xref: /openbmc/linux/mm/page_alloc.c (revision dbf4d133)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 #include "page_reporting.h"
78 
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock);
81 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
82 
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node);
85 EXPORT_PER_CPU_SYMBOL(numa_node);
86 #endif
87 
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89 
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 /*
92  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95  * defined in <linux/topology.h>.
96  */
97 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99 #endif
100 
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 	struct zone *zone;
104 	struct work_struct work;
105 };
106 static DEFINE_MUTEX(pcpu_drain_mutex);
107 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108 
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113 
114 /*
115  * Array of node states.
116  */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 	[N_POSSIBLE] = NODE_MASK_ALL,
119 	[N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 	[N_MEMORY] = { { [0] = 1UL } },
126 	[N_CPU] = { { [0] = 1UL } },
127 #endif	/* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130 
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135 
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144 
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151 
152 static int __init early_init_on_alloc(char *buf)
153 {
154 	int ret;
155 	bool bool_result;
156 
157 	if (!buf)
158 		return -EINVAL;
159 	ret = kstrtobool(buf, &bool_result);
160 	if (bool_result && page_poisoning_enabled())
161 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 	if (bool_result)
163 		static_branch_enable(&init_on_alloc);
164 	else
165 		static_branch_disable(&init_on_alloc);
166 	return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169 
170 static int __init early_init_on_free(char *buf)
171 {
172 	int ret;
173 	bool bool_result;
174 
175 	if (!buf)
176 		return -EINVAL;
177 	ret = kstrtobool(buf, &bool_result);
178 	if (bool_result && page_poisoning_enabled())
179 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 	if (bool_result)
181 		static_branch_enable(&init_on_free);
182 	else
183 		static_branch_disable(&init_on_free);
184 	return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187 
188 /*
189  * A cached value of the page's pageblock's migratetype, used when the page is
190  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192  * Also the migratetype set in the page does not necessarily match the pcplist
193  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194  * other index - this ensures that it will be put on the correct CMA freelist.
195  */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 	return page->index;
199 }
200 
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 	page->index = migratetype;
204 }
205 
206 #ifdef CONFIG_PM_SLEEP
207 /*
208  * The following functions are used by the suspend/hibernate code to temporarily
209  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210  * while devices are suspended.  To avoid races with the suspend/hibernate code,
211  * they should always be called with system_transition_mutex held
212  * (gfp_allowed_mask also should only be modified with system_transition_mutex
213  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214  * with that modification).
215  */
216 
217 static gfp_t saved_gfp_mask;
218 
219 void pm_restore_gfp_mask(void)
220 {
221 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 	if (saved_gfp_mask) {
223 		gfp_allowed_mask = saved_gfp_mask;
224 		saved_gfp_mask = 0;
225 	}
226 }
227 
228 void pm_restrict_gfp_mask(void)
229 {
230 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 	WARN_ON(saved_gfp_mask);
232 	saved_gfp_mask = gfp_allowed_mask;
233 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235 
236 bool pm_suspended_storage(void)
237 {
238 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 		return false;
240 	return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243 
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247 
248 static void __free_pages_ok(struct page *page, unsigned int order);
249 
250 /*
251  * results with 256, 32 in the lowmem_reserve sysctl:
252  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253  *	1G machine -> (16M dma, 784M normal, 224M high)
254  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257  *
258  * TBD: should special case ZONE_DMA32 machines here - in those we normally
259  * don't need any ZONE_NORMAL reservation
260  */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	[ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	[ZONE_DMA32] = 256,
267 #endif
268 	[ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 	[ZONE_HIGHMEM] = 0,
271 #endif
272 	[ZONE_MOVABLE] = 0,
273 };
274 
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 	 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 	 "DMA32",
281 #endif
282 	 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 	 "HighMem",
285 #endif
286 	 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 	 "Device",
289 #endif
290 };
291 
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 	"Unmovable",
294 	"Movable",
295 	"Reclaimable",
296 	"HighAtomic",
297 #ifdef CONFIG_CMA
298 	"CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 	"Isolate",
302 #endif
303 };
304 
305 compound_page_dtor * const compound_page_dtors[] = {
306 	NULL,
307 	free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 	free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 	free_transhuge_page,
313 #endif
314 };
315 
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321  * are not on separate NUMA nodes. Functionally this works but with
322  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323  * quite small. By default, do not boost watermarks on discontigmem as in
324  * many cases very high-order allocations like THP are likely to be
325  * unsupported and the premature reclaim offsets the advantage of long-term
326  * fragmentation avoidance.
327  */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333 
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337 
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352 
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359 
360 int page_group_by_mobility_disabled __read_mostly;
361 
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364  * During boot we initialize deferred pages on-demand, as needed, but once
365  * page_alloc_init_late() has finished, the deferred pages are all initialized,
366  * and we can permanently disable that path.
367  */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369 
370 /*
371  * Calling kasan_free_pages() only after deferred memory initialization
372  * has completed. Poisoning pages during deferred memory init will greatly
373  * lengthen the process and cause problem in large memory systems as the
374  * deferred pages initialization is done with interrupt disabled.
375  *
376  * Assuming that there will be no reference to those newly initialized
377  * pages before they are ever allocated, this should have no effect on
378  * KASAN memory tracking as the poison will be properly inserted at page
379  * allocation time. The only corner case is when pages are allocated by
380  * on-demand allocation and then freed again before the deferred pages
381  * initialization is done, but this is not likely to happen.
382  */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 	if (!static_branch_unlikely(&deferred_pages))
386 		kasan_free_pages(page, order);
387 }
388 
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 	int nid = early_pfn_to_nid(pfn);
393 
394 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 		return true;
396 
397 	return false;
398 }
399 
400 /*
401  * Returns true when the remaining initialisation should be deferred until
402  * later in the boot cycle when it can be parallelised.
403  */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 	static unsigned long prev_end_pfn, nr_initialised;
408 
409 	/*
410 	 * prev_end_pfn static that contains the end of previous zone
411 	 * No need to protect because called very early in boot before smp_init.
412 	 */
413 	if (prev_end_pfn != end_pfn) {
414 		prev_end_pfn = end_pfn;
415 		nr_initialised = 0;
416 	}
417 
418 	/* Always populate low zones for address-constrained allocations */
419 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 		return false;
421 
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
436 
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 	return false;
440 }
441 
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 	return false;
445 }
446 #endif
447 
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 							unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 	return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 	return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458 
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 	pfn &= (PAGES_PER_SECTION-1);
463 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469 
470 /**
471  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472  * @page: The page within the block of interest
473  * @pfn: The target page frame number
474  * @end_bitidx: The last bit of interest to retrieve
475  * @mask: mask of bits that the caller is interested in
476  *
477  * Return: pageblock_bits flags
478  */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 					unsigned long pfn,
481 					unsigned long end_bitidx,
482 					unsigned long mask)
483 {
484 	unsigned long *bitmap;
485 	unsigned long bitidx, word_bitidx;
486 	unsigned long word;
487 
488 	bitmap = get_pageblock_bitmap(page, pfn);
489 	bitidx = pfn_to_bitidx(page, pfn);
490 	word_bitidx = bitidx / BITS_PER_LONG;
491 	bitidx &= (BITS_PER_LONG-1);
492 
493 	word = bitmap[word_bitidx];
494 	bitidx += end_bitidx;
495 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497 
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 					unsigned long end_bitidx,
500 					unsigned long mask)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504 
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @end_bitidx: The last bit of interest
516  * @mask: mask of bits that the caller is interested in
517  */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 					unsigned long pfn,
520 					unsigned long end_bitidx,
521 					unsigned long mask)
522 {
523 	unsigned long *bitmap;
524 	unsigned long bitidx, word_bitidx;
525 	unsigned long old_word, word;
526 
527 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 
530 	bitmap = get_pageblock_bitmap(page, pfn);
531 	bitidx = pfn_to_bitidx(page, pfn);
532 	word_bitidx = bitidx / BITS_PER_LONG;
533 	bitidx &= (BITS_PER_LONG-1);
534 
535 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 
537 	bitidx += end_bitidx;
538 	mask <<= (BITS_PER_LONG - bitidx - 1);
539 	flags <<= (BITS_PER_LONG - bitidx - 1);
540 
541 	word = READ_ONCE(bitmap[word_bitidx]);
542 	for (;;) {
543 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 		if (word == old_word)
545 			break;
546 		word = old_word;
547 	}
548 }
549 
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 	if (unlikely(page_group_by_mobility_disabled &&
553 		     migratetype < MIGRATE_PCPTYPES))
554 		migratetype = MIGRATE_UNMOVABLE;
555 
556 	set_pageblock_flags_group(page, (unsigned long)migratetype,
557 					PB_migrate, PB_migrate_end);
558 }
559 
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 	int ret = 0;
564 	unsigned seq;
565 	unsigned long pfn = page_to_pfn(page);
566 	unsigned long sp, start_pfn;
567 
568 	do {
569 		seq = zone_span_seqbegin(zone);
570 		start_pfn = zone->zone_start_pfn;
571 		sp = zone->spanned_pages;
572 		if (!zone_spans_pfn(zone, pfn))
573 			ret = 1;
574 	} while (zone_span_seqretry(zone, seq));
575 
576 	if (ret)
577 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 			pfn, zone_to_nid(zone), zone->name,
579 			start_pfn, start_pfn + sp);
580 
581 	return ret;
582 }
583 
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 	if (!pfn_valid_within(page_to_pfn(page)))
587 		return 0;
588 	if (zone != page_zone(page))
589 		return 0;
590 
591 	return 1;
592 }
593 /*
594  * Temporary debugging check for pages not lying within a given zone.
595  */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 	if (page_outside_zone_boundaries(zone, page))
599 		return 1;
600 	if (!page_is_consistent(zone, page))
601 		return 1;
602 
603 	return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 	return 0;
609 }
610 #endif
611 
612 static void bad_page(struct page *page, const char *reason,
613 		unsigned long bad_flags)
614 {
615 	static unsigned long resume;
616 	static unsigned long nr_shown;
617 	static unsigned long nr_unshown;
618 
619 	/*
620 	 * Allow a burst of 60 reports, then keep quiet for that minute;
621 	 * or allow a steady drip of one report per second.
622 	 */
623 	if (nr_shown == 60) {
624 		if (time_before(jiffies, resume)) {
625 			nr_unshown++;
626 			goto out;
627 		}
628 		if (nr_unshown) {
629 			pr_alert(
630 			      "BUG: Bad page state: %lu messages suppressed\n",
631 				nr_unshown);
632 			nr_unshown = 0;
633 		}
634 		nr_shown = 0;
635 	}
636 	if (nr_shown++ == 0)
637 		resume = jiffies + 60 * HZ;
638 
639 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640 		current->comm, page_to_pfn(page));
641 	__dump_page(page, reason);
642 	bad_flags &= page->flags;
643 	if (bad_flags)
644 		pr_alert("bad because of flags: %#lx(%pGp)\n",
645 						bad_flags, &bad_flags);
646 	dump_page_owner(page);
647 
648 	print_modules();
649 	dump_stack();
650 out:
651 	/* Leave bad fields for debug, except PageBuddy could make trouble */
652 	page_mapcount_reset(page); /* remove PageBuddy */
653 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655 
656 /*
657  * Higher-order pages are called "compound pages".  They are structured thusly:
658  *
659  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660  *
661  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663  *
664  * The first tail page's ->compound_dtor holds the offset in array of compound
665  * page destructors. See compound_page_dtors.
666  *
667  * The first tail page's ->compound_order holds the order of allocation.
668  * This usage means that zero-order pages may not be compound.
669  */
670 
671 void free_compound_page(struct page *page)
672 {
673 	mem_cgroup_uncharge(page);
674 	__free_pages_ok(page, compound_order(page));
675 }
676 
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 	int i;
680 	int nr_pages = 1 << order;
681 
682 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 	set_compound_order(page, order);
684 	__SetPageHead(page);
685 	for (i = 1; i < nr_pages; i++) {
686 		struct page *p = page + i;
687 		set_page_count(p, 0);
688 		p->mapping = TAIL_MAPPING;
689 		set_compound_head(p, page);
690 	}
691 	atomic_set(compound_mapcount_ptr(page), -1);
692 	if (hpage_pincount_available(page))
693 		atomic_set(compound_pincount_ptr(page), 0);
694 }
695 
696 #ifdef CONFIG_DEBUG_PAGEALLOC
697 unsigned int _debug_guardpage_minorder;
698 
699 bool _debug_pagealloc_enabled_early __read_mostly
700 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
702 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
703 EXPORT_SYMBOL(_debug_pagealloc_enabled);
704 
705 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
706 
707 static int __init early_debug_pagealloc(char *buf)
708 {
709 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
710 }
711 early_param("debug_pagealloc", early_debug_pagealloc);
712 
713 void init_debug_pagealloc(void)
714 {
715 	if (!debug_pagealloc_enabled())
716 		return;
717 
718 	static_branch_enable(&_debug_pagealloc_enabled);
719 
720 	if (!debug_guardpage_minorder())
721 		return;
722 
723 	static_branch_enable(&_debug_guardpage_enabled);
724 }
725 
726 static int __init debug_guardpage_minorder_setup(char *buf)
727 {
728 	unsigned long res;
729 
730 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
731 		pr_err("Bad debug_guardpage_minorder value\n");
732 		return 0;
733 	}
734 	_debug_guardpage_minorder = res;
735 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
736 	return 0;
737 }
738 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
739 
740 static inline bool set_page_guard(struct zone *zone, struct page *page,
741 				unsigned int order, int migratetype)
742 {
743 	if (!debug_guardpage_enabled())
744 		return false;
745 
746 	if (order >= debug_guardpage_minorder())
747 		return false;
748 
749 	__SetPageGuard(page);
750 	INIT_LIST_HEAD(&page->lru);
751 	set_page_private(page, order);
752 	/* Guard pages are not available for any usage */
753 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
754 
755 	return true;
756 }
757 
758 static inline void clear_page_guard(struct zone *zone, struct page *page,
759 				unsigned int order, int migratetype)
760 {
761 	if (!debug_guardpage_enabled())
762 		return;
763 
764 	__ClearPageGuard(page);
765 
766 	set_page_private(page, 0);
767 	if (!is_migrate_isolate(migratetype))
768 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
769 }
770 #else
771 static inline bool set_page_guard(struct zone *zone, struct page *page,
772 			unsigned int order, int migratetype) { return false; }
773 static inline void clear_page_guard(struct zone *zone, struct page *page,
774 				unsigned int order, int migratetype) {}
775 #endif
776 
777 static inline void set_page_order(struct page *page, unsigned int order)
778 {
779 	set_page_private(page, order);
780 	__SetPageBuddy(page);
781 }
782 
783 /*
784  * This function checks whether a page is free && is the buddy
785  * we can coalesce a page and its buddy if
786  * (a) the buddy is not in a hole (check before calling!) &&
787  * (b) the buddy is in the buddy system &&
788  * (c) a page and its buddy have the same order &&
789  * (d) a page and its buddy are in the same zone.
790  *
791  * For recording whether a page is in the buddy system, we set PageBuddy.
792  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
793  *
794  * For recording page's order, we use page_private(page).
795  */
796 static inline bool page_is_buddy(struct page *page, struct page *buddy,
797 							unsigned int order)
798 {
799 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
800 		return false;
801 
802 	if (page_order(buddy) != order)
803 		return false;
804 
805 	/*
806 	 * zone check is done late to avoid uselessly calculating
807 	 * zone/node ids for pages that could never merge.
808 	 */
809 	if (page_zone_id(page) != page_zone_id(buddy))
810 		return false;
811 
812 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
813 
814 	return true;
815 }
816 
817 #ifdef CONFIG_COMPACTION
818 static inline struct capture_control *task_capc(struct zone *zone)
819 {
820 	struct capture_control *capc = current->capture_control;
821 
822 	return capc &&
823 		!(current->flags & PF_KTHREAD) &&
824 		!capc->page &&
825 		capc->cc->zone == zone &&
826 		capc->cc->direct_compaction ? capc : NULL;
827 }
828 
829 static inline bool
830 compaction_capture(struct capture_control *capc, struct page *page,
831 		   int order, int migratetype)
832 {
833 	if (!capc || order != capc->cc->order)
834 		return false;
835 
836 	/* Do not accidentally pollute CMA or isolated regions*/
837 	if (is_migrate_cma(migratetype) ||
838 	    is_migrate_isolate(migratetype))
839 		return false;
840 
841 	/*
842 	 * Do not let lower order allocations polluate a movable pageblock.
843 	 * This might let an unmovable request use a reclaimable pageblock
844 	 * and vice-versa but no more than normal fallback logic which can
845 	 * have trouble finding a high-order free page.
846 	 */
847 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
848 		return false;
849 
850 	capc->page = page;
851 	return true;
852 }
853 
854 #else
855 static inline struct capture_control *task_capc(struct zone *zone)
856 {
857 	return NULL;
858 }
859 
860 static inline bool
861 compaction_capture(struct capture_control *capc, struct page *page,
862 		   int order, int migratetype)
863 {
864 	return false;
865 }
866 #endif /* CONFIG_COMPACTION */
867 
868 /* Used for pages not on another list */
869 static inline void add_to_free_list(struct page *page, struct zone *zone,
870 				    unsigned int order, int migratetype)
871 {
872 	struct free_area *area = &zone->free_area[order];
873 
874 	list_add(&page->lru, &area->free_list[migratetype]);
875 	area->nr_free++;
876 }
877 
878 /* Used for pages not on another list */
879 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
880 					 unsigned int order, int migratetype)
881 {
882 	struct free_area *area = &zone->free_area[order];
883 
884 	list_add_tail(&page->lru, &area->free_list[migratetype]);
885 	area->nr_free++;
886 }
887 
888 /* Used for pages which are on another list */
889 static inline void move_to_free_list(struct page *page, struct zone *zone,
890 				     unsigned int order, int migratetype)
891 {
892 	struct free_area *area = &zone->free_area[order];
893 
894 	list_move(&page->lru, &area->free_list[migratetype]);
895 }
896 
897 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
898 					   unsigned int order)
899 {
900 	/* clear reported state and update reported page count */
901 	if (page_reported(page))
902 		__ClearPageReported(page);
903 
904 	list_del(&page->lru);
905 	__ClearPageBuddy(page);
906 	set_page_private(page, 0);
907 	zone->free_area[order].nr_free--;
908 }
909 
910 /*
911  * If this is not the largest possible page, check if the buddy
912  * of the next-highest order is free. If it is, it's possible
913  * that pages are being freed that will coalesce soon. In case,
914  * that is happening, add the free page to the tail of the list
915  * so it's less likely to be used soon and more likely to be merged
916  * as a higher order page
917  */
918 static inline bool
919 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
920 		   struct page *page, unsigned int order)
921 {
922 	struct page *higher_page, *higher_buddy;
923 	unsigned long combined_pfn;
924 
925 	if (order >= MAX_ORDER - 2)
926 		return false;
927 
928 	if (!pfn_valid_within(buddy_pfn))
929 		return false;
930 
931 	combined_pfn = buddy_pfn & pfn;
932 	higher_page = page + (combined_pfn - pfn);
933 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
934 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
935 
936 	return pfn_valid_within(buddy_pfn) &&
937 	       page_is_buddy(higher_page, higher_buddy, order + 1);
938 }
939 
940 /*
941  * Freeing function for a buddy system allocator.
942  *
943  * The concept of a buddy system is to maintain direct-mapped table
944  * (containing bit values) for memory blocks of various "orders".
945  * The bottom level table contains the map for the smallest allocatable
946  * units of memory (here, pages), and each level above it describes
947  * pairs of units from the levels below, hence, "buddies".
948  * At a high level, all that happens here is marking the table entry
949  * at the bottom level available, and propagating the changes upward
950  * as necessary, plus some accounting needed to play nicely with other
951  * parts of the VM system.
952  * At each level, we keep a list of pages, which are heads of continuous
953  * free pages of length of (1 << order) and marked with PageBuddy.
954  * Page's order is recorded in page_private(page) field.
955  * So when we are allocating or freeing one, we can derive the state of the
956  * other.  That is, if we allocate a small block, and both were
957  * free, the remainder of the region must be split into blocks.
958  * If a block is freed, and its buddy is also free, then this
959  * triggers coalescing into a block of larger size.
960  *
961  * -- nyc
962  */
963 
964 static inline void __free_one_page(struct page *page,
965 		unsigned long pfn,
966 		struct zone *zone, unsigned int order,
967 		int migratetype, bool report)
968 {
969 	struct capture_control *capc = task_capc(zone);
970 	unsigned long uninitialized_var(buddy_pfn);
971 	unsigned long combined_pfn;
972 	unsigned int max_order;
973 	struct page *buddy;
974 	bool to_tail;
975 
976 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
977 
978 	VM_BUG_ON(!zone_is_initialized(zone));
979 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
980 
981 	VM_BUG_ON(migratetype == -1);
982 	if (likely(!is_migrate_isolate(migratetype)))
983 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
984 
985 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
986 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
987 
988 continue_merging:
989 	while (order < max_order - 1) {
990 		if (compaction_capture(capc, page, order, migratetype)) {
991 			__mod_zone_freepage_state(zone, -(1 << order),
992 								migratetype);
993 			return;
994 		}
995 		buddy_pfn = __find_buddy_pfn(pfn, order);
996 		buddy = page + (buddy_pfn - pfn);
997 
998 		if (!pfn_valid_within(buddy_pfn))
999 			goto done_merging;
1000 		if (!page_is_buddy(page, buddy, order))
1001 			goto done_merging;
1002 		/*
1003 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1004 		 * merge with it and move up one order.
1005 		 */
1006 		if (page_is_guard(buddy))
1007 			clear_page_guard(zone, buddy, order, migratetype);
1008 		else
1009 			del_page_from_free_list(buddy, zone, order);
1010 		combined_pfn = buddy_pfn & pfn;
1011 		page = page + (combined_pfn - pfn);
1012 		pfn = combined_pfn;
1013 		order++;
1014 	}
1015 	if (max_order < MAX_ORDER) {
1016 		/* If we are here, it means order is >= pageblock_order.
1017 		 * We want to prevent merge between freepages on isolate
1018 		 * pageblock and normal pageblock. Without this, pageblock
1019 		 * isolation could cause incorrect freepage or CMA accounting.
1020 		 *
1021 		 * We don't want to hit this code for the more frequent
1022 		 * low-order merging.
1023 		 */
1024 		if (unlikely(has_isolate_pageblock(zone))) {
1025 			int buddy_mt;
1026 
1027 			buddy_pfn = __find_buddy_pfn(pfn, order);
1028 			buddy = page + (buddy_pfn - pfn);
1029 			buddy_mt = get_pageblock_migratetype(buddy);
1030 
1031 			if (migratetype != buddy_mt
1032 					&& (is_migrate_isolate(migratetype) ||
1033 						is_migrate_isolate(buddy_mt)))
1034 				goto done_merging;
1035 		}
1036 		max_order++;
1037 		goto continue_merging;
1038 	}
1039 
1040 done_merging:
1041 	set_page_order(page, order);
1042 
1043 	if (is_shuffle_order(order))
1044 		to_tail = shuffle_pick_tail();
1045 	else
1046 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1047 
1048 	if (to_tail)
1049 		add_to_free_list_tail(page, zone, order, migratetype);
1050 	else
1051 		add_to_free_list(page, zone, order, migratetype);
1052 
1053 	/* Notify page reporting subsystem of freed page */
1054 	if (report)
1055 		page_reporting_notify_free(order);
1056 }
1057 
1058 /*
1059  * A bad page could be due to a number of fields. Instead of multiple branches,
1060  * try and check multiple fields with one check. The caller must do a detailed
1061  * check if necessary.
1062  */
1063 static inline bool page_expected_state(struct page *page,
1064 					unsigned long check_flags)
1065 {
1066 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1067 		return false;
1068 
1069 	if (unlikely((unsigned long)page->mapping |
1070 			page_ref_count(page) |
1071 #ifdef CONFIG_MEMCG
1072 			(unsigned long)page->mem_cgroup |
1073 #endif
1074 			(page->flags & check_flags)))
1075 		return false;
1076 
1077 	return true;
1078 }
1079 
1080 static void free_pages_check_bad(struct page *page)
1081 {
1082 	const char *bad_reason;
1083 	unsigned long bad_flags;
1084 
1085 	bad_reason = NULL;
1086 	bad_flags = 0;
1087 
1088 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1089 		bad_reason = "nonzero mapcount";
1090 	if (unlikely(page->mapping != NULL))
1091 		bad_reason = "non-NULL mapping";
1092 	if (unlikely(page_ref_count(page) != 0))
1093 		bad_reason = "nonzero _refcount";
1094 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1095 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1096 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1097 	}
1098 #ifdef CONFIG_MEMCG
1099 	if (unlikely(page->mem_cgroup))
1100 		bad_reason = "page still charged to cgroup";
1101 #endif
1102 	bad_page(page, bad_reason, bad_flags);
1103 }
1104 
1105 static inline int free_pages_check(struct page *page)
1106 {
1107 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1108 		return 0;
1109 
1110 	/* Something has gone sideways, find it */
1111 	free_pages_check_bad(page);
1112 	return 1;
1113 }
1114 
1115 static int free_tail_pages_check(struct page *head_page, struct page *page)
1116 {
1117 	int ret = 1;
1118 
1119 	/*
1120 	 * We rely page->lru.next never has bit 0 set, unless the page
1121 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1122 	 */
1123 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1124 
1125 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1126 		ret = 0;
1127 		goto out;
1128 	}
1129 	switch (page - head_page) {
1130 	case 1:
1131 		/* the first tail page: ->mapping may be compound_mapcount() */
1132 		if (unlikely(compound_mapcount(page))) {
1133 			bad_page(page, "nonzero compound_mapcount", 0);
1134 			goto out;
1135 		}
1136 		break;
1137 	case 2:
1138 		/*
1139 		 * the second tail page: ->mapping is
1140 		 * deferred_list.next -- ignore value.
1141 		 */
1142 		break;
1143 	default:
1144 		if (page->mapping != TAIL_MAPPING) {
1145 			bad_page(page, "corrupted mapping in tail page", 0);
1146 			goto out;
1147 		}
1148 		break;
1149 	}
1150 	if (unlikely(!PageTail(page))) {
1151 		bad_page(page, "PageTail not set", 0);
1152 		goto out;
1153 	}
1154 	if (unlikely(compound_head(page) != head_page)) {
1155 		bad_page(page, "compound_head not consistent", 0);
1156 		goto out;
1157 	}
1158 	ret = 0;
1159 out:
1160 	page->mapping = NULL;
1161 	clear_compound_head(page);
1162 	return ret;
1163 }
1164 
1165 static void kernel_init_free_pages(struct page *page, int numpages)
1166 {
1167 	int i;
1168 
1169 	for (i = 0; i < numpages; i++)
1170 		clear_highpage(page + i);
1171 }
1172 
1173 static __always_inline bool free_pages_prepare(struct page *page,
1174 					unsigned int order, bool check_free)
1175 {
1176 	int bad = 0;
1177 
1178 	VM_BUG_ON_PAGE(PageTail(page), page);
1179 
1180 	trace_mm_page_free(page, order);
1181 
1182 	/*
1183 	 * Check tail pages before head page information is cleared to
1184 	 * avoid checking PageCompound for order-0 pages.
1185 	 */
1186 	if (unlikely(order)) {
1187 		bool compound = PageCompound(page);
1188 		int i;
1189 
1190 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1191 
1192 		if (compound)
1193 			ClearPageDoubleMap(page);
1194 		for (i = 1; i < (1 << order); i++) {
1195 			if (compound)
1196 				bad += free_tail_pages_check(page, page + i);
1197 			if (unlikely(free_pages_check(page + i))) {
1198 				bad++;
1199 				continue;
1200 			}
1201 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1202 		}
1203 	}
1204 	if (PageMappingFlags(page))
1205 		page->mapping = NULL;
1206 	if (memcg_kmem_enabled() && PageKmemcg(page))
1207 		__memcg_kmem_uncharge_page(page, order);
1208 	if (check_free)
1209 		bad += free_pages_check(page);
1210 	if (bad)
1211 		return false;
1212 
1213 	page_cpupid_reset_last(page);
1214 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1215 	reset_page_owner(page, order);
1216 
1217 	if (!PageHighMem(page)) {
1218 		debug_check_no_locks_freed(page_address(page),
1219 					   PAGE_SIZE << order);
1220 		debug_check_no_obj_freed(page_address(page),
1221 					   PAGE_SIZE << order);
1222 	}
1223 	if (want_init_on_free())
1224 		kernel_init_free_pages(page, 1 << order);
1225 
1226 	kernel_poison_pages(page, 1 << order, 0);
1227 	/*
1228 	 * arch_free_page() can make the page's contents inaccessible.  s390
1229 	 * does this.  So nothing which can access the page's contents should
1230 	 * happen after this.
1231 	 */
1232 	arch_free_page(page, order);
1233 
1234 	if (debug_pagealloc_enabled_static())
1235 		kernel_map_pages(page, 1 << order, 0);
1236 
1237 	kasan_free_nondeferred_pages(page, order);
1238 
1239 	return true;
1240 }
1241 
1242 #ifdef CONFIG_DEBUG_VM
1243 /*
1244  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1245  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1246  * moved from pcp lists to free lists.
1247  */
1248 static bool free_pcp_prepare(struct page *page)
1249 {
1250 	return free_pages_prepare(page, 0, true);
1251 }
1252 
1253 static bool bulkfree_pcp_prepare(struct page *page)
1254 {
1255 	if (debug_pagealloc_enabled_static())
1256 		return free_pages_check(page);
1257 	else
1258 		return false;
1259 }
1260 #else
1261 /*
1262  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1263  * moving from pcp lists to free list in order to reduce overhead. With
1264  * debug_pagealloc enabled, they are checked also immediately when being freed
1265  * to the pcp lists.
1266  */
1267 static bool free_pcp_prepare(struct page *page)
1268 {
1269 	if (debug_pagealloc_enabled_static())
1270 		return free_pages_prepare(page, 0, true);
1271 	else
1272 		return free_pages_prepare(page, 0, false);
1273 }
1274 
1275 static bool bulkfree_pcp_prepare(struct page *page)
1276 {
1277 	return free_pages_check(page);
1278 }
1279 #endif /* CONFIG_DEBUG_VM */
1280 
1281 static inline void prefetch_buddy(struct page *page)
1282 {
1283 	unsigned long pfn = page_to_pfn(page);
1284 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1285 	struct page *buddy = page + (buddy_pfn - pfn);
1286 
1287 	prefetch(buddy);
1288 }
1289 
1290 /*
1291  * Frees a number of pages from the PCP lists
1292  * Assumes all pages on list are in same zone, and of same order.
1293  * count is the number of pages to free.
1294  *
1295  * If the zone was previously in an "all pages pinned" state then look to
1296  * see if this freeing clears that state.
1297  *
1298  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1299  * pinned" detection logic.
1300  */
1301 static void free_pcppages_bulk(struct zone *zone, int count,
1302 					struct per_cpu_pages *pcp)
1303 {
1304 	int migratetype = 0;
1305 	int batch_free = 0;
1306 	int prefetch_nr = 0;
1307 	bool isolated_pageblocks;
1308 	struct page *page, *tmp;
1309 	LIST_HEAD(head);
1310 
1311 	while (count) {
1312 		struct list_head *list;
1313 
1314 		/*
1315 		 * Remove pages from lists in a round-robin fashion. A
1316 		 * batch_free count is maintained that is incremented when an
1317 		 * empty list is encountered.  This is so more pages are freed
1318 		 * off fuller lists instead of spinning excessively around empty
1319 		 * lists
1320 		 */
1321 		do {
1322 			batch_free++;
1323 			if (++migratetype == MIGRATE_PCPTYPES)
1324 				migratetype = 0;
1325 			list = &pcp->lists[migratetype];
1326 		} while (list_empty(list));
1327 
1328 		/* This is the only non-empty list. Free them all. */
1329 		if (batch_free == MIGRATE_PCPTYPES)
1330 			batch_free = count;
1331 
1332 		do {
1333 			page = list_last_entry(list, struct page, lru);
1334 			/* must delete to avoid corrupting pcp list */
1335 			list_del(&page->lru);
1336 			pcp->count--;
1337 
1338 			if (bulkfree_pcp_prepare(page))
1339 				continue;
1340 
1341 			list_add_tail(&page->lru, &head);
1342 
1343 			/*
1344 			 * We are going to put the page back to the global
1345 			 * pool, prefetch its buddy to speed up later access
1346 			 * under zone->lock. It is believed the overhead of
1347 			 * an additional test and calculating buddy_pfn here
1348 			 * can be offset by reduced memory latency later. To
1349 			 * avoid excessive prefetching due to large count, only
1350 			 * prefetch buddy for the first pcp->batch nr of pages.
1351 			 */
1352 			if (prefetch_nr++ < pcp->batch)
1353 				prefetch_buddy(page);
1354 		} while (--count && --batch_free && !list_empty(list));
1355 	}
1356 
1357 	spin_lock(&zone->lock);
1358 	isolated_pageblocks = has_isolate_pageblock(zone);
1359 
1360 	/*
1361 	 * Use safe version since after __free_one_page(),
1362 	 * page->lru.next will not point to original list.
