xref: /openbmc/linux/mm/page_alloc.c (revision e1f7c9ee)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67 
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
71 
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76 
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82  * defined in <linux/topology.h>.
83  */
84 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 int _node_numa_mem_[MAX_NUMNODES];
87 #endif
88 
89 /*
90  * Array of node states.
91  */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 	[N_POSSIBLE] = NODE_MASK_ALL,
94 	[N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 	[N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 	[N_CPU] = { { [0] = 1UL } },
104 #endif	/* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107 
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110 
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114  * When calculating the number of globally allowed dirty pages, there
115  * is a certain number of per-zone reserves that should not be
116  * considered dirtyable memory.  This is the sum of those reserves
117  * over all existing zones that contribute dirtyable memory.
118  */
119 unsigned long dirty_balance_reserve __read_mostly;
120 
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 
124 #ifdef CONFIG_PM_SLEEP
125 /*
126  * The following functions are used by the suspend/hibernate code to temporarily
127  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128  * while devices are suspended.  To avoid races with the suspend/hibernate code,
129  * they should always be called with pm_mutex held (gfp_allowed_mask also should
130  * only be modified with pm_mutex held, unless the suspend/hibernate code is
131  * guaranteed not to run in parallel with that modification).
132  */
133 
134 static gfp_t saved_gfp_mask;
135 
136 void pm_restore_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	if (saved_gfp_mask) {
140 		gfp_allowed_mask = saved_gfp_mask;
141 		saved_gfp_mask = 0;
142 	}
143 }
144 
145 void pm_restrict_gfp_mask(void)
146 {
147 	WARN_ON(!mutex_is_locked(&pm_mutex));
148 	WARN_ON(saved_gfp_mask);
149 	saved_gfp_mask = gfp_allowed_mask;
150 	gfp_allowed_mask &= ~GFP_IOFS;
151 }
152 
153 bool pm_suspended_storage(void)
154 {
155 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 		return false;
157 	return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160 
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164 
165 static void __free_pages_ok(struct page *page, unsigned int order);
166 
167 /*
168  * results with 256, 32 in the lowmem_reserve sysctl:
169  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170  *	1G machine -> (16M dma, 784M normal, 224M high)
171  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174  *
175  * TBD: should special case ZONE_DMA32 machines here - in those we normally
176  * don't need any ZONE_NORMAL reservation
177  */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 	 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 	 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 	 32,
187 #endif
188 	 32,
189 };
190 
191 EXPORT_SYMBOL(totalram_pages);
192 
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 	 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 	 "DMA32",
199 #endif
200 	 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 	 "HighMem",
203 #endif
204 	 "Movable",
205 };
206 
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209 
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213 
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232 
233 int page_group_by_mobility_disabled __read_mostly;
234 
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 	if (unlikely(page_group_by_mobility_disabled &&
238 		     migratetype < MIGRATE_PCPTYPES))
239 		migratetype = MIGRATE_UNMOVABLE;
240 
241 	set_pageblock_flags_group(page, (unsigned long)migratetype,
242 					PB_migrate, PB_migrate_end);
243 }
244 
245 bool oom_killer_disabled __read_mostly;
246 
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 	int ret = 0;
251 	unsigned seq;
252 	unsigned long pfn = page_to_pfn(page);
253 	unsigned long sp, start_pfn;
254 
255 	do {
256 		seq = zone_span_seqbegin(zone);
257 		start_pfn = zone->zone_start_pfn;
258 		sp = zone->spanned_pages;
259 		if (!zone_spans_pfn(zone, pfn))
260 			ret = 1;
261 	} while (zone_span_seqretry(zone, seq));
262 
263 	if (ret)
264 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 			pfn, zone_to_nid(zone), zone->name,
266 			start_pfn, start_pfn + sp);
267 
268 	return ret;
269 }
270 
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 	if (!pfn_valid_within(page_to_pfn(page)))
274 		return 0;
275 	if (zone != page_zone(page))
276 		return 0;
277 
278 	return 1;
279 }
280 /*
281  * Temporary debugging check for pages not lying within a given zone.
282  */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 	if (page_outside_zone_boundaries(zone, page))
286 		return 1;
287 	if (!page_is_consistent(zone, page))
288 		return 1;
289 
290 	return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 	return 0;
296 }
297 #endif
298 
299 static void bad_page(struct page *page, const char *reason,
300 		unsigned long bad_flags)
301 {
302 	static unsigned long resume;
303 	static unsigned long nr_shown;
304 	static unsigned long nr_unshown;
305 
306 	/* Don't complain about poisoned pages */
307 	if (PageHWPoison(page)) {
308 		page_mapcount_reset(page); /* remove PageBuddy */
309 		return;
310 	}
311 
312 	/*
313 	 * Allow a burst of 60 reports, then keep quiet for that minute;
314 	 * or allow a steady drip of one report per second.
315 	 */
316 	if (nr_shown == 60) {
317 		if (time_before(jiffies, resume)) {
318 			nr_unshown++;
319 			goto out;
320 		}
321 		if (nr_unshown) {
322 			printk(KERN_ALERT
323 			      "BUG: Bad page state: %lu messages suppressed\n",
324 				nr_unshown);
325 			nr_unshown = 0;
326 		}
327 		nr_shown = 0;
328 	}
329 	if (nr_shown++ == 0)
330 		resume = jiffies + 60 * HZ;
331 
332 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
333 		current->comm, page_to_pfn(page));
334 	dump_page_badflags(page, reason, bad_flags);
335 
336 	print_modules();
337 	dump_stack();
338 out:
339 	/* Leave bad fields for debug, except PageBuddy could make trouble */
340 	page_mapcount_reset(page); /* remove PageBuddy */
341 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343 
344 /*
345  * Higher-order pages are called "compound pages".  They are structured thusly:
346  *
347  * The first PAGE_SIZE page is called the "head page".
348  *
349  * The remaining PAGE_SIZE pages are called "tail pages".
350  *
351  * All pages have PG_compound set.  All tail pages have their ->first_page
352  * pointing at the head page.
353  *
354  * The first tail page's ->lru.next holds the address of the compound page's
355  * put_page() function.  Its ->lru.prev holds the order of allocation.
356  * This usage means that zero-order pages may not be compound.
357  */
358 
359 static void free_compound_page(struct page *page)
360 {
361 	__free_pages_ok(page, compound_order(page));
362 }
363 
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 	int i;
367 	int nr_pages = 1 << order;
368 
369 	set_compound_page_dtor(page, free_compound_page);
370 	set_compound_order(page, order);
371 	__SetPageHead(page);
372 	for (i = 1; i < nr_pages; i++) {
373 		struct page *p = page + i;
374 		set_page_count(p, 0);
375 		p->first_page = page;
376 		/* Make sure p->first_page is always valid for PageTail() */
377 		smp_wmb();
378 		__SetPageTail(p);
379 	}
380 }
381 
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 	int i;
386 	int nr_pages = 1 << order;
387 	int bad = 0;
388 
389 	if (unlikely(compound_order(page) != order)) {
390 		bad_page(page, "wrong compound order", 0);
391 		bad++;
392 	}
393 
394 	__ClearPageHead(page);
395 
396 	for (i = 1; i < nr_pages; i++) {
397 		struct page *p = page + i;
398 
399 		if (unlikely(!PageTail(p))) {
400 			bad_page(page, "PageTail not set", 0);
401 			bad++;
402 		} else if (unlikely(p->first_page != page)) {
403 			bad_page(page, "first_page not consistent", 0);
404 			bad++;
405 		}
406 		__ClearPageTail(p);
407 	}
408 
409 	return bad;
410 }
411 
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 							gfp_t gfp_flags)
414 {
415 	int i;
416 
417 	/*
418 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 	 */
421 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 	for (i = 0; i < (1 << order); i++)
423 		clear_highpage(page + i);
424 }
425 
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428 
429 static int __init debug_guardpage_minorder_setup(char *buf)
430 {
431 	unsigned long res;
432 
433 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
434 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 		return 0;
436 	}
437 	_debug_guardpage_minorder = res;
438 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 	return 0;
440 }
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442 
443 static inline void set_page_guard_flag(struct page *page)
444 {
445 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447 
448 static inline void clear_page_guard_flag(struct page *page)
449 {
450 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451 }
452 #else
453 static inline void set_page_guard_flag(struct page *page) { }
454 static inline void clear_page_guard_flag(struct page *page) { }
455 #endif
456 
457 static inline void set_page_order(struct page *page, unsigned int order)
458 {
459 	set_page_private(page, order);
460 	__SetPageBuddy(page);
461 }
462 
463 static inline void rmv_page_order(struct page *page)
464 {
465 	__ClearPageBuddy(page);
466 	set_page_private(page, 0);
467 }
468 
469 /*
470  * Locate the struct page for both the matching buddy in our
471  * pair (buddy1) and the combined O(n+1) page they form (page).
472  *
473  * 1) Any buddy B1 will have an order O twin B2 which satisfies
474  * the following equation:
475  *     B2 = B1 ^ (1 << O)
476  * For example, if the starting buddy (buddy2) is #8 its order
477  * 1 buddy is #10:
478  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479  *
480  * 2) Any buddy B will have an order O+1 parent P which
481  * satisfies the following equation:
482  *     P = B & ~(1 << O)
483  *
484  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
485  */
486 static inline unsigned long
487 __find_buddy_index(unsigned long page_idx, unsigned int order)
488 {
489 	return page_idx ^ (1 << order);
490 }
491 
492 /*
493  * This function checks whether a page is free && is the buddy
494  * we can do coalesce a page and its buddy if
495  * (a) the buddy is not in a hole &&
496  * (b) the buddy is in the buddy system &&
497  * (c) a page and its buddy have the same order &&
498  * (d) a page and its buddy are in the same zone.
499  *
500  * For recording whether a page is in the buddy system, we set ->_mapcount
501  * PAGE_BUDDY_MAPCOUNT_VALUE.
502  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503  * serialized by zone->lock.
504  *
505  * For recording page's order, we use page_private(page).
506  */
507 static inline int page_is_buddy(struct page *page, struct page *buddy,
508 							unsigned int order)
509 {
510 	if (!pfn_valid_within(page_to_pfn(buddy)))
511 		return 0;
512 
513 	if (page_is_guard(buddy) && page_order(buddy) == order) {
514 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
515 
516 		if (page_zone_id(page) != page_zone_id(buddy))
517 			return 0;
518 
519 		return 1;
520 	}
521 
522 	if (PageBuddy(buddy) && page_order(buddy) == order) {
523 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
524 
525 		/*
526 		 * zone check is done late to avoid uselessly
527 		 * calculating zone/node ids for pages that could
528 		 * never merge.
529 		 */
530 		if (page_zone_id(page) != page_zone_id(buddy))
531 			return 0;
532 
533 		return 1;
534 	}
535 	return 0;
536 }
537 
538 /*
539  * Freeing function for a buddy system allocator.
540  *
541  * The concept of a buddy system is to maintain direct-mapped table
542  * (containing bit values) for memory blocks of various "orders".
543  * The bottom level table contains the map for the smallest allocatable
544  * units of memory (here, pages), and each level above it describes
545  * pairs of units from the levels below, hence, "buddies".
546  * At a high level, all that happens here is marking the table entry
547  * at the bottom level available, and propagating the changes upward
548  * as necessary, plus some accounting needed to play nicely with other
549  * parts of the VM system.
550  * At each level, we keep a list of pages, which are heads of continuous
551  * free pages of length of (1 << order) and marked with _mapcount
552  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553  * field.
554  * So when we are allocating or freeing one, we can derive the state of the
555  * other.  That is, if we allocate a small block, and both were
556  * free, the remainder of the region must be split into blocks.
557  * If a block is freed, and its buddy is also free, then this
558  * triggers coalescing into a block of larger size.
559  *
560  * -- nyc
561  */
562 
563 static inline void __free_one_page(struct page *page,
564 		unsigned long pfn,
565 		struct zone *zone, unsigned int order,
566 		int migratetype)
567 {
568 	unsigned long page_idx;
569 	unsigned long combined_idx;
570 	unsigned long uninitialized_var(buddy_idx);
571 	struct page *buddy;
572 
573 	VM_BUG_ON(!zone_is_initialized(zone));
574 
575 	if (unlikely(PageCompound(page)))
576 		if (unlikely(destroy_compound_page(page, order)))
577 			return;
578 
579 	VM_BUG_ON(migratetype == -1);
580 
581 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
582 
583 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
585 
586 	while (order < MAX_ORDER-1) {
587 		buddy_idx = __find_buddy_index(page_idx, order);
588 		buddy = page + (buddy_idx - page_idx);
589 		if (!page_is_buddy(page, buddy, order))
590 			break;
591 		/*
592 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 		 * merge with it and move up one order.
594 		 */
595 		if (page_is_guard(buddy)) {
596 			clear_page_guard_flag(buddy);
597 			set_page_private(page, 0);
598 			__mod_zone_freepage_state(zone, 1 << order,
599 						  migratetype);
600 		} else {
601 			list_del(&buddy->lru);
602 			zone->free_area[order].nr_free--;
603 			rmv_page_order(buddy);
604 		}
605 		combined_idx = buddy_idx & page_idx;
606 		page = page + (combined_idx - page_idx);
607 		page_idx = combined_idx;
608 		order++;
609 	}
610 	set_page_order(page, order);
611 
612 	/*
613 	 * If this is not the largest possible page, check if the buddy
614 	 * of the next-highest order is free. If it is, it's possible
615 	 * that pages are being freed that will coalesce soon. In case,
616 	 * that is happening, add the free page to the tail of the list
617 	 * so it's less likely to be used soon and more likely to be merged
618 	 * as a higher order page
619 	 */
620 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
621 		struct page *higher_page, *higher_buddy;
622 		combined_idx = buddy_idx & page_idx;
623 		higher_page = page + (combined_idx - page_idx);
624 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
625 		higher_buddy = higher_page + (buddy_idx - combined_idx);
626 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
627 			list_add_tail(&page->lru,
628 				&zone->free_area[order].free_list[migratetype]);
629 			goto out;
630 		}
631 	}
632 
633 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
634 out:
635 	zone->free_area[order].nr_free++;
636 }
637 
638 static inline int free_pages_check(struct page *page)
639 {
640 	const char *bad_reason = NULL;
641 	unsigned long bad_flags = 0;
642 
643 	if (unlikely(page_mapcount(page)))
644 		bad_reason = "nonzero mapcount";
645 	if (unlikely(page->mapping != NULL))
646 		bad_reason = "non-NULL mapping";
647 	if (unlikely(atomic_read(&page->_count) != 0))
648 		bad_reason = "nonzero _count";
649 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
650 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
652 	}
653 	if (unlikely(mem_cgroup_bad_page_check(page)))
654 		bad_reason = "cgroup check failed";
655 	if (unlikely(bad_reason)) {
656 		bad_page(page, bad_reason, bad_flags);
657 		return 1;
658 	}
659 	page_cpupid_reset_last(page);
660 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
661 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
662 	return 0;
663 }
664 
665 /*
666  * Frees a number of pages from the PCP lists
667  * Assumes all pages on list are in same zone, and of same order.
668  * count is the number of pages to free.
669  *
670  * If the zone was previously in an "all pages pinned" state then look to
671  * see if this freeing clears that state.
672  *
673  * And clear the zone's pages_scanned counter, to hold off the "all pages are
674  * pinned" detection logic.
675  */
676 static void free_pcppages_bulk(struct zone *zone, int count,
677 					struct per_cpu_pages *pcp)
678 {
679 	int migratetype = 0;
680 	int batch_free = 0;
681 	int to_free = count;
682 	unsigned long nr_scanned;
683 
684 	spin_lock(&zone->lock);
685 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
686 	if (nr_scanned)
687 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
688 
689 	while (to_free) {
690 		struct page *page;
691 		struct list_head *list;
692 
693 		/*
694 		 * Remove pages from lists in a round-robin fashion. A
695 		 * batch_free count is maintained that is incremented when an
696 		 * empty list is encountered.  This is so more pages are freed
697 		 * off fuller lists instead of spinning excessively around empty
698 		 * lists
699 		 */
700 		do {
701 			batch_free++;
702 			if (++migratetype == MIGRATE_PCPTYPES)
703 				migratetype = 0;
704 			list = &pcp->lists[migratetype];
705 		} while (list_empty(list));
706 
707 		/* This is the only non-empty list. Free them all. */
708 		if (batch_free == MIGRATE_PCPTYPES)
709 			batch_free = to_free;
710 
711 		do {
712 			int mt;	/* migratetype of the to-be-freed page */
713 
714 			page = list_entry(list->prev, struct page, lru);
715 			/* must delete as __free_one_page list manipulates */
716 			list_del(&page->lru);
717 			mt = get_freepage_migratetype(page);
718 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
719 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
720 			trace_mm_page_pcpu_drain(page, 0, mt);
721 			if (likely(!is_migrate_isolate_page(page))) {
722 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
723 				if (is_migrate_cma(mt))
724 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
725 			}
726 		} while (--to_free && --batch_free && !list_empty(list));
727 	}
728 	spin_unlock(&zone->lock);
729 }
730 
731 static void free_one_page(struct zone *zone,
732 				struct page *page, unsigned long pfn,
733 				unsigned int order,
734 				int migratetype)
735 {
736 	unsigned long nr_scanned;
737 	spin_lock(&zone->lock);
738 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
739 	if (nr_scanned)
740 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
741 
742 	__free_one_page(page, pfn, zone, order, migratetype);
743 	if (unlikely(!is_migrate_isolate(migratetype)))
744 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
745 	spin_unlock(&zone->lock);
746 }
747 
748 static bool free_pages_prepare(struct page *page, unsigned int order)
749 {
750 	int i;
751 	int bad = 0;
752 
753 	trace_mm_page_free(page, order);
754 	kmemcheck_free_shadow(page, order);
755 
756 	if (PageAnon(page))
757 		page->mapping = NULL;
758 	for (i = 0; i < (1 << order); i++)
759 		bad += free_pages_check(page + i);
760 	if (bad)
761 		return false;
762 
763 	if (!PageHighMem(page)) {
764 		debug_check_no_locks_freed(page_address(page),
765 					   PAGE_SIZE << order);
766 		debug_check_no_obj_freed(page_address(page),
767 					   PAGE_SIZE << order);
768 	}
769 	arch_free_page(page, order);
770 	kernel_map_pages(page, 1 << order, 0);
771 
772 	return true;
773 }
774 
775 static void __free_pages_ok(struct page *page, unsigned int order)
776 {
777 	unsigned long flags;
778 	int migratetype;
779 	unsigned long pfn = page_to_pfn(page);
780 
781 	if (!free_pages_prepare(page, order))
782 		return;
783 
784 	migratetype = get_pfnblock_migratetype(page, pfn);
785 	local_irq_save(flags);
786 	__count_vm_events(PGFREE, 1 << order);
787 	set_freepage_migratetype(page, migratetype);
788 	free_one_page(page_zone(page), page, pfn, order, migratetype);
789 	local_irq_restore(flags);
790 }
791 
792 void __init __free_pages_bootmem(struct page *page, unsigned int order)
793 {
794 	unsigned int nr_pages = 1 << order;
795 	struct page *p = page;
796 	unsigned int loop;
797 
798 	prefetchw(p);
799 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
800 		prefetchw(p + 1);
801 		__ClearPageReserved(p);
802 		set_page_count(p, 0);
803 	}
804 	__ClearPageReserved(p);
805 	set_page_count(p, 0);
806 
807 	page_zone(page)->managed_pages += nr_pages;
808 	set_page_refcounted(page);
809 	__free_pages(page, order);
810 }
811 
812 #ifdef CONFIG_CMA
813 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
814 void __init init_cma_reserved_pageblock(struct page *page)
815 {
816 	unsigned i = pageblock_nr_pages;
817 	struct page *p = page;
818 
819 	do {
820 		__ClearPageReserved(p);
821 		set_page_count(p, 0);
822 	} while (++p, --i);
823 
824 	set_pageblock_migratetype(page, MIGRATE_CMA);
825 
826 	if (pageblock_order >= MAX_ORDER) {
827 		i = pageblock_nr_pages;
828 		p = page;
829 		do {
830 			set_page_refcounted(p);
831 			__free_pages(p, MAX_ORDER - 1);
832 			p += MAX_ORDER_NR_PAGES;
833 		} while (i -= MAX_ORDER_NR_PAGES);
834 	} else {
835 		set_page_refcounted(page);
836 		__free_pages(page, pageblock_order);
837 	}
838 
839 	adjust_managed_page_count(page, pageblock_nr_pages);
840 }
841 #endif
842 
843 /*
844  * The order of subdivision here is critical for the IO subsystem.
845  * Please do not alter this order without good reasons and regression
846  * testing. Specifically, as large blocks of memory are subdivided,
847  * the order in which smaller blocks are delivered depends on the order
848  * they're subdivided in this function. This is the primary factor
849  * influencing the order in which pages are delivered to the IO
850  * subsystem according to empirical testing, and this is also justified
851  * by considering the behavior of a buddy system containing a single
852  * large block of memory acted on by a series of small allocations.
853  * This behavior is a critical factor in sglist merging's success.
854  *
855  * -- nyc
856  */
857 static inline void expand(struct zone *zone, struct page *page,
858 	int low, int high, struct free_area *area,
859 	int migratetype)
860 {
861 	unsigned long size = 1 << high;
862 
863 	while (high > low) {
864 		area--;
865 		high--;
866 		size >>= 1;
867 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
868 
869 #ifdef CONFIG_DEBUG_PAGEALLOC
870 		if (high < debug_guardpage_minorder()) {
871 			/*
872 			 * Mark as guard pages (or page), that will allow to
873 			 * merge back to allocator when buddy will be freed.
874 			 * Corresponding page table entries will not be touched,
875 			 * pages will stay not present in virtual address space
876 			 */
877 			INIT_LIST_HEAD(&page[size].lru);
878 			set_page_guard_flag(&page[size]);
879 			set_page_private(&page[size], high);
880 			/* Guard pages are not available for any usage */
881 			__mod_zone_freepage_state(zone, -(1 << high),
882 						  migratetype);
883 			continue;
884 		}
885 #endif
886 		list_add(&page[size].lru, &area->free_list[migratetype]);
887 		area->nr_free++;
888 		set_page_order(&page[size], high);
889 	}
890 }
891 
892 /*
893  * This page is about to be returned from the page allocator
894  */
895 static inline int check_new_page(struct page *page)
896 {
897 	const char *bad_reason = NULL;
898 	unsigned long bad_flags = 0;
899 
900 	if (unlikely(page_mapcount(page)))
901 		bad_reason = "nonzero mapcount";
902 	if (unlikely(page->mapping != NULL))
903 		bad_reason = "non-NULL mapping";
904 	if (unlikely(atomic_read(&page->_count) != 0))
905 		bad_reason = "nonzero _count";
906 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
907 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
908 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
909 	}
910 	if (unlikely(mem_cgroup_bad_page_check(page)))
911 		bad_reason = "cgroup check failed";
912 	if (unlikely(bad_reason)) {
913 		bad_page(page, bad_reason, bad_flags);
914 		return 1;
915 	}
916 	return 0;
917 }
918 
919 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
920 {
921 	int i;
922 
923 	for (i = 0; i < (1 << order); i++) {
924 		struct page *p = page + i;
925 		if (unlikely(check_new_page(p)))
926 			return 1;
927 	}
928 
929 	set_page_private(page, 0);
930 	set_page_refcounted(page);
931 
932 	arch_alloc_page(page, order);
933 	kernel_map_pages(page, 1 << order, 1);
934 
935 	if (gfp_flags & __GFP_ZERO)
936 		prep_zero_page(page, order, gfp_flags);
937 
938 	if (order && (gfp_flags & __GFP_COMP))
939 		prep_compound_page(page, order);
940 
941 	return 0;
942 }
943 
944 /*
945  * Go through the free lists for the given migratetype and remove
946  * the smallest available page from the freelists
947  */
948 static inline
949 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
950 						int migratetype)
951 {
952 	unsigned int current_order;
953 	struct free_area *area;
954 	struct page *page;
955 
956 	/* Find a page of the appropriate size in the preferred list */
957 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
958 		area = &(zone->free_area[current_order]);
959 		if (list_empty(&area->free_list[migratetype]))
960 			continue;
961 
962 		page = list_entry(area->free_list[migratetype].next,
963 							struct page, lru);
964 		list_del(&page->lru);
965 		rmv_page_order(page);
966 		area->nr_free--;
967 		expand(zone, page, order, current_order, area, migratetype);
968 		set_freepage_migratetype(page, migratetype);
969 		return page;
970 	}
971 
972 	return NULL;
973 }
974 
975 
976 /*
977  * This array describes the order lists are fallen back to when
978  * the free lists for the desirable migrate type are depleted
979  */
980 static int fallbacks[MIGRATE_TYPES][4] = {
981 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
982 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
983 #ifdef CONFIG_CMA
984 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
985 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
986 #else
987 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
988 #endif
989 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
990 #ifdef CONFIG_MEMORY_ISOLATION
991 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
992 #endif
993 };
994 
995 /*
996  * Move the free pages in a range to the free lists of the requested type.
