1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/memory.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/memcontrol.h> 59 #include <linux/prefetch.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 #include "internal.h" 64 65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 66 DEFINE_PER_CPU(int, numa_node); 67 EXPORT_PER_CPU_SYMBOL(numa_node); 68 #endif 69 70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 71 /* 72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 75 * defined in <linux/topology.h>. 76 */ 77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 78 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 79 #endif 80 81 /* 82 * Array of node states. 83 */ 84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 85 [N_POSSIBLE] = NODE_MASK_ALL, 86 [N_ONLINE] = { { [0] = 1UL } }, 87 #ifndef CONFIG_NUMA 88 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 89 #ifdef CONFIG_HIGHMEM 90 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 91 #endif 92 [N_CPU] = { { [0] = 1UL } }, 93 #endif /* NUMA */ 94 }; 95 EXPORT_SYMBOL(node_states); 96 97 unsigned long totalram_pages __read_mostly; 98 unsigned long totalreserve_pages __read_mostly; 99 int percpu_pagelist_fraction; 100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 101 102 #ifdef CONFIG_PM_SLEEP 103 /* 104 * The following functions are used by the suspend/hibernate code to temporarily 105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 106 * while devices are suspended. To avoid races with the suspend/hibernate code, 107 * they should always be called with pm_mutex held (gfp_allowed_mask also should 108 * only be modified with pm_mutex held, unless the suspend/hibernate code is 109 * guaranteed not to run in parallel with that modification). 110 */ 111 112 static gfp_t saved_gfp_mask; 113 114 void pm_restore_gfp_mask(void) 115 { 116 WARN_ON(!mutex_is_locked(&pm_mutex)); 117 if (saved_gfp_mask) { 118 gfp_allowed_mask = saved_gfp_mask; 119 saved_gfp_mask = 0; 120 } 121 } 122 123 void pm_restrict_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 WARN_ON(saved_gfp_mask); 127 saved_gfp_mask = gfp_allowed_mask; 128 gfp_allowed_mask &= ~GFP_IOFS; 129 } 130 #endif /* CONFIG_PM_SLEEP */ 131 132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 133 int pageblock_order __read_mostly; 134 #endif 135 136 static void __free_pages_ok(struct page *page, unsigned int order); 137 138 /* 139 * results with 256, 32 in the lowmem_reserve sysctl: 140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 141 * 1G machine -> (16M dma, 784M normal, 224M high) 142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 145 * 146 * TBD: should special case ZONE_DMA32 machines here - in those we normally 147 * don't need any ZONE_NORMAL reservation 148 */ 149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 150 #ifdef CONFIG_ZONE_DMA 151 256, 152 #endif 153 #ifdef CONFIG_ZONE_DMA32 154 256, 155 #endif 156 #ifdef CONFIG_HIGHMEM 157 32, 158 #endif 159 32, 160 }; 161 162 EXPORT_SYMBOL(totalram_pages); 163 164 static char * const zone_names[MAX_NR_ZONES] = { 165 #ifdef CONFIG_ZONE_DMA 166 "DMA", 167 #endif 168 #ifdef CONFIG_ZONE_DMA32 169 "DMA32", 170 #endif 171 "Normal", 172 #ifdef CONFIG_HIGHMEM 173 "HighMem", 174 #endif 175 "Movable", 176 }; 177 178 int min_free_kbytes = 1024; 179 180 static unsigned long __meminitdata nr_kernel_pages; 181 static unsigned long __meminitdata nr_all_pages; 182 static unsigned long __meminitdata dma_reserve; 183 184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 185 /* 186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 187 * ranges of memory (RAM) that may be registered with add_active_range(). 188 * Ranges passed to add_active_range() will be merged if possible 189 * so the number of times add_active_range() can be called is 190 * related to the number of nodes and the number of holes 191 */ 192 #ifdef CONFIG_MAX_ACTIVE_REGIONS 193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 195 #else 196 #if MAX_NUMNODES >= 32 197 /* If there can be many nodes, allow up to 50 holes per node */ 198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 199 #else 200 /* By default, allow up to 256 distinct regions */ 201 #define MAX_ACTIVE_REGIONS 256 202 #endif 203 #endif 204 205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 206 static int __meminitdata nr_nodemap_entries; 207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 209 static unsigned long __initdata required_kernelcore; 210 static unsigned long __initdata required_movablecore; 211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 212 213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 214 int movable_zone; 215 EXPORT_SYMBOL(movable_zone); 216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 217 218 #if MAX_NUMNODES > 1 219 int nr_node_ids __read_mostly = MAX_NUMNODES; 220 int nr_online_nodes __read_mostly = 1; 221 EXPORT_SYMBOL(nr_node_ids); 222 EXPORT_SYMBOL(nr_online_nodes); 223 #endif 224 225 int page_group_by_mobility_disabled __read_mostly; 226 227 static void set_pageblock_migratetype(struct page *page, int migratetype) 228 { 229 230 if (unlikely(page_group_by_mobility_disabled)) 231 migratetype = MIGRATE_UNMOVABLE; 232 233 set_pageblock_flags_group(page, (unsigned long)migratetype, 234 PB_migrate, PB_migrate_end); 235 } 236 237 bool oom_killer_disabled __read_mostly; 238 239 #ifdef CONFIG_DEBUG_VM 240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 241 { 242 int ret = 0; 243 unsigned seq; 244 unsigned long pfn = page_to_pfn(page); 245 246 do { 247 seq = zone_span_seqbegin(zone); 248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 249 ret = 1; 250 else if (pfn < zone->zone_start_pfn) 251 ret = 1; 252 } while (zone_span_seqretry(zone, seq)); 253 254 return ret; 255 } 256 257 static int page_is_consistent(struct zone *zone, struct page *page) 258 { 259 if (!pfn_valid_within(page_to_pfn(page))) 260 return 0; 261 if (zone != page_zone(page)) 262 return 0; 263 264 return 1; 265 } 266 /* 267 * Temporary debugging check for pages not lying within a given zone. 268 */ 269 static int bad_range(struct zone *zone, struct page *page) 270 { 271 if (page_outside_zone_boundaries(zone, page)) 272 return 1; 273 if (!page_is_consistent(zone, page)) 274 return 1; 275 276 return 0; 277 } 278 #else 279 static inline int bad_range(struct zone *zone, struct page *page) 280 { 281 return 0; 282 } 283 #endif 284 285 static void bad_page(struct page *page) 286 { 287 static unsigned long resume; 288 static unsigned long nr_shown; 289 static unsigned long nr_unshown; 290 291 /* Don't complain about poisoned pages */ 292 if (PageHWPoison(page)) { 293 reset_page_mapcount(page); /* remove PageBuddy */ 294 return; 295 } 296 297 /* 298 * Allow a burst of 60 reports, then keep quiet for that minute; 299 * or allow a steady drip of one report per second. 300 */ 301 if (nr_shown == 60) { 302 if (time_before(jiffies, resume)) { 303 nr_unshown++; 304 goto out; 305 } 306 if (nr_unshown) { 307 printk(KERN_ALERT 308 "BUG: Bad page state: %lu messages suppressed\n", 309 nr_unshown); 310 nr_unshown = 0; 311 } 312 nr_shown = 0; 313 } 314 if (nr_shown++ == 0) 315 resume = jiffies + 60 * HZ; 316 317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 318 current->comm, page_to_pfn(page)); 319 dump_page(page); 320 321 dump_stack(); 322 out: 323 /* Leave bad fields for debug, except PageBuddy could make trouble */ 324 reset_page_mapcount(page); /* remove PageBuddy */ 325 add_taint(TAINT_BAD_PAGE); 326 } 327 328 /* 329 * Higher-order pages are called "compound pages". They are structured thusly: 330 * 331 * The first PAGE_SIZE page is called the "head page". 332 * 333 * The remaining PAGE_SIZE pages are called "tail pages". 334 * 335 * All pages have PG_compound set. All pages have their ->private pointing at 336 * the head page (even the head page has this). 337 * 338 * The first tail page's ->lru.next holds the address of the compound page's 339 * put_page() function. Its ->lru.prev holds the order of allocation. 340 * This usage means that zero-order pages may not be compound. 341 */ 342 343 static void free_compound_page(struct page *page) 344 { 345 __free_pages_ok(page, compound_order(page)); 346 } 347 348 void prep_compound_page(struct page *page, unsigned long order) 349 { 350 int i; 351 int nr_pages = 1 << order; 352 353 set_compound_page_dtor(page, free_compound_page); 354 set_compound_order(page, order); 355 __SetPageHead(page); 356 for (i = 1; i < nr_pages; i++) { 357 struct page *p = page + i; 358 359 __SetPageTail(p); 360 p->first_page = page; 361 } 362 } 363 364 /* update __split_huge_page_refcount if you change this function */ 365 static int destroy_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 int bad = 0; 370 371 if (unlikely(compound_order(page) != order) || 372 unlikely(!PageHead(page))) { 373 bad_page(page); 374 bad++; 375 } 376 377 __ClearPageHead(page); 378 379 for (i = 1; i < nr_pages; i++) { 380 struct page *p = page + i; 381 382 if (unlikely(!PageTail(p) || (p->first_page != page))) { 383 bad_page(page); 384 bad++; 385 } 386 __ClearPageTail(p); 387 } 388 389 return bad; 390 } 391 392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 393 { 394 int i; 395 396 /* 397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 398 * and __GFP_HIGHMEM from hard or soft interrupt context. 399 */ 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 401 for (i = 0; i < (1 << order); i++) 402 clear_highpage(page + i); 403 } 404 405 static inline void set_page_order(struct page *page, int order) 406 { 407 set_page_private(page, order); 408 __SetPageBuddy(page); 409 } 410 411 static inline void rmv_page_order(struct page *page) 412 { 413 __ClearPageBuddy(page); 414 set_page_private(page, 0); 415 } 416 417 /* 418 * Locate the struct page for both the matching buddy in our 419 * pair (buddy1) and the combined O(n+1) page they form (page). 420 * 421 * 1) Any buddy B1 will have an order O twin B2 which satisfies 422 * the following equation: 423 * B2 = B1 ^ (1 << O) 424 * For example, if the starting buddy (buddy2) is #8 its order 425 * 1 buddy is #10: 426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 427 * 428 * 2) Any buddy B will have an order O+1 parent P which 429 * satisfies the following equation: 430 * P = B & ~(1 << O) 431 * 432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 433 */ 434 static inline unsigned long 435 __find_buddy_index(unsigned long page_idx, unsigned int order) 436 { 437 return page_idx ^ (1 << order); 438 } 439 440 /* 441 * This function checks whether a page is free && is the buddy 442 * we can do coalesce a page and its buddy if 443 * (a) the buddy is not in a hole && 444 * (b) the buddy is in the buddy system && 445 * (c) a page and its buddy have the same order && 446 * (d) a page and its buddy are in the same zone. 447 * 448 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 450 * 451 * For recording page's order, we use page_private(page). 452 */ 453 static inline int page_is_buddy(struct page *page, struct page *buddy, 454 int order) 455 { 456 if (!pfn_valid_within(page_to_pfn(buddy))) 457 return 0; 458 459 if (page_zone_id(page) != page_zone_id(buddy)) 460 return 0; 461 462 if (PageBuddy(buddy) && page_order(buddy) == order) { 463 VM_BUG_ON(page_count(buddy) != 0); 464 return 1; 465 } 466 return 0; 467 } 468 469 /* 470 * Freeing function for a buddy system allocator. 471 * 472 * The concept of a buddy system is to maintain direct-mapped table 473 * (containing bit values) for memory blocks of various "orders". 474 * The bottom level table contains the map for the smallest allocatable 475 * units of memory (here, pages), and each level above it describes 476 * pairs of units from the levels below, hence, "buddies". 477 * At a high level, all that happens here is marking the table entry 478 * at the bottom level available, and propagating the changes upward 479 * as necessary, plus some accounting needed to play nicely with other 480 * parts of the VM system. 481 * At each level, we keep a list of pages, which are heads of continuous 482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 483 * order is recorded in page_private(page) field. 484 * So when we are allocating or freeing one, we can derive the state of the 485 * other. That is, if we allocate a small block, and both were 486 * free, the remainder of the region must be split into blocks. 487 * If a block is freed, and its buddy is also free, then this 488 * triggers coalescing into a block of larger size. 489 * 490 * -- wli 491 */ 492 493 static inline void __free_one_page(struct page *page, 494 struct zone *zone, unsigned int order, 495 int migratetype) 496 { 497 unsigned long page_idx; 498 unsigned long combined_idx; 499 unsigned long uninitialized_var(buddy_idx); 500 struct page *buddy; 501 502 if (unlikely(PageCompound(page))) 503 if (unlikely(destroy_compound_page(page, order))) 504 return; 505 506 VM_BUG_ON(migratetype == -1); 507 508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 509 510 VM_BUG_ON(page_idx & ((1 << order) - 1)); 511 VM_BUG_ON(bad_range(zone, page)); 512 513 while (order < MAX_ORDER-1) { 514 buddy_idx = __find_buddy_index(page_idx, order); 515 buddy = page + (buddy_idx - page_idx); 516 if (!page_is_buddy(page, buddy, order)) 517 break; 518 519 /* Our buddy is free, merge with it and move up one order. */ 520 list_del(&buddy->lru); 521 zone->free_area[order].nr_free--; 522 rmv_page_order(buddy); 523 combined_idx = buddy_idx & page_idx; 524 page = page + (combined_idx - page_idx); 525 page_idx = combined_idx; 526 order++; 527 } 528 set_page_order(page, order); 529 530 /* 531 * If this is not the largest possible page, check if the buddy 532 * of the next-highest order is free. If it is, it's possible 533 * that pages are being freed that will coalesce soon. In case, 534 * that is happening, add the free page to the tail of the list 535 * so it's less likely to be used soon and more likely to be merged 536 * as a higher order page 537 */ 538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 539 struct page *higher_page, *higher_buddy; 540 combined_idx = buddy_idx & page_idx; 541 higher_page = page + (combined_idx - page_idx); 542 buddy_idx = __find_buddy_index(combined_idx, order + 1); 543 higher_buddy = page + (buddy_idx - combined_idx); 544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 545 list_add_tail(&page->lru, 546 &zone->free_area[order].free_list[migratetype]); 547 goto out; 548 } 549 } 550 551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 552 out: 553 zone->free_area[order].nr_free++; 554 } 555 556 /* 557 * free_page_mlock() -- clean up attempts to free and mlocked() page. 558 * Page should not be on lru, so no need to fix that up. 559 * free_pages_check() will verify... 560 */ 561 static inline void free_page_mlock(struct page *page) 562 { 563 __dec_zone_page_state(page, NR_MLOCK); 564 __count_vm_event(UNEVICTABLE_MLOCKFREED); 565 } 566 567 static inline int free_pages_check(struct page *page) 568 { 569 if (unlikely(page_mapcount(page) | 570 (page->mapping != NULL) | 571 (atomic_read(&page->_count) != 0) | 572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 573 (mem_cgroup_bad_page_check(page)))) { 574 bad_page(page); 575 return 1; 576 } 577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 579 return 0; 580 } 581 582 /* 583 * Frees a number of pages from the PCP lists 584 * Assumes all pages on list are in same zone, and of same order. 585 * count is the number of pages to free. 586 * 587 * If the zone was previously in an "all pages pinned" state then look to 588 * see if this freeing clears that state. 589 * 590 * And clear the zone's pages_scanned counter, to hold off the "all pages are 591 * pinned" detection logic. 592 */ 593 static void free_pcppages_bulk(struct zone *zone, int count, 594 struct per_cpu_pages *pcp) 595 { 596 int migratetype = 0; 597 int batch_free = 0; 598 int to_free = count; 599 600 spin_lock(&zone->lock); 601 zone->all_unreclaimable = 0; 602 zone->pages_scanned = 0; 603 604 while (to_free) { 605 struct page *page; 606 struct list_head *list; 607 608 /* 609 * Remove pages from lists in a round-robin fashion. A 610 * batch_free count is maintained that is incremented when an 611 * empty list is encountered. This is so more pages are freed 612 * off fuller lists instead of spinning excessively around empty 613 * lists 614 */ 615 do { 616 batch_free++; 617 if (++migratetype == MIGRATE_PCPTYPES) 618 migratetype = 0; 619 list = &pcp->lists[migratetype]; 620 } while (list_empty(list)); 621 622 /* This is the only non-empty list. Free them all. */ 623 if (batch_free == MIGRATE_PCPTYPES) 624 batch_free = to_free; 625 626 do { 627 page = list_entry(list->prev, struct page, lru); 628 /* must delete as __free_one_page list manipulates */ 629 list_del(&page->lru); 630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 631 __free_one_page(page, zone, 0, page_private(page)); 632 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 633 } while (--to_free && --batch_free && !list_empty(list)); 634 } 635 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 636 spin_unlock(&zone->lock); 637 } 638 639 static void free_one_page(struct zone *zone, struct page *page, int order, 640 int migratetype) 641 { 642 spin_lock(&zone->lock); 643 zone->all_unreclaimable = 0; 644 zone->pages_scanned = 0; 645 646 __free_one_page(page, zone, order, migratetype); 647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 648 spin_unlock(&zone->lock); 649 } 650 651 static bool free_pages_prepare(struct page *page, unsigned int order) 652 { 653 int i; 654 int bad = 0; 655 656 trace_mm_page_free_direct(page, order); 657 kmemcheck_free_shadow(page, order); 658 659 if (PageAnon(page)) 660 page->mapping = NULL; 661 for (i = 0; i < (1 << order); i++) 662 bad += free_pages_check(page + i); 663 if (bad) 664 return false; 665 666 if (!PageHighMem(page)) { 667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 668 debug_check_no_obj_freed(page_address(page), 669 PAGE_SIZE << order); 670 } 671 arch_free_page(page, order); 672 kernel_map_pages(page, 1 << order, 0); 673 674 return true; 675 } 676 677 static void __free_pages_ok(struct page *page, unsigned int order) 678 { 679 unsigned long flags; 680 int wasMlocked = __TestClearPageMlocked(page); 681 682 if (!free_pages_prepare(page, order)) 683 return; 684 685 local_irq_save(flags); 686 if (unlikely(wasMlocked)) 687 free_page_mlock(page); 688 __count_vm_events(PGFREE, 1 << order); 689 free_one_page(page_zone(page), page, order, 690 get_pageblock_migratetype(page)); 691 local_irq_restore(flags); 692 } 693 694 /* 695 * permit the bootmem allocator to evade page validation on high-order frees 696 */ 697 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 698 { 699 if (order == 0) { 700 __ClearPageReserved(page); 701 set_page_count(page, 0); 702 set_page_refcounted(page); 703 __free_page(page); 704 } else { 705 int loop; 706 707 prefetchw(page); 708 for (loop = 0; loop < BITS_PER_LONG; loop++) { 709 struct page *p = &page[loop]; 710 711 if (loop + 1 < BITS_PER_LONG) 712 prefetchw(p + 1); 713 __ClearPageReserved(p); 714 set_page_count(p, 0); 715 } 716 717 set_page_refcounted(page); 718 __free_pages(page, order); 719 } 720 } 721 722 723 /* 724 * The order of subdivision here is critical for the IO subsystem. 725 * Please do not alter this order without good reasons and regression 726 * testing. Specifically, as large blocks of memory are subdivided, 727 * the order in which smaller blocks are delivered depends on the order 728 * they're subdivided in this function. This is the primary factor 729 * influencing the order in which pages are delivered to the IO 730 * subsystem according to empirical testing, and this is also justified 731 * by considering the behavior of a buddy system containing a single 732 * large block of memory acted on by a series of small allocations. 733 * This behavior is a critical factor in sglist merging's success. 734 * 735 * -- wli 736 */ 737 static inline void expand(struct zone *zone, struct page *page, 738 int low, int high, struct free_area *area, 739 int migratetype) 740 { 741 unsigned long size = 1 << high; 742 743 while (high > low) { 744 area--; 745 high--; 746 size >>= 1; 747 VM_BUG_ON(bad_range(zone, &page[size])); 748 list_add(&page[size].lru, &area->free_list[migratetype]); 749 area->nr_free++; 750 set_page_order(&page[size], high); 751 } 752 } 753 754 /* 755 * This page is about to be returned from the page allocator 756 */ 757 static inline int check_new_page(struct page *page) 758 { 759 if (unlikely(page_mapcount(page) | 760 (page->mapping != NULL) | 761 (atomic_read(&page->_count) != 0) | 762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 763 (mem_cgroup_bad_page_check(page)))) { 764 bad_page(page); 765 return 1; 766 } 767 return 0; 768 } 769 770 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 771 { 772 int i; 773 774 for (i = 0; i < (1 << order); i++) { 775 struct page *p = page + i; 776 if (unlikely(check_new_page(p))) 777 return 1; 778 } 779 780 set_page_private(page, 0); 781 set_page_refcounted(page); 782 783 arch_alloc_page(page, order); 784 kernel_map_pages(page, 1 << order, 1); 785 786 if (gfp_flags & __GFP_ZERO) 787 prep_zero_page(page, order, gfp_flags); 788 789 if (order && (gfp_flags & __GFP_COMP)) 790 prep_compound_page(page, order); 791 792 return 0; 793 } 794 795 /* 796 * Go through the free lists for the given migratetype and remove 797 * the smallest available page from the freelists 798 */ 799 static inline 800 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 801 int migratetype) 802 { 803 unsigned int current_order; 804 struct free_area * area; 805 struct page *page; 806 807 /* Find a page of the appropriate size in the preferred list */ 808 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 809 area = &(zone->free_area[current_order]); 810 if (list_empty(&area->free_list[migratetype])) 811 continue; 812 813 page = list_entry(area->free_list[migratetype].next, 814 struct page, lru); 815 list_del(&page->lru); 816 rmv_page_order(page); 817 area->nr_free--; 818 expand(zone, page, order, current_order, area, migratetype); 819 return page; 820 } 821 822 return NULL; 823 } 824 825 826 /* 827 * This array describes the order lists are fallen back to when 828 * the free lists for the desirable migrate type are depleted 829 */ 830 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 835 }; 836 837 /* 838 * Move the free pages in a range to the free lists of the requested type. 839 * Note that start_page and end_pages are not aligned on a pageblock 840 * boundary. If alignment is required, use move_freepages_block() 841 */ 842 static int move_freepages(struct zone *zone, 843 struct page *start_page, struct page *end_page, 844 int migratetype) 845 { 846 struct page *page; 847 unsigned long order; 848 int pages_moved = 0; 849 850 #ifndef CONFIG_HOLES_IN_ZONE 851 /* 852 * page_zone is not safe to call in this context when 853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 854 * anyway as we check zone boundaries in move_freepages_block(). 