so let's 3569 * count a compaction stall 3570 */ 3571 count_vm_event(COMPACTSTALL); 3572 3573 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3574 3575 if (page) { 3576 struct zone *zone = page_zone(page); 3577 3578 zone->compact_blockskip_flush = false; 3579 compaction_defer_reset(zone, order, true); 3580 count_vm_event(COMPACTSUCCESS); 3581 return page; 3582 } 3583 3584 /* 3585 * It's bad if compaction run occurs and fails. The most likely reason 3586 * is that pages exist, but not enough to satisfy watermarks. 3587 */ 3588 count_vm_event(COMPACTFAIL); 3589 3590 cond_resched(); 3591 3592 return NULL; 3593 } 3594 3595 static inline bool 3596 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3597 enum compact_result compact_result, 3598 enum compact_priority *compact_priority, 3599 int *compaction_retries) 3600 { 3601 int max_retries = MAX_COMPACT_RETRIES; 3602 int min_priority; 3603 bool ret = false; 3604 int retries = *compaction_retries; 3605 enum compact_priority priority = *compact_priority; 3606 3607 if (!order) 3608 return false; 3609 3610 if (compaction_made_progress(compact_result)) 3611 (*compaction_retries)++; 3612 3613 /* 3614 * compaction considers all the zone as desperately out of memory 3615 * so it doesn't really make much sense to retry except when the 3616 * failure could be caused by insufficient priority 3617 */ 3618 if (compaction_failed(compact_result)) 3619 goto check_priority; 3620 3621 /* 3622 * make sure the compaction wasn't deferred or didn't bail out early 3623 * due to locks contention before we declare that we should give up. 3624 * But do not retry if the given zonelist is not suitable for 3625 * compaction. 3626 */ 3627 if (compaction_withdrawn(compact_result)) { 3628 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3629 goto out; 3630 } 3631 3632 /* 3633 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3634 * costly ones because they are de facto nofail and invoke OOM 3635 * killer to move on while costly can fail and users are ready 3636 * to cope with that. 1/4 retries is rather arbitrary but we 3637 * would need much more detailed feedback from compaction to 3638 * make a better decision. 3639 */ 3640 if (order > PAGE_ALLOC_COSTLY_ORDER) 3641 max_retries /= 4; 3642 if (*compaction_retries <= max_retries) { 3643 ret = true; 3644 goto out; 3645 } 3646 3647 /* 3648 * Make sure there are attempts at the highest priority if we exhausted 3649 * all retries or failed at the lower priorities. 3650 */ 3651 check_priority: 3652 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3653 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3654 3655 if (*compact_priority > min_priority) { 3656 (*compact_priority)--; 3657 *compaction_retries = 0; 3658 ret = true; 3659 } 3660 out: 3661 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3662 return ret; 3663 } 3664 #else 3665 static inline struct page * 3666 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3667 unsigned int alloc_flags, const struct alloc_context *ac, 3668 enum compact_priority prio, enum compact_result *compact_result) 3669 { 3670 *compact_result = COMPACT_SKIPPED; 3671 return NULL; 3672 } 3673 3674 static inline bool 3675 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3676 enum compact_result compact_result, 3677 enum compact_priority *compact_priority, 3678 int *compaction_retries) 3679 { 3680 struct zone *zone; 3681 struct zoneref *z; 3682 3683 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3684 return false; 3685 3686 /* 3687 * There are setups with compaction disabled which would prefer to loop 3688 * inside the allocator rather than hit the oom killer prematurely. 3689 * Let's give them a good hope and keep retrying while the order-0 3690 * watermarks are OK. 3691 */ 3692 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3693 ac->nodemask) { 3694 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3695 ac_classzone_idx(ac), alloc_flags)) 3696 return true; 3697 } 3698 return false; 3699 } 3700 #endif /* CONFIG_COMPACTION */ 3701 3702 #ifdef CONFIG_LOCKDEP 3703 static struct lockdep_map __fs_reclaim_map = 3704 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3705 3706 static bool __need_fs_reclaim(gfp_t gfp_mask) 3707 { 3708 gfp_mask = current_gfp_context(gfp_mask); 3709 3710 /* no reclaim without waiting on it */ 3711 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3712 return false; 3713 3714 /* this guy won't enter reclaim */ 3715 if (current->flags & PF_MEMALLOC) 3716 return false; 3717 3718 /* We're only interested __GFP_FS allocations for now */ 3719 if (!(gfp_mask & __GFP_FS)) 3720 return false; 3721 3722 if (gfp_mask & __GFP_NOLOCKDEP) 3723 return false; 3724 3725 return true; 3726 } 3727 3728 void __fs_reclaim_acquire(void) 3729 { 3730 lock_map_acquire(&__fs_reclaim_map); 3731 } 3732 3733 void __fs_reclaim_release(void) 3734 { 3735 lock_map_release(&__fs_reclaim_map); 3736 } 3737 3738 void fs_reclaim_acquire(gfp_t gfp_mask) 3739 { 3740 if (__need_fs_reclaim(gfp_mask)) 3741 __fs_reclaim_acquire(); 3742 } 3743 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3744 3745 void fs_reclaim_release(gfp_t gfp_mask) 3746 { 3747 if (__need_fs_reclaim(gfp_mask)) 3748 __fs_reclaim_release(); 3749 } 3750 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3751 #endif 3752 3753 /* Perform direct synchronous page reclaim */ 3754 static int 3755 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3756 const struct alloc_context *ac) 3757 { 3758 struct reclaim_state reclaim_state; 3759 int progress; 3760 unsigned int noreclaim_flag; 3761 unsigned long pflags; 3762 3763 cond_resched(); 3764 3765 /* We now go into synchronous reclaim */ 3766 cpuset_memory_pressure_bump(); 3767 psi_memstall_enter(&pflags); 3768 fs_reclaim_acquire(gfp_mask); 3769 noreclaim_flag = memalloc_noreclaim_save(); 3770 reclaim_state.reclaimed_slab = 0; 3771 current->reclaim_state = &reclaim_state; 3772 3773 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3774 ac->nodemask); 3775 3776 current->reclaim_state = NULL; 3777 memalloc_noreclaim_restore(noreclaim_flag); 3778 fs_reclaim_release(gfp_mask); 3779 psi_memstall_leave(&pflags); 3780 3781 cond_resched(); 3782 3783 return progress; 3784 } 3785 3786 /* The really slow allocator path where we enter direct reclaim */ 3787 static inline struct page * 3788 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3789 unsigned int alloc_flags, const struct alloc_context *ac, 3790 unsigned long *did_some_progress) 3791 { 3792 struct page *page = NULL; 3793 bool drained = false; 3794 3795 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3796 if (unlikely(!(*did_some_progress))) 3797 return NULL; 3798 3799 retry: 3800 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3801 3802 /* 3803 * If an allocation failed after direct reclaim, it could be because 3804 * pages are pinned on the per-cpu lists or in high alloc reserves. 3805 * Shrink them them and try again 3806 */ 3807 if (!page && !drained) { 3808 unreserve_highatomic_pageblock(ac, false); 3809 drain_all_pages(NULL); 3810 drained = true; 3811 goto retry; 3812 } 3813 3814 return page; 3815 } 3816 3817 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3818 const struct alloc_context *ac) 3819 { 3820 struct zoneref *z; 3821 struct zone *zone; 3822 pg_data_t *last_pgdat = NULL; 3823 enum zone_type high_zoneidx = ac->high_zoneidx; 3824 3825 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 3826 ac->nodemask) { 3827 if (last_pgdat != zone->zone_pgdat) 3828 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 3829 last_pgdat = zone->zone_pgdat; 3830 } 3831 } 3832 3833 static inline unsigned int 3834 gfp_to_alloc_flags(gfp_t gfp_mask) 3835 { 3836 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3837 3838 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3839 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3840 3841 /* 3842 * The caller may dip into page reserves a bit more if the caller 3843 * cannot run direct reclaim, or if the caller has realtime scheduling 3844 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3845 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3846 */ 3847 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3848 3849 if (gfp_mask & __GFP_ATOMIC) { 3850 /* 3851 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3852 * if it can't schedule. 3853 */ 3854 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3855 alloc_flags |= ALLOC_HARDER; 3856 /* 3857 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3858 * comment for __cpuset_node_allowed(). 3859 */ 3860 alloc_flags &= ~ALLOC_CPUSET; 3861 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3862 alloc_flags |= ALLOC_HARDER; 3863 3864 #ifdef CONFIG_CMA 3865 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3866 alloc_flags |= ALLOC_CMA; 3867 #endif 3868 return alloc_flags; 3869 } 3870 3871 static bool oom_reserves_allowed(struct task_struct *tsk) 3872 { 3873 if (!tsk_is_oom_victim(tsk)) 3874 return false; 3875 3876 /* 3877 * !MMU doesn't have oom reaper so give access to memory reserves 3878 * only to the thread with TIF_MEMDIE set 3879 */ 3880 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3881 return false; 3882 3883 return true; 3884 } 3885 3886 /* 3887 * Distinguish requests which really need access to full memory 3888 * reserves from oom victims which can live with a portion of it 3889 */ 3890 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3891 { 3892 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3893 return 0; 3894 if (gfp_mask & __GFP_MEMALLOC) 3895 return ALLOC_NO_WATERMARKS; 3896 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3897 return ALLOC_NO_WATERMARKS; 3898 if (!in_interrupt()) { 3899 if (current->flags & PF_MEMALLOC) 3900 return ALLOC_NO_WATERMARKS; 3901 else if (oom_reserves_allowed(current)) 3902 return ALLOC_OOM; 3903 } 3904 3905 return 0; 3906 } 3907 3908 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3909 { 3910 return !!__gfp_pfmemalloc_flags(gfp_mask); 3911 } 3912 3913 /* 3914 * Checks whether it makes sense to retry the reclaim to make a forward progress 3915 * for the given allocation request. 3916 * 3917 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3918 * without success, or when we couldn't even meet the watermark if we 3919 * reclaimed all remaining pages on the LRU lists. 3920 * 3921 * Returns true if a retry is viable or false to enter the oom path. 3922 */ 3923 static inline bool 3924 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3925 struct alloc_context *ac, int alloc_flags, 3926 bool did_some_progress, int *no_progress_loops) 3927 { 3928 struct zone *zone; 3929 struct zoneref *z; 3930 bool ret = false; 3931 3932 /* 3933 * Costly allocations might have made a progress but this doesn't mean 3934 * their order will become available due to high fragmentation so 3935 * always increment the no progress counter for them 3936 */ 3937 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3938 *no_progress_loops = 0; 3939 else 3940 (*no_progress_loops)++; 3941 3942 /* 3943 * Make sure we converge to OOM if we cannot make any progress 3944 * several times in the row. 3945 */ 3946 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3947 /* Before OOM, exhaust highatomic_reserve */ 3948 return unreserve_highatomic_pageblock(ac, true); 3949 } 3950 3951 /* 3952 * Keep reclaiming pages while there is a chance this will lead 3953 * somewhere. If none of the target zones can satisfy our allocation 3954 * request even if all reclaimable pages are considered then we are 3955 * screwed and have to go OOM. 3956 */ 3957 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3958 ac->nodemask) { 3959 unsigned long available; 3960 unsigned long reclaimable; 3961 unsigned long min_wmark = min_wmark_pages(zone); 3962 bool wmark; 3963 3964 available = reclaimable = zone_reclaimable_pages(zone); 3965 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3966 3967 /* 3968 * Would the allocation succeed if we reclaimed all 3969 * reclaimable pages? 3970 */ 3971 wmark = __zone_watermark_ok(zone, order, min_wmark, 3972 ac_classzone_idx(ac), alloc_flags, available); 3973 trace_reclaim_retry_zone(z, order, reclaimable, 3974 available, min_wmark, *no_progress_loops, wmark); 3975 if (wmark) { 3976 /* 3977 * If we didn't make any progress and have a lot of 3978 * dirty + writeback pages then we should wait for 3979 * an IO to complete to slow down the reclaim and 3980 * prevent from pre mature OOM 3981 */ 3982 if (!did_some_progress) { 3983 unsigned long write_pending; 3984 3985 write_pending = zone_page_state_snapshot(zone, 3986 NR_ZONE_WRITE_PENDING); 3987 3988 if (2 * write_pending > reclaimable) { 3989 congestion_wait(BLK_RW_ASYNC, HZ/10); 3990 return true; 3991 } 3992 } 3993 3994 ret = true; 3995 goto out; 3996 } 3997 } 3998 3999 out: 4000 /* 4001 * Memory allocation/reclaim might be called from a WQ context and the 4002 * current implementation of the WQ concurrency control doesn't 4003 * recognize that a particular WQ is congested if the worker thread is 4004 * looping without ever sleeping. Therefore we have to do a short sleep 4005 * here rather than calling cond_resched(). 4006 */ 4007 if (current->flags & PF_WQ_WORKER) 4008 schedule_timeout_uninterruptible(1); 4009 else 4010 cond_resched(); 4011 return ret; 4012 } 4013 4014 static inline bool 4015 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4016 { 4017 /* 4018 * It's possible that cpuset's mems_allowed and the nodemask from 4019 * mempolicy don't intersect. This should be normally dealt with by 4020 * policy_nodemask(), but it's possible to race with cpuset update in 4021 * such a way the check therein was true, and then it became false 4022 * before we got our cpuset_mems_cookie here. 4023 * This assumes that for all allocations, ac->nodemask can come only 4024 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4025 * when it does not intersect with the cpuset restrictions) or the 4026 * caller can deal with a violated nodemask. 4027 */ 4028 if (cpusets_enabled() && ac->nodemask && 4029 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4030 ac->nodemask = NULL; 4031 return true; 4032 } 4033 4034 /* 4035 * When updating a task's mems_allowed or mempolicy nodemask, it is 4036 * possible to race with parallel threads in such a way that our 4037 * allocation can fail while the mask is being updated. If we are about 4038 * to fail, check if the cpuset changed during allocation and if so, 4039 * retry. 4040 */ 4041 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4042 return true; 4043 4044 return false; 4045 } 4046 4047 static inline struct page * 4048 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4049 struct alloc_context *ac) 4050 { 4051 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4052 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4053 struct page *page = NULL; 4054 unsigned int alloc_flags; 4055 unsigned long did_some_progress; 4056 enum compact_priority compact_priority; 4057 enum compact_result compact_result; 4058 int compaction_retries; 4059 int no_progress_loops; 4060 unsigned int cpuset_mems_cookie; 4061 int reserve_flags; 4062 4063 /* 4064 * In the slowpath, we sanity check order to avoid ever trying to 4065 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 4066 * be using allocators in order of preference for an area that is 4067 * too large. 4068 */ 4069 if (order >= MAX_ORDER) { 4070 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4071 return NULL; 4072 } 4073 4074 /* 4075 * We also sanity check to catch abuse of atomic reserves being used by 4076 * callers that are not in atomic context. 4077 */ 4078 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4079 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4080 gfp_mask &= ~__GFP_ATOMIC; 4081 4082 retry_cpuset: 4083 compaction_retries = 0; 4084 no_progress_loops = 0; 4085 compact_priority = DEF_COMPACT_PRIORITY; 4086 cpuset_mems_cookie = read_mems_allowed_begin(); 4087 4088 /* 4089 * The fast path uses conservative alloc_flags to succeed only until 4090 * kswapd needs to be woken up, and to avoid the cost of setting up 4091 * alloc_flags precisely. So we do that now. 4092 */ 4093 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4094 4095 /* 4096 * We need to recalculate the starting point for the zonelist iterator 4097 * because we might have used different nodemask in the fast path, or 4098 * there was a cpuset modification and we are retrying - otherwise we 4099 * could end up iterating over non-eligible zones endlessly. 4100 */ 4101 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4102 ac->high_zoneidx, ac->nodemask); 4103 if (!ac->preferred_zoneref->zone) 4104 goto nopage; 4105 4106 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4107 wake_all_kswapds(order, gfp_mask, ac); 4108 4109 /* 4110 * The adjusted alloc_flags might result in immediate success, so try 4111 * that first 4112 */ 4113 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4114 if (page) 4115 goto got_pg; 4116 4117 /* 4118 * For costly allocations, try direct compaction first, as it's likely 4119 * that we have enough base pages and don't need to reclaim. For non- 4120 * movable high-order allocations, do that as well, as compaction will 4121 * try prevent permanent fragmentation by migrating from blocks of the 4122 * same migratetype. 4123 * Don't try this for allocations that are allowed to ignore 4124 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4125 */ 4126 if (can_direct_reclaim && 4127 (costly_order || 4128 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4129 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4130 page = __alloc_pages_direct_compact(gfp_mask, order, 4131 alloc_flags, ac, 4132 INIT_COMPACT_PRIORITY, 4133 &compact_result); 4134 if (page) 4135 goto got_pg; 4136 4137 /* 4138 * Checks for costly allocations with __GFP_NORETRY, which 4139 * includes THP page fault allocations 4140 */ 4141 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4142 /* 4143 * If compaction is deferred for high-order allocations, 4144 * it is because sync compaction recently failed. If 4145 * this is the case and the caller requested a THP 4146 * allocation, we do not want to heavily disrupt the 4147 * system, so we fail the allocation instead of entering 4148 * direct reclaim. 