xref: /openbmc/linux/mm/page_alloc.c (revision dbe156207532d7fe1581765d5a47198e1c6119a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 int min_free_kbytes = 1024;
288 int user_min_free_kbytes = -1;
289 static int watermark_boost_factor __read_mostly = 15000;
290 static int watermark_scale_factor = 10;
291 
292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
293 int movable_zone;
294 EXPORT_SYMBOL(movable_zone);
295 
296 #if MAX_NUMNODES > 1
297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
298 unsigned int nr_online_nodes __read_mostly = 1;
299 EXPORT_SYMBOL(nr_node_ids);
300 EXPORT_SYMBOL(nr_online_nodes);
301 #endif
302 
303 static bool page_contains_unaccepted(struct page *page, unsigned int order);
304 static void accept_page(struct page *page, unsigned int order);
305 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
306 static inline bool has_unaccepted_memory(void);
307 static bool __free_unaccepted(struct page *page);
308 
309 int page_group_by_mobility_disabled __read_mostly;
310 
311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
312 /*
313  * During boot we initialize deferred pages on-demand, as needed, but once
314  * page_alloc_init_late() has finished, the deferred pages are all initialized,
315  * and we can permanently disable that path.
316  */
317 DEFINE_STATIC_KEY_TRUE(deferred_pages);
318 
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return static_branch_unlikely(&deferred_pages);
322 }
323 
324 /*
325  * deferred_grow_zone() is __init, but it is called from
326  * get_page_from_freelist() during early boot until deferred_pages permanently
327  * disables this call. This is why we have refdata wrapper to avoid warning,
328  * and to ensure that the function body gets unloaded.
329  */
330 static bool __ref
331 _deferred_grow_zone(struct zone *zone, unsigned int order)
332 {
333        return deferred_grow_zone(zone, order);
334 }
335 #else
336 static inline bool deferred_pages_enabled(void)
337 {
338 	return false;
339 }
340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
341 
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
344 							unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 	return section_to_usemap(__pfn_to_section(pfn));
348 #else
349 	return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352 
353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 	pfn &= (PAGES_PER_SECTION-1);
357 #else
358 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
359 #endif /* CONFIG_SPARSEMEM */
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 }
362 
363 /**
364  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
365  * @page: The page within the block of interest
366  * @pfn: The target page frame number
367  * @mask: mask of bits that the caller is interested in
368  *
369  * Return: pageblock_bits flags
370  */
371 unsigned long get_pfnblock_flags_mask(const struct page *page,
372 					unsigned long pfn, unsigned long mask)
373 {
374 	unsigned long *bitmap;
375 	unsigned long bitidx, word_bitidx;
376 	unsigned long word;
377 
378 	bitmap = get_pageblock_bitmap(page, pfn);
379 	bitidx = pfn_to_bitidx(page, pfn);
380 	word_bitidx = bitidx / BITS_PER_LONG;
381 	bitidx &= (BITS_PER_LONG-1);
382 	/*
383 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
384 	 * a consistent read of the memory array, so that results, even though
385 	 * racy, are not corrupted.
386 	 */
387 	word = READ_ONCE(bitmap[word_bitidx]);
388 	return (word >> bitidx) & mask;
389 }
390 
391 static __always_inline int get_pfnblock_migratetype(const struct page *page,
392 					unsigned long pfn)
393 {
394 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
395 }
396 
397 /**
398  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
399  * @page: The page within the block of interest
400  * @flags: The flags to set
401  * @pfn: The target page frame number
402  * @mask: mask of bits that the caller is interested in
403  */
404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
405 					unsigned long pfn,
406 					unsigned long mask)
407 {
408 	unsigned long *bitmap;
409 	unsigned long bitidx, word_bitidx;
410 	unsigned long word;
411 
412 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
413 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
414 
415 	bitmap = get_pageblock_bitmap(page, pfn);
416 	bitidx = pfn_to_bitidx(page, pfn);
417 	word_bitidx = bitidx / BITS_PER_LONG;
418 	bitidx &= (BITS_PER_LONG-1);
419 
420 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
421 
422 	mask <<= bitidx;
423 	flags <<= bitidx;
424 
425 	word = READ_ONCE(bitmap[word_bitidx]);
426 	do {
427 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
428 }
429 
430 void set_pageblock_migratetype(struct page *page, int migratetype)
431 {
432 	if (unlikely(page_group_by_mobility_disabled &&
433 		     migratetype < MIGRATE_PCPTYPES))
434 		migratetype = MIGRATE_UNMOVABLE;
435 
436 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
437 				page_to_pfn(page), MIGRATETYPE_MASK);
438 }
439 
440 #ifdef CONFIG_DEBUG_VM
441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
442 {
443 	int ret;
444 	unsigned seq;
445 	unsigned long pfn = page_to_pfn(page);
446 	unsigned long sp, start_pfn;
447 
448 	do {
449 		seq = zone_span_seqbegin(zone);
450 		start_pfn = zone->zone_start_pfn;
451 		sp = zone->spanned_pages;
452 		ret = !zone_spans_pfn(zone, pfn);
453 	} while (zone_span_seqretry(zone, seq));
454 
455 	if (ret)
456 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
457 			pfn, zone_to_nid(zone), zone->name,
458 			start_pfn, start_pfn + sp);
459 
460 	return ret;
461 }
462 
463 /*
464  * Temporary debugging check for pages not lying within a given zone.
465  */
466 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
467 {
468 	if (page_outside_zone_boundaries(zone, page))
469 		return 1;
470 	if (zone != page_zone(page))
471 		return 1;
472 
473 	return 0;
474 }
475 #else
476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
477 {
478 	return 0;
479 }
480 #endif
481 
482 static void bad_page(struct page *page, const char *reason)
483 {
484 	static unsigned long resume;
485 	static unsigned long nr_shown;
486 	static unsigned long nr_unshown;
487 
488 	/*
489 	 * Allow a burst of 60 reports, then keep quiet for that minute;
490 	 * or allow a steady drip of one report per second.
491 	 */
492 	if (nr_shown == 60) {
493 		if (time_before(jiffies, resume)) {
494 			nr_unshown++;
495 			goto out;
496 		}
497 		if (nr_unshown) {
498 			pr_alert(
499 			      "BUG: Bad page state: %lu messages suppressed\n",
500 				nr_unshown);
501 			nr_unshown = 0;
502 		}
503 		nr_shown = 0;
504 	}
505 	if (nr_shown++ == 0)
506 		resume = jiffies + 60 * HZ;
507 
508 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
509 		current->comm, page_to_pfn(page));
510 	dump_page(page, reason);
511 
512 	print_modules();
513 	dump_stack();
514 out:
515 	/* Leave bad fields for debug, except PageBuddy could make trouble */
516 	page_mapcount_reset(page); /* remove PageBuddy */
517 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
518 }
519 
520 static inline unsigned int order_to_pindex(int migratetype, int order)
521 {
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
524 		VM_BUG_ON(order != pageblock_order);
525 		return NR_LOWORDER_PCP_LISTS;
526 	}
527 #else
528 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
529 #endif
530 
531 	return (MIGRATE_PCPTYPES * order) + migratetype;
532 }
533 
534 static inline int pindex_to_order(unsigned int pindex)
535 {
536 	int order = pindex / MIGRATE_PCPTYPES;
537 
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 	if (pindex == NR_LOWORDER_PCP_LISTS)
540 		order = pageblock_order;
541 #else
542 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
543 #endif
544 
545 	return order;
546 }
547 
548 static inline bool pcp_allowed_order(unsigned int order)
549 {
550 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
551 		return true;
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 	if (order == pageblock_order)
554 		return true;
555 #endif
556 	return false;
557 }
558 
559 static inline void free_the_page(struct page *page, unsigned int order)
560 {
561 	if (pcp_allowed_order(order))		/* Via pcp? */
562 		free_unref_page(page, order);
563 	else
564 		__free_pages_ok(page, order, FPI_NONE);
565 }
566 
567 /*
568  * Higher-order pages are called "compound pages".  They are structured thusly:
569  *
570  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
571  *
572  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
573  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
574  *
575  * The first tail page's ->compound_order holds the order of allocation.
576  * This usage means that zero-order pages may not be compound.
577  */
578 
579 void prep_compound_page(struct page *page, unsigned int order)
580 {
581 	int i;
582 	int nr_pages = 1 << order;
583 
584 	__SetPageHead(page);
585 	for (i = 1; i < nr_pages; i++)
586 		prep_compound_tail(page, i);
587 
588 	prep_compound_head(page, order);
589 }
590 
591 void destroy_large_folio(struct folio *folio)
592 {
593 	if (folio_test_hugetlb(folio)) {
594 		free_huge_folio(folio);
595 		return;
596 	}
597 
598 	if (folio_test_large_rmappable(folio))
599 		folio_undo_large_rmappable(folio);
600 
601 	mem_cgroup_uncharge(folio);
602 	free_the_page(&folio->page, folio_order(folio));
603 }
604 
605 static inline void set_buddy_order(struct page *page, unsigned int order)
606 {
607 	set_page_private(page, order);
608 	__SetPageBuddy(page);
609 }
610 
611 #ifdef CONFIG_COMPACTION
612 static inline struct capture_control *task_capc(struct zone *zone)
613 {
614 	struct capture_control *capc = current->capture_control;
615 
616 	return unlikely(capc) &&
617 		!(current->flags & PF_KTHREAD) &&
618 		!capc->page &&
619 		capc->cc->zone == zone ? capc : NULL;
620 }
621 
622 static inline bool
623 compaction_capture(struct capture_control *capc, struct page *page,
624 		   int order, int migratetype)
625 {
626 	if (!capc || order != capc->cc->order)
627 		return false;
628 
629 	/* Do not accidentally pollute CMA or isolated regions*/
630 	if (is_migrate_cma(migratetype) ||
631 	    is_migrate_isolate(migratetype))
632 		return false;
633 
634 	/*
635 	 * Do not let lower order allocations pollute a movable pageblock.
636 	 * This might let an unmovable request use a reclaimable pageblock
637 	 * and vice-versa but no more than normal fallback logic which can
638 	 * have trouble finding a high-order free page.
639 	 */
640 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
641 		return false;
642 
643 	capc->page = page;
644 	return true;
645 }
646 
647 #else
648 static inline struct capture_control *task_capc(struct zone *zone)
649 {
650 	return NULL;
651 }
652 
653 static inline bool
654 compaction_capture(struct capture_control *capc, struct page *page,
655 		   int order, int migratetype)
656 {
657 	return false;
658 }
659 #endif /* CONFIG_COMPACTION */
660 
661 /* Used for pages not on another list */
662 static inline void add_to_free_list(struct page *page, struct zone *zone,
663 				    unsigned int order, int migratetype)
664 {
665 	struct free_area *area = &zone->free_area[order];
666 
667 	list_add(&page->buddy_list, &area->free_list[migratetype]);
668 	area->nr_free++;
669 }
670 
671 /* Used for pages not on another list */
672 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
673 					 unsigned int order, int migratetype)
674 {
675 	struct free_area *area = &zone->free_area[order];
676 
677 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
678 	area->nr_free++;
679 }
680 
681 /*
682  * Used for pages which are on another list. Move the pages to the tail
683  * of the list - so the moved pages won't immediately be considered for
684  * allocation again (e.g., optimization for memory onlining).
685  */
686 static inline void move_to_free_list(struct page *page, struct zone *zone,
687 				     unsigned int order, int migratetype)
688 {
689 	struct free_area *area = &zone->free_area[order];
690 
691 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
692 }
693 
694 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
695 					   unsigned int order)
696 {
697 	/* clear reported state and update reported page count */
698 	if (page_reported(page))
699 		__ClearPageReported(page);
700 
701 	list_del(&page->buddy_list);
702 	__ClearPageBuddy(page);
703 	set_page_private(page, 0);
704 	zone->free_area[order].nr_free--;
705 }
706 
707 static inline struct page *get_page_from_free_area(struct free_area *area,
708 					    int migratetype)
709 {
710 	return list_first_entry_or_null(&area->free_list[migratetype],
711 					struct page, buddy_list);
712 }
713 
714 /*
715  * If this is not the largest possible page, check if the buddy
716  * of the next-highest order is free. If it is, it's possible
717  * that pages are being freed that will coalesce soon. In case,
718  * that is happening, add the free page to the tail of the list
719  * so it's less likely to be used soon and more likely to be merged
720  * as a higher order page
721  */
722 static inline bool
723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
724 		   struct page *page, unsigned int order)
725 {
726 	unsigned long higher_page_pfn;
727 	struct page *higher_page;
728 
729 	if (order >= MAX_ORDER - 1)
730 		return false;
731 
732 	higher_page_pfn = buddy_pfn & pfn;
733 	higher_page = page + (higher_page_pfn - pfn);
734 
735 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
736 			NULL) != NULL;
737 }
738 
739 /*
740  * Freeing function for a buddy system allocator.
741  *
742  * The concept of a buddy system is to maintain direct-mapped table
743  * (containing bit values) for memory blocks of various "orders".
744  * The bottom level table contains the map for the smallest allocatable
745  * units of memory (here, pages), and each level above it describes
746  * pairs of units from the levels below, hence, "buddies".
747  * At a high level, all that happens here is marking the table entry
748  * at the bottom level available, and propagating the changes upward
749  * as necessary, plus some accounting needed to play nicely with other
750  * parts of the VM system.
751  * At each level, we keep a list of pages, which are heads of continuous
752  * free pages of length of (1 << order) and marked with PageBuddy.
753  * Page's order is recorded in page_private(page) field.
754  * So when we are allocating or freeing one, we can derive the state of the
755  * other.  That is, if we allocate a small block, and both were
756  * free, the remainder of the region must be split into blocks.
757  * If a block is freed, and its buddy is also free, then this
758  * triggers coalescing into a block of larger size.
759  *
760  * -- nyc
761  */
762 
763 static inline void __free_one_page(struct page *page,
764 		unsigned long pfn,
765 		struct zone *zone, unsigned int order,
766 		int migratetype, fpi_t fpi_flags)
767 {
768 	struct capture_control *capc = task_capc(zone);
769 	unsigned long buddy_pfn = 0;
770 	unsigned long combined_pfn;
771 	struct page *buddy;
772 	bool to_tail;
773 
774 	VM_BUG_ON(!zone_is_initialized(zone));
775 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
776 
777 	VM_BUG_ON(migratetype == -1);
778 	if (likely(!is_migrate_isolate(migratetype)))
779 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
780 
781 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
782 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
783 
784 	while (order < MAX_ORDER) {
785 		if (compaction_capture(capc, page, order, migratetype)) {
786 			__mod_zone_freepage_state(zone, -(1 << order),
787 								migratetype);
788 			return;
789 		}
790 
791 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
792 		if (!buddy)
793 			goto done_merging;
794 
795 		if (unlikely(order >= pageblock_order)) {
796 			/*
797 			 * We want to prevent merge between freepages on pageblock
798 			 * without fallbacks and normal pageblock. Without this,
799 			 * pageblock isolation could cause incorrect freepage or CMA
800 			 * accounting or HIGHATOMIC accounting.
801 			 */
802 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
803 
804 			if (migratetype != buddy_mt
805 					&& (!migratetype_is_mergeable(migratetype) ||
806 						!migratetype_is_mergeable(buddy_mt)))
807 				goto done_merging;
808 		}
809 
810 		/*
811 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 		 * merge with it and move up one order.
813 		 */
814 		if (page_is_guard(buddy))
815 			clear_page_guard(zone, buddy, order, migratetype);
816 		else
817 			del_page_from_free_list(buddy, zone, order);
818 		combined_pfn = buddy_pfn & pfn;
819 		page = page + (combined_pfn - pfn);
820 		pfn = combined_pfn;
821 		order++;
822 	}
823 
824 done_merging:
825 	set_buddy_order(page, order);
826 
827 	if (fpi_flags & FPI_TO_TAIL)
828 		to_tail = true;
829 	else if (is_shuffle_order(order))
830 		to_tail = shuffle_pick_tail();
831 	else
832 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
833 
834 	if (to_tail)
835 		add_to_free_list_tail(page, zone, order, migratetype);
836 	else
837 		add_to_free_list(page, zone, order, migratetype);
838 
839 	/* Notify page reporting subsystem of freed page */
840 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
841 		page_reporting_notify_free(order);
842 }
843 
844 /**
845  * split_free_page() -- split a free page at split_pfn_offset
846  * @free_page:		the original free page
847  * @order:		the order of the page
848  * @split_pfn_offset:	split offset within the page
849  *
850  * Return -ENOENT if the free page is changed, otherwise 0
851  *
852  * It is used when the free page crosses two pageblocks with different migratetypes
853  * at split_pfn_offset within the page. The split free page will be put into
854  * separate migratetype lists afterwards. Otherwise, the function achieves
855  * nothing.
856  */
857 int split_free_page(struct page *free_page,
858 			unsigned int order, unsigned long split_pfn_offset)
859 {
860 	struct zone *zone = page_zone(free_page);
861 	unsigned long free_page_pfn = page_to_pfn(free_page);
862 	unsigned long pfn;
863 	unsigned long flags;
864 	int free_page_order;
865 	int mt;
866 	int ret = 0;
867 
868 	if (split_pfn_offset == 0)
869 		return ret;
870 
871 	spin_lock_irqsave(&zone->lock, flags);
872 
873 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
874 		ret = -ENOENT;
875 		goto out;
876 	}
877 
878 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
879 	if (likely(!is_migrate_isolate(mt)))
880 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
881 
882 	del_page_from_free_list(free_page, zone, order);
883 	for (pfn = free_page_pfn;
884 	     pfn < free_page_pfn + (1UL << order);) {
885 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
886 
887 		free_page_order = min_t(unsigned int,
888 					pfn ? __ffs(pfn) : order,
889 					__fls(split_pfn_offset));
890 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
891 				mt, FPI_NONE);
892 		pfn += 1UL << free_page_order;
893 		split_pfn_offset -= (1UL << free_page_order);
894 		/* we have done the first part, now switch to second part */
895 		if (split_pfn_offset == 0)
896 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
897 	}
898 out:
899 	spin_unlock_irqrestore(&zone->lock, flags);
900 	return ret;
901 }
902 /*
903  * A bad page could be due to a number of fields. Instead of multiple branches,
904  * try and check multiple fields with one check. The caller must do a detailed
905  * check if necessary.
906  */
907 static inline bool page_expected_state(struct page *page,
908 					unsigned long check_flags)
909 {
910 	if (unlikely(atomic_read(&page->_mapcount) != -1))
911 		return false;
912 
913 	if (unlikely((unsigned long)page->mapping |
914 			page_ref_count(page) |
915 #ifdef CONFIG_MEMCG
916 			page->memcg_data |
917 #endif
918 			(page->flags & check_flags)))
919 		return false;
920 
921 	return true;
922 }
923 
924 static const char *page_bad_reason(struct page *page, unsigned long flags)
925 {
926 	const char *bad_reason = NULL;
927 
928 	if (unlikely(atomic_read(&page->_mapcount) != -1))
929 		bad_reason = "nonzero mapcount";
930 	if (unlikely(page->mapping != NULL))
931 		bad_reason = "non-NULL mapping";
932 	if (unlikely(page_ref_count(page) != 0))
933 		bad_reason = "nonzero _refcount";
934 	if (unlikely(page->flags & flags)) {
935 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
936 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
937 		else
938 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 	}
940 #ifdef CONFIG_MEMCG
941 	if (unlikely(page->memcg_data))
942 		bad_reason = "page still charged to cgroup";
943 #endif
944 	return bad_reason;
945 }
946 
947 static void free_page_is_bad_report(struct page *page)
948 {
949 	bad_page(page,
950 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
951 }
952 
953 static inline bool free_page_is_bad(struct page *page)
954 {
955 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
956 		return false;
957 
958 	/* Something has gone sideways, find it */
959 	free_page_is_bad_report(page);
960 	return true;
961 }
962 
963 static inline bool is_check_pages_enabled(void)
964 {
965 	return static_branch_unlikely(&check_pages_enabled);
966 }
967 
968 static int free_tail_page_prepare(struct page *head_page, struct page *page)
969 {
970 	struct folio *folio = (struct folio *)head_page;
971 	int ret = 1;
972 
973 	/*
974 	 * We rely page->lru.next never has bit 0 set, unless the page
975 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
976 	 */
977 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
978 
979 	if (!is_check_pages_enabled()) {
980 		ret = 0;
981 		goto out;
982 	}
983 	switch (page - head_page) {
984 	case 1:
985 		/* the first tail page: these may be in place of ->mapping */
986 		if (unlikely(folio_entire_mapcount(folio))) {
987 			bad_page(page, "nonzero entire_mapcount");
988 			goto out;
989 		}
990 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
991 			bad_page(page, "nonzero nr_pages_mapped");
992 			goto out;
993 		}
994 		if (unlikely(atomic_read(&folio->_pincount))) {
995 			bad_page(page, "nonzero pincount");
996 			goto out;
997 		}
998 		break;
999 	case 2:
1000 		/*
1001 		 * the second tail page: ->mapping is
1002 		 * deferred_list.next -- ignore value.
1003 		 */
1004 		break;
1005 	default:
1006 		if (page->mapping != TAIL_MAPPING) {
1007 			bad_page(page, "corrupted mapping in tail page");
1008 			goto out;
1009 		}
1010 		break;
1011 	}
1012 	if (unlikely(!PageTail(page))) {
1013 		bad_page(page, "PageTail not set");
1014 		goto out;
1015 	}
1016 	if (unlikely(compound_head(page) != head_page)) {
1017 		bad_page(page, "compound_head not consistent");
1018 		goto out;
1019 	}
1020 	ret = 0;
1021 out:
1022 	page->mapping = NULL;
1023 	clear_compound_head(page);
1024 	return ret;
1025 }
1026 
1027 /*
1028  * Skip KASAN memory poisoning when either:
1029  *
1030  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1031  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1032  *    using page tags instead (see below).
1033  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1034  *    that error detection is disabled for accesses via the page address.
1035  *
1036  * Pages will have match-all tags in the following circumstances:
1037  *
1038  * 1. Pages are being initialized for the first time, including during deferred
1039  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1040  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1041  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1042  * 3. The allocation was excluded from being checked due to sampling,
1043  *    see the call to kasan_unpoison_pages.
1044  *
1045  * Poisoning pages during deferred memory init will greatly lengthen the
1046  * process and cause problem in large memory systems as the deferred pages
1047  * initialization is done with interrupt disabled.
1048  *
1049  * Assuming that there will be no reference to those newly initialized
1050  * pages before they are ever allocated, this should have no effect on
1051  * KASAN memory tracking as the poison will be properly inserted at page
1052  * allocation time. The only corner case is when pages are allocated by
1053  * on-demand allocation and then freed again before the deferred pages
1054  * initialization is done, but this is not likely to happen.
1055  */
1056 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1057 {
1058 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1059 		return deferred_pages_enabled();
1060 
1061 	return page_kasan_tag(page) == 0xff;
1062 }
1063 
1064 static void kernel_init_pages(struct page *page, int numpages)
1065 {
1066 	int i;
1067 
1068 	/* s390's use of memset() could override KASAN redzones. */
1069 	kasan_disable_current();
1070 	for (i = 0; i < numpages; i++)
1071 		clear_highpage_kasan_tagged(page + i);
1072 	kasan_enable_current();
1073 }
1074 
1075 static __always_inline bool free_pages_prepare(struct page *page,
1076 			unsigned int order, fpi_t fpi_flags)
1077 {
1078 	int bad = 0;
1079 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1080 	bool init = want_init_on_free();
1081 
1082 	VM_BUG_ON_PAGE(PageTail(page), page);
1083 
1084 	trace_mm_page_free(page, order);
1085 	kmsan_free_page(page, order);
1086 
1087 	if (unlikely(PageHWPoison(page)) && !order) {
1088 		/*
1089 		 * Do not let hwpoison pages hit pcplists/buddy
1090 		 * Untie memcg state and reset page's owner
1091 		 */
1092 		if (memcg_kmem_online() && PageMemcgKmem(page))
1093 			__memcg_kmem_uncharge_page(page, order);
1094 		reset_page_owner(page, order);
1095 		page_table_check_free(page, order);
1096 		return false;
1097 	}
1098 
1099 	/*
1100 	 * Check tail pages before head page information is cleared to
1101 	 * avoid checking PageCompound for order-0 pages.