855 * Remove at a later date when no bug reports exist related to 856 * grouping pages by mobility 857 */ 858 BUG_ON(page_zone(start_page) != page_zone(end_page)); 859 #endif 860 861 for (page = start_page; page <= end_page;) { 862 /* Make sure we are not inadvertently changing nodes */ 863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 864 865 if (!pfn_valid_within(page_to_pfn(page))) { 866 page++; 867 continue; 868 } 869 870 if (!PageBuddy(page)) { 871 page++; 872 continue; 873 } 874 875 order = page_order(page); 876 list_move(&page->lru, 877 &zone->free_area[order].free_list[migratetype]); 878 page += 1 << order; 879 pages_moved += 1 << order; 880 } 881 882 return pages_moved; 883 } 884 885 static int move_freepages_block(struct zone *zone, struct page *page, 886 int migratetype) 887 { 888 unsigned long start_pfn, end_pfn; 889 struct page *start_page, *end_page; 890 891 start_pfn = page_to_pfn(page); 892 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 893 start_page = pfn_to_page(start_pfn); 894 end_page = start_page + pageblock_nr_pages - 1; 895 end_pfn = start_pfn + pageblock_nr_pages - 1; 896 897 /* Do not cross zone boundaries */ 898 if (start_pfn < zone->zone_start_pfn) 899 start_page = page; 900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 901 return 0; 902 903 return move_freepages(zone, start_page, end_page, migratetype); 904 } 905 906 static void change_pageblock_range(struct page *pageblock_page, 907 int start_order, int migratetype) 908 { 909 int nr_pageblocks = 1 << (start_order - pageblock_order); 910 911 while (nr_pageblocks--) { 912 set_pageblock_migratetype(pageblock_page, migratetype); 913 pageblock_page += pageblock_nr_pages; 914 } 915 } 916 917 /* Remove an element from the buddy allocator from the fallback list */ 918 static inline struct page * 919 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 920 { 921 struct free_area * area; 922 int current_order; 923 struct page *page; 924 int migratetype, i; 925 926 /* Find the largest possible block of pages in the other list */ 927 for (current_order = MAX_ORDER-1; current_order >= order; 928 --current_order) { 929 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 930 migratetype = fallbacks[start_migratetype][i]; 931 932 /* MIGRATE_RESERVE handled later if necessary */ 933 if (migratetype == MIGRATE_RESERVE) 934 continue; 935 936 area = &(zone->free_area[current_order]); 937 if (list_empty(&area->free_list[migratetype])) 938 continue; 939 940 page = list_entry(area->free_list[migratetype].next, 941 struct page, lru); 942 area->nr_free--; 943 944 /* 945 * If breaking a large block of pages, move all free 946 * pages to the preferred allocation list. If falling 947 * back for a reclaimable kernel allocation, be more 948 * aggressive about taking ownership of free pages 949 */ 950 if (unlikely(current_order >= (pageblock_order >> 1)) || 951 start_migratetype == MIGRATE_RECLAIMABLE || 952 page_group_by_mobility_disabled) { 953 unsigned long pages; 954 pages = move_freepages_block(zone, page, 955 start_migratetype); 956 957 /* Claim the whole block if over half of it is free */ 958 if (pages >= (1 << (pageblock_order-1)) || 959 page_group_by_mobility_disabled) 960 set_pageblock_migratetype(page, 961 start_migratetype); 962 963 migratetype = start_migratetype; 964 } 965 966 /* Remove the page from the freelists */ 967 list_del(&page->lru); 968 rmv_page_order(page); 969 970 /* Take ownership for orders >= pageblock_order */ 971 if (current_order >= pageblock_order) 972 change_pageblock_range(page, current_order, 973 start_migratetype); 974 975 expand(zone, page, order, current_order, area, migratetype); 976 977 trace_mm_page_alloc_extfrag(page, order, current_order, 978 start_migratetype, migratetype); 979 980 return page; 981 } 982 } 983 984 return NULL; 985 } 986 987 /* 988 * Do the hard work of removing an element from the buddy allocator. 989 * Call me with the zone->lock already held. 990 */ 991 static struct page *__rmqueue(struct zone *zone, unsigned int order, 992 int migratetype) 993 { 994 struct page *page; 995 996 retry_reserve: 997 page = __rmqueue_smallest(zone, order, migratetype); 998 999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1000 page = __rmqueue_fallback(zone, order, migratetype); 1001 1002 /* 1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1004 * is used because __rmqueue_smallest is an inline function 1005 * and we want just one call site 1006 */ 1007 if (!page) { 1008 migratetype = MIGRATE_RESERVE; 1009 goto retry_reserve; 1010 } 1011 } 1012 1013 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1014 return page; 1015 } 1016 1017 /* 1018 * Obtain a specified number of elements from the buddy allocator, all under 1019 * a single hold of the lock, for efficiency. Add them to the supplied list. 1020 * Returns the number of new pages which were placed at *list. 1021 */ 1022 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1023 unsigned long count, struct list_head *list, 1024 int migratetype, int cold) 1025 { 1026 int i; 1027 1028 spin_lock(&zone->lock); 1029 for (i = 0; i < count; ++i) { 1030 struct page *page = __rmqueue(zone, order, migratetype); 1031 if (unlikely(page == NULL)) 1032 break; 1033 1034 /* 1035 * Split buddy pages returned by expand() are received here 1036 * in physical page order. The page is added to the callers and 1037 * list and the list head then moves forward. From the callers 1038 * perspective, the linked list is ordered by page number in 1039 * some conditions. This is useful for IO devices that can 1040 * merge IO requests if the physical pages are ordered 1041 * properly. 1042 */ 1043 if (likely(cold == 0)) 1044 list_add(&page->lru, list); 1045 else 1046 list_add_tail(&page->lru, list); 1047 set_page_private(page, migratetype); 1048 list = &page->lru; 1049 } 1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1051 spin_unlock(&zone->lock); 1052 return i; 1053 } 1054 1055 #ifdef CONFIG_NUMA 1056 /* 1057 * Called from the vmstat counter updater to drain pagesets of this 1058 * currently executing processor on remote nodes after they have 1059 * expired. 1060 * 1061 * Note that this function must be called with the thread pinned to 1062 * a single processor. 1063 */ 1064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1065 { 1066 unsigned long flags; 1067 int to_drain; 1068 1069 local_irq_save(flags); 1070 if (pcp->count >= pcp->batch) 1071 to_drain = pcp->batch; 1072 else 1073 to_drain = pcp->count; 1074 free_pcppages_bulk(zone, to_drain, pcp); 1075 pcp->count -= to_drain; 1076 local_irq_restore(flags); 1077 } 1078 #endif 1079 1080 /* 1081 * Drain pages of the indicated processor. 1082 * 1083 * The processor must either be the current processor and the 1084 * thread pinned to the current processor or a processor that 1085 * is not online. 1086 */ 1087 static void drain_pages(unsigned int cpu) 1088 { 1089 unsigned long flags; 1090 struct zone *zone; 1091 1092 for_each_populated_zone(zone) { 1093 struct per_cpu_pageset *pset; 1094 struct per_cpu_pages *pcp; 1095 1096 local_irq_save(flags); 1097 pset = per_cpu_ptr(zone->pageset, cpu); 1098 1099 pcp = &pset->pcp; 1100 if (pcp->count) { 1101 free_pcppages_bulk(zone, pcp->count, pcp); 1102 pcp->count = 0; 1103 } 1104 local_irq_restore(flags); 1105 } 1106 } 1107 1108 /* 1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1110 */ 1111 void drain_local_pages(void *arg) 1112 { 1113 drain_pages(smp_processor_id()); 1114 } 1115 1116 /* 1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1118 */ 1119 void drain_all_pages(void) 1120 { 1121 on_each_cpu(drain_local_pages, NULL, 1); 1122 } 1123 1124 #ifdef CONFIG_HIBERNATION 1125 1126 void mark_free_pages(struct zone *zone) 1127 { 1128 unsigned long pfn, max_zone_pfn; 1129 unsigned long flags; 1130 int order, t; 1131 struct list_head *curr; 1132 1133 if (!zone->spanned_pages) 1134 return; 1135 1136 spin_lock_irqsave(&zone->lock, flags); 1137 1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1140 if (pfn_valid(pfn)) { 1141 struct page *page = pfn_to_page(pfn); 1142 1143 if (!swsusp_page_is_forbidden(page)) 1144 swsusp_unset_page_free(page); 1145 } 1146 1147 for_each_migratetype_order(order, t) { 1148 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1149 unsigned long i; 1150 1151 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1152 for (i = 0; i < (1UL << order); i++) 1153 swsusp_set_page_free(pfn_to_page(pfn + i)); 1154 } 1155 } 1156 spin_unlock_irqrestore(&zone->lock, flags); 1157 } 1158 #endif /* CONFIG_PM */ 1159 1160 /* 1161 * Free a 0-order page 1162 * cold == 1 ? free a cold page : free a hot page 1163 */ 1164 void free_hot_cold_page(struct page *page, int cold) 1165 { 1166 struct zone *zone = page_zone(page); 1167 struct per_cpu_pages *pcp; 1168 unsigned long flags; 1169 int migratetype; 1170 int wasMlocked = __TestClearPageMlocked(page); 1171 1172 if (!free_pages_prepare(page, 0)) 1173 return; 1174 1175 migratetype = get_pageblock_migratetype(page); 1176 set_page_private(page, migratetype); 1177 local_irq_save(flags); 1178 if (unlikely(wasMlocked)) 1179 free_page_mlock(page); 1180 __count_vm_event(PGFREE); 1181 1182 /* 1183 * We only track unmovable, reclaimable and movable on pcp lists. 1184 * Free ISOLATE pages back to the allocator because they are being 1185 * offlined but treat RESERVE as movable pages so we can get those 1186 * areas back if necessary. Otherwise, we may have to free 1187 * excessively into the page allocator 1188 */ 1189 if (migratetype >= MIGRATE_PCPTYPES) { 1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1191 free_one_page(zone, page, 0, migratetype); 1192 goto out; 1193 } 1194 migratetype = MIGRATE_MOVABLE; 1195 } 1196 1197 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1198 if (cold) 1199 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1200 else 1201 list_add(&page->lru, &pcp->lists[migratetype]); 1202 pcp->count++; 1203 if (pcp->count >= pcp->high) { 1204 free_pcppages_bulk(zone, pcp->batch, pcp); 1205 pcp->count -= pcp->batch; 1206 } 1207 1208 out: 1209 local_irq_restore(flags); 1210 } 1211 1212 /* 1213 * split_page takes a non-compound higher-order page, and splits it into 1214 * n (1<<order) sub-pages: page[0..n] 1215 * Each sub-page must be freed individually. 1216 * 1217 * Note: this is probably too low level an operation for use in drivers. 1218 * Please consult with lkml before using this in your driver. 1219 */ 1220 void split_page(struct page *page, unsigned int order) 1221 { 1222 int i; 1223 1224 VM_BUG_ON(PageCompound(page)); 1225 VM_BUG_ON(!page_count(page)); 1226 1227 #ifdef CONFIG_KMEMCHECK 1228 /* 1229 * Split shadow pages too, because free(page[0]) would 1230 * otherwise free the whole shadow. 1231 */ 1232 if (kmemcheck_page_is_tracked(page)) 1233 split_page(virt_to_page(page[0].shadow), order); 1234 #endif 1235 1236 for (i = 1; i < (1 << order); i++) 1237 set_page_refcounted(page + i); 1238 } 1239 1240 /* 1241 * Similar to split_page except the page is already free. As this is only 1242 * being used for migration, the migratetype of the block also changes. 1243 * As this is called with interrupts disabled, the caller is responsible 1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1245 * are enabled. 1246 * 1247 * Note: this is probably too low level an operation for use in drivers. 1248 * Please consult with lkml before using this in your driver. 1249 */ 1250 int split_free_page(struct page *page) 1251 { 1252 unsigned int order; 1253 unsigned long watermark; 1254 struct zone *zone; 1255 1256 BUG_ON(!PageBuddy(page)); 1257 1258 zone = page_zone(page); 1259 order = page_order(page); 1260 1261 /* Obey watermarks as if the page was being allocated */ 1262 watermark = low_wmark_pages(zone) + (1 << order); 1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1264 return 0; 1265 1266 /* Remove page from free list */ 1267 list_del(&page->lru); 1268 zone->free_area[order].nr_free--; 1269 rmv_page_order(page); 1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1271 1272 /* Split into individual pages */ 1273 set_page_refcounted(page); 1274 split_page(page, order); 1275 1276 if (order >= pageblock_order - 1) { 1277 struct page *endpage = page + (1 << order) - 1; 1278 for (; page < endpage; page += pageblock_nr_pages) 1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1280 } 1281 1282 return 1 << order; 1283 } 1284 1285 /* 1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1288 * or two. 1289 */ 1290 static inline 1291 struct page *buffered_rmqueue(struct zone *preferred_zone, 1292 struct zone *zone, int order, gfp_t gfp_flags, 1293 int migratetype) 1294 { 1295 unsigned long flags; 1296 struct page *page; 1297 int cold = !!(gfp_flags & __GFP_COLD); 1298 1299 again: 1300 if (likely(order == 0)) { 1301 struct per_cpu_pages *pcp; 1302 struct list_head *list; 1303 1304 local_irq_save(flags); 1305 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1306 list = &pcp->lists[migratetype]; 1307 if (list_empty(list)) { 1308 pcp->count += rmqueue_bulk(zone, 0, 1309 pcp->batch, list, 1310 migratetype, cold); 1311 if (unlikely(list_empty(list))) 1312 goto failed; 1313 } 1314 1315 if (cold) 1316 page = list_entry(list->prev, struct page, lru); 1317 else 1318 page = list_entry(list->next, struct page, lru); 1319 1320 list_del(&page->lru); 1321 pcp->count--; 1322 } else { 1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1324 /* 1325 * __GFP_NOFAIL is not to be used in new code. 1326 * 1327 * All __GFP_NOFAIL callers should be fixed so that they 1328 * properly detect and handle allocation failures. 1329 * 1330 * We most definitely don't want callers attempting to 1331 * allocate greater than order-1 page units with 1332 * __GFP_NOFAIL. 1333 */ 1334 WARN_ON_ONCE(order > 1); 1335 } 1336 spin_lock_irqsave(&zone->lock, flags); 1337 page = __rmqueue(zone, order, migratetype); 1338 spin_unlock(&zone->lock); 1339 if (!page) 1340 goto failed; 1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1342 } 1343 1344 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1345 zone_statistics(preferred_zone, zone, gfp_flags); 1346 local_irq_restore(flags); 1347 1348 VM_BUG_ON(bad_range(zone, page)); 1349 if (prep_new_page(page, order, gfp_flags)) 1350 goto again; 1351 return page; 1352 1353 failed: 1354 local_irq_restore(flags); 1355 return NULL; 1356 } 1357 1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1359 #define ALLOC_WMARK_MIN WMARK_MIN 1360 #define ALLOC_WMARK_LOW WMARK_LOW 1361 #define ALLOC_WMARK_HIGH WMARK_HIGH 1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1363 1364 /* Mask to get the watermark bits */ 1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1366 1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1370 1371 #ifdef CONFIG_FAIL_PAGE_ALLOC 1372 1373 static struct { 1374 struct fault_attr attr; 1375 1376 u32 ignore_gfp_highmem; 1377 u32 ignore_gfp_wait; 1378 u32 min_order; 1379 } fail_page_alloc = { 1380 .attr = FAULT_ATTR_INITIALIZER, 1381 .ignore_gfp_wait = 1, 1382 .ignore_gfp_highmem = 1, 1383 .min_order = 1, 1384 }; 1385 1386 static int __init setup_fail_page_alloc(char *str) 1387 { 1388 return setup_fault_attr(&fail_page_alloc.attr, str); 1389 } 1390 __setup("fail_page_alloc=", setup_fail_page_alloc); 1391 1392 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1393 { 1394 if (order < fail_page_alloc.min_order) 1395 return 0; 1396 if (gfp_mask & __GFP_NOFAIL) 1397 return 0; 1398 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1399 return 0; 1400 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1401 return 0; 1402 1403 return should_fail(&fail_page_alloc.attr, 1 << order); 1404 } 1405 1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1407 1408 static int __init fail_page_alloc_debugfs(void) 1409 { 1410 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1411 struct dentry *dir; 1412 1413 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1414 &fail_page_alloc.attr); 1415 if (IS_ERR(dir)) 1416 return PTR_ERR(dir); 1417 1418 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1419 &fail_page_alloc.ignore_gfp_wait)) 1420 goto fail; 1421 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1422 &fail_page_alloc.ignore_gfp_highmem)) 1423 goto fail; 1424 if (!debugfs_create_u32("min-order", mode, dir, 1425 &fail_page_alloc.min_order)) 1426 goto fail; 1427 1428 return 0; 1429 fail: 1430 debugfs_remove_recursive(dir); 1431 1432 return -ENOMEM; 1433 } 1434 1435 late_initcall(fail_page_alloc_debugfs); 1436 1437 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1438 1439 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1440 1441 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1442 { 1443 return 0; 1444 } 1445 1446 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1447 1448 /* 1449 * Return true if free pages are above 'mark'. This takes into account the order 1450 * of the allocation. 1451 */ 1452 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1453 int classzone_idx, int alloc_flags, long free_pages) 1454 { 1455 /* free_pages my go negative - that's OK */ 1456 long min = mark; 1457 int o; 1458 1459 free_pages -= (1 << order) + 1; 1460 if (alloc_flags & ALLOC_HIGH) 1461 min -= min / 2; 1462 if (alloc_flags & ALLOC_HARDER) 1463 min -= min / 4; 1464 1465 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1466 return false; 1467 for (o = 0; o < order; o++) { 1468 /* At the next order, this order's pages become unavailable */ 1469 free_pages -= z->free_area[o].nr_free << o; 1470 1471 /* Require fewer higher order pages to be free */ 1472 min >>= 1; 1473 1474 if (free_pages <= min) 1475 return false; 1476 } 1477 return true; 1478 } 1479 1480 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1481 int classzone_idx, int alloc_flags) 1482 { 1483 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1484 zone_page_state(z, NR_FREE_PAGES)); 1485 } 1486 1487 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1488 int classzone_idx, int alloc_flags) 1489 { 1490 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1491 1492 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1493 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1494 1495 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1496 free_pages); 1497 } 1498 1499 #ifdef CONFIG_NUMA 1500 /* 1501 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1502 * skip over zones that are not allowed by the cpuset, or that have 1503 * been recently (in last second) found to be nearly full. See further 1504 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1505 * that have to skip over a lot of full or unallowed zones. 1506 * 1507 * If the zonelist cache is present in the passed in zonelist, then 1508 * returns a pointer to the allowed node mask (either the current 1509 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1510 * 1511 * If the zonelist cache is not available for this zonelist, does 1512 * nothing and returns NULL. 1513 * 1514 * If the fullzones BITMAP in the zonelist cache is stale (more than 1515 * a second since last zap'd) then we zap it out (clear its bits.) 1516 * 1517 * We hold off even calling zlc_setup, until after we've checked the 1518 * first zone in the zonelist, on the theory that most allocations will 1519 * be satisfied from that first zone, so best to examine that zone as 1520 * quickly as we can. 1521 */ 1522 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1523 { 1524 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1525 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1526 1527 zlc = zonelist->zlcache_ptr; 1528 if (!zlc) 1529 return NULL; 1530 1531 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1532 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1533 zlc->last_full_zap = jiffies; 1534 } 1535 1536 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1537 &cpuset_current_mems_allowed : 1538 &node_states[N_HIGH_MEMORY]; 1539 return allowednodes; 1540 } 1541 1542 /* 1543 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1544 * if it is worth looking at further for free memory: 1545 * 1) Check that the zone isn't thought to be full (doesn't have its 1546 * bit set in the zonelist_cache fullzones BITMAP). 1547 * 2) Check that the zones node (obtained from the zonelist_cache 1548 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1549 * Return true (non-zero) if zone is worth looking at further, or 1550 * else return false (zero) if it is not. 1551 * 1552 * This check -ignores- the distinction between various watermarks, 1553 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1554 * found to be full for any variation of these watermarks, it will 1555 * be considered full for up to one second by all requests, unless 1556 * we are so low on memory on all allowed nodes that we are forced 1557 * into the second scan of the zonelist. 