1363 	 */
1364 	list_for_each_entry_safe(page, tmp, &head, lru) {
1365 		int mt = get_pcppage_migratetype(page);
1366 		/* MIGRATE_ISOLATE page should not go to pcplists */
1367 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 		/* Pageblock could have been isolated meanwhile */
1369 		if (unlikely(isolated_pageblocks))
1370 			mt = get_pageblock_migratetype(page);
1371 
1372 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373 		trace_mm_page_pcpu_drain(page, 0, mt);
1374 	}
1375 	spin_unlock(&zone->lock);
1376 }
1377 
1378 static void free_one_page(struct zone *zone,
1379 				struct page *page, unsigned long pfn,
1380 				unsigned int order,
1381 				int migratetype)
1382 {
1383 	spin_lock(&zone->lock);
1384 	if (unlikely(has_isolate_pageblock(zone) ||
1385 		is_migrate_isolate(migratetype))) {
1386 		migratetype = get_pfnblock_migratetype(page, pfn);
1387 	}
1388 	__free_one_page(page, pfn, zone, order, migratetype, true);
1389 	spin_unlock(&zone->lock);
1390 }
1391 
1392 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393 				unsigned long zone, int nid)
1394 {
1395 	mm_zero_struct_page(page);
1396 	set_page_links(page, zone, nid, pfn);
1397 	init_page_count(page);
1398 	page_mapcount_reset(page);
1399 	page_cpupid_reset_last(page);
1400 	page_kasan_tag_reset(page);
1401 
1402 	INIT_LIST_HEAD(&page->lru);
1403 #ifdef WANT_PAGE_VIRTUAL
1404 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 	if (!is_highmem_idx(zone))
1406 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1407 #endif
1408 }
1409 
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __meminit init_reserved_page(unsigned long pfn)
1412 {
1413 	pg_data_t *pgdat;
1414 	int nid, zid;
1415 
1416 	if (!early_page_uninitialised(pfn))
1417 		return;
1418 
1419 	nid = early_pfn_to_nid(pfn);
1420 	pgdat = NODE_DATA(nid);
1421 
1422 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 		struct zone *zone = &pgdat->node_zones[zid];
1424 
1425 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 			break;
1427 	}
1428 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429 }
1430 #else
1431 static inline void init_reserved_page(unsigned long pfn)
1432 {
1433 }
1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435 
1436 /*
1437  * Initialised pages do not have PageReserved set. This function is
1438  * called for each range allocated by the bootmem allocator and
1439  * marks the pages PageReserved. The remaining valid pages are later
1440  * sent to the buddy page allocator.
1441  */
1442 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443 {
1444 	unsigned long start_pfn = PFN_DOWN(start);
1445 	unsigned long end_pfn = PFN_UP(end);
1446 
1447 	for (; start_pfn < end_pfn; start_pfn++) {
1448 		if (pfn_valid(start_pfn)) {
1449 			struct page *page = pfn_to_page(start_pfn);
1450 
1451 			init_reserved_page(start_pfn);
1452 
1453 			/* Avoid false-positive PageTail() */
1454 			INIT_LIST_HEAD(&page->lru);
1455 
1456 			/*
1457 			 * no need for atomic set_bit because the struct
1458 			 * page is not visible yet so nobody should
1459 			 * access it yet.
1460 			 */
1461 			__SetPageReserved(page);
1462 		}
1463 	}
1464 }
1465 
1466 static void __free_pages_ok(struct page *page, unsigned int order)
1467 {
1468 	unsigned long flags;
1469 	int migratetype;
1470 	unsigned long pfn = page_to_pfn(page);
1471 
1472 	if (!free_pages_prepare(page, order, true))
1473 		return;
1474 
1475 	migratetype = get_pfnblock_migratetype(page, pfn);
1476 	local_irq_save(flags);
1477 	__count_vm_events(PGFREE, 1 << order);
1478 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1479 	local_irq_restore(flags);
1480 }
1481 
1482 void __free_pages_core(struct page *page, unsigned int order)
1483 {
1484 	unsigned int nr_pages = 1 << order;
1485 	struct page *p = page;
1486 	unsigned int loop;
1487 
1488 	prefetchw(p);
1489 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 		prefetchw(p + 1);
1491 		__ClearPageReserved(p);
1492 		set_page_count(p, 0);
1493 	}
1494 	__ClearPageReserved(p);
1495 	set_page_count(p, 0);
1496 
1497 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498 	set_page_refcounted(page);
1499 	__free_pages(page, order);
1500 }
1501 
1502 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1503 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1504 
1505 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1506 
1507 int __meminit early_pfn_to_nid(unsigned long pfn)
1508 {
1509 	static DEFINE_SPINLOCK(early_pfn_lock);
1510 	int nid;
1511 
1512 	spin_lock(&early_pfn_lock);
1513 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1514 	if (nid < 0)
1515 		nid = first_online_node;
1516 	spin_unlock(&early_pfn_lock);
1517 
1518 	return nid;
1519 }
1520 #endif
1521 
1522 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1523 /* Only safe to use early in boot when initialisation is single-threaded */
1524 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1525 {
1526 	int nid;
1527 
1528 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1529 	if (nid >= 0 && nid != node)
1530 		return false;
1531 	return true;
1532 }
1533 
1534 #else
1535 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1536 {
1537 	return true;
1538 }
1539 #endif
1540 
1541 
1542 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1543 							unsigned int order)
1544 {
1545 	if (early_page_uninitialised(pfn))
1546 		return;
1547 	__free_pages_core(page, order);
1548 }
1549 
1550 /*
1551  * Check that the whole (or subset of) a pageblock given by the interval of
1552  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1553  * with the migration of free compaction scanner. The scanners then need to
1554  * use only pfn_valid_within() check for arches that allow holes within
1555  * pageblocks.
1556  *
1557  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1558  *
1559  * It's possible on some configurations to have a setup like node0 node1 node0
1560  * i.e. it's possible that all pages within a zones range of pages do not
1561  * belong to a single zone. We assume that a border between node0 and node1
1562  * can occur within a single pageblock, but not a node0 node1 node0
1563  * interleaving within a single pageblock. It is therefore sufficient to check
1564  * the first and last page of a pageblock and avoid checking each individual
1565  * page in a pageblock.
1566  */
1567 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1568 				     unsigned long end_pfn, struct zone *zone)
1569 {
1570 	struct page *start_page;
1571 	struct page *end_page;
1572 
1573 	/* end_pfn is one past the range we are checking */
1574 	end_pfn--;
1575 
1576 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1577 		return NULL;
1578 
1579 	start_page = pfn_to_online_page(start_pfn);
1580 	if (!start_page)
1581 		return NULL;
1582 
1583 	if (page_zone(start_page) != zone)
1584 		return NULL;
1585 
1586 	end_page = pfn_to_page(end_pfn);
1587 
1588 	/* This gives a shorter code than deriving page_zone(end_page) */
1589 	if (page_zone_id(start_page) != page_zone_id(end_page))
1590 		return NULL;
1591 
1592 	return start_page;
1593 }
1594 
1595 void set_zone_contiguous(struct zone *zone)
1596 {
1597 	unsigned long block_start_pfn = zone->zone_start_pfn;
1598 	unsigned long block_end_pfn;
1599 
1600 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1601 	for (; block_start_pfn < zone_end_pfn(zone);
1602 			block_start_pfn = block_end_pfn,
1603 			 block_end_pfn += pageblock_nr_pages) {
1604 
1605 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1606 
1607 		if (!__pageblock_pfn_to_page(block_start_pfn,
1608 					     block_end_pfn, zone))
1609 			return;
1610 		cond_resched();
1611 	}
1612 
1613 	/* We confirm that there is no hole */
1614 	zone->contiguous = true;
1615 }
1616 
1617 void clear_zone_contiguous(struct zone *zone)
1618 {
1619 	zone->contiguous = false;
1620 }
1621 
1622 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1623 static void __init deferred_free_range(unsigned long pfn,
1624 				       unsigned long nr_pages)
1625 {
1626 	struct page *page;
1627 	unsigned long i;
1628 
1629 	if (!nr_pages)
1630 		return;
1631 
1632 	page = pfn_to_page(pfn);
1633 
1634 	/* Free a large naturally-aligned chunk if possible */
1635 	if (nr_pages == pageblock_nr_pages &&
1636 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1637 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1638 		__free_pages_core(page, pageblock_order);
1639 		return;
1640 	}
1641 
1642 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1643 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1644 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1645 		__free_pages_core(page, 0);
1646 	}
1647 }
1648 
1649 /* Completion tracking for deferred_init_memmap() threads */
1650 static atomic_t pgdat_init_n_undone __initdata;
1651 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1652 
1653 static inline void __init pgdat_init_report_one_done(void)
1654 {
1655 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1656 		complete(&pgdat_init_all_done_comp);
1657 }
1658 
1659 /*
1660  * Returns true if page needs to be initialized or freed to buddy allocator.
1661  *
1662  * First we check if pfn is valid on architectures where it is possible to have
1663  * holes within pageblock_nr_pages. On systems where it is not possible, this
1664  * function is optimized out.
1665  *
1666  * Then, we check if a current large page is valid by only checking the validity
1667  * of the head pfn.
1668  */
1669 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1670 {
1671 	if (!pfn_valid_within(pfn))
1672 		return false;
1673 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1674 		return false;
1675 	return true;
1676 }
1677 
1678 /*
1679  * Free pages to buddy allocator. Try to free aligned pages in
1680  * pageblock_nr_pages sizes.
1681  */
1682 static void __init deferred_free_pages(unsigned long pfn,
1683 				       unsigned long end_pfn)
1684 {
1685 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1686 	unsigned long nr_free = 0;
1687 
1688 	for (; pfn < end_pfn; pfn++) {
1689 		if (!deferred_pfn_valid(pfn)) {
1690 			deferred_free_range(pfn - nr_free, nr_free);
1691 			nr_free = 0;
1692 		} else if (!(pfn & nr_pgmask)) {
1693 			deferred_free_range(pfn - nr_free, nr_free);
1694 			nr_free = 1;
1695 			touch_nmi_watchdog();
1696 		} else {
1697 			nr_free++;
1698 		}
1699 	}
1700 	/* Free the last block of pages to allocator */
1701 	deferred_free_range(pfn - nr_free, nr_free);
1702 }
1703 
1704 /*
1705  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1706  * by performing it only once every pageblock_nr_pages.
1707  * Return number of pages initialized.
1708  */
1709 static unsigned long  __init deferred_init_pages(struct zone *zone,
1710 						 unsigned long pfn,
1711 						 unsigned long end_pfn)
1712 {
1713 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1714 	int nid = zone_to_nid(zone);
1715 	unsigned long nr_pages = 0;
1716 	int zid = zone_idx(zone);
1717 	struct page *page = NULL;
1718 
1719 	for (; pfn < end_pfn; pfn++) {
1720 		if (!deferred_pfn_valid(pfn)) {
1721 			page = NULL;
1722 			continue;
1723 		} else if (!page || !(pfn & nr_pgmask)) {
1724 			page = pfn_to_page(pfn);
1725 			touch_nmi_watchdog();
1726 		} else {
1727 			page++;
1728 		}
1729 		__init_single_page(page, pfn, zid, nid);
1730 		nr_pages++;
1731 	}
1732 	return (nr_pages);
1733 }
1734 
1735 /*
1736  * This function is meant to pre-load the iterator for the zone init.
1737  * Specifically it walks through the ranges until we are caught up to the
1738  * first_init_pfn value and exits there. If we never encounter the value we
1739  * return false indicating there are no valid ranges left.
1740  */
1741 static bool __init
1742 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1743 				    unsigned long *spfn, unsigned long *epfn,
1744 				    unsigned long first_init_pfn)
1745 {
1746 	u64 j;
1747 
1748 	/*
1749 	 * Start out by walking through the ranges in this zone that have
1750 	 * already been initialized. We don't need to do anything with them
1751 	 * so we just need to flush them out of the system.
1752 	 */
1753 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1754 		if (*epfn <= first_init_pfn)
1755 			continue;
1756 		if (*spfn < first_init_pfn)
1757 			*spfn = first_init_pfn;
1758 		*i = j;
1759 		return true;
1760 	}
1761 
1762 	return false;
1763 }
1764 
1765 /*
1766  * Initialize and free pages. We do it in two loops: first we initialize
1767  * struct page, then free to buddy allocator, because while we are
1768  * freeing pages we can access pages that are ahead (computing buddy
1769  * page in __free_one_page()).
1770  *
1771  * In order to try and keep some memory in the cache we have the loop
1772  * broken along max page order boundaries. This way we will not cause
1773  * any issues with the buddy page computation.
1774  */
1775 static unsigned long __init
1776 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1777 		       unsigned long *end_pfn)
1778 {
1779 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1780 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1781 	unsigned long nr_pages = 0;
1782 	u64 j = *i;
1783 
1784 	/* First we loop through and initialize the page values */
1785 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1786 		unsigned long t;
1787 
1788 		if (mo_pfn <= *start_pfn)
1789 			break;
1790 
1791 		t = min(mo_pfn, *end_pfn);
1792 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1793 
1794 		if (mo_pfn < *end_pfn) {
1795 			*start_pfn = mo_pfn;
1796 			break;
1797 		}
1798 	}
1799 
1800 	/* Reset values and now loop through freeing pages as needed */
1801 	swap(j, *i);
1802 
1803 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1804 		unsigned long t;
1805 
1806 		if (mo_pfn <= spfn)
1807 			break;
1808 
1809 		t = min(mo_pfn, epfn);
1810 		deferred_free_pages(spfn, t);
1811 
1812 		if (mo_pfn <= epfn)
1813 			break;
1814 	}
1815 
1816 	return nr_pages;
1817 }
1818 
1819 /* Initialise remaining memory on a node */
1820 static int __init deferred_init_memmap(void *data)
1821 {
1822 	pg_data_t *pgdat = data;
1823 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1824 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1825 	unsigned long first_init_pfn, flags;
1826 	unsigned long start = jiffies;
1827 	struct zone *zone;
1828 	int zid;
1829 	u64 i;
1830 
1831 	/* Bind memory initialisation thread to a local node if possible */
1832 	if (!cpumask_empty(cpumask))
1833 		set_cpus_allowed_ptr(current, cpumask);
1834 
1835 	pgdat_resize_lock(pgdat, &flags);
1836 	first_init_pfn = pgdat->first_deferred_pfn;
1837 	if (first_init_pfn == ULONG_MAX) {
1838 		pgdat_resize_unlock(pgdat, &flags);
1839 		pgdat_init_report_one_done();
1840 		return 0;
1841 	}
1842 
1843 	/* Sanity check boundaries */
1844 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1845 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1846 	pgdat->first_deferred_pfn = ULONG_MAX;
1847 
1848 	/* Only the highest zone is deferred so find it */
1849 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1850 		zone = pgdat->node_zones + zid;
1851 		if (first_init_pfn < zone_end_pfn(zone))
1852 			break;
1853 	}
1854 
1855 	/* If the zone is empty somebody else may have cleared out the zone */
1856 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1857 						 first_init_pfn))
1858 		goto zone_empty;
1859 
1860 	/*
1861 	 * Initialize and free pages in MAX_ORDER sized increments so
1862 	 * that we can avoid introducing any issues with the buddy
1863 	 * allocator.
1864 	 */
1865 	while (spfn < epfn)
1866 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1867 zone_empty:
1868 	pgdat_resize_unlock(pgdat, &flags);
1869 
1870 	/* Sanity check that the next zone really is unpopulated */
1871 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1872 
1873 	pr_info("node %d initialised, %lu pages in %ums\n",
1874 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1875 
1876 	pgdat_init_report_one_done();
1877 	return 0;
1878 }
1879 
1880 /*
1881  * If this zone has deferred pages, try to grow it by initializing enough
1882  * deferred pages to satisfy the allocation specified by order, rounded up to
1883  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1884  * of SECTION_SIZE bytes by initializing struct pages in increments of
1885  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1886  *
1887  * Return true when zone was grown, otherwise return false. We return true even
1888  * when we grow less than requested, to let the caller decide if there are
1889  * enough pages to satisfy the allocation.
1890  *
1891  * Note: We use noinline because this function is needed only during boot, and
1892  * it is called from a __ref function _deferred_grow_zone. This way we are
1893  * making sure that it is not inlined into permanent text section.
1894  */
1895 static noinline bool __init
1896 deferred_grow_zone(struct zone *zone, unsigned int order)
1897 {
1898 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1899 	pg_data_t *pgdat = zone->zone_pgdat;
1900 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1901 	unsigned long spfn, epfn, flags;
1902 	unsigned long nr_pages = 0;
1903 	u64 i;
1904 
1905 	/* Only the last zone may have deferred pages */
1906 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1907 		return false;
1908 
1909 	pgdat_resize_lock(pgdat, &flags);
1910 
1911 	/*
1912 	 * If deferred pages have been initialized while we were waiting for
1913 	 * the lock, return true, as the zone was grown.  The caller will retry
1914 	 * this zone.  We won't return to this function since the caller also
1915 	 * has this static branch.
1916 	 */
1917 	if (!static_branch_unlikely(&deferred_pages)) {
1918 		pgdat_resize_unlock(pgdat, &flags);
1919 		return true;
1920 	}
1921 
1922 	/*
1923 	 * If someone grew this zone while we were waiting for spinlock, return
1924 	 * true, as there might be enough pages already.
1925 	 */
1926 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1927 		pgdat_resize_unlock(pgdat, &flags);
1928 		return true;
1929 	}
1930 
1931 	/* If the zone is empty somebody else may have cleared out the zone */
1932 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1933 						 first_deferred_pfn)) {
1934 		pgdat->first_deferred_pfn = ULONG_MAX;
1935 		pgdat_resize_unlock(pgdat, &flags);
1936 		/* Retry only once. */
1937 		return first_deferred_pfn != ULONG_MAX;
1938 	}
1939 
1940 	/*
1941 	 * Initialize and free pages in MAX_ORDER sized increments so
1942 	 * that we can avoid introducing any issues with the buddy
1943 	 * allocator.
1944 	 */
1945 	while (spfn < epfn) {
1946 		/* update our first deferred PFN for this section */
1947 		first_deferred_pfn = spfn;
1948 
1949 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1950 
1951 		/* We should only stop along section boundaries */
1952 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1953 			continue;
1954 
1955 		/* If our quota has been met we can stop here */
1956 		if (nr_pages >= nr_pages_needed)
1957 			break;
1958 	}
1959 
1960 	pgdat->first_deferred_pfn = spfn;
1961 	pgdat_resize_unlock(pgdat, &flags);
1962 
1963 	return nr_pages > 0;
1964 }
1965 
1966 /*
1967  * deferred_grow_zone() is __init, but it is called from
1968  * get_page_from_freelist() during early boot until deferred_pages permanently
1969  * disables this call. This is why we have refdata wrapper to avoid warning,
1970  * and to ensure that the function body gets unloaded.
1971  */
1972 static bool __ref
1973 _deferred_grow_zone(struct zone *zone, unsigned int order)
1974 {
1975 	return deferred_grow_zone(zone, order);
1976 }
1977 
1978 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1979 
1980 void __init page_alloc_init_late(void)
1981 {
1982 	struct zone *zone;
1983 	int nid;
1984 
1985 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1986 
1987 	/* There will be num_node_state(N_MEMORY) threads */
1988 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1989 	for_each_node_state(nid, N_MEMORY) {
1990 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1991 	}
1992 
1993 	/* Block until all are initialised */
1994 	wait_for_completion(&pgdat_init_all_done_comp);
1995 
1996 	/*
1997 	 * The number of managed pages has changed due to the initialisation
1998 	 * so the pcpu batch and high limits needs to be updated or the limits
1999 	 * will be artificially small.
2000 	 */
2001 	for_each_populated_zone(zone)
2002 		zone_pcp_update(zone);
2003 
2004 	/*
2005 	 * We initialized the rest of the deferred pages.  Permanently disable
2006 	 * on-demand struct page initialization.
2007 	 */
2008 	static_branch_disable(&deferred_pages);
2009 
2010 	/* Reinit limits that are based on free pages after the kernel is up */
2011 	files_maxfiles_init();
2012 #endif
2013 
2014 	/* Discard memblock private memory */
2015 	memblock_discard();
2016 
2017 	for_each_node_state(nid, N_MEMORY)
2018 		shuffle_free_memory(NODE_DATA(nid));
2019 
2020 	for_each_populated_zone(zone)
2021 		set_zone_contiguous(zone);
2022 }
2023 
2024 #ifdef CONFIG_CMA
2025 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2026 void __init init_cma_reserved_pageblock(struct page *page)
2027 {
2028 	unsigned i = pageblock_nr_pages;
2029 	struct page *p = page;
2030 
2031 	do {
2032 		__ClearPageReserved(p);
2033 		set_page_count(p, 0);
2034 	} while (++p, --i);
2035 
2036 	set_pageblock_migratetype(page, MIGRATE_CMA);
2037 
2038 	if (pageblock_order >= MAX_ORDER) {
2039 		i = pageblock_nr_pages;
2040 		p = page;
2041 		do {
2042 			set_page_refcounted(p);
2043 			__free_pages(p, MAX_ORDER - 1);
2044 			p += MAX_ORDER_NR_PAGES;
2045 		} while (i -= MAX_ORDER_NR_PAGES);
2046 	} else {
2047 		set_page_refcounted(page);
2048 		__free_pages(page, pageblock_order);
2049 	}
2050 
2051 	adjust_managed_page_count(page, pageblock_nr_pages);
2052 }
2053 #endif
2054 
2055 /*
2056  * The order of subdivision here is critical for the IO subsystem.
2057  * Please do not alter this order without good reasons and regression
2058  * testing. Specifically, as large blocks of memory are subdivided,
2059  * the order in which smaller blocks are delivered depends on the order
2060  * they're subdivided in this function. This is the primary factor
2061  * influencing the order in which pages are delivered to the IO
2062  * subsystem according to empirical testing, and this is also justified
2063  * by considering the behavior of a buddy system containing a single
2064  * large block of memory acted on by a series of small allocations.
2065  * This behavior is a critical factor in sglist merging's success.
2066  *
2067  * -- nyc
2068  */
2069 static inline void expand(struct zone *zone, struct page *page,
2070 	int low, int high, int migratetype)
2071 {
2072 	unsigned long size = 1 << high;
2073 
2074 	while (high > low) {
2075 		high--;
2076 		size >>= 1;
2077 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2078 
2079 		/*
2080 		 * Mark as guard pages (or page), that will allow to
2081 		 * merge back to allocator when buddy will be freed.
2082 		 * Corresponding page table entries will not be touched,
2083 		 * pages will stay not present in virtual address space
2084 		 */
2085 		if (set_page_guard(zone, &page[size], high, migratetype))
2086 			continue;
2087 
2088 		add_to_free_list(&page[size], zone, high, migratetype);
2089 		set_page_order(&page[size], high);
2090 	}
2091 }
2092 
2093 static void check_new_page_bad(struct page *page)
2094 {
2095 	const char *bad_reason = NULL;
2096 	unsigned long bad_flags = 0;
2097 
2098 	if (unlikely(atomic_read(&page->_mapcount) != -1))
2099 		bad_reason = "nonzero mapcount";
2100 	if (unlikely(page->mapping != NULL))
2101 		bad_reason = "non-NULL mapping";
2102 	if (unlikely(page_ref_count(page) != 0))
2103 		bad_reason = "nonzero _refcount";
2104 	if (unlikely(page->flags & __PG_HWPOISON)) {
2105 		bad_reason = "HWPoisoned (hardware-corrupted)";
2106 		bad_flags = __PG_HWPOISON;
2107 		/* Don't complain about hwpoisoned pages */
2108 		page_mapcount_reset(page); /* remove PageBuddy */
2109 		return;
2110 	}
2111 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2112 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2113 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2114 	}
2115 #ifdef CONFIG_MEMCG
2116 	if (unlikely(page->mem_cgroup))
2117 		bad_reason = "page still charged to cgroup";
2118 #endif
2119 	bad_page(page, bad_reason, bad_flags);
2120 }
2121 
2122 /*
2123  * This page is about to be returned from the page allocator
2124  */
2125 static inline int check_new_page(struct page *page)
2126 {
2127 	if (likely(page_expected_state(page,
2128 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2129 		return 0;
2130 
2131 	check_new_page_bad(page);
2132 	return 1;
2133 }
2134 
2135 static inline bool free_pages_prezeroed(void)
2136 {
2137 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2138 		page_poisoning_enabled()) || want_init_on_free();
2139 }
2140 
2141 #ifdef CONFIG_DEBUG_VM
2142 /*
2143  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2144  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2145  * also checked when pcp lists are refilled from the free lists.
2146  */
2147 static inline bool check_pcp_refill(struct page *page)
2148 {
2149 	if (debug_pagealloc_enabled_static())
2150 		return check_new_page(page);
2151 	else
2152 		return false;
2153 }
2154 
2155 static inline bool check_new_pcp(struct page *page)
2156 {
2157 	return check_new_page(page);
2158 }
2159 #else
2160 /*
2161  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2162  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2163  * enabled, they are also checked when being allocated from the pcp lists.
2164  */
2165 static inline bool check_pcp_refill(struct page *page)
2166 {
2167 	return check_new_page(page);
2168 }
2169 static inline bool check_new_pcp(struct page *page)
2170 {
2171 	if (debug_pagealloc_enabled_static())
2172 		return check_new_page(page);
2173 	else
2174 		return false;
2175 }
2176 #endif /* CONFIG_DEBUG_VM */
2177 
2178 static bool check_new_pages(struct page *page, unsigned int order)
2179 {
2180 	int i;
2181 	for (i = 0; i < (1 << order); i++) {
2182 		struct page *p = page + i;
2183 
2184 		if (unlikely(check_new_page(p)))
2185 			return true;
2186 	}
2187 
2188 	return false;
2189 }
2190 
2191 inline void post_alloc_hook(struct page *page, unsigned int order,
2192 				gfp_t gfp_flags)
2193 {
2194 	set_page_private(page, 0);
2195 	set_page_refcounted(page);
2196 
2197 	arch_alloc_page(page, order);
2198 	if (debug_pagealloc_enabled_static())
2199 		kernel_map_pages(page, 1 << order, 1);
2200 	kasan_alloc_pages(page, order);
2201 	kernel_poison_pages(page, 1 << order, 1);
2202 	set_page_owner(page, order, gfp_flags);
2203 }
2204 
2205 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2206 							unsigned int alloc_flags)
2207 {
2208 	post_alloc_hook(page, order, gfp_flags);
2209 
2210 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2211 		kernel_init_free_pages(page, 1 << order);
2212 
2213 	if (order && (gfp_flags & __GFP_COMP))
2214 		prep_compound_page(page, order);
2215 
2216 	/*
2217 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2218 	 * allocate the page. The expectation is that the caller is taking
2219 	 * steps that will free more memory. The caller should avoid the page
2220 	 * being used for !PFMEMALLOC purposes.
2221 	 */
2222 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2223 		set_page_pfmemalloc(page);
2224 	else
2225 		clear_page_pfmemalloc(page);
2226 }
2227 
2228 /*
2229  * Go through the free lists for the given migratetype and remove
2230  * the smallest available page from the freelists
2231  */
2232 static __always_inline
2233 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2234 						int migratetype)
2235 {
2236 	unsigned int current_order;
2237 	struct free_area *area;
2238 	struct page *page;
2239 
2240 	/* Find a page of the appropriate size in the preferred list */
2241 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2242 		area = &(zone->free_area[current_order]);
2243 		page = get_page_from_free_area(area, migratetype);
2244 		if (!page)
2245 			continue;
2246 		del_page_from_free_list(page, zone, current_order);
2247 		expand(zone, page, order, current_order, migratetype);
2248 		set_pcppage_migratetype(page, migratetype);
2249 		return page;
2250 	}
2251 
2252 	return NULL;
2253 }
2254 
2255 
2256 /*
2257  * This array describes the order lists are fallen back to when
2258  * the free lists for the desirable migrate type are depleted
2259  */
2260 static int fallbacks[MIGRATE_TYPES][4] = {
2261 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2262 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2263 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2264 #ifdef CONFIG_CMA
2265 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2266 #endif
2267 #ifdef CONFIG_MEMORY_ISOLATION
2268 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2269 #endif
2270 };
2271 
2272 #ifdef CONFIG_CMA
2273 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2274 					unsigned int order)
2275 {
2276 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2277 }
2278 #else
2279 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2280 					unsigned int order) { return NULL; }
2281 #endif
2282 
2283 /*
2284  * Move the free pages in a range to the free lists of the requested type.
2285  * Note that start_page and end_pages are not aligned on a pageblock
2286  * boundary. If alignment is required, use move_freepages_block()
2287  */
2288 static int move_freepages(struct zone *zone,
2289 			  struct page *start_page, struct page *end_page,
2290 			  int migratetype, int *num_movable)
2291 {
2292 	struct page *page;
2293 	unsigned int order;
2294 	int pages_moved = 0;
2295 
2296 	for (page = start_page; page <= end_page;) {
2297 		if (!pfn_valid_within(page_to_pfn(page))) {
2298 			page++;
2299 			continue;
2300 		}
2301 
2302 		if (!PageBuddy(page)) {
2303 			/*
2304 			 * We assume that pages that could be isolated for
2305 			 * migration are movable. But we don't actually try
2306 			 * isolating, as that would be expensive.
2307 			 */
2308 			if (num_movable &&
2309 					(PageLRU(page) || __PageMovable(page)))
2310 				(*num_movable)++;
2311 
2312 			page++;
2313 			continue;
2314 		}
2315 
2316 		/* Make sure we are not inadvertently changing nodes */
2317 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2318 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2319 
2320 		order = page_order(page);
2321 		move_to_free_list(page, zone, order, migratetype);
2322 		page += 1 << order;
2323 		pages_moved += 1 << order;
2324 	}
2325 
2326 	return pages_moved;
2327 }
2328 
2329 int move_freepages_block(struct zone *zone, struct page *page,
2330 				int migratetype, int *num_movable)
2331 {
2332 	unsigned long start_pfn, end_pfn;
2333 	struct page *start_page, *end_page;
2334 
2335 	if (num_movable)
2336 		*num_movable = 0;
2337 
2338 	start_pfn = page_to_pfn(page);
2339 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2340 	start_page = pfn_to_page(start_pfn);
2341 	end_page = start_page + pageblock_nr_pages - 1;
2342 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2343 
2344 	/* Do not cross zone boundaries */
2345 	if (!zone_spans_pfn(zone, start_pfn))
2346 		start_page = page;
2347 	if (!zone_spans_pfn(zone, end_pfn))
2348 		return 0;
2349 
2350 	return move_freepages(zone, start_page, end_page, migratetype,
2351 								num_movable);
2352 }
2353 
2354 static void change_pageblock_range(struct page *pageblock_page,
2355 					int start_order, int migratetype)
2356 {
2357 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2358 
2359 	while (nr_pageblocks--) {
2360 		set_pageblock_migratetype(pageblock_page, migratetype);
2361 		pageblock_page += pageblock_nr_pages;
2362 	}
2363 }
2364 
2365 /*
2366  * When we are falling back to another migratetype during allocation, try to
2367  * steal extra free pages from the same pageblocks to satisfy further
2368  * allocations, instead of polluting multiple pageblocks.
2369  *
2370  * If we are stealing a relatively large buddy page, it is likely there will
2371  * be more free pages in the pageblock, so try to steal them all. For
2372  * reclaimable and unmovable allocations, we steal regardless of page size,
2373  * as fragmentation caused by those allocations polluting movable pageblocks
2374  * is worse than movable allocations stealing from unmovable and reclaimable
2375  * pageblocks.
2376  */
2377 static bool can_steal_fallback(unsigned int order, int start_mt)
2378 {
2379 	/*
2380 	 * Leaving this order check is intended, although there is
2381 	 * relaxed order check in next check. The reason is that
2382 	 * we can actually steal whole pageblock if this condition met,
2383 	 * but, below check doesn't guarantee it and that is just heuristic
2384 	 * so could be changed anytime.
2385 	 */
2386 	if (order >= pageblock_order)
2387 		return true;
2388 
2389 	if (order >= pageblock_order / 2 ||
2390 		start_mt == MIGRATE_RECLAIMABLE ||
2391 		start_mt == MIGRATE_UNMOVABLE ||
2392 		page_group_by_mobility_disabled)
2393 		return true;
2394 
2395 	return false;
2396 }
2397 
2398 static inline void boost_watermark(struct zone *zone)
2399 {
2400 	unsigned long max_boost;
2401 
2402 	if (!watermark_boost_factor)
2403 		return;
2404 	/*
2405 	 * Don't bother in zones that are unlikely to produce results.
2406 	 * On small machines, including kdump capture kernels running
2407 	 * in a small area, boosting the watermark can cause an out of
2408 	 * memory situation immediately.
2409 	 */
2410 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2411 		return;
2412 
2413 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2414 			watermark_boost_factor, 10000);
2415 
2416 	/*
2417 	 * high watermark may be uninitialised if fragmentation occurs
2418 	 * very early in boot so do not boost. We do not fall
2419 	 * through and boost by pageblock_nr_pages as failing
2420 	 * allocations that early means that reclaim is not going
2421 	 * to help and it may even be impossible to reclaim the
2422 	 * boosted watermark resulting in a hang.
2423 	 */
2424 	if (!max_boost)
2425 		return;
2426 
2427 	max_boost = max(pageblock_nr_pages, max_boost);
2428 
2429 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2430 		max_boost);
2431 }
2432 
2433 /*
2434  * This function implements actual steal behaviour. If order is large enough,
2435  * we can steal whole pageblock. If not, we first move freepages in this
2436  * pageblock to our migratetype and determine how many already-allocated pages
2437  * are there in the pageblock with a compatible migratetype. If at least half
2438  * of pages are free or compatible, we can change migratetype of the pageblock
2439  * itself, so pages freed in the future will be put on the correct free list.
