1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/page_ext.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/page_owner.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 #define MIN_PERCPU_PAGELIST_FRACTION (8) 73 74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 75 DEFINE_PER_CPU(int, numa_node); 76 EXPORT_PER_CPU_SYMBOL(numa_node); 77 #endif 78 79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 80 /* 81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 84 * defined in <linux/topology.h>. 85 */ 86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 87 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 88 int _node_numa_mem_[MAX_NUMNODES]; 89 #endif 90 91 /* 92 * Array of node states. 93 */ 94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 95 [N_POSSIBLE] = NODE_MASK_ALL, 96 [N_ONLINE] = { { [0] = 1UL } }, 97 #ifndef CONFIG_NUMA 98 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 99 #ifdef CONFIG_HIGHMEM 100 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 101 #endif 102 #ifdef CONFIG_MOVABLE_NODE 103 [N_MEMORY] = { { [0] = 1UL } }, 104 #endif 105 [N_CPU] = { { [0] = 1UL } }, 106 #endif /* NUMA */ 107 }; 108 EXPORT_SYMBOL(node_states); 109 110 /* Protect totalram_pages and zone->managed_pages */ 111 static DEFINE_SPINLOCK(managed_page_count_lock); 112 113 unsigned long totalram_pages __read_mostly; 114 unsigned long totalreserve_pages __read_mostly; 115 unsigned long totalcma_pages __read_mostly; 116 /* 117 * When calculating the number of globally allowed dirty pages, there 118 * is a certain number of per-zone reserves that should not be 119 * considered dirtyable memory. This is the sum of those reserves 120 * over all existing zones that contribute dirtyable memory. 121 */ 122 unsigned long dirty_balance_reserve __read_mostly; 123 124 int percpu_pagelist_fraction; 125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 126 127 #ifdef CONFIG_PM_SLEEP 128 /* 129 * The following functions are used by the suspend/hibernate code to temporarily 130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 131 * while devices are suspended. To avoid races with the suspend/hibernate code, 132 * they should always be called with pm_mutex held (gfp_allowed_mask also should 133 * only be modified with pm_mutex held, unless the suspend/hibernate code is 134 * guaranteed not to run in parallel with that modification). 135 */ 136 137 static gfp_t saved_gfp_mask; 138 139 void pm_restore_gfp_mask(void) 140 { 141 WARN_ON(!mutex_is_locked(&pm_mutex)); 142 if (saved_gfp_mask) { 143 gfp_allowed_mask = saved_gfp_mask; 144 saved_gfp_mask = 0; 145 } 146 } 147 148 void pm_restrict_gfp_mask(void) 149 { 150 WARN_ON(!mutex_is_locked(&pm_mutex)); 151 WARN_ON(saved_gfp_mask); 152 saved_gfp_mask = gfp_allowed_mask; 153 gfp_allowed_mask &= ~GFP_IOFS; 154 } 155 156 bool pm_suspended_storage(void) 157 { 158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 159 return false; 160 return true; 161 } 162 #endif /* CONFIG_PM_SLEEP */ 163 164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 165 int pageblock_order __read_mostly; 166 #endif 167 168 static void __free_pages_ok(struct page *page, unsigned int order); 169 170 /* 171 * results with 256, 32 in the lowmem_reserve sysctl: 172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 173 * 1G machine -> (16M dma, 784M normal, 224M high) 174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 177 * 178 * TBD: should special case ZONE_DMA32 machines here - in those we normally 179 * don't need any ZONE_NORMAL reservation 180 */ 181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 182 #ifdef CONFIG_ZONE_DMA 183 256, 184 #endif 185 #ifdef CONFIG_ZONE_DMA32 186 256, 187 #endif 188 #ifdef CONFIG_HIGHMEM 189 32, 190 #endif 191 32, 192 }; 193 194 EXPORT_SYMBOL(totalram_pages); 195 196 static char * const zone_names[MAX_NR_ZONES] = { 197 #ifdef CONFIG_ZONE_DMA 198 "DMA", 199 #endif 200 #ifdef CONFIG_ZONE_DMA32 201 "DMA32", 202 #endif 203 "Normal", 204 #ifdef CONFIG_HIGHMEM 205 "HighMem", 206 #endif 207 "Movable", 208 }; 209 210 int min_free_kbytes = 1024; 211 int user_min_free_kbytes = -1; 212 213 static unsigned long __meminitdata nr_kernel_pages; 214 static unsigned long __meminitdata nr_all_pages; 215 static unsigned long __meminitdata dma_reserve; 216 217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 220 static unsigned long __initdata required_kernelcore; 221 static unsigned long __initdata required_movablecore; 222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 223 224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 225 int movable_zone; 226 EXPORT_SYMBOL(movable_zone); 227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 228 229 #if MAX_NUMNODES > 1 230 int nr_node_ids __read_mostly = MAX_NUMNODES; 231 int nr_online_nodes __read_mostly = 1; 232 EXPORT_SYMBOL(nr_node_ids); 233 EXPORT_SYMBOL(nr_online_nodes); 234 #endif 235 236 int page_group_by_mobility_disabled __read_mostly; 237 238 void set_pageblock_migratetype(struct page *page, int migratetype) 239 { 240 if (unlikely(page_group_by_mobility_disabled && 241 migratetype < MIGRATE_PCPTYPES)) 242 migratetype = MIGRATE_UNMOVABLE; 243 244 set_pageblock_flags_group(page, (unsigned long)migratetype, 245 PB_migrate, PB_migrate_end); 246 } 247 248 #ifdef CONFIG_DEBUG_VM 249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 250 { 251 int ret = 0; 252 unsigned seq; 253 unsigned long pfn = page_to_pfn(page); 254 unsigned long sp, start_pfn; 255 256 do { 257 seq = zone_span_seqbegin(zone); 258 start_pfn = zone->zone_start_pfn; 259 sp = zone->spanned_pages; 260 if (!zone_spans_pfn(zone, pfn)) 261 ret = 1; 262 } while (zone_span_seqretry(zone, seq)); 263 264 if (ret) 265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 266 pfn, zone_to_nid(zone), zone->name, 267 start_pfn, start_pfn + sp); 268 269 return ret; 270 } 271 272 static int page_is_consistent(struct zone *zone, struct page *page) 273 { 274 if (!pfn_valid_within(page_to_pfn(page))) 275 return 0; 276 if (zone != page_zone(page)) 277 return 0; 278 279 return 1; 280 } 281 /* 282 * Temporary debugging check for pages not lying within a given zone. 283 */ 284 static int bad_range(struct zone *zone, struct page *page) 285 { 286 if (page_outside_zone_boundaries(zone, page)) 287 return 1; 288 if (!page_is_consistent(zone, page)) 289 return 1; 290 291 return 0; 292 } 293 #else 294 static inline int bad_range(struct zone *zone, struct page *page) 295 { 296 return 0; 297 } 298 #endif 299 300 static void bad_page(struct page *page, const char *reason, 301 unsigned long bad_flags) 302 { 303 static unsigned long resume; 304 static unsigned long nr_shown; 305 static unsigned long nr_unshown; 306 307 /* Don't complain about poisoned pages */ 308 if (PageHWPoison(page)) { 309 page_mapcount_reset(page); /* remove PageBuddy */ 310 return; 311 } 312 313 /* 314 * Allow a burst of 60 reports, then keep quiet for that minute; 315 * or allow a steady drip of one report per second. 316 */ 317 if (nr_shown == 60) { 318 if (time_before(jiffies, resume)) { 319 nr_unshown++; 320 goto out; 321 } 322 if (nr_unshown) { 323 printk(KERN_ALERT 324 "BUG: Bad page state: %lu messages suppressed\n", 325 nr_unshown); 326 nr_unshown = 0; 327 } 328 nr_shown = 0; 329 } 330 if (nr_shown++ == 0) 331 resume = jiffies + 60 * HZ; 332 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 334 current->comm, page_to_pfn(page)); 335 dump_page_badflags(page, reason, bad_flags); 336 337 print_modules(); 338 dump_stack(); 339 out: 340 /* Leave bad fields for debug, except PageBuddy could make trouble */ 341 page_mapcount_reset(page); /* remove PageBuddy */ 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 343 } 344 345 /* 346 * Higher-order pages are called "compound pages". They are structured thusly: 347 * 348 * The first PAGE_SIZE page is called the "head page". 349 * 350 * The remaining PAGE_SIZE pages are called "tail pages". 351 * 352 * All pages have PG_compound set. All tail pages have their ->first_page 353 * pointing at the head page. 354 * 355 * The first tail page's ->lru.next holds the address of the compound page's 356 * put_page() function. Its ->lru.prev holds the order of allocation. 357 * This usage means that zero-order pages may not be compound. 358 */ 359 360 static void free_compound_page(struct page *page) 361 { 362 __free_pages_ok(page, compound_order(page)); 363 } 364 365 void prep_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 370 set_compound_page_dtor(page, free_compound_page); 371 set_compound_order(page, order); 372 __SetPageHead(page); 373 for (i = 1; i < nr_pages; i++) { 374 struct page *p = page + i; 375 set_page_count(p, 0); 376 p->first_page = page; 377 /* Make sure p->first_page is always valid for PageTail() */ 378 smp_wmb(); 379 __SetPageTail(p); 380 } 381 } 382 383 static inline void prep_zero_page(struct page *page, unsigned int order, 384 gfp_t gfp_flags) 385 { 386 int i; 387 388 /* 389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 390 * and __GFP_HIGHMEM from hard or soft interrupt context. 391 */ 392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 393 for (i = 0; i < (1 << order); i++) 394 clear_highpage(page + i); 395 } 396 397 #ifdef CONFIG_DEBUG_PAGEALLOC 398 unsigned int _debug_guardpage_minorder; 399 bool _debug_pagealloc_enabled __read_mostly; 400 bool _debug_guardpage_enabled __read_mostly; 401 402 static int __init early_debug_pagealloc(char *buf) 403 { 404 if (!buf) 405 return -EINVAL; 406 407 if (strcmp(buf, "on") == 0) 408 _debug_pagealloc_enabled = true; 409 410 return 0; 411 } 412 early_param("debug_pagealloc", early_debug_pagealloc); 413 414 static bool need_debug_guardpage(void) 415 { 416 /* If we don't use debug_pagealloc, we don't need guard page */ 417 if (!debug_pagealloc_enabled()) 418 return false; 419 420 return true; 421 } 422 423 static void init_debug_guardpage(void) 424 { 425 if (!debug_pagealloc_enabled()) 426 return; 427 428 _debug_guardpage_enabled = true; 429 } 430 431 struct page_ext_operations debug_guardpage_ops = { 432 .need = need_debug_guardpage, 433 .init = init_debug_guardpage, 434 }; 435 436 static int __init debug_guardpage_minorder_setup(char *buf) 437 { 438 unsigned long res; 439 440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 442 return 0; 443 } 444 _debug_guardpage_minorder = res; 445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 446 return 0; 447 } 448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 449 450 static inline void set_page_guard(struct zone *zone, struct page *page, 451 unsigned int order, int migratetype) 452 { 453 struct page_ext *page_ext; 454 455 if (!debug_guardpage_enabled()) 456 return; 457 458 page_ext = lookup_page_ext(page); 459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 460 461 INIT_LIST_HEAD(&page->lru); 462 set_page_private(page, order); 463 /* Guard pages are not available for any usage */ 464 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 465 } 466 467 static inline void clear_page_guard(struct zone *zone, struct page *page, 468 unsigned int order, int migratetype) 469 { 470 struct page_ext *page_ext; 471 472 if (!debug_guardpage_enabled()) 473 return; 474 475 page_ext = lookup_page_ext(page); 476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 477 478 set_page_private(page, 0); 479 if (!is_migrate_isolate(migratetype)) 480 __mod_zone_freepage_state(zone, (1 << order), migratetype); 481 } 482 #else 483 struct page_ext_operations debug_guardpage_ops = { NULL, }; 484 static inline void set_page_guard(struct zone *zone, struct page *page, 485 unsigned int order, int migratetype) {} 486 static inline void clear_page_guard(struct zone *zone, struct page *page, 487 unsigned int order, int migratetype) {} 488 #endif 489 490 static inline void set_page_order(struct page *page, unsigned int order) 491 { 492 set_page_private(page, order); 493 __SetPageBuddy(page); 494 } 495 496 static inline void rmv_page_order(struct page *page) 497 { 498 __ClearPageBuddy(page); 499 set_page_private(page, 0); 500 } 501 502 /* 503 * This function checks whether a page is free && is the buddy 504 * we can do coalesce a page and its buddy if 505 * (a) the buddy is not in a hole && 506 * (b) the buddy is in the buddy system && 507 * (c) a page and its buddy have the same order && 508 * (d) a page and its buddy are in the same zone. 509 * 510 * For recording whether a page is in the buddy system, we set ->_mapcount 511 * PAGE_BUDDY_MAPCOUNT_VALUE. 512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 513 * serialized by zone->lock. 514 * 515 * For recording page's order, we use page_private(page). 516 */ 517 static inline int page_is_buddy(struct page *page, struct page *buddy, 518 unsigned int order) 519 { 520 if (!pfn_valid_within(page_to_pfn(buddy))) 521 return 0; 522 523 if (page_is_guard(buddy) && page_order(buddy) == order) { 524 if (page_zone_id(page) != page_zone_id(buddy)) 525 return 0; 526 527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 528 529 return 1; 530 } 531 532 if (PageBuddy(buddy) && page_order(buddy) == order) { 533 /* 534 * zone check is done late to avoid uselessly 535 * calculating zone/node ids for pages that could 536 * never merge. 537 */ 538 if (page_zone_id(page) != page_zone_id(buddy)) 539 return 0; 540 541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 542 543 return 1; 544 } 545 return 0; 546 } 547 548 /* 549 * Freeing function for a buddy system allocator. 550 * 551 * The concept of a buddy system is to maintain direct-mapped table 552 * (containing bit values) for memory blocks of various "orders". 553 * The bottom level table contains the map for the smallest allocatable 554 * units of memory (here, pages), and each level above it describes 555 * pairs of units from the levels below, hence, "buddies". 556 * At a high level, all that happens here is marking the table entry 557 * at the bottom level available, and propagating the changes upward 558 * as necessary, plus some accounting needed to play nicely with other 559 * parts of the VM system. 560 * At each level, we keep a list of pages, which are heads of continuous 561 * free pages of length of (1 << order) and marked with _mapcount 562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 563 * field. 564 * So when we are allocating or freeing one, we can derive the state of the 565 * other. That is, if we allocate a small block, and both were 566 * free, the remainder of the region must be split into blocks. 567 * If a block is freed, and its buddy is also free, then this 568 * triggers coalescing into a block of larger size. 569 * 570 * -- nyc 571 */ 572 573 static inline void __free_one_page(struct page *page, 574 unsigned long pfn, 575 struct zone *zone, unsigned int order, 576 int migratetype) 577 { 578 unsigned long page_idx; 579 unsigned long combined_idx; 580 unsigned long uninitialized_var(buddy_idx); 581 struct page *buddy; 582 int max_order = MAX_ORDER; 583 584 VM_BUG_ON(!zone_is_initialized(zone)); 585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 586 587 VM_BUG_ON(migratetype == -1); 588 if (is_migrate_isolate(migratetype)) { 589 /* 590 * We restrict max order of merging to prevent merge 591 * between freepages on isolate pageblock and normal 592 * pageblock. Without this, pageblock isolation 593 * could cause incorrect freepage accounting. 594 */ 595 max_order = min(MAX_ORDER, pageblock_order + 1); 596 } else { 597 __mod_zone_freepage_state(zone, 1 << order, migratetype); 598 } 599 600 page_idx = pfn & ((1 << max_order) - 1); 601 602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 603 VM_BUG_ON_PAGE(bad_range(zone, page), page); 604 605 while (order < max_order - 1) { 606 buddy_idx = __find_buddy_index(page_idx, order); 607 buddy = page + (buddy_idx - page_idx); 608 if (!page_is_buddy(page, buddy, order)) 609 break; 610 /* 611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 612 * merge with it and move up one order. 613 */ 614 if (page_is_guard(buddy)) { 615 clear_page_guard(zone, buddy, order, migratetype); 616 } else { 617 list_del(&buddy->lru); 618 zone->free_area[order].nr_free--; 619 rmv_page_order(buddy); 620 } 621 combined_idx = buddy_idx & page_idx; 622 page = page + (combined_idx - page_idx); 623 page_idx = combined_idx; 624 order++; 625 } 626 set_page_order(page, order); 627 628 /* 629 * If this is not the largest possible page, check if the buddy 630 * of the next-highest order is free. If it is, it's possible 631 * that pages are being freed that will coalesce soon. In case, 632 * that is happening, add the free page to the tail of the list 633 * so it's less likely to be used soon and more likely to be merged 634 * as a higher order page 635 */ 636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 637 struct page *higher_page, *higher_buddy; 638 combined_idx = buddy_idx & page_idx; 639 higher_page = page + (combined_idx - page_idx); 640 buddy_idx = __find_buddy_index(combined_idx, order + 1); 641 higher_buddy = higher_page + (buddy_idx - combined_idx); 642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 643 list_add_tail(&page->lru, 644 &zone->free_area[order].free_list[migratetype]); 645 goto out; 646 } 647 } 648 649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 650 out: 651 zone->free_area[order].nr_free++; 652 } 653 654 static inline int free_pages_check(struct page *page) 655 { 656 const char *bad_reason = NULL; 657 unsigned long bad_flags = 0; 658 659 if (unlikely(page_mapcount(page))) 660 bad_reason = "nonzero mapcount"; 661 if (unlikely(page->mapping != NULL)) 662 bad_reason = "non-NULL mapping"; 663 if (unlikely(atomic_read(&page->_count) != 0)) 664 bad_reason = "nonzero _count"; 665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 668 } 669 #ifdef CONFIG_MEMCG 670 if (unlikely(page->mem_cgroup)) 671 bad_reason = "page still charged to cgroup"; 672 #endif 673 if (unlikely(bad_reason)) { 674 bad_page(page, bad_reason, bad_flags); 675 return 1; 676 } 677 page_cpupid_reset_last(page); 678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 680 return 0; 681 } 682 683 /* 684 * Frees a number of pages from the PCP lists 685 * Assumes all pages on list are in same zone, and of same order. 686 * count is the number of pages to free. 687 * 688 * If the zone was previously in an "all pages pinned" state then look to 689 * see if this freeing clears that state. 690 * 691 * And clear the zone's pages_scanned counter, to hold off the "all pages are 692 * pinned" detection logic. 693 */ 694 static void free_pcppages_bulk(struct zone *zone, int count, 695 struct per_cpu_pages *pcp) 696 { 697 int migratetype = 0; 698 int batch_free = 0; 699 int to_free = count; 700 unsigned long nr_scanned; 701 702 spin_lock(&zone->lock); 703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 704 if (nr_scanned) 705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 706 707 while (to_free) { 708 struct page *page; 709 struct list_head *list; 710 711 /* 712 * Remove pages from lists in a round-robin fashion. A 713 * batch_free count is maintained that is incremented when an 714 * empty list is encountered. This is so more pages are freed 715 * off fuller lists instead of spinning excessively around empty 716 * lists 717 */ 718 do { 719 batch_free++; 720 if (++migratetype == MIGRATE_PCPTYPES) 721 migratetype = 0; 722 list = &pcp->lists[migratetype]; 723 } while (list_empty(list)); 724 725 /* This is the only non-empty list. Free them all. */ 726 if (batch_free == MIGRATE_PCPTYPES) 727 batch_free = to_free; 728 729 do { 730 int mt; /* migratetype of the to-be-freed page */ 731 732 page = list_entry(list->prev, struct page, lru); 733 /* must delete as __free_one_page list manipulates */ 734 list_del(&page->lru); 735 mt = get_freepage_migratetype(page); 736 if (unlikely(has_isolate_pageblock(zone))) 737 mt = get_pageblock_migratetype(page); 738 739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 740 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 741 trace_mm_page_pcpu_drain(page, 0, mt); 742 } while (--to_free && --batch_free && !list_empty(list)); 743 } 744 spin_unlock(&zone->lock); 745 } 746 747 static void free_one_page(struct zone *zone, 748 struct page *page, unsigned long pfn, 749 unsigned int order, 750 int migratetype) 751 { 752 unsigned long nr_scanned; 753 spin_lock(&zone->lock); 754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 755 if (nr_scanned) 756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 757 758 if (unlikely(has_isolate_pageblock(zone) || 759 is_migrate_isolate(migratetype))) { 760 migratetype = get_pfnblock_migratetype(page, pfn); 761 } 762 __free_one_page(page, pfn, zone, order, migratetype); 763 spin_unlock(&zone->lock); 764 } 765 766 static int free_tail_pages_check(struct page *head_page, struct page *page) 767 { 768 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 769 return 0; 770 if (unlikely(!PageTail(page))) { 771 bad_page(page, "PageTail not set", 0); 772 return 1; 773 } 774 if (unlikely(page->first_page != head_page)) { 775 bad_page(page, "first_page not consistent", 0); 776 return 1; 777 } 778 return 0; 779 } 780 781 static bool free_pages_prepare(struct page *page, unsigned int order) 782 { 783 bool compound = PageCompound(page); 784 int i, bad = 0; 785 786 VM_BUG_ON_PAGE(PageTail(page), page); 787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 788 789 trace_mm_page_free(page, order); 790 kmemcheck_free_shadow(page, order); 791 kasan_free_pages(page, order); 792 793 if (PageAnon(page)) 794 page->mapping = NULL; 795 bad += free_pages_check(page); 796 for (i = 1; i < (1 << order); i++) { 797 if (compound) 798 bad += free_tail_pages_check(page, page + i); 799 bad += free_pages_check(page + i); 800 } 801 if (bad) 802 return false; 803 804 reset_page_owner(page, order); 805 806 if (!PageHighMem(page)) { 807 debug_check_no_locks_freed(page_address(page), 808 PAGE_SIZE << order); 809 debug_check_no_obj_freed(page_address(page), 810 PAGE_SIZE << order); 811 } 812 arch_free_page(page, order); 813 kernel_map_pages(page, 1 << order, 0); 814 815 return true; 816 } 817 818 static void __free_pages_ok(struct page *page, unsigned int order) 819 { 820 unsigned long flags; 821 int migratetype; 822 unsigned long pfn = page_to_pfn(page); 823 824 if (!free_pages_prepare(page, order)) 825 return; 826 827 migratetype = get_pfnblock_migratetype(page, pfn); 828 local_irq_save(flags); 829 __count_vm_events(PGFREE, 1 << order); 830 set_freepage_migratetype(page, migratetype); 831 free_one_page(page_zone(page), page, pfn, order, migratetype); 832 local_irq_restore(flags); 833 } 834 835 void __init __free_pages_bootmem(struct page *page, unsigned int order) 836 { 837 unsigned int nr_pages = 1 << order; 838 struct page *p = page; 839 unsigned int loop; 840 841 prefetchw(p); 842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 843 prefetchw(p + 1); 844 __ClearPageReserved(p); 845 set_page_count(p, 0); 846 } 847 __ClearPageReserved(p); 848 set_page_count(p, 0); 849 850 page_zone(page)->managed_pages += nr_pages; 851 set_page_refcounted(page); 852 __free_pages(page, order); 853 } 854 855 #ifdef CONFIG_CMA 856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 857 void __init init_cma_reserved_pageblock(struct page *page) 858 { 859 unsigned i = pageblock_nr_pages; 860 struct page *p = page; 861 862 do { 863 __ClearPageReserved(p); 864 set_page_count(p, 0); 865 } while (++p, --i); 866 867 set_pageblock_migratetype(page, MIGRATE_CMA); 868 869 if (pageblock_order >= MAX_ORDER) { 870 i = pageblock_nr_pages; 871 p = page; 872 do { 873 set_page_refcounted(p); 874 __free_pages(p, MAX_ORDER - 1); 875 p += MAX_ORDER_NR_PAGES; 876 } while (i -= MAX_ORDER_NR_PAGES); 877 } else { 878 set_page_refcounted(page); 879 __free_pages(page, pageblock_order); 880 } 881 882 adjust_managed_page_count(page, pageblock_nr_pages); 883 } 884 #endif 885 886 /* 887 * The order of subdivision here is critical for the IO subsystem. 888 * Please do not alter this order without good reasons and regression 889 * testing. Specifically, as large blocks of memory are subdivided, 890 * the order in which smaller blocks are delivered depends on the order 891 * they're subdivided in this function. This is the primary factor 892 * influencing the order in which pages are delivered to the IO 893 * subsystem according to empirical testing, and this is also justified 894 * by considering the behavior of a buddy system containing a single 895 * large block of memory acted on by a series of small allocations. 896 * This behavior is a critical factor in sglist merging's success. 897 * 898 * -- nyc 899 */ 900 static inline void expand(struct zone *zone, struct page *page, 901 int low, int high, struct free_area *area, 902 int migratetype) 903 { 904 unsigned long size = 1 << high; 905 906 while (high > low) { 907 area--; 908 high--; 909 size >>= 1; 910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 911 912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 913 debug_guardpage_enabled() && 914 high < debug_guardpage_minorder()) { 915 /* 916 * Mark as guard pages (or page), that will allow to 917 * merge back to allocator when buddy will be freed. 