997  * Note that start_page and end_pages are not aligned on a pageblock
998  * boundary. If alignment is required, use move_freepages_block()
999  */
1000 int move_freepages(struct zone *zone,
1001 			  struct page *start_page, struct page *end_page,
1002 			  int migratetype)
1003 {
1004 	struct page *page;
1005 	unsigned long order;
1006 	int pages_moved = 0;
1007 
1008 #ifndef CONFIG_HOLES_IN_ZONE
1009 	/*
1010 	 * page_zone is not safe to call in this context when
1011 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1012 	 * anyway as we check zone boundaries in move_freepages_block().
1013 	 * Remove at a later date when no bug reports exist related to
1014 	 * grouping pages by mobility
1015 	 */
1016 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1017 #endif
1018 
1019 	for (page = start_page; page <= end_page;) {
1020 		/* Make sure we are not inadvertently changing nodes */
1021 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1022 
1023 		if (!pfn_valid_within(page_to_pfn(page))) {
1024 			page++;
1025 			continue;
1026 		}
1027 
1028 		if (!PageBuddy(page)) {
1029 			page++;
1030 			continue;
1031 		}
1032 
1033 		order = page_order(page);
1034 		list_move(&page->lru,
1035 			  &zone->free_area[order].free_list[migratetype]);
1036 		set_freepage_migratetype(page, migratetype);
1037 		page += 1 << order;
1038 		pages_moved += 1 << order;
1039 	}
1040 
1041 	return pages_moved;
1042 }
1043 
1044 int move_freepages_block(struct zone *zone, struct page *page,
1045 				int migratetype)
1046 {
1047 	unsigned long start_pfn, end_pfn;
1048 	struct page *start_page, *end_page;
1049 
1050 	start_pfn = page_to_pfn(page);
1051 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1052 	start_page = pfn_to_page(start_pfn);
1053 	end_page = start_page + pageblock_nr_pages - 1;
1054 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1055 
1056 	/* Do not cross zone boundaries */
1057 	if (!zone_spans_pfn(zone, start_pfn))
1058 		start_page = page;
1059 	if (!zone_spans_pfn(zone, end_pfn))
1060 		return 0;
1061 
1062 	return move_freepages(zone, start_page, end_page, migratetype);
1063 }
1064 
1065 static void change_pageblock_range(struct page *pageblock_page,
1066 					int start_order, int migratetype)
1067 {
1068 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1069 
1070 	while (nr_pageblocks--) {
1071 		set_pageblock_migratetype(pageblock_page, migratetype);
1072 		pageblock_page += pageblock_nr_pages;
1073 	}
1074 }
1075 
1076 /*
1077  * If breaking a large block of pages, move all free pages to the preferred
1078  * allocation list. If falling back for a reclaimable kernel allocation, be
1079  * more aggressive about taking ownership of free pages.
1080  *
1081  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1082  * nor move CMA pages to different free lists. We don't want unmovable pages
1083  * to be allocated from MIGRATE_CMA areas.
1084  *
1085  * Returns the new migratetype of the pageblock (or the same old migratetype
1086  * if it was unchanged).
1087  */
1088 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1089 				  int start_type, int fallback_type)
1090 {
1091 	int current_order = page_order(page);
1092 
1093 	/*
1094 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1095 	 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1096 	 * is set to CMA so it is returned to the correct freelist in case
1097 	 * the page ends up being not actually allocated from the pcp lists.
1098 	 */
1099 	if (is_migrate_cma(fallback_type))
1100 		return fallback_type;
1101 
1102 	/* Take ownership for orders >= pageblock_order */
1103 	if (current_order >= pageblock_order) {
1104 		change_pageblock_range(page, current_order, start_type);
1105 		return start_type;
1106 	}
1107 
1108 	if (current_order >= pageblock_order / 2 ||
1109 	    start_type == MIGRATE_RECLAIMABLE ||
1110 	    page_group_by_mobility_disabled) {
1111 		int pages;
1112 
1113 		pages = move_freepages_block(zone, page, start_type);
1114 
1115 		/* Claim the whole block if over half of it is free */
1116 		if (pages >= (1 << (pageblock_order-1)) ||
1117 				page_group_by_mobility_disabled) {
1118 
1119 			set_pageblock_migratetype(page, start_type);
1120 			return start_type;
1121 		}
1122 
1123 	}
1124 
1125 	return fallback_type;
1126 }
1127 
1128 /* Remove an element from the buddy allocator from the fallback list */
1129 static inline struct page *
1130 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1131 {
1132 	struct free_area *area;
1133 	unsigned int current_order;
1134 	struct page *page;
1135 	int migratetype, new_type, i;
1136 
1137 	/* Find the largest possible block of pages in the other list */
1138 	for (current_order = MAX_ORDER-1;
1139 				current_order >= order && current_order <= MAX_ORDER-1;
1140 				--current_order) {
1141 		for (i = 0;; i++) {
1142 			migratetype = fallbacks[start_migratetype][i];
1143 
1144 			/* MIGRATE_RESERVE handled later if necessary */
1145 			if (migratetype == MIGRATE_RESERVE)
1146 				break;
1147 
1148 			area = &(zone->free_area[current_order]);
1149 			if (list_empty(&area->free_list[migratetype]))
1150 				continue;
1151 
1152 			page = list_entry(area->free_list[migratetype].next,
1153 					struct page, lru);
1154 			area->nr_free--;
1155 
1156 			new_type = try_to_steal_freepages(zone, page,
1157 							  start_migratetype,
1158 							  migratetype);
1159 
1160 			/* Remove the page from the freelists */
1161 			list_del(&page->lru);
1162 			rmv_page_order(page);
1163 
1164 			expand(zone, page, order, current_order, area,
1165 			       new_type);
1166 			/* The freepage_migratetype may differ from pageblock's
1167 			 * migratetype depending on the decisions in
1168 			 * try_to_steal_freepages. This is OK as long as it does
1169 			 * not differ for MIGRATE_CMA type.
1170 			 */
1171 			set_freepage_migratetype(page, new_type);
1172 
1173 			trace_mm_page_alloc_extfrag(page, order, current_order,
1174 				start_migratetype, migratetype, new_type);
1175 
1176 			return page;
1177 		}
1178 	}
1179 
1180 	return NULL;
1181 }
1182 
1183 /*
1184  * Do the hard work of removing an element from the buddy allocator.
1185  * Call me with the zone->lock already held.
1186  */
1187 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1188 						int migratetype)
1189 {
1190 	struct page *page;
1191 
1192 retry_reserve:
1193 	page = __rmqueue_smallest(zone, order, migratetype);
1194 
1195 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1196 		page = __rmqueue_fallback(zone, order, migratetype);
1197 
1198 		/*
1199 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1200 		 * is used because __rmqueue_smallest is an inline function
1201 		 * and we want just one call site
1202 		 */
1203 		if (!page) {
1204 			migratetype = MIGRATE_RESERVE;
1205 			goto retry_reserve;
1206 		}
1207 	}
1208 
1209 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1210 	return page;
1211 }
1212 
1213 /*
1214  * Obtain a specified number of elements from the buddy allocator, all under
1215  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1216  * Returns the number of new pages which were placed at *list.
1217  */
1218 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1219 			unsigned long count, struct list_head *list,
1220 			int migratetype, bool cold)
1221 {
1222 	int i;
1223 
1224 	spin_lock(&zone->lock);
1225 	for (i = 0; i < count; ++i) {
1226 		struct page *page = __rmqueue(zone, order, migratetype);
1227 		if (unlikely(page == NULL))
1228 			break;
1229 
1230 		/*
1231 		 * Split buddy pages returned by expand() are received here
1232 		 * in physical page order. The page is added to the callers and
1233 		 * list and the list head then moves forward. From the callers
1234 		 * perspective, the linked list is ordered by page number in
1235 		 * some conditions. This is useful for IO devices that can
1236 		 * merge IO requests if the physical pages are ordered
1237 		 * properly.
1238 		 */
1239 		if (likely(!cold))
1240 			list_add(&page->lru, list);
1241 		else
1242 			list_add_tail(&page->lru, list);
1243 		list = &page->lru;
1244 		if (is_migrate_cma(get_freepage_migratetype(page)))
1245 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1246 					      -(1 << order));
1247 	}
1248 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1249 	spin_unlock(&zone->lock);
1250 	return i;
1251 }
1252 
1253 #ifdef CONFIG_NUMA
1254 /*
1255  * Called from the vmstat counter updater to drain pagesets of this
1256  * currently executing processor on remote nodes after they have
1257  * expired.
1258  *
1259  * Note that this function must be called with the thread pinned to
1260  * a single processor.
1261  */
1262 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1263 {
1264 	unsigned long flags;
1265 	int to_drain, batch;
1266 
1267 	local_irq_save(flags);
1268 	batch = ACCESS_ONCE(pcp->batch);
1269 	to_drain = min(pcp->count, batch);
1270 	if (to_drain > 0) {
1271 		free_pcppages_bulk(zone, to_drain, pcp);
1272 		pcp->count -= to_drain;
1273 	}
1274 	local_irq_restore(flags);
1275 }
1276 #endif
1277 
1278 /*
1279  * Drain pages of the indicated processor.
1280  *
1281  * The processor must either be the current processor and the
1282  * thread pinned to the current processor or a processor that
1283  * is not online.
1284  */
1285 static void drain_pages(unsigned int cpu)
1286 {
1287 	unsigned long flags;
1288 	struct zone *zone;
1289 
1290 	for_each_populated_zone(zone) {
1291 		struct per_cpu_pageset *pset;
1292 		struct per_cpu_pages *pcp;
1293 
1294 		local_irq_save(flags);
1295 		pset = per_cpu_ptr(zone->pageset, cpu);
1296 
1297 		pcp = &pset->pcp;
1298 		if (pcp->count) {
1299 			free_pcppages_bulk(zone, pcp->count, pcp);
1300 			pcp->count = 0;
1301 		}
1302 		local_irq_restore(flags);
1303 	}
1304 }
1305 
1306 /*
1307  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1308  */
1309 void drain_local_pages(void *arg)
1310 {
1311 	drain_pages(smp_processor_id());
1312 }
1313 
1314 /*
1315  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1316  *
1317  * Note that this code is protected against sending an IPI to an offline
1318  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1319  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1320  * nothing keeps CPUs from showing up after we populated the cpumask and
1321  * before the call to on_each_cpu_mask().
1322  */
1323 void drain_all_pages(void)
1324 {
1325 	int cpu;
1326 	struct per_cpu_pageset *pcp;
1327 	struct zone *zone;
1328 
1329 	/*
1330 	 * Allocate in the BSS so we wont require allocation in
1331 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1332 	 */
1333 	static cpumask_t cpus_with_pcps;
1334 
1335 	/*
1336 	 * We don't care about racing with CPU hotplug event
1337 	 * as offline notification will cause the notified
1338 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1339 	 * disables preemption as part of its processing
1340 	 */
1341 	for_each_online_cpu(cpu) {
1342 		bool has_pcps = false;
1343 		for_each_populated_zone(zone) {
1344 			pcp = per_cpu_ptr(zone->pageset, cpu);
1345 			if (pcp->pcp.count) {
1346 				has_pcps = true;
1347 				break;
1348 			}
1349 		}
1350 		if (has_pcps)
1351 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1352 		else
1353 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1354 	}
1355 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1356 }
1357 
1358 #ifdef CONFIG_HIBERNATION
1359 
1360 void mark_free_pages(struct zone *zone)
1361 {
1362 	unsigned long pfn, max_zone_pfn;
1363 	unsigned long flags;
1364 	unsigned int order, t;
1365 	struct list_head *curr;
1366 
1367 	if (zone_is_empty(zone))
1368 		return;
1369 
1370 	spin_lock_irqsave(&zone->lock, flags);
1371 
1372 	max_zone_pfn = zone_end_pfn(zone);
1373 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1374 		if (pfn_valid(pfn)) {
1375 			struct page *page = pfn_to_page(pfn);
1376 
1377 			if (!swsusp_page_is_forbidden(page))
1378 				swsusp_unset_page_free(page);
1379 		}
1380 
1381 	for_each_migratetype_order(order, t) {
1382 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1383 			unsigned long i;
1384 
1385 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1386 			for (i = 0; i < (1UL << order); i++)
1387 				swsusp_set_page_free(pfn_to_page(pfn + i));
1388 		}
1389 	}
1390 	spin_unlock_irqrestore(&zone->lock, flags);
1391 }
1392 #endif /* CONFIG_PM */
1393 
1394 /*
1395  * Free a 0-order page
1396  * cold == true ? free a cold page : free a hot page
1397  */
1398 void free_hot_cold_page(struct page *page, bool cold)
1399 {
1400 	struct zone *zone = page_zone(page);
1401 	struct per_cpu_pages *pcp;
1402 	unsigned long flags;
1403 	unsigned long pfn = page_to_pfn(page);
1404 	int migratetype;
1405 
1406 	if (!free_pages_prepare(page, 0))
1407 		return;
1408 
1409 	migratetype = get_pfnblock_migratetype(page, pfn);
1410 	set_freepage_migratetype(page, migratetype);
1411 	local_irq_save(flags);
1412 	__count_vm_event(PGFREE);
1413 
1414 	/*
1415 	 * We only track unmovable, reclaimable and movable on pcp lists.
1416 	 * Free ISOLATE pages back to the allocator because they are being
1417 	 * offlined but treat RESERVE as movable pages so we can get those
1418 	 * areas back if necessary. Otherwise, we may have to free
1419 	 * excessively into the page allocator
1420 	 */
1421 	if (migratetype >= MIGRATE_PCPTYPES) {
1422 		if (unlikely(is_migrate_isolate(migratetype))) {
1423 			free_one_page(zone, page, pfn, 0, migratetype);
1424 			goto out;
1425 		}
1426 		migratetype = MIGRATE_MOVABLE;
1427 	}
1428 
1429 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1430 	if (!cold)
1431 		list_add(&page->lru, &pcp->lists[migratetype]);
1432 	else
1433 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1434 	pcp->count++;
1435 	if (pcp->count >= pcp->high) {
1436 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1437 		free_pcppages_bulk(zone, batch, pcp);
1438 		pcp->count -= batch;
1439 	}
1440 
1441 out:
1442 	local_irq_restore(flags);
1443 }
1444 
1445 /*
1446  * Free a list of 0-order pages
1447  */
1448 void free_hot_cold_page_list(struct list_head *list, bool cold)
1449 {
1450 	struct page *page, *next;
1451 
1452 	list_for_each_entry_safe(page, next, list, lru) {
1453 		trace_mm_page_free_batched(page, cold);
1454 		free_hot_cold_page(page, cold);
1455 	}
1456 }
1457 
1458 /*
1459  * split_page takes a non-compound higher-order page, and splits it into
1460  * n (1<<order) sub-pages: page[0..n]
1461  * Each sub-page must be freed individually.
1462  *
1463  * Note: this is probably too low level an operation for use in drivers.
1464  * Please consult with lkml before using this in your driver.
1465  */
1466 void split_page(struct page *page, unsigned int order)
1467 {
1468 	int i;
1469 
1470 	VM_BUG_ON_PAGE(PageCompound(page), page);
1471 	VM_BUG_ON_PAGE(!page_count(page), page);
1472 
1473 #ifdef CONFIG_KMEMCHECK
1474 	/*
1475 	 * Split shadow pages too, because free(page[0]) would
1476 	 * otherwise free the whole shadow.
1477 	 */
1478 	if (kmemcheck_page_is_tracked(page))
1479 		split_page(virt_to_page(page[0].shadow), order);
1480 #endif
1481 
1482 	for (i = 1; i < (1 << order); i++)
1483 		set_page_refcounted(page + i);
1484 }
1485 EXPORT_SYMBOL_GPL(split_page);
1486 
1487 static int __isolate_free_page(struct page *page, unsigned int order)
1488 {
1489 	unsigned long watermark;
1490 	struct zone *zone;
1491 	int mt;
1492 
1493 	BUG_ON(!PageBuddy(page));
1494 
1495 	zone = page_zone(page);
1496 	mt = get_pageblock_migratetype(page);
1497 
1498 	if (!is_migrate_isolate(mt)) {
1499 		/* Obey watermarks as if the page was being allocated */
1500 		watermark = low_wmark_pages(zone) + (1 << order);
1501 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1502 			return 0;
1503 
1504 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1505 	}
1506 
1507 	/* Remove page from free list */
1508 	list_del(&page->lru);
1509 	zone->free_area[order].nr_free--;
1510 	rmv_page_order(page);
1511 
1512 	/* Set the pageblock if the isolated page is at least a pageblock */
1513 	if (order >= pageblock_order - 1) {
1514 		struct page *endpage = page + (1 << order) - 1;
1515 		for (; page < endpage; page += pageblock_nr_pages) {
1516 			int mt = get_pageblock_migratetype(page);
1517 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1518 				set_pageblock_migratetype(page,
1519 							  MIGRATE_MOVABLE);
1520 		}
1521 	}
1522 
1523 	return 1UL << order;
1524 }
1525 
1526 /*
1527  * Similar to split_page except the page is already free. As this is only
1528  * being used for migration, the migratetype of the block also changes.
1529  * As this is called with interrupts disabled, the caller is responsible
1530  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1531  * are enabled.
1532  *
1533  * Note: this is probably too low level an operation for use in drivers.
1534  * Please consult with lkml before using this in your driver.
1535  */
1536 int split_free_page(struct page *page)
1537 {
1538 	unsigned int order;
1539 	int nr_pages;
1540 
1541 	order = page_order(page);
1542 
1543 	nr_pages = __isolate_free_page(page, order);
1544 	if (!nr_pages)
1545 		return 0;
1546 
1547 	/* Split into individual pages */
1548 	set_page_refcounted(page);
1549 	split_page(page, order);
1550 	return nr_pages;
1551 }
1552 
1553 /*
1554  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1555  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1556  * or two.
1557  */
1558 static inline
1559 struct page *buffered_rmqueue(struct zone *preferred_zone,
1560 			struct zone *zone, unsigned int order,
1561 			gfp_t gfp_flags, int migratetype)
1562 {
1563 	unsigned long flags;
1564 	struct page *page;
1565 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1566 
1567 again:
1568 	if (likely(order == 0)) {
1569 		struct per_cpu_pages *pcp;
1570 		struct list_head *list;
1571 
1572 		local_irq_save(flags);
1573 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1574 		list = &pcp->lists[migratetype];
1575 		if (list_empty(list)) {
1576 			pcp->count += rmqueue_bulk(zone, 0,
1577 					pcp->batch, list,
1578 					migratetype, cold);
1579 			if (unlikely(list_empty(list)))
1580 				goto failed;
1581 		}
1582 
1583 		if (cold)
1584 			page = list_entry(list->prev, struct page, lru);
1585 		else
1586 			page = list_entry(list->next, struct page, lru);
1587 
1588 		list_del(&page->lru);
1589 		pcp->count--;
1590 	} else {
1591 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1592 			/*
1593 			 * __GFP_NOFAIL is not to be used in new code.
1594 			 *
1595 			 * All __GFP_NOFAIL callers should be fixed so that they
1596 			 * properly detect and handle allocation failures.
1597 			 *
1598 			 * We most definitely don't want callers attempting to
1599 			 * allocate greater than order-1 page units with
1600 			 * __GFP_NOFAIL.
1601 			 */
1602 			WARN_ON_ONCE(order > 1);
1603 		}
1604 		spin_lock_irqsave(&zone->lock, flags);
1605 		page = __rmqueue(zone, order, migratetype);
1606 		spin_unlock(&zone->lock);
1607 		if (!page)
1608 			goto failed;
1609 		__mod_zone_freepage_state(zone, -(1 << order),
1610 					  get_freepage_migratetype(page));
1611 	}
1612 
1613 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1614 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1615 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1616 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1617 
1618 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1619 	zone_statistics(preferred_zone, zone, gfp_flags);
1620 	local_irq_restore(flags);
1621 
1622 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1623 	if (prep_new_page(page, order, gfp_flags))
1624 		goto again;
1625 	return page;
1626 
1627 failed:
1628 	local_irq_restore(flags);
1629 	return NULL;
1630 }
1631 
1632 #ifdef CONFIG_FAIL_PAGE_ALLOC
1633 
1634 static struct {
1635 	struct fault_attr attr;
1636 
1637 	u32 ignore_gfp_highmem;
1638 	u32 ignore_gfp_wait;
1639 	u32 min_order;
1640 } fail_page_alloc = {
1641 	.attr = FAULT_ATTR_INITIALIZER,
1642 	.ignore_gfp_wait = 1,
1643 	.ignore_gfp_highmem = 1,
1644 	.min_order = 1,
1645 };
1646 
1647 static int __init setup_fail_page_alloc(char *str)
1648 {
1649 	return setup_fault_attr(&fail_page_alloc.attr, str);
1650 }
1651 __setup("fail_page_alloc=", setup_fail_page_alloc);
1652 
1653 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1654 {
1655 	if (order < fail_page_alloc.min_order)
1656 		return false;
1657 	if (gfp_mask & __GFP_NOFAIL)
1658 		return false;
1659 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1660 		return false;
1661 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1662 		return false;
1663 
1664 	return should_fail(&fail_page_alloc.attr, 1 << order);
1665 }
1666 
1667 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1668 
1669 static int __init fail_page_alloc_debugfs(void)
1670 {
1671 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1672 	struct dentry *dir;
1673 
1674 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1675 					&fail_page_alloc.attr);
1676 	if (IS_ERR(dir))
1677 		return PTR_ERR(dir);
1678 
1679 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1680 				&fail_page_alloc.ignore_gfp_wait))
1681 		goto fail;
1682 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1683 				&fail_page_alloc.ignore_gfp_highmem))
1684 		goto fail;
1685 	if (!debugfs_create_u32("min-order", mode, dir,
1686 				&fail_page_alloc.min_order))
1687 		goto fail;
1688 
1689 	return 0;
1690 fail:
1691 	debugfs_remove_recursive(dir);
1692 
1693 	return -ENOMEM;
1694 }
1695 
1696 late_initcall(fail_page_alloc_debugfs);
1697 
1698 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1699 
1700 #else /* CONFIG_FAIL_PAGE_ALLOC */
1701 
1702 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1703 {
1704 	return false;
1705 }
1706 
1707 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1708 
1709 /*
1710  * Return true if free pages are above 'mark'. This takes into account the order
1711  * of the allocation.
1712  */
1713 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1714 			unsigned long mark, int classzone_idx, int alloc_flags,
1715 			long free_pages)
1716 {
1717 	/* free_pages my go negative - that's OK */
1718 	long min = mark;
1719 	int o;
1720 	long free_cma = 0;
1721 
1722 	free_pages -= (1 << order) - 1;
1723 	if (alloc_flags & ALLOC_HIGH)
1724 		min -= min / 2;
1725 	if (alloc_flags & ALLOC_HARDER)
1726 		min -= min / 4;
1727 #ifdef CONFIG_CMA
1728 	/* If allocation can't use CMA areas don't use free CMA pages */
1729 	if (!(alloc_flags & ALLOC_CMA))
1730 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1731 #endif
1732 
1733 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1734 		return false;
1735 	for (o = 0; o < order; o++) {
1736 		/* At the next order, this order's pages become unavailable */
1737 		free_pages -= z->free_area[o].nr_free << o;
1738 
1739 		/* Require fewer higher order pages to be free */
1740 		min >>= 1;
1741 
1742 		if (free_pages <= min)
1743 			return false;
1744 	}
1745 	return true;
1746 }
1747 
1748 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1749 		      int classzone_idx, int alloc_flags)
1750 {
1751 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1752 					zone_page_state(z, NR_FREE_PAGES));
1753 }
1754 
1755 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1756 			unsigned long mark, int classzone_idx, int alloc_flags)
1757 {
1758 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1759 
1760 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1761 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1762 
1763 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1764 								free_pages);
1765 }
1766 
1767 #ifdef CONFIG_NUMA
1768 /*
1769  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1770  * skip over zones that are not allowed by the cpuset, or that have
1771  * been recently (in last second) found to be nearly full.  See further
1772  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1773  * that have to skip over a lot of full or unallowed zones.
1774  *
1775  * If the zonelist cache is present in the passed zonelist, then
1776  * returns a pointer to the allowed node mask (either the current
1777  * tasks mems_allowed, or node_states[N_MEMORY].)
1778  *
1779  * If the zonelist cache is not available for this zonelist, does
1780  * nothing and returns NULL.
1781  *
1782  * If the fullzones BITMAP in the zonelist cache is stale (more than
1783  * a second since last zap'd) then we zap it out (clear its bits.)
1784  *
1785  * We hold off even calling zlc_setup, until after we've checked the
1786  * first zone in the zonelist, on the theory that most allocations will
1787  * be satisfied from that first zone, so best to examine that zone as
1788  * quickly as we can.
1789  */
1790 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1791 {
1792 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1793 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1794 
1795 	zlc = zonelist->zlcache_ptr;
1796 	if (!zlc)
1797 		return NULL;
1798 
1799 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1800 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1801 		zlc->last_full_zap = jiffies;
1802 	}
1803 
1804 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1805 					&cpuset_current_mems_allowed :
1806 					&node_states[N_MEMORY];
1807 	return allowednodes;
1808 }
1809 
1810 /*
1811  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1812  * if it is worth looking at further for free memory:
1813  *  1) Check that the zone isn't thought to be full (doesn't have its
1814  *     bit set in the zonelist_cache fullzones BITMAP).
