xref: /openbmc/linux/mm/page_alloc.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
73 
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78 
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84  * defined in <linux/topology.h>.
85  */
86 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90 
91 /*
92  * Array of node states.
93  */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 	[N_POSSIBLE] = NODE_MASK_ALL,
96 	[N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 	[N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 	[N_CPU] = { { [0] = 1UL } },
106 #endif	/* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109 
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112 
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117  * When calculating the number of globally allowed dirty pages, there
118  * is a certain number of per-zone reserves that should not be
119  * considered dirtyable memory.  This is the sum of those reserves
120  * over all existing zones that contribute dirtyable memory.
121  */
122 unsigned long dirty_balance_reserve __read_mostly;
123 
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126 
127 #ifdef CONFIG_PM_SLEEP
128 /*
129  * The following functions are used by the suspend/hibernate code to temporarily
130  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131  * while devices are suspended.  To avoid races with the suspend/hibernate code,
132  * they should always be called with pm_mutex held (gfp_allowed_mask also should
133  * only be modified with pm_mutex held, unless the suspend/hibernate code is
134  * guaranteed not to run in parallel with that modification).
135  */
136 
137 static gfp_t saved_gfp_mask;
138 
139 void pm_restore_gfp_mask(void)
140 {
141 	WARN_ON(!mutex_is_locked(&pm_mutex));
142 	if (saved_gfp_mask) {
143 		gfp_allowed_mask = saved_gfp_mask;
144 		saved_gfp_mask = 0;
145 	}
146 }
147 
148 void pm_restrict_gfp_mask(void)
149 {
150 	WARN_ON(!mutex_is_locked(&pm_mutex));
151 	WARN_ON(saved_gfp_mask);
152 	saved_gfp_mask = gfp_allowed_mask;
153 	gfp_allowed_mask &= ~GFP_IOFS;
154 }
155 
156 bool pm_suspended_storage(void)
157 {
158 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 		return false;
160 	return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163 
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167 
168 static void __free_pages_ok(struct page *page, unsigned int order);
169 
170 /*
171  * results with 256, 32 in the lowmem_reserve sysctl:
172  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173  *	1G machine -> (16M dma, 784M normal, 224M high)
174  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177  *
178  * TBD: should special case ZONE_DMA32 machines here - in those we normally
179  * don't need any ZONE_NORMAL reservation
180  */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 	 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 	 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 	 32,
190 #endif
191 	 32,
192 };
193 
194 EXPORT_SYMBOL(totalram_pages);
195 
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 	 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 	 "DMA32",
202 #endif
203 	 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 	 "HighMem",
206 #endif
207 	 "Movable",
208 };
209 
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212 
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216 
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223 
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228 
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235 
236 int page_group_by_mobility_disabled __read_mostly;
237 
238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 	if (unlikely(page_group_by_mobility_disabled &&
241 		     migratetype < MIGRATE_PCPTYPES))
242 		migratetype = MIGRATE_UNMOVABLE;
243 
244 	set_pageblock_flags_group(page, (unsigned long)migratetype,
245 					PB_migrate, PB_migrate_end);
246 }
247 
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 	int ret = 0;
252 	unsigned seq;
253 	unsigned long pfn = page_to_pfn(page);
254 	unsigned long sp, start_pfn;
255 
256 	do {
257 		seq = zone_span_seqbegin(zone);
258 		start_pfn = zone->zone_start_pfn;
259 		sp = zone->spanned_pages;
260 		if (!zone_spans_pfn(zone, pfn))
261 			ret = 1;
262 	} while (zone_span_seqretry(zone, seq));
263 
264 	if (ret)
265 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 			pfn, zone_to_nid(zone), zone->name,
267 			start_pfn, start_pfn + sp);
268 
269 	return ret;
270 }
271 
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 	if (!pfn_valid_within(page_to_pfn(page)))
275 		return 0;
276 	if (zone != page_zone(page))
277 		return 0;
278 
279 	return 1;
280 }
281 /*
282  * Temporary debugging check for pages not lying within a given zone.
283  */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 	if (page_outside_zone_boundaries(zone, page))
287 		return 1;
288 	if (!page_is_consistent(zone, page))
289 		return 1;
290 
291 	return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 	return 0;
297 }
298 #endif
299 
300 static void bad_page(struct page *page, const char *reason,
301 		unsigned long bad_flags)
302 {
303 	static unsigned long resume;
304 	static unsigned long nr_shown;
305 	static unsigned long nr_unshown;
306 
307 	/* Don't complain about poisoned pages */
308 	if (PageHWPoison(page)) {
309 		page_mapcount_reset(page); /* remove PageBuddy */
310 		return;
311 	}
312 
313 	/*
314 	 * Allow a burst of 60 reports, then keep quiet for that minute;
315 	 * or allow a steady drip of one report per second.
316 	 */
317 	if (nr_shown == 60) {
318 		if (time_before(jiffies, resume)) {
319 			nr_unshown++;
320 			goto out;
321 		}
322 		if (nr_unshown) {
323 			printk(KERN_ALERT
324 			      "BUG: Bad page state: %lu messages suppressed\n",
325 				nr_unshown);
326 			nr_unshown = 0;
327 		}
328 		nr_shown = 0;
329 	}
330 	if (nr_shown++ == 0)
331 		resume = jiffies + 60 * HZ;
332 
333 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
334 		current->comm, page_to_pfn(page));
335 	dump_page_badflags(page, reason, bad_flags);
336 
337 	print_modules();
338 	dump_stack();
339 out:
340 	/* Leave bad fields for debug, except PageBuddy could make trouble */
341 	page_mapcount_reset(page); /* remove PageBuddy */
342 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344 
345 /*
346  * Higher-order pages are called "compound pages".  They are structured thusly:
347  *
348  * The first PAGE_SIZE page is called the "head page".
349  *
350  * The remaining PAGE_SIZE pages are called "tail pages".
351  *
352  * All pages have PG_compound set.  All tail pages have their ->first_page
353  * pointing at the head page.
354  *
355  * The first tail page's ->lru.next holds the address of the compound page's
356  * put_page() function.  Its ->lru.prev holds the order of allocation.
357  * This usage means that zero-order pages may not be compound.
358  */
359 
360 static void free_compound_page(struct page *page)
361 {
362 	__free_pages_ok(page, compound_order(page));
363 }
364 
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 
370 	set_compound_page_dtor(page, free_compound_page);
371 	set_compound_order(page, order);
372 	__SetPageHead(page);
373 	for (i = 1; i < nr_pages; i++) {
374 		struct page *p = page + i;
375 		set_page_count(p, 0);
376 		p->first_page = page;
377 		/* Make sure p->first_page is always valid for PageTail() */
378 		smp_wmb();
379 		__SetPageTail(p);
380 	}
381 }
382 
383 static inline void prep_zero_page(struct page *page, unsigned int order,
384 							gfp_t gfp_flags)
385 {
386 	int i;
387 
388 	/*
389 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
390 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
391 	 */
392 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
393 	for (i = 0; i < (1 << order); i++)
394 		clear_highpage(page + i);
395 }
396 
397 #ifdef CONFIG_DEBUG_PAGEALLOC
398 unsigned int _debug_guardpage_minorder;
399 bool _debug_pagealloc_enabled __read_mostly;
400 bool _debug_guardpage_enabled __read_mostly;
401 
402 static int __init early_debug_pagealloc(char *buf)
403 {
404 	if (!buf)
405 		return -EINVAL;
406 
407 	if (strcmp(buf, "on") == 0)
408 		_debug_pagealloc_enabled = true;
409 
410 	return 0;
411 }
412 early_param("debug_pagealloc", early_debug_pagealloc);
413 
414 static bool need_debug_guardpage(void)
415 {
416 	/* If we don't use debug_pagealloc, we don't need guard page */
417 	if (!debug_pagealloc_enabled())
418 		return false;
419 
420 	return true;
421 }
422 
423 static void init_debug_guardpage(void)
424 {
425 	if (!debug_pagealloc_enabled())
426 		return;
427 
428 	_debug_guardpage_enabled = true;
429 }
430 
431 struct page_ext_operations debug_guardpage_ops = {
432 	.need = need_debug_guardpage,
433 	.init = init_debug_guardpage,
434 };
435 
436 static int __init debug_guardpage_minorder_setup(char *buf)
437 {
438 	unsigned long res;
439 
440 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
441 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
442 		return 0;
443 	}
444 	_debug_guardpage_minorder = res;
445 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
446 	return 0;
447 }
448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
449 
450 static inline void set_page_guard(struct zone *zone, struct page *page,
451 				unsigned int order, int migratetype)
452 {
453 	struct page_ext *page_ext;
454 
455 	if (!debug_guardpage_enabled())
456 		return;
457 
458 	page_ext = lookup_page_ext(page);
459 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
460 
461 	INIT_LIST_HEAD(&page->lru);
462 	set_page_private(page, order);
463 	/* Guard pages are not available for any usage */
464 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
465 }
466 
467 static inline void clear_page_guard(struct zone *zone, struct page *page,
468 				unsigned int order, int migratetype)
469 {
470 	struct page_ext *page_ext;
471 
472 	if (!debug_guardpage_enabled())
473 		return;
474 
475 	page_ext = lookup_page_ext(page);
476 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
477 
478 	set_page_private(page, 0);
479 	if (!is_migrate_isolate(migratetype))
480 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
481 }
482 #else
483 struct page_ext_operations debug_guardpage_ops = { NULL, };
484 static inline void set_page_guard(struct zone *zone, struct page *page,
485 				unsigned int order, int migratetype) {}
486 static inline void clear_page_guard(struct zone *zone, struct page *page,
487 				unsigned int order, int migratetype) {}
488 #endif
489 
490 static inline void set_page_order(struct page *page, unsigned int order)
491 {
492 	set_page_private(page, order);
493 	__SetPageBuddy(page);
494 }
495 
496 static inline void rmv_page_order(struct page *page)
497 {
498 	__ClearPageBuddy(page);
499 	set_page_private(page, 0);
500 }
501 
502 /*
503  * This function checks whether a page is free && is the buddy
504  * we can do coalesce a page and its buddy if
505  * (a) the buddy is not in a hole &&
506  * (b) the buddy is in the buddy system &&
507  * (c) a page and its buddy have the same order &&
508  * (d) a page and its buddy are in the same zone.
509  *
510  * For recording whether a page is in the buddy system, we set ->_mapcount
511  * PAGE_BUDDY_MAPCOUNT_VALUE.
512  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
513  * serialized by zone->lock.
514  *
515  * For recording page's order, we use page_private(page).
516  */
517 static inline int page_is_buddy(struct page *page, struct page *buddy,
518 							unsigned int order)
519 {
520 	if (!pfn_valid_within(page_to_pfn(buddy)))
521 		return 0;
522 
523 	if (page_is_guard(buddy) && page_order(buddy) == order) {
524 		if (page_zone_id(page) != page_zone_id(buddy))
525 			return 0;
526 
527 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528 
529 		return 1;
530 	}
531 
532 	if (PageBuddy(buddy) && page_order(buddy) == order) {
533 		/*
534 		 * zone check is done late to avoid uselessly
535 		 * calculating zone/node ids for pages that could
536 		 * never merge.
537 		 */
538 		if (page_zone_id(page) != page_zone_id(buddy))
539 			return 0;
540 
541 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
542 
543 		return 1;
544 	}
545 	return 0;
546 }
547 
548 /*
549  * Freeing function for a buddy system allocator.
550  *
551  * The concept of a buddy system is to maintain direct-mapped table
552  * (containing bit values) for memory blocks of various "orders".
553  * The bottom level table contains the map for the smallest allocatable
554  * units of memory (here, pages), and each level above it describes
555  * pairs of units from the levels below, hence, "buddies".
556  * At a high level, all that happens here is marking the table entry
557  * at the bottom level available, and propagating the changes upward
558  * as necessary, plus some accounting needed to play nicely with other
559  * parts of the VM system.
560  * At each level, we keep a list of pages, which are heads of continuous
561  * free pages of length of (1 << order) and marked with _mapcount
562  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
563  * field.
564  * So when we are allocating or freeing one, we can derive the state of the
565  * other.  That is, if we allocate a small block, and both were
566  * free, the remainder of the region must be split into blocks.
567  * If a block is freed, and its buddy is also free, then this
568  * triggers coalescing into a block of larger size.
569  *
570  * -- nyc
571  */
572 
573 static inline void __free_one_page(struct page *page,
574 		unsigned long pfn,
575 		struct zone *zone, unsigned int order,
576 		int migratetype)
577 {
578 	unsigned long page_idx;
579 	unsigned long combined_idx;
580 	unsigned long uninitialized_var(buddy_idx);
581 	struct page *buddy;
582 	int max_order = MAX_ORDER;
583 
584 	VM_BUG_ON(!zone_is_initialized(zone));
585 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
586 
587 	VM_BUG_ON(migratetype == -1);
588 	if (is_migrate_isolate(migratetype)) {
589 		/*
590 		 * We restrict max order of merging to prevent merge
591 		 * between freepages on isolate pageblock and normal
592 		 * pageblock. Without this, pageblock isolation
593 		 * could cause incorrect freepage accounting.
594 		 */
595 		max_order = min(MAX_ORDER, pageblock_order + 1);
596 	} else {
597 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
598 	}
599 
600 	page_idx = pfn & ((1 << max_order) - 1);
601 
602 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
603 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
604 
605 	while (order < max_order - 1) {
606 		buddy_idx = __find_buddy_index(page_idx, order);
607 		buddy = page + (buddy_idx - page_idx);
608 		if (!page_is_buddy(page, buddy, order))
609 			break;
610 		/*
611 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
612 		 * merge with it and move up one order.
613 		 */
614 		if (page_is_guard(buddy)) {
615 			clear_page_guard(zone, buddy, order, migratetype);
616 		} else {
617 			list_del(&buddy->lru);
618 			zone->free_area[order].nr_free--;
619 			rmv_page_order(buddy);
620 		}
621 		combined_idx = buddy_idx & page_idx;
622 		page = page + (combined_idx - page_idx);
623 		page_idx = combined_idx;
624 		order++;
625 	}
626 	set_page_order(page, order);
627 
628 	/*
629 	 * If this is not the largest possible page, check if the buddy
630 	 * of the next-highest order is free. If it is, it's possible
631 	 * that pages are being freed that will coalesce soon. In case,
632 	 * that is happening, add the free page to the tail of the list
633 	 * so it's less likely to be used soon and more likely to be merged
634 	 * as a higher order page
635 	 */
636 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
637 		struct page *higher_page, *higher_buddy;
638 		combined_idx = buddy_idx & page_idx;
639 		higher_page = page + (combined_idx - page_idx);
640 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
641 		higher_buddy = higher_page + (buddy_idx - combined_idx);
642 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
643 			list_add_tail(&page->lru,
644 				&zone->free_area[order].free_list[migratetype]);
645 			goto out;
646 		}
647 	}
648 
649 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
650 out:
651 	zone->free_area[order].nr_free++;
652 }
653 
654 static inline int free_pages_check(struct page *page)
655 {
656 	const char *bad_reason = NULL;
657 	unsigned long bad_flags = 0;
658 
659 	if (unlikely(page_mapcount(page)))
660 		bad_reason = "nonzero mapcount";
661 	if (unlikely(page->mapping != NULL))
662 		bad_reason = "non-NULL mapping";
663 	if (unlikely(atomic_read(&page->_count) != 0))
664 		bad_reason = "nonzero _count";
665 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
666 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
667 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
668 	}
669 #ifdef CONFIG_MEMCG
670 	if (unlikely(page->mem_cgroup))
671 		bad_reason = "page still charged to cgroup";
672 #endif
673 	if (unlikely(bad_reason)) {
674 		bad_page(page, bad_reason, bad_flags);
675 		return 1;
676 	}
677 	page_cpupid_reset_last(page);
678 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
679 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
680 	return 0;
681 }
682 
683 /*
684  * Frees a number of pages from the PCP lists
685  * Assumes all pages on list are in same zone, and of same order.
686  * count is the number of pages to free.
687  *
688  * If the zone was previously in an "all pages pinned" state then look to
689  * see if this freeing clears that state.
690  *
691  * And clear the zone's pages_scanned counter, to hold off the "all pages are
692  * pinned" detection logic.
693  */
694 static void free_pcppages_bulk(struct zone *zone, int count,
695 					struct per_cpu_pages *pcp)
696 {
697 	int migratetype = 0;
698 	int batch_free = 0;
699 	int to_free = count;
700 	unsigned long nr_scanned;
701 
702 	spin_lock(&zone->lock);
703 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
704 	if (nr_scanned)
705 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
706 
707 	while (to_free) {
708 		struct page *page;
709 		struct list_head *list;
710 
711 		/*
712 		 * Remove pages from lists in a round-robin fashion. A
713 		 * batch_free count is maintained that is incremented when an
714 		 * empty list is encountered.  This is so more pages are freed
715 		 * off fuller lists instead of spinning excessively around empty
716 		 * lists
717 		 */
718 		do {
719 			batch_free++;
720 			if (++migratetype == MIGRATE_PCPTYPES)
721 				migratetype = 0;
722 			list = &pcp->lists[migratetype];
723 		} while (list_empty(list));
724 
725 		/* This is the only non-empty list. Free them all. */
726 		if (batch_free == MIGRATE_PCPTYPES)
727 			batch_free = to_free;
728 
729 		do {
730 			int mt;	/* migratetype of the to-be-freed page */
731 
732 			page = list_entry(list->prev, struct page, lru);
733 			/* must delete as __free_one_page list manipulates */
734 			list_del(&page->lru);
735 			mt = get_freepage_migratetype(page);
736 			if (unlikely(has_isolate_pageblock(zone)))
737 				mt = get_pageblock_migratetype(page);
738 
739 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
740 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
741 			trace_mm_page_pcpu_drain(page, 0, mt);
742 		} while (--to_free && --batch_free && !list_empty(list));
743 	}
744 	spin_unlock(&zone->lock);
745 }
746 
747 static void free_one_page(struct zone *zone,
748 				struct page *page, unsigned long pfn,
749 				unsigned int order,
750 				int migratetype)
751 {
752 	unsigned long nr_scanned;
753 	spin_lock(&zone->lock);
754 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
755 	if (nr_scanned)
756 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
757 
758 	if (unlikely(has_isolate_pageblock(zone) ||
759 		is_migrate_isolate(migratetype))) {
760 		migratetype = get_pfnblock_migratetype(page, pfn);
761 	}
762 	__free_one_page(page, pfn, zone, order, migratetype);
763 	spin_unlock(&zone->lock);
764 }
765 
766 static int free_tail_pages_check(struct page *head_page, struct page *page)
767 {
768 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
769 		return 0;
770 	if (unlikely(!PageTail(page))) {
771 		bad_page(page, "PageTail not set", 0);
772 		return 1;
773 	}
774 	if (unlikely(page->first_page != head_page)) {
775 		bad_page(page, "first_page not consistent", 0);
776 		return 1;
777 	}
778 	return 0;
779 }
780 
781 static bool free_pages_prepare(struct page *page, unsigned int order)
782 {
783 	bool compound = PageCompound(page);
784 	int i, bad = 0;
785 
786 	VM_BUG_ON_PAGE(PageTail(page), page);
787 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
788 
789 	trace_mm_page_free(page, order);
790 	kmemcheck_free_shadow(page, order);
791 	kasan_free_pages(page, order);
792 
793 	if (PageAnon(page))
794 		page->mapping = NULL;
795 	bad += free_pages_check(page);
796 	for (i = 1; i < (1 << order); i++) {
797 		if (compound)
798 			bad += free_tail_pages_check(page, page + i);
799 		bad += free_pages_check(page + i);
800 	}
801 	if (bad)
802 		return false;
803 
804 	reset_page_owner(page, order);
805 
806 	if (!PageHighMem(page)) {
807 		debug_check_no_locks_freed(page_address(page),
808 					   PAGE_SIZE << order);
809 		debug_check_no_obj_freed(page_address(page),
810 					   PAGE_SIZE << order);
811 	}
812 	arch_free_page(page, order);
813 	kernel_map_pages(page, 1 << order, 0);
814 
815 	return true;
816 }
817 
818 static void __free_pages_ok(struct page *page, unsigned int order)
819 {
820 	unsigned long flags;
821 	int migratetype;
822 	unsigned long pfn = page_to_pfn(page);
823 
824 	if (!free_pages_prepare(page, order))
825 		return;
826 
827 	migratetype = get_pfnblock_migratetype(page, pfn);
828 	local_irq_save(flags);
829 	__count_vm_events(PGFREE, 1 << order);
830 	set_freepage_migratetype(page, migratetype);
831 	free_one_page(page_zone(page), page, pfn, order, migratetype);
832 	local_irq_restore(flags);
833 }
834 
835 void __init __free_pages_bootmem(struct page *page, unsigned int order)
836 {
837 	unsigned int nr_pages = 1 << order;
838 	struct page *p = page;
839 	unsigned int loop;
840 
841 	prefetchw(p);
842 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
843 		prefetchw(p + 1);
844 		__ClearPageReserved(p);
845 		set_page_count(p, 0);
846 	}
847 	__ClearPageReserved(p);
848 	set_page_count(p, 0);
849 
850 	page_zone(page)->managed_pages += nr_pages;
851 	set_page_refcounted(page);
852 	__free_pages(page, order);
853 }
854 
855 #ifdef CONFIG_CMA
856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
857 void __init init_cma_reserved_pageblock(struct page *page)
858 {
859 	unsigned i = pageblock_nr_pages;
860 	struct page *p = page;
861 
862 	do {
863 		__ClearPageReserved(p);
864 		set_page_count(p, 0);
865 	} while (++p, --i);
866 
867 	set_pageblock_migratetype(page, MIGRATE_CMA);
868 
869 	if (pageblock_order >= MAX_ORDER) {
870 		i = pageblock_nr_pages;
871 		p = page;
872 		do {
873 			set_page_refcounted(p);
874 			__free_pages(p, MAX_ORDER - 1);
875 			p += MAX_ORDER_NR_PAGES;
876 		} while (i -= MAX_ORDER_NR_PAGES);
877 	} else {
878 		set_page_refcounted(page);
879 		__free_pages(page, pageblock_order);
880 	}
881 
882 	adjust_managed_page_count(page, pageblock_nr_pages);
883 }
884 #endif
885 
886 /*
887  * The order of subdivision here is critical for the IO subsystem.
888  * Please do not alter this order without good reasons and regression
889  * testing. Specifically, as large blocks of memory are subdivided,
890  * the order in which smaller blocks are delivered depends on the order
891  * they're subdivided in this function. This is the primary factor
892  * influencing the order in which pages are delivered to the IO
893  * subsystem according to empirical testing, and this is also justified
894  * by considering the behavior of a buddy system containing a single
895  * large block of memory acted on by a series of small allocations.
896  * This behavior is a critical factor in sglist merging's success.
897  *
898  * -- nyc
899  */
900 static inline void expand(struct zone *zone, struct page *page,
901 	int low, int high, struct free_area *area,
902 	int migratetype)
903 {
904 	unsigned long size = 1 << high;
905 
906 	while (high > low) {
907 		area--;
908 		high--;
909 		size >>= 1;
910 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
911 
912 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
913 			debug_guardpage_enabled() &&
914 			high < debug_guardpage_minorder()) {
915 			/*
916 			 * Mark as guard pages (or page), that will allow to
917 			 * merge back to allocator when buddy will be freed.
918 			 * Corresponding page table entries will not be touched,
919 			 * pages will stay not present in virtual address space
920 			 */
921 			set_page_guard(zone, &page[size], high, migratetype);
922 			continue;
923 		}
924 		list_add(&page[size].lru, &area->free_list[migratetype]);
925 		area->nr_free++;
926 		set_page_order(&page[size], high);
927 	}
928 }
929 
930 /*
931  * This page is about to be returned from the page allocator
932  */
933 static inline int check_new_page(struct page *page)
934 {
935 	const char *bad_reason = NULL;
936 	unsigned long bad_flags = 0;
937 
938 	if (unlikely(page_mapcount(page)))
939 		bad_reason = "nonzero mapcount";
940 	if (unlikely(page->mapping != NULL))
941 		bad_reason = "non-NULL mapping";
942 	if (unlikely(atomic_read(&page->_count) != 0))
943 		bad_reason = "nonzero _count";
944 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
947 	}
948 #ifdef CONFIG_MEMCG
949 	if (unlikely(page->mem_cgroup))
950 		bad_reason = "page still charged to cgroup";
951 #endif
952 	if (unlikely(bad_reason)) {
953 		bad_page(page, bad_reason, bad_flags);
954 		return 1;
955 	}
956 	return 0;
957 }
958 
959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
960 								int alloc_flags)
961 {
962 	int i;
963 
964 	for (i = 0; i < (1 << order); i++) {
965 		struct page *p = page + i;
966 		if (unlikely(check_new_page(p)))
967 			return 1;
968 	}
969 
970 	set_page_private(page, 0);
971 	set_page_refcounted(page);
972 
973 	arch_alloc_page(page, order);
974 	kernel_map_pages(page, 1 << order, 1);
975 	kasan_alloc_pages(page, order);
976 
977 	if (gfp_flags & __GFP_ZERO)
978 		prep_zero_page(page, order, gfp_flags);
979 
980 	if (order && (gfp_flags & __GFP_COMP))
981 		prep_compound_page(page, order);
982 
983 	set_page_owner(page, order, gfp_flags);
984 
985 	/*
986 	 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
987 	 * allocate the page. The expectation is that the caller is taking
988 	 * steps that will free more memory. The caller should avoid the page
989 	 * being used for !PFMEMALLOC purposes.