918 * Corresponding page table entries will not be touched, 919 * pages will stay not present in virtual address space 920 */ 921 set_page_guard(zone, &page[size], high, migratetype); 922 continue; 923 } 924 list_add(&page[size].lru, &area->free_list[migratetype]); 925 area->nr_free++; 926 set_page_order(&page[size], high); 927 } 928 } 929 930 /* 931 * This page is about to be returned from the page allocator 932 */ 933 static inline int check_new_page(struct page *page) 934 { 935 const char *bad_reason = NULL; 936 unsigned long bad_flags = 0; 937 938 if (unlikely(page_mapcount(page))) 939 bad_reason = "nonzero mapcount"; 940 if (unlikely(page->mapping != NULL)) 941 bad_reason = "non-NULL mapping"; 942 if (unlikely(atomic_read(&page->_count) != 0)) 943 bad_reason = "nonzero _count"; 944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 947 } 948 #ifdef CONFIG_MEMCG 949 if (unlikely(page->mem_cgroup)) 950 bad_reason = "page still charged to cgroup"; 951 #endif 952 if (unlikely(bad_reason)) { 953 bad_page(page, bad_reason, bad_flags); 954 return 1; 955 } 956 return 0; 957 } 958 959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 960 int alloc_flags) 961 { 962 int i; 963 964 for (i = 0; i < (1 << order); i++) { 965 struct page *p = page + i; 966 if (unlikely(check_new_page(p))) 967 return 1; 968 } 969 970 set_page_private(page, 0); 971 set_page_refcounted(page); 972 973 arch_alloc_page(page, order); 974 kernel_map_pages(page, 1 << order, 1); 975 kasan_alloc_pages(page, order); 976 977 if (gfp_flags & __GFP_ZERO) 978 prep_zero_page(page, order, gfp_flags); 979 980 if (order && (gfp_flags & __GFP_COMP)) 981 prep_compound_page(page, order); 982 983 set_page_owner(page, order, gfp_flags); 984 985 /* 986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to 987 * allocate the page. The expectation is that the caller is taking 988 * steps that will free more memory. The caller should avoid the page 989 * being used for !PFMEMALLOC purposes. 990 */ 991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 992 993 return 0; 994 } 995 996 /* 997 * Go through the free lists for the given migratetype and remove 998 * the smallest available page from the freelists 999 */ 1000 static inline 1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1002 int migratetype) 1003 { 1004 unsigned int current_order; 1005 struct free_area *area; 1006 struct page *page; 1007 1008 /* Find a page of the appropriate size in the preferred list */ 1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1010 area = &(zone->free_area[current_order]); 1011 if (list_empty(&area->free_list[migratetype])) 1012 continue; 1013 1014 page = list_entry(area->free_list[migratetype].next, 1015 struct page, lru); 1016 list_del(&page->lru); 1017 rmv_page_order(page); 1018 area->nr_free--; 1019 expand(zone, page, order, current_order, area, migratetype); 1020 set_freepage_migratetype(page, migratetype); 1021 return page; 1022 } 1023 1024 return NULL; 1025 } 1026 1027 1028 /* 1029 * This array describes the order lists are fallen back to when 1030 * the free lists for the desirable migrate type are depleted 1031 */ 1032 static int fallbacks[MIGRATE_TYPES][4] = { 1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1035 #ifdef CONFIG_CMA 1036 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 1038 #else 1039 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1040 #endif 1041 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 1042 #ifdef CONFIG_MEMORY_ISOLATION 1043 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 1044 #endif 1045 }; 1046 1047 /* 1048 * Move the free pages in a range to the free lists of the requested type. 1049 * Note that start_page and end_pages are not aligned on a pageblock 1050 * boundary. If alignment is required, use move_freepages_block() 1051 */ 1052 int move_freepages(struct zone *zone, 1053 struct page *start_page, struct page *end_page, 1054 int migratetype) 1055 { 1056 struct page *page; 1057 unsigned long order; 1058 int pages_moved = 0; 1059 1060 #ifndef CONFIG_HOLES_IN_ZONE 1061 /* 1062 * page_zone is not safe to call in this context when 1063 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1064 * anyway as we check zone boundaries in move_freepages_block(). 1065 * Remove at a later date when no bug reports exist related to 1066 * grouping pages by mobility 1067 */ 1068 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1069 #endif 1070 1071 for (page = start_page; page <= end_page;) { 1072 /* Make sure we are not inadvertently changing nodes */ 1073 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1074 1075 if (!pfn_valid_within(page_to_pfn(page))) { 1076 page++; 1077 continue; 1078 } 1079 1080 if (!PageBuddy(page)) { 1081 page++; 1082 continue; 1083 } 1084 1085 order = page_order(page); 1086 list_move(&page->lru, 1087 &zone->free_area[order].free_list[migratetype]); 1088 set_freepage_migratetype(page, migratetype); 1089 page += 1 << order; 1090 pages_moved += 1 << order; 1091 } 1092 1093 return pages_moved; 1094 } 1095 1096 int move_freepages_block(struct zone *zone, struct page *page, 1097 int migratetype) 1098 { 1099 unsigned long start_pfn, end_pfn; 1100 struct page *start_page, *end_page; 1101 1102 start_pfn = page_to_pfn(page); 1103 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1104 start_page = pfn_to_page(start_pfn); 1105 end_page = start_page + pageblock_nr_pages - 1; 1106 end_pfn = start_pfn + pageblock_nr_pages - 1; 1107 1108 /* Do not cross zone boundaries */ 1109 if (!zone_spans_pfn(zone, start_pfn)) 1110 start_page = page; 1111 if (!zone_spans_pfn(zone, end_pfn)) 1112 return 0; 1113 1114 return move_freepages(zone, start_page, end_page, migratetype); 1115 } 1116 1117 static void change_pageblock_range(struct page *pageblock_page, 1118 int start_order, int migratetype) 1119 { 1120 int nr_pageblocks = 1 << (start_order - pageblock_order); 1121 1122 while (nr_pageblocks--) { 1123 set_pageblock_migratetype(pageblock_page, migratetype); 1124 pageblock_page += pageblock_nr_pages; 1125 } 1126 } 1127 1128 /* 1129 * When we are falling back to another migratetype during allocation, try to 1130 * steal extra free pages from the same pageblocks to satisfy further 1131 * allocations, instead of polluting multiple pageblocks. 1132 * 1133 * If we are stealing a relatively large buddy page, it is likely there will 1134 * be more free pages in the pageblock, so try to steal them all. For 1135 * reclaimable and unmovable allocations, we steal regardless of page size, 1136 * as fragmentation caused by those allocations polluting movable pageblocks 1137 * is worse than movable allocations stealing from unmovable and reclaimable 1138 * pageblocks. 1139 * 1140 * If we claim more than half of the pageblock, change pageblock's migratetype 1141 * as well. 1142 */ 1143 static void try_to_steal_freepages(struct zone *zone, struct page *page, 1144 int start_type, int fallback_type) 1145 { 1146 int current_order = page_order(page); 1147 1148 /* Take ownership for orders >= pageblock_order */ 1149 if (current_order >= pageblock_order) { 1150 change_pageblock_range(page, current_order, start_type); 1151 return; 1152 } 1153 1154 if (current_order >= pageblock_order / 2 || 1155 start_type == MIGRATE_RECLAIMABLE || 1156 start_type == MIGRATE_UNMOVABLE || 1157 page_group_by_mobility_disabled) { 1158 int pages; 1159 1160 pages = move_freepages_block(zone, page, start_type); 1161 1162 /* Claim the whole block if over half of it is free */ 1163 if (pages >= (1 << (pageblock_order-1)) || 1164 page_group_by_mobility_disabled) 1165 set_pageblock_migratetype(page, start_type); 1166 } 1167 } 1168 1169 /* Remove an element from the buddy allocator from the fallback list */ 1170 static inline struct page * 1171 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1172 { 1173 struct free_area *area; 1174 unsigned int current_order; 1175 struct page *page; 1176 1177 /* Find the largest possible block of pages in the other list */ 1178 for (current_order = MAX_ORDER-1; 1179 current_order >= order && current_order <= MAX_ORDER-1; 1180 --current_order) { 1181 int i; 1182 for (i = 0;; i++) { 1183 int migratetype = fallbacks[start_migratetype][i]; 1184 int buddy_type = start_migratetype; 1185 1186 /* MIGRATE_RESERVE handled later if necessary */ 1187 if (migratetype == MIGRATE_RESERVE) 1188 break; 1189 1190 area = &(zone->free_area[current_order]); 1191 if (list_empty(&area->free_list[migratetype])) 1192 continue; 1193 1194 page = list_entry(area->free_list[migratetype].next, 1195 struct page, lru); 1196 area->nr_free--; 1197 1198 if (!is_migrate_cma(migratetype)) { 1199 try_to_steal_freepages(zone, page, 1200 start_migratetype, 1201 migratetype); 1202 } else { 1203 /* 1204 * When borrowing from MIGRATE_CMA, we need to 1205 * release the excess buddy pages to CMA 1206 * itself, and we do not try to steal extra 1207 * free pages. 1208 */ 1209 buddy_type = migratetype; 1210 } 1211 1212 /* Remove the page from the freelists */ 1213 list_del(&page->lru); 1214 rmv_page_order(page); 1215 1216 expand(zone, page, order, current_order, area, 1217 buddy_type); 1218 1219 /* 1220 * The freepage_migratetype may differ from pageblock's 1221 * migratetype depending on the decisions in 1222 * try_to_steal_freepages(). This is OK as long as it 1223 * does not differ for MIGRATE_CMA pageblocks. For CMA 1224 * we need to make sure unallocated pages flushed from 1225 * pcp lists are returned to the correct freelist. 1226 */ 1227 set_freepage_migratetype(page, buddy_type); 1228 1229 trace_mm_page_alloc_extfrag(page, order, current_order, 1230 start_migratetype, migratetype); 1231 1232 return page; 1233 } 1234 } 1235 1236 return NULL; 1237 } 1238 1239 /* 1240 * Do the hard work of removing an element from the buddy allocator. 1241 * Call me with the zone->lock already held. 1242 */ 1243 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1244 int migratetype) 1245 { 1246 struct page *page; 1247 1248 retry_reserve: 1249 page = __rmqueue_smallest(zone, order, migratetype); 1250 1251 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1252 page = __rmqueue_fallback(zone, order, migratetype); 1253 1254 /* 1255 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1256 * is used because __rmqueue_smallest is an inline function 1257 * and we want just one call site 1258 */ 1259 if (!page) { 1260 migratetype = MIGRATE_RESERVE; 1261 goto retry_reserve; 1262 } 1263 } 1264 1265 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1266 return page; 1267 } 1268 1269 /* 1270 * Obtain a specified number of elements from the buddy allocator, all under 1271 * a single hold of the lock, for efficiency. Add them to the supplied list. 1272 * Returns the number of new pages which were placed at *list. 1273 */ 1274 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1275 unsigned long count, struct list_head *list, 1276 int migratetype, bool cold) 1277 { 1278 int i; 1279 1280 spin_lock(&zone->lock); 1281 for (i = 0; i < count; ++i) { 1282 struct page *page = __rmqueue(zone, order, migratetype); 1283 if (unlikely(page == NULL)) 1284 break; 1285 1286 /* 1287 * Split buddy pages returned by expand() are received here 1288 * in physical page order. The page is added to the callers and 1289 * list and the list head then moves forward. From the callers 1290 * perspective, the linked list is ordered by page number in 1291 * some conditions. This is useful for IO devices that can 1292 * merge IO requests if the physical pages are ordered 1293 * properly. 1294 */ 1295 if (likely(!cold)) 1296 list_add(&page->lru, list); 1297 else 1298 list_add_tail(&page->lru, list); 1299 list = &page->lru; 1300 if (is_migrate_cma(get_freepage_migratetype(page))) 1301 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1302 -(1 << order)); 1303 } 1304 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1305 spin_unlock(&zone->lock); 1306 return i; 1307 } 1308 1309 #ifdef CONFIG_NUMA 1310 /* 1311 * Called from the vmstat counter updater to drain pagesets of this 1312 * currently executing processor on remote nodes after they have 1313 * expired. 1314 * 1315 * Note that this function must be called with the thread pinned to 1316 * a single processor. 1317 */ 1318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1319 { 1320 unsigned long flags; 1321 int to_drain, batch; 1322 1323 local_irq_save(flags); 1324 batch = ACCESS_ONCE(pcp->batch); 1325 to_drain = min(pcp->count, batch); 1326 if (to_drain > 0) { 1327 free_pcppages_bulk(zone, to_drain, pcp); 1328 pcp->count -= to_drain; 1329 } 1330 local_irq_restore(flags); 1331 } 1332 #endif 1333 1334 /* 1335 * Drain pcplists of the indicated processor and zone. 1336 * 1337 * The processor must either be the current processor and the 1338 * thread pinned to the current processor or a processor that 1339 * is not online. 1340 */ 1341 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 1342 { 1343 unsigned long flags; 1344 struct per_cpu_pageset *pset; 1345 struct per_cpu_pages *pcp; 1346 1347 local_irq_save(flags); 1348 pset = per_cpu_ptr(zone->pageset, cpu); 1349 1350 pcp = &pset->pcp; 1351 if (pcp->count) { 1352 free_pcppages_bulk(zone, pcp->count, pcp); 1353 pcp->count = 0; 1354 } 1355 local_irq_restore(flags); 1356 } 1357 1358 /* 1359 * Drain pcplists of all zones on the indicated processor. 1360 * 1361 * The processor must either be the current processor and the 1362 * thread pinned to the current processor or a processor that 1363 * is not online. 1364 */ 1365 static void drain_pages(unsigned int cpu) 1366 { 1367 struct zone *zone; 1368 1369 for_each_populated_zone(zone) { 1370 drain_pages_zone(cpu, zone); 1371 } 1372 } 1373 1374 /* 1375 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1376 * 1377 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 1378 * the single zone's pages. 1379 */ 1380 void drain_local_pages(struct zone *zone) 1381 { 1382 int cpu = smp_processor_id(); 1383 1384 if (zone) 1385 drain_pages_zone(cpu, zone); 1386 else 1387 drain_pages(cpu); 1388 } 1389 1390 /* 1391 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1392 * 1393 * When zone parameter is non-NULL, spill just the single zone's pages. 1394 * 1395 * Note that this code is protected against sending an IPI to an offline 1396 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1397 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1398 * nothing keeps CPUs from showing up after we populated the cpumask and 1399 * before the call to on_each_cpu_mask(). 1400 */ 1401 void drain_all_pages(struct zone *zone) 1402 { 1403 int cpu; 1404 1405 /* 1406 * Allocate in the BSS so we wont require allocation in 1407 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1408 */ 1409 static cpumask_t cpus_with_pcps; 1410 1411 /* 1412 * We don't care about racing with CPU hotplug event 1413 * as offline notification will cause the notified 1414 * cpu to drain that CPU pcps and on_each_cpu_mask 1415 * disables preemption as part of its processing 1416 */ 1417 for_each_online_cpu(cpu) { 1418 struct per_cpu_pageset *pcp; 1419 struct zone *z; 1420 bool has_pcps = false; 1421 1422 if (zone) { 1423 pcp = per_cpu_ptr(zone->pageset, cpu); 1424 if (pcp->pcp.count) 1425 has_pcps = true; 1426 } else { 1427 for_each_populated_zone(z) { 1428 pcp = per_cpu_ptr(z->pageset, cpu); 1429 if (pcp->pcp.count) { 1430 has_pcps = true; 1431 break; 1432 } 1433 } 1434 } 1435 1436 if (has_pcps) 1437 cpumask_set_cpu(cpu, &cpus_with_pcps); 1438 else 1439 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1440 } 1441 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 1442 zone, 1); 1443 } 1444 1445 #ifdef CONFIG_HIBERNATION 1446 1447 void mark_free_pages(struct zone *zone) 1448 { 1449 unsigned long pfn, max_zone_pfn; 1450 unsigned long flags; 1451 unsigned int order, t; 1452 struct list_head *curr; 1453 1454 if (zone_is_empty(zone)) 1455 return; 1456 1457 spin_lock_irqsave(&zone->lock, flags); 1458 1459 max_zone_pfn = zone_end_pfn(zone); 1460 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1461 if (pfn_valid(pfn)) { 1462 struct page *page = pfn_to_page(pfn); 1463 1464 if (!swsusp_page_is_forbidden(page)) 1465 swsusp_unset_page_free(page); 1466 } 1467 1468 for_each_migratetype_order(order, t) { 1469 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1470 unsigned long i; 1471 1472 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1473 for (i = 0; i < (1UL << order); i++) 1474 swsusp_set_page_free(pfn_to_page(pfn + i)); 1475 } 1476 } 1477 spin_unlock_irqrestore(&zone->lock, flags); 1478 } 1479 #endif /* CONFIG_PM */ 1480 1481 /* 1482 * Free a 0-order page 1483 * cold == true ? free a cold page : free a hot page 1484 */ 1485 void free_hot_cold_page(struct page *page, bool cold) 1486 { 1487 struct zone *zone = page_zone(page); 1488 struct per_cpu_pages *pcp; 1489 unsigned long flags; 1490 unsigned long pfn = page_to_pfn(page); 1491 int migratetype; 1492 1493 if (!free_pages_prepare(page, 0)) 1494 return; 1495 1496 migratetype = get_pfnblock_migratetype(page, pfn); 1497 set_freepage_migratetype(page, migratetype); 1498 local_irq_save(flags); 1499 __count_vm_event(PGFREE); 1500 1501 /* 1502 * We only track unmovable, reclaimable and movable on pcp lists. 1503 * Free ISOLATE pages back to the allocator because they are being 1504 * offlined but treat RESERVE as movable pages so we can get those 1505 * areas back if necessary. Otherwise, we may have to free 1506 * excessively into the page allocator 1507 */ 1508 if (migratetype >= MIGRATE_PCPTYPES) { 1509 if (unlikely(is_migrate_isolate(migratetype))) { 1510 free_one_page(zone, page, pfn, 0, migratetype); 1511 goto out; 1512 } 1513 migratetype = MIGRATE_MOVABLE; 1514 } 1515 1516 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1517 if (!cold) 1518 list_add(&page->lru, &pcp->lists[migratetype]); 1519 else 1520 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1521 pcp->count++; 1522 if (pcp->count >= pcp->high) { 1523 unsigned long batch = ACCESS_ONCE(pcp->batch); 1524 free_pcppages_bulk(zone, batch, pcp); 1525 pcp->count -= batch; 1526 } 1527 1528 out: 1529 local_irq_restore(flags); 1530 } 1531 1532 /* 1533 * Free a list of 0-order pages 1534 */ 1535 void free_hot_cold_page_list(struct list_head *list, bool cold) 1536 { 1537 struct page *page, *next; 1538 1539 list_for_each_entry_safe(page, next, list, lru) { 1540 trace_mm_page_free_batched(page, cold); 1541 free_hot_cold_page(page, cold); 1542 } 1543 } 1544 1545 /* 1546 * split_page takes a non-compound higher-order page, and splits it into 1547 * n (1<<order) sub-pages: page[0..n] 1548 * Each sub-page must be freed individually. 1549 * 1550 * Note: this is probably too low level an operation for use in drivers. 1551 * Please consult with lkml before using this in your driver. 1552 */ 1553 void split_page(struct page *page, unsigned int order) 1554 { 1555 int i; 1556 1557 VM_BUG_ON_PAGE(PageCompound(page), page); 1558 VM_BUG_ON_PAGE(!page_count(page), page); 1559 1560 #ifdef CONFIG_KMEMCHECK 1561 /* 1562 * Split shadow pages too, because free(page[0]) would 1563 * otherwise free the whole shadow. 1564 */ 1565 if (kmemcheck_page_is_tracked(page)) 1566 split_page(virt_to_page(page[0].shadow), order); 1567 #endif 1568 1569 set_page_owner(page, 0, 0); 1570 for (i = 1; i < (1 << order); i++) { 1571 set_page_refcounted(page + i); 1572 set_page_owner(page + i, 0, 0); 1573 } 1574 } 1575 EXPORT_SYMBOL_GPL(split_page); 1576 1577 int __isolate_free_page(struct page *page, unsigned int order) 1578 { 1579 unsigned long watermark; 1580 struct zone *zone; 1581 int mt; 1582 1583 BUG_ON(!PageBuddy(page)); 1584 1585 zone = page_zone(page); 1586 mt = get_pageblock_migratetype(page); 1587 1588 if (!is_migrate_isolate(mt)) { 1589 /* Obey watermarks as if the page was being allocated */ 1590 watermark = low_wmark_pages(zone) + (1 << order); 1591 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1592 return 0; 1593 1594 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1595 } 1596 1597 /* Remove page from free list */ 1598 list_del(&page->lru); 1599 zone->free_area[order].nr_free--; 1600 rmv_page_order(page); 1601 1602 /* Set the pageblock if the isolated page is at least a pageblock */ 1603 if (order >= pageblock_order - 1) { 1604 struct page *endpage = page + (1 << order) - 1; 1605 for (; page < endpage; page += pageblock_nr_pages) { 1606 int mt = get_pageblock_migratetype(page); 1607 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1608 set_pageblock_migratetype(page, 1609 MIGRATE_MOVABLE); 1610 } 1611 } 1612 1613 set_page_owner(page, order, 0); 1614 return 1UL << order; 1615 } 1616 1617 /* 1618 * Similar to split_page except the page is already free. As this is only 1619 * being used for migration, the migratetype of the block also changes. 1620 * As this is called with interrupts disabled, the caller is responsible 1621 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1622 * are enabled. 1623 * 1624 * Note: this is probably too low level an operation for use in drivers. 1625 * Please consult with lkml before using this in your driver. 1626 */ 1627 int split_free_page(struct page *page) 1628 { 1629 unsigned int order; 1630 int nr_pages; 1631 1632 order = page_order(page); 1633 1634 nr_pages = __isolate_free_page(page, order); 1635 if (!nr_pages) 1636 return 0; 1637 1638 /* Split into individual pages */ 1639 set_page_refcounted(page); 1640 split_page(page, order); 1641 return nr_pages; 1642 } 1643 1644 /* 1645 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 1646 */ 1647 static inline 1648 struct page *buffered_rmqueue(struct zone *preferred_zone, 1649 struct zone *zone, unsigned int order, 1650 gfp_t gfp_flags, int migratetype) 1651 { 1652 unsigned long flags; 1653 struct page *page; 1654 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1655 1656 if (likely(order == 0)) { 1657 struct per_cpu_pages *pcp; 1658 struct list_head *list; 1659 1660 local_irq_save(flags); 1661 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1662 list = &pcp->lists[migratetype]; 1663 if (list_empty(list)) { 1664 pcp->count += rmqueue_bulk(zone, 0, 1665 pcp->batch, list, 1666 migratetype, cold); 1667 if (unlikely(list_empty(list))) 1668 goto failed; 1669 } 1670 1671 if (cold) 1672 page = list_entry(list->prev, struct page, lru); 1673 else 1674 page = list_entry(list->next, struct page, lru); 1675 1676 list_del(&page->lru); 1677 pcp->count--; 1678 } else { 1679 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1680 /* 1681 * __GFP_NOFAIL is not to be used in new code. 1682 * 1683 * All __GFP_NOFAIL callers should be fixed so that they 1684 * properly detect and handle allocation failures. 1685 * 1686 * We most definitely don't want callers attempting to 1687 * allocate greater than order-1 page units with 1688 * __GFP_NOFAIL. 1689 */ 1690 WARN_ON_ONCE(order > 1); 1691 } 1692 spin_lock_irqsave(&zone->lock, flags); 1693 page = __rmqueue(zone, order, migratetype); 1694 spin_unlock(&zone->lock); 1695 if (!page) 1696 goto failed; 1697 __mod_zone_freepage_state(zone, -(1 << order), 1698 get_freepage_migratetype(page)); 1699 } 1700 1701 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1702 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 1703 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 1704 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1705 1706 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1707 zone_statistics(preferred_zone, zone, gfp_flags); 1708 local_irq_restore(flags); 1709 1710 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1711 return page; 1712 1713 failed: 1714 local_irq_restore(flags); 1715 return NULL; 1716 } 1717 1718 #ifdef CONFIG_FAIL_PAGE_ALLOC 1719 1720 static struct { 1721 struct fault_attr attr; 1722 1723 u32 ignore_gfp_highmem; 1724 u32 ignore_gfp_wait; 1725 u32 min_order; 1726 } fail_page_alloc = { 1727 .attr = FAULT_ATTR_INITIALIZER, 1728 .ignore_gfp_wait = 1, 1729 .ignore_gfp_highmem = 1, 1730 .min_order = 1, 1731 }; 1732 1733 static int __init setup_fail_page_alloc(char *str) 1734 { 1735 return setup_fault_attr(&fail_page_alloc.attr, str); 1736 } 1737 __setup("fail_page_alloc=", setup_fail_page_alloc); 1738 1739 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1740 { 1741 if (order < fail_page_alloc.min_order) 1742 return false; 1743 if (gfp_mask & __GFP_NOFAIL) 1744 return false; 1745 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1746 return false; 1747 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1748 return false; 1749 1750 return should_fail(&fail_page_alloc.attr, 1 << order); 1751 } 1752 1753 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1754 1755 static int __init fail_page_alloc_debugfs(void) 1756 { 1757 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1758 struct dentry *dir; 1759 1760 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1761 &fail_page_alloc.attr); 1762 if (IS_ERR(dir)) 1763 return PTR_ERR(dir); 1764 1765 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1766 &fail_page_alloc.ignore_gfp_wait)) 1767 goto fail; 1768 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1769 &fail_page_alloc.ignore_gfp_highmem)) 1770 goto fail; 1771 if (!debugfs_create_u32("min-order", mode, dir, 1772 &fail_page_alloc.min_order)) 1773 goto fail; 1774 1775 return 0; 1776 fail: 1777 debugfs_remove_recursive(dir); 1778 1779 return -ENOMEM; 1780 } 1781 1782 late_initcall(fail_page_alloc_debugfs); 1783 1784 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1785 1786 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1787 1788 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1789 { 1790 return false; 1791 } 1792 1793 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1794 1795 /* 1796 * Return true if free pages are above 'mark'. This takes into account the order 1797 * of the allocation. 