1558 * 1559 * In the second scan we ignore this zonelist cache and exactly 1560 * apply the watermarks to all zones, even it is slower to do so. 1561 * We are low on memory in the second scan, and should leave no stone 1562 * unturned looking for a free page. 1563 */ 1564 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1565 nodemask_t *allowednodes) 1566 { 1567 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1568 int i; /* index of *z in zonelist zones */ 1569 int n; /* node that zone *z is on */ 1570 1571 zlc = zonelist->zlcache_ptr; 1572 if (!zlc) 1573 return 1; 1574 1575 i = z - zonelist->_zonerefs; 1576 n = zlc->z_to_n[i]; 1577 1578 /* This zone is worth trying if it is allowed but not full */ 1579 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1580 } 1581 1582 /* 1583 * Given 'z' scanning a zonelist, set the corresponding bit in 1584 * zlc->fullzones, so that subsequent attempts to allocate a page 1585 * from that zone don't waste time re-examining it. 1586 */ 1587 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1588 { 1589 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1590 int i; /* index of *z in zonelist zones */ 1591 1592 zlc = zonelist->zlcache_ptr; 1593 if (!zlc) 1594 return; 1595 1596 i = z - zonelist->_zonerefs; 1597 1598 set_bit(i, zlc->fullzones); 1599 } 1600 1601 /* 1602 * clear all zones full, called after direct reclaim makes progress so that 1603 * a zone that was recently full is not skipped over for up to a second 1604 */ 1605 static void zlc_clear_zones_full(struct zonelist *zonelist) 1606 { 1607 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1608 1609 zlc = zonelist->zlcache_ptr; 1610 if (!zlc) 1611 return; 1612 1613 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1614 } 1615 1616 #else /* CONFIG_NUMA */ 1617 1618 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1619 { 1620 return NULL; 1621 } 1622 1623 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1624 nodemask_t *allowednodes) 1625 { 1626 return 1; 1627 } 1628 1629 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1630 { 1631 } 1632 1633 static void zlc_clear_zones_full(struct zonelist *zonelist) 1634 { 1635 } 1636 #endif /* CONFIG_NUMA */ 1637 1638 /* 1639 * get_page_from_freelist goes through the zonelist trying to allocate 1640 * a page. 1641 */ 1642 static struct page * 1643 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1644 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1645 struct zone *preferred_zone, int migratetype) 1646 { 1647 struct zoneref *z; 1648 struct page *page = NULL; 1649 int classzone_idx; 1650 struct zone *zone; 1651 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1652 int zlc_active = 0; /* set if using zonelist_cache */ 1653 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1654 1655 classzone_idx = zone_idx(preferred_zone); 1656 zonelist_scan: 1657 /* 1658 * Scan zonelist, looking for a zone with enough free. 1659 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1660 */ 1661 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1662 high_zoneidx, nodemask) { 1663 if (NUMA_BUILD && zlc_active && 1664 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1665 continue; 1666 if ((alloc_flags & ALLOC_CPUSET) && 1667 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1668 continue; 1669 1670 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1671 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1672 unsigned long mark; 1673 int ret; 1674 1675 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1676 if (zone_watermark_ok(zone, order, mark, 1677 classzone_idx, alloc_flags)) 1678 goto try_this_zone; 1679 1680 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1681 /* 1682 * we do zlc_setup if there are multiple nodes 1683 * and before considering the first zone allowed 1684 * by the cpuset. 1685 */ 1686 allowednodes = zlc_setup(zonelist, alloc_flags); 1687 zlc_active = 1; 1688 did_zlc_setup = 1; 1689 } 1690 1691 if (zone_reclaim_mode == 0) 1692 goto this_zone_full; 1693 1694 /* 1695 * As we may have just activated ZLC, check if the first 1696 * eligible zone has failed zone_reclaim recently. 1697 */ 1698 if (NUMA_BUILD && zlc_active && 1699 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1700 continue; 1701 1702 ret = zone_reclaim(zone, gfp_mask, order); 1703 switch (ret) { 1704 case ZONE_RECLAIM_NOSCAN: 1705 /* did not scan */ 1706 continue; 1707 case ZONE_RECLAIM_FULL: 1708 /* scanned but unreclaimable */ 1709 continue; 1710 default: 1711 /* did we reclaim enough */ 1712 if (!zone_watermark_ok(zone, order, mark, 1713 classzone_idx, alloc_flags)) 1714 goto this_zone_full; 1715 } 1716 } 1717 1718 try_this_zone: 1719 page = buffered_rmqueue(preferred_zone, zone, order, 1720 gfp_mask, migratetype); 1721 if (page) 1722 break; 1723 this_zone_full: 1724 if (NUMA_BUILD) 1725 zlc_mark_zone_full(zonelist, z); 1726 } 1727 1728 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1729 /* Disable zlc cache for second zonelist scan */ 1730 zlc_active = 0; 1731 goto zonelist_scan; 1732 } 1733 return page; 1734 } 1735 1736 /* 1737 * Large machines with many possible nodes should not always dump per-node 1738 * meminfo in irq context. 1739 */ 1740 static inline bool should_suppress_show_mem(void) 1741 { 1742 bool ret = false; 1743 1744 #if NODES_SHIFT > 8 1745 ret = in_interrupt(); 1746 #endif 1747 return ret; 1748 } 1749 1750 static DEFINE_RATELIMIT_STATE(nopage_rs, 1751 DEFAULT_RATELIMIT_INTERVAL, 1752 DEFAULT_RATELIMIT_BURST); 1753 1754 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1755 { 1756 va_list args; 1757 unsigned int filter = SHOW_MEM_FILTER_NODES; 1758 1759 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 1760 return; 1761 1762 /* 1763 * This documents exceptions given to allocations in certain 1764 * contexts that are allowed to allocate outside current's set 1765 * of allowed nodes. 1766 */ 1767 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1768 if (test_thread_flag(TIF_MEMDIE) || 1769 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1770 filter &= ~SHOW_MEM_FILTER_NODES; 1771 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1772 filter &= ~SHOW_MEM_FILTER_NODES; 1773 1774 if (fmt) { 1775 printk(KERN_WARNING); 1776 va_start(args, fmt); 1777 vprintk(fmt, args); 1778 va_end(args); 1779 } 1780 1781 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n", 1782 current->comm, order, gfp_mask); 1783 1784 dump_stack(); 1785 if (!should_suppress_show_mem()) 1786 show_mem(filter); 1787 } 1788 1789 static inline int 1790 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1791 unsigned long pages_reclaimed) 1792 { 1793 /* Do not loop if specifically requested */ 1794 if (gfp_mask & __GFP_NORETRY) 1795 return 0; 1796 1797 /* 1798 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1799 * means __GFP_NOFAIL, but that may not be true in other 1800 * implementations. 1801 */ 1802 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1803 return 1; 1804 1805 /* 1806 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1807 * specified, then we retry until we no longer reclaim any pages 1808 * (above), or we've reclaimed an order of pages at least as 1809 * large as the allocation's order. In both cases, if the 1810 * allocation still fails, we stop retrying. 1811 */ 1812 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1813 return 1; 1814 1815 /* 1816 * Don't let big-order allocations loop unless the caller 1817 * explicitly requests that. 1818 */ 1819 if (gfp_mask & __GFP_NOFAIL) 1820 return 1; 1821 1822 return 0; 1823 } 1824 1825 static inline struct page * 1826 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1827 struct zonelist *zonelist, enum zone_type high_zoneidx, 1828 nodemask_t *nodemask, struct zone *preferred_zone, 1829 int migratetype) 1830 { 1831 struct page *page; 1832 1833 /* Acquire the OOM killer lock for the zones in zonelist */ 1834 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1835 schedule_timeout_uninterruptible(1); 1836 return NULL; 1837 } 1838 1839 /* 1840 * Go through the zonelist yet one more time, keep very high watermark 1841 * here, this is only to catch a parallel oom killing, we must fail if 1842 * we're still under heavy pressure. 1843 */ 1844 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1845 order, zonelist, high_zoneidx, 1846 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1847 preferred_zone, migratetype); 1848 if (page) 1849 goto out; 1850 1851 if (!(gfp_mask & __GFP_NOFAIL)) { 1852 /* The OOM killer will not help higher order allocs */ 1853 if (order > PAGE_ALLOC_COSTLY_ORDER) 1854 goto out; 1855 /* The OOM killer does not needlessly kill tasks for lowmem */ 1856 if (high_zoneidx < ZONE_NORMAL) 1857 goto out; 1858 /* 1859 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1860 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1861 * The caller should handle page allocation failure by itself if 1862 * it specifies __GFP_THISNODE. 1863 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1864 */ 1865 if (gfp_mask & __GFP_THISNODE) 1866 goto out; 1867 } 1868 /* Exhausted what can be done so it's blamo time */ 1869 out_of_memory(zonelist, gfp_mask, order, nodemask); 1870 1871 out: 1872 clear_zonelist_oom(zonelist, gfp_mask); 1873 return page; 1874 } 1875 1876 #ifdef CONFIG_COMPACTION 1877 /* Try memory compaction for high-order allocations before reclaim */ 1878 static struct page * 1879 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1880 struct zonelist *zonelist, enum zone_type high_zoneidx, 1881 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1882 int migratetype, unsigned long *did_some_progress, 1883 bool sync_migration) 1884 { 1885 struct page *page; 1886 1887 if (!order || compaction_deferred(preferred_zone)) 1888 return NULL; 1889 1890 current->flags |= PF_MEMALLOC; 1891 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1892 nodemask, sync_migration); 1893 current->flags &= ~PF_MEMALLOC; 1894 if (*did_some_progress != COMPACT_SKIPPED) { 1895 1896 /* Page migration frees to the PCP lists but we want merging */ 1897 drain_pages(get_cpu()); 1898 put_cpu(); 1899 1900 page = get_page_from_freelist(gfp_mask, nodemask, 1901 order, zonelist, high_zoneidx, 1902 alloc_flags, preferred_zone, 1903 migratetype); 1904 if (page) { 1905 preferred_zone->compact_considered = 0; 1906 preferred_zone->compact_defer_shift = 0; 1907 count_vm_event(COMPACTSUCCESS); 1908 return page; 1909 } 1910 1911 /* 1912 * It's bad if compaction run occurs and fails. 1913 * The most likely reason is that pages exist, 1914 * but not enough to satisfy watermarks. 1915 */ 1916 count_vm_event(COMPACTFAIL); 1917 defer_compaction(preferred_zone); 1918 1919 cond_resched(); 1920 } 1921 1922 return NULL; 1923 } 1924 #else 1925 static inline struct page * 1926 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1927 struct zonelist *zonelist, enum zone_type high_zoneidx, 1928 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1929 int migratetype, unsigned long *did_some_progress, 1930 bool sync_migration) 1931 { 1932 return NULL; 1933 } 1934 #endif /* CONFIG_COMPACTION */ 1935 1936 /* The really slow allocator path where we enter direct reclaim */ 1937 static inline struct page * 1938 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1939 struct zonelist *zonelist, enum zone_type high_zoneidx, 1940 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1941 int migratetype, unsigned long *did_some_progress) 1942 { 1943 struct page *page = NULL; 1944 struct reclaim_state reclaim_state; 1945 bool drained = false; 1946 1947 cond_resched(); 1948 1949 /* We now go into synchronous reclaim */ 1950 cpuset_memory_pressure_bump(); 1951 current->flags |= PF_MEMALLOC; 1952 lockdep_set_current_reclaim_state(gfp_mask); 1953 reclaim_state.reclaimed_slab = 0; 1954 current->reclaim_state = &reclaim_state; 1955 1956 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1957 1958 current->reclaim_state = NULL; 1959 lockdep_clear_current_reclaim_state(); 1960 current->flags &= ~PF_MEMALLOC; 1961 1962 cond_resched(); 1963 1964 if (unlikely(!(*did_some_progress))) 1965 return NULL; 1966 1967 /* After successful reclaim, reconsider all zones for allocation */ 1968 if (NUMA_BUILD) 1969 zlc_clear_zones_full(zonelist); 1970 1971 retry: 1972 page = get_page_from_freelist(gfp_mask, nodemask, order, 1973 zonelist, high_zoneidx, 1974 alloc_flags, preferred_zone, 1975 migratetype); 1976 1977 /* 1978 * If an allocation failed after direct reclaim, it could be because 1979 * pages are pinned on the per-cpu lists. Drain them and try again 1980 */ 1981 if (!page && !drained) { 1982 drain_all_pages(); 1983 drained = true; 1984 goto retry; 1985 } 1986 1987 return page; 1988 } 1989 1990 /* 1991 * This is called in the allocator slow-path if the allocation request is of 1992 * sufficient urgency to ignore watermarks and take other desperate measures 1993 */ 1994 static inline struct page * 1995 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1996 struct zonelist *zonelist, enum zone_type high_zoneidx, 1997 nodemask_t *nodemask, struct zone *preferred_zone, 1998 int migratetype) 1999 { 2000 struct page *page; 2001 2002 do { 2003 page = get_page_from_freelist(gfp_mask, nodemask, order, 2004 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2005 preferred_zone, migratetype); 2006 2007 if (!page && gfp_mask & __GFP_NOFAIL) 2008 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2009 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2010 2011 return page; 2012 } 2013 2014 static inline 2015 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2016 enum zone_type high_zoneidx, 2017 enum zone_type classzone_idx) 2018 { 2019 struct zoneref *z; 2020 struct zone *zone; 2021 2022 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2023 wakeup_kswapd(zone, order, classzone_idx); 2024 } 2025 2026 static inline int 2027 gfp_to_alloc_flags(gfp_t gfp_mask) 2028 { 2029 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2030 const gfp_t wait = gfp_mask & __GFP_WAIT; 2031 2032 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2033 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2034 2035 /* 2036 * The caller may dip into page reserves a bit more if the caller 2037 * cannot run direct reclaim, or if the caller has realtime scheduling 2038 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2039 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2040 */ 2041 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2042 2043 if (!wait) { 2044 /* 2045 * Not worth trying to allocate harder for 2046 * __GFP_NOMEMALLOC even if it can't schedule. 2047 */ 2048 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2049 alloc_flags |= ALLOC_HARDER; 2050 /* 2051 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2052 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2053 */ 2054 alloc_flags &= ~ALLOC_CPUSET; 2055 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2056 alloc_flags |= ALLOC_HARDER; 2057 2058 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2059 if (!in_interrupt() && 2060 ((current->flags & PF_MEMALLOC) || 2061 unlikely(test_thread_flag(TIF_MEMDIE)))) 2062 alloc_flags |= ALLOC_NO_WATERMARKS; 2063 } 2064 2065 return alloc_flags; 2066 } 2067 2068 static inline struct page * 2069 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2070 struct zonelist *zonelist, enum zone_type high_zoneidx, 2071 nodemask_t *nodemask, struct zone *preferred_zone, 2072 int migratetype) 2073 { 2074 const gfp_t wait = gfp_mask & __GFP_WAIT; 2075 struct page *page = NULL; 2076 int alloc_flags; 2077 unsigned long pages_reclaimed = 0; 2078 unsigned long did_some_progress; 2079 bool sync_migration = false; 2080 2081 /* 2082 * In the slowpath, we sanity check order to avoid ever trying to 2083 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2084 * be using allocators in order of preference for an area that is 2085 * too large. 2086 */ 2087 if (order >= MAX_ORDER) { 2088 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2089 return NULL; 2090 } 2091 2092 /* 2093 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2094 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2095 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2096 * using a larger set of nodes after it has established that the 2097 * allowed per node queues are empty and that nodes are 2098 * over allocated. 2099 */ 2100 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2101 goto nopage; 2102 2103 restart: 2104 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2105 wake_all_kswapd(order, zonelist, high_zoneidx, 2106 zone_idx(preferred_zone)); 2107 2108 /* 2109 * OK, we're below the kswapd watermark and have kicked background 2110 * reclaim. Now things get more complex, so set up alloc_flags according 2111 * to how we want to proceed. 2112 */ 2113 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2114 2115 /* 2116 * Find the true preferred zone if the allocation is unconstrained by 2117 * cpusets. 2118 */ 2119 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2120 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2121 &preferred_zone); 2122 2123 rebalance: 2124 /* This is the last chance, in general, before the goto nopage. */ 2125 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2126 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2127 preferred_zone, migratetype); 2128 if (page) 2129 goto got_pg; 2130 2131 /* Allocate without watermarks if the context allows */ 2132 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2133 page = __alloc_pages_high_priority(gfp_mask, order, 2134 zonelist, high_zoneidx, nodemask, 2135 preferred_zone, migratetype); 2136 if (page) 2137 goto got_pg; 2138 } 2139 2140 /* Atomic allocations - we can't balance anything */ 2141 if (!wait) 2142 goto nopage; 2143 2144 /* Avoid recursion of direct reclaim */ 2145 if (current->flags & PF_MEMALLOC) 2146 goto nopage; 2147 2148 /* Avoid allocations with no watermarks from looping endlessly */ 2149 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2150 goto nopage; 2151 2152 /* 2153 * Try direct compaction. The first pass is asynchronous. Subsequent 2154 * attempts after direct reclaim are synchronous 2155 */ 2156 page = __alloc_pages_direct_compact(gfp_mask, order, 2157 zonelist, high_zoneidx, 2158 nodemask, 2159 alloc_flags, preferred_zone, 2160 migratetype, &did_some_progress, 2161 sync_migration); 2162 if (page) 2163 goto got_pg; 2164 sync_migration = true; 2165 2166 /* Try direct reclaim and then allocating */ 2167 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2168 zonelist, high_zoneidx, 2169 nodemask, 2170 alloc_flags, preferred_zone, 2171 migratetype, &did_some_progress); 2172 if (page) 2173 goto got_pg; 2174 2175 /* 2176 * If we failed to make any progress reclaiming, then we are 2177 * running out of options and have to consider going OOM 2178 */ 2179 if (!did_some_progress) { 2180 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2181 if (oom_killer_disabled) 2182 goto nopage; 2183 page = __alloc_pages_may_oom(gfp_mask, order, 2184 zonelist, high_zoneidx, 2185 nodemask, preferred_zone, 2186 migratetype); 2187 if (page) 2188 goto got_pg; 2189 2190 if (!(gfp_mask & __GFP_NOFAIL)) { 2191 /* 2192 * The oom killer is not called for high-order 2193 * allocations that may fail, so if no progress 2194 * is being made, there are no other options and 2195 * retrying is unlikely to help. 2196 */ 2197 if (order > PAGE_ALLOC_COSTLY_ORDER) 2198 goto nopage; 2199 /* 2200 * The oom killer is not called for lowmem 2201 * allocations to prevent needlessly killing 2202 * innocent tasks. 2203 */ 2204 if (high_zoneidx < ZONE_NORMAL) 2205 goto nopage; 2206 } 2207 2208 goto restart; 2209 } 2210 } 2211 2212 /* Check if we should retry the allocation */ 2213 pages_reclaimed += did_some_progress; 2214 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2215 /* Wait for some write requests to complete then retry */ 2216 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2217 goto rebalance; 2218 } else { 2219 /* 2220 * High-order allocations do not necessarily loop after 2221 * direct reclaim and reclaim/compaction depends on compaction 2222 * being called after reclaim so call directly if necessary 2223 */ 2224 page = __alloc_pages_direct_compact(gfp_mask, order, 2225 zonelist, high_zoneidx, 2226 nodemask, 2227 alloc_flags, preferred_zone, 2228 migratetype, &did_some_progress, 2229 sync_migration); 2230 if (page) 2231 goto got_pg; 2232 } 2233 2234 nopage: 2235 warn_alloc_failed(gfp_mask, order, NULL); 2236 return page; 2237 got_pg: 2238 if (kmemcheck_enabled) 2239 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2240 return page; 2241 2242 } 2243 2244 /* 2245 * This is the 'heart' of the zoned buddy allocator. 2246 */ 2247 struct page * 2248 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2249 struct zonelist *zonelist, nodemask_t *nodemask) 2250 { 2251 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2252 struct zone *preferred_zone; 2253 struct page *page; 2254 int migratetype = allocflags_to_migratetype(gfp_mask); 2255 2256 gfp_mask &= gfp_allowed_mask; 2257 2258 lockdep_trace_alloc(gfp_mask); 2259 2260 might_sleep_if(gfp_mask & __GFP_WAIT); 2261 2262 if (should_fail_alloc_page(gfp_mask, order)) 2263 return NULL; 2264 2265 /* 2266 * Check the zones suitable for the gfp_mask contain at least one 2267 * valid zone. It's possible to have an empty zonelist as a result 2268 * of GFP_THISNODE and a memoryless node 2269 */ 2270 if (unlikely(!zonelist->_zonerefs->zone)) 2271 return NULL; 2272 2273 get_mems_allowed(); 2274 /* The preferred zone is used for statistics later */ 2275 first_zones_zonelist(zonelist, high_zoneidx, 2276 nodemask ? : &cpuset_current_mems_allowed, 2277 &preferred_zone); 2278 if (!preferred_zone) { 2279 put_mems_allowed(); 2280 return NULL; 2281 } 2282 2283 /* First allocation attempt */ 2284 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2285 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2286 preferred_zone, migratetype); 2287 if (unlikely(!page)) 2288 page = __alloc_pages_slowpath(gfp_mask, order, 2289 zonelist, high_zoneidx, nodemask, 2290 preferred_zone, migratetype); 2291 put_mems_allowed(); 2292 2293 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2294 return page; 2295 } 2296 EXPORT_SYMBOL(__alloc_pages_nodemask); 2297 2298 /* 2299 * Common helper functions. 