1815  *  2) Check that the zones node (obtained from the zonelist_cache
1816  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1817  * Return true (non-zero) if zone is worth looking at further, or
1818  * else return false (zero) if it is not.
1819  *
1820  * This check -ignores- the distinction between various watermarks,
1821  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1822  * found to be full for any variation of these watermarks, it will
1823  * be considered full for up to one second by all requests, unless
1824  * we are so low on memory on all allowed nodes that we are forced
1825  * into the second scan of the zonelist.
1826  *
1827  * In the second scan we ignore this zonelist cache and exactly
1828  * apply the watermarks to all zones, even it is slower to do so.
1829  * We are low on memory in the second scan, and should leave no stone
1830  * unturned looking for a free page.
1831  */
1832 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1833 						nodemask_t *allowednodes)
1834 {
1835 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1836 	int i;				/* index of *z in zonelist zones */
1837 	int n;				/* node that zone *z is on */
1838 
1839 	zlc = zonelist->zlcache_ptr;
1840 	if (!zlc)
1841 		return 1;
1842 
1843 	i = z - zonelist->_zonerefs;
1844 	n = zlc->z_to_n[i];
1845 
1846 	/* This zone is worth trying if it is allowed but not full */
1847 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1848 }
1849 
1850 /*
1851  * Given 'z' scanning a zonelist, set the corresponding bit in
1852  * zlc->fullzones, so that subsequent attempts to allocate a page
1853  * from that zone don't waste time re-examining it.
1854  */
1855 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1856 {
1857 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1858 	int i;				/* index of *z in zonelist zones */
1859 
1860 	zlc = zonelist->zlcache_ptr;
1861 	if (!zlc)
1862 		return;
1863 
1864 	i = z - zonelist->_zonerefs;
1865 
1866 	set_bit(i, zlc->fullzones);
1867 }
1868 
1869 /*
1870  * clear all zones full, called after direct reclaim makes progress so that
1871  * a zone that was recently full is not skipped over for up to a second
1872  */
1873 static void zlc_clear_zones_full(struct zonelist *zonelist)
1874 {
1875 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1876 
1877 	zlc = zonelist->zlcache_ptr;
1878 	if (!zlc)
1879 		return;
1880 
1881 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1882 }
1883 
1884 static bool zone_local(struct zone *local_zone, struct zone *zone)
1885 {
1886 	return local_zone->node == zone->node;
1887 }
1888 
1889 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1890 {
1891 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1892 				RECLAIM_DISTANCE;
1893 }
1894 
1895 #else	/* CONFIG_NUMA */
1896 
1897 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1898 {
1899 	return NULL;
1900 }
1901 
1902 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1903 				nodemask_t *allowednodes)
1904 {
1905 	return 1;
1906 }
1907 
1908 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1909 {
1910 }
1911 
1912 static void zlc_clear_zones_full(struct zonelist *zonelist)
1913 {
1914 }
1915 
1916 static bool zone_local(struct zone *local_zone, struct zone *zone)
1917 {
1918 	return true;
1919 }
1920 
1921 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1922 {
1923 	return true;
1924 }
1925 
1926 #endif	/* CONFIG_NUMA */
1927 
1928 static void reset_alloc_batches(struct zone *preferred_zone)
1929 {
1930 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1931 
1932 	do {
1933 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
1934 			high_wmark_pages(zone) - low_wmark_pages(zone) -
1935 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1936 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1937 	} while (zone++ != preferred_zone);
1938 }
1939 
1940 /*
1941  * get_page_from_freelist goes through the zonelist trying to allocate
1942  * a page.
1943  */
1944 static struct page *
1945 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1946 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1947 		struct zone *preferred_zone, int classzone_idx, int migratetype)
1948 {
1949 	struct zoneref *z;
1950 	struct page *page = NULL;
1951 	struct zone *zone;
1952 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1953 	int zlc_active = 0;		/* set if using zonelist_cache */
1954 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1955 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1956 				(gfp_mask & __GFP_WRITE);
1957 	int nr_fair_skipped = 0;
1958 	bool zonelist_rescan;
1959 
1960 zonelist_scan:
1961 	zonelist_rescan = false;
1962 
1963 	/*
1964 	 * Scan zonelist, looking for a zone with enough free.
1965 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1966 	 */
1967 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1968 						high_zoneidx, nodemask) {
1969 		unsigned long mark;
1970 
1971 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1972 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1973 				continue;
1974 		if (cpusets_enabled() &&
1975 			(alloc_flags & ALLOC_CPUSET) &&
1976 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1977 				continue;
1978 		/*
1979 		 * Distribute pages in proportion to the individual
1980 		 * zone size to ensure fair page aging.  The zone a
1981 		 * page was allocated in should have no effect on the
1982 		 * time the page has in memory before being reclaimed.
1983 		 */
1984 		if (alloc_flags & ALLOC_FAIR) {
1985 			if (!zone_local(preferred_zone, zone))
1986 				break;
1987 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
1988 				nr_fair_skipped++;
1989 				continue;
1990 			}
1991 		}
1992 		/*
1993 		 * When allocating a page cache page for writing, we
1994 		 * want to get it from a zone that is within its dirty
1995 		 * limit, such that no single zone holds more than its
1996 		 * proportional share of globally allowed dirty pages.
1997 		 * The dirty limits take into account the zone's
1998 		 * lowmem reserves and high watermark so that kswapd
1999 		 * should be able to balance it without having to
2000 		 * write pages from its LRU list.
2001 		 *
2002 		 * This may look like it could increase pressure on
2003 		 * lower zones by failing allocations in higher zones
2004 		 * before they are full.  But the pages that do spill
2005 		 * over are limited as the lower zones are protected
2006 		 * by this very same mechanism.  It should not become
2007 		 * a practical burden to them.
2008 		 *
2009 		 * XXX: For now, allow allocations to potentially
2010 		 * exceed the per-zone dirty limit in the slowpath
2011 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2012 		 * which is important when on a NUMA setup the allowed
2013 		 * zones are together not big enough to reach the
2014 		 * global limit.  The proper fix for these situations
2015 		 * will require awareness of zones in the
2016 		 * dirty-throttling and the flusher threads.
2017 		 */
2018 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2019 			continue;
2020 
2021 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2022 		if (!zone_watermark_ok(zone, order, mark,
2023 				       classzone_idx, alloc_flags)) {
2024 			int ret;
2025 
2026 			/* Checked here to keep the fast path fast */
2027 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2028 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2029 				goto try_this_zone;
2030 
2031 			if (IS_ENABLED(CONFIG_NUMA) &&
2032 					!did_zlc_setup && nr_online_nodes > 1) {
2033 				/*
2034 				 * we do zlc_setup if there are multiple nodes
2035 				 * and before considering the first zone allowed
2036 				 * by the cpuset.
2037 				 */
2038 				allowednodes = zlc_setup(zonelist, alloc_flags);
2039 				zlc_active = 1;
2040 				did_zlc_setup = 1;
2041 			}
2042 
2043 			if (zone_reclaim_mode == 0 ||
2044 			    !zone_allows_reclaim(preferred_zone, zone))
2045 				goto this_zone_full;
2046 
2047 			/*
2048 			 * As we may have just activated ZLC, check if the first
2049 			 * eligible zone has failed zone_reclaim recently.
2050 			 */
2051 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2052 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2053 				continue;
2054 
2055 			ret = zone_reclaim(zone, gfp_mask, order);
2056 			switch (ret) {
2057 			case ZONE_RECLAIM_NOSCAN:
2058 				/* did not scan */
2059 				continue;
2060 			case ZONE_RECLAIM_FULL:
2061 				/* scanned but unreclaimable */
2062 				continue;
2063 			default:
2064 				/* did we reclaim enough */
2065 				if (zone_watermark_ok(zone, order, mark,
2066 						classzone_idx, alloc_flags))
2067 					goto try_this_zone;
2068 
2069 				/*
2070 				 * Failed to reclaim enough to meet watermark.
2071 				 * Only mark the zone full if checking the min
2072 				 * watermark or if we failed to reclaim just
2073 				 * 1<<order pages or else the page allocator
2074 				 * fastpath will prematurely mark zones full
2075 				 * when the watermark is between the low and
2076 				 * min watermarks.
2077 				 */
2078 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2079 				    ret == ZONE_RECLAIM_SOME)
2080 					goto this_zone_full;
2081 
2082 				continue;
2083 			}
2084 		}
2085 
2086 try_this_zone:
2087 		page = buffered_rmqueue(preferred_zone, zone, order,
2088 						gfp_mask, migratetype);
2089 		if (page)
2090 			break;
2091 this_zone_full:
2092 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2093 			zlc_mark_zone_full(zonelist, z);
2094 	}
2095 
2096 	if (page) {
2097 		/*
2098 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2099 		 * necessary to allocate the page. The expectation is
2100 		 * that the caller is taking steps that will free more
2101 		 * memory. The caller should avoid the page being used
2102 		 * for !PFMEMALLOC purposes.
2103 		 */
2104 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2105 		return page;
2106 	}
2107 
2108 	/*
2109 	 * The first pass makes sure allocations are spread fairly within the
2110 	 * local node.  However, the local node might have free pages left
2111 	 * after the fairness batches are exhausted, and remote zones haven't
2112 	 * even been considered yet.  Try once more without fairness, and
2113 	 * include remote zones now, before entering the slowpath and waking
2114 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2115 	 */
2116 	if (alloc_flags & ALLOC_FAIR) {
2117 		alloc_flags &= ~ALLOC_FAIR;
2118 		if (nr_fair_skipped) {
2119 			zonelist_rescan = true;
2120 			reset_alloc_batches(preferred_zone);
2121 		}
2122 		if (nr_online_nodes > 1)
2123 			zonelist_rescan = true;
2124 	}
2125 
2126 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2127 		/* Disable zlc cache for second zonelist scan */
2128 		zlc_active = 0;
2129 		zonelist_rescan = true;
2130 	}
2131 
2132 	if (zonelist_rescan)
2133 		goto zonelist_scan;
2134 
2135 	return NULL;
2136 }
2137 
2138 /*
2139  * Large machines with many possible nodes should not always dump per-node
2140  * meminfo in irq context.
2141  */
2142 static inline bool should_suppress_show_mem(void)
2143 {
2144 	bool ret = false;
2145 
2146 #if NODES_SHIFT > 8
2147 	ret = in_interrupt();
2148 #endif
2149 	return ret;
2150 }
2151 
2152 static DEFINE_RATELIMIT_STATE(nopage_rs,
2153 		DEFAULT_RATELIMIT_INTERVAL,
2154 		DEFAULT_RATELIMIT_BURST);
2155 
2156 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2157 {
2158 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2159 
2160 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2161 	    debug_guardpage_minorder() > 0)
2162 		return;
2163 
2164 	/*
2165 	 * This documents exceptions given to allocations in certain
2166 	 * contexts that are allowed to allocate outside current's set
2167 	 * of allowed nodes.
2168 	 */
2169 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2170 		if (test_thread_flag(TIF_MEMDIE) ||
2171 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2172 			filter &= ~SHOW_MEM_FILTER_NODES;
2173 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2174 		filter &= ~SHOW_MEM_FILTER_NODES;
2175 
2176 	if (fmt) {
2177 		struct va_format vaf;
2178 		va_list args;
2179 
2180 		va_start(args, fmt);
2181 
2182 		vaf.fmt = fmt;
2183 		vaf.va = &args;
2184 
2185 		pr_warn("%pV", &vaf);
2186 
2187 		va_end(args);
2188 	}
2189 
2190 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2191 		current->comm, order, gfp_mask);
2192 
2193 	dump_stack();
2194 	if (!should_suppress_show_mem())
2195 		show_mem(filter);
2196 }
2197 
2198 static inline int
2199 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2200 				unsigned long did_some_progress,
2201 				unsigned long pages_reclaimed)
2202 {
2203 	/* Do not loop if specifically requested */
2204 	if (gfp_mask & __GFP_NORETRY)
2205 		return 0;
2206 
2207 	/* Always retry if specifically requested */
2208 	if (gfp_mask & __GFP_NOFAIL)
2209 		return 1;
2210 
2211 	/*
2212 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2213 	 * making forward progress without invoking OOM. Suspend also disables
2214 	 * storage devices so kswapd will not help. Bail if we are suspending.
2215 	 */
2216 	if (!did_some_progress && pm_suspended_storage())
2217 		return 0;
2218 
2219 	/*
2220 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2221 	 * means __GFP_NOFAIL, but that may not be true in other
2222 	 * implementations.
2223 	 */
2224 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2225 		return 1;
2226 
2227 	/*
2228 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2229 	 * specified, then we retry until we no longer reclaim any pages
2230 	 * (above), or we've reclaimed an order of pages at least as
2231 	 * large as the allocation's order. In both cases, if the
2232 	 * allocation still fails, we stop retrying.
2233 	 */
2234 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2235 		return 1;
2236 
2237 	return 0;
2238 }
2239 
2240 static inline struct page *
2241 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2242 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2243 	nodemask_t *nodemask, struct zone *preferred_zone,
2244 	int classzone_idx, int migratetype)
2245 {
2246 	struct page *page;
2247 
2248 	/* Acquire the per-zone oom lock for each zone */
2249 	if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2250 		schedule_timeout_uninterruptible(1);
2251 		return NULL;
2252 	}
2253 
2254 	/*
2255 	 * PM-freezer should be notified that there might be an OOM killer on
2256 	 * its way to kill and wake somebody up. This is too early and we might
2257 	 * end up not killing anything but false positives are acceptable.
2258 	 * See freeze_processes.
2259 	 */
2260 	note_oom_kill();
2261 
2262 	/*
2263 	 * Go through the zonelist yet one more time, keep very high watermark
2264 	 * here, this is only to catch a parallel oom killing, we must fail if
2265 	 * we're still under heavy pressure.
2266 	 */
2267 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2268 		order, zonelist, high_zoneidx,
2269 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2270 		preferred_zone, classzone_idx, migratetype);
2271 	if (page)
2272 		goto out;
2273 
2274 	if (!(gfp_mask & __GFP_NOFAIL)) {
2275 		/* The OOM killer will not help higher order allocs */
2276 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2277 			goto out;
2278 		/* The OOM killer does not needlessly kill tasks for lowmem */
2279 		if (high_zoneidx < ZONE_NORMAL)
2280 			goto out;
2281 		/*
2282 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2283 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2284 		 * The caller should handle page allocation failure by itself if
2285 		 * it specifies __GFP_THISNODE.
2286 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2287 		 */
2288 		if (gfp_mask & __GFP_THISNODE)
2289 			goto out;
2290 	}
2291 	/* Exhausted what can be done so it's blamo time */
2292 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2293 
2294 out:
2295 	oom_zonelist_unlock(zonelist, gfp_mask);
2296 	return page;
2297 }
2298 
2299 #ifdef CONFIG_COMPACTION
2300 /* Try memory compaction for high-order allocations before reclaim */
2301 static struct page *
2302 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2303 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2304 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2305 	int classzone_idx, int migratetype, enum migrate_mode mode,
2306 	int *contended_compaction, bool *deferred_compaction)
2307 {
2308 	struct zone *last_compact_zone = NULL;
2309 	unsigned long compact_result;
2310 	struct page *page;
2311 
2312 	if (!order)
2313 		return NULL;
2314 
2315 	current->flags |= PF_MEMALLOC;
2316 	compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2317 						nodemask, mode,
2318 						contended_compaction,
2319 						&last_compact_zone);
2320 	current->flags &= ~PF_MEMALLOC;
2321 
2322 	switch (compact_result) {
2323 	case COMPACT_DEFERRED:
2324 		*deferred_compaction = true;
2325 		/* fall-through */
2326 	case COMPACT_SKIPPED:
2327 		return NULL;
2328 	default:
2329 		break;
2330 	}
2331 
2332 	/*
2333 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2334 	 * count a compaction stall
2335 	 */
2336 	count_vm_event(COMPACTSTALL);
2337 
2338 	/* Page migration frees to the PCP lists but we want merging */
2339 	drain_pages(get_cpu());
2340 	put_cpu();
2341 
2342 	page = get_page_from_freelist(gfp_mask, nodemask,
2343 			order, zonelist, high_zoneidx,
2344 			alloc_flags & ~ALLOC_NO_WATERMARKS,
2345 			preferred_zone, classzone_idx, migratetype);
2346 
2347 	if (page) {
2348 		struct zone *zone = page_zone(page);
2349 
2350 		zone->compact_blockskip_flush = false;
2351 		compaction_defer_reset(zone, order, true);
2352 		count_vm_event(COMPACTSUCCESS);
2353 		return page;
2354 	}
2355 
2356 	/*
2357 	 * last_compact_zone is where try_to_compact_pages thought allocation
2358 	 * should succeed, so it did not defer compaction. But here we know
2359 	 * that it didn't succeed, so we do the defer.
2360 	 */
2361 	if (last_compact_zone && mode != MIGRATE_ASYNC)
2362 		defer_compaction(last_compact_zone, order);
2363 
2364 	/*
2365 	 * It's bad if compaction run occurs and fails. The most likely reason
2366 	 * is that pages exist, but not enough to satisfy watermarks.
2367 	 */
2368 	count_vm_event(COMPACTFAIL);
2369 
2370 	cond_resched();
2371 
2372 	return NULL;
2373 }
2374 #else
2375 static inline struct page *
2376 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2377 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2378 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2379 	int classzone_idx, int migratetype, enum migrate_mode mode,
2380 	int *contended_compaction, bool *deferred_compaction)
2381 {
2382 	return NULL;
2383 }
2384 #endif /* CONFIG_COMPACTION */
2385 
2386 /* Perform direct synchronous page reclaim */
2387 static int
2388 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2389 		  nodemask_t *nodemask)
2390 {
2391 	struct reclaim_state reclaim_state;
2392 	int progress;
2393 
2394 	cond_resched();
2395 
2396 	/* We now go into synchronous reclaim */
2397 	cpuset_memory_pressure_bump();
2398 	current->flags |= PF_MEMALLOC;
2399 	lockdep_set_current_reclaim_state(gfp_mask);
2400 	reclaim_state.reclaimed_slab = 0;
2401 	current->reclaim_state = &reclaim_state;
2402 
2403 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2404 
2405 	current->reclaim_state = NULL;
2406 	lockdep_clear_current_reclaim_state();
2407 	current->flags &= ~PF_MEMALLOC;
2408 
2409 	cond_resched();
2410 
2411 	return progress;
2412 }
2413 
2414 /* The really slow allocator path where we enter direct reclaim */
2415 static inline struct page *
2416 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2417 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2418 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2419 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2420 {
2421 	struct page *page = NULL;
2422 	bool drained = false;
2423 
2424 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2425 					       nodemask);
2426 	if (unlikely(!(*did_some_progress)))
2427 		return NULL;
2428 
2429 	/* After successful reclaim, reconsider all zones for allocation */
2430 	if (IS_ENABLED(CONFIG_NUMA))
2431 		zlc_clear_zones_full(zonelist);
2432 
2433 retry:
2434 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2435 					zonelist, high_zoneidx,
2436 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2437 					preferred_zone, classzone_idx,
2438 					migratetype);
2439 
2440 	/*
2441 	 * If an allocation failed after direct reclaim, it could be because
2442 	 * pages are pinned on the per-cpu lists. Drain them and try again
2443 	 */
2444 	if (!page && !drained) {
2445 		drain_all_pages();
2446 		drained = true;
2447 		goto retry;
2448 	}
2449 
2450 	return page;
2451 }
2452 
2453 /*
2454  * This is called in the allocator slow-path if the allocation request is of
2455  * sufficient urgency to ignore watermarks and take other desperate measures
2456  */
2457 static inline struct page *
2458 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2459 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2460 	nodemask_t *nodemask, struct zone *preferred_zone,
2461 	int classzone_idx, int migratetype)
2462 {
2463 	struct page *page;
2464 
2465 	do {
2466 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2467 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2468 			preferred_zone, classzone_idx, migratetype);
2469 
2470 		if (!page && gfp_mask & __GFP_NOFAIL)
2471 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2472 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2473 
2474 	return page;
2475 }
2476 
2477 static void wake_all_kswapds(unsigned int order,
2478 			     struct zonelist *zonelist,
2479 			     enum zone_type high_zoneidx,
2480 			     struct zone *preferred_zone,
2481 			     nodemask_t *nodemask)
2482 {
2483 	struct zoneref *z;
2484 	struct zone *zone;
2485 
2486 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2487 						high_zoneidx, nodemask)
2488 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2489 }
2490 
2491 static inline int
2492 gfp_to_alloc_flags(gfp_t gfp_mask)
2493 {
2494 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2495 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2496 
2497 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2498 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2499 
2500 	/*
2501 	 * The caller may dip into page reserves a bit more if the caller
2502 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2503 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2504 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2505 	 */
2506 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2507 
2508 	if (atomic) {
2509 		/*
2510 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2511 		 * if it can't schedule.
2512 		 */
2513 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2514 			alloc_flags |= ALLOC_HARDER;
2515 		/*
2516 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2517 		 * comment for __cpuset_node_allowed_softwall().
2518 		 */
2519 		alloc_flags &= ~ALLOC_CPUSET;
2520 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2521 		alloc_flags |= ALLOC_HARDER;
2522 
2523 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2524 		if (gfp_mask & __GFP_MEMALLOC)
2525 			alloc_flags |= ALLOC_NO_WATERMARKS;
2526 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2527 			alloc_flags |= ALLOC_NO_WATERMARKS;
2528 		else if (!in_interrupt() &&
2529 				((current->flags & PF_MEMALLOC) ||
2530 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2531 			alloc_flags |= ALLOC_NO_WATERMARKS;
2532 	}
2533 #ifdef CONFIG_CMA
2534 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2535 		alloc_flags |= ALLOC_CMA;
2536 #endif
2537 	return alloc_flags;
2538 }
2539 
2540 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2541 {
2542 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2543 }
2544 
2545 static inline struct page *
2546 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2547 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2548 	nodemask_t *nodemask, struct zone *preferred_zone,
2549 	int classzone_idx, int migratetype)
2550 {
2551 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2552 	struct page *page = NULL;
2553 	int alloc_flags;
2554 	unsigned long pages_reclaimed = 0;
2555 	unsigned long did_some_progress;
2556 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2557 	bool deferred_compaction = false;
2558 	int contended_compaction = COMPACT_CONTENDED_NONE;
2559 
2560 	/*
2561 	 * In the slowpath, we sanity check order to avoid ever trying to
2562 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2563 	 * be using allocators in order of preference for an area that is
2564 	 * too large.
2565 	 */
2566 	if (order >= MAX_ORDER) {
2567 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2568 		return NULL;
2569 	}
2570 
2571 	/*
2572 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2573 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2574 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2575 	 * using a larger set of nodes after it has established that the
2576 	 * allowed per node queues are empty and that nodes are
2577 	 * over allocated.
2578 	 */
2579 	if (IS_ENABLED(CONFIG_NUMA) &&
2580 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2581 		goto nopage;
2582 
2583 restart:
2584 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2585 		wake_all_kswapds(order, zonelist, high_zoneidx,
2586 				preferred_zone, nodemask);
2587 
2588 	/*
2589 	 * OK, we're below the kswapd watermark and have kicked background
2590 	 * reclaim. Now things get more complex, so set up alloc_flags according
2591 	 * to how we want to proceed.
2592 	 */
2593 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2594 
2595 	/*
2596 	 * Find the true preferred zone if the allocation is unconstrained by
2597 	 * cpusets.
2598 	 */
2599 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2600 		struct zoneref *preferred_zoneref;
2601 		preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2602 				NULL, &preferred_zone);
2603 		classzone_idx = zonelist_zone_idx(preferred_zoneref);
2604 	}
2605 
2606 rebalance:
2607 	/* This is the last chance, in general, before the goto nopage. */
2608 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2609 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2610 			preferred_zone, classzone_idx, migratetype);
2611 	if (page)
2612 		goto got_pg;
2613 
2614 	/* Allocate without watermarks if the context allows */
2615 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2616 		/*
2617 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2618 		 * the allocation is high priority and these type of
2619 		 * allocations are system rather than user orientated
2620 		 */
2621 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2622 
2623 		page = __alloc_pages_high_priority(gfp_mask, order,
2624 				zonelist, high_zoneidx, nodemask,
2625 				preferred_zone, classzone_idx, migratetype);
2626 		if (page) {
2627 			goto got_pg;
2628 		}
2629 	}
2630 
2631 	/* Atomic allocations - we can't balance anything */
2632 	if (!wait) {
2633 		/*
2634 		 * All existing users of the deprecated __GFP_NOFAIL are
2635 		 * blockable, so warn of any new users that actually allow this
2636 		 * type of allocation to fail.