4149 */ 4150 if (compact_result == COMPACT_DEFERRED) 4151 goto nopage; 4152 4153 /* 4154 * Looks like reclaim/compaction is worth trying, but 4155 * sync compaction could be very expensive, so keep 4156 * using async compaction. 4157 */ 4158 compact_priority = INIT_COMPACT_PRIORITY; 4159 } 4160 } 4161 4162 retry: 4163 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4164 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4165 wake_all_kswapds(order, gfp_mask, ac); 4166 4167 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4168 if (reserve_flags) 4169 alloc_flags = reserve_flags; 4170 4171 /* 4172 * Reset the nodemask and zonelist iterators if memory policies can be 4173 * ignored. These allocations are high priority and system rather than 4174 * user oriented. 4175 */ 4176 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4177 ac->nodemask = NULL; 4178 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4179 ac->high_zoneidx, ac->nodemask); 4180 } 4181 4182 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4183 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4184 if (page) 4185 goto got_pg; 4186 4187 /* Caller is not willing to reclaim, we can't balance anything */ 4188 if (!can_direct_reclaim) 4189 goto nopage; 4190 4191 /* Avoid recursion of direct reclaim */ 4192 if (current->flags & PF_MEMALLOC) 4193 goto nopage; 4194 4195 /* Try direct reclaim and then allocating */ 4196 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4197 &did_some_progress); 4198 if (page) 4199 goto got_pg; 4200 4201 /* Try direct compaction and then allocating */ 4202 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4203 compact_priority, &compact_result); 4204 if (page) 4205 goto got_pg; 4206 4207 /* Do not loop if specifically requested */ 4208 if (gfp_mask & __GFP_NORETRY) 4209 goto nopage; 4210 4211 /* 4212 * Do not retry costly high order allocations unless they are 4213 * __GFP_RETRY_MAYFAIL 4214 */ 4215 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4216 goto nopage; 4217 4218 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4219 did_some_progress > 0, &no_progress_loops)) 4220 goto retry; 4221 4222 /* 4223 * It doesn't make any sense to retry for the compaction if the order-0 4224 * reclaim is not able to make any progress because the current 4225 * implementation of the compaction depends on the sufficient amount 4226 * of free memory (see __compaction_suitable) 4227 */ 4228 if (did_some_progress > 0 && 4229 should_compact_retry(ac, order, alloc_flags, 4230 compact_result, &compact_priority, 4231 &compaction_retries)) 4232 goto retry; 4233 4234 4235 /* Deal with possible cpuset update races before we start OOM killing */ 4236 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4237 goto retry_cpuset; 4238 4239 /* Reclaim has failed us, start killing things */ 4240 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4241 if (page) 4242 goto got_pg; 4243 4244 /* Avoid allocations with no watermarks from looping endlessly */ 4245 if (tsk_is_oom_victim(current) && 4246 (alloc_flags == ALLOC_OOM || 4247 (gfp_mask & __GFP_NOMEMALLOC))) 4248 goto nopage; 4249 4250 /* Retry as long as the OOM killer is making progress */ 4251 if (did_some_progress) { 4252 no_progress_loops = 0; 4253 goto retry; 4254 } 4255 4256 nopage: 4257 /* Deal with possible cpuset update races before we fail */ 4258 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4259 goto retry_cpuset; 4260 4261 /* 4262 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4263 * we always retry 4264 */ 4265 if (gfp_mask & __GFP_NOFAIL) { 4266 /* 4267 * All existing users of the __GFP_NOFAIL are blockable, so warn 4268 * of any new users that actually require GFP_NOWAIT 4269 */ 4270 if (WARN_ON_ONCE(!can_direct_reclaim)) 4271 goto fail; 4272 4273 /* 4274 * PF_MEMALLOC request from this context is rather bizarre 4275 * because we cannot reclaim anything and only can loop waiting 4276 * for somebody to do a work for us 4277 */ 4278 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4279 4280 /* 4281 * non failing costly orders are a hard requirement which we 4282 * are not prepared for much so let's warn about these users 4283 * so that we can identify them and convert them to something 4284 * else. 4285 */ 4286 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4287 4288 /* 4289 * Help non-failing allocations by giving them access to memory 4290 * reserves but do not use ALLOC_NO_WATERMARKS because this 4291 * could deplete whole memory reserves which would just make 4292 * the situation worse 4293 */ 4294 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4295 if (page) 4296 goto got_pg; 4297 4298 cond_resched(); 4299 goto retry; 4300 } 4301 fail: 4302 warn_alloc(gfp_mask, ac->nodemask, 4303 "page allocation failure: order:%u", order); 4304 got_pg: 4305 return page; 4306 } 4307 4308 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4309 int preferred_nid, nodemask_t *nodemask, 4310 struct alloc_context *ac, gfp_t *alloc_mask, 4311 unsigned int *alloc_flags) 4312 { 4313 ac->high_zoneidx = gfp_zone(gfp_mask); 4314 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4315 ac->nodemask = nodemask; 4316 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4317 4318 if (cpusets_enabled()) { 4319 *alloc_mask |= __GFP_HARDWALL; 4320 if (!ac->nodemask) 4321 ac->nodemask = &cpuset_current_mems_allowed; 4322 else 4323 *alloc_flags |= ALLOC_CPUSET; 4324 } 4325 4326 fs_reclaim_acquire(gfp_mask); 4327 fs_reclaim_release(gfp_mask); 4328 4329 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4330 4331 if (should_fail_alloc_page(gfp_mask, order)) 4332 return false; 4333 4334 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4335 *alloc_flags |= ALLOC_CMA; 4336 4337 return true; 4338 } 4339 4340 /* Determine whether to spread dirty pages and what the first usable zone */ 4341 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4342 { 4343 /* Dirty zone balancing only done in the fast path */ 4344 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4345 4346 /* 4347 * The preferred zone is used for statistics but crucially it is 4348 * also used as the starting point for the zonelist iterator. It 4349 * may get reset for allocations that ignore memory policies. 4350 */ 4351 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4352 ac->high_zoneidx, ac->nodemask); 4353 } 4354 4355 /* 4356 * This is the 'heart' of the zoned buddy allocator. 4357 */ 4358 struct page * 4359 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4360 nodemask_t *nodemask) 4361 { 4362 struct page *page; 4363 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4364 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4365 struct alloc_context ac = { }; 4366 4367 gfp_mask &= gfp_allowed_mask; 4368 alloc_mask = gfp_mask; 4369 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4370 return NULL; 4371 4372 finalise_ac(gfp_mask, &ac); 4373 4374 /* First allocation attempt */ 4375 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4376 if (likely(page)) 4377 goto out; 4378 4379 /* 4380 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4381 * resp. GFP_NOIO which has to be inherited for all allocation requests 4382 * from a particular context which has been marked by 4383 * memalloc_no{fs,io}_{save,restore}. 4384 */ 4385 alloc_mask = current_gfp_context(gfp_mask); 4386 ac.spread_dirty_pages = false; 4387 4388 /* 4389 * Restore the original nodemask if it was potentially replaced with 4390 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4391 */ 4392 if (unlikely(ac.nodemask != nodemask)) 4393 ac.nodemask = nodemask; 4394 4395 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4396 4397 out: 4398 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4399 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4400 __free_pages(page, order); 4401 page = NULL; 4402 } 4403 4404 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4405 4406 return page; 4407 } 4408 EXPORT_SYMBOL(__alloc_pages_nodemask); 4409 4410 /* 4411 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4412 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4413 * you need to access high mem. 4414 */ 4415 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4416 { 4417 struct page *page; 4418 4419 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4420 if (!page) 4421 return 0; 4422 return (unsigned long) page_address(page); 4423 } 4424 EXPORT_SYMBOL(__get_free_pages); 4425 4426 unsigned long get_zeroed_page(gfp_t gfp_mask) 4427 { 4428 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4429 } 4430 EXPORT_SYMBOL(get_zeroed_page); 4431 4432 void __free_pages(struct page *page, unsigned int order) 4433 { 4434 if (put_page_testzero(page)) { 4435 if (order == 0) 4436 free_unref_page(page); 4437 else 4438 __free_pages_ok(page, order); 4439 } 4440 } 4441 4442 EXPORT_SYMBOL(__free_pages); 4443 4444 void free_pages(unsigned long addr, unsigned int order) 4445 { 4446 if (addr != 0) { 4447 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4448 __free_pages(virt_to_page((void *)addr), order); 4449 } 4450 } 4451 4452 EXPORT_SYMBOL(free_pages); 4453 4454 /* 4455 * Page Fragment: 4456 * An arbitrary-length arbitrary-offset area of memory which resides 4457 * within a 0 or higher order page. Multiple fragments within that page 4458 * are individually refcounted, in the page's reference counter. 4459 * 4460 * The page_frag functions below provide a simple allocation framework for 4461 * page fragments. This is used by the network stack and network device 4462 * drivers to provide a backing region of memory for use as either an 4463 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4464 */ 4465 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4466 gfp_t gfp_mask) 4467 { 4468 struct page *page = NULL; 4469 gfp_t gfp = gfp_mask; 4470 4471 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4472 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4473 __GFP_NOMEMALLOC; 4474 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4475 PAGE_FRAG_CACHE_MAX_ORDER); 4476 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4477 #endif 4478 if (unlikely(!page)) 4479 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4480 4481 nc->va = page ? page_address(page) : NULL; 4482 4483 return page; 4484 } 4485 4486 void __page_frag_cache_drain(struct page *page, unsigned int count) 4487 { 4488 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4489 4490 if (page_ref_sub_and_test(page, count)) { 4491 unsigned int order = compound_order(page); 4492 4493 if (order == 0) 4494 free_unref_page(page); 4495 else 4496 __free_pages_ok(page, order); 4497 } 4498 } 4499 EXPORT_SYMBOL(__page_frag_cache_drain); 4500 4501 void *page_frag_alloc(struct page_frag_cache *nc, 4502 unsigned int fragsz, gfp_t gfp_mask) 4503 { 4504 unsigned int size = PAGE_SIZE; 4505 struct page *page; 4506 int offset; 4507 4508 if (unlikely(!nc->va)) { 4509 refill: 4510 page = __page_frag_cache_refill(nc, gfp_mask); 4511 if (!page) 4512 return NULL; 4513 4514 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4515 /* if size can vary use size else just use PAGE_SIZE */ 4516 size = nc->size; 4517 #endif 4518 /* Even if we own the page, we do not use atomic_set(). 4519 * This would break get_page_unless_zero() users. 4520 */ 4521 page_ref_add(page, size - 1); 4522 4523 /* reset page count bias and offset to start of new frag */ 4524 nc->pfmemalloc = page_is_pfmemalloc(page); 4525 nc->pagecnt_bias = size; 4526 nc->offset = size; 4527 } 4528 4529 offset = nc->offset - fragsz; 4530 if (unlikely(offset < 0)) { 4531 page = virt_to_page(nc->va); 4532 4533 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4534 goto refill; 4535 4536 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4537 /* if size can vary use size else just use PAGE_SIZE */ 4538 size = nc->size; 4539 #endif 4540 /* OK, page count is 0, we can safely set it */ 4541 set_page_count(page, size); 4542 4543 /* reset page count bias and offset to start of new frag */ 4544 nc->pagecnt_bias = size; 4545 offset = size - fragsz; 4546 } 4547 4548 nc->pagecnt_bias--; 4549 nc->offset = offset; 4550 4551 return nc->va + offset; 4552 } 4553 EXPORT_SYMBOL(page_frag_alloc); 4554 4555 /* 4556 * Frees a page fragment allocated out of either a compound or order 0 page. 4557 */ 4558 void page_frag_free(void *addr) 4559 { 4560 struct page *page = virt_to_head_page(addr); 4561 4562 if (unlikely(put_page_testzero(page))) 4563 __free_pages_ok(page, compound_order(page)); 4564 } 4565 EXPORT_SYMBOL(page_frag_free); 4566 4567 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4568 size_t size) 4569 { 4570 if (addr) { 4571 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4572 unsigned long used = addr + PAGE_ALIGN(size); 4573 4574 split_page(virt_to_page((void *)addr), order); 4575 while (used < alloc_end) { 4576 free_page(used); 4577 used += PAGE_SIZE; 4578 } 4579 } 4580 return (void *)addr; 4581 } 4582 4583 /** 4584 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4585 * @size: the number of bytes to allocate 4586 * @gfp_mask: GFP flags for the allocation 4587 * 4588 * This function is similar to alloc_pages(), except that it allocates the 4589 * minimum number of pages to satisfy the request. alloc_pages() can only 4590 * allocate memory in power-of-two pages. 4591 * 4592 * This function is also limited by MAX_ORDER. 4593 * 4594 * Memory allocated by this function must be released by free_pages_exact(). 4595 */ 4596 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4597 { 4598 unsigned int order = get_order(size); 4599 unsigned long addr; 4600 4601 addr = __get_free_pages(gfp_mask, order); 4602 return make_alloc_exact(addr, order, size); 4603 } 4604 EXPORT_SYMBOL(alloc_pages_exact); 4605 4606 /** 4607 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4608 * pages on a node. 4609 * @nid: the preferred node ID where memory should be allocated 4610 * @size: the number of bytes to allocate 4611 * @gfp_mask: GFP flags for the allocation 4612 * 4613 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4614 * back. 4615 */ 4616 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4617 { 4618 unsigned int order = get_order(size); 4619 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4620 if (!p) 4621 return NULL; 4622 return make_alloc_exact((unsigned long)page_address(p), order, size); 4623 } 4624 4625 /** 4626 * free_pages_exact - release memory allocated via alloc_pages_exact() 4627 * @virt: the value returned by alloc_pages_exact. 4628 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4629 * 4630 * Release the memory allocated by a previous call to alloc_pages_exact. 4631 */ 4632 void free_pages_exact(void *virt, size_t size) 4633 { 4634 unsigned long addr = (unsigned long)virt; 4635 unsigned long end = addr + PAGE_ALIGN(size); 4636 4637 while (addr < end) { 4638 free_page(addr); 4639 addr += PAGE_SIZE; 4640 } 4641 } 4642 EXPORT_SYMBOL(free_pages_exact); 4643 4644 /** 4645 * nr_free_zone_pages - count number of pages beyond high watermark 4646 * @offset: The zone index of the highest zone 4647 * 4648 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4649 * high watermark within all zones at or below a given zone index. For each 4650 * zone, the number of pages is calculated as: 4651 * 4652 * nr_free_zone_pages = managed_pages - high_pages 4653 */ 4654 static unsigned long nr_free_zone_pages(int offset) 4655 { 4656 struct zoneref *z; 4657 struct zone *zone; 4658 4659 /* Just pick one node, since fallback list is circular */ 4660 unsigned long sum = 0; 4661 4662 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4663 4664 for_each_zone_zonelist(zone, z, zonelist, offset) { 4665 unsigned long size = zone->managed_pages; 4666 unsigned long high = high_wmark_pages(zone); 4667 if (size > high) 4668 sum += size - high; 4669 } 4670 4671 return sum; 4672 } 4673 4674 /** 4675 * nr_free_buffer_pages - count number of pages beyond high watermark 4676 * 4677 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4678 * watermark within ZONE_DMA and ZONE_NORMAL. 4679 */ 4680 unsigned long nr_free_buffer_pages(void) 4681 { 4682 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4683 } 4684 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4685 4686 /** 4687 * nr_free_pagecache_pages - count number of pages beyond high watermark 4688 * 4689 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4690 * high watermark within all zones. 4691 */ 4692 unsigned long nr_free_pagecache_pages(void) 4693 { 4694 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4695 } 4696 4697 static inline void show_node(struct zone *zone) 4698 { 4699 if (IS_ENABLED(CONFIG_NUMA)) 4700 printk("Node %d ", zone_to_nid(zone)); 4701 } 4702 4703 long si_mem_available(void) 4704 { 4705 long available; 4706 unsigned long pagecache; 4707 unsigned long wmark_low = 0; 4708 unsigned long pages[NR_LRU_LISTS]; 4709 unsigned long reclaimable; 4710 struct zone *zone; 4711 int lru; 4712 4713 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4714 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4715 4716 for_each_zone(zone) 4717 wmark_low += zone->watermark[WMARK_LOW]; 4718 4719 /* 4720 * Estimate the amount of memory available for userspace allocations, 4721 * without causing swapping. 