990 	 */
991 	page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
992 
993 	return 0;
994 }
995 
996 /*
997  * Go through the free lists for the given migratetype and remove
998  * the smallest available page from the freelists
999  */
1000 static inline
1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1002 						int migratetype)
1003 {
1004 	unsigned int current_order;
1005 	struct free_area *area;
1006 	struct page *page;
1007 
1008 	/* Find a page of the appropriate size in the preferred list */
1009 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1010 		area = &(zone->free_area[current_order]);
1011 		if (list_empty(&area->free_list[migratetype]))
1012 			continue;
1013 
1014 		page = list_entry(area->free_list[migratetype].next,
1015 							struct page, lru);
1016 		list_del(&page->lru);
1017 		rmv_page_order(page);
1018 		area->nr_free--;
1019 		expand(zone, page, order, current_order, area, migratetype);
1020 		set_freepage_migratetype(page, migratetype);
1021 		return page;
1022 	}
1023 
1024 	return NULL;
1025 }
1026 
1027 
1028 /*
1029  * This array describes the order lists are fallen back to when
1030  * the free lists for the desirable migrate type are depleted
1031  */
1032 static int fallbacks[MIGRATE_TYPES][4] = {
1033 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1034 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1035 #ifdef CONFIG_CMA
1036 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1037 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1038 #else
1039 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1040 #endif
1041 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1042 #ifdef CONFIG_MEMORY_ISOLATION
1043 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1044 #endif
1045 };
1046 
1047 /*
1048  * Move the free pages in a range to the free lists of the requested type.
1049  * Note that start_page and end_pages are not aligned on a pageblock
1050  * boundary. If alignment is required, use move_freepages_block()
1051  */
1052 int move_freepages(struct zone *zone,
1053 			  struct page *start_page, struct page *end_page,
1054 			  int migratetype)
1055 {
1056 	struct page *page;
1057 	unsigned long order;
1058 	int pages_moved = 0;
1059 
1060 #ifndef CONFIG_HOLES_IN_ZONE
1061 	/*
1062 	 * page_zone is not safe to call in this context when
1063 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1064 	 * anyway as we check zone boundaries in move_freepages_block().
1065 	 * Remove at a later date when no bug reports exist related to
1066 	 * grouping pages by mobility
1067 	 */
1068 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1069 #endif
1070 
1071 	for (page = start_page; page <= end_page;) {
1072 		/* Make sure we are not inadvertently changing nodes */
1073 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1074 
1075 		if (!pfn_valid_within(page_to_pfn(page))) {
1076 			page++;
1077 			continue;
1078 		}
1079 
1080 		if (!PageBuddy(page)) {
1081 			page++;
1082 			continue;
1083 		}
1084 
1085 		order = page_order(page);
1086 		list_move(&page->lru,
1087 			  &zone->free_area[order].free_list[migratetype]);
1088 		set_freepage_migratetype(page, migratetype);
1089 		page += 1 << order;
1090 		pages_moved += 1 << order;
1091 	}
1092 
1093 	return pages_moved;
1094 }
1095 
1096 int move_freepages_block(struct zone *zone, struct page *page,
1097 				int migratetype)
1098 {
1099 	unsigned long start_pfn, end_pfn;
1100 	struct page *start_page, *end_page;
1101 
1102 	start_pfn = page_to_pfn(page);
1103 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1104 	start_page = pfn_to_page(start_pfn);
1105 	end_page = start_page + pageblock_nr_pages - 1;
1106 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1107 
1108 	/* Do not cross zone boundaries */
1109 	if (!zone_spans_pfn(zone, start_pfn))
1110 		start_page = page;
1111 	if (!zone_spans_pfn(zone, end_pfn))
1112 		return 0;
1113 
1114 	return move_freepages(zone, start_page, end_page, migratetype);
1115 }
1116 
1117 static void change_pageblock_range(struct page *pageblock_page,
1118 					int start_order, int migratetype)
1119 {
1120 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1121 
1122 	while (nr_pageblocks--) {
1123 		set_pageblock_migratetype(pageblock_page, migratetype);
1124 		pageblock_page += pageblock_nr_pages;
1125 	}
1126 }
1127 
1128 /*
1129  * When we are falling back to another migratetype during allocation, try to
1130  * steal extra free pages from the same pageblocks to satisfy further
1131  * allocations, instead of polluting multiple pageblocks.
1132  *
1133  * If we are stealing a relatively large buddy page, it is likely there will
1134  * be more free pages in the pageblock, so try to steal them all. For
1135  * reclaimable and unmovable allocations, we steal regardless of page size,
1136  * as fragmentation caused by those allocations polluting movable pageblocks
1137  * is worse than movable allocations stealing from unmovable and reclaimable
1138  * pageblocks.
1139  *
1140  * If we claim more than half of the pageblock, change pageblock's migratetype
1141  * as well.
1142  */
1143 static void try_to_steal_freepages(struct zone *zone, struct page *page,
1144 				  int start_type, int fallback_type)
1145 {
1146 	int current_order = page_order(page);
1147 
1148 	/* Take ownership for orders >= pageblock_order */
1149 	if (current_order >= pageblock_order) {
1150 		change_pageblock_range(page, current_order, start_type);
1151 		return;
1152 	}
1153 
1154 	if (current_order >= pageblock_order / 2 ||
1155 	    start_type == MIGRATE_RECLAIMABLE ||
1156 	    start_type == MIGRATE_UNMOVABLE ||
1157 	    page_group_by_mobility_disabled) {
1158 		int pages;
1159 
1160 		pages = move_freepages_block(zone, page, start_type);
1161 
1162 		/* Claim the whole block if over half of it is free */
1163 		if (pages >= (1 << (pageblock_order-1)) ||
1164 				page_group_by_mobility_disabled)
1165 			set_pageblock_migratetype(page, start_type);
1166 	}
1167 }
1168 
1169 /* Remove an element from the buddy allocator from the fallback list */
1170 static inline struct page *
1171 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1172 {
1173 	struct free_area *area;
1174 	unsigned int current_order;
1175 	struct page *page;
1176 
1177 	/* Find the largest possible block of pages in the other list */
1178 	for (current_order = MAX_ORDER-1;
1179 				current_order >= order && current_order <= MAX_ORDER-1;
1180 				--current_order) {
1181 		int i;
1182 		for (i = 0;; i++) {
1183 			int migratetype = fallbacks[start_migratetype][i];
1184 			int buddy_type = start_migratetype;
1185 
1186 			/* MIGRATE_RESERVE handled later if necessary */
1187 			if (migratetype == MIGRATE_RESERVE)
1188 				break;
1189 
1190 			area = &(zone->free_area[current_order]);
1191 			if (list_empty(&area->free_list[migratetype]))
1192 				continue;
1193 
1194 			page = list_entry(area->free_list[migratetype].next,
1195 					struct page, lru);
1196 			area->nr_free--;
1197 
1198 			if (!is_migrate_cma(migratetype)) {
1199 				try_to_steal_freepages(zone, page,
1200 							start_migratetype,
1201 							migratetype);
1202 			} else {
1203 				/*
1204 				 * When borrowing from MIGRATE_CMA, we need to
1205 				 * release the excess buddy pages to CMA
1206 				 * itself, and we do not try to steal extra
1207 				 * free pages.
1208 				 */
1209 				buddy_type = migratetype;
1210 			}
1211 
1212 			/* Remove the page from the freelists */
1213 			list_del(&page->lru);
1214 			rmv_page_order(page);
1215 
1216 			expand(zone, page, order, current_order, area,
1217 					buddy_type);
1218 
1219 			/*
1220 			 * The freepage_migratetype may differ from pageblock's
1221 			 * migratetype depending on the decisions in
1222 			 * try_to_steal_freepages(). This is OK as long as it
1223 			 * does not differ for MIGRATE_CMA pageblocks. For CMA
1224 			 * we need to make sure unallocated pages flushed from
1225 			 * pcp lists are returned to the correct freelist.
1226 			 */
1227 			set_freepage_migratetype(page, buddy_type);
1228 
1229 			trace_mm_page_alloc_extfrag(page, order, current_order,
1230 				start_migratetype, migratetype);
1231 
1232 			return page;
1233 		}
1234 	}
1235 
1236 	return NULL;
1237 }
1238 
1239 /*
1240  * Do the hard work of removing an element from the buddy allocator.
1241  * Call me with the zone->lock already held.
1242  */
1243 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1244 						int migratetype)
1245 {
1246 	struct page *page;
1247 
1248 retry_reserve:
1249 	page = __rmqueue_smallest(zone, order, migratetype);
1250 
1251 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1252 		page = __rmqueue_fallback(zone, order, migratetype);
1253 
1254 		/*
1255 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1256 		 * is used because __rmqueue_smallest is an inline function
1257 		 * and we want just one call site
1258 		 */
1259 		if (!page) {
1260 			migratetype = MIGRATE_RESERVE;
1261 			goto retry_reserve;
1262 		}
1263 	}
1264 
1265 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1266 	return page;
1267 }
1268 
1269 /*
1270  * Obtain a specified number of elements from the buddy allocator, all under
1271  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1272  * Returns the number of new pages which were placed at *list.
1273  */
1274 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1275 			unsigned long count, struct list_head *list,
1276 			int migratetype, bool cold)
1277 {
1278 	int i;
1279 
1280 	spin_lock(&zone->lock);
1281 	for (i = 0; i < count; ++i) {
1282 		struct page *page = __rmqueue(zone, order, migratetype);
1283 		if (unlikely(page == NULL))
1284 			break;
1285 
1286 		/*
1287 		 * Split buddy pages returned by expand() are received here
1288 		 * in physical page order. The page is added to the callers and
1289 		 * list and the list head then moves forward. From the callers
1290 		 * perspective, the linked list is ordered by page number in
1291 		 * some conditions. This is useful for IO devices that can
1292 		 * merge IO requests if the physical pages are ordered
1293 		 * properly.
1294 		 */
1295 		if (likely(!cold))
1296 			list_add(&page->lru, list);
1297 		else
1298 			list_add_tail(&page->lru, list);
1299 		list = &page->lru;
1300 		if (is_migrate_cma(get_freepage_migratetype(page)))
1301 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1302 					      -(1 << order));
1303 	}
1304 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1305 	spin_unlock(&zone->lock);
1306 	return i;
1307 }
1308 
1309 #ifdef CONFIG_NUMA
1310 /*
1311  * Called from the vmstat counter updater to drain pagesets of this
1312  * currently executing processor on remote nodes after they have
1313  * expired.
1314  *
1315  * Note that this function must be called with the thread pinned to
1316  * a single processor.
1317  */
1318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1319 {
1320 	unsigned long flags;
1321 	int to_drain, batch;
1322 
1323 	local_irq_save(flags);
1324 	batch = ACCESS_ONCE(pcp->batch);
1325 	to_drain = min(pcp->count, batch);
1326 	if (to_drain > 0) {
1327 		free_pcppages_bulk(zone, to_drain, pcp);
1328 		pcp->count -= to_drain;
1329 	}
1330 	local_irq_restore(flags);
1331 }
1332 #endif
1333 
1334 /*
1335  * Drain pcplists of the indicated processor and zone.
1336  *
1337  * The processor must either be the current processor and the
1338  * thread pinned to the current processor or a processor that
1339  * is not online.
1340  */
1341 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1342 {
1343 	unsigned long flags;
1344 	struct per_cpu_pageset *pset;
1345 	struct per_cpu_pages *pcp;
1346 
1347 	local_irq_save(flags);
1348 	pset = per_cpu_ptr(zone->pageset, cpu);
1349 
1350 	pcp = &pset->pcp;
1351 	if (pcp->count) {
1352 		free_pcppages_bulk(zone, pcp->count, pcp);
1353 		pcp->count = 0;
1354 	}
1355 	local_irq_restore(flags);
1356 }
1357 
1358 /*
1359  * Drain pcplists of all zones on the indicated processor.
1360  *
1361  * The processor must either be the current processor and the
1362  * thread pinned to the current processor or a processor that
1363  * is not online.
1364  */
1365 static void drain_pages(unsigned int cpu)
1366 {
1367 	struct zone *zone;
1368 
1369 	for_each_populated_zone(zone) {
1370 		drain_pages_zone(cpu, zone);
1371 	}
1372 }
1373 
1374 /*
1375  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1376  *
1377  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1378  * the single zone's pages.
1379  */
1380 void drain_local_pages(struct zone *zone)
1381 {
1382 	int cpu = smp_processor_id();
1383 
1384 	if (zone)
1385 		drain_pages_zone(cpu, zone);
1386 	else
1387 		drain_pages(cpu);
1388 }
1389 
1390 /*
1391  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1392  *
1393  * When zone parameter is non-NULL, spill just the single zone's pages.
1394  *
1395  * Note that this code is protected against sending an IPI to an offline
1396  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1397  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1398  * nothing keeps CPUs from showing up after we populated the cpumask and
1399  * before the call to on_each_cpu_mask().
1400  */
1401 void drain_all_pages(struct zone *zone)
1402 {
1403 	int cpu;
1404 
1405 	/*
1406 	 * Allocate in the BSS so we wont require allocation in
1407 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1408 	 */
1409 	static cpumask_t cpus_with_pcps;
1410 
1411 	/*
1412 	 * We don't care about racing with CPU hotplug event
1413 	 * as offline notification will cause the notified
1414 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1415 	 * disables preemption as part of its processing
1416 	 */
1417 	for_each_online_cpu(cpu) {
1418 		struct per_cpu_pageset *pcp;
1419 		struct zone *z;
1420 		bool has_pcps = false;
1421 
1422 		if (zone) {
1423 			pcp = per_cpu_ptr(zone->pageset, cpu);
1424 			if (pcp->pcp.count)
1425 				has_pcps = true;
1426 		} else {
1427 			for_each_populated_zone(z) {
1428 				pcp = per_cpu_ptr(z->pageset, cpu);
1429 				if (pcp->pcp.count) {
1430 					has_pcps = true;
1431 					break;
1432 				}
1433 			}
1434 		}
1435 
1436 		if (has_pcps)
1437 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1438 		else
1439 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1440 	}
1441 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1442 								zone, 1);
1443 }
1444 
1445 #ifdef CONFIG_HIBERNATION
1446 
1447 void mark_free_pages(struct zone *zone)
1448 {
1449 	unsigned long pfn, max_zone_pfn;
1450 	unsigned long flags;
1451 	unsigned int order, t;
1452 	struct list_head *curr;
1453 
1454 	if (zone_is_empty(zone))
1455 		return;
1456 
1457 	spin_lock_irqsave(&zone->lock, flags);
1458 
1459 	max_zone_pfn = zone_end_pfn(zone);
1460 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1461 		if (pfn_valid(pfn)) {
1462 			struct page *page = pfn_to_page(pfn);
1463 
1464 			if (!swsusp_page_is_forbidden(page))
1465 				swsusp_unset_page_free(page);
1466 		}
1467 
1468 	for_each_migratetype_order(order, t) {
1469 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1470 			unsigned long i;
1471 
1472 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1473 			for (i = 0; i < (1UL << order); i++)
1474 				swsusp_set_page_free(pfn_to_page(pfn + i));
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&zone->lock, flags);
1478 }
1479 #endif /* CONFIG_PM */
1480 
1481 /*
1482  * Free a 0-order page
1483  * cold == true ? free a cold page : free a hot page
1484  */
1485 void free_hot_cold_page(struct page *page, bool cold)
1486 {
1487 	struct zone *zone = page_zone(page);
1488 	struct per_cpu_pages *pcp;
1489 	unsigned long flags;
1490 	unsigned long pfn = page_to_pfn(page);
1491 	int migratetype;
1492 
1493 	if (!free_pages_prepare(page, 0))
1494 		return;
1495 
1496 	migratetype = get_pfnblock_migratetype(page, pfn);
1497 	set_freepage_migratetype(page, migratetype);
1498 	local_irq_save(flags);
1499 	__count_vm_event(PGFREE);
1500 
1501 	/*
1502 	 * We only track unmovable, reclaimable and movable on pcp lists.
1503 	 * Free ISOLATE pages back to the allocator because they are being
1504 	 * offlined but treat RESERVE as movable pages so we can get those
1505 	 * areas back if necessary. Otherwise, we may have to free
1506 	 * excessively into the page allocator
1507 	 */
1508 	if (migratetype >= MIGRATE_PCPTYPES) {
1509 		if (unlikely(is_migrate_isolate(migratetype))) {
1510 			free_one_page(zone, page, pfn, 0, migratetype);
1511 			goto out;
1512 		}
1513 		migratetype = MIGRATE_MOVABLE;
1514 	}
1515 
1516 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1517 	if (!cold)
1518 		list_add(&page->lru, &pcp->lists[migratetype]);
1519 	else
1520 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1521 	pcp->count++;
1522 	if (pcp->count >= pcp->high) {
1523 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1524 		free_pcppages_bulk(zone, batch, pcp);
1525 		pcp->count -= batch;
1526 	}
1527 
1528 out:
1529 	local_irq_restore(flags);
1530 }
1531 
1532 /*
1533  * Free a list of 0-order pages
1534  */
1535 void free_hot_cold_page_list(struct list_head *list, bool cold)
1536 {
1537 	struct page *page, *next;
1538 
1539 	list_for_each_entry_safe(page, next, list, lru) {
1540 		trace_mm_page_free_batched(page, cold);
1541 		free_hot_cold_page(page, cold);
1542 	}
1543 }
1544 
1545 /*
1546  * split_page takes a non-compound higher-order page, and splits it into
1547  * n (1<<order) sub-pages: page[0..n]
1548  * Each sub-page must be freed individually.
1549  *
1550  * Note: this is probably too low level an operation for use in drivers.
1551  * Please consult with lkml before using this in your driver.
1552  */
1553 void split_page(struct page *page, unsigned int order)
1554 {
1555 	int i;
1556 
1557 	VM_BUG_ON_PAGE(PageCompound(page), page);
1558 	VM_BUG_ON_PAGE(!page_count(page), page);
1559 
1560 #ifdef CONFIG_KMEMCHECK
1561 	/*
1562 	 * Split shadow pages too, because free(page[0]) would
1563 	 * otherwise free the whole shadow.
1564 	 */
1565 	if (kmemcheck_page_is_tracked(page))
1566 		split_page(virt_to_page(page[0].shadow), order);
1567 #endif
1568 
1569 	set_page_owner(page, 0, 0);
1570 	for (i = 1; i < (1 << order); i++) {
1571 		set_page_refcounted(page + i);
1572 		set_page_owner(page + i, 0, 0);
1573 	}
1574 }
1575 EXPORT_SYMBOL_GPL(split_page);
1576 
1577 int __isolate_free_page(struct page *page, unsigned int order)
1578 {
1579 	unsigned long watermark;
1580 	struct zone *zone;
1581 	int mt;
1582 
1583 	BUG_ON(!PageBuddy(page));
1584 
1585 	zone = page_zone(page);
1586 	mt = get_pageblock_migratetype(page);
1587 
1588 	if (!is_migrate_isolate(mt)) {
1589 		/* Obey watermarks as if the page was being allocated */
1590 		watermark = low_wmark_pages(zone) + (1 << order);
1591 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1592 			return 0;
1593 
1594 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1595 	}
1596 
1597 	/* Remove page from free list */
1598 	list_del(&page->lru);
1599 	zone->free_area[order].nr_free--;
1600 	rmv_page_order(page);
1601 
1602 	/* Set the pageblock if the isolated page is at least a pageblock */
1603 	if (order >= pageblock_order - 1) {
1604 		struct page *endpage = page + (1 << order) - 1;
1605 		for (; page < endpage; page += pageblock_nr_pages) {
1606 			int mt = get_pageblock_migratetype(page);
1607 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1608 				set_pageblock_migratetype(page,
1609 							  MIGRATE_MOVABLE);
1610 		}
1611 	}
1612 
1613 	set_page_owner(page, order, 0);
1614 	return 1UL << order;
1615 }
1616 
1617 /*
1618  * Similar to split_page except the page is already free. As this is only
1619  * being used for migration, the migratetype of the block also changes.
1620  * As this is called with interrupts disabled, the caller is responsible
1621  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1622  * are enabled.
1623  *
1624  * Note: this is probably too low level an operation for use in drivers.
1625  * Please consult with lkml before using this in your driver.
1626  */
1627 int split_free_page(struct page *page)
1628 {
1629 	unsigned int order;
1630 	int nr_pages;
1631 
1632 	order = page_order(page);
1633 
1634 	nr_pages = __isolate_free_page(page, order);
1635 	if (!nr_pages)
1636 		return 0;
1637 
1638 	/* Split into individual pages */
1639 	set_page_refcounted(page);
1640 	split_page(page, order);
1641 	return nr_pages;
1642 }
1643 
1644 /*
1645  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1646  */
1647 static inline
1648 struct page *buffered_rmqueue(struct zone *preferred_zone,
1649 			struct zone *zone, unsigned int order,
1650 			gfp_t gfp_flags, int migratetype)
1651 {
1652 	unsigned long flags;
1653 	struct page *page;
1654 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1655 
1656 	if (likely(order == 0)) {
1657 		struct per_cpu_pages *pcp;
1658 		struct list_head *list;
1659 
1660 		local_irq_save(flags);
1661 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1662 		list = &pcp->lists[migratetype];
1663 		if (list_empty(list)) {
1664 			pcp->count += rmqueue_bulk(zone, 0,
1665 					pcp->batch, list,
1666 					migratetype, cold);
1667 			if (unlikely(list_empty(list)))
1668 				goto failed;
1669 		}
1670 
1671 		if (cold)
1672 			page = list_entry(list->prev, struct page, lru);
1673 		else
1674 			page = list_entry(list->next, struct page, lru);
1675 
1676 		list_del(&page->lru);
1677 		pcp->count--;
1678 	} else {
1679 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1680 			/*
1681 			 * __GFP_NOFAIL is not to be used in new code.
1682 			 *
1683 			 * All __GFP_NOFAIL callers should be fixed so that they
1684 			 * properly detect and handle allocation failures.
1685 			 *
1686 			 * We most definitely don't want callers attempting to
1687 			 * allocate greater than order-1 page units with
1688 			 * __GFP_NOFAIL.
1689 			 */
1690 			WARN_ON_ONCE(order > 1);
1691 		}
1692 		spin_lock_irqsave(&zone->lock, flags);
1693 		page = __rmqueue(zone, order, migratetype);
1694 		spin_unlock(&zone->lock);
1695 		if (!page)
1696 			goto failed;
1697 		__mod_zone_freepage_state(zone, -(1 << order),
1698 					  get_freepage_migratetype(page));
1699 	}
1700 
1701 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1702 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1703 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1704 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1705 
1706 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1707 	zone_statistics(preferred_zone, zone, gfp_flags);
1708 	local_irq_restore(flags);
1709 
1710 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1711 	return page;
1712 
1713 failed:
1714 	local_irq_restore(flags);
1715 	return NULL;
1716 }
1717 
1718 #ifdef CONFIG_FAIL_PAGE_ALLOC
1719 
1720 static struct {
1721 	struct fault_attr attr;
1722 
1723 	u32 ignore_gfp_highmem;
1724 	u32 ignore_gfp_wait;
1725 	u32 min_order;
1726 } fail_page_alloc = {
1727 	.attr = FAULT_ATTR_INITIALIZER,
1728 	.ignore_gfp_wait = 1,
1729 	.ignore_gfp_highmem = 1,
1730 	.min_order = 1,
1731 };
1732 
1733 static int __init setup_fail_page_alloc(char *str)
1734 {
1735 	return setup_fault_attr(&fail_page_alloc.attr, str);
1736 }
1737 __setup("fail_page_alloc=", setup_fail_page_alloc);
1738 
1739 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1740 {
1741 	if (order < fail_page_alloc.min_order)
1742 		return false;
1743 	if (gfp_mask & __GFP_NOFAIL)
1744 		return false;
1745 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1746 		return false;
1747 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1748 		return false;
1749 
1750 	return should_fail(&fail_page_alloc.attr, 1 << order);
1751 }
1752 
1753 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1754 
1755 static int __init fail_page_alloc_debugfs(void)
1756 {
1757 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1758 	struct dentry *dir;
1759 
1760 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1761 					&fail_page_alloc.attr);
1762 	if (IS_ERR(dir))
1763 		return PTR_ERR(dir);
1764 
1765 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1766 				&fail_page_alloc.ignore_gfp_wait))
1767 		goto fail;
1768 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1769 				&fail_page_alloc.ignore_gfp_highmem))
1770 		goto fail;
1771 	if (!debugfs_create_u32("min-order", mode, dir,
1772 				&fail_page_alloc.min_order))
1773 		goto fail;
1774 
1775 	return 0;
1776 fail:
1777 	debugfs_remove_recursive(dir);
1778 
1779 	return -ENOMEM;
1780 }
1781 
1782 late_initcall(fail_page_alloc_debugfs);
1783 
1784 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1785 
1786 #else /* CONFIG_FAIL_PAGE_ALLOC */
1787 
1788 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1789 {
1790 	return false;
1791 }
1792 
1793 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1794 
1795 /*
1796  * Return true if free pages are above 'mark'. This takes into account the order
1797  * of the allocation.