2440  */
2441 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2442 		unsigned int alloc_flags, int start_type, bool whole_block)
2443 {
2444 	unsigned int current_order = page_order(page);
2445 	int free_pages, movable_pages, alike_pages;
2446 	int old_block_type;
2447 
2448 	old_block_type = get_pageblock_migratetype(page);
2449 
2450 	/*
2451 	 * This can happen due to races and we want to prevent broken
2452 	 * highatomic accounting.
2453 	 */
2454 	if (is_migrate_highatomic(old_block_type))
2455 		goto single_page;
2456 
2457 	/* Take ownership for orders >= pageblock_order */
2458 	if (current_order >= pageblock_order) {
2459 		change_pageblock_range(page, current_order, start_type);
2460 		goto single_page;
2461 	}
2462 
2463 	/*
2464 	 * Boost watermarks to increase reclaim pressure to reduce the
2465 	 * likelihood of future fallbacks. Wake kswapd now as the node
2466 	 * may be balanced overall and kswapd will not wake naturally.
2467 	 */
2468 	boost_watermark(zone);
2469 	if (alloc_flags & ALLOC_KSWAPD)
2470 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2471 
2472 	/* We are not allowed to try stealing from the whole block */
2473 	if (!whole_block)
2474 		goto single_page;
2475 
2476 	free_pages = move_freepages_block(zone, page, start_type,
2477 						&movable_pages);
2478 	/*
2479 	 * Determine how many pages are compatible with our allocation.
2480 	 * For movable allocation, it's the number of movable pages which
2481 	 * we just obtained. For other types it's a bit more tricky.
2482 	 */
2483 	if (start_type == MIGRATE_MOVABLE) {
2484 		alike_pages = movable_pages;
2485 	} else {
2486 		/*
2487 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2488 		 * to MOVABLE pageblock, consider all non-movable pages as
2489 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2490 		 * vice versa, be conservative since we can't distinguish the
2491 		 * exact migratetype of non-movable pages.
2492 		 */
2493 		if (old_block_type == MIGRATE_MOVABLE)
2494 			alike_pages = pageblock_nr_pages
2495 						- (free_pages + movable_pages);
2496 		else
2497 			alike_pages = 0;
2498 	}
2499 
2500 	/* moving whole block can fail due to zone boundary conditions */
2501 	if (!free_pages)
2502 		goto single_page;
2503 
2504 	/*
2505 	 * If a sufficient number of pages in the block are either free or of
2506 	 * comparable migratability as our allocation, claim the whole block.
2507 	 */
2508 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2509 			page_group_by_mobility_disabled)
2510 		set_pageblock_migratetype(page, start_type);
2511 
2512 	return;
2513 
2514 single_page:
2515 	move_to_free_list(page, zone, current_order, start_type);
2516 }
2517 
2518 /*
2519  * Check whether there is a suitable fallback freepage with requested order.
2520  * If only_stealable is true, this function returns fallback_mt only if
2521  * we can steal other freepages all together. This would help to reduce
2522  * fragmentation due to mixed migratetype pages in one pageblock.
2523  */
2524 int find_suitable_fallback(struct free_area *area, unsigned int order,
2525 			int migratetype, bool only_stealable, bool *can_steal)
2526 {
2527 	int i;
2528 	int fallback_mt;
2529 
2530 	if (area->nr_free == 0)
2531 		return -1;
2532 
2533 	*can_steal = false;
2534 	for (i = 0;; i++) {
2535 		fallback_mt = fallbacks[migratetype][i];
2536 		if (fallback_mt == MIGRATE_TYPES)
2537 			break;
2538 
2539 		if (free_area_empty(area, fallback_mt))
2540 			continue;
2541 
2542 		if (can_steal_fallback(order, migratetype))
2543 			*can_steal = true;
2544 
2545 		if (!only_stealable)
2546 			return fallback_mt;
2547 
2548 		if (*can_steal)
2549 			return fallback_mt;
2550 	}
2551 
2552 	return -1;
2553 }
2554 
2555 /*
2556  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2557  * there are no empty page blocks that contain a page with a suitable order
2558  */
2559 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2560 				unsigned int alloc_order)
2561 {
2562 	int mt;
2563 	unsigned long max_managed, flags;
2564 
2565 	/*
2566 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2567 	 * Check is race-prone but harmless.
2568 	 */
2569 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2570 	if (zone->nr_reserved_highatomic >= max_managed)
2571 		return;
2572 
2573 	spin_lock_irqsave(&zone->lock, flags);
2574 
2575 	/* Recheck the nr_reserved_highatomic limit under the lock */
2576 	if (zone->nr_reserved_highatomic >= max_managed)
2577 		goto out_unlock;
2578 
2579 	/* Yoink! */
2580 	mt = get_pageblock_migratetype(page);
2581 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2582 	    && !is_migrate_cma(mt)) {
2583 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2584 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2585 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2586 	}
2587 
2588 out_unlock:
2589 	spin_unlock_irqrestore(&zone->lock, flags);
2590 }
2591 
2592 /*
2593  * Used when an allocation is about to fail under memory pressure. This
2594  * potentially hurts the reliability of high-order allocations when under
2595  * intense memory pressure but failed atomic allocations should be easier
2596  * to recover from than an OOM.
2597  *
2598  * If @force is true, try to unreserve a pageblock even though highatomic
2599  * pageblock is exhausted.
2600  */
2601 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2602 						bool force)
2603 {
2604 	struct zonelist *zonelist = ac->zonelist;
2605 	unsigned long flags;
2606 	struct zoneref *z;
2607 	struct zone *zone;
2608 	struct page *page;
2609 	int order;
2610 	bool ret;
2611 
2612 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2613 								ac->nodemask) {
2614 		/*
2615 		 * Preserve at least one pageblock unless memory pressure
2616 		 * is really high.
2617 		 */
2618 		if (!force && zone->nr_reserved_highatomic <=
2619 					pageblock_nr_pages)
2620 			continue;
2621 
2622 		spin_lock_irqsave(&zone->lock, flags);
2623 		for (order = 0; order < MAX_ORDER; order++) {
2624 			struct free_area *area = &(zone->free_area[order]);
2625 
2626 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2627 			if (!page)
2628 				continue;
2629 
2630 			/*
2631 			 * In page freeing path, migratetype change is racy so
2632 			 * we can counter several free pages in a pageblock
2633 			 * in this loop althoug we changed the pageblock type
2634 			 * from highatomic to ac->migratetype. So we should
2635 			 * adjust the count once.
2636 			 */
2637 			if (is_migrate_highatomic_page(page)) {
2638 				/*
2639 				 * It should never happen but changes to
2640 				 * locking could inadvertently allow a per-cpu
2641 				 * drain to add pages to MIGRATE_HIGHATOMIC
2642 				 * while unreserving so be safe and watch for
2643 				 * underflows.
2644 				 */
2645 				zone->nr_reserved_highatomic -= min(
2646 						pageblock_nr_pages,
2647 						zone->nr_reserved_highatomic);
2648 			}
2649 
2650 			/*
2651 			 * Convert to ac->migratetype and avoid the normal
2652 			 * pageblock stealing heuristics. Minimally, the caller
2653 			 * is doing the work and needs the pages. More
2654 			 * importantly, if the block was always converted to
2655 			 * MIGRATE_UNMOVABLE or another type then the number
2656 			 * of pageblocks that cannot be completely freed
2657 			 * may increase.
2658 			 */
2659 			set_pageblock_migratetype(page, ac->migratetype);
2660 			ret = move_freepages_block(zone, page, ac->migratetype,
2661 									NULL);
2662 			if (ret) {
2663 				spin_unlock_irqrestore(&zone->lock, flags);
2664 				return ret;
2665 			}
2666 		}
2667 		spin_unlock_irqrestore(&zone->lock, flags);
2668 	}
2669 
2670 	return false;
2671 }
2672 
2673 /*
2674  * Try finding a free buddy page on the fallback list and put it on the free
2675  * list of requested migratetype, possibly along with other pages from the same
2676  * block, depending on fragmentation avoidance heuristics. Returns true if
2677  * fallback was found so that __rmqueue_smallest() can grab it.
2678  *
2679  * The use of signed ints for order and current_order is a deliberate
2680  * deviation from the rest of this file, to make the for loop
2681  * condition simpler.
2682  */
2683 static __always_inline bool
2684 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2685 						unsigned int alloc_flags)
2686 {
2687 	struct free_area *area;
2688 	int current_order;
2689 	int min_order = order;
2690 	struct page *page;
2691 	int fallback_mt;
2692 	bool can_steal;
2693 
2694 	/*
2695 	 * Do not steal pages from freelists belonging to other pageblocks
2696 	 * i.e. orders < pageblock_order. If there are no local zones free,
2697 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2698 	 */
2699 	if (alloc_flags & ALLOC_NOFRAGMENT)
2700 		min_order = pageblock_order;
2701 
2702 	/*
2703 	 * Find the largest available free page in the other list. This roughly
2704 	 * approximates finding the pageblock with the most free pages, which
2705 	 * would be too costly to do exactly.
2706 	 */
2707 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2708 				--current_order) {
2709 		area = &(zone->free_area[current_order]);
2710 		fallback_mt = find_suitable_fallback(area, current_order,
2711 				start_migratetype, false, &can_steal);
2712 		if (fallback_mt == -1)
2713 			continue;
2714 
2715 		/*
2716 		 * We cannot steal all free pages from the pageblock and the
2717 		 * requested migratetype is movable. In that case it's better to
2718 		 * steal and split the smallest available page instead of the
2719 		 * largest available page, because even if the next movable
2720 		 * allocation falls back into a different pageblock than this
2721 		 * one, it won't cause permanent fragmentation.
2722 		 */
2723 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2724 					&& current_order > order)
2725 			goto find_smallest;
2726 
2727 		goto do_steal;
2728 	}
2729 
2730 	return false;
2731 
2732 find_smallest:
2733 	for (current_order = order; current_order < MAX_ORDER;
2734 							current_order++) {
2735 		area = &(zone->free_area[current_order]);
2736 		fallback_mt = find_suitable_fallback(area, current_order,
2737 				start_migratetype, false, &can_steal);
2738 		if (fallback_mt != -1)
2739 			break;
2740 	}
2741 
2742 	/*
2743 	 * This should not happen - we already found a suitable fallback
2744 	 * when looking for the largest page.
2745 	 */
2746 	VM_BUG_ON(current_order == MAX_ORDER);
2747 
2748 do_steal:
2749 	page = get_page_from_free_area(area, fallback_mt);
2750 
2751 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2752 								can_steal);
2753 
2754 	trace_mm_page_alloc_extfrag(page, order, current_order,
2755 		start_migratetype, fallback_mt);
2756 
2757 	return true;
2758 
2759 }
2760 
2761 /*
2762  * Do the hard work of removing an element from the buddy allocator.
2763  * Call me with the zone->lock already held.
2764  */
2765 static __always_inline struct page *
2766 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2767 						unsigned int alloc_flags)
2768 {
2769 	struct page *page;
2770 
2771 retry:
2772 	page = __rmqueue_smallest(zone, order, migratetype);
2773 	if (unlikely(!page)) {
2774 		if (migratetype == MIGRATE_MOVABLE)
2775 			page = __rmqueue_cma_fallback(zone, order);
2776 
2777 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2778 								alloc_flags))
2779 			goto retry;
2780 	}
2781 
2782 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2783 	return page;
2784 }
2785 
2786 /*
2787  * Obtain a specified number of elements from the buddy allocator, all under
2788  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2789  * Returns the number of new pages which were placed at *list.
2790  */
2791 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2792 			unsigned long count, struct list_head *list,
2793 			int migratetype, unsigned int alloc_flags)
2794 {
2795 	int i, alloced = 0;
2796 
2797 	spin_lock(&zone->lock);
2798 	for (i = 0; i < count; ++i) {
2799 		struct page *page = __rmqueue(zone, order, migratetype,
2800 								alloc_flags);
2801 		if (unlikely(page == NULL))
2802 			break;
2803 
2804 		if (unlikely(check_pcp_refill(page)))
2805 			continue;
2806 
2807 		/*
2808 		 * Split buddy pages returned by expand() are received here in
2809 		 * physical page order. The page is added to the tail of
2810 		 * caller's list. From the callers perspective, the linked list
2811 		 * is ordered by page number under some conditions. This is
2812 		 * useful for IO devices that can forward direction from the
2813 		 * head, thus also in the physical page order. This is useful
2814 		 * for IO devices that can merge IO requests if the physical
2815 		 * pages are ordered properly.
2816 		 */
2817 		list_add_tail(&page->lru, list);
2818 		alloced++;
2819 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2820 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2821 					      -(1 << order));
2822 	}
2823 
2824 	/*
2825 	 * i pages were removed from the buddy list even if some leak due
2826 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2827 	 * on i. Do not confuse with 'alloced' which is the number of
2828 	 * pages added to the pcp list.
2829 	 */
2830 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2831 	spin_unlock(&zone->lock);
2832 	return alloced;
2833 }
2834 
2835 #ifdef CONFIG_NUMA
2836 /*
2837  * Called from the vmstat counter updater to drain pagesets of this
2838  * currently executing processor on remote nodes after they have
2839  * expired.
2840  *
2841  * Note that this function must be called with the thread pinned to
2842  * a single processor.
2843  */
2844 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2845 {
2846 	unsigned long flags;
2847 	int to_drain, batch;
2848 
2849 	local_irq_save(flags);
2850 	batch = READ_ONCE(pcp->batch);
2851 	to_drain = min(pcp->count, batch);
2852 	if (to_drain > 0)
2853 		free_pcppages_bulk(zone, to_drain, pcp);
2854 	local_irq_restore(flags);
2855 }
2856 #endif
2857 
2858 /*
2859  * Drain pcplists of the indicated processor and zone.
2860  *
2861  * The processor must either be the current processor and the
2862  * thread pinned to the current processor or a processor that
2863  * is not online.
2864  */
2865 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2866 {
2867 	unsigned long flags;
2868 	struct per_cpu_pageset *pset;
2869 	struct per_cpu_pages *pcp;
2870 
2871 	local_irq_save(flags);
2872 	pset = per_cpu_ptr(zone->pageset, cpu);
2873 
2874 	pcp = &pset->pcp;
2875 	if (pcp->count)
2876 		free_pcppages_bulk(zone, pcp->count, pcp);
2877 	local_irq_restore(flags);
2878 }
2879 
2880 /*
2881  * Drain pcplists of all zones on the indicated processor.
2882  *
2883  * The processor must either be the current processor and the
2884  * thread pinned to the current processor or a processor that
2885  * is not online.
2886  */
2887 static void drain_pages(unsigned int cpu)
2888 {
2889 	struct zone *zone;
2890 
2891 	for_each_populated_zone(zone) {
2892 		drain_pages_zone(cpu, zone);
2893 	}
2894 }
2895 
2896 /*
2897  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2898  *
2899  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2900  * the single zone's pages.
2901  */
2902 void drain_local_pages(struct zone *zone)
2903 {
2904 	int cpu = smp_processor_id();
2905 
2906 	if (zone)
2907 		drain_pages_zone(cpu, zone);
2908 	else
2909 		drain_pages(cpu);
2910 }
2911 
2912 static void drain_local_pages_wq(struct work_struct *work)
2913 {
2914 	struct pcpu_drain *drain;
2915 
2916 	drain = container_of(work, struct pcpu_drain, work);
2917 
2918 	/*
2919 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2920 	 * we can race with cpu offline when the WQ can move this from
2921 	 * a cpu pinned worker to an unbound one. We can operate on a different
2922 	 * cpu which is allright but we also have to make sure to not move to
2923 	 * a different one.
2924 	 */
2925 	preempt_disable();
2926 	drain_local_pages(drain->zone);
2927 	preempt_enable();
2928 }
2929 
2930 /*
2931  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2932  *
2933  * When zone parameter is non-NULL, spill just the single zone's pages.
2934  *
2935  * Note that this can be extremely slow as the draining happens in a workqueue.
2936  */
2937 void drain_all_pages(struct zone *zone)
2938 {
2939 	int cpu;
2940 
2941 	/*
2942 	 * Allocate in the BSS so we wont require allocation in
2943 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2944 	 */
2945 	static cpumask_t cpus_with_pcps;
2946 
2947 	/*
2948 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2949 	 * initialized.
2950 	 */
2951 	if (WARN_ON_ONCE(!mm_percpu_wq))
2952 		return;
2953 
2954 	/*
2955 	 * Do not drain if one is already in progress unless it's specific to
2956 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2957 	 * the drain to be complete when the call returns.
2958 	 */
2959 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2960 		if (!zone)
2961 			return;
2962 		mutex_lock(&pcpu_drain_mutex);
2963 	}
2964 
2965 	/*
2966 	 * We don't care about racing with CPU hotplug event
2967 	 * as offline notification will cause the notified
2968 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2969 	 * disables preemption as part of its processing
2970 	 */
2971 	for_each_online_cpu(cpu) {
2972 		struct per_cpu_pageset *pcp;
2973 		struct zone *z;
2974 		bool has_pcps = false;
2975 
2976 		if (zone) {
2977 			pcp = per_cpu_ptr(zone->pageset, cpu);
2978 			if (pcp->pcp.count)
2979 				has_pcps = true;
2980 		} else {
2981 			for_each_populated_zone(z) {
2982 				pcp = per_cpu_ptr(z->pageset, cpu);
2983 				if (pcp->pcp.count) {
2984 					has_pcps = true;
2985 					break;
2986 				}
2987 			}
2988 		}
2989 
2990 		if (has_pcps)
2991 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2992 		else
2993 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2994 	}
2995 
2996 	for_each_cpu(cpu, &cpus_with_pcps) {
2997 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2998 
2999 		drain->zone = zone;
3000 		INIT_WORK(&drain->work, drain_local_pages_wq);
3001 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3002 	}
3003 	for_each_cpu(cpu, &cpus_with_pcps)
3004 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3005 
3006 	mutex_unlock(&pcpu_drain_mutex);
3007 }
3008 
3009 #ifdef CONFIG_HIBERNATION
3010 
3011 /*
3012  * Touch the watchdog for every WD_PAGE_COUNT pages.
3013  */
3014 #define WD_PAGE_COUNT	(128*1024)
3015 
3016 void mark_free_pages(struct zone *zone)
3017 {
3018 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3019 	unsigned long flags;
3020 	unsigned int order, t;
3021 	struct page *page;
3022 
3023 	if (zone_is_empty(zone))
3024 		return;
3025 
3026 	spin_lock_irqsave(&zone->lock, flags);
3027 
3028 	max_zone_pfn = zone_end_pfn(zone);
3029 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3030 		if (pfn_valid(pfn)) {
3031 			page = pfn_to_page(pfn);
3032 
3033 			if (!--page_count) {
3034 				touch_nmi_watchdog();
3035 				page_count = WD_PAGE_COUNT;
3036 			}
3037 
3038 			if (page_zone(page) != zone)
3039 				continue;
3040 
3041 			if (!swsusp_page_is_forbidden(page))
3042 				swsusp_unset_page_free(page);
3043 		}
3044 
3045 	for_each_migratetype_order(order, t) {
3046 		list_for_each_entry(page,
3047 				&zone->free_area[order].free_list[t], lru) {
3048 			unsigned long i;
3049 
3050 			pfn = page_to_pfn(page);
3051 			for (i = 0; i < (1UL << order); i++) {
3052 				if (!--page_count) {
3053 					touch_nmi_watchdog();
3054 					page_count = WD_PAGE_COUNT;
3055 				}
3056 				swsusp_set_page_free(pfn_to_page(pfn + i));
3057 			}
3058 		}
3059 	}
3060 	spin_unlock_irqrestore(&zone->lock, flags);
3061 }
3062 #endif /* CONFIG_PM */
3063 
3064 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3065 {
3066 	int migratetype;
3067 
3068 	if (!free_pcp_prepare(page))
3069 		return false;
3070 
3071 	migratetype = get_pfnblock_migratetype(page, pfn);
3072 	set_pcppage_migratetype(page, migratetype);
3073 	return true;
3074 }
3075 
3076 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3077 {
3078 	struct zone *zone = page_zone(page);
3079 	struct per_cpu_pages *pcp;
3080 	int migratetype;
3081 
3082 	migratetype = get_pcppage_migratetype(page);
3083 	__count_vm_event(PGFREE);
3084 
3085 	/*
3086 	 * We only track unmovable, reclaimable and movable on pcp lists.
3087 	 * Free ISOLATE pages back to the allocator because they are being
3088 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3089 	 * areas back if necessary. Otherwise, we may have to free
3090 	 * excessively into the page allocator
3091 	 */
3092 	if (migratetype >= MIGRATE_PCPTYPES) {
3093 		if (unlikely(is_migrate_isolate(migratetype))) {
3094 			free_one_page(zone, page, pfn, 0, migratetype);
3095 			return;
3096 		}
3097 		migratetype = MIGRATE_MOVABLE;
3098 	}
3099 
3100 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3101 	list_add(&page->lru, &pcp->lists[migratetype]);
3102 	pcp->count++;
3103 	if (pcp->count >= pcp->high) {
3104 		unsigned long batch = READ_ONCE(pcp->batch);
3105 		free_pcppages_bulk(zone, batch, pcp);
3106 	}
3107 }
3108 
3109 /*
3110  * Free a 0-order page
3111  */
3112 void free_unref_page(struct page *page)
3113 {
3114 	unsigned long flags;
3115 	unsigned long pfn = page_to_pfn(page);
3116 
3117 	if (!free_unref_page_prepare(page, pfn))
3118 		return;
3119 
3120 	local_irq_save(flags);
3121 	free_unref_page_commit(page, pfn);
3122 	local_irq_restore(flags);
3123 }
3124 
3125 /*
3126  * Free a list of 0-order pages
3127  */
3128 void free_unref_page_list(struct list_head *list)
3129 {
3130 	struct page *page, *next;
3131 	unsigned long flags, pfn;
3132 	int batch_count = 0;
3133 
3134 	/* Prepare pages for freeing */
3135 	list_for_each_entry_safe(page, next, list, lru) {
3136 		pfn = page_to_pfn(page);
3137 		if (!free_unref_page_prepare(page, pfn))
3138 			list_del(&page->lru);
3139 		set_page_private(page, pfn);
3140 	}
3141 
3142 	local_irq_save(flags);
3143 	list_for_each_entry_safe(page, next, list, lru) {
3144 		unsigned long pfn = page_private(page);
3145 
3146 		set_page_private(page, 0);
3147 		trace_mm_page_free_batched(page);
3148 		free_unref_page_commit(page, pfn);
3149 
3150 		/*
3151 		 * Guard against excessive IRQ disabled times when we get
3152 		 * a large list of pages to free.
3153 		 */
3154 		if (++batch_count == SWAP_CLUSTER_MAX) {
3155 			local_irq_restore(flags);
3156 			batch_count = 0;
3157 			local_irq_save(flags);
3158 		}
3159 	}
3160 	local_irq_restore(flags);
3161 }
3162 
3163 /*
3164  * split_page takes a non-compound higher-order page, and splits it into
3165  * n (1<<order) sub-pages: page[0..n]
3166  * Each sub-page must be freed individually.
3167  *
3168  * Note: this is probably too low level an operation for use in drivers.
3169  * Please consult with lkml before using this in your driver.
3170  */
3171 void split_page(struct page *page, unsigned int order)
3172 {
3173 	int i;
3174 
3175 	VM_BUG_ON_PAGE(PageCompound(page), page);
3176 	VM_BUG_ON_PAGE(!page_count(page), page);
3177 
3178 	for (i = 1; i < (1 << order); i++)
3179 		set_page_refcounted(page + i);
3180 	split_page_owner(page, order);
3181 }
3182 EXPORT_SYMBOL_GPL(split_page);
3183 
3184 int __isolate_free_page(struct page *page, unsigned int order)
3185 {
3186 	unsigned long watermark;
3187 	struct zone *zone;
3188 	int mt;
3189 
3190 	BUG_ON(!PageBuddy(page));
3191 
3192 	zone = page_zone(page);
3193 	mt = get_pageblock_migratetype(page);
3194 
3195 	if (!is_migrate_isolate(mt)) {
3196 		/*
3197 		 * Obey watermarks as if the page was being allocated. We can
3198 		 * emulate a high-order watermark check with a raised order-0
3199 		 * watermark, because we already know our high-order page
3200 		 * exists.
3201 		 */
3202 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3203 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3204 			return 0;
3205 
3206 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3207 	}
3208 
3209 	/* Remove page from free list */
3210 
3211 	del_page_from_free_list(page, zone, order);
3212 
3213 	/*
3214 	 * Set the pageblock if the isolated page is at least half of a
3215 	 * pageblock
3216 	 */
3217 	if (order >= pageblock_order - 1) {
3218 		struct page *endpage = page + (1 << order) - 1;
3219 		for (; page < endpage; page += pageblock_nr_pages) {
3220 			int mt = get_pageblock_migratetype(page);
3221 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3222 			    && !is_migrate_highatomic(mt))
3223 				set_pageblock_migratetype(page,
3224 							  MIGRATE_MOVABLE);
3225 		}
3226 	}
3227 
3228 
3229 	return 1UL << order;
3230 }
3231 
3232 /**
3233  * __putback_isolated_page - Return a now-isolated page back where we got it
3234  * @page: Page that was isolated
3235  * @order: Order of the isolated page
3236  * @mt: The page's pageblock's migratetype
3237  *
3238  * This function is meant to return a page pulled from the free lists via
3239  * __isolate_free_page back to the free lists they were pulled from.
3240  */
3241 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3242 {
3243 	struct zone *zone = page_zone(page);
3244 
3245 	/* zone lock should be held when this function is called */
3246 	lockdep_assert_held(&zone->lock);
3247 
3248 	/* Return isolated page to tail of freelist. */
3249 	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3250 }
3251 
3252 /*
3253  * Update NUMA hit/miss statistics
3254  *
3255  * Must be called with interrupts disabled.
3256  */
3257 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3258 {
3259 #ifdef CONFIG_NUMA
3260 	enum numa_stat_item local_stat = NUMA_LOCAL;
3261 
3262 	/* skip numa counters update if numa stats is disabled */
3263 	if (!static_branch_likely(&vm_numa_stat_key))
3264 		return;
3265 
3266 	if (zone_to_nid(z) != numa_node_id())
3267 		local_stat = NUMA_OTHER;
3268 
3269 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3270 		__inc_numa_state(z, NUMA_HIT);
3271 	else {
3272 		__inc_numa_state(z, NUMA_MISS);
3273 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3274 	}
3275 	__inc_numa_state(z, local_stat);
3276 #endif
3277 }
3278 
3279 /* Remove page from the per-cpu list, caller must protect the list */
3280 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3281 			unsigned int alloc_flags,
3282 			struct per_cpu_pages *pcp,
3283 			struct list_head *list)
3284 {
3285 	struct page *page;
3286 
3287 	do {
3288 		if (list_empty(list)) {
3289 			pcp->count += rmqueue_bulk(zone, 0,
3290 					pcp->batch, list,
3291 					migratetype, alloc_flags);
3292 			if (unlikely(list_empty(list)))
3293 				return NULL;
3294 		}
3295 
3296 		page = list_first_entry(list, struct page, lru);
3297 		list_del(&page->lru);
3298 		pcp->count--;
3299 	} while (check_new_pcp(page));
3300 
3301 	return page;
3302 }
3303 
3304 /* Lock and remove page from the per-cpu list */
3305 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3306 			struct zone *zone, gfp_t gfp_flags,
3307 			int migratetype, unsigned int alloc_flags)
3308 {
3309 	struct per_cpu_pages *pcp;
3310 	struct list_head *list;
3311 	struct page *page;
3312 	unsigned long flags;
3313 
3314 	local_irq_save(flags);
3315 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3316 	list = &pcp->lists[migratetype];
3317 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3318 	if (page) {
3319 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3320 		zone_statistics(preferred_zone, zone);
3321 	}
3322 	local_irq_restore(flags);
3323 	return page;
3324 }
3325 
3326 /*
3327  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3328  */
3329 static inline
3330 struct page *rmqueue(struct zone *preferred_zone,
3331 			struct zone *zone, unsigned int order,
3332 			gfp_t gfp_flags, unsigned int alloc_flags,
3333 			int migratetype)
3334 {
3335 	unsigned long flags;
3336 	struct page *page;
3337 
3338 	if (likely(order == 0)) {
3339 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3340 					migratetype, alloc_flags);
3341 		goto out;
3342 	}
3343 
3344 	/*
3345 	 * We most definitely don't want callers attempting to
3346 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3347 	 */
3348 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3349 	spin_lock_irqsave(&zone->lock, flags);
3350 
3351 	do {
3352 		page = NULL;
3353 		if (alloc_flags & ALLOC_HARDER) {
3354 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3355 			if (page)
3356 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3357 		}
3358 		if (!page)
3359 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3360 	} while (page && check_new_pages(page, order));
3361 	spin_unlock(&zone->lock);
3362 	if (!page)
3363 		goto failed;
3364 	__mod_zone_freepage_state(zone, -(1 << order),
3365 				  get_pcppage_migratetype(page));
3366 
3367 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3368 	zone_statistics(preferred_zone, zone);
3369 	local_irq_restore(flags);
3370 
3371 out:
3372 	/* Separate test+clear to avoid unnecessary atomics */
3373 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3374 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3375 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3376 	}
3377 
3378 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3379 	return page;
3380 
3381 failed:
3382 	local_irq_restore(flags);
3383 	return NULL;
3384 }
3385 
3386 #ifdef CONFIG_FAIL_PAGE_ALLOC
3387 
3388 static struct {
3389 	struct fault_attr attr;
3390 
3391 	bool ignore_gfp_highmem;
3392 	bool ignore_gfp_reclaim;
3393 	u32 min_order;
3394 } fail_page_alloc = {
3395 	.attr = FAULT_ATTR_INITIALIZER,
3396 	.ignore_gfp_reclaim = true,
3397 	.ignore_gfp_highmem = true,
3398 	.min_order = 1,
3399 };
3400 
3401 static int __init setup_fail_page_alloc(char *str)
3402 {
3403 	return setup_fault_attr(&fail_page_alloc.attr, str);
3404 }
3405 __setup("fail_page_alloc=", setup_fail_page_alloc);
3406 
3407 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3408 {
3409 	if (order < fail_page_alloc.min_order)
3410 		return false;
3411 	if (gfp_mask & __GFP_NOFAIL)
3412 		return false;
3413 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3414 		return false;
3415 	if (fail_page_alloc.ignore_gfp_reclaim &&
3416 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3417 		return false;
3418 
3419 	return should_fail(&fail_page_alloc.attr, 1 << order);
3420 }
3421 
3422 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3423 
3424 static int __init fail_page_alloc_debugfs(void)
3425 {
3426 	umode_t mode = S_IFREG | 0600;
3427 	struct dentry *dir;
3428 
3429 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3430 					&fail_page_alloc.attr);
3431 
3432 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3433 			    &fail_page_alloc.ignore_gfp_reclaim);
3434 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3435 			    &fail_page_alloc.ignore_gfp_highmem);
3436 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3437 
3438 	return 0;
3439 }
3440 
3441 late_initcall(fail_page_alloc_debugfs);
3442 
3443 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3444 
3445 #else /* CONFIG_FAIL_PAGE_ALLOC */
3446 
3447 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3448 {
3449 	return false;
3450 }
3451 
3452 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3453 
3454 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3455 {
3456 	return __should_fail_alloc_page(gfp_mask, order);
3457 }
3458 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3459 
3460 /*
3461  * Return true if free base pages are above 'mark'. For high-order checks it
3462  * will return true of the order-0 watermark is reached and there is at least
3463  * one free page of a suitable size. Checking now avoids taking the zone lock
3464  * to check in the allocation paths if no pages are free.
3465  */
3466 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3467 			 int classzone_idx, unsigned int alloc_flags,
3468 			 long free_pages)
3469 {
3470 	long min = mark;
3471 	int o;
3472 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3473 
3474 	/* free_pages may go negative - that's OK */
3475 	free_pages -= (1 << order) - 1;
3476 
3477 	if (alloc_flags & ALLOC_HIGH)
3478 		min -= min / 2;
3479 
3480 	/*
3481 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3482 	 * the high-atomic reserves. This will over-estimate the size of the
3483 	 * atomic reserve but it avoids a search.
3484 	 */
3485 	if (likely(!alloc_harder)) {
3486 		free_pages -= z->nr_reserved_highatomic;
3487 	} else {
3488 		/*
3489 		 * OOM victims can try even harder than normal ALLOC_HARDER
3490 		 * users on the grounds that it's definitely going to be in
3491 		 * the exit path shortly and free memory. Any allocation it
3492 		 * makes during the free path will be small and short-lived.
3493 		 */
3494 		if (alloc_flags & ALLOC_OOM)
3495 			min -= min / 2;
3496 		else
3497 			min -= min / 4;
3498 	}
3499 
3500 
3501 #ifdef CONFIG_CMA
3502 	/* If allocation can't use CMA areas don't use free CMA pages */
3503 	if (!(alloc_flags & ALLOC_CMA))
3504 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3505 #endif
3506 
3507 	/*
3508 	 * Check watermarks for an order-0 allocation request. If these
3509 	 * are not met, then a high-order request also cannot go ahead
3510 	 * even if a suitable page happened to be free.