2637 		 */
2638 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2639 		goto nopage;
2640 	}
2641 
2642 	/* Avoid recursion of direct reclaim */
2643 	if (current->flags & PF_MEMALLOC)
2644 		goto nopage;
2645 
2646 	/* Avoid allocations with no watermarks from looping endlessly */
2647 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2648 		goto nopage;
2649 
2650 	/*
2651 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2652 	 * attempts after direct reclaim are synchronous
2653 	 */
2654 	page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2655 					high_zoneidx, nodemask, alloc_flags,
2656 					preferred_zone,
2657 					classzone_idx, migratetype,
2658 					migration_mode, &contended_compaction,
2659 					&deferred_compaction);
2660 	if (page)
2661 		goto got_pg;
2662 
2663 	/* Checks for THP-specific high-order allocations */
2664 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2665 		/*
2666 		 * If compaction is deferred for high-order allocations, it is
2667 		 * because sync compaction recently failed. If this is the case
2668 		 * and the caller requested a THP allocation, we do not want
2669 		 * to heavily disrupt the system, so we fail the allocation
2670 		 * instead of entering direct reclaim.
2671 		 */
2672 		if (deferred_compaction)
2673 			goto nopage;
2674 
2675 		/*
2676 		 * In all zones where compaction was attempted (and not
2677 		 * deferred or skipped), lock contention has been detected.
2678 		 * For THP allocation we do not want to disrupt the others
2679 		 * so we fallback to base pages instead.
2680 		 */
2681 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2682 			goto nopage;
2683 
2684 		/*
2685 		 * If compaction was aborted due to need_resched(), we do not
2686 		 * want to further increase allocation latency, unless it is
2687 		 * khugepaged trying to collapse.
2688 		 */
2689 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2690 			&& !(current->flags & PF_KTHREAD))
2691 			goto nopage;
2692 	}
2693 
2694 	/*
2695 	 * It can become very expensive to allocate transparent hugepages at
2696 	 * fault, so use asynchronous memory compaction for THP unless it is
2697 	 * khugepaged trying to collapse.
2698 	 */
2699 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2700 						(current->flags & PF_KTHREAD))
2701 		migration_mode = MIGRATE_SYNC_LIGHT;
2702 
2703 	/* Try direct reclaim and then allocating */
2704 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2705 					zonelist, high_zoneidx,
2706 					nodemask,
2707 					alloc_flags, preferred_zone,
2708 					classzone_idx, migratetype,
2709 					&did_some_progress);
2710 	if (page)
2711 		goto got_pg;
2712 
2713 	/*
2714 	 * If we failed to make any progress reclaiming, then we are
2715 	 * running out of options and have to consider going OOM
2716 	 */
2717 	if (!did_some_progress) {
2718 		if (oom_gfp_allowed(gfp_mask)) {
2719 			if (oom_killer_disabled)
2720 				goto nopage;
2721 			/* Coredumps can quickly deplete all memory reserves */
2722 			if ((current->flags & PF_DUMPCORE) &&
2723 			    !(gfp_mask & __GFP_NOFAIL))
2724 				goto nopage;
2725 			page = __alloc_pages_may_oom(gfp_mask, order,
2726 					zonelist, high_zoneidx,
2727 					nodemask, preferred_zone,
2728 					classzone_idx, migratetype);
2729 			if (page)
2730 				goto got_pg;
2731 
2732 			if (!(gfp_mask & __GFP_NOFAIL)) {
2733 				/*
2734 				 * The oom killer is not called for high-order
2735 				 * allocations that may fail, so if no progress
2736 				 * is being made, there are no other options and
2737 				 * retrying is unlikely to help.
2738 				 */
2739 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2740 					goto nopage;
2741 				/*
2742 				 * The oom killer is not called for lowmem
2743 				 * allocations to prevent needlessly killing
2744 				 * innocent tasks.
2745 				 */
2746 				if (high_zoneidx < ZONE_NORMAL)
2747 					goto nopage;
2748 			}
2749 
2750 			goto restart;
2751 		}
2752 	}
2753 
2754 	/* Check if we should retry the allocation */
2755 	pages_reclaimed += did_some_progress;
2756 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2757 						pages_reclaimed)) {
2758 		/* Wait for some write requests to complete then retry */
2759 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2760 		goto rebalance;
2761 	} else {
2762 		/*
2763 		 * High-order allocations do not necessarily loop after
2764 		 * direct reclaim and reclaim/compaction depends on compaction
2765 		 * being called after reclaim so call directly if necessary
2766 		 */
2767 		page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2768 					high_zoneidx, nodemask, alloc_flags,
2769 					preferred_zone,
2770 					classzone_idx, migratetype,
2771 					migration_mode, &contended_compaction,
2772 					&deferred_compaction);
2773 		if (page)
2774 			goto got_pg;
2775 	}
2776 
2777 nopage:
2778 	warn_alloc_failed(gfp_mask, order, NULL);
2779 	return page;
2780 got_pg:
2781 	if (kmemcheck_enabled)
2782 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2783 
2784 	return page;
2785 }
2786 
2787 /*
2788  * This is the 'heart' of the zoned buddy allocator.
2789  */
2790 struct page *
2791 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2792 			struct zonelist *zonelist, nodemask_t *nodemask)
2793 {
2794 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2795 	struct zone *preferred_zone;
2796 	struct zoneref *preferred_zoneref;
2797 	struct page *page = NULL;
2798 	int migratetype = gfpflags_to_migratetype(gfp_mask);
2799 	unsigned int cpuset_mems_cookie;
2800 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2801 	int classzone_idx;
2802 
2803 	gfp_mask &= gfp_allowed_mask;
2804 
2805 	lockdep_trace_alloc(gfp_mask);
2806 
2807 	might_sleep_if(gfp_mask & __GFP_WAIT);
2808 
2809 	if (should_fail_alloc_page(gfp_mask, order))
2810 		return NULL;
2811 
2812 	/*
2813 	 * Check the zones suitable for the gfp_mask contain at least one
2814 	 * valid zone. It's possible to have an empty zonelist as a result
2815 	 * of GFP_THISNODE and a memoryless node
2816 	 */
2817 	if (unlikely(!zonelist->_zonerefs->zone))
2818 		return NULL;
2819 
2820 	if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2821 		alloc_flags |= ALLOC_CMA;
2822 
2823 retry_cpuset:
2824 	cpuset_mems_cookie = read_mems_allowed_begin();
2825 
2826 	/* The preferred zone is used for statistics later */
2827 	preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2828 				nodemask ? : &cpuset_current_mems_allowed,
2829 				&preferred_zone);
2830 	if (!preferred_zone)
2831 		goto out;
2832 	classzone_idx = zonelist_zone_idx(preferred_zoneref);
2833 
2834 	/* First allocation attempt */
2835 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2836 			zonelist, high_zoneidx, alloc_flags,
2837 			preferred_zone, classzone_idx, migratetype);
2838 	if (unlikely(!page)) {
2839 		/*
2840 		 * Runtime PM, block IO and its error handling path
2841 		 * can deadlock because I/O on the device might not
2842 		 * complete.
2843 		 */
2844 		gfp_mask = memalloc_noio_flags(gfp_mask);
2845 		page = __alloc_pages_slowpath(gfp_mask, order,
2846 				zonelist, high_zoneidx, nodemask,
2847 				preferred_zone, classzone_idx, migratetype);
2848 	}
2849 
2850 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2851 
2852 out:
2853 	/*
2854 	 * When updating a task's mems_allowed, it is possible to race with
2855 	 * parallel threads in such a way that an allocation can fail while
2856 	 * the mask is being updated. If a page allocation is about to fail,
2857 	 * check if the cpuset changed during allocation and if so, retry.
2858 	 */
2859 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2860 		goto retry_cpuset;
2861 
2862 	return page;
2863 }
2864 EXPORT_SYMBOL(__alloc_pages_nodemask);
2865 
2866 /*
2867  * Common helper functions.
2868  */
2869 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2870 {
2871 	struct page *page;
2872 
2873 	/*
2874 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2875 	 * a highmem page
2876 	 */
2877 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2878 
2879 	page = alloc_pages(gfp_mask, order);
2880 	if (!page)
2881 		return 0;
2882 	return (unsigned long) page_address(page);
2883 }
2884 EXPORT_SYMBOL(__get_free_pages);
2885 
2886 unsigned long get_zeroed_page(gfp_t gfp_mask)
2887 {
2888 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2889 }
2890 EXPORT_SYMBOL(get_zeroed_page);
2891 
2892 void __free_pages(struct page *page, unsigned int order)
2893 {
2894 	if (put_page_testzero(page)) {
2895 		if (order == 0)
2896 			free_hot_cold_page(page, false);
2897 		else
2898 			__free_pages_ok(page, order);
2899 	}
2900 }
2901 
2902 EXPORT_SYMBOL(__free_pages);
2903 
2904 void free_pages(unsigned long addr, unsigned int order)
2905 {
2906 	if (addr != 0) {
2907 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2908 		__free_pages(virt_to_page((void *)addr), order);
2909 	}
2910 }
2911 
2912 EXPORT_SYMBOL(free_pages);
2913 
2914 /*
2915  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2916  * of the current memory cgroup.
2917  *
2918  * It should be used when the caller would like to use kmalloc, but since the
2919  * allocation is large, it has to fall back to the page allocator.
2920  */
2921 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2922 {
2923 	struct page *page;
2924 	struct mem_cgroup *memcg = NULL;
2925 
2926 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2927 		return NULL;
2928 	page = alloc_pages(gfp_mask, order);
2929 	memcg_kmem_commit_charge(page, memcg, order);
2930 	return page;
2931 }
2932 
2933 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2934 {
2935 	struct page *page;
2936 	struct mem_cgroup *memcg = NULL;
2937 
2938 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2939 		return NULL;
2940 	page = alloc_pages_node(nid, gfp_mask, order);
2941 	memcg_kmem_commit_charge(page, memcg, order);
2942 	return page;
2943 }
2944 
2945 /*
2946  * __free_kmem_pages and free_kmem_pages will free pages allocated with
2947  * alloc_kmem_pages.
2948  */
2949 void __free_kmem_pages(struct page *page, unsigned int order)
2950 {
2951 	memcg_kmem_uncharge_pages(page, order);
2952 	__free_pages(page, order);
2953 }
2954 
2955 void free_kmem_pages(unsigned long addr, unsigned int order)
2956 {
2957 	if (addr != 0) {
2958 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2959 		__free_kmem_pages(virt_to_page((void *)addr), order);
2960 	}
2961 }
2962 
2963 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2964 {
2965 	if (addr) {
2966 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2967 		unsigned long used = addr + PAGE_ALIGN(size);
2968 
2969 		split_page(virt_to_page((void *)addr), order);
2970 		while (used < alloc_end) {
2971 			free_page(used);
2972 			used += PAGE_SIZE;
2973 		}
2974 	}
2975 	return (void *)addr;
2976 }
2977 
2978 /**
2979  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2980  * @size: the number of bytes to allocate
2981  * @gfp_mask: GFP flags for the allocation
2982  *
2983  * This function is similar to alloc_pages(), except that it allocates the
2984  * minimum number of pages to satisfy the request.  alloc_pages() can only
2985  * allocate memory in power-of-two pages.
2986  *
2987  * This function is also limited by MAX_ORDER.
2988  *
2989  * Memory allocated by this function must be released by free_pages_exact().
2990  */
2991 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2992 {
2993 	unsigned int order = get_order(size);
2994 	unsigned long addr;
2995 
2996 	addr = __get_free_pages(gfp_mask, order);
2997 	return make_alloc_exact(addr, order, size);
2998 }
2999 EXPORT_SYMBOL(alloc_pages_exact);
3000 
3001 /**
3002  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3003  *			   pages on a node.
3004  * @nid: the preferred node ID where memory should be allocated
3005  * @size: the number of bytes to allocate
3006  * @gfp_mask: GFP flags for the allocation
3007  *
3008  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3009  * back.
3010  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3011  * but is not exact.
3012  */
3013 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3014 {
3015 	unsigned order = get_order(size);
3016 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3017 	if (!p)
3018 		return NULL;
3019 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3020 }
3021 
3022 /**
3023  * free_pages_exact - release memory allocated via alloc_pages_exact()
3024  * @virt: the value returned by alloc_pages_exact.
3025  * @size: size of allocation, same value as passed to alloc_pages_exact().
3026  *
3027  * Release the memory allocated by a previous call to alloc_pages_exact.
3028  */
3029 void free_pages_exact(void *virt, size_t size)
3030 {
3031 	unsigned long addr = (unsigned long)virt;
3032 	unsigned long end = addr + PAGE_ALIGN(size);
3033 
3034 	while (addr < end) {
3035 		free_page(addr);
3036 		addr += PAGE_SIZE;
3037 	}
3038 }
3039 EXPORT_SYMBOL(free_pages_exact);
3040 
3041 /**
3042  * nr_free_zone_pages - count number of pages beyond high watermark
3043  * @offset: The zone index of the highest zone
3044  *
3045  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3046  * high watermark within all zones at or below a given zone index.  For each
3047  * zone, the number of pages is calculated as:
3048  *     managed_pages - high_pages
3049  */
3050 static unsigned long nr_free_zone_pages(int offset)
3051 {
3052 	struct zoneref *z;
3053 	struct zone *zone;
3054 
3055 	/* Just pick one node, since fallback list is circular */
3056 	unsigned long sum = 0;
3057 
3058 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3059 
3060 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3061 		unsigned long size = zone->managed_pages;
3062 		unsigned long high = high_wmark_pages(zone);
3063 		if (size > high)
3064 			sum += size - high;
3065 	}
3066 
3067 	return sum;
3068 }
3069 
3070 /**
3071  * nr_free_buffer_pages - count number of pages beyond high watermark
3072  *
3073  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3074  * watermark within ZONE_DMA and ZONE_NORMAL.
3075  */
3076 unsigned long nr_free_buffer_pages(void)
3077 {
3078 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3079 }
3080 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3081 
3082 /**
3083  * nr_free_pagecache_pages - count number of pages beyond high watermark
3084  *
3085  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3086  * high watermark within all zones.
3087  */
3088 unsigned long nr_free_pagecache_pages(void)
3089 {
3090 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3091 }
3092 
3093 static inline void show_node(struct zone *zone)
3094 {
3095 	if (IS_ENABLED(CONFIG_NUMA))
3096 		printk("Node %d ", zone_to_nid(zone));
3097 }
3098 
3099 void si_meminfo(struct sysinfo *val)
3100 {
3101 	val->totalram = totalram_pages;
3102 	val->sharedram = global_page_state(NR_SHMEM);
3103 	val->freeram = global_page_state(NR_FREE_PAGES);
3104 	val->bufferram = nr_blockdev_pages();
3105 	val->totalhigh = totalhigh_pages;
3106 	val->freehigh = nr_free_highpages();
3107 	val->mem_unit = PAGE_SIZE;
3108 }
3109 
3110 EXPORT_SYMBOL(si_meminfo);
3111 
3112 #ifdef CONFIG_NUMA
3113 void si_meminfo_node(struct sysinfo *val, int nid)
3114 {
3115 	int zone_type;		/* needs to be signed */
3116 	unsigned long managed_pages = 0;
3117 	pg_data_t *pgdat = NODE_DATA(nid);
3118 
3119 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3120 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3121 	val->totalram = managed_pages;
3122 	val->sharedram = node_page_state(nid, NR_SHMEM);
3123 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3124 #ifdef CONFIG_HIGHMEM
3125 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3126 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3127 			NR_FREE_PAGES);
3128 #else
3129 	val->totalhigh = 0;
3130 	val->freehigh = 0;
3131 #endif
3132 	val->mem_unit = PAGE_SIZE;
3133 }
3134 #endif
3135 
3136 /*
3137  * Determine whether the node should be displayed or not, depending on whether
3138  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3139  */
3140 bool skip_free_areas_node(unsigned int flags, int nid)
3141 {
3142 	bool ret = false;
3143 	unsigned int cpuset_mems_cookie;
3144 
3145 	if (!(flags & SHOW_MEM_FILTER_NODES))
3146 		goto out;
3147 
3148 	do {
3149 		cpuset_mems_cookie = read_mems_allowed_begin();
3150 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3151 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3152 out:
3153 	return ret;
3154 }
3155 
3156 #define K(x) ((x) << (PAGE_SHIFT-10))
3157 
3158 static void show_migration_types(unsigned char type)
3159 {
3160 	static const char types[MIGRATE_TYPES] = {
3161 		[MIGRATE_UNMOVABLE]	= 'U',
3162 		[MIGRATE_RECLAIMABLE]	= 'E',
3163 		[MIGRATE_MOVABLE]	= 'M',
3164 		[MIGRATE_RESERVE]	= 'R',
3165 #ifdef CONFIG_CMA
3166 		[MIGRATE_CMA]		= 'C',
3167 #endif
3168 #ifdef CONFIG_MEMORY_ISOLATION
3169 		[MIGRATE_ISOLATE]	= 'I',
3170 #endif
3171 	};
3172 	char tmp[MIGRATE_TYPES + 1];
3173 	char *p = tmp;
3174 	int i;
3175 
3176 	for (i = 0; i < MIGRATE_TYPES; i++) {
3177 		if (type & (1 << i))
3178 			*p++ = types[i];
3179 	}
3180 
3181 	*p = '\0';
3182 	printk("(%s) ", tmp);
3183 }
3184 
3185 /*
3186  * Show free area list (used inside shift_scroll-lock stuff)
3187  * We also calculate the percentage fragmentation. We do this by counting the
3188  * memory on each free list with the exception of the first item on the list.
3189  * Suppresses nodes that are not allowed by current's cpuset if
3190  * SHOW_MEM_FILTER_NODES is passed.
3191  */
3192 void show_free_areas(unsigned int filter)
3193 {
3194 	int cpu;
3195 	struct zone *zone;
3196 
3197 	for_each_populated_zone(zone) {
3198 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3199 			continue;
3200 		show_node(zone);
3201 		printk("%s per-cpu:\n", zone->name);
3202 
3203 		for_each_online_cpu(cpu) {
3204 			struct per_cpu_pageset *pageset;
3205 
3206 			pageset = per_cpu_ptr(zone->pageset, cpu);
3207 
3208 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3209 			       cpu, pageset->pcp.high,
3210 			       pageset->pcp.batch, pageset->pcp.count);
3211 		}
3212 	}
3213 
3214 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3215 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3216 		" unevictable:%lu"
3217 		" dirty:%lu writeback:%lu unstable:%lu\n"
3218 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3219 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3220 		" free_cma:%lu\n",
3221 		global_page_state(NR_ACTIVE_ANON),
3222 		global_page_state(NR_INACTIVE_ANON),
3223 		global_page_state(NR_ISOLATED_ANON),
3224 		global_page_state(NR_ACTIVE_FILE),
3225 		global_page_state(NR_INACTIVE_FILE),
3226 		global_page_state(NR_ISOLATED_FILE),
3227 		global_page_state(NR_UNEVICTABLE),
3228 		global_page_state(NR_FILE_DIRTY),
3229 		global_page_state(NR_WRITEBACK),
3230 		global_page_state(NR_UNSTABLE_NFS),
3231 		global_page_state(NR_FREE_PAGES),
3232 		global_page_state(NR_SLAB_RECLAIMABLE),
3233 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3234 		global_page_state(NR_FILE_MAPPED),
3235 		global_page_state(NR_SHMEM),
3236 		global_page_state(NR_PAGETABLE),
3237 		global_page_state(NR_BOUNCE),
3238 		global_page_state(NR_FREE_CMA_PAGES));
3239 
3240 	for_each_populated_zone(zone) {
3241 		int i;
3242 
3243 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3244 			continue;
3245 		show_node(zone);
3246 		printk("%s"
3247 			" free:%lukB"
3248 			" min:%lukB"
3249 			" low:%lukB"
3250 			" high:%lukB"
3251 			" active_anon:%lukB"
3252 			" inactive_anon:%lukB"
3253 			" active_file:%lukB"
3254 			" inactive_file:%lukB"
3255 			" unevictable:%lukB"
3256 			" isolated(anon):%lukB"
3257 			" isolated(file):%lukB"
3258 			" present:%lukB"
3259 			" managed:%lukB"
3260 			" mlocked:%lukB"
3261 			" dirty:%lukB"
3262 			" writeback:%lukB"
3263 			" mapped:%lukB"
3264 			" shmem:%lukB"
3265 			" slab_reclaimable:%lukB"
3266 			" slab_unreclaimable:%lukB"
3267 			" kernel_stack:%lukB"
3268 			" pagetables:%lukB"
3269 			" unstable:%lukB"
3270 			" bounce:%lukB"
3271 			" free_cma:%lukB"
3272 			" writeback_tmp:%lukB"
3273 			" pages_scanned:%lu"
3274 			" all_unreclaimable? %s"
3275 			"\n",
3276 			zone->name,
3277 			K(zone_page_state(zone, NR_FREE_PAGES)),
3278 			K(min_wmark_pages(zone)),
3279 			K(low_wmark_pages(zone)),
3280 			K(high_wmark_pages(zone)),
3281 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3282 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3283 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3284 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3285 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3286 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3287 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3288 			K(zone->present_pages),
3289 			K(zone->managed_pages),
3290 			K(zone_page_state(zone, NR_MLOCK)),
3291 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3292 			K(zone_page_state(zone, NR_WRITEBACK)),
3293 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3294 			K(zone_page_state(zone, NR_SHMEM)),
3295 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3296 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3297 			zone_page_state(zone, NR_KERNEL_STACK) *
3298 				THREAD_SIZE / 1024,
3299 			K(zone_page_state(zone, NR_PAGETABLE)),
3300 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3301 			K(zone_page_state(zone, NR_BOUNCE)),
3302 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3303 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3304 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3305 			(!zone_reclaimable(zone) ? "yes" : "no")
3306 			);
3307 		printk("lowmem_reserve[]:");
3308 		for (i = 0; i < MAX_NR_ZONES; i++)
3309 			printk(" %ld", zone->lowmem_reserve[i]);
3310 		printk("\n");
3311 	}
3312 
3313 	for_each_populated_zone(zone) {
3314 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3315 		unsigned char types[MAX_ORDER];
3316 
3317 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3318 			continue;
3319 		show_node(zone);
3320 		printk("%s: ", zone->name);
3321 
3322 		spin_lock_irqsave(&zone->lock, flags);
3323 		for (order = 0; order < MAX_ORDER; order++) {
3324 			struct free_area *area = &zone->free_area[order];
3325 			int type;
3326 
3327 			nr[order] = area->nr_free;
3328 			total += nr[order] << order;
3329 
3330 			types[order] = 0;
3331 			for (type = 0; type < MIGRATE_TYPES; type++) {
3332 				if (!list_empty(&area->free_list[type]))
3333 					types[order] |= 1 << type;
3334 			}
3335 		}
3336 		spin_unlock_irqrestore(&zone->lock, flags);
3337 		for (order = 0; order < MAX_ORDER; order++) {
3338 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3339 			if (nr[order])
3340 				show_migration_types(types[order]);
3341 		}
3342 		printk("= %lukB\n", K(total));
3343 	}
3344 
3345 	hugetlb_show_meminfo();
3346 
3347 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3348 
3349 	show_swap_cache_info();
3350 }
3351 
3352 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3353 {
3354 	zoneref->zone = zone;
3355 	zoneref->zone_idx = zone_idx(zone);
3356 }
3357 
3358 /*
3359  * Builds allocation fallback zone lists.
3360  *
3361  * Add all populated zones of a node to the zonelist.
3362  */
3363 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3364 				int nr_zones)
3365 {
3366 	struct zone *zone;
3367 	enum zone_type zone_type = MAX_NR_ZONES;
3368 
3369 	do {
3370 		zone_type--;
3371 		zone = pgdat->node_zones + zone_type;
3372 		if (populated_zone(zone)) {
3373 			zoneref_set_zone(zone,
3374 				&zonelist->_zonerefs[nr_zones++]);
3375 			check_highest_zone(zone_type);
3376 		}
3377 	} while (zone_type);
3378 
3379 	return nr_zones;
3380 }
3381 
3382 
3383 /*
3384  *  zonelist_order:
3385  *  0 = automatic detection of better ordering.
3386  *  1 = order by ([node] distance, -zonetype)
3387  *  2 = order by (-zonetype, [node] distance)
3388  *
3389  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3390  *  the same zonelist. So only NUMA can configure this param.
3391  */
3392 #define ZONELIST_ORDER_DEFAULT  0
3393 #define ZONELIST_ORDER_NODE     1
3394 #define ZONELIST_ORDER_ZONE     2
3395 
3396 /* zonelist order in the kernel.
3397  * set_zonelist_order() will set this to NODE or ZONE.
3398  */
3399 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3400 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3401 
3402 
3403 #ifdef CONFIG_NUMA
3404 /* The value user specified ....changed by config */
3405 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3406 /* string for sysctl */
3407 #define NUMA_ZONELIST_ORDER_LEN	16
3408 char numa_zonelist_order[16] = "default";
3409 
3410 /*
3411  * interface for configure zonelist ordering.
3412  * command line option "numa_zonelist_order"
3413  *	= "[dD]efault	- default, automatic configuration.