1798  */
1799 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1800 			unsigned long mark, int classzone_idx, int alloc_flags,
1801 			long free_pages)
1802 {
1803 	/* free_pages may go negative - that's OK */
1804 	long min = mark;
1805 	int o;
1806 	long free_cma = 0;
1807 
1808 	free_pages -= (1 << order) - 1;
1809 	if (alloc_flags & ALLOC_HIGH)
1810 		min -= min / 2;
1811 	if (alloc_flags & ALLOC_HARDER)
1812 		min -= min / 4;
1813 #ifdef CONFIG_CMA
1814 	/* If allocation can't use CMA areas don't use free CMA pages */
1815 	if (!(alloc_flags & ALLOC_CMA))
1816 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1817 #endif
1818 
1819 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1820 		return false;
1821 	for (o = 0; o < order; o++) {
1822 		/* At the next order, this order's pages become unavailable */
1823 		free_pages -= z->free_area[o].nr_free << o;
1824 
1825 		/* Require fewer higher order pages to be free */
1826 		min >>= 1;
1827 
1828 		if (free_pages <= min)
1829 			return false;
1830 	}
1831 	return true;
1832 }
1833 
1834 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1835 		      int classzone_idx, int alloc_flags)
1836 {
1837 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1838 					zone_page_state(z, NR_FREE_PAGES));
1839 }
1840 
1841 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1842 			unsigned long mark, int classzone_idx, int alloc_flags)
1843 {
1844 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1845 
1846 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1847 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1848 
1849 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1850 								free_pages);
1851 }
1852 
1853 #ifdef CONFIG_NUMA
1854 /*
1855  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1856  * skip over zones that are not allowed by the cpuset, or that have
1857  * been recently (in last second) found to be nearly full.  See further
1858  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1859  * that have to skip over a lot of full or unallowed zones.
1860  *
1861  * If the zonelist cache is present in the passed zonelist, then
1862  * returns a pointer to the allowed node mask (either the current
1863  * tasks mems_allowed, or node_states[N_MEMORY].)
1864  *
1865  * If the zonelist cache is not available for this zonelist, does
1866  * nothing and returns NULL.
1867  *
1868  * If the fullzones BITMAP in the zonelist cache is stale (more than
1869  * a second since last zap'd) then we zap it out (clear its bits.)
1870  *
1871  * We hold off even calling zlc_setup, until after we've checked the
1872  * first zone in the zonelist, on the theory that most allocations will
1873  * be satisfied from that first zone, so best to examine that zone as
1874  * quickly as we can.
1875  */
1876 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1877 {
1878 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1879 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1880 
1881 	zlc = zonelist->zlcache_ptr;
1882 	if (!zlc)
1883 		return NULL;
1884 
1885 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1886 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1887 		zlc->last_full_zap = jiffies;
1888 	}
1889 
1890 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1891 					&cpuset_current_mems_allowed :
1892 					&node_states[N_MEMORY];
1893 	return allowednodes;
1894 }
1895 
1896 /*
1897  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1898  * if it is worth looking at further for free memory:
1899  *  1) Check that the zone isn't thought to be full (doesn't have its
1900  *     bit set in the zonelist_cache fullzones BITMAP).
1901  *  2) Check that the zones node (obtained from the zonelist_cache
1902  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1903  * Return true (non-zero) if zone is worth looking at further, or
1904  * else return false (zero) if it is not.
1905  *
1906  * This check -ignores- the distinction between various watermarks,
1907  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1908  * found to be full for any variation of these watermarks, it will
1909  * be considered full for up to one second by all requests, unless
1910  * we are so low on memory on all allowed nodes that we are forced
1911  * into the second scan of the zonelist.
1912  *
1913  * In the second scan we ignore this zonelist cache and exactly
1914  * apply the watermarks to all zones, even it is slower to do so.
1915  * We are low on memory in the second scan, and should leave no stone
1916  * unturned looking for a free page.
1917  */
1918 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1919 						nodemask_t *allowednodes)
1920 {
1921 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1922 	int i;				/* index of *z in zonelist zones */
1923 	int n;				/* node that zone *z is on */
1924 
1925 	zlc = zonelist->zlcache_ptr;
1926 	if (!zlc)
1927 		return 1;
1928 
1929 	i = z - zonelist->_zonerefs;
1930 	n = zlc->z_to_n[i];
1931 
1932 	/* This zone is worth trying if it is allowed but not full */
1933 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1934 }
1935 
1936 /*
1937  * Given 'z' scanning a zonelist, set the corresponding bit in
1938  * zlc->fullzones, so that subsequent attempts to allocate a page
1939  * from that zone don't waste time re-examining it.
1940  */
1941 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1942 {
1943 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1944 	int i;				/* index of *z in zonelist zones */
1945 
1946 	zlc = zonelist->zlcache_ptr;
1947 	if (!zlc)
1948 		return;
1949 
1950 	i = z - zonelist->_zonerefs;
1951 
1952 	set_bit(i, zlc->fullzones);
1953 }
1954 
1955 /*
1956  * clear all zones full, called after direct reclaim makes progress so that
1957  * a zone that was recently full is not skipped over for up to a second
1958  */
1959 static void zlc_clear_zones_full(struct zonelist *zonelist)
1960 {
1961 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1962 
1963 	zlc = zonelist->zlcache_ptr;
1964 	if (!zlc)
1965 		return;
1966 
1967 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1968 }
1969 
1970 static bool zone_local(struct zone *local_zone, struct zone *zone)
1971 {
1972 	return local_zone->node == zone->node;
1973 }
1974 
1975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1976 {
1977 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1978 				RECLAIM_DISTANCE;
1979 }
1980 
1981 #else	/* CONFIG_NUMA */
1982 
1983 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1984 {
1985 	return NULL;
1986 }
1987 
1988 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1989 				nodemask_t *allowednodes)
1990 {
1991 	return 1;
1992 }
1993 
1994 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1995 {
1996 }
1997 
1998 static void zlc_clear_zones_full(struct zonelist *zonelist)
1999 {
2000 }
2001 
2002 static bool zone_local(struct zone *local_zone, struct zone *zone)
2003 {
2004 	return true;
2005 }
2006 
2007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2008 {
2009 	return true;
2010 }
2011 
2012 #endif	/* CONFIG_NUMA */
2013 
2014 static void reset_alloc_batches(struct zone *preferred_zone)
2015 {
2016 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2017 
2018 	do {
2019 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2020 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2021 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2022 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2023 	} while (zone++ != preferred_zone);
2024 }
2025 
2026 /*
2027  * get_page_from_freelist goes through the zonelist trying to allocate
2028  * a page.
2029  */
2030 static struct page *
2031 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2032 						const struct alloc_context *ac)
2033 {
2034 	struct zonelist *zonelist = ac->zonelist;
2035 	struct zoneref *z;
2036 	struct page *page = NULL;
2037 	struct zone *zone;
2038 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2039 	int zlc_active = 0;		/* set if using zonelist_cache */
2040 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2041 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2042 				(gfp_mask & __GFP_WRITE);
2043 	int nr_fair_skipped = 0;
2044 	bool zonelist_rescan;
2045 
2046 zonelist_scan:
2047 	zonelist_rescan = false;
2048 
2049 	/*
2050 	 * Scan zonelist, looking for a zone with enough free.
2051 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2052 	 */
2053 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2054 								ac->nodemask) {
2055 		unsigned long mark;
2056 
2057 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2058 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2059 				continue;
2060 		if (cpusets_enabled() &&
2061 			(alloc_flags & ALLOC_CPUSET) &&
2062 			!cpuset_zone_allowed(zone, gfp_mask))
2063 				continue;
2064 		/*
2065 		 * Distribute pages in proportion to the individual
2066 		 * zone size to ensure fair page aging.  The zone a
2067 		 * page was allocated in should have no effect on the
2068 		 * time the page has in memory before being reclaimed.
2069 		 */
2070 		if (alloc_flags & ALLOC_FAIR) {
2071 			if (!zone_local(ac->preferred_zone, zone))
2072 				break;
2073 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2074 				nr_fair_skipped++;
2075 				continue;
2076 			}
2077 		}
2078 		/*
2079 		 * When allocating a page cache page for writing, we
2080 		 * want to get it from a zone that is within its dirty
2081 		 * limit, such that no single zone holds more than its
2082 		 * proportional share of globally allowed dirty pages.
2083 		 * The dirty limits take into account the zone's
2084 		 * lowmem reserves and high watermark so that kswapd
2085 		 * should be able to balance it without having to
2086 		 * write pages from its LRU list.
2087 		 *
2088 		 * This may look like it could increase pressure on
2089 		 * lower zones by failing allocations in higher zones
2090 		 * before they are full.  But the pages that do spill
2091 		 * over are limited as the lower zones are protected
2092 		 * by this very same mechanism.  It should not become
2093 		 * a practical burden to them.
2094 		 *
2095 		 * XXX: For now, allow allocations to potentially
2096 		 * exceed the per-zone dirty limit in the slowpath
2097 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2098 		 * which is important when on a NUMA setup the allowed
2099 		 * zones are together not big enough to reach the
2100 		 * global limit.  The proper fix for these situations
2101 		 * will require awareness of zones in the
2102 		 * dirty-throttling and the flusher threads.
2103 		 */
2104 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2105 			continue;
2106 
2107 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2108 		if (!zone_watermark_ok(zone, order, mark,
2109 				       ac->classzone_idx, alloc_flags)) {
2110 			int ret;
2111 
2112 			/* Checked here to keep the fast path fast */
2113 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2114 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2115 				goto try_this_zone;
2116 
2117 			if (IS_ENABLED(CONFIG_NUMA) &&
2118 					!did_zlc_setup && nr_online_nodes > 1) {
2119 				/*
2120 				 * we do zlc_setup if there are multiple nodes
2121 				 * and before considering the first zone allowed
2122 				 * by the cpuset.
2123 				 */
2124 				allowednodes = zlc_setup(zonelist, alloc_flags);
2125 				zlc_active = 1;
2126 				did_zlc_setup = 1;
2127 			}
2128 
2129 			if (zone_reclaim_mode == 0 ||
2130 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2131 				goto this_zone_full;
2132 
2133 			/*
2134 			 * As we may have just activated ZLC, check if the first
2135 			 * eligible zone has failed zone_reclaim recently.
2136 			 */
2137 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2138 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2139 				continue;
2140 
2141 			ret = zone_reclaim(zone, gfp_mask, order);
2142 			switch (ret) {
2143 			case ZONE_RECLAIM_NOSCAN:
2144 				/* did not scan */
2145 				continue;
2146 			case ZONE_RECLAIM_FULL:
2147 				/* scanned but unreclaimable */
2148 				continue;
2149 			default:
2150 				/* did we reclaim enough */
2151 				if (zone_watermark_ok(zone, order, mark,
2152 						ac->classzone_idx, alloc_flags))
2153 					goto try_this_zone;
2154 
2155 				/*
2156 				 * Failed to reclaim enough to meet watermark.
2157 				 * Only mark the zone full if checking the min
2158 				 * watermark or if we failed to reclaim just
2159 				 * 1<<order pages or else the page allocator
2160 				 * fastpath will prematurely mark zones full
2161 				 * when the watermark is between the low and
2162 				 * min watermarks.
2163 				 */
2164 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2165 				    ret == ZONE_RECLAIM_SOME)
2166 					goto this_zone_full;
2167 
2168 				continue;
2169 			}
2170 		}
2171 
2172 try_this_zone:
2173 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2174 						gfp_mask, ac->migratetype);
2175 		if (page) {
2176 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2177 				goto try_this_zone;
2178 			return page;
2179 		}
2180 this_zone_full:
2181 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2182 			zlc_mark_zone_full(zonelist, z);
2183 	}
2184 
2185 	/*
2186 	 * The first pass makes sure allocations are spread fairly within the
2187 	 * local node.  However, the local node might have free pages left
2188 	 * after the fairness batches are exhausted, and remote zones haven't
2189 	 * even been considered yet.  Try once more without fairness, and
2190 	 * include remote zones now, before entering the slowpath and waking
2191 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2192 	 */
2193 	if (alloc_flags & ALLOC_FAIR) {
2194 		alloc_flags &= ~ALLOC_FAIR;
2195 		if (nr_fair_skipped) {
2196 			zonelist_rescan = true;
2197 			reset_alloc_batches(ac->preferred_zone);
2198 		}
2199 		if (nr_online_nodes > 1)
2200 			zonelist_rescan = true;
2201 	}
2202 
2203 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2204 		/* Disable zlc cache for second zonelist scan */
2205 		zlc_active = 0;
2206 		zonelist_rescan = true;
2207 	}
2208 
2209 	if (zonelist_rescan)
2210 		goto zonelist_scan;
2211 
2212 	return NULL;
2213 }
2214 
2215 /*
2216  * Large machines with many possible nodes should not always dump per-node
2217  * meminfo in irq context.
2218  */
2219 static inline bool should_suppress_show_mem(void)
2220 {
2221 	bool ret = false;
2222 
2223 #if NODES_SHIFT > 8
2224 	ret = in_interrupt();
2225 #endif
2226 	return ret;
2227 }
2228 
2229 static DEFINE_RATELIMIT_STATE(nopage_rs,
2230 		DEFAULT_RATELIMIT_INTERVAL,
2231 		DEFAULT_RATELIMIT_BURST);
2232 
2233 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2234 {
2235 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2236 
2237 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2238 	    debug_guardpage_minorder() > 0)
2239 		return;
2240 
2241 	/*
2242 	 * This documents exceptions given to allocations in certain
2243 	 * contexts that are allowed to allocate outside current's set
2244 	 * of allowed nodes.
2245 	 */
2246 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2247 		if (test_thread_flag(TIF_MEMDIE) ||
2248 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2249 			filter &= ~SHOW_MEM_FILTER_NODES;
2250 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2251 		filter &= ~SHOW_MEM_FILTER_NODES;
2252 
2253 	if (fmt) {
2254 		struct va_format vaf;
2255 		va_list args;
2256 
2257 		va_start(args, fmt);
2258 
2259 		vaf.fmt = fmt;
2260 		vaf.va = &args;
2261 
2262 		pr_warn("%pV", &vaf);
2263 
2264 		va_end(args);
2265 	}
2266 
2267 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2268 		current->comm, order, gfp_mask);
2269 
2270 	dump_stack();
2271 	if (!should_suppress_show_mem())
2272 		show_mem(filter);
2273 }
2274 
2275 static inline int
2276 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2277 				unsigned long did_some_progress,
2278 				unsigned long pages_reclaimed)
2279 {
2280 	/* Do not loop if specifically requested */
2281 	if (gfp_mask & __GFP_NORETRY)
2282 		return 0;
2283 
2284 	/* Always retry if specifically requested */
2285 	if (gfp_mask & __GFP_NOFAIL)
2286 		return 1;
2287 
2288 	/*
2289 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2290 	 * making forward progress without invoking OOM. Suspend also disables
2291 	 * storage devices so kswapd will not help. Bail if we are suspending.
2292 	 */
2293 	if (!did_some_progress && pm_suspended_storage())
2294 		return 0;
2295 
2296 	/*
2297 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2298 	 * means __GFP_NOFAIL, but that may not be true in other
2299 	 * implementations.
2300 	 */
2301 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2302 		return 1;
2303 
2304 	/*
2305 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2306 	 * specified, then we retry until we no longer reclaim any pages
2307 	 * (above), or we've reclaimed an order of pages at least as
2308 	 * large as the allocation's order. In both cases, if the
2309 	 * allocation still fails, we stop retrying.
2310 	 */
2311 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2312 		return 1;
2313 
2314 	return 0;
2315 }
2316 
2317 static inline struct page *
2318 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2319 	const struct alloc_context *ac, unsigned long *did_some_progress)
2320 {
2321 	struct page *page;
2322 
2323 	*did_some_progress = 0;
2324 
2325 	/*
2326 	 * Acquire the per-zone oom lock for each zone.  If that
2327 	 * fails, somebody else is making progress for us.
2328 	 */
2329 	if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2330 		*did_some_progress = 1;
2331 		schedule_timeout_uninterruptible(1);
2332 		return NULL;
2333 	}
2334 
2335 	/*
2336 	 * Go through the zonelist yet one more time, keep very high watermark
2337 	 * here, this is only to catch a parallel oom killing, we must fail if
2338 	 * we're still under heavy pressure.
2339 	 */
2340 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2341 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2342 	if (page)
2343 		goto out;
2344 
2345 	if (!(gfp_mask & __GFP_NOFAIL)) {
2346 		/* Coredumps can quickly deplete all memory reserves */
2347 		if (current->flags & PF_DUMPCORE)
2348 			goto out;
2349 		/* The OOM killer will not help higher order allocs */
2350 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2351 			goto out;
2352 		/* The OOM killer does not needlessly kill tasks for lowmem */
2353 		if (ac->high_zoneidx < ZONE_NORMAL)
2354 			goto out;
2355 		/* The OOM killer does not compensate for light reclaim */
2356 		if (!(gfp_mask & __GFP_FS))
2357 			goto out;
2358 		/*
2359 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2360 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2361 		 * The caller should handle page allocation failure by itself if
2362 		 * it specifies __GFP_THISNODE.
2363 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2364 		 */
2365 		if (gfp_mask & __GFP_THISNODE)
2366 			goto out;
2367 	}
2368 	/* Exhausted what can be done so it's blamo time */
2369 	if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false))
2370 		*did_some_progress = 1;
2371 out:
2372 	oom_zonelist_unlock(ac->zonelist, gfp_mask);
2373 	return page;
2374 }
2375 
2376 #ifdef CONFIG_COMPACTION
2377 /* Try memory compaction for high-order allocations before reclaim */
2378 static struct page *
2379 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2380 		int alloc_flags, const struct alloc_context *ac,
2381 		enum migrate_mode mode, int *contended_compaction,
2382 		bool *deferred_compaction)
2383 {
2384 	unsigned long compact_result;
2385 	struct page *page;
2386 
2387 	if (!order)
2388 		return NULL;
2389 
2390 	current->flags |= PF_MEMALLOC;
2391 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2392 						mode, contended_compaction);
2393 	current->flags &= ~PF_MEMALLOC;
2394 
2395 	switch (compact_result) {
2396 	case COMPACT_DEFERRED:
2397 		*deferred_compaction = true;
2398 		/* fall-through */
2399 	case COMPACT_SKIPPED:
2400 		return NULL;
2401 	default:
2402 		break;
2403 	}
2404 
2405 	/*
2406 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2407 	 * count a compaction stall
2408 	 */
2409 	count_vm_event(COMPACTSTALL);
2410 
2411 	page = get_page_from_freelist(gfp_mask, order,
2412 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2413 
2414 	if (page) {
2415 		struct zone *zone = page_zone(page);
2416 
2417 		zone->compact_blockskip_flush = false;
2418 		compaction_defer_reset(zone, order, true);
2419 		count_vm_event(COMPACTSUCCESS);
2420 		return page;
2421 	}
2422 
2423 	/*
2424 	 * It's bad if compaction run occurs and fails. The most likely reason
2425 	 * is that pages exist, but not enough to satisfy watermarks.
2426 	 */
2427 	count_vm_event(COMPACTFAIL);
2428 
2429 	cond_resched();
2430 
2431 	return NULL;
2432 }
2433 #else
2434 static inline struct page *
2435 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2436 		int alloc_flags, const struct alloc_context *ac,
2437 		enum migrate_mode mode, int *contended_compaction,
2438 		bool *deferred_compaction)
2439 {
2440 	return NULL;
2441 }
2442 #endif /* CONFIG_COMPACTION */
2443 
2444 /* Perform direct synchronous page reclaim */
2445 static int
2446 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2447 					const struct alloc_context *ac)
2448 {
2449 	struct reclaim_state reclaim_state;
2450 	int progress;
2451 
2452 	cond_resched();
2453 
2454 	/* We now go into synchronous reclaim */
2455 	cpuset_memory_pressure_bump();
2456 	current->flags |= PF_MEMALLOC;
2457 	lockdep_set_current_reclaim_state(gfp_mask);
2458 	reclaim_state.reclaimed_slab = 0;
2459 	current->reclaim_state = &reclaim_state;
2460 
2461 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2462 								ac->nodemask);
2463 
2464 	current->reclaim_state = NULL;
2465 	lockdep_clear_current_reclaim_state();
2466 	current->flags &= ~PF_MEMALLOC;
2467 
2468 	cond_resched();
2469 
2470 	return progress;
2471 }
2472 
2473 /* The really slow allocator path where we enter direct reclaim */
2474 static inline struct page *
2475 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2476 		int alloc_flags, const struct alloc_context *ac,
2477 		unsigned long *did_some_progress)
2478 {
2479 	struct page *page = NULL;
2480 	bool drained = false;
2481 
2482 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2483 	if (unlikely(!(*did_some_progress)))
2484 		return NULL;
2485 
2486 	/* After successful reclaim, reconsider all zones for allocation */
2487 	if (IS_ENABLED(CONFIG_NUMA))
2488 		zlc_clear_zones_full(ac->zonelist);
2489 
2490 retry:
2491 	page = get_page_from_freelist(gfp_mask, order,
2492 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2493 
2494 	/*
2495 	 * If an allocation failed after direct reclaim, it could be because
2496 	 * pages are pinned on the per-cpu lists. Drain them and try again
2497 	 */
2498 	if (!page && !drained) {
2499 		drain_all_pages(NULL);
2500 		drained = true;
2501 		goto retry;
2502 	}
2503 
2504 	return page;
2505 }
2506 
2507 /*
2508  * This is called in the allocator slow-path if the allocation request is of
2509  * sufficient urgency to ignore watermarks and take other desperate measures
2510  */
2511 static inline struct page *
2512 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2513 				const struct alloc_context *ac)
2514 {
2515 	struct page *page;
2516 
2517 	do {
2518 		page = get_page_from_freelist(gfp_mask, order,
2519 						ALLOC_NO_WATERMARKS, ac);
2520 
2521 		if (!page && gfp_mask & __GFP_NOFAIL)
2522 			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2523 									HZ/50);
2524 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2525 
2526 	return page;
2527 }
2528 
2529 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2530 {
2531 	struct zoneref *z;
2532 	struct zone *zone;
2533 
2534 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2535 						ac->high_zoneidx, ac->nodemask)
2536 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2537 }
2538 
2539 static inline int
2540 gfp_to_alloc_flags(gfp_t gfp_mask)
2541 {
2542 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2543 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2544 
2545 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2546 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2547 
2548 	/*
2549 	 * The caller may dip into page reserves a bit more if the caller
2550 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2551 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2552 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2553 	 */
2554 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2555 
2556 	if (atomic) {
2557 		/*
2558 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2559 		 * if it can't schedule.
2560 		 */
2561 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2562 			alloc_flags |= ALLOC_HARDER;
2563 		/*
2564 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2565 		 * comment for __cpuset_node_allowed().
2566 		 */
2567 		alloc_flags &= ~ALLOC_CPUSET;
2568 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2569 		alloc_flags |= ALLOC_HARDER;
2570 
2571 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2572 		if (gfp_mask & __GFP_MEMALLOC)
2573 			alloc_flags |= ALLOC_NO_WATERMARKS;
2574 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2575 			alloc_flags |= ALLOC_NO_WATERMARKS;
2576 		else if (!in_interrupt() &&
2577 				((current->flags & PF_MEMALLOC) ||
2578 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2579 			alloc_flags |= ALLOC_NO_WATERMARKS;
2580 	}
2581 #ifdef CONFIG_CMA
2582 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2583 		alloc_flags |= ALLOC_CMA;
2584 #endif
2585 	return alloc_flags;
2586 }
2587 
2588 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2589 {
2590 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2591 }
2592 
2593 static inline struct page *
2594 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2595 						struct alloc_context *ac)
2596 {
2597 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2598 	struct page *page = NULL;
2599 	int alloc_flags;
2600 	unsigned long pages_reclaimed = 0;
2601 	unsigned long did_some_progress;
2602 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2603 	bool deferred_compaction = false;
2604 	int contended_compaction = COMPACT_CONTENDED_NONE;
2605 
2606 	/*
2607 	 * In the slowpath, we sanity check order to avoid ever trying to
2608 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2609 	 * be using allocators in order of preference for an area that is
2610 	 * too large.
2611 	 */
2612 	if (order >= MAX_ORDER) {
2613 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2614 		return NULL;
2615 	}
2616 
2617 	/*
2618 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2619 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2620 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2621 	 * using a larger set of nodes after it has established that the
2622 	 * allowed per node queues are empty and that nodes are
2623 	 * over allocated.
2624 	 */
2625 	if (IS_ENABLED(CONFIG_NUMA) &&
2626 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2627 		goto nopage;
2628 
2629 retry:
2630 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2631 		wake_all_kswapds(order, ac);
2632 
2633 	/*
2634 	 * OK, we're below the kswapd watermark and have kicked background
2635 	 * reclaim. Now things get more complex, so set up alloc_flags according
2636 	 * to how we want to proceed.
2637 	 */
2638 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2639 
2640 	/*
2641 	 * Find the true preferred zone if the allocation is unconstrained by
2642 	 * cpusets.