3511 	 */
3512 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3513 		return false;
3514 
3515 	/* If this is an order-0 request then the watermark is fine */
3516 	if (!order)
3517 		return true;
3518 
3519 	/* For a high-order request, check at least one suitable page is free */
3520 	for (o = order; o < MAX_ORDER; o++) {
3521 		struct free_area *area = &z->free_area[o];
3522 		int mt;
3523 
3524 		if (!area->nr_free)
3525 			continue;
3526 
3527 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3528 			if (!free_area_empty(area, mt))
3529 				return true;
3530 		}
3531 
3532 #ifdef CONFIG_CMA
3533 		if ((alloc_flags & ALLOC_CMA) &&
3534 		    !free_area_empty(area, MIGRATE_CMA)) {
3535 			return true;
3536 		}
3537 #endif
3538 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3539 			return true;
3540 	}
3541 	return false;
3542 }
3543 
3544 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3545 		      int classzone_idx, unsigned int alloc_flags)
3546 {
3547 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3548 					zone_page_state(z, NR_FREE_PAGES));
3549 }
3550 
3551 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3552 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3553 {
3554 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3555 	long cma_pages = 0;
3556 
3557 #ifdef CONFIG_CMA
3558 	/* If allocation can't use CMA areas don't use free CMA pages */
3559 	if (!(alloc_flags & ALLOC_CMA))
3560 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3561 #endif
3562 
3563 	/*
3564 	 * Fast check for order-0 only. If this fails then the reserves
3565 	 * need to be calculated. There is a corner case where the check
3566 	 * passes but only the high-order atomic reserve are free. If
3567 	 * the caller is !atomic then it'll uselessly search the free
3568 	 * list. That corner case is then slower but it is harmless.
3569 	 */
3570 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3571 		return true;
3572 
3573 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3574 					free_pages);
3575 }
3576 
3577 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3578 			unsigned long mark, int classzone_idx)
3579 {
3580 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3581 
3582 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3583 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3584 
3585 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3586 								free_pages);
3587 }
3588 
3589 #ifdef CONFIG_NUMA
3590 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3591 {
3592 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3593 				node_reclaim_distance;
3594 }
3595 #else	/* CONFIG_NUMA */
3596 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3597 {
3598 	return true;
3599 }
3600 #endif	/* CONFIG_NUMA */
3601 
3602 /*
3603  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3604  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3605  * premature use of a lower zone may cause lowmem pressure problems that
3606  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3607  * probably too small. It only makes sense to spread allocations to avoid
3608  * fragmentation between the Normal and DMA32 zones.
3609  */
3610 static inline unsigned int
3611 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3612 {
3613 	unsigned int alloc_flags;
3614 
3615 	/*
3616 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3617 	 * to save a branch.
3618 	 */
3619 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3620 
3621 #ifdef CONFIG_ZONE_DMA32
3622 	if (!zone)
3623 		return alloc_flags;
3624 
3625 	if (zone_idx(zone) != ZONE_NORMAL)
3626 		return alloc_flags;
3627 
3628 	/*
3629 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3630 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3631 	 * on UMA that if Normal is populated then so is DMA32.
3632 	 */
3633 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3634 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3635 		return alloc_flags;
3636 
3637 	alloc_flags |= ALLOC_NOFRAGMENT;
3638 #endif /* CONFIG_ZONE_DMA32 */
3639 	return alloc_flags;
3640 }
3641 
3642 /*
3643  * get_page_from_freelist goes through the zonelist trying to allocate
3644  * a page.
3645  */
3646 static struct page *
3647 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3648 						const struct alloc_context *ac)
3649 {
3650 	struct zoneref *z;
3651 	struct zone *zone;
3652 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3653 	bool no_fallback;
3654 
3655 retry:
3656 	/*
3657 	 * Scan zonelist, looking for a zone with enough free.
3658 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3659 	 */
3660 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3661 	z = ac->preferred_zoneref;
3662 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3663 								ac->nodemask) {
3664 		struct page *page;
3665 		unsigned long mark;
3666 
3667 		if (cpusets_enabled() &&
3668 			(alloc_flags & ALLOC_CPUSET) &&
3669 			!__cpuset_zone_allowed(zone, gfp_mask))
3670 				continue;
3671 		/*
3672 		 * When allocating a page cache page for writing, we
3673 		 * want to get it from a node that is within its dirty
3674 		 * limit, such that no single node holds more than its
3675 		 * proportional share of globally allowed dirty pages.
3676 		 * The dirty limits take into account the node's
3677 		 * lowmem reserves and high watermark so that kswapd
3678 		 * should be able to balance it without having to
3679 		 * write pages from its LRU list.
3680 		 *
3681 		 * XXX: For now, allow allocations to potentially
3682 		 * exceed the per-node dirty limit in the slowpath
3683 		 * (spread_dirty_pages unset) before going into reclaim,
3684 		 * which is important when on a NUMA setup the allowed
3685 		 * nodes are together not big enough to reach the
3686 		 * global limit.  The proper fix for these situations
3687 		 * will require awareness of nodes in the
3688 		 * dirty-throttling and the flusher threads.
3689 		 */
3690 		if (ac->spread_dirty_pages) {
3691 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3692 				continue;
3693 
3694 			if (!node_dirty_ok(zone->zone_pgdat)) {
3695 				last_pgdat_dirty_limit = zone->zone_pgdat;
3696 				continue;
3697 			}
3698 		}
3699 
3700 		if (no_fallback && nr_online_nodes > 1 &&
3701 		    zone != ac->preferred_zoneref->zone) {
3702 			int local_nid;
3703 
3704 			/*
3705 			 * If moving to a remote node, retry but allow
3706 			 * fragmenting fallbacks. Locality is more important
3707 			 * than fragmentation avoidance.
3708 			 */
3709 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3710 			if (zone_to_nid(zone) != local_nid) {
3711 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3712 				goto retry;
3713 			}
3714 		}
3715 
3716 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3717 		if (!zone_watermark_fast(zone, order, mark,
3718 				       ac_classzone_idx(ac), alloc_flags)) {
3719 			int ret;
3720 
3721 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3722 			/*
3723 			 * Watermark failed for this zone, but see if we can
3724 			 * grow this zone if it contains deferred pages.
3725 			 */
3726 			if (static_branch_unlikely(&deferred_pages)) {
3727 				if (_deferred_grow_zone(zone, order))
3728 					goto try_this_zone;
3729 			}
3730 #endif
3731 			/* Checked here to keep the fast path fast */
3732 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3733 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3734 				goto try_this_zone;
3735 
3736 			if (node_reclaim_mode == 0 ||
3737 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3738 				continue;
3739 
3740 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3741 			switch (ret) {
3742 			case NODE_RECLAIM_NOSCAN:
3743 				/* did not scan */
3744 				continue;
3745 			case NODE_RECLAIM_FULL:
3746 				/* scanned but unreclaimable */
3747 				continue;
3748 			default:
3749 				/* did we reclaim enough */
3750 				if (zone_watermark_ok(zone, order, mark,
3751 						ac_classzone_idx(ac), alloc_flags))
3752 					goto try_this_zone;
3753 
3754 				continue;
3755 			}
3756 		}
3757 
3758 try_this_zone:
3759 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3760 				gfp_mask, alloc_flags, ac->migratetype);
3761 		if (page) {
3762 			prep_new_page(page, order, gfp_mask, alloc_flags);
3763 
3764 			/*
3765 			 * If this is a high-order atomic allocation then check
3766 			 * if the pageblock should be reserved for the future
3767 			 */
3768 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3769 				reserve_highatomic_pageblock(page, zone, order);
3770 
3771 			return page;
3772 		} else {
3773 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3774 			/* Try again if zone has deferred pages */
3775 			if (static_branch_unlikely(&deferred_pages)) {
3776 				if (_deferred_grow_zone(zone, order))
3777 					goto try_this_zone;
3778 			}
3779 #endif
3780 		}
3781 	}
3782 
3783 	/*
3784 	 * It's possible on a UMA machine to get through all zones that are
3785 	 * fragmented. If avoiding fragmentation, reset and try again.
3786 	 */
3787 	if (no_fallback) {
3788 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3789 		goto retry;
3790 	}
3791 
3792 	return NULL;
3793 }
3794 
3795 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3796 {
3797 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3798 
3799 	/*
3800 	 * This documents exceptions given to allocations in certain
3801 	 * contexts that are allowed to allocate outside current's set
3802 	 * of allowed nodes.
3803 	 */
3804 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3805 		if (tsk_is_oom_victim(current) ||
3806 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3807 			filter &= ~SHOW_MEM_FILTER_NODES;
3808 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3809 		filter &= ~SHOW_MEM_FILTER_NODES;
3810 
3811 	show_mem(filter, nodemask);
3812 }
3813 
3814 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3815 {
3816 	struct va_format vaf;
3817 	va_list args;
3818 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3819 
3820 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3821 		return;
3822 
3823 	va_start(args, fmt);
3824 	vaf.fmt = fmt;
3825 	vaf.va = &args;
3826 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3827 			current->comm, &vaf, gfp_mask, &gfp_mask,
3828 			nodemask_pr_args(nodemask));
3829 	va_end(args);
3830 
3831 	cpuset_print_current_mems_allowed();
3832 	pr_cont("\n");
3833 	dump_stack();
3834 	warn_alloc_show_mem(gfp_mask, nodemask);
3835 }
3836 
3837 static inline struct page *
3838 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3839 			      unsigned int alloc_flags,
3840 			      const struct alloc_context *ac)
3841 {
3842 	struct page *page;
3843 
3844 	page = get_page_from_freelist(gfp_mask, order,
3845 			alloc_flags|ALLOC_CPUSET, ac);
3846 	/*
3847 	 * fallback to ignore cpuset restriction if our nodes
3848 	 * are depleted
3849 	 */
3850 	if (!page)
3851 		page = get_page_from_freelist(gfp_mask, order,
3852 				alloc_flags, ac);
3853 
3854 	return page;
3855 }
3856 
3857 static inline struct page *
3858 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3859 	const struct alloc_context *ac, unsigned long *did_some_progress)
3860 {
3861 	struct oom_control oc = {
3862 		.zonelist = ac->zonelist,
3863 		.nodemask = ac->nodemask,
3864 		.memcg = NULL,
3865 		.gfp_mask = gfp_mask,
3866 		.order = order,
3867 	};
3868 	struct page *page;
3869 
3870 	*did_some_progress = 0;
3871 
3872 	/*
3873 	 * Acquire the oom lock.  If that fails, somebody else is
3874 	 * making progress for us.
3875 	 */
3876 	if (!mutex_trylock(&oom_lock)) {
3877 		*did_some_progress = 1;
3878 		schedule_timeout_uninterruptible(1);
3879 		return NULL;
3880 	}
3881 
3882 	/*
3883 	 * Go through the zonelist yet one more time, keep very high watermark
3884 	 * here, this is only to catch a parallel oom killing, we must fail if
3885 	 * we're still under heavy pressure. But make sure that this reclaim
3886 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3887 	 * allocation which will never fail due to oom_lock already held.
3888 	 */
3889 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3890 				      ~__GFP_DIRECT_RECLAIM, order,
3891 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3892 	if (page)
3893 		goto out;
3894 
3895 	/* Coredumps can quickly deplete all memory reserves */
3896 	if (current->flags & PF_DUMPCORE)
3897 		goto out;
3898 	/* The OOM killer will not help higher order allocs */
3899 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3900 		goto out;
3901 	/*
3902 	 * We have already exhausted all our reclaim opportunities without any
3903 	 * success so it is time to admit defeat. We will skip the OOM killer
3904 	 * because it is very likely that the caller has a more reasonable
3905 	 * fallback than shooting a random task.
3906 	 */
3907 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3908 		goto out;
3909 	/* The OOM killer does not needlessly kill tasks for lowmem */
3910 	if (ac->high_zoneidx < ZONE_NORMAL)
3911 		goto out;
3912 	if (pm_suspended_storage())
3913 		goto out;
3914 	/*
3915 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3916 	 * other request to make a forward progress.
3917 	 * We are in an unfortunate situation where out_of_memory cannot
3918 	 * do much for this context but let's try it to at least get
3919 	 * access to memory reserved if the current task is killed (see
3920 	 * out_of_memory). Once filesystems are ready to handle allocation
3921 	 * failures more gracefully we should just bail out here.
3922 	 */
3923 
3924 	/* The OOM killer may not free memory on a specific node */
3925 	if (gfp_mask & __GFP_THISNODE)
3926 		goto out;
3927 
3928 	/* Exhausted what can be done so it's blame time */
3929 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3930 		*did_some_progress = 1;
3931 
3932 		/*
3933 		 * Help non-failing allocations by giving them access to memory
3934 		 * reserves
3935 		 */
3936 		if (gfp_mask & __GFP_NOFAIL)
3937 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3938 					ALLOC_NO_WATERMARKS, ac);
3939 	}
3940 out:
3941 	mutex_unlock(&oom_lock);
3942 	return page;
3943 }
3944 
3945 /*
3946  * Maximum number of compaction retries wit a progress before OOM
3947  * killer is consider as the only way to move forward.
3948  */
3949 #define MAX_COMPACT_RETRIES 16
3950 
3951 #ifdef CONFIG_COMPACTION
3952 /* Try memory compaction for high-order allocations before reclaim */
3953 static struct page *
3954 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3955 		unsigned int alloc_flags, const struct alloc_context *ac,
3956 		enum compact_priority prio, enum compact_result *compact_result)
3957 {
3958 	struct page *page = NULL;
3959 	unsigned long pflags;
3960 	unsigned int noreclaim_flag;
3961 
3962 	if (!order)
3963 		return NULL;
3964 
3965 	psi_memstall_enter(&pflags);
3966 	noreclaim_flag = memalloc_noreclaim_save();
3967 
3968 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3969 								prio, &page);
3970 
3971 	memalloc_noreclaim_restore(noreclaim_flag);
3972 	psi_memstall_leave(&pflags);
3973 
3974 	/*
3975 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3976 	 * count a compaction stall
3977 	 */
3978 	count_vm_event(COMPACTSTALL);
3979 
3980 	/* Prep a captured page if available */
3981 	if (page)
3982 		prep_new_page(page, order, gfp_mask, alloc_flags);
3983 
3984 	/* Try get a page from the freelist if available */
3985 	if (!page)
3986 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3987 
3988 	if (page) {
3989 		struct zone *zone = page_zone(page);
3990 
3991 		zone->compact_blockskip_flush = false;
3992 		compaction_defer_reset(zone, order, true);
3993 		count_vm_event(COMPACTSUCCESS);
3994 		return page;
3995 	}
3996 
3997 	/*
3998 	 * It's bad if compaction run occurs and fails. The most likely reason
3999 	 * is that pages exist, but not enough to satisfy watermarks.
4000 	 */
4001 	count_vm_event(COMPACTFAIL);
4002 
4003 	cond_resched();
4004 
4005 	return NULL;
4006 }
4007 
4008 static inline bool
4009 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4010 		     enum compact_result compact_result,
4011 		     enum compact_priority *compact_priority,
4012 		     int *compaction_retries)
4013 {
4014 	int max_retries = MAX_COMPACT_RETRIES;
4015 	int min_priority;
4016 	bool ret = false;
4017 	int retries = *compaction_retries;
4018 	enum compact_priority priority = *compact_priority;
4019 
4020 	if (!order)
4021 		return false;
4022 
4023 	if (compaction_made_progress(compact_result))
4024 		(*compaction_retries)++;
4025 
4026 	/*
4027 	 * compaction considers all the zone as desperately out of memory
4028 	 * so it doesn't really make much sense to retry except when the
4029 	 * failure could be caused by insufficient priority
4030 	 */
4031 	if (compaction_failed(compact_result))
4032 		goto check_priority;
4033 
4034 	/*
4035 	 * compaction was skipped because there are not enough order-0 pages
4036 	 * to work with, so we retry only if it looks like reclaim can help.
4037 	 */
4038 	if (compaction_needs_reclaim(compact_result)) {
4039 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4040 		goto out;
4041 	}
4042 
4043 	/*
4044 	 * make sure the compaction wasn't deferred or didn't bail out early
4045 	 * due to locks contention before we declare that we should give up.
4046 	 * But the next retry should use a higher priority if allowed, so
4047 	 * we don't just keep bailing out endlessly.
4048 	 */
4049 	if (compaction_withdrawn(compact_result)) {
4050 		goto check_priority;
4051 	}
4052 
4053 	/*
4054 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4055 	 * costly ones because they are de facto nofail and invoke OOM
4056 	 * killer to move on while costly can fail and users are ready
4057 	 * to cope with that. 1/4 retries is rather arbitrary but we
4058 	 * would need much more detailed feedback from compaction to
4059 	 * make a better decision.
4060 	 */
4061 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4062 		max_retries /= 4;
4063 	if (*compaction_retries <= max_retries) {
4064 		ret = true;
4065 		goto out;
4066 	}
4067 
4068 	/*
4069 	 * Make sure there are attempts at the highest priority if we exhausted
4070 	 * all retries or failed at the lower priorities.
4071 	 */
4072 check_priority:
4073 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4074 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4075 
4076 	if (*compact_priority > min_priority) {
4077 		(*compact_priority)--;
4078 		*compaction_retries = 0;
4079 		ret = true;
4080 	}
4081 out:
4082 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4083 	return ret;
4084 }
4085 #else
4086 static inline struct page *
4087 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4088 		unsigned int alloc_flags, const struct alloc_context *ac,
4089 		enum compact_priority prio, enum compact_result *compact_result)
4090 {
4091 	*compact_result = COMPACT_SKIPPED;
4092 	return NULL;
4093 }
4094 
4095 static inline bool
4096 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4097 		     enum compact_result compact_result,
4098 		     enum compact_priority *compact_priority,
4099 		     int *compaction_retries)
4100 {
4101 	struct zone *zone;
4102 	struct zoneref *z;
4103 
4104 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4105 		return false;
4106 
4107 	/*
4108 	 * There are setups with compaction disabled which would prefer to loop
4109 	 * inside the allocator rather than hit the oom killer prematurely.
4110 	 * Let's give them a good hope and keep retrying while the order-0
4111 	 * watermarks are OK.
4112 	 */
4113 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4114 					ac->nodemask) {
4115 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4116 					ac_classzone_idx(ac), alloc_flags))
4117 			return true;
4118 	}
4119 	return false;
4120 }
4121 #endif /* CONFIG_COMPACTION */
4122 
4123 #ifdef CONFIG_LOCKDEP
4124 static struct lockdep_map __fs_reclaim_map =
4125 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4126 
4127 static bool __need_fs_reclaim(gfp_t gfp_mask)
4128 {
4129 	gfp_mask = current_gfp_context(gfp_mask);
4130 
4131 	/* no reclaim without waiting on it */
4132 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4133 		return false;
4134 
4135 	/* this guy won't enter reclaim */
4136 	if (current->flags & PF_MEMALLOC)
4137 		return false;
4138 
4139 	/* We're only interested __GFP_FS allocations for now */
4140 	if (!(gfp_mask & __GFP_FS))
4141 		return false;
4142 
4143 	if (gfp_mask & __GFP_NOLOCKDEP)
4144 		return false;
4145 
4146 	return true;
4147 }
4148 
4149 void __fs_reclaim_acquire(void)
4150 {
4151 	lock_map_acquire(&__fs_reclaim_map);
4152 }
4153 
4154 void __fs_reclaim_release(void)
4155 {
4156 	lock_map_release(&__fs_reclaim_map);
4157 }
4158 
4159 void fs_reclaim_acquire(gfp_t gfp_mask)
4160 {
4161 	if (__need_fs_reclaim(gfp_mask))
4162 		__fs_reclaim_acquire();
4163 }
4164 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4165 
4166 void fs_reclaim_release(gfp_t gfp_mask)
4167 {
4168 	if (__need_fs_reclaim(gfp_mask))
4169 		__fs_reclaim_release();
4170 }
4171 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4172 #endif
4173 
4174 /* Perform direct synchronous page reclaim */
4175 static int
4176 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4177 					const struct alloc_context *ac)
4178 {
4179 	int progress;
4180 	unsigned int noreclaim_flag;
4181 	unsigned long pflags;
4182 
4183 	cond_resched();
4184 
4185 	/* We now go into synchronous reclaim */
4186 	cpuset_memory_pressure_bump();
4187 	psi_memstall_enter(&pflags);
4188 	fs_reclaim_acquire(gfp_mask);
4189 	noreclaim_flag = memalloc_noreclaim_save();
4190 
4191 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4192 								ac->nodemask);
4193 
4194 	memalloc_noreclaim_restore(noreclaim_flag);
4195 	fs_reclaim_release(gfp_mask);
4196 	psi_memstall_leave(&pflags);
4197 
4198 	cond_resched();
4199 
4200 	return progress;
4201 }
4202 
4203 /* The really slow allocator path where we enter direct reclaim */
4204 static inline struct page *
4205 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4206 		unsigned int alloc_flags, const struct alloc_context *ac,
4207 		unsigned long *did_some_progress)
4208 {
4209 	struct page *page = NULL;
4210 	bool drained = false;
4211 
4212 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4213 	if (unlikely(!(*did_some_progress)))
4214 		return NULL;
4215 
4216 retry:
4217 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4218 
4219 	/*
4220 	 * If an allocation failed after direct reclaim, it could be because
4221 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4222 	 * Shrink them them and try again
4223 	 */
4224 	if (!page && !drained) {
4225 		unreserve_highatomic_pageblock(ac, false);
4226 		drain_all_pages(NULL);
4227 		drained = true;
4228 		goto retry;
4229 	}
4230 
4231 	return page;
4232 }
4233 
4234 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4235 			     const struct alloc_context *ac)
4236 {
4237 	struct zoneref *z;
4238 	struct zone *zone;
4239 	pg_data_t *last_pgdat = NULL;
4240 	enum zone_type high_zoneidx = ac->high_zoneidx;
4241 
4242 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4243 					ac->nodemask) {
4244 		if (last_pgdat != zone->zone_pgdat)
4245 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4246 		last_pgdat = zone->zone_pgdat;
4247 	}
4248 }
4249 
4250 static inline unsigned int
4251 gfp_to_alloc_flags(gfp_t gfp_mask)
4252 {
4253 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4254 
4255 	/*
4256 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4257 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4258 	 * to save two branches.
4259 	 */
4260 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4261 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4262 
4263 	/*
4264 	 * The caller may dip into page reserves a bit more if the caller
4265 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4266 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4267 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4268 	 */
4269 	alloc_flags |= (__force int)
4270 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4271 
4272 	if (gfp_mask & __GFP_ATOMIC) {
4273 		/*
4274 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4275 		 * if it can't schedule.
4276 		 */
4277 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4278 			alloc_flags |= ALLOC_HARDER;
4279 		/*
4280 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4281 		 * comment for __cpuset_node_allowed().
4282 		 */
4283 		alloc_flags &= ~ALLOC_CPUSET;
4284 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4285 		alloc_flags |= ALLOC_HARDER;
4286 
4287 #ifdef CONFIG_CMA
4288 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4289 		alloc_flags |= ALLOC_CMA;
4290 #endif
4291 	return alloc_flags;
4292 }
4293 
4294 static bool oom_reserves_allowed(struct task_struct *tsk)
4295 {
4296 	if (!tsk_is_oom_victim(tsk))
4297 		return false;
4298 
4299 	/*
4300 	 * !MMU doesn't have oom reaper so give access to memory reserves
4301 	 * only to the thread with TIF_MEMDIE set
4302 	 */
4303 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4304 		return false;
4305 
4306 	return true;
4307 }
4308 
4309 /*
4310  * Distinguish requests which really need access to full memory
4311  * reserves from oom victims which can live with a portion of it
4312  */
4313 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4314 {
4315 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4316 		return 0;
4317 	if (gfp_mask & __GFP_MEMALLOC)
4318 		return ALLOC_NO_WATERMARKS;
4319 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4320 		return ALLOC_NO_WATERMARKS;
4321 	if (!in_interrupt()) {
4322 		if (current->flags & PF_MEMALLOC)
4323 			return ALLOC_NO_WATERMARKS;
4324 		else if (oom_reserves_allowed(current))
4325 			return ALLOC_OOM;
4326 	}
4327 
4328 	return 0;
4329 }
4330 
4331 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4332 {
4333 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4334 }
4335 
4336 /*
4337  * Checks whether it makes sense to retry the reclaim to make a forward progress
4338  * for the given allocation request.
4339  *
4340  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4341  * without success, or when we couldn't even meet the watermark if we
4342  * reclaimed all remaining pages on the LRU lists.
4343  *
4344  * Returns true if a retry is viable or false to enter the oom path.
4345  */
4346 static inline bool
4347 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4348 		     struct alloc_context *ac, int alloc_flags,
4349 		     bool did_some_progress, int *no_progress_loops)
4350 {
4351 	struct zone *zone;
4352 	struct zoneref *z;
4353 	bool ret = false;
4354 
4355 	/*
4356 	 * Costly allocations might have made a progress but this doesn't mean
4357 	 * their order will become available due to high fragmentation so
4358 	 * always increment the no progress counter for them
4359 	 */
4360 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4361 		*no_progress_loops = 0;
4362 	else
4363 		(*no_progress_loops)++;
4364 
4365 	/*
4366 	 * Make sure we converge to OOM if we cannot make any progress
4367 	 * several times in the row.
4368 	 */
4369 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4370 		/* Before OOM, exhaust highatomic_reserve */
4371 		return unreserve_highatomic_pageblock(ac, true);
4372 	}
4373 
4374 	/*
4375 	 * Keep reclaiming pages while there is a chance this will lead
4376 	 * somewhere.  If none of the target zones can satisfy our allocation
4377 	 * request even if all reclaimable pages are considered then we are
4378 	 * screwed and have to go OOM.
4379 	 */
4380 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4381 					ac->nodemask) {
4382 		unsigned long available;
4383 		unsigned long reclaimable;
4384 		unsigned long min_wmark = min_wmark_pages(zone);
4385 		bool wmark;
4386 
4387 		available = reclaimable = zone_reclaimable_pages(zone);
4388 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4389 
4390 		/*
4391 		 * Would the allocation succeed if we reclaimed all
4392 		 * reclaimable pages?
4393 		 */
4394 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4395 				ac_classzone_idx(ac), alloc_flags, available);
4396 		trace_reclaim_retry_zone(z, order, reclaimable,
4397 				available, min_wmark, *no_progress_loops, wmark);
4398 		if (wmark) {
4399 			/*
4400 			 * If we didn't make any progress and have a lot of
4401 			 * dirty + writeback pages then we should wait for
4402 			 * an IO to complete to slow down the reclaim and
4403 			 * prevent from pre mature OOM
4404 			 */
4405 			if (!did_some_progress) {
4406 				unsigned long write_pending;
4407 
4408 				write_pending = zone_page_state_snapshot(zone,
4409 							NR_ZONE_WRITE_PENDING);
4410 
4411 				if (2 * write_pending > reclaimable) {
4412 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4413 					return true;
4414 				}
4415 			}
4416 
4417 			ret = true;
4418 			goto out;
4419 		}
4420 	}
4421 
4422 out:
4423 	/*
4424 	 * Memory allocation/reclaim might be called from a WQ context and the
4425 	 * current implementation of the WQ concurrency control doesn't
4426 	 * recognize that a particular WQ is congested if the worker thread is
4427 	 * looping without ever sleeping. Therefore we have to do a short sleep
4428 	 * here rather than calling cond_resched().
4429 	 */
4430 	if (current->flags & PF_WQ_WORKER)
4431 		schedule_timeout_uninterruptible(1);
4432 	else
4433 		cond_resched();
4434 	return ret;
4435 }
4436 
4437 static inline bool
4438 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4439 {
4440 	/*
4441 	 * It's possible that cpuset's mems_allowed and the nodemask from
4442 	 * mempolicy don't intersect. This should be normally dealt with by
4443 	 * policy_nodemask(), but it's possible to race with cpuset update in
4444 	 * such a way the check therein was true, and then it became false
4445 	 * before we got our cpuset_mems_cookie here.
4446 	 * This assumes that for all allocations, ac->nodemask can come only
4447 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4448 	 * when it does not intersect with the cpuset restrictions) or the
4449 	 * caller can deal with a violated nodemask.
4450 	 */
4451 	if (cpusets_enabled() && ac->nodemask &&
4452 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4453 		ac->nodemask = NULL;
4454 		return true;
4455 	}
4456 
4457 	/*
4458 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4459 	 * possible to race with parallel threads in such a way that our
4460 	 * allocation can fail while the mask is being updated. If we are about
4461 	 * to fail, check if the cpuset changed during allocation and if so,
4462 	 * retry.
4463 	 */
4464 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4465 		return true;
4466 
4467 	return false;
4468 }
4469 
4470 static inline struct page *
4471 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4472 						struct alloc_context *ac)
4473 {
4474 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4475 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4476 	struct page *page = NULL;
4477 	unsigned int alloc_flags;
4478 	unsigned long did_some_progress;
4479 	enum compact_priority compact_priority;
4480 	enum compact_result compact_result;
4481 	int compaction_retries;
4482 	int no_progress_loops;
4483 	unsigned int cpuset_mems_cookie;
4484 	int reserve_flags;
4485 
4486 	/*
4487 	 * We also sanity check to catch abuse of atomic reserves being used by
4488 	 * callers that are not in atomic context.
4489 	 */
4490 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4491 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4492 		gfp_mask &= ~__GFP_ATOMIC;
4493 
4494 retry_cpuset:
4495 	compaction_retries = 0;
4496 	no_progress_loops = 0;
4497 	compact_priority = DEF_COMPACT_PRIORITY;
4498 	cpuset_mems_cookie = read_mems_allowed_begin();
4499 
4500 	/*
4501 	 * The fast path uses conservative alloc_flags to succeed only until
4502 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4503 	 * alloc_flags precisely. So we do that now.
4504 	 */
4505 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4506 
4507 	/*
4508 	 * We need to recalculate the starting point for the zonelist iterator
4509 	 * because we might have used different nodemask in the fast path, or
4510 	 * there was a cpuset modification and we are retrying - otherwise we
4511 	 * could end up iterating over non-eligible zones endlessly.
4512 	 */
4513 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4514 					ac->high_zoneidx, ac->nodemask);
4515 	if (!ac->preferred_zoneref->zone)
4516 		goto nopage;
4517 
4518 	if (alloc_flags & ALLOC_KSWAPD)
4519 		wake_all_kswapds(order, gfp_mask, ac);
4520 
4521 	/*
4522 	 * The adjusted alloc_flags might result in immediate success, so try
4523 	 * that first
4524 	 */
4525 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4526 	if (page)
4527 		goto got_pg;
4528 
4529 	/*
4530 	 * For costly allocations, try direct compaction first, as it's likely
4531 	 * that we have enough base pages and don't need to reclaim. For non-
4532 	 * movable high-order allocations, do that as well, as compaction will
4533 	 * try prevent permanent fragmentation by migrating from blocks of the
4534 	 * same migratetype.
4535 	 * Don't try this for allocations that are allowed to ignore
4536 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4537 	 */
4538 	if (can_direct_reclaim &&
4539 			(costly_order ||
4540 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4541 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4542 		page = __alloc_pages_direct_compact(gfp_mask, order,
4543 						alloc_flags, ac,
4544 						INIT_COMPACT_PRIORITY,
4545 						&compact_result);
4546 		if (page)
4547 			goto got_pg;
4548 
4549 		/*
4550 		 * Checks for costly allocations with __GFP_NORETRY, which
4551 		 * includes some THP page fault allocations
4552 		 */
4553 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4554 			/*
4555 			 * If allocating entire pageblock(s) and compaction
4556 			 * failed because all zones are below low watermarks
4557 			 * or is prohibited because it recently failed at this
4558 			 * order, fail immediately unless the allocator has
4559 			 * requested compaction and reclaim retry.
4560 			 *
4561 			 * Reclaim is
4562 			 *  - potentially very expensive because zones are far
4563 			 *    below their low watermarks or this is part of very
4564 			 *    bursty high order allocations,
4565 			 *  - not guaranteed to help because isolate_freepages()
4566 			 *    may not iterate over freed pages as part of its
4567 			 *    linear scan, and
4568 			 *  - unlikely to make entire pageblocks free on its
4569 			 *    own.
4570 			 */
4571 			if (compact_result == COMPACT_SKIPPED ||
4572 			    compact_result == COMPACT_DEFERRED)
4573 				goto nopage;
4574 
4575 			/*
4576 			 * Looks like reclaim/compaction is worth trying, but
4577 			 * sync compaction could be very expensive, so keep
4578 			 * using async compaction.
4579 			 */
4580 			compact_priority = INIT_COMPACT_PRIORITY;
4581 		}
4582 	}
4583 
4584 retry:
4585 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4586 	if (alloc_flags & ALLOC_KSWAPD)
4587 		wake_all_kswapds(order, gfp_mask, ac);
4588 
4589 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4590 	if (reserve_flags)
4591 		alloc_flags = reserve_flags;
4592 
4593 	/*
4594 	 * Reset the nodemask and zonelist iterators if memory policies can be
4595 	 * ignored. These allocations are high priority and system rather than
4596 	 * user oriented.