1102 	 */
1103 	if (unlikely(order)) {
1104 		bool compound = PageCompound(page);
1105 		int i;
1106 
1107 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1108 
1109 		if (compound)
1110 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1111 		for (i = 1; i < (1 << order); i++) {
1112 			if (compound)
1113 				bad += free_tail_page_prepare(page, page + i);
1114 			if (is_check_pages_enabled()) {
1115 				if (free_page_is_bad(page + i)) {
1116 					bad++;
1117 					continue;
1118 				}
1119 			}
1120 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1121 		}
1122 	}
1123 	if (PageMappingFlags(page))
1124 		page->mapping = NULL;
1125 	if (memcg_kmem_online() && PageMemcgKmem(page))
1126 		__memcg_kmem_uncharge_page(page, order);
1127 	if (is_check_pages_enabled()) {
1128 		if (free_page_is_bad(page))
1129 			bad++;
1130 		if (bad)
1131 			return false;
1132 	}
1133 
1134 	page_cpupid_reset_last(page);
1135 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1136 	reset_page_owner(page, order);
1137 	page_table_check_free(page, order);
1138 
1139 	if (!PageHighMem(page)) {
1140 		debug_check_no_locks_freed(page_address(page),
1141 					   PAGE_SIZE << order);
1142 		debug_check_no_obj_freed(page_address(page),
1143 					   PAGE_SIZE << order);
1144 	}
1145 
1146 	kernel_poison_pages(page, 1 << order);
1147 
1148 	/*
1149 	 * As memory initialization might be integrated into KASAN,
1150 	 * KASAN poisoning and memory initialization code must be
1151 	 * kept together to avoid discrepancies in behavior.
1152 	 *
1153 	 * With hardware tag-based KASAN, memory tags must be set before the
1154 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1155 	 */
1156 	if (!skip_kasan_poison) {
1157 		kasan_poison_pages(page, order, init);
1158 
1159 		/* Memory is already initialized if KASAN did it internally. */
1160 		if (kasan_has_integrated_init())
1161 			init = false;
1162 	}
1163 	if (init)
1164 		kernel_init_pages(page, 1 << order);
1165 
1166 	/*
1167 	 * arch_free_page() can make the page's contents inaccessible.  s390
1168 	 * does this.  So nothing which can access the page's contents should
1169 	 * happen after this.
1170 	 */
1171 	arch_free_page(page, order);
1172 
1173 	debug_pagealloc_unmap_pages(page, 1 << order);
1174 
1175 	return true;
1176 }
1177 
1178 /*
1179  * Frees a number of pages from the PCP lists
1180  * Assumes all pages on list are in same zone.
1181  * count is the number of pages to free.
1182  */
1183 static void free_pcppages_bulk(struct zone *zone, int count,
1184 					struct per_cpu_pages *pcp,
1185 					int pindex)
1186 {
1187 	unsigned long flags;
1188 	unsigned int order;
1189 	bool isolated_pageblocks;
1190 	struct page *page;
1191 
1192 	/*
1193 	 * Ensure proper count is passed which otherwise would stuck in the
1194 	 * below while (list_empty(list)) loop.
1195 	 */
1196 	count = min(pcp->count, count);
1197 
1198 	/* Ensure requested pindex is drained first. */
1199 	pindex = pindex - 1;
1200 
1201 	spin_lock_irqsave(&zone->lock, flags);
1202 	isolated_pageblocks = has_isolate_pageblock(zone);
1203 
1204 	while (count > 0) {
1205 		struct list_head *list;
1206 		int nr_pages;
1207 
1208 		/* Remove pages from lists in a round-robin fashion. */
1209 		do {
1210 			if (++pindex > NR_PCP_LISTS - 1)
1211 				pindex = 0;
1212 			list = &pcp->lists[pindex];
1213 		} while (list_empty(list));
1214 
1215 		order = pindex_to_order(pindex);
1216 		nr_pages = 1 << order;
1217 		do {
1218 			int mt;
1219 
1220 			page = list_last_entry(list, struct page, pcp_list);
1221 			mt = get_pcppage_migratetype(page);
1222 
1223 			/* must delete to avoid corrupting pcp list */
1224 			list_del(&page->pcp_list);
1225 			count -= nr_pages;
1226 			pcp->count -= nr_pages;
1227 
1228 			/* MIGRATE_ISOLATE page should not go to pcplists */
1229 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1230 			/* Pageblock could have been isolated meanwhile */
1231 			if (unlikely(isolated_pageblocks))
1232 				mt = get_pageblock_migratetype(page);
1233 
1234 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1235 			trace_mm_page_pcpu_drain(page, order, mt);
1236 		} while (count > 0 && !list_empty(list));
1237 	}
1238 
1239 	spin_unlock_irqrestore(&zone->lock, flags);
1240 }
1241 
1242 static void free_one_page(struct zone *zone,
1243 				struct page *page, unsigned long pfn,
1244 				unsigned int order,
1245 				int migratetype, fpi_t fpi_flags)
1246 {
1247 	unsigned long flags;
1248 
1249 	spin_lock_irqsave(&zone->lock, flags);
1250 	if (unlikely(has_isolate_pageblock(zone) ||
1251 		is_migrate_isolate(migratetype))) {
1252 		migratetype = get_pfnblock_migratetype(page, pfn);
1253 	}
1254 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1255 	spin_unlock_irqrestore(&zone->lock, flags);
1256 }
1257 
1258 static void __free_pages_ok(struct page *page, unsigned int order,
1259 			    fpi_t fpi_flags)
1260 {
1261 	unsigned long flags;
1262 	int migratetype;
1263 	unsigned long pfn = page_to_pfn(page);
1264 	struct zone *zone = page_zone(page);
1265 
1266 	if (!free_pages_prepare(page, order, fpi_flags))
1267 		return;
1268 
1269 	/*
1270 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1271 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1272 	 * This will reduce the lock holding time.
1273 	 */
1274 	migratetype = get_pfnblock_migratetype(page, pfn);
1275 
1276 	spin_lock_irqsave(&zone->lock, flags);
1277 	if (unlikely(has_isolate_pageblock(zone) ||
1278 		is_migrate_isolate(migratetype))) {
1279 		migratetype = get_pfnblock_migratetype(page, pfn);
1280 	}
1281 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1282 	spin_unlock_irqrestore(&zone->lock, flags);
1283 
1284 	__count_vm_events(PGFREE, 1 << order);
1285 }
1286 
1287 void __free_pages_core(struct page *page, unsigned int order)
1288 {
1289 	unsigned int nr_pages = 1 << order;
1290 	struct page *p = page;
1291 	unsigned int loop;
1292 
1293 	/*
1294 	 * When initializing the memmap, __init_single_page() sets the refcount
1295 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1296 	 * refcount of all involved pages to 0.
1297 	 */
1298 	prefetchw(p);
1299 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1300 		prefetchw(p + 1);
1301 		__ClearPageReserved(p);
1302 		set_page_count(p, 0);
1303 	}
1304 	__ClearPageReserved(p);
1305 	set_page_count(p, 0);
1306 
1307 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1308 
1309 	if (page_contains_unaccepted(page, order)) {
1310 		if (order == MAX_ORDER && __free_unaccepted(page))
1311 			return;
1312 
1313 		accept_page(page, order);
1314 	}
1315 
1316 	/*
1317 	 * Bypass PCP and place fresh pages right to the tail, primarily
1318 	 * relevant for memory onlining.
1319 	 */
1320 	__free_pages_ok(page, order, FPI_TO_TAIL);
1321 }
1322 
1323 /*
1324  * Check that the whole (or subset of) a pageblock given by the interval of
1325  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326  * with the migration of free compaction scanner.
1327  *
1328  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1329  *
1330  * It's possible on some configurations to have a setup like node0 node1 node0
1331  * i.e. it's possible that all pages within a zones range of pages do not
1332  * belong to a single zone. We assume that a border between node0 and node1
1333  * can occur within a single pageblock, but not a node0 node1 node0
1334  * interleaving within a single pageblock. It is therefore sufficient to check
1335  * the first and last page of a pageblock and avoid checking each individual
1336  * page in a pageblock.
1337  *
1338  * Note: the function may return non-NULL struct page even for a page block
1339  * which contains a memory hole (i.e. there is no physical memory for a subset
1340  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1341  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1342  * even though the start pfn is online and valid. This should be safe most of
1343  * the time because struct pages are still initialized via init_unavailable_range()
1344  * and pfn walkers shouldn't touch any physical memory range for which they do
1345  * not recognize any specific metadata in struct pages.
1346  */
1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 				     unsigned long end_pfn, struct zone *zone)
1349 {
1350 	struct page *start_page;
1351 	struct page *end_page;
1352 
1353 	/* end_pfn is one past the range we are checking */
1354 	end_pfn--;
1355 
1356 	if (!pfn_valid(end_pfn))
1357 		return NULL;
1358 
1359 	start_page = pfn_to_online_page(start_pfn);
1360 	if (!start_page)
1361 		return NULL;
1362 
1363 	if (page_zone(start_page) != zone)
1364 		return NULL;
1365 
1366 	end_page = pfn_to_page(end_pfn);
1367 
1368 	/* This gives a shorter code than deriving page_zone(end_page) */
1369 	if (page_zone_id(start_page) != page_zone_id(end_page))
1370 		return NULL;
1371 
1372 	return start_page;
1373 }
1374 
1375 /*
1376  * The order of subdivision here is critical for the IO subsystem.
1377  * Please do not alter this order without good reasons and regression
1378  * testing. Specifically, as large blocks of memory are subdivided,
1379  * the order in which smaller blocks are delivered depends on the order
1380  * they're subdivided in this function. This is the primary factor
1381  * influencing the order in which pages are delivered to the IO
1382  * subsystem according to empirical testing, and this is also justified
1383  * by considering the behavior of a buddy system containing a single
1384  * large block of memory acted on by a series of small allocations.
1385  * This behavior is a critical factor in sglist merging's success.
1386  *
1387  * -- nyc
1388  */
1389 static inline void expand(struct zone *zone, struct page *page,
1390 	int low, int high, int migratetype)
1391 {
1392 	unsigned long size = 1 << high;
1393 
1394 	while (high > low) {
1395 		high--;
1396 		size >>= 1;
1397 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1398 
1399 		/*
1400 		 * Mark as guard pages (or page), that will allow to
1401 		 * merge back to allocator when buddy will be freed.
1402 		 * Corresponding page table entries will not be touched,
1403 		 * pages will stay not present in virtual address space
1404 		 */
1405 		if (set_page_guard(zone, &page[size], high, migratetype))
1406 			continue;
1407 
1408 		add_to_free_list(&page[size], zone, high, migratetype);
1409 		set_buddy_order(&page[size], high);
1410 	}
1411 }
1412 
1413 static void check_new_page_bad(struct page *page)
1414 {
1415 	if (unlikely(page->flags & __PG_HWPOISON)) {
1416 		/* Don't complain about hwpoisoned pages */
1417 		page_mapcount_reset(page); /* remove PageBuddy */
1418 		return;
1419 	}
1420 
1421 	bad_page(page,
1422 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1423 }
1424 
1425 /*
1426  * This page is about to be returned from the page allocator
1427  */
1428 static int check_new_page(struct page *page)
1429 {
1430 	if (likely(page_expected_state(page,
1431 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1432 		return 0;
1433 
1434 	check_new_page_bad(page);
1435 	return 1;
1436 }
1437 
1438 static inline bool check_new_pages(struct page *page, unsigned int order)
1439 {
1440 	if (is_check_pages_enabled()) {
1441 		for (int i = 0; i < (1 << order); i++) {
1442 			struct page *p = page + i;
1443 
1444 			if (check_new_page(p))
1445 				return true;
1446 		}
1447 	}
1448 
1449 	return false;
1450 }
1451 
1452 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1453 {
1454 	/* Don't skip if a software KASAN mode is enabled. */
1455 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1456 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1457 		return false;
1458 
1459 	/* Skip, if hardware tag-based KASAN is not enabled. */
1460 	if (!kasan_hw_tags_enabled())
1461 		return true;
1462 
1463 	/*
1464 	 * With hardware tag-based KASAN enabled, skip if this has been
1465 	 * requested via __GFP_SKIP_KASAN.
1466 	 */
1467 	return flags & __GFP_SKIP_KASAN;
1468 }
1469 
1470 static inline bool should_skip_init(gfp_t flags)
1471 {
1472 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1473 	if (!kasan_hw_tags_enabled())
1474 		return false;
1475 
1476 	/* For hardware tag-based KASAN, skip if requested. */
1477 	return (flags & __GFP_SKIP_ZERO);
1478 }
1479 
1480 inline void post_alloc_hook(struct page *page, unsigned int order,
1481 				gfp_t gfp_flags)
1482 {
1483 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1484 			!should_skip_init(gfp_flags);
1485 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1486 	int i;
1487 
1488 	set_page_private(page, 0);
1489 	set_page_refcounted(page);
1490 
1491 	arch_alloc_page(page, order);
1492 	debug_pagealloc_map_pages(page, 1 << order);
1493 
1494 	/*
1495 	 * Page unpoisoning must happen before memory initialization.
1496 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1497 	 * allocations and the page unpoisoning code will complain.
1498 	 */
1499 	kernel_unpoison_pages(page, 1 << order);
1500 
1501 	/*
1502 	 * As memory initialization might be integrated into KASAN,
1503 	 * KASAN unpoisoning and memory initializion code must be
1504 	 * kept together to avoid discrepancies in behavior.
1505 	 */
1506 
1507 	/*
1508 	 * If memory tags should be zeroed
1509 	 * (which happens only when memory should be initialized as well).
1510 	 */
1511 	if (zero_tags) {
1512 		/* Initialize both memory and memory tags. */
1513 		for (i = 0; i != 1 << order; ++i)
1514 			tag_clear_highpage(page + i);
1515 
1516 		/* Take note that memory was initialized by the loop above. */
1517 		init = false;
1518 	}
1519 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1520 	    kasan_unpoison_pages(page, order, init)) {
1521 		/* Take note that memory was initialized by KASAN. */
1522 		if (kasan_has_integrated_init())
1523 			init = false;
1524 	} else {
1525 		/*
1526 		 * If memory tags have not been set by KASAN, reset the page
1527 		 * tags to ensure page_address() dereferencing does not fault.
1528 		 */
1529 		for (i = 0; i != 1 << order; ++i)
1530 			page_kasan_tag_reset(page + i);
1531 	}
1532 	/* If memory is still not initialized, initialize it now. */
1533 	if (init)
1534 		kernel_init_pages(page, 1 << order);
1535 
1536 	set_page_owner(page, order, gfp_flags);
1537 	page_table_check_alloc(page, order);
1538 }
1539 
1540 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1541 							unsigned int alloc_flags)
1542 {
1543 	post_alloc_hook(page, order, gfp_flags);
1544 
1545 	if (order && (gfp_flags & __GFP_COMP))
1546 		prep_compound_page(page, order);
1547 
1548 	/*
1549 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1550 	 * allocate the page. The expectation is that the caller is taking
1551 	 * steps that will free more memory. The caller should avoid the page
1552 	 * being used for !PFMEMALLOC purposes.
1553 	 */
1554 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1555 		set_page_pfmemalloc(page);
1556 	else
1557 		clear_page_pfmemalloc(page);
1558 }
1559 
1560 /*
1561  * Go through the free lists for the given migratetype and remove
1562  * the smallest available page from the freelists
1563  */
1564 static __always_inline
1565 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1566 						int migratetype)
1567 {
1568 	unsigned int current_order;
1569 	struct free_area *area;
1570 	struct page *page;
1571 
1572 	/* Find a page of the appropriate size in the preferred list */
1573 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1574 		area = &(zone->free_area[current_order]);
1575 		page = get_page_from_free_area(area, migratetype);
1576 		if (!page)
1577 			continue;
1578 		del_page_from_free_list(page, zone, current_order);
1579 		expand(zone, page, order, current_order, migratetype);
1580 		set_pcppage_migratetype(page, migratetype);
1581 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1582 				pcp_allowed_order(order) &&
1583 				migratetype < MIGRATE_PCPTYPES);
1584 		return page;
1585 	}
1586 
1587 	return NULL;
1588 }
1589 
1590 
1591 /*
1592  * This array describes the order lists are fallen back to when
1593  * the free lists for the desirable migrate type are depleted
1594  *
1595  * The other migratetypes do not have fallbacks.
1596  */
1597 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1598 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1599 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1600 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1601 };
1602 
1603 #ifdef CONFIG_CMA
1604 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1605 					unsigned int order)
1606 {
1607 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1608 }
1609 #else
1610 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1611 					unsigned int order) { return NULL; }
1612 #endif
1613 
1614 /*
1615  * Move the free pages in a range to the freelist tail of the requested type.
1616  * Note that start_page and end_pages are not aligned on a pageblock
1617  * boundary. If alignment is required, use move_freepages_block()
1618  */
1619 static int move_freepages(struct zone *zone,
1620 			  unsigned long start_pfn, unsigned long end_pfn,
1621 			  int migratetype, int *num_movable)
1622 {
1623 	struct page *page;
1624 	unsigned long pfn;
1625 	unsigned int order;
1626 	int pages_moved = 0;
1627 
1628 	for (pfn = start_pfn; pfn <= end_pfn;) {
1629 		page = pfn_to_page(pfn);
1630 		if (!PageBuddy(page)) {
1631 			/*
1632 			 * We assume that pages that could be isolated for
1633 			 * migration are movable. But we don't actually try
1634 			 * isolating, as that would be expensive.
1635 			 */
1636 			if (num_movable &&
1637 					(PageLRU(page) || __PageMovable(page)))
1638 				(*num_movable)++;
1639 			pfn++;
1640 			continue;
1641 		}
1642 
1643 		/* Make sure we are not inadvertently changing nodes */
1644 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1645 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1646 
1647 		order = buddy_order(page);
1648 		move_to_free_list(page, zone, order, migratetype);
1649 		pfn += 1 << order;
1650 		pages_moved += 1 << order;
1651 	}
1652 
1653 	return pages_moved;
1654 }
1655 
1656 int move_freepages_block(struct zone *zone, struct page *page,
1657 				int migratetype, int *num_movable)
1658 {
1659 	unsigned long start_pfn, end_pfn, pfn;
1660 
1661 	if (num_movable)
1662 		*num_movable = 0;
1663 
1664 	pfn = page_to_pfn(page);
1665 	start_pfn = pageblock_start_pfn(pfn);
1666 	end_pfn = pageblock_end_pfn(pfn) - 1;
1667 
1668 	/* Do not cross zone boundaries */
1669 	if (!zone_spans_pfn(zone, start_pfn))
1670 		start_pfn = pfn;
1671 	if (!zone_spans_pfn(zone, end_pfn))
1672 		return 0;
1673 
1674 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1675 								num_movable);
1676 }
1677 
1678 static void change_pageblock_range(struct page *pageblock_page,
1679 					int start_order, int migratetype)
1680 {
1681 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1682 
1683 	while (nr_pageblocks--) {
1684 		set_pageblock_migratetype(pageblock_page, migratetype);
1685 		pageblock_page += pageblock_nr_pages;
1686 	}
1687 }
1688 
1689 /*
1690  * When we are falling back to another migratetype during allocation, try to
1691  * steal extra free pages from the same pageblocks to satisfy further
1692  * allocations, instead of polluting multiple pageblocks.
1693  *
1694  * If we are stealing a relatively large buddy page, it is likely there will
1695  * be more free pages in the pageblock, so try to steal them all. For
1696  * reclaimable and unmovable allocations, we steal regardless of page size,
1697  * as fragmentation caused by those allocations polluting movable pageblocks
1698  * is worse than movable allocations stealing from unmovable and reclaimable
1699  * pageblocks.
1700  */
1701 static bool can_steal_fallback(unsigned int order, int start_mt)
1702 {
1703 	/*
1704 	 * Leaving this order check is intended, although there is
1705 	 * relaxed order check in next check. The reason is that
1706 	 * we can actually steal whole pageblock if this condition met,
1707 	 * but, below check doesn't guarantee it and that is just heuristic
1708 	 * so could be changed anytime.
1709 	 */
1710 	if (order >= pageblock_order)
1711 		return true;
1712 
1713 	if (order >= pageblock_order / 2 ||
1714 		start_mt == MIGRATE_RECLAIMABLE ||
1715 		start_mt == MIGRATE_UNMOVABLE ||
1716 		page_group_by_mobility_disabled)
1717 		return true;
1718 
1719 	return false;
1720 }
1721 
1722 static inline bool boost_watermark(struct zone *zone)
1723 {
1724 	unsigned long max_boost;
1725 
1726 	if (!watermark_boost_factor)
1727 		return false;
1728 	/*
1729 	 * Don't bother in zones that are unlikely to produce results.
1730 	 * On small machines, including kdump capture kernels running
1731 	 * in a small area, boosting the watermark can cause an out of
1732 	 * memory situation immediately.
1733 	 */
1734 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1735 		return false;
1736 
1737 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1738 			watermark_boost_factor, 10000);
1739 
1740 	/*
1741 	 * high watermark may be uninitialised if fragmentation occurs
1742 	 * very early in boot so do not boost. We do not fall
1743 	 * through and boost by pageblock_nr_pages as failing
1744 	 * allocations that early means that reclaim is not going
1745 	 * to help and it may even be impossible to reclaim the
1746 	 * boosted watermark resulting in a hang.
1747 	 */
1748 	if (!max_boost)
1749 		return false;
1750 
1751 	max_boost = max(pageblock_nr_pages, max_boost);
1752 
1753 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1754 		max_boost);
1755 
1756 	return true;
1757 }
1758 
1759 /*
1760  * This function implements actual steal behaviour. If order is large enough,
1761  * we can steal whole pageblock. If not, we first move freepages in this
1762  * pageblock to our migratetype and determine how many already-allocated pages
1763  * are there in the pageblock with a compatible migratetype. If at least half
1764  * of pages are free or compatible, we can change migratetype of the pageblock
1765  * itself, so pages freed in the future will be put on the correct free list.
1766  */
1767 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1768 		unsigned int alloc_flags, int start_type, bool whole_block)
1769 {
1770 	unsigned int current_order = buddy_order(page);
1771 	int free_pages, movable_pages, alike_pages;
1772 	int old_block_type;
1773 
1774 	old_block_type = get_pageblock_migratetype(page);
1775 
1776 	/*
1777 	 * This can happen due to races and we want to prevent broken
1778 	 * highatomic accounting.
1779 	 */
1780 	if (is_migrate_highatomic(old_block_type))
1781 		goto single_page;
1782 
1783 	/* Take ownership for orders >= pageblock_order */
1784 	if (current_order >= pageblock_order) {
1785 		change_pageblock_range(page, current_order, start_type);
1786 		goto single_page;
1787 	}
1788 
1789 	/*
1790 	 * Boost watermarks to increase reclaim pressure to reduce the
1791 	 * likelihood of future fallbacks. Wake kswapd now as the node
1792 	 * may be balanced overall and kswapd will not wake naturally.
1793 	 */
1794 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1795 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1796 
1797 	/* We are not allowed to try stealing from the whole block */
1798 	if (!whole_block)
1799 		goto single_page;
1800 
1801 	free_pages = move_freepages_block(zone, page, start_type,
1802 						&movable_pages);
1803 	/* moving whole block can fail due to zone boundary conditions */
1804 	if (!free_pages)
1805 		goto single_page;
1806 
1807 	/*
1808 	 * Determine how many pages are compatible with our allocation.
1809 	 * For movable allocation, it's the number of movable pages which
1810 	 * we just obtained. For other types it's a bit more tricky.
1811 	 */
1812 	if (start_type == MIGRATE_MOVABLE) {
1813 		alike_pages = movable_pages;
1814 	} else {
1815 		/*
1816 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1817 		 * to MOVABLE pageblock, consider all non-movable pages as
1818 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1819 		 * vice versa, be conservative since we can't distinguish the
1820 		 * exact migratetype of non-movable pages.
1821 		 */
1822 		if (old_block_type == MIGRATE_MOVABLE)
1823 			alike_pages = pageblock_nr_pages
1824 						- (free_pages + movable_pages);
1825 		else
1826 			alike_pages = 0;
1827 	}
1828 	/*
1829 	 * If a sufficient number of pages in the block are either free or of
1830 	 * compatible migratability as our allocation, claim the whole block.