2643 	 */
2644 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2645 		struct zoneref *preferred_zoneref;
2646 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
2647 				ac->high_zoneidx, NULL, &ac->preferred_zone);
2648 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2649 	}
2650 
2651 	/* This is the last chance, in general, before the goto nopage. */
2652 	page = get_page_from_freelist(gfp_mask, order,
2653 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2654 	if (page)
2655 		goto got_pg;
2656 
2657 	/* Allocate without watermarks if the context allows */
2658 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2659 		/*
2660 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2661 		 * the allocation is high priority and these type of
2662 		 * allocations are system rather than user orientated
2663 		 */
2664 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2665 
2666 		page = __alloc_pages_high_priority(gfp_mask, order, ac);
2667 
2668 		if (page) {
2669 			goto got_pg;
2670 		}
2671 	}
2672 
2673 	/* Atomic allocations - we can't balance anything */
2674 	if (!wait) {
2675 		/*
2676 		 * All existing users of the deprecated __GFP_NOFAIL are
2677 		 * blockable, so warn of any new users that actually allow this
2678 		 * type of allocation to fail.
2679 		 */
2680 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2681 		goto nopage;
2682 	}
2683 
2684 	/* Avoid recursion of direct reclaim */
2685 	if (current->flags & PF_MEMALLOC)
2686 		goto nopage;
2687 
2688 	/* Avoid allocations with no watermarks from looping endlessly */
2689 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2690 		goto nopage;
2691 
2692 	/*
2693 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2694 	 * attempts after direct reclaim are synchronous
2695 	 */
2696 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2697 					migration_mode,
2698 					&contended_compaction,
2699 					&deferred_compaction);
2700 	if (page)
2701 		goto got_pg;
2702 
2703 	/* Checks for THP-specific high-order allocations */
2704 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2705 		/*
2706 		 * If compaction is deferred for high-order allocations, it is
2707 		 * because sync compaction recently failed. If this is the case
2708 		 * and the caller requested a THP allocation, we do not want
2709 		 * to heavily disrupt the system, so we fail the allocation
2710 		 * instead of entering direct reclaim.
2711 		 */
2712 		if (deferred_compaction)
2713 			goto nopage;
2714 
2715 		/*
2716 		 * In all zones where compaction was attempted (and not
2717 		 * deferred or skipped), lock contention has been detected.
2718 		 * For THP allocation we do not want to disrupt the others
2719 		 * so we fallback to base pages instead.
2720 		 */
2721 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2722 			goto nopage;
2723 
2724 		/*
2725 		 * If compaction was aborted due to need_resched(), we do not
2726 		 * want to further increase allocation latency, unless it is
2727 		 * khugepaged trying to collapse.
2728 		 */
2729 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2730 			&& !(current->flags & PF_KTHREAD))
2731 			goto nopage;
2732 	}
2733 
2734 	/*
2735 	 * It can become very expensive to allocate transparent hugepages at
2736 	 * fault, so use asynchronous memory compaction for THP unless it is
2737 	 * khugepaged trying to collapse.
2738 	 */
2739 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2740 						(current->flags & PF_KTHREAD))
2741 		migration_mode = MIGRATE_SYNC_LIGHT;
2742 
2743 	/* Try direct reclaim and then allocating */
2744 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2745 							&did_some_progress);
2746 	if (page)
2747 		goto got_pg;
2748 
2749 	/* Check if we should retry the allocation */
2750 	pages_reclaimed += did_some_progress;
2751 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2752 						pages_reclaimed)) {
2753 		/*
2754 		 * If we fail to make progress by freeing individual
2755 		 * pages, but the allocation wants us to keep going,
2756 		 * start OOM killing tasks.
2757 		 */
2758 		if (!did_some_progress) {
2759 			page = __alloc_pages_may_oom(gfp_mask, order, ac,
2760 							&did_some_progress);
2761 			if (page)
2762 				goto got_pg;
2763 			if (!did_some_progress)
2764 				goto nopage;
2765 		}
2766 		/* Wait for some write requests to complete then retry */
2767 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2768 		goto retry;
2769 	} else {
2770 		/*
2771 		 * High-order allocations do not necessarily loop after
2772 		 * direct reclaim and reclaim/compaction depends on compaction
2773 		 * being called after reclaim so call directly if necessary
2774 		 */
2775 		page = __alloc_pages_direct_compact(gfp_mask, order,
2776 					alloc_flags, ac, migration_mode,
2777 					&contended_compaction,
2778 					&deferred_compaction);
2779 		if (page)
2780 			goto got_pg;
2781 	}
2782 
2783 nopage:
2784 	warn_alloc_failed(gfp_mask, order, NULL);
2785 got_pg:
2786 	return page;
2787 }
2788 
2789 /*
2790  * This is the 'heart' of the zoned buddy allocator.
2791  */
2792 struct page *
2793 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2794 			struct zonelist *zonelist, nodemask_t *nodemask)
2795 {
2796 	struct zoneref *preferred_zoneref;
2797 	struct page *page = NULL;
2798 	unsigned int cpuset_mems_cookie;
2799 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2800 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2801 	struct alloc_context ac = {
2802 		.high_zoneidx = gfp_zone(gfp_mask),
2803 		.nodemask = nodemask,
2804 		.migratetype = gfpflags_to_migratetype(gfp_mask),
2805 	};
2806 
2807 	gfp_mask &= gfp_allowed_mask;
2808 
2809 	lockdep_trace_alloc(gfp_mask);
2810 
2811 	might_sleep_if(gfp_mask & __GFP_WAIT);
2812 
2813 	if (should_fail_alloc_page(gfp_mask, order))
2814 		return NULL;
2815 
2816 	/*
2817 	 * Check the zones suitable for the gfp_mask contain at least one
2818 	 * valid zone. It's possible to have an empty zonelist as a result
2819 	 * of GFP_THISNODE and a memoryless node
2820 	 */
2821 	if (unlikely(!zonelist->_zonerefs->zone))
2822 		return NULL;
2823 
2824 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2825 		alloc_flags |= ALLOC_CMA;
2826 
2827 retry_cpuset:
2828 	cpuset_mems_cookie = read_mems_allowed_begin();
2829 
2830 	/* We set it here, as __alloc_pages_slowpath might have changed it */
2831 	ac.zonelist = zonelist;
2832 	/* The preferred zone is used for statistics later */
2833 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2834 				ac.nodemask ? : &cpuset_current_mems_allowed,
2835 				&ac.preferred_zone);
2836 	if (!ac.preferred_zone)
2837 		goto out;
2838 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2839 
2840 	/* First allocation attempt */
2841 	alloc_mask = gfp_mask|__GFP_HARDWALL;
2842 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2843 	if (unlikely(!page)) {
2844 		/*
2845 		 * Runtime PM, block IO and its error handling path
2846 		 * can deadlock because I/O on the device might not
2847 		 * complete.
2848 		 */
2849 		alloc_mask = memalloc_noio_flags(gfp_mask);
2850 
2851 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2852 	}
2853 
2854 	if (kmemcheck_enabled && page)
2855 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2856 
2857 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2858 
2859 out:
2860 	/*
2861 	 * When updating a task's mems_allowed, it is possible to race with
2862 	 * parallel threads in such a way that an allocation can fail while
2863 	 * the mask is being updated. If a page allocation is about to fail,
2864 	 * check if the cpuset changed during allocation and if so, retry.
2865 	 */
2866 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2867 		goto retry_cpuset;
2868 
2869 	return page;
2870 }
2871 EXPORT_SYMBOL(__alloc_pages_nodemask);
2872 
2873 /*
2874  * Common helper functions.
2875  */
2876 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2877 {
2878 	struct page *page;
2879 
2880 	/*
2881 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2882 	 * a highmem page
2883 	 */
2884 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2885 
2886 	page = alloc_pages(gfp_mask, order);
2887 	if (!page)
2888 		return 0;
2889 	return (unsigned long) page_address(page);
2890 }
2891 EXPORT_SYMBOL(__get_free_pages);
2892 
2893 unsigned long get_zeroed_page(gfp_t gfp_mask)
2894 {
2895 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2896 }
2897 EXPORT_SYMBOL(get_zeroed_page);
2898 
2899 void __free_pages(struct page *page, unsigned int order)
2900 {
2901 	if (put_page_testzero(page)) {
2902 		if (order == 0)
2903 			free_hot_cold_page(page, false);
2904 		else
2905 			__free_pages_ok(page, order);
2906 	}
2907 }
2908 
2909 EXPORT_SYMBOL(__free_pages);
2910 
2911 void free_pages(unsigned long addr, unsigned int order)
2912 {
2913 	if (addr != 0) {
2914 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2915 		__free_pages(virt_to_page((void *)addr), order);
2916 	}
2917 }
2918 
2919 EXPORT_SYMBOL(free_pages);
2920 
2921 /*
2922  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2923  * of the current memory cgroup.
2924  *
2925  * It should be used when the caller would like to use kmalloc, but since the
2926  * allocation is large, it has to fall back to the page allocator.
2927  */
2928 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2929 {
2930 	struct page *page;
2931 	struct mem_cgroup *memcg = NULL;
2932 
2933 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2934 		return NULL;
2935 	page = alloc_pages(gfp_mask, order);
2936 	memcg_kmem_commit_charge(page, memcg, order);
2937 	return page;
2938 }
2939 
2940 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2941 {
2942 	struct page *page;
2943 	struct mem_cgroup *memcg = NULL;
2944 
2945 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2946 		return NULL;
2947 	page = alloc_pages_node(nid, gfp_mask, order);
2948 	memcg_kmem_commit_charge(page, memcg, order);
2949 	return page;
2950 }
2951 
2952 /*
2953  * __free_kmem_pages and free_kmem_pages will free pages allocated with
2954  * alloc_kmem_pages.
2955  */
2956 void __free_kmem_pages(struct page *page, unsigned int order)
2957 {
2958 	memcg_kmem_uncharge_pages(page, order);
2959 	__free_pages(page, order);
2960 }
2961 
2962 void free_kmem_pages(unsigned long addr, unsigned int order)
2963 {
2964 	if (addr != 0) {
2965 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2966 		__free_kmem_pages(virt_to_page((void *)addr), order);
2967 	}
2968 }
2969 
2970 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2971 {
2972 	if (addr) {
2973 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2974 		unsigned long used = addr + PAGE_ALIGN(size);
2975 
2976 		split_page(virt_to_page((void *)addr), order);
2977 		while (used < alloc_end) {
2978 			free_page(used);
2979 			used += PAGE_SIZE;
2980 		}
2981 	}
2982 	return (void *)addr;
2983 }
2984 
2985 /**
2986  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2987  * @size: the number of bytes to allocate
2988  * @gfp_mask: GFP flags for the allocation
2989  *
2990  * This function is similar to alloc_pages(), except that it allocates the
2991  * minimum number of pages to satisfy the request.  alloc_pages() can only
2992  * allocate memory in power-of-two pages.
2993  *
2994  * This function is also limited by MAX_ORDER.
2995  *
2996  * Memory allocated by this function must be released by free_pages_exact().
2997  */
2998 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2999 {
3000 	unsigned int order = get_order(size);
3001 	unsigned long addr;
3002 
3003 	addr = __get_free_pages(gfp_mask, order);
3004 	return make_alloc_exact(addr, order, size);
3005 }
3006 EXPORT_SYMBOL(alloc_pages_exact);
3007 
3008 /**
3009  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3010  *			   pages on a node.
3011  * @nid: the preferred node ID where memory should be allocated
3012  * @size: the number of bytes to allocate
3013  * @gfp_mask: GFP flags for the allocation
3014  *
3015  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3016  * back.
3017  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3018  * but is not exact.
3019  */
3020 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3021 {
3022 	unsigned order = get_order(size);
3023 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3024 	if (!p)
3025 		return NULL;
3026 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3027 }
3028 
3029 /**
3030  * free_pages_exact - release memory allocated via alloc_pages_exact()
3031  * @virt: the value returned by alloc_pages_exact.
3032  * @size: size of allocation, same value as passed to alloc_pages_exact().
3033  *
3034  * Release the memory allocated by a previous call to alloc_pages_exact.
3035  */
3036 void free_pages_exact(void *virt, size_t size)
3037 {
3038 	unsigned long addr = (unsigned long)virt;
3039 	unsigned long end = addr + PAGE_ALIGN(size);
3040 
3041 	while (addr < end) {
3042 		free_page(addr);
3043 		addr += PAGE_SIZE;
3044 	}
3045 }
3046 EXPORT_SYMBOL(free_pages_exact);
3047 
3048 /**
3049  * nr_free_zone_pages - count number of pages beyond high watermark
3050  * @offset: The zone index of the highest zone
3051  *
3052  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3053  * high watermark within all zones at or below a given zone index.  For each
3054  * zone, the number of pages is calculated as:
3055  *     managed_pages - high_pages
3056  */
3057 static unsigned long nr_free_zone_pages(int offset)
3058 {
3059 	struct zoneref *z;
3060 	struct zone *zone;
3061 
3062 	/* Just pick one node, since fallback list is circular */
3063 	unsigned long sum = 0;
3064 
3065 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3066 
3067 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3068 		unsigned long size = zone->managed_pages;
3069 		unsigned long high = high_wmark_pages(zone);
3070 		if (size > high)
3071 			sum += size - high;
3072 	}
3073 
3074 	return sum;
3075 }
3076 
3077 /**
3078  * nr_free_buffer_pages - count number of pages beyond high watermark
3079  *
3080  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3081  * watermark within ZONE_DMA and ZONE_NORMAL.
3082  */
3083 unsigned long nr_free_buffer_pages(void)
3084 {
3085 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3086 }
3087 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3088 
3089 /**
3090  * nr_free_pagecache_pages - count number of pages beyond high watermark
3091  *
3092  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3093  * high watermark within all zones.
3094  */
3095 unsigned long nr_free_pagecache_pages(void)
3096 {
3097 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3098 }
3099 
3100 static inline void show_node(struct zone *zone)
3101 {
3102 	if (IS_ENABLED(CONFIG_NUMA))
3103 		printk("Node %d ", zone_to_nid(zone));
3104 }
3105 
3106 void si_meminfo(struct sysinfo *val)
3107 {
3108 	val->totalram = totalram_pages;
3109 	val->sharedram = global_page_state(NR_SHMEM);
3110 	val->freeram = global_page_state(NR_FREE_PAGES);
3111 	val->bufferram = nr_blockdev_pages();
3112 	val->totalhigh = totalhigh_pages;
3113 	val->freehigh = nr_free_highpages();
3114 	val->mem_unit = PAGE_SIZE;
3115 }
3116 
3117 EXPORT_SYMBOL(si_meminfo);
3118 
3119 #ifdef CONFIG_NUMA
3120 void si_meminfo_node(struct sysinfo *val, int nid)
3121 {
3122 	int zone_type;		/* needs to be signed */
3123 	unsigned long managed_pages = 0;
3124 	pg_data_t *pgdat = NODE_DATA(nid);
3125 
3126 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3127 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3128 	val->totalram = managed_pages;
3129 	val->sharedram = node_page_state(nid, NR_SHMEM);
3130 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3131 #ifdef CONFIG_HIGHMEM
3132 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3133 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3134 			NR_FREE_PAGES);
3135 #else
3136 	val->totalhigh = 0;
3137 	val->freehigh = 0;
3138 #endif
3139 	val->mem_unit = PAGE_SIZE;
3140 }
3141 #endif
3142 
3143 /*
3144  * Determine whether the node should be displayed or not, depending on whether
3145  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3146  */
3147 bool skip_free_areas_node(unsigned int flags, int nid)
3148 {
3149 	bool ret = false;
3150 	unsigned int cpuset_mems_cookie;
3151 
3152 	if (!(flags & SHOW_MEM_FILTER_NODES))
3153 		goto out;
3154 
3155 	do {
3156 		cpuset_mems_cookie = read_mems_allowed_begin();
3157 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3158 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3159 out:
3160 	return ret;
3161 }
3162 
3163 #define K(x) ((x) << (PAGE_SHIFT-10))
3164 
3165 static void show_migration_types(unsigned char type)
3166 {
3167 	static const char types[MIGRATE_TYPES] = {
3168 		[MIGRATE_UNMOVABLE]	= 'U',
3169 		[MIGRATE_RECLAIMABLE]	= 'E',
3170 		[MIGRATE_MOVABLE]	= 'M',
3171 		[MIGRATE_RESERVE]	= 'R',
3172 #ifdef CONFIG_CMA
3173 		[MIGRATE_CMA]		= 'C',
3174 #endif
3175 #ifdef CONFIG_MEMORY_ISOLATION
3176 		[MIGRATE_ISOLATE]	= 'I',
3177 #endif
3178 	};
3179 	char tmp[MIGRATE_TYPES + 1];
3180 	char *p = tmp;
3181 	int i;
3182 
3183 	for (i = 0; i < MIGRATE_TYPES; i++) {
3184 		if (type & (1 << i))
3185 			*p++ = types[i];
3186 	}
3187 
3188 	*p = '\0';
3189 	printk("(%s) ", tmp);
3190 }
3191 
3192 /*
3193  * Show free area list (used inside shift_scroll-lock stuff)
3194  * We also calculate the percentage fragmentation. We do this by counting the
3195  * memory on each free list with the exception of the first item on the list.
3196  * Suppresses nodes that are not allowed by current's cpuset if
3197  * SHOW_MEM_FILTER_NODES is passed.
3198  */
3199 void show_free_areas(unsigned int filter)
3200 {
3201 	int cpu;
3202 	struct zone *zone;
3203 
3204 	for_each_populated_zone(zone) {
3205 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3206 			continue;
3207 		show_node(zone);
3208 		printk("%s per-cpu:\n", zone->name);
3209 
3210 		for_each_online_cpu(cpu) {
3211 			struct per_cpu_pageset *pageset;
3212 
3213 			pageset = per_cpu_ptr(zone->pageset, cpu);
3214 
3215 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3216 			       cpu, pageset->pcp.high,
3217 			       pageset->pcp.batch, pageset->pcp.count);
3218 		}
3219 	}
3220 
3221 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3222 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3223 		" unevictable:%lu"
3224 		" dirty:%lu writeback:%lu unstable:%lu\n"
3225 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3226 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3227 		" free_cma:%lu\n",
3228 		global_page_state(NR_ACTIVE_ANON),
3229 		global_page_state(NR_INACTIVE_ANON),
3230 		global_page_state(NR_ISOLATED_ANON),
3231 		global_page_state(NR_ACTIVE_FILE),
3232 		global_page_state(NR_INACTIVE_FILE),
3233 		global_page_state(NR_ISOLATED_FILE),
3234 		global_page_state(NR_UNEVICTABLE),
3235 		global_page_state(NR_FILE_DIRTY),
3236 		global_page_state(NR_WRITEBACK),
3237 		global_page_state(NR_UNSTABLE_NFS),
3238 		global_page_state(NR_FREE_PAGES),
3239 		global_page_state(NR_SLAB_RECLAIMABLE),
3240 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3241 		global_page_state(NR_FILE_MAPPED),
3242 		global_page_state(NR_SHMEM),
3243 		global_page_state(NR_PAGETABLE),
3244 		global_page_state(NR_BOUNCE),
3245 		global_page_state(NR_FREE_CMA_PAGES));
3246 
3247 	for_each_populated_zone(zone) {
3248 		int i;
3249 
3250 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3251 			continue;
3252 		show_node(zone);
3253 		printk("%s"
3254 			" free:%lukB"
3255 			" min:%lukB"
3256 			" low:%lukB"
3257 			" high:%lukB"
3258 			" active_anon:%lukB"
3259 			" inactive_anon:%lukB"
3260 			" active_file:%lukB"
3261 			" inactive_file:%lukB"
3262 			" unevictable:%lukB"
3263 			" isolated(anon):%lukB"
3264 			" isolated(file):%lukB"
3265 			" present:%lukB"
3266 			" managed:%lukB"
3267 			" mlocked:%lukB"
3268 			" dirty:%lukB"
3269 			" writeback:%lukB"
3270 			" mapped:%lukB"
3271 			" shmem:%lukB"
3272 			" slab_reclaimable:%lukB"
3273 			" slab_unreclaimable:%lukB"
3274 			" kernel_stack:%lukB"
3275 			" pagetables:%lukB"
3276 			" unstable:%lukB"
3277 			" bounce:%lukB"
3278 			" free_cma:%lukB"
3279 			" writeback_tmp:%lukB"
3280 			" pages_scanned:%lu"
3281 			" all_unreclaimable? %s"
3282 			"\n",
3283 			zone->name,
3284 			K(zone_page_state(zone, NR_FREE_PAGES)),
3285 			K(min_wmark_pages(zone)),
3286 			K(low_wmark_pages(zone)),
3287 			K(high_wmark_pages(zone)),
3288 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3289 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3290 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3291 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3292 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3293 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3294 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3295 			K(zone->present_pages),
3296 			K(zone->managed_pages),
3297 			K(zone_page_state(zone, NR_MLOCK)),
3298 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3299 			K(zone_page_state(zone, NR_WRITEBACK)),
3300 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3301 			K(zone_page_state(zone, NR_SHMEM)),
3302 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3303 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3304 			zone_page_state(zone, NR_KERNEL_STACK) *
3305 				THREAD_SIZE / 1024,
3306 			K(zone_page_state(zone, NR_PAGETABLE)),
3307 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3308 			K(zone_page_state(zone, NR_BOUNCE)),
3309 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3310 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3311 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3312 			(!zone_reclaimable(zone) ? "yes" : "no")
3313 			);
3314 		printk("lowmem_reserve[]:");
3315 		for (i = 0; i < MAX_NR_ZONES; i++)
3316 			printk(" %ld", zone->lowmem_reserve[i]);
3317 		printk("\n");
3318 	}
3319 
3320 	for_each_populated_zone(zone) {
3321 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3322 		unsigned char types[MAX_ORDER];
3323 
3324 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3325 			continue;
3326 		show_node(zone);
3327 		printk("%s: ", zone->name);
3328 
3329 		spin_lock_irqsave(&zone->lock, flags);
3330 		for (order = 0; order < MAX_ORDER; order++) {
3331 			struct free_area *area = &zone->free_area[order];
3332 			int type;
3333 
3334 			nr[order] = area->nr_free;
3335 			total += nr[order] << order;
3336 
3337 			types[order] = 0;
3338 			for (type = 0; type < MIGRATE_TYPES; type++) {
3339 				if (!list_empty(&area->free_list[type]))
3340 					types[order] |= 1 << type;
3341 			}
3342 		}
3343 		spin_unlock_irqrestore(&zone->lock, flags);
3344 		for (order = 0; order < MAX_ORDER; order++) {
3345 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3346 			if (nr[order])
3347 				show_migration_types(types[order]);
3348 		}
3349 		printk("= %lukB\n", K(total));
3350 	}
3351 
3352 	hugetlb_show_meminfo();
3353 
3354 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3355 
3356 	show_swap_cache_info();
3357 }
3358 
3359 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3360 {
3361 	zoneref->zone = zone;
3362 	zoneref->zone_idx = zone_idx(zone);
3363 }
3364 
3365 /*
3366  * Builds allocation fallback zone lists.
3367  *
3368  * Add all populated zones of a node to the zonelist.
3369  */
3370 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3371 				int nr_zones)
3372 {
3373 	struct zone *zone;
3374 	enum zone_type zone_type = MAX_NR_ZONES;
3375 
3376 	do {
3377 		zone_type--;
3378 		zone = pgdat->node_zones + zone_type;
3379 		if (populated_zone(zone)) {
3380 			zoneref_set_zone(zone,
3381 				&zonelist->_zonerefs[nr_zones++]);
3382 			check_highest_zone(zone_type);
3383 		}
3384 	} while (zone_type);
3385 
3386 	return nr_zones;
3387 }
3388 
3389 
3390 /*
3391  *  zonelist_order:
3392  *  0 = automatic detection of better ordering.
3393  *  1 = order by ([node] distance, -zonetype)
3394  *  2 = order by (-zonetype, [node] distance)
3395  *
3396  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3397  *  the same zonelist. So only NUMA can configure this param.
3398  */
3399 #define ZONELIST_ORDER_DEFAULT  0
3400 #define ZONELIST_ORDER_NODE     1
3401 #define ZONELIST_ORDER_ZONE     2
3402 
3403 /* zonelist order in the kernel.
3404  * set_zonelist_order() will set this to NODE or ZONE.
3405  */
3406 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3407 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3408 
3409 
3410 #ifdef CONFIG_NUMA
3411 /* The value user specified ....changed by config */
3412 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3413 /* string for sysctl */
3414 #define NUMA_ZONELIST_ORDER_LEN	16
3415 char numa_zonelist_order[16] = "default";
3416 
3417 /*
3418  * interface for configure zonelist ordering.
3419  * command line option "numa_zonelist_order"
3420  *	= "[dD]efault	- default, automatic configuration.
