1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* 111 * Don't poison memory with KASAN (only for the tag-based modes). 112 * During boot, all non-reserved memblock memory is exposed to page_alloc. 113 * Poisoning all that memory lengthens boot time, especially on systems with 114 * large amount of RAM. This flag is used to skip that poisoning. 115 * This is only done for the tag-based KASAN modes, as those are able to 116 * detect memory corruptions with the memory tags assigned by default. 117 * All memory allocated normally after boot gets poisoned as usual. 118 */ 119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 120 121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 122 static DEFINE_MUTEX(pcp_batch_high_lock); 123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 124 125 struct pagesets { 126 local_lock_t lock; 127 }; 128 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 129 .lock = INIT_LOCAL_LOCK(lock), 130 }; 131 132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 133 DEFINE_PER_CPU(int, numa_node); 134 EXPORT_PER_CPU_SYMBOL(numa_node); 135 #endif 136 137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 138 139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 140 /* 141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 144 * defined in <linux/topology.h>. 145 */ 146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 147 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 148 #endif 149 150 /* work_structs for global per-cpu drains */ 151 struct pcpu_drain { 152 struct zone *zone; 153 struct work_struct work; 154 }; 155 static DEFINE_MUTEX(pcpu_drain_mutex); 156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 157 158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 159 volatile unsigned long latent_entropy __latent_entropy; 160 EXPORT_SYMBOL(latent_entropy); 161 #endif 162 163 /* 164 * Array of node states. 165 */ 166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 167 [N_POSSIBLE] = NODE_MASK_ALL, 168 [N_ONLINE] = { { [0] = 1UL } }, 169 #ifndef CONFIG_NUMA 170 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 171 #ifdef CONFIG_HIGHMEM 172 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 173 #endif 174 [N_MEMORY] = { { [0] = 1UL } }, 175 [N_CPU] = { { [0] = 1UL } }, 176 #endif /* NUMA */ 177 }; 178 EXPORT_SYMBOL(node_states); 179 180 atomic_long_t _totalram_pages __read_mostly; 181 EXPORT_SYMBOL(_totalram_pages); 182 unsigned long totalreserve_pages __read_mostly; 183 unsigned long totalcma_pages __read_mostly; 184 185 int percpu_pagelist_high_fraction; 186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 188 EXPORT_SYMBOL(init_on_alloc); 189 190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 191 EXPORT_SYMBOL(init_on_free); 192 193 static bool _init_on_alloc_enabled_early __read_mostly 194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 195 static int __init early_init_on_alloc(char *buf) 196 { 197 198 return kstrtobool(buf, &_init_on_alloc_enabled_early); 199 } 200 early_param("init_on_alloc", early_init_on_alloc); 201 202 static bool _init_on_free_enabled_early __read_mostly 203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 204 static int __init early_init_on_free(char *buf) 205 { 206 return kstrtobool(buf, &_init_on_free_enabled_early); 207 } 208 early_param("init_on_free", early_init_on_free); 209 210 /* 211 * A cached value of the page's pageblock's migratetype, used when the page is 212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 213 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 214 * Also the migratetype set in the page does not necessarily match the pcplist 215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 216 * other index - this ensures that it will be put on the correct CMA freelist. 217 */ 218 static inline int get_pcppage_migratetype(struct page *page) 219 { 220 return page->index; 221 } 222 223 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 224 { 225 page->index = migratetype; 226 } 227 228 #ifdef CONFIG_PM_SLEEP 229 /* 230 * The following functions are used by the suspend/hibernate code to temporarily 231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 232 * while devices are suspended. To avoid races with the suspend/hibernate code, 233 * they should always be called with system_transition_mutex held 234 * (gfp_allowed_mask also should only be modified with system_transition_mutex 235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 236 * with that modification). 237 */ 238 239 static gfp_t saved_gfp_mask; 240 241 void pm_restore_gfp_mask(void) 242 { 243 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 244 if (saved_gfp_mask) { 245 gfp_allowed_mask = saved_gfp_mask; 246 saved_gfp_mask = 0; 247 } 248 } 249 250 void pm_restrict_gfp_mask(void) 251 { 252 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 253 WARN_ON(saved_gfp_mask); 254 saved_gfp_mask = gfp_allowed_mask; 255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 256 } 257 258 bool pm_suspended_storage(void) 259 { 260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 261 return false; 262 return true; 263 } 264 #endif /* CONFIG_PM_SLEEP */ 265 266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 267 unsigned int pageblock_order __read_mostly; 268 #endif 269 270 static void __free_pages_ok(struct page *page, unsigned int order, 271 fpi_t fpi_flags); 272 273 /* 274 * results with 256, 32 in the lowmem_reserve sysctl: 275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 276 * 1G machine -> (16M dma, 784M normal, 224M high) 277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 280 * 281 * TBD: should special case ZONE_DMA32 machines here - in those we normally 282 * don't need any ZONE_NORMAL reservation 283 */ 284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 285 #ifdef CONFIG_ZONE_DMA 286 [ZONE_DMA] = 256, 287 #endif 288 #ifdef CONFIG_ZONE_DMA32 289 [ZONE_DMA32] = 256, 290 #endif 291 [ZONE_NORMAL] = 32, 292 #ifdef CONFIG_HIGHMEM 293 [ZONE_HIGHMEM] = 0, 294 #endif 295 [ZONE_MOVABLE] = 0, 296 }; 297 298 static char * const zone_names[MAX_NR_ZONES] = { 299 #ifdef CONFIG_ZONE_DMA 300 "DMA", 301 #endif 302 #ifdef CONFIG_ZONE_DMA32 303 "DMA32", 304 #endif 305 "Normal", 306 #ifdef CONFIG_HIGHMEM 307 "HighMem", 308 #endif 309 "Movable", 310 #ifdef CONFIG_ZONE_DEVICE 311 "Device", 312 #endif 313 }; 314 315 const char * const migratetype_names[MIGRATE_TYPES] = { 316 "Unmovable", 317 "Movable", 318 "Reclaimable", 319 "HighAtomic", 320 #ifdef CONFIG_CMA 321 "CMA", 322 #endif 323 #ifdef CONFIG_MEMORY_ISOLATION 324 "Isolate", 325 #endif 326 }; 327 328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 329 [NULL_COMPOUND_DTOR] = NULL, 330 [COMPOUND_PAGE_DTOR] = free_compound_page, 331 #ifdef CONFIG_HUGETLB_PAGE 332 [HUGETLB_PAGE_DTOR] = free_huge_page, 333 #endif 334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 336 #endif 337 }; 338 339 int min_free_kbytes = 1024; 340 int user_min_free_kbytes = -1; 341 int watermark_boost_factor __read_mostly = 15000; 342 int watermark_scale_factor = 10; 343 344 static unsigned long nr_kernel_pages __initdata; 345 static unsigned long nr_all_pages __initdata; 346 static unsigned long dma_reserve __initdata; 347 348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 350 static unsigned long required_kernelcore __initdata; 351 static unsigned long required_kernelcore_percent __initdata; 352 static unsigned long required_movablecore __initdata; 353 static unsigned long required_movablecore_percent __initdata; 354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 355 static bool mirrored_kernelcore __meminitdata; 356 357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 358 int movable_zone; 359 EXPORT_SYMBOL(movable_zone); 360 361 #if MAX_NUMNODES > 1 362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 363 unsigned int nr_online_nodes __read_mostly = 1; 364 EXPORT_SYMBOL(nr_node_ids); 365 EXPORT_SYMBOL(nr_online_nodes); 366 #endif 367 368 int page_group_by_mobility_disabled __read_mostly; 369 370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 371 /* 372 * During boot we initialize deferred pages on-demand, as needed, but once 373 * page_alloc_init_late() has finished, the deferred pages are all initialized, 374 * and we can permanently disable that path. 375 */ 376 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 377 378 /* 379 * Calling kasan_poison_pages() only after deferred memory initialization 380 * has completed. Poisoning pages during deferred memory init will greatly 381 * lengthen the process and cause problem in large memory systems as the 382 * deferred pages initialization is done with interrupt disabled. 383 * 384 * Assuming that there will be no reference to those newly initialized 385 * pages before they are ever allocated, this should have no effect on 386 * KASAN memory tracking as the poison will be properly inserted at page 387 * allocation time. The only corner case is when pages are allocated by 388 * on-demand allocation and then freed again before the deferred pages 389 * initialization is done, but this is not likely to happen. 390 */ 391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 392 { 393 return static_branch_unlikely(&deferred_pages) || 394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 395 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 396 PageSkipKASanPoison(page); 397 } 398 399 /* Returns true if the struct page for the pfn is uninitialised */ 400 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 401 { 402 int nid = early_pfn_to_nid(pfn); 403 404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 405 return true; 406 407 return false; 408 } 409 410 /* 411 * Returns true when the remaining initialisation should be deferred until 412 * later in the boot cycle when it can be parallelised. 413 */ 414 static bool __meminit 415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 416 { 417 static unsigned long prev_end_pfn, nr_initialised; 418 419 /* 420 * prev_end_pfn static that contains the end of previous zone 421 * No need to protect because called very early in boot before smp_init. 422 */ 423 if (prev_end_pfn != end_pfn) { 424 prev_end_pfn = end_pfn; 425 nr_initialised = 0; 426 } 427 428 /* Always populate low zones for address-constrained allocations */ 429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 430 return false; 431 432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 433 return true; 434 /* 435 * We start only with one section of pages, more pages are added as 436 * needed until the rest of deferred pages are initialized. 437 */ 438 nr_initialised++; 439 if ((nr_initialised > PAGES_PER_SECTION) && 440 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 441 NODE_DATA(nid)->first_deferred_pfn = pfn; 442 return true; 443 } 444 return false; 445 } 446 #else 447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 448 { 449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 450 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 451 PageSkipKASanPoison(page); 452 } 453 454 static inline bool early_page_uninitialised(unsigned long pfn) 455 { 456 return false; 457 } 458 459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 460 { 461 return false; 462 } 463 #endif 464 465 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 466 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 467 unsigned long pfn) 468 { 469 #ifdef CONFIG_SPARSEMEM 470 return section_to_usemap(__pfn_to_section(pfn)); 471 #else 472 return page_zone(page)->pageblock_flags; 473 #endif /* CONFIG_SPARSEMEM */ 474 } 475 476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 477 { 478 #ifdef CONFIG_SPARSEMEM 479 pfn &= (PAGES_PER_SECTION-1); 480 #else 481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 482 #endif /* CONFIG_SPARSEMEM */ 483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 484 } 485 486 static __always_inline 487 unsigned long __get_pfnblock_flags_mask(const struct page *page, 488 unsigned long pfn, 489 unsigned long mask) 490 { 491 unsigned long *bitmap; 492 unsigned long bitidx, word_bitidx; 493 unsigned long word; 494 495 bitmap = get_pageblock_bitmap(page, pfn); 496 bitidx = pfn_to_bitidx(page, pfn); 497 word_bitidx = bitidx / BITS_PER_LONG; 498 bitidx &= (BITS_PER_LONG-1); 499 500 word = bitmap[word_bitidx]; 501 return (word >> bitidx) & mask; 502 } 503 504 /** 505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 506 * @page: The page within the block of interest 507 * @pfn: The target page frame number 508 * @mask: mask of bits that the caller is interested in 509 * 510 * Return: pageblock_bits flags 511 */ 512 unsigned long get_pfnblock_flags_mask(const struct page *page, 513 unsigned long pfn, unsigned long mask) 514 { 515 return __get_pfnblock_flags_mask(page, pfn, mask); 516 } 517 518 static __always_inline int get_pfnblock_migratetype(const struct page *page, 519 unsigned long pfn) 520 { 521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 522 } 523 524 /** 525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 526 * @page: The page within the block of interest 527 * @flags: The flags to set 528 * @pfn: The target page frame number 529 * @mask: mask of bits that the caller is interested in 530 */ 531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 532 unsigned long pfn, 533 unsigned long mask) 534 { 535 unsigned long *bitmap; 536 unsigned long bitidx, word_bitidx; 537 unsigned long old_word, word; 538 539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 541 542 bitmap = get_pageblock_bitmap(page, pfn); 543 bitidx = pfn_to_bitidx(page, pfn); 544 word_bitidx = bitidx / BITS_PER_LONG; 545 bitidx &= (BITS_PER_LONG-1); 546 547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 548 549 mask <<= bitidx; 550 flags <<= bitidx; 551 552 word = READ_ONCE(bitmap[word_bitidx]); 553 for (;;) { 554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 555 if (word == old_word) 556 break; 557 word = old_word; 558 } 559 } 560 561 void set_pageblock_migratetype(struct page *page, int migratetype) 562 { 563 if (unlikely(page_group_by_mobility_disabled && 564 migratetype < MIGRATE_PCPTYPES)) 565 migratetype = MIGRATE_UNMOVABLE; 566 567 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 568 page_to_pfn(page), MIGRATETYPE_MASK); 569 } 570 571 #ifdef CONFIG_DEBUG_VM 572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 573 { 574 int ret = 0; 575 unsigned seq; 576 unsigned long pfn = page_to_pfn(page); 577 unsigned long sp, start_pfn; 578 579 do { 580 seq = zone_span_seqbegin(zone); 581 start_pfn = zone->zone_start_pfn; 582 sp = zone->spanned_pages; 583 if (!zone_spans_pfn(zone, pfn)) 584 ret = 1; 585 } while (zone_span_seqretry(zone, seq)); 586 587 if (ret) 588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 589 pfn, zone_to_nid(zone), zone->name, 590 start_pfn, start_pfn + sp); 591 592 return ret; 593 } 594 595 static int page_is_consistent(struct zone *zone, struct page *page) 596 { 597 if (zone != page_zone(page)) 598 return 0; 599 600 return 1; 601 } 602 /* 603 * Temporary debugging check for pages not lying within a given zone. 604 */ 605 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 if (page_outside_zone_boundaries(zone, page)) 608 return 1; 609 if (!page_is_consistent(zone, page)) 610 return 1; 611 612 return 0; 613 } 614 #else 615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 616 { 617 return 0; 618 } 619 #endif 620 621 static void bad_page(struct page *page, const char *reason) 622 { 623 static unsigned long resume; 624 static unsigned long nr_shown; 625 static unsigned long nr_unshown; 626 627 /* 628 * Allow a burst of 60 reports, then keep quiet for that minute; 629 * or allow a steady drip of one report per second. 630 */ 631 if (nr_shown == 60) { 632 if (time_before(jiffies, resume)) { 633 nr_unshown++; 634 goto out; 635 } 636 if (nr_unshown) { 637 pr_alert( 638 "BUG: Bad page state: %lu messages suppressed\n", 639 nr_unshown); 640 nr_unshown = 0; 641 } 642 nr_shown = 0; 643 } 644 if (nr_shown++ == 0) 645 resume = jiffies + 60 * HZ; 646 647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 648 current->comm, page_to_pfn(page)); 649 dump_page(page, reason); 650 651 print_modules(); 652 dump_stack(); 653 out: 654 /* Leave bad fields for debug, except PageBuddy could make trouble */ 655 page_mapcount_reset(page); /* remove PageBuddy */ 656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 657 } 658 659 static inline unsigned int order_to_pindex(int migratetype, int order) 660 { 661 int base = order; 662 663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 664 if (order > PAGE_ALLOC_COSTLY_ORDER) { 665 VM_BUG_ON(order != pageblock_order); 666 base = PAGE_ALLOC_COSTLY_ORDER + 1; 667 } 668 #else 669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 670 #endif 671 672 return (MIGRATE_PCPTYPES * base) + migratetype; 673 } 674 675 static inline int pindex_to_order(unsigned int pindex) 676 { 677 int order = pindex / MIGRATE_PCPTYPES; 678 679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 680 if (order > PAGE_ALLOC_COSTLY_ORDER) { 681 order = pageblock_order; 682 VM_BUG_ON(order != pageblock_order); 683 } 684 #else 685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 686 #endif 687 688 return order; 689 } 690 691 static inline bool pcp_allowed_order(unsigned int order) 692 { 693 if (order <= PAGE_ALLOC_COSTLY_ORDER) 694 return true; 695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 696 if (order == pageblock_order) 697 return true; 698 #endif 699 return false; 700 } 701 702 static inline void free_the_page(struct page *page, unsigned int order) 703 { 704 if (pcp_allowed_order(order)) /* Via pcp? */ 705 free_unref_page(page, order); 706 else 707 __free_pages_ok(page, order, FPI_NONE); 708 } 709 710 /* 711 * Higher-order pages are called "compound pages". They are structured thusly: 712 * 713 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 714 * 715 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 716 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 717 * 718 * The first tail page's ->compound_dtor holds the offset in array of compound 719 * page destructors. See compound_page_dtors. 720 * 721 * The first tail page's ->compound_order holds the order of allocation. 722 * This usage means that zero-order pages may not be compound. 723 */ 724 725 void free_compound_page(struct page *page) 726 { 727 mem_cgroup_uncharge(page); 728 free_the_page(page, compound_order(page)); 729 } 730 731 void prep_compound_page(struct page *page, unsigned int order) 732 { 733 int i; 734 int nr_pages = 1 << order; 735 736 __SetPageHead(page); 737 for (i = 1; i < nr_pages; i++) { 738 struct page *p = page + i; 739 p->mapping = TAIL_MAPPING; 740 set_compound_head(p, page); 741 } 742 743 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 744 set_compound_order(page, order); 745 atomic_set(compound_mapcount_ptr(page), -1); 746 if (hpage_pincount_available(page)) 747 atomic_set(compound_pincount_ptr(page), 0); 748 } 749 750 #ifdef CONFIG_DEBUG_PAGEALLOC 751 unsigned int _debug_guardpage_minorder; 752 753 bool _debug_pagealloc_enabled_early __read_mostly 754 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 755 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 756 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 757 EXPORT_SYMBOL(_debug_pagealloc_enabled); 758 759 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 760 761 static int __init early_debug_pagealloc(char *buf) 762 { 763 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 764 } 765 early_param("debug_pagealloc", early_debug_pagealloc); 766 767 static int __init debug_guardpage_minorder_setup(char *buf) 768 { 769 unsigned long res; 770 771 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 772 pr_err("Bad debug_guardpage_minorder value\n"); 773 return 0; 774 } 775 _debug_guardpage_minorder = res; 776 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 777 return 0; 778 } 779 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 780 781 static inline bool set_page_guard(struct zone *zone, struct page *page, 782 unsigned int order, int migratetype) 783 { 784 if (!debug_guardpage_enabled()) 785 return false; 786 787 if (order >= debug_guardpage_minorder()) 788 return false; 789 790 __SetPageGuard(page); 791 INIT_LIST_HEAD(&page->lru); 792 set_page_private(page, order); 793 /* Guard pages are not available for any usage */ 794 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 795 796 return true; 797 } 798 799 static inline void clear_page_guard(struct zone *zone, struct page *page, 800 unsigned int order, int migratetype) 801 { 802 if (!debug_guardpage_enabled()) 803 return; 804 805 __ClearPageGuard(page); 806 807 set_page_private(page, 0); 808 if (!is_migrate_isolate(migratetype)) 809 __mod_zone_freepage_state(zone, (1 << order), migratetype); 810 } 811 #else 812 static inline bool set_page_guard(struct zone *zone, struct page *page, 813 unsigned int order, int migratetype) { return false; } 814 static inline void clear_page_guard(struct zone *zone, struct page *page, 815 unsigned int order, int migratetype) {} 816 #endif 817 818 /* 819 * Enable static keys related to various memory debugging and hardening options. 820 * Some override others, and depend on early params that are evaluated in the 821 * order of appearance. So we need to first gather the full picture of what was 822 * enabled, and then make decisions. 823 */ 824 void init_mem_debugging_and_hardening(void) 825 { 826 bool page_poisoning_requested = false; 827 828 #ifdef CONFIG_PAGE_POISONING 829 /* 830 * Page poisoning is debug page alloc for some arches. If 831 * either of those options are enabled, enable poisoning. 832 */ 833 if (page_poisoning_enabled() || 834 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 835 debug_pagealloc_enabled())) { 836 static_branch_enable(&_page_poisoning_enabled); 837 page_poisoning_requested = true; 838 } 839 #endif 840 841 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 842 page_poisoning_requested) { 843 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 844 "will take precedence over init_on_alloc and init_on_free\n"); 845 _init_on_alloc_enabled_early = false; 846 _init_on_free_enabled_early = false; 847 } 848 849 if (_init_on_alloc_enabled_early) 850 static_branch_enable(&init_on_alloc); 851 else 852 static_branch_disable(&init_on_alloc); 853 854 if (_init_on_free_enabled_early) 855 static_branch_enable(&init_on_free); 856 else 857 static_branch_disable(&init_on_free); 858 859 #ifdef CONFIG_DEBUG_PAGEALLOC 860 if (!debug_pagealloc_enabled()) 861 return; 862 863 static_branch_enable(&_debug_pagealloc_enabled); 864 865 if (!debug_guardpage_minorder()) 866 return; 867 868 static_branch_enable(&_debug_guardpage_enabled); 869 #endif 870 } 871 872 static inline void set_buddy_order(struct page *page, unsigned int order) 873 { 874 set_page_private(page, order); 875 __SetPageBuddy(page); 876 } 877 878 /* 879 * This function checks whether a page is free && is the buddy 880 * we can coalesce a page and its buddy if 881 * (a) the buddy is not in a hole (check before calling!) && 882 * (b) the buddy is in the buddy system && 883 * (c) a page and its buddy have the same order && 884 * (d) a page and its buddy are in the same zone. 885 * 886 * For recording whether a page is in the buddy system, we set PageBuddy. 887 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 888 * 889 * For recording page's order, we use page_private(page). 890 */ 891 static inline bool page_is_buddy(struct page *page, struct page *buddy, 892 unsigned int order) 893 { 894 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 895 return false; 896 897 if (buddy_order(buddy) != order) 898 return false; 899 900 /* 901 * zone check is done late to avoid uselessly calculating 902 * zone/node ids for pages that could never merge. 903 */ 904 if (page_zone_id(page) != page_zone_id(buddy)) 905 return false; 906 907 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 908 909 return true; 910 } 911 912 #ifdef CONFIG_COMPACTION 913 static inline struct capture_control *task_capc(struct zone *zone) 914 { 915 struct capture_control *capc = current->capture_control; 916 917 return unlikely(capc) && 918 !(current->flags & PF_KTHREAD) && 919 !capc->page && 920 capc->cc->zone == zone ? capc : NULL; 921 } 922 923 static inline bool 924 compaction_capture(struct capture_control *capc, struct page *page, 925 int order, int migratetype) 926 { 927 if (!capc || order != capc->cc->order) 928 return false; 929 930 /* Do not accidentally pollute CMA or isolated regions*/ 931 if (is_migrate_cma(migratetype) || 932 is_migrate_isolate(migratetype)) 933 return false; 934 935 /* 936 * Do not let lower order allocations pollute a movable pageblock. 937 * This might let an unmovable request use a reclaimable pageblock 938 * and vice-versa but no more than normal fallback logic which can 939 * have trouble finding a high-order free page. 940 */ 941 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 942 return false; 943 944 capc->page = page; 945 return true; 946 } 947 948 #else 949 static inline struct capture_control *task_capc(struct zone *zone) 950 { 951 return NULL; 952 } 953 954 static inline bool 955 compaction_capture(struct capture_control *capc, struct page *page, 956 int order, int migratetype) 957 { 958 return false; 959 } 960 #endif /* CONFIG_COMPACTION */ 961 962 /* Used for pages not on another list */ 963 static inline void add_to_free_list(struct page *page, struct zone *zone, 964 unsigned int order, int migratetype) 965 { 966 struct free_area *area = &zone->free_area[order]; 967 968 list_add(&page->lru, &area->free_list[migratetype]); 969 area->nr_free++; 970 } 971 972 /* Used for pages not on another list */ 973 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 974 unsigned int order, int migratetype) 975 { 976 struct free_area *area = &zone->free_area[order]; 977 978 list_add_tail(&page->lru, &area->free_list[migratetype]); 979 area->nr_free++; 980 } 981 982 /* 983 * Used for pages which are on another list. Move the pages to the tail 984 * of the list - so the moved pages won't immediately be considered for 985 * allocation again (e.g., optimization for memory onlining). 986 */ 987 static inline void move_to_free_list(struct page *page, struct zone *zone, 988 unsigned int order, int migratetype) 989 { 990 struct free_area *area = &zone->free_area[order]; 991 992 list_move_tail(&page->lru, &area->free_list[migratetype]); 993 } 994 995 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 996 unsigned int order) 997 { 998 /* clear reported state and update reported page count */ 999 if (page_reported(page)) 1000 __ClearPageReported(page); 1001 1002 list_del(&page->lru); 1003 __ClearPageBuddy(page); 1004 set_page_private(page, 0); 1005 zone->free_area[order].nr_free--; 1006 } 1007 1008 /* 1009 * If this is not the largest possible page, check if the buddy 1010 * of the next-highest order is free. If it is, it's possible 1011 * that pages are being freed that will coalesce soon. In case, 1012 * that is happening, add the free page to the tail of the list 1013 * so it's less likely to be used soon and more likely to be merged 1014 * as a higher order page 1015 */ 1016 static inline bool 1017 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1018 struct page *page, unsigned int order) 1019 { 1020 struct page *higher_page, *higher_buddy; 1021 unsigned long combined_pfn; 1022 1023 if (order >= MAX_ORDER - 2) 1024 return false; 1025 1026 combined_pfn = buddy_pfn & pfn; 1027 higher_page = page + (combined_pfn - pfn); 1028 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1029 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1030 1031 return page_is_buddy(higher_page, higher_buddy, order + 1); 1032 } 1033 1034 /* 1035 * Freeing function for a buddy system allocator. 1036 * 1037 * The concept of a buddy system is to maintain direct-mapped table 1038 * (containing bit values) for memory blocks of various "orders". 1039 * The bottom level table contains the map for the smallest allocatable 1040 * units of memory (here, pages), and each level above it describes 1041 * pairs of units from the levels below, hence, "buddies". 1042 * At a high level, all that happens here is marking the table entry 1043 * at the bottom level available, and propagating the changes upward 1044 * as necessary, plus some accounting needed to play nicely with other 1045 * parts of the VM system. 1046 * At each level, we keep a list of pages, which are heads of continuous 1047 * free pages of length of (1 << order) and marked with PageBuddy. 1048 * Page's order is recorded in page_private(page) field. 1049 * So when we are allocating or freeing one, we can derive the state of the 1050 * other. That is, if we allocate a small block, and both were 1051 * free, the remainder of the region must be split into blocks. 1052 * If a block is freed, and its buddy is also free, then this 1053 * triggers coalescing into a block of larger size. 1054 * 1055 * -- nyc 1056 */ 1057 1058 static inline void __free_one_page(struct page *page, 1059 unsigned long pfn, 1060 struct zone *zone, unsigned int order, 1061 int migratetype, fpi_t fpi_flags) 1062 { 1063 struct capture_control *capc = task_capc(zone); 1064 unsigned long buddy_pfn; 1065 unsigned long combined_pfn; 1066 unsigned int max_order; 1067 struct page *buddy; 1068 bool to_tail; 1069 1070 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1071 1072 VM_BUG_ON(!zone_is_initialized(zone)); 1073 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1074 1075 VM_BUG_ON(migratetype == -1); 1076 if (likely(!is_migrate_isolate(migratetype))) 1077 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1078 1079 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1080 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1081 1082 continue_merging: 1083 while (order < max_order) { 1084 if (compaction_capture(capc, page, order, migratetype)) { 1085 __mod_zone_freepage_state(zone, -(1 << order), 1086 migratetype); 1087 return; 1088 } 1089 buddy_pfn = __find_buddy_pfn(pfn, order); 1090 buddy = page + (buddy_pfn - pfn); 1091 1092 if (!page_is_buddy(page, buddy, order)) 1093 goto done_merging; 1094 /* 1095 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1096 * merge with it and move up one order. 1097 */ 1098 if (page_is_guard(buddy)) 1099 clear_page_guard(zone, buddy, order, migratetype); 1100 else 1101 del_page_from_free_list(buddy, zone, order); 1102 combined_pfn = buddy_pfn & pfn; 1103 page = page + (combined_pfn - pfn); 1104 pfn = combined_pfn; 1105 order++; 1106 } 1107 if (order < MAX_ORDER - 1) { 1108 /* If we are here, it means order is >= pageblock_order. 1109 * We want to prevent merge between freepages on isolate 1110 * pageblock and normal pageblock. Without this, pageblock 1111 * isolation could cause incorrect freepage or CMA accounting. 1112 * 1113 * We don't want to hit this code for the more frequent 1114 * low-order merging. 1115 */ 1116 if (unlikely(has_isolate_pageblock(zone))) { 1117 int buddy_mt; 1118 1119 buddy_pfn = __find_buddy_pfn(pfn, order); 1120 buddy = page + (buddy_pfn - pfn); 1121 buddy_mt = get_pageblock_migratetype(buddy); 1122 1123 if (migratetype != buddy_mt 1124 && (is_migrate_isolate(migratetype) || 1125 is_migrate_isolate(buddy_mt))) 1126 goto done_merging; 1127 } 1128 max_order = order + 1; 1129 goto continue_merging; 1130 } 1131 1132 done_merging: 1133 set_buddy_order(page, order); 1134 1135 if (fpi_flags & FPI_TO_TAIL) 1136 to_tail = true; 1137 else if (is_shuffle_order(order)) 1138 to_tail = shuffle_pick_tail(); 1139 else 1140 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1141 1142 if (to_tail) 1143 add_to_free_list_tail(page, zone, order, migratetype); 1144 else 1145 add_to_free_list(page, zone, order, migratetype); 1146 1147 /* Notify page reporting subsystem of freed page */ 1148 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1149 page_reporting_notify_free(order); 1150 } 1151 1152 /* 1153 * A bad page could be due to a number of fields. Instead of multiple branches, 1154 * try and check multiple fields with one check. The caller must do a detailed 1155 * check if necessary. 1156 */ 1157 static inline bool page_expected_state(struct page *page, 1158 unsigned long check_flags) 1159 { 1160 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1161 return false; 1162 1163 if (unlikely((unsigned long)page->mapping | 1164 page_ref_count(page) | 1165 #ifdef CONFIG_MEMCG 1166 page->memcg_data | 1167 #endif 1168 (page->flags & check_flags))) 1169 return false; 1170 1171 return true; 1172 } 1173 1174 static const char *page_bad_reason(struct page *page, unsigned long flags) 1175 { 1176 const char *bad_reason = NULL; 1177 1178 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1179 bad_reason = "nonzero mapcount"; 1180 if (unlikely(page->mapping != NULL)) 1181 bad_reason = "non-NULL mapping"; 1182 if (unlikely(page_ref_count(page) != 0)) 1183 bad_reason = "nonzero _refcount"; 1184 if (unlikely(page->flags & flags)) { 1185 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1186 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1187 else 1188 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1189 } 1190 #ifdef CONFIG_MEMCG 1191 if (unlikely(page->memcg_data)) 1192 bad_reason = "page still charged to cgroup"; 1193 #endif 1194 return bad_reason; 1195 } 1196 1197 static void check_free_page_bad(struct page *page) 1198 { 1199 bad_page(page, 1200 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1201 } 1202 1203 static inline int check_free_page(struct page *page) 1204 { 1205 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1206 return 0; 1207 1208 /* Something has gone sideways, find it */ 1209 check_free_page_bad(page); 1210 return 1; 1211 } 1212 1213 static int free_tail_pages_check(struct page *head_page, struct page *page) 1214 { 1215 int ret = 1; 1216 1217 /* 1218 * We rely page->lru.next never has bit 0 set, unless the page 1219 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1220 */ 1221 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1222 1223 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1224 ret = 0; 1225 goto out; 1226 } 1227 switch (page - head_page) { 1228 case 1: 1229 /* the first tail page: ->mapping may be compound_mapcount() */ 1230 if (unlikely(compound_mapcount(page))) { 1231 bad_page(page, "nonzero compound_mapcount"); 1232 goto out; 1233 } 1234 break; 1235 case 2: 1236 /* 1237 * the second tail page: ->mapping is 1238 * deferred_list.next -- ignore value. 1239 */ 1240 break; 1241 default: 1242 if (page->mapping != TAIL_MAPPING) { 1243 bad_page(page, "corrupted mapping in tail page"); 1244 goto out; 1245 } 1246 break; 1247 } 1248 if (unlikely(!PageTail(page))) { 1249 bad_page(page, "PageTail not set"); 1250 goto out; 1251 } 1252 if (unlikely(compound_head(page) != head_page)) { 1253 bad_page(page, "compound_head not consistent"); 1254 goto out; 1255 } 1256 ret = 0; 1257 out: 1258 page->mapping = NULL; 1259 clear_compound_head(page); 1260 return ret; 1261 } 1262 1263 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1264 { 1265 int i; 1266 1267 if (zero_tags) { 1268 for (i = 0; i < numpages; i++) 1269 tag_clear_highpage(page + i); 1270 return; 1271 } 1272 1273 /* s390's use of memset() could override KASAN redzones. */ 1274 kasan_disable_current(); 1275 for (i = 0; i < numpages; i++) { 1276 u8 tag = page_kasan_tag(page + i); 1277 page_kasan_tag_reset(page + i); 1278 clear_highpage(page + i); 1279 page_kasan_tag_set(page + i, tag); 1280 } 1281 kasan_enable_current(); 1282 } 1283 1284 static __always_inline bool free_pages_prepare(struct page *page, 1285 unsigned int order, bool check_free, fpi_t fpi_flags) 1286 { 1287 int bad = 0; 1288 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1289 1290 VM_BUG_ON_PAGE(PageTail(page), page); 1291 1292 trace_mm_page_free(page, order); 1293 1294 if (unlikely(PageHWPoison(page)) && !order) { 1295 /* 1296 * Do not let hwpoison pages hit pcplists/buddy 1297 * Untie memcg state and reset page's owner 1298 */ 1299 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1300 __memcg_kmem_uncharge_page(page, order); 1301 reset_page_owner(page, order); 1302 return false; 1303 } 1304 1305 /* 1306 * Check tail pages before head page information is cleared to 1307 * avoid checking PageCompound for order-0 pages. 