1831 	 */
1832 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1833 			page_group_by_mobility_disabled)
1834 		set_pageblock_migratetype(page, start_type);
1835 
1836 	return;
1837 
1838 single_page:
1839 	move_to_free_list(page, zone, current_order, start_type);
1840 }
1841 
1842 /*
1843  * Check whether there is a suitable fallback freepage with requested order.
1844  * If only_stealable is true, this function returns fallback_mt only if
1845  * we can steal other freepages all together. This would help to reduce
1846  * fragmentation due to mixed migratetype pages in one pageblock.
1847  */
1848 int find_suitable_fallback(struct free_area *area, unsigned int order,
1849 			int migratetype, bool only_stealable, bool *can_steal)
1850 {
1851 	int i;
1852 	int fallback_mt;
1853 
1854 	if (area->nr_free == 0)
1855 		return -1;
1856 
1857 	*can_steal = false;
1858 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1859 		fallback_mt = fallbacks[migratetype][i];
1860 		if (free_area_empty(area, fallback_mt))
1861 			continue;
1862 
1863 		if (can_steal_fallback(order, migratetype))
1864 			*can_steal = true;
1865 
1866 		if (!only_stealable)
1867 			return fallback_mt;
1868 
1869 		if (*can_steal)
1870 			return fallback_mt;
1871 	}
1872 
1873 	return -1;
1874 }
1875 
1876 /*
1877  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1878  * there are no empty page blocks that contain a page with a suitable order
1879  */
1880 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1881 {
1882 	int mt;
1883 	unsigned long max_managed, flags;
1884 
1885 	/*
1886 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1887 	 * Check is race-prone but harmless.
1888 	 */
1889 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1890 	if (zone->nr_reserved_highatomic >= max_managed)
1891 		return;
1892 
1893 	spin_lock_irqsave(&zone->lock, flags);
1894 
1895 	/* Recheck the nr_reserved_highatomic limit under the lock */
1896 	if (zone->nr_reserved_highatomic >= max_managed)
1897 		goto out_unlock;
1898 
1899 	/* Yoink! */
1900 	mt = get_pageblock_migratetype(page);
1901 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1902 	if (migratetype_is_mergeable(mt)) {
1903 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1904 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1905 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1906 	}
1907 
1908 out_unlock:
1909 	spin_unlock_irqrestore(&zone->lock, flags);
1910 }
1911 
1912 /*
1913  * Used when an allocation is about to fail under memory pressure. This
1914  * potentially hurts the reliability of high-order allocations when under
1915  * intense memory pressure but failed atomic allocations should be easier
1916  * to recover from than an OOM.
1917  *
1918  * If @force is true, try to unreserve a pageblock even though highatomic
1919  * pageblock is exhausted.
1920  */
1921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1922 						bool force)
1923 {
1924 	struct zonelist *zonelist = ac->zonelist;
1925 	unsigned long flags;
1926 	struct zoneref *z;
1927 	struct zone *zone;
1928 	struct page *page;
1929 	int order;
1930 	bool ret;
1931 
1932 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1933 								ac->nodemask) {
1934 		/*
1935 		 * Preserve at least one pageblock unless memory pressure
1936 		 * is really high.
1937 		 */
1938 		if (!force && zone->nr_reserved_highatomic <=
1939 					pageblock_nr_pages)
1940 			continue;
1941 
1942 		spin_lock_irqsave(&zone->lock, flags);
1943 		for (order = 0; order <= MAX_ORDER; order++) {
1944 			struct free_area *area = &(zone->free_area[order]);
1945 
1946 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1947 			if (!page)
1948 				continue;
1949 
1950 			/*
1951 			 * In page freeing path, migratetype change is racy so
1952 			 * we can counter several free pages in a pageblock
1953 			 * in this loop although we changed the pageblock type
1954 			 * from highatomic to ac->migratetype. So we should
1955 			 * adjust the count once.
1956 			 */
1957 			if (is_migrate_highatomic_page(page)) {
1958 				/*
1959 				 * It should never happen but changes to
1960 				 * locking could inadvertently allow a per-cpu
1961 				 * drain to add pages to MIGRATE_HIGHATOMIC
1962 				 * while unreserving so be safe and watch for
1963 				 * underflows.
1964 				 */
1965 				zone->nr_reserved_highatomic -= min(
1966 						pageblock_nr_pages,
1967 						zone->nr_reserved_highatomic);
1968 			}
1969 
1970 			/*
1971 			 * Convert to ac->migratetype and avoid the normal
1972 			 * pageblock stealing heuristics. Minimally, the caller
1973 			 * is doing the work and needs the pages. More
1974 			 * importantly, if the block was always converted to
1975 			 * MIGRATE_UNMOVABLE or another type then the number
1976 			 * of pageblocks that cannot be completely freed
1977 			 * may increase.
1978 			 */
1979 			set_pageblock_migratetype(page, ac->migratetype);
1980 			ret = move_freepages_block(zone, page, ac->migratetype,
1981 									NULL);
1982 			if (ret) {
1983 				spin_unlock_irqrestore(&zone->lock, flags);
1984 				return ret;
1985 			}
1986 		}
1987 		spin_unlock_irqrestore(&zone->lock, flags);
1988 	}
1989 
1990 	return false;
1991 }
1992 
1993 /*
1994  * Try finding a free buddy page on the fallback list and put it on the free
1995  * list of requested migratetype, possibly along with other pages from the same
1996  * block, depending on fragmentation avoidance heuristics. Returns true if
1997  * fallback was found so that __rmqueue_smallest() can grab it.
1998  *
1999  * The use of signed ints for order and current_order is a deliberate
2000  * deviation from the rest of this file, to make the for loop
2001  * condition simpler.
2002  */
2003 static __always_inline bool
2004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2005 						unsigned int alloc_flags)
2006 {
2007 	struct free_area *area;
2008 	int current_order;
2009 	int min_order = order;
2010 	struct page *page;
2011 	int fallback_mt;
2012 	bool can_steal;
2013 
2014 	/*
2015 	 * Do not steal pages from freelists belonging to other pageblocks
2016 	 * i.e. orders < pageblock_order. If there are no local zones free,
2017 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2018 	 */
2019 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2020 		min_order = pageblock_order;
2021 
2022 	/*
2023 	 * Find the largest available free page in the other list. This roughly
2024 	 * approximates finding the pageblock with the most free pages, which
2025 	 * would be too costly to do exactly.
2026 	 */
2027 	for (current_order = MAX_ORDER; current_order >= min_order;
2028 				--current_order) {
2029 		area = &(zone->free_area[current_order]);
2030 		fallback_mt = find_suitable_fallback(area, current_order,
2031 				start_migratetype, false, &can_steal);
2032 		if (fallback_mt == -1)
2033 			continue;
2034 
2035 		/*
2036 		 * We cannot steal all free pages from the pageblock and the
2037 		 * requested migratetype is movable. In that case it's better to
2038 		 * steal and split the smallest available page instead of the
2039 		 * largest available page, because even if the next movable
2040 		 * allocation falls back into a different pageblock than this
2041 		 * one, it won't cause permanent fragmentation.
2042 		 */
2043 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2044 					&& current_order > order)
2045 			goto find_smallest;
2046 
2047 		goto do_steal;
2048 	}
2049 
2050 	return false;
2051 
2052 find_smallest:
2053 	for (current_order = order; current_order <= MAX_ORDER;
2054 							current_order++) {
2055 		area = &(zone->free_area[current_order]);
2056 		fallback_mt = find_suitable_fallback(area, current_order,
2057 				start_migratetype, false, &can_steal);
2058 		if (fallback_mt != -1)
2059 			break;
2060 	}
2061 
2062 	/*
2063 	 * This should not happen - we already found a suitable fallback
2064 	 * when looking for the largest page.
2065 	 */
2066 	VM_BUG_ON(current_order > MAX_ORDER);
2067 
2068 do_steal:
2069 	page = get_page_from_free_area(area, fallback_mt);
2070 
2071 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2072 								can_steal);
2073 
2074 	trace_mm_page_alloc_extfrag(page, order, current_order,
2075 		start_migratetype, fallback_mt);
2076 
2077 	return true;
2078 
2079 }
2080 
2081 /*
2082  * Do the hard work of removing an element from the buddy allocator.
2083  * Call me with the zone->lock already held.
2084  */
2085 static __always_inline struct page *
2086 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2087 						unsigned int alloc_flags)
2088 {
2089 	struct page *page;
2090 
2091 	if (IS_ENABLED(CONFIG_CMA)) {
2092 		/*
2093 		 * Balance movable allocations between regular and CMA areas by
2094 		 * allocating from CMA when over half of the zone's free memory
2095 		 * is in the CMA area.
2096 		 */
2097 		if (alloc_flags & ALLOC_CMA &&
2098 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2099 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2100 			page = __rmqueue_cma_fallback(zone, order);
2101 			if (page)
2102 				return page;
2103 		}
2104 	}
2105 retry:
2106 	page = __rmqueue_smallest(zone, order, migratetype);
2107 	if (unlikely(!page)) {
2108 		if (alloc_flags & ALLOC_CMA)
2109 			page = __rmqueue_cma_fallback(zone, order);
2110 
2111 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2112 								alloc_flags))
2113 			goto retry;
2114 	}
2115 	return page;
2116 }
2117 
2118 /*
2119  * Obtain a specified number of elements from the buddy allocator, all under
2120  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2121  * Returns the number of new pages which were placed at *list.
2122  */
2123 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2124 			unsigned long count, struct list_head *list,
2125 			int migratetype, unsigned int alloc_flags)
2126 {
2127 	unsigned long flags;
2128 	int i;
2129 
2130 	spin_lock_irqsave(&zone->lock, flags);
2131 	for (i = 0; i < count; ++i) {
2132 		struct page *page = __rmqueue(zone, order, migratetype,
2133 								alloc_flags);
2134 		if (unlikely(page == NULL))
2135 			break;
2136 
2137 		/*
2138 		 * Split buddy pages returned by expand() are received here in
2139 		 * physical page order. The page is added to the tail of
2140 		 * caller's list. From the callers perspective, the linked list
2141 		 * is ordered by page number under some conditions. This is
2142 		 * useful for IO devices that can forward direction from the
2143 		 * head, thus also in the physical page order. This is useful
2144 		 * for IO devices that can merge IO requests if the physical
2145 		 * pages are ordered properly.
2146 		 */
2147 		list_add_tail(&page->pcp_list, list);
2148 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2149 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2150 					      -(1 << order));
2151 	}
2152 
2153 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2154 	spin_unlock_irqrestore(&zone->lock, flags);
2155 
2156 	return i;
2157 }
2158 
2159 #ifdef CONFIG_NUMA
2160 /*
2161  * Called from the vmstat counter updater to drain pagesets of this
2162  * currently executing processor on remote nodes after they have
2163  * expired.
2164  */
2165 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2166 {
2167 	int to_drain, batch;
2168 
2169 	batch = READ_ONCE(pcp->batch);
2170 	to_drain = min(pcp->count, batch);
2171 	if (to_drain > 0) {
2172 		spin_lock(&pcp->lock);
2173 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2174 		spin_unlock(&pcp->lock);
2175 	}
2176 }
2177 #endif
2178 
2179 /*
2180  * Drain pcplists of the indicated processor and zone.
2181  */
2182 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2183 {
2184 	struct per_cpu_pages *pcp;
2185 
2186 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2187 	if (pcp->count) {
2188 		spin_lock(&pcp->lock);
2189 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2190 		spin_unlock(&pcp->lock);
2191 	}
2192 }
2193 
2194 /*
2195  * Drain pcplists of all zones on the indicated processor.
2196  */
2197 static void drain_pages(unsigned int cpu)
2198 {
2199 	struct zone *zone;
2200 
2201 	for_each_populated_zone(zone) {
2202 		drain_pages_zone(cpu, zone);
2203 	}
2204 }
2205 
2206 /*
2207  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2208  */
2209 void drain_local_pages(struct zone *zone)
2210 {
2211 	int cpu = smp_processor_id();
2212 
2213 	if (zone)
2214 		drain_pages_zone(cpu, zone);
2215 	else
2216 		drain_pages(cpu);
2217 }
2218 
2219 /*
2220  * The implementation of drain_all_pages(), exposing an extra parameter to
2221  * drain on all cpus.
2222  *
2223  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2224  * not empty. The check for non-emptiness can however race with a free to
2225  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2226  * that need the guarantee that every CPU has drained can disable the
2227  * optimizing racy check.
2228  */
2229 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2230 {
2231 	int cpu;
2232 
2233 	/*
2234 	 * Allocate in the BSS so we won't require allocation in
2235 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2236 	 */
2237 	static cpumask_t cpus_with_pcps;
2238 
2239 	/*
2240 	 * Do not drain if one is already in progress unless it's specific to
2241 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2242 	 * the drain to be complete when the call returns.
2243 	 */
2244 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2245 		if (!zone)
2246 			return;
2247 		mutex_lock(&pcpu_drain_mutex);
2248 	}
2249 
2250 	/*
2251 	 * We don't care about racing with CPU hotplug event
2252 	 * as offline notification will cause the notified
2253 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2254 	 * disables preemption as part of its processing
2255 	 */
2256 	for_each_online_cpu(cpu) {
2257 		struct per_cpu_pages *pcp;
2258 		struct zone *z;
2259 		bool has_pcps = false;
2260 
2261 		if (force_all_cpus) {
2262 			/*
2263 			 * The pcp.count check is racy, some callers need a
2264 			 * guarantee that no cpu is missed.
2265 			 */
2266 			has_pcps = true;
2267 		} else if (zone) {
2268 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2269 			if (pcp->count)
2270 				has_pcps = true;
2271 		} else {
2272 			for_each_populated_zone(z) {
2273 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2274 				if (pcp->count) {
2275 					has_pcps = true;
2276 					break;
2277 				}
2278 			}
2279 		}
2280 
2281 		if (has_pcps)
2282 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2283 		else
2284 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2285 	}
2286 
2287 	for_each_cpu(cpu, &cpus_with_pcps) {
2288 		if (zone)
2289 			drain_pages_zone(cpu, zone);
2290 		else
2291 			drain_pages(cpu);
2292 	}
2293 
2294 	mutex_unlock(&pcpu_drain_mutex);
2295 }
2296 
2297 /*
2298  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2299  *
2300  * When zone parameter is non-NULL, spill just the single zone's pages.
2301  */
2302 void drain_all_pages(struct zone *zone)
2303 {
2304 	__drain_all_pages(zone, false);
2305 }
2306 
2307 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2308 							unsigned int order)
2309 {
2310 	int migratetype;
2311 
2312 	if (!free_pages_prepare(page, order, FPI_NONE))
2313 		return false;
2314 
2315 	migratetype = get_pfnblock_migratetype(page, pfn);
2316 	set_pcppage_migratetype(page, migratetype);
2317 	return true;
2318 }
2319 
2320 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2321 {
2322 	int min_nr_free, max_nr_free;
2323 	int batch = READ_ONCE(pcp->batch);
2324 
2325 	/* Free everything if batch freeing high-order pages. */
2326 	if (unlikely(free_high))
2327 		return pcp->count;
2328 
2329 	/* Check for PCP disabled or boot pageset */
2330 	if (unlikely(high < batch))
2331 		return 1;
2332 
2333 	/* Leave at least pcp->batch pages on the list */
2334 	min_nr_free = batch;
2335 	max_nr_free = high - batch;
2336 
2337 	/*
2338 	 * Double the number of pages freed each time there is subsequent
2339 	 * freeing of pages without any allocation.
2340 	 */
2341 	batch <<= pcp->free_factor;
2342 	if (batch < max_nr_free)
2343 		pcp->free_factor++;
2344 	batch = clamp(batch, min_nr_free, max_nr_free);
2345 
2346 	return batch;
2347 }
2348 
2349 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2350 		       bool free_high)
2351 {
2352 	int high = READ_ONCE(pcp->high);
2353 
2354 	if (unlikely(!high || free_high))
2355 		return 0;
2356 
2357 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2358 		return high;
2359 
2360 	/*
2361 	 * If reclaim is active, limit the number of pages that can be
2362 	 * stored on pcp lists
2363 	 */
2364 	return min(READ_ONCE(pcp->batch) << 2, high);
2365 }
2366 
2367 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2368 				   struct page *page, int migratetype,
2369 				   unsigned int order)
2370 {
2371 	int high;
2372 	int pindex;
2373 	bool free_high;
2374 
2375 	__count_vm_events(PGFREE, 1 << order);
2376 	pindex = order_to_pindex(migratetype, order);
2377 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2378 	pcp->count += 1 << order;
2379 
2380 	/*
2381 	 * As high-order pages other than THP's stored on PCP can contribute
2382 	 * to fragmentation, limit the number stored when PCP is heavily
2383 	 * freeing without allocation. The remainder after bulk freeing
2384 	 * stops will be drained from vmstat refresh context.
2385 	 */
2386 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2387 
2388 	high = nr_pcp_high(pcp, zone, free_high);
2389 	if (pcp->count >= high) {
2390 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2391 	}
2392 }
2393 
2394 /*
2395  * Free a pcp page
2396  */
2397 void free_unref_page(struct page *page, unsigned int order)
2398 {
2399 	unsigned long __maybe_unused UP_flags;
2400 	struct per_cpu_pages *pcp;
2401 	struct zone *zone;
2402 	unsigned long pfn = page_to_pfn(page);
2403 	int migratetype, pcpmigratetype;
2404 
2405 	if (!free_unref_page_prepare(page, pfn, order))
2406 		return;
2407 
2408 	/*
2409 	 * We only track unmovable, reclaimable and movable on pcp lists.
2410 	 * Place ISOLATE pages on the isolated list because they are being
2411 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2412 	 * get those areas back if necessary. Otherwise, we may have to free
2413 	 * excessively into the page allocator
2414 	 */
2415 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2416 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2417 		if (unlikely(is_migrate_isolate(migratetype))) {
2418 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2419 			return;
2420 		}
2421 		pcpmigratetype = MIGRATE_MOVABLE;
2422 	}
2423 
2424 	zone = page_zone(page);
2425 	pcp_trylock_prepare(UP_flags);
2426 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2427 	if (pcp) {
2428 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2429 		pcp_spin_unlock(pcp);
2430 	} else {
2431 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2432 	}
2433 	pcp_trylock_finish(UP_flags);
2434 }
2435 
2436 /*
2437  * Free a list of 0-order pages
2438  */
2439 void free_unref_page_list(struct list_head *list)
2440 {
2441 	unsigned long __maybe_unused UP_flags;
2442 	struct page *page, *next;
2443 	struct per_cpu_pages *pcp = NULL;
2444 	struct zone *locked_zone = NULL;
2445 	int batch_count = 0;
2446 	int migratetype;
2447 
2448 	/* Prepare pages for freeing */
2449 	list_for_each_entry_safe(page, next, list, lru) {
2450 		unsigned long pfn = page_to_pfn(page);
2451 		if (!free_unref_page_prepare(page, pfn, 0)) {
2452 			list_del(&page->lru);
2453 			continue;
2454 		}
2455 
2456 		/*
2457 		 * Free isolated pages directly to the allocator, see
2458 		 * comment in free_unref_page.
2459 		 */
2460 		migratetype = get_pcppage_migratetype(page);
2461 		if (unlikely(is_migrate_isolate(migratetype))) {
2462 			list_del(&page->lru);
2463 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2464 			continue;
2465 		}
2466 	}
2467 
2468 	list_for_each_entry_safe(page, next, list, lru) {
2469 		struct zone *zone = page_zone(page);
2470 
2471 		list_del(&page->lru);
2472 		migratetype = get_pcppage_migratetype(page);
2473 
2474 		/*
2475 		 * Either different zone requiring a different pcp lock or
2476 		 * excessive lock hold times when freeing a large list of
2477 		 * pages.
2478 		 */
2479 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2480 			if (pcp) {
2481 				pcp_spin_unlock(pcp);
2482 				pcp_trylock_finish(UP_flags);
2483 			}
2484 
2485 			batch_count = 0;
2486 
2487 			/*
2488 			 * trylock is necessary as pages may be getting freed
2489 			 * from IRQ or SoftIRQ context after an IO completion.
2490 			 */
2491 			pcp_trylock_prepare(UP_flags);
2492 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2493 			if (unlikely(!pcp)) {
2494 				pcp_trylock_finish(UP_flags);
2495 				free_one_page(zone, page, page_to_pfn(page),
2496 					      0, migratetype, FPI_NONE);
2497 				locked_zone = NULL;
2498 				continue;
2499 			}
2500 			locked_zone = zone;
2501 		}
2502 
2503 		/*
2504 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2505 		 * to the MIGRATE_MOVABLE pcp list.
2506 		 */
2507 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2508 			migratetype = MIGRATE_MOVABLE;
2509 
2510 		trace_mm_page_free_batched(page);
2511 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2512 		batch_count++;
2513 	}
2514 
2515 	if (pcp) {
2516 		pcp_spin_unlock(pcp);
2517 		pcp_trylock_finish(UP_flags);
2518 	}
2519 }
2520 
2521 /*
2522  * split_page takes a non-compound higher-order page, and splits it into
2523  * n (1<<order) sub-pages: page[0..n]
2524  * Each sub-page must be freed individually.
2525  *
2526  * Note: this is probably too low level an operation for use in drivers.
2527  * Please consult with lkml before using this in your driver.
2528  */
2529 void split_page(struct page *page, unsigned int order)
2530 {
2531 	int i;
2532 
2533 	VM_BUG_ON_PAGE(PageCompound(page), page);
2534 	VM_BUG_ON_PAGE(!page_count(page), page);
2535 
2536 	for (i = 1; i < (1 << order); i++)
2537 		set_page_refcounted(page + i);
2538 	split_page_owner(page, 1 << order);
2539 	split_page_memcg(page, 1 << order);
2540 }
2541 EXPORT_SYMBOL_GPL(split_page);
2542 
2543 int __isolate_free_page(struct page *page, unsigned int order)
2544 {
2545 	struct zone *zone = page_zone(page);
2546 	int mt = get_pageblock_migratetype(page);
2547 
2548 	if (!is_migrate_isolate(mt)) {
2549 		unsigned long watermark;
2550 		/*
2551 		 * Obey watermarks as if the page was being allocated. We can
2552 		 * emulate a high-order watermark check with a raised order-0
2553 		 * watermark, because we already know our high-order page
2554 		 * exists.
2555 		 */
2556 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2557 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2558 			return 0;
2559 
2560 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2561 	}
2562 
2563 	del_page_from_free_list(page, zone, order);
2564 
2565 	/*
2566 	 * Set the pageblock if the isolated page is at least half of a
2567 	 * pageblock
2568 	 */
2569 	if (order >= pageblock_order - 1) {
2570 		struct page *endpage = page + (1 << order) - 1;
2571 		for (; page < endpage; page += pageblock_nr_pages) {
2572 			int mt = get_pageblock_migratetype(page);
2573 			/*
2574 			 * Only change normal pageblocks (i.e., they can merge
2575 			 * with others)
2576 			 */
2577 			if (migratetype_is_mergeable(mt))
2578 				set_pageblock_migratetype(page,
2579 							  MIGRATE_MOVABLE);
2580 		}
2581 	}
2582 
2583 	return 1UL << order;
2584 }
2585 
2586 /**
2587  * __putback_isolated_page - Return a now-isolated page back where we got it
2588  * @page: Page that was isolated
2589  * @order: Order of the isolated page
2590  * @mt: The page's pageblock's migratetype
2591  *
2592  * This function is meant to return a page pulled from the free lists via
2593  * __isolate_free_page back to the free lists they were pulled from.