3421  *	= "[nN]ode 	- order by node locality, then by zone within node
3422  *	= "[zZ]one      - order by zone, then by locality within zone
3423  */
3424 
3425 static int __parse_numa_zonelist_order(char *s)
3426 {
3427 	if (*s == 'd' || *s == 'D') {
3428 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3429 	} else if (*s == 'n' || *s == 'N') {
3430 		user_zonelist_order = ZONELIST_ORDER_NODE;
3431 	} else if (*s == 'z' || *s == 'Z') {
3432 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3433 	} else {
3434 		printk(KERN_WARNING
3435 			"Ignoring invalid numa_zonelist_order value:  "
3436 			"%s\n", s);
3437 		return -EINVAL;
3438 	}
3439 	return 0;
3440 }
3441 
3442 static __init int setup_numa_zonelist_order(char *s)
3443 {
3444 	int ret;
3445 
3446 	if (!s)
3447 		return 0;
3448 
3449 	ret = __parse_numa_zonelist_order(s);
3450 	if (ret == 0)
3451 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3452 
3453 	return ret;
3454 }
3455 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3456 
3457 /*
3458  * sysctl handler for numa_zonelist_order
3459  */
3460 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3461 		void __user *buffer, size_t *length,
3462 		loff_t *ppos)
3463 {
3464 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3465 	int ret;
3466 	static DEFINE_MUTEX(zl_order_mutex);
3467 
3468 	mutex_lock(&zl_order_mutex);
3469 	if (write) {
3470 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3471 			ret = -EINVAL;
3472 			goto out;
3473 		}
3474 		strcpy(saved_string, (char *)table->data);
3475 	}
3476 	ret = proc_dostring(table, write, buffer, length, ppos);
3477 	if (ret)
3478 		goto out;
3479 	if (write) {
3480 		int oldval = user_zonelist_order;
3481 
3482 		ret = __parse_numa_zonelist_order((char *)table->data);
3483 		if (ret) {
3484 			/*
3485 			 * bogus value.  restore saved string
3486 			 */
3487 			strncpy((char *)table->data, saved_string,
3488 				NUMA_ZONELIST_ORDER_LEN);
3489 			user_zonelist_order = oldval;
3490 		} else if (oldval != user_zonelist_order) {
3491 			mutex_lock(&zonelists_mutex);
3492 			build_all_zonelists(NULL, NULL);
3493 			mutex_unlock(&zonelists_mutex);
3494 		}
3495 	}
3496 out:
3497 	mutex_unlock(&zl_order_mutex);
3498 	return ret;
3499 }
3500 
3501 
3502 #define MAX_NODE_LOAD (nr_online_nodes)
3503 static int node_load[MAX_NUMNODES];
3504 
3505 /**
3506  * find_next_best_node - find the next node that should appear in a given node's fallback list
3507  * @node: node whose fallback list we're appending
3508  * @used_node_mask: nodemask_t of already used nodes
3509  *
3510  * We use a number of factors to determine which is the next node that should
3511  * appear on a given node's fallback list.  The node should not have appeared
3512  * already in @node's fallback list, and it should be the next closest node
3513  * according to the distance array (which contains arbitrary distance values
3514  * from each node to each node in the system), and should also prefer nodes
3515  * with no CPUs, since presumably they'll have very little allocation pressure
3516  * on them otherwise.
3517  * It returns -1 if no node is found.
3518  */
3519 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3520 {
3521 	int n, val;
3522 	int min_val = INT_MAX;
3523 	int best_node = NUMA_NO_NODE;
3524 	const struct cpumask *tmp = cpumask_of_node(0);
3525 
3526 	/* Use the local node if we haven't already */
3527 	if (!node_isset(node, *used_node_mask)) {
3528 		node_set(node, *used_node_mask);
3529 		return node;
3530 	}
3531 
3532 	for_each_node_state(n, N_MEMORY) {
3533 
3534 		/* Don't want a node to appear more than once */
3535 		if (node_isset(n, *used_node_mask))
3536 			continue;
3537 
3538 		/* Use the distance array to find the distance */
3539 		val = node_distance(node, n);
3540 
3541 		/* Penalize nodes under us ("prefer the next node") */
3542 		val += (n < node);
3543 
3544 		/* Give preference to headless and unused nodes */
3545 		tmp = cpumask_of_node(n);
3546 		if (!cpumask_empty(tmp))
3547 			val += PENALTY_FOR_NODE_WITH_CPUS;
3548 
3549 		/* Slight preference for less loaded node */
3550 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3551 		val += node_load[n];
3552 
3553 		if (val < min_val) {
3554 			min_val = val;
3555 			best_node = n;
3556 		}
3557 	}
3558 
3559 	if (best_node >= 0)
3560 		node_set(best_node, *used_node_mask);
3561 
3562 	return best_node;
3563 }
3564 
3565 
3566 /*
3567  * Build zonelists ordered by node and zones within node.
3568  * This results in maximum locality--normal zone overflows into local
3569  * DMA zone, if any--but risks exhausting DMA zone.
3570  */
3571 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3572 {
3573 	int j;
3574 	struct zonelist *zonelist;
3575 
3576 	zonelist = &pgdat->node_zonelists[0];
3577 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3578 		;
3579 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3580 	zonelist->_zonerefs[j].zone = NULL;
3581 	zonelist->_zonerefs[j].zone_idx = 0;
3582 }
3583 
3584 /*
3585  * Build gfp_thisnode zonelists
3586  */
3587 static void build_thisnode_zonelists(pg_data_t *pgdat)
3588 {
3589 	int j;
3590 	struct zonelist *zonelist;
3591 
3592 	zonelist = &pgdat->node_zonelists[1];
3593 	j = build_zonelists_node(pgdat, zonelist, 0);
3594 	zonelist->_zonerefs[j].zone = NULL;
3595 	zonelist->_zonerefs[j].zone_idx = 0;
3596 }
3597 
3598 /*
3599  * Build zonelists ordered by zone and nodes within zones.
3600  * This results in conserving DMA zone[s] until all Normal memory is
3601  * exhausted, but results in overflowing to remote node while memory
3602  * may still exist in local DMA zone.
3603  */
3604 static int node_order[MAX_NUMNODES];
3605 
3606 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3607 {
3608 	int pos, j, node;
3609 	int zone_type;		/* needs to be signed */
3610 	struct zone *z;
3611 	struct zonelist *zonelist;
3612 
3613 	zonelist = &pgdat->node_zonelists[0];
3614 	pos = 0;
3615 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3616 		for (j = 0; j < nr_nodes; j++) {
3617 			node = node_order[j];
3618 			z = &NODE_DATA(node)->node_zones[zone_type];
3619 			if (populated_zone(z)) {
3620 				zoneref_set_zone(z,
3621 					&zonelist->_zonerefs[pos++]);
3622 				check_highest_zone(zone_type);
3623 			}
3624 		}
3625 	}
3626 	zonelist->_zonerefs[pos].zone = NULL;
3627 	zonelist->_zonerefs[pos].zone_idx = 0;
3628 }
3629 
3630 #if defined(CONFIG_64BIT)
3631 /*
3632  * Devices that require DMA32/DMA are relatively rare and do not justify a
3633  * penalty to every machine in case the specialised case applies. Default
3634  * to Node-ordering on 64-bit NUMA machines
3635  */
3636 static int default_zonelist_order(void)
3637 {
3638 	return ZONELIST_ORDER_NODE;
3639 }
3640 #else
3641 /*
3642  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3643  * by the kernel. If processes running on node 0 deplete the low memory zone
3644  * then reclaim will occur more frequency increasing stalls and potentially
3645  * be easier to OOM if a large percentage of the zone is under writeback or
3646  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3647  * Hence, default to zone ordering on 32-bit.
3648  */
3649 static int default_zonelist_order(void)
3650 {
3651 	return ZONELIST_ORDER_ZONE;
3652 }
3653 #endif /* CONFIG_64BIT */
3654 
3655 static void set_zonelist_order(void)
3656 {
3657 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3658 		current_zonelist_order = default_zonelist_order();
3659 	else
3660 		current_zonelist_order = user_zonelist_order;
3661 }
3662 
3663 static void build_zonelists(pg_data_t *pgdat)
3664 {
3665 	int j, node, load;
3666 	enum zone_type i;
3667 	nodemask_t used_mask;
3668 	int local_node, prev_node;
3669 	struct zonelist *zonelist;
3670 	int order = current_zonelist_order;
3671 
3672 	/* initialize zonelists */
3673 	for (i = 0; i < MAX_ZONELISTS; i++) {
3674 		zonelist = pgdat->node_zonelists + i;
3675 		zonelist->_zonerefs[0].zone = NULL;
3676 		zonelist->_zonerefs[0].zone_idx = 0;
3677 	}
3678 
3679 	/* NUMA-aware ordering of nodes */
3680 	local_node = pgdat->node_id;
3681 	load = nr_online_nodes;
3682 	prev_node = local_node;
3683 	nodes_clear(used_mask);
3684 
3685 	memset(node_order, 0, sizeof(node_order));
3686 	j = 0;
3687 
3688 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3689 		/*
3690 		 * We don't want to pressure a particular node.
3691 		 * So adding penalty to the first node in same
3692 		 * distance group to make it round-robin.
3693 		 */
3694 		if (node_distance(local_node, node) !=
3695 		    node_distance(local_node, prev_node))
3696 			node_load[node] = load;
3697 
3698 		prev_node = node;
3699 		load--;
3700 		if (order == ZONELIST_ORDER_NODE)
3701 			build_zonelists_in_node_order(pgdat, node);
3702 		else
3703 			node_order[j++] = node;	/* remember order */
3704 	}
3705 
3706 	if (order == ZONELIST_ORDER_ZONE) {
3707 		/* calculate node order -- i.e., DMA last! */
3708 		build_zonelists_in_zone_order(pgdat, j);
3709 	}
3710 
3711 	build_thisnode_zonelists(pgdat);
3712 }
3713 
3714 /* Construct the zonelist performance cache - see further mmzone.h */
3715 static void build_zonelist_cache(pg_data_t *pgdat)
3716 {
3717 	struct zonelist *zonelist;
3718 	struct zonelist_cache *zlc;
3719 	struct zoneref *z;
3720 
3721 	zonelist = &pgdat->node_zonelists[0];
3722 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3723 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3724 	for (z = zonelist->_zonerefs; z->zone; z++)
3725 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3726 }
3727 
3728 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3729 /*
3730  * Return node id of node used for "local" allocations.
3731  * I.e., first node id of first zone in arg node's generic zonelist.
3732  * Used for initializing percpu 'numa_mem', which is used primarily
3733  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3734  */
3735 int local_memory_node(int node)
3736 {
3737 	struct zone *zone;
3738 
3739 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3740 				   gfp_zone(GFP_KERNEL),
3741 				   NULL,
3742 				   &zone);
3743 	return zone->node;
3744 }
3745 #endif
3746 
3747 #else	/* CONFIG_NUMA */
3748 
3749 static void set_zonelist_order(void)
3750 {
3751 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3752 }
3753 
3754 static void build_zonelists(pg_data_t *pgdat)
3755 {
3756 	int node, local_node;
3757 	enum zone_type j;
3758 	struct zonelist *zonelist;
3759 
3760 	local_node = pgdat->node_id;
3761 
3762 	zonelist = &pgdat->node_zonelists[0];
3763 	j = build_zonelists_node(pgdat, zonelist, 0);
3764 
3765 	/*
3766 	 * Now we build the zonelist so that it contains the zones
3767 	 * of all the other nodes.
3768 	 * We don't want to pressure a particular node, so when
3769 	 * building the zones for node N, we make sure that the
3770 	 * zones coming right after the local ones are those from
3771 	 * node N+1 (modulo N)
3772 	 */
3773 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3774 		if (!node_online(node))
3775 			continue;
3776 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3777 	}
3778 	for (node = 0; node < local_node; node++) {
3779 		if (!node_online(node))
3780 			continue;
3781 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3782 	}
3783 
3784 	zonelist->_zonerefs[j].zone = NULL;
3785 	zonelist->_zonerefs[j].zone_idx = 0;
3786 }
3787 
3788 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3789 static void build_zonelist_cache(pg_data_t *pgdat)
3790 {
3791 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3792 }
3793 
3794 #endif	/* CONFIG_NUMA */
3795 
3796 /*
3797  * Boot pageset table. One per cpu which is going to be used for all
3798  * zones and all nodes. The parameters will be set in such a way
3799  * that an item put on a list will immediately be handed over to
3800  * the buddy list. This is safe since pageset manipulation is done
3801  * with interrupts disabled.
3802  *
3803  * The boot_pagesets must be kept even after bootup is complete for
3804  * unused processors and/or zones. They do play a role for bootstrapping
3805  * hotplugged processors.
3806  *
3807  * zoneinfo_show() and maybe other functions do
3808  * not check if the processor is online before following the pageset pointer.
3809  * Other parts of the kernel may not check if the zone is available.
3810  */
3811 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3812 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3813 static void setup_zone_pageset(struct zone *zone);
3814 
3815 /*
3816  * Global mutex to protect against size modification of zonelists
3817  * as well as to serialize pageset setup for the new populated zone.
3818  */
3819 DEFINE_MUTEX(zonelists_mutex);
3820 
3821 /* return values int ....just for stop_machine() */
3822 static int __build_all_zonelists(void *data)
3823 {
3824 	int nid;
3825 	int cpu;
3826 	pg_data_t *self = data;
3827 
3828 #ifdef CONFIG_NUMA
3829 	memset(node_load, 0, sizeof(node_load));
3830 #endif
3831 
3832 	if (self && !node_online(self->node_id)) {
3833 		build_zonelists(self);
3834 		build_zonelist_cache(self);
3835 	}
3836 
3837 	for_each_online_node(nid) {
3838 		pg_data_t *pgdat = NODE_DATA(nid);
3839 
3840 		build_zonelists(pgdat);
3841 		build_zonelist_cache(pgdat);
3842 	}
3843 
3844 	/*
3845 	 * Initialize the boot_pagesets that are going to be used
3846 	 * for bootstrapping processors. The real pagesets for
3847 	 * each zone will be allocated later when the per cpu
3848 	 * allocator is available.
3849 	 *
3850 	 * boot_pagesets are used also for bootstrapping offline
3851 	 * cpus if the system is already booted because the pagesets
3852 	 * are needed to initialize allocators on a specific cpu too.
3853 	 * F.e. the percpu allocator needs the page allocator which
3854 	 * needs the percpu allocator in order to allocate its pagesets
3855 	 * (a chicken-egg dilemma).
3856 	 */
3857 	for_each_possible_cpu(cpu) {
3858 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3859 
3860 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3861 		/*
3862 		 * We now know the "local memory node" for each node--
3863 		 * i.e., the node of the first zone in the generic zonelist.
3864 		 * Set up numa_mem percpu variable for on-line cpus.  During
3865 		 * boot, only the boot cpu should be on-line;  we'll init the
3866 		 * secondary cpus' numa_mem as they come on-line.  During
3867 		 * node/memory hotplug, we'll fixup all on-line cpus.
3868 		 */
3869 		if (cpu_online(cpu))
3870 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3871 #endif
3872 	}
3873 
3874 	return 0;
3875 }
3876 
3877 static noinline void __init
3878 build_all_zonelists_init(void)
3879 {
3880 	__build_all_zonelists(NULL);
3881 	mminit_verify_zonelist();
3882 	cpuset_init_current_mems_allowed();
3883 }
3884 
3885 /*
3886  * Called with zonelists_mutex held always
3887  * unless system_state == SYSTEM_BOOTING.
3888  *
3889  * __ref due to (1) call of __meminit annotated setup_zone_pageset
3890  * [we're only called with non-NULL zone through __meminit paths] and
3891  * (2) call of __init annotated helper build_all_zonelists_init
3892  * [protected by SYSTEM_BOOTING].
3893  */
3894 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3895 {
3896 	set_zonelist_order();
3897 
3898 	if (system_state == SYSTEM_BOOTING) {
3899 		build_all_zonelists_init();
3900 	} else {
3901 #ifdef CONFIG_MEMORY_HOTPLUG
3902 		if (zone)
3903 			setup_zone_pageset(zone);
3904 #endif
3905 		/* we have to stop all cpus to guarantee there is no user
3906 		   of zonelist */
3907 		stop_machine(__build_all_zonelists, pgdat, NULL);
3908 		/* cpuset refresh routine should be here */
3909 	}
3910 	vm_total_pages = nr_free_pagecache_pages();
3911 	/*
3912 	 * Disable grouping by mobility if the number of pages in the
3913 	 * system is too low to allow the mechanism to work. It would be
3914 	 * more accurate, but expensive to check per-zone. This check is
3915 	 * made on memory-hotadd so a system can start with mobility
3916 	 * disabled and enable it later
3917 	 */
3918 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3919 		page_group_by_mobility_disabled = 1;
3920 	else
3921 		page_group_by_mobility_disabled = 0;
3922 
3923 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
3924 		"Total pages: %ld\n",
3925 			nr_online_nodes,
3926 			zonelist_order_name[current_zonelist_order],
3927 			page_group_by_mobility_disabled ? "off" : "on",
3928 			vm_total_pages);
3929 #ifdef CONFIG_NUMA
3930 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3931 #endif
3932 }
3933 
3934 /*
3935  * Helper functions to size the waitqueue hash table.
3936  * Essentially these want to choose hash table sizes sufficiently
3937  * large so that collisions trying to wait on pages are rare.
3938  * But in fact, the number of active page waitqueues on typical
3939  * systems is ridiculously low, less than 200. So this is even
3940  * conservative, even though it seems large.
3941  *
3942  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3943  * waitqueues, i.e. the size of the waitq table given the number of pages.
3944  */
3945 #define PAGES_PER_WAITQUEUE	256
3946 
3947 #ifndef CONFIG_MEMORY_HOTPLUG
3948 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3949 {
3950 	unsigned long size = 1;
3951 
3952 	pages /= PAGES_PER_WAITQUEUE;
3953 
3954 	while (size < pages)
3955 		size <<= 1;
3956 
3957 	/*
3958 	 * Once we have dozens or even hundreds of threads sleeping
3959 	 * on IO we've got bigger problems than wait queue collision.
3960 	 * Limit the size of the wait table to a reasonable size.
3961 	 */
3962 	size = min(size, 4096UL);
3963 
3964 	return max(size, 4UL);
3965 }
3966 #else
3967 /*
3968  * A zone's size might be changed by hot-add, so it is not possible to determine
3969  * a suitable size for its wait_table.  So we use the maximum size now.
3970  *
3971  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3972  *
3973  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3974  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3975  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3976  *
3977  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3978  * or more by the traditional way. (See above).  It equals:
3979  *
3980  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3981  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3982  *    powerpc (64K page size)             : =  (32G +16M)byte.
3983  */
3984 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3985 {
3986 	return 4096UL;
3987 }
3988 #endif
3989 
3990 /*
3991  * This is an integer logarithm so that shifts can be used later
3992  * to extract the more random high bits from the multiplicative
3993  * hash function before the remainder is taken.
3994  */
3995 static inline unsigned long wait_table_bits(unsigned long size)
3996 {
3997 	return ffz(~size);
3998 }
3999 
4000 /*
4001  * Check if a pageblock contains reserved pages
4002  */
4003 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4004 {
4005 	unsigned long pfn;
4006 
4007 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4008 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4009 			return 1;
4010 	}
4011 	return 0;
4012 }
4013 
4014 /*
4015  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4016  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4017  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4018  * higher will lead to a bigger reserve which will get freed as contiguous
4019  * blocks as reclaim kicks in
4020  */
4021 static void setup_zone_migrate_reserve(struct zone *zone)
4022 {
4023 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4024 	struct page *page;
4025 	unsigned long block_migratetype;
4026 	int reserve;
4027 	int old_reserve;
4028 
4029 	/*
4030 	 * Get the start pfn, end pfn and the number of blocks to reserve
4031 	 * We have to be careful to be aligned to pageblock_nr_pages to
4032 	 * make sure that we always check pfn_valid for the first page in
4033 	 * the block.
4034 	 */
4035 	start_pfn = zone->zone_start_pfn;
4036 	end_pfn = zone_end_pfn(zone);
4037 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4038 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4039 							pageblock_order;
4040 
4041 	/*
4042 	 * Reserve blocks are generally in place to help high-order atomic
4043 	 * allocations that are short-lived. A min_free_kbytes value that
4044 	 * would result in more than 2 reserve blocks for atomic allocations
4045 	 * is assumed to be in place to help anti-fragmentation for the
4046 	 * future allocation of hugepages at runtime.
4047 	 */
4048 	reserve = min(2, reserve);
4049 	old_reserve = zone->nr_migrate_reserve_block;
4050 
4051 	/* When memory hot-add, we almost always need to do nothing */
4052 	if (reserve == old_reserve)
4053 		return;
4054 	zone->nr_migrate_reserve_block = reserve;
4055 
4056 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4057 		if (!pfn_valid(pfn))
4058 			continue;
4059 		page = pfn_to_page(pfn);
4060 
4061 		/* Watch out for overlapping nodes */
4062 		if (page_to_nid(page) != zone_to_nid(zone))
4063 			continue;
4064 
4065 		block_migratetype = get_pageblock_migratetype(page);
4066 
4067 		/* Only test what is necessary when the reserves are not met */
4068 		if (reserve > 0) {
4069 			/*
4070 			 * Blocks with reserved pages will never free, skip
4071 			 * them.
4072 			 */
4073 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4074 			if (pageblock_is_reserved(pfn, block_end_pfn))
4075 				continue;
4076 
4077 			/* If this block is reserved, account for it */
4078 			if (block_migratetype == MIGRATE_RESERVE) {
4079 				reserve--;
4080 				continue;
4081 			}
4082 
4083 			/* Suitable for reserving if this block is movable */
4084 			if (block_migratetype == MIGRATE_MOVABLE) {
4085 				set_pageblock_migratetype(page,
4086 							MIGRATE_RESERVE);
4087 				move_freepages_block(zone, page,
4088 							MIGRATE_RESERVE);
4089 				reserve--;
4090 				continue;
4091 			}
4092 		} else if (!old_reserve) {
4093 			/*
4094 			 * At boot time we don't need to scan the whole zone
4095 			 * for turning off MIGRATE_RESERVE.
4096 			 */
4097 			break;
4098 		}
4099 
4100 		/*
4101 		 * If the reserve is met and this is a previous reserved block,
4102 		 * take it back
4103 		 */
4104 		if (block_migratetype == MIGRATE_RESERVE) {
4105 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4106 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4107 		}
4108 	}
4109 }
4110 
4111 /*
4112  * Initially all pages are reserved - free ones are freed
4113  * up by free_all_bootmem() once the early boot process is
4114  * done. Non-atomic initialization, single-pass.
4115  */
4116 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4117 		unsigned long start_pfn, enum memmap_context context)
4118 {
4119 	struct page *page;
4120 	unsigned long end_pfn = start_pfn + size;
4121 	unsigned long pfn;
4122 	struct zone *z;
4123 
4124 	if (highest_memmap_pfn < end_pfn - 1)
4125 		highest_memmap_pfn = end_pfn - 1;
4126 
4127 	z = &NODE_DATA(nid)->node_zones[zone];
4128 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4129 		/*
4130 		 * There can be holes in boot-time mem_map[]s
4131 		 * handed to this function.  They do not
4132 		 * exist on hotplugged memory.
4133 		 */
4134 		if (context == MEMMAP_EARLY) {
4135 			if (!early_pfn_valid(pfn))
4136 				continue;
4137 			if (!early_pfn_in_nid(pfn, nid))
4138 				continue;
4139 		}
4140 		page = pfn_to_page(pfn);
4141 		set_page_links(page, zone, nid, pfn);
4142 		mminit_verify_page_links(page, zone, nid, pfn);
4143 		init_page_count(page);
4144 		page_mapcount_reset(page);
4145 		page_cpupid_reset_last(page);
4146 		SetPageReserved(page);
4147 		/*
4148 		 * Mark the block movable so that blocks are reserved for
4149 		 * movable at startup. This will force kernel allocations
4150 		 * to reserve their blocks rather than leaking throughout
4151 		 * the address space during boot when many long-lived
4152 		 * kernel allocations are made. Later some blocks near
4153 		 * the start are marked MIGRATE_RESERVE by
4154 		 * setup_zone_migrate_reserve()
4155 		 *
4156 		 * bitmap is created for zone's valid pfn range. but memmap
4157 		 * can be created for invalid pages (for alignment)
4158 		 * check here not to call set_pageblock_migratetype() against
4159 		 * pfn out of zone.
4160 		 */
4161 		if ((z->zone_start_pfn <= pfn)
4162 		    && (pfn < zone_end_pfn(z))
4163 		    && !(pfn & (pageblock_nr_pages - 1)))
4164 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4165 
4166 		INIT_LIST_HEAD(&page->lru);
4167 #ifdef WANT_PAGE_VIRTUAL
4168 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4169 		if (!is_highmem_idx(zone))
4170 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4171 #endif
4172 	}
4173 }
4174 
4175 static void __meminit zone_init_free_lists(struct zone *zone)
4176 {
4177 	unsigned int order, t;
4178 	for_each_migratetype_order(order, t) {
4179 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4180 		zone->free_area[order].nr_free = 0;
4181 	}
4182 }
4183 
4184 #ifndef __HAVE_ARCH_MEMMAP_INIT
4185 #define memmap_init(size, nid, zone, start_pfn) \
4186 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4187 #endif
4188 
4189 static int zone_batchsize(struct zone *zone)
4190 {
4191 #ifdef CONFIG_MMU
4192 	int batch;
4193 
4194 	/*
4195 	 * The per-cpu-pages pools are set to around 1000th of the
4196 	 * size of the zone.  But no more than 1/2 of a meg.
4197 	 *
4198 	 * OK, so we don't know how big the cache is.  So guess.