1798 */ 1799 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1800 unsigned long mark, int classzone_idx, int alloc_flags, 1801 long free_pages) 1802 { 1803 /* free_pages may go negative - that's OK */ 1804 long min = mark; 1805 int o; 1806 long free_cma = 0; 1807 1808 free_pages -= (1 << order) - 1; 1809 if (alloc_flags & ALLOC_HIGH) 1810 min -= min / 2; 1811 if (alloc_flags & ALLOC_HARDER) 1812 min -= min / 4; 1813 #ifdef CONFIG_CMA 1814 /* If allocation can't use CMA areas don't use free CMA pages */ 1815 if (!(alloc_flags & ALLOC_CMA)) 1816 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1817 #endif 1818 1819 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 1820 return false; 1821 for (o = 0; o < order; o++) { 1822 /* At the next order, this order's pages become unavailable */ 1823 free_pages -= z->free_area[o].nr_free << o; 1824 1825 /* Require fewer higher order pages to be free */ 1826 min >>= 1; 1827 1828 if (free_pages <= min) 1829 return false; 1830 } 1831 return true; 1832 } 1833 1834 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1835 int classzone_idx, int alloc_flags) 1836 { 1837 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1838 zone_page_state(z, NR_FREE_PAGES)); 1839 } 1840 1841 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1842 unsigned long mark, int classzone_idx, int alloc_flags) 1843 { 1844 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1845 1846 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1847 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1848 1849 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1850 free_pages); 1851 } 1852 1853 #ifdef CONFIG_NUMA 1854 /* 1855 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1856 * skip over zones that are not allowed by the cpuset, or that have 1857 * been recently (in last second) found to be nearly full. See further 1858 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1859 * that have to skip over a lot of full or unallowed zones. 1860 * 1861 * If the zonelist cache is present in the passed zonelist, then 1862 * returns a pointer to the allowed node mask (either the current 1863 * tasks mems_allowed, or node_states[N_MEMORY].) 1864 * 1865 * If the zonelist cache is not available for this zonelist, does 1866 * nothing and returns NULL. 1867 * 1868 * If the fullzones BITMAP in the zonelist cache is stale (more than 1869 * a second since last zap'd) then we zap it out (clear its bits.) 1870 * 1871 * We hold off even calling zlc_setup, until after we've checked the 1872 * first zone in the zonelist, on the theory that most allocations will 1873 * be satisfied from that first zone, so best to examine that zone as 1874 * quickly as we can. 1875 */ 1876 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1877 { 1878 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1879 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1880 1881 zlc = zonelist->zlcache_ptr; 1882 if (!zlc) 1883 return NULL; 1884 1885 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1886 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1887 zlc->last_full_zap = jiffies; 1888 } 1889 1890 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1891 &cpuset_current_mems_allowed : 1892 &node_states[N_MEMORY]; 1893 return allowednodes; 1894 } 1895 1896 /* 1897 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1898 * if it is worth looking at further for free memory: 1899 * 1) Check that the zone isn't thought to be full (doesn't have its 1900 * bit set in the zonelist_cache fullzones BITMAP). 1901 * 2) Check that the zones node (obtained from the zonelist_cache 1902 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1903 * Return true (non-zero) if zone is worth looking at further, or 1904 * else return false (zero) if it is not. 1905 * 1906 * This check -ignores- the distinction between various watermarks, 1907 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1908 * found to be full for any variation of these watermarks, it will 1909 * be considered full for up to one second by all requests, unless 1910 * we are so low on memory on all allowed nodes that we are forced 1911 * into the second scan of the zonelist. 1912 * 1913 * In the second scan we ignore this zonelist cache and exactly 1914 * apply the watermarks to all zones, even it is slower to do so. 1915 * We are low on memory in the second scan, and should leave no stone 1916 * unturned looking for a free page. 1917 */ 1918 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1919 nodemask_t *allowednodes) 1920 { 1921 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1922 int i; /* index of *z in zonelist zones */ 1923 int n; /* node that zone *z is on */ 1924 1925 zlc = zonelist->zlcache_ptr; 1926 if (!zlc) 1927 return 1; 1928 1929 i = z - zonelist->_zonerefs; 1930 n = zlc->z_to_n[i]; 1931 1932 /* This zone is worth trying if it is allowed but not full */ 1933 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1934 } 1935 1936 /* 1937 * Given 'z' scanning a zonelist, set the corresponding bit in 1938 * zlc->fullzones, so that subsequent attempts to allocate a page 1939 * from that zone don't waste time re-examining it. 1940 */ 1941 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1942 { 1943 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1944 int i; /* index of *z in zonelist zones */ 1945 1946 zlc = zonelist->zlcache_ptr; 1947 if (!zlc) 1948 return; 1949 1950 i = z - zonelist->_zonerefs; 1951 1952 set_bit(i, zlc->fullzones); 1953 } 1954 1955 /* 1956 * clear all zones full, called after direct reclaim makes progress so that 1957 * a zone that was recently full is not skipped over for up to a second 1958 */ 1959 static void zlc_clear_zones_full(struct zonelist *zonelist) 1960 { 1961 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1962 1963 zlc = zonelist->zlcache_ptr; 1964 if (!zlc) 1965 return; 1966 1967 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1968 } 1969 1970 static bool zone_local(struct zone *local_zone, struct zone *zone) 1971 { 1972 return local_zone->node == zone->node; 1973 } 1974 1975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1976 { 1977 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 1978 RECLAIM_DISTANCE; 1979 } 1980 1981 #else /* CONFIG_NUMA */ 1982 1983 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1984 { 1985 return NULL; 1986 } 1987 1988 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1989 nodemask_t *allowednodes) 1990 { 1991 return 1; 1992 } 1993 1994 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1995 { 1996 } 1997 1998 static void zlc_clear_zones_full(struct zonelist *zonelist) 1999 { 2000 } 2001 2002 static bool zone_local(struct zone *local_zone, struct zone *zone) 2003 { 2004 return true; 2005 } 2006 2007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2008 { 2009 return true; 2010 } 2011 2012 #endif /* CONFIG_NUMA */ 2013 2014 static void reset_alloc_batches(struct zone *preferred_zone) 2015 { 2016 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2017 2018 do { 2019 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2020 high_wmark_pages(zone) - low_wmark_pages(zone) - 2021 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2022 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2023 } while (zone++ != preferred_zone); 2024 } 2025 2026 /* 2027 * get_page_from_freelist goes through the zonelist trying to allocate 2028 * a page. 2029 */ 2030 static struct page * 2031 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2032 const struct alloc_context *ac) 2033 { 2034 struct zonelist *zonelist = ac->zonelist; 2035 struct zoneref *z; 2036 struct page *page = NULL; 2037 struct zone *zone; 2038 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 2039 int zlc_active = 0; /* set if using zonelist_cache */ 2040 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 2041 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 2042 (gfp_mask & __GFP_WRITE); 2043 int nr_fair_skipped = 0; 2044 bool zonelist_rescan; 2045 2046 zonelist_scan: 2047 zonelist_rescan = false; 2048 2049 /* 2050 * Scan zonelist, looking for a zone with enough free. 2051 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2052 */ 2053 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2054 ac->nodemask) { 2055 unsigned long mark; 2056 2057 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2058 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2059 continue; 2060 if (cpusets_enabled() && 2061 (alloc_flags & ALLOC_CPUSET) && 2062 !cpuset_zone_allowed(zone, gfp_mask)) 2063 continue; 2064 /* 2065 * Distribute pages in proportion to the individual 2066 * zone size to ensure fair page aging. The zone a 2067 * page was allocated in should have no effect on the 2068 * time the page has in memory before being reclaimed. 2069 */ 2070 if (alloc_flags & ALLOC_FAIR) { 2071 if (!zone_local(ac->preferred_zone, zone)) 2072 break; 2073 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2074 nr_fair_skipped++; 2075 continue; 2076 } 2077 } 2078 /* 2079 * When allocating a page cache page for writing, we 2080 * want to get it from a zone that is within its dirty 2081 * limit, such that no single zone holds more than its 2082 * proportional share of globally allowed dirty pages. 2083 * The dirty limits take into account the zone's 2084 * lowmem reserves and high watermark so that kswapd 2085 * should be able to balance it without having to 2086 * write pages from its LRU list. 2087 * 2088 * This may look like it could increase pressure on 2089 * lower zones by failing allocations in higher zones 2090 * before they are full. But the pages that do spill 2091 * over are limited as the lower zones are protected 2092 * by this very same mechanism. It should not become 2093 * a practical burden to them. 2094 * 2095 * XXX: For now, allow allocations to potentially 2096 * exceed the per-zone dirty limit in the slowpath 2097 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2098 * which is important when on a NUMA setup the allowed 2099 * zones are together not big enough to reach the 2100 * global limit. The proper fix for these situations 2101 * will require awareness of zones in the 2102 * dirty-throttling and the flusher threads. 2103 */ 2104 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2105 continue; 2106 2107 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2108 if (!zone_watermark_ok(zone, order, mark, 2109 ac->classzone_idx, alloc_flags)) { 2110 int ret; 2111 2112 /* Checked here to keep the fast path fast */ 2113 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2114 if (alloc_flags & ALLOC_NO_WATERMARKS) 2115 goto try_this_zone; 2116 2117 if (IS_ENABLED(CONFIG_NUMA) && 2118 !did_zlc_setup && nr_online_nodes > 1) { 2119 /* 2120 * we do zlc_setup if there are multiple nodes 2121 * and before considering the first zone allowed 2122 * by the cpuset. 2123 */ 2124 allowednodes = zlc_setup(zonelist, alloc_flags); 2125 zlc_active = 1; 2126 did_zlc_setup = 1; 2127 } 2128 2129 if (zone_reclaim_mode == 0 || 2130 !zone_allows_reclaim(ac->preferred_zone, zone)) 2131 goto this_zone_full; 2132 2133 /* 2134 * As we may have just activated ZLC, check if the first 2135 * eligible zone has failed zone_reclaim recently. 2136 */ 2137 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2138 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2139 continue; 2140 2141 ret = zone_reclaim(zone, gfp_mask, order); 2142 switch (ret) { 2143 case ZONE_RECLAIM_NOSCAN: 2144 /* did not scan */ 2145 continue; 2146 case ZONE_RECLAIM_FULL: 2147 /* scanned but unreclaimable */ 2148 continue; 2149 default: 2150 /* did we reclaim enough */ 2151 if (zone_watermark_ok(zone, order, mark, 2152 ac->classzone_idx, alloc_flags)) 2153 goto try_this_zone; 2154 2155 /* 2156 * Failed to reclaim enough to meet watermark. 2157 * Only mark the zone full if checking the min 2158 * watermark or if we failed to reclaim just 2159 * 1<<order pages or else the page allocator 2160 * fastpath will prematurely mark zones full 2161 * when the watermark is between the low and 2162 * min watermarks. 2163 */ 2164 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2165 ret == ZONE_RECLAIM_SOME) 2166 goto this_zone_full; 2167 2168 continue; 2169 } 2170 } 2171 2172 try_this_zone: 2173 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2174 gfp_mask, ac->migratetype); 2175 if (page) { 2176 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2177 goto try_this_zone; 2178 return page; 2179 } 2180 this_zone_full: 2181 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2182 zlc_mark_zone_full(zonelist, z); 2183 } 2184 2185 /* 2186 * The first pass makes sure allocations are spread fairly within the 2187 * local node. However, the local node might have free pages left 2188 * after the fairness batches are exhausted, and remote zones haven't 2189 * even been considered yet. Try once more without fairness, and 2190 * include remote zones now, before entering the slowpath and waking 2191 * kswapd: prefer spilling to a remote zone over swapping locally. 2192 */ 2193 if (alloc_flags & ALLOC_FAIR) { 2194 alloc_flags &= ~ALLOC_FAIR; 2195 if (nr_fair_skipped) { 2196 zonelist_rescan = true; 2197 reset_alloc_batches(ac->preferred_zone); 2198 } 2199 if (nr_online_nodes > 1) 2200 zonelist_rescan = true; 2201 } 2202 2203 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2204 /* Disable zlc cache for second zonelist scan */ 2205 zlc_active = 0; 2206 zonelist_rescan = true; 2207 } 2208 2209 if (zonelist_rescan) 2210 goto zonelist_scan; 2211 2212 return NULL; 2213 } 2214 2215 /* 2216 * Large machines with many possible nodes should not always dump per-node 2217 * meminfo in irq context. 2218 */ 2219 static inline bool should_suppress_show_mem(void) 2220 { 2221 bool ret = false; 2222 2223 #if NODES_SHIFT > 8 2224 ret = in_interrupt(); 2225 #endif 2226 return ret; 2227 } 2228 2229 static DEFINE_RATELIMIT_STATE(nopage_rs, 2230 DEFAULT_RATELIMIT_INTERVAL, 2231 DEFAULT_RATELIMIT_BURST); 2232 2233 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2234 { 2235 unsigned int filter = SHOW_MEM_FILTER_NODES; 2236 2237 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2238 debug_guardpage_minorder() > 0) 2239 return; 2240 2241 /* 2242 * This documents exceptions given to allocations in certain 2243 * contexts that are allowed to allocate outside current's set 2244 * of allowed nodes. 2245 */ 2246 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2247 if (test_thread_flag(TIF_MEMDIE) || 2248 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2249 filter &= ~SHOW_MEM_FILTER_NODES; 2250 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2251 filter &= ~SHOW_MEM_FILTER_NODES; 2252 2253 if (fmt) { 2254 struct va_format vaf; 2255 va_list args; 2256 2257 va_start(args, fmt); 2258 2259 vaf.fmt = fmt; 2260 vaf.va = &args; 2261 2262 pr_warn("%pV", &vaf); 2263 2264 va_end(args); 2265 } 2266 2267 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2268 current->comm, order, gfp_mask); 2269 2270 dump_stack(); 2271 if (!should_suppress_show_mem()) 2272 show_mem(filter); 2273 } 2274 2275 static inline int 2276 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2277 unsigned long did_some_progress, 2278 unsigned long pages_reclaimed) 2279 { 2280 /* Do not loop if specifically requested */ 2281 if (gfp_mask & __GFP_NORETRY) 2282 return 0; 2283 2284 /* Always retry if specifically requested */ 2285 if (gfp_mask & __GFP_NOFAIL) 2286 return 1; 2287 2288 /* 2289 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2290 * making forward progress without invoking OOM. Suspend also disables 2291 * storage devices so kswapd will not help. Bail if we are suspending. 2292 */ 2293 if (!did_some_progress && pm_suspended_storage()) 2294 return 0; 2295 2296 /* 2297 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2298 * means __GFP_NOFAIL, but that may not be true in other 2299 * implementations. 2300 */ 2301 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2302 return 1; 2303 2304 /* 2305 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2306 * specified, then we retry until we no longer reclaim any pages 2307 * (above), or we've reclaimed an order of pages at least as 2308 * large as the allocation's order. In both cases, if the 2309 * allocation still fails, we stop retrying. 2310 */ 2311 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2312 return 1; 2313 2314 return 0; 2315 } 2316 2317 static inline struct page * 2318 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2319 const struct alloc_context *ac, unsigned long *did_some_progress) 2320 { 2321 struct page *page; 2322 2323 *did_some_progress = 0; 2324 2325 /* 2326 * Acquire the per-zone oom lock for each zone. If that 2327 * fails, somebody else is making progress for us. 2328 */ 2329 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) { 2330 *did_some_progress = 1; 2331 schedule_timeout_uninterruptible(1); 2332 return NULL; 2333 } 2334 2335 /* 2336 * Go through the zonelist yet one more time, keep very high watermark 2337 * here, this is only to catch a parallel oom killing, we must fail if 2338 * we're still under heavy pressure. 2339 */ 2340 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2341 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2342 if (page) 2343 goto out; 2344 2345 if (!(gfp_mask & __GFP_NOFAIL)) { 2346 /* Coredumps can quickly deplete all memory reserves */ 2347 if (current->flags & PF_DUMPCORE) 2348 goto out; 2349 /* The OOM killer will not help higher order allocs */ 2350 if (order > PAGE_ALLOC_COSTLY_ORDER) 2351 goto out; 2352 /* The OOM killer does not needlessly kill tasks for lowmem */ 2353 if (ac->high_zoneidx < ZONE_NORMAL) 2354 goto out; 2355 /* The OOM killer does not compensate for light reclaim */ 2356 if (!(gfp_mask & __GFP_FS)) 2357 goto out; 2358 /* 2359 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2360 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2361 * The caller should handle page allocation failure by itself if 2362 * it specifies __GFP_THISNODE. 2363 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2364 */ 2365 if (gfp_mask & __GFP_THISNODE) 2366 goto out; 2367 } 2368 /* Exhausted what can be done so it's blamo time */ 2369 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)) 2370 *did_some_progress = 1; 2371 out: 2372 oom_zonelist_unlock(ac->zonelist, gfp_mask); 2373 return page; 2374 } 2375 2376 #ifdef CONFIG_COMPACTION 2377 /* Try memory compaction for high-order allocations before reclaim */ 2378 static struct page * 2379 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2380 int alloc_flags, const struct alloc_context *ac, 2381 enum migrate_mode mode, int *contended_compaction, 2382 bool *deferred_compaction) 2383 { 2384 unsigned long compact_result; 2385 struct page *page; 2386 2387 if (!order) 2388 return NULL; 2389 2390 current->flags |= PF_MEMALLOC; 2391 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2392 mode, contended_compaction); 2393 current->flags &= ~PF_MEMALLOC; 2394 2395 switch (compact_result) { 2396 case COMPACT_DEFERRED: 2397 *deferred_compaction = true; 2398 /* fall-through */ 2399 case COMPACT_SKIPPED: 2400 return NULL; 2401 default: 2402 break; 2403 } 2404 2405 /* 2406 * At least in one zone compaction wasn't deferred or skipped, so let's 2407 * count a compaction stall 2408 */ 2409 count_vm_event(COMPACTSTALL); 2410 2411 page = get_page_from_freelist(gfp_mask, order, 2412 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2413 2414 if (page) { 2415 struct zone *zone = page_zone(page); 2416 2417 zone->compact_blockskip_flush = false; 2418 compaction_defer_reset(zone, order, true); 2419 count_vm_event(COMPACTSUCCESS); 2420 return page; 2421 } 2422 2423 /* 2424 * It's bad if compaction run occurs and fails. The most likely reason 2425 * is that pages exist, but not enough to satisfy watermarks. 2426 */ 2427 count_vm_event(COMPACTFAIL); 2428 2429 cond_resched(); 2430 2431 return NULL; 2432 } 2433 #else 2434 static inline struct page * 2435 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2436 int alloc_flags, const struct alloc_context *ac, 2437 enum migrate_mode mode, int *contended_compaction, 2438 bool *deferred_compaction) 2439 { 2440 return NULL; 2441 } 2442 #endif /* CONFIG_COMPACTION */ 2443 2444 /* Perform direct synchronous page reclaim */ 2445 static int 2446 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 2447 const struct alloc_context *ac) 2448 { 2449 struct reclaim_state reclaim_state; 2450 int progress; 2451 2452 cond_resched(); 2453 2454 /* We now go into synchronous reclaim */ 2455 cpuset_memory_pressure_bump(); 2456 current->flags |= PF_MEMALLOC; 2457 lockdep_set_current_reclaim_state(gfp_mask); 2458 reclaim_state.reclaimed_slab = 0; 2459 current->reclaim_state = &reclaim_state; 2460 2461 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 2462 ac->nodemask); 2463 2464 current->reclaim_state = NULL; 2465 lockdep_clear_current_reclaim_state(); 2466 current->flags &= ~PF_MEMALLOC; 2467 2468 cond_resched(); 2469 2470 return progress; 2471 } 2472 2473 /* The really slow allocator path where we enter direct reclaim */ 2474 static inline struct page * 2475 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2476 int alloc_flags, const struct alloc_context *ac, 2477 unsigned long *did_some_progress) 2478 { 2479 struct page *page = NULL; 2480 bool drained = false; 2481 2482 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 2483 if (unlikely(!(*did_some_progress))) 2484 return NULL; 2485 2486 /* After successful reclaim, reconsider all zones for allocation */ 2487 if (IS_ENABLED(CONFIG_NUMA)) 2488 zlc_clear_zones_full(ac->zonelist); 2489 2490 retry: 2491 page = get_page_from_freelist(gfp_mask, order, 2492 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2493 2494 /* 2495 * If an allocation failed after direct reclaim, it could be because 2496 * pages are pinned on the per-cpu lists. Drain them and try again 2497 */ 2498 if (!page && !drained) { 2499 drain_all_pages(NULL); 2500 drained = true; 2501 goto retry; 2502 } 2503 2504 return page; 2505 } 2506 2507 /* 2508 * This is called in the allocator slow-path if the allocation request is of 2509 * sufficient urgency to ignore watermarks and take other desperate measures 2510 */ 2511 static inline struct page * 2512 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2513 const struct alloc_context *ac) 2514 { 2515 struct page *page; 2516 2517 do { 2518 page = get_page_from_freelist(gfp_mask, order, 2519 ALLOC_NO_WATERMARKS, ac); 2520 2521 if (!page && gfp_mask & __GFP_NOFAIL) 2522 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, 2523 HZ/50); 2524 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2525 2526 return page; 2527 } 2528 2529 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 2530 { 2531 struct zoneref *z; 2532 struct zone *zone; 2533 2534 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2535 ac->high_zoneidx, ac->nodemask) 2536 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 2537 } 2538 2539 static inline int 2540 gfp_to_alloc_flags(gfp_t gfp_mask) 2541 { 2542 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2543 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2544 2545 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2546 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2547 2548 /* 2549 * The caller may dip into page reserves a bit more if the caller 2550 * cannot run direct reclaim, or if the caller has realtime scheduling 2551 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2552 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2553 */ 2554 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2555 2556 if (atomic) { 2557 /* 2558 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2559 * if it can't schedule. 2560 */ 2561 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2562 alloc_flags |= ALLOC_HARDER; 2563 /* 2564 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2565 * comment for __cpuset_node_allowed(). 