2594  */
2595 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2596 {
2597 	struct zone *zone = page_zone(page);
2598 
2599 	/* zone lock should be held when this function is called */
2600 	lockdep_assert_held(&zone->lock);
2601 
2602 	/* Return isolated page to tail of freelist. */
2603 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2604 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2605 }
2606 
2607 /*
2608  * Update NUMA hit/miss statistics
2609  */
2610 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2611 				   long nr_account)
2612 {
2613 #ifdef CONFIG_NUMA
2614 	enum numa_stat_item local_stat = NUMA_LOCAL;
2615 
2616 	/* skip numa counters update if numa stats is disabled */
2617 	if (!static_branch_likely(&vm_numa_stat_key))
2618 		return;
2619 
2620 	if (zone_to_nid(z) != numa_node_id())
2621 		local_stat = NUMA_OTHER;
2622 
2623 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2624 		__count_numa_events(z, NUMA_HIT, nr_account);
2625 	else {
2626 		__count_numa_events(z, NUMA_MISS, nr_account);
2627 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2628 	}
2629 	__count_numa_events(z, local_stat, nr_account);
2630 #endif
2631 }
2632 
2633 static __always_inline
2634 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2635 			   unsigned int order, unsigned int alloc_flags,
2636 			   int migratetype)
2637 {
2638 	struct page *page;
2639 	unsigned long flags;
2640 
2641 	do {
2642 		page = NULL;
2643 		spin_lock_irqsave(&zone->lock, flags);
2644 		if (alloc_flags & ALLOC_HIGHATOMIC)
2645 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2646 		if (!page) {
2647 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2648 
2649 			/*
2650 			 * If the allocation fails, allow OOM handling access
2651 			 * to HIGHATOMIC reserves as failing now is worse than
2652 			 * failing a high-order atomic allocation in the
2653 			 * future.
2654 			 */
2655 			if (!page && (alloc_flags & ALLOC_OOM))
2656 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2657 
2658 			if (!page) {
2659 				spin_unlock_irqrestore(&zone->lock, flags);
2660 				return NULL;
2661 			}
2662 		}
2663 		__mod_zone_freepage_state(zone, -(1 << order),
2664 					  get_pcppage_migratetype(page));
2665 		spin_unlock_irqrestore(&zone->lock, flags);
2666 	} while (check_new_pages(page, order));
2667 
2668 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2669 	zone_statistics(preferred_zone, zone, 1);
2670 
2671 	return page;
2672 }
2673 
2674 /* Remove page from the per-cpu list, caller must protect the list */
2675 static inline
2676 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2677 			int migratetype,
2678 			unsigned int alloc_flags,
2679 			struct per_cpu_pages *pcp,
2680 			struct list_head *list)
2681 {
2682 	struct page *page;
2683 
2684 	do {
2685 		if (list_empty(list)) {
2686 			int batch = READ_ONCE(pcp->batch);
2687 			int alloced;
2688 
2689 			/*
2690 			 * Scale batch relative to order if batch implies
2691 			 * free pages can be stored on the PCP. Batch can
2692 			 * be 1 for small zones or for boot pagesets which
2693 			 * should never store free pages as the pages may
2694 			 * belong to arbitrary zones.
2695 			 */
2696 			if (batch > 1)
2697 				batch = max(batch >> order, 2);
2698 			alloced = rmqueue_bulk(zone, order,
2699 					batch, list,
2700 					migratetype, alloc_flags);
2701 
2702 			pcp->count += alloced << order;
2703 			if (unlikely(list_empty(list)))
2704 				return NULL;
2705 		}
2706 
2707 		page = list_first_entry(list, struct page, pcp_list);
2708 		list_del(&page->pcp_list);
2709 		pcp->count -= 1 << order;
2710 	} while (check_new_pages(page, order));
2711 
2712 	return page;
2713 }
2714 
2715 /* Lock and remove page from the per-cpu list */
2716 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2717 			struct zone *zone, unsigned int order,
2718 			int migratetype, unsigned int alloc_flags)
2719 {
2720 	struct per_cpu_pages *pcp;
2721 	struct list_head *list;
2722 	struct page *page;
2723 	unsigned long __maybe_unused UP_flags;
2724 
2725 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2726 	pcp_trylock_prepare(UP_flags);
2727 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2728 	if (!pcp) {
2729 		pcp_trylock_finish(UP_flags);
2730 		return NULL;
2731 	}
2732 
2733 	/*
2734 	 * On allocation, reduce the number of pages that are batch freed.
2735 	 * See nr_pcp_free() where free_factor is increased for subsequent
2736 	 * frees.
2737 	 */
2738 	pcp->free_factor >>= 1;
2739 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2740 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2741 	pcp_spin_unlock(pcp);
2742 	pcp_trylock_finish(UP_flags);
2743 	if (page) {
2744 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2745 		zone_statistics(preferred_zone, zone, 1);
2746 	}
2747 	return page;
2748 }
2749 
2750 /*
2751  * Allocate a page from the given zone.
2752  * Use pcplists for THP or "cheap" high-order allocations.
2753  */
2754 
2755 /*
2756  * Do not instrument rmqueue() with KMSAN. This function may call
2757  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2758  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2759  * may call rmqueue() again, which will result in a deadlock.
2760  */
2761 __no_sanitize_memory
2762 static inline
2763 struct page *rmqueue(struct zone *preferred_zone,
2764 			struct zone *zone, unsigned int order,
2765 			gfp_t gfp_flags, unsigned int alloc_flags,
2766 			int migratetype)
2767 {
2768 	struct page *page;
2769 
2770 	/*
2771 	 * We most definitely don't want callers attempting to
2772 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2773 	 */
2774 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2775 
2776 	if (likely(pcp_allowed_order(order))) {
2777 		page = rmqueue_pcplist(preferred_zone, zone, order,
2778 				       migratetype, alloc_flags);
2779 		if (likely(page))
2780 			goto out;
2781 	}
2782 
2783 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2784 							migratetype);
2785 
2786 out:
2787 	/* Separate test+clear to avoid unnecessary atomics */
2788 	if ((alloc_flags & ALLOC_KSWAPD) &&
2789 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2790 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2791 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2792 	}
2793 
2794 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2795 	return page;
2796 }
2797 
2798 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2799 {
2800 	return __should_fail_alloc_page(gfp_mask, order);
2801 }
2802 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2803 
2804 static inline long __zone_watermark_unusable_free(struct zone *z,
2805 				unsigned int order, unsigned int alloc_flags)
2806 {
2807 	long unusable_free = (1 << order) - 1;
2808 
2809 	/*
2810 	 * If the caller does not have rights to reserves below the min
2811 	 * watermark then subtract the high-atomic reserves. This will
2812 	 * over-estimate the size of the atomic reserve but it avoids a search.
2813 	 */
2814 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2815 		unusable_free += z->nr_reserved_highatomic;
2816 
2817 #ifdef CONFIG_CMA
2818 	/* If allocation can't use CMA areas don't use free CMA pages */
2819 	if (!(alloc_flags & ALLOC_CMA))
2820 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2821 #endif
2822 #ifdef CONFIG_UNACCEPTED_MEMORY
2823 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2824 #endif
2825 
2826 	return unusable_free;
2827 }
2828 
2829 /*
2830  * Return true if free base pages are above 'mark'. For high-order checks it
2831  * will return true of the order-0 watermark is reached and there is at least
2832  * one free page of a suitable size. Checking now avoids taking the zone lock
2833  * to check in the allocation paths if no pages are free.
2834  */
2835 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2836 			 int highest_zoneidx, unsigned int alloc_flags,
2837 			 long free_pages)
2838 {
2839 	long min = mark;
2840 	int o;
2841 
2842 	/* free_pages may go negative - that's OK */
2843 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2844 
2845 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2846 		/*
2847 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2848 		 * as OOM.
2849 		 */
2850 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2851 			min -= min / 2;
2852 
2853 			/*
2854 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2855 			 * access more reserves than just __GFP_HIGH. Other
2856 			 * non-blocking allocations requests such as GFP_NOWAIT
2857 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2858 			 * access to the min reserve.
2859 			 */
2860 			if (alloc_flags & ALLOC_NON_BLOCK)
2861 				min -= min / 4;
2862 		}
2863 
2864 		/*
2865 		 * OOM victims can try even harder than the normal reserve
2866 		 * users on the grounds that it's definitely going to be in
2867 		 * the exit path shortly and free memory. Any allocation it
2868 		 * makes during the free path will be small and short-lived.
2869 		 */
2870 		if (alloc_flags & ALLOC_OOM)
2871 			min -= min / 2;
2872 	}
2873 
2874 	/*
2875 	 * Check watermarks for an order-0 allocation request. If these
2876 	 * are not met, then a high-order request also cannot go ahead
2877 	 * even if a suitable page happened to be free.
2878 	 */
2879 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2880 		return false;
2881 
2882 	/* If this is an order-0 request then the watermark is fine */
2883 	if (!order)
2884 		return true;
2885 
2886 	/* For a high-order request, check at least one suitable page is free */
2887 	for (o = order; o <= MAX_ORDER; o++) {
2888 		struct free_area *area = &z->free_area[o];
2889 		int mt;
2890 
2891 		if (!area->nr_free)
2892 			continue;
2893 
2894 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2895 			if (!free_area_empty(area, mt))
2896 				return true;
2897 		}
2898 
2899 #ifdef CONFIG_CMA
2900 		if ((alloc_flags & ALLOC_CMA) &&
2901 		    !free_area_empty(area, MIGRATE_CMA)) {
2902 			return true;
2903 		}
2904 #endif
2905 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2906 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2907 			return true;
2908 		}
2909 	}
2910 	return false;
2911 }
2912 
2913 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2914 		      int highest_zoneidx, unsigned int alloc_flags)
2915 {
2916 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2917 					zone_page_state(z, NR_FREE_PAGES));
2918 }
2919 
2920 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2921 				unsigned long mark, int highest_zoneidx,
2922 				unsigned int alloc_flags, gfp_t gfp_mask)
2923 {
2924 	long free_pages;
2925 
2926 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2927 
2928 	/*
2929 	 * Fast check for order-0 only. If this fails then the reserves
2930 	 * need to be calculated.
2931 	 */
2932 	if (!order) {
2933 		long usable_free;
2934 		long reserved;
2935 
2936 		usable_free = free_pages;
2937 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2938 
2939 		/* reserved may over estimate high-atomic reserves. */
2940 		usable_free -= min(usable_free, reserved);
2941 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2942 			return true;
2943 	}
2944 
2945 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2946 					free_pages))
2947 		return true;
2948 
2949 	/*
2950 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2951 	 * when checking the min watermark. The min watermark is the
2952 	 * point where boosting is ignored so that kswapd is woken up
2953 	 * when below the low watermark.
2954 	 */
2955 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2956 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2957 		mark = z->_watermark[WMARK_MIN];
2958 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2959 					alloc_flags, free_pages);
2960 	}
2961 
2962 	return false;
2963 }
2964 
2965 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2966 			unsigned long mark, int highest_zoneidx)
2967 {
2968 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2969 
2970 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2971 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2972 
2973 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
2974 								free_pages);
2975 }
2976 
2977 #ifdef CONFIG_NUMA
2978 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
2979 
2980 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2981 {
2982 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2983 				node_reclaim_distance;
2984 }
2985 #else	/* CONFIG_NUMA */
2986 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2987 {
2988 	return true;
2989 }
2990 #endif	/* CONFIG_NUMA */
2991 
2992 /*
2993  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
2994  * fragmentation is subtle. If the preferred zone was HIGHMEM then
2995  * premature use of a lower zone may cause lowmem pressure problems that
2996  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
2997  * probably too small. It only makes sense to spread allocations to avoid
2998  * fragmentation between the Normal and DMA32 zones.
2999  */
3000 static inline unsigned int
3001 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3002 {
3003 	unsigned int alloc_flags;
3004 
3005 	/*
3006 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3007 	 * to save a branch.
3008 	 */
3009 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3010 
3011 #ifdef CONFIG_ZONE_DMA32
3012 	if (!zone)
3013 		return alloc_flags;
3014 
3015 	if (zone_idx(zone) != ZONE_NORMAL)
3016 		return alloc_flags;
3017 
3018 	/*
3019 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3020 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3021 	 * on UMA that if Normal is populated then so is DMA32.
3022 	 */
3023 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3024 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3025 		return alloc_flags;
3026 
3027 	alloc_flags |= ALLOC_NOFRAGMENT;
3028 #endif /* CONFIG_ZONE_DMA32 */
3029 	return alloc_flags;
3030 }
3031 
3032 /* Must be called after current_gfp_context() which can change gfp_mask */
3033 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3034 						  unsigned int alloc_flags)
3035 {
3036 #ifdef CONFIG_CMA
3037 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3038 		alloc_flags |= ALLOC_CMA;
3039 #endif
3040 	return alloc_flags;
3041 }
3042 
3043 /*
3044  * get_page_from_freelist goes through the zonelist trying to allocate
3045  * a page.
3046  */
3047 static struct page *
3048 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3049 						const struct alloc_context *ac)
3050 {
3051 	struct zoneref *z;
3052 	struct zone *zone;
3053 	struct pglist_data *last_pgdat = NULL;
3054 	bool last_pgdat_dirty_ok = false;
3055 	bool no_fallback;
3056 
3057 retry:
3058 	/*
3059 	 * Scan zonelist, looking for a zone with enough free.
3060 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3061 	 */
3062 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3063 	z = ac->preferred_zoneref;
3064 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3065 					ac->nodemask) {
3066 		struct page *page;
3067 		unsigned long mark;
3068 
3069 		if (cpusets_enabled() &&
3070 			(alloc_flags & ALLOC_CPUSET) &&
3071 			!__cpuset_zone_allowed(zone, gfp_mask))
3072 				continue;
3073 		/*
3074 		 * When allocating a page cache page for writing, we
3075 		 * want to get it from a node that is within its dirty
3076 		 * limit, such that no single node holds more than its
3077 		 * proportional share of globally allowed dirty pages.
3078 		 * The dirty limits take into account the node's
3079 		 * lowmem reserves and high watermark so that kswapd
3080 		 * should be able to balance it without having to
3081 		 * write pages from its LRU list.
3082 		 *
3083 		 * XXX: For now, allow allocations to potentially
3084 		 * exceed the per-node dirty limit in the slowpath
3085 		 * (spread_dirty_pages unset) before going into reclaim,
3086 		 * which is important when on a NUMA setup the allowed
3087 		 * nodes are together not big enough to reach the
3088 		 * global limit.  The proper fix for these situations
3089 		 * will require awareness of nodes in the
3090 		 * dirty-throttling and the flusher threads.
3091 		 */
3092 		if (ac->spread_dirty_pages) {
3093 			if (last_pgdat != zone->zone_pgdat) {
3094 				last_pgdat = zone->zone_pgdat;
3095 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3096 			}
3097 
3098 			if (!last_pgdat_dirty_ok)
3099 				continue;
3100 		}
3101 
3102 		if (no_fallback && nr_online_nodes > 1 &&
3103 		    zone != ac->preferred_zoneref->zone) {
3104 			int local_nid;
3105 
3106 			/*
3107 			 * If moving to a remote node, retry but allow
3108 			 * fragmenting fallbacks. Locality is more important
3109 			 * than fragmentation avoidance.
3110 			 */
3111 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3112 			if (zone_to_nid(zone) != local_nid) {
3113 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3114 				goto retry;
3115 			}
3116 		}
3117 
3118 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3119 		if (!zone_watermark_fast(zone, order, mark,
3120 				       ac->highest_zoneidx, alloc_flags,
3121 				       gfp_mask)) {
3122 			int ret;
3123 
3124 			if (has_unaccepted_memory()) {
3125 				if (try_to_accept_memory(zone, order))
3126 					goto try_this_zone;
3127 			}
3128 
3129 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3130 			/*
3131 			 * Watermark failed for this zone, but see if we can
3132 			 * grow this zone if it contains deferred pages.
3133 			 */
3134 			if (deferred_pages_enabled()) {
3135 				if (_deferred_grow_zone(zone, order))
3136 					goto try_this_zone;
3137 			}
3138 #endif
3139 			/* Checked here to keep the fast path fast */
3140 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3141 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3142 				goto try_this_zone;
3143 
3144 			if (!node_reclaim_enabled() ||
3145 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3146 				continue;
3147 
3148 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3149 			switch (ret) {
3150 			case NODE_RECLAIM_NOSCAN:
3151 				/* did not scan */
3152 				continue;
3153 			case NODE_RECLAIM_FULL:
3154 				/* scanned but unreclaimable */
3155 				continue;
3156 			default:
3157 				/* did we reclaim enough */
3158 				if (zone_watermark_ok(zone, order, mark,
3159 					ac->highest_zoneidx, alloc_flags))
3160 					goto try_this_zone;
3161 
3162 				continue;
3163 			}
3164 		}
3165 
3166 try_this_zone:
3167 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3168 				gfp_mask, alloc_flags, ac->migratetype);
3169 		if (page) {
3170 			prep_new_page(page, order, gfp_mask, alloc_flags);
3171 
3172 			/*
3173 			 * If this is a high-order atomic allocation then check
3174 			 * if the pageblock should be reserved for the future
3175 			 */
3176 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3177 				reserve_highatomic_pageblock(page, zone);
3178 
3179 			return page;
3180 		} else {
3181 			if (has_unaccepted_memory()) {
3182 				if (try_to_accept_memory(zone, order))
3183 					goto try_this_zone;
3184 			}
3185 
3186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3187 			/* Try again if zone has deferred pages */
3188 			if (deferred_pages_enabled()) {
3189 				if (_deferred_grow_zone(zone, order))
3190 					goto try_this_zone;
3191 			}
3192 #endif
3193 		}
3194 	}
3195 
3196 	/*
3197 	 * It's possible on a UMA machine to get through all zones that are
3198 	 * fragmented. If avoiding fragmentation, reset and try again.
3199 	 */
3200 	if (no_fallback) {
3201 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3202 		goto retry;
3203 	}
3204 
3205 	return NULL;
3206 }
3207 
3208 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3209 {
3210 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3211 
3212 	/*
3213 	 * This documents exceptions given to allocations in certain
3214 	 * contexts that are allowed to allocate outside current's set
3215 	 * of allowed nodes.
3216 	 */
3217 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3218 		if (tsk_is_oom_victim(current) ||
3219 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3220 			filter &= ~SHOW_MEM_FILTER_NODES;
3221 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3222 		filter &= ~SHOW_MEM_FILTER_NODES;
3223 
3224 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3225 }
3226 
3227 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3228 {
3229 	struct va_format vaf;
3230 	va_list args;
3231 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3232 
3233 	if ((gfp_mask & __GFP_NOWARN) ||
3234 	     !__ratelimit(&nopage_rs) ||
3235 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3236 		return;
3237 
3238 	va_start(args, fmt);
3239 	vaf.fmt = fmt;
3240 	vaf.va = &args;
3241 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3242 			current->comm, &vaf, gfp_mask, &gfp_mask,
3243 			nodemask_pr_args(nodemask));
3244 	va_end(args);
3245 
3246 	cpuset_print_current_mems_allowed();
3247 	pr_cont("\n");
3248 	dump_stack();
3249 	warn_alloc_show_mem(gfp_mask, nodemask);
3250 }
3251 
3252 static inline struct page *
3253 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3254 			      unsigned int alloc_flags,
3255 			      const struct alloc_context *ac)
3256 {
3257 	struct page *page;
3258 
3259 	page = get_page_from_freelist(gfp_mask, order,
3260 			alloc_flags|ALLOC_CPUSET, ac);
3261 	/*
3262 	 * fallback to ignore cpuset restriction if our nodes
3263 	 * are depleted
3264 	 */
3265 	if (!page)
3266 		page = get_page_from_freelist(gfp_mask, order,
3267 				alloc_flags, ac);
3268 
3269 	return page;
3270 }
3271 
3272 static inline struct page *
3273 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3274 	const struct alloc_context *ac, unsigned long *did_some_progress)
3275 {
3276 	struct oom_control oc = {
3277 		.zonelist = ac->zonelist,
3278 		.nodemask = ac->nodemask,
3279 		.memcg = NULL,
3280 		.gfp_mask = gfp_mask,
3281 		.order = order,
3282 	};
3283 	struct page *page;
3284 
3285 	*did_some_progress = 0;
3286 
3287 	/*
3288 	 * Acquire the oom lock.  If that fails, somebody else is
3289 	 * making progress for us.
3290 	 */
3291 	if (!mutex_trylock(&oom_lock)) {
3292 		*did_some_progress = 1;
3293 		schedule_timeout_uninterruptible(1);
3294 		return NULL;
3295 	}
3296 
3297 	/*
3298 	 * Go through the zonelist yet one more time, keep very high watermark
3299 	 * here, this is only to catch a parallel oom killing, we must fail if
3300 	 * we're still under heavy pressure. But make sure that this reclaim
3301 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3302 	 * allocation which will never fail due to oom_lock already held.
3303 	 */
3304 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3305 				      ~__GFP_DIRECT_RECLAIM, order,
3306 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3307 	if (page)
3308 		goto out;
3309 
3310 	/* Coredumps can quickly deplete all memory reserves */
3311 	if (current->flags & PF_DUMPCORE)
3312 		goto out;
3313 	/* The OOM killer will not help higher order allocs */
3314 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3315 		goto out;
3316 	/*
3317 	 * We have already exhausted all our reclaim opportunities without any
3318 	 * success so it is time to admit defeat. We will skip the OOM killer
3319 	 * because it is very likely that the caller has a more reasonable
3320 	 * fallback than shooting a random task.
3321 	 *
3322 	 * The OOM killer may not free memory on a specific node.
3323 	 */
3324 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3325 		goto out;
3326 	/* The OOM killer does not needlessly kill tasks for lowmem */
3327 	if (ac->highest_zoneidx < ZONE_NORMAL)
3328 		goto out;
3329 	if (pm_suspended_storage())
3330 		goto out;
3331 	/*
3332 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3333 	 * other request to make a forward progress.
3334 	 * We are in an unfortunate situation where out_of_memory cannot
3335 	 * do much for this context but let's try it to at least get
3336 	 * access to memory reserved if the current task is killed (see
3337 	 * out_of_memory). Once filesystems are ready to handle allocation
3338 	 * failures more gracefully we should just bail out here.
3339 	 */
3340 
3341 	/* Exhausted what can be done so it's blame time */
3342 	if (out_of_memory(&oc) ||
3343 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3344 		*did_some_progress = 1;
3345 
3346 		/*
3347 		 * Help non-failing allocations by giving them access to memory
3348 		 * reserves
3349 		 */
3350 		if (gfp_mask & __GFP_NOFAIL)
3351 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3352 					ALLOC_NO_WATERMARKS, ac);
3353 	}
3354 out:
3355 	mutex_unlock(&oom_lock);
3356 	return page;
3357 }
3358 
3359 /*
3360  * Maximum number of compaction retries with a progress before OOM
3361  * killer is consider as the only way to move forward.
3362  */
3363 #define MAX_COMPACT_RETRIES 16
3364 
3365 #ifdef CONFIG_COMPACTION
3366 /* Try memory compaction for high-order allocations before reclaim */
3367 static struct page *
3368 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3369 		unsigned int alloc_flags, const struct alloc_context *ac,
3370 		enum compact_priority prio, enum compact_result *compact_result)
3371 {
3372 	struct page *page = NULL;
3373 	unsigned long pflags;
3374 	unsigned int noreclaim_flag;
3375 
3376 	if (!order)
3377 		return NULL;
3378 
3379 	psi_memstall_enter(&pflags);
3380 	delayacct_compact_start();
3381 	noreclaim_flag = memalloc_noreclaim_save();
3382 
3383 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3384 								prio, &page);
3385 
3386 	memalloc_noreclaim_restore(noreclaim_flag);
3387 	psi_memstall_leave(&pflags);
3388 	delayacct_compact_end();
3389 
3390 	if (*compact_result == COMPACT_SKIPPED)
3391 		return NULL;
3392 	/*
3393 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3394 	 * count a compaction stall
3395 	 */
3396 	count_vm_event(COMPACTSTALL);
3397 
3398 	/* Prep a captured page if available */
3399 	if (page)
3400 		prep_new_page(page, order, gfp_mask, alloc_flags);
3401 
3402 	/* Try get a page from the freelist if available */
3403 	if (!page)
3404 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3405 
3406 	if (page) {
3407 		struct zone *zone = page_zone(page);
3408 
3409 		zone->compact_blockskip_flush = false;
3410 		compaction_defer_reset(zone, order, true);
3411 		count_vm_event(COMPACTSUCCESS);
3412 		return page;
3413 	}
3414 
3415 	/*
3416 	 * It's bad if compaction run occurs and fails. The most likely reason
3417 	 * is that pages exist, but not enough to satisfy watermarks.