4199 	 */
4200 	batch = zone->managed_pages / 1024;
4201 	if (batch * PAGE_SIZE > 512 * 1024)
4202 		batch = (512 * 1024) / PAGE_SIZE;
4203 	batch /= 4;		/* We effectively *= 4 below */
4204 	if (batch < 1)
4205 		batch = 1;
4206 
4207 	/*
4208 	 * Clamp the batch to a 2^n - 1 value. Having a power
4209 	 * of 2 value was found to be more likely to have
4210 	 * suboptimal cache aliasing properties in some cases.
4211 	 *
4212 	 * For example if 2 tasks are alternately allocating
4213 	 * batches of pages, one task can end up with a lot
4214 	 * of pages of one half of the possible page colors
4215 	 * and the other with pages of the other colors.
4216 	 */
4217 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4218 
4219 	return batch;
4220 
4221 #else
4222 	/* The deferral and batching of frees should be suppressed under NOMMU
4223 	 * conditions.
4224 	 *
4225 	 * The problem is that NOMMU needs to be able to allocate large chunks
4226 	 * of contiguous memory as there's no hardware page translation to
4227 	 * assemble apparent contiguous memory from discontiguous pages.
4228 	 *
4229 	 * Queueing large contiguous runs of pages for batching, however,
4230 	 * causes the pages to actually be freed in smaller chunks.  As there
4231 	 * can be a significant delay between the individual batches being
4232 	 * recycled, this leads to the once large chunks of space being
4233 	 * fragmented and becoming unavailable for high-order allocations.
4234 	 */
4235 	return 0;
4236 #endif
4237 }
4238 
4239 /*
4240  * pcp->high and pcp->batch values are related and dependent on one another:
4241  * ->batch must never be higher then ->high.
4242  * The following function updates them in a safe manner without read side
4243  * locking.
4244  *
4245  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4246  * those fields changing asynchronously (acording the the above rule).
4247  *
4248  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4249  * outside of boot time (or some other assurance that no concurrent updaters
4250  * exist).
4251  */
4252 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4253 		unsigned long batch)
4254 {
4255        /* start with a fail safe value for batch */
4256 	pcp->batch = 1;
4257 	smp_wmb();
4258 
4259        /* Update high, then batch, in order */
4260 	pcp->high = high;
4261 	smp_wmb();
4262 
4263 	pcp->batch = batch;
4264 }
4265 
4266 /* a companion to pageset_set_high() */
4267 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4268 {
4269 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4270 }
4271 
4272 static void pageset_init(struct per_cpu_pageset *p)
4273 {
4274 	struct per_cpu_pages *pcp;
4275 	int migratetype;
4276 
4277 	memset(p, 0, sizeof(*p));
4278 
4279 	pcp = &p->pcp;
4280 	pcp->count = 0;
4281 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4282 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4283 }
4284 
4285 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4286 {
4287 	pageset_init(p);
4288 	pageset_set_batch(p, batch);
4289 }
4290 
4291 /*
4292  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4293  * to the value high for the pageset p.
4294  */
4295 static void pageset_set_high(struct per_cpu_pageset *p,
4296 				unsigned long high)
4297 {
4298 	unsigned long batch = max(1UL, high / 4);
4299 	if ((high / 4) > (PAGE_SHIFT * 8))
4300 		batch = PAGE_SHIFT * 8;
4301 
4302 	pageset_update(&p->pcp, high, batch);
4303 }
4304 
4305 static void pageset_set_high_and_batch(struct zone *zone,
4306 				       struct per_cpu_pageset *pcp)
4307 {
4308 	if (percpu_pagelist_fraction)
4309 		pageset_set_high(pcp,
4310 			(zone->managed_pages /
4311 				percpu_pagelist_fraction));
4312 	else
4313 		pageset_set_batch(pcp, zone_batchsize(zone));
4314 }
4315 
4316 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4317 {
4318 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4319 
4320 	pageset_init(pcp);
4321 	pageset_set_high_and_batch(zone, pcp);
4322 }
4323 
4324 static void __meminit setup_zone_pageset(struct zone *zone)
4325 {
4326 	int cpu;
4327 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4328 	for_each_possible_cpu(cpu)
4329 		zone_pageset_init(zone, cpu);
4330 }
4331 
4332 /*
4333  * Allocate per cpu pagesets and initialize them.
4334  * Before this call only boot pagesets were available.
4335  */
4336 void __init setup_per_cpu_pageset(void)
4337 {
4338 	struct zone *zone;
4339 
4340 	for_each_populated_zone(zone)
4341 		setup_zone_pageset(zone);
4342 }
4343 
4344 static noinline __init_refok
4345 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4346 {
4347 	int i;
4348 	size_t alloc_size;
4349 
4350 	/*
4351 	 * The per-page waitqueue mechanism uses hashed waitqueues
4352 	 * per zone.
4353 	 */
4354 	zone->wait_table_hash_nr_entries =
4355 		 wait_table_hash_nr_entries(zone_size_pages);
4356 	zone->wait_table_bits =
4357 		wait_table_bits(zone->wait_table_hash_nr_entries);
4358 	alloc_size = zone->wait_table_hash_nr_entries
4359 					* sizeof(wait_queue_head_t);
4360 
4361 	if (!slab_is_available()) {
4362 		zone->wait_table = (wait_queue_head_t *)
4363 			memblock_virt_alloc_node_nopanic(
4364 				alloc_size, zone->zone_pgdat->node_id);
4365 	} else {
4366 		/*
4367 		 * This case means that a zone whose size was 0 gets new memory
4368 		 * via memory hot-add.
4369 		 * But it may be the case that a new node was hot-added.  In
4370 		 * this case vmalloc() will not be able to use this new node's
4371 		 * memory - this wait_table must be initialized to use this new
4372 		 * node itself as well.
4373 		 * To use this new node's memory, further consideration will be
4374 		 * necessary.
4375 		 */
4376 		zone->wait_table = vmalloc(alloc_size);
4377 	}
4378 	if (!zone->wait_table)
4379 		return -ENOMEM;
4380 
4381 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4382 		init_waitqueue_head(zone->wait_table + i);
4383 
4384 	return 0;
4385 }
4386 
4387 static __meminit void zone_pcp_init(struct zone *zone)
4388 {
4389 	/*
4390 	 * per cpu subsystem is not up at this point. The following code
4391 	 * relies on the ability of the linker to provide the
4392 	 * offset of a (static) per cpu variable into the per cpu area.
4393 	 */
4394 	zone->pageset = &boot_pageset;
4395 
4396 	if (populated_zone(zone))
4397 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4398 			zone->name, zone->present_pages,
4399 					 zone_batchsize(zone));
4400 }
4401 
4402 int __meminit init_currently_empty_zone(struct zone *zone,
4403 					unsigned long zone_start_pfn,
4404 					unsigned long size,
4405 					enum memmap_context context)
4406 {
4407 	struct pglist_data *pgdat = zone->zone_pgdat;
4408 	int ret;
4409 	ret = zone_wait_table_init(zone, size);
4410 	if (ret)
4411 		return ret;
4412 	pgdat->nr_zones = zone_idx(zone) + 1;
4413 
4414 	zone->zone_start_pfn = zone_start_pfn;
4415 
4416 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4417 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4418 			pgdat->node_id,
4419 			(unsigned long)zone_idx(zone),
4420 			zone_start_pfn, (zone_start_pfn + size));
4421 
4422 	zone_init_free_lists(zone);
4423 
4424 	return 0;
4425 }
4426 
4427 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4428 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4429 /*
4430  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4431  */
4432 int __meminit __early_pfn_to_nid(unsigned long pfn)
4433 {
4434 	unsigned long start_pfn, end_pfn;
4435 	int nid;
4436 	/*
4437 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4438 	 * when the kernel is running single-threaded.
4439 	 */
4440 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4441 	static int __meminitdata last_nid;
4442 
4443 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4444 		return last_nid;
4445 
4446 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4447 	if (nid != -1) {
4448 		last_start_pfn = start_pfn;
4449 		last_end_pfn = end_pfn;
4450 		last_nid = nid;
4451 	}
4452 
4453 	return nid;
4454 }
4455 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4456 
4457 int __meminit early_pfn_to_nid(unsigned long pfn)
4458 {
4459 	int nid;
4460 
4461 	nid = __early_pfn_to_nid(pfn);
4462 	if (nid >= 0)
4463 		return nid;
4464 	/* just returns 0 */
4465 	return 0;
4466 }
4467 
4468 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4469 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4470 {
4471 	int nid;
4472 
4473 	nid = __early_pfn_to_nid(pfn);
4474 	if (nid >= 0 && nid != node)
4475 		return false;
4476 	return true;
4477 }
4478 #endif
4479 
4480 /**
4481  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4482  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4483  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4484  *
4485  * If an architecture guarantees that all ranges registered contain no holes
4486  * and may be freed, this this function may be used instead of calling
4487  * memblock_free_early_nid() manually.
4488  */
4489 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4490 {
4491 	unsigned long start_pfn, end_pfn;
4492 	int i, this_nid;
4493 
4494 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4495 		start_pfn = min(start_pfn, max_low_pfn);
4496 		end_pfn = min(end_pfn, max_low_pfn);
4497 
4498 		if (start_pfn < end_pfn)
4499 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4500 					(end_pfn - start_pfn) << PAGE_SHIFT,
4501 					this_nid);
4502 	}
4503 }
4504 
4505 /**
4506  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4507  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4508  *
4509  * If an architecture guarantees that all ranges registered contain no holes and may
4510  * be freed, this function may be used instead of calling memory_present() manually.
4511  */
4512 void __init sparse_memory_present_with_active_regions(int nid)
4513 {
4514 	unsigned long start_pfn, end_pfn;
4515 	int i, this_nid;
4516 
4517 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4518 		memory_present(this_nid, start_pfn, end_pfn);
4519 }
4520 
4521 /**
4522  * get_pfn_range_for_nid - Return the start and end page frames for a node
4523  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4524  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4525  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4526  *
4527  * It returns the start and end page frame of a node based on information
4528  * provided by memblock_set_node(). If called for a node
4529  * with no available memory, a warning is printed and the start and end
4530  * PFNs will be 0.
4531  */
4532 void __meminit get_pfn_range_for_nid(unsigned int nid,
4533 			unsigned long *start_pfn, unsigned long *end_pfn)
4534 {
4535 	unsigned long this_start_pfn, this_end_pfn;
4536 	int i;
4537 
4538 	*start_pfn = -1UL;
4539 	*end_pfn = 0;
4540 
4541 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4542 		*start_pfn = min(*start_pfn, this_start_pfn);
4543 		*end_pfn = max(*end_pfn, this_end_pfn);
4544 	}
4545 
4546 	if (*start_pfn == -1UL)
4547 		*start_pfn = 0;
4548 }
4549 
4550 /*
4551  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4552  * assumption is made that zones within a node are ordered in monotonic
4553  * increasing memory addresses so that the "highest" populated zone is used
4554  */
4555 static void __init find_usable_zone_for_movable(void)
4556 {
4557 	int zone_index;
4558 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4559 		if (zone_index == ZONE_MOVABLE)
4560 			continue;
4561 
4562 		if (arch_zone_highest_possible_pfn[zone_index] >
4563 				arch_zone_lowest_possible_pfn[zone_index])
4564 			break;
4565 	}
4566 
4567 	VM_BUG_ON(zone_index == -1);
4568 	movable_zone = zone_index;
4569 }
4570 
4571 /*
4572  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4573  * because it is sized independent of architecture. Unlike the other zones,
4574  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4575  * in each node depending on the size of each node and how evenly kernelcore
4576  * is distributed. This helper function adjusts the zone ranges
4577  * provided by the architecture for a given node by using the end of the
4578  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4579  * zones within a node are in order of monotonic increases memory addresses
4580  */
4581 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4582 					unsigned long zone_type,
4583 					unsigned long node_start_pfn,
4584 					unsigned long node_end_pfn,
4585 					unsigned long *zone_start_pfn,
4586 					unsigned long *zone_end_pfn)
4587 {
4588 	/* Only adjust if ZONE_MOVABLE is on this node */
4589 	if (zone_movable_pfn[nid]) {
4590 		/* Size ZONE_MOVABLE */
4591 		if (zone_type == ZONE_MOVABLE) {
4592 			*zone_start_pfn = zone_movable_pfn[nid];
4593 			*zone_end_pfn = min(node_end_pfn,
4594 				arch_zone_highest_possible_pfn[movable_zone]);
4595 
4596 		/* Adjust for ZONE_MOVABLE starting within this range */
4597 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4598 				*zone_end_pfn > zone_movable_pfn[nid]) {
4599 			*zone_end_pfn = zone_movable_pfn[nid];
4600 
4601 		/* Check if this whole range is within ZONE_MOVABLE */
4602 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4603 			*zone_start_pfn = *zone_end_pfn;
4604 	}
4605 }
4606 
4607 /*
4608  * Return the number of pages a zone spans in a node, including holes
4609  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4610  */
4611 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4612 					unsigned long zone_type,
4613 					unsigned long node_start_pfn,
4614 					unsigned long node_end_pfn,
4615 					unsigned long *ignored)
4616 {
4617 	unsigned long zone_start_pfn, zone_end_pfn;
4618 
4619 	/* Get the start and end of the zone */
4620 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4621 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4622 	adjust_zone_range_for_zone_movable(nid, zone_type,
4623 				node_start_pfn, node_end_pfn,
4624 				&zone_start_pfn, &zone_end_pfn);
4625 
4626 	/* Check that this node has pages within the zone's required range */
4627 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4628 		return 0;
4629 
4630 	/* Move the zone boundaries inside the node if necessary */
4631 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4632 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4633 
4634 	/* Return the spanned pages */
4635 	return zone_end_pfn - zone_start_pfn;
4636 }
4637 
4638 /*
4639  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4640  * then all holes in the requested range will be accounted for.
4641  */
4642 unsigned long __meminit __absent_pages_in_range(int nid,
4643 				unsigned long range_start_pfn,
4644 				unsigned long range_end_pfn)
4645 {
4646 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4647 	unsigned long start_pfn, end_pfn;
4648 	int i;
4649 
4650 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4651 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4652 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4653 		nr_absent -= end_pfn - start_pfn;
4654 	}
4655 	return nr_absent;
4656 }
4657 
4658 /**
4659  * absent_pages_in_range - Return number of page frames in holes within a range
4660  * @start_pfn: The start PFN to start searching for holes
4661  * @end_pfn: The end PFN to stop searching for holes
4662  *
4663  * It returns the number of pages frames in memory holes within a range.
4664  */
4665 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4666 							unsigned long end_pfn)
4667 {
4668 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4669 }
4670 
4671 /* Return the number of page frames in holes in a zone on a node */
4672 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4673 					unsigned long zone_type,
4674 					unsigned long node_start_pfn,
4675 					unsigned long node_end_pfn,
4676 					unsigned long *ignored)
4677 {
4678 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4679 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4680 	unsigned long zone_start_pfn, zone_end_pfn;
4681 
4682 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4683 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4684 
4685 	adjust_zone_range_for_zone_movable(nid, zone_type,
4686 			node_start_pfn, node_end_pfn,
4687 			&zone_start_pfn, &zone_end_pfn);
4688 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4689 }
4690 
4691 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4692 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4693 					unsigned long zone_type,
4694 					unsigned long node_start_pfn,
4695 					unsigned long node_end_pfn,
4696 					unsigned long *zones_size)
4697 {
4698 	return zones_size[zone_type];
4699 }
4700 
4701 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4702 						unsigned long zone_type,
4703 						unsigned long node_start_pfn,
4704 						unsigned long node_end_pfn,
4705 						unsigned long *zholes_size)
4706 {
4707 	if (!zholes_size)
4708 		return 0;
4709 
4710 	return zholes_size[zone_type];
4711 }
4712 
4713 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4714 
4715 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4716 						unsigned long node_start_pfn,
4717 						unsigned long node_end_pfn,
4718 						unsigned long *zones_size,
4719 						unsigned long *zholes_size)
4720 {
4721 	unsigned long realtotalpages, totalpages = 0;
4722 	enum zone_type i;
4723 
4724 	for (i = 0; i < MAX_NR_ZONES; i++)
4725 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4726 							 node_start_pfn,
4727 							 node_end_pfn,
4728 							 zones_size);
4729 	pgdat->node_spanned_pages = totalpages;
4730 
4731 	realtotalpages = totalpages;
4732 	for (i = 0; i < MAX_NR_ZONES; i++)
4733 		realtotalpages -=
4734 			zone_absent_pages_in_node(pgdat->node_id, i,
4735 						  node_start_pfn, node_end_pfn,
4736 						  zholes_size);
4737 	pgdat->node_present_pages = realtotalpages;
4738 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4739 							realtotalpages);
4740 }
4741 
4742 #ifndef CONFIG_SPARSEMEM
4743 /*
4744  * Calculate the size of the zone->blockflags rounded to an unsigned long
4745  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4746  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4747  * round what is now in bits to nearest long in bits, then return it in
4748  * bytes.
4749  */
4750 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4751 {
4752 	unsigned long usemapsize;
4753 
4754 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4755 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4756 	usemapsize = usemapsize >> pageblock_order;
4757 	usemapsize *= NR_PAGEBLOCK_BITS;
4758 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4759 
4760 	return usemapsize / 8;
4761 }
4762 
4763 static void __init setup_usemap(struct pglist_data *pgdat,
4764 				struct zone *zone,
4765 				unsigned long zone_start_pfn,
4766 				unsigned long zonesize)
4767 {
4768 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4769 	zone->pageblock_flags = NULL;
4770 	if (usemapsize)
4771 		zone->pageblock_flags =
4772 			memblock_virt_alloc_node_nopanic(usemapsize,
4773 							 pgdat->node_id);
4774 }
4775 #else
4776 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4777 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4778 #endif /* CONFIG_SPARSEMEM */
4779 
4780 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4781 
4782 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4783 void __paginginit set_pageblock_order(void)
4784 {
4785 	unsigned int order;
4786 
4787 	/* Check that pageblock_nr_pages has not already been setup */
4788 	if (pageblock_order)
4789 		return;
4790 
4791 	if (HPAGE_SHIFT > PAGE_SHIFT)
4792 		order = HUGETLB_PAGE_ORDER;
4793 	else
4794 		order = MAX_ORDER - 1;
4795 
4796 	/*
4797 	 * Assume the largest contiguous order of interest is a huge page.
4798 	 * This value may be variable depending on boot parameters on IA64 and
4799 	 * powerpc.
4800 	 */
4801 	pageblock_order = order;
4802 }
4803 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4804 
4805 /*
4806  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4807  * is unused as pageblock_order is set at compile-time. See
4808  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4809  * the kernel config
4810  */
4811 void __paginginit set_pageblock_order(void)
4812 {
4813 }
4814 
4815 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4816 
4817 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4818 						   unsigned long present_pages)
4819 {
4820 	unsigned long pages = spanned_pages;
4821 
4822 	/*
4823 	 * Provide a more accurate estimation if there are holes within
4824 	 * the zone and SPARSEMEM is in use. If there are holes within the
4825 	 * zone, each populated memory region may cost us one or two extra
4826 	 * memmap pages due to alignment because memmap pages for each
4827 	 * populated regions may not naturally algined on page boundary.
4828 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4829 	 */
4830 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4831 	    IS_ENABLED(CONFIG_SPARSEMEM))
4832 		pages = present_pages;
4833 
4834 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4835 }
4836 
4837 /*
4838  * Set up the zone data structures:
4839  *   - mark all pages reserved
4840  *   - mark all memory queues empty
4841  *   - clear the memory bitmaps
4842  *
4843  * NOTE: pgdat should get zeroed by caller.
4844  */
4845 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4846 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4847 		unsigned long *zones_size, unsigned long *zholes_size)
4848 {
4849 	enum zone_type j;
4850 	int nid = pgdat->node_id;
4851 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4852 	int ret;
4853 
4854 	pgdat_resize_init(pgdat);
4855 #ifdef CONFIG_NUMA_BALANCING
4856 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4857 	pgdat->numabalancing_migrate_nr_pages = 0;
4858 	pgdat->numabalancing_migrate_next_window = jiffies;
4859 #endif
4860 	init_waitqueue_head(&pgdat->kswapd_wait);
4861 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4862 	pgdat_page_ext_init(pgdat);
4863 
4864 	for (j = 0; j < MAX_NR_ZONES; j++) {
4865 		struct zone *zone = pgdat->node_zones + j;
4866 		unsigned long size, realsize, freesize, memmap_pages;
4867 
4868 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4869 						  node_end_pfn, zones_size);
4870 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4871 								node_start_pfn,
4872 								node_end_pfn,
4873 								zholes_size);
4874 
4875 		/*
4876 		 * Adjust freesize so that it accounts for how much memory
4877 		 * is used by this zone for memmap. This affects the watermark
4878 		 * and per-cpu initialisations
4879 		 */
4880 		memmap_pages = calc_memmap_size(size, realsize);
4881 		if (!is_highmem_idx(j)) {
4882 			if (freesize >= memmap_pages) {
4883 				freesize -= memmap_pages;
4884 				if (memmap_pages)
4885 					printk(KERN_DEBUG
4886 					       "  %s zone: %lu pages used for memmap\n",
4887 					       zone_names[j], memmap_pages);
4888 			} else
4889 				printk(KERN_WARNING
4890 					"  %s zone: %lu pages exceeds freesize %lu\n",
4891 					zone_names[j], memmap_pages, freesize);
4892 		}
4893 
4894 		/* Account for reserved pages */
4895 		if (j == 0 && freesize > dma_reserve) {
4896 			freesize -= dma_reserve;
4897 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4898 					zone_names[0], dma_reserve);
4899 		}
4900 
4901 		if (!is_highmem_idx(j))
4902 			nr_kernel_pages += freesize;
4903 		/* Charge for highmem memmap if there are enough kernel pages */
4904 		else if (nr_kernel_pages > memmap_pages * 2)
4905 			nr_kernel_pages -= memmap_pages;
4906 		nr_all_pages += freesize;
4907 
4908 		zone->spanned_pages = size;
4909 		zone->present_pages = realsize;
4910 		/*
4911 		 * Set an approximate value for lowmem here, it will be adjusted
4912 		 * when the bootmem allocator frees pages into the buddy system.
4913 		 * And all highmem pages will be managed by the buddy system.
4914 		 */
4915 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4916 #ifdef CONFIG_NUMA
4917 		zone->node = nid;
4918 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4919 						/ 100;
4920 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4921 #endif
4922 		zone->name = zone_names[j];
4923 		spin_lock_init(&zone->lock);
4924 		spin_lock_init(&zone->lru_lock);
4925 		zone_seqlock_init(zone);
4926 		zone->zone_pgdat = pgdat;
4927 		zone_pcp_init(zone);
4928 
4929 		/* For bootup, initialized properly in watermark setup */
4930 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4931 
4932 		lruvec_init(&zone->lruvec);
4933 		if (!size)
4934 			continue;
4935 
4936 		set_pageblock_order();
4937 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4938 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4939 						size, MEMMAP_EARLY);
4940 		BUG_ON(ret);
4941 		memmap_init(size, nid, j, zone_start_pfn);
4942 		zone_start_pfn += size;
4943 	}
4944 }
4945 
4946 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4947 {
4948 	/* Skip empty nodes */
4949 	if (!pgdat->node_spanned_pages)
4950 		return;
4951 
4952 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4953 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4954 	if (!pgdat->node_mem_map) {
4955 		unsigned long size, start, end;
4956 		struct page *map;
4957 
4958 		/*
4959 		 * The zone's endpoints aren't required to be MAX_ORDER
4960 		 * aligned but the node_mem_map endpoints must be in order
4961 		 * for the buddy allocator to function correctly.
4962 		 */
4963 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4964 		end = pgdat_end_pfn(pgdat);
4965 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4966 		size =  (end - start) * sizeof(struct page);
4967 		map = alloc_remap(pgdat->node_id, size);
4968 		if (!map)
4969 			map = memblock_virt_alloc_node_nopanic(size,
4970 							       pgdat->node_id);
4971 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4972 	}
4973 #ifndef CONFIG_NEED_MULTIPLE_NODES
4974 	/*
4975 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4976 	 */
4977 	if (pgdat == NODE_DATA(0)) {
4978 		mem_map = NODE_DATA(0)->node_mem_map;
4979 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4980 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4981 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4982 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4983 	}
4984 #endif
4985 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4986 }
4987 
4988 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4989 		unsigned long node_start_pfn, unsigned long *zholes_size)
4990 {
4991 	pg_data_t *pgdat = NODE_DATA(nid);
4992 	unsigned long start_pfn = 0;
4993 	unsigned long end_pfn = 0;
4994 
4995 	/* pg_data_t should be reset to zero when it's allocated */
4996 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4997 
4998 	pgdat->node_id = nid;
4999 	pgdat->node_start_pfn = node_start_pfn;
5000 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5001 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5002 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5003 		(u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5004 #endif
5005 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5006 				  zones_size, zholes_size);
5007 
5008 	alloc_node_mem_map(pgdat);
5009 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5010 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5011 		nid, (unsigned long)pgdat,
5012 		(unsigned long)pgdat->node_mem_map);
5013 #endif
5014 
5015 	free_area_init_core(pgdat, start_pfn, end_pfn,
5016 			    zones_size, zholes_size);
5017 }
5018 
5019 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5020 
5021 #if MAX_NUMNODES > 1
5022 /*
5023  * Figure out the number of possible node ids.