1308 */ 1309 if (unlikely(order)) { 1310 bool compound = PageCompound(page); 1311 int i; 1312 1313 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1314 1315 if (compound) 1316 ClearPageDoubleMap(page); 1317 for (i = 1; i < (1 << order); i++) { 1318 if (compound) 1319 bad += free_tail_pages_check(page, page + i); 1320 if (unlikely(check_free_page(page + i))) { 1321 bad++; 1322 continue; 1323 } 1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1325 } 1326 } 1327 if (PageMappingFlags(page)) 1328 page->mapping = NULL; 1329 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1330 __memcg_kmem_uncharge_page(page, order); 1331 if (check_free) 1332 bad += check_free_page(page); 1333 if (bad) 1334 return false; 1335 1336 page_cpupid_reset_last(page); 1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1338 reset_page_owner(page, order); 1339 1340 if (!PageHighMem(page)) { 1341 debug_check_no_locks_freed(page_address(page), 1342 PAGE_SIZE << order); 1343 debug_check_no_obj_freed(page_address(page), 1344 PAGE_SIZE << order); 1345 } 1346 1347 kernel_poison_pages(page, 1 << order); 1348 1349 /* 1350 * As memory initialization might be integrated into KASAN, 1351 * kasan_free_pages and kernel_init_free_pages must be 1352 * kept together to avoid discrepancies in behavior. 1353 * 1354 * With hardware tag-based KASAN, memory tags must be set before the 1355 * page becomes unavailable via debug_pagealloc or arch_free_page. 1356 */ 1357 if (kasan_has_integrated_init()) { 1358 if (!skip_kasan_poison) 1359 kasan_free_pages(page, order); 1360 } else { 1361 bool init = want_init_on_free(); 1362 1363 if (init) 1364 kernel_init_free_pages(page, 1 << order, false); 1365 if (!skip_kasan_poison) 1366 kasan_poison_pages(page, order, init); 1367 } 1368 1369 /* 1370 * arch_free_page() can make the page's contents inaccessible. s390 1371 * does this. So nothing which can access the page's contents should 1372 * happen after this. 1373 */ 1374 arch_free_page(page, order); 1375 1376 debug_pagealloc_unmap_pages(page, 1 << order); 1377 1378 return true; 1379 } 1380 1381 #ifdef CONFIG_DEBUG_VM 1382 /* 1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1385 * moved from pcp lists to free lists. 1386 */ 1387 static bool free_pcp_prepare(struct page *page, unsigned int order) 1388 { 1389 return free_pages_prepare(page, order, true, FPI_NONE); 1390 } 1391 1392 static bool bulkfree_pcp_prepare(struct page *page) 1393 { 1394 if (debug_pagealloc_enabled_static()) 1395 return check_free_page(page); 1396 else 1397 return false; 1398 } 1399 #else 1400 /* 1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1402 * moving from pcp lists to free list in order to reduce overhead. With 1403 * debug_pagealloc enabled, they are checked also immediately when being freed 1404 * to the pcp lists. 1405 */ 1406 static bool free_pcp_prepare(struct page *page, unsigned int order) 1407 { 1408 if (debug_pagealloc_enabled_static()) 1409 return free_pages_prepare(page, order, true, FPI_NONE); 1410 else 1411 return free_pages_prepare(page, order, false, FPI_NONE); 1412 } 1413 1414 static bool bulkfree_pcp_prepare(struct page *page) 1415 { 1416 return check_free_page(page); 1417 } 1418 #endif /* CONFIG_DEBUG_VM */ 1419 1420 static inline void prefetch_buddy(struct page *page) 1421 { 1422 unsigned long pfn = page_to_pfn(page); 1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1424 struct page *buddy = page + (buddy_pfn - pfn); 1425 1426 prefetch(buddy); 1427 } 1428 1429 /* 1430 * Frees a number of pages from the PCP lists 1431 * Assumes all pages on list are in same zone, and of same order. 1432 * count is the number of pages to free. 1433 * 1434 * If the zone was previously in an "all pages pinned" state then look to 1435 * see if this freeing clears that state. 1436 * 1437 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1438 * pinned" detection logic. 1439 */ 1440 static void free_pcppages_bulk(struct zone *zone, int count, 1441 struct per_cpu_pages *pcp) 1442 { 1443 int pindex = 0; 1444 int batch_free = 0; 1445 int nr_freed = 0; 1446 unsigned int order; 1447 int prefetch_nr = READ_ONCE(pcp->batch); 1448 bool isolated_pageblocks; 1449 struct page *page, *tmp; 1450 LIST_HEAD(head); 1451 1452 /* 1453 * Ensure proper count is passed which otherwise would stuck in the 1454 * below while (list_empty(list)) loop. 1455 */ 1456 count = min(pcp->count, count); 1457 while (count > 0) { 1458 struct list_head *list; 1459 1460 /* 1461 * Remove pages from lists in a round-robin fashion. A 1462 * batch_free count is maintained that is incremented when an 1463 * empty list is encountered. This is so more pages are freed 1464 * off fuller lists instead of spinning excessively around empty 1465 * lists 1466 */ 1467 do { 1468 batch_free++; 1469 if (++pindex == NR_PCP_LISTS) 1470 pindex = 0; 1471 list = &pcp->lists[pindex]; 1472 } while (list_empty(list)); 1473 1474 /* This is the only non-empty list. Free them all. */ 1475 if (batch_free == NR_PCP_LISTS) 1476 batch_free = count; 1477 1478 order = pindex_to_order(pindex); 1479 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1480 do { 1481 page = list_last_entry(list, struct page, lru); 1482 /* must delete to avoid corrupting pcp list */ 1483 list_del(&page->lru); 1484 nr_freed += 1 << order; 1485 count -= 1 << order; 1486 1487 if (bulkfree_pcp_prepare(page)) 1488 continue; 1489 1490 /* Encode order with the migratetype */ 1491 page->index <<= NR_PCP_ORDER_WIDTH; 1492 page->index |= order; 1493 1494 list_add_tail(&page->lru, &head); 1495 1496 /* 1497 * We are going to put the page back to the global 1498 * pool, prefetch its buddy to speed up later access 1499 * under zone->lock. It is believed the overhead of 1500 * an additional test and calculating buddy_pfn here 1501 * can be offset by reduced memory latency later. To 1502 * avoid excessive prefetching due to large count, only 1503 * prefetch buddy for the first pcp->batch nr of pages. 1504 */ 1505 if (prefetch_nr) { 1506 prefetch_buddy(page); 1507 prefetch_nr--; 1508 } 1509 } while (count > 0 && --batch_free && !list_empty(list)); 1510 } 1511 pcp->count -= nr_freed; 1512 1513 /* 1514 * local_lock_irq held so equivalent to spin_lock_irqsave for 1515 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1516 */ 1517 spin_lock(&zone->lock); 1518 isolated_pageblocks = has_isolate_pageblock(zone); 1519 1520 /* 1521 * Use safe version since after __free_one_page(), 1522 * page->lru.next will not point to original list. 1523 */ 1524 list_for_each_entry_safe(page, tmp, &head, lru) { 1525 int mt = get_pcppage_migratetype(page); 1526 1527 /* mt has been encoded with the order (see above) */ 1528 order = mt & NR_PCP_ORDER_MASK; 1529 mt >>= NR_PCP_ORDER_WIDTH; 1530 1531 /* MIGRATE_ISOLATE page should not go to pcplists */ 1532 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1533 /* Pageblock could have been isolated meanwhile */ 1534 if (unlikely(isolated_pageblocks)) 1535 mt = get_pageblock_migratetype(page); 1536 1537 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1538 trace_mm_page_pcpu_drain(page, order, mt); 1539 } 1540 spin_unlock(&zone->lock); 1541 } 1542 1543 static void free_one_page(struct zone *zone, 1544 struct page *page, unsigned long pfn, 1545 unsigned int order, 1546 int migratetype, fpi_t fpi_flags) 1547 { 1548 unsigned long flags; 1549 1550 spin_lock_irqsave(&zone->lock, flags); 1551 if (unlikely(has_isolate_pageblock(zone) || 1552 is_migrate_isolate(migratetype))) { 1553 migratetype = get_pfnblock_migratetype(page, pfn); 1554 } 1555 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1556 spin_unlock_irqrestore(&zone->lock, flags); 1557 } 1558 1559 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1560 unsigned long zone, int nid) 1561 { 1562 mm_zero_struct_page(page); 1563 set_page_links(page, zone, nid, pfn); 1564 init_page_count(page); 1565 page_mapcount_reset(page); 1566 page_cpupid_reset_last(page); 1567 page_kasan_tag_reset(page); 1568 1569 INIT_LIST_HEAD(&page->lru); 1570 #ifdef WANT_PAGE_VIRTUAL 1571 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1572 if (!is_highmem_idx(zone)) 1573 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1574 #endif 1575 } 1576 1577 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1578 static void __meminit init_reserved_page(unsigned long pfn) 1579 { 1580 pg_data_t *pgdat; 1581 int nid, zid; 1582 1583 if (!early_page_uninitialised(pfn)) 1584 return; 1585 1586 nid = early_pfn_to_nid(pfn); 1587 pgdat = NODE_DATA(nid); 1588 1589 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1590 struct zone *zone = &pgdat->node_zones[zid]; 1591 1592 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1593 break; 1594 } 1595 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1596 } 1597 #else 1598 static inline void init_reserved_page(unsigned long pfn) 1599 { 1600 } 1601 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1602 1603 /* 1604 * Initialised pages do not have PageReserved set. This function is 1605 * called for each range allocated by the bootmem allocator and 1606 * marks the pages PageReserved. The remaining valid pages are later 1607 * sent to the buddy page allocator. 1608 */ 1609 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1610 { 1611 unsigned long start_pfn = PFN_DOWN(start); 1612 unsigned long end_pfn = PFN_UP(end); 1613 1614 for (; start_pfn < end_pfn; start_pfn++) { 1615 if (pfn_valid(start_pfn)) { 1616 struct page *page = pfn_to_page(start_pfn); 1617 1618 init_reserved_page(start_pfn); 1619 1620 /* Avoid false-positive PageTail() */ 1621 INIT_LIST_HEAD(&page->lru); 1622 1623 /* 1624 * no need for atomic set_bit because the struct 1625 * page is not visible yet so nobody should 1626 * access it yet. 1627 */ 1628 __SetPageReserved(page); 1629 } 1630 } 1631 } 1632 1633 static void __free_pages_ok(struct page *page, unsigned int order, 1634 fpi_t fpi_flags) 1635 { 1636 unsigned long flags; 1637 int migratetype; 1638 unsigned long pfn = page_to_pfn(page); 1639 struct zone *zone = page_zone(page); 1640 1641 if (!free_pages_prepare(page, order, true, fpi_flags)) 1642 return; 1643 1644 migratetype = get_pfnblock_migratetype(page, pfn); 1645 1646 spin_lock_irqsave(&zone->lock, flags); 1647 if (unlikely(has_isolate_pageblock(zone) || 1648 is_migrate_isolate(migratetype))) { 1649 migratetype = get_pfnblock_migratetype(page, pfn); 1650 } 1651 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1652 spin_unlock_irqrestore(&zone->lock, flags); 1653 1654 __count_vm_events(PGFREE, 1 << order); 1655 } 1656 1657 void __free_pages_core(struct page *page, unsigned int order) 1658 { 1659 unsigned int nr_pages = 1 << order; 1660 struct page *p = page; 1661 unsigned int loop; 1662 1663 /* 1664 * When initializing the memmap, __init_single_page() sets the refcount 1665 * of all pages to 1 ("allocated"/"not free"). We have to set the 1666 * refcount of all involved pages to 0. 1667 */ 1668 prefetchw(p); 1669 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1670 prefetchw(p + 1); 1671 __ClearPageReserved(p); 1672 set_page_count(p, 0); 1673 } 1674 __ClearPageReserved(p); 1675 set_page_count(p, 0); 1676 1677 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1678 1679 /* 1680 * Bypass PCP and place fresh pages right to the tail, primarily 1681 * relevant for memory onlining. 1682 */ 1683 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1684 } 1685 1686 #ifdef CONFIG_NUMA 1687 1688 /* 1689 * During memory init memblocks map pfns to nids. The search is expensive and 1690 * this caches recent lookups. The implementation of __early_pfn_to_nid 1691 * treats start/end as pfns. 1692 */ 1693 struct mminit_pfnnid_cache { 1694 unsigned long last_start; 1695 unsigned long last_end; 1696 int last_nid; 1697 }; 1698 1699 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1700 1701 /* 1702 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1703 */ 1704 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1705 struct mminit_pfnnid_cache *state) 1706 { 1707 unsigned long start_pfn, end_pfn; 1708 int nid; 1709 1710 if (state->last_start <= pfn && pfn < state->last_end) 1711 return state->last_nid; 1712 1713 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1714 if (nid != NUMA_NO_NODE) { 1715 state->last_start = start_pfn; 1716 state->last_end = end_pfn; 1717 state->last_nid = nid; 1718 } 1719 1720 return nid; 1721 } 1722 1723 int __meminit early_pfn_to_nid(unsigned long pfn) 1724 { 1725 static DEFINE_SPINLOCK(early_pfn_lock); 1726 int nid; 1727 1728 spin_lock(&early_pfn_lock); 1729 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1730 if (nid < 0) 1731 nid = first_online_node; 1732 spin_unlock(&early_pfn_lock); 1733 1734 return nid; 1735 } 1736 #endif /* CONFIG_NUMA */ 1737 1738 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1739 unsigned int order) 1740 { 1741 if (early_page_uninitialised(pfn)) 1742 return; 1743 __free_pages_core(page, order); 1744 } 1745 1746 /* 1747 * Check that the whole (or subset of) a pageblock given by the interval of 1748 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1749 * with the migration of free compaction scanner. 1750 * 1751 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1752 * 1753 * It's possible on some configurations to have a setup like node0 node1 node0 1754 * i.e. it's possible that all pages within a zones range of pages do not 1755 * belong to a single zone. We assume that a border between node0 and node1 1756 * can occur within a single pageblock, but not a node0 node1 node0 1757 * interleaving within a single pageblock. It is therefore sufficient to check 1758 * the first and last page of a pageblock and avoid checking each individual 1759 * page in a pageblock. 1760 */ 1761 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1762 unsigned long end_pfn, struct zone *zone) 1763 { 1764 struct page *start_page; 1765 struct page *end_page; 1766 1767 /* end_pfn is one past the range we are checking */ 1768 end_pfn--; 1769 1770 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1771 return NULL; 1772 1773 start_page = pfn_to_online_page(start_pfn); 1774 if (!start_page) 1775 return NULL; 1776 1777 if (page_zone(start_page) != zone) 1778 return NULL; 1779 1780 end_page = pfn_to_page(end_pfn); 1781 1782 /* This gives a shorter code than deriving page_zone(end_page) */ 1783 if (page_zone_id(start_page) != page_zone_id(end_page)) 1784 return NULL; 1785 1786 return start_page; 1787 } 1788 1789 void set_zone_contiguous(struct zone *zone) 1790 { 1791 unsigned long block_start_pfn = zone->zone_start_pfn; 1792 unsigned long block_end_pfn; 1793 1794 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1795 for (; block_start_pfn < zone_end_pfn(zone); 1796 block_start_pfn = block_end_pfn, 1797 block_end_pfn += pageblock_nr_pages) { 1798 1799 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1800 1801 if (!__pageblock_pfn_to_page(block_start_pfn, 1802 block_end_pfn, zone)) 1803 return; 1804 cond_resched(); 1805 } 1806 1807 /* We confirm that there is no hole */ 1808 zone->contiguous = true; 1809 } 1810 1811 void clear_zone_contiguous(struct zone *zone) 1812 { 1813 zone->contiguous = false; 1814 } 1815 1816 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1817 static void __init deferred_free_range(unsigned long pfn, 1818 unsigned long nr_pages) 1819 { 1820 struct page *page; 1821 unsigned long i; 1822 1823 if (!nr_pages) 1824 return; 1825 1826 page = pfn_to_page(pfn); 1827 1828 /* Free a large naturally-aligned chunk if possible */ 1829 if (nr_pages == pageblock_nr_pages && 1830 (pfn & (pageblock_nr_pages - 1)) == 0) { 1831 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1832 __free_pages_core(page, pageblock_order); 1833 return; 1834 } 1835 1836 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1837 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1838 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1839 __free_pages_core(page, 0); 1840 } 1841 } 1842 1843 /* Completion tracking for deferred_init_memmap() threads */ 1844 static atomic_t pgdat_init_n_undone __initdata; 1845 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1846 1847 static inline void __init pgdat_init_report_one_done(void) 1848 { 1849 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1850 complete(&pgdat_init_all_done_comp); 1851 } 1852 1853 /* 1854 * Returns true if page needs to be initialized or freed to buddy allocator. 1855 * 1856 * First we check if pfn is valid on architectures where it is possible to have 1857 * holes within pageblock_nr_pages. On systems where it is not possible, this 1858 * function is optimized out. 1859 * 1860 * Then, we check if a current large page is valid by only checking the validity 1861 * of the head pfn. 1862 */ 1863 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1864 { 1865 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1866 return false; 1867 return true; 1868 } 1869 1870 /* 1871 * Free pages to buddy allocator. Try to free aligned pages in 1872 * pageblock_nr_pages sizes. 1873 */ 1874 static void __init deferred_free_pages(unsigned long pfn, 1875 unsigned long end_pfn) 1876 { 1877 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1878 unsigned long nr_free = 0; 1879 1880 for (; pfn < end_pfn; pfn++) { 1881 if (!deferred_pfn_valid(pfn)) { 1882 deferred_free_range(pfn - nr_free, nr_free); 1883 nr_free = 0; 1884 } else if (!(pfn & nr_pgmask)) { 1885 deferred_free_range(pfn - nr_free, nr_free); 1886 nr_free = 1; 1887 } else { 1888 nr_free++; 1889 } 1890 } 1891 /* Free the last block of pages to allocator */ 1892 deferred_free_range(pfn - nr_free, nr_free); 1893 } 1894 1895 /* 1896 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1897 * by performing it only once every pageblock_nr_pages. 1898 * Return number of pages initialized. 1899 */ 1900 static unsigned long __init deferred_init_pages(struct zone *zone, 1901 unsigned long pfn, 1902 unsigned long end_pfn) 1903 { 1904 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1905 int nid = zone_to_nid(zone); 1906 unsigned long nr_pages = 0; 1907 int zid = zone_idx(zone); 1908 struct page *page = NULL; 1909 1910 for (; pfn < end_pfn; pfn++) { 1911 if (!deferred_pfn_valid(pfn)) { 1912 page = NULL; 1913 continue; 1914 } else if (!page || !(pfn & nr_pgmask)) { 1915 page = pfn_to_page(pfn); 1916 } else { 1917 page++; 1918 } 1919 __init_single_page(page, pfn, zid, nid); 1920 nr_pages++; 1921 } 1922 return (nr_pages); 1923 } 1924 1925 /* 1926 * This function is meant to pre-load the iterator for the zone init. 1927 * Specifically it walks through the ranges until we are caught up to the 1928 * first_init_pfn value and exits there. If we never encounter the value we 1929 * return false indicating there are no valid ranges left. 1930 */ 1931 static bool __init 1932 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1933 unsigned long *spfn, unsigned long *epfn, 1934 unsigned long first_init_pfn) 1935 { 1936 u64 j; 1937 1938 /* 1939 * Start out by walking through the ranges in this zone that have 1940 * already been initialized. We don't need to do anything with them 1941 * so we just need to flush them out of the system. 1942 */ 1943 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1944 if (*epfn <= first_init_pfn) 1945 continue; 1946 if (*spfn < first_init_pfn) 1947 *spfn = first_init_pfn; 1948 *i = j; 1949 return true; 1950 } 1951 1952 return false; 1953 } 1954 1955 /* 1956 * Initialize and free pages. We do it in two loops: first we initialize 1957 * struct page, then free to buddy allocator, because while we are 1958 * freeing pages we can access pages that are ahead (computing buddy 1959 * page in __free_one_page()). 1960 * 1961 * In order to try and keep some memory in the cache we have the loop 1962 * broken along max page order boundaries. This way we will not cause 1963 * any issues with the buddy page computation. 1964 */ 1965 static unsigned long __init 1966 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1967 unsigned long *end_pfn) 1968 { 1969 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1970 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1971 unsigned long nr_pages = 0; 1972 u64 j = *i; 1973 1974 /* First we loop through and initialize the page values */ 1975 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1976 unsigned long t; 1977 1978 if (mo_pfn <= *start_pfn) 1979 break; 1980 1981 t = min(mo_pfn, *end_pfn); 1982 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1983 1984 if (mo_pfn < *end_pfn) { 1985 *start_pfn = mo_pfn; 1986 break; 1987 } 1988 } 1989 1990 /* Reset values and now loop through freeing pages as needed */ 1991 swap(j, *i); 1992 1993 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1994 unsigned long t; 1995 1996 if (mo_pfn <= spfn) 1997 break; 1998 1999 t = min(mo_pfn, epfn); 2000 deferred_free_pages(spfn, t); 2001 2002 if (mo_pfn <= epfn) 2003 break; 2004 } 2005 2006 return nr_pages; 2007 } 2008 2009 static void __init 2010 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2011 void *arg) 2012 { 2013 unsigned long spfn, epfn; 2014 struct zone *zone = arg; 2015 u64 i; 2016 2017 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2018 2019 /* 2020 * Initialize and free pages in MAX_ORDER sized increments so that we 2021 * can avoid introducing any issues with the buddy allocator. 2022 */ 2023 while (spfn < end_pfn) { 2024 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2025 cond_resched(); 2026 } 2027 } 2028 2029 /* An arch may override for more concurrency. */ 2030 __weak int __init 2031 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2032 { 2033 return 1; 2034 } 2035 2036 /* Initialise remaining memory on a node */ 2037 static int __init deferred_init_memmap(void *data) 2038 { 2039 pg_data_t *pgdat = data; 2040 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2041 unsigned long spfn = 0, epfn = 0; 2042 unsigned long first_init_pfn, flags; 2043 unsigned long start = jiffies; 2044 struct zone *zone; 2045 int zid, max_threads; 2046 u64 i; 2047 2048 /* Bind memory initialisation thread to a local node if possible */ 2049 if (!cpumask_empty(cpumask)) 2050 set_cpus_allowed_ptr(current, cpumask); 2051 2052 pgdat_resize_lock(pgdat, &flags); 2053 first_init_pfn = pgdat->first_deferred_pfn; 2054 if (first_init_pfn == ULONG_MAX) { 2055 pgdat_resize_unlock(pgdat, &flags); 2056 pgdat_init_report_one_done(); 2057 return 0; 2058 } 2059 2060 /* Sanity check boundaries */ 2061 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2062 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2063 pgdat->first_deferred_pfn = ULONG_MAX; 2064 2065 /* 2066 * Once we unlock here, the zone cannot be grown anymore, thus if an 2067 * interrupt thread must allocate this early in boot, zone must be 2068 * pre-grown prior to start of deferred page initialization. 2069 */ 2070 pgdat_resize_unlock(pgdat, &flags); 2071 2072 /* Only the highest zone is deferred so find it */ 2073 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2074 zone = pgdat->node_zones + zid; 2075 if (first_init_pfn < zone_end_pfn(zone)) 2076 break; 2077 } 2078 2079 /* If the zone is empty somebody else may have cleared out the zone */ 2080 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2081 first_init_pfn)) 2082 goto zone_empty; 2083 2084 max_threads = deferred_page_init_max_threads(cpumask); 2085 2086 while (spfn < epfn) { 2087 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2088 struct padata_mt_job job = { 2089 .thread_fn = deferred_init_memmap_chunk, 2090 .fn_arg = zone, 2091 .start = spfn, 2092 .size = epfn_align - spfn, 2093 .align = PAGES_PER_SECTION, 2094 .min_chunk = PAGES_PER_SECTION, 2095 .max_threads = max_threads, 2096 }; 2097 2098 padata_do_multithreaded(&job); 2099 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2100 epfn_align); 2101 } 2102 zone_empty: 2103 /* Sanity check that the next zone really is unpopulated */ 2104 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2105 2106 pr_info("node %d deferred pages initialised in %ums\n", 2107 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2108 2109 pgdat_init_report_one_done(); 2110 return 0; 2111 } 2112 2113 /* 2114 * If this zone has deferred pages, try to grow it by initializing enough 2115 * deferred pages to satisfy the allocation specified by order, rounded up to 2116 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2117 * of SECTION_SIZE bytes by initializing struct pages in increments of 2118 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2119 * 2120 * Return true when zone was grown, otherwise return false. We return true even 2121 * when we grow less than requested, to let the caller decide if there are 2122 * enough pages to satisfy the allocation. 2123 * 2124 * Note: We use noinline because this function is needed only during boot, and 2125 * it is called from a __ref function _deferred_grow_zone. This way we are 2126 * making sure that it is not inlined into permanent text section. 2127 */ 2128 static noinline bool __init 2129 deferred_grow_zone(struct zone *zone, unsigned int order) 2130 { 2131 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2132 pg_data_t *pgdat = zone->zone_pgdat; 2133 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2134 unsigned long spfn, epfn, flags; 2135 unsigned long nr_pages = 0; 2136 u64 i; 2137 2138 /* Only the last zone may have deferred pages */ 2139 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2140 return false; 2141 2142 pgdat_resize_lock(pgdat, &flags); 2143 2144 /* 2145 * If someone grew this zone while we were waiting for spinlock, return 2146 * true, as there might be enough pages already. 2147 */ 2148 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2149 pgdat_resize_unlock(pgdat, &flags); 2150 return true; 2151 } 2152 2153 /* If the zone is empty somebody else may have cleared out the zone */ 2154 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2155 first_deferred_pfn)) { 2156 pgdat->first_deferred_pfn = ULONG_MAX; 2157 pgdat_resize_unlock(pgdat, &flags); 2158 /* Retry only once. */ 2159 return first_deferred_pfn != ULONG_MAX; 2160 } 2161 2162 /* 2163 * Initialize and free pages in MAX_ORDER sized increments so 2164 * that we can avoid introducing any issues with the buddy 2165 * allocator. 2166 */ 2167 while (spfn < epfn) { 2168 /* update our first deferred PFN for this section */ 2169 first_deferred_pfn = spfn; 2170 2171 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2172 touch_nmi_watchdog(); 2173 2174 /* We should only stop along section boundaries */ 2175 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2176 continue; 2177 2178 /* If our quota has been met we can stop here */ 2179 if (nr_pages >= nr_pages_needed) 2180 break; 2181 } 2182 2183 pgdat->first_deferred_pfn = spfn; 2184 pgdat_resize_unlock(pgdat, &flags); 2185 2186 return nr_pages > 0; 2187 } 2188 2189 /* 2190 * deferred_grow_zone() is __init, but it is called from 2191 * get_page_from_freelist() during early boot until deferred_pages permanently 2192 * disables this call. This is why we have refdata wrapper to avoid warning, 2193 * and to ensure that the function body gets unloaded. 2194 */ 2195 static bool __ref 2196 _deferred_grow_zone(struct zone *zone, unsigned int order) 2197 { 2198 return deferred_grow_zone(zone, order); 2199 } 2200 2201 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2202 2203 void __init page_alloc_init_late(void) 2204 { 2205 struct zone *zone; 2206 int nid; 2207 2208 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2209 2210 /* There will be num_node_state(N_MEMORY) threads */ 2211 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2212 for_each_node_state(nid, N_MEMORY) { 2213 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2214 } 2215 2216 /* Block until all are initialised */ 2217 wait_for_completion(&pgdat_init_all_done_comp); 2218 2219 /* 2220 * We initialized the rest of the deferred pages. Permanently disable 2221 * on-demand struct page initialization. 2222 */ 2223 static_branch_disable(&deferred_pages); 2224 2225 /* Reinit limits that are based on free pages after the kernel is up */ 2226 files_maxfiles_init(); 2227 #endif 2228 2229 buffer_init(); 2230 2231 /* Discard memblock private memory */ 2232 memblock_discard(); 2233 2234 for_each_node_state(nid, N_MEMORY) 2235 shuffle_free_memory(NODE_DATA(nid)); 2236 2237 for_each_populated_zone(zone) 2238 set_zone_contiguous(zone); 2239 } 2240 2241 #ifdef CONFIG_CMA 2242 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2243 void __init init_cma_reserved_pageblock(struct page *page) 2244 { 2245 unsigned i = pageblock_nr_pages; 2246 struct page *p = page; 2247 2248 do { 2249 __ClearPageReserved(p); 2250 set_page_count(p, 0); 2251 } while (++p, --i); 2252 2253 set_pageblock_migratetype(page, MIGRATE_CMA); 2254 2255 if (pageblock_order >= MAX_ORDER) { 2256 i = pageblock_nr_pages; 2257 p = page; 2258 do { 2259 set_page_refcounted(p); 2260 __free_pages(p, MAX_ORDER - 1); 2261 p += MAX_ORDER_NR_PAGES; 2262 } while (i -= MAX_ORDER_NR_PAGES); 2263 } else { 2264 set_page_refcounted(page); 2265 __free_pages(page, pageblock_order); 2266 } 2267 2268 adjust_managed_page_count(page, pageblock_nr_pages); 2269 page_zone(page)->cma_pages += pageblock_nr_pages; 2270 } 2271 #endif 2272 2273 /* 2274 * The order of subdivision here is critical for the IO subsystem. 2275 * Please do not alter this order without good reasons and regression 2276 * testing. Specifically, as large blocks of memory are subdivided, 2277 * the order in which smaller blocks are delivered depends on the order 2278 * they're subdivided in this function. This is the primary factor 2279 * influencing the order in which pages are delivered to the IO 2280 * subsystem according to empirical testing, and this is also justified 2281 * by considering the behavior of a buddy system containing a single 2282 * large block of memory acted on by a series of small allocations. 2283 * This behavior is a critical factor in sglist merging's success. 2284 * 2285 * -- nyc 2286 */ 2287 static inline void expand(struct zone *zone, struct page *page, 2288 int low, int high, int migratetype) 2289 { 2290 unsigned long size = 1 << high; 2291 2292 while (high > low) { 2293 high--; 2294 size >>= 1; 2295 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2296 2297 /* 2298 * Mark as guard pages (or page), that will allow to 2299 * merge back to allocator when buddy will be freed. 2300 * Corresponding page table entries will not be touched, 2301 * pages will stay not present in virtual address space 2302 */ 2303 if (set_page_guard(zone, &page[size], high, migratetype)) 2304 continue; 2305 2306 add_to_free_list(&page[size], zone, high, migratetype); 2307 set_buddy_order(&page[size], high); 2308 } 2309 } 2310 2311 static void check_new_page_bad(struct page *page) 2312 { 2313 if (unlikely(page->flags & __PG_HWPOISON)) { 2314 /* Don't complain about hwpoisoned pages */ 2315 page_mapcount_reset(page); /* remove PageBuddy */ 2316 return; 2317 } 2318 2319 bad_page(page, 2320 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2321 } 2322 2323 /* 2324 * This page is about to be returned from the page allocator 2325 */ 2326 static inline int check_new_page(struct page *page) 2327 { 2328 if (likely(page_expected_state(page, 2329 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2330 return 0; 2331 2332 check_new_page_bad(page); 2333 return 1; 2334 } 2335 2336 #ifdef CONFIG_DEBUG_VM 2337 /* 2338 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2339 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2340 * also checked when pcp lists are refilled from the free lists. 2341 */ 2342 static inline bool check_pcp_refill(struct page *page) 2343 { 2344 if (debug_pagealloc_enabled_static()) 2345 return check_new_page(page); 2346 else 2347 return false; 2348 } 2349 2350 static inline bool check_new_pcp(struct page *page) 2351 { 2352 return check_new_page(page); 2353 } 2354 #else 2355 /* 2356 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2357 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2358 * enabled, they are also checked when being allocated from the pcp lists. 2359 */ 2360 static inline bool check_pcp_refill(struct page *page) 2361 { 2362 return check_new_page(page); 2363 } 2364 static inline bool check_new_pcp(struct page *page) 2365 { 2366 if (debug_pagealloc_enabled_static()) 2367 return check_new_page(page); 2368 else 2369 return false; 2370 } 2371 #endif /* CONFIG_DEBUG_VM */ 2372 2373 static bool check_new_pages(struct page *page, unsigned int order) 2374 { 2375 int i; 2376 for (i = 0; i < (1 << order); i++) { 2377 struct page *p = page + i; 2378 2379 if (unlikely(check_new_page(p))) 2380 return true; 2381 } 2382 2383 return false; 2384 } 2385 2386 inline void post_alloc_hook(struct page *page, unsigned int order, 2387 gfp_t gfp_flags) 2388 { 2389 set_page_private(page, 0); 2390 set_page_refcounted(page); 2391 2392 arch_alloc_page(page, order); 2393 debug_pagealloc_map_pages(page, 1 << order); 2394 2395 /* 2396 * Page unpoisoning must happen before memory initialization. 2397 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2398 * allocations and the page unpoisoning code will complain. 2399 */ 2400 kernel_unpoison_pages(page, 1 << order); 2401 2402 /* 2403 * As memory initialization might be integrated into KASAN, 2404 * kasan_alloc_pages and kernel_init_free_pages must be 2405 * kept together to avoid discrepancies in behavior. 2406 */ 2407 if (kasan_has_integrated_init()) { 2408 kasan_alloc_pages(page, order, gfp_flags); 2409 } else { 2410 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2411 2412 kasan_unpoison_pages(page, order, init); 2413 if (init) 2414 kernel_init_free_pages(page, 1 << order, 2415 gfp_flags & __GFP_ZEROTAGS); 2416 } 2417 2418 set_page_owner(page, order, gfp_flags); 2419 } 2420 2421 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2422 unsigned int alloc_flags) 2423 { 2424 post_alloc_hook(page, order, gfp_flags); 2425 2426 if (order && (gfp_flags & __GFP_COMP)) 2427 prep_compound_page(page, order); 2428 2429 /* 2430 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2431 * allocate the page. The expectation is that the caller is taking 2432 * steps that will free more memory. The caller should avoid the page 2433 * being used for !PFMEMALLOC purposes. 2434 */ 2435 if (alloc_flags & ALLOC_NO_WATERMARKS) 2436 set_page_pfmemalloc(page); 2437 else 2438 clear_page_pfmemalloc(page); 2439 } 2440 2441 /* 2442 * Go through the free lists for the given migratetype and remove 2443 * the smallest available page from the freelists 2444 */ 2445 static __always_inline 2446 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2447 int migratetype) 2448 { 2449 unsigned int current_order; 2450 struct free_area *area; 2451 struct page *page; 2452 2453 /* Find a page of the appropriate size in the preferred list */ 2454 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2455 area = &(zone->free_area[current_order]); 2456 page = get_page_from_free_area(area, migratetype); 2457 if (!page) 2458 continue; 2459 del_page_from_free_list(page, zone, current_order); 2460 expand(zone, page, order, current_order, migratetype); 2461 set_pcppage_migratetype(page, migratetype); 2462 return page; 2463 } 2464 2465 return NULL; 2466 } 2467 2468 2469 /* 2470 * This array describes the order lists are fallen back to when 2471 * the free lists for the desirable migrate type are depleted 2472 */ 2473 static int fallbacks[MIGRATE_TYPES][3] = { 2474 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2475 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2476 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2477 #ifdef CONFIG_CMA 2478 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2479 #endif 2480 #ifdef CONFIG_MEMORY_ISOLATION 2481 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2482 #endif 2483 }; 2484 2485 #ifdef CONFIG_CMA 2486 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2487 unsigned int order) 2488 { 2489 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2490 } 2491 #else 2492 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2493 unsigned int order) { return NULL; } 2494 #endif 2495 2496 /* 2497 * Move the free pages in a range to the freelist tail of the requested type. 2498 * Note that start_page and end_pages are not aligned on a pageblock 2499 * boundary. If alignment is required, use move_freepages_block() 2500 */ 2501 static int move_freepages(struct zone *zone, 2502 unsigned long start_pfn, unsigned long end_pfn, 2503 int migratetype, int *num_movable) 2504 { 2505 struct page *page; 2506 unsigned long pfn; 2507 unsigned int order; 2508 int pages_moved = 0; 2509 2510 for (pfn = start_pfn; pfn <= end_pfn;) { 2511 page = pfn_to_page(pfn); 2512 if (!PageBuddy(page)) { 2513 /* 2514 * We assume that pages that could be isolated for 2515 * migration are movable. But we don't actually try 2516 * isolating, as that would be expensive. 