3418 	 */
3419 	count_vm_event(COMPACTFAIL);
3420 
3421 	cond_resched();
3422 
3423 	return NULL;
3424 }
3425 
3426 static inline bool
3427 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3428 		     enum compact_result compact_result,
3429 		     enum compact_priority *compact_priority,
3430 		     int *compaction_retries)
3431 {
3432 	int max_retries = MAX_COMPACT_RETRIES;
3433 	int min_priority;
3434 	bool ret = false;
3435 	int retries = *compaction_retries;
3436 	enum compact_priority priority = *compact_priority;
3437 
3438 	if (!order)
3439 		return false;
3440 
3441 	if (fatal_signal_pending(current))
3442 		return false;
3443 
3444 	/*
3445 	 * Compaction was skipped due to a lack of free order-0
3446 	 * migration targets. Continue if reclaim can help.
3447 	 */
3448 	if (compact_result == COMPACT_SKIPPED) {
3449 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3450 		goto out;
3451 	}
3452 
3453 	/*
3454 	 * Compaction managed to coalesce some page blocks, but the
3455 	 * allocation failed presumably due to a race. Retry some.
3456 	 */
3457 	if (compact_result == COMPACT_SUCCESS) {
3458 		/*
3459 		 * !costly requests are much more important than
3460 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3461 		 * facto nofail and invoke OOM killer to move on while
3462 		 * costly can fail and users are ready to cope with
3463 		 * that. 1/4 retries is rather arbitrary but we would
3464 		 * need much more detailed feedback from compaction to
3465 		 * make a better decision.
3466 		 */
3467 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3468 			max_retries /= 4;
3469 
3470 		if (++(*compaction_retries) <= max_retries) {
3471 			ret = true;
3472 			goto out;
3473 		}
3474 	}
3475 
3476 	/*
3477 	 * Compaction failed. Retry with increasing priority.
3478 	 */
3479 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3480 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3481 
3482 	if (*compact_priority > min_priority) {
3483 		(*compact_priority)--;
3484 		*compaction_retries = 0;
3485 		ret = true;
3486 	}
3487 out:
3488 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3489 	return ret;
3490 }
3491 #else
3492 static inline struct page *
3493 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3494 		unsigned int alloc_flags, const struct alloc_context *ac,
3495 		enum compact_priority prio, enum compact_result *compact_result)
3496 {
3497 	*compact_result = COMPACT_SKIPPED;
3498 	return NULL;
3499 }
3500 
3501 static inline bool
3502 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3503 		     enum compact_result compact_result,
3504 		     enum compact_priority *compact_priority,
3505 		     int *compaction_retries)
3506 {
3507 	struct zone *zone;
3508 	struct zoneref *z;
3509 
3510 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3511 		return false;
3512 
3513 	/*
3514 	 * There are setups with compaction disabled which would prefer to loop
3515 	 * inside the allocator rather than hit the oom killer prematurely.
3516 	 * Let's give them a good hope and keep retrying while the order-0
3517 	 * watermarks are OK.
3518 	 */
3519 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3520 				ac->highest_zoneidx, ac->nodemask) {
3521 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3522 					ac->highest_zoneidx, alloc_flags))
3523 			return true;
3524 	}
3525 	return false;
3526 }
3527 #endif /* CONFIG_COMPACTION */
3528 
3529 #ifdef CONFIG_LOCKDEP
3530 static struct lockdep_map __fs_reclaim_map =
3531 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3532 
3533 static bool __need_reclaim(gfp_t gfp_mask)
3534 {
3535 	/* no reclaim without waiting on it */
3536 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3537 		return false;
3538 
3539 	/* this guy won't enter reclaim */
3540 	if (current->flags & PF_MEMALLOC)
3541 		return false;
3542 
3543 	if (gfp_mask & __GFP_NOLOCKDEP)
3544 		return false;
3545 
3546 	return true;
3547 }
3548 
3549 void __fs_reclaim_acquire(unsigned long ip)
3550 {
3551 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3552 }
3553 
3554 void __fs_reclaim_release(unsigned long ip)
3555 {
3556 	lock_release(&__fs_reclaim_map, ip);
3557 }
3558 
3559 void fs_reclaim_acquire(gfp_t gfp_mask)
3560 {
3561 	gfp_mask = current_gfp_context(gfp_mask);
3562 
3563 	if (__need_reclaim(gfp_mask)) {
3564 		if (gfp_mask & __GFP_FS)
3565 			__fs_reclaim_acquire(_RET_IP_);
3566 
3567 #ifdef CONFIG_MMU_NOTIFIER
3568 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3569 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3570 #endif
3571 
3572 	}
3573 }
3574 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3575 
3576 void fs_reclaim_release(gfp_t gfp_mask)
3577 {
3578 	gfp_mask = current_gfp_context(gfp_mask);
3579 
3580 	if (__need_reclaim(gfp_mask)) {
3581 		if (gfp_mask & __GFP_FS)
3582 			__fs_reclaim_release(_RET_IP_);
3583 	}
3584 }
3585 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3586 #endif
3587 
3588 /*
3589  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3590  * have been rebuilt so allocation retries. Reader side does not lock and
3591  * retries the allocation if zonelist changes. Writer side is protected by the
3592  * embedded spin_lock.
3593  */
3594 static DEFINE_SEQLOCK(zonelist_update_seq);
3595 
3596 static unsigned int zonelist_iter_begin(void)
3597 {
3598 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3599 		return read_seqbegin(&zonelist_update_seq);
3600 
3601 	return 0;
3602 }
3603 
3604 static unsigned int check_retry_zonelist(unsigned int seq)
3605 {
3606 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3607 		return read_seqretry(&zonelist_update_seq, seq);
3608 
3609 	return seq;
3610 }
3611 
3612 /* Perform direct synchronous page reclaim */
3613 static unsigned long
3614 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3615 					const struct alloc_context *ac)
3616 {
3617 	unsigned int noreclaim_flag;
3618 	unsigned long progress;
3619 
3620 	cond_resched();
3621 
3622 	/* We now go into synchronous reclaim */
3623 	cpuset_memory_pressure_bump();
3624 	fs_reclaim_acquire(gfp_mask);
3625 	noreclaim_flag = memalloc_noreclaim_save();
3626 
3627 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3628 								ac->nodemask);
3629 
3630 	memalloc_noreclaim_restore(noreclaim_flag);
3631 	fs_reclaim_release(gfp_mask);
3632 
3633 	cond_resched();
3634 
3635 	return progress;
3636 }
3637 
3638 /* The really slow allocator path where we enter direct reclaim */
3639 static inline struct page *
3640 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3641 		unsigned int alloc_flags, const struct alloc_context *ac,
3642 		unsigned long *did_some_progress)
3643 {
3644 	struct page *page = NULL;
3645 	unsigned long pflags;
3646 	bool drained = false;
3647 
3648 	psi_memstall_enter(&pflags);
3649 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3650 	if (unlikely(!(*did_some_progress)))
3651 		goto out;
3652 
3653 retry:
3654 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3655 
3656 	/*
3657 	 * If an allocation failed after direct reclaim, it could be because
3658 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3659 	 * Shrink them and try again
3660 	 */
3661 	if (!page && !drained) {
3662 		unreserve_highatomic_pageblock(ac, false);
3663 		drain_all_pages(NULL);
3664 		drained = true;
3665 		goto retry;
3666 	}
3667 out:
3668 	psi_memstall_leave(&pflags);
3669 
3670 	return page;
3671 }
3672 
3673 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3674 			     const struct alloc_context *ac)
3675 {
3676 	struct zoneref *z;
3677 	struct zone *zone;
3678 	pg_data_t *last_pgdat = NULL;
3679 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3680 
3681 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3682 					ac->nodemask) {
3683 		if (!managed_zone(zone))
3684 			continue;
3685 		if (last_pgdat != zone->zone_pgdat) {
3686 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3687 			last_pgdat = zone->zone_pgdat;
3688 		}
3689 	}
3690 }
3691 
3692 static inline unsigned int
3693 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3694 {
3695 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3696 
3697 	/*
3698 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3699 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3700 	 * to save two branches.
3701 	 */
3702 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3703 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3704 
3705 	/*
3706 	 * The caller may dip into page reserves a bit more if the caller
3707 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3708 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3709 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3710 	 */
3711 	alloc_flags |= (__force int)
3712 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3713 
3714 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3715 		/*
3716 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3717 		 * if it can't schedule.
3718 		 */
3719 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3720 			alloc_flags |= ALLOC_NON_BLOCK;
3721 
3722 			if (order > 0)
3723 				alloc_flags |= ALLOC_HIGHATOMIC;
3724 		}
3725 
3726 		/*
3727 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3728 		 * GFP_ATOMIC) rather than fail, see the comment for
3729 		 * cpuset_node_allowed().
3730 		 */
3731 		if (alloc_flags & ALLOC_MIN_RESERVE)
3732 			alloc_flags &= ~ALLOC_CPUSET;
3733 	} else if (unlikely(rt_task(current)) && in_task())
3734 		alloc_flags |= ALLOC_MIN_RESERVE;
3735 
3736 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3737 
3738 	return alloc_flags;
3739 }
3740 
3741 static bool oom_reserves_allowed(struct task_struct *tsk)
3742 {
3743 	if (!tsk_is_oom_victim(tsk))
3744 		return false;
3745 
3746 	/*
3747 	 * !MMU doesn't have oom reaper so give access to memory reserves
3748 	 * only to the thread with TIF_MEMDIE set
3749 	 */
3750 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3751 		return false;
3752 
3753 	return true;
3754 }
3755 
3756 /*
3757  * Distinguish requests which really need access to full memory
3758  * reserves from oom victims which can live with a portion of it
3759  */
3760 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3761 {
3762 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3763 		return 0;
3764 	if (gfp_mask & __GFP_MEMALLOC)
3765 		return ALLOC_NO_WATERMARKS;
3766 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3767 		return ALLOC_NO_WATERMARKS;
3768 	if (!in_interrupt()) {
3769 		if (current->flags & PF_MEMALLOC)
3770 			return ALLOC_NO_WATERMARKS;
3771 		else if (oom_reserves_allowed(current))
3772 			return ALLOC_OOM;
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3779 {
3780 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3781 }
3782 
3783 /*
3784  * Checks whether it makes sense to retry the reclaim to make a forward progress
3785  * for the given allocation request.
3786  *
3787  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3788  * without success, or when we couldn't even meet the watermark if we
3789  * reclaimed all remaining pages on the LRU lists.
3790  *
3791  * Returns true if a retry is viable or false to enter the oom path.
3792  */
3793 static inline bool
3794 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3795 		     struct alloc_context *ac, int alloc_flags,
3796 		     bool did_some_progress, int *no_progress_loops)
3797 {
3798 	struct zone *zone;
3799 	struct zoneref *z;
3800 	bool ret = false;
3801 
3802 	/*
3803 	 * Costly allocations might have made a progress but this doesn't mean
3804 	 * their order will become available due to high fragmentation so
3805 	 * always increment the no progress counter for them
3806 	 */
3807 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3808 		*no_progress_loops = 0;
3809 	else
3810 		(*no_progress_loops)++;
3811 
3812 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3813 		goto out;
3814 
3815 
3816 	/*
3817 	 * Keep reclaiming pages while there is a chance this will lead
3818 	 * somewhere.  If none of the target zones can satisfy our allocation
3819 	 * request even if all reclaimable pages are considered then we are
3820 	 * screwed and have to go OOM.
3821 	 */
3822 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3823 				ac->highest_zoneidx, ac->nodemask) {
3824 		unsigned long available;
3825 		unsigned long reclaimable;
3826 		unsigned long min_wmark = min_wmark_pages(zone);
3827 		bool wmark;
3828 
3829 		available = reclaimable = zone_reclaimable_pages(zone);
3830 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3831 
3832 		/*
3833 		 * Would the allocation succeed if we reclaimed all
3834 		 * reclaimable pages?
3835 		 */
3836 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3837 				ac->highest_zoneidx, alloc_flags, available);
3838 		trace_reclaim_retry_zone(z, order, reclaimable,
3839 				available, min_wmark, *no_progress_loops, wmark);
3840 		if (wmark) {
3841 			ret = true;
3842 			break;
3843 		}
3844 	}
3845 
3846 	/*
3847 	 * Memory allocation/reclaim might be called from a WQ context and the
3848 	 * current implementation of the WQ concurrency control doesn't
3849 	 * recognize that a particular WQ is congested if the worker thread is
3850 	 * looping without ever sleeping. Therefore we have to do a short sleep
3851 	 * here rather than calling cond_resched().
3852 	 */
3853 	if (current->flags & PF_WQ_WORKER)
3854 		schedule_timeout_uninterruptible(1);
3855 	else
3856 		cond_resched();
3857 out:
3858 	/* Before OOM, exhaust highatomic_reserve */
3859 	if (!ret)
3860 		return unreserve_highatomic_pageblock(ac, true);
3861 
3862 	return ret;
3863 }
3864 
3865 static inline bool
3866 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3867 {
3868 	/*
3869 	 * It's possible that cpuset's mems_allowed and the nodemask from
3870 	 * mempolicy don't intersect. This should be normally dealt with by
3871 	 * policy_nodemask(), but it's possible to race with cpuset update in
3872 	 * such a way the check therein was true, and then it became false
3873 	 * before we got our cpuset_mems_cookie here.
3874 	 * This assumes that for all allocations, ac->nodemask can come only
3875 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3876 	 * when it does not intersect with the cpuset restrictions) or the
3877 	 * caller can deal with a violated nodemask.
3878 	 */
3879 	if (cpusets_enabled() && ac->nodemask &&
3880 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3881 		ac->nodemask = NULL;
3882 		return true;
3883 	}
3884 
3885 	/*
3886 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3887 	 * possible to race with parallel threads in such a way that our
3888 	 * allocation can fail while the mask is being updated. If we are about
3889 	 * to fail, check if the cpuset changed during allocation and if so,
3890 	 * retry.
3891 	 */
3892 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3893 		return true;
3894 
3895 	return false;
3896 }
3897 
3898 static inline struct page *
3899 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3900 						struct alloc_context *ac)
3901 {
3902 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3903 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3904 	struct page *page = NULL;
3905 	unsigned int alloc_flags;
3906 	unsigned long did_some_progress;
3907 	enum compact_priority compact_priority;
3908 	enum compact_result compact_result;
3909 	int compaction_retries;
3910 	int no_progress_loops;
3911 	unsigned int cpuset_mems_cookie;
3912 	unsigned int zonelist_iter_cookie;
3913 	int reserve_flags;
3914 
3915 restart:
3916 	compaction_retries = 0;
3917 	no_progress_loops = 0;
3918 	compact_priority = DEF_COMPACT_PRIORITY;
3919 	cpuset_mems_cookie = read_mems_allowed_begin();
3920 	zonelist_iter_cookie = zonelist_iter_begin();
3921 
3922 	/*
3923 	 * The fast path uses conservative alloc_flags to succeed only until
3924 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3925 	 * alloc_flags precisely. So we do that now.
3926 	 */
3927 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3928 
3929 	/*
3930 	 * We need to recalculate the starting point for the zonelist iterator
3931 	 * because we might have used different nodemask in the fast path, or
3932 	 * there was a cpuset modification and we are retrying - otherwise we
3933 	 * could end up iterating over non-eligible zones endlessly.
3934 	 */
3935 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3936 					ac->highest_zoneidx, ac->nodemask);
3937 	if (!ac->preferred_zoneref->zone)
3938 		goto nopage;
3939 
3940 	/*
3941 	 * Check for insane configurations where the cpuset doesn't contain
3942 	 * any suitable zone to satisfy the request - e.g. non-movable
3943 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3944 	 */
3945 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3946 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3947 					ac->highest_zoneidx,
3948 					&cpuset_current_mems_allowed);
3949 		if (!z->zone)
3950 			goto nopage;
3951 	}
3952 
3953 	if (alloc_flags & ALLOC_KSWAPD)
3954 		wake_all_kswapds(order, gfp_mask, ac);
3955 
3956 	/*
3957 	 * The adjusted alloc_flags might result in immediate success, so try
3958 	 * that first
3959 	 */
3960 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3961 	if (page)
3962 		goto got_pg;
3963 
3964 	/*
3965 	 * For costly allocations, try direct compaction first, as it's likely
3966 	 * that we have enough base pages and don't need to reclaim. For non-
3967 	 * movable high-order allocations, do that as well, as compaction will
3968 	 * try prevent permanent fragmentation by migrating from blocks of the
3969 	 * same migratetype.
3970 	 * Don't try this for allocations that are allowed to ignore
3971 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3972 	 */
3973 	if (can_direct_reclaim &&
3974 			(costly_order ||
3975 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3976 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3977 		page = __alloc_pages_direct_compact(gfp_mask, order,
3978 						alloc_flags, ac,
3979 						INIT_COMPACT_PRIORITY,
3980 						&compact_result);
3981 		if (page)
3982 			goto got_pg;
3983 
3984 		/*
3985 		 * Checks for costly allocations with __GFP_NORETRY, which
3986 		 * includes some THP page fault allocations
3987 		 */
3988 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3989 			/*
3990 			 * If allocating entire pageblock(s) and compaction
3991 			 * failed because all zones are below low watermarks
3992 			 * or is prohibited because it recently failed at this
3993 			 * order, fail immediately unless the allocator has
3994 			 * requested compaction and reclaim retry.
3995 			 *
3996 			 * Reclaim is
3997 			 *  - potentially very expensive because zones are far
3998 			 *    below their low watermarks or this is part of very
3999 			 *    bursty high order allocations,
4000 			 *  - not guaranteed to help because isolate_freepages()
4001 			 *    may not iterate over freed pages as part of its
4002 			 *    linear scan, and
4003 			 *  - unlikely to make entire pageblocks free on its
4004 			 *    own.
4005 			 */
4006 			if (compact_result == COMPACT_SKIPPED ||
4007 			    compact_result == COMPACT_DEFERRED)
4008 				goto nopage;
4009 
4010 			/*
4011 			 * Looks like reclaim/compaction is worth trying, but
4012 			 * sync compaction could be very expensive, so keep
4013 			 * using async compaction.
4014 			 */
4015 			compact_priority = INIT_COMPACT_PRIORITY;
4016 		}
4017 	}
4018 
4019 retry:
4020 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4021 	if (alloc_flags & ALLOC_KSWAPD)
4022 		wake_all_kswapds(order, gfp_mask, ac);
4023 
4024 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4025 	if (reserve_flags)
4026 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4027 					  (alloc_flags & ALLOC_KSWAPD);
4028 
4029 	/*
4030 	 * Reset the nodemask and zonelist iterators if memory policies can be
4031 	 * ignored. These allocations are high priority and system rather than
4032 	 * user oriented.
4033 	 */
4034 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4035 		ac->nodemask = NULL;
4036 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4037 					ac->highest_zoneidx, ac->nodemask);
4038 	}
4039 
4040 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4041 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4042 	if (page)
4043 		goto got_pg;
4044 
4045 	/* Caller is not willing to reclaim, we can't balance anything */
4046 	if (!can_direct_reclaim)
4047 		goto nopage;
4048 
4049 	/* Avoid recursion of direct reclaim */
4050 	if (current->flags & PF_MEMALLOC)
4051 		goto nopage;
4052 
4053 	/* Try direct reclaim and then allocating */
4054 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4055 							&did_some_progress);
4056 	if (page)
4057 		goto got_pg;
4058 
4059 	/* Try direct compaction and then allocating */
4060 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4061 					compact_priority, &compact_result);
4062 	if (page)
4063 		goto got_pg;
4064 
4065 	/* Do not loop if specifically requested */
4066 	if (gfp_mask & __GFP_NORETRY)
4067 		goto nopage;
4068 
4069 	/*
4070 	 * Do not retry costly high order allocations unless they are
4071 	 * __GFP_RETRY_MAYFAIL
4072 	 */
4073 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4074 		goto nopage;
4075 
4076 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4077 				 did_some_progress > 0, &no_progress_loops))
4078 		goto retry;
4079 
4080 	/*
4081 	 * It doesn't make any sense to retry for the compaction if the order-0
4082 	 * reclaim is not able to make any progress because the current
4083 	 * implementation of the compaction depends on the sufficient amount
4084 	 * of free memory (see __compaction_suitable)
4085 	 */
4086 	if (did_some_progress > 0 &&
4087 			should_compact_retry(ac, order, alloc_flags,
4088 				compact_result, &compact_priority,
4089 				&compaction_retries))
4090 		goto retry;
4091 
4092 
4093 	/*
4094 	 * Deal with possible cpuset update races or zonelist updates to avoid
4095 	 * a unnecessary OOM kill.
4096 	 */
4097 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4098 	    check_retry_zonelist(zonelist_iter_cookie))
4099 		goto restart;
4100 
4101 	/* Reclaim has failed us, start killing things */
4102 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4103 	if (page)
4104 		goto got_pg;
4105 
4106 	/* Avoid allocations with no watermarks from looping endlessly */
4107 	if (tsk_is_oom_victim(current) &&
4108 	    (alloc_flags & ALLOC_OOM ||
4109 	     (gfp_mask & __GFP_NOMEMALLOC)))
4110 		goto nopage;
4111 
4112 	/* Retry as long as the OOM killer is making progress */
4113 	if (did_some_progress) {
4114 		no_progress_loops = 0;
4115 		goto retry;
4116 	}
4117 
4118 nopage:
4119 	/*
4120 	 * Deal with possible cpuset update races or zonelist updates to avoid
4121 	 * a unnecessary OOM kill.
4122 	 */
4123 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4124 	    check_retry_zonelist(zonelist_iter_cookie))
4125 		goto restart;
4126 
4127 	/*
4128 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4129 	 * we always retry
4130 	 */
4131 	if (gfp_mask & __GFP_NOFAIL) {
4132 		/*
4133 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4134 		 * of any new users that actually require GFP_NOWAIT
4135 		 */
4136 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4137 			goto fail;
4138 
4139 		/*
4140 		 * PF_MEMALLOC request from this context is rather bizarre
4141 		 * because we cannot reclaim anything and only can loop waiting
4142 		 * for somebody to do a work for us
4143 		 */
4144 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4145 
4146 		/*
4147 		 * non failing costly orders are a hard requirement which we
4148 		 * are not prepared for much so let's warn about these users
4149 		 * so that we can identify them and convert them to something
4150 		 * else.
4151 		 */
4152 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4153 
4154 		/*
4155 		 * Help non-failing allocations by giving some access to memory
4156 		 * reserves normally used for high priority non-blocking
4157 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4158 		 * could deplete whole memory reserves which would just make
4159 		 * the situation worse.
4160 		 */
4161 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4162 		if (page)
4163 			goto got_pg;
4164 
4165 		cond_resched();
4166 		goto retry;
4167 	}
4168 fail:
4169 	warn_alloc(gfp_mask, ac->nodemask,
4170 			"page allocation failure: order:%u", order);
4171 got_pg:
4172 	return page;
4173 }
4174 
4175 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4176 		int preferred_nid, nodemask_t *nodemask,
4177 		struct alloc_context *ac, gfp_t *alloc_gfp,
4178 		unsigned int *alloc_flags)
4179 {
4180 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4181 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4182 	ac->nodemask = nodemask;
4183 	ac->migratetype = gfp_migratetype(gfp_mask);
4184 
4185 	if (cpusets_enabled()) {
4186 		*alloc_gfp |= __GFP_HARDWALL;
4187 		/*
4188 		 * When we are in the interrupt context, it is irrelevant
4189 		 * to the current task context. It means that any node ok.
4190 		 */
4191 		if (in_task() && !ac->nodemask)
4192 			ac->nodemask = &cpuset_current_mems_allowed;
4193 		else
4194 			*alloc_flags |= ALLOC_CPUSET;
4195 	}
4196 
4197 	might_alloc(gfp_mask);
4198 
4199 	if (should_fail_alloc_page(gfp_mask, order))
4200 		return false;
4201 
4202 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4203 
4204 	/* Dirty zone balancing only done in the fast path */
4205 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4206 
4207 	/*
4208 	 * The preferred zone is used for statistics but crucially it is
4209 	 * also used as the starting point for the zonelist iterator. It
4210 	 * may get reset for allocations that ignore memory policies.
4211 	 */
4212 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4213 					ac->highest_zoneidx, ac->nodemask);
4214 
4215 	return true;
4216 }
4217 
4218 /*
4219  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4220  * @gfp: GFP flags for the allocation
4221  * @preferred_nid: The preferred NUMA node ID to allocate from
4222  * @nodemask: Set of nodes to allocate from, may be NULL
4223  * @nr_pages: The number of pages desired on the list or array
4224  * @page_list: Optional list to store the allocated pages
4225  * @page_array: Optional array to store the pages
4226  *
4227  * This is a batched version of the page allocator that attempts to
4228  * allocate nr_pages quickly. Pages are added to page_list if page_list
4229  * is not NULL, otherwise it is assumed that the page_array is valid.