2566 */ 2567 alloc_flags &= ~ALLOC_CPUSET; 2568 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2569 alloc_flags |= ALLOC_HARDER; 2570 2571 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2572 if (gfp_mask & __GFP_MEMALLOC) 2573 alloc_flags |= ALLOC_NO_WATERMARKS; 2574 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2575 alloc_flags |= ALLOC_NO_WATERMARKS; 2576 else if (!in_interrupt() && 2577 ((current->flags & PF_MEMALLOC) || 2578 unlikely(test_thread_flag(TIF_MEMDIE)))) 2579 alloc_flags |= ALLOC_NO_WATERMARKS; 2580 } 2581 #ifdef CONFIG_CMA 2582 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2583 alloc_flags |= ALLOC_CMA; 2584 #endif 2585 return alloc_flags; 2586 } 2587 2588 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2589 { 2590 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2591 } 2592 2593 static inline struct page * 2594 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2595 struct alloc_context *ac) 2596 { 2597 const gfp_t wait = gfp_mask & __GFP_WAIT; 2598 struct page *page = NULL; 2599 int alloc_flags; 2600 unsigned long pages_reclaimed = 0; 2601 unsigned long did_some_progress; 2602 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2603 bool deferred_compaction = false; 2604 int contended_compaction = COMPACT_CONTENDED_NONE; 2605 2606 /* 2607 * In the slowpath, we sanity check order to avoid ever trying to 2608 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2609 * be using allocators in order of preference for an area that is 2610 * too large. 2611 */ 2612 if (order >= MAX_ORDER) { 2613 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2614 return NULL; 2615 } 2616 2617 /* 2618 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2619 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2620 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2621 * using a larger set of nodes after it has established that the 2622 * allowed per node queues are empty and that nodes are 2623 * over allocated. 2624 */ 2625 if (IS_ENABLED(CONFIG_NUMA) && 2626 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2627 goto nopage; 2628 2629 retry: 2630 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2631 wake_all_kswapds(order, ac); 2632 2633 /* 2634 * OK, we're below the kswapd watermark and have kicked background 2635 * reclaim. Now things get more complex, so set up alloc_flags according 2636 * to how we want to proceed. 2637 */ 2638 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2639 2640 /* 2641 * Find the true preferred zone if the allocation is unconstrained by 2642 * cpusets. 2643 */ 2644 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 2645 struct zoneref *preferred_zoneref; 2646 preferred_zoneref = first_zones_zonelist(ac->zonelist, 2647 ac->high_zoneidx, NULL, &ac->preferred_zone); 2648 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 2649 } 2650 2651 /* This is the last chance, in general, before the goto nopage. */ 2652 page = get_page_from_freelist(gfp_mask, order, 2653 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2654 if (page) 2655 goto got_pg; 2656 2657 /* Allocate without watermarks if the context allows */ 2658 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2659 /* 2660 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2661 * the allocation is high priority and these type of 2662 * allocations are system rather than user orientated 2663 */ 2664 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 2665 2666 page = __alloc_pages_high_priority(gfp_mask, order, ac); 2667 2668 if (page) { 2669 goto got_pg; 2670 } 2671 } 2672 2673 /* Atomic allocations - we can't balance anything */ 2674 if (!wait) { 2675 /* 2676 * All existing users of the deprecated __GFP_NOFAIL are 2677 * blockable, so warn of any new users that actually allow this 2678 * type of allocation to fail. 2679 */ 2680 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2681 goto nopage; 2682 } 2683 2684 /* Avoid recursion of direct reclaim */ 2685 if (current->flags & PF_MEMALLOC) 2686 goto nopage; 2687 2688 /* Avoid allocations with no watermarks from looping endlessly */ 2689 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2690 goto nopage; 2691 2692 /* 2693 * Try direct compaction. The first pass is asynchronous. Subsequent 2694 * attempts after direct reclaim are synchronous 2695 */ 2696 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 2697 migration_mode, 2698 &contended_compaction, 2699 &deferred_compaction); 2700 if (page) 2701 goto got_pg; 2702 2703 /* Checks for THP-specific high-order allocations */ 2704 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 2705 /* 2706 * If compaction is deferred for high-order allocations, it is 2707 * because sync compaction recently failed. If this is the case 2708 * and the caller requested a THP allocation, we do not want 2709 * to heavily disrupt the system, so we fail the allocation 2710 * instead of entering direct reclaim. 2711 */ 2712 if (deferred_compaction) 2713 goto nopage; 2714 2715 /* 2716 * In all zones where compaction was attempted (and not 2717 * deferred or skipped), lock contention has been detected. 2718 * For THP allocation we do not want to disrupt the others 2719 * so we fallback to base pages instead. 2720 */ 2721 if (contended_compaction == COMPACT_CONTENDED_LOCK) 2722 goto nopage; 2723 2724 /* 2725 * If compaction was aborted due to need_resched(), we do not 2726 * want to further increase allocation latency, unless it is 2727 * khugepaged trying to collapse. 2728 */ 2729 if (contended_compaction == COMPACT_CONTENDED_SCHED 2730 && !(current->flags & PF_KTHREAD)) 2731 goto nopage; 2732 } 2733 2734 /* 2735 * It can become very expensive to allocate transparent hugepages at 2736 * fault, so use asynchronous memory compaction for THP unless it is 2737 * khugepaged trying to collapse. 2738 */ 2739 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 2740 (current->flags & PF_KTHREAD)) 2741 migration_mode = MIGRATE_SYNC_LIGHT; 2742 2743 /* Try direct reclaim and then allocating */ 2744 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 2745 &did_some_progress); 2746 if (page) 2747 goto got_pg; 2748 2749 /* Check if we should retry the allocation */ 2750 pages_reclaimed += did_some_progress; 2751 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2752 pages_reclaimed)) { 2753 /* 2754 * If we fail to make progress by freeing individual 2755 * pages, but the allocation wants us to keep going, 2756 * start OOM killing tasks. 2757 */ 2758 if (!did_some_progress) { 2759 page = __alloc_pages_may_oom(gfp_mask, order, ac, 2760 &did_some_progress); 2761 if (page) 2762 goto got_pg; 2763 if (!did_some_progress) 2764 goto nopage; 2765 } 2766 /* Wait for some write requests to complete then retry */ 2767 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 2768 goto retry; 2769 } else { 2770 /* 2771 * High-order allocations do not necessarily loop after 2772 * direct reclaim and reclaim/compaction depends on compaction 2773 * being called after reclaim so call directly if necessary 2774 */ 2775 page = __alloc_pages_direct_compact(gfp_mask, order, 2776 alloc_flags, ac, migration_mode, 2777 &contended_compaction, 2778 &deferred_compaction); 2779 if (page) 2780 goto got_pg; 2781 } 2782 2783 nopage: 2784 warn_alloc_failed(gfp_mask, order, NULL); 2785 got_pg: 2786 return page; 2787 } 2788 2789 /* 2790 * This is the 'heart' of the zoned buddy allocator. 2791 */ 2792 struct page * 2793 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2794 struct zonelist *zonelist, nodemask_t *nodemask) 2795 { 2796 struct zoneref *preferred_zoneref; 2797 struct page *page = NULL; 2798 unsigned int cpuset_mems_cookie; 2799 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2800 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 2801 struct alloc_context ac = { 2802 .high_zoneidx = gfp_zone(gfp_mask), 2803 .nodemask = nodemask, 2804 .migratetype = gfpflags_to_migratetype(gfp_mask), 2805 }; 2806 2807 gfp_mask &= gfp_allowed_mask; 2808 2809 lockdep_trace_alloc(gfp_mask); 2810 2811 might_sleep_if(gfp_mask & __GFP_WAIT); 2812 2813 if (should_fail_alloc_page(gfp_mask, order)) 2814 return NULL; 2815 2816 /* 2817 * Check the zones suitable for the gfp_mask contain at least one 2818 * valid zone. It's possible to have an empty zonelist as a result 2819 * of GFP_THISNODE and a memoryless node 2820 */ 2821 if (unlikely(!zonelist->_zonerefs->zone)) 2822 return NULL; 2823 2824 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 2825 alloc_flags |= ALLOC_CMA; 2826 2827 retry_cpuset: 2828 cpuset_mems_cookie = read_mems_allowed_begin(); 2829 2830 /* We set it here, as __alloc_pages_slowpath might have changed it */ 2831 ac.zonelist = zonelist; 2832 /* The preferred zone is used for statistics later */ 2833 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 2834 ac.nodemask ? : &cpuset_current_mems_allowed, 2835 &ac.preferred_zone); 2836 if (!ac.preferred_zone) 2837 goto out; 2838 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 2839 2840 /* First allocation attempt */ 2841 alloc_mask = gfp_mask|__GFP_HARDWALL; 2842 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 2843 if (unlikely(!page)) { 2844 /* 2845 * Runtime PM, block IO and its error handling path 2846 * can deadlock because I/O on the device might not 2847 * complete. 2848 */ 2849 alloc_mask = memalloc_noio_flags(gfp_mask); 2850 2851 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 2852 } 2853 2854 if (kmemcheck_enabled && page) 2855 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2856 2857 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 2858 2859 out: 2860 /* 2861 * When updating a task's mems_allowed, it is possible to race with 2862 * parallel threads in such a way that an allocation can fail while 2863 * the mask is being updated. If a page allocation is about to fail, 2864 * check if the cpuset changed during allocation and if so, retry. 2865 */ 2866 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2867 goto retry_cpuset; 2868 2869 return page; 2870 } 2871 EXPORT_SYMBOL(__alloc_pages_nodemask); 2872 2873 /* 2874 * Common helper functions. 2875 */ 2876 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2877 { 2878 struct page *page; 2879 2880 /* 2881 * __get_free_pages() returns a 32-bit address, which cannot represent 2882 * a highmem page 2883 */ 2884 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2885 2886 page = alloc_pages(gfp_mask, order); 2887 if (!page) 2888 return 0; 2889 return (unsigned long) page_address(page); 2890 } 2891 EXPORT_SYMBOL(__get_free_pages); 2892 2893 unsigned long get_zeroed_page(gfp_t gfp_mask) 2894 { 2895 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2896 } 2897 EXPORT_SYMBOL(get_zeroed_page); 2898 2899 void __free_pages(struct page *page, unsigned int order) 2900 { 2901 if (put_page_testzero(page)) { 2902 if (order == 0) 2903 free_hot_cold_page(page, false); 2904 else 2905 __free_pages_ok(page, order); 2906 } 2907 } 2908 2909 EXPORT_SYMBOL(__free_pages); 2910 2911 void free_pages(unsigned long addr, unsigned int order) 2912 { 2913 if (addr != 0) { 2914 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2915 __free_pages(virt_to_page((void *)addr), order); 2916 } 2917 } 2918 2919 EXPORT_SYMBOL(free_pages); 2920 2921 /* 2922 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2923 * of the current memory cgroup. 2924 * 2925 * It should be used when the caller would like to use kmalloc, but since the 2926 * allocation is large, it has to fall back to the page allocator. 2927 */ 2928 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2929 { 2930 struct page *page; 2931 struct mem_cgroup *memcg = NULL; 2932 2933 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2934 return NULL; 2935 page = alloc_pages(gfp_mask, order); 2936 memcg_kmem_commit_charge(page, memcg, order); 2937 return page; 2938 } 2939 2940 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 2941 { 2942 struct page *page; 2943 struct mem_cgroup *memcg = NULL; 2944 2945 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2946 return NULL; 2947 page = alloc_pages_node(nid, gfp_mask, order); 2948 memcg_kmem_commit_charge(page, memcg, order); 2949 return page; 2950 } 2951 2952 /* 2953 * __free_kmem_pages and free_kmem_pages will free pages allocated with 2954 * alloc_kmem_pages. 2955 */ 2956 void __free_kmem_pages(struct page *page, unsigned int order) 2957 { 2958 memcg_kmem_uncharge_pages(page, order); 2959 __free_pages(page, order); 2960 } 2961 2962 void free_kmem_pages(unsigned long addr, unsigned int order) 2963 { 2964 if (addr != 0) { 2965 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2966 __free_kmem_pages(virt_to_page((void *)addr), order); 2967 } 2968 } 2969 2970 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2971 { 2972 if (addr) { 2973 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2974 unsigned long used = addr + PAGE_ALIGN(size); 2975 2976 split_page(virt_to_page((void *)addr), order); 2977 while (used < alloc_end) { 2978 free_page(used); 2979 used += PAGE_SIZE; 2980 } 2981 } 2982 return (void *)addr; 2983 } 2984 2985 /** 2986 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2987 * @size: the number of bytes to allocate 2988 * @gfp_mask: GFP flags for the allocation 2989 * 2990 * This function is similar to alloc_pages(), except that it allocates the 2991 * minimum number of pages to satisfy the request. alloc_pages() can only 2992 * allocate memory in power-of-two pages. 2993 * 2994 * This function is also limited by MAX_ORDER. 2995 * 2996 * Memory allocated by this function must be released by free_pages_exact(). 2997 */ 2998 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2999 { 3000 unsigned int order = get_order(size); 3001 unsigned long addr; 3002 3003 addr = __get_free_pages(gfp_mask, order); 3004 return make_alloc_exact(addr, order, size); 3005 } 3006 EXPORT_SYMBOL(alloc_pages_exact); 3007 3008 /** 3009 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3010 * pages on a node. 3011 * @nid: the preferred node ID where memory should be allocated 3012 * @size: the number of bytes to allocate 3013 * @gfp_mask: GFP flags for the allocation 3014 * 3015 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3016 * back. 3017 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 3018 * but is not exact. 3019 */ 3020 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3021 { 3022 unsigned order = get_order(size); 3023 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3024 if (!p) 3025 return NULL; 3026 return make_alloc_exact((unsigned long)page_address(p), order, size); 3027 } 3028 3029 /** 3030 * free_pages_exact - release memory allocated via alloc_pages_exact() 3031 * @virt: the value returned by alloc_pages_exact. 3032 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3033 * 3034 * Release the memory allocated by a previous call to alloc_pages_exact. 3035 */ 3036 void free_pages_exact(void *virt, size_t size) 3037 { 3038 unsigned long addr = (unsigned long)virt; 3039 unsigned long end = addr + PAGE_ALIGN(size); 3040 3041 while (addr < end) { 3042 free_page(addr); 3043 addr += PAGE_SIZE; 3044 } 3045 } 3046 EXPORT_SYMBOL(free_pages_exact); 3047 3048 /** 3049 * nr_free_zone_pages - count number of pages beyond high watermark 3050 * @offset: The zone index of the highest zone 3051 * 3052 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3053 * high watermark within all zones at or below a given zone index. For each 3054 * zone, the number of pages is calculated as: 3055 * managed_pages - high_pages 3056 */ 3057 static unsigned long nr_free_zone_pages(int offset) 3058 { 3059 struct zoneref *z; 3060 struct zone *zone; 3061 3062 /* Just pick one node, since fallback list is circular */ 3063 unsigned long sum = 0; 3064 3065 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3066 3067 for_each_zone_zonelist(zone, z, zonelist, offset) { 3068 unsigned long size = zone->managed_pages; 3069 unsigned long high = high_wmark_pages(zone); 3070 if (size > high) 3071 sum += size - high; 3072 } 3073 3074 return sum; 3075 } 3076 3077 /** 3078 * nr_free_buffer_pages - count number of pages beyond high watermark 3079 * 3080 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3081 * watermark within ZONE_DMA and ZONE_NORMAL. 3082 */ 3083 unsigned long nr_free_buffer_pages(void) 3084 { 3085 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3086 } 3087 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3088 3089 /** 3090 * nr_free_pagecache_pages - count number of pages beyond high watermark 3091 * 3092 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3093 * high watermark within all zones. 3094 */ 3095 unsigned long nr_free_pagecache_pages(void) 3096 { 3097 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3098 } 3099 3100 static inline void show_node(struct zone *zone) 3101 { 3102 if (IS_ENABLED(CONFIG_NUMA)) 3103 printk("Node %d ", zone_to_nid(zone)); 3104 } 3105 3106 void si_meminfo(struct sysinfo *val) 3107 { 3108 val->totalram = totalram_pages; 3109 val->sharedram = global_page_state(NR_SHMEM); 3110 val->freeram = global_page_state(NR_FREE_PAGES); 3111 val->bufferram = nr_blockdev_pages(); 3112 val->totalhigh = totalhigh_pages; 3113 val->freehigh = nr_free_highpages(); 3114 val->mem_unit = PAGE_SIZE; 3115 } 3116 3117 EXPORT_SYMBOL(si_meminfo); 3118 3119 #ifdef CONFIG_NUMA 3120 void si_meminfo_node(struct sysinfo *val, int nid) 3121 { 3122 int zone_type; /* needs to be signed */ 3123 unsigned long managed_pages = 0; 3124 pg_data_t *pgdat = NODE_DATA(nid); 3125 3126 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3127 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3128 val->totalram = managed_pages; 3129 val->sharedram = node_page_state(nid, NR_SHMEM); 3130 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3131 #ifdef CONFIG_HIGHMEM 3132 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3133 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3134 NR_FREE_PAGES); 3135 #else 3136 val->totalhigh = 0; 3137 val->freehigh = 0; 3138 #endif 3139 val->mem_unit = PAGE_SIZE; 3140 } 3141 #endif 3142 3143 /* 3144 * Determine whether the node should be displayed or not, depending on whether 3145 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3146 */ 3147 bool skip_free_areas_node(unsigned int flags, int nid) 3148 { 3149 bool ret = false; 3150 unsigned int cpuset_mems_cookie; 3151 3152 if (!(flags & SHOW_MEM_FILTER_NODES)) 3153 goto out; 3154 3155 do { 3156 cpuset_mems_cookie = read_mems_allowed_begin(); 3157 ret = !node_isset(nid, cpuset_current_mems_allowed); 3158 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3159 out: 3160 return ret; 3161 } 3162 3163 #define K(x) ((x) << (PAGE_SHIFT-10)) 3164 3165 static void show_migration_types(unsigned char type) 3166 { 3167 static const char types[MIGRATE_TYPES] = { 3168 [MIGRATE_UNMOVABLE] = 'U', 3169 [MIGRATE_RECLAIMABLE] = 'E', 3170 [MIGRATE_MOVABLE] = 'M', 3171 [MIGRATE_RESERVE] = 'R', 3172 #ifdef CONFIG_CMA 3173 [MIGRATE_CMA] = 'C', 3174 #endif 3175 #ifdef CONFIG_MEMORY_ISOLATION 3176 [MIGRATE_ISOLATE] = 'I', 3177 #endif 3178 }; 3179 char tmp[MIGRATE_TYPES + 1]; 3180 char *p = tmp; 3181 int i; 3182 3183 for (i = 0; i < MIGRATE_TYPES; i++) { 3184 if (type & (1 << i)) 3185 *p++ = types[i]; 3186 } 3187 3188 *p = '\0'; 3189 printk("(%s) ", tmp); 3190 } 3191 3192 /* 3193 * Show free area list (used inside shift_scroll-lock stuff) 3194 * We also calculate the percentage fragmentation. We do this by counting the 3195 * memory on each free list with the exception of the first item on the list. 3196 * Suppresses nodes that are not allowed by current's cpuset if 3197 * SHOW_MEM_FILTER_NODES is passed. 3198 */ 3199 void show_free_areas(unsigned int filter) 3200 { 3201 int cpu; 3202 struct zone *zone; 3203 3204 for_each_populated_zone(zone) { 3205 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3206 continue; 3207 show_node(zone); 3208 printk("%s per-cpu:\n", zone->name); 3209 3210 for_each_online_cpu(cpu) { 3211 struct per_cpu_pageset *pageset; 3212 3213 pageset = per_cpu_ptr(zone->pageset, cpu); 3214 3215 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3216 cpu, pageset->pcp.high, 3217 pageset->pcp.batch, pageset->pcp.count); 3218 } 3219 } 3220 3221 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3222 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3223 " unevictable:%lu" 3224 " dirty:%lu writeback:%lu unstable:%lu\n" 3225 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3226 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3227 " free_cma:%lu\n", 3228 global_page_state(NR_ACTIVE_ANON), 3229 global_page_state(NR_INACTIVE_ANON), 3230 global_page_state(NR_ISOLATED_ANON), 3231 global_page_state(NR_ACTIVE_FILE), 3232 global_page_state(NR_INACTIVE_FILE), 3233 global_page_state(NR_ISOLATED_FILE), 3234 global_page_state(NR_UNEVICTABLE), 3235 global_page_state(NR_FILE_DIRTY), 3236 global_page_state(NR_WRITEBACK), 3237 global_page_state(NR_UNSTABLE_NFS), 3238 global_page_state(NR_FREE_PAGES), 3239 global_page_state(NR_SLAB_RECLAIMABLE), 3240 global_page_state(NR_SLAB_UNRECLAIMABLE), 3241 global_page_state(NR_FILE_MAPPED), 3242 global_page_state(NR_SHMEM), 3243 global_page_state(NR_PAGETABLE), 3244 global_page_state(NR_BOUNCE), 3245 global_page_state(NR_FREE_CMA_PAGES)); 3246 3247 for_each_populated_zone(zone) { 3248 int i; 3249 3250 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3251 continue; 3252 show_node(zone); 3253 printk("%s" 3254 " free:%lukB" 3255 " min:%lukB" 3256 " low:%lukB" 3257 " high:%lukB" 3258 " active_anon:%lukB" 3259 " inactive_anon:%lukB" 3260 " active_file:%lukB" 3261 " inactive_file:%lukB" 3262 " unevictable:%lukB" 3263 " isolated(anon):%lukB" 3264 " isolated(file):%lukB" 3265 " present:%lukB" 3266 " managed:%lukB" 3267 " mlocked:%lukB" 3268 " dirty:%lukB" 3269 " writeback:%lukB" 3270 " mapped:%lukB" 3271 " shmem:%lukB" 3272 " slab_reclaimable:%lukB" 3273 " slab_unreclaimable:%lukB" 3274 " kernel_stack:%lukB" 3275 " pagetables:%lukB" 3276 " unstable:%lukB" 3277 " bounce:%lukB" 3278 " free_cma:%lukB" 3279 " writeback_tmp:%lukB" 3280 " pages_scanned:%lu" 3281 " all_unreclaimable? %s" 3282 "\n", 3283 zone->name, 3284 K(zone_page_state(zone, NR_FREE_PAGES)), 3285 K(min_wmark_pages(zone)), 3286 K(low_wmark_pages(zone)), 3287 K(high_wmark_pages(zone)), 3288 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3289 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3290 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3291 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3292 K(zone_page_state(zone, NR_UNEVICTABLE)), 3293 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3294 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3295 K(zone->present_pages), 3296 K(zone->managed_pages), 3297 K(zone_page_state(zone, NR_MLOCK)), 3298 K(zone_page_state(zone, NR_FILE_DIRTY)), 3299 K(zone_page_state(zone, NR_WRITEBACK)), 3300 K(zone_page_state(zone, NR_FILE_MAPPED)), 3301 K(zone_page_state(zone, NR_SHMEM)), 3302 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3303 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3304 zone_page_state(zone, NR_KERNEL_STACK) * 3305 THREAD_SIZE / 1024, 3306 K(zone_page_state(zone, NR_PAGETABLE)), 3307 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3308 K(zone_page_state(zone, NR_BOUNCE)), 3309 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3310 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3311 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3312 (!zone_reclaimable(zone) ? "yes" : "no") 3313 ); 3314 printk("lowmem_reserve[]:"); 3315 for (i = 0; i < MAX_NR_ZONES; i++) 3316 printk(" %ld", zone->lowmem_reserve[i]); 3317 printk("\n"); 3318 } 3319 3320 for_each_populated_zone(zone) { 3321 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3322 unsigned char types[MAX_ORDER]; 3323 3324 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3325 continue; 3326 show_node(zone); 3327 printk("%s: ", zone->name); 3328 3329 spin_lock_irqsave(&zone->lock, flags); 3330 for (order = 0; order < MAX_ORDER; order++) { 3331 struct free_area *area = &zone->free_area[order]; 3332 int type; 3333 3334 nr[order] = area->nr_free; 3335 total += nr[order] << order; 3336 3337 types[order] = 0; 3338 for (type = 0; type < MIGRATE_TYPES; type++) { 3339 if (!list_empty(&area->free_list[type])) 3340 types[order] |= 1 << type; 3341 } 3342 } 3343 spin_unlock_irqrestore(&zone->lock, flags); 3344 for (order = 0; order < MAX_ORDER; order++) { 3345 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3346 if (nr[order]) 3347 show_migration_types(types[order]); 3348 } 3349 printk("= %lukB\n", K(total)); 3350 } 3351 3352 hugetlb_show_meminfo(); 3353 3354 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3355 3356 show_swap_cache_info(); 3357 } 3358 3359 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3360 { 3361 zoneref->zone = zone; 3362 zoneref->zone_idx = zone_idx(zone); 3363 } 3364 3365 /* 3366 * Builds allocation fallback zone lists. 3367 * 3368 * Add all populated zones of a node to the zonelist. 