5024  */
5025 void __init setup_nr_node_ids(void)
5026 {
5027 	unsigned int node;
5028 	unsigned int highest = 0;
5029 
5030 	for_each_node_mask(node, node_possible_map)
5031 		highest = node;
5032 	nr_node_ids = highest + 1;
5033 }
5034 #endif
5035 
5036 /**
5037  * node_map_pfn_alignment - determine the maximum internode alignment
5038  *
5039  * This function should be called after node map is populated and sorted.
5040  * It calculates the maximum power of two alignment which can distinguish
5041  * all the nodes.
5042  *
5043  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5044  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5045  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5046  * shifted, 1GiB is enough and this function will indicate so.
5047  *
5048  * This is used to test whether pfn -> nid mapping of the chosen memory
5049  * model has fine enough granularity to avoid incorrect mapping for the
5050  * populated node map.
5051  *
5052  * Returns the determined alignment in pfn's.  0 if there is no alignment
5053  * requirement (single node).
5054  */
5055 unsigned long __init node_map_pfn_alignment(void)
5056 {
5057 	unsigned long accl_mask = 0, last_end = 0;
5058 	unsigned long start, end, mask;
5059 	int last_nid = -1;
5060 	int i, nid;
5061 
5062 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5063 		if (!start || last_nid < 0 || last_nid == nid) {
5064 			last_nid = nid;
5065 			last_end = end;
5066 			continue;
5067 		}
5068 
5069 		/*
5070 		 * Start with a mask granular enough to pin-point to the
5071 		 * start pfn and tick off bits one-by-one until it becomes
5072 		 * too coarse to separate the current node from the last.
5073 		 */
5074 		mask = ~((1 << __ffs(start)) - 1);
5075 		while (mask && last_end <= (start & (mask << 1)))
5076 			mask <<= 1;
5077 
5078 		/* accumulate all internode masks */
5079 		accl_mask |= mask;
5080 	}
5081 
5082 	/* convert mask to number of pages */
5083 	return ~accl_mask + 1;
5084 }
5085 
5086 /* Find the lowest pfn for a node */
5087 static unsigned long __init find_min_pfn_for_node(int nid)
5088 {
5089 	unsigned long min_pfn = ULONG_MAX;
5090 	unsigned long start_pfn;
5091 	int i;
5092 
5093 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5094 		min_pfn = min(min_pfn, start_pfn);
5095 
5096 	if (min_pfn == ULONG_MAX) {
5097 		printk(KERN_WARNING
5098 			"Could not find start_pfn for node %d\n", nid);
5099 		return 0;
5100 	}
5101 
5102 	return min_pfn;
5103 }
5104 
5105 /**
5106  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5107  *
5108  * It returns the minimum PFN based on information provided via
5109  * memblock_set_node().
5110  */
5111 unsigned long __init find_min_pfn_with_active_regions(void)
5112 {
5113 	return find_min_pfn_for_node(MAX_NUMNODES);
5114 }
5115 
5116 /*
5117  * early_calculate_totalpages()
5118  * Sum pages in active regions for movable zone.
5119  * Populate N_MEMORY for calculating usable_nodes.
5120  */
5121 static unsigned long __init early_calculate_totalpages(void)
5122 {
5123 	unsigned long totalpages = 0;
5124 	unsigned long start_pfn, end_pfn;
5125 	int i, nid;
5126 
5127 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5128 		unsigned long pages = end_pfn - start_pfn;
5129 
5130 		totalpages += pages;
5131 		if (pages)
5132 			node_set_state(nid, N_MEMORY);
5133 	}
5134 	return totalpages;
5135 }
5136 
5137 /*
5138  * Find the PFN the Movable zone begins in each node. Kernel memory
5139  * is spread evenly between nodes as long as the nodes have enough
5140  * memory. When they don't, some nodes will have more kernelcore than
5141  * others
5142  */
5143 static void __init find_zone_movable_pfns_for_nodes(void)
5144 {
5145 	int i, nid;
5146 	unsigned long usable_startpfn;
5147 	unsigned long kernelcore_node, kernelcore_remaining;
5148 	/* save the state before borrow the nodemask */
5149 	nodemask_t saved_node_state = node_states[N_MEMORY];
5150 	unsigned long totalpages = early_calculate_totalpages();
5151 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5152 	struct memblock_region *r;
5153 
5154 	/* Need to find movable_zone earlier when movable_node is specified. */
5155 	find_usable_zone_for_movable();
5156 
5157 	/*
5158 	 * If movable_node is specified, ignore kernelcore and movablecore
5159 	 * options.
5160 	 */
5161 	if (movable_node_is_enabled()) {
5162 		for_each_memblock(memory, r) {
5163 			if (!memblock_is_hotpluggable(r))
5164 				continue;
5165 
5166 			nid = r->nid;
5167 
5168 			usable_startpfn = PFN_DOWN(r->base);
5169 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5170 				min(usable_startpfn, zone_movable_pfn[nid]) :
5171 				usable_startpfn;
5172 		}
5173 
5174 		goto out2;
5175 	}
5176 
5177 	/*
5178 	 * If movablecore=nn[KMG] was specified, calculate what size of
5179 	 * kernelcore that corresponds so that memory usable for
5180 	 * any allocation type is evenly spread. If both kernelcore
5181 	 * and movablecore are specified, then the value of kernelcore
5182 	 * will be used for required_kernelcore if it's greater than
5183 	 * what movablecore would have allowed.
5184 	 */
5185 	if (required_movablecore) {
5186 		unsigned long corepages;
5187 
5188 		/*
5189 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5190 		 * was requested by the user
5191 		 */
5192 		required_movablecore =
5193 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5194 		corepages = totalpages - required_movablecore;
5195 
5196 		required_kernelcore = max(required_kernelcore, corepages);
5197 	}
5198 
5199 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5200 	if (!required_kernelcore)
5201 		goto out;
5202 
5203 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5204 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5205 
5206 restart:
5207 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5208 	kernelcore_node = required_kernelcore / usable_nodes;
5209 	for_each_node_state(nid, N_MEMORY) {
5210 		unsigned long start_pfn, end_pfn;
5211 
5212 		/*
5213 		 * Recalculate kernelcore_node if the division per node
5214 		 * now exceeds what is necessary to satisfy the requested
5215 		 * amount of memory for the kernel
5216 		 */
5217 		if (required_kernelcore < kernelcore_node)
5218 			kernelcore_node = required_kernelcore / usable_nodes;
5219 
5220 		/*
5221 		 * As the map is walked, we track how much memory is usable
5222 		 * by the kernel using kernelcore_remaining. When it is
5223 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5224 		 */
5225 		kernelcore_remaining = kernelcore_node;
5226 
5227 		/* Go through each range of PFNs within this node */
5228 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5229 			unsigned long size_pages;
5230 
5231 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5232 			if (start_pfn >= end_pfn)
5233 				continue;
5234 
5235 			/* Account for what is only usable for kernelcore */
5236 			if (start_pfn < usable_startpfn) {
5237 				unsigned long kernel_pages;
5238 				kernel_pages = min(end_pfn, usable_startpfn)
5239 								- start_pfn;
5240 
5241 				kernelcore_remaining -= min(kernel_pages,
5242 							kernelcore_remaining);
5243 				required_kernelcore -= min(kernel_pages,
5244 							required_kernelcore);
5245 
5246 				/* Continue if range is now fully accounted */
5247 				if (end_pfn <= usable_startpfn) {
5248 
5249 					/*
5250 					 * Push zone_movable_pfn to the end so
5251 					 * that if we have to rebalance
5252 					 * kernelcore across nodes, we will
5253 					 * not double account here
5254 					 */
5255 					zone_movable_pfn[nid] = end_pfn;
5256 					continue;
5257 				}
5258 				start_pfn = usable_startpfn;
5259 			}
5260 
5261 			/*
5262 			 * The usable PFN range for ZONE_MOVABLE is from
5263 			 * start_pfn->end_pfn. Calculate size_pages as the
5264 			 * number of pages used as kernelcore
5265 			 */
5266 			size_pages = end_pfn - start_pfn;
5267 			if (size_pages > kernelcore_remaining)
5268 				size_pages = kernelcore_remaining;
5269 			zone_movable_pfn[nid] = start_pfn + size_pages;
5270 
5271 			/*
5272 			 * Some kernelcore has been met, update counts and
5273 			 * break if the kernelcore for this node has been
5274 			 * satisfied
5275 			 */
5276 			required_kernelcore -= min(required_kernelcore,
5277 								size_pages);
5278 			kernelcore_remaining -= size_pages;
5279 			if (!kernelcore_remaining)
5280 				break;
5281 		}
5282 	}
5283 
5284 	/*
5285 	 * If there is still required_kernelcore, we do another pass with one
5286 	 * less node in the count. This will push zone_movable_pfn[nid] further
5287 	 * along on the nodes that still have memory until kernelcore is
5288 	 * satisfied
5289 	 */
5290 	usable_nodes--;
5291 	if (usable_nodes && required_kernelcore > usable_nodes)
5292 		goto restart;
5293 
5294 out2:
5295 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5296 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5297 		zone_movable_pfn[nid] =
5298 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5299 
5300 out:
5301 	/* restore the node_state */
5302 	node_states[N_MEMORY] = saved_node_state;
5303 }
5304 
5305 /* Any regular or high memory on that node ? */
5306 static void check_for_memory(pg_data_t *pgdat, int nid)
5307 {
5308 	enum zone_type zone_type;
5309 
5310 	if (N_MEMORY == N_NORMAL_MEMORY)
5311 		return;
5312 
5313 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5314 		struct zone *zone = &pgdat->node_zones[zone_type];
5315 		if (populated_zone(zone)) {
5316 			node_set_state(nid, N_HIGH_MEMORY);
5317 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5318 			    zone_type <= ZONE_NORMAL)
5319 				node_set_state(nid, N_NORMAL_MEMORY);
5320 			break;
5321 		}
5322 	}
5323 }
5324 
5325 /**
5326  * free_area_init_nodes - Initialise all pg_data_t and zone data
5327  * @max_zone_pfn: an array of max PFNs for each zone
5328  *
5329  * This will call free_area_init_node() for each active node in the system.
5330  * Using the page ranges provided by memblock_set_node(), the size of each
5331  * zone in each node and their holes is calculated. If the maximum PFN
5332  * between two adjacent zones match, it is assumed that the zone is empty.
5333  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5334  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5335  * starts where the previous one ended. For example, ZONE_DMA32 starts
5336  * at arch_max_dma_pfn.
5337  */
5338 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5339 {
5340 	unsigned long start_pfn, end_pfn;
5341 	int i, nid;
5342 
5343 	/* Record where the zone boundaries are */
5344 	memset(arch_zone_lowest_possible_pfn, 0,
5345 				sizeof(arch_zone_lowest_possible_pfn));
5346 	memset(arch_zone_highest_possible_pfn, 0,
5347 				sizeof(arch_zone_highest_possible_pfn));
5348 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5349 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5350 	for (i = 1; i < MAX_NR_ZONES; i++) {
5351 		if (i == ZONE_MOVABLE)
5352 			continue;
5353 		arch_zone_lowest_possible_pfn[i] =
5354 			arch_zone_highest_possible_pfn[i-1];
5355 		arch_zone_highest_possible_pfn[i] =
5356 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5357 	}
5358 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5359 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5360 
5361 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5362 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5363 	find_zone_movable_pfns_for_nodes();
5364 
5365 	/* Print out the zone ranges */
5366 	pr_info("Zone ranges:\n");
5367 	for (i = 0; i < MAX_NR_ZONES; i++) {
5368 		if (i == ZONE_MOVABLE)
5369 			continue;
5370 		pr_info("  %-8s ", zone_names[i]);
5371 		if (arch_zone_lowest_possible_pfn[i] ==
5372 				arch_zone_highest_possible_pfn[i])
5373 			pr_cont("empty\n");
5374 		else
5375 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5376 				(u64)arch_zone_lowest_possible_pfn[i]
5377 					<< PAGE_SHIFT,
5378 				((u64)arch_zone_highest_possible_pfn[i]
5379 					<< PAGE_SHIFT) - 1);
5380 	}
5381 
5382 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5383 	pr_info("Movable zone start for each node\n");
5384 	for (i = 0; i < MAX_NUMNODES; i++) {
5385 		if (zone_movable_pfn[i])
5386 			pr_info("  Node %d: %#018Lx\n", i,
5387 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5388 	}
5389 
5390 	/* Print out the early node map */
5391 	pr_info("Early memory node ranges\n");
5392 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5393 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5394 			(u64)start_pfn << PAGE_SHIFT,
5395 			((u64)end_pfn << PAGE_SHIFT) - 1);
5396 
5397 	/* Initialise every node */
5398 	mminit_verify_pageflags_layout();
5399 	setup_nr_node_ids();
5400 	for_each_online_node(nid) {
5401 		pg_data_t *pgdat = NODE_DATA(nid);
5402 		free_area_init_node(nid, NULL,
5403 				find_min_pfn_for_node(nid), NULL);
5404 
5405 		/* Any memory on that node */
5406 		if (pgdat->node_present_pages)
5407 			node_set_state(nid, N_MEMORY);
5408 		check_for_memory(pgdat, nid);
5409 	}
5410 }
5411 
5412 static int __init cmdline_parse_core(char *p, unsigned long *core)
5413 {
5414 	unsigned long long coremem;
5415 	if (!p)
5416 		return -EINVAL;
5417 
5418 	coremem = memparse(p, &p);
5419 	*core = coremem >> PAGE_SHIFT;
5420 
5421 	/* Paranoid check that UL is enough for the coremem value */
5422 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5423 
5424 	return 0;
5425 }
5426 
5427 /*
5428  * kernelcore=size sets the amount of memory for use for allocations that
5429  * cannot be reclaimed or migrated.
5430  */
5431 static int __init cmdline_parse_kernelcore(char *p)
5432 {
5433 	return cmdline_parse_core(p, &required_kernelcore);
5434 }
5435 
5436 /*
5437  * movablecore=size sets the amount of memory for use for allocations that
5438  * can be reclaimed or migrated.
5439  */
5440 static int __init cmdline_parse_movablecore(char *p)
5441 {
5442 	return cmdline_parse_core(p, &required_movablecore);
5443 }
5444 
5445 early_param("kernelcore", cmdline_parse_kernelcore);
5446 early_param("movablecore", cmdline_parse_movablecore);
5447 
5448 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5449 
5450 void adjust_managed_page_count(struct page *page, long count)
5451 {
5452 	spin_lock(&managed_page_count_lock);
5453 	page_zone(page)->managed_pages += count;
5454 	totalram_pages += count;
5455 #ifdef CONFIG_HIGHMEM
5456 	if (PageHighMem(page))
5457 		totalhigh_pages += count;
5458 #endif
5459 	spin_unlock(&managed_page_count_lock);
5460 }
5461 EXPORT_SYMBOL(adjust_managed_page_count);
5462 
5463 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5464 {
5465 	void *pos;
5466 	unsigned long pages = 0;
5467 
5468 	start = (void *)PAGE_ALIGN((unsigned long)start);
5469 	end = (void *)((unsigned long)end & PAGE_MASK);
5470 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5471 		if ((unsigned int)poison <= 0xFF)
5472 			memset(pos, poison, PAGE_SIZE);
5473 		free_reserved_page(virt_to_page(pos));
5474 	}
5475 
5476 	if (pages && s)
5477 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5478 			s, pages << (PAGE_SHIFT - 10), start, end);
5479 
5480 	return pages;
5481 }
5482 EXPORT_SYMBOL(free_reserved_area);
5483 
5484 #ifdef	CONFIG_HIGHMEM
5485 void free_highmem_page(struct page *page)
5486 {
5487 	__free_reserved_page(page);
5488 	totalram_pages++;
5489 	page_zone(page)->managed_pages++;
5490 	totalhigh_pages++;
5491 }
5492 #endif
5493 
5494 
5495 void __init mem_init_print_info(const char *str)
5496 {
5497 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5498 	unsigned long init_code_size, init_data_size;
5499 
5500 	physpages = get_num_physpages();
5501 	codesize = _etext - _stext;
5502 	datasize = _edata - _sdata;
5503 	rosize = __end_rodata - __start_rodata;
5504 	bss_size = __bss_stop - __bss_start;
5505 	init_data_size = __init_end - __init_begin;
5506 	init_code_size = _einittext - _sinittext;
5507 
5508 	/*
5509 	 * Detect special cases and adjust section sizes accordingly:
5510 	 * 1) .init.* may be embedded into .data sections
5511 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5512 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5513 	 * 3) .rodata.* may be embedded into .text or .data sections.
5514 	 */
5515 #define adj_init_size(start, end, size, pos, adj) \
5516 	do { \
5517 		if (start <= pos && pos < end && size > adj) \
5518 			size -= adj; \
5519 	} while (0)
5520 
5521 	adj_init_size(__init_begin, __init_end, init_data_size,
5522 		     _sinittext, init_code_size);
5523 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5524 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5525 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5526 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5527 
5528 #undef	adj_init_size
5529 
5530 	pr_info("Memory: %luK/%luK available "
5531 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5532 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5533 #ifdef	CONFIG_HIGHMEM
5534 	       ", %luK highmem"
5535 #endif
5536 	       "%s%s)\n",
5537 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5538 	       codesize >> 10, datasize >> 10, rosize >> 10,
5539 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5540 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5541 	       totalcma_pages << (PAGE_SHIFT-10),
5542 #ifdef	CONFIG_HIGHMEM
5543 	       totalhigh_pages << (PAGE_SHIFT-10),
5544 #endif
5545 	       str ? ", " : "", str ? str : "");
5546 }
5547 
5548 /**
5549  * set_dma_reserve - set the specified number of pages reserved in the first zone
5550  * @new_dma_reserve: The number of pages to mark reserved
5551  *
5552  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5553  * In the DMA zone, a significant percentage may be consumed by kernel image
5554  * and other unfreeable allocations which can skew the watermarks badly. This
5555  * function may optionally be used to account for unfreeable pages in the
5556  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5557  * smaller per-cpu batchsize.
5558  */
5559 void __init set_dma_reserve(unsigned long new_dma_reserve)
5560 {
5561 	dma_reserve = new_dma_reserve;
5562 }
5563 
5564 void __init free_area_init(unsigned long *zones_size)
5565 {
5566 	free_area_init_node(0, zones_size,
5567 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5568 }
5569 
5570 static int page_alloc_cpu_notify(struct notifier_block *self,
5571 				 unsigned long action, void *hcpu)
5572 {
5573 	int cpu = (unsigned long)hcpu;
5574 
5575 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5576 		lru_add_drain_cpu(cpu);
5577 		drain_pages(cpu);
5578 
5579 		/*
5580 		 * Spill the event counters of the dead processor
5581 		 * into the current processors event counters.
5582 		 * This artificially elevates the count of the current
5583 		 * processor.
5584 		 */
5585 		vm_events_fold_cpu(cpu);
5586 
5587 		/*
5588 		 * Zero the differential counters of the dead processor
5589 		 * so that the vm statistics are consistent.
5590 		 *
5591 		 * This is only okay since the processor is dead and cannot
5592 		 * race with what we are doing.
5593 		 */
5594 		cpu_vm_stats_fold(cpu);
5595 	}
5596 	return NOTIFY_OK;
5597 }
5598 
5599 void __init page_alloc_init(void)
5600 {
5601 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5602 }
5603 
5604 /*
5605  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5606  *	or min_free_kbytes changes.
5607  */
5608 static void calculate_totalreserve_pages(void)
5609 {
5610 	struct pglist_data *pgdat;
5611 	unsigned long reserve_pages = 0;
5612 	enum zone_type i, j;
5613 
5614 	for_each_online_pgdat(pgdat) {
5615 		for (i = 0; i < MAX_NR_ZONES; i++) {
5616 			struct zone *zone = pgdat->node_zones + i;
5617 			long max = 0;
5618 
5619 			/* Find valid and maximum lowmem_reserve in the zone */
5620 			for (j = i; j < MAX_NR_ZONES; j++) {
5621 				if (zone->lowmem_reserve[j] > max)
5622 					max = zone->lowmem_reserve[j];
5623 			}
5624 
5625 			/* we treat the high watermark as reserved pages. */
5626 			max += high_wmark_pages(zone);
5627 
5628 			if (max > zone->managed_pages)
5629 				max = zone->managed_pages;
5630 			reserve_pages += max;
5631 			/*
5632 			 * Lowmem reserves are not available to
5633 			 * GFP_HIGHUSER page cache allocations and
5634 			 * kswapd tries to balance zones to their high
5635 			 * watermark.  As a result, neither should be
5636 			 * regarded as dirtyable memory, to prevent a
5637 			 * situation where reclaim has to clean pages
5638 			 * in order to balance the zones.
5639 			 */
5640 			zone->dirty_balance_reserve = max;
5641 		}
5642 	}
5643 	dirty_balance_reserve = reserve_pages;
5644 	totalreserve_pages = reserve_pages;
5645 }
5646 
5647 /*
5648  * setup_per_zone_lowmem_reserve - called whenever
5649  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5650  *	has a correct pages reserved value, so an adequate number of
5651  *	pages are left in the zone after a successful __alloc_pages().
5652  */
5653 static void setup_per_zone_lowmem_reserve(void)
5654 {
5655 	struct pglist_data *pgdat;
5656 	enum zone_type j, idx;
5657 
5658 	for_each_online_pgdat(pgdat) {
5659 		for (j = 0; j < MAX_NR_ZONES; j++) {
5660 			struct zone *zone = pgdat->node_zones + j;
5661 			unsigned long managed_pages = zone->managed_pages;
5662 
5663 			zone->lowmem_reserve[j] = 0;
5664 
5665 			idx = j;
5666 			while (idx) {
5667 				struct zone *lower_zone;
5668 
5669 				idx--;
5670 
5671 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5672 					sysctl_lowmem_reserve_ratio[idx] = 1;
5673 
5674 				lower_zone = pgdat->node_zones + idx;
5675 				lower_zone->lowmem_reserve[j] = managed_pages /
5676 					sysctl_lowmem_reserve_ratio[idx];
5677 				managed_pages += lower_zone->managed_pages;
5678 			}
5679 		}
5680 	}
5681 
5682 	/* update totalreserve_pages */
5683 	calculate_totalreserve_pages();
5684 }
5685 
5686 static void __setup_per_zone_wmarks(void)
5687 {
5688 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5689 	unsigned long lowmem_pages = 0;
5690 	struct zone *zone;
5691 	unsigned long flags;
5692 
5693 	/* Calculate total number of !ZONE_HIGHMEM pages */
5694 	for_each_zone(zone) {
5695 		if (!is_highmem(zone))
5696 			lowmem_pages += zone->managed_pages;
5697 	}
5698 
5699 	for_each_zone(zone) {
5700 		u64 tmp;
5701 
5702 		spin_lock_irqsave(&zone->lock, flags);
5703 		tmp = (u64)pages_min * zone->managed_pages;
5704 		do_div(tmp, lowmem_pages);
5705 		if (is_highmem(zone)) {
5706 			/*
5707 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5708 			 * need highmem pages, so cap pages_min to a small
5709 			 * value here.
5710 			 *
5711 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5712 			 * deltas controls asynch page reclaim, and so should
5713 			 * not be capped for highmem.
5714 			 */
5715 			unsigned long min_pages;
5716 
5717 			min_pages = zone->managed_pages / 1024;
5718 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5719 			zone->watermark[WMARK_MIN] = min_pages;
5720 		} else {
5721 			/*
5722 			 * If it's a lowmem zone, reserve a number of pages
5723 			 * proportionate to the zone's size.
5724 			 */
5725 			zone->watermark[WMARK_MIN] = tmp;
5726 		}
5727 
5728 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5729 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5730 
5731 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5732 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5733 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5734 
5735 		setup_zone_migrate_reserve(zone);
5736 		spin_unlock_irqrestore(&zone->lock, flags);
5737 	}
5738 
5739 	/* update totalreserve_pages */
5740 	calculate_totalreserve_pages();
5741 }
5742 
5743 /**
5744  * setup_per_zone_wmarks - called when min_free_kbytes changes
5745  * or when memory is hot-{added|removed}
5746  *
5747  * Ensures that the watermark[min,low,high] values for each zone are set
5748  * correctly with respect to min_free_kbytes.
5749  */
5750 void setup_per_zone_wmarks(void)
5751 {
5752 	mutex_lock(&zonelists_mutex);
5753 	__setup_per_zone_wmarks();
5754 	mutex_unlock(&zonelists_mutex);
5755 }
5756 
5757 /*
5758  * The inactive anon list should be small enough that the VM never has to
5759  * do too much work, but large enough that each inactive page has a chance
5760  * to be referenced again before it is swapped out.
5761  *
5762  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5763  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5764  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5765  * the anonymous pages are kept on the inactive list.
5766  *
5767  * total     target    max
5768  * memory    ratio     inactive anon
5769  * -------------------------------------
5770  *   10MB       1         5MB
5771  *  100MB       1        50MB
5772  *    1GB       3       250MB
5773  *   10GB      10       0.9GB
5774  *  100GB      31         3GB
5775  *    1TB     101        10GB
5776  *   10TB     320        32GB
5777  */
5778 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5779 {
5780 	unsigned int gb, ratio;
5781 
5782 	/* Zone size in gigabytes */
5783 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5784 	if (gb)
5785 		ratio = int_sqrt(10 * gb);
5786 	else
5787 		ratio = 1;
5788 
5789 	zone->inactive_ratio = ratio;
5790 }
5791 
5792 static void __meminit setup_per_zone_inactive_ratio(void)
5793 {
5794 	struct zone *zone;
5795 
5796 	for_each_zone(zone)
5797 		calculate_zone_inactive_ratio(zone);
5798 }
5799 
5800 /*
5801  * Initialise min_free_kbytes.