4597 	 */
4598 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4599 		ac->nodemask = NULL;
4600 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4601 					ac->high_zoneidx, ac->nodemask);
4602 	}
4603 
4604 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4605 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4606 	if (page)
4607 		goto got_pg;
4608 
4609 	/* Caller is not willing to reclaim, we can't balance anything */
4610 	if (!can_direct_reclaim)
4611 		goto nopage;
4612 
4613 	/* Avoid recursion of direct reclaim */
4614 	if (current->flags & PF_MEMALLOC)
4615 		goto nopage;
4616 
4617 	/* Try direct reclaim and then allocating */
4618 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4619 							&did_some_progress);
4620 	if (page)
4621 		goto got_pg;
4622 
4623 	/* Try direct compaction and then allocating */
4624 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4625 					compact_priority, &compact_result);
4626 	if (page)
4627 		goto got_pg;
4628 
4629 	/* Do not loop if specifically requested */
4630 	if (gfp_mask & __GFP_NORETRY)
4631 		goto nopage;
4632 
4633 	/*
4634 	 * Do not retry costly high order allocations unless they are
4635 	 * __GFP_RETRY_MAYFAIL
4636 	 */
4637 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4638 		goto nopage;
4639 
4640 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4641 				 did_some_progress > 0, &no_progress_loops))
4642 		goto retry;
4643 
4644 	/*
4645 	 * It doesn't make any sense to retry for the compaction if the order-0
4646 	 * reclaim is not able to make any progress because the current
4647 	 * implementation of the compaction depends on the sufficient amount
4648 	 * of free memory (see __compaction_suitable)
4649 	 */
4650 	if (did_some_progress > 0 &&
4651 			should_compact_retry(ac, order, alloc_flags,
4652 				compact_result, &compact_priority,
4653 				&compaction_retries))
4654 		goto retry;
4655 
4656 
4657 	/* Deal with possible cpuset update races before we start OOM killing */
4658 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4659 		goto retry_cpuset;
4660 
4661 	/* Reclaim has failed us, start killing things */
4662 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4663 	if (page)
4664 		goto got_pg;
4665 
4666 	/* Avoid allocations with no watermarks from looping endlessly */
4667 	if (tsk_is_oom_victim(current) &&
4668 	    (alloc_flags == ALLOC_OOM ||
4669 	     (gfp_mask & __GFP_NOMEMALLOC)))
4670 		goto nopage;
4671 
4672 	/* Retry as long as the OOM killer is making progress */
4673 	if (did_some_progress) {
4674 		no_progress_loops = 0;
4675 		goto retry;
4676 	}
4677 
4678 nopage:
4679 	/* Deal with possible cpuset update races before we fail */
4680 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4681 		goto retry_cpuset;
4682 
4683 	/*
4684 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4685 	 * we always retry
4686 	 */
4687 	if (gfp_mask & __GFP_NOFAIL) {
4688 		/*
4689 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4690 		 * of any new users that actually require GFP_NOWAIT
4691 		 */
4692 		if (WARN_ON_ONCE(!can_direct_reclaim))
4693 			goto fail;
4694 
4695 		/*
4696 		 * PF_MEMALLOC request from this context is rather bizarre
4697 		 * because we cannot reclaim anything and only can loop waiting
4698 		 * for somebody to do a work for us
4699 		 */
4700 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4701 
4702 		/*
4703 		 * non failing costly orders are a hard requirement which we
4704 		 * are not prepared for much so let's warn about these users
4705 		 * so that we can identify them and convert them to something
4706 		 * else.
4707 		 */
4708 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4709 
4710 		/*
4711 		 * Help non-failing allocations by giving them access to memory
4712 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4713 		 * could deplete whole memory reserves which would just make
4714 		 * the situation worse
4715 		 */
4716 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4717 		if (page)
4718 			goto got_pg;
4719 
4720 		cond_resched();
4721 		goto retry;
4722 	}
4723 fail:
4724 	warn_alloc(gfp_mask, ac->nodemask,
4725 			"page allocation failure: order:%u", order);
4726 got_pg:
4727 	return page;
4728 }
4729 
4730 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4731 		int preferred_nid, nodemask_t *nodemask,
4732 		struct alloc_context *ac, gfp_t *alloc_mask,
4733 		unsigned int *alloc_flags)
4734 {
4735 	ac->high_zoneidx = gfp_zone(gfp_mask);
4736 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4737 	ac->nodemask = nodemask;
4738 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4739 
4740 	if (cpusets_enabled()) {
4741 		*alloc_mask |= __GFP_HARDWALL;
4742 		if (!ac->nodemask)
4743 			ac->nodemask = &cpuset_current_mems_allowed;
4744 		else
4745 			*alloc_flags |= ALLOC_CPUSET;
4746 	}
4747 
4748 	fs_reclaim_acquire(gfp_mask);
4749 	fs_reclaim_release(gfp_mask);
4750 
4751 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4752 
4753 	if (should_fail_alloc_page(gfp_mask, order))
4754 		return false;
4755 
4756 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4757 		*alloc_flags |= ALLOC_CMA;
4758 
4759 	return true;
4760 }
4761 
4762 /* Determine whether to spread dirty pages and what the first usable zone */
4763 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4764 {
4765 	/* Dirty zone balancing only done in the fast path */
4766 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4767 
4768 	/*
4769 	 * The preferred zone is used for statistics but crucially it is
4770 	 * also used as the starting point for the zonelist iterator. It
4771 	 * may get reset for allocations that ignore memory policies.
4772 	 */
4773 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4774 					ac->high_zoneidx, ac->nodemask);
4775 }
4776 
4777 /*
4778  * This is the 'heart' of the zoned buddy allocator.
4779  */
4780 struct page *
4781 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4782 							nodemask_t *nodemask)
4783 {
4784 	struct page *page;
4785 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4786 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4787 	struct alloc_context ac = { };
4788 
4789 	/*
4790 	 * There are several places where we assume that the order value is sane
4791 	 * so bail out early if the request is out of bound.
4792 	 */
4793 	if (unlikely(order >= MAX_ORDER)) {
4794 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4795 		return NULL;
4796 	}
4797 
4798 	gfp_mask &= gfp_allowed_mask;
4799 	alloc_mask = gfp_mask;
4800 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4801 		return NULL;
4802 
4803 	finalise_ac(gfp_mask, &ac);
4804 
4805 	/*
4806 	 * Forbid the first pass from falling back to types that fragment
4807 	 * memory until all local zones are considered.
4808 	 */
4809 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4810 
4811 	/* First allocation attempt */
4812 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4813 	if (likely(page))
4814 		goto out;
4815 
4816 	/*
4817 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4818 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4819 	 * from a particular context which has been marked by
4820 	 * memalloc_no{fs,io}_{save,restore}.
4821 	 */
4822 	alloc_mask = current_gfp_context(gfp_mask);
4823 	ac.spread_dirty_pages = false;
4824 
4825 	/*
4826 	 * Restore the original nodemask if it was potentially replaced with
4827 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4828 	 */
4829 	ac.nodemask = nodemask;
4830 
4831 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4832 
4833 out:
4834 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4835 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4836 		__free_pages(page, order);
4837 		page = NULL;
4838 	}
4839 
4840 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4841 
4842 	return page;
4843 }
4844 EXPORT_SYMBOL(__alloc_pages_nodemask);
4845 
4846 /*
4847  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4848  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4849  * you need to access high mem.
4850  */
4851 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4852 {
4853 	struct page *page;
4854 
4855 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4856 	if (!page)
4857 		return 0;
4858 	return (unsigned long) page_address(page);
4859 }
4860 EXPORT_SYMBOL(__get_free_pages);
4861 
4862 unsigned long get_zeroed_page(gfp_t gfp_mask)
4863 {
4864 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4865 }
4866 EXPORT_SYMBOL(get_zeroed_page);
4867 
4868 static inline void free_the_page(struct page *page, unsigned int order)
4869 {
4870 	if (order == 0)		/* Via pcp? */
4871 		free_unref_page(page);
4872 	else
4873 		__free_pages_ok(page, order);
4874 }
4875 
4876 void __free_pages(struct page *page, unsigned int order)
4877 {
4878 	if (put_page_testzero(page))
4879 		free_the_page(page, order);
4880 }
4881 EXPORT_SYMBOL(__free_pages);
4882 
4883 void free_pages(unsigned long addr, unsigned int order)
4884 {
4885 	if (addr != 0) {
4886 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4887 		__free_pages(virt_to_page((void *)addr), order);
4888 	}
4889 }
4890 
4891 EXPORT_SYMBOL(free_pages);
4892 
4893 /*
4894  * Page Fragment:
4895  *  An arbitrary-length arbitrary-offset area of memory which resides
4896  *  within a 0 or higher order page.  Multiple fragments within that page
4897  *  are individually refcounted, in the page's reference counter.
4898  *
4899  * The page_frag functions below provide a simple allocation framework for
4900  * page fragments.  This is used by the network stack and network device
4901  * drivers to provide a backing region of memory for use as either an
4902  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4903  */
4904 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4905 					     gfp_t gfp_mask)
4906 {
4907 	struct page *page = NULL;
4908 	gfp_t gfp = gfp_mask;
4909 
4910 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4911 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4912 		    __GFP_NOMEMALLOC;
4913 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4914 				PAGE_FRAG_CACHE_MAX_ORDER);
4915 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4916 #endif
4917 	if (unlikely(!page))
4918 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4919 
4920 	nc->va = page ? page_address(page) : NULL;
4921 
4922 	return page;
4923 }
4924 
4925 void __page_frag_cache_drain(struct page *page, unsigned int count)
4926 {
4927 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4928 
4929 	if (page_ref_sub_and_test(page, count))
4930 		free_the_page(page, compound_order(page));
4931 }
4932 EXPORT_SYMBOL(__page_frag_cache_drain);
4933 
4934 void *page_frag_alloc(struct page_frag_cache *nc,
4935 		      unsigned int fragsz, gfp_t gfp_mask)
4936 {
4937 	unsigned int size = PAGE_SIZE;
4938 	struct page *page;
4939 	int offset;
4940 
4941 	if (unlikely(!nc->va)) {
4942 refill:
4943 		page = __page_frag_cache_refill(nc, gfp_mask);
4944 		if (!page)
4945 			return NULL;
4946 
4947 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4948 		/* if size can vary use size else just use PAGE_SIZE */
4949 		size = nc->size;
4950 #endif
4951 		/* Even if we own the page, we do not use atomic_set().
4952 		 * This would break get_page_unless_zero() users.
4953 		 */
4954 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4955 
4956 		/* reset page count bias and offset to start of new frag */
4957 		nc->pfmemalloc = page_is_pfmemalloc(page);
4958 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4959 		nc->offset = size;
4960 	}
4961 
4962 	offset = nc->offset - fragsz;
4963 	if (unlikely(offset < 0)) {
4964 		page = virt_to_page(nc->va);
4965 
4966 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4967 			goto refill;
4968 
4969 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4970 		/* if size can vary use size else just use PAGE_SIZE */
4971 		size = nc->size;
4972 #endif
4973 		/* OK, page count is 0, we can safely set it */
4974 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4975 
4976 		/* reset page count bias and offset to start of new frag */
4977 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4978 		offset = size - fragsz;
4979 	}
4980 
4981 	nc->pagecnt_bias--;
4982 	nc->offset = offset;
4983 
4984 	return nc->va + offset;
4985 }
4986 EXPORT_SYMBOL(page_frag_alloc);
4987 
4988 /*
4989  * Frees a page fragment allocated out of either a compound or order 0 page.
4990  */
4991 void page_frag_free(void *addr)
4992 {
4993 	struct page *page = virt_to_head_page(addr);
4994 
4995 	if (unlikely(put_page_testzero(page)))
4996 		free_the_page(page, compound_order(page));
4997 }
4998 EXPORT_SYMBOL(page_frag_free);
4999 
5000 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5001 		size_t size)
5002 {
5003 	if (addr) {
5004 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5005 		unsigned long used = addr + PAGE_ALIGN(size);
5006 
5007 		split_page(virt_to_page((void *)addr), order);
5008 		while (used < alloc_end) {
5009 			free_page(used);
5010 			used += PAGE_SIZE;
5011 		}
5012 	}
5013 	return (void *)addr;
5014 }
5015 
5016 /**
5017  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5018  * @size: the number of bytes to allocate
5019  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5020  *
5021  * This function is similar to alloc_pages(), except that it allocates the
5022  * minimum number of pages to satisfy the request.  alloc_pages() can only
5023  * allocate memory in power-of-two pages.
5024  *
5025  * This function is also limited by MAX_ORDER.
5026  *
5027  * Memory allocated by this function must be released by free_pages_exact().
5028  *
5029  * Return: pointer to the allocated area or %NULL in case of error.
5030  */
5031 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5032 {
5033 	unsigned int order = get_order(size);
5034 	unsigned long addr;
5035 
5036 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5037 		gfp_mask &= ~__GFP_COMP;
5038 
5039 	addr = __get_free_pages(gfp_mask, order);
5040 	return make_alloc_exact(addr, order, size);
5041 }
5042 EXPORT_SYMBOL(alloc_pages_exact);
5043 
5044 /**
5045  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5046  *			   pages on a node.
5047  * @nid: the preferred node ID where memory should be allocated
5048  * @size: the number of bytes to allocate
5049  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5050  *
5051  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5052  * back.
5053  *
5054  * Return: pointer to the allocated area or %NULL in case of error.
5055  */
5056 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5057 {
5058 	unsigned int order = get_order(size);
5059 	struct page *p;
5060 
5061 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5062 		gfp_mask &= ~__GFP_COMP;
5063 
5064 	p = alloc_pages_node(nid, gfp_mask, order);
5065 	if (!p)
5066 		return NULL;
5067 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5068 }
5069 
5070 /**
5071  * free_pages_exact - release memory allocated via alloc_pages_exact()
5072  * @virt: the value returned by alloc_pages_exact.
5073  * @size: size of allocation, same value as passed to alloc_pages_exact().
5074  *
5075  * Release the memory allocated by a previous call to alloc_pages_exact.
5076  */
5077 void free_pages_exact(void *virt, size_t size)
5078 {
5079 	unsigned long addr = (unsigned long)virt;
5080 	unsigned long end = addr + PAGE_ALIGN(size);
5081 
5082 	while (addr < end) {
5083 		free_page(addr);
5084 		addr += PAGE_SIZE;
5085 	}
5086 }
5087 EXPORT_SYMBOL(free_pages_exact);
5088 
5089 /**
5090  * nr_free_zone_pages - count number of pages beyond high watermark
5091  * @offset: The zone index of the highest zone
5092  *
5093  * nr_free_zone_pages() counts the number of pages which are beyond the
5094  * high watermark within all zones at or below a given zone index.  For each
5095  * zone, the number of pages is calculated as:
5096  *
5097  *     nr_free_zone_pages = managed_pages - high_pages
5098  *
5099  * Return: number of pages beyond high watermark.
5100  */
5101 static unsigned long nr_free_zone_pages(int offset)
5102 {
5103 	struct zoneref *z;
5104 	struct zone *zone;
5105 
5106 	/* Just pick one node, since fallback list is circular */
5107 	unsigned long sum = 0;
5108 
5109 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5110 
5111 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5112 		unsigned long size = zone_managed_pages(zone);
5113 		unsigned long high = high_wmark_pages(zone);
5114 		if (size > high)
5115 			sum += size - high;
5116 	}
5117 
5118 	return sum;
5119 }
5120 
5121 /**
5122  * nr_free_buffer_pages - count number of pages beyond high watermark
5123  *
5124  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5125  * watermark within ZONE_DMA and ZONE_NORMAL.
5126  *
5127  * Return: number of pages beyond high watermark within ZONE_DMA and
5128  * ZONE_NORMAL.
5129  */
5130 unsigned long nr_free_buffer_pages(void)
5131 {
5132 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5133 }
5134 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5135 
5136 /**
5137  * nr_free_pagecache_pages - count number of pages beyond high watermark
5138  *
5139  * nr_free_pagecache_pages() counts the number of pages which are beyond the
5140  * high watermark within all zones.
5141  *
5142  * Return: number of pages beyond high watermark within all zones.
5143  */
5144 unsigned long nr_free_pagecache_pages(void)
5145 {
5146 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5147 }
5148 
5149 static inline void show_node(struct zone *zone)
5150 {
5151 	if (IS_ENABLED(CONFIG_NUMA))
5152 		printk("Node %d ", zone_to_nid(zone));
5153 }
5154 
5155 long si_mem_available(void)
5156 {
5157 	long available;
5158 	unsigned long pagecache;
5159 	unsigned long wmark_low = 0;
5160 	unsigned long pages[NR_LRU_LISTS];
5161 	unsigned long reclaimable;
5162 	struct zone *zone;
5163 	int lru;
5164 
5165 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5166 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5167 
5168 	for_each_zone(zone)
5169 		wmark_low += low_wmark_pages(zone);
5170 
5171 	/*
5172 	 * Estimate the amount of memory available for userspace allocations,
5173 	 * without causing swapping.
5174 	 */
5175 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5176 
5177 	/*
5178 	 * Not all the page cache can be freed, otherwise the system will
5179 	 * start swapping. Assume at least half of the page cache, or the
5180 	 * low watermark worth of cache, needs to stay.
5181 	 */
5182 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5183 	pagecache -= min(pagecache / 2, wmark_low);
5184 	available += pagecache;
5185 
5186 	/*
5187 	 * Part of the reclaimable slab and other kernel memory consists of
5188 	 * items that are in use, and cannot be freed. Cap this estimate at the
5189 	 * low watermark.
5190 	 */
5191 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5192 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5193 	available += reclaimable - min(reclaimable / 2, wmark_low);
5194 
5195 	if (available < 0)
5196 		available = 0;
5197 	return available;
5198 }
5199 EXPORT_SYMBOL_GPL(si_mem_available);
5200 
5201 void si_meminfo(struct sysinfo *val)
5202 {
5203 	val->totalram = totalram_pages();
5204 	val->sharedram = global_node_page_state(NR_SHMEM);
5205 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5206 	val->bufferram = nr_blockdev_pages();
5207 	val->totalhigh = totalhigh_pages();
5208 	val->freehigh = nr_free_highpages();
5209 	val->mem_unit = PAGE_SIZE;
5210 }
5211 
5212 EXPORT_SYMBOL(si_meminfo);
5213 
5214 #ifdef CONFIG_NUMA
5215 void si_meminfo_node(struct sysinfo *val, int nid)
5216 {
5217 	int zone_type;		/* needs to be signed */
5218 	unsigned long managed_pages = 0;
5219 	unsigned long managed_highpages = 0;
5220 	unsigned long free_highpages = 0;
5221 	pg_data_t *pgdat = NODE_DATA(nid);
5222 
5223 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5224 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5225 	val->totalram = managed_pages;
5226 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5227 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5228 #ifdef CONFIG_HIGHMEM
5229 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5230 		struct zone *zone = &pgdat->node_zones[zone_type];
5231 
5232 		if (is_highmem(zone)) {
5233 			managed_highpages += zone_managed_pages(zone);
5234 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5235 		}
5236 	}
5237 	val->totalhigh = managed_highpages;
5238 	val->freehigh = free_highpages;
5239 #else
5240 	val->totalhigh = managed_highpages;
5241 	val->freehigh = free_highpages;
5242 #endif
5243 	val->mem_unit = PAGE_SIZE;
5244 }
5245 #endif
5246 
5247 /*
5248  * Determine whether the node should be displayed or not, depending on whether
5249  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5250  */
5251 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5252 {
5253 	if (!(flags & SHOW_MEM_FILTER_NODES))
5254 		return false;
5255 
5256 	/*
5257 	 * no node mask - aka implicit memory numa policy. Do not bother with
5258 	 * the synchronization - read_mems_allowed_begin - because we do not
5259 	 * have to be precise here.
5260 	 */
5261 	if (!nodemask)
5262 		nodemask = &cpuset_current_mems_allowed;
5263 
5264 	return !node_isset(nid, *nodemask);
5265 }
5266 
5267 #define K(x) ((x) << (PAGE_SHIFT-10))
5268 
5269 static void show_migration_types(unsigned char type)
5270 {
5271 	static const char types[MIGRATE_TYPES] = {
5272 		[MIGRATE_UNMOVABLE]	= 'U',
5273 		[MIGRATE_MOVABLE]	= 'M',
5274 		[MIGRATE_RECLAIMABLE]	= 'E',
5275 		[MIGRATE_HIGHATOMIC]	= 'H',
5276 #ifdef CONFIG_CMA
5277 		[MIGRATE_CMA]		= 'C',
5278 #endif
5279 #ifdef CONFIG_MEMORY_ISOLATION
5280 		[MIGRATE_ISOLATE]	= 'I',
5281 #endif
5282 	};
5283 	char tmp[MIGRATE_TYPES + 1];
5284 	char *p = tmp;
5285 	int i;
5286 
5287 	for (i = 0; i < MIGRATE_TYPES; i++) {
5288 		if (type & (1 << i))
5289 			*p++ = types[i];
5290 	}
5291 
5292 	*p = '\0';
5293 	printk(KERN_CONT "(%s) ", tmp);
5294 }
5295 
5296 /*
5297  * Show free area list (used inside shift_scroll-lock stuff)
5298  * We also calculate the percentage fragmentation. We do this by counting the
5299  * memory on each free list with the exception of the first item on the list.
5300  *
5301  * Bits in @filter:
5302  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5303  *   cpuset.
5304  */
5305 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5306 {
5307 	unsigned long free_pcp = 0;
5308 	int cpu;
5309 	struct zone *zone;
5310 	pg_data_t *pgdat;
5311 
5312 	for_each_populated_zone(zone) {
5313 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5314 			continue;
5315 
5316 		for_each_online_cpu(cpu)
5317 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5318 	}
5319 
5320 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5321 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5322 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5323 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5324 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5325 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5326 		global_node_page_state(NR_ACTIVE_ANON),
5327 		global_node_page_state(NR_INACTIVE_ANON),
5328 		global_node_page_state(NR_ISOLATED_ANON),
5329 		global_node_page_state(NR_ACTIVE_FILE),
5330 		global_node_page_state(NR_INACTIVE_FILE),
5331 		global_node_page_state(NR_ISOLATED_FILE),
5332 		global_node_page_state(NR_UNEVICTABLE),
5333 		global_node_page_state(NR_FILE_DIRTY),
5334 		global_node_page_state(NR_WRITEBACK),
5335 		global_node_page_state(NR_UNSTABLE_NFS),
5336 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5337 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5338 		global_node_page_state(NR_FILE_MAPPED),
5339 		global_node_page_state(NR_SHMEM),
5340 		global_zone_page_state(NR_PAGETABLE),
5341 		global_zone_page_state(NR_BOUNCE),
5342 		global_zone_page_state(NR_FREE_PAGES),
5343 		free_pcp,
5344 		global_zone_page_state(NR_FREE_CMA_PAGES));
5345 
5346 	for_each_online_pgdat(pgdat) {
5347 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5348 			continue;
5349 
5350 		printk("Node %d"
5351 			" active_anon:%lukB"
5352 			" inactive_anon:%lukB"
5353 			" active_file:%lukB"
5354 			" inactive_file:%lukB"
5355 			" unevictable:%lukB"
5356 			" isolated(anon):%lukB"
5357 			" isolated(file):%lukB"
5358 			" mapped:%lukB"
5359 			" dirty:%lukB"
5360 			" writeback:%lukB"
5361 			" shmem:%lukB"
5362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5363 			" shmem_thp: %lukB"
5364 			" shmem_pmdmapped: %lukB"
5365 			" anon_thp: %lukB"
5366 #endif
5367 			" writeback_tmp:%lukB"
5368 			" unstable:%lukB"
5369 			" all_unreclaimable? %s"
5370 			"\n",
5371 			pgdat->node_id,
5372 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5373 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5374 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5375 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5376 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5377 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5378 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5379 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5380 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5381 			K(node_page_state(pgdat, NR_WRITEBACK)),
5382 			K(node_page_state(pgdat, NR_SHMEM)),
5383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5384 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5385 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5386 					* HPAGE_PMD_NR),
5387 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5388 #endif
5389 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5390 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5391 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5392 				"yes" : "no");
5393 	}
5394 
5395 	for_each_populated_zone(zone) {
5396 		int i;
5397 
5398 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5399 			continue;
5400 
5401 		free_pcp = 0;
5402 		for_each_online_cpu(cpu)
5403 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5404 
5405 		show_node(zone);
5406 		printk(KERN_CONT
5407 			"%s"
5408 			" free:%lukB"
5409 			" min:%lukB"
5410 			" low:%lukB"
5411 			" high:%lukB"
5412 			" reserved_highatomic:%luKB"
5413 			" active_anon:%lukB"
5414 			" inactive_anon:%lukB"
5415 			" active_file:%lukB"
5416 			" inactive_file:%lukB"
5417 			" unevictable:%lukB"
5418 			" writepending:%lukB"
5419 			" present:%lukB"
5420 			" managed:%lukB"
5421 			" mlocked:%lukB"
5422 			" kernel_stack:%lukB"
5423 			" pagetables:%lukB"
5424 			" bounce:%lukB"
5425 			" free_pcp:%lukB"
5426 			" local_pcp:%ukB"
5427 			" free_cma:%lukB"
5428 			"\n",
5429 			zone->name,
5430 			K(zone_page_state(zone, NR_FREE_PAGES)),
5431 			K(min_wmark_pages(zone)),
5432 			K(low_wmark_pages(zone)),
5433 			K(high_wmark_pages(zone)),
5434 			K(zone->nr_reserved_highatomic),
5435 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5436 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5437 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5438 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5439 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5440 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5441 			K(zone->present_pages),
5442 			K(zone_managed_pages(zone)),
5443 			K(zone_page_state(zone, NR_MLOCK)),
5444 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5445 			K(zone_page_state(zone, NR_PAGETABLE)),
5446 			K(zone_page_state(zone, NR_BOUNCE)),
5447 			K(free_pcp),
5448 			K(this_cpu_read(zone->pageset->pcp.count)),
5449 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5450 		printk("lowmem_reserve[]:");
5451 		for (i = 0; i < MAX_NR_ZONES; i++)
5452 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5453 		printk(KERN_CONT "\n");
5454 	}
5455 
5456 	for_each_populated_zone(zone) {
5457 		unsigned int order;
5458 		unsigned long nr[MAX_ORDER], flags, total = 0;
5459 		unsigned char types[MAX_ORDER];
5460 
5461 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5462 			continue;
5463 		show_node(zone);
5464 		printk(KERN_CONT "%s: ", zone->name);
5465 
5466 		spin_lock_irqsave(&zone->lock, flags);
5467 		for (order = 0; order < MAX_ORDER; order++) {
5468 			struct free_area *area = &zone->free_area[order];
5469 			int type;
5470 
5471 			nr[order] = area->nr_free;
5472 			total += nr[order] << order;
5473 
5474 			types[order] = 0;
5475 			for (type = 0; type < MIGRATE_TYPES; type++) {
5476 				if (!free_area_empty(area, type))
5477 					types[order] |= 1 << type;
5478 			}
5479 		}
5480 		spin_unlock_irqrestore(&zone->lock, flags);
5481 		for (order = 0; order < MAX_ORDER; order++) {
5482 			printk(KERN_CONT "%lu*%lukB ",
5483 			       nr[order], K(1UL) << order);
5484 			if (nr[order])
5485 				show_migration_types(types[order]);
5486 		}
5487 		printk(KERN_CONT "= %lukB\n", K(total));
5488 	}
5489 
5490 	hugetlb_show_meminfo();
5491 
5492 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5493 
5494 	show_swap_cache_info();
5495 }
5496 
5497 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5498 {
5499 	zoneref->zone = zone;
5500 	zoneref->zone_idx = zone_idx(zone);
5501 }
5502 
5503 /*
5504  * Builds allocation fallback zone lists.
5505  *
5506  * Add all populated zones of a node to the zonelist.
5507  */
5508 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5509 {
5510 	struct zone *zone;
5511 	enum zone_type zone_type = MAX_NR_ZONES;
5512 	int nr_zones = 0;
5513 
5514 	do {
5515 		zone_type--;
5516 		zone = pgdat->node_zones + zone_type;
5517 		if (managed_zone(zone)) {
5518 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5519 			check_highest_zone(zone_type);
5520 		}
5521 	} while (zone_type);
5522 
5523 	return nr_zones;
5524 }
5525 
5526 #ifdef CONFIG_NUMA
5527 
5528 static int __parse_numa_zonelist_order(char *s)
5529 {
5530 	/*
5531 	 * We used to support different zonlists modes but they turned
5532 	 * out to be just not useful. Let's keep the warning in place
5533 	 * if somebody still use the cmd line parameter so that we do
5534 	 * not fail it silently
5535 	 */
5536 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5537 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5538 		return -EINVAL;
5539 	}
5540 	return 0;
5541 }
5542 
5543 static __init int setup_numa_zonelist_order(char *s)
5544 {
5545 	if (!s)
5546 		return 0;
5547 
5548 	return __parse_numa_zonelist_order(s);
5549 }
5550 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5551 
5552 char numa_zonelist_order[] = "Node";
5553 
5554 /*
5555  * sysctl handler for numa_zonelist_order
5556  */
5557 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5558 		void __user *buffer, size_t *length,
5559 		loff_t *ppos)
5560 {
5561 	char *str;
5562 	int ret;
5563 
5564 	if (!write)
5565 		return proc_dostring(table, write, buffer, length, ppos);
5566 	str = memdup_user_nul(buffer, 16);
5567 	if (IS_ERR(str))
5568 		return PTR_ERR(str);
5569 
5570 	ret = __parse_numa_zonelist_order(str);
5571 	kfree(str);
5572 	return ret;
5573 }
5574 
5575 
5576 #define MAX_NODE_LOAD (nr_online_nodes)
5577 static int node_load[MAX_NUMNODES];
5578 
5579 /**
5580  * find_next_best_node - find the next node that should appear in a given node's fallback list
5581  * @node: node whose fallback list we're appending
5582  * @used_node_mask: nodemask_t of already used nodes
5583  *
5584  * We use a number of factors to determine which is the next node that should
5585  * appear on a given node's fallback list.  The node should not have appeared
5586  * already in @node's fallback list, and it should be the next closest node
5587  * according to the distance array (which contains arbitrary distance values
5588  * from each node to each node in the system), and should also prefer nodes
5589  * with no CPUs, since presumably they'll have very little allocation pressure
5590  * on them otherwise.
5591  *
5592  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5593  */
5594 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5595 {
5596 	int n, val;
5597 	int min_val = INT_MAX;
5598 	int best_node = NUMA_NO_NODE;
5599 	const struct cpumask *tmp = cpumask_of_node(0);
5600 
5601 	/* Use the local node if we haven't already */
5602 	if (!node_isset(node, *used_node_mask)) {
5603 		node_set(node, *used_node_mask);
5604 		return node;
5605 	}
5606 
5607 	for_each_node_state(n, N_MEMORY) {
5608 
5609 		/* Don't want a node to appear more than once */
5610 		if (node_isset(n, *used_node_mask))
5611 			continue;
5612 
5613 		/* Use the distance array to find the distance */
5614 		val = node_distance(node, n);
5615 
5616 		/* Penalize nodes under us ("prefer the next node") */
5617 		val += (n < node);
5618 
5619 		/* Give preference to headless and unused nodes */
5620 		tmp = cpumask_of_node(n);
5621 		if (!cpumask_empty(tmp))
5622 			val += PENALTY_FOR_NODE_WITH_CPUS;
5623 
5624 		/* Slight preference for less loaded node */
5625 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5626 		val += node_load[n];
5627 
5628 		if (val < min_val) {
5629 			min_val = val;
5630 			best_node = n;
5631 		}
5632 	}
5633 
5634 	if (best_node >= 0)
5635 		node_set(best_node, *used_node_mask);
5636 
5637 	return best_node;
5638 }
5639 
5640 
5641 /*
5642  * Build zonelists ordered by node and zones within node.
5643  * This results in maximum locality--normal zone overflows into local
5644  * DMA zone, if any--but risks exhausting DMA zone.
5645  */
5646 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5647 		unsigned nr_nodes)
5648 {
5649 	struct zoneref *zonerefs;
5650 	int i;
5651 
5652 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5653 
5654 	for (i = 0; i < nr_nodes; i++) {
5655 		int nr_zones;
5656 
5657 		pg_data_t *node = NODE_DATA(node_order[i]);
5658 
5659 		nr_zones = build_zonerefs_node(node, zonerefs);
5660 		zonerefs += nr_zones;
5661 	}
5662 	zonerefs->zone = NULL;
5663 	zonerefs->zone_idx = 0;
5664 }
5665 
5666 /*
5667  * Build gfp_thisnode zonelists
5668  */
5669 static void build_thisnode_zonelists(pg_data_t *pgdat)
5670 {
5671 	struct zoneref *zonerefs;
5672 	int nr_zones;
5673 
5674 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5675 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5676 	zonerefs += nr_zones;
5677 	zonerefs->zone = NULL;
5678 	zonerefs->zone_idx = 0;
5679 }
5680 
5681 /*
5682  * Build zonelists ordered by zone and nodes within zones.
5683  * This results in conserving DMA zone[s] until all Normal memory is
5684  * exhausted, but results in overflowing to remote node while memory
5685  * may still exist in local DMA zone.
5686  */
5687 
5688 static void build_zonelists(pg_data_t *pgdat)
5689 {
5690 	static int node_order[MAX_NUMNODES];
5691 	int node, load, nr_nodes = 0;
5692 	nodemask_t used_mask;
5693 	int local_node, prev_node;
5694 
5695 	/* NUMA-aware ordering of nodes */
5696 	local_node = pgdat->node_id;
5697 	load = nr_online_nodes;
5698 	prev_node = local_node;
5699 	nodes_clear(used_mask);
5700 
5701 	memset(node_order, 0, sizeof(node_order));
5702 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5703 		/*
5704 		 * We don't want to pressure a particular node.
5705 		 * So adding penalty to the first node in same
5706 		 * distance group to make it round-robin.
5707 		 */
5708 		if (node_distance(local_node, node) !=
5709 		    node_distance(local_node, prev_node))
5710 			node_load[node] = load;
5711 
5712 		node_order[nr_nodes++] = node;
5713 		prev_node = node;
5714 		load--;
5715 	}
5716 
5717 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5718 	build_thisnode_zonelists(pgdat);
5719 }
5720 
5721 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5722 /*
5723  * Return node id of node used for "local" allocations.
5724  * I.e., first node id of first zone in arg node's generic zonelist.