2300 */ 2301 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2302 { 2303 struct page *page; 2304 2305 /* 2306 * __get_free_pages() returns a 32-bit address, which cannot represent 2307 * a highmem page 2308 */ 2309 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2310 2311 page = alloc_pages(gfp_mask, order); 2312 if (!page) 2313 return 0; 2314 return (unsigned long) page_address(page); 2315 } 2316 EXPORT_SYMBOL(__get_free_pages); 2317 2318 unsigned long get_zeroed_page(gfp_t gfp_mask) 2319 { 2320 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2321 } 2322 EXPORT_SYMBOL(get_zeroed_page); 2323 2324 void __pagevec_free(struct pagevec *pvec) 2325 { 2326 int i = pagevec_count(pvec); 2327 2328 while (--i >= 0) { 2329 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2330 free_hot_cold_page(pvec->pages[i], pvec->cold); 2331 } 2332 } 2333 2334 void __free_pages(struct page *page, unsigned int order) 2335 { 2336 if (put_page_testzero(page)) { 2337 if (order == 0) 2338 free_hot_cold_page(page, 0); 2339 else 2340 __free_pages_ok(page, order); 2341 } 2342 } 2343 2344 EXPORT_SYMBOL(__free_pages); 2345 2346 void free_pages(unsigned long addr, unsigned int order) 2347 { 2348 if (addr != 0) { 2349 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2350 __free_pages(virt_to_page((void *)addr), order); 2351 } 2352 } 2353 2354 EXPORT_SYMBOL(free_pages); 2355 2356 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2357 { 2358 if (addr) { 2359 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2360 unsigned long used = addr + PAGE_ALIGN(size); 2361 2362 split_page(virt_to_page((void *)addr), order); 2363 while (used < alloc_end) { 2364 free_page(used); 2365 used += PAGE_SIZE; 2366 } 2367 } 2368 return (void *)addr; 2369 } 2370 2371 /** 2372 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2373 * @size: the number of bytes to allocate 2374 * @gfp_mask: GFP flags for the allocation 2375 * 2376 * This function is similar to alloc_pages(), except that it allocates the 2377 * minimum number of pages to satisfy the request. alloc_pages() can only 2378 * allocate memory in power-of-two pages. 2379 * 2380 * This function is also limited by MAX_ORDER. 2381 * 2382 * Memory allocated by this function must be released by free_pages_exact(). 2383 */ 2384 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2385 { 2386 unsigned int order = get_order(size); 2387 unsigned long addr; 2388 2389 addr = __get_free_pages(gfp_mask, order); 2390 return make_alloc_exact(addr, order, size); 2391 } 2392 EXPORT_SYMBOL(alloc_pages_exact); 2393 2394 /** 2395 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2396 * pages on a node. 2397 * @nid: the preferred node ID where memory should be allocated 2398 * @size: the number of bytes to allocate 2399 * @gfp_mask: GFP flags for the allocation 2400 * 2401 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2402 * back. 2403 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2404 * but is not exact. 2405 */ 2406 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2407 { 2408 unsigned order = get_order(size); 2409 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2410 if (!p) 2411 return NULL; 2412 return make_alloc_exact((unsigned long)page_address(p), order, size); 2413 } 2414 EXPORT_SYMBOL(alloc_pages_exact_nid); 2415 2416 /** 2417 * free_pages_exact - release memory allocated via alloc_pages_exact() 2418 * @virt: the value returned by alloc_pages_exact. 2419 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2420 * 2421 * Release the memory allocated by a previous call to alloc_pages_exact. 2422 */ 2423 void free_pages_exact(void *virt, size_t size) 2424 { 2425 unsigned long addr = (unsigned long)virt; 2426 unsigned long end = addr + PAGE_ALIGN(size); 2427 2428 while (addr < end) { 2429 free_page(addr); 2430 addr += PAGE_SIZE; 2431 } 2432 } 2433 EXPORT_SYMBOL(free_pages_exact); 2434 2435 static unsigned int nr_free_zone_pages(int offset) 2436 { 2437 struct zoneref *z; 2438 struct zone *zone; 2439 2440 /* Just pick one node, since fallback list is circular */ 2441 unsigned int sum = 0; 2442 2443 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2444 2445 for_each_zone_zonelist(zone, z, zonelist, offset) { 2446 unsigned long size = zone->present_pages; 2447 unsigned long high = high_wmark_pages(zone); 2448 if (size > high) 2449 sum += size - high; 2450 } 2451 2452 return sum; 2453 } 2454 2455 /* 2456 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2457 */ 2458 unsigned int nr_free_buffer_pages(void) 2459 { 2460 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2461 } 2462 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2463 2464 /* 2465 * Amount of free RAM allocatable within all zones 2466 */ 2467 unsigned int nr_free_pagecache_pages(void) 2468 { 2469 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2470 } 2471 2472 static inline void show_node(struct zone *zone) 2473 { 2474 if (NUMA_BUILD) 2475 printk("Node %d ", zone_to_nid(zone)); 2476 } 2477 2478 void si_meminfo(struct sysinfo *val) 2479 { 2480 val->totalram = totalram_pages; 2481 val->sharedram = 0; 2482 val->freeram = global_page_state(NR_FREE_PAGES); 2483 val->bufferram = nr_blockdev_pages(); 2484 val->totalhigh = totalhigh_pages; 2485 val->freehigh = nr_free_highpages(); 2486 val->mem_unit = PAGE_SIZE; 2487 } 2488 2489 EXPORT_SYMBOL(si_meminfo); 2490 2491 #ifdef CONFIG_NUMA 2492 void si_meminfo_node(struct sysinfo *val, int nid) 2493 { 2494 pg_data_t *pgdat = NODE_DATA(nid); 2495 2496 val->totalram = pgdat->node_present_pages; 2497 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2498 #ifdef CONFIG_HIGHMEM 2499 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2500 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2501 NR_FREE_PAGES); 2502 #else 2503 val->totalhigh = 0; 2504 val->freehigh = 0; 2505 #endif 2506 val->mem_unit = PAGE_SIZE; 2507 } 2508 #endif 2509 2510 /* 2511 * Determine whether the node should be displayed or not, depending on whether 2512 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2513 */ 2514 bool skip_free_areas_node(unsigned int flags, int nid) 2515 { 2516 bool ret = false; 2517 2518 if (!(flags & SHOW_MEM_FILTER_NODES)) 2519 goto out; 2520 2521 get_mems_allowed(); 2522 ret = !node_isset(nid, cpuset_current_mems_allowed); 2523 put_mems_allowed(); 2524 out: 2525 return ret; 2526 } 2527 2528 #define K(x) ((x) << (PAGE_SHIFT-10)) 2529 2530 /* 2531 * Show free area list (used inside shift_scroll-lock stuff) 2532 * We also calculate the percentage fragmentation. We do this by counting the 2533 * memory on each free list with the exception of the first item on the list. 2534 * Suppresses nodes that are not allowed by current's cpuset if 2535 * SHOW_MEM_FILTER_NODES is passed. 2536 */ 2537 void show_free_areas(unsigned int filter) 2538 { 2539 int cpu; 2540 struct zone *zone; 2541 2542 for_each_populated_zone(zone) { 2543 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2544 continue; 2545 show_node(zone); 2546 printk("%s per-cpu:\n", zone->name); 2547 2548 for_each_online_cpu(cpu) { 2549 struct per_cpu_pageset *pageset; 2550 2551 pageset = per_cpu_ptr(zone->pageset, cpu); 2552 2553 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2554 cpu, pageset->pcp.high, 2555 pageset->pcp.batch, pageset->pcp.count); 2556 } 2557 } 2558 2559 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2560 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2561 " unevictable:%lu" 2562 " dirty:%lu writeback:%lu unstable:%lu\n" 2563 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2564 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2565 global_page_state(NR_ACTIVE_ANON), 2566 global_page_state(NR_INACTIVE_ANON), 2567 global_page_state(NR_ISOLATED_ANON), 2568 global_page_state(NR_ACTIVE_FILE), 2569 global_page_state(NR_INACTIVE_FILE), 2570 global_page_state(NR_ISOLATED_FILE), 2571 global_page_state(NR_UNEVICTABLE), 2572 global_page_state(NR_FILE_DIRTY), 2573 global_page_state(NR_WRITEBACK), 2574 global_page_state(NR_UNSTABLE_NFS), 2575 global_page_state(NR_FREE_PAGES), 2576 global_page_state(NR_SLAB_RECLAIMABLE), 2577 global_page_state(NR_SLAB_UNRECLAIMABLE), 2578 global_page_state(NR_FILE_MAPPED), 2579 global_page_state(NR_SHMEM), 2580 global_page_state(NR_PAGETABLE), 2581 global_page_state(NR_BOUNCE)); 2582 2583 for_each_populated_zone(zone) { 2584 int i; 2585 2586 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2587 continue; 2588 show_node(zone); 2589 printk("%s" 2590 " free:%lukB" 2591 " min:%lukB" 2592 " low:%lukB" 2593 " high:%lukB" 2594 " active_anon:%lukB" 2595 " inactive_anon:%lukB" 2596 " active_file:%lukB" 2597 " inactive_file:%lukB" 2598 " unevictable:%lukB" 2599 " isolated(anon):%lukB" 2600 " isolated(file):%lukB" 2601 " present:%lukB" 2602 " mlocked:%lukB" 2603 " dirty:%lukB" 2604 " writeback:%lukB" 2605 " mapped:%lukB" 2606 " shmem:%lukB" 2607 " slab_reclaimable:%lukB" 2608 " slab_unreclaimable:%lukB" 2609 " kernel_stack:%lukB" 2610 " pagetables:%lukB" 2611 " unstable:%lukB" 2612 " bounce:%lukB" 2613 " writeback_tmp:%lukB" 2614 " pages_scanned:%lu" 2615 " all_unreclaimable? %s" 2616 "\n", 2617 zone->name, 2618 K(zone_page_state(zone, NR_FREE_PAGES)), 2619 K(min_wmark_pages(zone)), 2620 K(low_wmark_pages(zone)), 2621 K(high_wmark_pages(zone)), 2622 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2623 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2624 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2625 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2626 K(zone_page_state(zone, NR_UNEVICTABLE)), 2627 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2628 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2629 K(zone->present_pages), 2630 K(zone_page_state(zone, NR_MLOCK)), 2631 K(zone_page_state(zone, NR_FILE_DIRTY)), 2632 K(zone_page_state(zone, NR_WRITEBACK)), 2633 K(zone_page_state(zone, NR_FILE_MAPPED)), 2634 K(zone_page_state(zone, NR_SHMEM)), 2635 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2636 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2637 zone_page_state(zone, NR_KERNEL_STACK) * 2638 THREAD_SIZE / 1024, 2639 K(zone_page_state(zone, NR_PAGETABLE)), 2640 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2641 K(zone_page_state(zone, NR_BOUNCE)), 2642 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2643 zone->pages_scanned, 2644 (zone->all_unreclaimable ? "yes" : "no") 2645 ); 2646 printk("lowmem_reserve[]:"); 2647 for (i = 0; i < MAX_NR_ZONES; i++) 2648 printk(" %lu", zone->lowmem_reserve[i]); 2649 printk("\n"); 2650 } 2651 2652 for_each_populated_zone(zone) { 2653 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2654 2655 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2656 continue; 2657 show_node(zone); 2658 printk("%s: ", zone->name); 2659 2660 spin_lock_irqsave(&zone->lock, flags); 2661 for (order = 0; order < MAX_ORDER; order++) { 2662 nr[order] = zone->free_area[order].nr_free; 2663 total += nr[order] << order; 2664 } 2665 spin_unlock_irqrestore(&zone->lock, flags); 2666 for (order = 0; order < MAX_ORDER; order++) 2667 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2668 printk("= %lukB\n", K(total)); 2669 } 2670 2671 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2672 2673 show_swap_cache_info(); 2674 } 2675 2676 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2677 { 2678 zoneref->zone = zone; 2679 zoneref->zone_idx = zone_idx(zone); 2680 } 2681 2682 /* 2683 * Builds allocation fallback zone lists. 2684 * 2685 * Add all populated zones of a node to the zonelist. 2686 */ 2687 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2688 int nr_zones, enum zone_type zone_type) 2689 { 2690 struct zone *zone; 2691 2692 BUG_ON(zone_type >= MAX_NR_ZONES); 2693 zone_type++; 2694 2695 do { 2696 zone_type--; 2697 zone = pgdat->node_zones + zone_type; 2698 if (populated_zone(zone)) { 2699 zoneref_set_zone(zone, 2700 &zonelist->_zonerefs[nr_zones++]); 2701 check_highest_zone(zone_type); 2702 } 2703 2704 } while (zone_type); 2705 return nr_zones; 2706 } 2707 2708 2709 /* 2710 * zonelist_order: 2711 * 0 = automatic detection of better ordering. 2712 * 1 = order by ([node] distance, -zonetype) 2713 * 2 = order by (-zonetype, [node] distance) 2714 * 2715 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2716 * the same zonelist. So only NUMA can configure this param. 2717 */ 2718 #define ZONELIST_ORDER_DEFAULT 0 2719 #define ZONELIST_ORDER_NODE 1 2720 #define ZONELIST_ORDER_ZONE 2 2721 2722 /* zonelist order in the kernel. 2723 * set_zonelist_order() will set this to NODE or ZONE. 2724 */ 2725 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2726 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2727 2728 2729 #ifdef CONFIG_NUMA 2730 /* The value user specified ....changed by config */ 2731 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2732 /* string for sysctl */ 2733 #define NUMA_ZONELIST_ORDER_LEN 16 2734 char numa_zonelist_order[16] = "default"; 2735 2736 /* 2737 * interface for configure zonelist ordering. 2738 * command line option "numa_zonelist_order" 2739 * = "[dD]efault - default, automatic configuration. 2740 * = "[nN]ode - order by node locality, then by zone within node 2741 * = "[zZ]one - order by zone, then by locality within zone 2742 */ 2743 2744 static int __parse_numa_zonelist_order(char *s) 2745 { 2746 if (*s == 'd' || *s == 'D') { 2747 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2748 } else if (*s == 'n' || *s == 'N') { 2749 user_zonelist_order = ZONELIST_ORDER_NODE; 2750 } else if (*s == 'z' || *s == 'Z') { 2751 user_zonelist_order = ZONELIST_ORDER_ZONE; 2752 } else { 2753 printk(KERN_WARNING 2754 "Ignoring invalid numa_zonelist_order value: " 2755 "%s\n", s); 2756 return -EINVAL; 2757 } 2758 return 0; 2759 } 2760 2761 static __init int setup_numa_zonelist_order(char *s) 2762 { 2763 int ret; 2764 2765 if (!s) 2766 return 0; 2767 2768 ret = __parse_numa_zonelist_order(s); 2769 if (ret == 0) 2770 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2771 2772 return ret; 2773 } 2774 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2775 2776 /* 2777 * sysctl handler for numa_zonelist_order 2778 */ 2779 int numa_zonelist_order_handler(ctl_table *table, int write, 2780 void __user *buffer, size_t *length, 2781 loff_t *ppos) 2782 { 2783 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2784 int ret; 2785 static DEFINE_MUTEX(zl_order_mutex); 2786 2787 mutex_lock(&zl_order_mutex); 2788 if (write) 2789 strcpy(saved_string, (char*)table->data); 2790 ret = proc_dostring(table, write, buffer, length, ppos); 2791 if (ret) 2792 goto out; 2793 if (write) { 2794 int oldval = user_zonelist_order; 2795 if (__parse_numa_zonelist_order((char*)table->data)) { 2796 /* 2797 * bogus value. restore saved string 2798 */ 2799 strncpy((char*)table->data, saved_string, 2800 NUMA_ZONELIST_ORDER_LEN); 2801 user_zonelist_order = oldval; 2802 } else if (oldval != user_zonelist_order) { 2803 mutex_lock(&zonelists_mutex); 2804 build_all_zonelists(NULL); 2805 mutex_unlock(&zonelists_mutex); 2806 } 2807 } 2808 out: 2809 mutex_unlock(&zl_order_mutex); 2810 return ret; 2811 } 2812 2813 2814 #define MAX_NODE_LOAD (nr_online_nodes) 2815 static int node_load[MAX_NUMNODES]; 2816 2817 /** 2818 * find_next_best_node - find the next node that should appear in a given node's fallback list 2819 * @node: node whose fallback list we're appending 2820 * @used_node_mask: nodemask_t of already used nodes 2821 * 2822 * We use a number of factors to determine which is the next node that should 2823 * appear on a given node's fallback list. The node should not have appeared 2824 * already in @node's fallback list, and it should be the next closest node 2825 * according to the distance array (which contains arbitrary distance values 2826 * from each node to each node in the system), and should also prefer nodes 2827 * with no CPUs, since presumably they'll have very little allocation pressure 2828 * on them otherwise. 2829 * It returns -1 if no node is found. 2830 */ 2831 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2832 { 2833 int n, val; 2834 int min_val = INT_MAX; 2835 int best_node = -1; 2836 const struct cpumask *tmp = cpumask_of_node(0); 2837 2838 /* Use the local node if we haven't already */ 2839 if (!node_isset(node, *used_node_mask)) { 2840 node_set(node, *used_node_mask); 2841 return node; 2842 } 2843 2844 for_each_node_state(n, N_HIGH_MEMORY) { 2845 2846 /* Don't want a node to appear more than once */ 2847 if (node_isset(n, *used_node_mask)) 2848 continue; 2849 2850 /* Use the distance array to find the distance */ 2851 val = node_distance(node, n); 2852 2853 /* Penalize nodes under us ("prefer the next node") */ 2854 val += (n < node); 2855 2856 /* Give preference to headless and unused nodes */ 2857 tmp = cpumask_of_node(n); 2858 if (!cpumask_empty(tmp)) 2859 val += PENALTY_FOR_NODE_WITH_CPUS; 2860 2861 /* Slight preference for less loaded node */ 2862 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2863 val += node_load[n]; 2864 2865 if (val < min_val) { 2866 min_val = val; 2867 best_node = n; 2868 } 2869 } 2870 2871 if (best_node >= 0) 2872 node_set(best_node, *used_node_mask); 2873 2874 return best_node; 2875 } 2876 2877 2878 /* 2879 * Build zonelists ordered by node and zones within node. 2880 * This results in maximum locality--normal zone overflows into local 2881 * DMA zone, if any--but risks exhausting DMA zone. 2882 */ 2883 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2884 { 2885 int j; 2886 struct zonelist *zonelist; 2887 2888 zonelist = &pgdat->node_zonelists[0]; 2889 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2890 ; 2891 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2892 MAX_NR_ZONES - 1); 2893 zonelist->_zonerefs[j].zone = NULL; 2894 zonelist->_zonerefs[j].zone_idx = 0; 2895 } 2896 2897 /* 2898 * Build gfp_thisnode zonelists 2899 */ 2900 static void build_thisnode_zonelists(pg_data_t *pgdat) 2901 { 2902 int j; 2903 struct zonelist *zonelist; 2904 2905 zonelist = &pgdat->node_zonelists[1]; 2906 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2907 zonelist->_zonerefs[j].zone = NULL; 2908 zonelist->_zonerefs[j].zone_idx = 0; 2909 } 2910 2911 /* 2912 * Build zonelists ordered by zone and nodes within zones. 2913 * This results in conserving DMA zone[s] until all Normal memory is 2914 * exhausted, but results in overflowing to remote node while memory 2915 * may still exist in local DMA zone. 2916 */ 2917 static int node_order[MAX_NUMNODES]; 2918 2919 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2920 { 2921 int pos, j, node; 2922 int zone_type; /* needs to be signed */ 2923 struct zone *z; 2924 struct zonelist *zonelist; 2925 2926 zonelist = &pgdat->node_zonelists[0]; 2927 pos = 0; 2928 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2929 for (j = 0; j < nr_nodes; j++) { 2930 node = node_order[j]; 2931 z = &NODE_DATA(node)->node_zones[zone_type]; 2932 if (populated_zone(z)) { 2933 zoneref_set_zone(z, 2934 &zonelist->_zonerefs[pos++]); 2935 check_highest_zone(zone_type); 2936 } 2937 } 2938 } 2939 zonelist->_zonerefs[pos].zone = NULL; 2940 zonelist->_zonerefs[pos].zone_idx = 0; 2941 } 2942 2943 static int default_zonelist_order(void) 2944 { 2945 int nid, zone_type; 2946 unsigned long low_kmem_size,total_size; 2947 struct zone *z; 2948 int average_size; 2949 /* 2950 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2951 * If they are really small and used heavily, the system can fall 2952 * into OOM very easily. 2953 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2954 */ 2955 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2956 low_kmem_size = 0; 2957 total_size = 0; 2958 for_each_online_node(nid) { 2959 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2960 z = &NODE_DATA(nid)->node_zones[zone_type]; 2961 if (populated_zone(z)) { 2962 if (zone_type < ZONE_NORMAL) 2963 low_kmem_size += z->present_pages; 2964 total_size += z->present_pages; 2965 } else if (zone_type == ZONE_NORMAL) { 2966 /* 2967 * If any node has only lowmem, then node order 2968 * is preferred to allow kernel allocations 2969 * locally; otherwise, they can easily infringe 2970 * on other nodes when there is an abundance of 2971 * lowmem available to allocate from. 2972 */ 2973 return ZONELIST_ORDER_NODE; 2974 } 2975 } 2976 } 2977 if (!low_kmem_size || /* there are no DMA area. */ 2978 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2979 return ZONELIST_ORDER_NODE; 2980 /* 2981 * look into each node's config. 2982 * If there is a node whose DMA/DMA32 memory is very big area on 2983 * local memory, NODE_ORDER may be suitable. 