3369 */ 3370 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3371 int nr_zones) 3372 { 3373 struct zone *zone; 3374 enum zone_type zone_type = MAX_NR_ZONES; 3375 3376 do { 3377 zone_type--; 3378 zone = pgdat->node_zones + zone_type; 3379 if (populated_zone(zone)) { 3380 zoneref_set_zone(zone, 3381 &zonelist->_zonerefs[nr_zones++]); 3382 check_highest_zone(zone_type); 3383 } 3384 } while (zone_type); 3385 3386 return nr_zones; 3387 } 3388 3389 3390 /* 3391 * zonelist_order: 3392 * 0 = automatic detection of better ordering. 3393 * 1 = order by ([node] distance, -zonetype) 3394 * 2 = order by (-zonetype, [node] distance) 3395 * 3396 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3397 * the same zonelist. So only NUMA can configure this param. 3398 */ 3399 #define ZONELIST_ORDER_DEFAULT 0 3400 #define ZONELIST_ORDER_NODE 1 3401 #define ZONELIST_ORDER_ZONE 2 3402 3403 /* zonelist order in the kernel. 3404 * set_zonelist_order() will set this to NODE or ZONE. 3405 */ 3406 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3407 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3408 3409 3410 #ifdef CONFIG_NUMA 3411 /* The value user specified ....changed by config */ 3412 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3413 /* string for sysctl */ 3414 #define NUMA_ZONELIST_ORDER_LEN 16 3415 char numa_zonelist_order[16] = "default"; 3416 3417 /* 3418 * interface for configure zonelist ordering. 3419 * command line option "numa_zonelist_order" 3420 * = "[dD]efault - default, automatic configuration. 3421 * = "[nN]ode - order by node locality, then by zone within node 3422 * = "[zZ]one - order by zone, then by locality within zone 3423 */ 3424 3425 static int __parse_numa_zonelist_order(char *s) 3426 { 3427 if (*s == 'd' || *s == 'D') { 3428 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3429 } else if (*s == 'n' || *s == 'N') { 3430 user_zonelist_order = ZONELIST_ORDER_NODE; 3431 } else if (*s == 'z' || *s == 'Z') { 3432 user_zonelist_order = ZONELIST_ORDER_ZONE; 3433 } else { 3434 printk(KERN_WARNING 3435 "Ignoring invalid numa_zonelist_order value: " 3436 "%s\n", s); 3437 return -EINVAL; 3438 } 3439 return 0; 3440 } 3441 3442 static __init int setup_numa_zonelist_order(char *s) 3443 { 3444 int ret; 3445 3446 if (!s) 3447 return 0; 3448 3449 ret = __parse_numa_zonelist_order(s); 3450 if (ret == 0) 3451 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3452 3453 return ret; 3454 } 3455 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3456 3457 /* 3458 * sysctl handler for numa_zonelist_order 3459 */ 3460 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3461 void __user *buffer, size_t *length, 3462 loff_t *ppos) 3463 { 3464 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3465 int ret; 3466 static DEFINE_MUTEX(zl_order_mutex); 3467 3468 mutex_lock(&zl_order_mutex); 3469 if (write) { 3470 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3471 ret = -EINVAL; 3472 goto out; 3473 } 3474 strcpy(saved_string, (char *)table->data); 3475 } 3476 ret = proc_dostring(table, write, buffer, length, ppos); 3477 if (ret) 3478 goto out; 3479 if (write) { 3480 int oldval = user_zonelist_order; 3481 3482 ret = __parse_numa_zonelist_order((char *)table->data); 3483 if (ret) { 3484 /* 3485 * bogus value. restore saved string 3486 */ 3487 strncpy((char *)table->data, saved_string, 3488 NUMA_ZONELIST_ORDER_LEN); 3489 user_zonelist_order = oldval; 3490 } else if (oldval != user_zonelist_order) { 3491 mutex_lock(&zonelists_mutex); 3492 build_all_zonelists(NULL, NULL); 3493 mutex_unlock(&zonelists_mutex); 3494 } 3495 } 3496 out: 3497 mutex_unlock(&zl_order_mutex); 3498 return ret; 3499 } 3500 3501 3502 #define MAX_NODE_LOAD (nr_online_nodes) 3503 static int node_load[MAX_NUMNODES]; 3504 3505 /** 3506 * find_next_best_node - find the next node that should appear in a given node's fallback list 3507 * @node: node whose fallback list we're appending 3508 * @used_node_mask: nodemask_t of already used nodes 3509 * 3510 * We use a number of factors to determine which is the next node that should 3511 * appear on a given node's fallback list. The node should not have appeared 3512 * already in @node's fallback list, and it should be the next closest node 3513 * according to the distance array (which contains arbitrary distance values 3514 * from each node to each node in the system), and should also prefer nodes 3515 * with no CPUs, since presumably they'll have very little allocation pressure 3516 * on them otherwise. 3517 * It returns -1 if no node is found. 3518 */ 3519 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3520 { 3521 int n, val; 3522 int min_val = INT_MAX; 3523 int best_node = NUMA_NO_NODE; 3524 const struct cpumask *tmp = cpumask_of_node(0); 3525 3526 /* Use the local node if we haven't already */ 3527 if (!node_isset(node, *used_node_mask)) { 3528 node_set(node, *used_node_mask); 3529 return node; 3530 } 3531 3532 for_each_node_state(n, N_MEMORY) { 3533 3534 /* Don't want a node to appear more than once */ 3535 if (node_isset(n, *used_node_mask)) 3536 continue; 3537 3538 /* Use the distance array to find the distance */ 3539 val = node_distance(node, n); 3540 3541 /* Penalize nodes under us ("prefer the next node") */ 3542 val += (n < node); 3543 3544 /* Give preference to headless and unused nodes */ 3545 tmp = cpumask_of_node(n); 3546 if (!cpumask_empty(tmp)) 3547 val += PENALTY_FOR_NODE_WITH_CPUS; 3548 3549 /* Slight preference for less loaded node */ 3550 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3551 val += node_load[n]; 3552 3553 if (val < min_val) { 3554 min_val = val; 3555 best_node = n; 3556 } 3557 } 3558 3559 if (best_node >= 0) 3560 node_set(best_node, *used_node_mask); 3561 3562 return best_node; 3563 } 3564 3565 3566 /* 3567 * Build zonelists ordered by node and zones within node. 3568 * This results in maximum locality--normal zone overflows into local 3569 * DMA zone, if any--but risks exhausting DMA zone. 3570 */ 3571 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3572 { 3573 int j; 3574 struct zonelist *zonelist; 3575 3576 zonelist = &pgdat->node_zonelists[0]; 3577 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3578 ; 3579 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3580 zonelist->_zonerefs[j].zone = NULL; 3581 zonelist->_zonerefs[j].zone_idx = 0; 3582 } 3583 3584 /* 3585 * Build gfp_thisnode zonelists 3586 */ 3587 static void build_thisnode_zonelists(pg_data_t *pgdat) 3588 { 3589 int j; 3590 struct zonelist *zonelist; 3591 3592 zonelist = &pgdat->node_zonelists[1]; 3593 j = build_zonelists_node(pgdat, zonelist, 0); 3594 zonelist->_zonerefs[j].zone = NULL; 3595 zonelist->_zonerefs[j].zone_idx = 0; 3596 } 3597 3598 /* 3599 * Build zonelists ordered by zone and nodes within zones. 3600 * This results in conserving DMA zone[s] until all Normal memory is 3601 * exhausted, but results in overflowing to remote node while memory 3602 * may still exist in local DMA zone. 3603 */ 3604 static int node_order[MAX_NUMNODES]; 3605 3606 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3607 { 3608 int pos, j, node; 3609 int zone_type; /* needs to be signed */ 3610 struct zone *z; 3611 struct zonelist *zonelist; 3612 3613 zonelist = &pgdat->node_zonelists[0]; 3614 pos = 0; 3615 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3616 for (j = 0; j < nr_nodes; j++) { 3617 node = node_order[j]; 3618 z = &NODE_DATA(node)->node_zones[zone_type]; 3619 if (populated_zone(z)) { 3620 zoneref_set_zone(z, 3621 &zonelist->_zonerefs[pos++]); 3622 check_highest_zone(zone_type); 3623 } 3624 } 3625 } 3626 zonelist->_zonerefs[pos].zone = NULL; 3627 zonelist->_zonerefs[pos].zone_idx = 0; 3628 } 3629 3630 #if defined(CONFIG_64BIT) 3631 /* 3632 * Devices that require DMA32/DMA are relatively rare and do not justify a 3633 * penalty to every machine in case the specialised case applies. Default 3634 * to Node-ordering on 64-bit NUMA machines 3635 */ 3636 static int default_zonelist_order(void) 3637 { 3638 return ZONELIST_ORDER_NODE; 3639 } 3640 #else 3641 /* 3642 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 3643 * by the kernel. If processes running on node 0 deplete the low memory zone 3644 * then reclaim will occur more frequency increasing stalls and potentially 3645 * be easier to OOM if a large percentage of the zone is under writeback or 3646 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 3647 * Hence, default to zone ordering on 32-bit. 3648 */ 3649 static int default_zonelist_order(void) 3650 { 3651 return ZONELIST_ORDER_ZONE; 3652 } 3653 #endif /* CONFIG_64BIT */ 3654 3655 static void set_zonelist_order(void) 3656 { 3657 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3658 current_zonelist_order = default_zonelist_order(); 3659 else 3660 current_zonelist_order = user_zonelist_order; 3661 } 3662 3663 static void build_zonelists(pg_data_t *pgdat) 3664 { 3665 int j, node, load; 3666 enum zone_type i; 3667 nodemask_t used_mask; 3668 int local_node, prev_node; 3669 struct zonelist *zonelist; 3670 int order = current_zonelist_order; 3671 3672 /* initialize zonelists */ 3673 for (i = 0; i < MAX_ZONELISTS; i++) { 3674 zonelist = pgdat->node_zonelists + i; 3675 zonelist->_zonerefs[0].zone = NULL; 3676 zonelist->_zonerefs[0].zone_idx = 0; 3677 } 3678 3679 /* NUMA-aware ordering of nodes */ 3680 local_node = pgdat->node_id; 3681 load = nr_online_nodes; 3682 prev_node = local_node; 3683 nodes_clear(used_mask); 3684 3685 memset(node_order, 0, sizeof(node_order)); 3686 j = 0; 3687 3688 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3689 /* 3690 * We don't want to pressure a particular node. 3691 * So adding penalty to the first node in same 3692 * distance group to make it round-robin. 3693 */ 3694 if (node_distance(local_node, node) != 3695 node_distance(local_node, prev_node)) 3696 node_load[node] = load; 3697 3698 prev_node = node; 3699 load--; 3700 if (order == ZONELIST_ORDER_NODE) 3701 build_zonelists_in_node_order(pgdat, node); 3702 else 3703 node_order[j++] = node; /* remember order */ 3704 } 3705 3706 if (order == ZONELIST_ORDER_ZONE) { 3707 /* calculate node order -- i.e., DMA last! */ 3708 build_zonelists_in_zone_order(pgdat, j); 3709 } 3710 3711 build_thisnode_zonelists(pgdat); 3712 } 3713 3714 /* Construct the zonelist performance cache - see further mmzone.h */ 3715 static void build_zonelist_cache(pg_data_t *pgdat) 3716 { 3717 struct zonelist *zonelist; 3718 struct zonelist_cache *zlc; 3719 struct zoneref *z; 3720 3721 zonelist = &pgdat->node_zonelists[0]; 3722 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3723 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3724 for (z = zonelist->_zonerefs; z->zone; z++) 3725 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3726 } 3727 3728 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3729 /* 3730 * Return node id of node used for "local" allocations. 3731 * I.e., first node id of first zone in arg node's generic zonelist. 3732 * Used for initializing percpu 'numa_mem', which is used primarily 3733 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3734 */ 3735 int local_memory_node(int node) 3736 { 3737 struct zone *zone; 3738 3739 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3740 gfp_zone(GFP_KERNEL), 3741 NULL, 3742 &zone); 3743 return zone->node; 3744 } 3745 #endif 3746 3747 #else /* CONFIG_NUMA */ 3748 3749 static void set_zonelist_order(void) 3750 { 3751 current_zonelist_order = ZONELIST_ORDER_ZONE; 3752 } 3753 3754 static void build_zonelists(pg_data_t *pgdat) 3755 { 3756 int node, local_node; 3757 enum zone_type j; 3758 struct zonelist *zonelist; 3759 3760 local_node = pgdat->node_id; 3761 3762 zonelist = &pgdat->node_zonelists[0]; 3763 j = build_zonelists_node(pgdat, zonelist, 0); 3764 3765 /* 3766 * Now we build the zonelist so that it contains the zones 3767 * of all the other nodes. 3768 * We don't want to pressure a particular node, so when 3769 * building the zones for node N, we make sure that the 3770 * zones coming right after the local ones are those from 3771 * node N+1 (modulo N) 3772 */ 3773 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3774 if (!node_online(node)) 3775 continue; 3776 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3777 } 3778 for (node = 0; node < local_node; node++) { 3779 if (!node_online(node)) 3780 continue; 3781 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3782 } 3783 3784 zonelist->_zonerefs[j].zone = NULL; 3785 zonelist->_zonerefs[j].zone_idx = 0; 3786 } 3787 3788 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3789 static void build_zonelist_cache(pg_data_t *pgdat) 3790 { 3791 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3792 } 3793 3794 #endif /* CONFIG_NUMA */ 3795 3796 /* 3797 * Boot pageset table. One per cpu which is going to be used for all 3798 * zones and all nodes. The parameters will be set in such a way 3799 * that an item put on a list will immediately be handed over to 3800 * the buddy list. This is safe since pageset manipulation is done 3801 * with interrupts disabled. 3802 * 3803 * The boot_pagesets must be kept even after bootup is complete for 3804 * unused processors and/or zones. They do play a role for bootstrapping 3805 * hotplugged processors. 3806 * 3807 * zoneinfo_show() and maybe other functions do 3808 * not check if the processor is online before following the pageset pointer. 3809 * Other parts of the kernel may not check if the zone is available. 3810 */ 3811 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3812 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3813 static void setup_zone_pageset(struct zone *zone); 3814 3815 /* 3816 * Global mutex to protect against size modification of zonelists 3817 * as well as to serialize pageset setup for the new populated zone. 3818 */ 3819 DEFINE_MUTEX(zonelists_mutex); 3820 3821 /* return values int ....just for stop_machine() */ 3822 static int __build_all_zonelists(void *data) 3823 { 3824 int nid; 3825 int cpu; 3826 pg_data_t *self = data; 3827 3828 #ifdef CONFIG_NUMA 3829 memset(node_load, 0, sizeof(node_load)); 3830 #endif 3831 3832 if (self && !node_online(self->node_id)) { 3833 build_zonelists(self); 3834 build_zonelist_cache(self); 3835 } 3836 3837 for_each_online_node(nid) { 3838 pg_data_t *pgdat = NODE_DATA(nid); 3839 3840 build_zonelists(pgdat); 3841 build_zonelist_cache(pgdat); 3842 } 3843 3844 /* 3845 * Initialize the boot_pagesets that are going to be used 3846 * for bootstrapping processors. The real pagesets for 3847 * each zone will be allocated later when the per cpu 3848 * allocator is available. 3849 * 3850 * boot_pagesets are used also for bootstrapping offline 3851 * cpus if the system is already booted because the pagesets 3852 * are needed to initialize allocators on a specific cpu too. 3853 * F.e. the percpu allocator needs the page allocator which 3854 * needs the percpu allocator in order to allocate its pagesets 3855 * (a chicken-egg dilemma). 3856 */ 3857 for_each_possible_cpu(cpu) { 3858 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3859 3860 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3861 /* 3862 * We now know the "local memory node" for each node-- 3863 * i.e., the node of the first zone in the generic zonelist. 3864 * Set up numa_mem percpu variable for on-line cpus. During 3865 * boot, only the boot cpu should be on-line; we'll init the 3866 * secondary cpus' numa_mem as they come on-line. During 3867 * node/memory hotplug, we'll fixup all on-line cpus. 3868 */ 3869 if (cpu_online(cpu)) 3870 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3871 #endif 3872 } 3873 3874 return 0; 3875 } 3876 3877 static noinline void __init 3878 build_all_zonelists_init(void) 3879 { 3880 __build_all_zonelists(NULL); 3881 mminit_verify_zonelist(); 3882 cpuset_init_current_mems_allowed(); 3883 } 3884 3885 /* 3886 * Called with zonelists_mutex held always 3887 * unless system_state == SYSTEM_BOOTING. 3888 * 3889 * __ref due to (1) call of __meminit annotated setup_zone_pageset 3890 * [we're only called with non-NULL zone through __meminit paths] and 3891 * (2) call of __init annotated helper build_all_zonelists_init 3892 * [protected by SYSTEM_BOOTING]. 3893 */ 3894 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3895 { 3896 set_zonelist_order(); 3897 3898 if (system_state == SYSTEM_BOOTING) { 3899 build_all_zonelists_init(); 3900 } else { 3901 #ifdef CONFIG_MEMORY_HOTPLUG 3902 if (zone) 3903 setup_zone_pageset(zone); 3904 #endif 3905 /* we have to stop all cpus to guarantee there is no user 3906 of zonelist */ 3907 stop_machine(__build_all_zonelists, pgdat, NULL); 3908 /* cpuset refresh routine should be here */ 3909 } 3910 vm_total_pages = nr_free_pagecache_pages(); 3911 /* 3912 * Disable grouping by mobility if the number of pages in the 3913 * system is too low to allow the mechanism to work. It would be 3914 * more accurate, but expensive to check per-zone. This check is 3915 * made on memory-hotadd so a system can start with mobility 3916 * disabled and enable it later 3917 */ 3918 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3919 page_group_by_mobility_disabled = 1; 3920 else 3921 page_group_by_mobility_disabled = 0; 3922 3923 pr_info("Built %i zonelists in %s order, mobility grouping %s. " 3924 "Total pages: %ld\n", 3925 nr_online_nodes, 3926 zonelist_order_name[current_zonelist_order], 3927 page_group_by_mobility_disabled ? "off" : "on", 3928 vm_total_pages); 3929 #ifdef CONFIG_NUMA 3930 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 3931 #endif 3932 } 3933 3934 /* 3935 * Helper functions to size the waitqueue hash table. 3936 * Essentially these want to choose hash table sizes sufficiently 3937 * large so that collisions trying to wait on pages are rare. 3938 * But in fact, the number of active page waitqueues on typical 3939 * systems is ridiculously low, less than 200. So this is even 3940 * conservative, even though it seems large. 3941 * 3942 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3943 * waitqueues, i.e. the size of the waitq table given the number of pages. 3944 */ 3945 #define PAGES_PER_WAITQUEUE 256 3946 3947 #ifndef CONFIG_MEMORY_HOTPLUG 3948 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3949 { 3950 unsigned long size = 1; 3951 3952 pages /= PAGES_PER_WAITQUEUE; 3953 3954 while (size < pages) 3955 size <<= 1; 3956 3957 /* 3958 * Once we have dozens or even hundreds of threads sleeping 3959 * on IO we've got bigger problems than wait queue collision. 3960 * Limit the size of the wait table to a reasonable size. 3961 */ 3962 size = min(size, 4096UL); 3963 3964 return max(size, 4UL); 3965 } 3966 #else 3967 /* 3968 * A zone's size might be changed by hot-add, so it is not possible to determine 3969 * a suitable size for its wait_table. So we use the maximum size now. 3970 * 3971 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3972 * 3973 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3974 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3975 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3976 * 3977 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3978 * or more by the traditional way. (See above). It equals: 3979 * 3980 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3981 * ia64(16K page size) : = ( 8G + 4M)byte. 3982 * powerpc (64K page size) : = (32G +16M)byte. 3983 */ 3984 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3985 { 3986 return 4096UL; 3987 } 3988 #endif 3989 3990 /* 3991 * This is an integer logarithm so that shifts can be used later 3992 * to extract the more random high bits from the multiplicative 3993 * hash function before the remainder is taken. 3994 */ 3995 static inline unsigned long wait_table_bits(unsigned long size) 3996 { 3997 return ffz(~size); 3998 } 3999 4000 /* 4001 * Check if a pageblock contains reserved pages 4002 */ 4003 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 4004 { 4005 unsigned long pfn; 4006 4007 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4008 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 4009 return 1; 4010 } 4011 return 0; 4012 } 4013 4014 /* 4015 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 4016 * of blocks reserved is based on min_wmark_pages(zone). The memory within 4017 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 4018 * higher will lead to a bigger reserve which will get freed as contiguous 4019 * blocks as reclaim kicks in 4020 */ 4021 static void setup_zone_migrate_reserve(struct zone *zone) 4022 { 4023 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 4024 struct page *page; 4025 unsigned long block_migratetype; 4026 int reserve; 4027 int old_reserve; 4028 4029 /* 4030 * Get the start pfn, end pfn and the number of blocks to reserve 4031 * We have to be careful to be aligned to pageblock_nr_pages to 4032 * make sure that we always check pfn_valid for the first page in 4033 * the block. 4034 */ 4035 start_pfn = zone->zone_start_pfn; 4036 end_pfn = zone_end_pfn(zone); 4037 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4038 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4039 pageblock_order; 4040 4041 /* 4042 * Reserve blocks are generally in place to help high-order atomic 4043 * allocations that are short-lived. A min_free_kbytes value that 4044 * would result in more than 2 reserve blocks for atomic allocations 4045 * is assumed to be in place to help anti-fragmentation for the 4046 * future allocation of hugepages at runtime. 4047 */ 4048 reserve = min(2, reserve); 4049 old_reserve = zone->nr_migrate_reserve_block; 4050 4051 /* When memory hot-add, we almost always need to do nothing */ 4052 if (reserve == old_reserve) 4053 return; 4054 zone->nr_migrate_reserve_block = reserve; 4055 4056 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4057 if (!pfn_valid(pfn)) 4058 continue; 4059 page = pfn_to_page(pfn); 4060 4061 /* Watch out for overlapping nodes */ 4062 if (page_to_nid(page) != zone_to_nid(zone)) 4063 continue; 4064 4065 block_migratetype = get_pageblock_migratetype(page); 4066 4067 /* Only test what is necessary when the reserves are not met */ 4068 if (reserve > 0) { 4069 /* 4070 * Blocks with reserved pages will never free, skip 4071 * them. 4072 */ 4073 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4074 if (pageblock_is_reserved(pfn, block_end_pfn)) 4075 continue; 4076 4077 /* If this block is reserved, account for it */ 4078 if (block_migratetype == MIGRATE_RESERVE) { 4079 reserve--; 4080 continue; 4081 } 4082 4083 /* Suitable for reserving if this block is movable */ 4084 if (block_migratetype == MIGRATE_MOVABLE) { 4085 set_pageblock_migratetype(page, 4086 MIGRATE_RESERVE); 4087 move_freepages_block(zone, page, 4088 MIGRATE_RESERVE); 4089 reserve--; 4090 continue; 4091 } 4092 } else if (!old_reserve) { 4093 /* 4094 * At boot time we don't need to scan the whole zone 4095 * for turning off MIGRATE_RESERVE. 4096 */ 4097 break; 4098 } 4099 4100 /* 4101 * If the reserve is met and this is a previous reserved block, 4102 * take it back 4103 */ 4104 if (block_migratetype == MIGRATE_RESERVE) { 4105 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4106 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4107 } 4108 } 4109 } 4110 4111 /* 4112 * Initially all pages are reserved - free ones are freed 4113 * up by free_all_bootmem() once the early boot process is 4114 * done. Non-atomic initialization, single-pass. 4115 */ 4116 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4117 unsigned long start_pfn, enum memmap_context context) 4118 { 4119 struct page *page; 4120 unsigned long end_pfn = start_pfn + size; 4121 unsigned long pfn; 4122 struct zone *z; 4123 4124 if (highest_memmap_pfn < end_pfn - 1) 4125 highest_memmap_pfn = end_pfn - 1; 4126 4127 z = &NODE_DATA(nid)->node_zones[zone]; 4128 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4129 /* 4130 * There can be holes in boot-time mem_map[]s 4131 * handed to this function. They do not 4132 * exist on hotplugged memory. 4133 */ 4134 if (context == MEMMAP_EARLY) { 4135 if (!early_pfn_valid(pfn)) 4136 continue; 4137 if (!early_pfn_in_nid(pfn, nid)) 4138 continue; 4139 } 4140 page = pfn_to_page(pfn); 4141 set_page_links(page, zone, nid, pfn); 4142 mminit_verify_page_links(page, zone, nid, pfn); 4143 init_page_count(page); 4144 page_mapcount_reset(page); 4145 page_cpupid_reset_last(page); 4146 SetPageReserved(page); 4147 /* 4148 * Mark the block movable so that blocks are reserved for 4149 * movable at startup. This will force kernel allocations 4150 * to reserve their blocks rather than leaking throughout 4151 * the address space during boot when many long-lived 4152 * kernel allocations are made. Later some blocks near 4153 * the start are marked MIGRATE_RESERVE by 4154 * setup_zone_migrate_reserve() 4155 * 4156 * bitmap is created for zone's valid pfn range. but memmap 4157 * can be created for invalid pages (for alignment) 4158 * check here not to call set_pageblock_migratetype() against 4159 * pfn out of zone. 4160 */ 4161 if ((z->zone_start_pfn <= pfn) 4162 && (pfn < zone_end_pfn(z)) 4163 && !