2517 */ 2518 if (num_movable && 2519 (PageLRU(page) || __PageMovable(page))) 2520 (*num_movable)++; 2521 pfn++; 2522 continue; 2523 } 2524 2525 /* Make sure we are not inadvertently changing nodes */ 2526 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2527 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2528 2529 order = buddy_order(page); 2530 move_to_free_list(page, zone, order, migratetype); 2531 pfn += 1 << order; 2532 pages_moved += 1 << order; 2533 } 2534 2535 return pages_moved; 2536 } 2537 2538 int move_freepages_block(struct zone *zone, struct page *page, 2539 int migratetype, int *num_movable) 2540 { 2541 unsigned long start_pfn, end_pfn, pfn; 2542 2543 if (num_movable) 2544 *num_movable = 0; 2545 2546 pfn = page_to_pfn(page); 2547 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2548 end_pfn = start_pfn + pageblock_nr_pages - 1; 2549 2550 /* Do not cross zone boundaries */ 2551 if (!zone_spans_pfn(zone, start_pfn)) 2552 start_pfn = pfn; 2553 if (!zone_spans_pfn(zone, end_pfn)) 2554 return 0; 2555 2556 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2557 num_movable); 2558 } 2559 2560 static void change_pageblock_range(struct page *pageblock_page, 2561 int start_order, int migratetype) 2562 { 2563 int nr_pageblocks = 1 << (start_order - pageblock_order); 2564 2565 while (nr_pageblocks--) { 2566 set_pageblock_migratetype(pageblock_page, migratetype); 2567 pageblock_page += pageblock_nr_pages; 2568 } 2569 } 2570 2571 /* 2572 * When we are falling back to another migratetype during allocation, try to 2573 * steal extra free pages from the same pageblocks to satisfy further 2574 * allocations, instead of polluting multiple pageblocks. 2575 * 2576 * If we are stealing a relatively large buddy page, it is likely there will 2577 * be more free pages in the pageblock, so try to steal them all. For 2578 * reclaimable and unmovable allocations, we steal regardless of page size, 2579 * as fragmentation caused by those allocations polluting movable pageblocks 2580 * is worse than movable allocations stealing from unmovable and reclaimable 2581 * pageblocks. 2582 */ 2583 static bool can_steal_fallback(unsigned int order, int start_mt) 2584 { 2585 /* 2586 * Leaving this order check is intended, although there is 2587 * relaxed order check in next check. The reason is that 2588 * we can actually steal whole pageblock if this condition met, 2589 * but, below check doesn't guarantee it and that is just heuristic 2590 * so could be changed anytime. 2591 */ 2592 if (order >= pageblock_order) 2593 return true; 2594 2595 if (order >= pageblock_order / 2 || 2596 start_mt == MIGRATE_RECLAIMABLE || 2597 start_mt == MIGRATE_UNMOVABLE || 2598 page_group_by_mobility_disabled) 2599 return true; 2600 2601 return false; 2602 } 2603 2604 static inline bool boost_watermark(struct zone *zone) 2605 { 2606 unsigned long max_boost; 2607 2608 if (!watermark_boost_factor) 2609 return false; 2610 /* 2611 * Don't bother in zones that are unlikely to produce results. 2612 * On small machines, including kdump capture kernels running 2613 * in a small area, boosting the watermark can cause an out of 2614 * memory situation immediately. 2615 */ 2616 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2617 return false; 2618 2619 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2620 watermark_boost_factor, 10000); 2621 2622 /* 2623 * high watermark may be uninitialised if fragmentation occurs 2624 * very early in boot so do not boost. We do not fall 2625 * through and boost by pageblock_nr_pages as failing 2626 * allocations that early means that reclaim is not going 2627 * to help and it may even be impossible to reclaim the 2628 * boosted watermark resulting in a hang. 2629 */ 2630 if (!max_boost) 2631 return false; 2632 2633 max_boost = max(pageblock_nr_pages, max_boost); 2634 2635 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2636 max_boost); 2637 2638 return true; 2639 } 2640 2641 /* 2642 * This function implements actual steal behaviour. If order is large enough, 2643 * we can steal whole pageblock. If not, we first move freepages in this 2644 * pageblock to our migratetype and determine how many already-allocated pages 2645 * are there in the pageblock with a compatible migratetype. If at least half 2646 * of pages are free or compatible, we can change migratetype of the pageblock 2647 * itself, so pages freed in the future will be put on the correct free list. 2648 */ 2649 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2650 unsigned int alloc_flags, int start_type, bool whole_block) 2651 { 2652 unsigned int current_order = buddy_order(page); 2653 int free_pages, movable_pages, alike_pages; 2654 int old_block_type; 2655 2656 old_block_type = get_pageblock_migratetype(page); 2657 2658 /* 2659 * This can happen due to races and we want to prevent broken 2660 * highatomic accounting. 2661 */ 2662 if (is_migrate_highatomic(old_block_type)) 2663 goto single_page; 2664 2665 /* Take ownership for orders >= pageblock_order */ 2666 if (current_order >= pageblock_order) { 2667 change_pageblock_range(page, current_order, start_type); 2668 goto single_page; 2669 } 2670 2671 /* 2672 * Boost watermarks to increase reclaim pressure to reduce the 2673 * likelihood of future fallbacks. Wake kswapd now as the node 2674 * may be balanced overall and kswapd will not wake naturally. 2675 */ 2676 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2677 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2678 2679 /* We are not allowed to try stealing from the whole block */ 2680 if (!whole_block) 2681 goto single_page; 2682 2683 free_pages = move_freepages_block(zone, page, start_type, 2684 &movable_pages); 2685 /* 2686 * Determine how many pages are compatible with our allocation. 2687 * For movable allocation, it's the number of movable pages which 2688 * we just obtained. For other types it's a bit more tricky. 2689 */ 2690 if (start_type == MIGRATE_MOVABLE) { 2691 alike_pages = movable_pages; 2692 } else { 2693 /* 2694 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2695 * to MOVABLE pageblock, consider all non-movable pages as 2696 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2697 * vice versa, be conservative since we can't distinguish the 2698 * exact migratetype of non-movable pages. 2699 */ 2700 if (old_block_type == MIGRATE_MOVABLE) 2701 alike_pages = pageblock_nr_pages 2702 - (free_pages + movable_pages); 2703 else 2704 alike_pages = 0; 2705 } 2706 2707 /* moving whole block can fail due to zone boundary conditions */ 2708 if (!free_pages) 2709 goto single_page; 2710 2711 /* 2712 * If a sufficient number of pages in the block are either free or of 2713 * comparable migratability as our allocation, claim the whole block. 2714 */ 2715 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2716 page_group_by_mobility_disabled) 2717 set_pageblock_migratetype(page, start_type); 2718 2719 return; 2720 2721 single_page: 2722 move_to_free_list(page, zone, current_order, start_type); 2723 } 2724 2725 /* 2726 * Check whether there is a suitable fallback freepage with requested order. 2727 * If only_stealable is true, this function returns fallback_mt only if 2728 * we can steal other freepages all together. This would help to reduce 2729 * fragmentation due to mixed migratetype pages in one pageblock. 2730 */ 2731 int find_suitable_fallback(struct free_area *area, unsigned int order, 2732 int migratetype, bool only_stealable, bool *can_steal) 2733 { 2734 int i; 2735 int fallback_mt; 2736 2737 if (area->nr_free == 0) 2738 return -1; 2739 2740 *can_steal = false; 2741 for (i = 0;; i++) { 2742 fallback_mt = fallbacks[migratetype][i]; 2743 if (fallback_mt == MIGRATE_TYPES) 2744 break; 2745 2746 if (free_area_empty(area, fallback_mt)) 2747 continue; 2748 2749 if (can_steal_fallback(order, migratetype)) 2750 *can_steal = true; 2751 2752 if (!only_stealable) 2753 return fallback_mt; 2754 2755 if (*can_steal) 2756 return fallback_mt; 2757 } 2758 2759 return -1; 2760 } 2761 2762 /* 2763 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2764 * there are no empty page blocks that contain a page with a suitable order 2765 */ 2766 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2767 unsigned int alloc_order) 2768 { 2769 int mt; 2770 unsigned long max_managed, flags; 2771 2772 /* 2773 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2774 * Check is race-prone but harmless. 2775 */ 2776 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2777 if (zone->nr_reserved_highatomic >= max_managed) 2778 return; 2779 2780 spin_lock_irqsave(&zone->lock, flags); 2781 2782 /* Recheck the nr_reserved_highatomic limit under the lock */ 2783 if (zone->nr_reserved_highatomic >= max_managed) 2784 goto out_unlock; 2785 2786 /* Yoink! */ 2787 mt = get_pageblock_migratetype(page); 2788 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2789 && !is_migrate_cma(mt)) { 2790 zone->nr_reserved_highatomic += pageblock_nr_pages; 2791 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2792 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2793 } 2794 2795 out_unlock: 2796 spin_unlock_irqrestore(&zone->lock, flags); 2797 } 2798 2799 /* 2800 * Used when an allocation is about to fail under memory pressure. This 2801 * potentially hurts the reliability of high-order allocations when under 2802 * intense memory pressure but failed atomic allocations should be easier 2803 * to recover from than an OOM. 2804 * 2805 * If @force is true, try to unreserve a pageblock even though highatomic 2806 * pageblock is exhausted. 2807 */ 2808 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2809 bool force) 2810 { 2811 struct zonelist *zonelist = ac->zonelist; 2812 unsigned long flags; 2813 struct zoneref *z; 2814 struct zone *zone; 2815 struct page *page; 2816 int order; 2817 bool ret; 2818 2819 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2820 ac->nodemask) { 2821 /* 2822 * Preserve at least one pageblock unless memory pressure 2823 * is really high. 2824 */ 2825 if (!force && zone->nr_reserved_highatomic <= 2826 pageblock_nr_pages) 2827 continue; 2828 2829 spin_lock_irqsave(&zone->lock, flags); 2830 for (order = 0; order < MAX_ORDER; order++) { 2831 struct free_area *area = &(zone->free_area[order]); 2832 2833 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2834 if (!page) 2835 continue; 2836 2837 /* 2838 * In page freeing path, migratetype change is racy so 2839 * we can counter several free pages in a pageblock 2840 * in this loop although we changed the pageblock type 2841 * from highatomic to ac->migratetype. So we should 2842 * adjust the count once. 2843 */ 2844 if (is_migrate_highatomic_page(page)) { 2845 /* 2846 * It should never happen but changes to 2847 * locking could inadvertently allow a per-cpu 2848 * drain to add pages to MIGRATE_HIGHATOMIC 2849 * while unreserving so be safe and watch for 2850 * underflows. 2851 */ 2852 zone->nr_reserved_highatomic -= min( 2853 pageblock_nr_pages, 2854 zone->nr_reserved_highatomic); 2855 } 2856 2857 /* 2858 * Convert to ac->migratetype and avoid the normal 2859 * pageblock stealing heuristics. Minimally, the caller 2860 * is doing the work and needs the pages. More 2861 * importantly, if the block was always converted to 2862 * MIGRATE_UNMOVABLE or another type then the number 2863 * of pageblocks that cannot be completely freed 2864 * may increase. 2865 */ 2866 set_pageblock_migratetype(page, ac->migratetype); 2867 ret = move_freepages_block(zone, page, ac->migratetype, 2868 NULL); 2869 if (ret) { 2870 spin_unlock_irqrestore(&zone->lock, flags); 2871 return ret; 2872 } 2873 } 2874 spin_unlock_irqrestore(&zone->lock, flags); 2875 } 2876 2877 return false; 2878 } 2879 2880 /* 2881 * Try finding a free buddy page on the fallback list and put it on the free 2882 * list of requested migratetype, possibly along with other pages from the same 2883 * block, depending on fragmentation avoidance heuristics. Returns true if 2884 * fallback was found so that __rmqueue_smallest() can grab it. 2885 * 2886 * The use of signed ints for order and current_order is a deliberate 2887 * deviation from the rest of this file, to make the for loop 2888 * condition simpler. 2889 */ 2890 static __always_inline bool 2891 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2892 unsigned int alloc_flags) 2893 { 2894 struct free_area *area; 2895 int current_order; 2896 int min_order = order; 2897 struct page *page; 2898 int fallback_mt; 2899 bool can_steal; 2900 2901 /* 2902 * Do not steal pages from freelists belonging to other pageblocks 2903 * i.e. orders < pageblock_order. If there are no local zones free, 2904 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2905 */ 2906 if (alloc_flags & ALLOC_NOFRAGMENT) 2907 min_order = pageblock_order; 2908 2909 /* 2910 * Find the largest available free page in the other list. This roughly 2911 * approximates finding the pageblock with the most free pages, which 2912 * would be too costly to do exactly. 2913 */ 2914 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2915 --current_order) { 2916 area = &(zone->free_area[current_order]); 2917 fallback_mt = find_suitable_fallback(area, current_order, 2918 start_migratetype, false, &can_steal); 2919 if (fallback_mt == -1) 2920 continue; 2921 2922 /* 2923 * We cannot steal all free pages from the pageblock and the 2924 * requested migratetype is movable. In that case it's better to 2925 * steal and split the smallest available page instead of the 2926 * largest available page, because even if the next movable 2927 * allocation falls back into a different pageblock than this 2928 * one, it won't cause permanent fragmentation. 2929 */ 2930 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2931 && current_order > order) 2932 goto find_smallest; 2933 2934 goto do_steal; 2935 } 2936 2937 return false; 2938 2939 find_smallest: 2940 for (current_order = order; current_order < MAX_ORDER; 2941 current_order++) { 2942 area = &(zone->free_area[current_order]); 2943 fallback_mt = find_suitable_fallback(area, current_order, 2944 start_migratetype, false, &can_steal); 2945 if (fallback_mt != -1) 2946 break; 2947 } 2948 2949 /* 2950 * This should not happen - we already found a suitable fallback 2951 * when looking for the largest page. 2952 */ 2953 VM_BUG_ON(current_order == MAX_ORDER); 2954 2955 do_steal: 2956 page = get_page_from_free_area(area, fallback_mt); 2957 2958 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2959 can_steal); 2960 2961 trace_mm_page_alloc_extfrag(page, order, current_order, 2962 start_migratetype, fallback_mt); 2963 2964 return true; 2965 2966 } 2967 2968 /* 2969 * Do the hard work of removing an element from the buddy allocator. 2970 * Call me with the zone->lock already held. 2971 */ 2972 static __always_inline struct page * 2973 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2974 unsigned int alloc_flags) 2975 { 2976 struct page *page; 2977 2978 if (IS_ENABLED(CONFIG_CMA)) { 2979 /* 2980 * Balance movable allocations between regular and CMA areas by 2981 * allocating from CMA when over half of the zone's free memory 2982 * is in the CMA area. 2983 */ 2984 if (alloc_flags & ALLOC_CMA && 2985 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2986 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2987 page = __rmqueue_cma_fallback(zone, order); 2988 if (page) 2989 goto out; 2990 } 2991 } 2992 retry: 2993 page = __rmqueue_smallest(zone, order, migratetype); 2994 if (unlikely(!page)) { 2995 if (alloc_flags & ALLOC_CMA) 2996 page = __rmqueue_cma_fallback(zone, order); 2997 2998 if (!page && __rmqueue_fallback(zone, order, migratetype, 2999 alloc_flags)) 3000 goto retry; 3001 } 3002 out: 3003 if (page) 3004 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3005 return page; 3006 } 3007 3008 /* 3009 * Obtain a specified number of elements from the buddy allocator, all under 3010 * a single hold of the lock, for efficiency. Add them to the supplied list. 3011 * Returns the number of new pages which were placed at *list. 3012 */ 3013 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3014 unsigned long count, struct list_head *list, 3015 int migratetype, unsigned int alloc_flags) 3016 { 3017 int i, allocated = 0; 3018 3019 /* 3020 * local_lock_irq held so equivalent to spin_lock_irqsave for 3021 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3022 */ 3023 spin_lock(&zone->lock); 3024 for (i = 0; i < count; ++i) { 3025 struct page *page = __rmqueue(zone, order, migratetype, 3026 alloc_flags); 3027 if (unlikely(page == NULL)) 3028 break; 3029 3030 if (unlikely(check_pcp_refill(page))) 3031 continue; 3032 3033 /* 3034 * Split buddy pages returned by expand() are received here in 3035 * physical page order. The page is added to the tail of 3036 * caller's list. From the callers perspective, the linked list 3037 * is ordered by page number under some conditions. This is 3038 * useful for IO devices that can forward direction from the 3039 * head, thus also in the physical page order. This is useful 3040 * for IO devices that can merge IO requests if the physical 3041 * pages are ordered properly. 3042 */ 3043 list_add_tail(&page->lru, list); 3044 allocated++; 3045 if (is_migrate_cma(get_pcppage_migratetype(page))) 3046 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3047 -(1 << order)); 3048 } 3049 3050 /* 3051 * i pages were removed from the buddy list even if some leak due 3052 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3053 * on i. Do not confuse with 'allocated' which is the number of 3054 * pages added to the pcp list. 3055 */ 3056 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3057 spin_unlock(&zone->lock); 3058 return allocated; 3059 } 3060 3061 #ifdef CONFIG_NUMA 3062 /* 3063 * Called from the vmstat counter updater to drain pagesets of this 3064 * currently executing processor on remote nodes after they have 3065 * expired. 3066 * 3067 * Note that this function must be called with the thread pinned to 3068 * a single processor. 3069 */ 3070 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3071 { 3072 unsigned long flags; 3073 int to_drain, batch; 3074 3075 local_lock_irqsave(&pagesets.lock, flags); 3076 batch = READ_ONCE(pcp->batch); 3077 to_drain = min(pcp->count, batch); 3078 if (to_drain > 0) 3079 free_pcppages_bulk(zone, to_drain, pcp); 3080 local_unlock_irqrestore(&pagesets.lock, flags); 3081 } 3082 #endif 3083 3084 /* 3085 * Drain pcplists of the indicated processor and zone. 3086 * 3087 * The processor must either be the current processor and the 3088 * thread pinned to the current processor or a processor that 3089 * is not online. 3090 */ 3091 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3092 { 3093 unsigned long flags; 3094 struct per_cpu_pages *pcp; 3095 3096 local_lock_irqsave(&pagesets.lock, flags); 3097 3098 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3099 if (pcp->count) 3100 free_pcppages_bulk(zone, pcp->count, pcp); 3101 3102 local_unlock_irqrestore(&pagesets.lock, flags); 3103 } 3104 3105 /* 3106 * Drain pcplists of all zones on the indicated processor. 3107 * 3108 * The processor must either be the current processor and the 3109 * thread pinned to the current processor or a processor that 3110 * is not online. 3111 */ 3112 static void drain_pages(unsigned int cpu) 3113 { 3114 struct zone *zone; 3115 3116 for_each_populated_zone(zone) { 3117 drain_pages_zone(cpu, zone); 3118 } 3119 } 3120 3121 /* 3122 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3123 * 3124 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3125 * the single zone's pages. 3126 */ 3127 void drain_local_pages(struct zone *zone) 3128 { 3129 int cpu = smp_processor_id(); 3130 3131 if (zone) 3132 drain_pages_zone(cpu, zone); 3133 else 3134 drain_pages(cpu); 3135 } 3136 3137 static void drain_local_pages_wq(struct work_struct *work) 3138 { 3139 struct pcpu_drain *drain; 3140 3141 drain = container_of(work, struct pcpu_drain, work); 3142 3143 /* 3144 * drain_all_pages doesn't use proper cpu hotplug protection so 3145 * we can race with cpu offline when the WQ can move this from 3146 * a cpu pinned worker to an unbound one. We can operate on a different 3147 * cpu which is alright but we also have to make sure to not move to 3148 * a different one. 3149 */ 3150 preempt_disable(); 3151 drain_local_pages(drain->zone); 3152 preempt_enable(); 3153 } 3154 3155 /* 3156 * The implementation of drain_all_pages(), exposing an extra parameter to 3157 * drain on all cpus. 3158 * 3159 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3160 * not empty. The check for non-emptiness can however race with a free to 3161 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3162 * that need the guarantee that every CPU has drained can disable the 3163 * optimizing racy check. 3164 */ 3165 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3166 { 3167 int cpu; 3168 3169 /* 3170 * Allocate in the BSS so we won't require allocation in 3171 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3172 */ 3173 static cpumask_t cpus_with_pcps; 3174 3175 /* 3176 * Make sure nobody triggers this path before mm_percpu_wq is fully 3177 * initialized. 3178 */ 3179 if (WARN_ON_ONCE(!mm_percpu_wq)) 3180 return; 3181 3182 /* 3183 * Do not drain if one is already in progress unless it's specific to 3184 * a zone. Such callers are primarily CMA and memory hotplug and need 3185 * the drain to be complete when the call returns. 3186 */ 3187 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3188 if (!zone) 3189 return; 3190 mutex_lock(&pcpu_drain_mutex); 3191 } 3192 3193 /* 3194 * We don't care about racing with CPU hotplug event 3195 * as offline notification will cause the notified 3196 * cpu to drain that CPU pcps and on_each_cpu_mask 3197 * disables preemption as part of its processing 3198 */ 3199 for_each_online_cpu(cpu) { 3200 struct per_cpu_pages *pcp; 3201 struct zone *z; 3202 bool has_pcps = false; 3203 3204 if (force_all_cpus) { 3205 /* 3206 * The pcp.count check is racy, some callers need a 3207 * guarantee that no cpu is missed. 3208 */ 3209 has_pcps = true; 3210 } else if (zone) { 3211 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3212 if (pcp->count) 3213 has_pcps = true; 3214 } else { 3215 for_each_populated_zone(z) { 3216 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3217 if (pcp->count) { 3218 has_pcps = true; 3219 break; 3220 } 3221 } 3222 } 3223 3224 if (has_pcps) 3225 cpumask_set_cpu(cpu, &cpus_with_pcps); 3226 else 3227 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3228 } 3229 3230 for_each_cpu(cpu, &cpus_with_pcps) { 3231 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3232 3233 drain->zone = zone; 3234 INIT_WORK(&drain->work, drain_local_pages_wq); 3235 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3236 } 3237 for_each_cpu(cpu, &cpus_with_pcps) 3238 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3239 3240 mutex_unlock(&pcpu_drain_mutex); 3241 } 3242 3243 /* 3244 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3245 * 3246 * When zone parameter is non-NULL, spill just the single zone's pages. 3247 * 3248 * Note that this can be extremely slow as the draining happens in a workqueue. 3249 */ 3250 void drain_all_pages(struct zone *zone) 3251 { 3252 __drain_all_pages(zone, false); 3253 } 3254 3255 #ifdef CONFIG_HIBERNATION 3256 3257 /* 3258 * Touch the watchdog for every WD_PAGE_COUNT pages. 3259 */ 3260 #define WD_PAGE_COUNT (128*1024) 3261 3262 void mark_free_pages(struct zone *zone) 3263 { 3264 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3265 unsigned long flags; 3266 unsigned int order, t; 3267 struct page *page; 3268 3269 if (zone_is_empty(zone)) 3270 return; 3271 3272 spin_lock_irqsave(&zone->lock, flags); 3273 3274 max_zone_pfn = zone_end_pfn(zone); 3275 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3276 if (pfn_valid(pfn)) { 3277 page = pfn_to_page(pfn); 3278 3279 if (!--page_count) { 3280 touch_nmi_watchdog(); 3281 page_count = WD_PAGE_COUNT; 3282 } 3283 3284 if (page_zone(page) != zone) 3285 continue; 3286 3287 if (!swsusp_page_is_forbidden(page)) 3288 swsusp_unset_page_free(page); 3289 } 3290 3291 for_each_migratetype_order(order, t) { 3292 list_for_each_entry(page, 3293 &zone->free_area[order].free_list[t], lru) { 3294 unsigned long i; 3295 3296 pfn = page_to_pfn(page); 3297 for (i = 0; i < (1UL << order); i++) { 3298 if (!--page_count) { 3299 touch_nmi_watchdog(); 3300 page_count = WD_PAGE_COUNT; 3301 } 3302 swsusp_set_page_free(pfn_to_page(pfn + i)); 3303 } 3304 } 3305 } 3306 spin_unlock_irqrestore(&zone->lock, flags); 3307 } 3308 #endif /* CONFIG_PM */ 3309 3310 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3311 unsigned int order) 3312 { 3313 int migratetype; 3314 3315 if (!free_pcp_prepare(page, order)) 3316 return false; 3317 3318 migratetype = get_pfnblock_migratetype(page, pfn); 3319 set_pcppage_migratetype(page, migratetype); 3320 return true; 3321 } 3322 3323 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch) 3324 { 3325 int min_nr_free, max_nr_free; 3326 3327 /* Check for PCP disabled or boot pageset */ 3328 if (unlikely(high < batch)) 3329 return 1; 3330 3331 /* Leave at least pcp->batch pages on the list */ 3332 min_nr_free = batch; 3333 max_nr_free = high - batch; 3334 3335 /* 3336 * Double the number of pages freed each time there is subsequent 3337 * freeing of pages without any allocation. 3338 */ 3339 batch <<= pcp->free_factor; 3340 if (batch < max_nr_free) 3341 pcp->free_factor++; 3342 batch = clamp(batch, min_nr_free, max_nr_free); 3343 3344 return batch; 3345 } 3346 3347 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone) 3348 { 3349 int high = READ_ONCE(pcp->high); 3350 3351 if (unlikely(!high)) 3352 return 0; 3353 3354 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3355 return high; 3356 3357 /* 3358 * If reclaim is active, limit the number of pages that can be 3359 * stored on pcp lists 3360 */ 3361 return min(READ_ONCE(pcp->batch) << 2, high); 3362 } 3363 3364 static void free_unref_page_commit(struct page *page, unsigned long pfn, 3365 int migratetype, unsigned int order) 3366 { 3367 struct zone *zone = page_zone(page); 3368 struct per_cpu_pages *pcp; 3369 int high; 3370 int pindex; 3371 3372 __count_vm_event(PGFREE); 3373 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3374 pindex = order_to_pindex(migratetype, order); 3375 list_add(&page->lru, &pcp->lists[pindex]); 3376 pcp->count += 1 << order; 3377 high = nr_pcp_high(pcp, zone); 3378 if (pcp->count >= high) { 3379 int batch = READ_ONCE(pcp->batch); 3380 3381 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp); 3382 } 3383 } 3384 3385 /* 3386 * Free a pcp page 3387 */ 3388 void free_unref_page(struct page *page, unsigned int order) 3389 { 3390 unsigned long flags; 3391 unsigned long pfn = page_to_pfn(page); 3392 int migratetype; 3393 3394 if (!free_unref_page_prepare(page, pfn, order)) 3395 return; 3396 3397 /* 3398 * We only track unmovable, reclaimable and movable on pcp lists. 3399 * Place ISOLATE pages on the isolated list because they are being 3400 * offlined but treat HIGHATOMIC as movable pages so we can get those 3401 * areas back if necessary. Otherwise, we may have to free 3402 * excessively into the page allocator 3403 */ 3404 migratetype = get_pcppage_migratetype(page); 3405 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3406 if (unlikely(is_migrate_isolate(migratetype))) { 3407 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3408 return; 3409 } 3410 migratetype = MIGRATE_MOVABLE; 3411 } 3412 3413 local_lock_irqsave(&pagesets.lock, flags); 3414 free_unref_page_commit(page, pfn, migratetype, order); 3415 local_unlock_irqrestore(&pagesets.lock, flags); 3416 } 3417 3418 /* 3419 * Free a list of 0-order pages 3420 */ 3421 void free_unref_page_list(struct list_head *list) 3422 { 3423 struct page *page, *next; 3424 unsigned long flags, pfn; 3425 int batch_count = 0; 3426 int migratetype; 3427 3428 /* Prepare pages for freeing */ 3429 list_for_each_entry_safe(page, next, list, lru) { 3430 pfn = page_to_pfn(page); 3431 if (!free_unref_page_prepare(page, pfn, 0)) { 3432 list_del(&page->lru); 3433 continue; 3434 } 3435 3436 /* 3437 * Free isolated pages directly to the allocator, see 3438 * comment in free_unref_page. 3439 */ 3440 migratetype = get_pcppage_migratetype(page); 3441 if (unlikely(is_migrate_isolate(migratetype))) { 3442 list_del(&page->lru); 3443 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3444 continue; 3445 } 3446 3447 set_page_private(page, pfn); 3448 } 3449 3450 local_lock_irqsave(&pagesets.lock, flags); 3451 list_for_each_entry_safe(page, next, list, lru) { 3452 pfn = page_private(page); 3453 set_page_private(page, 0); 3454 3455 /* 3456 * Non-isolated types over MIGRATE_PCPTYPES get added 3457 * to the MIGRATE_MOVABLE pcp list. 3458 */ 3459 migratetype = get_pcppage_migratetype(page); 3460 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3461 migratetype = MIGRATE_MOVABLE; 3462 3463 trace_mm_page_free_batched(page); 3464 free_unref_page_commit(page, pfn, migratetype, 0); 3465 3466 /* 3467 * Guard against excessive IRQ disabled times when we get 3468 * a large list of pages to free. 3469 */ 3470 if (++batch_count == SWAP_CLUSTER_MAX) { 3471 local_unlock_irqrestore(&pagesets.lock, flags); 3472 batch_count = 0; 3473 local_lock_irqsave(&pagesets.lock, flags); 3474 } 3475 } 3476 local_unlock_irqrestore(&pagesets.lock, flags); 3477 } 3478 3479 /* 3480 * split_page takes a non-compound higher-order page, and splits it into 3481 * n (1<<order) sub-pages: page[0..n] 3482 * Each sub-page must be freed individually. 3483 * 3484 * Note: this is probably too low level an operation for use in drivers. 3485 * Please consult with lkml before using this in your driver. 3486 */ 3487 void split_page(struct page *page, unsigned int order) 3488 { 3489 int i; 3490 3491 VM_BUG_ON_PAGE(PageCompound(page), page); 3492 VM_BUG_ON_PAGE(!page_count(page), page); 3493 3494 for (i = 1; i < (1 << order); i++) 3495 set_page_refcounted(page + i); 3496 split_page_owner(page, 1 << order); 3497 split_page_memcg(page, 1 << order); 3498 } 3499 EXPORT_SYMBOL_GPL(split_page); 3500 3501 int __isolate_free_page(struct page *page, unsigned int order) 3502 { 3503 unsigned long watermark; 3504 struct zone *zone; 3505 int mt; 3506 3507 BUG_ON(!PageBuddy(page)); 3508 3509 zone = page_zone(page); 3510 mt = get_pageblock_migratetype(page); 3511 3512 if (!is_migrate_isolate(mt)) { 3513 /* 3514 * Obey watermarks as if the page was being allocated. We can 3515 * emulate a high-order watermark check with a raised order-0 3516 * watermark, because we already know our high-order page 3517 * exists. 3518 */ 3519 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3520 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3521 return 0; 3522 3523 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3524 } 3525 3526 /* Remove page from free list */ 3527 3528 del_page_from_free_list(page, zone, order); 3529 3530 /* 3531 * Set the pageblock if the isolated page is at least half of a 3532 * pageblock 3533 */ 3534 if (order >= pageblock_order - 1) { 3535 struct page *endpage = page + (1 << order) - 1; 3536 for (; page < endpage; page += pageblock_nr_pages) { 3537 int mt = get_pageblock_migratetype(page); 3538 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3539 && !is_migrate_highatomic(mt)) 3540 set_pageblock_migratetype(page, 3541 MIGRATE_MOVABLE); 3542 } 3543 } 3544 3545 3546 return 1UL << order; 3547 } 3548 3549 /** 3550 * __putback_isolated_page - Return a now-isolated page back where we got it 3551 * @page: Page that was isolated 3552 * @order: Order of the isolated page 3553 * @mt: The page's pageblock's migratetype 3554 * 3555 * This function is meant to return a page pulled from the free lists via 3556 * __isolate_free_page back to the free lists they were pulled from. 3557 */ 3558 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3559 { 3560 struct zone *zone = page_zone(page); 3561 3562 /* zone lock should be held when this function is called */ 3563 lockdep_assert_held(&zone->lock); 3564 3565 /* Return isolated page to tail of freelist. */ 3566 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3567 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3568 } 3569 3570 /* 3571 * Update NUMA hit/miss statistics 3572 * 3573 * Must be called with interrupts disabled. 3574 */ 3575 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3576 long nr_account) 3577 { 3578 #ifdef CONFIG_NUMA 3579 enum numa_stat_item local_stat = NUMA_LOCAL; 3580 3581 /* skip numa counters update if numa stats is disabled */ 3582 if (!static_branch_likely(&vm_numa_stat_key)) 3583 return; 3584 3585 if (zone_to_nid(z) != numa_node_id()) 3586 local_stat = NUMA_OTHER; 3587 3588 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3589 __count_numa_events(z, NUMA_HIT, nr_account); 3590 else { 3591 __count_numa_events(z, NUMA_MISS, nr_account); 3592 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3593 } 3594 __count_numa_events(z, local_stat, nr_account); 3595 #endif 3596 } 3597 3598 /* Remove page from the per-cpu list, caller must protect the list */ 3599 static inline 3600 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3601 int migratetype, 3602 unsigned int alloc_flags, 3603 struct per_cpu_pages *pcp, 3604 struct list_head *list) 3605 { 3606 struct page *page; 3607 3608 do { 3609 if (list_empty(list)) { 3610 int batch = READ_ONCE(pcp->batch); 3611 int alloced; 3612 3613 /* 3614 * Scale batch relative to order if batch implies 3615 * free pages can be stored on the PCP. Batch can 3616 * be 1 for small zones or for boot pagesets which 3617 * should never store free pages as the pages may 3618 * belong to arbitrary zones. 3619 */ 3620 if (batch > 1) 3621 batch = max(batch >> order, 2); 3622 alloced = rmqueue_bulk(zone, order, 3623 batch, list, 3624 migratetype, alloc_flags); 3625 3626 pcp->count += alloced << order; 3627 if (unlikely(list_empty(list))) 3628 return NULL; 3629 } 3630 3631 page = list_first_entry(list, struct page, lru); 3632 list_del(&page->lru); 3633 pcp->count -= 1 << order; 3634 } while (check_new_pcp(page)); 3635 3636 return page; 3637 } 3638 3639 /* Lock and remove page from the per-cpu list */ 3640 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3641 struct zone *zone, unsigned int order, 3642 gfp_t gfp_flags, int migratetype, 3643 unsigned int alloc_flags) 3644 { 3645 struct per_cpu_pages *pcp; 3646 struct list_head *list; 3647 struct page *page; 3648 unsigned long flags; 3649 3650 local_lock_irqsave(&pagesets.lock, flags); 3651 3652 /* 3653 * On allocation, reduce the number of pages that are batch freed. 3654 * See nr_pcp_free() where free_factor is increased for subsequent 3655 * frees. 