5725  * Used for initializing percpu 'numa_mem', which is used primarily
5726  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5727  */
5728 int local_memory_node(int node)
5729 {
5730 	struct zoneref *z;
5731 
5732 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5733 				   gfp_zone(GFP_KERNEL),
5734 				   NULL);
5735 	return zone_to_nid(z->zone);
5736 }
5737 #endif
5738 
5739 static void setup_min_unmapped_ratio(void);
5740 static void setup_min_slab_ratio(void);
5741 #else	/* CONFIG_NUMA */
5742 
5743 static void build_zonelists(pg_data_t *pgdat)
5744 {
5745 	int node, local_node;
5746 	struct zoneref *zonerefs;
5747 	int nr_zones;
5748 
5749 	local_node = pgdat->node_id;
5750 
5751 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5752 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5753 	zonerefs += nr_zones;
5754 
5755 	/*
5756 	 * Now we build the zonelist so that it contains the zones
5757 	 * of all the other nodes.
5758 	 * We don't want to pressure a particular node, so when
5759 	 * building the zones for node N, we make sure that the
5760 	 * zones coming right after the local ones are those from
5761 	 * node N+1 (modulo N)
5762 	 */
5763 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5764 		if (!node_online(node))
5765 			continue;
5766 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5767 		zonerefs += nr_zones;
5768 	}
5769 	for (node = 0; node < local_node; node++) {
5770 		if (!node_online(node))
5771 			continue;
5772 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5773 		zonerefs += nr_zones;
5774 	}
5775 
5776 	zonerefs->zone = NULL;
5777 	zonerefs->zone_idx = 0;
5778 }
5779 
5780 #endif	/* CONFIG_NUMA */
5781 
5782 /*
5783  * Boot pageset table. One per cpu which is going to be used for all
5784  * zones and all nodes. The parameters will be set in such a way
5785  * that an item put on a list will immediately be handed over to
5786  * the buddy list. This is safe since pageset manipulation is done
5787  * with interrupts disabled.
5788  *
5789  * The boot_pagesets must be kept even after bootup is complete for
5790  * unused processors and/or zones. They do play a role for bootstrapping
5791  * hotplugged processors.
5792  *
5793  * zoneinfo_show() and maybe other functions do
5794  * not check if the processor is online before following the pageset pointer.
5795  * Other parts of the kernel may not check if the zone is available.
5796  */
5797 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5798 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5799 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5800 
5801 static void __build_all_zonelists(void *data)
5802 {
5803 	int nid;
5804 	int __maybe_unused cpu;
5805 	pg_data_t *self = data;
5806 	static DEFINE_SPINLOCK(lock);
5807 
5808 	spin_lock(&lock);
5809 
5810 #ifdef CONFIG_NUMA
5811 	memset(node_load, 0, sizeof(node_load));
5812 #endif
5813 
5814 	/*
5815 	 * This node is hotadded and no memory is yet present.   So just
5816 	 * building zonelists is fine - no need to touch other nodes.
5817 	 */
5818 	if (self && !node_online(self->node_id)) {
5819 		build_zonelists(self);
5820 	} else {
5821 		for_each_online_node(nid) {
5822 			pg_data_t *pgdat = NODE_DATA(nid);
5823 
5824 			build_zonelists(pgdat);
5825 		}
5826 
5827 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5828 		/*
5829 		 * We now know the "local memory node" for each node--
5830 		 * i.e., the node of the first zone in the generic zonelist.
5831 		 * Set up numa_mem percpu variable for on-line cpus.  During
5832 		 * boot, only the boot cpu should be on-line;  we'll init the
5833 		 * secondary cpus' numa_mem as they come on-line.  During
5834 		 * node/memory hotplug, we'll fixup all on-line cpus.
5835 		 */
5836 		for_each_online_cpu(cpu)
5837 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5838 #endif
5839 	}
5840 
5841 	spin_unlock(&lock);
5842 }
5843 
5844 static noinline void __init
5845 build_all_zonelists_init(void)
5846 {
5847 	int cpu;
5848 
5849 	__build_all_zonelists(NULL);
5850 
5851 	/*
5852 	 * Initialize the boot_pagesets that are going to be used
5853 	 * for bootstrapping processors. The real pagesets for
5854 	 * each zone will be allocated later when the per cpu
5855 	 * allocator is available.
5856 	 *
5857 	 * boot_pagesets are used also for bootstrapping offline
5858 	 * cpus if the system is already booted because the pagesets
5859 	 * are needed to initialize allocators on a specific cpu too.
5860 	 * F.e. the percpu allocator needs the page allocator which
5861 	 * needs the percpu allocator in order to allocate its pagesets
5862 	 * (a chicken-egg dilemma).
5863 	 */
5864 	for_each_possible_cpu(cpu)
5865 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5866 
5867 	mminit_verify_zonelist();
5868 	cpuset_init_current_mems_allowed();
5869 }
5870 
5871 /*
5872  * unless system_state == SYSTEM_BOOTING.
5873  *
5874  * __ref due to call of __init annotated helper build_all_zonelists_init
5875  * [protected by SYSTEM_BOOTING].
5876  */
5877 void __ref build_all_zonelists(pg_data_t *pgdat)
5878 {
5879 	if (system_state == SYSTEM_BOOTING) {
5880 		build_all_zonelists_init();
5881 	} else {
5882 		__build_all_zonelists(pgdat);
5883 		/* cpuset refresh routine should be here */
5884 	}
5885 	vm_total_pages = nr_free_pagecache_pages();
5886 	/*
5887 	 * Disable grouping by mobility if the number of pages in the
5888 	 * system is too low to allow the mechanism to work. It would be
5889 	 * more accurate, but expensive to check per-zone. This check is
5890 	 * made on memory-hotadd so a system can start with mobility
5891 	 * disabled and enable it later
5892 	 */
5893 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5894 		page_group_by_mobility_disabled = 1;
5895 	else
5896 		page_group_by_mobility_disabled = 0;
5897 
5898 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5899 		nr_online_nodes,
5900 		page_group_by_mobility_disabled ? "off" : "on",
5901 		vm_total_pages);
5902 #ifdef CONFIG_NUMA
5903 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5904 #endif
5905 }
5906 
5907 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5908 static bool __meminit
5909 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5910 {
5911 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5912 	static struct memblock_region *r;
5913 
5914 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5915 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5916 			for_each_memblock(memory, r) {
5917 				if (*pfn < memblock_region_memory_end_pfn(r))
5918 					break;
5919 			}
5920 		}
5921 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5922 		    memblock_is_mirror(r)) {
5923 			*pfn = memblock_region_memory_end_pfn(r);
5924 			return true;
5925 		}
5926 	}
5927 #endif
5928 	return false;
5929 }
5930 
5931 #ifdef CONFIG_SPARSEMEM
5932 /* Skip PFNs that belong to non-present sections */
5933 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5934 {
5935 	const unsigned long section_nr = pfn_to_section_nr(++pfn);
5936 
5937 	if (present_section_nr(section_nr))
5938 		return pfn;
5939 	return section_nr_to_pfn(next_present_section_nr(section_nr));
5940 }
5941 #else
5942 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5943 {
5944 	return pfn++;
5945 }
5946 #endif
5947 
5948 /*
5949  * Initially all pages are reserved - free ones are freed
5950  * up by memblock_free_all() once the early boot process is
5951  * done. Non-atomic initialization, single-pass.
5952  */
5953 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5954 		unsigned long start_pfn, enum memmap_context context,
5955 		struct vmem_altmap *altmap)
5956 {
5957 	unsigned long pfn, end_pfn = start_pfn + size;
5958 	struct page *page;
5959 
5960 	if (highest_memmap_pfn < end_pfn - 1)
5961 		highest_memmap_pfn = end_pfn - 1;
5962 
5963 #ifdef CONFIG_ZONE_DEVICE
5964 	/*
5965 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5966 	 * memory. We limit the total number of pages to initialize to just
5967 	 * those that might contain the memory mapping. We will defer the
5968 	 * ZONE_DEVICE page initialization until after we have released
5969 	 * the hotplug lock.
5970 	 */
5971 	if (zone == ZONE_DEVICE) {
5972 		if (!altmap)
5973 			return;
5974 
5975 		if (start_pfn == altmap->base_pfn)
5976 			start_pfn += altmap->reserve;
5977 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5978 	}
5979 #endif
5980 
5981 	for (pfn = start_pfn; pfn < end_pfn; ) {
5982 		/*
5983 		 * There can be holes in boot-time mem_map[]s handed to this
5984 		 * function.  They do not exist on hotplugged memory.
5985 		 */
5986 		if (context == MEMMAP_EARLY) {
5987 			if (!early_pfn_valid(pfn)) {
5988 				pfn = next_pfn(pfn);
5989 				continue;
5990 			}
5991 			if (!early_pfn_in_nid(pfn, nid)) {
5992 				pfn++;
5993 				continue;
5994 			}
5995 			if (overlap_memmap_init(zone, &pfn))
5996 				continue;
5997 			if (defer_init(nid, pfn, end_pfn))
5998 				break;
5999 		}
6000 
6001 		page = pfn_to_page(pfn);
6002 		__init_single_page(page, pfn, zone, nid);
6003 		if (context == MEMMAP_HOTPLUG)
6004 			__SetPageReserved(page);
6005 
6006 		/*
6007 		 * Mark the block movable so that blocks are reserved for
6008 		 * movable at startup. This will force kernel allocations
6009 		 * to reserve their blocks rather than leaking throughout
6010 		 * the address space during boot when many long-lived
6011 		 * kernel allocations are made.
6012 		 *
6013 		 * bitmap is created for zone's valid pfn range. but memmap
6014 		 * can be created for invalid pages (for alignment)
6015 		 * check here not to call set_pageblock_migratetype() against
6016 		 * pfn out of zone.
6017 		 */
6018 		if (!(pfn & (pageblock_nr_pages - 1))) {
6019 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6020 			cond_resched();
6021 		}
6022 		pfn++;
6023 	}
6024 }
6025 
6026 #ifdef CONFIG_ZONE_DEVICE
6027 void __ref memmap_init_zone_device(struct zone *zone,
6028 				   unsigned long start_pfn,
6029 				   unsigned long nr_pages,
6030 				   struct dev_pagemap *pgmap)
6031 {
6032 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6033 	struct pglist_data *pgdat = zone->zone_pgdat;
6034 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6035 	unsigned long zone_idx = zone_idx(zone);
6036 	unsigned long start = jiffies;
6037 	int nid = pgdat->node_id;
6038 
6039 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6040 		return;
6041 
6042 	/*
6043 	 * The call to memmap_init_zone should have already taken care
6044 	 * of the pages reserved for the memmap, so we can just jump to
6045 	 * the end of that region and start processing the device pages.
6046 	 */
6047 	if (altmap) {
6048 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6049 		nr_pages = end_pfn - start_pfn;
6050 	}
6051 
6052 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6053 		struct page *page = pfn_to_page(pfn);
6054 
6055 		__init_single_page(page, pfn, zone_idx, nid);
6056 
6057 		/*
6058 		 * Mark page reserved as it will need to wait for onlining
6059 		 * phase for it to be fully associated with a zone.
6060 		 *
6061 		 * We can use the non-atomic __set_bit operation for setting
6062 		 * the flag as we are still initializing the pages.
6063 		 */
6064 		__SetPageReserved(page);
6065 
6066 		/*
6067 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6068 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6069 		 * ever freed or placed on a driver-private list.
6070 		 */
6071 		page->pgmap = pgmap;
6072 		page->zone_device_data = NULL;
6073 
6074 		/*
6075 		 * Mark the block movable so that blocks are reserved for
6076 		 * movable at startup. This will force kernel allocations
6077 		 * to reserve their blocks rather than leaking throughout
6078 		 * the address space during boot when many long-lived
6079 		 * kernel allocations are made.
6080 		 *
6081 		 * bitmap is created for zone's valid pfn range. but memmap
6082 		 * can be created for invalid pages (for alignment)
6083 		 * check here not to call set_pageblock_migratetype() against
6084 		 * pfn out of zone.
6085 		 *
6086 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6087 		 * because this is done early in section_activate()
6088 		 */
6089 		if (!(pfn & (pageblock_nr_pages - 1))) {
6090 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6091 			cond_resched();
6092 		}
6093 	}
6094 
6095 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6096 		nr_pages, jiffies_to_msecs(jiffies - start));
6097 }
6098 
6099 #endif
6100 static void __meminit zone_init_free_lists(struct zone *zone)
6101 {
6102 	unsigned int order, t;
6103 	for_each_migratetype_order(order, t) {
6104 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6105 		zone->free_area[order].nr_free = 0;
6106 	}
6107 }
6108 
6109 void __meminit __weak memmap_init(unsigned long size, int nid,
6110 				  unsigned long zone, unsigned long start_pfn)
6111 {
6112 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6113 }
6114 
6115 static int zone_batchsize(struct zone *zone)
6116 {
6117 #ifdef CONFIG_MMU
6118 	int batch;
6119 
6120 	/*
6121 	 * The per-cpu-pages pools are set to around 1000th of the
6122 	 * size of the zone.
6123 	 */
6124 	batch = zone_managed_pages(zone) / 1024;
6125 	/* But no more than a meg. */
6126 	if (batch * PAGE_SIZE > 1024 * 1024)
6127 		batch = (1024 * 1024) / PAGE_SIZE;
6128 	batch /= 4;		/* We effectively *= 4 below */
6129 	if (batch < 1)
6130 		batch = 1;
6131 
6132 	/*
6133 	 * Clamp the batch to a 2^n - 1 value. Having a power
6134 	 * of 2 value was found to be more likely to have
6135 	 * suboptimal cache aliasing properties in some cases.
6136 	 *
6137 	 * For example if 2 tasks are alternately allocating
6138 	 * batches of pages, one task can end up with a lot
6139 	 * of pages of one half of the possible page colors
6140 	 * and the other with pages of the other colors.
6141 	 */
6142 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6143 
6144 	return batch;
6145 
6146 #else
6147 	/* The deferral and batching of frees should be suppressed under NOMMU
6148 	 * conditions.
6149 	 *
6150 	 * The problem is that NOMMU needs to be able to allocate large chunks
6151 	 * of contiguous memory as there's no hardware page translation to
6152 	 * assemble apparent contiguous memory from discontiguous pages.
6153 	 *
6154 	 * Queueing large contiguous runs of pages for batching, however,
6155 	 * causes the pages to actually be freed in smaller chunks.  As there
6156 	 * can be a significant delay between the individual batches being
6157 	 * recycled, this leads to the once large chunks of space being
6158 	 * fragmented and becoming unavailable for high-order allocations.
6159 	 */
6160 	return 0;
6161 #endif
6162 }
6163 
6164 /*
6165  * pcp->high and pcp->batch values are related and dependent on one another:
6166  * ->batch must never be higher then ->high.
6167  * The following function updates them in a safe manner without read side
6168  * locking.
6169  *
6170  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6171  * those fields changing asynchronously (acording the the above rule).
6172  *
6173  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6174  * outside of boot time (or some other assurance that no concurrent updaters
6175  * exist).
6176  */
6177 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6178 		unsigned long batch)
6179 {
6180        /* start with a fail safe value for batch */
6181 	pcp->batch = 1;
6182 	smp_wmb();
6183 
6184        /* Update high, then batch, in order */
6185 	pcp->high = high;
6186 	smp_wmb();
6187 
6188 	pcp->batch = batch;
6189 }
6190 
6191 /* a companion to pageset_set_high() */
6192 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6193 {
6194 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6195 }
6196 
6197 static void pageset_init(struct per_cpu_pageset *p)
6198 {
6199 	struct per_cpu_pages *pcp;
6200 	int migratetype;
6201 
6202 	memset(p, 0, sizeof(*p));
6203 
6204 	pcp = &p->pcp;
6205 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6206 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6207 }
6208 
6209 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6210 {
6211 	pageset_init(p);
6212 	pageset_set_batch(p, batch);
6213 }
6214 
6215 /*
6216  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6217  * to the value high for the pageset p.
6218  */
6219 static void pageset_set_high(struct per_cpu_pageset *p,
6220 				unsigned long high)
6221 {
6222 	unsigned long batch = max(1UL, high / 4);
6223 	if ((high / 4) > (PAGE_SHIFT * 8))
6224 		batch = PAGE_SHIFT * 8;
6225 
6226 	pageset_update(&p->pcp, high, batch);
6227 }
6228 
6229 static void pageset_set_high_and_batch(struct zone *zone,
6230 				       struct per_cpu_pageset *pcp)
6231 {
6232 	if (percpu_pagelist_fraction)
6233 		pageset_set_high(pcp,
6234 			(zone_managed_pages(zone) /
6235 				percpu_pagelist_fraction));
6236 	else
6237 		pageset_set_batch(pcp, zone_batchsize(zone));
6238 }
6239 
6240 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6241 {
6242 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6243 
6244 	pageset_init(pcp);
6245 	pageset_set_high_and_batch(zone, pcp);
6246 }
6247 
6248 void __meminit setup_zone_pageset(struct zone *zone)
6249 {
6250 	int cpu;
6251 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6252 	for_each_possible_cpu(cpu)
6253 		zone_pageset_init(zone, cpu);
6254 }
6255 
6256 /*
6257  * Allocate per cpu pagesets and initialize them.
6258  * Before this call only boot pagesets were available.
6259  */
6260 void __init setup_per_cpu_pageset(void)
6261 {
6262 	struct pglist_data *pgdat;
6263 	struct zone *zone;
6264 
6265 	for_each_populated_zone(zone)
6266 		setup_zone_pageset(zone);
6267 
6268 	for_each_online_pgdat(pgdat)
6269 		pgdat->per_cpu_nodestats =
6270 			alloc_percpu(struct per_cpu_nodestat);
6271 }
6272 
6273 static __meminit void zone_pcp_init(struct zone *zone)
6274 {
6275 	/*
6276 	 * per cpu subsystem is not up at this point. The following code
6277 	 * relies on the ability of the linker to provide the
6278 	 * offset of a (static) per cpu variable into the per cpu area.
6279 	 */
6280 	zone->pageset = &boot_pageset;
6281 
6282 	if (populated_zone(zone))
6283 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6284 			zone->name, zone->present_pages,
6285 					 zone_batchsize(zone));
6286 }
6287 
6288 void __meminit init_currently_empty_zone(struct zone *zone,
6289 					unsigned long zone_start_pfn,
6290 					unsigned long size)
6291 {
6292 	struct pglist_data *pgdat = zone->zone_pgdat;
6293 	int zone_idx = zone_idx(zone) + 1;
6294 
6295 	if (zone_idx > pgdat->nr_zones)
6296 		pgdat->nr_zones = zone_idx;
6297 
6298 	zone->zone_start_pfn = zone_start_pfn;
6299 
6300 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6301 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6302 			pgdat->node_id,
6303 			(unsigned long)zone_idx(zone),
6304 			zone_start_pfn, (zone_start_pfn + size));
6305 
6306 	zone_init_free_lists(zone);
6307 	zone->initialized = 1;
6308 }
6309 
6310 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6311 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6312 
6313 /*
6314  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6315  */
6316 int __meminit __early_pfn_to_nid(unsigned long pfn,
6317 					struct mminit_pfnnid_cache *state)
6318 {
6319 	unsigned long start_pfn, end_pfn;
6320 	int nid;
6321 
6322 	if (state->last_start <= pfn && pfn < state->last_end)
6323 		return state->last_nid;
6324 
6325 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6326 	if (nid != NUMA_NO_NODE) {
6327 		state->last_start = start_pfn;
6328 		state->last_end = end_pfn;
6329 		state->last_nid = nid;
6330 	}
6331 
6332 	return nid;
6333 }
6334 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6335 
6336 /**
6337  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6338  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6339  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6340  *
6341  * If an architecture guarantees that all ranges registered contain no holes
6342  * and may be freed, this this function may be used instead of calling
6343  * memblock_free_early_nid() manually.
6344  */
6345 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6346 {
6347 	unsigned long start_pfn, end_pfn;
6348 	int i, this_nid;
6349 
6350 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6351 		start_pfn = min(start_pfn, max_low_pfn);
6352 		end_pfn = min(end_pfn, max_low_pfn);
6353 
6354 		if (start_pfn < end_pfn)
6355 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6356 					(end_pfn - start_pfn) << PAGE_SHIFT,
6357 					this_nid);
6358 	}
6359 }
6360 
6361 /**
6362  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6363  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6364  *
6365  * If an architecture guarantees that all ranges registered contain no holes and may
6366  * be freed, this function may be used instead of calling memory_present() manually.
6367  */
6368 void __init sparse_memory_present_with_active_regions(int nid)
6369 {
6370 	unsigned long start_pfn, end_pfn;
6371 	int i, this_nid;
6372 
6373 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6374 		memory_present(this_nid, start_pfn, end_pfn);
6375 }
6376 
6377 /**
6378  * get_pfn_range_for_nid - Return the start and end page frames for a node
6379  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6380  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6381  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6382  *
6383  * It returns the start and end page frame of a node based on information
6384  * provided by memblock_set_node(). If called for a node
6385  * with no available memory, a warning is printed and the start and end
6386  * PFNs will be 0.
6387  */
6388 void __init get_pfn_range_for_nid(unsigned int nid,
6389 			unsigned long *start_pfn, unsigned long *end_pfn)
6390 {
6391 	unsigned long this_start_pfn, this_end_pfn;
6392 	int i;
6393 
6394 	*start_pfn = -1UL;
6395 	*end_pfn = 0;
6396 
6397 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6398 		*start_pfn = min(*start_pfn, this_start_pfn);
6399 		*end_pfn = max(*end_pfn, this_end_pfn);
6400 	}
6401 
6402 	if (*start_pfn == -1UL)
6403 		*start_pfn = 0;
6404 }
6405 
6406 /*
6407  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6408  * assumption is made that zones within a node are ordered in monotonic
6409  * increasing memory addresses so that the "highest" populated zone is used
6410  */
6411 static void __init find_usable_zone_for_movable(void)
6412 {
6413 	int zone_index;
6414 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6415 		if (zone_index == ZONE_MOVABLE)
6416 			continue;
6417 
6418 		if (arch_zone_highest_possible_pfn[zone_index] >
6419 				arch_zone_lowest_possible_pfn[zone_index])
6420 			break;
6421 	}
6422 
6423 	VM_BUG_ON(zone_index == -1);
6424 	movable_zone = zone_index;
6425 }
6426 
6427 /*
6428  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6429  * because it is sized independent of architecture. Unlike the other zones,
6430  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6431  * in each node depending on the size of each node and how evenly kernelcore
6432  * is distributed. This helper function adjusts the zone ranges
6433  * provided by the architecture for a given node by using the end of the
6434  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6435  * zones within a node are in order of monotonic increases memory addresses
6436  */
6437 static void __init adjust_zone_range_for_zone_movable(int nid,
6438 					unsigned long zone_type,
6439 					unsigned long node_start_pfn,
6440 					unsigned long node_end_pfn,
6441 					unsigned long *zone_start_pfn,
6442 					unsigned long *zone_end_pfn)
6443 {
6444 	/* Only adjust if ZONE_MOVABLE is on this node */
6445 	if (zone_movable_pfn[nid]) {
6446 		/* Size ZONE_MOVABLE */
6447 		if (zone_type == ZONE_MOVABLE) {
6448 			*zone_start_pfn = zone_movable_pfn[nid];
6449 			*zone_end_pfn = min(node_end_pfn,
6450 				arch_zone_highest_possible_pfn[movable_zone]);
6451 
6452 		/* Adjust for ZONE_MOVABLE starting within this range */
6453 		} else if (!mirrored_kernelcore &&
6454 			*zone_start_pfn < zone_movable_pfn[nid] &&
6455 			*zone_end_pfn > zone_movable_pfn[nid]) {
6456 			*zone_end_pfn = zone_movable_pfn[nid];
6457 
6458 		/* Check if this whole range is within ZONE_MOVABLE */
6459 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6460 			*zone_start_pfn = *zone_end_pfn;
6461 	}
6462 }
6463 
6464 /*
6465  * Return the number of pages a zone spans in a node, including holes
6466  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6467  */
6468 static unsigned long __init zone_spanned_pages_in_node(int nid,
6469 					unsigned long zone_type,
6470 					unsigned long node_start_pfn,
6471 					unsigned long node_end_pfn,
6472 					unsigned long *zone_start_pfn,
6473 					unsigned long *zone_end_pfn,
6474 					unsigned long *ignored)
6475 {
6476 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6477 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6478 	/* When hotadd a new node from cpu_up(), the node should be empty */
6479 	if (!node_start_pfn && !node_end_pfn)
6480 		return 0;
6481 
6482 	/* Get the start and end of the zone */
6483 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6484 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6485 	adjust_zone_range_for_zone_movable(nid, zone_type,
6486 				node_start_pfn, node_end_pfn,
6487 				zone_start_pfn, zone_end_pfn);
6488 
6489 	/* Check that this node has pages within the zone's required range */
6490 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6491 		return 0;
6492 
6493 	/* Move the zone boundaries inside the node if necessary */
6494 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6495 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6496 
6497 	/* Return the spanned pages */
6498 	return *zone_end_pfn - *zone_start_pfn;
6499 }
6500 
6501 /*
6502  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6503  * then all holes in the requested range will be accounted for.
6504  */
6505 unsigned long __init __absent_pages_in_range(int nid,
6506 				unsigned long range_start_pfn,
6507 				unsigned long range_end_pfn)
6508 {
6509 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6510 	unsigned long start_pfn, end_pfn;
6511 	int i;
6512 
6513 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6514 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6515 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6516 		nr_absent -= end_pfn - start_pfn;
6517 	}
6518 	return nr_absent;
6519 }
6520 
6521 /**
6522  * absent_pages_in_range - Return number of page frames in holes within a range
6523  * @start_pfn: The start PFN to start searching for holes
6524  * @end_pfn: The end PFN to stop searching for holes
6525  *
6526  * Return: the number of pages frames in memory holes within a range.
6527  */
6528 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6529 							unsigned long end_pfn)
6530 {
6531 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6532 }
6533 
6534 /* Return the number of page frames in holes in a zone on a node */
6535 static unsigned long __init zone_absent_pages_in_node(int nid,
6536 					unsigned long zone_type,
6537 					unsigned long node_start_pfn,
6538 					unsigned long node_end_pfn,
6539 					unsigned long *ignored)
6540 {
6541 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6542 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6543 	unsigned long zone_start_pfn, zone_end_pfn;
6544 	unsigned long nr_absent;
6545 
6546 	/* When hotadd a new node from cpu_up(), the node should be empty */
6547 	if (!node_start_pfn && !node_end_pfn)
6548 		return 0;
6549 
6550 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6551 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6552 
6553 	adjust_zone_range_for_zone_movable(nid, zone_type,
6554 			node_start_pfn, node_end_pfn,
6555 			&zone_start_pfn, &zone_end_pfn);
6556 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6557 
6558 	/*
6559 	 * ZONE_MOVABLE handling.
6560 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6561 	 * and vice versa.
6562 	 */
6563 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6564 		unsigned long start_pfn, end_pfn;
6565 		struct memblock_region *r;
6566 
6567 		for_each_memblock(memory, r) {
6568 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6569 					  zone_start_pfn, zone_end_pfn);
6570 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6571 					zone_start_pfn, zone_end_pfn);
6572 
6573 			if (zone_type == ZONE_MOVABLE &&
6574 			    memblock_is_mirror(r))
6575 				nr_absent += end_pfn - start_pfn;
6576 
6577 			if (zone_type == ZONE_NORMAL &&
6578 			    !memblock_is_mirror(r))
6579 				nr_absent += end_pfn - start_pfn;
6580 		}
6581 	}
6582 
6583 	return nr_absent;
6584 }
6585 
6586 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6587 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6588 					unsigned long zone_type,
6589 					unsigned long node_start_pfn,
6590 					unsigned long node_end_pfn,
6591 					unsigned long *zone_start_pfn,
6592 					unsigned long *zone_end_pfn,
6593 					unsigned long *zones_size)
6594 {
6595 	unsigned int zone;
6596 
6597 	*zone_start_pfn = node_start_pfn;
6598 	for (zone = 0; zone < zone_type; zone++)
6599 		*zone_start_pfn += zones_size[zone];
6600 
6601 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6602 
6603 	return zones_size[zone_type];
6604 }
6605 
6606 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6607 						unsigned long zone_type,
6608 						unsigned long node_start_pfn,
6609 						unsigned long node_end_pfn,
6610 						unsigned long *zholes_size)
6611 {
6612 	if (!zholes_size)
6613 		return 0;
6614 
6615 	return zholes_size[zone_type];
6616 }
6617 
6618 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6619 
6620 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6621 						unsigned long node_start_pfn,
6622 						unsigned long node_end_pfn,
6623 						unsigned long *zones_size,
6624 						unsigned long *zholes_size)
6625 {
6626 	unsigned long realtotalpages = 0, totalpages = 0;
6627 	enum zone_type i;
6628 
6629 	for (i = 0; i < MAX_NR_ZONES; i++) {
6630 		struct zone *zone = pgdat->node_zones + i;
6631 		unsigned long zone_start_pfn, zone_end_pfn;
6632 		unsigned long size, real_size;
6633 
6634 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6635 						  node_start_pfn,
6636 						  node_end_pfn,
6637 						  &zone_start_pfn,
6638 						  &zone_end_pfn,
6639 						  zones_size);
6640 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6641 						  node_start_pfn, node_end_pfn,
6642 						  zholes_size);
6643 		if (size)
6644 			zone->zone_start_pfn = zone_start_pfn;
6645 		else
6646 			zone->zone_start_pfn = 0;
6647 		zone->spanned_pages = size;
6648 		zone->present_pages = real_size;
6649 
6650 		totalpages += size;
6651 		realtotalpages += real_size;
6652 	}
6653 
6654 	pgdat->node_spanned_pages = totalpages;
6655 	pgdat->node_present_pages = realtotalpages;
6656 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6657 							realtotalpages);
6658 }
6659 
6660 #ifndef CONFIG_SPARSEMEM
6661 /*
6662  * Calculate the size of the zone->blockflags rounded to an unsigned long
6663  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6664  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6665  * round what is now in bits to nearest long in bits, then return it in
6666  * bytes.
6667  */
6668 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6669 {
6670 	unsigned long usemapsize;
6671 
6672 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6673 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6674 	usemapsize = usemapsize >> pageblock_order;
6675 	usemapsize *= NR_PAGEBLOCK_BITS;
6676 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6677 
6678 	return usemapsize / 8;
6679 }
6680 
6681 static void __ref setup_usemap(struct pglist_data *pgdat,
6682 				struct zone *zone,
6683 				unsigned long zone_start_pfn,
6684 				unsigned long zonesize)
6685 {
6686 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6687 	zone->pageblock_flags = NULL;
6688 	if (usemapsize) {
6689 		zone->pageblock_flags =
6690 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6691 					    pgdat->node_id);
6692 		if (!zone->pageblock_flags)
6693 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6694 			      usemapsize, zone->name, pgdat->node_id);
6695 	}
6696 }
6697 #else
6698 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6699 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6700 #endif /* CONFIG_SPARSEMEM */
6701 
6702 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6703 
6704 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6705 void __init set_pageblock_order(void)
6706 {
6707 	unsigned int order;
6708 
6709 	/* Check that pageblock_nr_pages has not already been setup */
6710 	if (pageblock_order)
6711 		return;
6712 
6713 	if (HPAGE_SHIFT > PAGE_SHIFT)
6714 		order = HUGETLB_PAGE_ORDER;
6715 	else
6716 		order = MAX_ORDER - 1;
6717 
6718 	/*
6719 	 * Assume the largest contiguous order of interest is a huge page.
6720 	 * This value may be variable depending on boot parameters on IA64 and
6721 	 * powerpc.
6722 	 */
6723 	pageblock_order = order;
6724 }
6725 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6726 
6727 /*
6728  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6729  * is unused as pageblock_order is set at compile-time. See
6730  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6731  * the kernel config
6732  */
6733 void __init set_pageblock_order(void)
6734 {
6735 }
6736 
6737 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6738 
6739 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6740 						unsigned long present_pages)
6741 {
6742 	unsigned long pages = spanned_pages;
6743 
6744 	/*
6745 	 * Provide a more accurate estimation if there are holes within
6746 	 * the zone and SPARSEMEM is in use. If there are holes within the
6747 	 * zone, each populated memory region may cost us one or two extra
6748 	 * memmap pages due to alignment because memmap pages for each
6749 	 * populated regions may not be naturally aligned on page boundary.