3414  *	= "[nN]ode 	- order by node locality, then by zone within node
3415  *	= "[zZ]one      - order by zone, then by locality within zone
3416  */
3417 
3418 static int __parse_numa_zonelist_order(char *s)
3419 {
3420 	if (*s == 'd' || *s == 'D') {
3421 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3422 	} else if (*s == 'n' || *s == 'N') {
3423 		user_zonelist_order = ZONELIST_ORDER_NODE;
3424 	} else if (*s == 'z' || *s == 'Z') {
3425 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3426 	} else {
3427 		printk(KERN_WARNING
3428 			"Ignoring invalid numa_zonelist_order value:  "
3429 			"%s\n", s);
3430 		return -EINVAL;
3431 	}
3432 	return 0;
3433 }
3434 
3435 static __init int setup_numa_zonelist_order(char *s)
3436 {
3437 	int ret;
3438 
3439 	if (!s)
3440 		return 0;
3441 
3442 	ret = __parse_numa_zonelist_order(s);
3443 	if (ret == 0)
3444 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3445 
3446 	return ret;
3447 }
3448 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3449 
3450 /*
3451  * sysctl handler for numa_zonelist_order
3452  */
3453 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3454 		void __user *buffer, size_t *length,
3455 		loff_t *ppos)
3456 {
3457 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3458 	int ret;
3459 	static DEFINE_MUTEX(zl_order_mutex);
3460 
3461 	mutex_lock(&zl_order_mutex);
3462 	if (write) {
3463 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3464 			ret = -EINVAL;
3465 			goto out;
3466 		}
3467 		strcpy(saved_string, (char *)table->data);
3468 	}
3469 	ret = proc_dostring(table, write, buffer, length, ppos);
3470 	if (ret)
3471 		goto out;
3472 	if (write) {
3473 		int oldval = user_zonelist_order;
3474 
3475 		ret = __parse_numa_zonelist_order((char *)table->data);
3476 		if (ret) {
3477 			/*
3478 			 * bogus value.  restore saved string
3479 			 */
3480 			strncpy((char *)table->data, saved_string,
3481 				NUMA_ZONELIST_ORDER_LEN);
3482 			user_zonelist_order = oldval;
3483 		} else if (oldval != user_zonelist_order) {
3484 			mutex_lock(&zonelists_mutex);
3485 			build_all_zonelists(NULL, NULL);
3486 			mutex_unlock(&zonelists_mutex);
3487 		}
3488 	}
3489 out:
3490 	mutex_unlock(&zl_order_mutex);
3491 	return ret;
3492 }
3493 
3494 
3495 #define MAX_NODE_LOAD (nr_online_nodes)
3496 static int node_load[MAX_NUMNODES];
3497 
3498 /**
3499  * find_next_best_node - find the next node that should appear in a given node's fallback list
3500  * @node: node whose fallback list we're appending
3501  * @used_node_mask: nodemask_t of already used nodes
3502  *
3503  * We use a number of factors to determine which is the next node that should
3504  * appear on a given node's fallback list.  The node should not have appeared
3505  * already in @node's fallback list, and it should be the next closest node
3506  * according to the distance array (which contains arbitrary distance values
3507  * from each node to each node in the system), and should also prefer nodes
3508  * with no CPUs, since presumably they'll have very little allocation pressure
3509  * on them otherwise.
3510  * It returns -1 if no node is found.
3511  */
3512 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3513 {
3514 	int n, val;
3515 	int min_val = INT_MAX;
3516 	int best_node = NUMA_NO_NODE;
3517 	const struct cpumask *tmp = cpumask_of_node(0);
3518 
3519 	/* Use the local node if we haven't already */
3520 	if (!node_isset(node, *used_node_mask)) {
3521 		node_set(node, *used_node_mask);
3522 		return node;
3523 	}
3524 
3525 	for_each_node_state(n, N_MEMORY) {
3526 
3527 		/* Don't want a node to appear more than once */
3528 		if (node_isset(n, *used_node_mask))
3529 			continue;
3530 
3531 		/* Use the distance array to find the distance */
3532 		val = node_distance(node, n);
3533 
3534 		/* Penalize nodes under us ("prefer the next node") */
3535 		val += (n < node);
3536 
3537 		/* Give preference to headless and unused nodes */
3538 		tmp = cpumask_of_node(n);
3539 		if (!cpumask_empty(tmp))
3540 			val += PENALTY_FOR_NODE_WITH_CPUS;
3541 
3542 		/* Slight preference for less loaded node */
3543 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3544 		val += node_load[n];
3545 
3546 		if (val < min_val) {
3547 			min_val = val;
3548 			best_node = n;
3549 		}
3550 	}
3551 
3552 	if (best_node >= 0)
3553 		node_set(best_node, *used_node_mask);
3554 
3555 	return best_node;
3556 }
3557 
3558 
3559 /*
3560  * Build zonelists ordered by node and zones within node.
3561  * This results in maximum locality--normal zone overflows into local
3562  * DMA zone, if any--but risks exhausting DMA zone.
3563  */
3564 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3565 {
3566 	int j;
3567 	struct zonelist *zonelist;
3568 
3569 	zonelist = &pgdat->node_zonelists[0];
3570 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3571 		;
3572 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3573 	zonelist->_zonerefs[j].zone = NULL;
3574 	zonelist->_zonerefs[j].zone_idx = 0;
3575 }
3576 
3577 /*
3578  * Build gfp_thisnode zonelists
3579  */
3580 static void build_thisnode_zonelists(pg_data_t *pgdat)
3581 {
3582 	int j;
3583 	struct zonelist *zonelist;
3584 
3585 	zonelist = &pgdat->node_zonelists[1];
3586 	j = build_zonelists_node(pgdat, zonelist, 0);
3587 	zonelist->_zonerefs[j].zone = NULL;
3588 	zonelist->_zonerefs[j].zone_idx = 0;
3589 }
3590 
3591 /*
3592  * Build zonelists ordered by zone and nodes within zones.
3593  * This results in conserving DMA zone[s] until all Normal memory is
3594  * exhausted, but results in overflowing to remote node while memory
3595  * may still exist in local DMA zone.
3596  */
3597 static int node_order[MAX_NUMNODES];
3598 
3599 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3600 {
3601 	int pos, j, node;
3602 	int zone_type;		/* needs to be signed */
3603 	struct zone *z;
3604 	struct zonelist *zonelist;
3605 
3606 	zonelist = &pgdat->node_zonelists[0];
3607 	pos = 0;
3608 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3609 		for (j = 0; j < nr_nodes; j++) {
3610 			node = node_order[j];
3611 			z = &NODE_DATA(node)->node_zones[zone_type];
3612 			if (populated_zone(z)) {
3613 				zoneref_set_zone(z,
3614 					&zonelist->_zonerefs[pos++]);
3615 				check_highest_zone(zone_type);
3616 			}
3617 		}
3618 	}
3619 	zonelist->_zonerefs[pos].zone = NULL;
3620 	zonelist->_zonerefs[pos].zone_idx = 0;
3621 }
3622 
3623 #if defined(CONFIG_64BIT)
3624 /*
3625  * Devices that require DMA32/DMA are relatively rare and do not justify a
3626  * penalty to every machine in case the specialised case applies. Default
3627  * to Node-ordering on 64-bit NUMA machines
3628  */
3629 static int default_zonelist_order(void)
3630 {
3631 	return ZONELIST_ORDER_NODE;
3632 }
3633 #else
3634 /*
3635  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3636  * by the kernel. If processes running on node 0 deplete the low memory zone
3637  * then reclaim will occur more frequency increasing stalls and potentially
3638  * be easier to OOM if a large percentage of the zone is under writeback or
3639  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3640  * Hence, default to zone ordering on 32-bit.
3641  */
3642 static int default_zonelist_order(void)
3643 {
3644 	return ZONELIST_ORDER_ZONE;
3645 }
3646 #endif /* CONFIG_64BIT */
3647 
3648 static void set_zonelist_order(void)
3649 {
3650 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3651 		current_zonelist_order = default_zonelist_order();
3652 	else
3653 		current_zonelist_order = user_zonelist_order;
3654 }
3655 
3656 static void build_zonelists(pg_data_t *pgdat)
3657 {
3658 	int j, node, load;
3659 	enum zone_type i;
3660 	nodemask_t used_mask;
3661 	int local_node, prev_node;
3662 	struct zonelist *zonelist;
3663 	int order = current_zonelist_order;
3664 
3665 	/* initialize zonelists */
3666 	for (i = 0; i < MAX_ZONELISTS; i++) {
3667 		zonelist = pgdat->node_zonelists + i;
3668 		zonelist->_zonerefs[0].zone = NULL;
3669 		zonelist->_zonerefs[0].zone_idx = 0;
3670 	}
3671 
3672 	/* NUMA-aware ordering of nodes */
3673 	local_node = pgdat->node_id;
3674 	load = nr_online_nodes;
3675 	prev_node = local_node;
3676 	nodes_clear(used_mask);
3677 
3678 	memset(node_order, 0, sizeof(node_order));
3679 	j = 0;
3680 
3681 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3682 		/*
3683 		 * We don't want to pressure a particular node.
3684 		 * So adding penalty to the first node in same
3685 		 * distance group to make it round-robin.
3686 		 */
3687 		if (node_distance(local_node, node) !=
3688 		    node_distance(local_node, prev_node))
3689 			node_load[node] = load;
3690 
3691 		prev_node = node;
3692 		load--;
3693 		if (order == ZONELIST_ORDER_NODE)
3694 			build_zonelists_in_node_order(pgdat, node);
3695 		else
3696 			node_order[j++] = node;	/* remember order */
3697 	}
3698 
3699 	if (order == ZONELIST_ORDER_ZONE) {
3700 		/* calculate node order -- i.e., DMA last! */
3701 		build_zonelists_in_zone_order(pgdat, j);
3702 	}
3703 
3704 	build_thisnode_zonelists(pgdat);
3705 }
3706 
3707 /* Construct the zonelist performance cache - see further mmzone.h */
3708 static void build_zonelist_cache(pg_data_t *pgdat)
3709 {
3710 	struct zonelist *zonelist;
3711 	struct zonelist_cache *zlc;
3712 	struct zoneref *z;
3713 
3714 	zonelist = &pgdat->node_zonelists[0];
3715 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3716 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3717 	for (z = zonelist->_zonerefs; z->zone; z++)
3718 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3719 }
3720 
3721 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3722 /*
3723  * Return node id of node used for "local" allocations.
3724  * I.e., first node id of first zone in arg node's generic zonelist.
3725  * Used for initializing percpu 'numa_mem', which is used primarily
3726  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3727  */
3728 int local_memory_node(int node)
3729 {
3730 	struct zone *zone;
3731 
3732 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3733 				   gfp_zone(GFP_KERNEL),
3734 				   NULL,
3735 				   &zone);
3736 	return zone->node;
3737 }
3738 #endif
3739 
3740 #else	/* CONFIG_NUMA */
3741 
3742 static void set_zonelist_order(void)
3743 {
3744 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3745 }
3746 
3747 static void build_zonelists(pg_data_t *pgdat)
3748 {
3749 	int node, local_node;
3750 	enum zone_type j;
3751 	struct zonelist *zonelist;
3752 
3753 	local_node = pgdat->node_id;
3754 
3755 	zonelist = &pgdat->node_zonelists[0];
3756 	j = build_zonelists_node(pgdat, zonelist, 0);
3757 
3758 	/*
3759 	 * Now we build the zonelist so that it contains the zones
3760 	 * of all the other nodes.
3761 	 * We don't want to pressure a particular node, so when
3762 	 * building the zones for node N, we make sure that the
3763 	 * zones coming right after the local ones are those from
3764 	 * node N+1 (modulo N)
3765 	 */
3766 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3767 		if (!node_online(node))
3768 			continue;
3769 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3770 	}
3771 	for (node = 0; node < local_node; node++) {
3772 		if (!node_online(node))
3773 			continue;
3774 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3775 	}
3776 
3777 	zonelist->_zonerefs[j].zone = NULL;
3778 	zonelist->_zonerefs[j].zone_idx = 0;
3779 }
3780 
3781 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3782 static void build_zonelist_cache(pg_data_t *pgdat)
3783 {
3784 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3785 }
3786 
3787 #endif	/* CONFIG_NUMA */
3788 
3789 /*
3790  * Boot pageset table. One per cpu which is going to be used for all
3791  * zones and all nodes. The parameters will be set in such a way
3792  * that an item put on a list will immediately be handed over to
3793  * the buddy list. This is safe since pageset manipulation is done
3794  * with interrupts disabled.
3795  *
3796  * The boot_pagesets must be kept even after bootup is complete for
3797  * unused processors and/or zones. They do play a role for bootstrapping
3798  * hotplugged processors.
3799  *
3800  * zoneinfo_show() and maybe other functions do
3801  * not check if the processor is online before following the pageset pointer.
3802  * Other parts of the kernel may not check if the zone is available.
3803  */
3804 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3805 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3806 static void setup_zone_pageset(struct zone *zone);
3807 
3808 /*
3809  * Global mutex to protect against size modification of zonelists
3810  * as well as to serialize pageset setup for the new populated zone.
3811  */
3812 DEFINE_MUTEX(zonelists_mutex);
3813 
3814 /* return values int ....just for stop_machine() */
3815 static int __build_all_zonelists(void *data)
3816 {
3817 	int nid;
3818 	int cpu;
3819 	pg_data_t *self = data;
3820 
3821 #ifdef CONFIG_NUMA
3822 	memset(node_load, 0, sizeof(node_load));
3823 #endif
3824 
3825 	if (self && !node_online(self->node_id)) {
3826 		build_zonelists(self);
3827 		build_zonelist_cache(self);
3828 	}
3829 
3830 	for_each_online_node(nid) {
3831 		pg_data_t *pgdat = NODE_DATA(nid);
3832 
3833 		build_zonelists(pgdat);
3834 		build_zonelist_cache(pgdat);
3835 	}
3836 
3837 	/*
3838 	 * Initialize the boot_pagesets that are going to be used
3839 	 * for bootstrapping processors. The real pagesets for
3840 	 * each zone will be allocated later when the per cpu
3841 	 * allocator is available.
3842 	 *
3843 	 * boot_pagesets are used also for bootstrapping offline
3844 	 * cpus if the system is already booted because the pagesets
3845 	 * are needed to initialize allocators on a specific cpu too.
3846 	 * F.e. the percpu allocator needs the page allocator which
3847 	 * needs the percpu allocator in order to allocate its pagesets
3848 	 * (a chicken-egg dilemma).
3849 	 */
3850 	for_each_possible_cpu(cpu) {
3851 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3852 
3853 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3854 		/*
3855 		 * We now know the "local memory node" for each node--
3856 		 * i.e., the node of the first zone in the generic zonelist.
3857 		 * Set up numa_mem percpu variable for on-line cpus.  During
3858 		 * boot, only the boot cpu should be on-line;  we'll init the
3859 		 * secondary cpus' numa_mem as they come on-line.  During
3860 		 * node/memory hotplug, we'll fixup all on-line cpus.
3861 		 */
3862 		if (cpu_online(cpu))
3863 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3864 #endif
3865 	}
3866 
3867 	return 0;
3868 }
3869 
3870 /*
3871  * Called with zonelists_mutex held always
3872  * unless system_state == SYSTEM_BOOTING.
3873  */
3874 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3875 {
3876 	set_zonelist_order();
3877 
3878 	if (system_state == SYSTEM_BOOTING) {
3879 		__build_all_zonelists(NULL);
3880 		mminit_verify_zonelist();
3881 		cpuset_init_current_mems_allowed();
3882 	} else {
3883 #ifdef CONFIG_MEMORY_HOTPLUG
3884 		if (zone)
3885 			setup_zone_pageset(zone);
3886 #endif
3887 		/* we have to stop all cpus to guarantee there is no user
3888 		   of zonelist */
3889 		stop_machine(__build_all_zonelists, pgdat, NULL);
3890 		/* cpuset refresh routine should be here */
3891 	}
3892 	vm_total_pages = nr_free_pagecache_pages();
3893 	/*
3894 	 * Disable grouping by mobility if the number of pages in the
3895 	 * system is too low to allow the mechanism to work. It would be
3896 	 * more accurate, but expensive to check per-zone. This check is
3897 	 * made on memory-hotadd so a system can start with mobility
3898 	 * disabled and enable it later
3899 	 */
3900 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3901 		page_group_by_mobility_disabled = 1;
3902 	else
3903 		page_group_by_mobility_disabled = 0;
3904 
3905 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3906 		"Total pages: %ld\n",
3907 			nr_online_nodes,
3908 			zonelist_order_name[current_zonelist_order],
3909 			page_group_by_mobility_disabled ? "off" : "on",
3910 			vm_total_pages);
3911 #ifdef CONFIG_NUMA
3912 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3913 #endif
3914 }
3915 
3916 /*
3917  * Helper functions to size the waitqueue hash table.
3918  * Essentially these want to choose hash table sizes sufficiently
3919  * large so that collisions trying to wait on pages are rare.
3920  * But in fact, the number of active page waitqueues on typical
3921  * systems is ridiculously low, less than 200. So this is even
3922  * conservative, even though it seems large.
3923  *
3924  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3925  * waitqueues, i.e. the size of the waitq table given the number of pages.
3926  */
3927 #define PAGES_PER_WAITQUEUE	256
3928 
3929 #ifndef CONFIG_MEMORY_HOTPLUG
3930 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3931 {
3932 	unsigned long size = 1;
3933 
3934 	pages /= PAGES_PER_WAITQUEUE;
3935 
3936 	while (size < pages)
3937 		size <<= 1;
3938 
3939 	/*
3940 	 * Once we have dozens or even hundreds of threads sleeping
3941 	 * on IO we've got bigger problems than wait queue collision.
3942 	 * Limit the size of the wait table to a reasonable size.
3943 	 */
3944 	size = min(size, 4096UL);
3945 
3946 	return max(size, 4UL);
3947 }
3948 #else
3949 /*
3950  * A zone's size might be changed by hot-add, so it is not possible to determine
3951  * a suitable size for its wait_table.  So we use the maximum size now.
3952  *
3953  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3954  *
3955  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3956  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3957  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3958  *
3959  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3960  * or more by the traditional way. (See above).  It equals:
3961  *
3962  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3963  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3964  *    powerpc (64K page size)             : =  (32G +16M)byte.
3965  */
3966 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3967 {
3968 	return 4096UL;
3969 }
3970 #endif
3971 
3972 /*
3973  * This is an integer logarithm so that shifts can be used later
3974  * to extract the more random high bits from the multiplicative
3975  * hash function before the remainder is taken.
3976  */
3977 static inline unsigned long wait_table_bits(unsigned long size)
3978 {
3979 	return ffz(~size);
3980 }
3981 
3982 /*
3983  * Check if a pageblock contains reserved pages
3984  */
3985 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3986 {
3987 	unsigned long pfn;
3988 
3989 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3990 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3991 			return 1;
3992 	}
3993 	return 0;
3994 }
3995 
3996 /*
3997  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3998  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3999  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4000  * higher will lead to a bigger reserve which will get freed as contiguous
4001  * blocks as reclaim kicks in
4002  */
4003 static void setup_zone_migrate_reserve(struct zone *zone)
4004 {
4005 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4006 	struct page *page;
4007 	unsigned long block_migratetype;
4008 	int reserve;
4009 	int old_reserve;
4010 
4011 	/*
4012 	 * Get the start pfn, end pfn and the number of blocks to reserve
4013 	 * We have to be careful to be aligned to pageblock_nr_pages to
4014 	 * make sure that we always check pfn_valid for the first page in
4015 	 * the block.
4016 	 */
4017 	start_pfn = zone->zone_start_pfn;
4018 	end_pfn = zone_end_pfn(zone);
4019 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4020 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4021 							pageblock_order;
4022 
4023 	/*
4024 	 * Reserve blocks are generally in place to help high-order atomic
4025 	 * allocations that are short-lived. A min_free_kbytes value that
4026 	 * would result in more than 2 reserve blocks for atomic allocations
4027 	 * is assumed to be in place to help anti-fragmentation for the
4028 	 * future allocation of hugepages at runtime.
4029 	 */
4030 	reserve = min(2, reserve);
4031 	old_reserve = zone->nr_migrate_reserve_block;
4032 
4033 	/* When memory hot-add, we almost always need to do nothing */
4034 	if (reserve == old_reserve)
4035 		return;
4036 	zone->nr_migrate_reserve_block = reserve;
4037 
4038 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4039 		if (!pfn_valid(pfn))
4040 			continue;
4041 		page = pfn_to_page(pfn);
4042 
4043 		/* Watch out for overlapping nodes */
4044 		if (page_to_nid(page) != zone_to_nid(zone))
4045 			continue;
4046 
4047 		block_migratetype = get_pageblock_migratetype(page);
4048 
4049 		/* Only test what is necessary when the reserves are not met */
4050 		if (reserve > 0) {
4051 			/*
4052 			 * Blocks with reserved pages will never free, skip
4053 			 * them.
4054 			 */
4055 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4056 			if (pageblock_is_reserved(pfn, block_end_pfn))
4057 				continue;
4058 
4059 			/* If this block is reserved, account for it */
4060 			if (block_migratetype == MIGRATE_RESERVE) {
4061 				reserve--;
4062 				continue;
4063 			}
4064 
4065 			/* Suitable for reserving if this block is movable */
4066 			if (block_migratetype == MIGRATE_MOVABLE) {
4067 				set_pageblock_migratetype(page,
4068 							MIGRATE_RESERVE);
4069 				move_freepages_block(zone, page,
4070 							MIGRATE_RESERVE);
4071 				reserve--;
4072 				continue;
4073 			}
4074 		} else if (!old_reserve) {
4075 			/*
4076 			 * At boot time we don't need to scan the whole zone
4077 			 * for turning off MIGRATE_RESERVE.
4078 			 */
4079 			break;
4080 		}
4081 
4082 		/*
4083 		 * If the reserve is met and this is a previous reserved block,
4084 		 * take it back
4085 		 */
4086 		if (block_migratetype == MIGRATE_RESERVE) {
4087 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4088 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4089 		}
4090 	}
4091 }
4092 
4093 /*
4094  * Initially all pages are reserved - free ones are freed
4095  * up by free_all_bootmem() once the early boot process is
4096  * done. Non-atomic initialization, single-pass.
4097  */
4098 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4099 		unsigned long start_pfn, enum memmap_context context)
4100 {
4101 	struct page *page;
4102 	unsigned long end_pfn = start_pfn + size;
4103 	unsigned long pfn;
4104 	struct zone *z;
4105 
4106 	if (highest_memmap_pfn < end_pfn - 1)
4107 		highest_memmap_pfn = end_pfn - 1;
4108 
4109 	z = &NODE_DATA(nid)->node_zones[zone];
4110 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4111 		/*
4112 		 * There can be holes in boot-time mem_map[]s
4113 		 * handed to this function.  They do not
4114 		 * exist on hotplugged memory.
4115 		 */
4116 		if (context == MEMMAP_EARLY) {
4117 			if (!early_pfn_valid(pfn))
4118 				continue;
4119 			if (!early_pfn_in_nid(pfn, nid))
4120 				continue;
4121 		}
4122 		page = pfn_to_page(pfn);
4123 		set_page_links(page, zone, nid, pfn);
4124 		mminit_verify_page_links(page, zone, nid, pfn);
4125 		init_page_count(page);
4126 		page_mapcount_reset(page);
4127 		page_cpupid_reset_last(page);
4128 		SetPageReserved(page);
4129 		/*
4130 		 * Mark the block movable so that blocks are reserved for
4131 		 * movable at startup. This will force kernel allocations
4132 		 * to reserve their blocks rather than leaking throughout
4133 		 * the address space during boot when many long-lived
4134 		 * kernel allocations are made. Later some blocks near
4135 		 * the start are marked MIGRATE_RESERVE by
4136 		 * setup_zone_migrate_reserve()
4137 		 *
4138 		 * bitmap is created for zone's valid pfn range. but memmap
4139 		 * can be created for invalid pages (for alignment)
4140 		 * check here not to call set_pageblock_migratetype() against
4141 		 * pfn out of zone.
4142 		 */
4143 		if ((z->zone_start_pfn <= pfn)
4144 		    && (pfn < zone_end_pfn(z))
4145 		    && !(pfn & (pageblock_nr_pages - 1)))
4146 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4147 
4148 		INIT_LIST_HEAD(&page->lru);
4149 #ifdef WANT_PAGE_VIRTUAL
4150 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4151 		if (!is_highmem_idx(zone))
4152 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4153 #endif
4154 	}
4155 }
4156 
4157 static void __meminit zone_init_free_lists(struct zone *zone)
4158 {
4159 	unsigned int order, t;
4160 	for_each_migratetype_order(order, t) {
4161 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4162 		zone->free_area[order].nr_free = 0;
4163 	}
4164 }
4165 
4166 #ifndef __HAVE_ARCH_MEMMAP_INIT
4167 #define memmap_init(size, nid, zone, start_pfn) \
4168 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4169 #endif
4170 
4171 static int zone_batchsize(struct zone *zone)
4172 {
4173 #ifdef CONFIG_MMU
4174 	int batch;
4175 
4176 	/*
4177 	 * The per-cpu-pages pools are set to around 1000th of the
4178 	 * size of the zone.  But no more than 1/2 of a meg.
4179 	 *
4180 	 * OK, so we don't know how big the cache is.  So guess.
4181 	 */
4182 	batch = zone->managed_pages / 1024;
4183 	if (batch * PAGE_SIZE > 512 * 1024)
4184 		batch = (512 * 1024) / PAGE_SIZE;
4185 	batch /= 4;		/* We effectively *= 4 below */
4186 	if (batch < 1)
4187 		batch = 1;
4188 
4189 	/*
4190 	 * Clamp the batch to a 2^n - 1 value. Having a power
4191 	 * of 2 value was found to be more likely to have
4192 	 * suboptimal cache aliasing properties in some cases.