3656 */ 3657 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3658 pcp->free_factor >>= 1; 3659 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3660 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3661 local_unlock_irqrestore(&pagesets.lock, flags); 3662 if (page) { 3663 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3664 zone_statistics(preferred_zone, zone, 1); 3665 } 3666 return page; 3667 } 3668 3669 /* 3670 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3671 */ 3672 static inline 3673 struct page *rmqueue(struct zone *preferred_zone, 3674 struct zone *zone, unsigned int order, 3675 gfp_t gfp_flags, unsigned int alloc_flags, 3676 int migratetype) 3677 { 3678 unsigned long flags; 3679 struct page *page; 3680 3681 if (likely(pcp_allowed_order(order))) { 3682 /* 3683 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3684 * we need to skip it when CMA area isn't allowed. 3685 */ 3686 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3687 migratetype != MIGRATE_MOVABLE) { 3688 page = rmqueue_pcplist(preferred_zone, zone, order, 3689 gfp_flags, migratetype, alloc_flags); 3690 goto out; 3691 } 3692 } 3693 3694 /* 3695 * We most definitely don't want callers attempting to 3696 * allocate greater than order-1 page units with __GFP_NOFAIL. 3697 */ 3698 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3699 spin_lock_irqsave(&zone->lock, flags); 3700 3701 do { 3702 page = NULL; 3703 /* 3704 * order-0 request can reach here when the pcplist is skipped 3705 * due to non-CMA allocation context. HIGHATOMIC area is 3706 * reserved for high-order atomic allocation, so order-0 3707 * request should skip it. 3708 */ 3709 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3710 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3711 if (page) 3712 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3713 } 3714 if (!page) 3715 page = __rmqueue(zone, order, migratetype, alloc_flags); 3716 } while (page && check_new_pages(page, order)); 3717 if (!page) 3718 goto failed; 3719 3720 __mod_zone_freepage_state(zone, -(1 << order), 3721 get_pcppage_migratetype(page)); 3722 spin_unlock_irqrestore(&zone->lock, flags); 3723 3724 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3725 zone_statistics(preferred_zone, zone, 1); 3726 3727 out: 3728 /* Separate test+clear to avoid unnecessary atomics */ 3729 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3730 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3731 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3732 } 3733 3734 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3735 return page; 3736 3737 failed: 3738 spin_unlock_irqrestore(&zone->lock, flags); 3739 return NULL; 3740 } 3741 3742 #ifdef CONFIG_FAIL_PAGE_ALLOC 3743 3744 static struct { 3745 struct fault_attr attr; 3746 3747 bool ignore_gfp_highmem; 3748 bool ignore_gfp_reclaim; 3749 u32 min_order; 3750 } fail_page_alloc = { 3751 .attr = FAULT_ATTR_INITIALIZER, 3752 .ignore_gfp_reclaim = true, 3753 .ignore_gfp_highmem = true, 3754 .min_order = 1, 3755 }; 3756 3757 static int __init setup_fail_page_alloc(char *str) 3758 { 3759 return setup_fault_attr(&fail_page_alloc.attr, str); 3760 } 3761 __setup("fail_page_alloc=", setup_fail_page_alloc); 3762 3763 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3764 { 3765 if (order < fail_page_alloc.min_order) 3766 return false; 3767 if (gfp_mask & __GFP_NOFAIL) 3768 return false; 3769 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3770 return false; 3771 if (fail_page_alloc.ignore_gfp_reclaim && 3772 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3773 return false; 3774 3775 return should_fail(&fail_page_alloc.attr, 1 << order); 3776 } 3777 3778 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3779 3780 static int __init fail_page_alloc_debugfs(void) 3781 { 3782 umode_t mode = S_IFREG | 0600; 3783 struct dentry *dir; 3784 3785 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3786 &fail_page_alloc.attr); 3787 3788 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3789 &fail_page_alloc.ignore_gfp_reclaim); 3790 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3791 &fail_page_alloc.ignore_gfp_highmem); 3792 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3793 3794 return 0; 3795 } 3796 3797 late_initcall(fail_page_alloc_debugfs); 3798 3799 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3800 3801 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3802 3803 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3804 { 3805 return false; 3806 } 3807 3808 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3809 3810 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3811 { 3812 return __should_fail_alloc_page(gfp_mask, order); 3813 } 3814 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3815 3816 static inline long __zone_watermark_unusable_free(struct zone *z, 3817 unsigned int order, unsigned int alloc_flags) 3818 { 3819 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3820 long unusable_free = (1 << order) - 1; 3821 3822 /* 3823 * If the caller does not have rights to ALLOC_HARDER then subtract 3824 * the high-atomic reserves. This will over-estimate the size of the 3825 * atomic reserve but it avoids a search. 3826 */ 3827 if (likely(!alloc_harder)) 3828 unusable_free += z->nr_reserved_highatomic; 3829 3830 #ifdef CONFIG_CMA 3831 /* If allocation can't use CMA areas don't use free CMA pages */ 3832 if (!(alloc_flags & ALLOC_CMA)) 3833 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3834 #endif 3835 3836 return unusable_free; 3837 } 3838 3839 /* 3840 * Return true if free base pages are above 'mark'. For high-order checks it 3841 * will return true of the order-0 watermark is reached and there is at least 3842 * one free page of a suitable size. Checking now avoids taking the zone lock 3843 * to check in the allocation paths if no pages are free. 3844 */ 3845 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3846 int highest_zoneidx, unsigned int alloc_flags, 3847 long free_pages) 3848 { 3849 long min = mark; 3850 int o; 3851 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3852 3853 /* free_pages may go negative - that's OK */ 3854 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3855 3856 if (alloc_flags & ALLOC_HIGH) 3857 min -= min / 2; 3858 3859 if (unlikely(alloc_harder)) { 3860 /* 3861 * OOM victims can try even harder than normal ALLOC_HARDER 3862 * users on the grounds that it's definitely going to be in 3863 * the exit path shortly and free memory. Any allocation it 3864 * makes during the free path will be small and short-lived. 3865 */ 3866 if (alloc_flags & ALLOC_OOM) 3867 min -= min / 2; 3868 else 3869 min -= min / 4; 3870 } 3871 3872 /* 3873 * Check watermarks for an order-0 allocation request. If these 3874 * are not met, then a high-order request also cannot go ahead 3875 * even if a suitable page happened to be free. 3876 */ 3877 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3878 return false; 3879 3880 /* If this is an order-0 request then the watermark is fine */ 3881 if (!order) 3882 return true; 3883 3884 /* For a high-order request, check at least one suitable page is free */ 3885 for (o = order; o < MAX_ORDER; o++) { 3886 struct free_area *area = &z->free_area[o]; 3887 int mt; 3888 3889 if (!area->nr_free) 3890 continue; 3891 3892 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3893 if (!free_area_empty(area, mt)) 3894 return true; 3895 } 3896 3897 #ifdef CONFIG_CMA 3898 if ((alloc_flags & ALLOC_CMA) && 3899 !free_area_empty(area, MIGRATE_CMA)) { 3900 return true; 3901 } 3902 #endif 3903 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3904 return true; 3905 } 3906 return false; 3907 } 3908 3909 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3910 int highest_zoneidx, unsigned int alloc_flags) 3911 { 3912 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3913 zone_page_state(z, NR_FREE_PAGES)); 3914 } 3915 3916 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3917 unsigned long mark, int highest_zoneidx, 3918 unsigned int alloc_flags, gfp_t gfp_mask) 3919 { 3920 long free_pages; 3921 3922 free_pages = zone_page_state(z, NR_FREE_PAGES); 3923 3924 /* 3925 * Fast check for order-0 only. If this fails then the reserves 3926 * need to be calculated. 3927 */ 3928 if (!order) { 3929 long fast_free; 3930 3931 fast_free = free_pages; 3932 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3933 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3934 return true; 3935 } 3936 3937 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3938 free_pages)) 3939 return true; 3940 /* 3941 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3942 * when checking the min watermark. The min watermark is the 3943 * point where boosting is ignored so that kswapd is woken up 3944 * when below the low watermark. 3945 */ 3946 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3947 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3948 mark = z->_watermark[WMARK_MIN]; 3949 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3950 alloc_flags, free_pages); 3951 } 3952 3953 return false; 3954 } 3955 3956 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3957 unsigned long mark, int highest_zoneidx) 3958 { 3959 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3960 3961 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3962 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3963 3964 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3965 free_pages); 3966 } 3967 3968 #ifdef CONFIG_NUMA 3969 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3970 { 3971 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3972 node_reclaim_distance; 3973 } 3974 #else /* CONFIG_NUMA */ 3975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3976 { 3977 return true; 3978 } 3979 #endif /* CONFIG_NUMA */ 3980 3981 /* 3982 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3983 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3984 * premature use of a lower zone may cause lowmem pressure problems that 3985 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3986 * probably too small. It only makes sense to spread allocations to avoid 3987 * fragmentation between the Normal and DMA32 zones. 3988 */ 3989 static inline unsigned int 3990 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3991 { 3992 unsigned int alloc_flags; 3993 3994 /* 3995 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3996 * to save a branch. 3997 */ 3998 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3999 4000 #ifdef CONFIG_ZONE_DMA32 4001 if (!zone) 4002 return alloc_flags; 4003 4004 if (zone_idx(zone) != ZONE_NORMAL) 4005 return alloc_flags; 4006 4007 /* 4008 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4009 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4010 * on UMA that if Normal is populated then so is DMA32. 4011 */ 4012 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4013 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4014 return alloc_flags; 4015 4016 alloc_flags |= ALLOC_NOFRAGMENT; 4017 #endif /* CONFIG_ZONE_DMA32 */ 4018 return alloc_flags; 4019 } 4020 4021 /* Must be called after current_gfp_context() which can change gfp_mask */ 4022 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4023 unsigned int alloc_flags) 4024 { 4025 #ifdef CONFIG_CMA 4026 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4027 alloc_flags |= ALLOC_CMA; 4028 #endif 4029 return alloc_flags; 4030 } 4031 4032 /* 4033 * get_page_from_freelist goes through the zonelist trying to allocate 4034 * a page. 4035 */ 4036 static struct page * 4037 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4038 const struct alloc_context *ac) 4039 { 4040 struct zoneref *z; 4041 struct zone *zone; 4042 struct pglist_data *last_pgdat_dirty_limit = NULL; 4043 bool no_fallback; 4044 4045 retry: 4046 /* 4047 * Scan zonelist, looking for a zone with enough free. 4048 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4049 */ 4050 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4051 z = ac->preferred_zoneref; 4052 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4053 ac->nodemask) { 4054 struct page *page; 4055 unsigned long mark; 4056 4057 if (cpusets_enabled() && 4058 (alloc_flags & ALLOC_CPUSET) && 4059 !__cpuset_zone_allowed(zone, gfp_mask)) 4060 continue; 4061 /* 4062 * When allocating a page cache page for writing, we 4063 * want to get it from a node that is within its dirty 4064 * limit, such that no single node holds more than its 4065 * proportional share of globally allowed dirty pages. 4066 * The dirty limits take into account the node's 4067 * lowmem reserves and high watermark so that kswapd 4068 * should be able to balance it without having to 4069 * write pages from its LRU list. 4070 * 4071 * XXX: For now, allow allocations to potentially 4072 * exceed the per-node dirty limit in the slowpath 4073 * (spread_dirty_pages unset) before going into reclaim, 4074 * which is important when on a NUMA setup the allowed 4075 * nodes are together not big enough to reach the 4076 * global limit. The proper fix for these situations 4077 * will require awareness of nodes in the 4078 * dirty-throttling and the flusher threads. 4079 */ 4080 if (ac->spread_dirty_pages) { 4081 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4082 continue; 4083 4084 if (!node_dirty_ok(zone->zone_pgdat)) { 4085 last_pgdat_dirty_limit = zone->zone_pgdat; 4086 continue; 4087 } 4088 } 4089 4090 if (no_fallback && nr_online_nodes > 1 && 4091 zone != ac->preferred_zoneref->zone) { 4092 int local_nid; 4093 4094 /* 4095 * If moving to a remote node, retry but allow 4096 * fragmenting fallbacks. Locality is more important 4097 * than fragmentation avoidance. 4098 */ 4099 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4100 if (zone_to_nid(zone) != local_nid) { 4101 alloc_flags &= ~ALLOC_NOFRAGMENT; 4102 goto retry; 4103 } 4104 } 4105 4106 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4107 if (!zone_watermark_fast(zone, order, mark, 4108 ac->highest_zoneidx, alloc_flags, 4109 gfp_mask)) { 4110 int ret; 4111 4112 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4113 /* 4114 * Watermark failed for this zone, but see if we can 4115 * grow this zone if it contains deferred pages. 4116 */ 4117 if (static_branch_unlikely(&deferred_pages)) { 4118 if (_deferred_grow_zone(zone, order)) 4119 goto try_this_zone; 4120 } 4121 #endif 4122 /* Checked here to keep the fast path fast */ 4123 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4124 if (alloc_flags & ALLOC_NO_WATERMARKS) 4125 goto try_this_zone; 4126 4127 if (!node_reclaim_enabled() || 4128 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4129 continue; 4130 4131 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4132 switch (ret) { 4133 case NODE_RECLAIM_NOSCAN: 4134 /* did not scan */ 4135 continue; 4136 case NODE_RECLAIM_FULL: 4137 /* scanned but unreclaimable */ 4138 continue; 4139 default: 4140 /* did we reclaim enough */ 4141 if (zone_watermark_ok(zone, order, mark, 4142 ac->highest_zoneidx, alloc_flags)) 4143 goto try_this_zone; 4144 4145 continue; 4146 } 4147 } 4148 4149 try_this_zone: 4150 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4151 gfp_mask, alloc_flags, ac->migratetype); 4152 if (page) { 4153 prep_new_page(page, order, gfp_mask, alloc_flags); 4154 4155 /* 4156 * If this is a high-order atomic allocation then check 4157 * if the pageblock should be reserved for the future 4158 */ 4159 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4160 reserve_highatomic_pageblock(page, zone, order); 4161 4162 return page; 4163 } else { 4164 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4165 /* Try again if zone has deferred pages */ 4166 if (static_branch_unlikely(&deferred_pages)) { 4167 if (_deferred_grow_zone(zone, order)) 4168 goto try_this_zone; 4169 } 4170 #endif 4171 } 4172 } 4173 4174 /* 4175 * It's possible on a UMA machine to get through all zones that are 4176 * fragmented. If avoiding fragmentation, reset and try again. 4177 */ 4178 if (no_fallback) { 4179 alloc_flags &= ~ALLOC_NOFRAGMENT; 4180 goto retry; 4181 } 4182 4183 return NULL; 4184 } 4185 4186 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4187 { 4188 unsigned int filter = SHOW_MEM_FILTER_NODES; 4189 4190 /* 4191 * This documents exceptions given to allocations in certain 4192 * contexts that are allowed to allocate outside current's set 4193 * of allowed nodes. 4194 */ 4195 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4196 if (tsk_is_oom_victim(current) || 4197 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4198 filter &= ~SHOW_MEM_FILTER_NODES; 4199 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4200 filter &= ~SHOW_MEM_FILTER_NODES; 4201 4202 show_mem(filter, nodemask); 4203 } 4204 4205 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4206 { 4207 struct va_format vaf; 4208 va_list args; 4209 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4210 4211 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4212 return; 4213 4214 va_start(args, fmt); 4215 vaf.fmt = fmt; 4216 vaf.va = &args; 4217 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4218 current->comm, &vaf, gfp_mask, &gfp_mask, 4219 nodemask_pr_args(nodemask)); 4220 va_end(args); 4221 4222 cpuset_print_current_mems_allowed(); 4223 pr_cont("\n"); 4224 dump_stack(); 4225 warn_alloc_show_mem(gfp_mask, nodemask); 4226 } 4227 4228 static inline struct page * 4229 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4230 unsigned int alloc_flags, 4231 const struct alloc_context *ac) 4232 { 4233 struct page *page; 4234 4235 page = get_page_from_freelist(gfp_mask, order, 4236 alloc_flags|ALLOC_CPUSET, ac); 4237 /* 4238 * fallback to ignore cpuset restriction if our nodes 4239 * are depleted 4240 */ 4241 if (!page) 4242 page = get_page_from_freelist(gfp_mask, order, 4243 alloc_flags, ac); 4244 4245 return page; 4246 } 4247 4248 static inline struct page * 4249 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4250 const struct alloc_context *ac, unsigned long *did_some_progress) 4251 { 4252 struct oom_control oc = { 4253 .zonelist = ac->zonelist, 4254 .nodemask = ac->nodemask, 4255 .memcg = NULL, 4256 .gfp_mask = gfp_mask, 4257 .order = order, 4258 }; 4259 struct page *page; 4260 4261 *did_some_progress = 0; 4262 4263 /* 4264 * Acquire the oom lock. If that fails, somebody else is 4265 * making progress for us. 4266 */ 4267 if (!mutex_trylock(&oom_lock)) { 4268 *did_some_progress = 1; 4269 schedule_timeout_uninterruptible(1); 4270 return NULL; 4271 } 4272 4273 /* 4274 * Go through the zonelist yet one more time, keep very high watermark 4275 * here, this is only to catch a parallel oom killing, we must fail if 4276 * we're still under heavy pressure. But make sure that this reclaim 4277 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4278 * allocation which will never fail due to oom_lock already held. 4279 */ 4280 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4281 ~__GFP_DIRECT_RECLAIM, order, 4282 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4283 if (page) 4284 goto out; 4285 4286 /* Coredumps can quickly deplete all memory reserves */ 4287 if (current->flags & PF_DUMPCORE) 4288 goto out; 4289 /* The OOM killer will not help higher order allocs */ 4290 if (order > PAGE_ALLOC_COSTLY_ORDER) 4291 goto out; 4292 /* 4293 * We have already exhausted all our reclaim opportunities without any 4294 * success so it is time to admit defeat. We will skip the OOM killer 4295 * because it is very likely that the caller has a more reasonable 4296 * fallback than shooting a random task. 4297 * 4298 * The OOM killer may not free memory on a specific node. 4299 */ 4300 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4301 goto out; 4302 /* The OOM killer does not needlessly kill tasks for lowmem */ 4303 if (ac->highest_zoneidx < ZONE_NORMAL) 4304 goto out; 4305 if (pm_suspended_storage()) 4306 goto out; 4307 /* 4308 * XXX: GFP_NOFS allocations should rather fail than rely on 4309 * other request to make a forward progress. 4310 * We are in an unfortunate situation where out_of_memory cannot 4311 * do much for this context but let's try it to at least get 4312 * access to memory reserved if the current task is killed (see 4313 * out_of_memory). Once filesystems are ready to handle allocation 4314 * failures more gracefully we should just bail out here. 4315 */ 4316 4317 /* Exhausted what can be done so it's blame time */ 4318 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4319 *did_some_progress = 1; 4320 4321 /* 4322 * Help non-failing allocations by giving them access to memory 4323 * reserves 4324 */ 4325 if (gfp_mask & __GFP_NOFAIL) 4326 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4327 ALLOC_NO_WATERMARKS, ac); 4328 } 4329 out: 4330 mutex_unlock(&oom_lock); 4331 return page; 4332 } 4333 4334 /* 4335 * Maximum number of compaction retries with a progress before OOM 4336 * killer is consider as the only way to move forward. 4337 */ 4338 #define MAX_COMPACT_RETRIES 16 4339 4340 #ifdef CONFIG_COMPACTION 4341 /* Try memory compaction for high-order allocations before reclaim */ 4342 static struct page * 4343 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4344 unsigned int alloc_flags, const struct alloc_context *ac, 4345 enum compact_priority prio, enum compact_result *compact_result) 4346 { 4347 struct page *page = NULL; 4348 unsigned long pflags; 4349 unsigned int noreclaim_flag; 4350 4351 if (!order) 4352 return NULL; 4353 4354 psi_memstall_enter(&pflags); 4355 noreclaim_flag = memalloc_noreclaim_save(); 4356 4357 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4358 prio, &page); 4359 4360 memalloc_noreclaim_restore(noreclaim_flag); 4361 psi_memstall_leave(&pflags); 4362 4363 if (*compact_result == COMPACT_SKIPPED) 4364 return NULL; 4365 /* 4366 * At least in one zone compaction wasn't deferred or skipped, so let's 4367 * count a compaction stall 4368 */ 4369 count_vm_event(COMPACTSTALL); 4370 4371 /* Prep a captured page if available */ 4372 if (page) 4373 prep_new_page(page, order, gfp_mask, alloc_flags); 4374 4375 /* Try get a page from the freelist if available */ 4376 if (!page) 4377 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4378 4379 if (page) { 4380 struct zone *zone = page_zone(page); 4381 4382 zone->compact_blockskip_flush = false; 4383 compaction_defer_reset(zone, order, true); 4384 count_vm_event(COMPACTSUCCESS); 4385 return page; 4386 } 4387 4388 /* 4389 * It's bad if compaction run occurs and fails. The most likely reason 4390 * is that pages exist, but not enough to satisfy watermarks. 4391 */ 4392 count_vm_event(COMPACTFAIL); 4393 4394 cond_resched(); 4395 4396 return NULL; 4397 } 4398 4399 static inline bool 4400 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4401 enum compact_result compact_result, 4402 enum compact_priority *compact_priority, 4403 int *compaction_retries) 4404 { 4405 int max_retries = MAX_COMPACT_RETRIES; 4406 int min_priority; 4407 bool ret = false; 4408 int retries = *compaction_retries; 4409 enum compact_priority priority = *compact_priority; 4410 4411 if (!order) 4412 return false; 4413 4414 if (fatal_signal_pending(current)) 4415 return false; 4416 4417 if (compaction_made_progress(compact_result)) 4418 (*compaction_retries)++; 4419 4420 /* 4421 * compaction considers all the zone as desperately out of memory 4422 * so it doesn't really make much sense to retry except when the 4423 * failure could be caused by insufficient priority 4424 */ 4425 if (compaction_failed(compact_result)) 4426 goto check_priority; 4427 4428 /* 4429 * compaction was skipped because there are not enough order-0 pages 4430 * to work with, so we retry only if it looks like reclaim can help. 4431 */ 4432 if (compaction_needs_reclaim(compact_result)) { 4433 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4434 goto out; 4435 } 4436 4437 /* 4438 * make sure the compaction wasn't deferred or didn't bail out early 4439 * due to locks contention before we declare that we should give up. 4440 * But the next retry should use a higher priority if allowed, so 4441 * we don't just keep bailing out endlessly. 4442 */ 4443 if (compaction_withdrawn(compact_result)) { 4444 goto check_priority; 4445 } 4446 4447 /* 4448 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4449 * costly ones because they are de facto nofail and invoke OOM 4450 * killer to move on while costly can fail and users are ready 4451 * to cope with that. 1/4 retries is rather arbitrary but we 4452 * would need much more detailed feedback from compaction to 4453 * make a better decision. 4454 */ 4455 if (order > PAGE_ALLOC_COSTLY_ORDER) 4456 max_retries /= 4; 4457 if (*compaction_retries <= max_retries) { 4458 ret = true; 4459 goto out; 4460 } 4461 4462 /* 4463 * Make sure there are attempts at the highest priority if we exhausted 4464 * all retries or failed at the lower priorities. 4465 */ 4466 check_priority: 4467 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4468 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4469 4470 if (*compact_priority > min_priority) { 4471 (*compact_priority)--; 4472 *compaction_retries = 0; 4473 ret = true; 4474 } 4475 out: 4476 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4477 return ret; 4478 } 4479 #else 4480 static inline struct page * 4481 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4482 unsigned int alloc_flags, const struct alloc_context *ac, 4483 enum compact_priority prio, enum compact_result *compact_result) 4484 { 4485 *compact_result = COMPACT_SKIPPED; 4486 return NULL; 4487 } 4488 4489 static inline bool 4490 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4491 enum compact_result compact_result, 4492 enum compact_priority *compact_priority, 4493 int *compaction_retries) 4494 { 4495 struct zone *zone; 4496 struct zoneref *z; 4497 4498 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4499 return false; 4500 4501 /* 4502 * There are setups with compaction disabled which would prefer to loop 4503 * inside the allocator rather than hit the oom killer prematurely. 4504 * Let's give them a good hope and keep retrying while the order-0 4505 * watermarks are OK. 4506 */ 4507 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4508 ac->highest_zoneidx, ac->nodemask) { 4509 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4510 ac->highest_zoneidx, alloc_flags)) 4511 return true; 4512 } 4513 return false; 4514 } 4515 #endif /* CONFIG_COMPACTION */ 4516 4517 #ifdef CONFIG_LOCKDEP 4518 static struct lockdep_map __fs_reclaim_map = 4519 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4520 4521 static bool __need_reclaim(gfp_t gfp_mask) 4522 { 4523 /* no reclaim without waiting on it */ 4524 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4525 return false; 4526 4527 /* this guy won't enter reclaim */ 4528 if (current->flags & PF_MEMALLOC) 4529 return false; 4530 4531 if (gfp_mask & __GFP_NOLOCKDEP) 4532 return false; 4533 4534 return true; 4535 } 4536 4537 void __fs_reclaim_acquire(unsigned long ip) 4538 { 4539 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4540 } 4541 4542 void __fs_reclaim_release(unsigned long ip) 4543 { 4544 lock_release(&__fs_reclaim_map, ip); 4545 } 4546 4547 void fs_reclaim_acquire(gfp_t gfp_mask) 4548 { 4549 gfp_mask = current_gfp_context(gfp_mask); 4550 4551 if (__need_reclaim(gfp_mask)) { 4552 if (gfp_mask & __GFP_FS) 4553 __fs_reclaim_acquire(_RET_IP_); 4554 4555 #ifdef CONFIG_MMU_NOTIFIER 4556 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4557 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4558 #endif 4559 4560 } 4561 } 4562 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4563 4564 void fs_reclaim_release(gfp_t gfp_mask) 4565 { 4566 gfp_mask = current_gfp_context(gfp_mask); 4567 4568 if (__need_reclaim(gfp_mask)) { 4569 if (gfp_mask & __GFP_FS) 4570 __fs_reclaim_release(_RET_IP_); 4571 } 4572 } 4573 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4574 #endif 4575 4576 /* Perform direct synchronous page reclaim */ 4577 static unsigned long 4578 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4579 const struct alloc_context *ac) 4580 { 4581 unsigned int noreclaim_flag; 4582 unsigned long pflags, progress; 4583 4584 cond_resched(); 4585 4586 /* We now go into synchronous reclaim */ 4587 cpuset_memory_pressure_bump(); 4588 psi_memstall_enter(&pflags); 4589 fs_reclaim_acquire(gfp_mask); 4590 noreclaim_flag = memalloc_noreclaim_save(); 4591 4592 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4593 ac->nodemask); 4594 4595 memalloc_noreclaim_restore(noreclaim_flag); 4596 fs_reclaim_release(gfp_mask); 4597 psi_memstall_leave(&pflags); 4598 4599 cond_resched(); 4600 4601 return progress; 4602 } 4603 4604 /* The really slow allocator path where we enter direct reclaim */ 4605 static inline struct page * 4606 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4607 unsigned int alloc_flags, const struct alloc_context *ac, 4608 unsigned long *did_some_progress) 4609 { 4610 struct page *page = NULL; 4611 bool drained = false; 4612 4613 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4614 if (unlikely(!(*did_some_progress))) 4615 return NULL; 4616 4617 retry: 4618 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4619 4620 /* 4621 * If an allocation failed after direct reclaim, it could be because 4622 * pages are pinned on the per-cpu lists or in high alloc reserves. 4623 * Shrink them and try again 4624 */ 4625 if (!page && !drained) { 4626 unreserve_highatomic_pageblock(ac, false); 4627 drain_all_pages(NULL); 4628 drained = true; 4629 goto retry; 4630 } 4631 4632 return page; 4633 } 4634 4635 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4636 const struct alloc_context *ac) 4637 { 4638 struct zoneref *z; 4639 struct zone *zone; 4640 pg_data_t *last_pgdat = NULL; 4641 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4642 4643 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4644 ac->nodemask) { 4645 if (last_pgdat != zone->zone_pgdat) 4646 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4647 last_pgdat = zone->zone_pgdat; 4648 } 4649 } 4650 4651 static inline unsigned int 4652 gfp_to_alloc_flags(gfp_t gfp_mask) 4653 { 4654 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4655 4656 /* 4657 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4658 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4659 * to save two branches. 4660 */ 4661 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4662 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4663 4664 /* 4665 * The caller may dip into page reserves a bit more if the caller 4666 * cannot run direct reclaim, or if the caller has realtime scheduling 4667 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4668 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4669 */ 4670 alloc_flags |= (__force int) 4671 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4672 4673 if (gfp_mask & __GFP_ATOMIC) { 4674 /* 4675 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4676 * if it can't schedule. 4677 */ 4678 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4679 alloc_flags |= ALLOC_HARDER; 4680 /* 4681 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4682 * comment for __cpuset_node_allowed(). 4683 */ 4684 alloc_flags &= ~ALLOC_CPUSET; 4685 } else if (unlikely(rt_task(current)) && in_task()) 4686 alloc_flags |= ALLOC_HARDER; 4687 4688 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4689 4690 return alloc_flags; 4691 } 4692 4693 static bool oom_reserves_allowed(struct task_struct *tsk) 4694 { 4695 if (!tsk_is_oom_victim(tsk)) 4696 return false; 4697 4698 /* 4699 * !MMU doesn't have oom reaper so give access to memory reserves 4700 * only to the thread with TIF_MEMDIE set 4701 */ 4702 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4703 return false; 4704 4705 return true; 4706 } 4707 4708 /* 4709 * Distinguish requests which really need access to full memory 4710 * reserves from oom victims which can live with a portion of it 4711 */ 4712 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4713 { 4714 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4715 return 0; 4716 if (gfp_mask & __GFP_MEMALLOC) 4717 return ALLOC_NO_WATERMARKS; 4718 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4719 return ALLOC_NO_WATERMARKS; 4720 if (!in_interrupt()) { 4721 if (current->flags & PF_MEMALLOC) 4722 return ALLOC_NO_WATERMARKS; 4723 else if (oom_reserves_allowed(current)) 4724 return ALLOC_OOM; 4725 } 4726 4727 return 0; 4728 } 4729 4730 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4731 { 4732 return !!__gfp_pfmemalloc_flags(gfp_mask); 4733 } 4734 4735 /* 4736 * Checks whether it makes sense to retry the reclaim to make a forward progress 4737 * for the given allocation request. 4738 * 4739 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4740 * without success, or when we couldn't even meet the watermark if we 4741 * reclaimed all remaining pages on the LRU lists. 4742 * 4743 * Returns true if a retry is viable or false to enter the oom path. 4744 */ 4745 static inline bool 4746 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4747 struct alloc_context *ac, int alloc_flags, 4748 bool did_some_progress, int *no_progress_loops) 4749 { 4750 struct zone *zone; 4751 struct zoneref *z; 4752 bool ret = false; 4753 4754 /* 4755 * Costly allocations might have made a progress but this doesn't mean 4756 * their order will become available due to high fragmentation so 4757 * always increment the no progress counter for them 4758 */ 4759 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4760 *no_progress_loops = 0; 4761 else 4762 (*no_progress_loops)++; 4763 4764 /* 4765 * Make sure we converge to OOM if we cannot make any progress 4766 * several times in the row. 4767 */ 4768 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4769 /* Before OOM, exhaust highatomic_reserve */ 4770 return unreserve_highatomic_pageblock(ac, true); 4771 } 4772 4773 /* 4774 * Keep reclaiming pages while there is a chance this will lead 4775 * somewhere. If none of the target zones can satisfy our allocation 4776 * request even if all reclaimable pages are considered then we are 4777 * screwed and have to go OOM. 4778 */ 4779 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4780 ac->highest_zoneidx, ac->nodemask) { 4781 unsigned long available; 4782 unsigned long reclaimable; 4783 unsigned long min_wmark = min_wmark_pages(zone); 4784 bool wmark; 4785 4786 available = reclaimable = zone_reclaimable_pages(zone); 4787 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4788 4789 /* 4790 * Would the allocation succeed if we reclaimed all 4791 * reclaimable pages? 4792 */ 4793 wmark = __zone_watermark_ok(zone, order, min_wmark, 4794 ac->highest_zoneidx, alloc_flags, available); 4795 trace_reclaim_retry_zone(z, order, reclaimable, 4796 available, min_wmark, *no_progress_loops, wmark); 4797 if (wmark) { 4798 /* 4799 * If we didn't make any progress and have a lot of 4800 * dirty + writeback pages then we should wait for 4801 * an IO to complete to slow down the reclaim and 4802 * prevent from pre mature OOM 4803 */ 4804 if (!did_some_progress) { 4805 unsigned long write_pending; 4806 4807 write_pending = zone_page_state_snapshot(zone, 4808 NR_ZONE_WRITE_PENDING); 4809 4810 if (2 * write_pending > reclaimable) { 4811 congestion_wait(BLK_RW_ASYNC, HZ/10); 4812 return true; 4813 } 4814 } 4815 4816 ret = true; 4817 goto out; 4818 } 4819 } 4820 4821 out: 4822 /* 4823 * Memory allocation/reclaim might be called from a WQ context and the 4824 * current implementation of the WQ concurrency control doesn't 4825 * recognize that a particular WQ is congested if the worker thread is 4826 * looping without ever sleeping. Therefore we have to do a short sleep 4827 * here rather than calling cond_resched(). 4828 */ 4829 if (current->flags & PF_WQ_WORKER) 4830 schedule_timeout_uninterruptible(1); 4831 else 4832 cond_resched(); 4833 return ret; 4834 } 4835 4836 static inline bool 4837 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4838 { 4839 /* 4840 * It's possible that cpuset's mems_allowed and the nodemask from 4841 * mempolicy don't intersect. This should be normally dealt with by 4842 * policy_nodemask(), but it's possible to race with cpuset update in 4843 * such a way the check therein was true, and then it became false 4844 * before we got our cpuset_mems_cookie here. 4845 * This assumes that for all allocations, ac->nodemask can come only 4846 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4847 * when it does not intersect with the cpuset restrictions) or the 4848 * caller can deal with a violated nodemask. 