6750 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6751 	 */
6752 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6753 	    IS_ENABLED(CONFIG_SPARSEMEM))
6754 		pages = present_pages;
6755 
6756 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6757 }
6758 
6759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6760 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6761 {
6762 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6763 
6764 	spin_lock_init(&ds_queue->split_queue_lock);
6765 	INIT_LIST_HEAD(&ds_queue->split_queue);
6766 	ds_queue->split_queue_len = 0;
6767 }
6768 #else
6769 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6770 #endif
6771 
6772 #ifdef CONFIG_COMPACTION
6773 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6774 {
6775 	init_waitqueue_head(&pgdat->kcompactd_wait);
6776 }
6777 #else
6778 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6779 #endif
6780 
6781 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6782 {
6783 	pgdat_resize_init(pgdat);
6784 
6785 	pgdat_init_split_queue(pgdat);
6786 	pgdat_init_kcompactd(pgdat);
6787 
6788 	init_waitqueue_head(&pgdat->kswapd_wait);
6789 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6790 
6791 	pgdat_page_ext_init(pgdat);
6792 	spin_lock_init(&pgdat->lru_lock);
6793 	lruvec_init(&pgdat->__lruvec);
6794 }
6795 
6796 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6797 							unsigned long remaining_pages)
6798 {
6799 	atomic_long_set(&zone->managed_pages, remaining_pages);
6800 	zone_set_nid(zone, nid);
6801 	zone->name = zone_names[idx];
6802 	zone->zone_pgdat = NODE_DATA(nid);
6803 	spin_lock_init(&zone->lock);
6804 	zone_seqlock_init(zone);
6805 	zone_pcp_init(zone);
6806 }
6807 
6808 /*
6809  * Set up the zone data structures
6810  * - init pgdat internals
6811  * - init all zones belonging to this node
6812  *
6813  * NOTE: this function is only called during memory hotplug
6814  */
6815 #ifdef CONFIG_MEMORY_HOTPLUG
6816 void __ref free_area_init_core_hotplug(int nid)
6817 {
6818 	enum zone_type z;
6819 	pg_data_t *pgdat = NODE_DATA(nid);
6820 
6821 	pgdat_init_internals(pgdat);
6822 	for (z = 0; z < MAX_NR_ZONES; z++)
6823 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6824 }
6825 #endif
6826 
6827 /*
6828  * Set up the zone data structures:
6829  *   - mark all pages reserved
6830  *   - mark all memory queues empty
6831  *   - clear the memory bitmaps
6832  *
6833  * NOTE: pgdat should get zeroed by caller.
6834  * NOTE: this function is only called during early init.
6835  */
6836 static void __init free_area_init_core(struct pglist_data *pgdat)
6837 {
6838 	enum zone_type j;
6839 	int nid = pgdat->node_id;
6840 
6841 	pgdat_init_internals(pgdat);
6842 	pgdat->per_cpu_nodestats = &boot_nodestats;
6843 
6844 	for (j = 0; j < MAX_NR_ZONES; j++) {
6845 		struct zone *zone = pgdat->node_zones + j;
6846 		unsigned long size, freesize, memmap_pages;
6847 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6848 
6849 		size = zone->spanned_pages;
6850 		freesize = zone->present_pages;
6851 
6852 		/*
6853 		 * Adjust freesize so that it accounts for how much memory
6854 		 * is used by this zone for memmap. This affects the watermark
6855 		 * and per-cpu initialisations
6856 		 */
6857 		memmap_pages = calc_memmap_size(size, freesize);
6858 		if (!is_highmem_idx(j)) {
6859 			if (freesize >= memmap_pages) {
6860 				freesize -= memmap_pages;
6861 				if (memmap_pages)
6862 					printk(KERN_DEBUG
6863 					       "  %s zone: %lu pages used for memmap\n",
6864 					       zone_names[j], memmap_pages);
6865 			} else
6866 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6867 					zone_names[j], memmap_pages, freesize);
6868 		}
6869 
6870 		/* Account for reserved pages */
6871 		if (j == 0 && freesize > dma_reserve) {
6872 			freesize -= dma_reserve;
6873 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6874 					zone_names[0], dma_reserve);
6875 		}
6876 
6877 		if (!is_highmem_idx(j))
6878 			nr_kernel_pages += freesize;
6879 		/* Charge for highmem memmap if there are enough kernel pages */
6880 		else if (nr_kernel_pages > memmap_pages * 2)
6881 			nr_kernel_pages -= memmap_pages;
6882 		nr_all_pages += freesize;
6883 
6884 		/*
6885 		 * Set an approximate value for lowmem here, it will be adjusted
6886 		 * when the bootmem allocator frees pages into the buddy system.
6887 		 * And all highmem pages will be managed by the buddy system.
6888 		 */
6889 		zone_init_internals(zone, j, nid, freesize);
6890 
6891 		if (!size)
6892 			continue;
6893 
6894 		set_pageblock_order();
6895 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6896 		init_currently_empty_zone(zone, zone_start_pfn, size);
6897 		memmap_init(size, nid, j, zone_start_pfn);
6898 	}
6899 }
6900 
6901 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6902 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6903 {
6904 	unsigned long __maybe_unused start = 0;
6905 	unsigned long __maybe_unused offset = 0;
6906 
6907 	/* Skip empty nodes */
6908 	if (!pgdat->node_spanned_pages)
6909 		return;
6910 
6911 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6912 	offset = pgdat->node_start_pfn - start;
6913 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6914 	if (!pgdat->node_mem_map) {
6915 		unsigned long size, end;
6916 		struct page *map;
6917 
6918 		/*
6919 		 * The zone's endpoints aren't required to be MAX_ORDER
6920 		 * aligned but the node_mem_map endpoints must be in order
6921 		 * for the buddy allocator to function correctly.
6922 		 */
6923 		end = pgdat_end_pfn(pgdat);
6924 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6925 		size =  (end - start) * sizeof(struct page);
6926 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6927 					  pgdat->node_id);
6928 		if (!map)
6929 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6930 			      size, pgdat->node_id);
6931 		pgdat->node_mem_map = map + offset;
6932 	}
6933 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6934 				__func__, pgdat->node_id, (unsigned long)pgdat,
6935 				(unsigned long)pgdat->node_mem_map);
6936 #ifndef CONFIG_NEED_MULTIPLE_NODES
6937 	/*
6938 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6939 	 */
6940 	if (pgdat == NODE_DATA(0)) {
6941 		mem_map = NODE_DATA(0)->node_mem_map;
6942 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6943 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6944 			mem_map -= offset;
6945 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6946 	}
6947 #endif
6948 }
6949 #else
6950 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6951 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6952 
6953 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6954 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6955 {
6956 	pgdat->first_deferred_pfn = ULONG_MAX;
6957 }
6958 #else
6959 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6960 #endif
6961 
6962 void __init free_area_init_node(int nid, unsigned long *zones_size,
6963 				   unsigned long node_start_pfn,
6964 				   unsigned long *zholes_size)
6965 {
6966 	pg_data_t *pgdat = NODE_DATA(nid);
6967 	unsigned long start_pfn = 0;
6968 	unsigned long end_pfn = 0;
6969 
6970 	/* pg_data_t should be reset to zero when it's allocated */
6971 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6972 
6973 	pgdat->node_id = nid;
6974 	pgdat->node_start_pfn = node_start_pfn;
6975 	pgdat->per_cpu_nodestats = NULL;
6976 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6977 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6978 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6979 		(u64)start_pfn << PAGE_SHIFT,
6980 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6981 #else
6982 	start_pfn = node_start_pfn;
6983 #endif
6984 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6985 				  zones_size, zholes_size);
6986 
6987 	alloc_node_mem_map(pgdat);
6988 	pgdat_set_deferred_range(pgdat);
6989 
6990 	free_area_init_core(pgdat);
6991 }
6992 
6993 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6994 /*
6995  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6996  * PageReserved(). Return the number of struct pages that were initialized.
6997  */
6998 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6999 {
7000 	unsigned long pfn;
7001 	u64 pgcnt = 0;
7002 
7003 	for (pfn = spfn; pfn < epfn; pfn++) {
7004 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7005 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7006 				+ pageblock_nr_pages - 1;
7007 			continue;
7008 		}
7009 		/*
7010 		 * Use a fake node/zone (0) for now. Some of these pages
7011 		 * (in memblock.reserved but not in memblock.memory) will
7012 		 * get re-initialized via reserve_bootmem_region() later.
7013 		 */
7014 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7015 		__SetPageReserved(pfn_to_page(pfn));
7016 		pgcnt++;
7017 	}
7018 
7019 	return pgcnt;
7020 }
7021 
7022 /*
7023  * Only struct pages that are backed by physical memory are zeroed and
7024  * initialized by going through __init_single_page(). But, there are some
7025  * struct pages which are reserved in memblock allocator and their fields
7026  * may be accessed (for example page_to_pfn() on some configuration accesses
7027  * flags). We must explicitly initialize those struct pages.
7028  *
7029  * This function also addresses a similar issue where struct pages are left
7030  * uninitialized because the physical address range is not covered by
7031  * memblock.memory or memblock.reserved. That could happen when memblock
7032  * layout is manually configured via memmap=, or when the highest physical
7033  * address (max_pfn) does not end on a section boundary.
7034  */
7035 static void __init init_unavailable_mem(void)
7036 {
7037 	phys_addr_t start, end;
7038 	u64 i, pgcnt;
7039 	phys_addr_t next = 0;
7040 
7041 	/*
7042 	 * Loop through unavailable ranges not covered by memblock.memory.
7043 	 */
7044 	pgcnt = 0;
7045 	for_each_mem_range(i, &memblock.memory, NULL,
7046 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7047 		if (next < start)
7048 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7049 							PFN_UP(start));
7050 		next = end;
7051 	}
7052 
7053 	/*
7054 	 * Early sections always have a fully populated memmap for the whole
7055 	 * section - see pfn_valid(). If the last section has holes at the
7056 	 * end and that section is marked "online", the memmap will be
7057 	 * considered initialized. Make sure that memmap has a well defined
7058 	 * state.
7059 	 */
7060 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7061 					round_up(max_pfn, PAGES_PER_SECTION));
7062 
7063 	/*
7064 	 * Struct pages that do not have backing memory. This could be because
7065 	 * firmware is using some of this memory, or for some other reasons.
7066 	 */
7067 	if (pgcnt)
7068 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7069 }
7070 #else
7071 static inline void __init init_unavailable_mem(void)
7072 {
7073 }
7074 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7075 
7076 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7077 
7078 #if MAX_NUMNODES > 1
7079 /*
7080  * Figure out the number of possible node ids.
7081  */
7082 void __init setup_nr_node_ids(void)
7083 {
7084 	unsigned int highest;
7085 
7086 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7087 	nr_node_ids = highest + 1;
7088 }
7089 #endif
7090 
7091 /**
7092  * node_map_pfn_alignment - determine the maximum internode alignment
7093  *
7094  * This function should be called after node map is populated and sorted.
7095  * It calculates the maximum power of two alignment which can distinguish
7096  * all the nodes.
7097  *
7098  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7099  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7100  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7101  * shifted, 1GiB is enough and this function will indicate so.
7102  *
7103  * This is used to test whether pfn -> nid mapping of the chosen memory
7104  * model has fine enough granularity to avoid incorrect mapping for the
7105  * populated node map.
7106  *
7107  * Return: the determined alignment in pfn's.  0 if there is no alignment
7108  * requirement (single node).
7109  */
7110 unsigned long __init node_map_pfn_alignment(void)
7111 {
7112 	unsigned long accl_mask = 0, last_end = 0;
7113 	unsigned long start, end, mask;
7114 	int last_nid = NUMA_NO_NODE;
7115 	int i, nid;
7116 
7117 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7118 		if (!start || last_nid < 0 || last_nid == nid) {
7119 			last_nid = nid;
7120 			last_end = end;
7121 			continue;
7122 		}
7123 
7124 		/*
7125 		 * Start with a mask granular enough to pin-point to the
7126 		 * start pfn and tick off bits one-by-one until it becomes
7127 		 * too coarse to separate the current node from the last.
7128 		 */
7129 		mask = ~((1 << __ffs(start)) - 1);
7130 		while (mask && last_end <= (start & (mask << 1)))
7131 			mask <<= 1;
7132 
7133 		/* accumulate all internode masks */
7134 		accl_mask |= mask;
7135 	}
7136 
7137 	/* convert mask to number of pages */
7138 	return ~accl_mask + 1;
7139 }
7140 
7141 /* Find the lowest pfn for a node */
7142 static unsigned long __init find_min_pfn_for_node(int nid)
7143 {
7144 	unsigned long min_pfn = ULONG_MAX;
7145 	unsigned long start_pfn;
7146 	int i;
7147 
7148 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7149 		min_pfn = min(min_pfn, start_pfn);
7150 
7151 	if (min_pfn == ULONG_MAX) {
7152 		pr_warn("Could not find start_pfn for node %d\n", nid);
7153 		return 0;
7154 	}
7155 
7156 	return min_pfn;
7157 }
7158 
7159 /**
7160  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7161  *
7162  * Return: the minimum PFN based on information provided via
7163  * memblock_set_node().
7164  */
7165 unsigned long __init find_min_pfn_with_active_regions(void)
7166 {
7167 	return find_min_pfn_for_node(MAX_NUMNODES);
7168 }
7169 
7170 /*
7171  * early_calculate_totalpages()
7172  * Sum pages in active regions for movable zone.
7173  * Populate N_MEMORY for calculating usable_nodes.
7174  */
7175 static unsigned long __init early_calculate_totalpages(void)
7176 {
7177 	unsigned long totalpages = 0;
7178 	unsigned long start_pfn, end_pfn;
7179 	int i, nid;
7180 
7181 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7182 		unsigned long pages = end_pfn - start_pfn;
7183 
7184 		totalpages += pages;
7185 		if (pages)
7186 			node_set_state(nid, N_MEMORY);
7187 	}
7188 	return totalpages;
7189 }
7190 
7191 /*
7192  * Find the PFN the Movable zone begins in each node. Kernel memory
7193  * is spread evenly between nodes as long as the nodes have enough
7194  * memory. When they don't, some nodes will have more kernelcore than
7195  * others
7196  */
7197 static void __init find_zone_movable_pfns_for_nodes(void)
7198 {
7199 	int i, nid;
7200 	unsigned long usable_startpfn;
7201 	unsigned long kernelcore_node, kernelcore_remaining;
7202 	/* save the state before borrow the nodemask */
7203 	nodemask_t saved_node_state = node_states[N_MEMORY];
7204 	unsigned long totalpages = early_calculate_totalpages();
7205 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7206 	struct memblock_region *r;
7207 
7208 	/* Need to find movable_zone earlier when movable_node is specified. */
7209 	find_usable_zone_for_movable();
7210 
7211 	/*
7212 	 * If movable_node is specified, ignore kernelcore and movablecore
7213 	 * options.
7214 	 */
7215 	if (movable_node_is_enabled()) {
7216 		for_each_memblock(memory, r) {
7217 			if (!memblock_is_hotpluggable(r))
7218 				continue;
7219 
7220 			nid = r->nid;
7221 
7222 			usable_startpfn = PFN_DOWN(r->base);
7223 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7224 				min(usable_startpfn, zone_movable_pfn[nid]) :
7225 				usable_startpfn;
7226 		}
7227 
7228 		goto out2;
7229 	}
7230 
7231 	/*
7232 	 * If kernelcore=mirror is specified, ignore movablecore option
7233 	 */
7234 	if (mirrored_kernelcore) {
7235 		bool mem_below_4gb_not_mirrored = false;
7236 
7237 		for_each_memblock(memory, r) {
7238 			if (memblock_is_mirror(r))
7239 				continue;
7240 
7241 			nid = r->nid;
7242 
7243 			usable_startpfn = memblock_region_memory_base_pfn(r);
7244 
7245 			if (usable_startpfn < 0x100000) {
7246 				mem_below_4gb_not_mirrored = true;
7247 				continue;
7248 			}
7249 
7250 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7251 				min(usable_startpfn, zone_movable_pfn[nid]) :
7252 				usable_startpfn;
7253 		}
7254 
7255 		if (mem_below_4gb_not_mirrored)
7256 			pr_warn("This configuration results in unmirrored kernel memory.");
7257 
7258 		goto out2;
7259 	}
7260 
7261 	/*
7262 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7263 	 * amount of necessary memory.
7264 	 */
7265 	if (required_kernelcore_percent)
7266 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7267 				       10000UL;
7268 	if (required_movablecore_percent)
7269 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7270 					10000UL;
7271 
7272 	/*
7273 	 * If movablecore= was specified, calculate what size of
7274 	 * kernelcore that corresponds so that memory usable for
7275 	 * any allocation type is evenly spread. If both kernelcore
7276 	 * and movablecore are specified, then the value of kernelcore
7277 	 * will be used for required_kernelcore if it's greater than
7278 	 * what movablecore would have allowed.
7279 	 */
7280 	if (required_movablecore) {
7281 		unsigned long corepages;
7282 
7283 		/*
7284 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7285 		 * was requested by the user
7286 		 */
7287 		required_movablecore =
7288 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7289 		required_movablecore = min(totalpages, required_movablecore);
7290 		corepages = totalpages - required_movablecore;
7291 
7292 		required_kernelcore = max(required_kernelcore, corepages);
7293 	}
7294 
7295 	/*
7296 	 * If kernelcore was not specified or kernelcore size is larger
7297 	 * than totalpages, there is no ZONE_MOVABLE.
7298 	 */
7299 	if (!required_kernelcore || required_kernelcore >= totalpages)
7300 		goto out;
7301 
7302 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7303 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7304 
7305 restart:
7306 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7307 	kernelcore_node = required_kernelcore / usable_nodes;
7308 	for_each_node_state(nid, N_MEMORY) {
7309 		unsigned long start_pfn, end_pfn;
7310 
7311 		/*
7312 		 * Recalculate kernelcore_node if the division per node
7313 		 * now exceeds what is necessary to satisfy the requested
7314 		 * amount of memory for the kernel
7315 		 */
7316 		if (required_kernelcore < kernelcore_node)
7317 			kernelcore_node = required_kernelcore / usable_nodes;
7318 
7319 		/*
7320 		 * As the map is walked, we track how much memory is usable
7321 		 * by the kernel using kernelcore_remaining. When it is
7322 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7323 		 */
7324 		kernelcore_remaining = kernelcore_node;
7325 
7326 		/* Go through each range of PFNs within this node */
7327 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7328 			unsigned long size_pages;
7329 
7330 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7331 			if (start_pfn >= end_pfn)
7332 				continue;
7333 
7334 			/* Account for what is only usable for kernelcore */
7335 			if (start_pfn < usable_startpfn) {
7336 				unsigned long kernel_pages;
7337 				kernel_pages = min(end_pfn, usable_startpfn)
7338 								- start_pfn;
7339 
7340 				kernelcore_remaining -= min(kernel_pages,
7341 							kernelcore_remaining);
7342 				required_kernelcore -= min(kernel_pages,
7343 							required_kernelcore);
7344 
7345 				/* Continue if range is now fully accounted */
7346 				if (end_pfn <= usable_startpfn) {
7347 
7348 					/*
7349 					 * Push zone_movable_pfn to the end so
7350 					 * that if we have to rebalance
7351 					 * kernelcore across nodes, we will
7352 					 * not double account here
7353 					 */
7354 					zone_movable_pfn[nid] = end_pfn;
7355 					continue;
7356 				}
7357 				start_pfn = usable_startpfn;
7358 			}
7359 
7360 			/*
7361 			 * The usable PFN range for ZONE_MOVABLE is from
7362 			 * start_pfn->end_pfn. Calculate size_pages as the
7363 			 * number of pages used as kernelcore
7364 			 */
7365 			size_pages = end_pfn - start_pfn;
7366 			if (size_pages > kernelcore_remaining)
7367 				size_pages = kernelcore_remaining;
7368 			zone_movable_pfn[nid] = start_pfn + size_pages;
7369 
7370 			/*
7371 			 * Some kernelcore has been met, update counts and
7372 			 * break if the kernelcore for this node has been
7373 			 * satisfied
7374 			 */
7375 			required_kernelcore -= min(required_kernelcore,
7376 								size_pages);
7377 			kernelcore_remaining -= size_pages;
7378 			if (!kernelcore_remaining)
7379 				break;
7380 		}
7381 	}
7382 
7383 	/*
7384 	 * If there is still required_kernelcore, we do another pass with one
7385 	 * less node in the count. This will push zone_movable_pfn[nid] further
7386 	 * along on the nodes that still have memory until kernelcore is
7387 	 * satisfied
7388 	 */
7389 	usable_nodes--;
7390 	if (usable_nodes && required_kernelcore > usable_nodes)
7391 		goto restart;
7392 
7393 out2:
7394 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7395 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7396 		zone_movable_pfn[nid] =
7397 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7398 
7399 out:
7400 	/* restore the node_state */
7401 	node_states[N_MEMORY] = saved_node_state;
7402 }
7403 
7404 /* Any regular or high memory on that node ? */
7405 static void check_for_memory(pg_data_t *pgdat, int nid)
7406 {
7407 	enum zone_type zone_type;
7408 
7409 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7410 		struct zone *zone = &pgdat->node_zones[zone_type];
7411 		if (populated_zone(zone)) {
7412 			if (IS_ENABLED(CONFIG_HIGHMEM))
7413 				node_set_state(nid, N_HIGH_MEMORY);
7414 			if (zone_type <= ZONE_NORMAL)
7415 				node_set_state(nid, N_NORMAL_MEMORY);
7416 			break;
7417 		}
7418 	}
7419 }
7420 
7421 /**
7422  * free_area_init_nodes - Initialise all pg_data_t and zone data
7423  * @max_zone_pfn: an array of max PFNs for each zone
7424  *
7425  * This will call free_area_init_node() for each active node in the system.
7426  * Using the page ranges provided by memblock_set_node(), the size of each
7427  * zone in each node and their holes is calculated. If the maximum PFN
7428  * between two adjacent zones match, it is assumed that the zone is empty.
7429  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7430  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7431  * starts where the previous one ended. For example, ZONE_DMA32 starts
7432  * at arch_max_dma_pfn.
7433  */
7434 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7435 {
7436 	unsigned long start_pfn, end_pfn;
7437 	int i, nid;
7438 
7439 	/* Record where the zone boundaries are */
7440 	memset(arch_zone_lowest_possible_pfn, 0,
7441 				sizeof(arch_zone_lowest_possible_pfn));
7442 	memset(arch_zone_highest_possible_pfn, 0,
7443 				sizeof(arch_zone_highest_possible_pfn));
7444 
7445 	start_pfn = find_min_pfn_with_active_regions();
7446 
7447 	for (i = 0; i < MAX_NR_ZONES; i++) {
7448 		if (i == ZONE_MOVABLE)
7449 			continue;
7450 
7451 		end_pfn = max(max_zone_pfn[i], start_pfn);
7452 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7453 		arch_zone_highest_possible_pfn[i] = end_pfn;
7454 
7455 		start_pfn = end_pfn;
7456 	}
7457 
7458 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7459 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7460 	find_zone_movable_pfns_for_nodes();
7461 
7462 	/* Print out the zone ranges */
7463 	pr_info("Zone ranges:\n");
7464 	for (i = 0; i < MAX_NR_ZONES; i++) {
7465 		if (i == ZONE_MOVABLE)
7466 			continue;
7467 		pr_info("  %-8s ", zone_names[i]);
7468 		if (arch_zone_lowest_possible_pfn[i] ==
7469 				arch_zone_highest_possible_pfn[i])
7470 			pr_cont("empty\n");
7471 		else
7472 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7473 				(u64)arch_zone_lowest_possible_pfn[i]
7474 					<< PAGE_SHIFT,
7475 				((u64)arch_zone_highest_possible_pfn[i]
7476 					<< PAGE_SHIFT) - 1);
7477 	}
7478 
7479 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7480 	pr_info("Movable zone start for each node\n");
7481 	for (i = 0; i < MAX_NUMNODES; i++) {
7482 		if (zone_movable_pfn[i])
7483 			pr_info("  Node %d: %#018Lx\n", i,
7484 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7485 	}
7486 
7487 	/*
7488 	 * Print out the early node map, and initialize the
7489 	 * subsection-map relative to active online memory ranges to
7490 	 * enable future "sub-section" extensions of the memory map.
7491 	 */
7492 	pr_info("Early memory node ranges\n");
7493 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7494 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7495 			(u64)start_pfn << PAGE_SHIFT,
7496 			((u64)end_pfn << PAGE_SHIFT) - 1);
7497 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7498 	}
7499 
7500 	/* Initialise every node */
7501 	mminit_verify_pageflags_layout();
7502 	setup_nr_node_ids();
7503 	init_unavailable_mem();
7504 	for_each_online_node(nid) {
7505 		pg_data_t *pgdat = NODE_DATA(nid);
7506 		free_area_init_node(nid, NULL,
7507 				find_min_pfn_for_node(nid), NULL);
7508 
7509 		/* Any memory on that node */
7510 		if (pgdat->node_present_pages)
7511 			node_set_state(nid, N_MEMORY);
7512 		check_for_memory(pgdat, nid);
7513 	}
7514 }
7515 
7516 static int __init cmdline_parse_core(char *p, unsigned long *core,
7517 				     unsigned long *percent)
7518 {
7519 	unsigned long long coremem;
7520 	char *endptr;
7521 
7522 	if (!p)
7523 		return -EINVAL;
7524 
7525 	/* Value may be a percentage of total memory, otherwise bytes */
7526 	coremem = simple_strtoull(p, &endptr, 0);
7527 	if (*endptr == '%') {
7528 		/* Paranoid check for percent values greater than 100 */
7529 		WARN_ON(coremem > 100);
7530 
7531 		*percent = coremem;
7532 	} else {
7533 		coremem = memparse(p, &p);
7534 		/* Paranoid check that UL is enough for the coremem value */
7535 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7536 
7537 		*core = coremem >> PAGE_SHIFT;
7538 		*percent = 0UL;
7539 	}
7540 	return 0;
7541 }
7542 
7543 /*
7544  * kernelcore=size sets the amount of memory for use for allocations that
7545  * cannot be reclaimed or migrated.
7546  */
7547 static int __init cmdline_parse_kernelcore(char *p)
7548 {
7549 	/* parse kernelcore=mirror */
7550 	if (parse_option_str(p, "mirror")) {
7551 		mirrored_kernelcore = true;
7552 		return 0;
7553 	}
7554 
7555 	return cmdline_parse_core(p, &required_kernelcore,
7556 				  &required_kernelcore_percent);
7557 }
7558 
7559 /*
7560  * movablecore=size sets the amount of memory for use for allocations that
7561  * can be reclaimed or migrated.
7562  */
7563 static int __init cmdline_parse_movablecore(char *p)
7564 {
7565 	return cmdline_parse_core(p, &required_movablecore,
7566 				  &required_movablecore_percent);
7567 }
7568 
7569 early_param("kernelcore", cmdline_parse_kernelcore);
7570 early_param("movablecore", cmdline_parse_movablecore);
7571 
7572 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7573 
7574 void adjust_managed_page_count(struct page *page, long count)
7575 {
7576 	atomic_long_add(count, &page_zone(page)->managed_pages);
7577 	totalram_pages_add(count);
7578 #ifdef CONFIG_HIGHMEM
7579 	if (PageHighMem(page))
7580 		totalhigh_pages_add(count);
7581 #endif
7582 }
7583 EXPORT_SYMBOL(adjust_managed_page_count);
7584 
7585 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7586 {
7587 	void *pos;
7588 	unsigned long pages = 0;
7589 
7590 	start = (void *)PAGE_ALIGN((unsigned long)start);
7591 	end = (void *)((unsigned long)end & PAGE_MASK);
7592 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7593 		struct page *page = virt_to_page(pos);
7594 		void *direct_map_addr;
7595 
7596 		/*
7597 		 * 'direct_map_addr' might be different from 'pos'
7598 		 * because some architectures' virt_to_page()
7599 		 * work with aliases.  Getting the direct map
7600 		 * address ensures that we get a _writeable_
7601 		 * alias for the memset().
7602 		 */
7603 		direct_map_addr = page_address(page);
7604 		if ((unsigned int)poison <= 0xFF)
7605 			memset(direct_map_addr, poison, PAGE_SIZE);
7606 
7607 		free_reserved_page(page);
7608 	}
7609 
7610 	if (pages && s)
7611 		pr_info("Freeing %s memory: %ldK\n",
7612 			s, pages << (PAGE_SHIFT - 10));
7613 
7614 	return pages;
7615 }
7616 
7617 #ifdef	CONFIG_HIGHMEM
7618 void free_highmem_page(struct page *page)
7619 {
7620 	__free_reserved_page(page);
7621 	totalram_pages_inc();
7622 	atomic_long_inc(&page_zone(page)->managed_pages);
7623 	totalhigh_pages_inc();
7624 }
7625 #endif
7626 
7627 
7628 void __init mem_init_print_info(const char *str)
7629 {
7630 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7631 	unsigned long init_code_size, init_data_size;
7632 
7633 	physpages = get_num_physpages();
7634 	codesize = _etext - _stext;
7635 	datasize = _edata - _sdata;
7636 	rosize = __end_rodata - __start_rodata;
7637 	bss_size = __bss_stop - __bss_start;
7638 	init_data_size = __init_end - __init_begin;
7639 	init_code_size = _einittext - _sinittext;
7640 
7641 	/*
7642 	 * Detect special cases and adjust section sizes accordingly:
7643 	 * 1) .init.* may be embedded into .data sections
7644 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7645 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7646 	 * 3) .rodata.* may be embedded into .text or .data sections.
7647 	 */
7648 #define adj_init_size(start, end, size, pos, adj) \
7649 	do { \
7650 		if (start <= pos && pos < end && size > adj) \
7651 			size -= adj; \
7652 	} while (0)
7653 
7654 	adj_init_size(__init_begin, __init_end, init_data_size,
7655 		     _sinittext, init_code_size);
7656 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7657 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7658 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7659 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7660 
7661 #undef	adj_init_size
7662 
7663 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7664 #ifdef	CONFIG_HIGHMEM
7665 		", %luK highmem"
7666 #endif
7667 		"%s%s)\n",
7668 		nr_free_pages() << (PAGE_SHIFT - 10),
7669 		physpages << (PAGE_SHIFT - 10),
7670 		codesize >> 10, datasize >> 10, rosize >> 10,
7671 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7672 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7673 		totalcma_pages << (PAGE_SHIFT - 10),
7674 #ifdef	CONFIG_HIGHMEM
7675 		totalhigh_pages() << (PAGE_SHIFT - 10),
7676 #endif
7677 		str ? ", " : "", str ? str : "");
7678 }
7679 
7680 /**
7681  * set_dma_reserve - set the specified number of pages reserved in the first zone
7682  * @new_dma_reserve: The number of pages to mark reserved
7683  *
7684  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7685  * In the DMA zone, a significant percentage may be consumed by kernel image
7686  * and other unfreeable allocations which can skew the watermarks badly. This
7687  * function may optionally be used to account for unfreeable pages in the
7688  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7689  * smaller per-cpu batchsize.
7690  */
7691 void __init set_dma_reserve(unsigned long new_dma_reserve)
7692 {
7693 	dma_reserve = new_dma_reserve;
7694 }
7695 
7696 void __init free_area_init(unsigned long *zones_size)
7697 {
7698 	init_unavailable_mem();
7699 	free_area_init_node(0, zones_size,
7700 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7701 }
7702 
7703 static int page_alloc_cpu_dead(unsigned int cpu)
7704 {
7705 
7706 	lru_add_drain_cpu(cpu);
7707 	drain_pages(cpu);
7708 
7709 	/*
7710 	 * Spill the event counters of the dead processor
7711 	 * into the current processors event counters.
7712 	 * This artificially elevates the count of the current
7713 	 * processor.
7714 	 */
7715 	vm_events_fold_cpu(cpu);
7716 
7717 	/*
7718 	 * Zero the differential counters of the dead processor
7719 	 * so that the vm statistics are consistent.
7720 	 *
7721 	 * This is only okay since the processor is dead and cannot
7722 	 * race with what we are doing.
7723 	 */
7724 	cpu_vm_stats_fold(cpu);
7725 	return 0;
7726 }
7727 
7728 #ifdef CONFIG_NUMA
7729 int hashdist = HASHDIST_DEFAULT;
7730 
7731 static int __init set_hashdist(char *str)
7732 {
7733 	if (!str)
7734 		return 0;
7735 	hashdist = simple_strtoul(str, &str, 0);
7736 	return 1;
7737 }
7738 __setup("hashdist=", set_hashdist);
7739 #endif
7740 
7741 void __init page_alloc_init(void)
7742 {
7743 	int ret;
7744 
7745 #ifdef CONFIG_NUMA
7746 	if (num_node_state(N_MEMORY) == 1)
7747 		hashdist = 0;
7748 #endif
7749 
7750 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7751 					"mm/page_alloc:dead", NULL,
7752 					page_alloc_cpu_dead);
7753 	WARN_ON(ret < 0);
7754 }
7755 
7756 /*
7757  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7758  *	or min_free_kbytes changes.
7759  */
7760 static void calculate_totalreserve_pages(void)
7761 {
7762 	struct pglist_data *pgdat;
7763 	unsigned long reserve_pages = 0;
7764 	enum zone_type i, j;
7765 
7766 	for_each_online_pgdat(pgdat) {
7767 
7768 		pgdat->totalreserve_pages = 0;
7769 
7770 		for (i = 0; i < MAX_NR_ZONES; i++) {
7771 			struct zone *zone = pgdat->node_zones + i;
7772 			long max = 0;
7773 			unsigned long managed_pages = zone_managed_pages(zone);
7774 
7775 			/* Find valid and maximum lowmem_reserve in the zone */
7776 			for (j = i; j < MAX_NR_ZONES; j++) {
7777 				if (zone->lowmem_reserve[j] > max)
7778 					max = zone->lowmem_reserve[j];
7779 			}
7780 
7781 			/* we treat the high watermark as reserved pages. */
7782 			max += high_wmark_pages(zone);
7783 
7784 			if (max > managed_pages)
7785 				max = managed_pages;
7786 
7787 			pgdat->totalreserve_pages += max;
7788 
7789 			reserve_pages += max;
7790 		}
7791 	}
7792 	totalreserve_pages = reserve_pages;
7793 }
7794 
7795 /*
7796  * setup_per_zone_lowmem_reserve - called whenever
7797  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7798  *	has a correct pages reserved value, so an adequate number of
7799  *	pages are left in the zone after a successful __alloc_pages().