(pfn & (pageblock_nr_pages - 1))) 4164 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4165 4166 INIT_LIST_HEAD(&page->lru); 4167 #ifdef WANT_PAGE_VIRTUAL 4168 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4169 if (!is_highmem_idx(zone)) 4170 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4171 #endif 4172 } 4173 } 4174 4175 static void __meminit zone_init_free_lists(struct zone *zone) 4176 { 4177 unsigned int order, t; 4178 for_each_migratetype_order(order, t) { 4179 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4180 zone->free_area[order].nr_free = 0; 4181 } 4182 } 4183 4184 #ifndef __HAVE_ARCH_MEMMAP_INIT 4185 #define memmap_init(size, nid, zone, start_pfn) \ 4186 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4187 #endif 4188 4189 static int zone_batchsize(struct zone *zone) 4190 { 4191 #ifdef CONFIG_MMU 4192 int batch; 4193 4194 /* 4195 * The per-cpu-pages pools are set to around 1000th of the 4196 * size of the zone. But no more than 1/2 of a meg. 4197 * 4198 * OK, so we don't know how big the cache is. So guess. 4199 */ 4200 batch = zone->managed_pages / 1024; 4201 if (batch * PAGE_SIZE > 512 * 1024) 4202 batch = (512 * 1024) / PAGE_SIZE; 4203 batch /= 4; /* We effectively *= 4 below */ 4204 if (batch < 1) 4205 batch = 1; 4206 4207 /* 4208 * Clamp the batch to a 2^n - 1 value. Having a power 4209 * of 2 value was found to be more likely to have 4210 * suboptimal cache aliasing properties in some cases. 4211 * 4212 * For example if 2 tasks are alternately allocating 4213 * batches of pages, one task can end up with a lot 4214 * of pages of one half of the possible page colors 4215 * and the other with pages of the other colors. 4216 */ 4217 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4218 4219 return batch; 4220 4221 #else 4222 /* The deferral and batching of frees should be suppressed under NOMMU 4223 * conditions. 4224 * 4225 * The problem is that NOMMU needs to be able to allocate large chunks 4226 * of contiguous memory as there's no hardware page translation to 4227 * assemble apparent contiguous memory from discontiguous pages. 4228 * 4229 * Queueing large contiguous runs of pages for batching, however, 4230 * causes the pages to actually be freed in smaller chunks. As there 4231 * can be a significant delay between the individual batches being 4232 * recycled, this leads to the once large chunks of space being 4233 * fragmented and becoming unavailable for high-order allocations. 4234 */ 4235 return 0; 4236 #endif 4237 } 4238 4239 /* 4240 * pcp->high and pcp->batch values are related and dependent on one another: 4241 * ->batch must never be higher then ->high. 4242 * The following function updates them in a safe manner without read side 4243 * locking. 4244 * 4245 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4246 * those fields changing asynchronously (acording the the above rule). 4247 * 4248 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4249 * outside of boot time (or some other assurance that no concurrent updaters 4250 * exist). 4251 */ 4252 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4253 unsigned long batch) 4254 { 4255 /* start with a fail safe value for batch */ 4256 pcp->batch = 1; 4257 smp_wmb(); 4258 4259 /* Update high, then batch, in order */ 4260 pcp->high = high; 4261 smp_wmb(); 4262 4263 pcp->batch = batch; 4264 } 4265 4266 /* a companion to pageset_set_high() */ 4267 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4268 { 4269 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4270 } 4271 4272 static void pageset_init(struct per_cpu_pageset *p) 4273 { 4274 struct per_cpu_pages *pcp; 4275 int migratetype; 4276 4277 memset(p, 0, sizeof(*p)); 4278 4279 pcp = &p->pcp; 4280 pcp->count = 0; 4281 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4282 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4283 } 4284 4285 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4286 { 4287 pageset_init(p); 4288 pageset_set_batch(p, batch); 4289 } 4290 4291 /* 4292 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4293 * to the value high for the pageset p. 4294 */ 4295 static void pageset_set_high(struct per_cpu_pageset *p, 4296 unsigned long high) 4297 { 4298 unsigned long batch = max(1UL, high / 4); 4299 if ((high / 4) > (PAGE_SHIFT * 8)) 4300 batch = PAGE_SHIFT * 8; 4301 4302 pageset_update(&p->pcp, high, batch); 4303 } 4304 4305 static void pageset_set_high_and_batch(struct zone *zone, 4306 struct per_cpu_pageset *pcp) 4307 { 4308 if (percpu_pagelist_fraction) 4309 pageset_set_high(pcp, 4310 (zone->managed_pages / 4311 percpu_pagelist_fraction)); 4312 else 4313 pageset_set_batch(pcp, zone_batchsize(zone)); 4314 } 4315 4316 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4317 { 4318 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4319 4320 pageset_init(pcp); 4321 pageset_set_high_and_batch(zone, pcp); 4322 } 4323 4324 static void __meminit setup_zone_pageset(struct zone *zone) 4325 { 4326 int cpu; 4327 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4328 for_each_possible_cpu(cpu) 4329 zone_pageset_init(zone, cpu); 4330 } 4331 4332 /* 4333 * Allocate per cpu pagesets and initialize them. 4334 * Before this call only boot pagesets were available. 4335 */ 4336 void __init setup_per_cpu_pageset(void) 4337 { 4338 struct zone *zone; 4339 4340 for_each_populated_zone(zone) 4341 setup_zone_pageset(zone); 4342 } 4343 4344 static noinline __init_refok 4345 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4346 { 4347 int i; 4348 size_t alloc_size; 4349 4350 /* 4351 * The per-page waitqueue mechanism uses hashed waitqueues 4352 * per zone. 4353 */ 4354 zone->wait_table_hash_nr_entries = 4355 wait_table_hash_nr_entries(zone_size_pages); 4356 zone->wait_table_bits = 4357 wait_table_bits(zone->wait_table_hash_nr_entries); 4358 alloc_size = zone->wait_table_hash_nr_entries 4359 * sizeof(wait_queue_head_t); 4360 4361 if (!slab_is_available()) { 4362 zone->wait_table = (wait_queue_head_t *) 4363 memblock_virt_alloc_node_nopanic( 4364 alloc_size, zone->zone_pgdat->node_id); 4365 } else { 4366 /* 4367 * This case means that a zone whose size was 0 gets new memory 4368 * via memory hot-add. 4369 * But it may be the case that a new node was hot-added. In 4370 * this case vmalloc() will not be able to use this new node's 4371 * memory - this wait_table must be initialized to use this new 4372 * node itself as well. 4373 * To use this new node's memory, further consideration will be 4374 * necessary. 4375 */ 4376 zone->wait_table = vmalloc(alloc_size); 4377 } 4378 if (!zone->wait_table) 4379 return -ENOMEM; 4380 4381 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4382 init_waitqueue_head(zone->wait_table + i); 4383 4384 return 0; 4385 } 4386 4387 static __meminit void zone_pcp_init(struct zone *zone) 4388 { 4389 /* 4390 * per cpu subsystem is not up at this point. The following code 4391 * relies on the ability of the linker to provide the 4392 * offset of a (static) per cpu variable into the per cpu area. 4393 */ 4394 zone->pageset = &boot_pageset; 4395 4396 if (populated_zone(zone)) 4397 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4398 zone->name, zone->present_pages, 4399 zone_batchsize(zone)); 4400 } 4401 4402 int __meminit init_currently_empty_zone(struct zone *zone, 4403 unsigned long zone_start_pfn, 4404 unsigned long size, 4405 enum memmap_context context) 4406 { 4407 struct pglist_data *pgdat = zone->zone_pgdat; 4408 int ret; 4409 ret = zone_wait_table_init(zone, size); 4410 if (ret) 4411 return ret; 4412 pgdat->nr_zones = zone_idx(zone) + 1; 4413 4414 zone->zone_start_pfn = zone_start_pfn; 4415 4416 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4417 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4418 pgdat->node_id, 4419 (unsigned long)zone_idx(zone), 4420 zone_start_pfn, (zone_start_pfn + size)); 4421 4422 zone_init_free_lists(zone); 4423 4424 return 0; 4425 } 4426 4427 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4428 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4429 /* 4430 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4431 */ 4432 int __meminit __early_pfn_to_nid(unsigned long pfn) 4433 { 4434 unsigned long start_pfn, end_pfn; 4435 int nid; 4436 /* 4437 * NOTE: The following SMP-unsafe globals are only used early in boot 4438 * when the kernel is running single-threaded. 4439 */ 4440 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4441 static int __meminitdata last_nid; 4442 4443 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4444 return last_nid; 4445 4446 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4447 if (nid != -1) { 4448 last_start_pfn = start_pfn; 4449 last_end_pfn = end_pfn; 4450 last_nid = nid; 4451 } 4452 4453 return nid; 4454 } 4455 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4456 4457 int __meminit early_pfn_to_nid(unsigned long pfn) 4458 { 4459 int nid; 4460 4461 nid = __early_pfn_to_nid(pfn); 4462 if (nid >= 0) 4463 return nid; 4464 /* just returns 0 */ 4465 return 0; 4466 } 4467 4468 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4469 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4470 { 4471 int nid; 4472 4473 nid = __early_pfn_to_nid(pfn); 4474 if (nid >= 0 && nid != node) 4475 return false; 4476 return true; 4477 } 4478 #endif 4479 4480 /** 4481 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4482 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4483 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4484 * 4485 * If an architecture guarantees that all ranges registered contain no holes 4486 * and may be freed, this this function may be used instead of calling 4487 * memblock_free_early_nid() manually. 4488 */ 4489 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4490 { 4491 unsigned long start_pfn, end_pfn; 4492 int i, this_nid; 4493 4494 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4495 start_pfn = min(start_pfn, max_low_pfn); 4496 end_pfn = min(end_pfn, max_low_pfn); 4497 4498 if (start_pfn < end_pfn) 4499 memblock_free_early_nid(PFN_PHYS(start_pfn), 4500 (end_pfn - start_pfn) << PAGE_SHIFT, 4501 this_nid); 4502 } 4503 } 4504 4505 /** 4506 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4507 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4508 * 4509 * If an architecture guarantees that all ranges registered contain no holes and may 4510 * be freed, this function may be used instead of calling memory_present() manually. 4511 */ 4512 void __init sparse_memory_present_with_active_regions(int nid) 4513 { 4514 unsigned long start_pfn, end_pfn; 4515 int i, this_nid; 4516 4517 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4518 memory_present(this_nid, start_pfn, end_pfn); 4519 } 4520 4521 /** 4522 * get_pfn_range_for_nid - Return the start and end page frames for a node 4523 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4524 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4525 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4526 * 4527 * It returns the start and end page frame of a node based on information 4528 * provided by memblock_set_node(). If called for a node 4529 * with no available memory, a warning is printed and the start and end 4530 * PFNs will be 0. 4531 */ 4532 void __meminit get_pfn_range_for_nid(unsigned int nid, 4533 unsigned long *start_pfn, unsigned long *end_pfn) 4534 { 4535 unsigned long this_start_pfn, this_end_pfn; 4536 int i; 4537 4538 *start_pfn = -1UL; 4539 *end_pfn = 0; 4540 4541 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4542 *start_pfn = min(*start_pfn, this_start_pfn); 4543 *end_pfn = max(*end_pfn, this_end_pfn); 4544 } 4545 4546 if (*start_pfn == -1UL) 4547 *start_pfn = 0; 4548 } 4549 4550 /* 4551 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4552 * assumption is made that zones within a node are ordered in monotonic 4553 * increasing memory addresses so that the "highest" populated zone is used 4554 */ 4555 static void __init find_usable_zone_for_movable(void) 4556 { 4557 int zone_index; 4558 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4559 if (zone_index == ZONE_MOVABLE) 4560 continue; 4561 4562 if (arch_zone_highest_possible_pfn[zone_index] > 4563 arch_zone_lowest_possible_pfn[zone_index]) 4564 break; 4565 } 4566 4567 VM_BUG_ON(zone_index == -1); 4568 movable_zone = zone_index; 4569 } 4570 4571 /* 4572 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4573 * because it is sized independent of architecture. Unlike the other zones, 4574 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4575 * in each node depending on the size of each node and how evenly kernelcore 4576 * is distributed. This helper function adjusts the zone ranges 4577 * provided by the architecture for a given node by using the end of the 4578 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4579 * zones within a node are in order of monotonic increases memory addresses 4580 */ 4581 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4582 unsigned long zone_type, 4583 unsigned long node_start_pfn, 4584 unsigned long node_end_pfn, 4585 unsigned long *zone_start_pfn, 4586 unsigned long *zone_end_pfn) 4587 { 4588 /* Only adjust if ZONE_MOVABLE is on this node */ 4589 if (zone_movable_pfn[nid]) { 4590 /* Size ZONE_MOVABLE */ 4591 if (zone_type == ZONE_MOVABLE) { 4592 *zone_start_pfn = zone_movable_pfn[nid]; 4593 *zone_end_pfn = min(node_end_pfn, 4594 arch_zone_highest_possible_pfn[movable_zone]); 4595 4596 /* Adjust for ZONE_MOVABLE starting within this range */ 4597 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4598 *zone_end_pfn > zone_movable_pfn[nid]) { 4599 *zone_end_pfn = zone_movable_pfn[nid]; 4600 4601 /* Check if this whole range is within ZONE_MOVABLE */ 4602 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4603 *zone_start_pfn = *zone_end_pfn; 4604 } 4605 } 4606 4607 /* 4608 * Return the number of pages a zone spans in a node, including holes 4609 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4610 */ 4611 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4612 unsigned long zone_type, 4613 unsigned long node_start_pfn, 4614 unsigned long node_end_pfn, 4615 unsigned long *ignored) 4616 { 4617 unsigned long zone_start_pfn, zone_end_pfn; 4618 4619 /* Get the start and end of the zone */ 4620 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4621 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4622 adjust_zone_range_for_zone_movable(nid, zone_type, 4623 node_start_pfn, node_end_pfn, 4624 &zone_start_pfn, &zone_end_pfn); 4625 4626 /* Check that this node has pages within the zone's required range */ 4627 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4628 return 0; 4629 4630 /* Move the zone boundaries inside the node if necessary */ 4631 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4632 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4633 4634 /* Return the spanned pages */ 4635 return zone_end_pfn - zone_start_pfn; 4636 } 4637 4638 /* 4639 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4640 * then all holes in the requested range will be accounted for. 4641 */ 4642 unsigned long __meminit __absent_pages_in_range(int nid, 4643 unsigned long range_start_pfn, 4644 unsigned long range_end_pfn) 4645 { 4646 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4647 unsigned long start_pfn, end_pfn; 4648 int i; 4649 4650 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4651 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4652 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4653 nr_absent -= end_pfn - start_pfn; 4654 } 4655 return nr_absent; 4656 } 4657 4658 /** 4659 * absent_pages_in_range - Return number of page frames in holes within a range 4660 * @start_pfn: The start PFN to start searching for holes 4661 * @end_pfn: The end PFN to stop searching for holes 4662 * 4663 * It returns the number of pages frames in memory holes within a range. 4664 */ 4665 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4666 unsigned long end_pfn) 4667 { 4668 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4669 } 4670 4671 /* Return the number of page frames in holes in a zone on a node */ 4672 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4673 unsigned long zone_type, 4674 unsigned long node_start_pfn, 4675 unsigned long node_end_pfn, 4676 unsigned long *ignored) 4677 { 4678 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4679 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4680 unsigned long zone_start_pfn, zone_end_pfn; 4681 4682 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4683 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4684 4685 adjust_zone_range_for_zone_movable(nid, zone_type, 4686 node_start_pfn, node_end_pfn, 4687 &zone_start_pfn, &zone_end_pfn); 4688 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4689 } 4690 4691 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4692 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4693 unsigned long zone_type, 4694 unsigned long node_start_pfn, 4695 unsigned long node_end_pfn, 4696 unsigned long *zones_size) 4697 { 4698 return zones_size[zone_type]; 4699 } 4700 4701 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4702 unsigned long zone_type, 4703 unsigned long node_start_pfn, 4704 unsigned long node_end_pfn, 4705 unsigned long *zholes_size) 4706 { 4707 if (!zholes_size) 4708 return 0; 4709 4710 return zholes_size[zone_type]; 4711 } 4712 4713 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4714 4715 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4716 unsigned long node_start_pfn, 4717 unsigned long node_end_pfn, 4718 unsigned long *zones_size, 4719 unsigned long *zholes_size) 4720 { 4721 unsigned long realtotalpages, totalpages = 0; 4722 enum zone_type i; 4723 4724 for (i = 0; i < MAX_NR_ZONES; i++) 4725 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4726 node_start_pfn, 4727 node_end_pfn, 4728 zones_size); 4729 pgdat->node_spanned_pages = totalpages; 4730 4731 realtotalpages = totalpages; 4732 for (i = 0; i < MAX_NR_ZONES; i++) 4733 realtotalpages -= 4734 zone_absent_pages_in_node(pgdat->node_id, i, 4735 node_start_pfn, node_end_pfn, 4736 zholes_size); 4737 pgdat->node_present_pages = realtotalpages; 4738 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4739 realtotalpages); 4740 } 4741 4742 #ifndef CONFIG_SPARSEMEM 4743 /* 4744 * Calculate the size of the zone->blockflags rounded to an unsigned long 4745 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4746 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4747 * round what is now in bits to nearest long in bits, then return it in 4748 * bytes. 4749 */ 4750 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4751 { 4752 unsigned long usemapsize; 4753 4754 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4755 usemapsize = roundup(zonesize, pageblock_nr_pages); 4756 usemapsize = usemapsize >> pageblock_order; 4757 usemapsize *= NR_PAGEBLOCK_BITS; 4758 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4759 4760 return usemapsize / 8; 4761 } 4762 4763 static void __init setup_usemap(struct pglist_data *pgdat, 4764 struct zone *zone, 4765 unsigned long zone_start_pfn, 4766 unsigned long zonesize) 4767 { 4768 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4769 zone->pageblock_flags = NULL; 4770 if (usemapsize) 4771 zone->pageblock_flags = 4772 memblock_virt_alloc_node_nopanic(usemapsize, 4773 pgdat->node_id); 4774 } 4775 #else 4776 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4777 unsigned long zone_start_pfn, unsigned long zonesize) {} 4778 #endif /* CONFIG_SPARSEMEM */ 4779 4780 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4781 4782 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4783 void __paginginit set_pageblock_order(void) 4784 { 4785 unsigned int order; 4786 4787 /* Check that pageblock_nr_pages has not already been setup */ 4788 if (pageblock_order) 4789 return; 4790 4791 if (HPAGE_SHIFT > PAGE_SHIFT) 4792 order = HUGETLB_PAGE_ORDER; 4793 else 4794 order = MAX_ORDER - 1; 4795 4796 /* 4797 * Assume the largest contiguous order of interest is a huge page. 4798 * This value may be variable depending on boot parameters on IA64 and 4799 * powerpc. 4800 */ 4801 pageblock_order = order; 4802 } 4803 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4804 4805 /* 4806 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4807 * is unused as pageblock_order is set at compile-time. See 4808 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4809 * the kernel config 4810 */ 4811 void __paginginit set_pageblock_order(void) 4812 { 4813 } 4814 4815 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4816 4817 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4818 unsigned long present_pages) 4819 { 4820 unsigned long pages = spanned_pages; 4821 4822 /* 4823 * Provide a more accurate estimation if there are holes within 4824 * the zone and SPARSEMEM is in use. If there are holes within the 4825 * zone, each populated memory region may cost us one or two extra 4826 * memmap pages due to alignment because memmap pages for each 4827 * populated regions may not naturally algined on page boundary. 4828 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4829 */ 4830 if (spanned_pages > present_pages + (present_pages >> 4) && 4831 IS_ENABLED(CONFIG_SPARSEMEM)) 4832 pages = present_pages; 4833 4834 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4835 } 4836 4837 /* 4838 * Set up the zone data structures: 4839 * - mark all pages reserved 4840 * - mark all memory queues empty 4841 * - clear the memory bitmaps 4842 * 4843 * NOTE: pgdat should get zeroed by caller. 4844 */ 4845 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4846 unsigned long node_start_pfn, unsigned long node_end_pfn, 4847 unsigned long *zones_size, unsigned long *zholes_size) 4848 { 4849 enum zone_type j; 4850 int nid = pgdat->node_id; 4851 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4852 int ret; 4853 4854 pgdat_resize_init(pgdat); 4855 #ifdef CONFIG_NUMA_BALANCING 4856 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4857 pgdat->numabalancing_migrate_nr_pages = 0; 4858 pgdat->numabalancing_migrate_next_window = jiffies; 4859 #endif 4860 init_waitqueue_head(&pgdat->kswapd_wait); 4861 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4862 pgdat_page_ext_init(pgdat); 4863 4864 for (j = 0; j < MAX_NR_ZONES; j++) { 4865 struct zone *zone = pgdat->node_zones + j; 4866 unsigned long size, realsize, freesize, memmap_pages; 4867 4868 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4869 node_end_pfn, zones_size); 4870 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4871 node_start_pfn, 4872 node_end_pfn, 4873 zholes_size); 4874 4875 /* 4876 * Adjust freesize so that it accounts for how much memory 4877 * is used by this zone for memmap. This affects the watermark 4878 * and per-cpu initialisations 4879 */ 4880 memmap_pages = calc_memmap_size(size, realsize); 4881 if (!is_highmem_idx(j)) { 4882 if (freesize >= memmap_pages) { 4883 freesize -= memmap_pages; 4884 if (memmap_pages) 4885 printk(KERN_DEBUG 4886 " %s zone: %lu pages used for memmap\n", 4887 zone_names[j], memmap_pages); 4888 } else 4889 printk(KERN_WARNING 4890 " %s zone: %lu pages exceeds freesize %lu\n", 4891 zone_names[j], memmap_pages, freesize); 4892 } 4893 4894 /* Account for reserved pages */ 4895 if (j == 0 && freesize > dma_reserve) { 4896 freesize -= dma_reserve; 4897 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4898 zone_names[0], dma_reserve); 4899 } 4900 4901 if (!is_highmem_idx(j)) 4902 nr_kernel_pages += freesize; 4903 /* Charge for highmem memmap if there are enough kernel pages */ 4904 else if (nr_kernel_pages > memmap_pages * 2) 4905 nr_kernel_pages -= memmap_pages; 4906 nr_all_pages += freesize; 4907 4908 zone->spanned_pages = size; 4909 zone->present_pages = realsize; 4910 /* 4911 * Set an approximate value for lowmem here, it will be adjusted 4912 * when the bootmem allocator frees pages into the buddy system. 4913 * And all highmem pages will be managed by the buddy system. 4914 */ 4915 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4916 #ifdef CONFIG_NUMA 4917 zone->node = nid; 4918 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4919 / 100; 4920 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4921 #endif 4922 zone->name = zone_names[j]; 4923 spin_lock_init(&zone->lock); 4924 spin_lock_init(&zone->lru_lock); 4925 zone_seqlock_init(zone); 4926 zone->zone_pgdat = pgdat; 4927 zone_pcp_init(zone); 4928 4929 /* For bootup, initialized properly in watermark setup */ 4930 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4931 4932 lruvec_init(&zone->lruvec); 4933 if (!size) 4934 continue; 4935 4936 set_pageblock_order(); 4937 setup_usemap(pgdat, zone, zone_start_pfn, size); 4938 ret = init_currently_empty_zone(zone, zone_start_pfn, 4939 size, MEMMAP_EARLY); 4940 BUG_ON(ret); 4941 memmap_init(size, nid, j, zone_start_pfn); 4942 zone_start_pfn += size; 4943 } 4944 } 4945 4946 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4947 { 4948 /* Skip empty nodes */ 4949 if (!pgdat->node_spanned_pages) 4950 return; 4951 4952 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4953 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4954 if (!pgdat->node_mem_map) { 4955 unsigned long size, start, end; 4956 struct page *map; 4957 4958 /* 4959 * The zone's endpoints aren't required to be MAX_ORDER 4960 * aligned but the node_mem_map endpoints must be in order 4961 * for the buddy allocator to function correctly. 