2984 */ 2985 average_size = total_size / 2986 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2987 for_each_online_node(nid) { 2988 low_kmem_size = 0; 2989 total_size = 0; 2990 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2991 z = &NODE_DATA(nid)->node_zones[zone_type]; 2992 if (populated_zone(z)) { 2993 if (zone_type < ZONE_NORMAL) 2994 low_kmem_size += z->present_pages; 2995 total_size += z->present_pages; 2996 } 2997 } 2998 if (low_kmem_size && 2999 total_size > average_size && /* ignore small node */ 3000 low_kmem_size > total_size * 70/100) 3001 return ZONELIST_ORDER_NODE; 3002 } 3003 return ZONELIST_ORDER_ZONE; 3004 } 3005 3006 static void set_zonelist_order(void) 3007 { 3008 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3009 current_zonelist_order = default_zonelist_order(); 3010 else 3011 current_zonelist_order = user_zonelist_order; 3012 } 3013 3014 static void build_zonelists(pg_data_t *pgdat) 3015 { 3016 int j, node, load; 3017 enum zone_type i; 3018 nodemask_t used_mask; 3019 int local_node, prev_node; 3020 struct zonelist *zonelist; 3021 int order = current_zonelist_order; 3022 3023 /* initialize zonelists */ 3024 for (i = 0; i < MAX_ZONELISTS; i++) { 3025 zonelist = pgdat->node_zonelists + i; 3026 zonelist->_zonerefs[0].zone = NULL; 3027 zonelist->_zonerefs[0].zone_idx = 0; 3028 } 3029 3030 /* NUMA-aware ordering of nodes */ 3031 local_node = pgdat->node_id; 3032 load = nr_online_nodes; 3033 prev_node = local_node; 3034 nodes_clear(used_mask); 3035 3036 memset(node_order, 0, sizeof(node_order)); 3037 j = 0; 3038 3039 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3040 int distance = node_distance(local_node, node); 3041 3042 /* 3043 * If another node is sufficiently far away then it is better 3044 * to reclaim pages in a zone before going off node. 3045 */ 3046 if (distance > RECLAIM_DISTANCE) 3047 zone_reclaim_mode = 1; 3048 3049 /* 3050 * We don't want to pressure a particular node. 3051 * So adding penalty to the first node in same 3052 * distance group to make it round-robin. 3053 */ 3054 if (distance != node_distance(local_node, prev_node)) 3055 node_load[node] = load; 3056 3057 prev_node = node; 3058 load--; 3059 if (order == ZONELIST_ORDER_NODE) 3060 build_zonelists_in_node_order(pgdat, node); 3061 else 3062 node_order[j++] = node; /* remember order */ 3063 } 3064 3065 if (order == ZONELIST_ORDER_ZONE) { 3066 /* calculate node order -- i.e., DMA last! */ 3067 build_zonelists_in_zone_order(pgdat, j); 3068 } 3069 3070 build_thisnode_zonelists(pgdat); 3071 } 3072 3073 /* Construct the zonelist performance cache - see further mmzone.h */ 3074 static void build_zonelist_cache(pg_data_t *pgdat) 3075 { 3076 struct zonelist *zonelist; 3077 struct zonelist_cache *zlc; 3078 struct zoneref *z; 3079 3080 zonelist = &pgdat->node_zonelists[0]; 3081 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3082 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3083 for (z = zonelist->_zonerefs; z->zone; z++) 3084 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3085 } 3086 3087 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3088 /* 3089 * Return node id of node used for "local" allocations. 3090 * I.e., first node id of first zone in arg node's generic zonelist. 3091 * Used for initializing percpu 'numa_mem', which is used primarily 3092 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3093 */ 3094 int local_memory_node(int node) 3095 { 3096 struct zone *zone; 3097 3098 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3099 gfp_zone(GFP_KERNEL), 3100 NULL, 3101 &zone); 3102 return zone->node; 3103 } 3104 #endif 3105 3106 #else /* CONFIG_NUMA */ 3107 3108 static void set_zonelist_order(void) 3109 { 3110 current_zonelist_order = ZONELIST_ORDER_ZONE; 3111 } 3112 3113 static void build_zonelists(pg_data_t *pgdat) 3114 { 3115 int node, local_node; 3116 enum zone_type j; 3117 struct zonelist *zonelist; 3118 3119 local_node = pgdat->node_id; 3120 3121 zonelist = &pgdat->node_zonelists[0]; 3122 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3123 3124 /* 3125 * Now we build the zonelist so that it contains the zones 3126 * of all the other nodes. 3127 * We don't want to pressure a particular node, so when 3128 * building the zones for node N, we make sure that the 3129 * zones coming right after the local ones are those from 3130 * node N+1 (modulo N) 3131 */ 3132 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3133 if (!node_online(node)) 3134 continue; 3135 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3136 MAX_NR_ZONES - 1); 3137 } 3138 for (node = 0; node < local_node; node++) { 3139 if (!node_online(node)) 3140 continue; 3141 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3142 MAX_NR_ZONES - 1); 3143 } 3144 3145 zonelist->_zonerefs[j].zone = NULL; 3146 zonelist->_zonerefs[j].zone_idx = 0; 3147 } 3148 3149 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3150 static void build_zonelist_cache(pg_data_t *pgdat) 3151 { 3152 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3153 } 3154 3155 #endif /* CONFIG_NUMA */ 3156 3157 /* 3158 * Boot pageset table. One per cpu which is going to be used for all 3159 * zones and all nodes. The parameters will be set in such a way 3160 * that an item put on a list will immediately be handed over to 3161 * the buddy list. This is safe since pageset manipulation is done 3162 * with interrupts disabled. 3163 * 3164 * The boot_pagesets must be kept even after bootup is complete for 3165 * unused processors and/or zones. They do play a role for bootstrapping 3166 * hotplugged processors. 3167 * 3168 * zoneinfo_show() and maybe other functions do 3169 * not check if the processor is online before following the pageset pointer. 3170 * Other parts of the kernel may not check if the zone is available. 3171 */ 3172 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3173 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3174 static void setup_zone_pageset(struct zone *zone); 3175 3176 /* 3177 * Global mutex to protect against size modification of zonelists 3178 * as well as to serialize pageset setup for the new populated zone. 3179 */ 3180 DEFINE_MUTEX(zonelists_mutex); 3181 3182 /* return values int ....just for stop_machine() */ 3183 static __init_refok int __build_all_zonelists(void *data) 3184 { 3185 int nid; 3186 int cpu; 3187 3188 #ifdef CONFIG_NUMA 3189 memset(node_load, 0, sizeof(node_load)); 3190 #endif 3191 for_each_online_node(nid) { 3192 pg_data_t *pgdat = NODE_DATA(nid); 3193 3194 build_zonelists(pgdat); 3195 build_zonelist_cache(pgdat); 3196 } 3197 3198 /* 3199 * Initialize the boot_pagesets that are going to be used 3200 * for bootstrapping processors. The real pagesets for 3201 * each zone will be allocated later when the per cpu 3202 * allocator is available. 3203 * 3204 * boot_pagesets are used also for bootstrapping offline 3205 * cpus if the system is already booted because the pagesets 3206 * are needed to initialize allocators on a specific cpu too. 3207 * F.e. the percpu allocator needs the page allocator which 3208 * needs the percpu allocator in order to allocate its pagesets 3209 * (a chicken-egg dilemma). 3210 */ 3211 for_each_possible_cpu(cpu) { 3212 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3213 3214 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3215 /* 3216 * We now know the "local memory node" for each node-- 3217 * i.e., the node of the first zone in the generic zonelist. 3218 * Set up numa_mem percpu variable for on-line cpus. During 3219 * boot, only the boot cpu should be on-line; we'll init the 3220 * secondary cpus' numa_mem as they come on-line. During 3221 * node/memory hotplug, we'll fixup all on-line cpus. 3222 */ 3223 if (cpu_online(cpu)) 3224 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3225 #endif 3226 } 3227 3228 return 0; 3229 } 3230 3231 /* 3232 * Called with zonelists_mutex held always 3233 * unless system_state == SYSTEM_BOOTING. 3234 */ 3235 void __ref build_all_zonelists(void *data) 3236 { 3237 set_zonelist_order(); 3238 3239 if (system_state == SYSTEM_BOOTING) { 3240 __build_all_zonelists(NULL); 3241 mminit_verify_zonelist(); 3242 cpuset_init_current_mems_allowed(); 3243 } else { 3244 /* we have to stop all cpus to guarantee there is no user 3245 of zonelist */ 3246 #ifdef CONFIG_MEMORY_HOTPLUG 3247 if (data) 3248 setup_zone_pageset((struct zone *)data); 3249 #endif 3250 stop_machine(__build_all_zonelists, NULL, NULL); 3251 /* cpuset refresh routine should be here */ 3252 } 3253 vm_total_pages = nr_free_pagecache_pages(); 3254 /* 3255 * Disable grouping by mobility if the number of pages in the 3256 * system is too low to allow the mechanism to work. It would be 3257 * more accurate, but expensive to check per-zone. This check is 3258 * made on memory-hotadd so a system can start with mobility 3259 * disabled and enable it later 3260 */ 3261 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3262 page_group_by_mobility_disabled = 1; 3263 else 3264 page_group_by_mobility_disabled = 0; 3265 3266 printk("Built %i zonelists in %s order, mobility grouping %s. " 3267 "Total pages: %ld\n", 3268 nr_online_nodes, 3269 zonelist_order_name[current_zonelist_order], 3270 page_group_by_mobility_disabled ? "off" : "on", 3271 vm_total_pages); 3272 #ifdef CONFIG_NUMA 3273 printk("Policy zone: %s\n", zone_names[policy_zone]); 3274 #endif 3275 } 3276 3277 /* 3278 * Helper functions to size the waitqueue hash table. 3279 * Essentially these want to choose hash table sizes sufficiently 3280 * large so that collisions trying to wait on pages are rare. 3281 * But in fact, the number of active page waitqueues on typical 3282 * systems is ridiculously low, less than 200. So this is even 3283 * conservative, even though it seems large. 3284 * 3285 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3286 * waitqueues, i.e. the size of the waitq table given the number of pages. 3287 */ 3288 #define PAGES_PER_WAITQUEUE 256 3289 3290 #ifndef CONFIG_MEMORY_HOTPLUG 3291 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3292 { 3293 unsigned long size = 1; 3294 3295 pages /= PAGES_PER_WAITQUEUE; 3296 3297 while (size < pages) 3298 size <<= 1; 3299 3300 /* 3301 * Once we have dozens or even hundreds of threads sleeping 3302 * on IO we've got bigger problems than wait queue collision. 3303 * Limit the size of the wait table to a reasonable size. 3304 */ 3305 size = min(size, 4096UL); 3306 3307 return max(size, 4UL); 3308 } 3309 #else 3310 /* 3311 * A zone's size might be changed by hot-add, so it is not possible to determine 3312 * a suitable size for its wait_table. So we use the maximum size now. 3313 * 3314 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3315 * 3316 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3317 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3318 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3319 * 3320 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3321 * or more by the traditional way. (See above). It equals: 3322 * 3323 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3324 * ia64(16K page size) : = ( 8G + 4M)byte. 3325 * powerpc (64K page size) : = (32G +16M)byte. 3326 */ 3327 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3328 { 3329 return 4096UL; 3330 } 3331 #endif 3332 3333 /* 3334 * This is an integer logarithm so that shifts can be used later 3335 * to extract the more random high bits from the multiplicative 3336 * hash function before the remainder is taken. 3337 */ 3338 static inline unsigned long wait_table_bits(unsigned long size) 3339 { 3340 return ffz(~size); 3341 } 3342 3343 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3344 3345 /* 3346 * Check if a pageblock contains reserved pages 3347 */ 3348 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3349 { 3350 unsigned long pfn; 3351 3352 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3353 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3354 return 1; 3355 } 3356 return 0; 3357 } 3358 3359 /* 3360 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3361 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3362 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3363 * higher will lead to a bigger reserve which will get freed as contiguous 3364 * blocks as reclaim kicks in 3365 */ 3366 static void setup_zone_migrate_reserve(struct zone *zone) 3367 { 3368 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3369 struct page *page; 3370 unsigned long block_migratetype; 3371 int reserve; 3372 3373 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3374 start_pfn = zone->zone_start_pfn; 3375 end_pfn = start_pfn + zone->spanned_pages; 3376 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3377 pageblock_order; 3378 3379 /* 3380 * Reserve blocks are generally in place to help high-order atomic 3381 * allocations that are short-lived. A min_free_kbytes value that 3382 * would result in more than 2 reserve blocks for atomic allocations 3383 * is assumed to be in place to help anti-fragmentation for the 3384 * future allocation of hugepages at runtime. 3385 */ 3386 reserve = min(2, reserve); 3387 3388 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3389 if (!pfn_valid(pfn)) 3390 continue; 3391 page = pfn_to_page(pfn); 3392 3393 /* Watch out for overlapping nodes */ 3394 if (page_to_nid(page) != zone_to_nid(zone)) 3395 continue; 3396 3397 /* Blocks with reserved pages will never free, skip them. */ 3398 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3399 if (pageblock_is_reserved(pfn, block_end_pfn)) 3400 continue; 3401 3402 block_migratetype = get_pageblock_migratetype(page); 3403 3404 /* If this block is reserved, account for it */ 3405 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3406 reserve--; 3407 continue; 3408 } 3409 3410 /* Suitable for reserving if this block is movable */ 3411 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3412 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3413 move_freepages_block(zone, page, MIGRATE_RESERVE); 3414 reserve--; 3415 continue; 3416 } 3417 3418 /* 3419 * If the reserve is met and this is a previous reserved block, 3420 * take it back 3421 */ 3422 if (block_migratetype == MIGRATE_RESERVE) { 3423 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3424 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3425 } 3426 } 3427 } 3428 3429 /* 3430 * Initially all pages are reserved - free ones are freed 3431 * up by free_all_bootmem() once the early boot process is 3432 * done. Non-atomic initialization, single-pass. 3433 */ 3434 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3435 unsigned long start_pfn, enum memmap_context context) 3436 { 3437 struct page *page; 3438 unsigned long end_pfn = start_pfn + size; 3439 unsigned long pfn; 3440 struct zone *z; 3441 3442 if (highest_memmap_pfn < end_pfn - 1) 3443 highest_memmap_pfn = end_pfn - 1; 3444 3445 z = &NODE_DATA(nid)->node_zones[zone]; 3446 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3447 /* 3448 * There can be holes in boot-time mem_map[]s 3449 * handed to this function. They do not 3450 * exist on hotplugged memory. 3451 */ 3452 if (context == MEMMAP_EARLY) { 3453 if (!early_pfn_valid(pfn)) 3454 continue; 3455 if (!early_pfn_in_nid(pfn, nid)) 3456 continue; 3457 } 3458 page = pfn_to_page(pfn); 3459 set_page_links(page, zone, nid, pfn); 3460 mminit_verify_page_links(page, zone, nid, pfn); 3461 init_page_count(page); 3462 reset_page_mapcount(page); 3463 SetPageReserved(page); 3464 /* 3465 * Mark the block movable so that blocks are reserved for 3466 * movable at startup. This will force kernel allocations 3467 * to reserve their blocks rather than leaking throughout 3468 * the address space during boot when many long-lived 3469 * kernel allocations are made. Later some blocks near 3470 * the start are marked MIGRATE_RESERVE by 3471 * setup_zone_migrate_reserve() 3472 * 3473 * bitmap is created for zone's valid pfn range. but memmap 3474 * can be created for invalid pages (for alignment) 3475 * check here not to call set_pageblock_migratetype() against 3476 * pfn out of zone. 3477 */ 3478 if ((z->zone_start_pfn <= pfn) 3479 && (pfn < z->zone_start_pfn + z->spanned_pages) 3480 && !(pfn & (pageblock_nr_pages - 1))) 3481 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3482 3483 INIT_LIST_HEAD(&page->lru); 3484 #ifdef WANT_PAGE_VIRTUAL 3485 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3486 if (!is_highmem_idx(zone)) 3487 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3488 #endif 3489 } 3490 } 3491 3492 static void __meminit zone_init_free_lists(struct zone *zone) 3493 { 3494 int order, t; 3495 for_each_migratetype_order(order, t) { 3496 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3497 zone->free_area[order].nr_free = 0; 3498 } 3499 } 3500 3501 #ifndef __HAVE_ARCH_MEMMAP_INIT 3502 #define memmap_init(size, nid, zone, start_pfn) \ 3503 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3504 #endif 3505 3506 static int zone_batchsize(struct zone *zone) 3507 { 3508 #ifdef CONFIG_MMU 3509 int batch; 3510 3511 /* 3512 * The per-cpu-pages pools are set to around 1000th of the 3513 * size of the zone. But no more than 1/2 of a meg. 3514 * 3515 * OK, so we don't know how big the cache is. So guess. 3516 */ 3517 batch = zone->present_pages / 1024; 3518 if (batch * PAGE_SIZE > 512 * 1024) 3519 batch = (512 * 1024) / PAGE_SIZE; 3520 batch /= 4; /* We effectively *= 4 below */ 3521 if (batch < 1) 3522 batch = 1; 3523 3524 /* 3525 * Clamp the batch to a 2^n - 1 value. Having a power 3526 * of 2 value was found to be more likely to have 3527 * suboptimal cache aliasing properties in some cases. 3528 * 3529 * For example if 2 tasks are alternately allocating 3530 * batches of pages, one task can end up with a lot 3531 * of pages of one half of the possible page colors 3532 * and the other with pages of the other colors. 3533 */ 3534 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3535 3536 return batch; 3537 3538 #else 3539 /* The deferral and batching of frees should be suppressed under NOMMU 3540 * conditions. 3541 * 3542 * The problem is that NOMMU needs to be able to allocate large chunks 3543 * of contiguous memory as there's no hardware page translation to 3544 * assemble apparent contiguous memory from discontiguous pages. 3545 * 3546 * Queueing large contiguous runs of pages for batching, however, 3547 * causes the pages to actually be freed in smaller chunks. As there 3548 * can be a significant delay between the individual batches being 3549 * recycled, this leads to the once large chunks of space being 3550 * fragmented and becoming unavailable for high-order allocations. 3551 */ 3552 return 0; 3553 #endif 3554 } 3555 3556 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3557 { 3558 struct per_cpu_pages *pcp; 3559 int migratetype; 3560 3561 memset(p, 0, sizeof(*p)); 3562 3563 pcp = &p->pcp; 3564 pcp->count = 0; 3565 pcp->high = 6 * batch; 3566 pcp->batch = max(1UL, 1 * batch); 3567 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3568 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3569 } 3570 3571 /* 3572 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3573 * to the value high for the pageset p. 3574 */ 3575 3576 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3577 unsigned long high) 3578 { 3579 struct per_cpu_pages *pcp; 3580 3581 pcp = &p->pcp; 3582 pcp->high = high; 3583 pcp->batch = max(1UL, high/4); 3584 if ((high/4) > (PAGE_SHIFT * 8)) 3585 pcp->batch = PAGE_SHIFT * 8; 3586 } 3587 3588 static void setup_zone_pageset(struct zone *zone) 3589 { 3590 int cpu; 3591 3592 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3593 3594 for_each_possible_cpu(cpu) { 3595 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3596 3597 setup_pageset(pcp, zone_batchsize(zone)); 3598 3599 if (percpu_pagelist_fraction) 3600 setup_pagelist_highmark(pcp, 3601 (zone->present_pages / 3602 percpu_pagelist_fraction)); 3603 } 3604 } 3605 3606 /* 3607 * Allocate per cpu pagesets and initialize them. 3608 * Before this call only boot pagesets were available. 3609 */ 3610 void __init setup_per_cpu_pageset(void) 3611 { 3612 struct zone *zone; 3613 3614 for_each_populated_zone(zone) 3615 setup_zone_pageset(zone); 3616 } 3617 3618 static noinline __init_refok 3619 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3620 { 3621 int i; 3622 struct pglist_data *pgdat = zone->zone_pgdat; 3623 size_t alloc_size; 3624 3625 /* 3626 * The per-page waitqueue mechanism uses hashed waitqueues 3627 * per zone. 3628 */ 3629 zone->wait_table_hash_nr_entries = 3630 wait_table_hash_nr_entries(zone_size_pages); 3631 zone->wait_table_bits = 3632 wait_table_bits(zone->wait_table_hash_nr_entries); 3633 alloc_size = zone->wait_table_hash_nr_entries 3634 * sizeof(wait_queue_head_t); 3635 3636 if (!slab_is_available()) { 3637 zone->wait_table = (wait_queue_head_t *) 3638 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3639 } else { 3640 /* 3641 * This case means that a zone whose size was 0 gets new memory 3642 * via memory hot-add. 3643 * But it may be the case that a new node was hot-added. In 3644 * this case vmalloc() will not be able to use this new node's 3645 * memory - this wait_table must be initialized to use this new 3646 * node itself as well. 3647 * To use this new node's memory, further consideration will be 3648 * necessary. 