4722 */ 4723 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4724 4725 /* 4726 * Not all the page cache can be freed, otherwise the system will 4727 * start swapping. Assume at least half of the page cache, or the 4728 * low watermark worth of cache, needs to stay. 4729 */ 4730 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4731 pagecache -= min(pagecache / 2, wmark_low); 4732 available += pagecache; 4733 4734 /* 4735 * Part of the reclaimable slab and other kernel memory consists of 4736 * items that are in use, and cannot be freed. Cap this estimate at the 4737 * low watermark. 4738 */ 4739 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 4740 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 4741 available += reclaimable - min(reclaimable / 2, wmark_low); 4742 4743 if (available < 0) 4744 available = 0; 4745 return available; 4746 } 4747 EXPORT_SYMBOL_GPL(si_mem_available); 4748 4749 void si_meminfo(struct sysinfo *val) 4750 { 4751 val->totalram = totalram_pages; 4752 val->sharedram = global_node_page_state(NR_SHMEM); 4753 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4754 val->bufferram = nr_blockdev_pages(); 4755 val->totalhigh = totalhigh_pages; 4756 val->freehigh = nr_free_highpages(); 4757 val->mem_unit = PAGE_SIZE; 4758 } 4759 4760 EXPORT_SYMBOL(si_meminfo); 4761 4762 #ifdef CONFIG_NUMA 4763 void si_meminfo_node(struct sysinfo *val, int nid) 4764 { 4765 int zone_type; /* needs to be signed */ 4766 unsigned long managed_pages = 0; 4767 unsigned long managed_highpages = 0; 4768 unsigned long free_highpages = 0; 4769 pg_data_t *pgdat = NODE_DATA(nid); 4770 4771 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4772 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4773 val->totalram = managed_pages; 4774 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4775 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4776 #ifdef CONFIG_HIGHMEM 4777 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4778 struct zone *zone = &pgdat->node_zones[zone_type]; 4779 4780 if (is_highmem(zone)) { 4781 managed_highpages += zone->managed_pages; 4782 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4783 } 4784 } 4785 val->totalhigh = managed_highpages; 4786 val->freehigh = free_highpages; 4787 #else 4788 val->totalhigh = managed_highpages; 4789 val->freehigh = free_highpages; 4790 #endif 4791 val->mem_unit = PAGE_SIZE; 4792 } 4793 #endif 4794 4795 /* 4796 * Determine whether the node should be displayed or not, depending on whether 4797 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4798 */ 4799 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4800 { 4801 if (!(flags & SHOW_MEM_FILTER_NODES)) 4802 return false; 4803 4804 /* 4805 * no node mask - aka implicit memory numa policy. Do not bother with 4806 * the synchronization - read_mems_allowed_begin - because we do not 4807 * have to be precise here. 4808 */ 4809 if (!nodemask) 4810 nodemask = &cpuset_current_mems_allowed; 4811 4812 return !node_isset(nid, *nodemask); 4813 } 4814 4815 #define K(x) ((x) << (PAGE_SHIFT-10)) 4816 4817 static void show_migration_types(unsigned char type) 4818 { 4819 static const char types[MIGRATE_TYPES] = { 4820 [MIGRATE_UNMOVABLE] = 'U', 4821 [MIGRATE_MOVABLE] = 'M', 4822 [MIGRATE_RECLAIMABLE] = 'E', 4823 [MIGRATE_HIGHATOMIC] = 'H', 4824 #ifdef CONFIG_CMA 4825 [MIGRATE_CMA] = 'C', 4826 #endif 4827 #ifdef CONFIG_MEMORY_ISOLATION 4828 [MIGRATE_ISOLATE] = 'I', 4829 #endif 4830 }; 4831 char tmp[MIGRATE_TYPES + 1]; 4832 char *p = tmp; 4833 int i; 4834 4835 for (i = 0; i < MIGRATE_TYPES; i++) { 4836 if (type & (1 << i)) 4837 *p++ = types[i]; 4838 } 4839 4840 *p = '\0'; 4841 printk(KERN_CONT "(%s) ", tmp); 4842 } 4843 4844 /* 4845 * Show free area list (used inside shift_scroll-lock stuff) 4846 * We also calculate the percentage fragmentation. We do this by counting the 4847 * memory on each free list with the exception of the first item on the list. 4848 * 4849 * Bits in @filter: 4850 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4851 * cpuset. 4852 */ 4853 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4854 { 4855 unsigned long free_pcp = 0; 4856 int cpu; 4857 struct zone *zone; 4858 pg_data_t *pgdat; 4859 4860 for_each_populated_zone(zone) { 4861 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4862 continue; 4863 4864 for_each_online_cpu(cpu) 4865 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4866 } 4867 4868 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4869 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4870 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4871 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4872 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4873 " free:%lu free_pcp:%lu free_cma:%lu\n", 4874 global_node_page_state(NR_ACTIVE_ANON), 4875 global_node_page_state(NR_INACTIVE_ANON), 4876 global_node_page_state(NR_ISOLATED_ANON), 4877 global_node_page_state(NR_ACTIVE_FILE), 4878 global_node_page_state(NR_INACTIVE_FILE), 4879 global_node_page_state(NR_ISOLATED_FILE), 4880 global_node_page_state(NR_UNEVICTABLE), 4881 global_node_page_state(NR_FILE_DIRTY), 4882 global_node_page_state(NR_WRITEBACK), 4883 global_node_page_state(NR_UNSTABLE_NFS), 4884 global_node_page_state(NR_SLAB_RECLAIMABLE), 4885 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4886 global_node_page_state(NR_FILE_MAPPED), 4887 global_node_page_state(NR_SHMEM), 4888 global_zone_page_state(NR_PAGETABLE), 4889 global_zone_page_state(NR_BOUNCE), 4890 global_zone_page_state(NR_FREE_PAGES), 4891 free_pcp, 4892 global_zone_page_state(NR_FREE_CMA_PAGES)); 4893 4894 for_each_online_pgdat(pgdat) { 4895 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4896 continue; 4897 4898 printk("Node %d" 4899 " active_anon:%lukB" 4900 " inactive_anon:%lukB" 4901 " active_file:%lukB" 4902 " inactive_file:%lukB" 4903 " unevictable:%lukB" 4904 " isolated(anon):%lukB" 4905 " isolated(file):%lukB" 4906 " mapped:%lukB" 4907 " dirty:%lukB" 4908 " writeback:%lukB" 4909 " shmem:%lukB" 4910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4911 " shmem_thp: %lukB" 4912 " shmem_pmdmapped: %lukB" 4913 " anon_thp: %lukB" 4914 #endif 4915 " writeback_tmp:%lukB" 4916 " unstable:%lukB" 4917 " all_unreclaimable? %s" 4918 "\n", 4919 pgdat->node_id, 4920 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4921 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4922 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4923 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4924 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4925 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4926 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4927 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4928 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4929 K(node_page_state(pgdat, NR_WRITEBACK)), 4930 K(node_page_state(pgdat, NR_SHMEM)), 4931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4932 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4933 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4934 * HPAGE_PMD_NR), 4935 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4936 #endif 4937 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4938 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4939 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4940 "yes" : "no"); 4941 } 4942 4943 for_each_populated_zone(zone) { 4944 int i; 4945 4946 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4947 continue; 4948 4949 free_pcp = 0; 4950 for_each_online_cpu(cpu) 4951 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4952 4953 show_node(zone); 4954 printk(KERN_CONT 4955 "%s" 4956 " free:%lukB" 4957 " min:%lukB" 4958 " low:%lukB" 4959 " high:%lukB" 4960 " active_anon:%lukB" 4961 " inactive_anon:%lukB" 4962 " active_file:%lukB" 4963 " inactive_file:%lukB" 4964 " unevictable:%lukB" 4965 " writepending:%lukB" 4966 " present:%lukB" 4967 " managed:%lukB" 4968 " mlocked:%lukB" 4969 " kernel_stack:%lukB" 4970 " pagetables:%lukB" 4971 " bounce:%lukB" 4972 " free_pcp:%lukB" 4973 " local_pcp:%ukB" 4974 " free_cma:%lukB" 4975 "\n", 4976 zone->name, 4977 K(zone_page_state(zone, NR_FREE_PAGES)), 4978 K(min_wmark_pages(zone)), 4979 K(low_wmark_pages(zone)), 4980 K(high_wmark_pages(zone)), 4981 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4982 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4983 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4984 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4985 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4986 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4987 K(zone->present_pages), 4988 K(zone->managed_pages), 4989 K(zone_page_state(zone, NR_MLOCK)), 4990 zone_page_state(zone, NR_KERNEL_STACK_KB), 4991 K(zone_page_state(zone, NR_PAGETABLE)), 4992 K(zone_page_state(zone, NR_BOUNCE)), 4993 K(free_pcp), 4994 K(this_cpu_read(zone->pageset->pcp.count)), 4995 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4996 printk("lowmem_reserve[]:"); 4997 for (i = 0; i < MAX_NR_ZONES; i++) 4998 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4999 printk(KERN_CONT "\n"); 5000 } 5001 5002 for_each_populated_zone(zone) { 5003 unsigned int order; 5004 unsigned long nr[MAX_ORDER], flags, total = 0; 5005 unsigned char types[MAX_ORDER]; 5006 5007 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5008 continue; 5009 show_node(zone); 5010 printk(KERN_CONT "%s: ", zone->name); 5011 5012 spin_lock_irqsave(&zone->lock, flags); 5013 for (order = 0; order < MAX_ORDER; order++) { 5014 struct free_area *area = &zone->free_area[order]; 5015 int type; 5016 5017 nr[order] = area->nr_free; 5018 total += nr[order] << order; 5019 5020 types[order] = 0; 5021 for (type = 0; type < MIGRATE_TYPES; type++) { 5022 if (!list_empty(&area->free_list[type])) 5023 types[order] |= 1 << type; 5024 } 5025 } 5026 spin_unlock_irqrestore(&zone->lock, flags); 5027 for (order = 0; order < MAX_ORDER; order++) { 5028 printk(KERN_CONT "%lu*%lukB ", 5029 nr[order], K(1UL) << order); 5030 if (nr[order]) 5031 show_migration_types(types[order]); 5032 } 5033 printk(KERN_CONT "= %lukB\n", K(total)); 5034 } 5035 5036 hugetlb_show_meminfo(); 5037 5038 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5039 5040 show_swap_cache_info(); 5041 } 5042 5043 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5044 { 5045 zoneref->zone = zone; 5046 zoneref->zone_idx = zone_idx(zone); 5047 } 5048 5049 /* 5050 * Builds allocation fallback zone lists. 5051 * 5052 * Add all populated zones of a node to the zonelist. 5053 */ 5054 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5055 { 5056 struct zone *zone; 5057 enum zone_type zone_type = MAX_NR_ZONES; 5058 int nr_zones = 0; 5059 5060 do { 5061 zone_type--; 5062 zone = pgdat->node_zones + zone_type; 5063 if (managed_zone(zone)) { 5064 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5065 check_highest_zone(zone_type); 5066 } 5067 } while (zone_type); 5068 5069 return nr_zones; 5070 } 5071 5072 #ifdef CONFIG_NUMA 5073 5074 static int __parse_numa_zonelist_order(char *s) 5075 { 5076 /* 5077 * We used to support different zonlists modes but they turned 5078 * out to be just not useful. Let's keep the warning in place 5079 * if somebody still use the cmd line parameter so that we do 5080 * not fail it silently 5081 */ 5082 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5083 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5084 return -EINVAL; 5085 } 5086 return 0; 5087 } 5088 5089 static __init int setup_numa_zonelist_order(char *s) 5090 { 5091 if (!s) 5092 return 0; 5093 5094 return __parse_numa_zonelist_order(s); 5095 } 5096 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5097 5098 char numa_zonelist_order[] = "Node"; 5099 5100 /* 5101 * sysctl handler for numa_zonelist_order 5102 */ 5103 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5104 void __user *buffer, size_t *length, 5105 loff_t *ppos) 5106 { 5107 char *str; 5108 int ret; 5109 5110 if (!write) 5111 return proc_dostring(table, write, buffer, length, ppos); 5112 str = memdup_user_nul(buffer, 16); 5113 if (IS_ERR(str)) 5114 return PTR_ERR(str); 5115 5116 ret = __parse_numa_zonelist_order(str); 5117 kfree(str); 5118 return ret; 5119 } 5120 5121 5122 #define MAX_NODE_LOAD (nr_online_nodes) 5123 static int node_load[MAX_NUMNODES]; 5124 5125 /** 5126 * find_next_best_node - find the next node that should appear in a given node's fallback list 5127 * @node: node whose fallback list we're appending 5128 * @used_node_mask: nodemask_t of already used nodes 5129 * 5130 * We use a number of factors to determine which is the next node that should 5131 * appear on a given node's fallback list. The node should not have appeared 5132 * already in @node's fallback list, and it should be the next closest node 5133 * according to the distance array (which contains arbitrary distance values 5134 * from each node to each node in the system), and should also prefer nodes 5135 * with no CPUs, since presumably they'll have very little allocation pressure 5136 * on them otherwise. 5137 * It returns -1 if no node is found. 5138 */ 5139 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5140 { 5141 int n, val; 5142 int min_val = INT_MAX; 5143 int best_node = NUMA_NO_NODE; 5144 const struct cpumask *tmp = cpumask_of_node(0); 5145 5146 /* Use the local node if we haven't already */ 5147 if (!node_isset(node, *used_node_mask)) { 5148 node_set(node, *used_node_mask); 5149 return node; 5150 } 5151 5152 for_each_node_state(n, N_MEMORY) { 5153 5154 /* Don't want a node to appear more than once */ 5155 if (node_isset(n, *used_node_mask)) 5156 continue; 5157 5158 /* Use the distance array to find the distance */ 5159 val = node_distance(node, n); 5160 5161 /* Penalize nodes under us ("prefer the next node") */ 5162 val += (n < node); 5163 5164 /* Give preference to headless and unused nodes */ 5165 tmp = cpumask_of_node(n); 5166 if (!cpumask_empty(tmp)) 5167 val += PENALTY_FOR_NODE_WITH_CPUS; 5168 5169 /* Slight preference for less loaded node */ 5170 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5171 val += node_load[n]; 5172 5173 if (val < min_val) { 5174 min_val = val; 5175 best_node = n; 5176 } 5177 } 5178 5179 if (best_node >= 0) 5180 node_set(best_node, *used_node_mask); 5181 5182 return best_node; 5183 } 5184 5185 5186 /* 5187 * Build zonelists ordered by node and zones within node. 5188 * This results in maximum locality--normal zone overflows into local 5189 * DMA zone, if any--but risks exhausting DMA zone. 5190 */ 5191 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5192 unsigned nr_nodes) 5193 { 5194 struct zoneref *zonerefs; 5195 int i; 5196 5197 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5198 5199 for (i = 0; i < nr_nodes; i++) { 5200 int nr_zones; 5201 5202 pg_data_t *node = NODE_DATA(node_order[i]); 5203 5204 nr_zones = build_zonerefs_node(node, zonerefs); 5205 zonerefs += nr_zones; 5206 } 5207 zonerefs->zone = NULL; 5208 zonerefs->zone_idx = 0; 5209 } 5210 5211 /* 5212 * Build gfp_thisnode zonelists 5213 */ 5214 static void build_thisnode_zonelists(pg_data_t *pgdat) 5215 { 5216 struct zoneref *zonerefs; 5217 int nr_zones; 5218 5219 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5220 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5221 zonerefs += nr_zones; 5222 zonerefs->zone = NULL; 5223 zonerefs->zone_idx = 0; 5224 } 5225 5226 /* 5227 * Build zonelists ordered by zone and nodes within zones. 5228 * This results in conserving DMA zone[s] until all Normal memory is 5229 * exhausted, but results in overflowing to remote node while memory 5230 * may still exist in local DMA zone. 5231 */ 5232 5233 static void build_zonelists(pg_data_t *pgdat) 5234 { 5235 static int node_order[MAX_NUMNODES]; 5236 int node, load, nr_nodes = 0; 5237 nodemask_t used_mask; 5238 int local_node, prev_node; 5239 5240 /* NUMA-aware ordering of nodes */ 5241 local_node = pgdat->node_id; 5242 load = nr_online_nodes; 5243 prev_node = local_node; 5244 nodes_clear(used_mask); 5245 5246 memset(node_order, 0, sizeof(node_order)); 5247 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5248 /* 5249 * We don't want to pressure a particular node. 5250 * So adding penalty to the first node in same 5251 * distance group to make it round-robin. 5252 */ 5253 if (node_distance(local_node, node) != 5254 node_distance(local_node, prev_node)) 5255 node_load[node] = load; 5256 5257 node_order[nr_nodes++] = node; 5258 prev_node = node; 5259 load--; 5260 } 5261 5262 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5263 build_thisnode_zonelists(pgdat); 5264 } 5265 5266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5267 /* 5268 * Return node id of node used for "local" allocations. 5269 * I.e., first node id of first zone in arg node's generic zonelist. 5270 * Used for initializing percpu 'numa_mem', which is used primarily 5271 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5272 */ 5273 int local_memory_node(int node) 5274 { 5275 struct zoneref *z; 5276 5277 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5278 gfp_zone(GFP_KERNEL), 5279 NULL); 5280 return zone_to_nid(z->zone); 5281 } 5282 #endif 5283 5284 static void setup_min_unmapped_ratio(void); 5285 static void setup_min_slab_ratio(void); 5286 #else /* CONFIG_NUMA */ 5287 5288 static void build_zonelists(pg_data_t *pgdat) 5289 { 5290 int node, local_node; 5291 struct zoneref *zonerefs; 5292 int nr_zones; 5293 5294 local_node = pgdat->node_id; 5295 5296 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5297 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5298 zonerefs += nr_zones; 5299 5300 /* 5301 * Now we build the zonelist so that it contains the zones 5302 * of all the other nodes. 