4962 */ 4963 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4964 end = pgdat_end_pfn(pgdat); 4965 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4966 size = (end - start) * sizeof(struct page); 4967 map = alloc_remap(pgdat->node_id, size); 4968 if (!map) 4969 map = memblock_virt_alloc_node_nopanic(size, 4970 pgdat->node_id); 4971 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4972 } 4973 #ifndef CONFIG_NEED_MULTIPLE_NODES 4974 /* 4975 * With no DISCONTIG, the global mem_map is just set as node 0's 4976 */ 4977 if (pgdat == NODE_DATA(0)) { 4978 mem_map = NODE_DATA(0)->node_mem_map; 4979 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4980 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4981 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4982 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4983 } 4984 #endif 4985 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4986 } 4987 4988 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4989 unsigned long node_start_pfn, unsigned long *zholes_size) 4990 { 4991 pg_data_t *pgdat = NODE_DATA(nid); 4992 unsigned long start_pfn = 0; 4993 unsigned long end_pfn = 0; 4994 4995 /* pg_data_t should be reset to zero when it's allocated */ 4996 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4997 4998 pgdat->node_id = nid; 4999 pgdat->node_start_pfn = node_start_pfn; 5000 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5001 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5002 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5003 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1); 5004 #endif 5005 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5006 zones_size, zholes_size); 5007 5008 alloc_node_mem_map(pgdat); 5009 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5010 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5011 nid, (unsigned long)pgdat, 5012 (unsigned long)pgdat->node_mem_map); 5013 #endif 5014 5015 free_area_init_core(pgdat, start_pfn, end_pfn, 5016 zones_size, zholes_size); 5017 } 5018 5019 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5020 5021 #if MAX_NUMNODES > 1 5022 /* 5023 * Figure out the number of possible node ids. 5024 */ 5025 void __init setup_nr_node_ids(void) 5026 { 5027 unsigned int node; 5028 unsigned int highest = 0; 5029 5030 for_each_node_mask(node, node_possible_map) 5031 highest = node; 5032 nr_node_ids = highest + 1; 5033 } 5034 #endif 5035 5036 /** 5037 * node_map_pfn_alignment - determine the maximum internode alignment 5038 * 5039 * This function should be called after node map is populated and sorted. 5040 * It calculates the maximum power of two alignment which can distinguish 5041 * all the nodes. 5042 * 5043 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5044 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5045 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5046 * shifted, 1GiB is enough and this function will indicate so. 5047 * 5048 * This is used to test whether pfn -> nid mapping of the chosen memory 5049 * model has fine enough granularity to avoid incorrect mapping for the 5050 * populated node map. 5051 * 5052 * Returns the determined alignment in pfn's. 0 if there is no alignment 5053 * requirement (single node). 5054 */ 5055 unsigned long __init node_map_pfn_alignment(void) 5056 { 5057 unsigned long accl_mask = 0, last_end = 0; 5058 unsigned long start, end, mask; 5059 int last_nid = -1; 5060 int i, nid; 5061 5062 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5063 if (!start || last_nid < 0 || last_nid == nid) { 5064 last_nid = nid; 5065 last_end = end; 5066 continue; 5067 } 5068 5069 /* 5070 * Start with a mask granular enough to pin-point to the 5071 * start pfn and tick off bits one-by-one until it becomes 5072 * too coarse to separate the current node from the last. 5073 */ 5074 mask = ~((1 << __ffs(start)) - 1); 5075 while (mask && last_end <= (start & (mask << 1))) 5076 mask <<= 1; 5077 5078 /* accumulate all internode masks */ 5079 accl_mask |= mask; 5080 } 5081 5082 /* convert mask to number of pages */ 5083 return ~accl_mask + 1; 5084 } 5085 5086 /* Find the lowest pfn for a node */ 5087 static unsigned long __init find_min_pfn_for_node(int nid) 5088 { 5089 unsigned long min_pfn = ULONG_MAX; 5090 unsigned long start_pfn; 5091 int i; 5092 5093 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5094 min_pfn = min(min_pfn, start_pfn); 5095 5096 if (min_pfn == ULONG_MAX) { 5097 printk(KERN_WARNING 5098 "Could not find start_pfn for node %d\n", nid); 5099 return 0; 5100 } 5101 5102 return min_pfn; 5103 } 5104 5105 /** 5106 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5107 * 5108 * It returns the minimum PFN based on information provided via 5109 * memblock_set_node(). 5110 */ 5111 unsigned long __init find_min_pfn_with_active_regions(void) 5112 { 5113 return find_min_pfn_for_node(MAX_NUMNODES); 5114 } 5115 5116 /* 5117 * early_calculate_totalpages() 5118 * Sum pages in active regions for movable zone. 5119 * Populate N_MEMORY for calculating usable_nodes. 5120 */ 5121 static unsigned long __init early_calculate_totalpages(void) 5122 { 5123 unsigned long totalpages = 0; 5124 unsigned long start_pfn, end_pfn; 5125 int i, nid; 5126 5127 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5128 unsigned long pages = end_pfn - start_pfn; 5129 5130 totalpages += pages; 5131 if (pages) 5132 node_set_state(nid, N_MEMORY); 5133 } 5134 return totalpages; 5135 } 5136 5137 /* 5138 * Find the PFN the Movable zone begins in each node. Kernel memory 5139 * is spread evenly between nodes as long as the nodes have enough 5140 * memory. When they don't, some nodes will have more kernelcore than 5141 * others 5142 */ 5143 static void __init find_zone_movable_pfns_for_nodes(void) 5144 { 5145 int i, nid; 5146 unsigned long usable_startpfn; 5147 unsigned long kernelcore_node, kernelcore_remaining; 5148 /* save the state before borrow the nodemask */ 5149 nodemask_t saved_node_state = node_states[N_MEMORY]; 5150 unsigned long totalpages = early_calculate_totalpages(); 5151 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5152 struct memblock_region *r; 5153 5154 /* Need to find movable_zone earlier when movable_node is specified. */ 5155 find_usable_zone_for_movable(); 5156 5157 /* 5158 * If movable_node is specified, ignore kernelcore and movablecore 5159 * options. 5160 */ 5161 if (movable_node_is_enabled()) { 5162 for_each_memblock(memory, r) { 5163 if (!memblock_is_hotpluggable(r)) 5164 continue; 5165 5166 nid = r->nid; 5167 5168 usable_startpfn = PFN_DOWN(r->base); 5169 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5170 min(usable_startpfn, zone_movable_pfn[nid]) : 5171 usable_startpfn; 5172 } 5173 5174 goto out2; 5175 } 5176 5177 /* 5178 * If movablecore=nn[KMG] was specified, calculate what size of 5179 * kernelcore that corresponds so that memory usable for 5180 * any allocation type is evenly spread. If both kernelcore 5181 * and movablecore are specified, then the value of kernelcore 5182 * will be used for required_kernelcore if it's greater than 5183 * what movablecore would have allowed. 5184 */ 5185 if (required_movablecore) { 5186 unsigned long corepages; 5187 5188 /* 5189 * Round-up so that ZONE_MOVABLE is at least as large as what 5190 * was requested by the user 5191 */ 5192 required_movablecore = 5193 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5194 corepages = totalpages - required_movablecore; 5195 5196 required_kernelcore = max(required_kernelcore, corepages); 5197 } 5198 5199 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5200 if (!required_kernelcore) 5201 goto out; 5202 5203 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5204 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5205 5206 restart: 5207 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5208 kernelcore_node = required_kernelcore / usable_nodes; 5209 for_each_node_state(nid, N_MEMORY) { 5210 unsigned long start_pfn, end_pfn; 5211 5212 /* 5213 * Recalculate kernelcore_node if the division per node 5214 * now exceeds what is necessary to satisfy the requested 5215 * amount of memory for the kernel 5216 */ 5217 if (required_kernelcore < kernelcore_node) 5218 kernelcore_node = required_kernelcore / usable_nodes; 5219 5220 /* 5221 * As the map is walked, we track how much memory is usable 5222 * by the kernel using kernelcore_remaining. When it is 5223 * 0, the rest of the node is usable by ZONE_MOVABLE 5224 */ 5225 kernelcore_remaining = kernelcore_node; 5226 5227 /* Go through each range of PFNs within this node */ 5228 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5229 unsigned long size_pages; 5230 5231 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5232 if (start_pfn >= end_pfn) 5233 continue; 5234 5235 /* Account for what is only usable for kernelcore */ 5236 if (start_pfn < usable_startpfn) { 5237 unsigned long kernel_pages; 5238 kernel_pages = min(end_pfn, usable_startpfn) 5239 - start_pfn; 5240 5241 kernelcore_remaining -= min(kernel_pages, 5242 kernelcore_remaining); 5243 required_kernelcore -= min(kernel_pages, 5244 required_kernelcore); 5245 5246 /* Continue if range is now fully accounted */ 5247 if (end_pfn <= usable_startpfn) { 5248 5249 /* 5250 * Push zone_movable_pfn to the end so 5251 * that if we have to rebalance 5252 * kernelcore across nodes, we will 5253 * not double account here 5254 */ 5255 zone_movable_pfn[nid] = end_pfn; 5256 continue; 5257 } 5258 start_pfn = usable_startpfn; 5259 } 5260 5261 /* 5262 * The usable PFN range for ZONE_MOVABLE is from 5263 * start_pfn->end_pfn. Calculate size_pages as the 5264 * number of pages used as kernelcore 5265 */ 5266 size_pages = end_pfn - start_pfn; 5267 if (size_pages > kernelcore_remaining) 5268 size_pages = kernelcore_remaining; 5269 zone_movable_pfn[nid] = start_pfn + size_pages; 5270 5271 /* 5272 * Some kernelcore has been met, update counts and 5273 * break if the kernelcore for this node has been 5274 * satisfied 5275 */ 5276 required_kernelcore -= min(required_kernelcore, 5277 size_pages); 5278 kernelcore_remaining -= size_pages; 5279 if (!kernelcore_remaining) 5280 break; 5281 } 5282 } 5283 5284 /* 5285 * If there is still required_kernelcore, we do another pass with one 5286 * less node in the count. This will push zone_movable_pfn[nid] further 5287 * along on the nodes that still have memory until kernelcore is 5288 * satisfied 5289 */ 5290 usable_nodes--; 5291 if (usable_nodes && required_kernelcore > usable_nodes) 5292 goto restart; 5293 5294 out2: 5295 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5296 for (nid = 0; nid < MAX_NUMNODES; nid++) 5297 zone_movable_pfn[nid] = 5298 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5299 5300 out: 5301 /* restore the node_state */ 5302 node_states[N_MEMORY] = saved_node_state; 5303 } 5304 5305 /* Any regular or high memory on that node ? */ 5306 static void check_for_memory(pg_data_t *pgdat, int nid) 5307 { 5308 enum zone_type zone_type; 5309 5310 if (N_MEMORY == N_NORMAL_MEMORY) 5311 return; 5312 5313 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5314 struct zone *zone = &pgdat->node_zones[zone_type]; 5315 if (populated_zone(zone)) { 5316 node_set_state(nid, N_HIGH_MEMORY); 5317 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5318 zone_type <= ZONE_NORMAL) 5319 node_set_state(nid, N_NORMAL_MEMORY); 5320 break; 5321 } 5322 } 5323 } 5324 5325 /** 5326 * free_area_init_nodes - Initialise all pg_data_t and zone data 5327 * @max_zone_pfn: an array of max PFNs for each zone 5328 * 5329 * This will call free_area_init_node() for each active node in the system. 5330 * Using the page ranges provided by memblock_set_node(), the size of each 5331 * zone in each node and their holes is calculated. If the maximum PFN 5332 * between two adjacent zones match, it is assumed that the zone is empty. 5333 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5334 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5335 * starts where the previous one ended. For example, ZONE_DMA32 starts 5336 * at arch_max_dma_pfn. 5337 */ 5338 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5339 { 5340 unsigned long start_pfn, end_pfn; 5341 int i, nid; 5342 5343 /* Record where the zone boundaries are */ 5344 memset(arch_zone_lowest_possible_pfn, 0, 5345 sizeof(arch_zone_lowest_possible_pfn)); 5346 memset(arch_zone_highest_possible_pfn, 0, 5347 sizeof(arch_zone_highest_possible_pfn)); 5348 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5349 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5350 for (i = 1; i < MAX_NR_ZONES; i++) { 5351 if (i == ZONE_MOVABLE) 5352 continue; 5353 arch_zone_lowest_possible_pfn[i] = 5354 arch_zone_highest_possible_pfn[i-1]; 5355 arch_zone_highest_possible_pfn[i] = 5356 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5357 } 5358 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5359 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5360 5361 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5362 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5363 find_zone_movable_pfns_for_nodes(); 5364 5365 /* Print out the zone ranges */ 5366 pr_info("Zone ranges:\n"); 5367 for (i = 0; i < MAX_NR_ZONES; i++) { 5368 if (i == ZONE_MOVABLE) 5369 continue; 5370 pr_info(" %-8s ", zone_names[i]); 5371 if (arch_zone_lowest_possible_pfn[i] == 5372 arch_zone_highest_possible_pfn[i]) 5373 pr_cont("empty\n"); 5374 else 5375 pr_cont("[mem %#018Lx-%#018Lx]\n", 5376 (u64)arch_zone_lowest_possible_pfn[i] 5377 << PAGE_SHIFT, 5378 ((u64)arch_zone_highest_possible_pfn[i] 5379 << PAGE_SHIFT) - 1); 5380 } 5381 5382 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5383 pr_info("Movable zone start for each node\n"); 5384 for (i = 0; i < MAX_NUMNODES; i++) { 5385 if (zone_movable_pfn[i]) 5386 pr_info(" Node %d: %#018Lx\n", i, 5387 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 5388 } 5389 5390 /* Print out the early node map */ 5391 pr_info("Early memory node ranges\n"); 5392 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5393 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 5394 (u64)start_pfn << PAGE_SHIFT, 5395 ((u64)end_pfn << PAGE_SHIFT) - 1); 5396 5397 /* Initialise every node */ 5398 mminit_verify_pageflags_layout(); 5399 setup_nr_node_ids(); 5400 for_each_online_node(nid) { 5401 pg_data_t *pgdat = NODE_DATA(nid); 5402 free_area_init_node(nid, NULL, 5403 find_min_pfn_for_node(nid), NULL); 5404 5405 /* Any memory on that node */ 5406 if (pgdat->node_present_pages) 5407 node_set_state(nid, N_MEMORY); 5408 check_for_memory(pgdat, nid); 5409 } 5410 } 5411 5412 static int __init cmdline_parse_core(char *p, unsigned long *core) 5413 { 5414 unsigned long long coremem; 5415 if (!p) 5416 return -EINVAL; 5417 5418 coremem = memparse(p, &p); 5419 *core = coremem >> PAGE_SHIFT; 5420 5421 /* Paranoid check that UL is enough for the coremem value */ 5422 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5423 5424 return 0; 5425 } 5426 5427 /* 5428 * kernelcore=size sets the amount of memory for use for allocations that 5429 * cannot be reclaimed or migrated. 5430 */ 5431 static int __init cmdline_parse_kernelcore(char *p) 5432 { 5433 return cmdline_parse_core(p, &required_kernelcore); 5434 } 5435 5436 /* 5437 * movablecore=size sets the amount of memory for use for allocations that 5438 * can be reclaimed or migrated. 5439 */ 5440 static int __init cmdline_parse_movablecore(char *p) 5441 { 5442 return cmdline_parse_core(p, &required_movablecore); 5443 } 5444 5445 early_param("kernelcore", cmdline_parse_kernelcore); 5446 early_param("movablecore", cmdline_parse_movablecore); 5447 5448 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5449 5450 void adjust_managed_page_count(struct page *page, long count) 5451 { 5452 spin_lock(&managed_page_count_lock); 5453 page_zone(page)->managed_pages += count; 5454 totalram_pages += count; 5455 #ifdef CONFIG_HIGHMEM 5456 if (PageHighMem(page)) 5457 totalhigh_pages += count; 5458 #endif 5459 spin_unlock(&managed_page_count_lock); 5460 } 5461 EXPORT_SYMBOL(adjust_managed_page_count); 5462 5463 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5464 { 5465 void *pos; 5466 unsigned long pages = 0; 5467 5468 start = (void *)PAGE_ALIGN((unsigned long)start); 5469 end = (void *)((unsigned long)end & PAGE_MASK); 5470 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5471 if ((unsigned int)poison <= 0xFF) 5472 memset(pos, poison, PAGE_SIZE); 5473 free_reserved_page(virt_to_page(pos)); 5474 } 5475 5476 if (pages && s) 5477 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5478 s, pages << (PAGE_SHIFT - 10), start, end); 5479 5480 return pages; 5481 } 5482 EXPORT_SYMBOL(free_reserved_area); 5483 5484 #ifdef CONFIG_HIGHMEM 5485 void free_highmem_page(struct page *page) 5486 { 5487 __free_reserved_page(page); 5488 totalram_pages++; 5489 page_zone(page)->managed_pages++; 5490 totalhigh_pages++; 5491 } 5492 #endif 5493 5494 5495 void __init mem_init_print_info(const char *str) 5496 { 5497 unsigned long physpages, codesize, datasize, rosize, bss_size; 5498 unsigned long init_code_size, init_data_size; 5499 5500 physpages = get_num_physpages(); 5501 codesize = _etext - _stext; 5502 datasize = _edata - _sdata; 5503 rosize = __end_rodata - __start_rodata; 5504 bss_size = __bss_stop - __bss_start; 5505 init_data_size = __init_end - __init_begin; 5506 init_code_size = _einittext - _sinittext; 5507 5508 /* 5509 * Detect special cases and adjust section sizes accordingly: 5510 * 1) .init.* may be embedded into .data sections 5511 * 2) .init.text.* may be out of [__init_begin, __init_end], 5512 * please refer to arch/tile/kernel/vmlinux.lds.S. 5513 * 3) .rodata.* may be embedded into .text or .data sections. 5514 */ 5515 #define adj_init_size(start, end, size, pos, adj) \ 5516 do { \ 5517 if (start <= pos && pos < end && size > adj) \ 5518 size -= adj; \ 5519 } while (0) 5520 5521 adj_init_size(__init_begin, __init_end, init_data_size, 5522 _sinittext, init_code_size); 5523 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5524 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5525 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5526 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5527 5528 #undef adj_init_size 5529 5530 pr_info("Memory: %luK/%luK available " 5531 "(%luK kernel code, %luK rwdata, %luK rodata, " 5532 "%luK init, %luK bss, %luK reserved, %luK cma-reserved" 5533 #ifdef CONFIG_HIGHMEM 5534 ", %luK highmem" 5535 #endif 5536 "%s%s)\n", 5537 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5538 codesize >> 10, datasize >> 10, rosize >> 10, 5539 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5540 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), 5541 totalcma_pages << (PAGE_SHIFT-10), 5542 #ifdef CONFIG_HIGHMEM 5543 totalhigh_pages << (PAGE_SHIFT-10), 5544 #endif 5545 str ? ", " : "", str ? str : ""); 5546 } 5547 5548 /** 5549 * set_dma_reserve - set the specified number of pages reserved in the first zone 5550 * @new_dma_reserve: The number of pages to mark reserved 5551 * 5552 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5553 * In the DMA zone, a significant percentage may be consumed by kernel image 5554 * and other unfreeable allocations which can skew the watermarks badly. This 5555 * function may optionally be used to account for unfreeable pages in the 5556 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5557 * smaller per-cpu batchsize. 5558 */ 5559 void __init set_dma_reserve(unsigned long new_dma_reserve) 5560 { 5561 dma_reserve = new_dma_reserve; 5562 } 5563 5564 void __init free_area_init(unsigned long *zones_size) 5565 { 5566 free_area_init_node(0, zones_size, 5567 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5568 } 5569 5570 static int page_alloc_cpu_notify(struct notifier_block *self, 5571 unsigned long action, void *hcpu) 5572 { 5573 int cpu = (unsigned long)hcpu; 5574 5575 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5576 lru_add_drain_cpu(cpu); 5577 drain_pages(cpu); 5578 5579 /* 5580 * Spill the event counters of the dead processor 5581 * into the current processors event counters. 5582 * This artificially elevates the count of the current 5583 * processor. 5584 */ 5585 vm_events_fold_cpu(cpu); 5586 5587 /* 5588 * Zero the differential counters of the dead processor 5589 * so that the vm statistics are consistent. 5590 * 5591 * This is only okay since the processor is dead and cannot 5592 * race with what we are doing. 5593 */ 5594 cpu_vm_stats_fold(cpu); 5595 } 5596 return NOTIFY_OK; 5597 } 5598 5599 void __init page_alloc_init(void) 5600 { 5601 hotcpu_notifier(page_alloc_cpu_notify, 0); 5602 } 5603 5604 /* 5605 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5606 * or min_free_kbytes changes. 5607 */ 5608 static void calculate_totalreserve_pages(void) 5609 { 5610 struct pglist_data *pgdat; 5611 unsigned long reserve_pages = 0; 5612 enum zone_type i, j; 5613 5614 for_each_online_pgdat(pgdat) { 5615 for (i = 0; i < MAX_NR_ZONES; i++) { 5616 struct zone *zone = pgdat->node_zones + i; 5617 long max = 0; 5618 5619 /* Find valid and maximum lowmem_reserve in the zone */ 5620 for (j = i; j < MAX_NR_ZONES; j++) { 5621 if (zone->lowmem_reserve[j] > max) 5622 max = zone->lowmem_reserve[j]; 5623 } 5624 5625 /* we treat the high watermark as reserved pages. */ 5626 max += high_wmark_pages(zone); 5627 5628 if (max > zone->managed_pages) 5629 max = zone->managed_pages; 5630 reserve_pages += max; 5631 /* 5632 * Lowmem reserves are not available to 5633 * GFP_HIGHUSER page cache allocations and 5634 * kswapd tries to balance zones to their high 5635 * watermark. As a result, neither should be 5636 * regarded as dirtyable memory, to prevent a 5637 * situation where reclaim has to clean pages 5638 * in order to balance the zones. 5639 */ 5640 zone->dirty_balance_reserve = max; 5641 } 5642 } 5643 dirty_balance_reserve = reserve_pages; 5644 totalreserve_pages = reserve_pages; 5645 } 5646 5647 /* 5648 * setup_per_zone_lowmem_reserve - called whenever 5649 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5650 * has a correct pages reserved value, so an adequate number of 5651 * pages are left in the zone after a successful __alloc_pages(). 5652 */ 5653 static void setup_per_zone_lowmem_reserve(void) 5654 { 5655 struct pglist_data *pgdat; 5656 enum zone_type j, idx; 5657 5658 for_each_online_pgdat(pgdat) { 5659 for (j = 0; j < MAX_NR_ZONES; j++) { 5660 struct zone *zone = pgdat->node_zones + j; 5661 unsigned long managed_pages = zone->managed_pages; 5662 5663 zone->lowmem_reserve[j] = 0; 5664 5665 idx = j; 5666 while (idx) { 5667 struct zone *lower_zone; 5668 5669 idx--; 5670 5671 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5672 sysctl_lowmem_reserve_ratio[idx] = 1; 5673 5674 lower_zone = pgdat->node_zones + idx; 5675 lower_zone->lowmem_reserve[j] = managed_pages / 5676 sysctl_lowmem_reserve_ratio[idx]; 5677 managed_pages += lower_zone->managed_pages; 5678 } 5679 } 5680 } 5681 5682 /* update totalreserve_pages */ 5683 calculate_totalreserve_pages(); 5684 } 5685 5686 static void __setup_per_zone_wmarks(void) 5687 { 5688 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5689 unsigned long lowmem_pages = 0; 5690 struct zone *zone; 5691 unsigned long flags; 5692 5693 /* Calculate total number of !ZONE_HIGHMEM pages */ 5694 for_each_zone(zone) { 5695 if (!is_highmem(zone)) 5696 lowmem_pages += zone->managed_pages; 5697 } 5698 5699 for_each_zone(zone) { 5700 u64 tmp; 5701 5702 spin_lock_irqsave(&zone->lock, flags); 5703 tmp = (u64)pages_min * zone->managed_pages; 5704 do_div(tmp, lowmem_pages); 5705 if (is_highmem(zone)) { 5706 /* 5707 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5708 * need highmem pages, so cap pages_min to a small 5709 * value here. 5710 * 5711 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5712 * deltas controls asynch page reclaim, and so should 5713 * not be capped for highmem. 5714 */ 5715 unsigned long min_pages; 5716 5717 min_pages = zone->managed_pages / 1024; 5718 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5719 zone->watermark[WMARK_MIN] = min_pages; 5720 } else { 5721 /* 5722 * If it's a lowmem zone, reserve a number of pages 5723 * proportionate to the zone's size. 5724 */ 5725 zone->watermark[WMARK_MIN] = tmp; 5726 } 5727 5728 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5729 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5730 5731 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5732 high_wmark_pages(zone) - low_wmark_pages(zone) - 5733 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 5734 5735 setup_zone_migrate_reserve(zone); 5736 spin_unlock_irqrestore(&zone->lock, flags); 5737 } 5738 5739 /* update totalreserve_pages */ 5740 calculate_totalreserve_pages(); 5741 } 5742 5743 /** 5744 * setup_per_zone_wmarks - called when min_free_kbytes changes 5745 * or when memory is hot-{added|removed} 5746 * 5747 * Ensures that the watermark[min,low,high] values for each zone are set 5748 * correctly with respect to min_free_kbytes. 