3649 */ 3650 zone->wait_table = vmalloc(alloc_size); 3651 } 3652 if (!zone->wait_table) 3653 return -ENOMEM; 3654 3655 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3656 init_waitqueue_head(zone->wait_table + i); 3657 3658 return 0; 3659 } 3660 3661 static int __zone_pcp_update(void *data) 3662 { 3663 struct zone *zone = data; 3664 int cpu; 3665 unsigned long batch = zone_batchsize(zone), flags; 3666 3667 for_each_possible_cpu(cpu) { 3668 struct per_cpu_pageset *pset; 3669 struct per_cpu_pages *pcp; 3670 3671 pset = per_cpu_ptr(zone->pageset, cpu); 3672 pcp = &pset->pcp; 3673 3674 local_irq_save(flags); 3675 free_pcppages_bulk(zone, pcp->count, pcp); 3676 setup_pageset(pset, batch); 3677 local_irq_restore(flags); 3678 } 3679 return 0; 3680 } 3681 3682 void zone_pcp_update(struct zone *zone) 3683 { 3684 stop_machine(__zone_pcp_update, zone, NULL); 3685 } 3686 3687 static __meminit void zone_pcp_init(struct zone *zone) 3688 { 3689 /* 3690 * per cpu subsystem is not up at this point. The following code 3691 * relies on the ability of the linker to provide the 3692 * offset of a (static) per cpu variable into the per cpu area. 3693 */ 3694 zone->pageset = &boot_pageset; 3695 3696 if (zone->present_pages) 3697 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3698 zone->name, zone->present_pages, 3699 zone_batchsize(zone)); 3700 } 3701 3702 __meminit int init_currently_empty_zone(struct zone *zone, 3703 unsigned long zone_start_pfn, 3704 unsigned long size, 3705 enum memmap_context context) 3706 { 3707 struct pglist_data *pgdat = zone->zone_pgdat; 3708 int ret; 3709 ret = zone_wait_table_init(zone, size); 3710 if (ret) 3711 return ret; 3712 pgdat->nr_zones = zone_idx(zone) + 1; 3713 3714 zone->zone_start_pfn = zone_start_pfn; 3715 3716 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3717 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3718 pgdat->node_id, 3719 (unsigned long)zone_idx(zone), 3720 zone_start_pfn, (zone_start_pfn + size)); 3721 3722 zone_init_free_lists(zone); 3723 3724 return 0; 3725 } 3726 3727 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3728 /* 3729 * Basic iterator support. Return the first range of PFNs for a node 3730 * Note: nid == MAX_NUMNODES returns first region regardless of node 3731 */ 3732 static int __meminit first_active_region_index_in_nid(int nid) 3733 { 3734 int i; 3735 3736 for (i = 0; i < nr_nodemap_entries; i++) 3737 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3738 return i; 3739 3740 return -1; 3741 } 3742 3743 /* 3744 * Basic iterator support. Return the next active range of PFNs for a node 3745 * Note: nid == MAX_NUMNODES returns next region regardless of node 3746 */ 3747 static int __meminit next_active_region_index_in_nid(int index, int nid) 3748 { 3749 for (index = index + 1; index < nr_nodemap_entries; index++) 3750 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3751 return index; 3752 3753 return -1; 3754 } 3755 3756 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3757 /* 3758 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3759 * Architectures may implement their own version but if add_active_range() 3760 * was used and there are no special requirements, this is a convenient 3761 * alternative 3762 */ 3763 int __meminit __early_pfn_to_nid(unsigned long pfn) 3764 { 3765 int i; 3766 3767 for (i = 0; i < nr_nodemap_entries; i++) { 3768 unsigned long start_pfn = early_node_map[i].start_pfn; 3769 unsigned long end_pfn = early_node_map[i].end_pfn; 3770 3771 if (start_pfn <= pfn && pfn < end_pfn) 3772 return early_node_map[i].nid; 3773 } 3774 /* This is a memory hole */ 3775 return -1; 3776 } 3777 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3778 3779 int __meminit early_pfn_to_nid(unsigned long pfn) 3780 { 3781 int nid; 3782 3783 nid = __early_pfn_to_nid(pfn); 3784 if (nid >= 0) 3785 return nid; 3786 /* just returns 0 */ 3787 return 0; 3788 } 3789 3790 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3791 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3792 { 3793 int nid; 3794 3795 nid = __early_pfn_to_nid(pfn); 3796 if (nid >= 0 && nid != node) 3797 return false; 3798 return true; 3799 } 3800 #endif 3801 3802 /* Basic iterator support to walk early_node_map[] */ 3803 #define for_each_active_range_index_in_nid(i, nid) \ 3804 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3805 i = next_active_region_index_in_nid(i, nid)) 3806 3807 /** 3808 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3809 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3810 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3811 * 3812 * If an architecture guarantees that all ranges registered with 3813 * add_active_ranges() contain no holes and may be freed, this 3814 * this function may be used instead of calling free_bootmem() manually. 3815 */ 3816 void __init free_bootmem_with_active_regions(int nid, 3817 unsigned long max_low_pfn) 3818 { 3819 int i; 3820 3821 for_each_active_range_index_in_nid(i, nid) { 3822 unsigned long size_pages = 0; 3823 unsigned long end_pfn = early_node_map[i].end_pfn; 3824 3825 if (early_node_map[i].start_pfn >= max_low_pfn) 3826 continue; 3827 3828 if (end_pfn > max_low_pfn) 3829 end_pfn = max_low_pfn; 3830 3831 size_pages = end_pfn - early_node_map[i].start_pfn; 3832 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3833 PFN_PHYS(early_node_map[i].start_pfn), 3834 size_pages << PAGE_SHIFT); 3835 } 3836 } 3837 3838 #ifdef CONFIG_HAVE_MEMBLOCK 3839 /* 3840 * Basic iterator support. Return the last range of PFNs for a node 3841 * Note: nid == MAX_NUMNODES returns last region regardless of node 3842 */ 3843 static int __meminit last_active_region_index_in_nid(int nid) 3844 { 3845 int i; 3846 3847 for (i = nr_nodemap_entries - 1; i >= 0; i--) 3848 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3849 return i; 3850 3851 return -1; 3852 } 3853 3854 /* 3855 * Basic iterator support. Return the previous active range of PFNs for a node 3856 * Note: nid == MAX_NUMNODES returns next region regardless of node 3857 */ 3858 static int __meminit previous_active_region_index_in_nid(int index, int nid) 3859 { 3860 for (index = index - 1; index >= 0; index--) 3861 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3862 return index; 3863 3864 return -1; 3865 } 3866 3867 #define for_each_active_range_index_in_nid_reverse(i, nid) \ 3868 for (i = last_active_region_index_in_nid(nid); i != -1; \ 3869 i = previous_active_region_index_in_nid(i, nid)) 3870 3871 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 3872 u64 goal, u64 limit) 3873 { 3874 int i; 3875 3876 /* Need to go over early_node_map to find out good range for node */ 3877 for_each_active_range_index_in_nid_reverse(i, nid) { 3878 u64 addr; 3879 u64 ei_start, ei_last; 3880 u64 final_start, final_end; 3881 3882 ei_last = early_node_map[i].end_pfn; 3883 ei_last <<= PAGE_SHIFT; 3884 ei_start = early_node_map[i].start_pfn; 3885 ei_start <<= PAGE_SHIFT; 3886 3887 final_start = max(ei_start, goal); 3888 final_end = min(ei_last, limit); 3889 3890 if (final_start >= final_end) 3891 continue; 3892 3893 addr = memblock_find_in_range(final_start, final_end, size, align); 3894 3895 if (addr == MEMBLOCK_ERROR) 3896 continue; 3897 3898 return addr; 3899 } 3900 3901 return MEMBLOCK_ERROR; 3902 } 3903 #endif 3904 3905 int __init add_from_early_node_map(struct range *range, int az, 3906 int nr_range, int nid) 3907 { 3908 int i; 3909 u64 start, end; 3910 3911 /* need to go over early_node_map to find out good range for node */ 3912 for_each_active_range_index_in_nid(i, nid) { 3913 start = early_node_map[i].start_pfn; 3914 end = early_node_map[i].end_pfn; 3915 nr_range = add_range(range, az, nr_range, start, end); 3916 } 3917 return nr_range; 3918 } 3919 3920 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3921 { 3922 int i; 3923 int ret; 3924 3925 for_each_active_range_index_in_nid(i, nid) { 3926 ret = work_fn(early_node_map[i].start_pfn, 3927 early_node_map[i].end_pfn, data); 3928 if (ret) 3929 break; 3930 } 3931 } 3932 /** 3933 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3934 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3935 * 3936 * If an architecture guarantees that all ranges registered with 3937 * add_active_ranges() contain no holes and may be freed, this 3938 * function may be used instead of calling memory_present() manually. 3939 */ 3940 void __init sparse_memory_present_with_active_regions(int nid) 3941 { 3942 int i; 3943 3944 for_each_active_range_index_in_nid(i, nid) 3945 memory_present(early_node_map[i].nid, 3946 early_node_map[i].start_pfn, 3947 early_node_map[i].end_pfn); 3948 } 3949 3950 /** 3951 * get_pfn_range_for_nid - Return the start and end page frames for a node 3952 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3953 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3954 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3955 * 3956 * It returns the start and end page frame of a node based on information 3957 * provided by an arch calling add_active_range(). If called for a node 3958 * with no available memory, a warning is printed and the start and end 3959 * PFNs will be 0. 3960 */ 3961 void __meminit get_pfn_range_for_nid(unsigned int nid, 3962 unsigned long *start_pfn, unsigned long *end_pfn) 3963 { 3964 int i; 3965 *start_pfn = -1UL; 3966 *end_pfn = 0; 3967 3968 for_each_active_range_index_in_nid(i, nid) { 3969 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3970 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3971 } 3972 3973 if (*start_pfn == -1UL) 3974 *start_pfn = 0; 3975 } 3976 3977 /* 3978 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3979 * assumption is made that zones within a node are ordered in monotonic 3980 * increasing memory addresses so that the "highest" populated zone is used 3981 */ 3982 static void __init find_usable_zone_for_movable(void) 3983 { 3984 int zone_index; 3985 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3986 if (zone_index == ZONE_MOVABLE) 3987 continue; 3988 3989 if (arch_zone_highest_possible_pfn[zone_index] > 3990 arch_zone_lowest_possible_pfn[zone_index]) 3991 break; 3992 } 3993 3994 VM_BUG_ON(zone_index == -1); 3995 movable_zone = zone_index; 3996 } 3997 3998 /* 3999 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4000 * because it is sized independent of architecture. Unlike the other zones, 4001 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4002 * in each node depending on the size of each node and how evenly kernelcore 4003 * is distributed. This helper function adjusts the zone ranges 4004 * provided by the architecture for a given node by using the end of the 4005 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4006 * zones within a node are in order of monotonic increases memory addresses 4007 */ 4008 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4009 unsigned long zone_type, 4010 unsigned long node_start_pfn, 4011 unsigned long node_end_pfn, 4012 unsigned long *zone_start_pfn, 4013 unsigned long *zone_end_pfn) 4014 { 4015 /* Only adjust if ZONE_MOVABLE is on this node */ 4016 if (zone_movable_pfn[nid]) { 4017 /* Size ZONE_MOVABLE */ 4018 if (zone_type == ZONE_MOVABLE) { 4019 *zone_start_pfn = zone_movable_pfn[nid]; 4020 *zone_end_pfn = min(node_end_pfn, 4021 arch_zone_highest_possible_pfn[movable_zone]); 4022 4023 /* Adjust for ZONE_MOVABLE starting within this range */ 4024 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4025 *zone_end_pfn > zone_movable_pfn[nid]) { 4026 *zone_end_pfn = zone_movable_pfn[nid]; 4027 4028 /* Check if this whole range is within ZONE_MOVABLE */ 4029 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4030 *zone_start_pfn = *zone_end_pfn; 4031 } 4032 } 4033 4034 /* 4035 * Return the number of pages a zone spans in a node, including holes 4036 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4037 */ 4038 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4039 unsigned long zone_type, 4040 unsigned long *ignored) 4041 { 4042 unsigned long node_start_pfn, node_end_pfn; 4043 unsigned long zone_start_pfn, zone_end_pfn; 4044 4045 /* Get the start and end of the node and zone */ 4046 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4047 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4048 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4049 adjust_zone_range_for_zone_movable(nid, zone_type, 4050 node_start_pfn, node_end_pfn, 4051 &zone_start_pfn, &zone_end_pfn); 4052 4053 /* Check that this node has pages within the zone's required range */ 4054 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4055 return 0; 4056 4057 /* Move the zone boundaries inside the node if necessary */ 4058 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4059 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4060 4061 /* Return the spanned pages */ 4062 return zone_end_pfn - zone_start_pfn; 4063 } 4064 4065 /* 4066 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4067 * then all holes in the requested range will be accounted for. 4068 */ 4069 unsigned long __meminit __absent_pages_in_range(int nid, 4070 unsigned long range_start_pfn, 4071 unsigned long range_end_pfn) 4072 { 4073 int i = 0; 4074 unsigned long prev_end_pfn = 0, hole_pages = 0; 4075 unsigned long start_pfn; 4076 4077 /* Find the end_pfn of the first active range of pfns in the node */ 4078 i = first_active_region_index_in_nid(nid); 4079 if (i == -1) 4080 return 0; 4081 4082 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4083 4084 /* Account for ranges before physical memory on this node */ 4085 if (early_node_map[i].start_pfn > range_start_pfn) 4086 hole_pages = prev_end_pfn - range_start_pfn; 4087 4088 /* Find all holes for the zone within the node */ 4089 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 4090 4091 /* No need to continue if prev_end_pfn is outside the zone */ 4092 if (prev_end_pfn >= range_end_pfn) 4093 break; 4094 4095 /* Make sure the end of the zone is not within the hole */ 4096 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4097 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 4098 4099 /* Update the hole size cound and move on */ 4100 if (start_pfn > range_start_pfn) { 4101 BUG_ON(prev_end_pfn > start_pfn); 4102 hole_pages += start_pfn - prev_end_pfn; 4103 } 4104 prev_end_pfn = early_node_map[i].end_pfn; 4105 } 4106 4107 /* Account for ranges past physical memory on this node */ 4108 if (range_end_pfn > prev_end_pfn) 4109 hole_pages += range_end_pfn - 4110 max(range_start_pfn, prev_end_pfn); 4111 4112 return hole_pages; 4113 } 4114 4115 /** 4116 * absent_pages_in_range - Return number of page frames in holes within a range 4117 * @start_pfn: The start PFN to start searching for holes 4118 * @end_pfn: The end PFN to stop searching for holes 4119 * 4120 * It returns the number of pages frames in memory holes within a range. 4121 */ 4122 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4123 unsigned long end_pfn) 4124 { 4125 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4126 } 4127 4128 /* Return the number of page frames in holes in a zone on a node */ 4129 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4130 unsigned long zone_type, 4131 unsigned long *ignored) 4132 { 4133 unsigned long node_start_pfn, node_end_pfn; 4134 unsigned long zone_start_pfn, zone_end_pfn; 4135 4136 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4137 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 4138 node_start_pfn); 4139 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 4140 node_end_pfn); 4141 4142 adjust_zone_range_for_zone_movable(nid, zone_type, 4143 node_start_pfn, node_end_pfn, 4144 &zone_start_pfn, &zone_end_pfn); 4145 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4146 } 4147 4148 #else 4149 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4150 unsigned long zone_type, 4151 unsigned long *zones_size) 4152 { 4153 return zones_size[zone_type]; 4154 } 4155 4156 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4157 unsigned long zone_type, 4158 unsigned long *zholes_size) 4159 { 4160 if (!zholes_size) 4161 return 0; 4162 4163 return zholes_size[zone_type]; 4164 } 4165 4166 #endif 4167 4168 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4169 unsigned long *zones_size, unsigned long *zholes_size) 4170 { 4171 unsigned long realtotalpages, totalpages = 0; 4172 enum zone_type i; 4173 4174 for (i = 0; i < MAX_NR_ZONES; i++) 4175 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4176 zones_size); 4177 pgdat->node_spanned_pages = totalpages; 4178 4179 realtotalpages = totalpages; 4180 for (i = 0; i < MAX_NR_ZONES; i++) 4181 realtotalpages -= 4182 zone_absent_pages_in_node(pgdat->node_id, i, 4183 zholes_size); 4184 pgdat->node_present_pages = realtotalpages; 4185 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4186 realtotalpages); 4187 } 4188 4189 #ifndef CONFIG_SPARSEMEM 4190 /* 4191 * Calculate the size of the zone->blockflags rounded to an unsigned long 4192 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4193 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4194 * round what is now in bits to nearest long in bits, then return it in 4195 * bytes. 4196 */ 4197 static unsigned long __init usemap_size(unsigned long zonesize) 4198 { 4199 unsigned long usemapsize; 4200 4201 usemapsize = roundup(zonesize, pageblock_nr_pages); 4202 usemapsize = usemapsize >> pageblock_order; 4203 usemapsize *= NR_PAGEBLOCK_BITS; 4204 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4205 4206 return usemapsize / 8; 4207 } 4208 4209 static void __init setup_usemap(struct pglist_data *pgdat, 4210 struct zone *zone, unsigned long zonesize) 4211 { 4212 unsigned long usemapsize = usemap_size(zonesize); 4213 zone->pageblock_flags = NULL; 4214 if (usemapsize) 4215 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4216 usemapsize); 4217 } 4218 #else 4219 static inline void setup_usemap(struct pglist_data *pgdat, 4220 struct zone *zone, unsigned long zonesize) {} 4221 #endif /* CONFIG_SPARSEMEM */ 4222 4223 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4224 4225 /* Return a sensible default order for the pageblock size. */ 4226 static inline int pageblock_default_order(void) 4227 { 4228 if (HPAGE_SHIFT > PAGE_SHIFT) 4229 return HUGETLB_PAGE_ORDER; 4230 4231 return MAX_ORDER-1; 4232 } 4233 4234 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4235 static inline void __init set_pageblock_order(unsigned int order) 4236 { 4237 /* Check that pageblock_nr_pages has not already been setup */ 4238 if (pageblock_order) 4239 return; 4240 4241 /* 4242 * Assume the largest contiguous order of interest is a huge page. 4243 * This value may be variable depending on boot parameters on IA64 4244 */ 4245 pageblock_order = order; 4246 } 4247 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4248 4249 /* 4250 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4251 * and pageblock_default_order() are unused as pageblock_order is set 4252 * at compile-time. See include/linux/pageblock-flags.h for the values of 4253 * pageblock_order based on the kernel config 4254 */ 4255 static inline int pageblock_default_order(unsigned int order) 4256 { 4257 return MAX_ORDER-1; 4258 } 4259 #define set_pageblock_order(x) do {} while (0) 4260 4261 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4262 4263 /* 4264 * Set up the zone data structures: 4265 * - mark all pages reserved 4266 * - mark all memory queues empty 4267 * - clear the memory bitmaps 4268 */ 4269 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4270 unsigned long *zones_size, unsigned long *zholes_size) 4271 { 4272 enum zone_type j; 4273 int nid = pgdat->node_id; 4274 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4275 int ret; 4276 4277 pgdat_resize_init(pgdat); 4278 pgdat->nr_zones = 0; 4279 init_waitqueue_head(&pgdat->kswapd_wait); 4280 pgdat->kswapd_max_order = 0; 4281 pgdat_page_cgroup_init(pgdat); 4282 4283 for (j = 0; j < MAX_NR_ZONES; j++) { 4284 struct zone *zone = pgdat->node_zones + j; 4285 unsigned long size, realsize, memmap_pages; 4286 enum lru_list l; 4287 4288 size = zone_spanned_pages_in_node(nid, j, zones_size); 4289 realsize = size - zone_absent_pages_in_node(nid, j, 4290 zholes_size); 4291 4292 /* 4293 * Adjust realsize so that it accounts for how much memory 4294 * is used by this zone for memmap. This affects the watermark 4295 * and per-cpu initialisations 4296 */ 4297 memmap_pages = 4298 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4299 if (realsize >= memmap_pages) { 4300 realsize -= memmap_pages; 4301 if (memmap_pages) 4302 printk(KERN_DEBUG 4303 " %s zone: %lu pages used for memmap\n", 4304 zone_names[j], memmap_pages); 4305 } else 4306 printk(KERN_WARNING 4307 " %s zone: %lu pages exceeds realsize %lu\n", 4308 zone_names[j], memmap_pages, realsize); 4309 4310 /* Account for reserved pages */ 4311 if (j == 0 && realsize > dma_reserve) { 4312 realsize -= dma_reserve; 4313 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4314 zone_names[0], dma_reserve); 4315 } 4316 4317 if (!is_highmem_idx(j)) 4318 nr_kernel_pages += realsize; 4319 nr_all_pages += realsize; 4320 4321 zone->spanned_pages = size; 4322 zone->present_pages = realsize; 4323 #ifdef CONFIG_NUMA 4324 zone->node = nid; 4325 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4326 / 100; 4327 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4328 #endif 4329 zone->name = zone_names[j]; 4330 spin_lock_init(&zone->lock); 4331 spin_lock_init(&zone->lru_lock); 4332 zone_seqlock_init(zone); 4333 zone->zone_pgdat = pgdat; 4334 4335 zone_pcp_init(zone); 4336 for_each_lru(l) 4337 INIT_LIST_HEAD(&zone->lru[l].list); 4338 zone->reclaim_stat.recent_rotated[0] = 0; 4339 zone->reclaim_stat.recent_rotated[1] = 0; 4340 zone->reclaim_stat.recent_scanned[0] = 0; 4341 zone->reclaim_stat.recent_scanned[1] = 0; 4342 zap_zone_vm_stats(zone); 4343 zone->flags = 0; 4344 if (!size) 4345 continue; 4346 4347 set_pageblock_order(pageblock_default_order()); 4348 setup_usemap(pgdat, zone, size); 4349 ret = init_currently_empty_zone(zone, zone_start_pfn, 4350 size, MEMMAP_EARLY); 4351 BUG_ON(ret); 4352 memmap_init(size, nid, j, zone_start_pfn); 4353 zone_start_pfn += size; 4354 } 4355 } 4356 4357 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4358 { 4359 /* Skip empty nodes */ 4360 if (!pgdat->node_spanned_pages) 4361 return; 4362 4363 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4364 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4365 if (!pgdat->node_mem_map) { 4366 unsigned long size, start, end; 4367 struct page *map; 4368 4369 /* 4370 * The zone's endpoints aren't required to be MAX_ORDER 4371 * aligned but the node_mem_map endpoints must be in order 4372 * for the buddy allocator to function correctly. 