4849 */ 4850 if (cpusets_enabled() && ac->nodemask && 4851 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4852 ac->nodemask = NULL; 4853 return true; 4854 } 4855 4856 /* 4857 * When updating a task's mems_allowed or mempolicy nodemask, it is 4858 * possible to race with parallel threads in such a way that our 4859 * allocation can fail while the mask is being updated. If we are about 4860 * to fail, check if the cpuset changed during allocation and if so, 4861 * retry. 4862 */ 4863 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4864 return true; 4865 4866 return false; 4867 } 4868 4869 static inline struct page * 4870 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4871 struct alloc_context *ac) 4872 { 4873 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4874 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4875 struct page *page = NULL; 4876 unsigned int alloc_flags; 4877 unsigned long did_some_progress; 4878 enum compact_priority compact_priority; 4879 enum compact_result compact_result; 4880 int compaction_retries; 4881 int no_progress_loops; 4882 unsigned int cpuset_mems_cookie; 4883 int reserve_flags; 4884 4885 /* 4886 * We also sanity check to catch abuse of atomic reserves being used by 4887 * callers that are not in atomic context. 4888 */ 4889 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4890 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4891 gfp_mask &= ~__GFP_ATOMIC; 4892 4893 retry_cpuset: 4894 compaction_retries = 0; 4895 no_progress_loops = 0; 4896 compact_priority = DEF_COMPACT_PRIORITY; 4897 cpuset_mems_cookie = read_mems_allowed_begin(); 4898 4899 /* 4900 * The fast path uses conservative alloc_flags to succeed only until 4901 * kswapd needs to be woken up, and to avoid the cost of setting up 4902 * alloc_flags precisely. So we do that now. 4903 */ 4904 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4905 4906 /* 4907 * We need to recalculate the starting point for the zonelist iterator 4908 * because we might have used different nodemask in the fast path, or 4909 * there was a cpuset modification and we are retrying - otherwise we 4910 * could end up iterating over non-eligible zones endlessly. 4911 */ 4912 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4913 ac->highest_zoneidx, ac->nodemask); 4914 if (!ac->preferred_zoneref->zone) 4915 goto nopage; 4916 4917 if (alloc_flags & ALLOC_KSWAPD) 4918 wake_all_kswapds(order, gfp_mask, ac); 4919 4920 /* 4921 * The adjusted alloc_flags might result in immediate success, so try 4922 * that first 4923 */ 4924 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4925 if (page) 4926 goto got_pg; 4927 4928 /* 4929 * For costly allocations, try direct compaction first, as it's likely 4930 * that we have enough base pages and don't need to reclaim. For non- 4931 * movable high-order allocations, do that as well, as compaction will 4932 * try prevent permanent fragmentation by migrating from blocks of the 4933 * same migratetype. 4934 * Don't try this for allocations that are allowed to ignore 4935 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4936 */ 4937 if (can_direct_reclaim && 4938 (costly_order || 4939 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4940 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4941 page = __alloc_pages_direct_compact(gfp_mask, order, 4942 alloc_flags, ac, 4943 INIT_COMPACT_PRIORITY, 4944 &compact_result); 4945 if (page) 4946 goto got_pg; 4947 4948 /* 4949 * Checks for costly allocations with __GFP_NORETRY, which 4950 * includes some THP page fault allocations 4951 */ 4952 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4953 /* 4954 * If allocating entire pageblock(s) and compaction 4955 * failed because all zones are below low watermarks 4956 * or is prohibited because it recently failed at this 4957 * order, fail immediately unless the allocator has 4958 * requested compaction and reclaim retry. 4959 * 4960 * Reclaim is 4961 * - potentially very expensive because zones are far 4962 * below their low watermarks or this is part of very 4963 * bursty high order allocations, 4964 * - not guaranteed to help because isolate_freepages() 4965 * may not iterate over freed pages as part of its 4966 * linear scan, and 4967 * - unlikely to make entire pageblocks free on its 4968 * own. 4969 */ 4970 if (compact_result == COMPACT_SKIPPED || 4971 compact_result == COMPACT_DEFERRED) 4972 goto nopage; 4973 4974 /* 4975 * Looks like reclaim/compaction is worth trying, but 4976 * sync compaction could be very expensive, so keep 4977 * using async compaction. 4978 */ 4979 compact_priority = INIT_COMPACT_PRIORITY; 4980 } 4981 } 4982 4983 retry: 4984 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4985 if (alloc_flags & ALLOC_KSWAPD) 4986 wake_all_kswapds(order, gfp_mask, ac); 4987 4988 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4989 if (reserve_flags) 4990 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 4991 4992 /* 4993 * Reset the nodemask and zonelist iterators if memory policies can be 4994 * ignored. These allocations are high priority and system rather than 4995 * user oriented. 4996 */ 4997 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4998 ac->nodemask = NULL; 4999 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5000 ac->highest_zoneidx, ac->nodemask); 5001 } 5002 5003 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5004 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5005 if (page) 5006 goto got_pg; 5007 5008 /* Caller is not willing to reclaim, we can't balance anything */ 5009 if (!can_direct_reclaim) 5010 goto nopage; 5011 5012 /* Avoid recursion of direct reclaim */ 5013 if (current->flags & PF_MEMALLOC) 5014 goto nopage; 5015 5016 /* Try direct reclaim and then allocating */ 5017 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5018 &did_some_progress); 5019 if (page) 5020 goto got_pg; 5021 5022 /* Try direct compaction and then allocating */ 5023 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5024 compact_priority, &compact_result); 5025 if (page) 5026 goto got_pg; 5027 5028 /* Do not loop if specifically requested */ 5029 if (gfp_mask & __GFP_NORETRY) 5030 goto nopage; 5031 5032 /* 5033 * Do not retry costly high order allocations unless they are 5034 * __GFP_RETRY_MAYFAIL 5035 */ 5036 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5037 goto nopage; 5038 5039 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5040 did_some_progress > 0, &no_progress_loops)) 5041 goto retry; 5042 5043 /* 5044 * It doesn't make any sense to retry for the compaction if the order-0 5045 * reclaim is not able to make any progress because the current 5046 * implementation of the compaction depends on the sufficient amount 5047 * of free memory (see __compaction_suitable) 5048 */ 5049 if (did_some_progress > 0 && 5050 should_compact_retry(ac, order, alloc_flags, 5051 compact_result, &compact_priority, 5052 &compaction_retries)) 5053 goto retry; 5054 5055 5056 /* Deal with possible cpuset update races before we start OOM killing */ 5057 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5058 goto retry_cpuset; 5059 5060 /* Reclaim has failed us, start killing things */ 5061 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5062 if (page) 5063 goto got_pg; 5064 5065 /* Avoid allocations with no watermarks from looping endlessly */ 5066 if (tsk_is_oom_victim(current) && 5067 (alloc_flags & ALLOC_OOM || 5068 (gfp_mask & __GFP_NOMEMALLOC))) 5069 goto nopage; 5070 5071 /* Retry as long as the OOM killer is making progress */ 5072 if (did_some_progress) { 5073 no_progress_loops = 0; 5074 goto retry; 5075 } 5076 5077 nopage: 5078 /* Deal with possible cpuset update races before we fail */ 5079 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5080 goto retry_cpuset; 5081 5082 /* 5083 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5084 * we always retry 5085 */ 5086 if (gfp_mask & __GFP_NOFAIL) { 5087 /* 5088 * All existing users of the __GFP_NOFAIL are blockable, so warn 5089 * of any new users that actually require GFP_NOWAIT 5090 */ 5091 if (WARN_ON_ONCE(!can_direct_reclaim)) 5092 goto fail; 5093 5094 /* 5095 * PF_MEMALLOC request from this context is rather bizarre 5096 * because we cannot reclaim anything and only can loop waiting 5097 * for somebody to do a work for us 5098 */ 5099 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5100 5101 /* 5102 * non failing costly orders are a hard requirement which we 5103 * are not prepared for much so let's warn about these users 5104 * so that we can identify them and convert them to something 5105 * else. 5106 */ 5107 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5108 5109 /* 5110 * Help non-failing allocations by giving them access to memory 5111 * reserves but do not use ALLOC_NO_WATERMARKS because this 5112 * could deplete whole memory reserves which would just make 5113 * the situation worse 5114 */ 5115 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5116 if (page) 5117 goto got_pg; 5118 5119 cond_resched(); 5120 goto retry; 5121 } 5122 fail: 5123 warn_alloc(gfp_mask, ac->nodemask, 5124 "page allocation failure: order:%u", order); 5125 got_pg: 5126 return page; 5127 } 5128 5129 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5130 int preferred_nid, nodemask_t *nodemask, 5131 struct alloc_context *ac, gfp_t *alloc_gfp, 5132 unsigned int *alloc_flags) 5133 { 5134 ac->highest_zoneidx = gfp_zone(gfp_mask); 5135 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5136 ac->nodemask = nodemask; 5137 ac->migratetype = gfp_migratetype(gfp_mask); 5138 5139 if (cpusets_enabled()) { 5140 *alloc_gfp |= __GFP_HARDWALL; 5141 /* 5142 * When we are in the interrupt context, it is irrelevant 5143 * to the current task context. It means that any node ok. 5144 */ 5145 if (in_task() && !ac->nodemask) 5146 ac->nodemask = &cpuset_current_mems_allowed; 5147 else 5148 *alloc_flags |= ALLOC_CPUSET; 5149 } 5150 5151 fs_reclaim_acquire(gfp_mask); 5152 fs_reclaim_release(gfp_mask); 5153 5154 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5155 5156 if (should_fail_alloc_page(gfp_mask, order)) 5157 return false; 5158 5159 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5160 5161 /* Dirty zone balancing only done in the fast path */ 5162 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5163 5164 /* 5165 * The preferred zone is used for statistics but crucially it is 5166 * also used as the starting point for the zonelist iterator. It 5167 * may get reset for allocations that ignore memory policies. 5168 */ 5169 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5170 ac->highest_zoneidx, ac->nodemask); 5171 5172 return true; 5173 } 5174 5175 /* 5176 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5177 * @gfp: GFP flags for the allocation 5178 * @preferred_nid: The preferred NUMA node ID to allocate from 5179 * @nodemask: Set of nodes to allocate from, may be NULL 5180 * @nr_pages: The number of pages desired on the list or array 5181 * @page_list: Optional list to store the allocated pages 5182 * @page_array: Optional array to store the pages 5183 * 5184 * This is a batched version of the page allocator that attempts to 5185 * allocate nr_pages quickly. Pages are added to page_list if page_list 5186 * is not NULL, otherwise it is assumed that the page_array is valid. 5187 * 5188 * For lists, nr_pages is the number of pages that should be allocated. 5189 * 5190 * For arrays, only NULL elements are populated with pages and nr_pages 5191 * is the maximum number of pages that will be stored in the array. 5192 * 5193 * Returns the number of pages on the list or array. 5194 */ 5195 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5196 nodemask_t *nodemask, int nr_pages, 5197 struct list_head *page_list, 5198 struct page **page_array) 5199 { 5200 struct page *page; 5201 unsigned long flags; 5202 struct zone *zone; 5203 struct zoneref *z; 5204 struct per_cpu_pages *pcp; 5205 struct list_head *pcp_list; 5206 struct alloc_context ac; 5207 gfp_t alloc_gfp; 5208 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5209 int nr_populated = 0, nr_account = 0; 5210 5211 /* 5212 * Skip populated array elements to determine if any pages need 5213 * to be allocated before disabling IRQs. 5214 */ 5215 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5216 nr_populated++; 5217 5218 /* No pages requested? */ 5219 if (unlikely(nr_pages <= 0)) 5220 goto out; 5221 5222 /* Already populated array? */ 5223 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5224 goto out; 5225 5226 /* Use the single page allocator for one page. */ 5227 if (nr_pages - nr_populated == 1) 5228 goto failed; 5229 5230 #ifdef CONFIG_PAGE_OWNER 5231 /* 5232 * PAGE_OWNER may recurse into the allocator to allocate space to 5233 * save the stack with pagesets.lock held. Releasing/reacquiring 5234 * removes much of the performance benefit of bulk allocation so 5235 * force the caller to allocate one page at a time as it'll have 5236 * similar performance to added complexity to the bulk allocator. 5237 */ 5238 if (static_branch_unlikely(&page_owner_inited)) 5239 goto failed; 5240 #endif 5241 5242 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5243 gfp &= gfp_allowed_mask; 5244 alloc_gfp = gfp; 5245 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5246 goto out; 5247 gfp = alloc_gfp; 5248 5249 /* Find an allowed local zone that meets the low watermark. */ 5250 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5251 unsigned long mark; 5252 5253 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5254 !__cpuset_zone_allowed(zone, gfp)) { 5255 continue; 5256 } 5257 5258 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5259 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5260 goto failed; 5261 } 5262 5263 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5264 if (zone_watermark_fast(zone, 0, mark, 5265 zonelist_zone_idx(ac.preferred_zoneref), 5266 alloc_flags, gfp)) { 5267 break; 5268 } 5269 } 5270 5271 /* 5272 * If there are no allowed local zones that meets the watermarks then 5273 * try to allocate a single page and reclaim if necessary. 5274 */ 5275 if (unlikely(!zone)) 5276 goto failed; 5277 5278 /* Attempt the batch allocation */ 5279 local_lock_irqsave(&pagesets.lock, flags); 5280 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5281 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5282 5283 while (nr_populated < nr_pages) { 5284 5285 /* Skip existing pages */ 5286 if (page_array && page_array[nr_populated]) { 5287 nr_populated++; 5288 continue; 5289 } 5290 5291 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5292 pcp, pcp_list); 5293 if (unlikely(!page)) { 5294 /* Try and get at least one page */ 5295 if (!nr_populated) 5296 goto failed_irq; 5297 break; 5298 } 5299 nr_account++; 5300 5301 prep_new_page(page, 0, gfp, 0); 5302 if (page_list) 5303 list_add(&page->lru, page_list); 5304 else 5305 page_array[nr_populated] = page; 5306 nr_populated++; 5307 } 5308 5309 local_unlock_irqrestore(&pagesets.lock, flags); 5310 5311 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5312 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5313 5314 out: 5315 return nr_populated; 5316 5317 failed_irq: 5318 local_unlock_irqrestore(&pagesets.lock, flags); 5319 5320 failed: 5321 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5322 if (page) { 5323 if (page_list) 5324 list_add(&page->lru, page_list); 5325 else 5326 page_array[nr_populated] = page; 5327 nr_populated++; 5328 } 5329 5330 goto out; 5331 } 5332 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5333 5334 /* 5335 * This is the 'heart' of the zoned buddy allocator. 5336 */ 5337 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5338 nodemask_t *nodemask) 5339 { 5340 struct page *page; 5341 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5342 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5343 struct alloc_context ac = { }; 5344 5345 /* 5346 * There are several places where we assume that the order value is sane 5347 * so bail out early if the request is out of bound. 5348 */ 5349 if (unlikely(order >= MAX_ORDER)) { 5350 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5351 return NULL; 5352 } 5353 5354 gfp &= gfp_allowed_mask; 5355 /* 5356 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5357 * resp. GFP_NOIO which has to be inherited for all allocation requests 5358 * from a particular context which has been marked by 5359 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5360 * movable zones are not used during allocation. 5361 */ 5362 gfp = current_gfp_context(gfp); 5363 alloc_gfp = gfp; 5364 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5365 &alloc_gfp, &alloc_flags)) 5366 return NULL; 5367 5368 /* 5369 * Forbid the first pass from falling back to types that fragment 5370 * memory until all local zones are considered. 5371 */ 5372 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5373 5374 /* First allocation attempt */ 5375 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5376 if (likely(page)) 5377 goto out; 5378 5379 alloc_gfp = gfp; 5380 ac.spread_dirty_pages = false; 5381 5382 /* 5383 * Restore the original nodemask if it was potentially replaced with 5384 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5385 */ 5386 ac.nodemask = nodemask; 5387 5388 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5389 5390 out: 5391 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5392 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5393 __free_pages(page, order); 5394 page = NULL; 5395 } 5396 5397 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5398 5399 return page; 5400 } 5401 EXPORT_SYMBOL(__alloc_pages); 5402 5403 /* 5404 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5405 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5406 * you need to access high mem. 5407 */ 5408 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5409 { 5410 struct page *page; 5411 5412 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5413 if (!page) 5414 return 0; 5415 return (unsigned long) page_address(page); 5416 } 5417 EXPORT_SYMBOL(__get_free_pages); 5418 5419 unsigned long get_zeroed_page(gfp_t gfp_mask) 5420 { 5421 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5422 } 5423 EXPORT_SYMBOL(get_zeroed_page); 5424 5425 /** 5426 * __free_pages - Free pages allocated with alloc_pages(). 5427 * @page: The page pointer returned from alloc_pages(). 5428 * @order: The order of the allocation. 5429 * 5430 * This function can free multi-page allocations that are not compound 5431 * pages. It does not check that the @order passed in matches that of 5432 * the allocation, so it is easy to leak memory. Freeing more memory 5433 * than was allocated will probably emit a warning. 5434 * 5435 * If the last reference to this page is speculative, it will be released 5436 * by put_page() which only frees the first page of a non-compound 5437 * allocation. To prevent the remaining pages from being leaked, we free 5438 * the subsequent pages here. If you want to use the page's reference 5439 * count to decide when to free the allocation, you should allocate a 5440 * compound page, and use put_page() instead of __free_pages(). 5441 * 5442 * Context: May be called in interrupt context or while holding a normal 5443 * spinlock, but not in NMI context or while holding a raw spinlock. 5444 */ 5445 void __free_pages(struct page *page, unsigned int order) 5446 { 5447 if (put_page_testzero(page)) 5448 free_the_page(page, order); 5449 else if (!PageHead(page)) 5450 while (order-- > 0) 5451 free_the_page(page + (1 << order), order); 5452 } 5453 EXPORT_SYMBOL(__free_pages); 5454 5455 void free_pages(unsigned long addr, unsigned int order) 5456 { 5457 if (addr != 0) { 5458 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5459 __free_pages(virt_to_page((void *)addr), order); 5460 } 5461 } 5462 5463 EXPORT_SYMBOL(free_pages); 5464 5465 /* 5466 * Page Fragment: 5467 * An arbitrary-length arbitrary-offset area of memory which resides 5468 * within a 0 or higher order page. Multiple fragments within that page 5469 * are individually refcounted, in the page's reference counter. 5470 * 5471 * The page_frag functions below provide a simple allocation framework for 5472 * page fragments. This is used by the network stack and network device 5473 * drivers to provide a backing region of memory for use as either an 5474 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5475 */ 5476 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5477 gfp_t gfp_mask) 5478 { 5479 struct page *page = NULL; 5480 gfp_t gfp = gfp_mask; 5481 5482 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5483 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5484 __GFP_NOMEMALLOC; 5485 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5486 PAGE_FRAG_CACHE_MAX_ORDER); 5487 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5488 #endif 5489 if (unlikely(!page)) 5490 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5491 5492 nc->va = page ? page_address(page) : NULL; 5493 5494 return page; 5495 } 5496 5497 void __page_frag_cache_drain(struct page *page, unsigned int count) 5498 { 5499 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5500 5501 if (page_ref_sub_and_test(page, count)) 5502 free_the_page(page, compound_order(page)); 5503 } 5504 EXPORT_SYMBOL(__page_frag_cache_drain); 5505 5506 void *page_frag_alloc_align(struct page_frag_cache *nc, 5507 unsigned int fragsz, gfp_t gfp_mask, 5508 unsigned int align_mask) 5509 { 5510 unsigned int size = PAGE_SIZE; 5511 struct page *page; 5512 int offset; 5513 5514 if (unlikely(!nc->va)) { 5515 refill: 5516 page = __page_frag_cache_refill(nc, gfp_mask); 5517 if (!page) 5518 return NULL; 5519 5520 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5521 /* if size can vary use size else just use PAGE_SIZE */ 5522 size = nc->size; 5523 #endif 5524 /* Even if we own the page, we do not use atomic_set(). 5525 * This would break get_page_unless_zero() users. 5526 */ 5527 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5528 5529 /* reset page count bias and offset to start of new frag */ 5530 nc->pfmemalloc = page_is_pfmemalloc(page); 5531 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5532 nc->offset = size; 5533 } 5534 5535 offset = nc->offset - fragsz; 5536 if (unlikely(offset < 0)) { 5537 page = virt_to_page(nc->va); 5538 5539 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5540 goto refill; 5541 5542 if (unlikely(nc->pfmemalloc)) { 5543 free_the_page(page, compound_order(page)); 5544 goto refill; 5545 } 5546 5547 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5548 /* if size can vary use size else just use PAGE_SIZE */ 5549 size = nc->size; 5550 #endif 5551 /* OK, page count is 0, we can safely set it */ 5552 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5553 5554 /* reset page count bias and offset to start of new frag */ 5555 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5556 offset = size - fragsz; 5557 } 5558 5559 nc->pagecnt_bias--; 5560 offset &= align_mask; 5561 nc->offset = offset; 5562 5563 return nc->va + offset; 5564 } 5565 EXPORT_SYMBOL(page_frag_alloc_align); 5566 5567 /* 5568 * Frees a page fragment allocated out of either a compound or order 0 page. 5569 */ 5570 void page_frag_free(void *addr) 5571 { 5572 struct page *page = virt_to_head_page(addr); 5573 5574 if (unlikely(put_page_testzero(page))) 5575 free_the_page(page, compound_order(page)); 5576 } 5577 EXPORT_SYMBOL(page_frag_free); 5578 5579 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5580 size_t size) 5581 { 5582 if (addr) { 5583 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5584 unsigned long used = addr + PAGE_ALIGN(size); 5585 5586 split_page(virt_to_page((void *)addr), order); 5587 while (used < alloc_end) { 5588 free_page(used); 5589 used += PAGE_SIZE; 5590 } 5591 } 5592 return (void *)addr; 5593 } 5594 5595 /** 5596 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5597 * @size: the number of bytes to allocate 5598 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5599 * 5600 * This function is similar to alloc_pages(), except that it allocates the 5601 * minimum number of pages to satisfy the request. alloc_pages() can only 5602 * allocate memory in power-of-two pages. 5603 * 5604 * This function is also limited by MAX_ORDER. 5605 * 5606 * Memory allocated by this function must be released by free_pages_exact(). 5607 * 5608 * Return: pointer to the allocated area or %NULL in case of error. 5609 */ 5610 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5611 { 5612 unsigned int order = get_order(size); 5613 unsigned long addr; 5614 5615 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5616 gfp_mask &= ~__GFP_COMP; 5617 5618 addr = __get_free_pages(gfp_mask, order); 5619 return make_alloc_exact(addr, order, size); 5620 } 5621 EXPORT_SYMBOL(alloc_pages_exact); 5622 5623 /** 5624 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5625 * pages on a node. 5626 * @nid: the preferred node ID where memory should be allocated 5627 * @size: the number of bytes to allocate 5628 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5629 * 5630 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5631 * back. 5632 * 5633 * Return: pointer to the allocated area or %NULL in case of error. 5634 */ 5635 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5636 { 5637 unsigned int order = get_order(size); 5638 struct page *p; 5639 5640 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5641 gfp_mask &= ~__GFP_COMP; 5642 5643 p = alloc_pages_node(nid, gfp_mask, order); 5644 if (!p) 5645 return NULL; 5646 return make_alloc_exact((unsigned long)page_address(p), order, size); 5647 } 5648 5649 /** 5650 * free_pages_exact - release memory allocated via alloc_pages_exact() 5651 * @virt: the value returned by alloc_pages_exact. 5652 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5653 * 5654 * Release the memory allocated by a previous call to alloc_pages_exact. 5655 */ 5656 void free_pages_exact(void *virt, size_t size) 5657 { 5658 unsigned long addr = (unsigned long)virt; 5659 unsigned long end = addr + PAGE_ALIGN(size); 5660 5661 while (addr < end) { 5662 free_page(addr); 5663 addr += PAGE_SIZE; 5664 } 5665 } 5666 EXPORT_SYMBOL(free_pages_exact); 5667 5668 /** 5669 * nr_free_zone_pages - count number of pages beyond high watermark 5670 * @offset: The zone index of the highest zone 5671 * 5672 * nr_free_zone_pages() counts the number of pages which are beyond the 5673 * high watermark within all zones at or below a given zone index. For each 5674 * zone, the number of pages is calculated as: 5675 * 5676 * nr_free_zone_pages = managed_pages - high_pages 5677 * 5678 * Return: number of pages beyond high watermark. 5679 */ 5680 static unsigned long nr_free_zone_pages(int offset) 5681 { 5682 struct zoneref *z; 5683 struct zone *zone; 5684 5685 /* Just pick one node, since fallback list is circular */ 5686 unsigned long sum = 0; 5687 5688 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5689 5690 for_each_zone_zonelist(zone, z, zonelist, offset) { 5691 unsigned long size = zone_managed_pages(zone); 5692 unsigned long high = high_wmark_pages(zone); 5693 if (size > high) 5694 sum += size - high; 5695 } 5696 5697 return sum; 5698 } 5699 5700 /** 5701 * nr_free_buffer_pages - count number of pages beyond high watermark 5702 * 5703 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5704 * watermark within ZONE_DMA and ZONE_NORMAL. 5705 * 5706 * Return: number of pages beyond high watermark within ZONE_DMA and 5707 * ZONE_NORMAL. 5708 */ 5709 unsigned long nr_free_buffer_pages(void) 5710 { 5711 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5712 } 5713 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5714 5715 static inline void show_node(struct zone *zone) 5716 { 5717 if (IS_ENABLED(CONFIG_NUMA)) 5718 printk("Node %d ", zone_to_nid(zone)); 5719 } 5720 5721 long si_mem_available(void) 5722 { 5723 long available; 5724 unsigned long pagecache; 5725 unsigned long wmark_low = 0; 5726 unsigned long pages[NR_LRU_LISTS]; 5727 unsigned long reclaimable; 5728 struct zone *zone; 5729 int lru; 5730 5731 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5732 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5733 5734 for_each_zone(zone) 5735 wmark_low += low_wmark_pages(zone); 5736 5737 /* 5738 * Estimate the amount of memory available for userspace allocations, 5739 * without causing swapping. 5740 */ 5741 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5742 5743 /* 5744 * Not all the page cache can be freed, otherwise the system will 5745 * start swapping. Assume at least half of the page cache, or the 5746 * low watermark worth of cache, needs to stay. 5747 */ 5748 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5749 pagecache -= min(pagecache / 2, wmark_low); 5750 available += pagecache; 5751 5752 /* 5753 * Part of the reclaimable slab and other kernel memory consists of 5754 * items that are in use, and cannot be freed. Cap this estimate at the 5755 * low watermark. 5756 */ 5757 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5758 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5759 available += reclaimable - min(reclaimable / 2, wmark_low); 5760 5761 if (available < 0) 5762 available = 0; 5763 return available; 5764 } 5765 EXPORT_SYMBOL_GPL(si_mem_available); 5766 5767 void si_meminfo(struct sysinfo *val) 5768 { 5769 val->totalram = totalram_pages(); 5770 val->sharedram = global_node_page_state(NR_SHMEM); 5771 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5772 val->bufferram = nr_blockdev_pages(); 5773 val->totalhigh = totalhigh_pages(); 5774 val->freehigh = nr_free_highpages(); 5775 val->mem_unit = PAGE_SIZE; 5776 } 5777 5778 EXPORT_SYMBOL(si_meminfo); 5779 5780 #ifdef CONFIG_NUMA 5781 void si_meminfo_node(struct sysinfo *val, int nid) 5782 { 5783 int zone_type; /* needs to be signed */ 5784 unsigned long managed_pages = 0; 5785 unsigned long managed_highpages = 0; 5786 unsigned long free_highpages = 0; 5787 pg_data_t *pgdat = NODE_DATA(nid); 5788 5789 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5790 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5791 val->totalram = managed_pages; 5792 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5793 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5794 #ifdef CONFIG_HIGHMEM 5795 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5796 struct zone *zone = &pgdat->node_zones[zone_type]; 5797 5798 if (is_highmem(zone)) { 5799 managed_highpages += zone_managed_pages(zone); 5800 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5801 } 5802 } 5803 val->totalhigh = managed_highpages; 5804 val->freehigh = free_highpages; 5805 #else 5806 val->totalhigh = managed_highpages; 5807 val->freehigh = free_highpages; 5808 #endif 5809 val->mem_unit = PAGE_SIZE; 5810 } 5811 #endif 5812 5813 /* 5814 * Determine whether the node should be displayed or not, depending on whether 5815 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5816 */ 5817 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5818 { 5819 if (!(flags & SHOW_MEM_FILTER_NODES)) 5820 return false; 5821 5822 /* 5823 * no node mask - aka implicit memory numa policy. Do not bother with 5824 * the synchronization - read_mems_allowed_begin - because we do not 5825 * have to be precise here. 5826 */ 5827 if (!nodemask) 5828 nodemask = &cpuset_current_mems_allowed; 5829 5830 return !node_isset(nid, *nodemask); 5831 } 5832 5833 #define K(x) ((x) << (PAGE_SHIFT-10)) 5834 5835 static void show_migration_types(unsigned char type) 5836 { 5837 static const char types[MIGRATE_TYPES] = { 5838 [MIGRATE_UNMOVABLE] = 'U', 5839 [MIGRATE_MOVABLE] = 'M', 5840 [MIGRATE_RECLAIMABLE] = 'E', 5841 [MIGRATE_HIGHATOMIC] = 'H', 5842 #ifdef CONFIG_CMA 5843 [MIGRATE_CMA] = 'C', 5844 #endif 5845 #ifdef CONFIG_MEMORY_ISOLATION 5846 [MIGRATE_ISOLATE] = 'I', 5847 #endif 5848 }; 5849 char tmp[MIGRATE_TYPES + 1]; 5850 char *p = tmp; 5851 int i; 5852 5853 for (i = 0; i < MIGRATE_TYPES; i++) { 5854 if (type & (1 << i)) 5855 *p++ = types[i]; 5856 } 5857 5858 *p = '\0'; 5859 printk(KERN_CONT "(%s) ", tmp); 5860 } 5861 5862 /* 5863 * Show free area list (used inside shift_scroll-lock stuff) 5864 * We also calculate the percentage fragmentation. We do this by counting the 5865 * memory on each free list with the exception of the first item on the list. 5866 * 5867 * Bits in @filter: 5868 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5869 * cpuset. 