5303 * We don't want to pressure a particular node, so when 5304 * building the zones for node N, we make sure that the 5305 * zones coming right after the local ones are those from 5306 * node N+1 (modulo N) 5307 */ 5308 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5309 if (!node_online(node)) 5310 continue; 5311 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5312 zonerefs += nr_zones; 5313 } 5314 for (node = 0; node < local_node; node++) { 5315 if (!node_online(node)) 5316 continue; 5317 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5318 zonerefs += nr_zones; 5319 } 5320 5321 zonerefs->zone = NULL; 5322 zonerefs->zone_idx = 0; 5323 } 5324 5325 #endif /* CONFIG_NUMA */ 5326 5327 /* 5328 * Boot pageset table. One per cpu which is going to be used for all 5329 * zones and all nodes. The parameters will be set in such a way 5330 * that an item put on a list will immediately be handed over to 5331 * the buddy list. This is safe since pageset manipulation is done 5332 * with interrupts disabled. 5333 * 5334 * The boot_pagesets must be kept even after bootup is complete for 5335 * unused processors and/or zones. They do play a role for bootstrapping 5336 * hotplugged processors. 5337 * 5338 * zoneinfo_show() and maybe other functions do 5339 * not check if the processor is online before following the pageset pointer. 5340 * Other parts of the kernel may not check if the zone is available. 5341 */ 5342 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5343 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5344 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5345 5346 static void __build_all_zonelists(void *data) 5347 { 5348 int nid; 5349 int __maybe_unused cpu; 5350 pg_data_t *self = data; 5351 static DEFINE_SPINLOCK(lock); 5352 5353 spin_lock(&lock); 5354 5355 #ifdef CONFIG_NUMA 5356 memset(node_load, 0, sizeof(node_load)); 5357 #endif 5358 5359 /* 5360 * This node is hotadded and no memory is yet present. So just 5361 * building zonelists is fine - no need to touch other nodes. 5362 */ 5363 if (self && !node_online(self->node_id)) { 5364 build_zonelists(self); 5365 } else { 5366 for_each_online_node(nid) { 5367 pg_data_t *pgdat = NODE_DATA(nid); 5368 5369 build_zonelists(pgdat); 5370 } 5371 5372 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5373 /* 5374 * We now know the "local memory node" for each node-- 5375 * i.e., the node of the first zone in the generic zonelist. 5376 * Set up numa_mem percpu variable for on-line cpus. During 5377 * boot, only the boot cpu should be on-line; we'll init the 5378 * secondary cpus' numa_mem as they come on-line. During 5379 * node/memory hotplug, we'll fixup all on-line cpus. 5380 */ 5381 for_each_online_cpu(cpu) 5382 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5383 #endif 5384 } 5385 5386 spin_unlock(&lock); 5387 } 5388 5389 static noinline void __init 5390 build_all_zonelists_init(void) 5391 { 5392 int cpu; 5393 5394 __build_all_zonelists(NULL); 5395 5396 /* 5397 * Initialize the boot_pagesets that are going to be used 5398 * for bootstrapping processors. The real pagesets for 5399 * each zone will be allocated later when the per cpu 5400 * allocator is available. 5401 * 5402 * boot_pagesets are used also for bootstrapping offline 5403 * cpus if the system is already booted because the pagesets 5404 * are needed to initialize allocators on a specific cpu too. 5405 * F.e. the percpu allocator needs the page allocator which 5406 * needs the percpu allocator in order to allocate its pagesets 5407 * (a chicken-egg dilemma). 5408 */ 5409 for_each_possible_cpu(cpu) 5410 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5411 5412 mminit_verify_zonelist(); 5413 cpuset_init_current_mems_allowed(); 5414 } 5415 5416 /* 5417 * unless system_state == SYSTEM_BOOTING. 5418 * 5419 * __ref due to call of __init annotated helper build_all_zonelists_init 5420 * [protected by SYSTEM_BOOTING]. 5421 */ 5422 void __ref build_all_zonelists(pg_data_t *pgdat) 5423 { 5424 if (system_state == SYSTEM_BOOTING) { 5425 build_all_zonelists_init(); 5426 } else { 5427 __build_all_zonelists(pgdat); 5428 /* cpuset refresh routine should be here */ 5429 } 5430 vm_total_pages = nr_free_pagecache_pages(); 5431 /* 5432 * Disable grouping by mobility if the number of pages in the 5433 * system is too low to allow the mechanism to work. It would be 5434 * more accurate, but expensive to check per-zone. This check is 5435 * made on memory-hotadd so a system can start with mobility 5436 * disabled and enable it later 5437 */ 5438 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5439 page_group_by_mobility_disabled = 1; 5440 else 5441 page_group_by_mobility_disabled = 0; 5442 5443 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5444 nr_online_nodes, 5445 page_group_by_mobility_disabled ? "off" : "on", 5446 vm_total_pages); 5447 #ifdef CONFIG_NUMA 5448 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5449 #endif 5450 } 5451 5452 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5453 static bool __meminit 5454 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5455 { 5456 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5457 static struct memblock_region *r; 5458 5459 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5460 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5461 for_each_memblock(memory, r) { 5462 if (*pfn < memblock_region_memory_end_pfn(r)) 5463 break; 5464 } 5465 } 5466 if (*pfn >= memblock_region_memory_base_pfn(r) && 5467 memblock_is_mirror(r)) { 5468 *pfn = memblock_region_memory_end_pfn(r); 5469 return true; 5470 } 5471 } 5472 #endif 5473 return false; 5474 } 5475 5476 /* 5477 * Initially all pages are reserved - free ones are freed 5478 * up by memblock_free_all() once the early boot process is 5479 * done. Non-atomic initialization, single-pass. 5480 */ 5481 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5482 unsigned long start_pfn, enum memmap_context context, 5483 struct vmem_altmap *altmap) 5484 { 5485 unsigned long pfn, end_pfn = start_pfn + size; 5486 struct page *page; 5487 5488 if (highest_memmap_pfn < end_pfn - 1) 5489 highest_memmap_pfn = end_pfn - 1; 5490 5491 #ifdef CONFIG_ZONE_DEVICE 5492 /* 5493 * Honor reservation requested by the driver for this ZONE_DEVICE 5494 * memory. We limit the total number of pages to initialize to just 5495 * those that might contain the memory mapping. We will defer the 5496 * ZONE_DEVICE page initialization until after we have released 5497 * the hotplug lock. 5498 */ 5499 if (zone == ZONE_DEVICE) { 5500 if (!altmap) 5501 return; 5502 5503 if (start_pfn == altmap->base_pfn) 5504 start_pfn += altmap->reserve; 5505 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5506 } 5507 #endif 5508 5509 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5510 /* 5511 * There can be holes in boot-time mem_map[]s handed to this 5512 * function. They do not exist on hotplugged memory. 5513 */ 5514 if (context == MEMMAP_EARLY) { 5515 if (!early_pfn_valid(pfn)) 5516 continue; 5517 if (!early_pfn_in_nid(pfn, nid)) 5518 continue; 5519 if (overlap_memmap_init(zone, &pfn)) 5520 continue; 5521 if (defer_init(nid, pfn, end_pfn)) 5522 break; 5523 } 5524 5525 page = pfn_to_page(pfn); 5526 __init_single_page(page, pfn, zone, nid); 5527 if (context == MEMMAP_HOTPLUG) 5528 __SetPageReserved(page); 5529 5530 /* 5531 * Mark the block movable so that blocks are reserved for 5532 * movable at startup. This will force kernel allocations 5533 * to reserve their blocks rather than leaking throughout 5534 * the address space during boot when many long-lived 5535 * kernel allocations are made. 5536 * 5537 * bitmap is created for zone's valid pfn range. but memmap 5538 * can be created for invalid pages (for alignment) 5539 * check here not to call set_pageblock_migratetype() against 5540 * pfn out of zone. 5541 */ 5542 if (!(pfn & (pageblock_nr_pages - 1))) { 5543 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5544 cond_resched(); 5545 } 5546 } 5547 } 5548 5549 #ifdef CONFIG_ZONE_DEVICE 5550 void __ref memmap_init_zone_device(struct zone *zone, 5551 unsigned long start_pfn, 5552 unsigned long size, 5553 struct dev_pagemap *pgmap) 5554 { 5555 unsigned long pfn, end_pfn = start_pfn + size; 5556 struct pglist_data *pgdat = zone->zone_pgdat; 5557 unsigned long zone_idx = zone_idx(zone); 5558 unsigned long start = jiffies; 5559 int nid = pgdat->node_id; 5560 5561 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) 5562 return; 5563 5564 /* 5565 * The call to memmap_init_zone should have already taken care 5566 * of the pages reserved for the memmap, so we can just jump to 5567 * the end of that region and start processing the device pages. 5568 */ 5569 if (pgmap->altmap_valid) { 5570 struct vmem_altmap *altmap = &pgmap->altmap; 5571 5572 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5573 size = end_pfn - start_pfn; 5574 } 5575 5576 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5577 struct page *page = pfn_to_page(pfn); 5578 5579 __init_single_page(page, pfn, zone_idx, nid); 5580 5581 /* 5582 * Mark page reserved as it will need to wait for onlining 5583 * phase for it to be fully associated with a zone. 5584 * 5585 * We can use the non-atomic __set_bit operation for setting 5586 * the flag as we are still initializing the pages. 5587 */ 5588 __SetPageReserved(page); 5589 5590 /* 5591 * ZONE_DEVICE pages union ->lru with a ->pgmap back 5592 * pointer and hmm_data. It is a bug if a ZONE_DEVICE 5593 * page is ever freed or placed on a driver-private list. 5594 */ 5595 page->pgmap = pgmap; 5596 page->hmm_data = 0; 5597 5598 /* 5599 * Mark the block movable so that blocks are reserved for 5600 * movable at startup. This will force kernel allocations 5601 * to reserve their blocks rather than leaking throughout 5602 * the address space during boot when many long-lived 5603 * kernel allocations are made. 5604 * 5605 * bitmap is created for zone's valid pfn range. but memmap 5606 * can be created for invalid pages (for alignment) 5607 * check here not to call set_pageblock_migratetype() against 5608 * pfn out of zone. 5609 * 5610 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5611 * because this is done early in sparse_add_one_section 5612 */ 5613 if (!(pfn & (pageblock_nr_pages - 1))) { 5614 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5615 cond_resched(); 5616 } 5617 } 5618 5619 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5620 size, jiffies_to_msecs(jiffies - start)); 5621 } 5622 5623 #endif 5624 static void __meminit zone_init_free_lists(struct zone *zone) 5625 { 5626 unsigned int order, t; 5627 for_each_migratetype_order(order, t) { 5628 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5629 zone->free_area[order].nr_free = 0; 5630 } 5631 } 5632 5633 void __meminit __weak memmap_init(unsigned long size, int nid, 5634 unsigned long zone, unsigned long start_pfn) 5635 { 5636 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 5637 } 5638 5639 static int zone_batchsize(struct zone *zone) 5640 { 5641 #ifdef CONFIG_MMU 5642 int batch; 5643 5644 /* 5645 * The per-cpu-pages pools are set to around 1000th of the 5646 * size of the zone. 5647 */ 5648 batch = zone->managed_pages / 1024; 5649 /* But no more than a meg. */ 5650 if (batch * PAGE_SIZE > 1024 * 1024) 5651 batch = (1024 * 1024) / PAGE_SIZE; 5652 batch /= 4; /* We effectively *= 4 below */ 5653 if (batch < 1) 5654 batch = 1; 5655 5656 /* 5657 * Clamp the batch to a 2^n - 1 value. Having a power 5658 * of 2 value was found to be more likely to have 5659 * suboptimal cache aliasing properties in some cases. 5660 * 5661 * For example if 2 tasks are alternately allocating 5662 * batches of pages, one task can end up with a lot 5663 * of pages of one half of the possible page colors 5664 * and the other with pages of the other colors. 5665 */ 5666 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5667 5668 return batch; 5669 5670 #else 5671 /* The deferral and batching of frees should be suppressed under NOMMU 5672 * conditions. 5673 * 5674 * The problem is that NOMMU needs to be able to allocate large chunks 5675 * of contiguous memory as there's no hardware page translation to 5676 * assemble apparent contiguous memory from discontiguous pages. 5677 * 5678 * Queueing large contiguous runs of pages for batching, however, 5679 * causes the pages to actually be freed in smaller chunks. As there 5680 * can be a significant delay between the individual batches being 5681 * recycled, this leads to the once large chunks of space being 5682 * fragmented and becoming unavailable for high-order allocations. 5683 */ 5684 return 0; 5685 #endif 5686 } 5687 5688 /* 5689 * pcp->high and pcp->batch values are related and dependent on one another: 5690 * ->batch must never be higher then ->high. 5691 * The following function updates them in a safe manner without read side 5692 * locking. 5693 * 5694 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5695 * those fields changing asynchronously (acording the the above rule). 5696 * 5697 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5698 * outside of boot time (or some other assurance that no concurrent updaters 5699 * exist). 5700 */ 5701 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5702 unsigned long batch) 5703 { 5704 /* start with a fail safe value for batch */ 5705 pcp->batch = 1; 5706 smp_wmb(); 5707 5708 /* Update high, then batch, in order */ 5709 pcp->high = high; 5710 smp_wmb(); 5711 5712 pcp->batch = batch; 5713 } 5714 5715 /* a companion to pageset_set_high() */ 5716 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5717 { 5718 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5719 } 5720 5721 static void pageset_init(struct per_cpu_pageset *p) 5722 { 5723 struct per_cpu_pages *pcp; 5724 int migratetype; 5725 5726 memset(p, 0, sizeof(*p)); 5727 5728 pcp = &p->pcp; 5729 pcp->count = 0; 5730 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5731 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5732 } 5733 5734 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5735 { 5736 pageset_init(p); 5737 pageset_set_batch(p, batch); 5738 } 5739 5740 /* 5741 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5742 * to the value high for the pageset p. 5743 */ 5744 static void pageset_set_high(struct per_cpu_pageset *p, 5745 unsigned long high) 5746 { 5747 unsigned long batch = max(1UL, high / 4); 5748 if ((high / 4) > (PAGE_SHIFT * 8)) 5749 batch = PAGE_SHIFT * 8; 5750 5751 pageset_update(&p->pcp, high, batch); 5752 } 5753 5754 static void pageset_set_high_and_batch(struct zone *zone, 5755 struct per_cpu_pageset *pcp) 5756 { 5757 if (percpu_pagelist_fraction) 5758 pageset_set_high(pcp, 5759 (zone->managed_pages / 5760 percpu_pagelist_fraction)); 5761 else 5762 pageset_set_batch(pcp, zone_batchsize(zone)); 5763 } 5764 5765 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5766 { 5767 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5768 5769 pageset_init(pcp); 5770 pageset_set_high_and_batch(zone, pcp); 5771 } 5772 5773 void __meminit setup_zone_pageset(struct zone *zone) 5774 { 5775 int cpu; 5776 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5777 for_each_possible_cpu(cpu) 5778 zone_pageset_init(zone, cpu); 5779 } 5780 5781 /* 5782 * Allocate per cpu pagesets and initialize them. 5783 * Before this call only boot pagesets were available. 5784 */ 5785 void __init setup_per_cpu_pageset(void) 5786 { 5787 struct pglist_data *pgdat; 5788 struct zone *zone; 5789 5790 for_each_populated_zone(zone) 5791 setup_zone_pageset(zone); 5792 5793 for_each_online_pgdat(pgdat) 5794 pgdat->per_cpu_nodestats = 5795 alloc_percpu(struct per_cpu_nodestat); 5796 } 5797 5798 static __meminit void zone_pcp_init(struct zone *zone) 5799 { 5800 /* 5801 * per cpu subsystem is not up at this point. The following code 5802 * relies on the ability of the linker to provide the 5803 * offset of a (static) per cpu variable into the per cpu area. 5804 */ 5805 zone->pageset = &boot_pageset; 5806 5807 if (populated_zone(zone)) 5808 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5809 zone->name, zone->present_pages, 5810 zone_batchsize(zone)); 5811 } 5812 5813 void __meminit init_currently_empty_zone(struct zone *zone, 5814 unsigned long zone_start_pfn, 5815 unsigned long size) 5816 { 5817 struct pglist_data *pgdat = zone->zone_pgdat; 5818 5819 pgdat->nr_zones = zone_idx(zone) + 1; 5820 5821 zone->zone_start_pfn = zone_start_pfn; 5822 5823 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5824 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5825 pgdat->node_id, 5826 (unsigned long)zone_idx(zone), 5827 zone_start_pfn, (zone_start_pfn + size)); 5828 5829 zone_init_free_lists(zone); 5830 zone->initialized = 1; 5831 } 5832 5833 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5834 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5835 5836 /* 5837 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5838 */ 5839 int __meminit __early_pfn_to_nid(unsigned long pfn, 5840 struct mminit_pfnnid_cache *state) 5841 { 5842 unsigned long start_pfn, end_pfn; 5843 int nid; 5844 5845 if (state->last_start <= pfn && pfn < state->last_end) 5846 return state->last_nid; 5847 5848 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5849 if (nid != -1) { 5850 state->last_start = start_pfn; 5851 state->last_end = end_pfn; 5852 state->last_nid = nid; 5853 } 5854 5855 return nid; 5856 } 5857 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5858 5859 /** 5860 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5861 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5862 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5863 * 5864 * If an architecture guarantees that all ranges registered contain no holes 5865 * and may be freed, this this function may be used instead of calling 5866 * memblock_free_early_nid() manually. 5867 */ 5868 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5869 { 5870 unsigned long start_pfn, end_pfn; 5871 int i, this_nid; 5872 5873 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5874 start_pfn = min(start_pfn, max_low_pfn); 5875 end_pfn = min(end_pfn, max_low_pfn); 5876 5877 if (start_pfn < end_pfn) 5878 memblock_free_early_nid(PFN_PHYS(start_pfn), 5879 (end_pfn - start_pfn) << PAGE_SHIFT, 5880 this_nid); 5881 } 5882 } 5883 5884 /** 5885 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5886 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5887 * 5888 * If an architecture guarantees that all ranges registered contain no holes and may 5889 * be freed, this function may be used instead of calling memory_present() manually. 