4193 	 *
4194 	 * For example if 2 tasks are alternately allocating
4195 	 * batches of pages, one task can end up with a lot
4196 	 * of pages of one half of the possible page colors
4197 	 * and the other with pages of the other colors.
4198 	 */
4199 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4200 
4201 	return batch;
4202 
4203 #else
4204 	/* The deferral and batching of frees should be suppressed under NOMMU
4205 	 * conditions.
4206 	 *
4207 	 * The problem is that NOMMU needs to be able to allocate large chunks
4208 	 * of contiguous memory as there's no hardware page translation to
4209 	 * assemble apparent contiguous memory from discontiguous pages.
4210 	 *
4211 	 * Queueing large contiguous runs of pages for batching, however,
4212 	 * causes the pages to actually be freed in smaller chunks.  As there
4213 	 * can be a significant delay between the individual batches being
4214 	 * recycled, this leads to the once large chunks of space being
4215 	 * fragmented and becoming unavailable for high-order allocations.
4216 	 */
4217 	return 0;
4218 #endif
4219 }
4220 
4221 /*
4222  * pcp->high and pcp->batch values are related and dependent on one another:
4223  * ->batch must never be higher then ->high.
4224  * The following function updates them in a safe manner without read side
4225  * locking.
4226  *
4227  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4228  * those fields changing asynchronously (acording the the above rule).
4229  *
4230  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4231  * outside of boot time (or some other assurance that no concurrent updaters
4232  * exist).
4233  */
4234 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4235 		unsigned long batch)
4236 {
4237        /* start with a fail safe value for batch */
4238 	pcp->batch = 1;
4239 	smp_wmb();
4240 
4241        /* Update high, then batch, in order */
4242 	pcp->high = high;
4243 	smp_wmb();
4244 
4245 	pcp->batch = batch;
4246 }
4247 
4248 /* a companion to pageset_set_high() */
4249 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4250 {
4251 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4252 }
4253 
4254 static void pageset_init(struct per_cpu_pageset *p)
4255 {
4256 	struct per_cpu_pages *pcp;
4257 	int migratetype;
4258 
4259 	memset(p, 0, sizeof(*p));
4260 
4261 	pcp = &p->pcp;
4262 	pcp->count = 0;
4263 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4264 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4265 }
4266 
4267 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4268 {
4269 	pageset_init(p);
4270 	pageset_set_batch(p, batch);
4271 }
4272 
4273 /*
4274  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4275  * to the value high for the pageset p.
4276  */
4277 static void pageset_set_high(struct per_cpu_pageset *p,
4278 				unsigned long high)
4279 {
4280 	unsigned long batch = max(1UL, high / 4);
4281 	if ((high / 4) > (PAGE_SHIFT * 8))
4282 		batch = PAGE_SHIFT * 8;
4283 
4284 	pageset_update(&p->pcp, high, batch);
4285 }
4286 
4287 static void pageset_set_high_and_batch(struct zone *zone,
4288 				       struct per_cpu_pageset *pcp)
4289 {
4290 	if (percpu_pagelist_fraction)
4291 		pageset_set_high(pcp,
4292 			(zone->managed_pages /
4293 				percpu_pagelist_fraction));
4294 	else
4295 		pageset_set_batch(pcp, zone_batchsize(zone));
4296 }
4297 
4298 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4299 {
4300 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4301 
4302 	pageset_init(pcp);
4303 	pageset_set_high_and_batch(zone, pcp);
4304 }
4305 
4306 static void __meminit setup_zone_pageset(struct zone *zone)
4307 {
4308 	int cpu;
4309 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4310 	for_each_possible_cpu(cpu)
4311 		zone_pageset_init(zone, cpu);
4312 }
4313 
4314 /*
4315  * Allocate per cpu pagesets and initialize them.
4316  * Before this call only boot pagesets were available.
4317  */
4318 void __init setup_per_cpu_pageset(void)
4319 {
4320 	struct zone *zone;
4321 
4322 	for_each_populated_zone(zone)
4323 		setup_zone_pageset(zone);
4324 }
4325 
4326 static noinline __init_refok
4327 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4328 {
4329 	int i;
4330 	size_t alloc_size;
4331 
4332 	/*
4333 	 * The per-page waitqueue mechanism uses hashed waitqueues
4334 	 * per zone.
4335 	 */
4336 	zone->wait_table_hash_nr_entries =
4337 		 wait_table_hash_nr_entries(zone_size_pages);
4338 	zone->wait_table_bits =
4339 		wait_table_bits(zone->wait_table_hash_nr_entries);
4340 	alloc_size = zone->wait_table_hash_nr_entries
4341 					* sizeof(wait_queue_head_t);
4342 
4343 	if (!slab_is_available()) {
4344 		zone->wait_table = (wait_queue_head_t *)
4345 			memblock_virt_alloc_node_nopanic(
4346 				alloc_size, zone->zone_pgdat->node_id);
4347 	} else {
4348 		/*
4349 		 * This case means that a zone whose size was 0 gets new memory
4350 		 * via memory hot-add.
4351 		 * But it may be the case that a new node was hot-added.  In
4352 		 * this case vmalloc() will not be able to use this new node's
4353 		 * memory - this wait_table must be initialized to use this new
4354 		 * node itself as well.
4355 		 * To use this new node's memory, further consideration will be
4356 		 * necessary.
4357 		 */
4358 		zone->wait_table = vmalloc(alloc_size);
4359 	}
4360 	if (!zone->wait_table)
4361 		return -ENOMEM;
4362 
4363 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4364 		init_waitqueue_head(zone->wait_table + i);
4365 
4366 	return 0;
4367 }
4368 
4369 static __meminit void zone_pcp_init(struct zone *zone)
4370 {
4371 	/*
4372 	 * per cpu subsystem is not up at this point. The following code
4373 	 * relies on the ability of the linker to provide the
4374 	 * offset of a (static) per cpu variable into the per cpu area.
4375 	 */
4376 	zone->pageset = &boot_pageset;
4377 
4378 	if (populated_zone(zone))
4379 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4380 			zone->name, zone->present_pages,
4381 					 zone_batchsize(zone));
4382 }
4383 
4384 int __meminit init_currently_empty_zone(struct zone *zone,
4385 					unsigned long zone_start_pfn,
4386 					unsigned long size,
4387 					enum memmap_context context)
4388 {
4389 	struct pglist_data *pgdat = zone->zone_pgdat;
4390 	int ret;
4391 	ret = zone_wait_table_init(zone, size);
4392 	if (ret)
4393 		return ret;
4394 	pgdat->nr_zones = zone_idx(zone) + 1;
4395 
4396 	zone->zone_start_pfn = zone_start_pfn;
4397 
4398 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4399 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4400 			pgdat->node_id,
4401 			(unsigned long)zone_idx(zone),
4402 			zone_start_pfn, (zone_start_pfn + size));
4403 
4404 	zone_init_free_lists(zone);
4405 
4406 	return 0;
4407 }
4408 
4409 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4410 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4411 /*
4412  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4413  */
4414 int __meminit __early_pfn_to_nid(unsigned long pfn)
4415 {
4416 	unsigned long start_pfn, end_pfn;
4417 	int nid;
4418 	/*
4419 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4420 	 * when the kernel is running single-threaded.
4421 	 */
4422 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4423 	static int __meminitdata last_nid;
4424 
4425 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4426 		return last_nid;
4427 
4428 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4429 	if (nid != -1) {
4430 		last_start_pfn = start_pfn;
4431 		last_end_pfn = end_pfn;
4432 		last_nid = nid;
4433 	}
4434 
4435 	return nid;
4436 }
4437 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4438 
4439 int __meminit early_pfn_to_nid(unsigned long pfn)
4440 {
4441 	int nid;
4442 
4443 	nid = __early_pfn_to_nid(pfn);
4444 	if (nid >= 0)
4445 		return nid;
4446 	/* just returns 0 */
4447 	return 0;
4448 }
4449 
4450 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4451 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4452 {
4453 	int nid;
4454 
4455 	nid = __early_pfn_to_nid(pfn);
4456 	if (nid >= 0 && nid != node)
4457 		return false;
4458 	return true;
4459 }
4460 #endif
4461 
4462 /**
4463  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4464  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4465  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4466  *
4467  * If an architecture guarantees that all ranges registered contain no holes
4468  * and may be freed, this this function may be used instead of calling
4469  * memblock_free_early_nid() manually.
4470  */
4471 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4472 {
4473 	unsigned long start_pfn, end_pfn;
4474 	int i, this_nid;
4475 
4476 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4477 		start_pfn = min(start_pfn, max_low_pfn);
4478 		end_pfn = min(end_pfn, max_low_pfn);
4479 
4480 		if (start_pfn < end_pfn)
4481 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4482 					(end_pfn - start_pfn) << PAGE_SHIFT,
4483 					this_nid);
4484 	}
4485 }
4486 
4487 /**
4488  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4489  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4490  *
4491  * If an architecture guarantees that all ranges registered contain no holes and may
4492  * be freed, this function may be used instead of calling memory_present() manually.
4493  */
4494 void __init sparse_memory_present_with_active_regions(int nid)
4495 {
4496 	unsigned long start_pfn, end_pfn;
4497 	int i, this_nid;
4498 
4499 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4500 		memory_present(this_nid, start_pfn, end_pfn);
4501 }
4502 
4503 /**
4504  * get_pfn_range_for_nid - Return the start and end page frames for a node
4505  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4506  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4507  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4508  *
4509  * It returns the start and end page frame of a node based on information
4510  * provided by memblock_set_node(). If called for a node
4511  * with no available memory, a warning is printed and the start and end
4512  * PFNs will be 0.
4513  */
4514 void __meminit get_pfn_range_for_nid(unsigned int nid,
4515 			unsigned long *start_pfn, unsigned long *end_pfn)
4516 {
4517 	unsigned long this_start_pfn, this_end_pfn;
4518 	int i;
4519 
4520 	*start_pfn = -1UL;
4521 	*end_pfn = 0;
4522 
4523 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4524 		*start_pfn = min(*start_pfn, this_start_pfn);
4525 		*end_pfn = max(*end_pfn, this_end_pfn);
4526 	}
4527 
4528 	if (*start_pfn == -1UL)
4529 		*start_pfn = 0;
4530 }
4531 
4532 /*
4533  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4534  * assumption is made that zones within a node are ordered in monotonic
4535  * increasing memory addresses so that the "highest" populated zone is used
4536  */
4537 static void __init find_usable_zone_for_movable(void)
4538 {
4539 	int zone_index;
4540 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4541 		if (zone_index == ZONE_MOVABLE)
4542 			continue;
4543 
4544 		if (arch_zone_highest_possible_pfn[zone_index] >
4545 				arch_zone_lowest_possible_pfn[zone_index])
4546 			break;
4547 	}
4548 
4549 	VM_BUG_ON(zone_index == -1);
4550 	movable_zone = zone_index;
4551 }
4552 
4553 /*
4554  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4555  * because it is sized independent of architecture. Unlike the other zones,
4556  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4557  * in each node depending on the size of each node and how evenly kernelcore
4558  * is distributed. This helper function adjusts the zone ranges
4559  * provided by the architecture for a given node by using the end of the
4560  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4561  * zones within a node are in order of monotonic increases memory addresses
4562  */
4563 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4564 					unsigned long zone_type,
4565 					unsigned long node_start_pfn,
4566 					unsigned long node_end_pfn,
4567 					unsigned long *zone_start_pfn,
4568 					unsigned long *zone_end_pfn)
4569 {
4570 	/* Only adjust if ZONE_MOVABLE is on this node */
4571 	if (zone_movable_pfn[nid]) {
4572 		/* Size ZONE_MOVABLE */
4573 		if (zone_type == ZONE_MOVABLE) {
4574 			*zone_start_pfn = zone_movable_pfn[nid];
4575 			*zone_end_pfn = min(node_end_pfn,
4576 				arch_zone_highest_possible_pfn[movable_zone]);
4577 
4578 		/* Adjust for ZONE_MOVABLE starting within this range */
4579 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4580 				*zone_end_pfn > zone_movable_pfn[nid]) {
4581 			*zone_end_pfn = zone_movable_pfn[nid];
4582 
4583 		/* Check if this whole range is within ZONE_MOVABLE */
4584 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4585 			*zone_start_pfn = *zone_end_pfn;
4586 	}
4587 }
4588 
4589 /*
4590  * Return the number of pages a zone spans in a node, including holes
4591  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4592  */
4593 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4594 					unsigned long zone_type,
4595 					unsigned long node_start_pfn,
4596 					unsigned long node_end_pfn,
4597 					unsigned long *ignored)
4598 {
4599 	unsigned long zone_start_pfn, zone_end_pfn;
4600 
4601 	/* Get the start and end of the zone */
4602 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4603 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4604 	adjust_zone_range_for_zone_movable(nid, zone_type,
4605 				node_start_pfn, node_end_pfn,
4606 				&zone_start_pfn, &zone_end_pfn);
4607 
4608 	/* Check that this node has pages within the zone's required range */
4609 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4610 		return 0;
4611 
4612 	/* Move the zone boundaries inside the node if necessary */
4613 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4614 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4615 
4616 	/* Return the spanned pages */
4617 	return zone_end_pfn - zone_start_pfn;
4618 }
4619 
4620 /*
4621  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4622  * then all holes in the requested range will be accounted for.
4623  */
4624 unsigned long __meminit __absent_pages_in_range(int nid,
4625 				unsigned long range_start_pfn,
4626 				unsigned long range_end_pfn)
4627 {
4628 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4629 	unsigned long start_pfn, end_pfn;
4630 	int i;
4631 
4632 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4633 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4634 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4635 		nr_absent -= end_pfn - start_pfn;
4636 	}
4637 	return nr_absent;
4638 }
4639 
4640 /**
4641  * absent_pages_in_range - Return number of page frames in holes within a range
4642  * @start_pfn: The start PFN to start searching for holes
4643  * @end_pfn: The end PFN to stop searching for holes
4644  *
4645  * It returns the number of pages frames in memory holes within a range.
4646  */
4647 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4648 							unsigned long end_pfn)
4649 {
4650 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4651 }
4652 
4653 /* Return the number of page frames in holes in a zone on a node */
4654 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4655 					unsigned long zone_type,
4656 					unsigned long node_start_pfn,
4657 					unsigned long node_end_pfn,
4658 					unsigned long *ignored)
4659 {
4660 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4661 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4662 	unsigned long zone_start_pfn, zone_end_pfn;
4663 
4664 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4665 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4666 
4667 	adjust_zone_range_for_zone_movable(nid, zone_type,
4668 			node_start_pfn, node_end_pfn,
4669 			&zone_start_pfn, &zone_end_pfn);
4670 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4671 }
4672 
4673 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4674 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4675 					unsigned long zone_type,
4676 					unsigned long node_start_pfn,
4677 					unsigned long node_end_pfn,
4678 					unsigned long *zones_size)
4679 {
4680 	return zones_size[zone_type];
4681 }
4682 
4683 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4684 						unsigned long zone_type,
4685 						unsigned long node_start_pfn,
4686 						unsigned long node_end_pfn,
4687 						unsigned long *zholes_size)
4688 {
4689 	if (!zholes_size)
4690 		return 0;
4691 
4692 	return zholes_size[zone_type];
4693 }
4694 
4695 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4696 
4697 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4698 						unsigned long node_start_pfn,
4699 						unsigned long node_end_pfn,
4700 						unsigned long *zones_size,
4701 						unsigned long *zholes_size)
4702 {
4703 	unsigned long realtotalpages, totalpages = 0;
4704 	enum zone_type i;
4705 
4706 	for (i = 0; i < MAX_NR_ZONES; i++)
4707 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4708 							 node_start_pfn,
4709 							 node_end_pfn,
4710 							 zones_size);
4711 	pgdat->node_spanned_pages = totalpages;
4712 
4713 	realtotalpages = totalpages;
4714 	for (i = 0; i < MAX_NR_ZONES; i++)
4715 		realtotalpages -=
4716 			zone_absent_pages_in_node(pgdat->node_id, i,
4717 						  node_start_pfn, node_end_pfn,
4718 						  zholes_size);
4719 	pgdat->node_present_pages = realtotalpages;
4720 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4721 							realtotalpages);
4722 }
4723 
4724 #ifndef CONFIG_SPARSEMEM
4725 /*
4726  * Calculate the size of the zone->blockflags rounded to an unsigned long
4727  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4728  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4729  * round what is now in bits to nearest long in bits, then return it in
4730  * bytes.
4731  */
4732 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4733 {
4734 	unsigned long usemapsize;
4735 
4736 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4737 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4738 	usemapsize = usemapsize >> pageblock_order;
4739 	usemapsize *= NR_PAGEBLOCK_BITS;
4740 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4741 
4742 	return usemapsize / 8;
4743 }
4744 
4745 static void __init setup_usemap(struct pglist_data *pgdat,
4746 				struct zone *zone,
4747 				unsigned long zone_start_pfn,
4748 				unsigned long zonesize)
4749 {
4750 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4751 	zone->pageblock_flags = NULL;
4752 	if (usemapsize)
4753 		zone->pageblock_flags =
4754 			memblock_virt_alloc_node_nopanic(usemapsize,
4755 							 pgdat->node_id);
4756 }
4757 #else
4758 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4759 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4760 #endif /* CONFIG_SPARSEMEM */
4761 
4762 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4763 
4764 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4765 void __paginginit set_pageblock_order(void)
4766 {
4767 	unsigned int order;
4768 
4769 	/* Check that pageblock_nr_pages has not already been setup */
4770 	if (pageblock_order)
4771 		return;
4772 
4773 	if (HPAGE_SHIFT > PAGE_SHIFT)
4774 		order = HUGETLB_PAGE_ORDER;
4775 	else
4776 		order = MAX_ORDER - 1;
4777 
4778 	/*
4779 	 * Assume the largest contiguous order of interest is a huge page.
4780 	 * This value may be variable depending on boot parameters on IA64 and
4781 	 * powerpc.
4782 	 */
4783 	pageblock_order = order;
4784 }
4785 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4786 
4787 /*
4788  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4789  * is unused as pageblock_order is set at compile-time. See
4790  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4791  * the kernel config
4792  */
4793 void __paginginit set_pageblock_order(void)
4794 {
4795 }
4796 
4797 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4798 
4799 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4800 						   unsigned long present_pages)
4801 {
4802 	unsigned long pages = spanned_pages;
4803 
4804 	/*
4805 	 * Provide a more accurate estimation if there are holes within
4806 	 * the zone and SPARSEMEM is in use. If there are holes within the
4807 	 * zone, each populated memory region may cost us one or two extra
4808 	 * memmap pages due to alignment because memmap pages for each
4809 	 * populated regions may not naturally algined on page boundary.
4810 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4811 	 */
4812 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4813 	    IS_ENABLED(CONFIG_SPARSEMEM))
4814 		pages = present_pages;
4815 
4816 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4817 }
4818 
4819 /*
4820  * Set up the zone data structures:
4821  *   - mark all pages reserved
4822  *   - mark all memory queues empty
4823  *   - clear the memory bitmaps
4824  *
4825  * NOTE: pgdat should get zeroed by caller.
4826  */
4827 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4828 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4829 		unsigned long *zones_size, unsigned long *zholes_size)
4830 {
4831 	enum zone_type j;
4832 	int nid = pgdat->node_id;
4833 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4834 	int ret;
4835 
4836 	pgdat_resize_init(pgdat);
4837 #ifdef CONFIG_NUMA_BALANCING
4838 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4839 	pgdat->numabalancing_migrate_nr_pages = 0;
4840 	pgdat->numabalancing_migrate_next_window = jiffies;
4841 #endif
4842 	init_waitqueue_head(&pgdat->kswapd_wait);
4843 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4844 	pgdat_page_cgroup_init(pgdat);
4845 
4846 	for (j = 0; j < MAX_NR_ZONES; j++) {
4847 		struct zone *zone = pgdat->node_zones + j;
4848 		unsigned long size, realsize, freesize, memmap_pages;
4849 
4850 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4851 						  node_end_pfn, zones_size);
4852 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4853 								node_start_pfn,
4854 								node_end_pfn,
4855 								zholes_size);
4856 
4857 		/*
4858 		 * Adjust freesize so that it accounts for how much memory
4859 		 * is used by this zone for memmap. This affects the watermark
4860 		 * and per-cpu initialisations
4861 		 */
4862 		memmap_pages = calc_memmap_size(size, realsize);
4863 		if (freesize >= memmap_pages) {
4864 			freesize -= memmap_pages;
4865 			if (memmap_pages)
4866 				printk(KERN_DEBUG
4867 				       "  %s zone: %lu pages used for memmap\n",
4868 				       zone_names[j], memmap_pages);
4869 		} else
4870 			printk(KERN_WARNING
4871 				"  %s zone: %lu pages exceeds freesize %lu\n",
4872 				zone_names[j], memmap_pages, freesize);
4873 
4874 		/* Account for reserved pages */
4875 		if (j == 0 && freesize > dma_reserve) {
4876 			freesize -= dma_reserve;
4877 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4878 					zone_names[0], dma_reserve);
4879 		}
4880 
4881 		if (!is_highmem_idx(j))
4882 			nr_kernel_pages += freesize;
4883 		/* Charge for highmem memmap if there are enough kernel pages */
4884 		else if (nr_kernel_pages > memmap_pages * 2)
4885 			nr_kernel_pages -= memmap_pages;
4886 		nr_all_pages += freesize;
4887 
4888 		zone->spanned_pages = size;
4889 		zone->present_pages = realsize;
4890 		/*
4891 		 * Set an approximate value for lowmem here, it will be adjusted
4892 		 * when the bootmem allocator frees pages into the buddy system.
4893 		 * And all highmem pages will be managed by the buddy system.
4894 		 */
4895 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4896 #ifdef CONFIG_NUMA
4897 		zone->node = nid;
4898 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4899 						/ 100;
4900 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4901 #endif
4902 		zone->name = zone_names[j];
4903 		spin_lock_init(&zone->lock);
4904 		spin_lock_init(&zone->lru_lock);
4905 		zone_seqlock_init(zone);
4906 		zone->zone_pgdat = pgdat;
4907 		zone_pcp_init(zone);
4908 
4909 		/* For bootup, initialized properly in watermark setup */
4910 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4911 
4912 		lruvec_init(&zone->lruvec);
4913 		if (!size)
4914 			continue;
4915 
4916 		set_pageblock_order();
4917 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4918 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4919 						size, MEMMAP_EARLY);
4920 		BUG_ON(ret);
4921 		memmap_init(size, nid, j, zone_start_pfn);
4922 		zone_start_pfn += size;
4923 	}
4924 }
4925 
4926 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4927 {
4928 	/* Skip empty nodes */
4929 	if (!pgdat->node_spanned_pages)
4930 		return;
4931 
4932 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4933 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4934 	if (!pgdat->node_mem_map) {
4935 		unsigned long size, start, end;
4936 		struct page *map;
4937 
4938 		/*
4939 		 * The zone's endpoints aren't required to be MAX_ORDER
4940 		 * aligned but the node_mem_map endpoints must be in order
4941 		 * for the buddy allocator to function correctly.
4942 		 */
4943 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4944 		end = pgdat_end_pfn(pgdat);
4945 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4946 		size =  (end - start) * sizeof(struct page);
4947 		map = alloc_remap(pgdat->node_id, size);
4948 		if (!map)
4949 			map = memblock_virt_alloc_node_nopanic(size,
4950 							       pgdat->node_id);
4951 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4952 	}
4953 #ifndef CONFIG_NEED_MULTIPLE_NODES
4954 	/*
4955 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4956 	 */
4957 	if (pgdat == NODE_DATA(0)) {
4958 		mem_map = NODE_DATA(0)->node_mem_map;
4959 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4960 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4961 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4962 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4963 	}
4964 #endif
4965 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4966 }
4967 
4968 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4969 		unsigned long node_start_pfn, unsigned long *zholes_size)
4970 {
4971 	pg_data_t *pgdat = NODE_DATA(nid);
4972 	unsigned long start_pfn = 0;
4973 	unsigned long end_pfn = 0;
4974 
4975 	/* pg_data_t should be reset to zero when it's allocated */
4976 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4977 
4978 	pgdat->node_id = nid;
4979 	pgdat->node_start_pfn = node_start_pfn;
4980 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4981 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4982 	printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4983 			(u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
4984 #endif
4985 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4986 				  zones_size, zholes_size);
4987 
4988 	alloc_node_mem_map(pgdat);
4989 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4990 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4991 		nid, (unsigned long)pgdat,
4992 		(unsigned long)pgdat->node_mem_map);
4993 #endif
4994 
4995 	free_area_init_core(pgdat, start_pfn, end_pfn,
4996 			    zones_size, zholes_size);
4997 }
4998 
4999 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5000 
5001 #if MAX_NUMNODES > 1
5002 /*
5003  * Figure out the number of possible node ids.