5802  *
5803  * For small machines we want it small (128k min).  For large machines
5804  * we want it large (64MB max).  But it is not linear, because network
5805  * bandwidth does not increase linearly with machine size.  We use
5806  *
5807  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5808  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5809  *
5810  * which yields
5811  *
5812  * 16MB:	512k
5813  * 32MB:	724k
5814  * 64MB:	1024k
5815  * 128MB:	1448k
5816  * 256MB:	2048k
5817  * 512MB:	2896k
5818  * 1024MB:	4096k
5819  * 2048MB:	5792k
5820  * 4096MB:	8192k
5821  * 8192MB:	11584k
5822  * 16384MB:	16384k
5823  */
5824 int __meminit init_per_zone_wmark_min(void)
5825 {
5826 	unsigned long lowmem_kbytes;
5827 	int new_min_free_kbytes;
5828 
5829 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5830 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5831 
5832 	if (new_min_free_kbytes > user_min_free_kbytes) {
5833 		min_free_kbytes = new_min_free_kbytes;
5834 		if (min_free_kbytes < 128)
5835 			min_free_kbytes = 128;
5836 		if (min_free_kbytes > 65536)
5837 			min_free_kbytes = 65536;
5838 	} else {
5839 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5840 				new_min_free_kbytes, user_min_free_kbytes);
5841 	}
5842 	setup_per_zone_wmarks();
5843 	refresh_zone_stat_thresholds();
5844 	setup_per_zone_lowmem_reserve();
5845 	setup_per_zone_inactive_ratio();
5846 	return 0;
5847 }
5848 module_init(init_per_zone_wmark_min)
5849 
5850 /*
5851  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5852  *	that we can call two helper functions whenever min_free_kbytes
5853  *	changes.
5854  */
5855 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5856 	void __user *buffer, size_t *length, loff_t *ppos)
5857 {
5858 	int rc;
5859 
5860 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5861 	if (rc)
5862 		return rc;
5863 
5864 	if (write) {
5865 		user_min_free_kbytes = min_free_kbytes;
5866 		setup_per_zone_wmarks();
5867 	}
5868 	return 0;
5869 }
5870 
5871 #ifdef CONFIG_NUMA
5872 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5873 	void __user *buffer, size_t *length, loff_t *ppos)
5874 {
5875 	struct zone *zone;
5876 	int rc;
5877 
5878 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5879 	if (rc)
5880 		return rc;
5881 
5882 	for_each_zone(zone)
5883 		zone->min_unmapped_pages = (zone->managed_pages *
5884 				sysctl_min_unmapped_ratio) / 100;
5885 	return 0;
5886 }
5887 
5888 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5889 	void __user *buffer, size_t *length, loff_t *ppos)
5890 {
5891 	struct zone *zone;
5892 	int rc;
5893 
5894 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5895 	if (rc)
5896 		return rc;
5897 
5898 	for_each_zone(zone)
5899 		zone->min_slab_pages = (zone->managed_pages *
5900 				sysctl_min_slab_ratio) / 100;
5901 	return 0;
5902 }
5903 #endif
5904 
5905 /*
5906  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5907  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5908  *	whenever sysctl_lowmem_reserve_ratio changes.
5909  *
5910  * The reserve ratio obviously has absolutely no relation with the
5911  * minimum watermarks. The lowmem reserve ratio can only make sense
5912  * if in function of the boot time zone sizes.
5913  */
5914 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5915 	void __user *buffer, size_t *length, loff_t *ppos)
5916 {
5917 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5918 	setup_per_zone_lowmem_reserve();
5919 	return 0;
5920 }
5921 
5922 /*
5923  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5924  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5925  * pagelist can have before it gets flushed back to buddy allocator.
5926  */
5927 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5928 	void __user *buffer, size_t *length, loff_t *ppos)
5929 {
5930 	struct zone *zone;
5931 	int old_percpu_pagelist_fraction;
5932 	int ret;
5933 
5934 	mutex_lock(&pcp_batch_high_lock);
5935 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5936 
5937 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5938 	if (!write || ret < 0)
5939 		goto out;
5940 
5941 	/* Sanity checking to avoid pcp imbalance */
5942 	if (percpu_pagelist_fraction &&
5943 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5944 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5945 		ret = -EINVAL;
5946 		goto out;
5947 	}
5948 
5949 	/* No change? */
5950 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5951 		goto out;
5952 
5953 	for_each_populated_zone(zone) {
5954 		unsigned int cpu;
5955 
5956 		for_each_possible_cpu(cpu)
5957 			pageset_set_high_and_batch(zone,
5958 					per_cpu_ptr(zone->pageset, cpu));
5959 	}
5960 out:
5961 	mutex_unlock(&pcp_batch_high_lock);
5962 	return ret;
5963 }
5964 
5965 int hashdist = HASHDIST_DEFAULT;
5966 
5967 #ifdef CONFIG_NUMA
5968 static int __init set_hashdist(char *str)
5969 {
5970 	if (!str)
5971 		return 0;
5972 	hashdist = simple_strtoul(str, &str, 0);
5973 	return 1;
5974 }
5975 __setup("hashdist=", set_hashdist);
5976 #endif
5977 
5978 /*
5979  * allocate a large system hash table from bootmem
5980  * - it is assumed that the hash table must contain an exact power-of-2
5981  *   quantity of entries
5982  * - limit is the number of hash buckets, not the total allocation size
5983  */
5984 void *__init alloc_large_system_hash(const char *tablename,
5985 				     unsigned long bucketsize,
5986 				     unsigned long numentries,
5987 				     int scale,
5988 				     int flags,
5989 				     unsigned int *_hash_shift,
5990 				     unsigned int *_hash_mask,
5991 				     unsigned long low_limit,
5992 				     unsigned long high_limit)
5993 {
5994 	unsigned long long max = high_limit;
5995 	unsigned long log2qty, size;
5996 	void *table = NULL;
5997 
5998 	/* allow the kernel cmdline to have a say */
5999 	if (!numentries) {
6000 		/* round applicable memory size up to nearest megabyte */
6001 		numentries = nr_kernel_pages;
6002 
6003 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6004 		if (PAGE_SHIFT < 20)
6005 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6006 
6007 		/* limit to 1 bucket per 2^scale bytes of low memory */
6008 		if (scale > PAGE_SHIFT)
6009 			numentries >>= (scale - PAGE_SHIFT);
6010 		else
6011 			numentries <<= (PAGE_SHIFT - scale);
6012 
6013 		/* Make sure we've got at least a 0-order allocation.. */
6014 		if (unlikely(flags & HASH_SMALL)) {
6015 			/* Makes no sense without HASH_EARLY */
6016 			WARN_ON(!(flags & HASH_EARLY));
6017 			if (!(numentries >> *_hash_shift)) {
6018 				numentries = 1UL << *_hash_shift;
6019 				BUG_ON(!numentries);
6020 			}
6021 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6022 			numentries = PAGE_SIZE / bucketsize;
6023 	}
6024 	numentries = roundup_pow_of_two(numentries);
6025 
6026 	/* limit allocation size to 1/16 total memory by default */
6027 	if (max == 0) {
6028 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6029 		do_div(max, bucketsize);
6030 	}
6031 	max = min(max, 0x80000000ULL);
6032 
6033 	if (numentries < low_limit)
6034 		numentries = low_limit;
6035 	if (numentries > max)
6036 		numentries = max;
6037 
6038 	log2qty = ilog2(numentries);
6039 
6040 	do {
6041 		size = bucketsize << log2qty;
6042 		if (flags & HASH_EARLY)
6043 			table = memblock_virt_alloc_nopanic(size, 0);
6044 		else if (hashdist)
6045 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6046 		else {
6047 			/*
6048 			 * If bucketsize is not a power-of-two, we may free
6049 			 * some pages at the end of hash table which
6050 			 * alloc_pages_exact() automatically does
6051 			 */
6052 			if (get_order(size) < MAX_ORDER) {
6053 				table = alloc_pages_exact(size, GFP_ATOMIC);
6054 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6055 			}
6056 		}
6057 	} while (!table && size > PAGE_SIZE && --log2qty);
6058 
6059 	if (!table)
6060 		panic("Failed to allocate %s hash table\n", tablename);
6061 
6062 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6063 	       tablename,
6064 	       (1UL << log2qty),
6065 	       ilog2(size) - PAGE_SHIFT,
6066 	       size);
6067 
6068 	if (_hash_shift)
6069 		*_hash_shift = log2qty;
6070 	if (_hash_mask)
6071 		*_hash_mask = (1 << log2qty) - 1;
6072 
6073 	return table;
6074 }
6075 
6076 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6077 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6078 							unsigned long pfn)
6079 {
6080 #ifdef CONFIG_SPARSEMEM
6081 	return __pfn_to_section(pfn)->pageblock_flags;
6082 #else
6083 	return zone->pageblock_flags;
6084 #endif /* CONFIG_SPARSEMEM */
6085 }
6086 
6087 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6088 {
6089 #ifdef CONFIG_SPARSEMEM
6090 	pfn &= (PAGES_PER_SECTION-1);
6091 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6092 #else
6093 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6094 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6095 #endif /* CONFIG_SPARSEMEM */
6096 }
6097 
6098 /**
6099  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6100  * @page: The page within the block of interest
6101  * @pfn: The target page frame number
6102  * @end_bitidx: The last bit of interest to retrieve
6103  * @mask: mask of bits that the caller is interested in
6104  *
6105  * Return: pageblock_bits flags
6106  */
6107 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6108 					unsigned long end_bitidx,
6109 					unsigned long mask)
6110 {
6111 	struct zone *zone;
6112 	unsigned long *bitmap;
6113 	unsigned long bitidx, word_bitidx;
6114 	unsigned long word;
6115 
6116 	zone = page_zone(page);
6117 	bitmap = get_pageblock_bitmap(zone, pfn);
6118 	bitidx = pfn_to_bitidx(zone, pfn);
6119 	word_bitidx = bitidx / BITS_PER_LONG;
6120 	bitidx &= (BITS_PER_LONG-1);
6121 
6122 	word = bitmap[word_bitidx];
6123 	bitidx += end_bitidx;
6124 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6125 }
6126 
6127 /**
6128  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6129  * @page: The page within the block of interest
6130  * @flags: The flags to set
6131  * @pfn: The target page frame number
6132  * @end_bitidx: The last bit of interest
6133  * @mask: mask of bits that the caller is interested in
6134  */
6135 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6136 					unsigned long pfn,
6137 					unsigned long end_bitidx,
6138 					unsigned long mask)
6139 {
6140 	struct zone *zone;
6141 	unsigned long *bitmap;
6142 	unsigned long bitidx, word_bitidx;
6143 	unsigned long old_word, word;
6144 
6145 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6146 
6147 	zone = page_zone(page);
6148 	bitmap = get_pageblock_bitmap(zone, pfn);
6149 	bitidx = pfn_to_bitidx(zone, pfn);
6150 	word_bitidx = bitidx / BITS_PER_LONG;
6151 	bitidx &= (BITS_PER_LONG-1);
6152 
6153 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6154 
6155 	bitidx += end_bitidx;
6156 	mask <<= (BITS_PER_LONG - bitidx - 1);
6157 	flags <<= (BITS_PER_LONG - bitidx - 1);
6158 
6159 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6160 	for (;;) {
6161 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6162 		if (word == old_word)
6163 			break;
6164 		word = old_word;
6165 	}
6166 }
6167 
6168 /*
6169  * This function checks whether pageblock includes unmovable pages or not.
6170  * If @count is not zero, it is okay to include less @count unmovable pages
6171  *
6172  * PageLRU check without isolation or lru_lock could race so that
6173  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6174  * expect this function should be exact.
6175  */
6176 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6177 			 bool skip_hwpoisoned_pages)
6178 {
6179 	unsigned long pfn, iter, found;
6180 	int mt;
6181 
6182 	/*
6183 	 * For avoiding noise data, lru_add_drain_all() should be called
6184 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6185 	 */
6186 	if (zone_idx(zone) == ZONE_MOVABLE)
6187 		return false;
6188 	mt = get_pageblock_migratetype(page);
6189 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6190 		return false;
6191 
6192 	pfn = page_to_pfn(page);
6193 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6194 		unsigned long check = pfn + iter;
6195 
6196 		if (!pfn_valid_within(check))
6197 			continue;
6198 
6199 		page = pfn_to_page(check);
6200 
6201 		/*
6202 		 * Hugepages are not in LRU lists, but they're movable.
6203 		 * We need not scan over tail pages bacause we don't
6204 		 * handle each tail page individually in migration.
6205 		 */
6206 		if (PageHuge(page)) {
6207 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6208 			continue;
6209 		}
6210 
6211 		/*
6212 		 * We can't use page_count without pin a page
6213 		 * because another CPU can free compound page.
6214 		 * This check already skips compound tails of THP
6215 		 * because their page->_count is zero at all time.
6216 		 */
6217 		if (!atomic_read(&page->_count)) {
6218 			if (PageBuddy(page))
6219 				iter += (1 << page_order(page)) - 1;
6220 			continue;
6221 		}
6222 
6223 		/*
6224 		 * The HWPoisoned page may be not in buddy system, and
6225 		 * page_count() is not 0.
6226 		 */
6227 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6228 			continue;
6229 
6230 		if (!PageLRU(page))
6231 			found++;
6232 		/*
6233 		 * If there are RECLAIMABLE pages, we need to check
6234 		 * it.  But now, memory offline itself doesn't call
6235 		 * shrink_node_slabs() and it still to be fixed.
6236 		 */
6237 		/*
6238 		 * If the page is not RAM, page_count()should be 0.
6239 		 * we don't need more check. This is an _used_ not-movable page.
6240 		 *
6241 		 * The problematic thing here is PG_reserved pages. PG_reserved
6242 		 * is set to both of a memory hole page and a _used_ kernel
6243 		 * page at boot.
6244 		 */
6245 		if (found > count)
6246 			return true;
6247 	}
6248 	return false;
6249 }
6250 
6251 bool is_pageblock_removable_nolock(struct page *page)
6252 {
6253 	struct zone *zone;
6254 	unsigned long pfn;
6255 
6256 	/*
6257 	 * We have to be careful here because we are iterating over memory
6258 	 * sections which are not zone aware so we might end up outside of
6259 	 * the zone but still within the section.
6260 	 * We have to take care about the node as well. If the node is offline
6261 	 * its NODE_DATA will be NULL - see page_zone.
6262 	 */
6263 	if (!node_online(page_to_nid(page)))
6264 		return false;
6265 
6266 	zone = page_zone(page);
6267 	pfn = page_to_pfn(page);
6268 	if (!zone_spans_pfn(zone, pfn))
6269 		return false;
6270 
6271 	return !has_unmovable_pages(zone, page, 0, true);
6272 }
6273 
6274 #ifdef CONFIG_CMA
6275 
6276 static unsigned long pfn_max_align_down(unsigned long pfn)
6277 {
6278 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6279 			     pageblock_nr_pages) - 1);
6280 }
6281 
6282 static unsigned long pfn_max_align_up(unsigned long pfn)
6283 {
6284 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6285 				pageblock_nr_pages));
6286 }
6287 
6288 /* [start, end) must belong to a single zone. */
6289 static int __alloc_contig_migrate_range(struct compact_control *cc,
6290 					unsigned long start, unsigned long end)
6291 {
6292 	/* This function is based on compact_zone() from compaction.c. */
6293 	unsigned long nr_reclaimed;
6294 	unsigned long pfn = start;
6295 	unsigned int tries = 0;
6296 	int ret = 0;
6297 
6298 	migrate_prep();
6299 
6300 	while (pfn < end || !list_empty(&cc->migratepages)) {
6301 		if (fatal_signal_pending(current)) {
6302 			ret = -EINTR;
6303 			break;
6304 		}
6305 
6306 		if (list_empty(&cc->migratepages)) {
6307 			cc->nr_migratepages = 0;
6308 			pfn = isolate_migratepages_range(cc, pfn, end);
6309 			if (!pfn) {
6310 				ret = -EINTR;
6311 				break;
6312 			}
6313 			tries = 0;
6314 		} else if (++tries == 5) {
6315 			ret = ret < 0 ? ret : -EBUSY;
6316 			break;
6317 		}
6318 
6319 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6320 							&cc->migratepages);
6321 		cc->nr_migratepages -= nr_reclaimed;
6322 
6323 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6324 				    NULL, 0, cc->mode, MR_CMA);
6325 	}
6326 	if (ret < 0) {
6327 		putback_movable_pages(&cc->migratepages);
6328 		return ret;
6329 	}
6330 	return 0;
6331 }
6332 
6333 /**
6334  * alloc_contig_range() -- tries to allocate given range of pages
6335  * @start:	start PFN to allocate
6336  * @end:	one-past-the-last PFN to allocate
6337  * @migratetype:	migratetype of the underlaying pageblocks (either
6338  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6339  *			in range must have the same migratetype and it must
6340  *			be either of the two.
6341  *
6342  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6343  * aligned, however it's the caller's responsibility to guarantee that
6344  * we are the only thread that changes migrate type of pageblocks the
6345  * pages fall in.
6346  *
6347  * The PFN range must belong to a single zone.
6348  *
6349  * Returns zero on success or negative error code.  On success all
6350  * pages which PFN is in [start, end) are allocated for the caller and
6351  * need to be freed with free_contig_range().
6352  */
6353 int alloc_contig_range(unsigned long start, unsigned long end,
6354 		       unsigned migratetype)
6355 {
6356 	unsigned long outer_start, outer_end;
6357 	int ret = 0, order;
6358 
6359 	struct compact_control cc = {
6360 		.nr_migratepages = 0,
6361 		.order = -1,
6362 		.zone = page_zone(pfn_to_page(start)),
6363 		.mode = MIGRATE_SYNC,
6364 		.ignore_skip_hint = true,
6365 	};
6366 	INIT_LIST_HEAD(&cc.migratepages);
6367 
6368 	/*
6369 	 * What we do here is we mark all pageblocks in range as
6370 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6371 	 * have different sizes, and due to the way page allocator
6372 	 * work, we align the range to biggest of the two pages so
6373 	 * that page allocator won't try to merge buddies from
6374 	 * different pageblocks and change MIGRATE_ISOLATE to some
6375 	 * other migration type.
6376 	 *
6377 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6378 	 * migrate the pages from an unaligned range (ie. pages that
6379 	 * we are interested in).  This will put all the pages in
6380 	 * range back to page allocator as MIGRATE_ISOLATE.
6381 	 *
6382 	 * When this is done, we take the pages in range from page
6383 	 * allocator removing them from the buddy system.  This way
6384 	 * page allocator will never consider using them.
6385 	 *
6386 	 * This lets us mark the pageblocks back as
6387 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6388 	 * aligned range but not in the unaligned, original range are
6389 	 * put back to page allocator so that buddy can use them.
6390 	 */
6391 
6392 	ret = start_isolate_page_range(pfn_max_align_down(start),
6393 				       pfn_max_align_up(end), migratetype,
6394 				       false);
6395 	if (ret)
6396 		return ret;
6397 
6398 	ret = __alloc_contig_migrate_range(&cc, start, end);
6399 	if (ret)
6400 		goto done;
6401 
6402 	/*
6403 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6404 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6405 	 * more, all pages in [start, end) are free in page allocator.
6406 	 * What we are going to do is to allocate all pages from
6407 	 * [start, end) (that is remove them from page allocator).
6408 	 *
6409 	 * The only problem is that pages at the beginning and at the
6410 	 * end of interesting range may be not aligned with pages that
6411 	 * page allocator holds, ie. they can be part of higher order
6412 	 * pages.  Because of this, we reserve the bigger range and
6413 	 * once this is done free the pages we are not interested in.
6414 	 *
6415 	 * We don't have to hold zone->lock here because the pages are
6416 	 * isolated thus they won't get removed from buddy.
6417 	 */
6418 
6419 	lru_add_drain_all();
6420 	drain_all_pages(cc.zone);
6421 
6422 	order = 0;
6423 	outer_start = start;
6424 	while (!PageBuddy(pfn_to_page(outer_start))) {
6425 		if (++order >= MAX_ORDER) {
6426 			ret = -EBUSY;
6427 			goto done;
6428 		}
6429 		outer_start &= ~0UL << order;
6430 	}
6431 
6432 	/* Make sure the range is really isolated. */
6433 	if (test_pages_isolated(outer_start, end, false)) {
6434 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6435 			__func__, outer_start, end);
6436 		ret = -EBUSY;
6437 		goto done;
6438 	}
6439 
6440 	/* Grab isolated pages from freelists. */
6441 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6442 	if (!outer_end) {
6443 		ret = -EBUSY;
6444 		goto done;
6445 	}
6446 
6447 	/* Free head and tail (if any) */
6448 	if (start != outer_start)
6449 		free_contig_range(outer_start, start - outer_start);
6450 	if (end != outer_end)
6451 		free_contig_range(end, outer_end - end);
6452 
6453 done:
6454 	undo_isolate_page_range(pfn_max_align_down(start),
6455 				pfn_max_align_up(end), migratetype);
6456 	return ret;
6457 }
6458 
6459 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6460 {
6461 	unsigned int count = 0;
6462 
6463 	for (; nr_pages--; pfn++) {
6464 		struct page *page = pfn_to_page(pfn);
6465 
6466 		count += page_count(page) != 1;
6467 		__free_page(page);
6468 	}
6469 	WARN(count != 0, "%d pages are still in use!\n", count);
6470 }
6471 #endif
6472 
6473 #ifdef CONFIG_MEMORY_HOTPLUG
6474 /*
6475  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6476  * page high values need to be recalulated.
6477  */
6478 void __meminit zone_pcp_update(struct zone *zone)
6479 {
6480 	unsigned cpu;
6481 	mutex_lock(&pcp_batch_high_lock);
6482 	for_each_possible_cpu(cpu)
6483 		pageset_set_high_and_batch(zone,
6484 				per_cpu_ptr(zone->pageset, cpu));
6485 	mutex_unlock(&pcp_batch_high_lock);
6486 }
6487 #endif
6488 
6489 void zone_pcp_reset(struct zone *zone)
6490 {
6491 	unsigned long flags;
6492 	int cpu;
6493 	struct per_cpu_pageset *pset;
6494 
6495 	/* avoid races with drain_pages()  */
6496 	local_irq_save(flags);
6497 	if (zone->pageset != &boot_pageset) {
6498 		for_each_online_cpu(cpu) {
6499 			pset = per_cpu_ptr(zone->pageset, cpu);
6500 			drain_zonestat(zone, pset);
6501 		}
6502 		free_percpu(zone->pageset);
6503 		zone->pageset = &boot_pageset;
6504 	}
6505 	local_irq_restore(flags);
6506 }
6507 
6508 #ifdef CONFIG_MEMORY_HOTREMOVE
6509 /*
6510  * All pages in the range must be isolated before calling this.
6511  */
6512 void
6513 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6514 {
6515 	struct page *page;
6516 	struct zone *zone;
6517 	unsigned int order, i;
6518 	unsigned long pfn;
6519 	unsigned long flags;
6520 	/* find the first valid pfn */
6521 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6522 		if (pfn_valid(pfn))
6523 			break;
6524 	if (pfn == end_pfn)
6525 		return;
6526 	zone = page_zone(pfn_to_page(pfn));
6527 	spin_lock_irqsave(&zone->lock, flags);
6528 	pfn = start_pfn;
6529 	while (pfn < end_pfn) {
6530 		if (!pfn_valid(pfn)) {
6531 			pfn++;
6532 			continue;
6533 		}
6534 		page = pfn_to_page(pfn);
6535 		/*
6536 		 * The HWPoisoned page may be not in buddy system, and
6537 		 * page_count() is not 0.
6538 		 */
6539 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6540 			pfn++;
6541 			SetPageReserved(page);
6542 			continue;
6543 		}
6544 
6545 		BUG_ON(page_count(page));
6546 		BUG_ON(!PageBuddy(page));
6547 		order = page_order(page);
6548 #ifdef CONFIG_DEBUG_VM
6549 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6550 		       pfn, 1 << order, end_pfn);
6551 #endif
6552 		list_del(&page->lru);
6553 		rmv_page_order(page);
6554 		zone->free_area[order].nr_free--;
6555 		for (i = 0; i < (1 << order); i++)
6556 			SetPageReserved((page+i));
6557 		pfn += (1 << order);
6558 	}
6559 	spin_unlock_irqrestore(&zone->lock, flags);
6560 }
6561 #endif
6562 
6563 #ifdef CONFIG_MEMORY_FAILURE
6564 bool is_free_buddy_page(struct page *page)
6565 {
6566 	struct zone *zone = page_zone(page);
6567 	unsigned long pfn = page_to_pfn(page);
6568 	unsigned long flags;
6569 	unsigned int order;
6570 
6571 	spin_lock_irqsave(&zone->lock, flags);
6572 	for (order = 0; order < MAX_ORDER; order++) {
6573 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6574 
6575 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6576 			break;
6577 	}
6578 	spin_unlock_irqrestore(&zone->lock, flags);
6579 
6580 	return order < MAX_ORDER;
6581 }
6582 #endif
6583