5890 */ 5891 void __init sparse_memory_present_with_active_regions(int nid) 5892 { 5893 unsigned long start_pfn, end_pfn; 5894 int i, this_nid; 5895 5896 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5897 memory_present(this_nid, start_pfn, end_pfn); 5898 } 5899 5900 /** 5901 * get_pfn_range_for_nid - Return the start and end page frames for a node 5902 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5903 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5904 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5905 * 5906 * It returns the start and end page frame of a node based on information 5907 * provided by memblock_set_node(). If called for a node 5908 * with no available memory, a warning is printed and the start and end 5909 * PFNs will be 0. 5910 */ 5911 void __meminit get_pfn_range_for_nid(unsigned int nid, 5912 unsigned long *start_pfn, unsigned long *end_pfn) 5913 { 5914 unsigned long this_start_pfn, this_end_pfn; 5915 int i; 5916 5917 *start_pfn = -1UL; 5918 *end_pfn = 0; 5919 5920 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5921 *start_pfn = min(*start_pfn, this_start_pfn); 5922 *end_pfn = max(*end_pfn, this_end_pfn); 5923 } 5924 5925 if (*start_pfn == -1UL) 5926 *start_pfn = 0; 5927 } 5928 5929 /* 5930 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5931 * assumption is made that zones within a node are ordered in monotonic 5932 * increasing memory addresses so that the "highest" populated zone is used 5933 */ 5934 static void __init find_usable_zone_for_movable(void) 5935 { 5936 int zone_index; 5937 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5938 if (zone_index == ZONE_MOVABLE) 5939 continue; 5940 5941 if (arch_zone_highest_possible_pfn[zone_index] > 5942 arch_zone_lowest_possible_pfn[zone_index]) 5943 break; 5944 } 5945 5946 VM_BUG_ON(zone_index == -1); 5947 movable_zone = zone_index; 5948 } 5949 5950 /* 5951 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5952 * because it is sized independent of architecture. Unlike the other zones, 5953 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5954 * in each node depending on the size of each node and how evenly kernelcore 5955 * is distributed. This helper function adjusts the zone ranges 5956 * provided by the architecture for a given node by using the end of the 5957 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5958 * zones within a node are in order of monotonic increases memory addresses 5959 */ 5960 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5961 unsigned long zone_type, 5962 unsigned long node_start_pfn, 5963 unsigned long node_end_pfn, 5964 unsigned long *zone_start_pfn, 5965 unsigned long *zone_end_pfn) 5966 { 5967 /* Only adjust if ZONE_MOVABLE is on this node */ 5968 if (zone_movable_pfn[nid]) { 5969 /* Size ZONE_MOVABLE */ 5970 if (zone_type == ZONE_MOVABLE) { 5971 *zone_start_pfn = zone_movable_pfn[nid]; 5972 *zone_end_pfn = min(node_end_pfn, 5973 arch_zone_highest_possible_pfn[movable_zone]); 5974 5975 /* Adjust for ZONE_MOVABLE starting within this range */ 5976 } else if (!mirrored_kernelcore && 5977 *zone_start_pfn < zone_movable_pfn[nid] && 5978 *zone_end_pfn > zone_movable_pfn[nid]) { 5979 *zone_end_pfn = zone_movable_pfn[nid]; 5980 5981 /* Check if this whole range is within ZONE_MOVABLE */ 5982 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5983 *zone_start_pfn = *zone_end_pfn; 5984 } 5985 } 5986 5987 /* 5988 * Return the number of pages a zone spans in a node, including holes 5989 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5990 */ 5991 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5992 unsigned long zone_type, 5993 unsigned long node_start_pfn, 5994 unsigned long node_end_pfn, 5995 unsigned long *zone_start_pfn, 5996 unsigned long *zone_end_pfn, 5997 unsigned long *ignored) 5998 { 5999 /* When hotadd a new node from cpu_up(), the node should be empty */ 6000 if (!node_start_pfn && !node_end_pfn) 6001 return 0; 6002 6003 /* Get the start and end of the zone */ 6004 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 6005 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 6006 adjust_zone_range_for_zone_movable(nid, zone_type, 6007 node_start_pfn, node_end_pfn, 6008 zone_start_pfn, zone_end_pfn); 6009 6010 /* Check that this node has pages within the zone's required range */ 6011 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6012 return 0; 6013 6014 /* Move the zone boundaries inside the node if necessary */ 6015 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6016 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6017 6018 /* Return the spanned pages */ 6019 return *zone_end_pfn - *zone_start_pfn; 6020 } 6021 6022 /* 6023 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6024 * then all holes in the requested range will be accounted for. 6025 */ 6026 unsigned long __meminit __absent_pages_in_range(int nid, 6027 unsigned long range_start_pfn, 6028 unsigned long range_end_pfn) 6029 { 6030 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6031 unsigned long start_pfn, end_pfn; 6032 int i; 6033 6034 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6035 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6036 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6037 nr_absent -= end_pfn - start_pfn; 6038 } 6039 return nr_absent; 6040 } 6041 6042 /** 6043 * absent_pages_in_range - Return number of page frames in holes within a range 6044 * @start_pfn: The start PFN to start searching for holes 6045 * @end_pfn: The end PFN to stop searching for holes 6046 * 6047 * It returns the number of pages frames in memory holes within a range. 6048 */ 6049 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6050 unsigned long end_pfn) 6051 { 6052 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6053 } 6054 6055 /* Return the number of page frames in holes in a zone on a node */ 6056 static unsigned long __meminit zone_absent_pages_in_node(int nid, 6057 unsigned long zone_type, 6058 unsigned long node_start_pfn, 6059 unsigned long node_end_pfn, 6060 unsigned long *ignored) 6061 { 6062 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6063 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6064 unsigned long zone_start_pfn, zone_end_pfn; 6065 unsigned long nr_absent; 6066 6067 /* When hotadd a new node from cpu_up(), the node should be empty */ 6068 if (!node_start_pfn && !node_end_pfn) 6069 return 0; 6070 6071 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6072 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6073 6074 adjust_zone_range_for_zone_movable(nid, zone_type, 6075 node_start_pfn, node_end_pfn, 6076 &zone_start_pfn, &zone_end_pfn); 6077 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6078 6079 /* 6080 * ZONE_MOVABLE handling. 6081 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6082 * and vice versa. 6083 */ 6084 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6085 unsigned long start_pfn, end_pfn; 6086 struct memblock_region *r; 6087 6088 for_each_memblock(memory, r) { 6089 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6090 zone_start_pfn, zone_end_pfn); 6091 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6092 zone_start_pfn, zone_end_pfn); 6093 6094 if (zone_type == ZONE_MOVABLE && 6095 memblock_is_mirror(r)) 6096 nr_absent += end_pfn - start_pfn; 6097 6098 if (zone_type == ZONE_NORMAL && 6099 !memblock_is_mirror(r)) 6100 nr_absent += end_pfn - start_pfn; 6101 } 6102 } 6103 6104 return nr_absent; 6105 } 6106 6107 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6108 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 6109 unsigned long zone_type, 6110 unsigned long node_start_pfn, 6111 unsigned long node_end_pfn, 6112 unsigned long *zone_start_pfn, 6113 unsigned long *zone_end_pfn, 6114 unsigned long *zones_size) 6115 { 6116 unsigned int zone; 6117 6118 *zone_start_pfn = node_start_pfn; 6119 for (zone = 0; zone < zone_type; zone++) 6120 *zone_start_pfn += zones_size[zone]; 6121 6122 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6123 6124 return zones_size[zone_type]; 6125 } 6126 6127 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 6128 unsigned long zone_type, 6129 unsigned long node_start_pfn, 6130 unsigned long node_end_pfn, 6131 unsigned long *zholes_size) 6132 { 6133 if (!zholes_size) 6134 return 0; 6135 6136 return zholes_size[zone_type]; 6137 } 6138 6139 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6140 6141 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 6142 unsigned long node_start_pfn, 6143 unsigned long node_end_pfn, 6144 unsigned long *zones_size, 6145 unsigned long *zholes_size) 6146 { 6147 unsigned long realtotalpages = 0, totalpages = 0; 6148 enum zone_type i; 6149 6150 for (i = 0; i < MAX_NR_ZONES; i++) { 6151 struct zone *zone = pgdat->node_zones + i; 6152 unsigned long zone_start_pfn, zone_end_pfn; 6153 unsigned long size, real_size; 6154 6155 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6156 node_start_pfn, 6157 node_end_pfn, 6158 &zone_start_pfn, 6159 &zone_end_pfn, 6160 zones_size); 6161 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6162 node_start_pfn, node_end_pfn, 6163 zholes_size); 6164 if (size) 6165 zone->zone_start_pfn = zone_start_pfn; 6166 else 6167 zone->zone_start_pfn = 0; 6168 zone->spanned_pages = size; 6169 zone->present_pages = real_size; 6170 6171 totalpages += size; 6172 realtotalpages += real_size; 6173 } 6174 6175 pgdat->node_spanned_pages = totalpages; 6176 pgdat->node_present_pages = realtotalpages; 6177 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6178 realtotalpages); 6179 } 6180 6181 #ifndef CONFIG_SPARSEMEM 6182 /* 6183 * Calculate the size of the zone->blockflags rounded to an unsigned long 6184 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6185 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6186 * round what is now in bits to nearest long in bits, then return it in 6187 * bytes. 6188 */ 6189 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6190 { 6191 unsigned long usemapsize; 6192 6193 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6194 usemapsize = roundup(zonesize, pageblock_nr_pages); 6195 usemapsize = usemapsize >> pageblock_order; 6196 usemapsize *= NR_PAGEBLOCK_BITS; 6197 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6198 6199 return usemapsize / 8; 6200 } 6201 6202 static void __ref setup_usemap(struct pglist_data *pgdat, 6203 struct zone *zone, 6204 unsigned long zone_start_pfn, 6205 unsigned long zonesize) 6206 { 6207 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6208 zone->pageblock_flags = NULL; 6209 if (usemapsize) 6210 zone->pageblock_flags = 6211 memblock_alloc_node_nopanic(usemapsize, 6212 pgdat->node_id); 6213 } 6214 #else 6215 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6216 unsigned long zone_start_pfn, unsigned long zonesize) {} 6217 #endif /* CONFIG_SPARSEMEM */ 6218 6219 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6220 6221 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6222 void __init set_pageblock_order(void) 6223 { 6224 unsigned int order; 6225 6226 /* Check that pageblock_nr_pages has not already been setup */ 6227 if (pageblock_order) 6228 return; 6229 6230 if (HPAGE_SHIFT > PAGE_SHIFT) 6231 order = HUGETLB_PAGE_ORDER; 6232 else 6233 order = MAX_ORDER - 1; 6234 6235 /* 6236 * Assume the largest contiguous order of interest is a huge page. 6237 * This value may be variable depending on boot parameters on IA64 and 6238 * powerpc. 6239 */ 6240 pageblock_order = order; 6241 } 6242 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6243 6244 /* 6245 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6246 * is unused as pageblock_order is set at compile-time. See 6247 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6248 * the kernel config 6249 */ 6250 void __init set_pageblock_order(void) 6251 { 6252 } 6253 6254 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6255 6256 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6257 unsigned long present_pages) 6258 { 6259 unsigned long pages = spanned_pages; 6260 6261 /* 6262 * Provide a more accurate estimation if there are holes within 6263 * the zone and SPARSEMEM is in use. If there are holes within the 6264 * zone, each populated memory region may cost us one or two extra 6265 * memmap pages due to alignment because memmap pages for each 6266 * populated regions may not be naturally aligned on page boundary. 6267 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6268 */ 6269 if (spanned_pages > present_pages + (present_pages >> 4) && 6270 IS_ENABLED(CONFIG_SPARSEMEM)) 6271 pages = present_pages; 6272 6273 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6274 } 6275 6276 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6277 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6278 { 6279 spin_lock_init(&pgdat->split_queue_lock); 6280 INIT_LIST_HEAD(&pgdat->split_queue); 6281 pgdat->split_queue_len = 0; 6282 } 6283 #else 6284 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6285 #endif 6286 6287 #ifdef CONFIG_COMPACTION 6288 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6289 { 6290 init_waitqueue_head(&pgdat->kcompactd_wait); 6291 } 6292 #else 6293 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6294 #endif 6295 6296 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6297 { 6298 pgdat_resize_init(pgdat); 6299 6300 pgdat_init_split_queue(pgdat); 6301 pgdat_init_kcompactd(pgdat); 6302 6303 init_waitqueue_head(&pgdat->kswapd_wait); 6304 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6305 6306 pgdat_page_ext_init(pgdat); 6307 spin_lock_init(&pgdat->lru_lock); 6308 lruvec_init(node_lruvec(pgdat)); 6309 } 6310 6311 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6312 unsigned long remaining_pages) 6313 { 6314 zone->managed_pages = remaining_pages; 6315 zone_set_nid(zone, nid); 6316 zone->name = zone_names[idx]; 6317 zone->zone_pgdat = NODE_DATA(nid); 6318 spin_lock_init(&zone->lock); 6319 zone_seqlock_init(zone); 6320 zone_pcp_init(zone); 6321 } 6322 6323 /* 6324 * Set up the zone data structures 6325 * - init pgdat internals 6326 * - init all zones belonging to this node 6327 * 6328 * NOTE: this function is only called during memory hotplug 6329 */ 6330 #ifdef CONFIG_MEMORY_HOTPLUG 6331 void __ref free_area_init_core_hotplug(int nid) 6332 { 6333 enum zone_type z; 6334 pg_data_t *pgdat = NODE_DATA(nid); 6335 6336 pgdat_init_internals(pgdat); 6337 for (z = 0; z < MAX_NR_ZONES; z++) 6338 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6339 } 6340 #endif 6341 6342 /* 6343 * Set up the zone data structures: 6344 * - mark all pages reserved 6345 * - mark all memory queues empty 6346 * - clear the memory bitmaps 6347 * 6348 * NOTE: pgdat should get zeroed by caller. 6349 * NOTE: this function is only called during early init. 6350 */ 6351 static void __init free_area_init_core(struct pglist_data *pgdat) 6352 { 6353 enum zone_type j; 6354 int nid = pgdat->node_id; 6355 6356 pgdat_init_internals(pgdat); 6357 pgdat->per_cpu_nodestats = &boot_nodestats; 6358 6359 for (j = 0; j < MAX_NR_ZONES; j++) { 6360 struct zone *zone = pgdat->node_zones + j; 6361 unsigned long size, freesize, memmap_pages; 6362 unsigned long zone_start_pfn = zone->zone_start_pfn; 6363 6364 size = zone->spanned_pages; 6365 freesize = zone->present_pages; 6366 6367 /* 6368 * Adjust freesize so that it accounts for how much memory 6369 * is used by this zone for memmap. This affects the watermark 6370 * and per-cpu initialisations 6371 */ 6372 memmap_pages = calc_memmap_size(size, freesize); 6373 if (!is_highmem_idx(j)) { 6374 if (freesize >= memmap_pages) { 6375 freesize -= memmap_pages; 6376 if (memmap_pages) 6377 printk(KERN_DEBUG 6378 " %s zone: %lu pages used for memmap\n", 6379 zone_names[j], memmap_pages); 6380 } else 6381 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6382 zone_names[j], memmap_pages, freesize); 6383 } 6384 6385 /* Account for reserved pages */ 6386 if (j == 0 && freesize > dma_reserve) { 6387 freesize -= dma_reserve; 6388 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6389 zone_names[0], dma_reserve); 6390 } 6391 6392 if (!is_highmem_idx(j)) 6393 nr_kernel_pages += freesize; 6394 /* Charge for highmem memmap if there are enough kernel pages */ 6395 else if (nr_kernel_pages > memmap_pages * 2) 6396 nr_kernel_pages -= memmap_pages; 6397 nr_all_pages += freesize; 6398 6399 /* 6400 * Set an approximate value for lowmem here, it will be adjusted 6401 * when the bootmem allocator frees pages into the buddy system. 6402 * And all highmem pages will be managed by the buddy system. 6403 */ 6404 zone_init_internals(zone, j, nid, freesize); 6405 6406 if (!size) 6407 continue; 6408 6409 set_pageblock_order(); 6410 setup_usemap(pgdat, zone, zone_start_pfn, size); 6411 init_currently_empty_zone(zone, zone_start_pfn, size); 6412 memmap_init(size, nid, j, zone_start_pfn); 6413 } 6414 } 6415 6416 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6417 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6418 { 6419 unsigned long __maybe_unused start = 0; 6420 unsigned long __maybe_unused offset = 0; 6421 6422 /* Skip empty nodes */ 6423 if (!pgdat->node_spanned_pages) 6424 return; 6425 6426 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6427 offset = pgdat->node_start_pfn - start; 6428 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6429 if (!pgdat->node_mem_map) { 6430 unsigned long size, end; 6431 struct page *map; 6432 6433 /* 6434 * The zone's endpoints aren't required to be MAX_ORDER 6435 * aligned but the node_mem_map endpoints must be in order 6436 * for the buddy allocator to function correctly. 