5870 */ 5871 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5872 { 5873 unsigned long free_pcp = 0; 5874 int cpu; 5875 struct zone *zone; 5876 pg_data_t *pgdat; 5877 5878 for_each_populated_zone(zone) { 5879 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5880 continue; 5881 5882 for_each_online_cpu(cpu) 5883 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5884 } 5885 5886 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5887 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5888 " unevictable:%lu dirty:%lu writeback:%lu\n" 5889 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5890 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5891 " kernel_misc_reclaimable:%lu\n" 5892 " free:%lu free_pcp:%lu free_cma:%lu\n", 5893 global_node_page_state(NR_ACTIVE_ANON), 5894 global_node_page_state(NR_INACTIVE_ANON), 5895 global_node_page_state(NR_ISOLATED_ANON), 5896 global_node_page_state(NR_ACTIVE_FILE), 5897 global_node_page_state(NR_INACTIVE_FILE), 5898 global_node_page_state(NR_ISOLATED_FILE), 5899 global_node_page_state(NR_UNEVICTABLE), 5900 global_node_page_state(NR_FILE_DIRTY), 5901 global_node_page_state(NR_WRITEBACK), 5902 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5903 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5904 global_node_page_state(NR_FILE_MAPPED), 5905 global_node_page_state(NR_SHMEM), 5906 global_node_page_state(NR_PAGETABLE), 5907 global_zone_page_state(NR_BOUNCE), 5908 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5909 global_zone_page_state(NR_FREE_PAGES), 5910 free_pcp, 5911 global_zone_page_state(NR_FREE_CMA_PAGES)); 5912 5913 for_each_online_pgdat(pgdat) { 5914 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5915 continue; 5916 5917 printk("Node %d" 5918 " active_anon:%lukB" 5919 " inactive_anon:%lukB" 5920 " active_file:%lukB" 5921 " inactive_file:%lukB" 5922 " unevictable:%lukB" 5923 " isolated(anon):%lukB" 5924 " isolated(file):%lukB" 5925 " mapped:%lukB" 5926 " dirty:%lukB" 5927 " writeback:%lukB" 5928 " shmem:%lukB" 5929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5930 " shmem_thp: %lukB" 5931 " shmem_pmdmapped: %lukB" 5932 " anon_thp: %lukB" 5933 #endif 5934 " writeback_tmp:%lukB" 5935 " kernel_stack:%lukB" 5936 #ifdef CONFIG_SHADOW_CALL_STACK 5937 " shadow_call_stack:%lukB" 5938 #endif 5939 " pagetables:%lukB" 5940 " all_unreclaimable? %s" 5941 "\n", 5942 pgdat->node_id, 5943 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5944 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5945 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5946 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5947 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5948 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5949 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5950 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5951 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5952 K(node_page_state(pgdat, NR_WRITEBACK)), 5953 K(node_page_state(pgdat, NR_SHMEM)), 5954 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5955 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5956 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5957 K(node_page_state(pgdat, NR_ANON_THPS)), 5958 #endif 5959 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5960 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5961 #ifdef CONFIG_SHADOW_CALL_STACK 5962 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5963 #endif 5964 K(node_page_state(pgdat, NR_PAGETABLE)), 5965 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5966 "yes" : "no"); 5967 } 5968 5969 for_each_populated_zone(zone) { 5970 int i; 5971 5972 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5973 continue; 5974 5975 free_pcp = 0; 5976 for_each_online_cpu(cpu) 5977 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5978 5979 show_node(zone); 5980 printk(KERN_CONT 5981 "%s" 5982 " free:%lukB" 5983 " min:%lukB" 5984 " low:%lukB" 5985 " high:%lukB" 5986 " reserved_highatomic:%luKB" 5987 " active_anon:%lukB" 5988 " inactive_anon:%lukB" 5989 " active_file:%lukB" 5990 " inactive_file:%lukB" 5991 " unevictable:%lukB" 5992 " writepending:%lukB" 5993 " present:%lukB" 5994 " managed:%lukB" 5995 " mlocked:%lukB" 5996 " bounce:%lukB" 5997 " free_pcp:%lukB" 5998 " local_pcp:%ukB" 5999 " free_cma:%lukB" 6000 "\n", 6001 zone->name, 6002 K(zone_page_state(zone, NR_FREE_PAGES)), 6003 K(min_wmark_pages(zone)), 6004 K(low_wmark_pages(zone)), 6005 K(high_wmark_pages(zone)), 6006 K(zone->nr_reserved_highatomic), 6007 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6008 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6009 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6010 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6011 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6012 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6013 K(zone->present_pages), 6014 K(zone_managed_pages(zone)), 6015 K(zone_page_state(zone, NR_MLOCK)), 6016 K(zone_page_state(zone, NR_BOUNCE)), 6017 K(free_pcp), 6018 K(this_cpu_read(zone->per_cpu_pageset->count)), 6019 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6020 printk("lowmem_reserve[]:"); 6021 for (i = 0; i < MAX_NR_ZONES; i++) 6022 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6023 printk(KERN_CONT "\n"); 6024 } 6025 6026 for_each_populated_zone(zone) { 6027 unsigned int order; 6028 unsigned long nr[MAX_ORDER], flags, total = 0; 6029 unsigned char types[MAX_ORDER]; 6030 6031 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6032 continue; 6033 show_node(zone); 6034 printk(KERN_CONT "%s: ", zone->name); 6035 6036 spin_lock_irqsave(&zone->lock, flags); 6037 for (order = 0; order < MAX_ORDER; order++) { 6038 struct free_area *area = &zone->free_area[order]; 6039 int type; 6040 6041 nr[order] = area->nr_free; 6042 total += nr[order] << order; 6043 6044 types[order] = 0; 6045 for (type = 0; type < MIGRATE_TYPES; type++) { 6046 if (!free_area_empty(area, type)) 6047 types[order] |= 1 << type; 6048 } 6049 } 6050 spin_unlock_irqrestore(&zone->lock, flags); 6051 for (order = 0; order < MAX_ORDER; order++) { 6052 printk(KERN_CONT "%lu*%lukB ", 6053 nr[order], K(1UL) << order); 6054 if (nr[order]) 6055 show_migration_types(types[order]); 6056 } 6057 printk(KERN_CONT "= %lukB\n", K(total)); 6058 } 6059 6060 hugetlb_show_meminfo(); 6061 6062 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6063 6064 show_swap_cache_info(); 6065 } 6066 6067 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6068 { 6069 zoneref->zone = zone; 6070 zoneref->zone_idx = zone_idx(zone); 6071 } 6072 6073 /* 6074 * Builds allocation fallback zone lists. 6075 * 6076 * Add all populated zones of a node to the zonelist. 6077 */ 6078 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6079 { 6080 struct zone *zone; 6081 enum zone_type zone_type = MAX_NR_ZONES; 6082 int nr_zones = 0; 6083 6084 do { 6085 zone_type--; 6086 zone = pgdat->node_zones + zone_type; 6087 if (managed_zone(zone)) { 6088 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6089 check_highest_zone(zone_type); 6090 } 6091 } while (zone_type); 6092 6093 return nr_zones; 6094 } 6095 6096 #ifdef CONFIG_NUMA 6097 6098 static int __parse_numa_zonelist_order(char *s) 6099 { 6100 /* 6101 * We used to support different zonelists modes but they turned 6102 * out to be just not useful. Let's keep the warning in place 6103 * if somebody still use the cmd line parameter so that we do 6104 * not fail it silently 6105 */ 6106 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6107 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6108 return -EINVAL; 6109 } 6110 return 0; 6111 } 6112 6113 char numa_zonelist_order[] = "Node"; 6114 6115 /* 6116 * sysctl handler for numa_zonelist_order 6117 */ 6118 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6119 void *buffer, size_t *length, loff_t *ppos) 6120 { 6121 if (write) 6122 return __parse_numa_zonelist_order(buffer); 6123 return proc_dostring(table, write, buffer, length, ppos); 6124 } 6125 6126 6127 #define MAX_NODE_LOAD (nr_online_nodes) 6128 static int node_load[MAX_NUMNODES]; 6129 6130 /** 6131 * find_next_best_node - find the next node that should appear in a given node's fallback list 6132 * @node: node whose fallback list we're appending 6133 * @used_node_mask: nodemask_t of already used nodes 6134 * 6135 * We use a number of factors to determine which is the next node that should 6136 * appear on a given node's fallback list. The node should not have appeared 6137 * already in @node's fallback list, and it should be the next closest node 6138 * according to the distance array (which contains arbitrary distance values 6139 * from each node to each node in the system), and should also prefer nodes 6140 * with no CPUs, since presumably they'll have very little allocation pressure 6141 * on them otherwise. 6142 * 6143 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6144 */ 6145 int find_next_best_node(int node, nodemask_t *used_node_mask) 6146 { 6147 int n, val; 6148 int min_val = INT_MAX; 6149 int best_node = NUMA_NO_NODE; 6150 6151 /* Use the local node if we haven't already */ 6152 if (!node_isset(node, *used_node_mask)) { 6153 node_set(node, *used_node_mask); 6154 return node; 6155 } 6156 6157 for_each_node_state(n, N_MEMORY) { 6158 6159 /* Don't want a node to appear more than once */ 6160 if (node_isset(n, *used_node_mask)) 6161 continue; 6162 6163 /* Use the distance array to find the distance */ 6164 val = node_distance(node, n); 6165 6166 /* Penalize nodes under us ("prefer the next node") */ 6167 val += (n < node); 6168 6169 /* Give preference to headless and unused nodes */ 6170 if (!cpumask_empty(cpumask_of_node(n))) 6171 val += PENALTY_FOR_NODE_WITH_CPUS; 6172 6173 /* Slight preference for less loaded node */ 6174 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6175 val += node_load[n]; 6176 6177 if (val < min_val) { 6178 min_val = val; 6179 best_node = n; 6180 } 6181 } 6182 6183 if (best_node >= 0) 6184 node_set(best_node, *used_node_mask); 6185 6186 return best_node; 6187 } 6188 6189 6190 /* 6191 * Build zonelists ordered by node and zones within node. 6192 * This results in maximum locality--normal zone overflows into local 6193 * DMA zone, if any--but risks exhausting DMA zone. 6194 */ 6195 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6196 unsigned nr_nodes) 6197 { 6198 struct zoneref *zonerefs; 6199 int i; 6200 6201 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6202 6203 for (i = 0; i < nr_nodes; i++) { 6204 int nr_zones; 6205 6206 pg_data_t *node = NODE_DATA(node_order[i]); 6207 6208 nr_zones = build_zonerefs_node(node, zonerefs); 6209 zonerefs += nr_zones; 6210 } 6211 zonerefs->zone = NULL; 6212 zonerefs->zone_idx = 0; 6213 } 6214 6215 /* 6216 * Build gfp_thisnode zonelists 6217 */ 6218 static void build_thisnode_zonelists(pg_data_t *pgdat) 6219 { 6220 struct zoneref *zonerefs; 6221 int nr_zones; 6222 6223 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6224 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6225 zonerefs += nr_zones; 6226 zonerefs->zone = NULL; 6227 zonerefs->zone_idx = 0; 6228 } 6229 6230 /* 6231 * Build zonelists ordered by zone and nodes within zones. 6232 * This results in conserving DMA zone[s] until all Normal memory is 6233 * exhausted, but results in overflowing to remote node while memory 6234 * may still exist in local DMA zone. 6235 */ 6236 6237 static void build_zonelists(pg_data_t *pgdat) 6238 { 6239 static int node_order[MAX_NUMNODES]; 6240 int node, load, nr_nodes = 0; 6241 nodemask_t used_mask = NODE_MASK_NONE; 6242 int local_node, prev_node; 6243 6244 /* NUMA-aware ordering of nodes */ 6245 local_node = pgdat->node_id; 6246 load = nr_online_nodes; 6247 prev_node = local_node; 6248 6249 memset(node_order, 0, sizeof(node_order)); 6250 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6251 /* 6252 * We don't want to pressure a particular node. 6253 * So adding penalty to the first node in same 6254 * distance group to make it round-robin. 6255 */ 6256 if (node_distance(local_node, node) != 6257 node_distance(local_node, prev_node)) 6258 node_load[node] = load; 6259 6260 node_order[nr_nodes++] = node; 6261 prev_node = node; 6262 load--; 6263 } 6264 6265 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6266 build_thisnode_zonelists(pgdat); 6267 } 6268 6269 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6270 /* 6271 * Return node id of node used for "local" allocations. 6272 * I.e., first node id of first zone in arg node's generic zonelist. 6273 * Used for initializing percpu 'numa_mem', which is used primarily 6274 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6275 */ 6276 int local_memory_node(int node) 6277 { 6278 struct zoneref *z; 6279 6280 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6281 gfp_zone(GFP_KERNEL), 6282 NULL); 6283 return zone_to_nid(z->zone); 6284 } 6285 #endif 6286 6287 static void setup_min_unmapped_ratio(void); 6288 static void setup_min_slab_ratio(void); 6289 #else /* CONFIG_NUMA */ 6290 6291 static void build_zonelists(pg_data_t *pgdat) 6292 { 6293 int node, local_node; 6294 struct zoneref *zonerefs; 6295 int nr_zones; 6296 6297 local_node = pgdat->node_id; 6298 6299 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6300 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6301 zonerefs += nr_zones; 6302 6303 /* 6304 * Now we build the zonelist so that it contains the zones 6305 * of all the other nodes. 6306 * We don't want to pressure a particular node, so when 6307 * building the zones for node N, we make sure that the 6308 * zones coming right after the local ones are those from 6309 * node N+1 (modulo N) 6310 */ 6311 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6312 if (!node_online(node)) 6313 continue; 6314 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6315 zonerefs += nr_zones; 6316 } 6317 for (node = 0; node < local_node; node++) { 6318 if (!node_online(node)) 6319 continue; 6320 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6321 zonerefs += nr_zones; 6322 } 6323 6324 zonerefs->zone = NULL; 6325 zonerefs->zone_idx = 0; 6326 } 6327 6328 #endif /* CONFIG_NUMA */ 6329 6330 /* 6331 * Boot pageset table. One per cpu which is going to be used for all 6332 * zones and all nodes. The parameters will be set in such a way 6333 * that an item put on a list will immediately be handed over to 6334 * the buddy list. This is safe since pageset manipulation is done 6335 * with interrupts disabled. 6336 * 6337 * The boot_pagesets must be kept even after bootup is complete for 6338 * unused processors and/or zones. They do play a role for bootstrapping 6339 * hotplugged processors. 6340 * 6341 * zoneinfo_show() and maybe other functions do 6342 * not check if the processor is online before following the pageset pointer. 6343 * Other parts of the kernel may not check if the zone is available. 6344 */ 6345 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6346 /* These effectively disable the pcplists in the boot pageset completely */ 6347 #define BOOT_PAGESET_HIGH 0 6348 #define BOOT_PAGESET_BATCH 1 6349 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6350 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6351 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6352 6353 static void __build_all_zonelists(void *data) 6354 { 6355 int nid; 6356 int __maybe_unused cpu; 6357 pg_data_t *self = data; 6358 static DEFINE_SPINLOCK(lock); 6359 6360 spin_lock(&lock); 6361 6362 #ifdef CONFIG_NUMA 6363 memset(node_load, 0, sizeof(node_load)); 6364 #endif 6365 6366 /* 6367 * This node is hotadded and no memory is yet present. So just 6368 * building zonelists is fine - no need to touch other nodes. 6369 */ 6370 if (self && !node_online(self->node_id)) { 6371 build_zonelists(self); 6372 } else { 6373 for_each_online_node(nid) { 6374 pg_data_t *pgdat = NODE_DATA(nid); 6375 6376 build_zonelists(pgdat); 6377 } 6378 6379 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6380 /* 6381 * We now know the "local memory node" for each node-- 6382 * i.e., the node of the first zone in the generic zonelist. 6383 * Set up numa_mem percpu variable for on-line cpus. During 6384 * boot, only the boot cpu should be on-line; we'll init the 6385 * secondary cpus' numa_mem as they come on-line. During 6386 * node/memory hotplug, we'll fixup all on-line cpus. 6387 */ 6388 for_each_online_cpu(cpu) 6389 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6390 #endif 6391 } 6392 6393 spin_unlock(&lock); 6394 } 6395 6396 static noinline void __init 6397 build_all_zonelists_init(void) 6398 { 6399 int cpu; 6400 6401 __build_all_zonelists(NULL); 6402 6403 /* 6404 * Initialize the boot_pagesets that are going to be used 6405 * for bootstrapping processors. The real pagesets for 6406 * each zone will be allocated later when the per cpu 6407 * allocator is available. 6408 * 6409 * boot_pagesets are used also for bootstrapping offline 6410 * cpus if the system is already booted because the pagesets 6411 * are needed to initialize allocators on a specific cpu too. 6412 * F.e. the percpu allocator needs the page allocator which 6413 * needs the percpu allocator in order to allocate its pagesets 6414 * (a chicken-egg dilemma). 6415 */ 6416 for_each_possible_cpu(cpu) 6417 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6418 6419 mminit_verify_zonelist(); 6420 cpuset_init_current_mems_allowed(); 6421 } 6422 6423 /* 6424 * unless system_state == SYSTEM_BOOTING. 6425 * 6426 * __ref due to call of __init annotated helper build_all_zonelists_init 6427 * [protected by SYSTEM_BOOTING]. 6428 */ 6429 void __ref build_all_zonelists(pg_data_t *pgdat) 6430 { 6431 unsigned long vm_total_pages; 6432 6433 if (system_state == SYSTEM_BOOTING) { 6434 build_all_zonelists_init(); 6435 } else { 6436 __build_all_zonelists(pgdat); 6437 /* cpuset refresh routine should be here */ 6438 } 6439 /* Get the number of free pages beyond high watermark in all zones. */ 6440 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6441 /* 6442 * Disable grouping by mobility if the number of pages in the 6443 * system is too low to allow the mechanism to work. It would be 6444 * more accurate, but expensive to check per-zone. This check is 6445 * made on memory-hotadd so a system can start with mobility 6446 * disabled and enable it later 6447 */ 6448 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6449 page_group_by_mobility_disabled = 1; 6450 else 6451 page_group_by_mobility_disabled = 0; 6452 6453 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6454 nr_online_nodes, 6455 page_group_by_mobility_disabled ? "off" : "on", 6456 vm_total_pages); 6457 #ifdef CONFIG_NUMA 6458 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6459 #endif 6460 } 6461 6462 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6463 static bool __meminit 6464 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6465 { 6466 static struct memblock_region *r; 6467 6468 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6469 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6470 for_each_mem_region(r) { 6471 if (*pfn < memblock_region_memory_end_pfn(r)) 6472 break; 6473 } 6474 } 6475 if (*pfn >= memblock_region_memory_base_pfn(r) && 6476 memblock_is_mirror(r)) { 6477 *pfn = memblock_region_memory_end_pfn(r); 6478 return true; 6479 } 6480 } 6481 return false; 6482 } 6483 6484 /* 6485 * Initially all pages are reserved - free ones are freed 6486 * up by memblock_free_all() once the early boot process is 6487 * done. Non-atomic initialization, single-pass. 6488 * 6489 * All aligned pageblocks are initialized to the specified migratetype 6490 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6491 * zone stats (e.g., nr_isolate_pageblock) are touched. 6492 */ 6493 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6494 unsigned long start_pfn, unsigned long zone_end_pfn, 6495 enum meminit_context context, 6496 struct vmem_altmap *altmap, int migratetype) 6497 { 6498 unsigned long pfn, end_pfn = start_pfn + size; 6499 struct page *page; 6500 6501 if (highest_memmap_pfn < end_pfn - 1) 6502 highest_memmap_pfn = end_pfn - 1; 6503 6504 #ifdef CONFIG_ZONE_DEVICE 6505 /* 6506 * Honor reservation requested by the driver for this ZONE_DEVICE 6507 * memory. We limit the total number of pages to initialize to just 6508 * those that might contain the memory mapping. We will defer the 6509 * ZONE_DEVICE page initialization until after we have released 6510 * the hotplug lock. 6511 */ 6512 if (zone == ZONE_DEVICE) { 6513 if (!altmap) 6514 return; 6515 6516 if (start_pfn == altmap->base_pfn) 6517 start_pfn += altmap->reserve; 6518 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6519 } 6520 #endif 6521 6522 for (pfn = start_pfn; pfn < end_pfn; ) { 6523 /* 6524 * There can be holes in boot-time mem_map[]s handed to this 6525 * function. They do not exist on hotplugged memory. 6526 */ 6527 if (context == MEMINIT_EARLY) { 6528 if (overlap_memmap_init(zone, &pfn)) 6529 continue; 6530 if (defer_init(nid, pfn, zone_end_pfn)) 6531 break; 6532 } 6533 6534 page = pfn_to_page(pfn); 6535 __init_single_page(page, pfn, zone, nid); 6536 if (context == MEMINIT_HOTPLUG) 6537 __SetPageReserved(page); 6538 6539 /* 6540 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6541 * such that unmovable allocations won't be scattered all 6542 * over the place during system boot. 6543 */ 6544 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6545 set_pageblock_migratetype(page, migratetype); 6546 cond_resched(); 6547 } 6548 pfn++; 6549 } 6550 } 6551 6552 #ifdef CONFIG_ZONE_DEVICE 6553 void __ref memmap_init_zone_device(struct zone *zone, 6554 unsigned long start_pfn, 6555 unsigned long nr_pages, 6556 struct dev_pagemap *pgmap) 6557 { 6558 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6559 struct pglist_data *pgdat = zone->zone_pgdat; 6560 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6561 unsigned long zone_idx = zone_idx(zone); 6562 unsigned long start = jiffies; 6563 int nid = pgdat->node_id; 6564 6565 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6566 return; 6567 6568 /* 6569 * The call to memmap_init should have already taken care 6570 * of the pages reserved for the memmap, so we can just jump to 6571 * the end of that region and start processing the device pages. 6572 */ 6573 if (altmap) { 6574 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6575 nr_pages = end_pfn - start_pfn; 6576 } 6577 6578 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6579 struct page *page = pfn_to_page(pfn); 6580 6581 __init_single_page(page, pfn, zone_idx, nid); 6582 6583 /* 6584 * Mark page reserved as it will need to wait for onlining 6585 * phase for it to be fully associated with a zone. 6586 * 6587 * We can use the non-atomic __set_bit operation for setting 6588 * the flag as we are still initializing the pages. 6589 */ 6590 __SetPageReserved(page); 6591 6592 /* 6593 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6594 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6595 * ever freed or placed on a driver-private list. 6596 */ 6597 page->pgmap = pgmap; 6598 page->zone_device_data = NULL; 6599 6600 /* 6601 * Mark the block movable so that blocks are reserved for 6602 * movable at startup. This will force kernel allocations 6603 * to reserve their blocks rather than leaking throughout 6604 * the address space during boot when many long-lived 6605 * kernel allocations are made. 6606 * 6607 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6608 * because this is done early in section_activate() 6609 */ 6610 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6611 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6612 cond_resched(); 6613 } 6614 } 6615 6616 pr_info("%s initialised %lu pages in %ums\n", __func__, 6617 nr_pages, jiffies_to_msecs(jiffies - start)); 6618 } 6619 6620 #endif 6621 static void __meminit zone_init_free_lists(struct zone *zone) 6622 { 6623 unsigned int order, t; 6624 for_each_migratetype_order(order, t) { 6625 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6626 zone->free_area[order].nr_free = 0; 6627 } 6628 } 6629 6630 /* 6631 * Only struct pages that correspond to ranges defined by memblock.memory 6632 * are zeroed and initialized by going through __init_single_page() during 6633 * memmap_init_zone_range(). 6634 * 6635 * But, there could be struct pages that correspond to holes in 6636 * memblock.memory. This can happen because of the following reasons: 6637 * - physical memory bank size is not necessarily the exact multiple of the 6638 * arbitrary section size 6639 * - early reserved memory may not be listed in memblock.memory 6640 * - memory layouts defined with memmap= kernel parameter may not align 6641 * nicely with memmap sections 6642 * 6643 * Explicitly initialize those struct pages so that: 6644 * - PG_Reserved is set 6645 * - zone and node links point to zone and node that span the page if the 6646 * hole is in the middle of a zone 6647 * - zone and node links point to adjacent zone/node if the hole falls on 6648 * the zone boundary; the pages in such holes will be prepended to the 6649 * zone/node above the hole except for the trailing pages in the last 6650 * section that will be appended to the zone/node below. 6651 */ 6652 static void __init init_unavailable_range(unsigned long spfn, 6653 unsigned long epfn, 6654 int zone, int node) 6655 { 6656 unsigned long pfn; 6657 u64 pgcnt = 0; 6658 6659 for (pfn = spfn; pfn < epfn; pfn++) { 6660 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6661 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6662 + pageblock_nr_pages - 1; 6663 continue; 6664 } 6665 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6666 __SetPageReserved(pfn_to_page(pfn)); 6667 pgcnt++; 6668 } 6669 6670 if (pgcnt) 6671 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6672 node, zone_names[zone], pgcnt); 6673 } 6674 6675 static void __init memmap_init_zone_range(struct zone *zone, 6676 unsigned long start_pfn, 6677 unsigned long end_pfn, 6678 unsigned long *hole_pfn) 6679 { 6680 unsigned long zone_start_pfn = zone->zone_start_pfn; 6681 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6682 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6683 6684 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6685 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6686 6687 if (start_pfn >= end_pfn) 6688 return; 6689 6690 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6691 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6692 6693 if (*hole_pfn < start_pfn) 6694 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6695 6696 *hole_pfn = end_pfn; 6697 } 6698 6699 static void __init memmap_init(void) 6700 { 6701 unsigned long start_pfn, end_pfn; 6702 unsigned long hole_pfn = 0; 6703 int i, j, zone_id = 0, nid; 6704 6705 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6706 struct pglist_data *node = NODE_DATA(nid); 6707 6708 for (j = 0; j < MAX_NR_ZONES; j++) { 6709 struct zone *zone = node->node_zones + j; 6710 6711 if (!populated_zone(zone)) 6712 continue; 6713 6714 memmap_init_zone_range(zone, start_pfn, end_pfn, 6715 &hole_pfn); 6716 zone_id = j; 6717 } 6718 } 6719 6720 #ifdef CONFIG_SPARSEMEM 6721 /* 6722 * Initialize the memory map for hole in the range [memory_end, 6723 * section_end]. 6724 * Append the pages in this hole to the highest zone in the last 6725 * node. 6726 * The call to init_unavailable_range() is outside the ifdef to 6727 * silence the compiler warining about zone_id set but not used; 6728 * for FLATMEM it is a nop anyway 6729 */ 6730 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6731 if (hole_pfn < end_pfn) 6732 #endif 6733 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6734 } 6735 6736 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6737 phys_addr_t min_addr, int nid, bool exact_nid) 6738 { 6739 void *ptr; 6740 6741 if (exact_nid) 6742 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6743 MEMBLOCK_ALLOC_ACCESSIBLE, 6744 nid); 6745 else 6746 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6747 MEMBLOCK_ALLOC_ACCESSIBLE, 6748 nid); 6749 6750 if (ptr && size > 0) 6751 page_init_poison(ptr, size); 6752 6753 return ptr; 6754 } 6755 6756 static int zone_batchsize(struct zone *zone) 6757 { 6758 #ifdef CONFIG_MMU 6759 int batch; 6760 6761 /* 6762 * The number of pages to batch allocate is either ~0.1% 6763 * of the zone or 1MB, whichever is smaller. The batch 6764 * size is striking a balance between allocation latency 6765 * and zone lock contention. 6766 */ 6767 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6768 batch /= 4; /* We effectively *= 4 below */ 6769 if (batch < 1) 6770 batch = 1; 6771 6772 /* 6773 * Clamp the batch to a 2^n - 1 value. Having a power 6774 * of 2 value was found to be more likely to have 6775 * suboptimal cache aliasing properties in some cases. 6776 * 6777 * For example if 2 tasks are alternately allocating 6778 * batches of pages, one task can end up with a lot 6779 * of pages of one half of the possible page colors 6780 * and the other with pages of the other colors. 6781 */ 6782 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6783 6784 return batch; 6785 6786 #else 6787 /* The deferral and batching of frees should be suppressed under NOMMU 6788 * conditions. 6789 * 6790 * The problem is that NOMMU needs to be able to allocate large chunks 6791 * of contiguous memory as there's no hardware page translation to 6792 * assemble apparent contiguous memory from discontiguous pages. 6793 * 6794 * Queueing large contiguous runs of pages for batching, however, 6795 * causes the pages to actually be freed in smaller chunks. As there 6796 * can be a significant delay between the individual batches being 6797 * recycled, this leads to the once large chunks of space being 6798 * fragmented and becoming unavailable for high-order allocations. 6799 */ 6800 return 0; 6801 #endif 6802 } 6803 6804 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6805 { 6806 #ifdef CONFIG_MMU 6807 int high; 6808 int nr_split_cpus; 6809 unsigned long total_pages; 6810 6811 if (!percpu_pagelist_high_fraction) { 6812 /* 6813 * By default, the high value of the pcp is based on the zone 6814 * low watermark so that if they are full then background 6815 * reclaim will not be started prematurely. 6816 */ 6817 total_pages = low_wmark_pages(zone); 6818 } else { 6819 /* 6820 * If percpu_pagelist_high_fraction is configured, the high 6821 * value is based on a fraction of the managed pages in the 6822 * zone. 6823 */ 6824 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6825 } 6826 6827 /* 6828 * Split the high value across all online CPUs local to the zone. Note 6829 * that early in boot that CPUs may not be online yet and that during 6830 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6831 * onlined. For memory nodes that have no CPUs, split pcp->high across 6832 * all online CPUs to mitigate the risk that reclaim is triggered 6833 * prematurely due to pages stored on pcp lists. 6834 */ 6835 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6836 if (!nr_split_cpus) 6837 nr_split_cpus = num_online_cpus(); 6838 high = total_pages / nr_split_cpus; 6839 6840 /* 6841 * Ensure high is at least batch*4. The multiple is based on the 6842 * historical relationship between high and batch. 6843 */ 6844 high = max(high, batch << 2); 6845 6846 return high; 6847 #else 6848 return 0; 6849 #endif 6850 } 6851 6852 /* 6853 * pcp->high and pcp->batch values are related and generally batch is lower 6854 * than high. They are also related to pcp->count such that count is lower 6855 * than high, and as soon as it reaches high, the pcplist is flushed. 6856 * 6857 * However, guaranteeing these relations at all times would require e.g. write 6858 * barriers here but also careful usage of read barriers at the read side, and 6859 * thus be prone to error and bad for performance. Thus the update only prevents 6860 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6861 * can cope with those fields changing asynchronously, and fully trust only the 6862 * pcp->count field on the local CPU with interrupts disabled. 6863 * 6864 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6865 * outside of boot time (or some other assurance that no concurrent updaters 6866 * exist). 6867 */ 6868 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6869 unsigned long batch) 6870 { 6871 WRITE_ONCE(pcp->batch, batch); 6872 WRITE_ONCE(pcp->high, high); 6873 } 6874 6875 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6876 { 6877 int pindex; 6878 6879 memset(pcp, 0, sizeof(*pcp)); 6880 memset(pzstats, 0, sizeof(*pzstats)); 6881 6882 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6883 INIT_LIST_HEAD(&pcp->lists[pindex]); 6884 6885 /* 6886 * Set batch and high values safe for a boot pageset. A true percpu 6887 * pageset's initialization will update them subsequently. Here we don't 6888 * need to be as careful as pageset_update() as nobody can access the 6889 * pageset yet. 6890 */ 6891 pcp->high = BOOT_PAGESET_HIGH; 6892 pcp->batch = BOOT_PAGESET_BATCH; 6893 pcp->free_factor = 0; 6894 } 6895 6896 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6897 unsigned long batch) 6898 { 6899 struct per_cpu_pages *pcp; 6900 int cpu; 6901 6902 for_each_possible_cpu(cpu) { 6903 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6904 pageset_update(pcp, high, batch); 6905 } 6906 } 6907 6908 /* 6909 * Calculate and set new high and batch values for all per-cpu pagesets of a 6910 * zone based on the zone's size. 6911 */ 6912 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6913 { 6914 int new_high, new_batch; 6915 6916 new_batch = max(1, zone_batchsize(zone)); 6917 new_high = zone_highsize(zone, new_batch, cpu_online); 6918 6919 if (zone->pageset_high == new_high && 6920 zone->pageset_batch == new_batch) 6921 return; 6922 6923 zone->pageset_high = new_high; 6924 zone->pageset_batch = new_batch; 6925 6926 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6927 } 6928 6929 void __meminit setup_zone_pageset(struct zone *zone) 6930 { 6931 int cpu; 6932 6933 /* Size may be 0 on !SMP && !NUMA */ 6934 if (sizeof(struct per_cpu_zonestat) > 0) 6935 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6936 6937 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6938 for_each_possible_cpu(cpu) { 6939 struct per_cpu_pages *pcp; 6940 struct per_cpu_zonestat *pzstats; 6941 6942 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6943 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6944 per_cpu_pages_init(pcp, pzstats); 6945 } 6946 6947 zone_set_pageset_high_and_batch(zone, 0); 6948 } 6949 6950 /* 6951 * Allocate per cpu pagesets and initialize them. 6952 * Before this call only boot pagesets were available. 6953 */ 6954 void __init setup_per_cpu_pageset(void) 6955 { 6956 struct pglist_data *pgdat; 6957 struct zone *zone; 6958 int __maybe_unused cpu; 6959 6960 for_each_populated_zone(zone) 6961 setup_zone_pageset(zone); 6962 6963 #ifdef CONFIG_NUMA 6964 /* 6965 * Unpopulated zones continue using the boot pagesets. 6966 * The numa stats for these pagesets need to be reset. 6967 * Otherwise, they will end up skewing the stats of 6968 * the nodes these zones are associated with. 6969 */ 6970 for_each_possible_cpu(cpu) { 6971 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6972 memset(pzstats->vm_numa_event, 0, 6973 sizeof(pzstats->vm_numa_event)); 6974 } 6975 #endif 6976 6977 for_each_online_pgdat(pgdat) 6978 pgdat->per_cpu_nodestats = 6979 alloc_percpu(struct per_cpu_nodestat); 6980 } 6981 6982 static __meminit void zone_pcp_init(struct zone *zone) 6983 { 6984 /* 6985 * per cpu subsystem is not up at this point. The following code 6986 * relies on the ability of the linker to provide the 6987 * offset of a (static) per cpu variable into the per cpu area. 6988 */ 6989 zone->per_cpu_pageset = &boot_pageset; 6990 zone->per_cpu_zonestats = &boot_zonestats; 6991 zone->pageset_high = BOOT_PAGESET_HIGH; 6992 zone->pageset_batch = BOOT_PAGESET_BATCH; 6993 6994 if (populated_zone(zone)) 6995 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6996 zone->present_pages, zone_batchsize(zone)); 6997 } 6998 6999 void __meminit init_currently_empty_zone(struct zone *zone, 7000 unsigned long zone_start_pfn, 7001 unsigned long size) 7002 { 7003 struct pglist_data *pgdat = zone->zone_pgdat; 7004 int zone_idx = zone_idx(zone) + 1; 7005 7006 if (zone_idx > pgdat->nr_zones) 7007 pgdat->nr_zones = zone_idx; 7008 7009 zone->zone_start_pfn = zone_start_pfn; 7010 7011 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7012 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7013 pgdat->node_id, 7014 (unsigned long)zone_idx(zone), 7015 zone_start_pfn, (zone_start_pfn + size)); 7016 7017 zone_init_free_lists(zone); 7018 zone->initialized = 1; 7019 } 7020 7021 /** 7022 * get_pfn_range_for_nid - Return the start and end page frames for a node 7023 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7024 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7025 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7026 * 7027 * It returns the start and end page frame of a node based on information 7028 * provided by memblock_set_node(). If called for a node 7029 * with no available memory, a warning is printed and the start and end 7030 * PFNs will be 0. 