4373 */ 4374 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4375 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4376 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4377 size = (end - start) * sizeof(struct page); 4378 map = alloc_remap(pgdat->node_id, size); 4379 if (!map) 4380 map = alloc_bootmem_node_nopanic(pgdat, size); 4381 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4382 } 4383 #ifndef CONFIG_NEED_MULTIPLE_NODES 4384 /* 4385 * With no DISCONTIG, the global mem_map is just set as node 0's 4386 */ 4387 if (pgdat == NODE_DATA(0)) { 4388 mem_map = NODE_DATA(0)->node_mem_map; 4389 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4390 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4391 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4392 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4393 } 4394 #endif 4395 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4396 } 4397 4398 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4399 unsigned long node_start_pfn, unsigned long *zholes_size) 4400 { 4401 pg_data_t *pgdat = NODE_DATA(nid); 4402 4403 pgdat->node_id = nid; 4404 pgdat->node_start_pfn = node_start_pfn; 4405 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4406 4407 alloc_node_mem_map(pgdat); 4408 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4409 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4410 nid, (unsigned long)pgdat, 4411 (unsigned long)pgdat->node_mem_map); 4412 #endif 4413 4414 free_area_init_core(pgdat, zones_size, zholes_size); 4415 } 4416 4417 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4418 4419 #if MAX_NUMNODES > 1 4420 /* 4421 * Figure out the number of possible node ids. 4422 */ 4423 static void __init setup_nr_node_ids(void) 4424 { 4425 unsigned int node; 4426 unsigned int highest = 0; 4427 4428 for_each_node_mask(node, node_possible_map) 4429 highest = node; 4430 nr_node_ids = highest + 1; 4431 } 4432 #else 4433 static inline void setup_nr_node_ids(void) 4434 { 4435 } 4436 #endif 4437 4438 /** 4439 * add_active_range - Register a range of PFNs backed by physical memory 4440 * @nid: The node ID the range resides on 4441 * @start_pfn: The start PFN of the available physical memory 4442 * @end_pfn: The end PFN of the available physical memory 4443 * 4444 * These ranges are stored in an early_node_map[] and later used by 4445 * free_area_init_nodes() to calculate zone sizes and holes. If the 4446 * range spans a memory hole, it is up to the architecture to ensure 4447 * the memory is not freed by the bootmem allocator. If possible 4448 * the range being registered will be merged with existing ranges. 4449 */ 4450 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4451 unsigned long end_pfn) 4452 { 4453 int i; 4454 4455 mminit_dprintk(MMINIT_TRACE, "memory_register", 4456 "Entering add_active_range(%d, %#lx, %#lx) " 4457 "%d entries of %d used\n", 4458 nid, start_pfn, end_pfn, 4459 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4460 4461 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4462 4463 /* Merge with existing active regions if possible */ 4464 for (i = 0; i < nr_nodemap_entries; i++) { 4465 if (early_node_map[i].nid != nid) 4466 continue; 4467 4468 /* Skip if an existing region covers this new one */ 4469 if (start_pfn >= early_node_map[i].start_pfn && 4470 end_pfn <= early_node_map[i].end_pfn) 4471 return; 4472 4473 /* Merge forward if suitable */ 4474 if (start_pfn <= early_node_map[i].end_pfn && 4475 end_pfn > early_node_map[i].end_pfn) { 4476 early_node_map[i].end_pfn = end_pfn; 4477 return; 4478 } 4479 4480 /* Merge backward if suitable */ 4481 if (start_pfn < early_node_map[i].start_pfn && 4482 end_pfn >= early_node_map[i].start_pfn) { 4483 early_node_map[i].start_pfn = start_pfn; 4484 return; 4485 } 4486 } 4487 4488 /* Check that early_node_map is large enough */ 4489 if (i >= MAX_ACTIVE_REGIONS) { 4490 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4491 MAX_ACTIVE_REGIONS); 4492 return; 4493 } 4494 4495 early_node_map[i].nid = nid; 4496 early_node_map[i].start_pfn = start_pfn; 4497 early_node_map[i].end_pfn = end_pfn; 4498 nr_nodemap_entries = i + 1; 4499 } 4500 4501 /** 4502 * remove_active_range - Shrink an existing registered range of PFNs 4503 * @nid: The node id the range is on that should be shrunk 4504 * @start_pfn: The new PFN of the range 4505 * @end_pfn: The new PFN of the range 4506 * 4507 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4508 * The map is kept near the end physical page range that has already been 4509 * registered. This function allows an arch to shrink an existing registered 4510 * range. 4511 */ 4512 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4513 unsigned long end_pfn) 4514 { 4515 int i, j; 4516 int removed = 0; 4517 4518 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4519 nid, start_pfn, end_pfn); 4520 4521 /* Find the old active region end and shrink */ 4522 for_each_active_range_index_in_nid(i, nid) { 4523 if (early_node_map[i].start_pfn >= start_pfn && 4524 early_node_map[i].end_pfn <= end_pfn) { 4525 /* clear it */ 4526 early_node_map[i].start_pfn = 0; 4527 early_node_map[i].end_pfn = 0; 4528 removed = 1; 4529 continue; 4530 } 4531 if (early_node_map[i].start_pfn < start_pfn && 4532 early_node_map[i].end_pfn > start_pfn) { 4533 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4534 early_node_map[i].end_pfn = start_pfn; 4535 if (temp_end_pfn > end_pfn) 4536 add_active_range(nid, end_pfn, temp_end_pfn); 4537 continue; 4538 } 4539 if (early_node_map[i].start_pfn >= start_pfn && 4540 early_node_map[i].end_pfn > end_pfn && 4541 early_node_map[i].start_pfn < end_pfn) { 4542 early_node_map[i].start_pfn = end_pfn; 4543 continue; 4544 } 4545 } 4546 4547 if (!removed) 4548 return; 4549 4550 /* remove the blank ones */ 4551 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4552 if (early_node_map[i].nid != nid) 4553 continue; 4554 if (early_node_map[i].end_pfn) 4555 continue; 4556 /* we found it, get rid of it */ 4557 for (j = i; j < nr_nodemap_entries - 1; j++) 4558 memcpy(&early_node_map[j], &early_node_map[j+1], 4559 sizeof(early_node_map[j])); 4560 j = nr_nodemap_entries - 1; 4561 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4562 nr_nodemap_entries--; 4563 } 4564 } 4565 4566 /** 4567 * remove_all_active_ranges - Remove all currently registered regions 4568 * 4569 * During discovery, it may be found that a table like SRAT is invalid 4570 * and an alternative discovery method must be used. This function removes 4571 * all currently registered regions. 4572 */ 4573 void __init remove_all_active_ranges(void) 4574 { 4575 memset(early_node_map, 0, sizeof(early_node_map)); 4576 nr_nodemap_entries = 0; 4577 } 4578 4579 /* Compare two active node_active_regions */ 4580 static int __init cmp_node_active_region(const void *a, const void *b) 4581 { 4582 struct node_active_region *arange = (struct node_active_region *)a; 4583 struct node_active_region *brange = (struct node_active_region *)b; 4584 4585 /* Done this way to avoid overflows */ 4586 if (arange->start_pfn > brange->start_pfn) 4587 return 1; 4588 if (arange->start_pfn < brange->start_pfn) 4589 return -1; 4590 4591 return 0; 4592 } 4593 4594 /* sort the node_map by start_pfn */ 4595 void __init sort_node_map(void) 4596 { 4597 sort(early_node_map, (size_t)nr_nodemap_entries, 4598 sizeof(struct node_active_region), 4599 cmp_node_active_region, NULL); 4600 } 4601 4602 /** 4603 * node_map_pfn_alignment - determine the maximum internode alignment 4604 * 4605 * This function should be called after node map is populated and sorted. 4606 * It calculates the maximum power of two alignment which can distinguish 4607 * all the nodes. 4608 * 4609 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4610 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4611 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4612 * shifted, 1GiB is enough and this function will indicate so. 4613 * 4614 * This is used to test whether pfn -> nid mapping of the chosen memory 4615 * model has fine enough granularity to avoid incorrect mapping for the 4616 * populated node map. 4617 * 4618 * Returns the determined alignment in pfn's. 0 if there is no alignment 4619 * requirement (single node). 4620 */ 4621 unsigned long __init node_map_pfn_alignment(void) 4622 { 4623 unsigned long accl_mask = 0, last_end = 0; 4624 int last_nid = -1; 4625 int i; 4626 4627 for_each_active_range_index_in_nid(i, MAX_NUMNODES) { 4628 int nid = early_node_map[i].nid; 4629 unsigned long start = early_node_map[i].start_pfn; 4630 unsigned long end = early_node_map[i].end_pfn; 4631 unsigned long mask; 4632 4633 if (!start || last_nid < 0 || last_nid == nid) { 4634 last_nid = nid; 4635 last_end = end; 4636 continue; 4637 } 4638 4639 /* 4640 * Start with a mask granular enough to pin-point to the 4641 * start pfn and tick off bits one-by-one until it becomes 4642 * too coarse to separate the current node from the last. 4643 */ 4644 mask = ~((1 << __ffs(start)) - 1); 4645 while (mask && last_end <= (start & (mask << 1))) 4646 mask <<= 1; 4647 4648 /* accumulate all internode masks */ 4649 accl_mask |= mask; 4650 } 4651 4652 /* convert mask to number of pages */ 4653 return ~accl_mask + 1; 4654 } 4655 4656 /* Find the lowest pfn for a node */ 4657 static unsigned long __init find_min_pfn_for_node(int nid) 4658 { 4659 int i; 4660 unsigned long min_pfn = ULONG_MAX; 4661 4662 /* Assuming a sorted map, the first range found has the starting pfn */ 4663 for_each_active_range_index_in_nid(i, nid) 4664 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4665 4666 if (min_pfn == ULONG_MAX) { 4667 printk(KERN_WARNING 4668 "Could not find start_pfn for node %d\n", nid); 4669 return 0; 4670 } 4671 4672 return min_pfn; 4673 } 4674 4675 /** 4676 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4677 * 4678 * It returns the minimum PFN based on information provided via 4679 * add_active_range(). 4680 */ 4681 unsigned long __init find_min_pfn_with_active_regions(void) 4682 { 4683 return find_min_pfn_for_node(MAX_NUMNODES); 4684 } 4685 4686 /* 4687 * early_calculate_totalpages() 4688 * Sum pages in active regions for movable zone. 4689 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4690 */ 4691 static unsigned long __init early_calculate_totalpages(void) 4692 { 4693 int i; 4694 unsigned long totalpages = 0; 4695 4696 for (i = 0; i < nr_nodemap_entries; i++) { 4697 unsigned long pages = early_node_map[i].end_pfn - 4698 early_node_map[i].start_pfn; 4699 totalpages += pages; 4700 if (pages) 4701 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4702 } 4703 return totalpages; 4704 } 4705 4706 /* 4707 * Find the PFN the Movable zone begins in each node. Kernel memory 4708 * is spread evenly between nodes as long as the nodes have enough 4709 * memory. When they don't, some nodes will have more kernelcore than 4710 * others 4711 */ 4712 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4713 { 4714 int i, nid; 4715 unsigned long usable_startpfn; 4716 unsigned long kernelcore_node, kernelcore_remaining; 4717 /* save the state before borrow the nodemask */ 4718 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4719 unsigned long totalpages = early_calculate_totalpages(); 4720 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4721 4722 /* 4723 * If movablecore was specified, calculate what size of 4724 * kernelcore that corresponds so that memory usable for 4725 * any allocation type is evenly spread. If both kernelcore 4726 * and movablecore are specified, then the value of kernelcore 4727 * will be used for required_kernelcore if it's greater than 4728 * what movablecore would have allowed. 4729 */ 4730 if (required_movablecore) { 4731 unsigned long corepages; 4732 4733 /* 4734 * Round-up so that ZONE_MOVABLE is at least as large as what 4735 * was requested by the user 4736 */ 4737 required_movablecore = 4738 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4739 corepages = totalpages - required_movablecore; 4740 4741 required_kernelcore = max(required_kernelcore, corepages); 4742 } 4743 4744 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4745 if (!required_kernelcore) 4746 goto out; 4747 4748 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4749 find_usable_zone_for_movable(); 4750 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4751 4752 restart: 4753 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4754 kernelcore_node = required_kernelcore / usable_nodes; 4755 for_each_node_state(nid, N_HIGH_MEMORY) { 4756 /* 4757 * Recalculate kernelcore_node if the division per node 4758 * now exceeds what is necessary to satisfy the requested 4759 * amount of memory for the kernel 4760 */ 4761 if (required_kernelcore < kernelcore_node) 4762 kernelcore_node = required_kernelcore / usable_nodes; 4763 4764 /* 4765 * As the map is walked, we track how much memory is usable 4766 * by the kernel using kernelcore_remaining. When it is 4767 * 0, the rest of the node is usable by ZONE_MOVABLE 4768 */ 4769 kernelcore_remaining = kernelcore_node; 4770 4771 /* Go through each range of PFNs within this node */ 4772 for_each_active_range_index_in_nid(i, nid) { 4773 unsigned long start_pfn, end_pfn; 4774 unsigned long size_pages; 4775 4776 start_pfn = max(early_node_map[i].start_pfn, 4777 zone_movable_pfn[nid]); 4778 end_pfn = early_node_map[i].end_pfn; 4779 if (start_pfn >= end_pfn) 4780 continue; 4781 4782 /* Account for what is only usable for kernelcore */ 4783 if (start_pfn < usable_startpfn) { 4784 unsigned long kernel_pages; 4785 kernel_pages = min(end_pfn, usable_startpfn) 4786 - start_pfn; 4787 4788 kernelcore_remaining -= min(kernel_pages, 4789 kernelcore_remaining); 4790 required_kernelcore -= min(kernel_pages, 4791 required_kernelcore); 4792 4793 /* Continue if range is now fully accounted */ 4794 if (end_pfn <= usable_startpfn) { 4795 4796 /* 4797 * Push zone_movable_pfn to the end so 4798 * that if we have to rebalance 4799 * kernelcore across nodes, we will 4800 * not double account here 4801 */ 4802 zone_movable_pfn[nid] = end_pfn; 4803 continue; 4804 } 4805 start_pfn = usable_startpfn; 4806 } 4807 4808 /* 4809 * The usable PFN range for ZONE_MOVABLE is from 4810 * start_pfn->end_pfn. Calculate size_pages as the 4811 * number of pages used as kernelcore 4812 */ 4813 size_pages = end_pfn - start_pfn; 4814 if (size_pages > kernelcore_remaining) 4815 size_pages = kernelcore_remaining; 4816 zone_movable_pfn[nid] = start_pfn + size_pages; 4817 4818 /* 4819 * Some kernelcore has been met, update counts and 4820 * break if the kernelcore for this node has been 4821 * satisified 4822 */ 4823 required_kernelcore -= min(required_kernelcore, 4824 size_pages); 4825 kernelcore_remaining -= size_pages; 4826 if (!kernelcore_remaining) 4827 break; 4828 } 4829 } 4830 4831 /* 4832 * If there is still required_kernelcore, we do another pass with one 4833 * less node in the count. This will push zone_movable_pfn[nid] further 4834 * along on the nodes that still have memory until kernelcore is 4835 * satisified 4836 */ 4837 usable_nodes--; 4838 if (usable_nodes && required_kernelcore > usable_nodes) 4839 goto restart; 4840 4841 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4842 for (nid = 0; nid < MAX_NUMNODES; nid++) 4843 zone_movable_pfn[nid] = 4844 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4845 4846 out: 4847 /* restore the node_state */ 4848 node_states[N_HIGH_MEMORY] = saved_node_state; 4849 } 4850 4851 /* Any regular memory on that node ? */ 4852 static void check_for_regular_memory(pg_data_t *pgdat) 4853 { 4854 #ifdef CONFIG_HIGHMEM 4855 enum zone_type zone_type; 4856 4857 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4858 struct zone *zone = &pgdat->node_zones[zone_type]; 4859 if (zone->present_pages) 4860 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4861 } 4862 #endif 4863 } 4864 4865 /** 4866 * free_area_init_nodes - Initialise all pg_data_t and zone data 4867 * @max_zone_pfn: an array of max PFNs for each zone 4868 * 4869 * This will call free_area_init_node() for each active node in the system. 4870 * Using the page ranges provided by add_active_range(), the size of each 4871 * zone in each node and their holes is calculated. If the maximum PFN 4872 * between two adjacent zones match, it is assumed that the zone is empty. 4873 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4874 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4875 * starts where the previous one ended. For example, ZONE_DMA32 starts 4876 * at arch_max_dma_pfn. 4877 */ 4878 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4879 { 4880 unsigned long nid; 4881 int i; 4882 4883 /* Sort early_node_map as initialisation assumes it is sorted */ 4884 sort_node_map(); 4885 4886 /* Record where the zone boundaries are */ 4887 memset(arch_zone_lowest_possible_pfn, 0, 4888 sizeof(arch_zone_lowest_possible_pfn)); 4889 memset(arch_zone_highest_possible_pfn, 0, 4890 sizeof(arch_zone_highest_possible_pfn)); 4891 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4892 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4893 for (i = 1; i < MAX_NR_ZONES; i++) { 4894 if (i == ZONE_MOVABLE) 4895 continue; 4896 arch_zone_lowest_possible_pfn[i] = 4897 arch_zone_highest_possible_pfn[i-1]; 4898 arch_zone_highest_possible_pfn[i] = 4899 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4900 } 4901 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4902 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4903 4904 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4905 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4906 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4907 4908 /* Print out the zone ranges */ 4909 printk("Zone PFN ranges:\n"); 4910 for (i = 0; i < MAX_NR_ZONES; i++) { 4911 if (i == ZONE_MOVABLE) 4912 continue; 4913 printk(" %-8s ", zone_names[i]); 4914 if (arch_zone_lowest_possible_pfn[i] == 4915 arch_zone_highest_possible_pfn[i]) 4916 printk("empty\n"); 4917 else 4918 printk("%0#10lx -> %0#10lx\n", 4919 arch_zone_lowest_possible_pfn[i], 4920 arch_zone_highest_possible_pfn[i]); 4921 } 4922 4923 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4924 printk("Movable zone start PFN for each node\n"); 4925 for (i = 0; i < MAX_NUMNODES; i++) { 4926 if (zone_movable_pfn[i]) 4927 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4928 } 4929 4930 /* Print out the early_node_map[] */ 4931 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4932 for (i = 0; i < nr_nodemap_entries; i++) 4933 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4934 early_node_map[i].start_pfn, 4935 early_node_map[i].end_pfn); 4936 4937 /* Initialise every node */ 4938 mminit_verify_pageflags_layout(); 4939 setup_nr_node_ids(); 4940 for_each_online_node(nid) { 4941 pg_data_t *pgdat = NODE_DATA(nid); 4942 free_area_init_node(nid, NULL, 4943 find_min_pfn_for_node(nid), NULL); 4944 4945 /* Any memory on that node */ 4946 if (pgdat->node_present_pages) 4947 node_set_state(nid, N_HIGH_MEMORY); 4948 check_for_regular_memory(pgdat); 4949 } 4950 } 4951 4952 static int __init cmdline_parse_core(char *p, unsigned long *core) 4953 { 4954 unsigned long long coremem; 4955 if (!p) 4956 return -EINVAL; 4957 4958 coremem = memparse(p, &p); 4959 *core = coremem >> PAGE_SHIFT; 4960 4961 /* Paranoid check that UL is enough for the coremem value */ 4962 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4963 4964 return 0; 4965 } 4966 4967 /* 4968 * kernelcore=size sets the amount of memory for use for allocations that 4969 * cannot be reclaimed or migrated. 4970 */ 4971 static int __init cmdline_parse_kernelcore(char *p) 4972 { 4973 return cmdline_parse_core(p, &required_kernelcore); 4974 } 4975 4976 /* 4977 * movablecore=size sets the amount of memory for use for allocations that 4978 * can be reclaimed or migrated. 4979 */ 4980 static int __init cmdline_parse_movablecore(char *p) 4981 { 4982 return cmdline_parse_core(p, &required_movablecore); 4983 } 4984 4985 early_param("kernelcore", cmdline_parse_kernelcore); 4986 early_param("movablecore", cmdline_parse_movablecore); 4987 4988 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4989 4990 /** 4991 * set_dma_reserve - set the specified number of pages reserved in the first zone 4992 * @new_dma_reserve: The number of pages to mark reserved 4993 * 4994 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4995 * In the DMA zone, a significant percentage may be consumed by kernel image 4996 * and other unfreeable allocations which can skew the watermarks badly. This 4997 * function may optionally be used to account for unfreeable pages in the 4998 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4999 * smaller per-cpu batchsize. 5000 */ 5001 void __init set_dma_reserve(unsigned long new_dma_reserve) 5002 { 5003 dma_reserve = new_dma_reserve; 5004 } 5005 5006 void __init free_area_init(unsigned long *zones_size) 5007 { 5008 free_area_init_node(0, zones_size, 5009 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5010 } 5011 5012 static int page_alloc_cpu_notify(struct notifier_block *self, 5013 unsigned long action, void *hcpu) 5014 { 5015 int cpu = (unsigned long)hcpu; 5016 5017 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5018 drain_pages(cpu); 5019 5020 /* 5021 * Spill the event counters of the dead processor 5022 * into the current processors event counters. 5023 * This artificially elevates the count of the current 5024 * processor. 5025 */ 5026 vm_events_fold_cpu(cpu); 5027 5028 /* 5029 * Zero the differential counters of the dead processor 5030 * so that the vm statistics are consistent. 5031 * 5032 * This is only okay since the processor is dead and cannot 5033 * race with what we are doing. 5034 */ 5035 refresh_cpu_vm_stats(cpu); 5036 } 5037 return NOTIFY_OK; 5038 } 5039 5040 void __init page_alloc_init(void) 5041 { 5042 hotcpu_notifier(page_alloc_cpu_notify, 0); 5043 } 5044 5045 /* 5046 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5047 * or min_free_kbytes changes. 