6437 */ 6438 end = pgdat_end_pfn(pgdat); 6439 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6440 size = (end - start) * sizeof(struct page); 6441 map = memblock_alloc_node_nopanic(size, pgdat->node_id); 6442 pgdat->node_mem_map = map + offset; 6443 } 6444 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6445 __func__, pgdat->node_id, (unsigned long)pgdat, 6446 (unsigned long)pgdat->node_mem_map); 6447 #ifndef CONFIG_NEED_MULTIPLE_NODES 6448 /* 6449 * With no DISCONTIG, the global mem_map is just set as node 0's 6450 */ 6451 if (pgdat == NODE_DATA(0)) { 6452 mem_map = NODE_DATA(0)->node_mem_map; 6453 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6454 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6455 mem_map -= offset; 6456 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6457 } 6458 #endif 6459 } 6460 #else 6461 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6462 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6463 6464 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6465 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6466 { 6467 /* 6468 * We start only with one section of pages, more pages are added as 6469 * needed until the rest of deferred pages are initialized. 6470 */ 6471 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION, 6472 pgdat->node_spanned_pages); 6473 pgdat->first_deferred_pfn = ULONG_MAX; 6474 } 6475 #else 6476 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6477 #endif 6478 6479 void __init free_area_init_node(int nid, unsigned long *zones_size, 6480 unsigned long node_start_pfn, 6481 unsigned long *zholes_size) 6482 { 6483 pg_data_t *pgdat = NODE_DATA(nid); 6484 unsigned long start_pfn = 0; 6485 unsigned long end_pfn = 0; 6486 6487 /* pg_data_t should be reset to zero when it's allocated */ 6488 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6489 6490 pgdat->node_id = nid; 6491 pgdat->node_start_pfn = node_start_pfn; 6492 pgdat->per_cpu_nodestats = NULL; 6493 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6494 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6495 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6496 (u64)start_pfn << PAGE_SHIFT, 6497 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6498 #else 6499 start_pfn = node_start_pfn; 6500 #endif 6501 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6502 zones_size, zholes_size); 6503 6504 alloc_node_mem_map(pgdat); 6505 pgdat_set_deferred_range(pgdat); 6506 6507 free_area_init_core(pgdat); 6508 } 6509 6510 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6511 /* 6512 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6513 * pages zeroed 6514 */ 6515 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6516 { 6517 unsigned long pfn; 6518 u64 pgcnt = 0; 6519 6520 for (pfn = spfn; pfn < epfn; pfn++) { 6521 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6522 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6523 + pageblock_nr_pages - 1; 6524 continue; 6525 } 6526 mm_zero_struct_page(pfn_to_page(pfn)); 6527 pgcnt++; 6528 } 6529 6530 return pgcnt; 6531 } 6532 6533 /* 6534 * Only struct pages that are backed by physical memory are zeroed and 6535 * initialized by going through __init_single_page(). But, there are some 6536 * struct pages which are reserved in memblock allocator and their fields 6537 * may be accessed (for example page_to_pfn() on some configuration accesses 6538 * flags). We must explicitly zero those struct pages. 6539 * 6540 * This function also addresses a similar issue where struct pages are left 6541 * uninitialized because the physical address range is not covered by 6542 * memblock.memory or memblock.reserved. That could happen when memblock 6543 * layout is manually configured via memmap=. 6544 */ 6545 void __init zero_resv_unavail(void) 6546 { 6547 phys_addr_t start, end; 6548 u64 i, pgcnt; 6549 phys_addr_t next = 0; 6550 6551 /* 6552 * Loop through unavailable ranges not covered by memblock.memory. 6553 */ 6554 pgcnt = 0; 6555 for_each_mem_range(i, &memblock.memory, NULL, 6556 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6557 if (next < start) 6558 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6559 next = end; 6560 } 6561 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6562 6563 /* 6564 * Struct pages that do not have backing memory. This could be because 6565 * firmware is using some of this memory, or for some other reasons. 6566 */ 6567 if (pgcnt) 6568 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6569 } 6570 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6571 6572 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6573 6574 #if MAX_NUMNODES > 1 6575 /* 6576 * Figure out the number of possible node ids. 6577 */ 6578 void __init setup_nr_node_ids(void) 6579 { 6580 unsigned int highest; 6581 6582 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6583 nr_node_ids = highest + 1; 6584 } 6585 #endif 6586 6587 /** 6588 * node_map_pfn_alignment - determine the maximum internode alignment 6589 * 6590 * This function should be called after node map is populated and sorted. 6591 * It calculates the maximum power of two alignment which can distinguish 6592 * all the nodes. 6593 * 6594 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6595 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6596 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6597 * shifted, 1GiB is enough and this function will indicate so. 6598 * 6599 * This is used to test whether pfn -> nid mapping of the chosen memory 6600 * model has fine enough granularity to avoid incorrect mapping for the 6601 * populated node map. 6602 * 6603 * Returns the determined alignment in pfn's. 0 if there is no alignment 6604 * requirement (single node). 6605 */ 6606 unsigned long __init node_map_pfn_alignment(void) 6607 { 6608 unsigned long accl_mask = 0, last_end = 0; 6609 unsigned long start, end, mask; 6610 int last_nid = -1; 6611 int i, nid; 6612 6613 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6614 if (!start || last_nid < 0 || last_nid == nid) { 6615 last_nid = nid; 6616 last_end = end; 6617 continue; 6618 } 6619 6620 /* 6621 * Start with a mask granular enough to pin-point to the 6622 * start pfn and tick off bits one-by-one until it becomes 6623 * too coarse to separate the current node from the last. 6624 */ 6625 mask = ~((1 << __ffs(start)) - 1); 6626 while (mask && last_end <= (start & (mask << 1))) 6627 mask <<= 1; 6628 6629 /* accumulate all internode masks */ 6630 accl_mask |= mask; 6631 } 6632 6633 /* convert mask to number of pages */ 6634 return ~accl_mask + 1; 6635 } 6636 6637 /* Find the lowest pfn for a node */ 6638 static unsigned long __init find_min_pfn_for_node(int nid) 6639 { 6640 unsigned long min_pfn = ULONG_MAX; 6641 unsigned long start_pfn; 6642 int i; 6643 6644 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6645 min_pfn = min(min_pfn, start_pfn); 6646 6647 if (min_pfn == ULONG_MAX) { 6648 pr_warn("Could not find start_pfn for node %d\n", nid); 6649 return 0; 6650 } 6651 6652 return min_pfn; 6653 } 6654 6655 /** 6656 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6657 * 6658 * It returns the minimum PFN based on information provided via 6659 * memblock_set_node(). 6660 */ 6661 unsigned long __init find_min_pfn_with_active_regions(void) 6662 { 6663 return find_min_pfn_for_node(MAX_NUMNODES); 6664 } 6665 6666 /* 6667 * early_calculate_totalpages() 6668 * Sum pages in active regions for movable zone. 6669 * Populate N_MEMORY for calculating usable_nodes. 6670 */ 6671 static unsigned long __init early_calculate_totalpages(void) 6672 { 6673 unsigned long totalpages = 0; 6674 unsigned long start_pfn, end_pfn; 6675 int i, nid; 6676 6677 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6678 unsigned long pages = end_pfn - start_pfn; 6679 6680 totalpages += pages; 6681 if (pages) 6682 node_set_state(nid, N_MEMORY); 6683 } 6684 return totalpages; 6685 } 6686 6687 /* 6688 * Find the PFN the Movable zone begins in each node. Kernel memory 6689 * is spread evenly between nodes as long as the nodes have enough 6690 * memory. When they don't, some nodes will have more kernelcore than 6691 * others 6692 */ 6693 static void __init find_zone_movable_pfns_for_nodes(void) 6694 { 6695 int i, nid; 6696 unsigned long usable_startpfn; 6697 unsigned long kernelcore_node, kernelcore_remaining; 6698 /* save the state before borrow the nodemask */ 6699 nodemask_t saved_node_state = node_states[N_MEMORY]; 6700 unsigned long totalpages = early_calculate_totalpages(); 6701 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6702 struct memblock_region *r; 6703 6704 /* Need to find movable_zone earlier when movable_node is specified. */ 6705 find_usable_zone_for_movable(); 6706 6707 /* 6708 * If movable_node is specified, ignore kernelcore and movablecore 6709 * options. 6710 */ 6711 if (movable_node_is_enabled()) { 6712 for_each_memblock(memory, r) { 6713 if (!memblock_is_hotpluggable(r)) 6714 continue; 6715 6716 nid = r->nid; 6717 6718 usable_startpfn = PFN_DOWN(r->base); 6719 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6720 min(usable_startpfn, zone_movable_pfn[nid]) : 6721 usable_startpfn; 6722 } 6723 6724 goto out2; 6725 } 6726 6727 /* 6728 * If kernelcore=mirror is specified, ignore movablecore option 6729 */ 6730 if (mirrored_kernelcore) { 6731 bool mem_below_4gb_not_mirrored = false; 6732 6733 for_each_memblock(memory, r) { 6734 if (memblock_is_mirror(r)) 6735 continue; 6736 6737 nid = r->nid; 6738 6739 usable_startpfn = memblock_region_memory_base_pfn(r); 6740 6741 if (usable_startpfn < 0x100000) { 6742 mem_below_4gb_not_mirrored = true; 6743 continue; 6744 } 6745 6746 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6747 min(usable_startpfn, zone_movable_pfn[nid]) : 6748 usable_startpfn; 6749 } 6750 6751 if (mem_below_4gb_not_mirrored) 6752 pr_warn("This configuration results in unmirrored kernel memory."); 6753 6754 goto out2; 6755 } 6756 6757 /* 6758 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 6759 * amount of necessary memory. 6760 */ 6761 if (required_kernelcore_percent) 6762 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 6763 10000UL; 6764 if (required_movablecore_percent) 6765 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 6766 10000UL; 6767 6768 /* 6769 * If movablecore= was specified, calculate what size of 6770 * kernelcore that corresponds so that memory usable for 6771 * any allocation type is evenly spread. If both kernelcore 6772 * and movablecore are specified, then the value of kernelcore 6773 * will be used for required_kernelcore if it's greater than 6774 * what movablecore would have allowed. 6775 */ 6776 if (required_movablecore) { 6777 unsigned long corepages; 6778 6779 /* 6780 * Round-up so that ZONE_MOVABLE is at least as large as what 6781 * was requested by the user 6782 */ 6783 required_movablecore = 6784 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6785 required_movablecore = min(totalpages, required_movablecore); 6786 corepages = totalpages - required_movablecore; 6787 6788 required_kernelcore = max(required_kernelcore, corepages); 6789 } 6790 6791 /* 6792 * If kernelcore was not specified or kernelcore size is larger 6793 * than totalpages, there is no ZONE_MOVABLE. 6794 */ 6795 if (!required_kernelcore || required_kernelcore >= totalpages) 6796 goto out; 6797 6798 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6799 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6800 6801 restart: 6802 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6803 kernelcore_node = required_kernelcore / usable_nodes; 6804 for_each_node_state(nid, N_MEMORY) { 6805 unsigned long start_pfn, end_pfn; 6806 6807 /* 6808 * Recalculate kernelcore_node if the division per node 6809 * now exceeds what is necessary to satisfy the requested 6810 * amount of memory for the kernel 6811 */ 6812 if (required_kernelcore < kernelcore_node) 6813 kernelcore_node = required_kernelcore / usable_nodes; 6814 6815 /* 6816 * As the map is walked, we track how much memory is usable 6817 * by the kernel using kernelcore_remaining. When it is 6818 * 0, the rest of the node is usable by ZONE_MOVABLE 6819 */ 6820 kernelcore_remaining = kernelcore_node; 6821 6822 /* Go through each range of PFNs within this node */ 6823 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6824 unsigned long size_pages; 6825 6826 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6827 if (start_pfn >= end_pfn) 6828 continue; 6829 6830 /* Account for what is only usable for kernelcore */ 6831 if (start_pfn < usable_startpfn) { 6832 unsigned long kernel_pages; 6833 kernel_pages = min(end_pfn, usable_startpfn) 6834 - start_pfn; 6835 6836 kernelcore_remaining -= min(kernel_pages, 6837 kernelcore_remaining); 6838 required_kernelcore -= min(kernel_pages, 6839 required_kernelcore); 6840 6841 /* Continue if range is now fully accounted */ 6842 if (end_pfn <= usable_startpfn) { 6843 6844 /* 6845 * Push zone_movable_pfn to the end so 6846 * that if we have to rebalance 6847 * kernelcore across nodes, we will 6848 * not double account here 6849 */ 6850 zone_movable_pfn[nid] = end_pfn; 6851 continue; 6852 } 6853 start_pfn = usable_startpfn; 6854 } 6855 6856 /* 6857 * The usable PFN range for ZONE_MOVABLE is from 6858 * start_pfn->end_pfn. Calculate size_pages as the 6859 * number of pages used as kernelcore 6860 */ 6861 size_pages = end_pfn - start_pfn; 6862 if (size_pages > kernelcore_remaining) 6863 size_pages = kernelcore_remaining; 6864 zone_movable_pfn[nid] = start_pfn + size_pages; 6865 6866 /* 6867 * Some kernelcore has been met, update counts and 6868 * break if the kernelcore for this node has been 6869 * satisfied 6870 */ 6871 required_kernelcore -= min(required_kernelcore, 6872 size_pages); 6873 kernelcore_remaining -= size_pages; 6874 if (!kernelcore_remaining) 6875 break; 6876 } 6877 } 6878 6879 /* 6880 * If there is still required_kernelcore, we do another pass with one 6881 * less node in the count. This will push zone_movable_pfn[nid] further 6882 * along on the nodes that still have memory until kernelcore is 6883 * satisfied 6884 */ 6885 usable_nodes--; 6886 if (usable_nodes && required_kernelcore > usable_nodes) 6887 goto restart; 6888 6889 out2: 6890 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6891 for (nid = 0; nid < MAX_NUMNODES; nid++) 6892 zone_movable_pfn[nid] = 6893 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6894 6895 out: 6896 /* restore the node_state */ 6897 node_states[N_MEMORY] = saved_node_state; 6898 } 6899 6900 /* Any regular or high memory on that node ? */ 6901 static void check_for_memory(pg_data_t *pgdat, int nid) 6902 { 6903 enum zone_type zone_type; 6904 6905 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6906 struct zone *zone = &pgdat->node_zones[zone_type]; 6907 if (populated_zone(zone)) { 6908 if (IS_ENABLED(CONFIG_HIGHMEM)) 6909 node_set_state(nid, N_HIGH_MEMORY); 6910 if (zone_type <= ZONE_NORMAL) 6911 node_set_state(nid, N_NORMAL_MEMORY); 6912 break; 6913 } 6914 } 6915 } 6916 6917 /** 6918 * free_area_init_nodes - Initialise all pg_data_t and zone data 6919 * @max_zone_pfn: an array of max PFNs for each zone 6920 * 6921 * This will call free_area_init_node() for each active node in the system. 6922 * Using the page ranges provided by memblock_set_node(), the size of each 6923 * zone in each node and their holes is calculated. If the maximum PFN 6924 * between two adjacent zones match, it is assumed that the zone is empty. 6925 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6926 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6927 * starts where the previous one ended. For example, ZONE_DMA32 starts 6928 * at arch_max_dma_pfn. 6929 */ 6930 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6931 { 6932 unsigned long start_pfn, end_pfn; 6933 int i, nid; 6934 6935 /* Record where the zone boundaries are */ 6936 memset(arch_zone_lowest_possible_pfn, 0, 6937 sizeof(arch_zone_lowest_possible_pfn)); 6938 memset(arch_zone_highest_possible_pfn, 0, 6939 sizeof(arch_zone_highest_possible_pfn)); 6940 6941 start_pfn = find_min_pfn_with_active_regions(); 6942 6943 for (i = 0; i < MAX_NR_ZONES; i++) { 6944 if (i == ZONE_MOVABLE) 6945 continue; 6946 6947 end_pfn = max(max_zone_pfn[i], start_pfn); 6948 arch_zone_lowest_possible_pfn[i] = start_pfn; 6949 arch_zone_highest_possible_pfn[i] = end_pfn; 6950 6951 start_pfn = end_pfn; 6952 } 6953 6954 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6955 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6956 find_zone_movable_pfns_for_nodes(); 6957 6958 /* Print out the zone ranges */ 6959 pr_info("Zone ranges:\n"); 6960 for (i = 0; i < MAX_NR_ZONES; i++) { 6961 if (i == ZONE_MOVABLE) 6962 continue; 6963 pr_info(" %-8s ", zone_names[i]); 6964 if (arch_zone_lowest_possible_pfn[i] == 6965 arch_zone_highest_possible_pfn[i]) 6966 pr_cont("empty\n"); 6967 else 6968 pr_cont("[mem %#018Lx-%#018Lx]\n", 6969 (u64)arch_zone_lowest_possible_pfn[i] 6970 << PAGE_SHIFT, 6971 ((u64)arch_zone_highest_possible_pfn[i] 6972 << PAGE_SHIFT) - 1); 6973 } 6974 6975 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6976 pr_info("Movable zone start for each node\n"); 6977 for (i = 0; i < MAX_NUMNODES; i++) { 6978 if (zone_movable_pfn[i]) 6979 pr_info(" Node %d: %#018Lx\n", i, 6980 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6981 } 6982 6983 /* Print out the early node map */ 6984 pr_info("Early memory node ranges\n"); 6985 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6986 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6987 (u64)start_pfn << PAGE_SHIFT, 6988 ((u64)end_pfn << PAGE_SHIFT) - 1); 6989 6990 /* Initialise every node */ 6991 mminit_verify_pageflags_layout(); 6992 setup_nr_node_ids(); 6993 zero_resv_unavail(); 6994 for_each_online_node(nid) { 6995 pg_data_t *pgdat = NODE_DATA(nid); 6996 free_area_init_node(nid, NULL, 6997 find_min_pfn_for_node(nid), NULL); 6998 6999 /* Any memory on that node */ 7000 if (pgdat->node_present_pages) 7001 node_set_state(nid, N_MEMORY); 7002 check_for_memory(pgdat, nid); 7003 } 7004 } 7005 7006 static int __init cmdline_parse_core(char *p, unsigned long *core, 7007 unsigned long *percent) 7008 { 7009 unsigned long long coremem; 7010 char *endptr; 7011 7012 if (!p) 7013 return -EINVAL; 7014 7015 /* Value may be a percentage of total memory, otherwise bytes */ 7016 coremem = simple_strtoull(p, &endptr, 0); 7017 if (*endptr == '%') { 7018 /* Paranoid check for percent values greater than 100 */ 7019 WARN_ON(coremem > 100); 7020 7021 *percent = coremem; 7022 } else { 7023 coremem = memparse(p, &p); 7024 /* Paranoid check that UL is enough for the coremem value */ 7025 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7026 7027 *core = coremem >> PAGE_SHIFT; 7028 *percent = 0UL; 7029 } 7030 return 0; 7031 } 7032 7033 /* 7034 * kernelcore=size sets the amount of memory for use for allocations that 7035 * cannot be reclaimed or migrated. 