7031 */ 7032 void __init get_pfn_range_for_nid(unsigned int nid, 7033 unsigned long *start_pfn, unsigned long *end_pfn) 7034 { 7035 unsigned long this_start_pfn, this_end_pfn; 7036 int i; 7037 7038 *start_pfn = -1UL; 7039 *end_pfn = 0; 7040 7041 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7042 *start_pfn = min(*start_pfn, this_start_pfn); 7043 *end_pfn = max(*end_pfn, this_end_pfn); 7044 } 7045 7046 if (*start_pfn == -1UL) 7047 *start_pfn = 0; 7048 } 7049 7050 /* 7051 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7052 * assumption is made that zones within a node are ordered in monotonic 7053 * increasing memory addresses so that the "highest" populated zone is used 7054 */ 7055 static void __init find_usable_zone_for_movable(void) 7056 { 7057 int zone_index; 7058 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7059 if (zone_index == ZONE_MOVABLE) 7060 continue; 7061 7062 if (arch_zone_highest_possible_pfn[zone_index] > 7063 arch_zone_lowest_possible_pfn[zone_index]) 7064 break; 7065 } 7066 7067 VM_BUG_ON(zone_index == -1); 7068 movable_zone = zone_index; 7069 } 7070 7071 /* 7072 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7073 * because it is sized independent of architecture. Unlike the other zones, 7074 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7075 * in each node depending on the size of each node and how evenly kernelcore 7076 * is distributed. This helper function adjusts the zone ranges 7077 * provided by the architecture for a given node by using the end of the 7078 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7079 * zones within a node are in order of monotonic increases memory addresses 7080 */ 7081 static void __init adjust_zone_range_for_zone_movable(int nid, 7082 unsigned long zone_type, 7083 unsigned long node_start_pfn, 7084 unsigned long node_end_pfn, 7085 unsigned long *zone_start_pfn, 7086 unsigned long *zone_end_pfn) 7087 { 7088 /* Only adjust if ZONE_MOVABLE is on this node */ 7089 if (zone_movable_pfn[nid]) { 7090 /* Size ZONE_MOVABLE */ 7091 if (zone_type == ZONE_MOVABLE) { 7092 *zone_start_pfn = zone_movable_pfn[nid]; 7093 *zone_end_pfn = min(node_end_pfn, 7094 arch_zone_highest_possible_pfn[movable_zone]); 7095 7096 /* Adjust for ZONE_MOVABLE starting within this range */ 7097 } else if (!mirrored_kernelcore && 7098 *zone_start_pfn < zone_movable_pfn[nid] && 7099 *zone_end_pfn > zone_movable_pfn[nid]) { 7100 *zone_end_pfn = zone_movable_pfn[nid]; 7101 7102 /* Check if this whole range is within ZONE_MOVABLE */ 7103 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7104 *zone_start_pfn = *zone_end_pfn; 7105 } 7106 } 7107 7108 /* 7109 * Return the number of pages a zone spans in a node, including holes 7110 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7111 */ 7112 static unsigned long __init zone_spanned_pages_in_node(int nid, 7113 unsigned long zone_type, 7114 unsigned long node_start_pfn, 7115 unsigned long node_end_pfn, 7116 unsigned long *zone_start_pfn, 7117 unsigned long *zone_end_pfn) 7118 { 7119 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7120 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7121 /* When hotadd a new node from cpu_up(), the node should be empty */ 7122 if (!node_start_pfn && !node_end_pfn) 7123 return 0; 7124 7125 /* Get the start and end of the zone */ 7126 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7127 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7128 adjust_zone_range_for_zone_movable(nid, zone_type, 7129 node_start_pfn, node_end_pfn, 7130 zone_start_pfn, zone_end_pfn); 7131 7132 /* Check that this node has pages within the zone's required range */ 7133 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7134 return 0; 7135 7136 /* Move the zone boundaries inside the node if necessary */ 7137 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7138 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7139 7140 /* Return the spanned pages */ 7141 return *zone_end_pfn - *zone_start_pfn; 7142 } 7143 7144 /* 7145 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7146 * then all holes in the requested range will be accounted for. 7147 */ 7148 unsigned long __init __absent_pages_in_range(int nid, 7149 unsigned long range_start_pfn, 7150 unsigned long range_end_pfn) 7151 { 7152 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7153 unsigned long start_pfn, end_pfn; 7154 int i; 7155 7156 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7157 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7158 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7159 nr_absent -= end_pfn - start_pfn; 7160 } 7161 return nr_absent; 7162 } 7163 7164 /** 7165 * absent_pages_in_range - Return number of page frames in holes within a range 7166 * @start_pfn: The start PFN to start searching for holes 7167 * @end_pfn: The end PFN to stop searching for holes 7168 * 7169 * Return: the number of pages frames in memory holes within a range. 7170 */ 7171 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7172 unsigned long end_pfn) 7173 { 7174 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7175 } 7176 7177 /* Return the number of page frames in holes in a zone on a node */ 7178 static unsigned long __init zone_absent_pages_in_node(int nid, 7179 unsigned long zone_type, 7180 unsigned long node_start_pfn, 7181 unsigned long node_end_pfn) 7182 { 7183 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7184 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7185 unsigned long zone_start_pfn, zone_end_pfn; 7186 unsigned long nr_absent; 7187 7188 /* When hotadd a new node from cpu_up(), the node should be empty */ 7189 if (!node_start_pfn && !node_end_pfn) 7190 return 0; 7191 7192 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7193 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7194 7195 adjust_zone_range_for_zone_movable(nid, zone_type, 7196 node_start_pfn, node_end_pfn, 7197 &zone_start_pfn, &zone_end_pfn); 7198 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7199 7200 /* 7201 * ZONE_MOVABLE handling. 7202 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7203 * and vice versa. 7204 */ 7205 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7206 unsigned long start_pfn, end_pfn; 7207 struct memblock_region *r; 7208 7209 for_each_mem_region(r) { 7210 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7211 zone_start_pfn, zone_end_pfn); 7212 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7213 zone_start_pfn, zone_end_pfn); 7214 7215 if (zone_type == ZONE_MOVABLE && 7216 memblock_is_mirror(r)) 7217 nr_absent += end_pfn - start_pfn; 7218 7219 if (zone_type == ZONE_NORMAL && 7220 !memblock_is_mirror(r)) 7221 nr_absent += end_pfn - start_pfn; 7222 } 7223 } 7224 7225 return nr_absent; 7226 } 7227 7228 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7229 unsigned long node_start_pfn, 7230 unsigned long node_end_pfn) 7231 { 7232 unsigned long realtotalpages = 0, totalpages = 0; 7233 enum zone_type i; 7234 7235 for (i = 0; i < MAX_NR_ZONES; i++) { 7236 struct zone *zone = pgdat->node_zones + i; 7237 unsigned long zone_start_pfn, zone_end_pfn; 7238 unsigned long spanned, absent; 7239 unsigned long size, real_size; 7240 7241 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7242 node_start_pfn, 7243 node_end_pfn, 7244 &zone_start_pfn, 7245 &zone_end_pfn); 7246 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7247 node_start_pfn, 7248 node_end_pfn); 7249 7250 size = spanned; 7251 real_size = size - absent; 7252 7253 if (size) 7254 zone->zone_start_pfn = zone_start_pfn; 7255 else 7256 zone->zone_start_pfn = 0; 7257 zone->spanned_pages = size; 7258 zone->present_pages = real_size; 7259 #if defined(CONFIG_MEMORY_HOTPLUG) 7260 zone->present_early_pages = real_size; 7261 #endif 7262 7263 totalpages += size; 7264 realtotalpages += real_size; 7265 } 7266 7267 pgdat->node_spanned_pages = totalpages; 7268 pgdat->node_present_pages = realtotalpages; 7269 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7270 } 7271 7272 #ifndef CONFIG_SPARSEMEM 7273 /* 7274 * Calculate the size of the zone->blockflags rounded to an unsigned long 7275 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7276 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7277 * round what is now in bits to nearest long in bits, then return it in 7278 * bytes. 7279 */ 7280 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7281 { 7282 unsigned long usemapsize; 7283 7284 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7285 usemapsize = roundup(zonesize, pageblock_nr_pages); 7286 usemapsize = usemapsize >> pageblock_order; 7287 usemapsize *= NR_PAGEBLOCK_BITS; 7288 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7289 7290 return usemapsize / 8; 7291 } 7292 7293 static void __ref setup_usemap(struct zone *zone) 7294 { 7295 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7296 zone->spanned_pages); 7297 zone->pageblock_flags = NULL; 7298 if (usemapsize) { 7299 zone->pageblock_flags = 7300 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7301 zone_to_nid(zone)); 7302 if (!zone->pageblock_flags) 7303 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7304 usemapsize, zone->name, zone_to_nid(zone)); 7305 } 7306 } 7307 #else 7308 static inline void setup_usemap(struct zone *zone) {} 7309 #endif /* CONFIG_SPARSEMEM */ 7310 7311 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7312 7313 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7314 void __init set_pageblock_order(void) 7315 { 7316 unsigned int order; 7317 7318 /* Check that pageblock_nr_pages has not already been setup */ 7319 if (pageblock_order) 7320 return; 7321 7322 if (HPAGE_SHIFT > PAGE_SHIFT) 7323 order = HUGETLB_PAGE_ORDER; 7324 else 7325 order = MAX_ORDER - 1; 7326 7327 /* 7328 * Assume the largest contiguous order of interest is a huge page. 7329 * This value may be variable depending on boot parameters on IA64 and 7330 * powerpc. 7331 */ 7332 pageblock_order = order; 7333 } 7334 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7335 7336 /* 7337 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7338 * is unused as pageblock_order is set at compile-time. See 7339 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7340 * the kernel config 7341 */ 7342 void __init set_pageblock_order(void) 7343 { 7344 } 7345 7346 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7347 7348 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7349 unsigned long present_pages) 7350 { 7351 unsigned long pages = spanned_pages; 7352 7353 /* 7354 * Provide a more accurate estimation if there are holes within 7355 * the zone and SPARSEMEM is in use. If there are holes within the 7356 * zone, each populated memory region may cost us one or two extra 7357 * memmap pages due to alignment because memmap pages for each 7358 * populated regions may not be naturally aligned on page boundary. 7359 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7360 */ 7361 if (spanned_pages > present_pages + (present_pages >> 4) && 7362 IS_ENABLED(CONFIG_SPARSEMEM)) 7363 pages = present_pages; 7364 7365 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7366 } 7367 7368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7369 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7370 { 7371 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7372 7373 spin_lock_init(&ds_queue->split_queue_lock); 7374 INIT_LIST_HEAD(&ds_queue->split_queue); 7375 ds_queue->split_queue_len = 0; 7376 } 7377 #else 7378 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7379 #endif 7380 7381 #ifdef CONFIG_COMPACTION 7382 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7383 { 7384 init_waitqueue_head(&pgdat->kcompactd_wait); 7385 } 7386 #else 7387 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7388 #endif 7389 7390 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7391 { 7392 pgdat_resize_init(pgdat); 7393 7394 pgdat_init_split_queue(pgdat); 7395 pgdat_init_kcompactd(pgdat); 7396 7397 init_waitqueue_head(&pgdat->kswapd_wait); 7398 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7399 7400 pgdat_page_ext_init(pgdat); 7401 lruvec_init(&pgdat->__lruvec); 7402 } 7403 7404 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7405 unsigned long remaining_pages) 7406 { 7407 atomic_long_set(&zone->managed_pages, remaining_pages); 7408 zone_set_nid(zone, nid); 7409 zone->name = zone_names[idx]; 7410 zone->zone_pgdat = NODE_DATA(nid); 7411 spin_lock_init(&zone->lock); 7412 zone_seqlock_init(zone); 7413 zone_pcp_init(zone); 7414 } 7415 7416 /* 7417 * Set up the zone data structures 7418 * - init pgdat internals 7419 * - init all zones belonging to this node 7420 * 7421 * NOTE: this function is only called during memory hotplug 7422 */ 7423 #ifdef CONFIG_MEMORY_HOTPLUG 7424 void __ref free_area_init_core_hotplug(int nid) 7425 { 7426 enum zone_type z; 7427 pg_data_t *pgdat = NODE_DATA(nid); 7428 7429 pgdat_init_internals(pgdat); 7430 for (z = 0; z < MAX_NR_ZONES; z++) 7431 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7432 } 7433 #endif 7434 7435 /* 7436 * Set up the zone data structures: 7437 * - mark all pages reserved 7438 * - mark all memory queues empty 7439 * - clear the memory bitmaps 7440 * 7441 * NOTE: pgdat should get zeroed by caller. 7442 * NOTE: this function is only called during early init. 7443 */ 7444 static void __init free_area_init_core(struct pglist_data *pgdat) 7445 { 7446 enum zone_type j; 7447 int nid = pgdat->node_id; 7448 7449 pgdat_init_internals(pgdat); 7450 pgdat->per_cpu_nodestats = &boot_nodestats; 7451 7452 for (j = 0; j < MAX_NR_ZONES; j++) { 7453 struct zone *zone = pgdat->node_zones + j; 7454 unsigned long size, freesize, memmap_pages; 7455 7456 size = zone->spanned_pages; 7457 freesize = zone->present_pages; 7458 7459 /* 7460 * Adjust freesize so that it accounts for how much memory 7461 * is used by this zone for memmap. This affects the watermark 7462 * and per-cpu initialisations 7463 */ 7464 memmap_pages = calc_memmap_size(size, freesize); 7465 if (!is_highmem_idx(j)) { 7466 if (freesize >= memmap_pages) { 7467 freesize -= memmap_pages; 7468 if (memmap_pages) 7469 pr_debug(" %s zone: %lu pages used for memmap\n", 7470 zone_names[j], memmap_pages); 7471 } else 7472 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7473 zone_names[j], memmap_pages, freesize); 7474 } 7475 7476 /* Account for reserved pages */ 7477 if (j == 0 && freesize > dma_reserve) { 7478 freesize -= dma_reserve; 7479 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7480 } 7481 7482 if (!is_highmem_idx(j)) 7483 nr_kernel_pages += freesize; 7484 /* Charge for highmem memmap if there are enough kernel pages */ 7485 else if (nr_kernel_pages > memmap_pages * 2) 7486 nr_kernel_pages -= memmap_pages; 7487 nr_all_pages += freesize; 7488 7489 /* 7490 * Set an approximate value for lowmem here, it will be adjusted 7491 * when the bootmem allocator frees pages into the buddy system. 7492 * And all highmem pages will be managed by the buddy system. 7493 */ 7494 zone_init_internals(zone, j, nid, freesize); 7495 7496 if (!size) 7497 continue; 7498 7499 set_pageblock_order(); 7500 setup_usemap(zone); 7501 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7502 } 7503 } 7504 7505 #ifdef CONFIG_FLATMEM 7506 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7507 { 7508 unsigned long __maybe_unused start = 0; 7509 unsigned long __maybe_unused offset = 0; 7510 7511 /* Skip empty nodes */ 7512 if (!pgdat->node_spanned_pages) 7513 return; 7514 7515 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7516 offset = pgdat->node_start_pfn - start; 7517 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7518 if (!pgdat->node_mem_map) { 7519 unsigned long size, end; 7520 struct page *map; 7521 7522 /* 7523 * The zone's endpoints aren't required to be MAX_ORDER 7524 * aligned but the node_mem_map endpoints must be in order 7525 * for the buddy allocator to function correctly. 7526 */ 7527 end = pgdat_end_pfn(pgdat); 7528 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7529 size = (end - start) * sizeof(struct page); 7530 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7531 pgdat->node_id, false); 7532 if (!map) 7533 panic("Failed to allocate %ld bytes for node %d memory map\n", 7534 size, pgdat->node_id); 7535 pgdat->node_mem_map = map + offset; 7536 } 7537 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7538 __func__, pgdat->node_id, (unsigned long)pgdat, 7539 (unsigned long)pgdat->node_mem_map); 7540 #ifndef CONFIG_NUMA 7541 /* 7542 * With no DISCONTIG, the global mem_map is just set as node 0's 7543 */ 7544 if (pgdat == NODE_DATA(0)) { 7545 mem_map = NODE_DATA(0)->node_mem_map; 7546 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7547 mem_map -= offset; 7548 } 7549 #endif 7550 } 7551 #else 7552 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7553 #endif /* CONFIG_FLATMEM */ 7554 7555 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7556 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7557 { 7558 pgdat->first_deferred_pfn = ULONG_MAX; 7559 } 7560 #else 7561 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7562 #endif 7563 7564 static void __init free_area_init_node(int nid) 7565 { 7566 pg_data_t *pgdat = NODE_DATA(nid); 7567 unsigned long start_pfn = 0; 7568 unsigned long end_pfn = 0; 7569 7570 /* pg_data_t should be reset to zero when it's allocated */ 7571 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7572 7573 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7574 7575 pgdat->node_id = nid; 7576 pgdat->node_start_pfn = start_pfn; 7577 pgdat->per_cpu_nodestats = NULL; 7578 7579 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7580 (u64)start_pfn << PAGE_SHIFT, 7581 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7582 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7583 7584 alloc_node_mem_map(pgdat); 7585 pgdat_set_deferred_range(pgdat); 7586 7587 free_area_init_core(pgdat); 7588 } 7589 7590 void __init free_area_init_memoryless_node(int nid) 7591 { 7592 free_area_init_node(nid); 7593 } 7594 7595 #if MAX_NUMNODES > 1 7596 /* 7597 * Figure out the number of possible node ids. 7598 */ 7599 void __init setup_nr_node_ids(void) 7600 { 7601 unsigned int highest; 7602 7603 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7604 nr_node_ids = highest + 1; 7605 } 7606 #endif 7607 7608 /** 7609 * node_map_pfn_alignment - determine the maximum internode alignment 7610 * 7611 * This function should be called after node map is populated and sorted. 7612 * It calculates the maximum power of two alignment which can distinguish 7613 * all the nodes. 7614 * 7615 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7616 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7617 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7618 * shifted, 1GiB is enough and this function will indicate so. 7619 * 7620 * This is used to test whether pfn -> nid mapping of the chosen memory 7621 * model has fine enough granularity to avoid incorrect mapping for the 7622 * populated node map. 7623 * 7624 * Return: the determined alignment in pfn's. 0 if there is no alignment 7625 * requirement (single node). 7626 */ 7627 unsigned long __init node_map_pfn_alignment(void) 7628 { 7629 unsigned long accl_mask = 0, last_end = 0; 7630 unsigned long start, end, mask; 7631 int last_nid = NUMA_NO_NODE; 7632 int i, nid; 7633 7634 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7635 if (!start || last_nid < 0 || last_nid == nid) { 7636 last_nid = nid; 7637 last_end = end; 7638 continue; 7639 } 7640 7641 /* 7642 * Start with a mask granular enough to pin-point to the 7643 * start pfn and tick off bits one-by-one until it becomes 7644 * too coarse to separate the current node from the last. 7645 */ 7646 mask = ~((1 << __ffs(start)) - 1); 7647 while (mask && last_end <= (start & (mask << 1))) 7648 mask <<= 1; 7649 7650 /* accumulate all internode masks */ 7651 accl_mask |= mask; 7652 } 7653 7654 /* convert mask to number of pages */ 7655 return ~accl_mask + 1; 7656 } 7657 7658 /** 7659 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7660 * 7661 * Return: the minimum PFN based on information provided via 7662 * memblock_set_node(). 7663 */ 7664 unsigned long __init find_min_pfn_with_active_regions(void) 7665 { 7666 return PHYS_PFN(memblock_start_of_DRAM()); 7667 } 7668 7669 /* 7670 * early_calculate_totalpages() 7671 * Sum pages in active regions for movable zone. 7672 * Populate N_MEMORY for calculating usable_nodes. 7673 */ 7674 static unsigned long __init early_calculate_totalpages(void) 7675 { 7676 unsigned long totalpages = 0; 7677 unsigned long start_pfn, end_pfn; 7678 int i, nid; 7679 7680 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7681 unsigned long pages = end_pfn - start_pfn; 7682 7683 totalpages += pages; 7684 if (pages) 7685 node_set_state(nid, N_MEMORY); 7686 } 7687 return totalpages; 7688 } 7689 7690 /* 7691 * Find the PFN the Movable zone begins in each node. Kernel memory 7692 * is spread evenly between nodes as long as the nodes have enough 7693 * memory. When they don't, some nodes will have more kernelcore than 7694 * others 7695 */ 7696 static void __init find_zone_movable_pfns_for_nodes(void) 7697 { 7698 int i, nid; 7699 unsigned long usable_startpfn; 7700 unsigned long kernelcore_node, kernelcore_remaining; 7701 /* save the state before borrow the nodemask */ 7702 nodemask_t saved_node_state = node_states[N_MEMORY]; 7703 unsigned long totalpages = early_calculate_totalpages(); 7704 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7705 struct memblock_region *r; 7706 7707 /* Need to find movable_zone earlier when movable_node is specified. */ 7708 find_usable_zone_for_movable(); 7709 7710 /* 7711 * If movable_node is specified, ignore kernelcore and movablecore 7712 * options. 7713 */ 7714 if (movable_node_is_enabled()) { 7715 for_each_mem_region(r) { 7716 if (!memblock_is_hotpluggable(r)) 7717 continue; 7718 7719 nid = memblock_get_region_node(r); 7720 7721 usable_startpfn = PFN_DOWN(r->base); 7722 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7723 min(usable_startpfn, zone_movable_pfn[nid]) : 7724 usable_startpfn; 7725 } 7726 7727 goto out2; 7728 } 7729 7730 /* 7731 * If kernelcore=mirror is specified, ignore movablecore option 7732 */ 7733 if (mirrored_kernelcore) { 7734 bool mem_below_4gb_not_mirrored = false; 7735 7736 for_each_mem_region(r) { 7737 if (memblock_is_mirror(r)) 7738 continue; 7739 7740 nid = memblock_get_region_node(r); 7741 7742 usable_startpfn = memblock_region_memory_base_pfn(r); 7743 7744 if (usable_startpfn < 0x100000) { 7745 mem_below_4gb_not_mirrored = true; 7746 continue; 7747 } 7748 7749 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7750 min(usable_startpfn, zone_movable_pfn[nid]) : 7751 usable_startpfn; 7752 } 7753 7754 if (mem_below_4gb_not_mirrored) 7755 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7756 7757 goto out2; 7758 } 7759 7760 /* 7761 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7762 * amount of necessary memory. 7763 */ 7764 if (required_kernelcore_percent) 7765 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7766 10000UL; 7767 if (required_movablecore_percent) 7768 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7769 10000UL; 7770 7771 /* 7772 * If movablecore= was specified, calculate what size of 7773 * kernelcore that corresponds so that memory usable for 7774 * any allocation type is evenly spread. If both kernelcore 7775 * and movablecore are specified, then the value of kernelcore 7776 * will be used for required_kernelcore if it's greater than 7777 * what movablecore would have allowed. 7778 */ 7779 if (required_movablecore) { 7780 unsigned long corepages; 7781 7782 /* 7783 * Round-up so that ZONE_MOVABLE is at least as large as what 7784 * was requested by the user 7785 */ 7786 required_movablecore = 7787 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7788 required_movablecore = min(totalpages, required_movablecore); 7789 corepages = totalpages - required_movablecore; 7790 7791 required_kernelcore = max(required_kernelcore, corepages); 7792 } 7793 7794 /* 7795 * If kernelcore was not specified or kernelcore size is larger 7796 * than totalpages, there is no ZONE_MOVABLE. 7797 */ 7798 if (!required_kernelcore || required_kernelcore >= totalpages) 7799 goto out; 7800 7801 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7802 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7803 7804 restart: 7805 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7806 kernelcore_node = required_kernelcore / usable_nodes; 7807 for_each_node_state(nid, N_MEMORY) { 7808 unsigned long start_pfn, end_pfn; 7809 7810 /* 7811 * Recalculate kernelcore_node if the division per node 7812 * now exceeds what is necessary to satisfy the requested 7813 * amount of memory for the kernel 7814 */ 7815 if (required_kernelcore < kernelcore_node) 7816 kernelcore_node = required_kernelcore / usable_nodes; 7817 7818 /* 7819 * As the map is walked, we track how much memory is usable 7820 * by the kernel using kernelcore_remaining. When it is 7821 * 0, the rest of the node is usable by ZONE_MOVABLE 7822 */ 7823 kernelcore_remaining = kernelcore_node; 7824 7825 /* Go through each range of PFNs within this node */ 7826 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7827 unsigned long size_pages; 7828 7829 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7830 if (start_pfn >= end_pfn) 7831 continue; 7832 7833 /* Account for what is only usable for kernelcore */ 7834 if (start_pfn < usable_startpfn) { 7835 unsigned long kernel_pages; 7836 kernel_pages = min(end_pfn, usable_startpfn) 7837 - start_pfn; 7838 7839 kernelcore_remaining -= min(kernel_pages, 7840 kernelcore_remaining); 7841 required_kernelcore -= min(kernel_pages, 7842 required_kernelcore); 7843 7844 /* Continue if range is now fully accounted */ 7845 if (end_pfn <= usable_startpfn) { 7846 7847 /* 7848 * Push zone_movable_pfn to the end so 7849 * that if we have to rebalance 7850 * kernelcore across nodes, we will 7851 * not double account here 7852 */ 7853 zone_movable_pfn[nid] = end_pfn; 7854 continue; 7855 } 7856 start_pfn = usable_startpfn; 7857 } 7858 7859 /* 7860 * The usable PFN range for ZONE_MOVABLE is from 7861 * start_pfn->end_pfn. Calculate size_pages as the 7862 * number of pages used as kernelcore 7863 */ 7864 size_pages = end_pfn - start_pfn; 7865 if (size_pages > kernelcore_remaining) 7866 size_pages = kernelcore_remaining; 7867 zone_movable_pfn[nid] = start_pfn + size_pages; 7868 7869 /* 7870 * Some kernelcore has been met, update counts and 7871 * break if the kernelcore for this node has been 7872 * satisfied 7873 */ 7874 required_kernelcore -= min(required_kernelcore, 7875 size_pages); 7876 kernelcore_remaining -= size_pages; 7877 if (!kernelcore_remaining) 7878 break; 7879 } 7880 } 7881 7882 /* 7883 * If there is still required_kernelcore, we do another pass with one 7884 * less node in the count. This will push zone_movable_pfn[nid] further 7885 * along on the nodes that still have memory until kernelcore is 7886 * satisfied 7887 */ 7888 usable_nodes--; 7889 if (usable_nodes && required_kernelcore > usable_nodes) 7890 goto restart; 7891 7892 out2: 7893 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7894 for (nid = 0; nid < MAX_NUMNODES; nid++) 7895 zone_movable_pfn[nid] = 7896 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7897 7898 out: 7899 /* restore the node_state */ 7900 node_states[N_MEMORY] = saved_node_state; 7901 } 7902 7903 /* Any regular or high memory on that node ? */ 7904 static void check_for_memory(pg_data_t *pgdat, int nid) 7905 { 7906 enum zone_type zone_type; 7907 7908 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7909 struct zone *zone = &pgdat->node_zones[zone_type]; 7910 if (populated_zone(zone)) { 7911 if (IS_ENABLED(CONFIG_HIGHMEM)) 7912 node_set_state(nid, N_HIGH_MEMORY); 7913 if (zone_type <= ZONE_NORMAL) 7914 node_set_state(nid, N_NORMAL_MEMORY); 7915 break; 7916 } 7917 } 7918 } 7919 7920 /* 7921 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7922 * such cases we allow max_zone_pfn sorted in the descending order 7923 */ 7924 bool __weak arch_has_descending_max_zone_pfns(void) 7925 { 7926 return false; 7927 } 7928 7929 /** 7930 * free_area_init - Initialise all pg_data_t and zone data 7931 * @max_zone_pfn: an array of max PFNs for each zone 7932 * 7933 * This will call free_area_init_node() for each active node in the system. 7934 * Using the page ranges provided by memblock_set_node(), the size of each 7935 * zone in each node and their holes is calculated. If the maximum PFN 7936 * between two adjacent zones match, it is assumed that the zone is empty. 7937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7939 * starts where the previous one ended. For example, ZONE_DMA32 starts 7940 * at arch_max_dma_pfn. 7941 */ 7942 void __init free_area_init(unsigned long *max_zone_pfn) 7943 { 7944 unsigned long start_pfn, end_pfn; 7945 int i, nid, zone; 7946 bool descending; 7947 7948 /* Record where the zone boundaries are */ 7949 memset(arch_zone_lowest_possible_pfn, 0, 7950 sizeof(arch_zone_lowest_possible_pfn)); 7951 memset(arch_zone_highest_possible_pfn, 0, 7952 sizeof(arch_zone_highest_possible_pfn)); 7953 7954 start_pfn = find_min_pfn_with_active_regions(); 7955 descending = arch_has_descending_max_zone_pfns(); 7956 7957 for (i = 0; i < MAX_NR_ZONES; i++) { 7958 if (descending) 7959 zone = MAX_NR_ZONES - i - 1; 7960 else 7961 zone = i; 7962 7963 if (zone == ZONE_MOVABLE) 7964 continue; 7965 7966 end_pfn = max(max_zone_pfn[zone], start_pfn); 7967 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7968 arch_zone_highest_possible_pfn[zone] = end_pfn; 7969 7970 start_pfn = end_pfn; 7971 } 7972 7973 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7974 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7975 find_zone_movable_pfns_for_nodes(); 7976 7977 /* Print out the zone ranges */ 7978 pr_info("Zone ranges:\n"); 7979 for (i = 0; i < MAX_NR_ZONES; i++) { 7980 if (i == ZONE_MOVABLE) 7981 continue; 7982 pr_info(" %-8s ", zone_names[i]); 7983 if (arch_zone_lowest_possible_pfn[i] == 7984 arch_zone_highest_possible_pfn[i]) 7985 pr_cont("empty\n"); 7986 else 7987 pr_cont("[mem %#018Lx-%#018Lx]\n", 7988 (u64)arch_zone_lowest_possible_pfn[i] 7989 << PAGE_SHIFT, 7990 ((u64)arch_zone_highest_possible_pfn[i] 7991 << PAGE_SHIFT) - 1); 7992 } 7993 7994 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7995 pr_info("Movable zone start for each node\n"); 7996 for (i = 0; i < MAX_NUMNODES; i++) { 7997 if (zone_movable_pfn[i]) 7998 pr_info(" Node %d: %#018Lx\n", i, 7999 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8000 } 8001 8002 /* 8003 * Print out the early node map, and initialize the 8004 * subsection-map relative to active online memory ranges to 8005 * enable future "sub-section" extensions of the memory map. 8006 */ 8007 pr_info("Early memory node ranges\n"); 8008 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8009 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8010 (u64)start_pfn << PAGE_SHIFT, 8011 ((u64)end_pfn << PAGE_SHIFT) - 1); 8012 subsection_map_init(start_pfn, end_pfn - start_pfn); 8013 } 8014 8015 /* Initialise every node */ 8016 mminit_verify_pageflags_layout(); 8017 setup_nr_node_ids(); 8018 for_each_online_node(nid) { 8019 pg_data_t *pgdat = NODE_DATA(nid); 8020 free_area_init_node(nid); 8021 8022 /* Any memory on that node */ 8023 if (pgdat->node_present_pages) 8024 node_set_state(nid, N_MEMORY); 8025 check_for_memory(pgdat, nid); 8026 } 8027 8028 memmap_init(); 8029 } 8030 8031 static int __init cmdline_parse_core(char *p, unsigned long *core, 8032 unsigned long *percent) 8033 { 8034 unsigned long long coremem; 8035 char *endptr; 8036 8037 if (!p) 8038 return -EINVAL; 8039 8040 /* Value may be a percentage of total memory, otherwise bytes */ 8041 coremem = simple_strtoull(p, &endptr, 0); 8042 if (*endptr == '%') { 8043 /* Paranoid check for percent values greater than 100 */ 8044 WARN_ON(coremem > 100); 8045 8046 *percent = coremem; 8047 } else { 8048 coremem = memparse(p, &p); 8049 /* Paranoid check that UL is enough for the coremem value */ 8050 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8051 8052 *core = coremem >> PAGE_SHIFT; 8053 *percent = 0UL; 8054 } 8055 return 0; 8056 } 8057 8058 /* 8059 * kernelcore=size sets the amount of memory for use for allocations that 8060 * cannot be reclaimed or migrated. 8061 */ 8062 static int __init cmdline_parse_kernelcore(char *p) 8063 { 8064 /* parse kernelcore=mirror */ 8065 if (parse_option_str(p, "mirror")) { 8066 mirrored_kernelcore = true; 8067 return 0; 8068 } 8069 8070 return cmdline_parse_core(p, &required_kernelcore, 8071 &required_kernelcore_percent); 8072 } 8073 8074 /* 8075 * movablecore=size sets the amount of memory for use for allocations that 8076 * can be reclaimed or migrated. 8077 */ 8078 static int __init cmdline_parse_movablecore(char *p) 8079 { 8080 return cmdline_parse_core(p, &required_movablecore, 8081 &required_movablecore_percent); 8082 } 8083 8084 early_param("kernelcore", cmdline_parse_kernelcore); 8085 early_param("movablecore", cmdline_parse_movablecore); 8086 8087 void adjust_managed_page_count(struct page *page, long count) 8088 { 8089 atomic_long_add(count, &page_zone(page)->managed_pages); 8090 totalram_pages_add(count); 8091 #ifdef CONFIG_HIGHMEM 8092 if (PageHighMem(page)) 8093 totalhigh_pages_add(count); 8094 #endif 8095 } 8096 EXPORT_SYMBOL(adjust_managed_page_count); 8097 8098 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8099 { 8100 void *pos; 8101 unsigned long pages = 0; 8102 8103 start = (void *)PAGE_ALIGN((unsigned long)start); 8104 end = (void *)((unsigned long)end & PAGE_MASK); 8105 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8106 struct page *page = virt_to_page(pos); 8107 void *direct_map_addr; 8108 8109 /* 8110 * 'direct_map_addr' might be different from 'pos' 8111 * because some architectures' virt_to_page() 8112 * work with aliases. Getting the direct map 8113 * address ensures that we get a _writeable_ 8114 * alias for the memset(). 8115 */ 8116 direct_map_addr = page_address(page); 8117 /* 8118 * Perform a kasan-unchecked memset() since this memory 8119 * has not been initialized. 8120 */ 8121 direct_map_addr = kasan_reset_tag(direct_map_addr); 8122 if ((unsigned int)poison <= 0xFF) 8123 memset(direct_map_addr, poison, PAGE_SIZE); 8124 8125 free_reserved_page(page); 8126 } 8127 8128 if (pages && s) 8129 pr_info("Freeing %s memory: %ldK\n", 8130 s, pages << (PAGE_SHIFT - 10)); 8131 8132 return pages; 8133 } 8134 8135 void __init mem_init_print_info(void) 8136 { 8137 unsigned long physpages, codesize, datasize, rosize, bss_size; 8138 unsigned long init_code_size, init_data_size; 8139 8140 physpages = get_num_physpages(); 8141 codesize = _etext - _stext; 8142 datasize = _edata - _sdata; 8143 rosize = __end_rodata - __start_rodata; 8144 bss_size = __bss_stop - __bss_start; 8145 init_data_size = __init_end - __init_begin; 8146 init_code_size = _einittext - _sinittext; 8147 8148 /* 8149 * Detect special cases and adjust section sizes accordingly: 8150 * 1) .init.* may be embedded into .data sections 8151 * 2) .init.text.* may be out of [__init_begin, __init_end], 8152 * please refer to arch/tile/kernel/vmlinux.lds.S. 8153 * 3) .rodata.* may be embedded into .text or .data sections. 8154 */ 8155 #define adj_init_size(start, end, size, pos, adj) \ 8156 do { \ 8157 if (start <= pos && pos < end && size > adj) \ 8158 size -= adj; \ 8159 } while (0) 8160 8161 adj_init_size(__init_begin, __init_end, init_data_size, 8162 _sinittext, init_code_size); 8163 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8164 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8165 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8166 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8167 8168 #undef adj_init_size 8169 8170 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8171 #ifdef CONFIG_HIGHMEM 8172 ", %luK highmem" 8173 #endif 8174 ")\n", 8175 nr_free_pages() << (PAGE_SHIFT - 10), 8176 physpages << (PAGE_SHIFT - 10), 8177 codesize >> 10, datasize >> 10, rosize >> 10, 8178 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8179 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 8180 totalcma_pages << (PAGE_SHIFT - 10) 8181 #ifdef CONFIG_HIGHMEM 8182 , totalhigh_pages() << (PAGE_SHIFT - 10) 8183 #endif 8184 ); 8185 } 8186 8187 /** 8188 * set_dma_reserve - set the specified number of pages reserved in the first zone 8189 * @new_dma_reserve: The number of pages to mark reserved 8190 * 8191 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8192 * In the DMA zone, a significant percentage may be consumed by kernel image 8193 * and other unfreeable allocations which can skew the watermarks badly. This 8194 * function may optionally be used to account for unfreeable pages in the 8195 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8196 * smaller per-cpu batchsize. 8197 */ 8198 void __init set_dma_reserve(unsigned long new_dma_reserve) 8199 { 8200 dma_reserve = new_dma_reserve; 8201 } 8202 8203 static int page_alloc_cpu_dead(unsigned int cpu) 8204 { 8205 struct zone *zone; 8206 8207 lru_add_drain_cpu(cpu); 8208 drain_pages(cpu); 8209 8210 /* 8211 * Spill the event counters of the dead processor 8212 * into the current processors event counters. 8213 * This artificially elevates the count of the current 8214 * processor. 8215 */ 8216 vm_events_fold_cpu(cpu); 8217 8218 /* 8219 * Zero the differential counters of the dead processor 8220 * so that the vm statistics are consistent. 8221 * 8222 * This is only okay since the processor is dead and cannot 8223 * race with what we are doing. 