5749 */ 5750 void setup_per_zone_wmarks(void) 5751 { 5752 mutex_lock(&zonelists_mutex); 5753 __setup_per_zone_wmarks(); 5754 mutex_unlock(&zonelists_mutex); 5755 } 5756 5757 /* 5758 * The inactive anon list should be small enough that the VM never has to 5759 * do too much work, but large enough that each inactive page has a chance 5760 * to be referenced again before it is swapped out. 5761 * 5762 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5763 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5764 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5765 * the anonymous pages are kept on the inactive list. 5766 * 5767 * total target max 5768 * memory ratio inactive anon 5769 * ------------------------------------- 5770 * 10MB 1 5MB 5771 * 100MB 1 50MB 5772 * 1GB 3 250MB 5773 * 10GB 10 0.9GB 5774 * 100GB 31 3GB 5775 * 1TB 101 10GB 5776 * 10TB 320 32GB 5777 */ 5778 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5779 { 5780 unsigned int gb, ratio; 5781 5782 /* Zone size in gigabytes */ 5783 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5784 if (gb) 5785 ratio = int_sqrt(10 * gb); 5786 else 5787 ratio = 1; 5788 5789 zone->inactive_ratio = ratio; 5790 } 5791 5792 static void __meminit setup_per_zone_inactive_ratio(void) 5793 { 5794 struct zone *zone; 5795 5796 for_each_zone(zone) 5797 calculate_zone_inactive_ratio(zone); 5798 } 5799 5800 /* 5801 * Initialise min_free_kbytes. 5802 * 5803 * For small machines we want it small (128k min). For large machines 5804 * we want it large (64MB max). But it is not linear, because network 5805 * bandwidth does not increase linearly with machine size. We use 5806 * 5807 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5808 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5809 * 5810 * which yields 5811 * 5812 * 16MB: 512k 5813 * 32MB: 724k 5814 * 64MB: 1024k 5815 * 128MB: 1448k 5816 * 256MB: 2048k 5817 * 512MB: 2896k 5818 * 1024MB: 4096k 5819 * 2048MB: 5792k 5820 * 4096MB: 8192k 5821 * 8192MB: 11584k 5822 * 16384MB: 16384k 5823 */ 5824 int __meminit init_per_zone_wmark_min(void) 5825 { 5826 unsigned long lowmem_kbytes; 5827 int new_min_free_kbytes; 5828 5829 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5830 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5831 5832 if (new_min_free_kbytes > user_min_free_kbytes) { 5833 min_free_kbytes = new_min_free_kbytes; 5834 if (min_free_kbytes < 128) 5835 min_free_kbytes = 128; 5836 if (min_free_kbytes > 65536) 5837 min_free_kbytes = 65536; 5838 } else { 5839 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5840 new_min_free_kbytes, user_min_free_kbytes); 5841 } 5842 setup_per_zone_wmarks(); 5843 refresh_zone_stat_thresholds(); 5844 setup_per_zone_lowmem_reserve(); 5845 setup_per_zone_inactive_ratio(); 5846 return 0; 5847 } 5848 module_init(init_per_zone_wmark_min) 5849 5850 /* 5851 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5852 * that we can call two helper functions whenever min_free_kbytes 5853 * changes. 5854 */ 5855 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5856 void __user *buffer, size_t *length, loff_t *ppos) 5857 { 5858 int rc; 5859 5860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5861 if (rc) 5862 return rc; 5863 5864 if (write) { 5865 user_min_free_kbytes = min_free_kbytes; 5866 setup_per_zone_wmarks(); 5867 } 5868 return 0; 5869 } 5870 5871 #ifdef CONFIG_NUMA 5872 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5873 void __user *buffer, size_t *length, loff_t *ppos) 5874 { 5875 struct zone *zone; 5876 int rc; 5877 5878 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5879 if (rc) 5880 return rc; 5881 5882 for_each_zone(zone) 5883 zone->min_unmapped_pages = (zone->managed_pages * 5884 sysctl_min_unmapped_ratio) / 100; 5885 return 0; 5886 } 5887 5888 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5889 void __user *buffer, size_t *length, loff_t *ppos) 5890 { 5891 struct zone *zone; 5892 int rc; 5893 5894 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5895 if (rc) 5896 return rc; 5897 5898 for_each_zone(zone) 5899 zone->min_slab_pages = (zone->managed_pages * 5900 sysctl_min_slab_ratio) / 100; 5901 return 0; 5902 } 5903 #endif 5904 5905 /* 5906 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5907 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5908 * whenever sysctl_lowmem_reserve_ratio changes. 5909 * 5910 * The reserve ratio obviously has absolutely no relation with the 5911 * minimum watermarks. The lowmem reserve ratio can only make sense 5912 * if in function of the boot time zone sizes. 5913 */ 5914 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5915 void __user *buffer, size_t *length, loff_t *ppos) 5916 { 5917 proc_dointvec_minmax(table, write, buffer, length, ppos); 5918 setup_per_zone_lowmem_reserve(); 5919 return 0; 5920 } 5921 5922 /* 5923 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5924 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5925 * pagelist can have before it gets flushed back to buddy allocator. 5926 */ 5927 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5928 void __user *buffer, size_t *length, loff_t *ppos) 5929 { 5930 struct zone *zone; 5931 int old_percpu_pagelist_fraction; 5932 int ret; 5933 5934 mutex_lock(&pcp_batch_high_lock); 5935 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 5936 5937 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5938 if (!write || ret < 0) 5939 goto out; 5940 5941 /* Sanity checking to avoid pcp imbalance */ 5942 if (percpu_pagelist_fraction && 5943 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 5944 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 5945 ret = -EINVAL; 5946 goto out; 5947 } 5948 5949 /* No change? */ 5950 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 5951 goto out; 5952 5953 for_each_populated_zone(zone) { 5954 unsigned int cpu; 5955 5956 for_each_possible_cpu(cpu) 5957 pageset_set_high_and_batch(zone, 5958 per_cpu_ptr(zone->pageset, cpu)); 5959 } 5960 out: 5961 mutex_unlock(&pcp_batch_high_lock); 5962 return ret; 5963 } 5964 5965 int hashdist = HASHDIST_DEFAULT; 5966 5967 #ifdef CONFIG_NUMA 5968 static int __init set_hashdist(char *str) 5969 { 5970 if (!str) 5971 return 0; 5972 hashdist = simple_strtoul(str, &str, 0); 5973 return 1; 5974 } 5975 __setup("hashdist=", set_hashdist); 5976 #endif 5977 5978 /* 5979 * allocate a large system hash table from bootmem 5980 * - it is assumed that the hash table must contain an exact power-of-2 5981 * quantity of entries 5982 * - limit is the number of hash buckets, not the total allocation size 5983 */ 5984 void *__init alloc_large_system_hash(const char *tablename, 5985 unsigned long bucketsize, 5986 unsigned long numentries, 5987 int scale, 5988 int flags, 5989 unsigned int *_hash_shift, 5990 unsigned int *_hash_mask, 5991 unsigned long low_limit, 5992 unsigned long high_limit) 5993 { 5994 unsigned long long max = high_limit; 5995 unsigned long log2qty, size; 5996 void *table = NULL; 5997 5998 /* allow the kernel cmdline to have a say */ 5999 if (!numentries) { 6000 /* round applicable memory size up to nearest megabyte */ 6001 numentries = nr_kernel_pages; 6002 6003 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6004 if (PAGE_SHIFT < 20) 6005 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6006 6007 /* limit to 1 bucket per 2^scale bytes of low memory */ 6008 if (scale > PAGE_SHIFT) 6009 numentries >>= (scale - PAGE_SHIFT); 6010 else 6011 numentries <<= (PAGE_SHIFT - scale); 6012 6013 /* Make sure we've got at least a 0-order allocation.. */ 6014 if (unlikely(flags & HASH_SMALL)) { 6015 /* Makes no sense without HASH_EARLY */ 6016 WARN_ON(!(flags & HASH_EARLY)); 6017 if (!(numentries >> *_hash_shift)) { 6018 numentries = 1UL << *_hash_shift; 6019 BUG_ON(!numentries); 6020 } 6021 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6022 numentries = PAGE_SIZE / bucketsize; 6023 } 6024 numentries = roundup_pow_of_two(numentries); 6025 6026 /* limit allocation size to 1/16 total memory by default */ 6027 if (max == 0) { 6028 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6029 do_div(max, bucketsize); 6030 } 6031 max = min(max, 0x80000000ULL); 6032 6033 if (numentries < low_limit) 6034 numentries = low_limit; 6035 if (numentries > max) 6036 numentries = max; 6037 6038 log2qty = ilog2(numentries); 6039 6040 do { 6041 size = bucketsize << log2qty; 6042 if (flags & HASH_EARLY) 6043 table = memblock_virt_alloc_nopanic(size, 0); 6044 else if (hashdist) 6045 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6046 else { 6047 /* 6048 * If bucketsize is not a power-of-two, we may free 6049 * some pages at the end of hash table which 6050 * alloc_pages_exact() automatically does 6051 */ 6052 if (get_order(size) < MAX_ORDER) { 6053 table = alloc_pages_exact(size, GFP_ATOMIC); 6054 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6055 } 6056 } 6057 } while (!table && size > PAGE_SIZE && --log2qty); 6058 6059 if (!table) 6060 panic("Failed to allocate %s hash table\n", tablename); 6061 6062 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6063 tablename, 6064 (1UL << log2qty), 6065 ilog2(size) - PAGE_SHIFT, 6066 size); 6067 6068 if (_hash_shift) 6069 *_hash_shift = log2qty; 6070 if (_hash_mask) 6071 *_hash_mask = (1 << log2qty) - 1; 6072 6073 return table; 6074 } 6075 6076 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6077 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6078 unsigned long pfn) 6079 { 6080 #ifdef CONFIG_SPARSEMEM 6081 return __pfn_to_section(pfn)->pageblock_flags; 6082 #else 6083 return zone->pageblock_flags; 6084 #endif /* CONFIG_SPARSEMEM */ 6085 } 6086 6087 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6088 { 6089 #ifdef CONFIG_SPARSEMEM 6090 pfn &= (PAGES_PER_SECTION-1); 6091 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6092 #else 6093 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6094 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6095 #endif /* CONFIG_SPARSEMEM */ 6096 } 6097 6098 /** 6099 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6100 * @page: The page within the block of interest 6101 * @pfn: The target page frame number 6102 * @end_bitidx: The last bit of interest to retrieve 6103 * @mask: mask of bits that the caller is interested in 6104 * 6105 * Return: pageblock_bits flags 6106 */ 6107 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6108 unsigned long end_bitidx, 6109 unsigned long mask) 6110 { 6111 struct zone *zone; 6112 unsigned long *bitmap; 6113 unsigned long bitidx, word_bitidx; 6114 unsigned long word; 6115 6116 zone = page_zone(page); 6117 bitmap = get_pageblock_bitmap(zone, pfn); 6118 bitidx = pfn_to_bitidx(zone, pfn); 6119 word_bitidx = bitidx / BITS_PER_LONG; 6120 bitidx &= (BITS_PER_LONG-1); 6121 6122 word = bitmap[word_bitidx]; 6123 bitidx += end_bitidx; 6124 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6125 } 6126 6127 /** 6128 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6129 * @page: The page within the block of interest 6130 * @flags: The flags to set 6131 * @pfn: The target page frame number 6132 * @end_bitidx: The last bit of interest 6133 * @mask: mask of bits that the caller is interested in 6134 */ 6135 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6136 unsigned long pfn, 6137 unsigned long end_bitidx, 6138 unsigned long mask) 6139 { 6140 struct zone *zone; 6141 unsigned long *bitmap; 6142 unsigned long bitidx, word_bitidx; 6143 unsigned long old_word, word; 6144 6145 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6146 6147 zone = page_zone(page); 6148 bitmap = get_pageblock_bitmap(zone, pfn); 6149 bitidx = pfn_to_bitidx(zone, pfn); 6150 word_bitidx = bitidx / BITS_PER_LONG; 6151 bitidx &= (BITS_PER_LONG-1); 6152 6153 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6154 6155 bitidx += end_bitidx; 6156 mask <<= (BITS_PER_LONG - bitidx - 1); 6157 flags <<= (BITS_PER_LONG - bitidx - 1); 6158 6159 word = ACCESS_ONCE(bitmap[word_bitidx]); 6160 for (;;) { 6161 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6162 if (word == old_word) 6163 break; 6164 word = old_word; 6165 } 6166 } 6167 6168 /* 6169 * This function checks whether pageblock includes unmovable pages or not. 6170 * If @count is not zero, it is okay to include less @count unmovable pages 6171 * 6172 * PageLRU check without isolation or lru_lock could race so that 6173 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6174 * expect this function should be exact. 6175 */ 6176 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6177 bool skip_hwpoisoned_pages) 6178 { 6179 unsigned long pfn, iter, found; 6180 int mt; 6181 6182 /* 6183 * For avoiding noise data, lru_add_drain_all() should be called 6184 * If ZONE_MOVABLE, the zone never contains unmovable pages 6185 */ 6186 if (zone_idx(zone) == ZONE_MOVABLE) 6187 return false; 6188 mt = get_pageblock_migratetype(page); 6189 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6190 return false; 6191 6192 pfn = page_to_pfn(page); 6193 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6194 unsigned long check = pfn + iter; 6195 6196 if (!pfn_valid_within(check)) 6197 continue; 6198 6199 page = pfn_to_page(check); 6200 6201 /* 6202 * Hugepages are not in LRU lists, but they're movable. 6203 * We need not scan over tail pages bacause we don't 6204 * handle each tail page individually in migration. 6205 */ 6206 if (PageHuge(page)) { 6207 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6208 continue; 6209 } 6210 6211 /* 6212 * We can't use page_count without pin a page 6213 * because another CPU can free compound page. 6214 * This check already skips compound tails of THP 6215 * because their page->_count is zero at all time. 6216 */ 6217 if (!atomic_read(&page->_count)) { 6218 if (PageBuddy(page)) 6219 iter += (1 << page_order(page)) - 1; 6220 continue; 6221 } 6222 6223 /* 6224 * The HWPoisoned page may be not in buddy system, and 6225 * page_count() is not 0. 6226 */ 6227 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6228 continue; 6229 6230 if (!PageLRU(page)) 6231 found++; 6232 /* 6233 * If there are RECLAIMABLE pages, we need to check 6234 * it. But now, memory offline itself doesn't call 6235 * shrink_node_slabs() and it still to be fixed. 6236 */ 6237 /* 6238 * If the page is not RAM, page_count()should be 0. 6239 * we don't need more check. This is an _used_ not-movable page. 6240 * 6241 * The problematic thing here is PG_reserved pages. PG_reserved 6242 * is set to both of a memory hole page and a _used_ kernel 6243 * page at boot. 6244 */ 6245 if (found > count) 6246 return true; 6247 } 6248 return false; 6249 } 6250 6251 bool is_pageblock_removable_nolock(struct page *page) 6252 { 6253 struct zone *zone; 6254 unsigned long pfn; 6255 6256 /* 6257 * We have to be careful here because we are iterating over memory 6258 * sections which are not zone aware so we might end up outside of 6259 * the zone but still within the section. 6260 * We have to take care about the node as well. If the node is offline 6261 * its NODE_DATA will be NULL - see page_zone. 6262 */ 6263 if (!node_online(page_to_nid(page))) 6264 return false; 6265 6266 zone = page_zone(page); 6267 pfn = page_to_pfn(page); 6268 if (!zone_spans_pfn(zone, pfn)) 6269 return false; 6270 6271 return !has_unmovable_pages(zone, page, 0, true); 6272 } 6273 6274 #ifdef CONFIG_CMA 6275 6276 static unsigned long pfn_max_align_down(unsigned long pfn) 6277 { 6278 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6279 pageblock_nr_pages) - 1); 6280 } 6281 6282 static unsigned long pfn_max_align_up(unsigned long pfn) 6283 { 6284 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6285 pageblock_nr_pages)); 6286 } 6287 6288 /* [start, end) must belong to a single zone. */ 6289 static int __alloc_contig_migrate_range(struct compact_control *cc, 6290 unsigned long start, unsigned long end) 6291 { 6292 /* This function is based on compact_zone() from compaction.c. */ 6293 unsigned long nr_reclaimed; 6294 unsigned long pfn = start; 6295 unsigned int tries = 0; 6296 int ret = 0; 6297 6298 migrate_prep(); 6299 6300 while (pfn < end || !list_empty(&cc->migratepages)) { 6301 if (fatal_signal_pending(current)) { 6302 ret = -EINTR; 6303 break; 6304 } 6305 6306 if (list_empty(&cc->migratepages)) { 6307 cc->nr_migratepages = 0; 6308 pfn = isolate_migratepages_range(cc, pfn, end); 6309 if (!pfn) { 6310 ret = -EINTR; 6311 break; 6312 } 6313 tries = 0; 6314 } else if (++tries == 5) { 6315 ret = ret < 0 ? ret : -EBUSY; 6316 break; 6317 } 6318 6319 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6320 &cc->migratepages); 6321 cc->nr_migratepages -= nr_reclaimed; 6322 6323 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6324 NULL, 0, cc->mode, MR_CMA); 6325 } 6326 if (ret < 0) { 6327 putback_movable_pages(&cc->migratepages); 6328 return ret; 6329 } 6330 return 0; 6331 } 6332 6333 /** 6334 * alloc_contig_range() -- tries to allocate given range of pages 6335 * @start: start PFN to allocate 6336 * @end: one-past-the-last PFN to allocate 6337 * @migratetype: migratetype of the underlaying pageblocks (either 6338 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6339 * in range must have the same migratetype and it must 6340 * be either of the two. 6341 * 6342 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6343 * aligned, however it's the caller's responsibility to guarantee that 6344 * we are the only thread that changes migrate type of pageblocks the 6345 * pages fall in. 6346 * 6347 * The PFN range must belong to a single zone. 6348 * 6349 * Returns zero on success or negative error code. On success all 6350 * pages which PFN is in [start, end) are allocated for the caller and 6351 * need to be freed with free_contig_range(). 6352 */ 6353 int alloc_contig_range(unsigned long start, unsigned long end, 6354 unsigned migratetype) 6355 { 6356 unsigned long outer_start, outer_end; 6357 int ret = 0, order; 6358 6359 struct compact_control cc = { 6360 .nr_migratepages = 0, 6361 .order = -1, 6362 .zone = page_zone(pfn_to_page(start)), 6363 .mode = MIGRATE_SYNC, 6364 .ignore_skip_hint = true, 6365 }; 6366 INIT_LIST_HEAD(&cc.migratepages); 6367 6368 /* 6369 * What we do here is we mark all pageblocks in range as 6370 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6371 * have different sizes, and due to the way page allocator 6372 * work, we align the range to biggest of the two pages so 6373 * that page allocator won't try to merge buddies from 6374 * different pageblocks and change MIGRATE_ISOLATE to some 6375 * other migration type. 6376 * 6377 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6378 * migrate the pages from an unaligned range (ie. pages that 6379 * we are interested in). This will put all the pages in 6380 * range back to page allocator as MIGRATE_ISOLATE. 6381 * 6382 * When this is done, we take the pages in range from page 6383 * allocator removing them from the buddy system. This way 6384 * page allocator will never consider using them. 6385 * 6386 * This lets us mark the pageblocks back as 6387 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6388 * aligned range but not in the unaligned, original range are 6389 * put back to page allocator so that buddy can use them. 6390 */ 6391 6392 ret = start_isolate_page_range(pfn_max_align_down(start), 6393 pfn_max_align_up(end), migratetype, 6394 false); 6395 if (ret) 6396 return ret; 6397 6398 ret = __alloc_contig_migrate_range(&cc, start, end); 6399 if (ret) 6400 goto done; 6401 6402 /* 6403 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6404 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6405 * more, all pages in [start, end) are free in page allocator. 6406 * What we are going to do is to allocate all pages from 6407 * [start, end) (that is remove them from page allocator). 6408 * 6409 * The only problem is that pages at the beginning and at the 6410 * end of interesting range may be not aligned with pages that 6411 * page allocator holds, ie. they can be part of higher order 6412 * pages. Because of this, we reserve the bigger range and 6413 * once this is done free the pages we are not interested in. 6414 * 6415 * We don't have to hold zone->lock here because the pages are 6416 * isolated thus they won't get removed from buddy. 6417 */ 6418 6419 lru_add_drain_all(); 6420 drain_all_pages(cc.zone); 6421 6422 order = 0; 6423 outer_start = start; 6424 while (!PageBuddy(pfn_to_page(outer_start))) { 6425 if (++order >= MAX_ORDER) { 6426 ret = -EBUSY; 6427 goto done; 6428 } 6429 outer_start &= ~0UL << order; 6430 } 6431 6432 /* Make sure the range is really isolated. */ 6433 if (test_pages_isolated(outer_start, end, false)) { 6434 pr_info("%s: [%lx, %lx) PFNs busy\n", 6435 __func__, outer_start, end); 6436 ret = -EBUSY; 6437 goto done; 6438 } 6439 6440 /* Grab isolated pages from freelists. */ 6441 outer_end = isolate_freepages_range(&cc, outer_start, end); 6442 if (!outer_end) { 6443 ret = -EBUSY; 6444 goto done; 6445 } 6446 6447 /* Free head and tail (if any) */ 6448 if (start != outer_start) 6449 free_contig_range(outer_start, start - outer_start); 6450 if (end != outer_end) 6451 free_contig_range(end, outer_end - end); 6452 6453 done: 6454 undo_isolate_page_range(pfn_max_align_down(start), 6455 pfn_max_align_up(end), migratetype); 6456 return ret; 6457 } 6458 6459 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6460 { 6461 unsigned int count = 0; 6462 6463 for (; nr_pages--; pfn++) { 6464 struct page *page = pfn_to_page(pfn); 6465 6466 count += page_count(page) != 1; 6467 __free_page(page); 6468 } 6469 WARN(count != 0, "%d pages are still in use!\n", count); 6470 } 6471 #endif 6472 6473 #ifdef CONFIG_MEMORY_HOTPLUG 6474 /* 6475 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6476 * page high values need to be recalulated. 6477 */ 6478 void __meminit zone_pcp_update(struct zone *zone) 6479 { 6480 unsigned cpu; 6481 mutex_lock(&pcp_batch_high_lock); 6482 for_each_possible_cpu(cpu) 6483 pageset_set_high_and_batch(zone, 6484 per_cpu_ptr(zone->pageset, cpu)); 6485 mutex_unlock(&pcp_batch_high_lock); 6486 } 6487 #endif 6488 6489 void zone_pcp_reset(struct zone *zone) 6490 { 6491 unsigned long flags; 6492 int cpu; 6493 struct per_cpu_pageset *pset; 6494 6495 /* avoid races with drain_pages() */ 6496 local_irq_save(flags); 6497 if (zone->pageset != &boot_pageset) { 6498 for_each_online_cpu(cpu) { 6499 pset = per_cpu_ptr(zone->pageset, cpu); 6500 drain_zonestat(zone, pset); 6501 } 6502 free_percpu(zone->pageset); 6503 zone->pageset = &boot_pageset; 6504 } 6505 local_irq_restore(flags); 6506 } 6507 6508 #ifdef CONFIG_MEMORY_HOTREMOVE 6509 /* 6510 * All pages in the range must be isolated before calling this. 6511 */ 6512 void 6513 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6514 { 6515 struct page *page; 6516 struct zone *zone; 6517 unsigned int order, i; 6518 unsigned long pfn; 6519 unsigned long flags; 6520 /* find the first valid pfn */ 6521 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6522 if (pfn_valid(pfn)) 6523 break; 6524 if (pfn == end_pfn) 6525 return; 6526 zone = page_zone(pfn_to_page(pfn)); 6527 spin_lock_irqsave(&zone->lock, flags); 6528 pfn = start_pfn; 6529 while (pfn < end_pfn) { 6530 if (!pfn_valid(pfn)) { 6531 pfn++; 6532 continue; 6533 } 6534 page = pfn_to_page(pfn); 6535 /* 6536 * The HWPoisoned page may be not in buddy system, and 6537 * page_count() is not 0. 6538 */ 6539 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6540 pfn++; 6541 SetPageReserved(page); 6542 continue; 6543 } 6544 6545 BUG_ON(page_count(page)); 6546 BUG_ON(!PageBuddy(page)); 6547 order = page_order(page); 6548 #ifdef CONFIG_DEBUG_VM 6549 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6550 pfn, 1 << order, end_pfn); 6551 #endif 6552 list_del(&page->lru); 6553 rmv_page_order(page); 6554 zone->free_area[order].nr_free--; 6555 for (i = 0; i < (1 << order); i++) 6556 SetPageReserved((page+i)); 6557 pfn += (1 << order); 6558 } 6559 spin_unlock_irqrestore(&zone->lock, flags); 6560 } 6561 #endif 6562 6563 #ifdef CONFIG_MEMORY_FAILURE 6564 bool is_free_buddy_page(struct page *page) 6565 { 6566 struct zone *zone = page_zone(page); 6567 unsigned long pfn = page_to_pfn(page); 6568 unsigned long flags; 6569 unsigned int order; 6570 6571 spin_lock_irqsave(&zone->lock, flags); 6572 for (order = 0; order < MAX_ORDER; order++) { 6573 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6574 6575 if (PageBuddy(page_head) && page_order(page_head) >= order) 6576 break; 6577 } 6578 spin_unlock_irqrestore(&zone->lock, flags); 6579 6580 return order < MAX_ORDER; 6581 } 6582 #endif 6583