7036 */ 7037 static int __init cmdline_parse_kernelcore(char *p) 7038 { 7039 /* parse kernelcore=mirror */ 7040 if (parse_option_str(p, "mirror")) { 7041 mirrored_kernelcore = true; 7042 return 0; 7043 } 7044 7045 return cmdline_parse_core(p, &required_kernelcore, 7046 &required_kernelcore_percent); 7047 } 7048 7049 /* 7050 * movablecore=size sets the amount of memory for use for allocations that 7051 * can be reclaimed or migrated. 7052 */ 7053 static int __init cmdline_parse_movablecore(char *p) 7054 { 7055 return cmdline_parse_core(p, &required_movablecore, 7056 &required_movablecore_percent); 7057 } 7058 7059 early_param("kernelcore", cmdline_parse_kernelcore); 7060 early_param("movablecore", cmdline_parse_movablecore); 7061 7062 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7063 7064 void adjust_managed_page_count(struct page *page, long count) 7065 { 7066 spin_lock(&managed_page_count_lock); 7067 page_zone(page)->managed_pages += count; 7068 totalram_pages += count; 7069 #ifdef CONFIG_HIGHMEM 7070 if (PageHighMem(page)) 7071 totalhigh_pages += count; 7072 #endif 7073 spin_unlock(&managed_page_count_lock); 7074 } 7075 EXPORT_SYMBOL(adjust_managed_page_count); 7076 7077 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 7078 { 7079 void *pos; 7080 unsigned long pages = 0; 7081 7082 start = (void *)PAGE_ALIGN((unsigned long)start); 7083 end = (void *)((unsigned long)end & PAGE_MASK); 7084 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7085 struct page *page = virt_to_page(pos); 7086 void *direct_map_addr; 7087 7088 /* 7089 * 'direct_map_addr' might be different from 'pos' 7090 * because some architectures' virt_to_page() 7091 * work with aliases. Getting the direct map 7092 * address ensures that we get a _writeable_ 7093 * alias for the memset(). 7094 */ 7095 direct_map_addr = page_address(page); 7096 if ((unsigned int)poison <= 0xFF) 7097 memset(direct_map_addr, poison, PAGE_SIZE); 7098 7099 free_reserved_page(page); 7100 } 7101 7102 if (pages && s) 7103 pr_info("Freeing %s memory: %ldK\n", 7104 s, pages << (PAGE_SHIFT - 10)); 7105 7106 return pages; 7107 } 7108 EXPORT_SYMBOL(free_reserved_area); 7109 7110 #ifdef CONFIG_HIGHMEM 7111 void free_highmem_page(struct page *page) 7112 { 7113 __free_reserved_page(page); 7114 totalram_pages++; 7115 page_zone(page)->managed_pages++; 7116 totalhigh_pages++; 7117 } 7118 #endif 7119 7120 7121 void __init mem_init_print_info(const char *str) 7122 { 7123 unsigned long physpages, codesize, datasize, rosize, bss_size; 7124 unsigned long init_code_size, init_data_size; 7125 7126 physpages = get_num_physpages(); 7127 codesize = _etext - _stext; 7128 datasize = _edata - _sdata; 7129 rosize = __end_rodata - __start_rodata; 7130 bss_size = __bss_stop - __bss_start; 7131 init_data_size = __init_end - __init_begin; 7132 init_code_size = _einittext - _sinittext; 7133 7134 /* 7135 * Detect special cases and adjust section sizes accordingly: 7136 * 1) .init.* may be embedded into .data sections 7137 * 2) .init.text.* may be out of [__init_begin, __init_end], 7138 * please refer to arch/tile/kernel/vmlinux.lds.S. 7139 * 3) .rodata.* may be embedded into .text or .data sections. 7140 */ 7141 #define adj_init_size(start, end, size, pos, adj) \ 7142 do { \ 7143 if (start <= pos && pos < end && size > adj) \ 7144 size -= adj; \ 7145 } while (0) 7146 7147 adj_init_size(__init_begin, __init_end, init_data_size, 7148 _sinittext, init_code_size); 7149 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7150 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7151 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7152 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7153 7154 #undef adj_init_size 7155 7156 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7157 #ifdef CONFIG_HIGHMEM 7158 ", %luK highmem" 7159 #endif 7160 "%s%s)\n", 7161 nr_free_pages() << (PAGE_SHIFT - 10), 7162 physpages << (PAGE_SHIFT - 10), 7163 codesize >> 10, datasize >> 10, rosize >> 10, 7164 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7165 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 7166 totalcma_pages << (PAGE_SHIFT - 10), 7167 #ifdef CONFIG_HIGHMEM 7168 totalhigh_pages << (PAGE_SHIFT - 10), 7169 #endif 7170 str ? ", " : "", str ? str : ""); 7171 } 7172 7173 /** 7174 * set_dma_reserve - set the specified number of pages reserved in the first zone 7175 * @new_dma_reserve: The number of pages to mark reserved 7176 * 7177 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7178 * In the DMA zone, a significant percentage may be consumed by kernel image 7179 * and other unfreeable allocations which can skew the watermarks badly. This 7180 * function may optionally be used to account for unfreeable pages in the 7181 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7182 * smaller per-cpu batchsize. 7183 */ 7184 void __init set_dma_reserve(unsigned long new_dma_reserve) 7185 { 7186 dma_reserve = new_dma_reserve; 7187 } 7188 7189 void __init free_area_init(unsigned long *zones_size) 7190 { 7191 zero_resv_unavail(); 7192 free_area_init_node(0, zones_size, 7193 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7194 } 7195 7196 static int page_alloc_cpu_dead(unsigned int cpu) 7197 { 7198 7199 lru_add_drain_cpu(cpu); 7200 drain_pages(cpu); 7201 7202 /* 7203 * Spill the event counters of the dead processor 7204 * into the current processors event counters. 7205 * This artificially elevates the count of the current 7206 * processor. 7207 */ 7208 vm_events_fold_cpu(cpu); 7209 7210 /* 7211 * Zero the differential counters of the dead processor 7212 * so that the vm statistics are consistent. 7213 * 7214 * This is only okay since the processor is dead and cannot 7215 * race with what we are doing. 7216 */ 7217 cpu_vm_stats_fold(cpu); 7218 return 0; 7219 } 7220 7221 void __init page_alloc_init(void) 7222 { 7223 int ret; 7224 7225 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7226 "mm/page_alloc:dead", NULL, 7227 page_alloc_cpu_dead); 7228 WARN_ON(ret < 0); 7229 } 7230 7231 /* 7232 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7233 * or min_free_kbytes changes. 7234 */ 7235 static void calculate_totalreserve_pages(void) 7236 { 7237 struct pglist_data *pgdat; 7238 unsigned long reserve_pages = 0; 7239 enum zone_type i, j; 7240 7241 for_each_online_pgdat(pgdat) { 7242 7243 pgdat->totalreserve_pages = 0; 7244 7245 for (i = 0; i < MAX_NR_ZONES; i++) { 7246 struct zone *zone = pgdat->node_zones + i; 7247 long max = 0; 7248 7249 /* Find valid and maximum lowmem_reserve in the zone */ 7250 for (j = i; j < MAX_NR_ZONES; j++) { 7251 if (zone->lowmem_reserve[j] > max) 7252 max = zone->lowmem_reserve[j]; 7253 } 7254 7255 /* we treat the high watermark as reserved pages. */ 7256 max += high_wmark_pages(zone); 7257 7258 if (max > zone->managed_pages) 7259 max = zone->managed_pages; 7260 7261 pgdat->totalreserve_pages += max; 7262 7263 reserve_pages += max; 7264 } 7265 } 7266 totalreserve_pages = reserve_pages; 7267 } 7268 7269 /* 7270 * setup_per_zone_lowmem_reserve - called whenever 7271 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7272 * has a correct pages reserved value, so an adequate number of 7273 * pages are left in the zone after a successful __alloc_pages(). 7274 */ 7275 static void setup_per_zone_lowmem_reserve(void) 7276 { 7277 struct pglist_data *pgdat; 7278 enum zone_type j, idx; 7279 7280 for_each_online_pgdat(pgdat) { 7281 for (j = 0; j < MAX_NR_ZONES; j++) { 7282 struct zone *zone = pgdat->node_zones + j; 7283 unsigned long managed_pages = zone->managed_pages; 7284 7285 zone->lowmem_reserve[j] = 0; 7286 7287 idx = j; 7288 while (idx) { 7289 struct zone *lower_zone; 7290 7291 idx--; 7292 lower_zone = pgdat->node_zones + idx; 7293 7294 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7295 sysctl_lowmem_reserve_ratio[idx] = 0; 7296 lower_zone->lowmem_reserve[j] = 0; 7297 } else { 7298 lower_zone->lowmem_reserve[j] = 7299 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7300 } 7301 managed_pages += lower_zone->managed_pages; 7302 } 7303 } 7304 } 7305 7306 /* update totalreserve_pages */ 7307 calculate_totalreserve_pages(); 7308 } 7309 7310 static void __setup_per_zone_wmarks(void) 7311 { 7312 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7313 unsigned long lowmem_pages = 0; 7314 struct zone *zone; 7315 unsigned long flags; 7316 7317 /* Calculate total number of !ZONE_HIGHMEM pages */ 7318 for_each_zone(zone) { 7319 if (!is_highmem(zone)) 7320 lowmem_pages += zone->managed_pages; 7321 } 7322 7323 for_each_zone(zone) { 7324 u64 tmp; 7325 7326 spin_lock_irqsave(&zone->lock, flags); 7327 tmp = (u64)pages_min * zone->managed_pages; 7328 do_div(tmp, lowmem_pages); 7329 if (is_highmem(zone)) { 7330 /* 7331 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7332 * need highmem pages, so cap pages_min to a small 7333 * value here. 7334 * 7335 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7336 * deltas control asynch page reclaim, and so should 7337 * not be capped for highmem. 7338 */ 7339 unsigned long min_pages; 7340 7341 min_pages = zone->managed_pages / 1024; 7342 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7343 zone->watermark[WMARK_MIN] = min_pages; 7344 } else { 7345 /* 7346 * If it's a lowmem zone, reserve a number of pages 7347 * proportionate to the zone's size. 7348 */ 7349 zone->watermark[WMARK_MIN] = tmp; 7350 } 7351 7352 /* 7353 * Set the kswapd watermarks distance according to the 7354 * scale factor in proportion to available memory, but 7355 * ensure a minimum size on small systems. 7356 */ 7357 tmp = max_t(u64, tmp >> 2, 7358 mult_frac(zone->managed_pages, 7359 watermark_scale_factor, 10000)); 7360 7361 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7362 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7363 7364 spin_unlock_irqrestore(&zone->lock, flags); 7365 } 7366 7367 /* update totalreserve_pages */ 7368 calculate_totalreserve_pages(); 7369 } 7370 7371 /** 7372 * setup_per_zone_wmarks - called when min_free_kbytes changes 7373 * or when memory is hot-{added|removed} 7374 * 7375 * Ensures that the watermark[min,low,high] values for each zone are set 7376 * correctly with respect to min_free_kbytes. 7377 */ 7378 void setup_per_zone_wmarks(void) 7379 { 7380 static DEFINE_SPINLOCK(lock); 7381 7382 spin_lock(&lock); 7383 __setup_per_zone_wmarks(); 7384 spin_unlock(&lock); 7385 } 7386 7387 /* 7388 * Initialise min_free_kbytes. 7389 * 7390 * For small machines we want it small (128k min). For large machines 7391 * we want it large (64MB max). But it is not linear, because network 7392 * bandwidth does not increase linearly with machine size. We use 7393 * 7394 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7395 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7396 * 7397 * which yields 7398 * 7399 * 16MB: 512k 7400 * 32MB: 724k 7401 * 64MB: 1024k 7402 * 128MB: 1448k 7403 * 256MB: 2048k 7404 * 512MB: 2896k 7405 * 1024MB: 4096k 7406 * 2048MB: 5792k 7407 * 4096MB: 8192k 7408 * 8192MB: 11584k 7409 * 16384MB: 16384k 7410 */ 7411 int __meminit init_per_zone_wmark_min(void) 7412 { 7413 unsigned long lowmem_kbytes; 7414 int new_min_free_kbytes; 7415 7416 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7417 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7418 7419 if (new_min_free_kbytes > user_min_free_kbytes) { 7420 min_free_kbytes = new_min_free_kbytes; 7421 if (min_free_kbytes < 128) 7422 min_free_kbytes = 128; 7423 if (min_free_kbytes > 65536) 7424 min_free_kbytes = 65536; 7425 } else { 7426 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7427 new_min_free_kbytes, user_min_free_kbytes); 7428 } 7429 setup_per_zone_wmarks(); 7430 refresh_zone_stat_thresholds(); 7431 setup_per_zone_lowmem_reserve(); 7432 7433 #ifdef CONFIG_NUMA 7434 setup_min_unmapped_ratio(); 7435 setup_min_slab_ratio(); 7436 #endif 7437 7438 return 0; 7439 } 7440 core_initcall(init_per_zone_wmark_min) 7441 7442 /* 7443 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7444 * that we can call two helper functions whenever min_free_kbytes 7445 * changes. 7446 */ 7447 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7448 void __user *buffer, size_t *length, loff_t *ppos) 7449 { 7450 int rc; 7451 7452 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7453 if (rc) 7454 return rc; 7455 7456 if (write) { 7457 user_min_free_kbytes = min_free_kbytes; 7458 setup_per_zone_wmarks(); 7459 } 7460 return 0; 7461 } 7462 7463 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7464 void __user *buffer, size_t *length, loff_t *ppos) 7465 { 7466 int rc; 7467 7468 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7469 if (rc) 7470 return rc; 7471 7472 if (write) 7473 setup_per_zone_wmarks(); 7474 7475 return 0; 7476 } 7477 7478 #ifdef CONFIG_NUMA 7479 static void setup_min_unmapped_ratio(void) 7480 { 7481 pg_data_t *pgdat; 7482 struct zone *zone; 7483 7484 for_each_online_pgdat(pgdat) 7485 pgdat->min_unmapped_pages = 0; 7486 7487 for_each_zone(zone) 7488 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7489 sysctl_min_unmapped_ratio) / 100; 7490 } 7491 7492 7493 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7494 void __user *buffer, size_t *length, loff_t *ppos) 7495 { 7496 int rc; 7497 7498 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7499 if (rc) 7500 return rc; 7501 7502 setup_min_unmapped_ratio(); 7503 7504 return 0; 7505 } 7506 7507 static void setup_min_slab_ratio(void) 7508 { 7509 pg_data_t *pgdat; 7510 struct zone *zone; 7511 7512 for_each_online_pgdat(pgdat) 7513 pgdat->min_slab_pages = 0; 7514 7515 for_each_zone(zone) 7516 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7517 sysctl_min_slab_ratio) / 100; 7518 } 7519 7520 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7521 void __user *buffer, size_t *length, loff_t *ppos) 7522 { 7523 int rc; 7524 7525 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7526 if (rc) 7527 return rc; 7528 7529 setup_min_slab_ratio(); 7530 7531 return 0; 7532 } 7533 #endif 7534 7535 /* 7536 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7537 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7538 * whenever sysctl_lowmem_reserve_ratio changes. 7539 * 7540 * The reserve ratio obviously has absolutely no relation with the 7541 * minimum watermarks. The lowmem reserve ratio can only make sense 7542 * if in function of the boot time zone sizes. 7543 */ 7544 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7545 void __user *buffer, size_t *length, loff_t *ppos) 7546 { 7547 proc_dointvec_minmax(table, write, buffer, length, ppos); 7548 setup_per_zone_lowmem_reserve(); 7549 return 0; 7550 } 7551 7552 /* 7553 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7554 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7555 * pagelist can have before it gets flushed back to buddy allocator. 7556 */ 7557 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7558 void __user *buffer, size_t *length, loff_t *ppos) 7559 { 7560 struct zone *zone; 7561 int old_percpu_pagelist_fraction; 7562 int ret; 7563 7564 mutex_lock(&pcp_batch_high_lock); 7565 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7566 7567 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7568 if (!write || ret < 0) 7569 goto out; 7570 7571 /* Sanity checking to avoid pcp imbalance */ 7572 if (percpu_pagelist_fraction && 7573 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7574 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7575 ret = -EINVAL; 7576 goto out; 7577 } 7578 7579 /* No change? */ 7580 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7581 goto out; 7582 7583 for_each_populated_zone(zone) { 7584 unsigned int cpu; 7585 7586 for_each_possible_cpu(cpu) 7587 pageset_set_high_and_batch(zone, 7588 per_cpu_ptr(zone->pageset, cpu)); 7589 } 7590 out: 7591 mutex_unlock(&pcp_batch_high_lock); 7592 return ret; 7593 } 7594 7595 #ifdef CONFIG_NUMA 7596 int hashdist = HASHDIST_DEFAULT; 7597 7598 static int __init set_hashdist(char *str) 7599 { 7600 if (!str) 7601 return 0; 7602 hashdist = simple_strtoul(str, &str, 0); 7603 return 1; 7604 } 7605 __setup("hashdist=", set_hashdist); 7606 #endif 7607 7608 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7609 /* 7610 * Returns the number of pages that arch has reserved but 7611 * is not known to alloc_large_system_hash(). 7612 */ 7613 static unsigned long __init arch_reserved_kernel_pages(void) 7614 { 7615 return 0; 7616 } 7617 #endif 7618 7619 /* 7620 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7621 * machines. As memory size is increased the scale is also increased but at 7622 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7623 * quadruples the scale is increased by one, which means the size of hash table 7624 * only doubles, instead of quadrupling as well. 7625 * Because 32-bit systems cannot have large physical memory, where this scaling 7626 * makes sense, it is disabled on such platforms. 