4230  *
4231  * For lists, nr_pages is the number of pages that should be allocated.
4232  *
4233  * For arrays, only NULL elements are populated with pages and nr_pages
4234  * is the maximum number of pages that will be stored in the array.
4235  *
4236  * Returns the number of pages on the list or array.
4237  */
4238 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4239 			nodemask_t *nodemask, int nr_pages,
4240 			struct list_head *page_list,
4241 			struct page **page_array)
4242 {
4243 	struct page *page;
4244 	unsigned long __maybe_unused UP_flags;
4245 	struct zone *zone;
4246 	struct zoneref *z;
4247 	struct per_cpu_pages *pcp;
4248 	struct list_head *pcp_list;
4249 	struct alloc_context ac;
4250 	gfp_t alloc_gfp;
4251 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4252 	int nr_populated = 0, nr_account = 0;
4253 
4254 	/*
4255 	 * Skip populated array elements to determine if any pages need
4256 	 * to be allocated before disabling IRQs.
4257 	 */
4258 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4259 		nr_populated++;
4260 
4261 	/* No pages requested? */
4262 	if (unlikely(nr_pages <= 0))
4263 		goto out;
4264 
4265 	/* Already populated array? */
4266 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4267 		goto out;
4268 
4269 	/* Bulk allocator does not support memcg accounting. */
4270 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4271 		goto failed;
4272 
4273 	/* Use the single page allocator for one page. */
4274 	if (nr_pages - nr_populated == 1)
4275 		goto failed;
4276 
4277 #ifdef CONFIG_PAGE_OWNER
4278 	/*
4279 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4280 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4281 	 * removes much of the performance benefit of bulk allocation so
4282 	 * force the caller to allocate one page at a time as it'll have
4283 	 * similar performance to added complexity to the bulk allocator.
4284 	 */
4285 	if (static_branch_unlikely(&page_owner_inited))
4286 		goto failed;
4287 #endif
4288 
4289 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4290 	gfp &= gfp_allowed_mask;
4291 	alloc_gfp = gfp;
4292 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4293 		goto out;
4294 	gfp = alloc_gfp;
4295 
4296 	/* Find an allowed local zone that meets the low watermark. */
4297 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4298 		unsigned long mark;
4299 
4300 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4301 		    !__cpuset_zone_allowed(zone, gfp)) {
4302 			continue;
4303 		}
4304 
4305 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4306 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4307 			goto failed;
4308 		}
4309 
4310 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4311 		if (zone_watermark_fast(zone, 0,  mark,
4312 				zonelist_zone_idx(ac.preferred_zoneref),
4313 				alloc_flags, gfp)) {
4314 			break;
4315 		}
4316 	}
4317 
4318 	/*
4319 	 * If there are no allowed local zones that meets the watermarks then
4320 	 * try to allocate a single page and reclaim if necessary.
4321 	 */
4322 	if (unlikely(!zone))
4323 		goto failed;
4324 
4325 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4326 	pcp_trylock_prepare(UP_flags);
4327 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4328 	if (!pcp)
4329 		goto failed_irq;
4330 
4331 	/* Attempt the batch allocation */
4332 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4333 	while (nr_populated < nr_pages) {
4334 
4335 		/* Skip existing pages */
4336 		if (page_array && page_array[nr_populated]) {
4337 			nr_populated++;
4338 			continue;
4339 		}
4340 
4341 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4342 								pcp, pcp_list);
4343 		if (unlikely(!page)) {
4344 			/* Try and allocate at least one page */
4345 			if (!nr_account) {
4346 				pcp_spin_unlock(pcp);
4347 				goto failed_irq;
4348 			}
4349 			break;
4350 		}
4351 		nr_account++;
4352 
4353 		prep_new_page(page, 0, gfp, 0);
4354 		if (page_list)
4355 			list_add(&page->lru, page_list);
4356 		else
4357 			page_array[nr_populated] = page;
4358 		nr_populated++;
4359 	}
4360 
4361 	pcp_spin_unlock(pcp);
4362 	pcp_trylock_finish(UP_flags);
4363 
4364 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4365 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4366 
4367 out:
4368 	return nr_populated;
4369 
4370 failed_irq:
4371 	pcp_trylock_finish(UP_flags);
4372 
4373 failed:
4374 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4375 	if (page) {
4376 		if (page_list)
4377 			list_add(&page->lru, page_list);
4378 		else
4379 			page_array[nr_populated] = page;
4380 		nr_populated++;
4381 	}
4382 
4383 	goto out;
4384 }
4385 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4386 
4387 /*
4388  * This is the 'heart' of the zoned buddy allocator.
4389  */
4390 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4391 							nodemask_t *nodemask)
4392 {
4393 	struct page *page;
4394 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4395 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4396 	struct alloc_context ac = { };
4397 
4398 	/*
4399 	 * There are several places where we assume that the order value is sane
4400 	 * so bail out early if the request is out of bound.
4401 	 */
4402 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4403 		return NULL;
4404 
4405 	gfp &= gfp_allowed_mask;
4406 	/*
4407 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4408 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4409 	 * from a particular context which has been marked by
4410 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4411 	 * movable zones are not used during allocation.
4412 	 */
4413 	gfp = current_gfp_context(gfp);
4414 	alloc_gfp = gfp;
4415 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4416 			&alloc_gfp, &alloc_flags))
4417 		return NULL;
4418 
4419 	/*
4420 	 * Forbid the first pass from falling back to types that fragment
4421 	 * memory until all local zones are considered.
4422 	 */
4423 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4424 
4425 	/* First allocation attempt */
4426 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4427 	if (likely(page))
4428 		goto out;
4429 
4430 	alloc_gfp = gfp;
4431 	ac.spread_dirty_pages = false;
4432 
4433 	/*
4434 	 * Restore the original nodemask if it was potentially replaced with
4435 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4436 	 */
4437 	ac.nodemask = nodemask;
4438 
4439 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4440 
4441 out:
4442 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4443 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4444 		__free_pages(page, order);
4445 		page = NULL;
4446 	}
4447 
4448 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4449 	kmsan_alloc_page(page, order, alloc_gfp);
4450 
4451 	return page;
4452 }
4453 EXPORT_SYMBOL(__alloc_pages);
4454 
4455 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4456 		nodemask_t *nodemask)
4457 {
4458 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4459 			preferred_nid, nodemask);
4460 	struct folio *folio = (struct folio *)page;
4461 
4462 	if (folio && order > 1)
4463 		folio_prep_large_rmappable(folio);
4464 	return folio;
4465 }
4466 EXPORT_SYMBOL(__folio_alloc);
4467 
4468 /*
4469  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4470  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4471  * you need to access high mem.
4472  */
4473 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4474 {
4475 	struct page *page;
4476 
4477 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4478 	if (!page)
4479 		return 0;
4480 	return (unsigned long) page_address(page);
4481 }
4482 EXPORT_SYMBOL(__get_free_pages);
4483 
4484 unsigned long get_zeroed_page(gfp_t gfp_mask)
4485 {
4486 	return __get_free_page(gfp_mask | __GFP_ZERO);
4487 }
4488 EXPORT_SYMBOL(get_zeroed_page);
4489 
4490 /**
4491  * __free_pages - Free pages allocated with alloc_pages().
4492  * @page: The page pointer returned from alloc_pages().
4493  * @order: The order of the allocation.
4494  *
4495  * This function can free multi-page allocations that are not compound
4496  * pages.  It does not check that the @order passed in matches that of
4497  * the allocation, so it is easy to leak memory.  Freeing more memory
4498  * than was allocated will probably emit a warning.
4499  *
4500  * If the last reference to this page is speculative, it will be released
4501  * by put_page() which only frees the first page of a non-compound
4502  * allocation.  To prevent the remaining pages from being leaked, we free
4503  * the subsequent pages here.  If you want to use the page's reference
4504  * count to decide when to free the allocation, you should allocate a
4505  * compound page, and use put_page() instead of __free_pages().
4506  *
4507  * Context: May be called in interrupt context or while holding a normal
4508  * spinlock, but not in NMI context or while holding a raw spinlock.
4509  */
4510 void __free_pages(struct page *page, unsigned int order)
4511 {
4512 	/* get PageHead before we drop reference */
4513 	int head = PageHead(page);
4514 
4515 	if (put_page_testzero(page))
4516 		free_the_page(page, order);
4517 	else if (!head)
4518 		while (order-- > 0)
4519 			free_the_page(page + (1 << order), order);
4520 }
4521 EXPORT_SYMBOL(__free_pages);
4522 
4523 void free_pages(unsigned long addr, unsigned int order)
4524 {
4525 	if (addr != 0) {
4526 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4527 		__free_pages(virt_to_page((void *)addr), order);
4528 	}
4529 }
4530 
4531 EXPORT_SYMBOL(free_pages);
4532 
4533 /*
4534  * Page Fragment:
4535  *  An arbitrary-length arbitrary-offset area of memory which resides
4536  *  within a 0 or higher order page.  Multiple fragments within that page
4537  *  are individually refcounted, in the page's reference counter.
4538  *
4539  * The page_frag functions below provide a simple allocation framework for
4540  * page fragments.  This is used by the network stack and network device
4541  * drivers to provide a backing region of memory for use as either an
4542  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4543  */
4544 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4545 					     gfp_t gfp_mask)
4546 {
4547 	struct page *page = NULL;
4548 	gfp_t gfp = gfp_mask;
4549 
4550 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4551 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4552 		    __GFP_NOMEMALLOC;
4553 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4554 				PAGE_FRAG_CACHE_MAX_ORDER);
4555 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4556 #endif
4557 	if (unlikely(!page))
4558 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4559 
4560 	nc->va = page ? page_address(page) : NULL;
4561 
4562 	return page;
4563 }
4564 
4565 void __page_frag_cache_drain(struct page *page, unsigned int count)
4566 {
4567 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4568 
4569 	if (page_ref_sub_and_test(page, count))
4570 		free_the_page(page, compound_order(page));
4571 }
4572 EXPORT_SYMBOL(__page_frag_cache_drain);
4573 
4574 void *page_frag_alloc_align(struct page_frag_cache *nc,
4575 		      unsigned int fragsz, gfp_t gfp_mask,
4576 		      unsigned int align_mask)
4577 {
4578 	unsigned int size = PAGE_SIZE;
4579 	struct page *page;
4580 	int offset;
4581 
4582 	if (unlikely(!nc->va)) {
4583 refill:
4584 		page = __page_frag_cache_refill(nc, gfp_mask);
4585 		if (!page)
4586 			return NULL;
4587 
4588 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4589 		/* if size can vary use size else just use PAGE_SIZE */
4590 		size = nc->size;
4591 #endif
4592 		/* Even if we own the page, we do not use atomic_set().
4593 		 * This would break get_page_unless_zero() users.
4594 		 */
4595 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4596 
4597 		/* reset page count bias and offset to start of new frag */
4598 		nc->pfmemalloc = page_is_pfmemalloc(page);
4599 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4600 		nc->offset = size;
4601 	}
4602 
4603 	offset = nc->offset - fragsz;
4604 	if (unlikely(offset < 0)) {
4605 		page = virt_to_page(nc->va);
4606 
4607 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4608 			goto refill;
4609 
4610 		if (unlikely(nc->pfmemalloc)) {
4611 			free_the_page(page, compound_order(page));
4612 			goto refill;
4613 		}
4614 
4615 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4616 		/* if size can vary use size else just use PAGE_SIZE */
4617 		size = nc->size;
4618 #endif
4619 		/* OK, page count is 0, we can safely set it */
4620 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4621 
4622 		/* reset page count bias and offset to start of new frag */
4623 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4624 		offset = size - fragsz;
4625 		if (unlikely(offset < 0)) {
4626 			/*
4627 			 * The caller is trying to allocate a fragment
4628 			 * with fragsz > PAGE_SIZE but the cache isn't big
4629 			 * enough to satisfy the request, this may
4630 			 * happen in low memory conditions.
4631 			 * We don't release the cache page because
4632 			 * it could make memory pressure worse
4633 			 * so we simply return NULL here.
4634 			 */
4635 			return NULL;
4636 		}
4637 	}
4638 
4639 	nc->pagecnt_bias--;
4640 	offset &= align_mask;
4641 	nc->offset = offset;
4642 
4643 	return nc->va + offset;
4644 }
4645 EXPORT_SYMBOL(page_frag_alloc_align);
4646 
4647 /*
4648  * Frees a page fragment allocated out of either a compound or order 0 page.
4649  */
4650 void page_frag_free(void *addr)
4651 {
4652 	struct page *page = virt_to_head_page(addr);
4653 
4654 	if (unlikely(put_page_testzero(page)))
4655 		free_the_page(page, compound_order(page));
4656 }
4657 EXPORT_SYMBOL(page_frag_free);
4658 
4659 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4660 		size_t size)
4661 {
4662 	if (addr) {
4663 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4664 		struct page *page = virt_to_page((void *)addr);
4665 		struct page *last = page + nr;
4666 
4667 		split_page_owner(page, 1 << order);
4668 		split_page_memcg(page, 1 << order);
4669 		while (page < --last)
4670 			set_page_refcounted(last);
4671 
4672 		last = page + (1UL << order);
4673 		for (page += nr; page < last; page++)
4674 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4675 	}
4676 	return (void *)addr;
4677 }
4678 
4679 /**
4680  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4681  * @size: the number of bytes to allocate
4682  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4683  *
4684  * This function is similar to alloc_pages(), except that it allocates the
4685  * minimum number of pages to satisfy the request.  alloc_pages() can only
4686  * allocate memory in power-of-two pages.
4687  *
4688  * This function is also limited by MAX_ORDER.
4689  *
4690  * Memory allocated by this function must be released by free_pages_exact().
4691  *
4692  * Return: pointer to the allocated area or %NULL in case of error.
4693  */
4694 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4695 {
4696 	unsigned int order = get_order(size);
4697 	unsigned long addr;
4698 
4699 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4700 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4701 
4702 	addr = __get_free_pages(gfp_mask, order);
4703 	return make_alloc_exact(addr, order, size);
4704 }
4705 EXPORT_SYMBOL(alloc_pages_exact);
4706 
4707 /**
4708  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4709  *			   pages on a node.
4710  * @nid: the preferred node ID where memory should be allocated
4711  * @size: the number of bytes to allocate
4712  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4713  *
4714  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4715  * back.
4716  *
4717  * Return: pointer to the allocated area or %NULL in case of error.
4718  */
4719 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4720 {
4721 	unsigned int order = get_order(size);
4722 	struct page *p;
4723 
4724 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4725 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4726 
4727 	p = alloc_pages_node(nid, gfp_mask, order);
4728 	if (!p)
4729 		return NULL;
4730 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4731 }
4732 
4733 /**
4734  * free_pages_exact - release memory allocated via alloc_pages_exact()
4735  * @virt: the value returned by alloc_pages_exact.
4736  * @size: size of allocation, same value as passed to alloc_pages_exact().
4737  *
4738  * Release the memory allocated by a previous call to alloc_pages_exact.
4739  */
4740 void free_pages_exact(void *virt, size_t size)
4741 {
4742 	unsigned long addr = (unsigned long)virt;
4743 	unsigned long end = addr + PAGE_ALIGN(size);
4744 
4745 	while (addr < end) {
4746 		free_page(addr);
4747 		addr += PAGE_SIZE;
4748 	}
4749 }
4750 EXPORT_SYMBOL(free_pages_exact);
4751 
4752 /**
4753  * nr_free_zone_pages - count number of pages beyond high watermark
4754  * @offset: The zone index of the highest zone
4755  *
4756  * nr_free_zone_pages() counts the number of pages which are beyond the
4757  * high watermark within all zones at or below a given zone index.  For each
4758  * zone, the number of pages is calculated as:
4759  *
4760  *     nr_free_zone_pages = managed_pages - high_pages
4761  *
4762  * Return: number of pages beyond high watermark.
4763  */
4764 static unsigned long nr_free_zone_pages(int offset)
4765 {
4766 	struct zoneref *z;
4767 	struct zone *zone;
4768 
4769 	/* Just pick one node, since fallback list is circular */
4770 	unsigned long sum = 0;
4771 
4772 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4773 
4774 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4775 		unsigned long size = zone_managed_pages(zone);
4776 		unsigned long high = high_wmark_pages(zone);
4777 		if (size > high)
4778 			sum += size - high;
4779 	}
4780 
4781 	return sum;
4782 }
4783 
4784 /**
4785  * nr_free_buffer_pages - count number of pages beyond high watermark
4786  *
4787  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4788  * watermark within ZONE_DMA and ZONE_NORMAL.
4789  *
4790  * Return: number of pages beyond high watermark within ZONE_DMA and
4791  * ZONE_NORMAL.
4792  */
4793 unsigned long nr_free_buffer_pages(void)
4794 {
4795 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4796 }
4797 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4798 
4799 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4800 {
4801 	zoneref->zone = zone;
4802 	zoneref->zone_idx = zone_idx(zone);
4803 }
4804 
4805 /*
4806  * Builds allocation fallback zone lists.
4807  *
4808  * Add all populated zones of a node to the zonelist.
4809  */
4810 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4811 {
4812 	struct zone *zone;
4813 	enum zone_type zone_type = MAX_NR_ZONES;
4814 	int nr_zones = 0;
4815 
4816 	do {
4817 		zone_type--;
4818 		zone = pgdat->node_zones + zone_type;
4819 		if (populated_zone(zone)) {
4820 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4821 			check_highest_zone(zone_type);
4822 		}
4823 	} while (zone_type);
4824 
4825 	return nr_zones;
4826 }
4827 
4828 #ifdef CONFIG_NUMA
4829 
4830 static int __parse_numa_zonelist_order(char *s)
4831 {
4832 	/*
4833 	 * We used to support different zonelists modes but they turned
4834 	 * out to be just not useful. Let's keep the warning in place
4835 	 * if somebody still use the cmd line parameter so that we do
4836 	 * not fail it silently
4837 	 */
4838 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4839 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4840 		return -EINVAL;
4841 	}
4842 	return 0;
4843 }
4844 
4845 static char numa_zonelist_order[] = "Node";
4846 #define NUMA_ZONELIST_ORDER_LEN	16
4847 /*
4848  * sysctl handler for numa_zonelist_order
4849  */
4850 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4851 		void *buffer, size_t *length, loff_t *ppos)
4852 {
4853 	if (write)
4854 		return __parse_numa_zonelist_order(buffer);
4855 	return proc_dostring(table, write, buffer, length, ppos);
4856 }
4857 
4858 static int node_load[MAX_NUMNODES];
4859 
4860 /**
4861  * find_next_best_node - find the next node that should appear in a given node's fallback list
4862  * @node: node whose fallback list we're appending
4863  * @used_node_mask: nodemask_t of already used nodes
4864  *
4865  * We use a number of factors to determine which is the next node that should
4866  * appear on a given node's fallback list.  The node should not have appeared
4867  * already in @node's fallback list, and it should be the next closest node
4868  * according to the distance array (which contains arbitrary distance values
4869  * from each node to each node in the system), and should also prefer nodes
4870  * with no CPUs, since presumably they'll have very little allocation pressure
4871  * on them otherwise.
4872  *
4873  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4874  */
4875 int find_next_best_node(int node, nodemask_t *used_node_mask)
4876 {
4877 	int n, val;
4878 	int min_val = INT_MAX;
4879 	int best_node = NUMA_NO_NODE;
4880 
4881 	/* Use the local node if we haven't already */
4882 	if (!node_isset(node, *used_node_mask)) {
4883 		node_set(node, *used_node_mask);
4884 		return node;
4885 	}
4886 
4887 	for_each_node_state(n, N_MEMORY) {
4888 
4889 		/* Don't want a node to appear more than once */
4890 		if (node_isset(n, *used_node_mask))
4891 			continue;
4892 
4893 		/* Use the distance array to find the distance */
4894 		val = node_distance(node, n);
4895 
4896 		/* Penalize nodes under us ("prefer the next node") */
4897 		val += (n < node);
4898 
4899 		/* Give preference to headless and unused nodes */
4900 		if (!cpumask_empty(cpumask_of_node(n)))
4901 			val += PENALTY_FOR_NODE_WITH_CPUS;
4902 
4903 		/* Slight preference for less loaded node */
4904 		val *= MAX_NUMNODES;
4905 		val += node_load[n];
4906 
4907 		if (val < min_val) {
4908 			min_val = val;
4909 			best_node = n;
4910 		}
4911 	}
4912 
4913 	if (best_node >= 0)
4914 		node_set(best_node, *used_node_mask);
4915 
4916 	return best_node;
4917 }
4918 
4919 
4920 /*
4921  * Build zonelists ordered by node and zones within node.
4922  * This results in maximum locality--normal zone overflows into local
4923  * DMA zone, if any--but risks exhausting DMA zone.
4924  */
4925 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4926 		unsigned nr_nodes)
4927 {
4928 	struct zoneref *zonerefs;
4929 	int i;
4930 
4931 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4932 
4933 	for (i = 0; i < nr_nodes; i++) {
4934 		int nr_zones;
4935 
4936 		pg_data_t *node = NODE_DATA(node_order[i]);
4937 
4938 		nr_zones = build_zonerefs_node(node, zonerefs);
4939 		zonerefs += nr_zones;
4940 	}
4941 	zonerefs->zone = NULL;
4942 	zonerefs->zone_idx = 0;
4943 }
4944 
4945 /*
4946  * Build gfp_thisnode zonelists
4947  */
4948 static void build_thisnode_zonelists(pg_data_t *pgdat)
4949 {
4950 	struct zoneref *zonerefs;
4951 	int nr_zones;
4952 
4953 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4954 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4955 	zonerefs += nr_zones;
4956 	zonerefs->zone = NULL;
4957 	zonerefs->zone_idx = 0;
4958 }
4959 
4960 /*
4961  * Build zonelists ordered by zone and nodes within zones.
4962  * This results in conserving DMA zone[s] until all Normal memory is
4963  * exhausted, but results in overflowing to remote node while memory
4964  * may still exist in local DMA zone.
4965  */
4966 
4967 static void build_zonelists(pg_data_t *pgdat)
4968 {
4969 	static int node_order[MAX_NUMNODES];
4970 	int node, nr_nodes = 0;
4971 	nodemask_t used_mask = NODE_MASK_NONE;
4972 	int local_node, prev_node;
4973 
4974 	/* NUMA-aware ordering of nodes */
4975 	local_node = pgdat->node_id;
4976 	prev_node = local_node;
4977 
4978 	memset(node_order, 0, sizeof(node_order));
4979 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4980 		/*
4981 		 * We don't want to pressure a particular node.
4982 		 * So adding penalty to the first node in same
4983 		 * distance group to make it round-robin.
4984 		 */
4985 		if (node_distance(local_node, node) !=
4986 		    node_distance(local_node, prev_node))
4987 			node_load[node] += 1;
4988 
4989 		node_order[nr_nodes++] = node;
4990 		prev_node = node;
4991 	}
4992 
4993 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
4994 	build_thisnode_zonelists(pgdat);
4995 	pr_info("Fallback order for Node %d: ", local_node);
4996 	for (node = 0; node < nr_nodes; node++)
4997 		pr_cont("%d ", node_order[node]);
4998 	pr_cont("\n");
4999 }
5000 
5001 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5002 /*
5003  * Return node id of node used for "local" allocations.
5004  * I.e., first node id of first zone in arg node's generic zonelist.
5005  * Used for initializing percpu 'numa_mem', which is used primarily
5006  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5007  */
5008 int local_memory_node(int node)
5009 {
5010 	struct zoneref *z;
5011 
5012 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5013 				   gfp_zone(GFP_KERNEL),
5014 				   NULL);
5015 	return zone_to_nid(z->zone);
5016 }
5017 #endif
5018 
5019 static void setup_min_unmapped_ratio(void);
5020 static void setup_min_slab_ratio(void);
5021 #else	/* CONFIG_NUMA */
5022 
5023 static void build_zonelists(pg_data_t *pgdat)
5024 {
5025 	int node, local_node;
5026 	struct zoneref *zonerefs;
5027 	int nr_zones;
5028 
5029 	local_node = pgdat->node_id;
5030 
5031 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5032 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5033 	zonerefs += nr_zones;
5034 
5035 	/*
5036 	 * Now we build the zonelist so that it contains the zones
5037 	 * of all the other nodes.