5048 */ 5049 static void calculate_totalreserve_pages(void) 5050 { 5051 struct pglist_data *pgdat; 5052 unsigned long reserve_pages = 0; 5053 enum zone_type i, j; 5054 5055 for_each_online_pgdat(pgdat) { 5056 for (i = 0; i < MAX_NR_ZONES; i++) { 5057 struct zone *zone = pgdat->node_zones + i; 5058 unsigned long max = 0; 5059 5060 /* Find valid and maximum lowmem_reserve in the zone */ 5061 for (j = i; j < MAX_NR_ZONES; j++) { 5062 if (zone->lowmem_reserve[j] > max) 5063 max = zone->lowmem_reserve[j]; 5064 } 5065 5066 /* we treat the high watermark as reserved pages. */ 5067 max += high_wmark_pages(zone); 5068 5069 if (max > zone->present_pages) 5070 max = zone->present_pages; 5071 reserve_pages += max; 5072 } 5073 } 5074 totalreserve_pages = reserve_pages; 5075 } 5076 5077 /* 5078 * setup_per_zone_lowmem_reserve - called whenever 5079 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5080 * has a correct pages reserved value, so an adequate number of 5081 * pages are left in the zone after a successful __alloc_pages(). 5082 */ 5083 static void setup_per_zone_lowmem_reserve(void) 5084 { 5085 struct pglist_data *pgdat; 5086 enum zone_type j, idx; 5087 5088 for_each_online_pgdat(pgdat) { 5089 for (j = 0; j < MAX_NR_ZONES; j++) { 5090 struct zone *zone = pgdat->node_zones + j; 5091 unsigned long present_pages = zone->present_pages; 5092 5093 zone->lowmem_reserve[j] = 0; 5094 5095 idx = j; 5096 while (idx) { 5097 struct zone *lower_zone; 5098 5099 idx--; 5100 5101 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5102 sysctl_lowmem_reserve_ratio[idx] = 1; 5103 5104 lower_zone = pgdat->node_zones + idx; 5105 lower_zone->lowmem_reserve[j] = present_pages / 5106 sysctl_lowmem_reserve_ratio[idx]; 5107 present_pages += lower_zone->present_pages; 5108 } 5109 } 5110 } 5111 5112 /* update totalreserve_pages */ 5113 calculate_totalreserve_pages(); 5114 } 5115 5116 /** 5117 * setup_per_zone_wmarks - called when min_free_kbytes changes 5118 * or when memory is hot-{added|removed} 5119 * 5120 * Ensures that the watermark[min,low,high] values for each zone are set 5121 * correctly with respect to min_free_kbytes. 5122 */ 5123 void setup_per_zone_wmarks(void) 5124 { 5125 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5126 unsigned long lowmem_pages = 0; 5127 struct zone *zone; 5128 unsigned long flags; 5129 5130 /* Calculate total number of !ZONE_HIGHMEM pages */ 5131 for_each_zone(zone) { 5132 if (!is_highmem(zone)) 5133 lowmem_pages += zone->present_pages; 5134 } 5135 5136 for_each_zone(zone) { 5137 u64 tmp; 5138 5139 spin_lock_irqsave(&zone->lock, flags); 5140 tmp = (u64)pages_min * zone->present_pages; 5141 do_div(tmp, lowmem_pages); 5142 if (is_highmem(zone)) { 5143 /* 5144 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5145 * need highmem pages, so cap pages_min to a small 5146 * value here. 5147 * 5148 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5149 * deltas controls asynch page reclaim, and so should 5150 * not be capped for highmem. 5151 */ 5152 int min_pages; 5153 5154 min_pages = zone->present_pages / 1024; 5155 if (min_pages < SWAP_CLUSTER_MAX) 5156 min_pages = SWAP_CLUSTER_MAX; 5157 if (min_pages > 128) 5158 min_pages = 128; 5159 zone->watermark[WMARK_MIN] = min_pages; 5160 } else { 5161 /* 5162 * If it's a lowmem zone, reserve a number of pages 5163 * proportionate to the zone's size. 5164 */ 5165 zone->watermark[WMARK_MIN] = tmp; 5166 } 5167 5168 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5169 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5170 setup_zone_migrate_reserve(zone); 5171 spin_unlock_irqrestore(&zone->lock, flags); 5172 } 5173 5174 /* update totalreserve_pages */ 5175 calculate_totalreserve_pages(); 5176 } 5177 5178 /* 5179 * The inactive anon list should be small enough that the VM never has to 5180 * do too much work, but large enough that each inactive page has a chance 5181 * to be referenced again before it is swapped out. 5182 * 5183 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5184 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5185 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5186 * the anonymous pages are kept on the inactive list. 5187 * 5188 * total target max 5189 * memory ratio inactive anon 5190 * ------------------------------------- 5191 * 10MB 1 5MB 5192 * 100MB 1 50MB 5193 * 1GB 3 250MB 5194 * 10GB 10 0.9GB 5195 * 100GB 31 3GB 5196 * 1TB 101 10GB 5197 * 10TB 320 32GB 5198 */ 5199 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5200 { 5201 unsigned int gb, ratio; 5202 5203 /* Zone size in gigabytes */ 5204 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5205 if (gb) 5206 ratio = int_sqrt(10 * gb); 5207 else 5208 ratio = 1; 5209 5210 zone->inactive_ratio = ratio; 5211 } 5212 5213 static void __meminit setup_per_zone_inactive_ratio(void) 5214 { 5215 struct zone *zone; 5216 5217 for_each_zone(zone) 5218 calculate_zone_inactive_ratio(zone); 5219 } 5220 5221 /* 5222 * Initialise min_free_kbytes. 5223 * 5224 * For small machines we want it small (128k min). For large machines 5225 * we want it large (64MB max). But it is not linear, because network 5226 * bandwidth does not increase linearly with machine size. We use 5227 * 5228 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5229 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5230 * 5231 * which yields 5232 * 5233 * 16MB: 512k 5234 * 32MB: 724k 5235 * 64MB: 1024k 5236 * 128MB: 1448k 5237 * 256MB: 2048k 5238 * 512MB: 2896k 5239 * 1024MB: 4096k 5240 * 2048MB: 5792k 5241 * 4096MB: 8192k 5242 * 8192MB: 11584k 5243 * 16384MB: 16384k 5244 */ 5245 int __meminit init_per_zone_wmark_min(void) 5246 { 5247 unsigned long lowmem_kbytes; 5248 5249 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5250 5251 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5252 if (min_free_kbytes < 128) 5253 min_free_kbytes = 128; 5254 if (min_free_kbytes > 65536) 5255 min_free_kbytes = 65536; 5256 setup_per_zone_wmarks(); 5257 refresh_zone_stat_thresholds(); 5258 setup_per_zone_lowmem_reserve(); 5259 setup_per_zone_inactive_ratio(); 5260 return 0; 5261 } 5262 module_init(init_per_zone_wmark_min) 5263 5264 /* 5265 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5266 * that we can call two helper functions whenever min_free_kbytes 5267 * changes. 5268 */ 5269 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5270 void __user *buffer, size_t *length, loff_t *ppos) 5271 { 5272 proc_dointvec(table, write, buffer, length, ppos); 5273 if (write) 5274 setup_per_zone_wmarks(); 5275 return 0; 5276 } 5277 5278 #ifdef CONFIG_NUMA 5279 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5280 void __user *buffer, size_t *length, loff_t *ppos) 5281 { 5282 struct zone *zone; 5283 int rc; 5284 5285 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5286 if (rc) 5287 return rc; 5288 5289 for_each_zone(zone) 5290 zone->min_unmapped_pages = (zone->present_pages * 5291 sysctl_min_unmapped_ratio) / 100; 5292 return 0; 5293 } 5294 5295 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5296 void __user *buffer, size_t *length, loff_t *ppos) 5297 { 5298 struct zone *zone; 5299 int rc; 5300 5301 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5302 if (rc) 5303 return rc; 5304 5305 for_each_zone(zone) 5306 zone->min_slab_pages = (zone->present_pages * 5307 sysctl_min_slab_ratio) / 100; 5308 return 0; 5309 } 5310 #endif 5311 5312 /* 5313 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5314 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5315 * whenever sysctl_lowmem_reserve_ratio changes. 5316 * 5317 * The reserve ratio obviously has absolutely no relation with the 5318 * minimum watermarks. The lowmem reserve ratio can only make sense 5319 * if in function of the boot time zone sizes. 5320 */ 5321 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5322 void __user *buffer, size_t *length, loff_t *ppos) 5323 { 5324 proc_dointvec_minmax(table, write, buffer, length, ppos); 5325 setup_per_zone_lowmem_reserve(); 5326 return 0; 5327 } 5328 5329 /* 5330 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5331 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5332 * can have before it gets flushed back to buddy allocator. 5333 */ 5334 5335 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5336 void __user *buffer, size_t *length, loff_t *ppos) 5337 { 5338 struct zone *zone; 5339 unsigned int cpu; 5340 int ret; 5341 5342 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5343 if (!write || (ret == -EINVAL)) 5344 return ret; 5345 for_each_populated_zone(zone) { 5346 for_each_possible_cpu(cpu) { 5347 unsigned long high; 5348 high = zone->present_pages / percpu_pagelist_fraction; 5349 setup_pagelist_highmark( 5350 per_cpu_ptr(zone->pageset, cpu), high); 5351 } 5352 } 5353 return 0; 5354 } 5355 5356 int hashdist = HASHDIST_DEFAULT; 5357 5358 #ifdef CONFIG_NUMA 5359 static int __init set_hashdist(char *str) 5360 { 5361 if (!str) 5362 return 0; 5363 hashdist = simple_strtoul(str, &str, 0); 5364 return 1; 5365 } 5366 __setup("hashdist=", set_hashdist); 5367 #endif 5368 5369 /* 5370 * allocate a large system hash table from bootmem 5371 * - it is assumed that the hash table must contain an exact power-of-2 5372 * quantity of entries 5373 * - limit is the number of hash buckets, not the total allocation size 5374 */ 5375 void *__init alloc_large_system_hash(const char *tablename, 5376 unsigned long bucketsize, 5377 unsigned long numentries, 5378 int scale, 5379 int flags, 5380 unsigned int *_hash_shift, 5381 unsigned int *_hash_mask, 5382 unsigned long limit) 5383 { 5384 unsigned long long max = limit; 5385 unsigned long log2qty, size; 5386 void *table = NULL; 5387 5388 /* allow the kernel cmdline to have a say */ 5389 if (!numentries) { 5390 /* round applicable memory size up to nearest megabyte */ 5391 numentries = nr_kernel_pages; 5392 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5393 numentries >>= 20 - PAGE_SHIFT; 5394 numentries <<= 20 - PAGE_SHIFT; 5395 5396 /* limit to 1 bucket per 2^scale bytes of low memory */ 5397 if (scale > PAGE_SHIFT) 5398 numentries >>= (scale - PAGE_SHIFT); 5399 else 5400 numentries <<= (PAGE_SHIFT - scale); 5401 5402 /* Make sure we've got at least a 0-order allocation.. */ 5403 if (unlikely(flags & HASH_SMALL)) { 5404 /* Makes no sense without HASH_EARLY */ 5405 WARN_ON(!(flags & HASH_EARLY)); 5406 if (!(numentries >> *_hash_shift)) { 5407 numentries = 1UL << *_hash_shift; 5408 BUG_ON(!numentries); 5409 } 5410 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5411 numentries = PAGE_SIZE / bucketsize; 5412 } 5413 numentries = roundup_pow_of_two(numentries); 5414 5415 /* limit allocation size to 1/16 total memory by default */ 5416 if (max == 0) { 5417 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5418 do_div(max, bucketsize); 5419 } 5420 5421 if (numentries > max) 5422 numentries = max; 5423 5424 log2qty = ilog2(numentries); 5425 5426 do { 5427 size = bucketsize << log2qty; 5428 if (flags & HASH_EARLY) 5429 table = alloc_bootmem_nopanic(size); 5430 else if (hashdist) 5431 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5432 else { 5433 /* 5434 * If bucketsize is not a power-of-two, we may free 5435 * some pages at the end of hash table which 5436 * alloc_pages_exact() automatically does 5437 */ 5438 if (get_order(size) < MAX_ORDER) { 5439 table = alloc_pages_exact(size, GFP_ATOMIC); 5440 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5441 } 5442 } 5443 } while (!table && size > PAGE_SIZE && --log2qty); 5444 5445 if (!table) 5446 panic("Failed to allocate %s hash table\n", tablename); 5447 5448 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5449 tablename, 5450 (1UL << log2qty), 5451 ilog2(size) - PAGE_SHIFT, 5452 size); 5453 5454 if (_hash_shift) 5455 *_hash_shift = log2qty; 5456 if (_hash_mask) 5457 *_hash_mask = (1 << log2qty) - 1; 5458 5459 return table; 5460 } 5461 5462 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5463 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5464 unsigned long pfn) 5465 { 5466 #ifdef CONFIG_SPARSEMEM 5467 return __pfn_to_section(pfn)->pageblock_flags; 5468 #else 5469 return zone->pageblock_flags; 5470 #endif /* CONFIG_SPARSEMEM */ 5471 } 5472 5473 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5474 { 5475 #ifdef CONFIG_SPARSEMEM 5476 pfn &= (PAGES_PER_SECTION-1); 5477 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5478 #else 5479 pfn = pfn - zone->zone_start_pfn; 5480 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5481 #endif /* CONFIG_SPARSEMEM */ 5482 } 5483 5484 /** 5485 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5486 * @page: The page within the block of interest 5487 * @start_bitidx: The first bit of interest to retrieve 5488 * @end_bitidx: The last bit of interest 5489 * returns pageblock_bits flags 5490 */ 5491 unsigned long get_pageblock_flags_group(struct page *page, 5492 int start_bitidx, int end_bitidx) 5493 { 5494 struct zone *zone; 5495 unsigned long *bitmap; 5496 unsigned long pfn, bitidx; 5497 unsigned long flags = 0; 5498 unsigned long value = 1; 5499 5500 zone = page_zone(page); 5501 pfn = page_to_pfn(page); 5502 bitmap = get_pageblock_bitmap(zone, pfn); 5503 bitidx = pfn_to_bitidx(zone, pfn); 5504 5505 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5506 if (test_bit(bitidx + start_bitidx, bitmap)) 5507 flags |= value; 5508 5509 return flags; 5510 } 5511 5512 /** 5513 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5514 * @page: The page within the block of interest 5515 * @start_bitidx: The first bit of interest 5516 * @end_bitidx: The last bit of interest 5517 * @flags: The flags to set 5518 */ 5519 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5520 int start_bitidx, int end_bitidx) 5521 { 5522 struct zone *zone; 5523 unsigned long *bitmap; 5524 unsigned long pfn, bitidx; 5525 unsigned long value = 1; 5526 5527 zone = page_zone(page); 5528 pfn = page_to_pfn(page); 5529 bitmap = get_pageblock_bitmap(zone, pfn); 5530 bitidx = pfn_to_bitidx(zone, pfn); 5531 VM_BUG_ON(pfn < zone->zone_start_pfn); 5532 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5533 5534 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5535 if (flags & value) 5536 __set_bit(bitidx + start_bitidx, bitmap); 5537 else 5538 __clear_bit(bitidx + start_bitidx, bitmap); 5539 } 5540 5541 /* 5542 * This is designed as sub function...plz see page_isolation.c also. 5543 * set/clear page block's type to be ISOLATE. 5544 * page allocater never alloc memory from ISOLATE block. 5545 */ 5546 5547 static int 5548 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5549 { 5550 unsigned long pfn, iter, found; 5551 /* 5552 * For avoiding noise data, lru_add_drain_all() should be called 5553 * If ZONE_MOVABLE, the zone never contains immobile pages 5554 */ 5555 if (zone_idx(zone) == ZONE_MOVABLE) 5556 return true; 5557 5558 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5559 return true; 5560 5561 pfn = page_to_pfn(page); 5562 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5563 unsigned long check = pfn + iter; 5564 5565 if (!pfn_valid_within(check)) 5566 continue; 5567 5568 page = pfn_to_page(check); 5569 if (!page_count(page)) { 5570 if (PageBuddy(page)) 5571 iter += (1 << page_order(page)) - 1; 5572 continue; 5573 } 5574 if (!PageLRU(page)) 5575 found++; 5576 /* 5577 * If there are RECLAIMABLE pages, we need to check it. 5578 * But now, memory offline itself doesn't call shrink_slab() 5579 * and it still to be fixed. 5580 */ 5581 /* 5582 * If the page is not RAM, page_count()should be 0. 5583 * we don't need more check. This is an _used_ not-movable page. 5584 * 5585 * The problematic thing here is PG_reserved pages. PG_reserved 5586 * is set to both of a memory hole page and a _used_ kernel 5587 * page at boot. 5588 */ 5589 if (found > count) 5590 return false; 5591 } 5592 return true; 5593 } 5594 5595 bool is_pageblock_removable_nolock(struct page *page) 5596 { 5597 struct zone *zone = page_zone(page); 5598 return __count_immobile_pages(zone, page, 0); 5599 } 5600 5601 int set_migratetype_isolate(struct page *page) 5602 { 5603 struct zone *zone; 5604 unsigned long flags, pfn; 5605 struct memory_isolate_notify arg; 5606 int notifier_ret; 5607 int ret = -EBUSY; 5608 5609 zone = page_zone(page); 5610 5611 spin_lock_irqsave(&zone->lock, flags); 5612 5613 pfn = page_to_pfn(page); 5614 arg.start_pfn = pfn; 5615 arg.nr_pages = pageblock_nr_pages; 5616 arg.pages_found = 0; 5617 5618 /* 5619 * It may be possible to isolate a pageblock even if the 5620 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5621 * notifier chain is used by balloon drivers to return the 5622 * number of pages in a range that are held by the balloon 5623 * driver to shrink memory. If all the pages are accounted for 5624 * by balloons, are free, or on the LRU, isolation can continue. 5625 * Later, for example, when memory hotplug notifier runs, these 5626 * pages reported as "can be isolated" should be isolated(freed) 5627 * by the balloon driver through the memory notifier chain. 5628 */ 5629 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5630 notifier_ret = notifier_to_errno(notifier_ret); 5631 if (notifier_ret) 5632 goto out; 5633 /* 5634 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5635 * We just check MOVABLE pages. 5636 */ 5637 if (__count_immobile_pages(zone, page, arg.pages_found)) 5638 ret = 0; 5639 5640 /* 5641 * immobile means "not-on-lru" paes. If immobile is larger than 5642 * removable-by-driver pages reported by notifier, we'll fail. 5643 */ 5644 5645 out: 5646 if (!ret) { 5647 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5648 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5649 } 5650 5651 spin_unlock_irqrestore(&zone->lock, flags); 5652 if (!ret) 5653 drain_all_pages(); 5654 return ret; 5655 } 5656 5657 void unset_migratetype_isolate(struct page *page) 5658 { 5659 struct zone *zone; 5660 unsigned long flags; 5661 zone = page_zone(page); 5662 spin_lock_irqsave(&zone->lock, flags); 5663 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5664 goto out; 5665 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5666 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5667 out: 5668 spin_unlock_irqrestore(&zone->lock, flags); 5669 } 5670 5671 #ifdef CONFIG_MEMORY_HOTREMOVE 5672 /* 5673 * All pages in the range must be isolated before calling this. 5674 */ 5675 void 5676 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5677 { 5678 struct page *page; 5679 struct zone *zone; 5680 int order, i; 5681 unsigned long pfn; 5682 unsigned long flags; 5683 /* find the first valid pfn */ 5684 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5685 if (pfn_valid(pfn)) 5686 break; 5687 if (pfn == end_pfn) 5688 return; 5689 zone = page_zone(pfn_to_page(pfn)); 5690 spin_lock_irqsave(&zone->lock, flags); 5691 pfn = start_pfn; 5692 while (pfn < end_pfn) { 5693 if (!pfn_valid(pfn)) { 5694 pfn++; 5695 continue; 5696 } 5697 page = pfn_to_page(pfn); 5698 BUG_ON(page_count(page)); 5699 BUG_ON(!PageBuddy(page)); 5700 order = page_order(page); 5701 #ifdef CONFIG_DEBUG_VM 5702 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5703 pfn, 1 << order, end_pfn); 5704 #endif 5705 list_del(&page->lru); 5706 rmv_page_order(page); 5707 zone->free_area[order].nr_free--; 5708 __mod_zone_page_state(zone, NR_FREE_PAGES, 5709 - (1UL << order)); 5710 for (i = 0; i < (1 << order); i++) 5711 SetPageReserved((page+i)); 5712 pfn += (1 << order); 5713 } 5714 spin_unlock_irqrestore(&zone->lock, flags); 5715 } 5716 #endif 5717 5718 #ifdef CONFIG_MEMORY_FAILURE 5719 bool is_free_buddy_page(struct page *page) 5720 { 5721 struct zone *zone = page_zone(page); 5722 unsigned long pfn = page_to_pfn(page); 5723 unsigned long flags; 5724 int order; 5725 5726 spin_lock_irqsave(&zone->lock, flags); 5727 for (order = 0; order < MAX_ORDER; order++) { 5728 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5729 5730 if (PageBuddy(page_head) && page_order(page_head) >= order) 5731 break; 5732 } 5733 spin_unlock_irqrestore(&zone->lock, flags); 5734 5735 return order < MAX_ORDER; 5736 } 5737 #endif 5738 5739 static struct trace_print_flags pageflag_names[] = { 5740 {1UL << PG_locked, "locked" }, 5741 {1UL << PG_error, "error" }, 5742 {1UL << PG_referenced, "referenced" }, 5743 {1UL << PG_uptodate, "uptodate" }, 5744 {1UL << PG_dirty, "dirty" }, 5745 {1UL << PG_lru, "lru" }, 5746 {1UL << PG_active, "active" }, 5747 {1UL << PG_slab, "slab" }, 5748 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5749 {1UL << PG_arch_1, "arch_1" }, 5750 {1UL << PG_reserved, "reserved" }, 5751 {1UL << PG_private, "private" }, 5752 {1UL << PG_private_2, "private_2" }, 5753 {1UL << PG_writeback, "writeback" }, 5754 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5755 {1UL << PG_head, "head" }, 5756 {1UL << PG_tail, "tail" }, 5757 #else 5758 {1UL << PG_compound, "compound" }, 5759 #endif 5760 {1UL << PG_swapcache, "swapcache" }, 5761 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5762 {1UL << PG_reclaim, "reclaim" }, 5763 {1UL << PG_swapbacked, "swapbacked" }, 5764 {1UL << PG_unevictable, "unevictable" }, 5765 #ifdef CONFIG_MMU 5766 {1UL << PG_mlocked, "mlocked" }, 5767 #endif 5768 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5769 {1UL << PG_uncached, "uncached" }, 5770 #endif 5771 #ifdef CONFIG_MEMORY_FAILURE 5772 {1UL << PG_hwpoison, "hwpoison" }, 5773 #endif 5774 {-1UL, NULL }, 5775 }; 5776 5777 static void dump_page_flags(unsigned long flags) 5778 { 5779 const char *delim = ""; 5780 unsigned long mask; 5781 int i; 5782 5783 printk(KERN_ALERT "page flags: %#lx(", flags); 5784 5785 /* remove zone id */ 5786 flags &= (1UL << NR_PAGEFLAGS) - 1; 5787 5788 for (i = 0; pageflag_names[i].name && flags; i++) { 5789 5790 mask = pageflag_names[i].mask; 5791 if ((flags & mask) != mask) 5792 continue; 5793 5794 flags &= ~mask; 5795 printk("%s%s", delim, pageflag_names[i].name); 5796 delim = "|"; 5797 } 5798 5799 /* check for left over flags */ 5800 if (flags) 5801 printk("%s%#lx", delim, flags); 5802 5803 printk(")\n"); 5804 } 5805 5806 void dump_page(struct page *page) 5807 { 5808 printk(KERN_ALERT 5809 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5810 page, atomic_read(&page->_count), page_mapcount(page), 5811 page->mapping, page->index); 5812 dump_page_flags(page->flags); 5813 mem_cgroup_print_bad_page(page); 5814 } 5815