7627 */ 7628 #if __BITS_PER_LONG > 32 7629 #define ADAPT_SCALE_BASE (64ul << 30) 7630 #define ADAPT_SCALE_SHIFT 2 7631 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7632 #endif 7633 7634 /* 7635 * allocate a large system hash table from bootmem 7636 * - it is assumed that the hash table must contain an exact power-of-2 7637 * quantity of entries 7638 * - limit is the number of hash buckets, not the total allocation size 7639 */ 7640 void *__init alloc_large_system_hash(const char *tablename, 7641 unsigned long bucketsize, 7642 unsigned long numentries, 7643 int scale, 7644 int flags, 7645 unsigned int *_hash_shift, 7646 unsigned int *_hash_mask, 7647 unsigned long low_limit, 7648 unsigned long high_limit) 7649 { 7650 unsigned long long max = high_limit; 7651 unsigned long log2qty, size; 7652 void *table = NULL; 7653 gfp_t gfp_flags; 7654 7655 /* allow the kernel cmdline to have a say */ 7656 if (!numentries) { 7657 /* round applicable memory size up to nearest megabyte */ 7658 numentries = nr_kernel_pages; 7659 numentries -= arch_reserved_kernel_pages(); 7660 7661 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7662 if (PAGE_SHIFT < 20) 7663 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7664 7665 #if __BITS_PER_LONG > 32 7666 if (!high_limit) { 7667 unsigned long adapt; 7668 7669 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7670 adapt <<= ADAPT_SCALE_SHIFT) 7671 scale++; 7672 } 7673 #endif 7674 7675 /* limit to 1 bucket per 2^scale bytes of low memory */ 7676 if (scale > PAGE_SHIFT) 7677 numentries >>= (scale - PAGE_SHIFT); 7678 else 7679 numentries <<= (PAGE_SHIFT - scale); 7680 7681 /* Make sure we've got at least a 0-order allocation.. */ 7682 if (unlikely(flags & HASH_SMALL)) { 7683 /* Makes no sense without HASH_EARLY */ 7684 WARN_ON(!(flags & HASH_EARLY)); 7685 if (!(numentries >> *_hash_shift)) { 7686 numentries = 1UL << *_hash_shift; 7687 BUG_ON(!numentries); 7688 } 7689 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7690 numentries = PAGE_SIZE / bucketsize; 7691 } 7692 numentries = roundup_pow_of_two(numentries); 7693 7694 /* limit allocation size to 1/16 total memory by default */ 7695 if (max == 0) { 7696 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7697 do_div(max, bucketsize); 7698 } 7699 max = min(max, 0x80000000ULL); 7700 7701 if (numentries < low_limit) 7702 numentries = low_limit; 7703 if (numentries > max) 7704 numentries = max; 7705 7706 log2qty = ilog2(numentries); 7707 7708 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7709 do { 7710 size = bucketsize << log2qty; 7711 if (flags & HASH_EARLY) { 7712 if (flags & HASH_ZERO) 7713 table = memblock_alloc_nopanic(size, 7714 SMP_CACHE_BYTES); 7715 else 7716 table = memblock_alloc_raw(size, 7717 SMP_CACHE_BYTES); 7718 } else if (hashdist) { 7719 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7720 } else { 7721 /* 7722 * If bucketsize is not a power-of-two, we may free 7723 * some pages at the end of hash table which 7724 * alloc_pages_exact() automatically does 7725 */ 7726 if (get_order(size) < MAX_ORDER) { 7727 table = alloc_pages_exact(size, gfp_flags); 7728 kmemleak_alloc(table, size, 1, gfp_flags); 7729 } 7730 } 7731 } while (!table && size > PAGE_SIZE && --log2qty); 7732 7733 if (!table) 7734 panic("Failed to allocate %s hash table\n", tablename); 7735 7736 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7737 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7738 7739 if (_hash_shift) 7740 *_hash_shift = log2qty; 7741 if (_hash_mask) 7742 *_hash_mask = (1 << log2qty) - 1; 7743 7744 return table; 7745 } 7746 7747 /* 7748 * This function checks whether pageblock includes unmovable pages or not. 7749 * If @count is not zero, it is okay to include less @count unmovable pages 7750 * 7751 * PageLRU check without isolation or lru_lock could race so that 7752 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7753 * check without lock_page also may miss some movable non-lru pages at 7754 * race condition. So you can't expect this function should be exact. 7755 */ 7756 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7757 int migratetype, 7758 bool skip_hwpoisoned_pages) 7759 { 7760 unsigned long pfn, iter, found; 7761 7762 /* 7763 * TODO we could make this much more efficient by not checking every 7764 * page in the range if we know all of them are in MOVABLE_ZONE and 7765 * that the movable zone guarantees that pages are migratable but 7766 * the later is not the case right now unfortunatelly. E.g. movablecore 7767 * can still lead to having bootmem allocations in zone_movable. 7768 */ 7769 7770 /* 7771 * CMA allocations (alloc_contig_range) really need to mark isolate 7772 * CMA pageblocks even when they are not movable in fact so consider 7773 * them movable here. 7774 */ 7775 if (is_migrate_cma(migratetype) && 7776 is_migrate_cma(get_pageblock_migratetype(page))) 7777 return false; 7778 7779 pfn = page_to_pfn(page); 7780 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7781 unsigned long check = pfn + iter; 7782 7783 if (!pfn_valid_within(check)) 7784 continue; 7785 7786 page = pfn_to_page(check); 7787 7788 if (PageReserved(page)) 7789 goto unmovable; 7790 7791 /* 7792 * Hugepages are not in LRU lists, but they're movable. 7793 * We need not scan over tail pages bacause we don't 7794 * handle each tail page individually in migration. 7795 */ 7796 if (PageHuge(page)) { 7797 7798 if (!hugepage_migration_supported(page_hstate(page))) 7799 goto unmovable; 7800 7801 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7802 continue; 7803 } 7804 7805 /* 7806 * We can't use page_count without pin a page 7807 * because another CPU can free compound page. 7808 * This check already skips compound tails of THP 7809 * because their page->_refcount is zero at all time. 7810 */ 7811 if (!page_ref_count(page)) { 7812 if (PageBuddy(page)) 7813 iter += (1 << page_order(page)) - 1; 7814 continue; 7815 } 7816 7817 /* 7818 * The HWPoisoned page may be not in buddy system, and 7819 * page_count() is not 0. 7820 */ 7821 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7822 continue; 7823 7824 if (__PageMovable(page)) 7825 continue; 7826 7827 if (!PageLRU(page)) 7828 found++; 7829 /* 7830 * If there are RECLAIMABLE pages, we need to check 7831 * it. But now, memory offline itself doesn't call 7832 * shrink_node_slabs() and it still to be fixed. 7833 */ 7834 /* 7835 * If the page is not RAM, page_count()should be 0. 7836 * we don't need more check. This is an _used_ not-movable page. 7837 * 7838 * The problematic thing here is PG_reserved pages. PG_reserved 7839 * is set to both of a memory hole page and a _used_ kernel 7840 * page at boot. 7841 */ 7842 if (found > count) 7843 goto unmovable; 7844 } 7845 return false; 7846 unmovable: 7847 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 7848 return true; 7849 } 7850 7851 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7852 7853 static unsigned long pfn_max_align_down(unsigned long pfn) 7854 { 7855 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7856 pageblock_nr_pages) - 1); 7857 } 7858 7859 static unsigned long pfn_max_align_up(unsigned long pfn) 7860 { 7861 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7862 pageblock_nr_pages)); 7863 } 7864 7865 /* [start, end) must belong to a single zone. */ 7866 static int __alloc_contig_migrate_range(struct compact_control *cc, 7867 unsigned long start, unsigned long end) 7868 { 7869 /* This function is based on compact_zone() from compaction.c. */ 7870 unsigned long nr_reclaimed; 7871 unsigned long pfn = start; 7872 unsigned int tries = 0; 7873 int ret = 0; 7874 7875 migrate_prep(); 7876 7877 while (pfn < end || !list_empty(&cc->migratepages)) { 7878 if (fatal_signal_pending(current)) { 7879 ret = -EINTR; 7880 break; 7881 } 7882 7883 if (list_empty(&cc->migratepages)) { 7884 cc->nr_migratepages = 0; 7885 pfn = isolate_migratepages_range(cc, pfn, end); 7886 if (!pfn) { 7887 ret = -EINTR; 7888 break; 7889 } 7890 tries = 0; 7891 } else if (++tries == 5) { 7892 ret = ret < 0 ? ret : -EBUSY; 7893 break; 7894 } 7895 7896 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7897 &cc->migratepages); 7898 cc->nr_migratepages -= nr_reclaimed; 7899 7900 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7901 NULL, 0, cc->mode, MR_CONTIG_RANGE); 7902 } 7903 if (ret < 0) { 7904 putback_movable_pages(&cc->migratepages); 7905 return ret; 7906 } 7907 return 0; 7908 } 7909 7910 /** 7911 * alloc_contig_range() -- tries to allocate given range of pages 7912 * @start: start PFN to allocate 7913 * @end: one-past-the-last PFN to allocate 7914 * @migratetype: migratetype of the underlaying pageblocks (either 7915 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7916 * in range must have the same migratetype and it must 7917 * be either of the two. 7918 * @gfp_mask: GFP mask to use during compaction 7919 * 7920 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7921 * aligned. The PFN range must belong to a single zone. 7922 * 7923 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 7924 * pageblocks in the range. Once isolated, the pageblocks should not 7925 * be modified by others. 7926 * 7927 * Returns zero on success or negative error code. On success all 7928 * pages which PFN is in [start, end) are allocated for the caller and 7929 * need to be freed with free_contig_range(). 7930 */ 7931 int alloc_contig_range(unsigned long start, unsigned long end, 7932 unsigned migratetype, gfp_t gfp_mask) 7933 { 7934 unsigned long outer_start, outer_end; 7935 unsigned int order; 7936 int ret = 0; 7937 7938 struct compact_control cc = { 7939 .nr_migratepages = 0, 7940 .order = -1, 7941 .zone = page_zone(pfn_to_page(start)), 7942 .mode = MIGRATE_SYNC, 7943 .ignore_skip_hint = true, 7944 .no_set_skip_hint = true, 7945 .gfp_mask = current_gfp_context(gfp_mask), 7946 }; 7947 INIT_LIST_HEAD(&cc.migratepages); 7948 7949 /* 7950 * What we do here is we mark all pageblocks in range as 7951 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7952 * have different sizes, and due to the way page allocator 7953 * work, we align the range to biggest of the two pages so 7954 * that page allocator won't try to merge buddies from 7955 * different pageblocks and change MIGRATE_ISOLATE to some 7956 * other migration type. 7957 * 7958 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7959 * migrate the pages from an unaligned range (ie. pages that 7960 * we are interested in). This will put all the pages in 7961 * range back to page allocator as MIGRATE_ISOLATE. 7962 * 7963 * When this is done, we take the pages in range from page 7964 * allocator removing them from the buddy system. This way 7965 * page allocator will never consider using them. 7966 * 7967 * This lets us mark the pageblocks back as 7968 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7969 * aligned range but not in the unaligned, original range are 7970 * put back to page allocator so that buddy can use them. 7971 */ 7972 7973 ret = start_isolate_page_range(pfn_max_align_down(start), 7974 pfn_max_align_up(end), migratetype, 7975 false); 7976 if (ret) 7977 return ret; 7978 7979 /* 7980 * In case of -EBUSY, we'd like to know which page causes problem. 7981 * So, just fall through. test_pages_isolated() has a tracepoint 7982 * which will report the busy page. 7983 * 7984 * It is possible that busy pages could become available before 7985 * the call to test_pages_isolated, and the range will actually be 7986 * allocated. So, if we fall through be sure to clear ret so that 7987 * -EBUSY is not accidentally used or returned to caller. 7988 */ 7989 ret = __alloc_contig_migrate_range(&cc, start, end); 7990 if (ret && ret != -EBUSY) 7991 goto done; 7992 ret =0; 7993 7994 /* 7995 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7996 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7997 * more, all pages in [start, end) are free in page allocator. 7998 * What we are going to do is to allocate all pages from 7999 * [start, end) (that is remove them from page allocator). 8000 * 8001 * The only problem is that pages at the beginning and at the 8002 * end of interesting range may be not aligned with pages that 8003 * page allocator holds, ie. they can be part of higher order 8004 * pages. Because of this, we reserve the bigger range and 8005 * once this is done free the pages we are not interested in. 8006 * 8007 * We don't have to hold zone->lock here because the pages are 8008 * isolated thus they won't get removed from buddy. 8009 */ 8010 8011 lru_add_drain_all(); 8012 drain_all_pages(cc.zone); 8013 8014 order = 0; 8015 outer_start = start; 8016 while (!PageBuddy(pfn_to_page(outer_start))) { 8017 if (++order >= MAX_ORDER) { 8018 outer_start = start; 8019 break; 8020 } 8021 outer_start &= ~0UL << order; 8022 } 8023 8024 if (outer_start != start) { 8025 order = page_order(pfn_to_page(outer_start)); 8026 8027 /* 8028 * outer_start page could be small order buddy page and 8029 * it doesn't include start page. Adjust outer_start 8030 * in this case to report failed page properly 8031 * on tracepoint in test_pages_isolated() 8032 */ 8033 if (outer_start + (1UL << order) <= start) 8034 outer_start = start; 8035 } 8036 8037 /* Make sure the range is really isolated. */ 8038 if (test_pages_isolated(outer_start, end, false)) { 8039 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8040 __func__, outer_start, end); 8041 ret = -EBUSY; 8042 goto done; 8043 } 8044 8045 /* Grab isolated pages from freelists. */ 8046 outer_end = isolate_freepages_range(&cc, outer_start, end); 8047 if (!outer_end) { 8048 ret = -EBUSY; 8049 goto done; 8050 } 8051 8052 /* Free head and tail (if any) */ 8053 if (start != outer_start) 8054 free_contig_range(outer_start, start - outer_start); 8055 if (end != outer_end) 8056 free_contig_range(end, outer_end - end); 8057 8058 done: 8059 undo_isolate_page_range(pfn_max_align_down(start), 8060 pfn_max_align_up(end), migratetype); 8061 return ret; 8062 } 8063 8064 void free_contig_range(unsigned long pfn, unsigned nr_pages) 8065 { 8066 unsigned int count = 0; 8067 8068 for (; nr_pages--; pfn++) { 8069 struct page *page = pfn_to_page(pfn); 8070 8071 count += page_count(page) != 1; 8072 __free_page(page); 8073 } 8074 WARN(count != 0, "%d pages are still in use!\n", count); 8075 } 8076 #endif 8077 8078 #ifdef CONFIG_MEMORY_HOTPLUG 8079 /* 8080 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8081 * page high values need to be recalulated. 8082 */ 8083 void __meminit zone_pcp_update(struct zone *zone) 8084 { 8085 unsigned cpu; 8086 mutex_lock(&pcp_batch_high_lock); 8087 for_each_possible_cpu(cpu) 8088 pageset_set_high_and_batch(zone, 8089 per_cpu_ptr(zone->pageset, cpu)); 8090 mutex_unlock(&pcp_batch_high_lock); 8091 } 8092 #endif 8093 8094 void zone_pcp_reset(struct zone *zone) 8095 { 8096 unsigned long flags; 8097 int cpu; 8098 struct per_cpu_pageset *pset; 8099 8100 /* avoid races with drain_pages() */ 8101 local_irq_save(flags); 8102 if (zone->pageset != &boot_pageset) { 8103 for_each_online_cpu(cpu) { 8104 pset = per_cpu_ptr(zone->pageset, cpu); 8105 drain_zonestat(zone, pset); 8106 } 8107 free_percpu(zone->pageset); 8108 zone->pageset = &boot_pageset; 8109 } 8110 local_irq_restore(flags); 8111 } 8112 8113 #ifdef CONFIG_MEMORY_HOTREMOVE 8114 /* 8115 * All pages in the range must be in a single zone and isolated 8116 * before calling this. 8117 */ 8118 void 8119 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8120 { 8121 struct page *page; 8122 struct zone *zone; 8123 unsigned int order, i; 8124 unsigned long pfn; 8125 unsigned long flags; 8126 /* find the first valid pfn */ 8127 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8128 if (pfn_valid(pfn)) 8129 break; 8130 if (pfn == end_pfn) 8131 return; 8132 offline_mem_sections(pfn, end_pfn); 8133 zone = page_zone(pfn_to_page(pfn)); 8134 spin_lock_irqsave(&zone->lock, flags); 8135 pfn = start_pfn; 8136 while (pfn < end_pfn) { 8137 if (!pfn_valid(pfn)) { 8138 pfn++; 8139 continue; 8140 } 8141 page = pfn_to_page(pfn); 8142 /* 8143 * The HWPoisoned page may be not in buddy system, and 8144 * page_count() is not 0. 8145 */ 8146 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8147 pfn++; 8148 SetPageReserved(page); 8149 continue; 8150 } 8151 8152 BUG_ON(page_count(page)); 8153 BUG_ON(!PageBuddy(page)); 8154 order = page_order(page); 8155 #ifdef CONFIG_DEBUG_VM 8156 pr_info("remove from free list %lx %d %lx\n", 8157 pfn, 1 << order, end_pfn); 8158 #endif 8159 list_del(&page->lru); 8160 rmv_page_order(page); 8161 zone->free_area[order].nr_free--; 8162 for (i = 0; i < (1 << order); i++) 8163 SetPageReserved((page+i)); 8164 pfn += (1 << order); 8165 } 8166 spin_unlock_irqrestore(&zone->lock, flags); 8167 } 8168 #endif 8169 8170 bool is_free_buddy_page(struct page *page) 8171 { 8172 struct zone *zone = page_zone(page); 8173 unsigned long pfn = page_to_pfn(page); 8174 unsigned long flags; 8175 unsigned int order; 8176 8177 spin_lock_irqsave(&zone->lock, flags); 8178 for (order = 0; order < MAX_ORDER; order++) { 8179 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8180 8181 if (PageBuddy(page_head) && page_order(page_head) >= order) 8182 break; 8183 } 8184 spin_unlock_irqrestore(&zone->lock, flags); 8185 8186 return order < MAX_ORDER; 8187 } 8188 8189 #ifdef CONFIG_MEMORY_FAILURE 8190 /* 8191 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8192 * test is performed under the zone lock to prevent a race against page 8193 * allocation. 8194 */ 8195 bool set_hwpoison_free_buddy_page(struct page *page) 8196 { 8197 struct zone *zone = page_zone(page); 8198 unsigned long pfn = page_to_pfn(page); 8199 unsigned long flags; 8200 unsigned int order; 8201 bool hwpoisoned = false; 8202 8203 spin_lock_irqsave(&zone->lock, flags); 8204 for (order = 0; order < MAX_ORDER; order++) { 8205 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8206 8207 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8208 if (!TestSetPageHWPoison(page)) 8209 hwpoisoned = true; 8210 break; 8211 } 8212 } 8213 spin_unlock_irqrestore(&zone->lock, flags); 8214 8215 return hwpoisoned; 8216 } 8217 #endif 8218