7800  */
7801 static void setup_per_zone_lowmem_reserve(void)
7802 {
7803 	struct pglist_data *pgdat;
7804 	enum zone_type j, idx;
7805 
7806 	for_each_online_pgdat(pgdat) {
7807 		for (j = 0; j < MAX_NR_ZONES; j++) {
7808 			struct zone *zone = pgdat->node_zones + j;
7809 			unsigned long managed_pages = zone_managed_pages(zone);
7810 
7811 			zone->lowmem_reserve[j] = 0;
7812 
7813 			idx = j;
7814 			while (idx) {
7815 				struct zone *lower_zone;
7816 
7817 				idx--;
7818 				lower_zone = pgdat->node_zones + idx;
7819 
7820 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7821 					sysctl_lowmem_reserve_ratio[idx] = 0;
7822 					lower_zone->lowmem_reserve[j] = 0;
7823 				} else {
7824 					lower_zone->lowmem_reserve[j] =
7825 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7826 				}
7827 				managed_pages += zone_managed_pages(lower_zone);
7828 			}
7829 		}
7830 	}
7831 
7832 	/* update totalreserve_pages */
7833 	calculate_totalreserve_pages();
7834 }
7835 
7836 static void __setup_per_zone_wmarks(void)
7837 {
7838 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7839 	unsigned long lowmem_pages = 0;
7840 	struct zone *zone;
7841 	unsigned long flags;
7842 
7843 	/* Calculate total number of !ZONE_HIGHMEM pages */
7844 	for_each_zone(zone) {
7845 		if (!is_highmem(zone))
7846 			lowmem_pages += zone_managed_pages(zone);
7847 	}
7848 
7849 	for_each_zone(zone) {
7850 		u64 tmp;
7851 
7852 		spin_lock_irqsave(&zone->lock, flags);
7853 		tmp = (u64)pages_min * zone_managed_pages(zone);
7854 		do_div(tmp, lowmem_pages);
7855 		if (is_highmem(zone)) {
7856 			/*
7857 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7858 			 * need highmem pages, so cap pages_min to a small
7859 			 * value here.
7860 			 *
7861 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7862 			 * deltas control async page reclaim, and so should
7863 			 * not be capped for highmem.
7864 			 */
7865 			unsigned long min_pages;
7866 
7867 			min_pages = zone_managed_pages(zone) / 1024;
7868 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7869 			zone->_watermark[WMARK_MIN] = min_pages;
7870 		} else {
7871 			/*
7872 			 * If it's a lowmem zone, reserve a number of pages
7873 			 * proportionate to the zone's size.
7874 			 */
7875 			zone->_watermark[WMARK_MIN] = tmp;
7876 		}
7877 
7878 		/*
7879 		 * Set the kswapd watermarks distance according to the
7880 		 * scale factor in proportion to available memory, but
7881 		 * ensure a minimum size on small systems.
7882 		 */
7883 		tmp = max_t(u64, tmp >> 2,
7884 			    mult_frac(zone_managed_pages(zone),
7885 				      watermark_scale_factor, 10000));
7886 
7887 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7888 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7889 		zone->watermark_boost = 0;
7890 
7891 		spin_unlock_irqrestore(&zone->lock, flags);
7892 	}
7893 
7894 	/* update totalreserve_pages */
7895 	calculate_totalreserve_pages();
7896 }
7897 
7898 /**
7899  * setup_per_zone_wmarks - called when min_free_kbytes changes
7900  * or when memory is hot-{added|removed}
7901  *
7902  * Ensures that the watermark[min,low,high] values for each zone are set
7903  * correctly with respect to min_free_kbytes.
7904  */
7905 void setup_per_zone_wmarks(void)
7906 {
7907 	static DEFINE_SPINLOCK(lock);
7908 
7909 	spin_lock(&lock);
7910 	__setup_per_zone_wmarks();
7911 	spin_unlock(&lock);
7912 }
7913 
7914 /*
7915  * Initialise min_free_kbytes.
7916  *
7917  * For small machines we want it small (128k min).  For large machines
7918  * we want it large (64MB max).  But it is not linear, because network
7919  * bandwidth does not increase linearly with machine size.  We use
7920  *
7921  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7922  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7923  *
7924  * which yields
7925  *
7926  * 16MB:	512k
7927  * 32MB:	724k
7928  * 64MB:	1024k
7929  * 128MB:	1448k
7930  * 256MB:	2048k
7931  * 512MB:	2896k
7932  * 1024MB:	4096k
7933  * 2048MB:	5792k
7934  * 4096MB:	8192k
7935  * 8192MB:	11584k
7936  * 16384MB:	16384k
7937  */
7938 int __meminit init_per_zone_wmark_min(void)
7939 {
7940 	unsigned long lowmem_kbytes;
7941 	int new_min_free_kbytes;
7942 
7943 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7944 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7945 
7946 	if (new_min_free_kbytes > user_min_free_kbytes) {
7947 		min_free_kbytes = new_min_free_kbytes;
7948 		if (min_free_kbytes < 128)
7949 			min_free_kbytes = 128;
7950 		if (min_free_kbytes > 262144)
7951 			min_free_kbytes = 262144;
7952 	} else {
7953 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7954 				new_min_free_kbytes, user_min_free_kbytes);
7955 	}
7956 	setup_per_zone_wmarks();
7957 	refresh_zone_stat_thresholds();
7958 	setup_per_zone_lowmem_reserve();
7959 
7960 #ifdef CONFIG_NUMA
7961 	setup_min_unmapped_ratio();
7962 	setup_min_slab_ratio();
7963 #endif
7964 
7965 	return 0;
7966 }
7967 core_initcall(init_per_zone_wmark_min)
7968 
7969 /*
7970  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7971  *	that we can call two helper functions whenever min_free_kbytes
7972  *	changes.
7973  */
7974 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7975 	void __user *buffer, size_t *length, loff_t *ppos)
7976 {
7977 	int rc;
7978 
7979 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7980 	if (rc)
7981 		return rc;
7982 
7983 	if (write) {
7984 		user_min_free_kbytes = min_free_kbytes;
7985 		setup_per_zone_wmarks();
7986 	}
7987 	return 0;
7988 }
7989 
7990 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7991 	void __user *buffer, size_t *length, loff_t *ppos)
7992 {
7993 	int rc;
7994 
7995 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7996 	if (rc)
7997 		return rc;
7998 
7999 	return 0;
8000 }
8001 
8002 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8003 	void __user *buffer, size_t *length, loff_t *ppos)
8004 {
8005 	int rc;
8006 
8007 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8008 	if (rc)
8009 		return rc;
8010 
8011 	if (write)
8012 		setup_per_zone_wmarks();
8013 
8014 	return 0;
8015 }
8016 
8017 #ifdef CONFIG_NUMA
8018 static void setup_min_unmapped_ratio(void)
8019 {
8020 	pg_data_t *pgdat;
8021 	struct zone *zone;
8022 
8023 	for_each_online_pgdat(pgdat)
8024 		pgdat->min_unmapped_pages = 0;
8025 
8026 	for_each_zone(zone)
8027 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8028 						         sysctl_min_unmapped_ratio) / 100;
8029 }
8030 
8031 
8032 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8033 	void __user *buffer, size_t *length, loff_t *ppos)
8034 {
8035 	int rc;
8036 
8037 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8038 	if (rc)
8039 		return rc;
8040 
8041 	setup_min_unmapped_ratio();
8042 
8043 	return 0;
8044 }
8045 
8046 static void setup_min_slab_ratio(void)
8047 {
8048 	pg_data_t *pgdat;
8049 	struct zone *zone;
8050 
8051 	for_each_online_pgdat(pgdat)
8052 		pgdat->min_slab_pages = 0;
8053 
8054 	for_each_zone(zone)
8055 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8056 						     sysctl_min_slab_ratio) / 100;
8057 }
8058 
8059 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8060 	void __user *buffer, size_t *length, loff_t *ppos)
8061 {
8062 	int rc;
8063 
8064 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8065 	if (rc)
8066 		return rc;
8067 
8068 	setup_min_slab_ratio();
8069 
8070 	return 0;
8071 }
8072 #endif
8073 
8074 /*
8075  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8076  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8077  *	whenever sysctl_lowmem_reserve_ratio changes.
8078  *
8079  * The reserve ratio obviously has absolutely no relation with the
8080  * minimum watermarks. The lowmem reserve ratio can only make sense
8081  * if in function of the boot time zone sizes.
8082  */
8083 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8084 	void __user *buffer, size_t *length, loff_t *ppos)
8085 {
8086 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8087 	setup_per_zone_lowmem_reserve();
8088 	return 0;
8089 }
8090 
8091 static void __zone_pcp_update(struct zone *zone)
8092 {
8093 	unsigned int cpu;
8094 
8095 	for_each_possible_cpu(cpu)
8096 		pageset_set_high_and_batch(zone,
8097 				per_cpu_ptr(zone->pageset, cpu));
8098 }
8099 
8100 /*
8101  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8102  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8103  * pagelist can have before it gets flushed back to buddy allocator.
8104  */
8105 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8106 	void __user *buffer, size_t *length, loff_t *ppos)
8107 {
8108 	struct zone *zone;
8109 	int old_percpu_pagelist_fraction;
8110 	int ret;
8111 
8112 	mutex_lock(&pcp_batch_high_lock);
8113 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8114 
8115 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8116 	if (!write || ret < 0)
8117 		goto out;
8118 
8119 	/* Sanity checking to avoid pcp imbalance */
8120 	if (percpu_pagelist_fraction &&
8121 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8122 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8123 		ret = -EINVAL;
8124 		goto out;
8125 	}
8126 
8127 	/* No change? */
8128 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8129 		goto out;
8130 
8131 	for_each_populated_zone(zone)
8132 		__zone_pcp_update(zone);
8133 out:
8134 	mutex_unlock(&pcp_batch_high_lock);
8135 	return ret;
8136 }
8137 
8138 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8139 /*
8140  * Returns the number of pages that arch has reserved but
8141  * is not known to alloc_large_system_hash().
8142  */
8143 static unsigned long __init arch_reserved_kernel_pages(void)
8144 {
8145 	return 0;
8146 }
8147 #endif
8148 
8149 /*
8150  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8151  * machines. As memory size is increased the scale is also increased but at
8152  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8153  * quadruples the scale is increased by one, which means the size of hash table
8154  * only doubles, instead of quadrupling as well.
8155  * Because 32-bit systems cannot have large physical memory, where this scaling
8156  * makes sense, it is disabled on such platforms.
8157  */
8158 #if __BITS_PER_LONG > 32
8159 #define ADAPT_SCALE_BASE	(64ul << 30)
8160 #define ADAPT_SCALE_SHIFT	2
8161 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8162 #endif
8163 
8164 /*
8165  * allocate a large system hash table from bootmem
8166  * - it is assumed that the hash table must contain an exact power-of-2
8167  *   quantity of entries
8168  * - limit is the number of hash buckets, not the total allocation size
8169  */
8170 void *__init alloc_large_system_hash(const char *tablename,
8171 				     unsigned long bucketsize,
8172 				     unsigned long numentries,
8173 				     int scale,
8174 				     int flags,
8175 				     unsigned int *_hash_shift,
8176 				     unsigned int *_hash_mask,
8177 				     unsigned long low_limit,
8178 				     unsigned long high_limit)
8179 {
8180 	unsigned long long max = high_limit;
8181 	unsigned long log2qty, size;
8182 	void *table = NULL;
8183 	gfp_t gfp_flags;
8184 	bool virt;
8185 
8186 	/* allow the kernel cmdline to have a say */
8187 	if (!numentries) {
8188 		/* round applicable memory size up to nearest megabyte */
8189 		numentries = nr_kernel_pages;
8190 		numentries -= arch_reserved_kernel_pages();
8191 
8192 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8193 		if (PAGE_SHIFT < 20)
8194 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8195 
8196 #if __BITS_PER_LONG > 32
8197 		if (!high_limit) {
8198 			unsigned long adapt;
8199 
8200 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8201 			     adapt <<= ADAPT_SCALE_SHIFT)
8202 				scale++;
8203 		}
8204 #endif
8205 
8206 		/* limit to 1 bucket per 2^scale bytes of low memory */
8207 		if (scale > PAGE_SHIFT)
8208 			numentries >>= (scale - PAGE_SHIFT);
8209 		else
8210 			numentries <<= (PAGE_SHIFT - scale);
8211 
8212 		/* Make sure we've got at least a 0-order allocation.. */
8213 		if (unlikely(flags & HASH_SMALL)) {
8214 			/* Makes no sense without HASH_EARLY */
8215 			WARN_ON(!(flags & HASH_EARLY));
8216 			if (!(numentries >> *_hash_shift)) {
8217 				numentries = 1UL << *_hash_shift;
8218 				BUG_ON(!numentries);
8219 			}
8220 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8221 			numentries = PAGE_SIZE / bucketsize;
8222 	}
8223 	numentries = roundup_pow_of_two(numentries);
8224 
8225 	/* limit allocation size to 1/16 total memory by default */
8226 	if (max == 0) {
8227 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8228 		do_div(max, bucketsize);
8229 	}
8230 	max = min(max, 0x80000000ULL);
8231 
8232 	if (numentries < low_limit)
8233 		numentries = low_limit;
8234 	if (numentries > max)
8235 		numentries = max;
8236 
8237 	log2qty = ilog2(numentries);
8238 
8239 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8240 	do {
8241 		virt = false;
8242 		size = bucketsize << log2qty;
8243 		if (flags & HASH_EARLY) {
8244 			if (flags & HASH_ZERO)
8245 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8246 			else
8247 				table = memblock_alloc_raw(size,
8248 							   SMP_CACHE_BYTES);
8249 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8250 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8251 			virt = true;
8252 		} else {
8253 			/*
8254 			 * If bucketsize is not a power-of-two, we may free
8255 			 * some pages at the end of hash table which
8256 			 * alloc_pages_exact() automatically does
8257 			 */
8258 			table = alloc_pages_exact(size, gfp_flags);
8259 			kmemleak_alloc(table, size, 1, gfp_flags);
8260 		}
8261 	} while (!table && size > PAGE_SIZE && --log2qty);
8262 
8263 	if (!table)
8264 		panic("Failed to allocate %s hash table\n", tablename);
8265 
8266 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8267 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8268 		virt ? "vmalloc" : "linear");
8269 
8270 	if (_hash_shift)
8271 		*_hash_shift = log2qty;
8272 	if (_hash_mask)
8273 		*_hash_mask = (1 << log2qty) - 1;
8274 
8275 	return table;
8276 }
8277 
8278 /*
8279  * This function checks whether pageblock includes unmovable pages or not.
8280  *
8281  * PageLRU check without isolation or lru_lock could race so that
8282  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8283  * check without lock_page also may miss some movable non-lru pages at
8284  * race condition. So you can't expect this function should be exact.
8285  *
8286  * Returns a page without holding a reference. If the caller wants to
8287  * dereference that page (e.g., dumping), it has to make sure that that it
8288  * cannot get removed (e.g., via memory unplug) concurrently.
8289  *
8290  */
8291 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8292 				 int migratetype, int flags)
8293 {
8294 	unsigned long iter = 0;
8295 	unsigned long pfn = page_to_pfn(page);
8296 
8297 	/*
8298 	 * TODO we could make this much more efficient by not checking every
8299 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8300 	 * that the movable zone guarantees that pages are migratable but
8301 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8302 	 * can still lead to having bootmem allocations in zone_movable.
8303 	 */
8304 
8305 	if (is_migrate_cma_page(page)) {
8306 		/*
8307 		 * CMA allocations (alloc_contig_range) really need to mark
8308 		 * isolate CMA pageblocks even when they are not movable in fact
8309 		 * so consider them movable here.
8310 		 */
8311 		if (is_migrate_cma(migratetype))
8312 			return NULL;
8313 
8314 		return page;
8315 	}
8316 
8317 	for (; iter < pageblock_nr_pages; iter++) {
8318 		if (!pfn_valid_within(pfn + iter))
8319 			continue;
8320 
8321 		page = pfn_to_page(pfn + iter);
8322 
8323 		if (PageReserved(page))
8324 			return page;
8325 
8326 		/*
8327 		 * If the zone is movable and we have ruled out all reserved
8328 		 * pages then it should be reasonably safe to assume the rest
8329 		 * is movable.
8330 		 */
8331 		if (zone_idx(zone) == ZONE_MOVABLE)
8332 			continue;
8333 
8334 		/*
8335 		 * Hugepages are not in LRU lists, but they're movable.
8336 		 * THPs are on the LRU, but need to be counted as #small pages.
8337 		 * We need not scan over tail pages because we don't
8338 		 * handle each tail page individually in migration.
8339 		 */
8340 		if (PageHuge(page) || PageTransCompound(page)) {
8341 			struct page *head = compound_head(page);
8342 			unsigned int skip_pages;
8343 
8344 			if (PageHuge(page)) {
8345 				if (!hugepage_migration_supported(page_hstate(head)))
8346 					return page;
8347 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8348 				return page;
8349 			}
8350 
8351 			skip_pages = compound_nr(head) - (page - head);
8352 			iter += skip_pages - 1;
8353 			continue;
8354 		}
8355 
8356 		/*
8357 		 * We can't use page_count without pin a page
8358 		 * because another CPU can free compound page.
8359 		 * This check already skips compound tails of THP
8360 		 * because their page->_refcount is zero at all time.
8361 		 */
8362 		if (!page_ref_count(page)) {
8363 			if (PageBuddy(page))
8364 				iter += (1 << page_order(page)) - 1;
8365 			continue;
8366 		}
8367 
8368 		/*
8369 		 * The HWPoisoned page may be not in buddy system, and
8370 		 * page_count() is not 0.
8371 		 */
8372 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8373 			continue;
8374 
8375 		if (__PageMovable(page) || PageLRU(page))
8376 			continue;
8377 
8378 		/*
8379 		 * If there are RECLAIMABLE pages, we need to check
8380 		 * it.  But now, memory offline itself doesn't call
8381 		 * shrink_node_slabs() and it still to be fixed.
8382 		 */
8383 		/*
8384 		 * If the page is not RAM, page_count()should be 0.
8385 		 * we don't need more check. This is an _used_ not-movable page.
8386 		 *
8387 		 * The problematic thing here is PG_reserved pages. PG_reserved
8388 		 * is set to both of a memory hole page and a _used_ kernel
8389 		 * page at boot.
8390 		 */
8391 		return page;
8392 	}
8393 	return NULL;
8394 }
8395 
8396 #ifdef CONFIG_CONTIG_ALLOC
8397 static unsigned long pfn_max_align_down(unsigned long pfn)
8398 {
8399 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8400 			     pageblock_nr_pages) - 1);
8401 }
8402 
8403 static unsigned long pfn_max_align_up(unsigned long pfn)
8404 {
8405 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8406 				pageblock_nr_pages));
8407 }
8408 
8409 /* [start, end) must belong to a single zone. */
8410 static int __alloc_contig_migrate_range(struct compact_control *cc,
8411 					unsigned long start, unsigned long end)
8412 {
8413 	/* This function is based on compact_zone() from compaction.c. */
8414 	unsigned long nr_reclaimed;
8415 	unsigned long pfn = start;
8416 	unsigned int tries = 0;
8417 	int ret = 0;
8418 
8419 	migrate_prep();
8420 
8421 	while (pfn < end || !list_empty(&cc->migratepages)) {
8422 		if (fatal_signal_pending(current)) {
8423 			ret = -EINTR;
8424 			break;
8425 		}
8426 
8427 		if (list_empty(&cc->migratepages)) {
8428 			cc->nr_migratepages = 0;
8429 			pfn = isolate_migratepages_range(cc, pfn, end);
8430 			if (!pfn) {
8431 				ret = -EINTR;
8432 				break;
8433 			}
8434 			tries = 0;
8435 		} else if (++tries == 5) {
8436 			ret = ret < 0 ? ret : -EBUSY;
8437 			break;
8438 		}
8439 
8440 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8441 							&cc->migratepages);
8442 		cc->nr_migratepages -= nr_reclaimed;
8443 
8444 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8445 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8446 	}
8447 	if (ret < 0) {
8448 		putback_movable_pages(&cc->migratepages);
8449 		return ret;
8450 	}
8451 	return 0;
8452 }
8453 
8454 /**
8455  * alloc_contig_range() -- tries to allocate given range of pages
8456  * @start:	start PFN to allocate
8457  * @end:	one-past-the-last PFN to allocate
8458  * @migratetype:	migratetype of the underlaying pageblocks (either
8459  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8460  *			in range must have the same migratetype and it must
8461  *			be either of the two.
8462  * @gfp_mask:	GFP mask to use during compaction
8463  *
8464  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8465  * aligned.  The PFN range must belong to a single zone.
8466  *
8467  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8468  * pageblocks in the range.  Once isolated, the pageblocks should not
8469  * be modified by others.
8470  *
8471  * Return: zero on success or negative error code.  On success all
8472  * pages which PFN is in [start, end) are allocated for the caller and
8473  * need to be freed with free_contig_range().
8474  */
8475 int alloc_contig_range(unsigned long start, unsigned long end,
8476 		       unsigned migratetype, gfp_t gfp_mask)
8477 {
8478 	unsigned long outer_start, outer_end;
8479 	unsigned int order;
8480 	int ret = 0;
8481 
8482 	struct compact_control cc = {
8483 		.nr_migratepages = 0,
8484 		.order = -1,
8485 		.zone = page_zone(pfn_to_page(start)),
8486 		.mode = MIGRATE_SYNC,
8487 		.ignore_skip_hint = true,
8488 		.no_set_skip_hint = true,
8489 		.gfp_mask = current_gfp_context(gfp_mask),
8490 		.alloc_contig = true,
8491 	};
8492 	INIT_LIST_HEAD(&cc.migratepages);
8493 
8494 	/*
8495 	 * What we do here is we mark all pageblocks in range as
8496 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8497 	 * have different sizes, and due to the way page allocator
8498 	 * work, we align the range to biggest of the two pages so
8499 	 * that page allocator won't try to merge buddies from
8500 	 * different pageblocks and change MIGRATE_ISOLATE to some
8501 	 * other migration type.
8502 	 *
8503 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8504 	 * migrate the pages from an unaligned range (ie. pages that
8505 	 * we are interested in).  This will put all the pages in
8506 	 * range back to page allocator as MIGRATE_ISOLATE.
8507 	 *
8508 	 * When this is done, we take the pages in range from page
8509 	 * allocator removing them from the buddy system.  This way
8510 	 * page allocator will never consider using them.
8511 	 *
8512 	 * This lets us mark the pageblocks back as
8513 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8514 	 * aligned range but not in the unaligned, original range are
8515 	 * put back to page allocator so that buddy can use them.
8516 	 */
8517 
8518 	ret = start_isolate_page_range(pfn_max_align_down(start),
8519 				       pfn_max_align_up(end), migratetype, 0);
8520 	if (ret < 0)
8521 		return ret;
8522 
8523 	/*
8524 	 * In case of -EBUSY, we'd like to know which page causes problem.
8525 	 * So, just fall through. test_pages_isolated() has a tracepoint
8526 	 * which will report the busy page.
8527 	 *
8528 	 * It is possible that busy pages could become available before
8529 	 * the call to test_pages_isolated, and the range will actually be
8530 	 * allocated.  So, if we fall through be sure to clear ret so that
8531 	 * -EBUSY is not accidentally used or returned to caller.
8532 	 */
8533 	ret = __alloc_contig_migrate_range(&cc, start, end);
8534 	if (ret && ret != -EBUSY)
8535 		goto done;
8536 	ret =0;
8537 
8538 	/*
8539 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8540 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8541 	 * more, all pages in [start, end) are free in page allocator.
8542 	 * What we are going to do is to allocate all pages from
8543 	 * [start, end) (that is remove them from page allocator).
8544 	 *
8545 	 * The only problem is that pages at the beginning and at the
8546 	 * end of interesting range may be not aligned with pages that
8547 	 * page allocator holds, ie. they can be part of higher order
8548 	 * pages.  Because of this, we reserve the bigger range and
8549 	 * once this is done free the pages we are not interested in.
8550 	 *
8551 	 * We don't have to hold zone->lock here because the pages are
8552 	 * isolated thus they won't get removed from buddy.
8553 	 */
8554 
8555 	lru_add_drain_all();
8556 
8557 	order = 0;
8558 	outer_start = start;
8559 	while (!PageBuddy(pfn_to_page(outer_start))) {
8560 		if (++order >= MAX_ORDER) {
8561 			outer_start = start;
8562 			break;
8563 		}
8564 		outer_start &= ~0UL << order;
8565 	}
8566 
8567 	if (outer_start != start) {
8568 		order = page_order(pfn_to_page(outer_start));
8569 
8570 		/*
8571 		 * outer_start page could be small order buddy page and
8572 		 * it doesn't include start page. Adjust outer_start
8573 		 * in this case to report failed page properly
8574 		 * on tracepoint in test_pages_isolated()
8575 		 */
8576 		if (outer_start + (1UL << order) <= start)
8577 			outer_start = start;
8578 	}
8579 
8580 	/* Make sure the range is really isolated. */
8581 	if (test_pages_isolated(outer_start, end, 0)) {
8582 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8583 			__func__, outer_start, end);
8584 		ret = -EBUSY;
8585 		goto done;
8586 	}
8587 
8588 	/* Grab isolated pages from freelists. */
8589 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8590 	if (!outer_end) {
8591 		ret = -EBUSY;
8592 		goto done;
8593 	}
8594 
8595 	/* Free head and tail (if any) */
8596 	if (start != outer_start)
8597 		free_contig_range(outer_start, start - outer_start);
8598 	if (end != outer_end)
8599 		free_contig_range(end, outer_end - end);
8600 
8601 done:
8602 	undo_isolate_page_range(pfn_max_align_down(start),
8603 				pfn_max_align_up(end), migratetype);
8604 	return ret;
8605 }
8606 
8607 static int __alloc_contig_pages(unsigned long start_pfn,
8608 				unsigned long nr_pages, gfp_t gfp_mask)
8609 {
8610 	unsigned long end_pfn = start_pfn + nr_pages;
8611 
8612 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8613 				  gfp_mask);
8614 }
8615 
8616 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8617 				   unsigned long nr_pages)
8618 {
8619 	unsigned long i, end_pfn = start_pfn + nr_pages;
8620 	struct page *page;
8621 
8622 	for (i = start_pfn; i < end_pfn; i++) {
8623 		page = pfn_to_online_page(i);
8624 		if (!page)
8625 			return false;
8626 
8627 		if (page_zone(page) != z)
8628 			return false;
8629 
8630 		if (PageReserved(page))
8631 			return false;
8632 
8633 		if (page_count(page) > 0)
8634 			return false;
8635 
8636 		if (PageHuge(page))
8637 			return false;
8638 	}
8639 	return true;
8640 }
8641 
8642 static bool zone_spans_last_pfn(const struct zone *zone,
8643 				unsigned long start_pfn, unsigned long nr_pages)
8644 {
8645 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8646 
8647 	return zone_spans_pfn(zone, last_pfn);
8648 }
8649 
8650 /**
8651  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8652  * @nr_pages:	Number of contiguous pages to allocate
8653  * @gfp_mask:	GFP mask to limit search and used during compaction
8654  * @nid:	Target node
8655  * @nodemask:	Mask for other possible nodes
8656  *
8657  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8658  * on an applicable zonelist to find a contiguous pfn range which can then be
8659  * tried for allocation with alloc_contig_range(). This routine is intended
8660  * for allocation requests which can not be fulfilled with the buddy allocator.
8661  *
8662  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8663  * power of two then the alignment is guaranteed to be to the given nr_pages
8664  * (e.g. 1GB request would be aligned to 1GB).
8665  *
8666  * Allocated pages can be freed with free_contig_range() or by manually calling
8667  * __free_page() on each allocated page.
8668  *
8669  * Return: pointer to contiguous pages on success, or NULL if not successful.
8670  */
8671 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8672 				int nid, nodemask_t *nodemask)
8673 {
8674 	unsigned long ret, pfn, flags;
8675 	struct zonelist *zonelist;
8676 	struct zone *zone;
8677 	struct zoneref *z;
8678 
8679 	zonelist = node_zonelist(nid, gfp_mask);
8680 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8681 					gfp_zone(gfp_mask), nodemask) {
8682 		spin_lock_irqsave(&zone->lock, flags);
8683 
8684 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8685 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8686 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8687 				/*
8688 				 * We release the zone lock here because
8689 				 * alloc_contig_range() will also lock the zone
8690 				 * at some point. If there's an allocation
8691 				 * spinning on this lock, it may win the race
8692 				 * and cause alloc_contig_range() to fail...
8693 				 */
8694 				spin_unlock_irqrestore(&zone->lock, flags);
8695 				ret = __alloc_contig_pages(pfn, nr_pages,
8696 							gfp_mask);
8697 				if (!ret)
8698 					return pfn_to_page(pfn);
8699 				spin_lock_irqsave(&zone->lock, flags);
8700 			}
8701 			pfn += nr_pages;
8702 		}
8703 		spin_unlock_irqrestore(&zone->lock, flags);
8704 	}
8705 	return NULL;
8706 }
8707 #endif /* CONFIG_CONTIG_ALLOC */
8708 
8709 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8710 {
8711 	unsigned int count = 0;
8712 
8713 	for (; nr_pages--; pfn++) {
8714 		struct page *page = pfn_to_page(pfn);
8715 
8716 		count += page_count(page) != 1;
8717 		__free_page(page);
8718 	}
8719 	WARN(count != 0, "%d pages are still in use!\n", count);
8720 }
8721 
8722 /*
8723  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8724  * page high values need to be recalulated.
8725  */
8726 void __meminit zone_pcp_update(struct zone *zone)
8727 {
8728 	mutex_lock(&pcp_batch_high_lock);
8729 	__zone_pcp_update(zone);
8730 	mutex_unlock(&pcp_batch_high_lock);
8731 }
8732 
8733 void zone_pcp_reset(struct zone *zone)
8734 {
8735 	unsigned long flags;
8736 	int cpu;
8737 	struct per_cpu_pageset *pset;
8738 
8739 	/* avoid races with drain_pages()  */
8740 	local_irq_save(flags);
8741 	if (zone->pageset != &boot_pageset) {
8742 		for_each_online_cpu(cpu) {
8743 			pset = per_cpu_ptr(zone->pageset, cpu);
8744 			drain_zonestat(zone, pset);
8745 		}
8746 		free_percpu(zone->pageset);
8747 		zone->pageset = &boot_pageset;
8748 	}
8749 	local_irq_restore(flags);
8750 }
8751 
8752 #ifdef CONFIG_MEMORY_HOTREMOVE
8753 /*
8754  * All pages in the range must be in a single zone and isolated
8755  * before calling this.
8756  */
8757 unsigned long
8758 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8759 {
8760 	struct page *page;
8761 	struct zone *zone;
8762 	unsigned int order;
8763 	unsigned long pfn;
8764 	unsigned long flags;
8765 	unsigned long offlined_pages = 0;
8766 
8767 	/* find the first valid pfn */
8768 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8769 		if (pfn_valid(pfn))
8770 			break;
8771 	if (pfn == end_pfn)
8772 		return offlined_pages;
8773 
8774 	offline_mem_sections(pfn, end_pfn);
8775 	zone = page_zone(pfn_to_page(pfn));
8776 	spin_lock_irqsave(&zone->lock, flags);
8777 	pfn = start_pfn;
8778 	while (pfn < end_pfn) {
8779 		if (!pfn_valid(pfn)) {
8780 			pfn++;
8781 			continue;
8782 		}
8783 		page = pfn_to_page(pfn);
8784 		/*
8785 		 * The HWPoisoned page may be not in buddy system, and
8786 		 * page_count() is not 0.
8787 		 */
8788 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8789 			pfn++;
8790 			offlined_pages++;
8791 			continue;
8792 		}
8793 
8794 		BUG_ON(page_count(page));
8795 		BUG_ON(!PageBuddy(page));
8796 		order = page_order(page);
8797 		offlined_pages += 1 << order;
8798 		del_page_from_free_list(page, zone, order);
8799 		pfn += (1 << order);
8800 	}
8801 	spin_unlock_irqrestore(&zone->lock, flags);
8802 
8803 	return offlined_pages;
8804 }
8805 #endif
8806 
8807 bool is_free_buddy_page(struct page *page)
8808 {
8809 	struct zone *zone = page_zone(page);
8810 	unsigned long pfn = page_to_pfn(page);
8811 	unsigned long flags;
8812 	unsigned int order;
8813 
8814 	spin_lock_irqsave(&zone->lock, flags);
8815 	for (order = 0; order < MAX_ORDER; order++) {
8816 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8817 
8818 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8819 			break;
8820 	}
8821 	spin_unlock_irqrestore(&zone->lock, flags);
8822 
8823 	return order < MAX_ORDER;
8824 }
8825 
8826 #ifdef CONFIG_MEMORY_FAILURE
8827 /*
8828  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8829  * test is performed under the zone lock to prevent a race against page
8830  * allocation.
8831  */
8832 bool set_hwpoison_free_buddy_page(struct page *page)
8833 {
8834 	struct zone *zone = page_zone(page);
8835 	unsigned long pfn = page_to_pfn(page);
8836 	unsigned long flags;
8837 	unsigned int order;
8838 	bool hwpoisoned = false;
8839 
8840 	spin_lock_irqsave(&zone->lock, flags);
8841 	for (order = 0; order < MAX_ORDER; order++) {
8842 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8843 
8844 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8845 			if (!TestSetPageHWPoison(page))
8846 				hwpoisoned = true;
8847 			break;
8848 		}
8849 	}
8850 	spin_unlock_irqrestore(&zone->lock, flags);
8851 
8852 	return hwpoisoned;
8853 }
8854 #endif
8855