5004  */
5005 void __init setup_nr_node_ids(void)
5006 {
5007 	unsigned int node;
5008 	unsigned int highest = 0;
5009 
5010 	for_each_node_mask(node, node_possible_map)
5011 		highest = node;
5012 	nr_node_ids = highest + 1;
5013 }
5014 #endif
5015 
5016 /**
5017  * node_map_pfn_alignment - determine the maximum internode alignment
5018  *
5019  * This function should be called after node map is populated and sorted.
5020  * It calculates the maximum power of two alignment which can distinguish
5021  * all the nodes.
5022  *
5023  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5024  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5025  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5026  * shifted, 1GiB is enough and this function will indicate so.
5027  *
5028  * This is used to test whether pfn -> nid mapping of the chosen memory
5029  * model has fine enough granularity to avoid incorrect mapping for the
5030  * populated node map.
5031  *
5032  * Returns the determined alignment in pfn's.  0 if there is no alignment
5033  * requirement (single node).
5034  */
5035 unsigned long __init node_map_pfn_alignment(void)
5036 {
5037 	unsigned long accl_mask = 0, last_end = 0;
5038 	unsigned long start, end, mask;
5039 	int last_nid = -1;
5040 	int i, nid;
5041 
5042 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5043 		if (!start || last_nid < 0 || last_nid == nid) {
5044 			last_nid = nid;
5045 			last_end = end;
5046 			continue;
5047 		}
5048 
5049 		/*
5050 		 * Start with a mask granular enough to pin-point to the
5051 		 * start pfn and tick off bits one-by-one until it becomes
5052 		 * too coarse to separate the current node from the last.
5053 		 */
5054 		mask = ~((1 << __ffs(start)) - 1);
5055 		while (mask && last_end <= (start & (mask << 1)))
5056 			mask <<= 1;
5057 
5058 		/* accumulate all internode masks */
5059 		accl_mask |= mask;
5060 	}
5061 
5062 	/* convert mask to number of pages */
5063 	return ~accl_mask + 1;
5064 }
5065 
5066 /* Find the lowest pfn for a node */
5067 static unsigned long __init find_min_pfn_for_node(int nid)
5068 {
5069 	unsigned long min_pfn = ULONG_MAX;
5070 	unsigned long start_pfn;
5071 	int i;
5072 
5073 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5074 		min_pfn = min(min_pfn, start_pfn);
5075 
5076 	if (min_pfn == ULONG_MAX) {
5077 		printk(KERN_WARNING
5078 			"Could not find start_pfn for node %d\n", nid);
5079 		return 0;
5080 	}
5081 
5082 	return min_pfn;
5083 }
5084 
5085 /**
5086  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5087  *
5088  * It returns the minimum PFN based on information provided via
5089  * memblock_set_node().
5090  */
5091 unsigned long __init find_min_pfn_with_active_regions(void)
5092 {
5093 	return find_min_pfn_for_node(MAX_NUMNODES);
5094 }
5095 
5096 /*
5097  * early_calculate_totalpages()
5098  * Sum pages in active regions for movable zone.
5099  * Populate N_MEMORY for calculating usable_nodes.
5100  */
5101 static unsigned long __init early_calculate_totalpages(void)
5102 {
5103 	unsigned long totalpages = 0;
5104 	unsigned long start_pfn, end_pfn;
5105 	int i, nid;
5106 
5107 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5108 		unsigned long pages = end_pfn - start_pfn;
5109 
5110 		totalpages += pages;
5111 		if (pages)
5112 			node_set_state(nid, N_MEMORY);
5113 	}
5114 	return totalpages;
5115 }
5116 
5117 /*
5118  * Find the PFN the Movable zone begins in each node. Kernel memory
5119  * is spread evenly between nodes as long as the nodes have enough
5120  * memory. When they don't, some nodes will have more kernelcore than
5121  * others
5122  */
5123 static void __init find_zone_movable_pfns_for_nodes(void)
5124 {
5125 	int i, nid;
5126 	unsigned long usable_startpfn;
5127 	unsigned long kernelcore_node, kernelcore_remaining;
5128 	/* save the state before borrow the nodemask */
5129 	nodemask_t saved_node_state = node_states[N_MEMORY];
5130 	unsigned long totalpages = early_calculate_totalpages();
5131 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5132 	struct memblock_region *r;
5133 
5134 	/* Need to find movable_zone earlier when movable_node is specified. */
5135 	find_usable_zone_for_movable();
5136 
5137 	/*
5138 	 * If movable_node is specified, ignore kernelcore and movablecore
5139 	 * options.
5140 	 */
5141 	if (movable_node_is_enabled()) {
5142 		for_each_memblock(memory, r) {
5143 			if (!memblock_is_hotpluggable(r))
5144 				continue;
5145 
5146 			nid = r->nid;
5147 
5148 			usable_startpfn = PFN_DOWN(r->base);
5149 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5150 				min(usable_startpfn, zone_movable_pfn[nid]) :
5151 				usable_startpfn;
5152 		}
5153 
5154 		goto out2;
5155 	}
5156 
5157 	/*
5158 	 * If movablecore=nn[KMG] was specified, calculate what size of
5159 	 * kernelcore that corresponds so that memory usable for
5160 	 * any allocation type is evenly spread. If both kernelcore
5161 	 * and movablecore are specified, then the value of kernelcore
5162 	 * will be used for required_kernelcore if it's greater than
5163 	 * what movablecore would have allowed.
5164 	 */
5165 	if (required_movablecore) {
5166 		unsigned long corepages;
5167 
5168 		/*
5169 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5170 		 * was requested by the user
5171 		 */
5172 		required_movablecore =
5173 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5174 		corepages = totalpages - required_movablecore;
5175 
5176 		required_kernelcore = max(required_kernelcore, corepages);
5177 	}
5178 
5179 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5180 	if (!required_kernelcore)
5181 		goto out;
5182 
5183 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5184 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5185 
5186 restart:
5187 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5188 	kernelcore_node = required_kernelcore / usable_nodes;
5189 	for_each_node_state(nid, N_MEMORY) {
5190 		unsigned long start_pfn, end_pfn;
5191 
5192 		/*
5193 		 * Recalculate kernelcore_node if the division per node
5194 		 * now exceeds what is necessary to satisfy the requested
5195 		 * amount of memory for the kernel
5196 		 */
5197 		if (required_kernelcore < kernelcore_node)
5198 			kernelcore_node = required_kernelcore / usable_nodes;
5199 
5200 		/*
5201 		 * As the map is walked, we track how much memory is usable
5202 		 * by the kernel using kernelcore_remaining. When it is
5203 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5204 		 */
5205 		kernelcore_remaining = kernelcore_node;
5206 
5207 		/* Go through each range of PFNs within this node */
5208 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5209 			unsigned long size_pages;
5210 
5211 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5212 			if (start_pfn >= end_pfn)
5213 				continue;
5214 
5215 			/* Account for what is only usable for kernelcore */
5216 			if (start_pfn < usable_startpfn) {
5217 				unsigned long kernel_pages;
5218 				kernel_pages = min(end_pfn, usable_startpfn)
5219 								- start_pfn;
5220 
5221 				kernelcore_remaining -= min(kernel_pages,
5222 							kernelcore_remaining);
5223 				required_kernelcore -= min(kernel_pages,
5224 							required_kernelcore);
5225 
5226 				/* Continue if range is now fully accounted */
5227 				if (end_pfn <= usable_startpfn) {
5228 
5229 					/*
5230 					 * Push zone_movable_pfn to the end so
5231 					 * that if we have to rebalance
5232 					 * kernelcore across nodes, we will
5233 					 * not double account here
5234 					 */
5235 					zone_movable_pfn[nid] = end_pfn;
5236 					continue;
5237 				}
5238 				start_pfn = usable_startpfn;
5239 			}
5240 
5241 			/*
5242 			 * The usable PFN range for ZONE_MOVABLE is from
5243 			 * start_pfn->end_pfn. Calculate size_pages as the
5244 			 * number of pages used as kernelcore
5245 			 */
5246 			size_pages = end_pfn - start_pfn;
5247 			if (size_pages > kernelcore_remaining)
5248 				size_pages = kernelcore_remaining;
5249 			zone_movable_pfn[nid] = start_pfn + size_pages;
5250 
5251 			/*
5252 			 * Some kernelcore has been met, update counts and
5253 			 * break if the kernelcore for this node has been
5254 			 * satisfied
5255 			 */
5256 			required_kernelcore -= min(required_kernelcore,
5257 								size_pages);
5258 			kernelcore_remaining -= size_pages;
5259 			if (!kernelcore_remaining)
5260 				break;
5261 		}
5262 	}
5263 
5264 	/*
5265 	 * If there is still required_kernelcore, we do another pass with one
5266 	 * less node in the count. This will push zone_movable_pfn[nid] further
5267 	 * along on the nodes that still have memory until kernelcore is
5268 	 * satisfied
5269 	 */
5270 	usable_nodes--;
5271 	if (usable_nodes && required_kernelcore > usable_nodes)
5272 		goto restart;
5273 
5274 out2:
5275 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5276 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5277 		zone_movable_pfn[nid] =
5278 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5279 
5280 out:
5281 	/* restore the node_state */
5282 	node_states[N_MEMORY] = saved_node_state;
5283 }
5284 
5285 /* Any regular or high memory on that node ? */
5286 static void check_for_memory(pg_data_t *pgdat, int nid)
5287 {
5288 	enum zone_type zone_type;
5289 
5290 	if (N_MEMORY == N_NORMAL_MEMORY)
5291 		return;
5292 
5293 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5294 		struct zone *zone = &pgdat->node_zones[zone_type];
5295 		if (populated_zone(zone)) {
5296 			node_set_state(nid, N_HIGH_MEMORY);
5297 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5298 			    zone_type <= ZONE_NORMAL)
5299 				node_set_state(nid, N_NORMAL_MEMORY);
5300 			break;
5301 		}
5302 	}
5303 }
5304 
5305 /**
5306  * free_area_init_nodes - Initialise all pg_data_t and zone data
5307  * @max_zone_pfn: an array of max PFNs for each zone
5308  *
5309  * This will call free_area_init_node() for each active node in the system.
5310  * Using the page ranges provided by memblock_set_node(), the size of each
5311  * zone in each node and their holes is calculated. If the maximum PFN
5312  * between two adjacent zones match, it is assumed that the zone is empty.
5313  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5314  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5315  * starts where the previous one ended. For example, ZONE_DMA32 starts
5316  * at arch_max_dma_pfn.
5317  */
5318 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5319 {
5320 	unsigned long start_pfn, end_pfn;
5321 	int i, nid;
5322 
5323 	/* Record where the zone boundaries are */
5324 	memset(arch_zone_lowest_possible_pfn, 0,
5325 				sizeof(arch_zone_lowest_possible_pfn));
5326 	memset(arch_zone_highest_possible_pfn, 0,
5327 				sizeof(arch_zone_highest_possible_pfn));
5328 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5329 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5330 	for (i = 1; i < MAX_NR_ZONES; i++) {
5331 		if (i == ZONE_MOVABLE)
5332 			continue;
5333 		arch_zone_lowest_possible_pfn[i] =
5334 			arch_zone_highest_possible_pfn[i-1];
5335 		arch_zone_highest_possible_pfn[i] =
5336 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5337 	}
5338 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5339 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5340 
5341 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5342 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5343 	find_zone_movable_pfns_for_nodes();
5344 
5345 	/* Print out the zone ranges */
5346 	printk("Zone ranges:\n");
5347 	for (i = 0; i < MAX_NR_ZONES; i++) {
5348 		if (i == ZONE_MOVABLE)
5349 			continue;
5350 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5351 		if (arch_zone_lowest_possible_pfn[i] ==
5352 				arch_zone_highest_possible_pfn[i])
5353 			printk(KERN_CONT "empty\n");
5354 		else
5355 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5356 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5357 				(arch_zone_highest_possible_pfn[i]
5358 					<< PAGE_SHIFT) - 1);
5359 	}
5360 
5361 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5362 	printk("Movable zone start for each node\n");
5363 	for (i = 0; i < MAX_NUMNODES; i++) {
5364 		if (zone_movable_pfn[i])
5365 			printk("  Node %d: %#010lx\n", i,
5366 			       zone_movable_pfn[i] << PAGE_SHIFT);
5367 	}
5368 
5369 	/* Print out the early node map */
5370 	printk("Early memory node ranges\n");
5371 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5372 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5373 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5374 
5375 	/* Initialise every node */
5376 	mminit_verify_pageflags_layout();
5377 	setup_nr_node_ids();
5378 	for_each_online_node(nid) {
5379 		pg_data_t *pgdat = NODE_DATA(nid);
5380 		free_area_init_node(nid, NULL,
5381 				find_min_pfn_for_node(nid), NULL);
5382 
5383 		/* Any memory on that node */
5384 		if (pgdat->node_present_pages)
5385 			node_set_state(nid, N_MEMORY);
5386 		check_for_memory(pgdat, nid);
5387 	}
5388 }
5389 
5390 static int __init cmdline_parse_core(char *p, unsigned long *core)
5391 {
5392 	unsigned long long coremem;
5393 	if (!p)
5394 		return -EINVAL;
5395 
5396 	coremem = memparse(p, &p);
5397 	*core = coremem >> PAGE_SHIFT;
5398 
5399 	/* Paranoid check that UL is enough for the coremem value */
5400 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5401 
5402 	return 0;
5403 }
5404 
5405 /*
5406  * kernelcore=size sets the amount of memory for use for allocations that
5407  * cannot be reclaimed or migrated.
5408  */
5409 static int __init cmdline_parse_kernelcore(char *p)
5410 {
5411 	return cmdline_parse_core(p, &required_kernelcore);
5412 }
5413 
5414 /*
5415  * movablecore=size sets the amount of memory for use for allocations that
5416  * can be reclaimed or migrated.
5417  */
5418 static int __init cmdline_parse_movablecore(char *p)
5419 {
5420 	return cmdline_parse_core(p, &required_movablecore);
5421 }
5422 
5423 early_param("kernelcore", cmdline_parse_kernelcore);
5424 early_param("movablecore", cmdline_parse_movablecore);
5425 
5426 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5427 
5428 void adjust_managed_page_count(struct page *page, long count)
5429 {
5430 	spin_lock(&managed_page_count_lock);
5431 	page_zone(page)->managed_pages += count;
5432 	totalram_pages += count;
5433 #ifdef CONFIG_HIGHMEM
5434 	if (PageHighMem(page))
5435 		totalhigh_pages += count;
5436 #endif
5437 	spin_unlock(&managed_page_count_lock);
5438 }
5439 EXPORT_SYMBOL(adjust_managed_page_count);
5440 
5441 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5442 {
5443 	void *pos;
5444 	unsigned long pages = 0;
5445 
5446 	start = (void *)PAGE_ALIGN((unsigned long)start);
5447 	end = (void *)((unsigned long)end & PAGE_MASK);
5448 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5449 		if ((unsigned int)poison <= 0xFF)
5450 			memset(pos, poison, PAGE_SIZE);
5451 		free_reserved_page(virt_to_page(pos));
5452 	}
5453 
5454 	if (pages && s)
5455 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5456 			s, pages << (PAGE_SHIFT - 10), start, end);
5457 
5458 	return pages;
5459 }
5460 EXPORT_SYMBOL(free_reserved_area);
5461 
5462 #ifdef	CONFIG_HIGHMEM
5463 void free_highmem_page(struct page *page)
5464 {
5465 	__free_reserved_page(page);
5466 	totalram_pages++;
5467 	page_zone(page)->managed_pages++;
5468 	totalhigh_pages++;
5469 }
5470 #endif
5471 
5472 
5473 void __init mem_init_print_info(const char *str)
5474 {
5475 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5476 	unsigned long init_code_size, init_data_size;
5477 
5478 	physpages = get_num_physpages();
5479 	codesize = _etext - _stext;
5480 	datasize = _edata - _sdata;
5481 	rosize = __end_rodata - __start_rodata;
5482 	bss_size = __bss_stop - __bss_start;
5483 	init_data_size = __init_end - __init_begin;
5484 	init_code_size = _einittext - _sinittext;
5485 
5486 	/*
5487 	 * Detect special cases and adjust section sizes accordingly:
5488 	 * 1) .init.* may be embedded into .data sections
5489 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5490 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5491 	 * 3) .rodata.* may be embedded into .text or .data sections.
5492 	 */
5493 #define adj_init_size(start, end, size, pos, adj) \
5494 	do { \
5495 		if (start <= pos && pos < end && size > adj) \
5496 			size -= adj; \
5497 	} while (0)
5498 
5499 	adj_init_size(__init_begin, __init_end, init_data_size,
5500 		     _sinittext, init_code_size);
5501 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5502 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5503 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5504 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5505 
5506 #undef	adj_init_size
5507 
5508 	printk("Memory: %luK/%luK available "
5509 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5510 	       "%luK init, %luK bss, %luK reserved"
5511 #ifdef	CONFIG_HIGHMEM
5512 	       ", %luK highmem"
5513 #endif
5514 	       "%s%s)\n",
5515 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5516 	       codesize >> 10, datasize >> 10, rosize >> 10,
5517 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5518 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5519 #ifdef	CONFIG_HIGHMEM
5520 	       totalhigh_pages << (PAGE_SHIFT-10),
5521 #endif
5522 	       str ? ", " : "", str ? str : "");
5523 }
5524 
5525 /**
5526  * set_dma_reserve - set the specified number of pages reserved in the first zone
5527  * @new_dma_reserve: The number of pages to mark reserved
5528  *
5529  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5530  * In the DMA zone, a significant percentage may be consumed by kernel image
5531  * and other unfreeable allocations which can skew the watermarks badly. This
5532  * function may optionally be used to account for unfreeable pages in the
5533  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5534  * smaller per-cpu batchsize.
5535  */
5536 void __init set_dma_reserve(unsigned long new_dma_reserve)
5537 {
5538 	dma_reserve = new_dma_reserve;
5539 }
5540 
5541 void __init free_area_init(unsigned long *zones_size)
5542 {
5543 	free_area_init_node(0, zones_size,
5544 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5545 }
5546 
5547 static int page_alloc_cpu_notify(struct notifier_block *self,
5548 				 unsigned long action, void *hcpu)
5549 {
5550 	int cpu = (unsigned long)hcpu;
5551 
5552 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5553 		lru_add_drain_cpu(cpu);
5554 		drain_pages(cpu);
5555 
5556 		/*
5557 		 * Spill the event counters of the dead processor
5558 		 * into the current processors event counters.
5559 		 * This artificially elevates the count of the current
5560 		 * processor.
5561 		 */
5562 		vm_events_fold_cpu(cpu);
5563 
5564 		/*
5565 		 * Zero the differential counters of the dead processor
5566 		 * so that the vm statistics are consistent.
5567 		 *
5568 		 * This is only okay since the processor is dead and cannot
5569 		 * race with what we are doing.
5570 		 */
5571 		cpu_vm_stats_fold(cpu);
5572 	}
5573 	return NOTIFY_OK;
5574 }
5575 
5576 void __init page_alloc_init(void)
5577 {
5578 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5579 }
5580 
5581 /*
5582  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5583  *	or min_free_kbytes changes.
5584  */
5585 static void calculate_totalreserve_pages(void)
5586 {
5587 	struct pglist_data *pgdat;
5588 	unsigned long reserve_pages = 0;
5589 	enum zone_type i, j;
5590 
5591 	for_each_online_pgdat(pgdat) {
5592 		for (i = 0; i < MAX_NR_ZONES; i++) {
5593 			struct zone *zone = pgdat->node_zones + i;
5594 			long max = 0;
5595 
5596 			/* Find valid and maximum lowmem_reserve in the zone */
5597 			for (j = i; j < MAX_NR_ZONES; j++) {
5598 				if (zone->lowmem_reserve[j] > max)
5599 					max = zone->lowmem_reserve[j];
5600 			}
5601 
5602 			/* we treat the high watermark as reserved pages. */
5603 			max += high_wmark_pages(zone);
5604 
5605 			if (max > zone->managed_pages)
5606 				max = zone->managed_pages;
5607 			reserve_pages += max;
5608 			/*
5609 			 * Lowmem reserves are not available to
5610 			 * GFP_HIGHUSER page cache allocations and
5611 			 * kswapd tries to balance zones to their high
5612 			 * watermark.  As a result, neither should be
5613 			 * regarded as dirtyable memory, to prevent a
5614 			 * situation where reclaim has to clean pages
5615 			 * in order to balance the zones.
5616 			 */
5617 			zone->dirty_balance_reserve = max;
5618 		}
5619 	}
5620 	dirty_balance_reserve = reserve_pages;
5621 	totalreserve_pages = reserve_pages;
5622 }
5623 
5624 /*
5625  * setup_per_zone_lowmem_reserve - called whenever
5626  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5627  *	has a correct pages reserved value, so an adequate number of
5628  *	pages are left in the zone after a successful __alloc_pages().
5629  */
5630 static void setup_per_zone_lowmem_reserve(void)
5631 {
5632 	struct pglist_data *pgdat;
5633 	enum zone_type j, idx;
5634 
5635 	for_each_online_pgdat(pgdat) {
5636 		for (j = 0; j < MAX_NR_ZONES; j++) {
5637 			struct zone *zone = pgdat->node_zones + j;
5638 			unsigned long managed_pages = zone->managed_pages;
5639 
5640 			zone->lowmem_reserve[j] = 0;
5641 
5642 			idx = j;
5643 			while (idx) {
5644 				struct zone *lower_zone;
5645 
5646 				idx--;
5647 
5648 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5649 					sysctl_lowmem_reserve_ratio[idx] = 1;
5650 
5651 				lower_zone = pgdat->node_zones + idx;
5652 				lower_zone->lowmem_reserve[j] = managed_pages /
5653 					sysctl_lowmem_reserve_ratio[idx];
5654 				managed_pages += lower_zone->managed_pages;
5655 			}
5656 		}
5657 	}
5658 
5659 	/* update totalreserve_pages */
5660 	calculate_totalreserve_pages();
5661 }
5662 
5663 static void __setup_per_zone_wmarks(void)
5664 {
5665 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5666 	unsigned long lowmem_pages = 0;
5667 	struct zone *zone;
5668 	unsigned long flags;
5669 
5670 	/* Calculate total number of !ZONE_HIGHMEM pages */
5671 	for_each_zone(zone) {
5672 		if (!is_highmem(zone))
5673 			lowmem_pages += zone->managed_pages;
5674 	}
5675 
5676 	for_each_zone(zone) {
5677 		u64 tmp;
5678 
5679 		spin_lock_irqsave(&zone->lock, flags);
5680 		tmp = (u64)pages_min * zone->managed_pages;
5681 		do_div(tmp, lowmem_pages);
5682 		if (is_highmem(zone)) {
5683 			/*
5684 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5685 			 * need highmem pages, so cap pages_min to a small
5686 			 * value here.
5687 			 *
5688 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5689 			 * deltas controls asynch page reclaim, and so should
5690 			 * not be capped for highmem.
5691 			 */
5692 			unsigned long min_pages;
5693 
5694 			min_pages = zone->managed_pages / 1024;
5695 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5696 			zone->watermark[WMARK_MIN] = min_pages;
5697 		} else {
5698 			/*
5699 			 * If it's a lowmem zone, reserve a number of pages
5700 			 * proportionate to the zone's size.
5701 			 */
5702 			zone->watermark[WMARK_MIN] = tmp;
5703 		}
5704 
5705 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5706 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5707 
5708 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5709 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5710 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5711 
5712 		setup_zone_migrate_reserve(zone);
5713 		spin_unlock_irqrestore(&zone->lock, flags);
5714 	}
5715 
5716 	/* update totalreserve_pages */
5717 	calculate_totalreserve_pages();
5718 }
5719 
5720 /**
5721  * setup_per_zone_wmarks - called when min_free_kbytes changes
5722  * or when memory is hot-{added|removed}
5723  *
5724  * Ensures that the watermark[min,low,high] values for each zone are set
5725  * correctly with respect to min_free_kbytes.
5726  */
5727 void setup_per_zone_wmarks(void)
5728 {
5729 	mutex_lock(&zonelists_mutex);
5730 	__setup_per_zone_wmarks();
5731 	mutex_unlock(&zonelists_mutex);
5732 }
5733 
5734 /*
5735  * The inactive anon list should be small enough that the VM never has to
5736  * do too much work, but large enough that each inactive page has a chance
5737  * to be referenced again before it is swapped out.
5738  *
5739  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5740  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5741  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5742  * the anonymous pages are kept on the inactive list.
5743  *
5744  * total     target    max
5745  * memory    ratio     inactive anon
5746  * -------------------------------------
5747  *   10MB       1         5MB
5748  *  100MB       1        50MB
5749  *    1GB       3       250MB
5750  *   10GB      10       0.9GB
5751  *  100GB      31         3GB
5752  *    1TB     101        10GB
5753  *   10TB     320        32GB
5754  */
5755 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5756 {
5757 	unsigned int gb, ratio;
5758 
5759 	/* Zone size in gigabytes */
5760 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5761 	if (gb)
5762 		ratio = int_sqrt(10 * gb);
5763 	else
5764 		ratio = 1;
5765 
5766 	zone->inactive_ratio = ratio;
5767 }
5768 
5769 static void __meminit setup_per_zone_inactive_ratio(void)
5770 {
5771 	struct zone *zone;
5772 
5773 	for_each_zone(zone)
5774 		calculate_zone_inactive_ratio(zone);
5775 }
5776 
5777 /*
5778  * Initialise min_free_kbytes.