5038 	 * We don't want to pressure a particular node, so when
5039 	 * building the zones for node N, we make sure that the
5040 	 * zones coming right after the local ones are those from
5041 	 * node N+1 (modulo N)
5042 	 */
5043 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5044 		if (!node_online(node))
5045 			continue;
5046 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5047 		zonerefs += nr_zones;
5048 	}
5049 	for (node = 0; node < local_node; node++) {
5050 		if (!node_online(node))
5051 			continue;
5052 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5053 		zonerefs += nr_zones;
5054 	}
5055 
5056 	zonerefs->zone = NULL;
5057 	zonerefs->zone_idx = 0;
5058 }
5059 
5060 #endif	/* CONFIG_NUMA */
5061 
5062 /*
5063  * Boot pageset table. One per cpu which is going to be used for all
5064  * zones and all nodes. The parameters will be set in such a way
5065  * that an item put on a list will immediately be handed over to
5066  * the buddy list. This is safe since pageset manipulation is done
5067  * with interrupts disabled.
5068  *
5069  * The boot_pagesets must be kept even after bootup is complete for
5070  * unused processors and/or zones. They do play a role for bootstrapping
5071  * hotplugged processors.
5072  *
5073  * zoneinfo_show() and maybe other functions do
5074  * not check if the processor is online before following the pageset pointer.
5075  * Other parts of the kernel may not check if the zone is available.
5076  */
5077 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5078 /* These effectively disable the pcplists in the boot pageset completely */
5079 #define BOOT_PAGESET_HIGH	0
5080 #define BOOT_PAGESET_BATCH	1
5081 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5082 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5083 
5084 static void __build_all_zonelists(void *data)
5085 {
5086 	int nid;
5087 	int __maybe_unused cpu;
5088 	pg_data_t *self = data;
5089 	unsigned long flags;
5090 
5091 	/*
5092 	 * The zonelist_update_seq must be acquired with irqsave because the
5093 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5094 	 */
5095 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5096 	/*
5097 	 * Also disable synchronous printk() to prevent any printk() from
5098 	 * trying to hold port->lock, for
5099 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5100 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5101 	 */
5102 	printk_deferred_enter();
5103 
5104 #ifdef CONFIG_NUMA
5105 	memset(node_load, 0, sizeof(node_load));
5106 #endif
5107 
5108 	/*
5109 	 * This node is hotadded and no memory is yet present.   So just
5110 	 * building zonelists is fine - no need to touch other nodes.
5111 	 */
5112 	if (self && !node_online(self->node_id)) {
5113 		build_zonelists(self);
5114 	} else {
5115 		/*
5116 		 * All possible nodes have pgdat preallocated
5117 		 * in free_area_init
5118 		 */
5119 		for_each_node(nid) {
5120 			pg_data_t *pgdat = NODE_DATA(nid);
5121 
5122 			build_zonelists(pgdat);
5123 		}
5124 
5125 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5126 		/*
5127 		 * We now know the "local memory node" for each node--
5128 		 * i.e., the node of the first zone in the generic zonelist.
5129 		 * Set up numa_mem percpu variable for on-line cpus.  During
5130 		 * boot, only the boot cpu should be on-line;  we'll init the
5131 		 * secondary cpus' numa_mem as they come on-line.  During
5132 		 * node/memory hotplug, we'll fixup all on-line cpus.
5133 		 */
5134 		for_each_online_cpu(cpu)
5135 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5136 #endif
5137 	}
5138 
5139 	printk_deferred_exit();
5140 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5141 }
5142 
5143 static noinline void __init
5144 build_all_zonelists_init(void)
5145 {
5146 	int cpu;
5147 
5148 	__build_all_zonelists(NULL);
5149 
5150 	/*
5151 	 * Initialize the boot_pagesets that are going to be used
5152 	 * for bootstrapping processors. The real pagesets for
5153 	 * each zone will be allocated later when the per cpu
5154 	 * allocator is available.
5155 	 *
5156 	 * boot_pagesets are used also for bootstrapping offline
5157 	 * cpus if the system is already booted because the pagesets
5158 	 * are needed to initialize allocators on a specific cpu too.
5159 	 * F.e. the percpu allocator needs the page allocator which
5160 	 * needs the percpu allocator in order to allocate its pagesets
5161 	 * (a chicken-egg dilemma).
5162 	 */
5163 	for_each_possible_cpu(cpu)
5164 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5165 
5166 	mminit_verify_zonelist();
5167 	cpuset_init_current_mems_allowed();
5168 }
5169 
5170 /*
5171  * unless system_state == SYSTEM_BOOTING.
5172  *
5173  * __ref due to call of __init annotated helper build_all_zonelists_init
5174  * [protected by SYSTEM_BOOTING].
5175  */
5176 void __ref build_all_zonelists(pg_data_t *pgdat)
5177 {
5178 	unsigned long vm_total_pages;
5179 
5180 	if (system_state == SYSTEM_BOOTING) {
5181 		build_all_zonelists_init();
5182 	} else {
5183 		__build_all_zonelists(pgdat);
5184 		/* cpuset refresh routine should be here */
5185 	}
5186 	/* Get the number of free pages beyond high watermark in all zones. */
5187 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5188 	/*
5189 	 * Disable grouping by mobility if the number of pages in the
5190 	 * system is too low to allow the mechanism to work. It would be
5191 	 * more accurate, but expensive to check per-zone. This check is
5192 	 * made on memory-hotadd so a system can start with mobility
5193 	 * disabled and enable it later
5194 	 */
5195 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5196 		page_group_by_mobility_disabled = 1;
5197 	else
5198 		page_group_by_mobility_disabled = 0;
5199 
5200 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5201 		nr_online_nodes,
5202 		page_group_by_mobility_disabled ? "off" : "on",
5203 		vm_total_pages);
5204 #ifdef CONFIG_NUMA
5205 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5206 #endif
5207 }
5208 
5209 static int zone_batchsize(struct zone *zone)
5210 {
5211 #ifdef CONFIG_MMU
5212 	int batch;
5213 
5214 	/*
5215 	 * The number of pages to batch allocate is either ~0.1%
5216 	 * of the zone or 1MB, whichever is smaller. The batch
5217 	 * size is striking a balance between allocation latency
5218 	 * and zone lock contention.
5219 	 */
5220 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5221 	batch /= 4;		/* We effectively *= 4 below */
5222 	if (batch < 1)
5223 		batch = 1;
5224 
5225 	/*
5226 	 * Clamp the batch to a 2^n - 1 value. Having a power
5227 	 * of 2 value was found to be more likely to have
5228 	 * suboptimal cache aliasing properties in some cases.
5229 	 *
5230 	 * For example if 2 tasks are alternately allocating
5231 	 * batches of pages, one task can end up with a lot
5232 	 * of pages of one half of the possible page colors
5233 	 * and the other with pages of the other colors.
5234 	 */
5235 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5236 
5237 	return batch;
5238 
5239 #else
5240 	/* The deferral and batching of frees should be suppressed under NOMMU
5241 	 * conditions.
5242 	 *
5243 	 * The problem is that NOMMU needs to be able to allocate large chunks
5244 	 * of contiguous memory as there's no hardware page translation to
5245 	 * assemble apparent contiguous memory from discontiguous pages.
5246 	 *
5247 	 * Queueing large contiguous runs of pages for batching, however,
5248 	 * causes the pages to actually be freed in smaller chunks.  As there
5249 	 * can be a significant delay between the individual batches being
5250 	 * recycled, this leads to the once large chunks of space being
5251 	 * fragmented and becoming unavailable for high-order allocations.
5252 	 */
5253 	return 0;
5254 #endif
5255 }
5256 
5257 static int percpu_pagelist_high_fraction;
5258 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5259 {
5260 #ifdef CONFIG_MMU
5261 	int high;
5262 	int nr_split_cpus;
5263 	unsigned long total_pages;
5264 
5265 	if (!percpu_pagelist_high_fraction) {
5266 		/*
5267 		 * By default, the high value of the pcp is based on the zone
5268 		 * low watermark so that if they are full then background
5269 		 * reclaim will not be started prematurely.
5270 		 */
5271 		total_pages = low_wmark_pages(zone);
5272 	} else {
5273 		/*
5274 		 * If percpu_pagelist_high_fraction is configured, the high
5275 		 * value is based on a fraction of the managed pages in the
5276 		 * zone.
5277 		 */
5278 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5279 	}
5280 
5281 	/*
5282 	 * Split the high value across all online CPUs local to the zone. Note
5283 	 * that early in boot that CPUs may not be online yet and that during
5284 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5285 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5286 	 * all online CPUs to mitigate the risk that reclaim is triggered
5287 	 * prematurely due to pages stored on pcp lists.
5288 	 */
5289 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5290 	if (!nr_split_cpus)
5291 		nr_split_cpus = num_online_cpus();
5292 	high = total_pages / nr_split_cpus;
5293 
5294 	/*
5295 	 * Ensure high is at least batch*4. The multiple is based on the
5296 	 * historical relationship between high and batch.
5297 	 */
5298 	high = max(high, batch << 2);
5299 
5300 	return high;
5301 #else
5302 	return 0;
5303 #endif
5304 }
5305 
5306 /*
5307  * pcp->high and pcp->batch values are related and generally batch is lower
5308  * than high. They are also related to pcp->count such that count is lower
5309  * than high, and as soon as it reaches high, the pcplist is flushed.
5310  *
5311  * However, guaranteeing these relations at all times would require e.g. write
5312  * barriers here but also careful usage of read barriers at the read side, and
5313  * thus be prone to error and bad for performance. Thus the update only prevents
5314  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5315  * can cope with those fields changing asynchronously, and fully trust only the
5316  * pcp->count field on the local CPU with interrupts disabled.
5317  *
5318  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5319  * outside of boot time (or some other assurance that no concurrent updaters
5320  * exist).
5321  */
5322 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5323 		unsigned long batch)
5324 {
5325 	WRITE_ONCE(pcp->batch, batch);
5326 	WRITE_ONCE(pcp->high, high);
5327 }
5328 
5329 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5330 {
5331 	int pindex;
5332 
5333 	memset(pcp, 0, sizeof(*pcp));
5334 	memset(pzstats, 0, sizeof(*pzstats));
5335 
5336 	spin_lock_init(&pcp->lock);
5337 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5338 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5339 
5340 	/*
5341 	 * Set batch and high values safe for a boot pageset. A true percpu
5342 	 * pageset's initialization will update them subsequently. Here we don't
5343 	 * need to be as careful as pageset_update() as nobody can access the
5344 	 * pageset yet.
5345 	 */
5346 	pcp->high = BOOT_PAGESET_HIGH;
5347 	pcp->batch = BOOT_PAGESET_BATCH;
5348 	pcp->free_factor = 0;
5349 }
5350 
5351 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5352 		unsigned long batch)
5353 {
5354 	struct per_cpu_pages *pcp;
5355 	int cpu;
5356 
5357 	for_each_possible_cpu(cpu) {
5358 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5359 		pageset_update(pcp, high, batch);
5360 	}
5361 }
5362 
5363 /*
5364  * Calculate and set new high and batch values for all per-cpu pagesets of a
5365  * zone based on the zone's size.
5366  */
5367 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5368 {
5369 	int new_high, new_batch;
5370 
5371 	new_batch = max(1, zone_batchsize(zone));
5372 	new_high = zone_highsize(zone, new_batch, cpu_online);
5373 
5374 	if (zone->pageset_high == new_high &&
5375 	    zone->pageset_batch == new_batch)
5376 		return;
5377 
5378 	zone->pageset_high = new_high;
5379 	zone->pageset_batch = new_batch;
5380 
5381 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5382 }
5383 
5384 void __meminit setup_zone_pageset(struct zone *zone)
5385 {
5386 	int cpu;
5387 
5388 	/* Size may be 0 on !SMP && !NUMA */
5389 	if (sizeof(struct per_cpu_zonestat) > 0)
5390 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5391 
5392 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5393 	for_each_possible_cpu(cpu) {
5394 		struct per_cpu_pages *pcp;
5395 		struct per_cpu_zonestat *pzstats;
5396 
5397 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5398 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5399 		per_cpu_pages_init(pcp, pzstats);
5400 	}
5401 
5402 	zone_set_pageset_high_and_batch(zone, 0);
5403 }
5404 
5405 /*
5406  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5407  * page high values need to be recalculated.
5408  */
5409 static void zone_pcp_update(struct zone *zone, int cpu_online)
5410 {
5411 	mutex_lock(&pcp_batch_high_lock);
5412 	zone_set_pageset_high_and_batch(zone, cpu_online);
5413 	mutex_unlock(&pcp_batch_high_lock);
5414 }
5415 
5416 /*
5417  * Allocate per cpu pagesets and initialize them.
5418  * Before this call only boot pagesets were available.
5419  */
5420 void __init setup_per_cpu_pageset(void)
5421 {
5422 	struct pglist_data *pgdat;
5423 	struct zone *zone;
5424 	int __maybe_unused cpu;
5425 
5426 	for_each_populated_zone(zone)
5427 		setup_zone_pageset(zone);
5428 
5429 #ifdef CONFIG_NUMA
5430 	/*
5431 	 * Unpopulated zones continue using the boot pagesets.
5432 	 * The numa stats for these pagesets need to be reset.
5433 	 * Otherwise, they will end up skewing the stats of
5434 	 * the nodes these zones are associated with.
5435 	 */
5436 	for_each_possible_cpu(cpu) {
5437 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5438 		memset(pzstats->vm_numa_event, 0,
5439 		       sizeof(pzstats->vm_numa_event));
5440 	}
5441 #endif
5442 
5443 	for_each_online_pgdat(pgdat)
5444 		pgdat->per_cpu_nodestats =
5445 			alloc_percpu(struct per_cpu_nodestat);
5446 }
5447 
5448 __meminit void zone_pcp_init(struct zone *zone)
5449 {
5450 	/*
5451 	 * per cpu subsystem is not up at this point. The following code
5452 	 * relies on the ability of the linker to provide the
5453 	 * offset of a (static) per cpu variable into the per cpu area.
5454 	 */
5455 	zone->per_cpu_pageset = &boot_pageset;
5456 	zone->per_cpu_zonestats = &boot_zonestats;
5457 	zone->pageset_high = BOOT_PAGESET_HIGH;
5458 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5459 
5460 	if (populated_zone(zone))
5461 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5462 			 zone->present_pages, zone_batchsize(zone));
5463 }
5464 
5465 void adjust_managed_page_count(struct page *page, long count)
5466 {
5467 	atomic_long_add(count, &page_zone(page)->managed_pages);
5468 	totalram_pages_add(count);
5469 #ifdef CONFIG_HIGHMEM
5470 	if (PageHighMem(page))
5471 		totalhigh_pages_add(count);
5472 #endif
5473 }
5474 EXPORT_SYMBOL(adjust_managed_page_count);
5475 
5476 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5477 {
5478 	void *pos;
5479 	unsigned long pages = 0;
5480 
5481 	start = (void *)PAGE_ALIGN((unsigned long)start);
5482 	end = (void *)((unsigned long)end & PAGE_MASK);
5483 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5484 		struct page *page = virt_to_page(pos);
5485 		void *direct_map_addr;
5486 
5487 		/*
5488 		 * 'direct_map_addr' might be different from 'pos'
5489 		 * because some architectures' virt_to_page()
5490 		 * work with aliases.  Getting the direct map
5491 		 * address ensures that we get a _writeable_
5492 		 * alias for the memset().
5493 		 */
5494 		direct_map_addr = page_address(page);
5495 		/*
5496 		 * Perform a kasan-unchecked memset() since this memory
5497 		 * has not been initialized.
5498 		 */
5499 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5500 		if ((unsigned int)poison <= 0xFF)
5501 			memset(direct_map_addr, poison, PAGE_SIZE);
5502 
5503 		free_reserved_page(page);
5504 	}
5505 
5506 	if (pages && s)
5507 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5508 
5509 	return pages;
5510 }
5511 
5512 static int page_alloc_cpu_dead(unsigned int cpu)
5513 {
5514 	struct zone *zone;
5515 
5516 	lru_add_drain_cpu(cpu);
5517 	mlock_drain_remote(cpu);
5518 	drain_pages(cpu);
5519 
5520 	/*
5521 	 * Spill the event counters of the dead processor
5522 	 * into the current processors event counters.
5523 	 * This artificially elevates the count of the current
5524 	 * processor.
5525 	 */
5526 	vm_events_fold_cpu(cpu);
5527 
5528 	/*
5529 	 * Zero the differential counters of the dead processor
5530 	 * so that the vm statistics are consistent.
5531 	 *
5532 	 * This is only okay since the processor is dead and cannot
5533 	 * race with what we are doing.
5534 	 */
5535 	cpu_vm_stats_fold(cpu);
5536 
5537 	for_each_populated_zone(zone)
5538 		zone_pcp_update(zone, 0);
5539 
5540 	return 0;
5541 }
5542 
5543 static int page_alloc_cpu_online(unsigned int cpu)
5544 {
5545 	struct zone *zone;
5546 
5547 	for_each_populated_zone(zone)
5548 		zone_pcp_update(zone, 1);
5549 	return 0;
5550 }
5551 
5552 void __init page_alloc_init_cpuhp(void)
5553 {
5554 	int ret;
5555 
5556 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5557 					"mm/page_alloc:pcp",
5558 					page_alloc_cpu_online,
5559 					page_alloc_cpu_dead);
5560 	WARN_ON(ret < 0);
5561 }
5562 
5563 /*
5564  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5565  *	or min_free_kbytes changes.
5566  */
5567 static void calculate_totalreserve_pages(void)
5568 {
5569 	struct pglist_data *pgdat;
5570 	unsigned long reserve_pages = 0;
5571 	enum zone_type i, j;
5572 
5573 	for_each_online_pgdat(pgdat) {
5574 
5575 		pgdat->totalreserve_pages = 0;
5576 
5577 		for (i = 0; i < MAX_NR_ZONES; i++) {
5578 			struct zone *zone = pgdat->node_zones + i;
5579 			long max = 0;
5580 			unsigned long managed_pages = zone_managed_pages(zone);
5581 
5582 			/* Find valid and maximum lowmem_reserve in the zone */
5583 			for (j = i; j < MAX_NR_ZONES; j++) {
5584 				if (zone->lowmem_reserve[j] > max)
5585 					max = zone->lowmem_reserve[j];
5586 			}
5587 
5588 			/* we treat the high watermark as reserved pages. */
5589 			max += high_wmark_pages(zone);
5590 
5591 			if (max > managed_pages)
5592 				max = managed_pages;
5593 
5594 			pgdat->totalreserve_pages += max;
5595 
5596 			reserve_pages += max;
5597 		}
5598 	}
5599 	totalreserve_pages = reserve_pages;
5600 }
5601 
5602 /*
5603  * setup_per_zone_lowmem_reserve - called whenever
5604  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5605  *	has a correct pages reserved value, so an adequate number of
5606  *	pages are left in the zone after a successful __alloc_pages().
5607  */
5608 static void setup_per_zone_lowmem_reserve(void)
5609 {
5610 	struct pglist_data *pgdat;
5611 	enum zone_type i, j;
5612 
5613 	for_each_online_pgdat(pgdat) {
5614 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5615 			struct zone *zone = &pgdat->node_zones[i];
5616 			int ratio = sysctl_lowmem_reserve_ratio[i];
5617 			bool clear = !ratio || !zone_managed_pages(zone);
5618 			unsigned long managed_pages = 0;
5619 
5620 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5621 				struct zone *upper_zone = &pgdat->node_zones[j];
5622 
5623 				managed_pages += zone_managed_pages(upper_zone);
5624 
5625 				if (clear)
5626 					zone->lowmem_reserve[j] = 0;
5627 				else
5628 					zone->lowmem_reserve[j] = managed_pages / ratio;
5629 			}
5630 		}
5631 	}
5632 
5633 	/* update totalreserve_pages */
5634 	calculate_totalreserve_pages();
5635 }
5636 
5637 static void __setup_per_zone_wmarks(void)
5638 {
5639 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5640 	unsigned long lowmem_pages = 0;
5641 	struct zone *zone;
5642 	unsigned long flags;
5643 
5644 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5645 	for_each_zone(zone) {
5646 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5647 			lowmem_pages += zone_managed_pages(zone);
5648 	}
5649 
5650 	for_each_zone(zone) {
5651 		u64 tmp;
5652 
5653 		spin_lock_irqsave(&zone->lock, flags);
5654 		tmp = (u64)pages_min * zone_managed_pages(zone);
5655 		do_div(tmp, lowmem_pages);
5656 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5657 			/*
5658 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5659 			 * need highmem and movable zones pages, so cap pages_min
5660 			 * to a small  value here.
5661 			 *
5662 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5663 			 * deltas control async page reclaim, and so should
5664 			 * not be capped for highmem and movable zones.
5665 			 */
5666 			unsigned long min_pages;
5667 
5668 			min_pages = zone_managed_pages(zone) / 1024;
5669 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5670 			zone->_watermark[WMARK_MIN] = min_pages;
5671 		} else {
5672 			/*
5673 			 * If it's a lowmem zone, reserve a number of pages
5674 			 * proportionate to the zone's size.
5675 			 */
5676 			zone->_watermark[WMARK_MIN] = tmp;
5677 		}
5678 
5679 		/*
5680 		 * Set the kswapd watermarks distance according to the
5681 		 * scale factor in proportion to available memory, but
5682 		 * ensure a minimum size on small systems.
5683 		 */
5684 		tmp = max_t(u64, tmp >> 2,
5685 			    mult_frac(zone_managed_pages(zone),
5686 				      watermark_scale_factor, 10000));
5687 
5688 		zone->watermark_boost = 0;
5689 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5690 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5691 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5692 
5693 		spin_unlock_irqrestore(&zone->lock, flags);
5694 	}
5695 
5696 	/* update totalreserve_pages */
5697 	calculate_totalreserve_pages();
5698 }
5699 
5700 /**
5701  * setup_per_zone_wmarks - called when min_free_kbytes changes
5702  * or when memory is hot-{added|removed}
5703  *
5704  * Ensures that the watermark[min,low,high] values for each zone are set
5705  * correctly with respect to min_free_kbytes.
5706  */
5707 void setup_per_zone_wmarks(void)
5708 {
5709 	struct zone *zone;
5710 	static DEFINE_SPINLOCK(lock);
5711 
5712 	spin_lock(&lock);
5713 	__setup_per_zone_wmarks();
5714 	spin_unlock(&lock);
5715 
5716 	/*
5717 	 * The watermark size have changed so update the pcpu batch
5718 	 * and high limits or the limits may be inappropriate.
5719 	 */
5720 	for_each_zone(zone)
5721 		zone_pcp_update(zone, 0);
5722 }
5723 
5724 /*
5725  * Initialise min_free_kbytes.
5726  *
5727  * For small machines we want it small (128k min).  For large machines
5728  * we want it large (256MB max).  But it is not linear, because network
5729  * bandwidth does not increase linearly with machine size.  We use
5730  *
5731  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5732  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5733  *
5734  * which yields
5735  *
5736  * 16MB:	512k
5737  * 32MB:	724k
5738  * 64MB:	1024k
5739  * 128MB:	1448k
5740  * 256MB:	2048k
5741  * 512MB:	2896k
5742  * 1024MB:	4096k
5743  * 2048MB:	5792k
5744  * 4096MB:	8192k
5745  * 8192MB:	11584k
5746  * 16384MB:	16384k
5747  */
5748 void calculate_min_free_kbytes(void)
5749 {
5750 	unsigned long lowmem_kbytes;
5751 	int new_min_free_kbytes;
5752 
5753 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5754 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5755 
5756 	if (new_min_free_kbytes > user_min_free_kbytes)
5757 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5758 	else
5759 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5760 				new_min_free_kbytes, user_min_free_kbytes);
5761 
5762 }
5763 
5764 int __meminit init_per_zone_wmark_min(void)
5765 {
5766 	calculate_min_free_kbytes();
5767 	setup_per_zone_wmarks();
5768 	refresh_zone_stat_thresholds();
5769 	setup_per_zone_lowmem_reserve();
5770 
5771 #ifdef CONFIG_NUMA
5772 	setup_min_unmapped_ratio();
5773 	setup_min_slab_ratio();
5774 #endif
5775 
5776 	khugepaged_min_free_kbytes_update();
5777 
5778 	return 0;
5779 }
5780 postcore_initcall(init_per_zone_wmark_min)
5781 
5782 /*
5783  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5784  *	that we can call two helper functions whenever min_free_kbytes
5785  *	changes.