8224 */ 8225 cpu_vm_stats_fold(cpu); 8226 8227 for_each_populated_zone(zone) 8228 zone_pcp_update(zone, 0); 8229 8230 return 0; 8231 } 8232 8233 static int page_alloc_cpu_online(unsigned int cpu) 8234 { 8235 struct zone *zone; 8236 8237 for_each_populated_zone(zone) 8238 zone_pcp_update(zone, 1); 8239 return 0; 8240 } 8241 8242 #ifdef CONFIG_NUMA 8243 int hashdist = HASHDIST_DEFAULT; 8244 8245 static int __init set_hashdist(char *str) 8246 { 8247 if (!str) 8248 return 0; 8249 hashdist = simple_strtoul(str, &str, 0); 8250 return 1; 8251 } 8252 __setup("hashdist=", set_hashdist); 8253 #endif 8254 8255 void __init page_alloc_init(void) 8256 { 8257 int ret; 8258 8259 #ifdef CONFIG_NUMA 8260 if (num_node_state(N_MEMORY) == 1) 8261 hashdist = 0; 8262 #endif 8263 8264 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8265 "mm/page_alloc:pcp", 8266 page_alloc_cpu_online, 8267 page_alloc_cpu_dead); 8268 WARN_ON(ret < 0); 8269 } 8270 8271 /* 8272 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8273 * or min_free_kbytes changes. 8274 */ 8275 static void calculate_totalreserve_pages(void) 8276 { 8277 struct pglist_data *pgdat; 8278 unsigned long reserve_pages = 0; 8279 enum zone_type i, j; 8280 8281 for_each_online_pgdat(pgdat) { 8282 8283 pgdat->totalreserve_pages = 0; 8284 8285 for (i = 0; i < MAX_NR_ZONES; i++) { 8286 struct zone *zone = pgdat->node_zones + i; 8287 long max = 0; 8288 unsigned long managed_pages = zone_managed_pages(zone); 8289 8290 /* Find valid and maximum lowmem_reserve in the zone */ 8291 for (j = i; j < MAX_NR_ZONES; j++) { 8292 if (zone->lowmem_reserve[j] > max) 8293 max = zone->lowmem_reserve[j]; 8294 } 8295 8296 /* we treat the high watermark as reserved pages. */ 8297 max += high_wmark_pages(zone); 8298 8299 if (max > managed_pages) 8300 max = managed_pages; 8301 8302 pgdat->totalreserve_pages += max; 8303 8304 reserve_pages += max; 8305 } 8306 } 8307 totalreserve_pages = reserve_pages; 8308 } 8309 8310 /* 8311 * setup_per_zone_lowmem_reserve - called whenever 8312 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8313 * has a correct pages reserved value, so an adequate number of 8314 * pages are left in the zone after a successful __alloc_pages(). 8315 */ 8316 static void setup_per_zone_lowmem_reserve(void) 8317 { 8318 struct pglist_data *pgdat; 8319 enum zone_type i, j; 8320 8321 for_each_online_pgdat(pgdat) { 8322 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8323 struct zone *zone = &pgdat->node_zones[i]; 8324 int ratio = sysctl_lowmem_reserve_ratio[i]; 8325 bool clear = !ratio || !zone_managed_pages(zone); 8326 unsigned long managed_pages = 0; 8327 8328 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8329 struct zone *upper_zone = &pgdat->node_zones[j]; 8330 8331 managed_pages += zone_managed_pages(upper_zone); 8332 8333 if (clear) 8334 zone->lowmem_reserve[j] = 0; 8335 else 8336 zone->lowmem_reserve[j] = managed_pages / ratio; 8337 } 8338 } 8339 } 8340 8341 /* update totalreserve_pages */ 8342 calculate_totalreserve_pages(); 8343 } 8344 8345 static void __setup_per_zone_wmarks(void) 8346 { 8347 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8348 unsigned long lowmem_pages = 0; 8349 struct zone *zone; 8350 unsigned long flags; 8351 8352 /* Calculate total number of !ZONE_HIGHMEM pages */ 8353 for_each_zone(zone) { 8354 if (!is_highmem(zone)) 8355 lowmem_pages += zone_managed_pages(zone); 8356 } 8357 8358 for_each_zone(zone) { 8359 u64 tmp; 8360 8361 spin_lock_irqsave(&zone->lock, flags); 8362 tmp = (u64)pages_min * zone_managed_pages(zone); 8363 do_div(tmp, lowmem_pages); 8364 if (is_highmem(zone)) { 8365 /* 8366 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8367 * need highmem pages, so cap pages_min to a small 8368 * value here. 8369 * 8370 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8371 * deltas control async page reclaim, and so should 8372 * not be capped for highmem. 8373 */ 8374 unsigned long min_pages; 8375 8376 min_pages = zone_managed_pages(zone) / 1024; 8377 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8378 zone->_watermark[WMARK_MIN] = min_pages; 8379 } else { 8380 /* 8381 * If it's a lowmem zone, reserve a number of pages 8382 * proportionate to the zone's size. 8383 */ 8384 zone->_watermark[WMARK_MIN] = tmp; 8385 } 8386 8387 /* 8388 * Set the kswapd watermarks distance according to the 8389 * scale factor in proportion to available memory, but 8390 * ensure a minimum size on small systems. 8391 */ 8392 tmp = max_t(u64, tmp >> 2, 8393 mult_frac(zone_managed_pages(zone), 8394 watermark_scale_factor, 10000)); 8395 8396 zone->watermark_boost = 0; 8397 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8398 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8399 8400 spin_unlock_irqrestore(&zone->lock, flags); 8401 } 8402 8403 /* update totalreserve_pages */ 8404 calculate_totalreserve_pages(); 8405 } 8406 8407 /** 8408 * setup_per_zone_wmarks - called when min_free_kbytes changes 8409 * or when memory is hot-{added|removed} 8410 * 8411 * Ensures that the watermark[min,low,high] values for each zone are set 8412 * correctly with respect to min_free_kbytes. 8413 */ 8414 void setup_per_zone_wmarks(void) 8415 { 8416 struct zone *zone; 8417 static DEFINE_SPINLOCK(lock); 8418 8419 spin_lock(&lock); 8420 __setup_per_zone_wmarks(); 8421 spin_unlock(&lock); 8422 8423 /* 8424 * The watermark size have changed so update the pcpu batch 8425 * and high limits or the limits may be inappropriate. 8426 */ 8427 for_each_zone(zone) 8428 zone_pcp_update(zone, 0); 8429 } 8430 8431 /* 8432 * Initialise min_free_kbytes. 8433 * 8434 * For small machines we want it small (128k min). For large machines 8435 * we want it large (256MB max). But it is not linear, because network 8436 * bandwidth does not increase linearly with machine size. We use 8437 * 8438 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8439 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8440 * 8441 * which yields 8442 * 8443 * 16MB: 512k 8444 * 32MB: 724k 8445 * 64MB: 1024k 8446 * 128MB: 1448k 8447 * 256MB: 2048k 8448 * 512MB: 2896k 8449 * 1024MB: 4096k 8450 * 2048MB: 5792k 8451 * 4096MB: 8192k 8452 * 8192MB: 11584k 8453 * 16384MB: 16384k 8454 */ 8455 int __meminit init_per_zone_wmark_min(void) 8456 { 8457 unsigned long lowmem_kbytes; 8458 int new_min_free_kbytes; 8459 8460 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8461 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8462 8463 if (new_min_free_kbytes > user_min_free_kbytes) { 8464 min_free_kbytes = new_min_free_kbytes; 8465 if (min_free_kbytes < 128) 8466 min_free_kbytes = 128; 8467 if (min_free_kbytes > 262144) 8468 min_free_kbytes = 262144; 8469 } else { 8470 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8471 new_min_free_kbytes, user_min_free_kbytes); 8472 } 8473 setup_per_zone_wmarks(); 8474 refresh_zone_stat_thresholds(); 8475 setup_per_zone_lowmem_reserve(); 8476 8477 #ifdef CONFIG_NUMA 8478 setup_min_unmapped_ratio(); 8479 setup_min_slab_ratio(); 8480 #endif 8481 8482 khugepaged_min_free_kbytes_update(); 8483 8484 return 0; 8485 } 8486 postcore_initcall(init_per_zone_wmark_min) 8487 8488 /* 8489 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8490 * that we can call two helper functions whenever min_free_kbytes 8491 * changes. 8492 */ 8493 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8494 void *buffer, size_t *length, loff_t *ppos) 8495 { 8496 int rc; 8497 8498 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8499 if (rc) 8500 return rc; 8501 8502 if (write) { 8503 user_min_free_kbytes = min_free_kbytes; 8504 setup_per_zone_wmarks(); 8505 } 8506 return 0; 8507 } 8508 8509 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8510 void *buffer, size_t *length, loff_t *ppos) 8511 { 8512 int rc; 8513 8514 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8515 if (rc) 8516 return rc; 8517 8518 if (write) 8519 setup_per_zone_wmarks(); 8520 8521 return 0; 8522 } 8523 8524 #ifdef CONFIG_NUMA 8525 static void setup_min_unmapped_ratio(void) 8526 { 8527 pg_data_t *pgdat; 8528 struct zone *zone; 8529 8530 for_each_online_pgdat(pgdat) 8531 pgdat->min_unmapped_pages = 0; 8532 8533 for_each_zone(zone) 8534 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8535 sysctl_min_unmapped_ratio) / 100; 8536 } 8537 8538 8539 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8540 void *buffer, size_t *length, loff_t *ppos) 8541 { 8542 int rc; 8543 8544 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8545 if (rc) 8546 return rc; 8547 8548 setup_min_unmapped_ratio(); 8549 8550 return 0; 8551 } 8552 8553 static void setup_min_slab_ratio(void) 8554 { 8555 pg_data_t *pgdat; 8556 struct zone *zone; 8557 8558 for_each_online_pgdat(pgdat) 8559 pgdat->min_slab_pages = 0; 8560 8561 for_each_zone(zone) 8562 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8563 sysctl_min_slab_ratio) / 100; 8564 } 8565 8566 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8567 void *buffer, size_t *length, loff_t *ppos) 8568 { 8569 int rc; 8570 8571 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8572 if (rc) 8573 return rc; 8574 8575 setup_min_slab_ratio(); 8576 8577 return 0; 8578 } 8579 #endif 8580 8581 /* 8582 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8583 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8584 * whenever sysctl_lowmem_reserve_ratio changes. 8585 * 8586 * The reserve ratio obviously has absolutely no relation with the 8587 * minimum watermarks. The lowmem reserve ratio can only make sense 8588 * if in function of the boot time zone sizes. 8589 */ 8590 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8591 void *buffer, size_t *length, loff_t *ppos) 8592 { 8593 int i; 8594 8595 proc_dointvec_minmax(table, write, buffer, length, ppos); 8596 8597 for (i = 0; i < MAX_NR_ZONES; i++) { 8598 if (sysctl_lowmem_reserve_ratio[i] < 1) 8599 sysctl_lowmem_reserve_ratio[i] = 0; 8600 } 8601 8602 setup_per_zone_lowmem_reserve(); 8603 return 0; 8604 } 8605 8606 /* 8607 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8608 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8609 * pagelist can have before it gets flushed back to buddy allocator. 8610 */ 8611 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8612 int write, void *buffer, size_t *length, loff_t *ppos) 8613 { 8614 struct zone *zone; 8615 int old_percpu_pagelist_high_fraction; 8616 int ret; 8617 8618 mutex_lock(&pcp_batch_high_lock); 8619 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8620 8621 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8622 if (!write || ret < 0) 8623 goto out; 8624 8625 /* Sanity checking to avoid pcp imbalance */ 8626 if (percpu_pagelist_high_fraction && 8627 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8628 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8629 ret = -EINVAL; 8630 goto out; 8631 } 8632 8633 /* No change? */ 8634 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8635 goto out; 8636 8637 for_each_populated_zone(zone) 8638 zone_set_pageset_high_and_batch(zone, 0); 8639 out: 8640 mutex_unlock(&pcp_batch_high_lock); 8641 return ret; 8642 } 8643 8644 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8645 /* 8646 * Returns the number of pages that arch has reserved but 8647 * is not known to alloc_large_system_hash(). 8648 */ 8649 static unsigned long __init arch_reserved_kernel_pages(void) 8650 { 8651 return 0; 8652 } 8653 #endif 8654 8655 /* 8656 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8657 * machines. As memory size is increased the scale is also increased but at 8658 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8659 * quadruples the scale is increased by one, which means the size of hash table 8660 * only doubles, instead of quadrupling as well. 8661 * Because 32-bit systems cannot have large physical memory, where this scaling 8662 * makes sense, it is disabled on such platforms. 8663 */ 8664 #if __BITS_PER_LONG > 32 8665 #define ADAPT_SCALE_BASE (64ul << 30) 8666 #define ADAPT_SCALE_SHIFT 2 8667 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8668 #endif 8669 8670 /* 8671 * allocate a large system hash table from bootmem 8672 * - it is assumed that the hash table must contain an exact power-of-2 8673 * quantity of entries 8674 * - limit is the number of hash buckets, not the total allocation size 8675 */ 8676 void *__init alloc_large_system_hash(const char *tablename, 8677 unsigned long bucketsize, 8678 unsigned long numentries, 8679 int scale, 8680 int flags, 8681 unsigned int *_hash_shift, 8682 unsigned int *_hash_mask, 8683 unsigned long low_limit, 8684 unsigned long high_limit) 8685 { 8686 unsigned long long max = high_limit; 8687 unsigned long log2qty, size; 8688 void *table = NULL; 8689 gfp_t gfp_flags; 8690 bool virt; 8691 bool huge; 8692 8693 /* allow the kernel cmdline to have a say */ 8694 if (!numentries) { 8695 /* round applicable memory size up to nearest megabyte */ 8696 numentries = nr_kernel_pages; 8697 numentries -= arch_reserved_kernel_pages(); 8698 8699 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8700 if (PAGE_SHIFT < 20) 8701 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8702 8703 #if __BITS_PER_LONG > 32 8704 if (!high_limit) { 8705 unsigned long adapt; 8706 8707 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8708 adapt <<= ADAPT_SCALE_SHIFT) 8709 scale++; 8710 } 8711 #endif 8712 8713 /* limit to 1 bucket per 2^scale bytes of low memory */ 8714 if (scale > PAGE_SHIFT) 8715 numentries >>= (scale - PAGE_SHIFT); 8716 else 8717 numentries <<= (PAGE_SHIFT - scale); 8718 8719 /* Make sure we've got at least a 0-order allocation.. */ 8720 if (unlikely(flags & HASH_SMALL)) { 8721 /* Makes no sense without HASH_EARLY */ 8722 WARN_ON(!(flags & HASH_EARLY)); 8723 if (!(numentries >> *_hash_shift)) { 8724 numentries = 1UL << *_hash_shift; 8725 BUG_ON(!numentries); 8726 } 8727 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8728 numentries = PAGE_SIZE / bucketsize; 8729 } 8730 numentries = roundup_pow_of_two(numentries); 8731 8732 /* limit allocation size to 1/16 total memory by default */ 8733 if (max == 0) { 8734 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8735 do_div(max, bucketsize); 8736 } 8737 max = min(max, 0x80000000ULL); 8738 8739 if (numentries < low_limit) 8740 numentries = low_limit; 8741 if (numentries > max) 8742 numentries = max; 8743 8744 log2qty = ilog2(numentries); 8745 8746 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8747 do { 8748 virt = false; 8749 size = bucketsize << log2qty; 8750 if (flags & HASH_EARLY) { 8751 if (flags & HASH_ZERO) 8752 table = memblock_alloc(size, SMP_CACHE_BYTES); 8753 else 8754 table = memblock_alloc_raw(size, 8755 SMP_CACHE_BYTES); 8756 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8757 table = __vmalloc(size, gfp_flags); 8758 virt = true; 8759 huge = is_vm_area_hugepages(table); 8760 } else { 8761 /* 8762 * If bucketsize is not a power-of-two, we may free 8763 * some pages at the end of hash table which 8764 * alloc_pages_exact() automatically does 8765 */ 8766 table = alloc_pages_exact(size, gfp_flags); 8767 kmemleak_alloc(table, size, 1, gfp_flags); 8768 } 8769 } while (!table && size > PAGE_SIZE && --log2qty); 8770 8771 if (!table) 8772 panic("Failed to allocate %s hash table\n", tablename); 8773 8774 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8775 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8776 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8777 8778 if (_hash_shift) 8779 *_hash_shift = log2qty; 8780 if (_hash_mask) 8781 *_hash_mask = (1 << log2qty) - 1; 8782 8783 return table; 8784 } 8785 8786 /* 8787 * This function checks whether pageblock includes unmovable pages or not. 8788 * 8789 * PageLRU check without isolation or lru_lock could race so that 8790 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8791 * check without lock_page also may miss some movable non-lru pages at 8792 * race condition. So you can't expect this function should be exact. 8793 * 8794 * Returns a page without holding a reference. If the caller wants to 8795 * dereference that page (e.g., dumping), it has to make sure that it 8796 * cannot get removed (e.g., via memory unplug) concurrently. 8797 * 8798 */ 8799 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8800 int migratetype, int flags) 8801 { 8802 unsigned long iter = 0; 8803 unsigned long pfn = page_to_pfn(page); 8804 unsigned long offset = pfn % pageblock_nr_pages; 8805 8806 if (is_migrate_cma_page(page)) { 8807 /* 8808 * CMA allocations (alloc_contig_range) really need to mark 8809 * isolate CMA pageblocks even when they are not movable in fact 8810 * so consider them movable here. 8811 */ 8812 if (is_migrate_cma(migratetype)) 8813 return NULL; 8814 8815 return page; 8816 } 8817 8818 for (; iter < pageblock_nr_pages - offset; iter++) { 8819 page = pfn_to_page(pfn + iter); 8820 8821 /* 8822 * Both, bootmem allocations and memory holes are marked 8823 * PG_reserved and are unmovable. We can even have unmovable 8824 * allocations inside ZONE_MOVABLE, for example when 8825 * specifying "movablecore". 8826 */ 8827 if (PageReserved(page)) 8828 return page; 8829 8830 /* 8831 * If the zone is movable and we have ruled out all reserved 8832 * pages then it should be reasonably safe to assume the rest 8833 * is movable. 8834 */ 8835 if (zone_idx(zone) == ZONE_MOVABLE) 8836 continue; 8837 8838 /* 8839 * Hugepages are not in LRU lists, but they're movable. 8840 * THPs are on the LRU, but need to be counted as #small pages. 8841 * We need not scan over tail pages because we don't 8842 * handle each tail page individually in migration. 8843 */ 8844 if (PageHuge(page) || PageTransCompound(page)) { 8845 struct page *head = compound_head(page); 8846 unsigned int skip_pages; 8847 8848 if (PageHuge(page)) { 8849 if (!hugepage_migration_supported(page_hstate(head))) 8850 return page; 8851 } else if (!PageLRU(head) && !__PageMovable(head)) { 8852 return page; 8853 } 8854 8855 skip_pages = compound_nr(head) - (page - head); 8856 iter += skip_pages - 1; 8857 continue; 8858 } 8859 8860 /* 8861 * We can't use page_count without pin a page 8862 * because another CPU can free compound page. 8863 * This check already skips compound tails of THP 8864 * because their page->_refcount is zero at all time. 8865 */ 8866 if (!page_ref_count(page)) { 8867 if (PageBuddy(page)) 8868 iter += (1 << buddy_order(page)) - 1; 8869 continue; 8870 } 8871 8872 /* 8873 * The HWPoisoned page may be not in buddy system, and 8874 * page_count() is not 0. 8875 */ 8876 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8877 continue; 8878 8879 /* 8880 * We treat all PageOffline() pages as movable when offlining 8881 * to give drivers a chance to decrement their reference count 8882 * in MEM_GOING_OFFLINE in order to indicate that these pages 8883 * can be offlined as there are no direct references anymore. 8884 * For actually unmovable PageOffline() where the driver does 8885 * not support this, we will fail later when trying to actually 8886 * move these pages that still have a reference count > 0. 8887 * (false negatives in this function only) 8888 */ 8889 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8890 continue; 8891 8892 if (__PageMovable(page) || PageLRU(page)) 8893 continue; 8894 8895 /* 8896 * If there are RECLAIMABLE pages, we need to check 8897 * it. But now, memory offline itself doesn't call 8898 * shrink_node_slabs() and it still to be fixed. 8899 */ 8900 return page; 8901 } 8902 return NULL; 8903 } 8904 8905 #ifdef CONFIG_CONTIG_ALLOC 8906 static unsigned long pfn_max_align_down(unsigned long pfn) 8907 { 8908 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8909 pageblock_nr_pages) - 1); 8910 } 8911 8912 static unsigned long pfn_max_align_up(unsigned long pfn) 8913 { 8914 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8915 pageblock_nr_pages)); 8916 } 8917 8918 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8919 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8920 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8921 static void alloc_contig_dump_pages(struct list_head *page_list) 8922 { 8923 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8924 8925 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8926 struct page *page; 8927 8928 dump_stack(); 8929 list_for_each_entry(page, page_list, lru) 8930 dump_page(page, "migration failure"); 8931 } 8932 } 8933 #else 8934 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8935 { 8936 } 8937 #endif 8938 8939 /* [start, end) must belong to a single zone. */ 8940 static int __alloc_contig_migrate_range(struct compact_control *cc, 8941 unsigned long start, unsigned long end) 8942 { 8943 /* This function is based on compact_zone() from compaction.c. */ 8944 unsigned int nr_reclaimed; 8945 unsigned long pfn = start; 8946 unsigned int tries = 0; 8947 int ret = 0; 8948 struct migration_target_control mtc = { 8949 .nid = zone_to_nid(cc->zone), 8950 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8951 }; 8952 8953 lru_cache_disable(); 8954 8955 while (pfn < end || !list_empty(&cc->migratepages)) { 8956 if (fatal_signal_pending(current)) { 8957 ret = -EINTR; 8958 break; 8959 } 8960 8961 if (list_empty(&cc->migratepages)) { 8962 cc->nr_migratepages = 0; 8963 ret = isolate_migratepages_range(cc, pfn, end); 8964 if (ret && ret != -EAGAIN) 8965 break; 8966 pfn = cc->migrate_pfn; 8967 tries = 0; 8968 } else if (++tries == 5) { 8969 ret = -EBUSY; 8970 break; 8971 } 8972 8973 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8974 &cc->migratepages); 8975 cc->nr_migratepages -= nr_reclaimed; 8976 8977 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8978 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 8979 8980 /* 8981 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 8982 * to retry again over this error, so do the same here. 8983 */ 8984 if (ret == -ENOMEM) 8985 break; 8986 } 8987 8988 lru_cache_enable(); 8989 if (ret < 0) { 8990 if (ret == -EBUSY) 8991 alloc_contig_dump_pages(&cc->migratepages); 8992 putback_movable_pages(&cc->migratepages); 8993 return ret; 8994 } 8995 return 0; 8996 } 8997 8998 /** 8999 * alloc_contig_range() -- tries to allocate given range of pages 9000 * @start: start PFN to allocate 9001 * @end: one-past-the-last PFN to allocate 9002 * @migratetype: migratetype of the underlying pageblocks (either 9003 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9004 * in range must have the same migratetype and it must 9005 * be either of the two. 9006 * @gfp_mask: GFP mask to use during compaction 9007 * 9008 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 9009 * aligned. The PFN range must belong to a single zone. 9010 * 9011 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9012 * pageblocks in the range. Once isolated, the pageblocks should not 9013 * be modified by others. 9014 * 9015 * Return: zero on success or negative error code. On success all 9016 * pages which PFN is in [start, end) are allocated for the caller and 9017 * need to be freed with free_contig_range(). 9018 */ 9019 int alloc_contig_range(unsigned long start, unsigned long end, 9020 unsigned migratetype, gfp_t gfp_mask) 9021 { 9022 unsigned long outer_start, outer_end; 9023 unsigned int order; 9024 int ret = 0; 9025 9026 struct compact_control cc = { 9027 .nr_migratepages = 0, 9028 .order = -1, 9029 .zone = page_zone(pfn_to_page(start)), 9030 .mode = MIGRATE_SYNC, 9031 .ignore_skip_hint = true, 9032 .no_set_skip_hint = true, 9033 .gfp_mask = current_gfp_context(gfp_mask), 9034 .alloc_contig = true, 9035 }; 9036 INIT_LIST_HEAD(&cc.migratepages); 9037 9038 /* 9039 * What we do here is we mark all pageblocks in range as 9040 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9041 * have different sizes, and due to the way page allocator 9042 * work, we align the range to biggest of the two pages so 9043 * that page allocator won't try to merge buddies from 9044 * different pageblocks and change MIGRATE_ISOLATE to some 9045 * other migration type. 9046 * 9047 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9048 * migrate the pages from an unaligned range (ie. pages that 9049 * we are interested in). This will put all the pages in 9050 * range back to page allocator as MIGRATE_ISOLATE. 9051 * 9052 * When this is done, we take the pages in range from page 9053 * allocator removing them from the buddy system. This way 9054 * page allocator will never consider using them. 9055 * 9056 * This lets us mark the pageblocks back as 9057 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9058 * aligned range but not in the unaligned, original range are 9059 * put back to page allocator so that buddy can use them. 9060 */ 9061 9062 ret = start_isolate_page_range(pfn_max_align_down(start), 9063 pfn_max_align_up(end), migratetype, 0); 9064 if (ret) 9065 return ret; 9066 9067 drain_all_pages(cc.zone); 9068 9069 /* 9070 * In case of -EBUSY, we'd like to know which page causes problem. 9071 * So, just fall through. test_pages_isolated() has a tracepoint 9072 * which will report the busy page. 9073 * 9074 * It is possible that busy pages could become available before 9075 * the call to test_pages_isolated, and the range will actually be 9076 * allocated. So, if we fall through be sure to clear ret so that 9077 * -EBUSY is not accidentally used or returned to caller. 9078 */ 9079 ret = __alloc_contig_migrate_range(&cc, start, end); 9080 if (ret && ret != -EBUSY) 9081 goto done; 9082 ret = 0; 9083 9084 /* 9085 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9086 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9087 * more, all pages in [start, end) are free in page allocator. 9088 * What we are going to do is to allocate all pages from 9089 * [start, end) (that is remove them from page allocator). 9090 * 9091 * The only problem is that pages at the beginning and at the 9092 * end of interesting range may be not aligned with pages that 9093 * page allocator holds, ie. they can be part of higher order 9094 * pages. Because of this, we reserve the bigger range and 9095 * once this is done free the pages we are not interested in. 9096 * 9097 * We don't have to hold zone->lock here because the pages are 9098 * isolated thus they won't get removed from buddy. 9099 */ 9100 9101 order = 0; 9102 outer_start = start; 9103 while (!PageBuddy(pfn_to_page(outer_start))) { 9104 if (++order >= MAX_ORDER) { 9105 outer_start = start; 9106 break; 9107 } 9108 outer_start &= ~0UL << order; 9109 } 9110 9111 if (outer_start != start) { 9112 order = buddy_order(pfn_to_page(outer_start)); 9113 9114 /* 9115 * outer_start page could be small order buddy page and 9116 * it doesn't include start page. Adjust outer_start 9117 * in this case to report failed page properly 9118 * on tracepoint in test_pages_isolated() 9119 */ 9120 if (outer_start + (1UL << order) <= start) 9121 outer_start = start; 9122 } 9123 9124 /* Make sure the range is really isolated. */ 9125 if (test_pages_isolated(outer_start, end, 0)) { 9126 ret = -EBUSY; 9127 goto done; 9128 } 9129 9130 /* Grab isolated pages from freelists. */ 9131 outer_end = isolate_freepages_range(&cc, outer_start, end); 9132 if (!outer_end) { 9133 ret = -EBUSY; 9134 goto done; 9135 } 9136 9137 /* Free head and tail (if any) */ 9138 if (start != outer_start) 9139 free_contig_range(outer_start, start - outer_start); 9140 if (end != outer_end) 9141 free_contig_range(end, outer_end - end); 9142 9143 done: 9144 undo_isolate_page_range(pfn_max_align_down(start), 9145 pfn_max_align_up(end), migratetype); 9146 return ret; 9147 } 9148 EXPORT_SYMBOL(alloc_contig_range); 9149 9150 static int __alloc_contig_pages(unsigned long start_pfn, 9151 unsigned long nr_pages, gfp_t gfp_mask) 9152 { 9153 unsigned long end_pfn = start_pfn + nr_pages; 9154 9155 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9156 gfp_mask); 9157 } 9158 9159 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9160 unsigned long nr_pages) 9161 { 9162 unsigned long i, end_pfn = start_pfn + nr_pages; 9163 struct page *page; 9164 9165 for (i = start_pfn; i < end_pfn; i++) { 9166 page = pfn_to_online_page(i); 9167 if (!page) 9168 return false; 9169 9170 if (page_zone(page) != z) 9171 return false; 9172 9173 if (PageReserved(page)) 9174 return false; 9175 } 9176 return true; 9177 } 9178 9179 static bool zone_spans_last_pfn(const struct zone *zone, 9180 unsigned long start_pfn, unsigned long nr_pages) 9181 { 9182 unsigned long last_pfn = start_pfn + nr_pages - 1; 9183 9184 return zone_spans_pfn(zone, last_pfn); 9185 } 9186 9187 /** 9188 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9189 * @nr_pages: Number of contiguous pages to allocate 9190 * @gfp_mask: GFP mask to limit search and used during compaction 9191 * @nid: Target node 9192 * @nodemask: Mask for other possible nodes 9193 * 9194 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9195 * on an applicable zonelist to find a contiguous pfn range which can then be 9196 * tried for allocation with alloc_contig_range(). This routine is intended 9197 * for allocation requests which can not be fulfilled with the buddy allocator. 9198 * 9199 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9200 * power of two then the alignment is guaranteed to be to the given nr_pages 9201 * (e.g. 1GB request would be aligned to 1GB). 9202 * 9203 * Allocated pages can be freed with free_contig_range() or by manually calling 9204 * __free_page() on each allocated page. 9205 * 9206 * Return: pointer to contiguous pages on success, or NULL if not successful. 9207 */ 9208 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9209 int nid, nodemask_t *nodemask) 9210 { 9211 unsigned long ret, pfn, flags; 9212 struct zonelist *zonelist; 9213 struct zone *zone; 9214 struct zoneref *z; 9215 9216 zonelist = node_zonelist(nid, gfp_mask); 9217 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9218 gfp_zone(gfp_mask), nodemask) { 9219 spin_lock_irqsave(&zone->lock, flags); 9220 9221 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9222 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9223 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9224 /* 9225 * We release the zone lock here because 9226 * alloc_contig_range() will also lock the zone 9227 * at some point. If there's an allocation 9228 * spinning on this lock, it may win the race 9229 * and cause alloc_contig_range() to fail... 9230 */ 9231 spin_unlock_irqrestore(&zone->lock, flags); 9232 ret = __alloc_contig_pages(pfn, nr_pages, 9233 gfp_mask); 9234 if (!ret) 9235 return pfn_to_page(pfn); 9236 spin_lock_irqsave(&zone->lock, flags); 9237 } 9238 pfn += nr_pages; 9239 } 9240 spin_unlock_irqrestore(&zone->lock, flags); 9241 } 9242 return NULL; 9243 } 9244 #endif /* CONFIG_CONTIG_ALLOC */ 9245 9246 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9247 { 9248 unsigned long count = 0; 9249 9250 for (; nr_pages--; pfn++) { 9251 struct page *page = pfn_to_page(pfn); 9252 9253 count += page_count(page) != 1; 9254 __free_page(page); 9255 } 9256 WARN(count != 0, "%lu pages are still in use!\n", count); 9257 } 9258 EXPORT_SYMBOL(free_contig_range); 9259 9260 /* 9261 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9262 * page high values need to be recalculated. 9263 */ 9264 void zone_pcp_update(struct zone *zone, int cpu_online) 9265 { 9266 mutex_lock(&pcp_batch_high_lock); 9267 zone_set_pageset_high_and_batch(zone, cpu_online); 9268 mutex_unlock(&pcp_batch_high_lock); 9269 } 9270 9271 /* 9272 * Effectively disable pcplists for the zone by setting the high limit to 0 9273 * and draining all cpus. A concurrent page freeing on another CPU that's about 9274 * to put the page on pcplist will either finish before the drain and the page 9275 * will be drained, or observe the new high limit and skip the pcplist. 9276 * 9277 * Must be paired with a call to zone_pcp_enable(). 9278 */ 9279 void zone_pcp_disable(struct zone *zone) 9280 { 9281 mutex_lock(&pcp_batch_high_lock); 9282 __zone_set_pageset_high_and_batch(zone, 0, 1); 9283 __drain_all_pages(zone, true); 9284 } 9285 9286 void zone_pcp_enable(struct zone *zone) 9287 { 9288 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9289 mutex_unlock(&pcp_batch_high_lock); 9290 } 9291 9292 void zone_pcp_reset(struct zone *zone) 9293 { 9294 int cpu; 9295 struct per_cpu_zonestat *pzstats; 9296 9297 if (zone->per_cpu_pageset != &boot_pageset) { 9298 for_each_online_cpu(cpu) { 9299 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9300 drain_zonestat(zone, pzstats); 9301 } 9302 free_percpu(zone->per_cpu_pageset); 9303 free_percpu(zone->per_cpu_zonestats); 9304 zone->per_cpu_pageset = &boot_pageset; 9305 zone->per_cpu_zonestats = &boot_zonestats; 9306 } 9307 } 9308 9309 #ifdef CONFIG_MEMORY_HOTREMOVE 9310 /* 9311 * All pages in the range must be in a single zone, must not contain holes, 9312 * must span full sections, and must be isolated before calling this function. 9313 */ 9314 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9315 { 9316 unsigned long pfn = start_pfn; 9317 struct page *page; 9318 struct zone *zone; 9319 unsigned int order; 9320 unsigned long flags; 9321 9322 offline_mem_sections(pfn, end_pfn); 9323 zone = page_zone(pfn_to_page(pfn)); 9324 spin_lock_irqsave(&zone->lock, flags); 9325 while (pfn < end_pfn) { 9326 page = pfn_to_page(pfn); 9327 /* 9328 * The HWPoisoned page may be not in buddy system, and 9329 * page_count() is not 0. 9330 */ 9331 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9332 pfn++; 9333 continue; 9334 } 9335 /* 9336 * At this point all remaining PageOffline() pages have a 9337 * reference count of 0 and can simply be skipped. 9338 */ 9339 if (PageOffline(page)) { 9340 BUG_ON(page_count(page)); 9341 BUG_ON(PageBuddy(page)); 9342 pfn++; 9343 continue; 9344 } 9345 9346 BUG_ON(page_count(page)); 9347 BUG_ON(!PageBuddy(page)); 9348 order = buddy_order(page); 9349 del_page_from_free_list(page, zone, order); 9350 pfn += (1 << order); 9351 } 9352 spin_unlock_irqrestore(&zone->lock, flags); 9353 } 9354 #endif 9355 9356 bool is_free_buddy_page(struct page *page) 9357 { 9358 struct zone *zone = page_zone(page); 9359 unsigned long pfn = page_to_pfn(page); 9360 unsigned long flags; 9361 unsigned int order; 9362 9363 spin_lock_irqsave(&zone->lock, flags); 9364 for (order = 0; order < MAX_ORDER; order++) { 9365 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9366 9367 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 9368 break; 9369 } 9370 spin_unlock_irqrestore(&zone->lock, flags); 9371 9372 return order < MAX_ORDER; 9373 } 9374 9375 #ifdef CONFIG_MEMORY_FAILURE 9376 /* 9377 * Break down a higher-order page in sub-pages, and keep our target out of 9378 * buddy allocator. 9379 */ 9380 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9381 struct page *target, int low, int high, 9382 int migratetype) 9383 { 9384 unsigned long size = 1 << high; 9385 struct page *current_buddy, *next_page; 9386 9387 while (high > low) { 9388 high--; 9389 size >>= 1; 9390 9391 if (target >= &page[size]) { 9392 next_page = page + size; 9393 current_buddy = page; 9394 } else { 9395 next_page = page; 9396 current_buddy = page + size; 9397 } 9398 9399 if (set_page_guard(zone, current_buddy, high, migratetype)) 9400 continue; 9401 9402 if (current_buddy != target) { 9403 add_to_free_list(current_buddy, zone, high, migratetype); 9404 set_buddy_order(current_buddy, high); 9405 page = next_page; 9406 } 9407 } 9408 } 9409 9410 /* 9411 * Take a page that will be marked as poisoned off the buddy allocator. 9412 */ 9413 bool take_page_off_buddy(struct page *page) 9414 { 9415 struct zone *zone = page_zone(page); 9416 unsigned long pfn = page_to_pfn(page); 9417 unsigned long flags; 9418 unsigned int order; 9419 bool ret = false; 9420 9421 spin_lock_irqsave(&zone->lock, flags); 9422 for (order = 0; order < MAX_ORDER; order++) { 9423 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9424 int page_order = buddy_order(page_head); 9425 9426 if (PageBuddy(page_head) && page_order >= order) { 9427 unsigned long pfn_head = page_to_pfn(page_head); 9428 int migratetype = get_pfnblock_migratetype(page_head, 9429 pfn_head); 9430 9431 del_page_from_free_list(page_head, zone, page_order); 9432 break_down_buddy_pages(zone, page_head, page, 0, 9433 page_order, migratetype); 9434 if (!is_migrate_isolate(migratetype)) 9435 __mod_zone_freepage_state(zone, -1, migratetype); 9436 ret = true; 9437 break; 9438 } 9439 if (page_count(page_head) > 0) 9440 break; 9441 } 9442 spin_unlock_irqrestore(&zone->lock, flags); 9443 return ret; 9444 } 9445 #endif 9446