5779  *
5780  * For small machines we want it small (128k min).  For large machines
5781  * we want it large (64MB max).  But it is not linear, because network
5782  * bandwidth does not increase linearly with machine size.  We use
5783  *
5784  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5785  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5786  *
5787  * which yields
5788  *
5789  * 16MB:	512k
5790  * 32MB:	724k
5791  * 64MB:	1024k
5792  * 128MB:	1448k
5793  * 256MB:	2048k
5794  * 512MB:	2896k
5795  * 1024MB:	4096k
5796  * 2048MB:	5792k
5797  * 4096MB:	8192k
5798  * 8192MB:	11584k
5799  * 16384MB:	16384k
5800  */
5801 int __meminit init_per_zone_wmark_min(void)
5802 {
5803 	unsigned long lowmem_kbytes;
5804 	int new_min_free_kbytes;
5805 
5806 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5807 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5808 
5809 	if (new_min_free_kbytes > user_min_free_kbytes) {
5810 		min_free_kbytes = new_min_free_kbytes;
5811 		if (min_free_kbytes < 128)
5812 			min_free_kbytes = 128;
5813 		if (min_free_kbytes > 65536)
5814 			min_free_kbytes = 65536;
5815 	} else {
5816 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5817 				new_min_free_kbytes, user_min_free_kbytes);
5818 	}
5819 	setup_per_zone_wmarks();
5820 	refresh_zone_stat_thresholds();
5821 	setup_per_zone_lowmem_reserve();
5822 	setup_per_zone_inactive_ratio();
5823 	return 0;
5824 }
5825 module_init(init_per_zone_wmark_min)
5826 
5827 /*
5828  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5829  *	that we can call two helper functions whenever min_free_kbytes
5830  *	changes.
5831  */
5832 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5833 	void __user *buffer, size_t *length, loff_t *ppos)
5834 {
5835 	int rc;
5836 
5837 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5838 	if (rc)
5839 		return rc;
5840 
5841 	if (write) {
5842 		user_min_free_kbytes = min_free_kbytes;
5843 		setup_per_zone_wmarks();
5844 	}
5845 	return 0;
5846 }
5847 
5848 #ifdef CONFIG_NUMA
5849 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5850 	void __user *buffer, size_t *length, loff_t *ppos)
5851 {
5852 	struct zone *zone;
5853 	int rc;
5854 
5855 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5856 	if (rc)
5857 		return rc;
5858 
5859 	for_each_zone(zone)
5860 		zone->min_unmapped_pages = (zone->managed_pages *
5861 				sysctl_min_unmapped_ratio) / 100;
5862 	return 0;
5863 }
5864 
5865 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5866 	void __user *buffer, size_t *length, loff_t *ppos)
5867 {
5868 	struct zone *zone;
5869 	int rc;
5870 
5871 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5872 	if (rc)
5873 		return rc;
5874 
5875 	for_each_zone(zone)
5876 		zone->min_slab_pages = (zone->managed_pages *
5877 				sysctl_min_slab_ratio) / 100;
5878 	return 0;
5879 }
5880 #endif
5881 
5882 /*
5883  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5884  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5885  *	whenever sysctl_lowmem_reserve_ratio changes.
5886  *
5887  * The reserve ratio obviously has absolutely no relation with the
5888  * minimum watermarks. The lowmem reserve ratio can only make sense
5889  * if in function of the boot time zone sizes.
5890  */
5891 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5892 	void __user *buffer, size_t *length, loff_t *ppos)
5893 {
5894 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5895 	setup_per_zone_lowmem_reserve();
5896 	return 0;
5897 }
5898 
5899 /*
5900  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5901  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5902  * pagelist can have before it gets flushed back to buddy allocator.
5903  */
5904 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5905 	void __user *buffer, size_t *length, loff_t *ppos)
5906 {
5907 	struct zone *zone;
5908 	int old_percpu_pagelist_fraction;
5909 	int ret;
5910 
5911 	mutex_lock(&pcp_batch_high_lock);
5912 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5913 
5914 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5915 	if (!write || ret < 0)
5916 		goto out;
5917 
5918 	/* Sanity checking to avoid pcp imbalance */
5919 	if (percpu_pagelist_fraction &&
5920 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5921 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5922 		ret = -EINVAL;
5923 		goto out;
5924 	}
5925 
5926 	/* No change? */
5927 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5928 		goto out;
5929 
5930 	for_each_populated_zone(zone) {
5931 		unsigned int cpu;
5932 
5933 		for_each_possible_cpu(cpu)
5934 			pageset_set_high_and_batch(zone,
5935 					per_cpu_ptr(zone->pageset, cpu));
5936 	}
5937 out:
5938 	mutex_unlock(&pcp_batch_high_lock);
5939 	return ret;
5940 }
5941 
5942 int hashdist = HASHDIST_DEFAULT;
5943 
5944 #ifdef CONFIG_NUMA
5945 static int __init set_hashdist(char *str)
5946 {
5947 	if (!str)
5948 		return 0;
5949 	hashdist = simple_strtoul(str, &str, 0);
5950 	return 1;
5951 }
5952 __setup("hashdist=", set_hashdist);
5953 #endif
5954 
5955 /*
5956  * allocate a large system hash table from bootmem
5957  * - it is assumed that the hash table must contain an exact power-of-2
5958  *   quantity of entries
5959  * - limit is the number of hash buckets, not the total allocation size
5960  */
5961 void *__init alloc_large_system_hash(const char *tablename,
5962 				     unsigned long bucketsize,
5963 				     unsigned long numentries,
5964 				     int scale,
5965 				     int flags,
5966 				     unsigned int *_hash_shift,
5967 				     unsigned int *_hash_mask,
5968 				     unsigned long low_limit,
5969 				     unsigned long high_limit)
5970 {
5971 	unsigned long long max = high_limit;
5972 	unsigned long log2qty, size;
5973 	void *table = NULL;
5974 
5975 	/* allow the kernel cmdline to have a say */
5976 	if (!numentries) {
5977 		/* round applicable memory size up to nearest megabyte */
5978 		numentries = nr_kernel_pages;
5979 
5980 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5981 		if (PAGE_SHIFT < 20)
5982 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5983 
5984 		/* limit to 1 bucket per 2^scale bytes of low memory */
5985 		if (scale > PAGE_SHIFT)
5986 			numentries >>= (scale - PAGE_SHIFT);
5987 		else
5988 			numentries <<= (PAGE_SHIFT - scale);
5989 
5990 		/* Make sure we've got at least a 0-order allocation.. */
5991 		if (unlikely(flags & HASH_SMALL)) {
5992 			/* Makes no sense without HASH_EARLY */
5993 			WARN_ON(!(flags & HASH_EARLY));
5994 			if (!(numentries >> *_hash_shift)) {
5995 				numentries = 1UL << *_hash_shift;
5996 				BUG_ON(!numentries);
5997 			}
5998 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5999 			numentries = PAGE_SIZE / bucketsize;
6000 	}
6001 	numentries = roundup_pow_of_two(numentries);
6002 
6003 	/* limit allocation size to 1/16 total memory by default */
6004 	if (max == 0) {
6005 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6006 		do_div(max, bucketsize);
6007 	}
6008 	max = min(max, 0x80000000ULL);
6009 
6010 	if (numentries < low_limit)
6011 		numentries = low_limit;
6012 	if (numentries > max)
6013 		numentries = max;
6014 
6015 	log2qty = ilog2(numentries);
6016 
6017 	do {
6018 		size = bucketsize << log2qty;
6019 		if (flags & HASH_EARLY)
6020 			table = memblock_virt_alloc_nopanic(size, 0);
6021 		else if (hashdist)
6022 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6023 		else {
6024 			/*
6025 			 * If bucketsize is not a power-of-two, we may free
6026 			 * some pages at the end of hash table which
6027 			 * alloc_pages_exact() automatically does
6028 			 */
6029 			if (get_order(size) < MAX_ORDER) {
6030 				table = alloc_pages_exact(size, GFP_ATOMIC);
6031 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6032 			}
6033 		}
6034 	} while (!table && size > PAGE_SIZE && --log2qty);
6035 
6036 	if (!table)
6037 		panic("Failed to allocate %s hash table\n", tablename);
6038 
6039 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6040 	       tablename,
6041 	       (1UL << log2qty),
6042 	       ilog2(size) - PAGE_SHIFT,
6043 	       size);
6044 
6045 	if (_hash_shift)
6046 		*_hash_shift = log2qty;
6047 	if (_hash_mask)
6048 		*_hash_mask = (1 << log2qty) - 1;
6049 
6050 	return table;
6051 }
6052 
6053 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6054 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6055 							unsigned long pfn)
6056 {
6057 #ifdef CONFIG_SPARSEMEM
6058 	return __pfn_to_section(pfn)->pageblock_flags;
6059 #else
6060 	return zone->pageblock_flags;
6061 #endif /* CONFIG_SPARSEMEM */
6062 }
6063 
6064 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6065 {
6066 #ifdef CONFIG_SPARSEMEM
6067 	pfn &= (PAGES_PER_SECTION-1);
6068 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6069 #else
6070 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6071 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6072 #endif /* CONFIG_SPARSEMEM */
6073 }
6074 
6075 /**
6076  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6077  * @page: The page within the block of interest
6078  * @pfn: The target page frame number
6079  * @end_bitidx: The last bit of interest to retrieve
6080  * @mask: mask of bits that the caller is interested in
6081  *
6082  * Return: pageblock_bits flags
6083  */
6084 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6085 					unsigned long end_bitidx,
6086 					unsigned long mask)
6087 {
6088 	struct zone *zone;
6089 	unsigned long *bitmap;
6090 	unsigned long bitidx, word_bitidx;
6091 	unsigned long word;
6092 
6093 	zone = page_zone(page);
6094 	bitmap = get_pageblock_bitmap(zone, pfn);
6095 	bitidx = pfn_to_bitidx(zone, pfn);
6096 	word_bitidx = bitidx / BITS_PER_LONG;
6097 	bitidx &= (BITS_PER_LONG-1);
6098 
6099 	word = bitmap[word_bitidx];
6100 	bitidx += end_bitidx;
6101 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6102 }
6103 
6104 /**
6105  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6106  * @page: The page within the block of interest
6107  * @flags: The flags to set
6108  * @pfn: The target page frame number
6109  * @end_bitidx: The last bit of interest
6110  * @mask: mask of bits that the caller is interested in
6111  */
6112 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6113 					unsigned long pfn,
6114 					unsigned long end_bitidx,
6115 					unsigned long mask)
6116 {
6117 	struct zone *zone;
6118 	unsigned long *bitmap;
6119 	unsigned long bitidx, word_bitidx;
6120 	unsigned long old_word, word;
6121 
6122 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6123 
6124 	zone = page_zone(page);
6125 	bitmap = get_pageblock_bitmap(zone, pfn);
6126 	bitidx = pfn_to_bitidx(zone, pfn);
6127 	word_bitidx = bitidx / BITS_PER_LONG;
6128 	bitidx &= (BITS_PER_LONG-1);
6129 
6130 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6131 
6132 	bitidx += end_bitidx;
6133 	mask <<= (BITS_PER_LONG - bitidx - 1);
6134 	flags <<= (BITS_PER_LONG - bitidx - 1);
6135 
6136 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6137 	for (;;) {
6138 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6139 		if (word == old_word)
6140 			break;
6141 		word = old_word;
6142 	}
6143 }
6144 
6145 /*
6146  * This function checks whether pageblock includes unmovable pages or not.
6147  * If @count is not zero, it is okay to include less @count unmovable pages
6148  *
6149  * PageLRU check without isolation or lru_lock could race so that
6150  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6151  * expect this function should be exact.
6152  */
6153 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6154 			 bool skip_hwpoisoned_pages)
6155 {
6156 	unsigned long pfn, iter, found;
6157 	int mt;
6158 
6159 	/*
6160 	 * For avoiding noise data, lru_add_drain_all() should be called
6161 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6162 	 */
6163 	if (zone_idx(zone) == ZONE_MOVABLE)
6164 		return false;
6165 	mt = get_pageblock_migratetype(page);
6166 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6167 		return false;
6168 
6169 	pfn = page_to_pfn(page);
6170 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6171 		unsigned long check = pfn + iter;
6172 
6173 		if (!pfn_valid_within(check))
6174 			continue;
6175 
6176 		page = pfn_to_page(check);
6177 
6178 		/*
6179 		 * Hugepages are not in LRU lists, but they're movable.
6180 		 * We need not scan over tail pages bacause we don't
6181 		 * handle each tail page individually in migration.
6182 		 */
6183 		if (PageHuge(page)) {
6184 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6185 			continue;
6186 		}
6187 
6188 		/*
6189 		 * We can't use page_count without pin a page
6190 		 * because another CPU can free compound page.
6191 		 * This check already skips compound tails of THP
6192 		 * because their page->_count is zero at all time.
6193 		 */
6194 		if (!atomic_read(&page->_count)) {
6195 			if (PageBuddy(page))
6196 				iter += (1 << page_order(page)) - 1;
6197 			continue;
6198 		}
6199 
6200 		/*
6201 		 * The HWPoisoned page may be not in buddy system, and
6202 		 * page_count() is not 0.
6203 		 */
6204 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6205 			continue;
6206 
6207 		if (!PageLRU(page))
6208 			found++;
6209 		/*
6210 		 * If there are RECLAIMABLE pages, we need to check it.
6211 		 * But now, memory offline itself doesn't call shrink_slab()
6212 		 * and it still to be fixed.
6213 		 */
6214 		/*
6215 		 * If the page is not RAM, page_count()should be 0.
6216 		 * we don't need more check. This is an _used_ not-movable page.
6217 		 *
6218 		 * The problematic thing here is PG_reserved pages. PG_reserved
6219 		 * is set to both of a memory hole page and a _used_ kernel
6220 		 * page at boot.
6221 		 */
6222 		if (found > count)
6223 			return true;
6224 	}
6225 	return false;
6226 }
6227 
6228 bool is_pageblock_removable_nolock(struct page *page)
6229 {
6230 	struct zone *zone;
6231 	unsigned long pfn;
6232 
6233 	/*
6234 	 * We have to be careful here because we are iterating over memory
6235 	 * sections which are not zone aware so we might end up outside of
6236 	 * the zone but still within the section.
6237 	 * We have to take care about the node as well. If the node is offline
6238 	 * its NODE_DATA will be NULL - see page_zone.
6239 	 */
6240 	if (!node_online(page_to_nid(page)))
6241 		return false;
6242 
6243 	zone = page_zone(page);
6244 	pfn = page_to_pfn(page);
6245 	if (!zone_spans_pfn(zone, pfn))
6246 		return false;
6247 
6248 	return !has_unmovable_pages(zone, page, 0, true);
6249 }
6250 
6251 #ifdef CONFIG_CMA
6252 
6253 static unsigned long pfn_max_align_down(unsigned long pfn)
6254 {
6255 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6256 			     pageblock_nr_pages) - 1);
6257 }
6258 
6259 static unsigned long pfn_max_align_up(unsigned long pfn)
6260 {
6261 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6262 				pageblock_nr_pages));
6263 }
6264 
6265 /* [start, end) must belong to a single zone. */
6266 static int __alloc_contig_migrate_range(struct compact_control *cc,
6267 					unsigned long start, unsigned long end)
6268 {
6269 	/* This function is based on compact_zone() from compaction.c. */
6270 	unsigned long nr_reclaimed;
6271 	unsigned long pfn = start;
6272 	unsigned int tries = 0;
6273 	int ret = 0;
6274 
6275 	migrate_prep();
6276 
6277 	while (pfn < end || !list_empty(&cc->migratepages)) {
6278 		if (fatal_signal_pending(current)) {
6279 			ret = -EINTR;
6280 			break;
6281 		}
6282 
6283 		if (list_empty(&cc->migratepages)) {
6284 			cc->nr_migratepages = 0;
6285 			pfn = isolate_migratepages_range(cc, pfn, end);
6286 			if (!pfn) {
6287 				ret = -EINTR;
6288 				break;
6289 			}
6290 			tries = 0;
6291 		} else if (++tries == 5) {
6292 			ret = ret < 0 ? ret : -EBUSY;
6293 			break;
6294 		}
6295 
6296 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6297 							&cc->migratepages);
6298 		cc->nr_migratepages -= nr_reclaimed;
6299 
6300 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6301 				    NULL, 0, cc->mode, MR_CMA);
6302 	}
6303 	if (ret < 0) {
6304 		putback_movable_pages(&cc->migratepages);
6305 		return ret;
6306 	}
6307 	return 0;
6308 }
6309 
6310 /**
6311  * alloc_contig_range() -- tries to allocate given range of pages
6312  * @start:	start PFN to allocate
6313  * @end:	one-past-the-last PFN to allocate
6314  * @migratetype:	migratetype of the underlaying pageblocks (either
6315  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6316  *			in range must have the same migratetype and it must
6317  *			be either of the two.
6318  *
6319  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6320  * aligned, however it's the caller's responsibility to guarantee that
6321  * we are the only thread that changes migrate type of pageblocks the
6322  * pages fall in.
6323  *
6324  * The PFN range must belong to a single zone.
6325  *
6326  * Returns zero on success or negative error code.  On success all
6327  * pages which PFN is in [start, end) are allocated for the caller and
6328  * need to be freed with free_contig_range().
6329  */
6330 int alloc_contig_range(unsigned long start, unsigned long end,
6331 		       unsigned migratetype)
6332 {
6333 	unsigned long outer_start, outer_end;
6334 	int ret = 0, order;
6335 
6336 	struct compact_control cc = {
6337 		.nr_migratepages = 0,
6338 		.order = -1,
6339 		.zone = page_zone(pfn_to_page(start)),
6340 		.mode = MIGRATE_SYNC,
6341 		.ignore_skip_hint = true,
6342 	};
6343 	INIT_LIST_HEAD(&cc.migratepages);
6344 
6345 	/*
6346 	 * What we do here is we mark all pageblocks in range as
6347 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6348 	 * have different sizes, and due to the way page allocator
6349 	 * work, we align the range to biggest of the two pages so
6350 	 * that page allocator won't try to merge buddies from
6351 	 * different pageblocks and change MIGRATE_ISOLATE to some
6352 	 * other migration type.
6353 	 *
6354 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6355 	 * migrate the pages from an unaligned range (ie. pages that
6356 	 * we are interested in).  This will put all the pages in
6357 	 * range back to page allocator as MIGRATE_ISOLATE.
6358 	 *
6359 	 * When this is done, we take the pages in range from page
6360 	 * allocator removing them from the buddy system.  This way
6361 	 * page allocator will never consider using them.
6362 	 *
6363 	 * This lets us mark the pageblocks back as
6364 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6365 	 * aligned range but not in the unaligned, original range are
6366 	 * put back to page allocator so that buddy can use them.
6367 	 */
6368 
6369 	ret = start_isolate_page_range(pfn_max_align_down(start),
6370 				       pfn_max_align_up(end), migratetype,
6371 				       false);
6372 	if (ret)
6373 		return ret;
6374 
6375 	ret = __alloc_contig_migrate_range(&cc, start, end);
6376 	if (ret)
6377 		goto done;
6378 
6379 	/*
6380 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6381 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6382 	 * more, all pages in [start, end) are free in page allocator.
6383 	 * What we are going to do is to allocate all pages from
6384 	 * [start, end) (that is remove them from page allocator).
6385 	 *
6386 	 * The only problem is that pages at the beginning and at the
6387 	 * end of interesting range may be not aligned with pages that
6388 	 * page allocator holds, ie. they can be part of higher order
6389 	 * pages.  Because of this, we reserve the bigger range and
6390 	 * once this is done free the pages we are not interested in.
6391 	 *
6392 	 * We don't have to hold zone->lock here because the pages are
6393 	 * isolated thus they won't get removed from buddy.
6394 	 */
6395 
6396 	lru_add_drain_all();
6397 	drain_all_pages();
6398 
6399 	order = 0;
6400 	outer_start = start;
6401 	while (!PageBuddy(pfn_to_page(outer_start))) {
6402 		if (++order >= MAX_ORDER) {
6403 			ret = -EBUSY;
6404 			goto done;
6405 		}
6406 		outer_start &= ~0UL << order;
6407 	}
6408 
6409 	/* Make sure the range is really isolated. */
6410 	if (test_pages_isolated(outer_start, end, false)) {
6411 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6412 		       outer_start, end);
6413 		ret = -EBUSY;
6414 		goto done;
6415 	}
6416 
6417 
6418 	/* Grab isolated pages from freelists. */
6419 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6420 	if (!outer_end) {
6421 		ret = -EBUSY;
6422 		goto done;
6423 	}
6424 
6425 	/* Free head and tail (if any) */
6426 	if (start != outer_start)
6427 		free_contig_range(outer_start, start - outer_start);
6428 	if (end != outer_end)
6429 		free_contig_range(end, outer_end - end);
6430 
6431 done:
6432 	undo_isolate_page_range(pfn_max_align_down(start),
6433 				pfn_max_align_up(end), migratetype);
6434 	return ret;
6435 }
6436 
6437 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6438 {
6439 	unsigned int count = 0;
6440 
6441 	for (; nr_pages--; pfn++) {
6442 		struct page *page = pfn_to_page(pfn);
6443 
6444 		count += page_count(page) != 1;
6445 		__free_page(page);
6446 	}
6447 	WARN(count != 0, "%d pages are still in use!\n", count);
6448 }
6449 #endif
6450 
6451 #ifdef CONFIG_MEMORY_HOTPLUG
6452 /*
6453  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6454  * page high values need to be recalulated.
6455  */
6456 void __meminit zone_pcp_update(struct zone *zone)
6457 {
6458 	unsigned cpu;
6459 	mutex_lock(&pcp_batch_high_lock);
6460 	for_each_possible_cpu(cpu)
6461 		pageset_set_high_and_batch(zone,
6462 				per_cpu_ptr(zone->pageset, cpu));
6463 	mutex_unlock(&pcp_batch_high_lock);
6464 }
6465 #endif
6466 
6467 void zone_pcp_reset(struct zone *zone)
6468 {
6469 	unsigned long flags;
6470 	int cpu;
6471 	struct per_cpu_pageset *pset;
6472 
6473 	/* avoid races with drain_pages()  */
6474 	local_irq_save(flags);
6475 	if (zone->pageset != &boot_pageset) {
6476 		for_each_online_cpu(cpu) {
6477 			pset = per_cpu_ptr(zone->pageset, cpu);
6478 			drain_zonestat(zone, pset);
6479 		}
6480 		free_percpu(zone->pageset);
6481 		zone->pageset = &boot_pageset;
6482 	}
6483 	local_irq_restore(flags);
6484 }
6485 
6486 #ifdef CONFIG_MEMORY_HOTREMOVE
6487 /*
6488  * All pages in the range must be isolated before calling this.
6489  */
6490 void
6491 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6492 {
6493 	struct page *page;
6494 	struct zone *zone;
6495 	unsigned int order, i;
6496 	unsigned long pfn;
6497 	unsigned long flags;
6498 	/* find the first valid pfn */
6499 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6500 		if (pfn_valid(pfn))
6501 			break;
6502 	if (pfn == end_pfn)
6503 		return;
6504 	zone = page_zone(pfn_to_page(pfn));
6505 	spin_lock_irqsave(&zone->lock, flags);
6506 	pfn = start_pfn;
6507 	while (pfn < end_pfn) {
6508 		if (!pfn_valid(pfn)) {
6509 			pfn++;
6510 			continue;
6511 		}
6512 		page = pfn_to_page(pfn);
6513 		/*
6514 		 * The HWPoisoned page may be not in buddy system, and
6515 		 * page_count() is not 0.
6516 		 */
6517 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6518 			pfn++;
6519 			SetPageReserved(page);
6520 			continue;
6521 		}
6522 
6523 		BUG_ON(page_count(page));
6524 		BUG_ON(!PageBuddy(page));
6525 		order = page_order(page);
6526 #ifdef CONFIG_DEBUG_VM
6527 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6528 		       pfn, 1 << order, end_pfn);
6529 #endif
6530 		list_del(&page->lru);
6531 		rmv_page_order(page);
6532 		zone->free_area[order].nr_free--;
6533 		for (i = 0; i < (1 << order); i++)
6534 			SetPageReserved((page+i));
6535 		pfn += (1 << order);
6536 	}
6537 	spin_unlock_irqrestore(&zone->lock, flags);
6538 }
6539 #endif
6540 
6541 #ifdef CONFIG_MEMORY_FAILURE
6542 bool is_free_buddy_page(struct page *page)
6543 {
6544 	struct zone *zone = page_zone(page);
6545 	unsigned long pfn = page_to_pfn(page);
6546 	unsigned long flags;
6547 	unsigned int order;
6548 
6549 	spin_lock_irqsave(&zone->lock, flags);
6550 	for (order = 0; order < MAX_ORDER; order++) {
6551 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6552 
6553 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6554 			break;
6555 	}
6556 	spin_unlock_irqrestore(&zone->lock, flags);
6557 
6558 	return order < MAX_ORDER;
6559 }
6560 #endif
6561