5786  */
5787 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5788 		void *buffer, size_t *length, loff_t *ppos)
5789 {
5790 	int rc;
5791 
5792 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5793 	if (rc)
5794 		return rc;
5795 
5796 	if (write) {
5797 		user_min_free_kbytes = min_free_kbytes;
5798 		setup_per_zone_wmarks();
5799 	}
5800 	return 0;
5801 }
5802 
5803 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5804 		void *buffer, size_t *length, loff_t *ppos)
5805 {
5806 	int rc;
5807 
5808 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5809 	if (rc)
5810 		return rc;
5811 
5812 	if (write)
5813 		setup_per_zone_wmarks();
5814 
5815 	return 0;
5816 }
5817 
5818 #ifdef CONFIG_NUMA
5819 static void setup_min_unmapped_ratio(void)
5820 {
5821 	pg_data_t *pgdat;
5822 	struct zone *zone;
5823 
5824 	for_each_online_pgdat(pgdat)
5825 		pgdat->min_unmapped_pages = 0;
5826 
5827 	for_each_zone(zone)
5828 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5829 						         sysctl_min_unmapped_ratio) / 100;
5830 }
5831 
5832 
5833 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5834 		void *buffer, size_t *length, loff_t *ppos)
5835 {
5836 	int rc;
5837 
5838 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5839 	if (rc)
5840 		return rc;
5841 
5842 	setup_min_unmapped_ratio();
5843 
5844 	return 0;
5845 }
5846 
5847 static void setup_min_slab_ratio(void)
5848 {
5849 	pg_data_t *pgdat;
5850 	struct zone *zone;
5851 
5852 	for_each_online_pgdat(pgdat)
5853 		pgdat->min_slab_pages = 0;
5854 
5855 	for_each_zone(zone)
5856 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5857 						     sysctl_min_slab_ratio) / 100;
5858 }
5859 
5860 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5861 		void *buffer, size_t *length, loff_t *ppos)
5862 {
5863 	int rc;
5864 
5865 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5866 	if (rc)
5867 		return rc;
5868 
5869 	setup_min_slab_ratio();
5870 
5871 	return 0;
5872 }
5873 #endif
5874 
5875 /*
5876  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5877  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5878  *	whenever sysctl_lowmem_reserve_ratio changes.
5879  *
5880  * The reserve ratio obviously has absolutely no relation with the
5881  * minimum watermarks. The lowmem reserve ratio can only make sense
5882  * if in function of the boot time zone sizes.
5883  */
5884 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5885 		int write, void *buffer, size_t *length, loff_t *ppos)
5886 {
5887 	int i;
5888 
5889 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5890 
5891 	for (i = 0; i < MAX_NR_ZONES; i++) {
5892 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5893 			sysctl_lowmem_reserve_ratio[i] = 0;
5894 	}
5895 
5896 	setup_per_zone_lowmem_reserve();
5897 	return 0;
5898 }
5899 
5900 /*
5901  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5902  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5903  * pagelist can have before it gets flushed back to buddy allocator.
5904  */
5905 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5906 		int write, void *buffer, size_t *length, loff_t *ppos)
5907 {
5908 	struct zone *zone;
5909 	int old_percpu_pagelist_high_fraction;
5910 	int ret;
5911 
5912 	mutex_lock(&pcp_batch_high_lock);
5913 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5914 
5915 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5916 	if (!write || ret < 0)
5917 		goto out;
5918 
5919 	/* Sanity checking to avoid pcp imbalance */
5920 	if (percpu_pagelist_high_fraction &&
5921 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5922 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5923 		ret = -EINVAL;
5924 		goto out;
5925 	}
5926 
5927 	/* No change? */
5928 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5929 		goto out;
5930 
5931 	for_each_populated_zone(zone)
5932 		zone_set_pageset_high_and_batch(zone, 0);
5933 out:
5934 	mutex_unlock(&pcp_batch_high_lock);
5935 	return ret;
5936 }
5937 
5938 static struct ctl_table page_alloc_sysctl_table[] = {
5939 	{
5940 		.procname	= "min_free_kbytes",
5941 		.data		= &min_free_kbytes,
5942 		.maxlen		= sizeof(min_free_kbytes),
5943 		.mode		= 0644,
5944 		.proc_handler	= min_free_kbytes_sysctl_handler,
5945 		.extra1		= SYSCTL_ZERO,
5946 	},
5947 	{
5948 		.procname	= "watermark_boost_factor",
5949 		.data		= &watermark_boost_factor,
5950 		.maxlen		= sizeof(watermark_boost_factor),
5951 		.mode		= 0644,
5952 		.proc_handler	= proc_dointvec_minmax,
5953 		.extra1		= SYSCTL_ZERO,
5954 	},
5955 	{
5956 		.procname	= "watermark_scale_factor",
5957 		.data		= &watermark_scale_factor,
5958 		.maxlen		= sizeof(watermark_scale_factor),
5959 		.mode		= 0644,
5960 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5961 		.extra1		= SYSCTL_ONE,
5962 		.extra2		= SYSCTL_THREE_THOUSAND,
5963 	},
5964 	{
5965 		.procname	= "percpu_pagelist_high_fraction",
5966 		.data		= &percpu_pagelist_high_fraction,
5967 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5968 		.mode		= 0644,
5969 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
5970 		.extra1		= SYSCTL_ZERO,
5971 	},
5972 	{
5973 		.procname	= "lowmem_reserve_ratio",
5974 		.data		= &sysctl_lowmem_reserve_ratio,
5975 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
5976 		.mode		= 0644,
5977 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
5978 	},
5979 #ifdef CONFIG_NUMA
5980 	{
5981 		.procname	= "numa_zonelist_order",
5982 		.data		= &numa_zonelist_order,
5983 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
5984 		.mode		= 0644,
5985 		.proc_handler	= numa_zonelist_order_handler,
5986 	},
5987 	{
5988 		.procname	= "min_unmapped_ratio",
5989 		.data		= &sysctl_min_unmapped_ratio,
5990 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
5991 		.mode		= 0644,
5992 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
5993 		.extra1		= SYSCTL_ZERO,
5994 		.extra2		= SYSCTL_ONE_HUNDRED,
5995 	},
5996 	{
5997 		.procname	= "min_slab_ratio",
5998 		.data		= &sysctl_min_slab_ratio,
5999 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6000 		.mode		= 0644,
6001 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6002 		.extra1		= SYSCTL_ZERO,
6003 		.extra2		= SYSCTL_ONE_HUNDRED,
6004 	},
6005 #endif
6006 	{}
6007 };
6008 
6009 void __init page_alloc_sysctl_init(void)
6010 {
6011 	register_sysctl_init("vm", page_alloc_sysctl_table);
6012 }
6013 
6014 #ifdef CONFIG_CONTIG_ALLOC
6015 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6016 static void alloc_contig_dump_pages(struct list_head *page_list)
6017 {
6018 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6019 
6020 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6021 		struct page *page;
6022 
6023 		dump_stack();
6024 		list_for_each_entry(page, page_list, lru)
6025 			dump_page(page, "migration failure");
6026 	}
6027 }
6028 
6029 /* [start, end) must belong to a single zone. */
6030 int __alloc_contig_migrate_range(struct compact_control *cc,
6031 					unsigned long start, unsigned long end)
6032 {
6033 	/* This function is based on compact_zone() from compaction.c. */
6034 	unsigned int nr_reclaimed;
6035 	unsigned long pfn = start;
6036 	unsigned int tries = 0;
6037 	int ret = 0;
6038 	struct migration_target_control mtc = {
6039 		.nid = zone_to_nid(cc->zone),
6040 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6041 	};
6042 
6043 	lru_cache_disable();
6044 
6045 	while (pfn < end || !list_empty(&cc->migratepages)) {
6046 		if (fatal_signal_pending(current)) {
6047 			ret = -EINTR;
6048 			break;
6049 		}
6050 
6051 		if (list_empty(&cc->migratepages)) {
6052 			cc->nr_migratepages = 0;
6053 			ret = isolate_migratepages_range(cc, pfn, end);
6054 			if (ret && ret != -EAGAIN)
6055 				break;
6056 			pfn = cc->migrate_pfn;
6057 			tries = 0;
6058 		} else if (++tries == 5) {
6059 			ret = -EBUSY;
6060 			break;
6061 		}
6062 
6063 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6064 							&cc->migratepages);
6065 		cc->nr_migratepages -= nr_reclaimed;
6066 
6067 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6068 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6069 
6070 		/*
6071 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6072 		 * to retry again over this error, so do the same here.
6073 		 */
6074 		if (ret == -ENOMEM)
6075 			break;
6076 	}
6077 
6078 	lru_cache_enable();
6079 	if (ret < 0) {
6080 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6081 			alloc_contig_dump_pages(&cc->migratepages);
6082 		putback_movable_pages(&cc->migratepages);
6083 		return ret;
6084 	}
6085 	return 0;
6086 }
6087 
6088 /**
6089  * alloc_contig_range() -- tries to allocate given range of pages
6090  * @start:	start PFN to allocate
6091  * @end:	one-past-the-last PFN to allocate
6092  * @migratetype:	migratetype of the underlying pageblocks (either
6093  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6094  *			in range must have the same migratetype and it must
6095  *			be either of the two.
6096  * @gfp_mask:	GFP mask to use during compaction
6097  *
6098  * The PFN range does not have to be pageblock aligned. The PFN range must
6099  * belong to a single zone.
6100  *
6101  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6102  * pageblocks in the range.  Once isolated, the pageblocks should not
6103  * be modified by others.
6104  *
6105  * Return: zero on success or negative error code.  On success all
6106  * pages which PFN is in [start, end) are allocated for the caller and
6107  * need to be freed with free_contig_range().
6108  */
6109 int alloc_contig_range(unsigned long start, unsigned long end,
6110 		       unsigned migratetype, gfp_t gfp_mask)
6111 {
6112 	unsigned long outer_start, outer_end;
6113 	int order;
6114 	int ret = 0;
6115 
6116 	struct compact_control cc = {
6117 		.nr_migratepages = 0,
6118 		.order = -1,
6119 		.zone = page_zone(pfn_to_page(start)),
6120 		.mode = MIGRATE_SYNC,
6121 		.ignore_skip_hint = true,
6122 		.no_set_skip_hint = true,
6123 		.gfp_mask = current_gfp_context(gfp_mask),
6124 		.alloc_contig = true,
6125 	};
6126 	INIT_LIST_HEAD(&cc.migratepages);
6127 
6128 	/*
6129 	 * What we do here is we mark all pageblocks in range as
6130 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6131 	 * have different sizes, and due to the way page allocator
6132 	 * work, start_isolate_page_range() has special handlings for this.
6133 	 *
6134 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6135 	 * migrate the pages from an unaligned range (ie. pages that
6136 	 * we are interested in). This will put all the pages in
6137 	 * range back to page allocator as MIGRATE_ISOLATE.
6138 	 *
6139 	 * When this is done, we take the pages in range from page
6140 	 * allocator removing them from the buddy system.  This way
6141 	 * page allocator will never consider using them.
6142 	 *
6143 	 * This lets us mark the pageblocks back as
6144 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6145 	 * aligned range but not in the unaligned, original range are
6146 	 * put back to page allocator so that buddy can use them.
6147 	 */
6148 
6149 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6150 	if (ret)
6151 		goto done;
6152 
6153 	drain_all_pages(cc.zone);
6154 
6155 	/*
6156 	 * In case of -EBUSY, we'd like to know which page causes problem.
6157 	 * So, just fall through. test_pages_isolated() has a tracepoint
6158 	 * which will report the busy page.
6159 	 *
6160 	 * It is possible that busy pages could become available before
6161 	 * the call to test_pages_isolated, and the range will actually be
6162 	 * allocated.  So, if we fall through be sure to clear ret so that
6163 	 * -EBUSY is not accidentally used or returned to caller.
6164 	 */
6165 	ret = __alloc_contig_migrate_range(&cc, start, end);
6166 	if (ret && ret != -EBUSY)
6167 		goto done;
6168 	ret = 0;
6169 
6170 	/*
6171 	 * Pages from [start, end) are within a pageblock_nr_pages
6172 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6173 	 * more, all pages in [start, end) are free in page allocator.
6174 	 * What we are going to do is to allocate all pages from
6175 	 * [start, end) (that is remove them from page allocator).
6176 	 *
6177 	 * The only problem is that pages at the beginning and at the
6178 	 * end of interesting range may be not aligned with pages that
6179 	 * page allocator holds, ie. they can be part of higher order
6180 	 * pages.  Because of this, we reserve the bigger range and
6181 	 * once this is done free the pages we are not interested in.
6182 	 *
6183 	 * We don't have to hold zone->lock here because the pages are
6184 	 * isolated thus they won't get removed from buddy.
6185 	 */
6186 
6187 	order = 0;
6188 	outer_start = start;
6189 	while (!PageBuddy(pfn_to_page(outer_start))) {
6190 		if (++order > MAX_ORDER) {
6191 			outer_start = start;
6192 			break;
6193 		}
6194 		outer_start &= ~0UL << order;
6195 	}
6196 
6197 	if (outer_start != start) {
6198 		order = buddy_order(pfn_to_page(outer_start));
6199 
6200 		/*
6201 		 * outer_start page could be small order buddy page and
6202 		 * it doesn't include start page. Adjust outer_start
6203 		 * in this case to report failed page properly
6204 		 * on tracepoint in test_pages_isolated()
6205 		 */
6206 		if (outer_start + (1UL << order) <= start)
6207 			outer_start = start;
6208 	}
6209 
6210 	/* Make sure the range is really isolated. */
6211 	if (test_pages_isolated(outer_start, end, 0)) {
6212 		ret = -EBUSY;
6213 		goto done;
6214 	}
6215 
6216 	/* Grab isolated pages from freelists. */
6217 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6218 	if (!outer_end) {
6219 		ret = -EBUSY;
6220 		goto done;
6221 	}
6222 
6223 	/* Free head and tail (if any) */
6224 	if (start != outer_start)
6225 		free_contig_range(outer_start, start - outer_start);
6226 	if (end != outer_end)
6227 		free_contig_range(end, outer_end - end);
6228 
6229 done:
6230 	undo_isolate_page_range(start, end, migratetype);
6231 	return ret;
6232 }
6233 EXPORT_SYMBOL(alloc_contig_range);
6234 
6235 static int __alloc_contig_pages(unsigned long start_pfn,
6236 				unsigned long nr_pages, gfp_t gfp_mask)
6237 {
6238 	unsigned long end_pfn = start_pfn + nr_pages;
6239 
6240 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6241 				  gfp_mask);
6242 }
6243 
6244 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6245 				   unsigned long nr_pages)
6246 {
6247 	unsigned long i, end_pfn = start_pfn + nr_pages;
6248 	struct page *page;
6249 
6250 	for (i = start_pfn; i < end_pfn; i++) {
6251 		page = pfn_to_online_page(i);
6252 		if (!page)
6253 			return false;
6254 
6255 		if (page_zone(page) != z)
6256 			return false;
6257 
6258 		if (PageReserved(page))
6259 			return false;
6260 
6261 		if (PageHuge(page))
6262 			return false;
6263 	}
6264 	return true;
6265 }
6266 
6267 static bool zone_spans_last_pfn(const struct zone *zone,
6268 				unsigned long start_pfn, unsigned long nr_pages)
6269 {
6270 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6271 
6272 	return zone_spans_pfn(zone, last_pfn);
6273 }
6274 
6275 /**
6276  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6277  * @nr_pages:	Number of contiguous pages to allocate
6278  * @gfp_mask:	GFP mask to limit search and used during compaction
6279  * @nid:	Target node
6280  * @nodemask:	Mask for other possible nodes
6281  *
6282  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6283  * on an applicable zonelist to find a contiguous pfn range which can then be
6284  * tried for allocation with alloc_contig_range(). This routine is intended
6285  * for allocation requests which can not be fulfilled with the buddy allocator.
6286  *
6287  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6288  * power of two, then allocated range is also guaranteed to be aligned to same
6289  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6290  *
6291  * Allocated pages can be freed with free_contig_range() or by manually calling
6292  * __free_page() on each allocated page.
6293  *
6294  * Return: pointer to contiguous pages on success, or NULL if not successful.
6295  */
6296 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6297 				int nid, nodemask_t *nodemask)
6298 {
6299 	unsigned long ret, pfn, flags;
6300 	struct zonelist *zonelist;
6301 	struct zone *zone;
6302 	struct zoneref *z;
6303 
6304 	zonelist = node_zonelist(nid, gfp_mask);
6305 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6306 					gfp_zone(gfp_mask), nodemask) {
6307 		spin_lock_irqsave(&zone->lock, flags);
6308 
6309 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6310 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6311 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6312 				/*
6313 				 * We release the zone lock here because
6314 				 * alloc_contig_range() will also lock the zone
6315 				 * at some point. If there's an allocation
6316 				 * spinning on this lock, it may win the race
6317 				 * and cause alloc_contig_range() to fail...
6318 				 */
6319 				spin_unlock_irqrestore(&zone->lock, flags);
6320 				ret = __alloc_contig_pages(pfn, nr_pages,
6321 							gfp_mask);
6322 				if (!ret)
6323 					return pfn_to_page(pfn);
6324 				spin_lock_irqsave(&zone->lock, flags);
6325 			}
6326 			pfn += nr_pages;
6327 		}
6328 		spin_unlock_irqrestore(&zone->lock, flags);
6329 	}
6330 	return NULL;
6331 }
6332 #endif /* CONFIG_CONTIG_ALLOC */
6333 
6334 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6335 {
6336 	unsigned long count = 0;
6337 
6338 	for (; nr_pages--; pfn++) {
6339 		struct page *page = pfn_to_page(pfn);
6340 
6341 		count += page_count(page) != 1;
6342 		__free_page(page);
6343 	}
6344 	WARN(count != 0, "%lu pages are still in use!\n", count);
6345 }
6346 EXPORT_SYMBOL(free_contig_range);
6347 
6348 /*
6349  * Effectively disable pcplists for the zone by setting the high limit to 0
6350  * and draining all cpus. A concurrent page freeing on another CPU that's about
6351  * to put the page on pcplist will either finish before the drain and the page
6352  * will be drained, or observe the new high limit and skip the pcplist.
6353  *
6354  * Must be paired with a call to zone_pcp_enable().
6355  */
6356 void zone_pcp_disable(struct zone *zone)
6357 {
6358 	mutex_lock(&pcp_batch_high_lock);
6359 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6360 	__drain_all_pages(zone, true);
6361 }
6362 
6363 void zone_pcp_enable(struct zone *zone)
6364 {
6365 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6366 	mutex_unlock(&pcp_batch_high_lock);
6367 }
6368 
6369 void zone_pcp_reset(struct zone *zone)
6370 {
6371 	int cpu;
6372 	struct per_cpu_zonestat *pzstats;
6373 
6374 	if (zone->per_cpu_pageset != &boot_pageset) {
6375 		for_each_online_cpu(cpu) {
6376 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6377 			drain_zonestat(zone, pzstats);
6378 		}
6379 		free_percpu(zone->per_cpu_pageset);
6380 		zone->per_cpu_pageset = &boot_pageset;
6381 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6382 			free_percpu(zone->per_cpu_zonestats);
6383 			zone->per_cpu_zonestats = &boot_zonestats;
6384 		}
6385 	}
6386 }
6387 
6388 #ifdef CONFIG_MEMORY_HOTREMOVE
6389 /*
6390  * All pages in the range must be in a single zone, must not contain holes,
6391  * must span full sections, and must be isolated before calling this function.
6392  */
6393 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6394 {
6395 	unsigned long pfn = start_pfn;
6396 	struct page *page;
6397 	struct zone *zone;
6398 	unsigned int order;
6399 	unsigned long flags;
6400 
6401 	offline_mem_sections(pfn, end_pfn);
6402 	zone = page_zone(pfn_to_page(pfn));
6403 	spin_lock_irqsave(&zone->lock, flags);
6404 	while (pfn < end_pfn) {
6405 		page = pfn_to_page(pfn);
6406 		/*
6407 		 * The HWPoisoned page may be not in buddy system, and
6408 		 * page_count() is not 0.
6409 		 */
6410 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6411 			pfn++;
6412 			continue;
6413 		}
6414 		/*
6415 		 * At this point all remaining PageOffline() pages have a
6416 		 * reference count of 0 and can simply be skipped.
6417 		 */
6418 		if (PageOffline(page)) {
6419 			BUG_ON(page_count(page));
6420 			BUG_ON(PageBuddy(page));
6421 			pfn++;
6422 			continue;
6423 		}
6424 
6425 		BUG_ON(page_count(page));
6426 		BUG_ON(!PageBuddy(page));
6427 		order = buddy_order(page);
6428 		del_page_from_free_list(page, zone, order);
6429 		pfn += (1 << order);
6430 	}
6431 	spin_unlock_irqrestore(&zone->lock, flags);
6432 }
6433 #endif
6434 
6435 /*
6436  * This function returns a stable result only if called under zone lock.
6437  */
6438 bool is_free_buddy_page(struct page *page)
6439 {
6440 	unsigned long pfn = page_to_pfn(page);
6441 	unsigned int order;
6442 
6443 	for (order = 0; order <= MAX_ORDER; order++) {
6444 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6445 
6446 		if (PageBuddy(page_head) &&
6447 		    buddy_order_unsafe(page_head) >= order)
6448 			break;
6449 	}
6450 
6451 	return order <= MAX_ORDER;
6452 }
6453 EXPORT_SYMBOL(is_free_buddy_page);
6454 
6455 #ifdef CONFIG_MEMORY_FAILURE
6456 /*
6457  * Break down a higher-order page in sub-pages, and keep our target out of
6458  * buddy allocator.
6459  */
6460 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6461 				   struct page *target, int low, int high,
6462 				   int migratetype)
6463 {
6464 	unsigned long size = 1 << high;
6465 	struct page *current_buddy, *next_page;
6466 
6467 	while (high > low) {
6468 		high--;
6469 		size >>= 1;
6470 
6471 		if (target >= &page[size]) {
6472 			next_page = page + size;
6473 			current_buddy = page;
6474 		} else {
6475 			next_page = page;
6476 			current_buddy = page + size;
6477 		}
6478 		page = next_page;
6479 
6480 		if (set_page_guard(zone, current_buddy, high, migratetype))
6481 			continue;
6482 
6483 		if (current_buddy != target) {
6484 			add_to_free_list(current_buddy, zone, high, migratetype);
6485 			set_buddy_order(current_buddy, high);
6486 		}
6487 	}
6488 }
6489 
6490 /*
6491  * Take a page that will be marked as poisoned off the buddy allocator.
6492  */
6493 bool take_page_off_buddy(struct page *page)
6494 {
6495 	struct zone *zone = page_zone(page);
6496 	unsigned long pfn = page_to_pfn(page);
6497 	unsigned long flags;
6498 	unsigned int order;
6499 	bool ret = false;
6500 
6501 	spin_lock_irqsave(&zone->lock, flags);
6502 	for (order = 0; order <= MAX_ORDER; order++) {
6503 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6504 		int page_order = buddy_order(page_head);
6505 
6506 		if (PageBuddy(page_head) && page_order >= order) {
6507 			unsigned long pfn_head = page_to_pfn(page_head);
6508 			int migratetype = get_pfnblock_migratetype(page_head,
6509 								   pfn_head);
6510 
6511 			del_page_from_free_list(page_head, zone, page_order);
6512 			break_down_buddy_pages(zone, page_head, page, 0,
6513 						page_order, migratetype);
6514 			SetPageHWPoisonTakenOff(page);
6515 			if (!is_migrate_isolate(migratetype))
6516 				__mod_zone_freepage_state(zone, -1, migratetype);
6517 			ret = true;
6518 			break;
6519 		}
6520 		if (page_count(page_head) > 0)
6521 			break;
6522 	}
6523 	spin_unlock_irqrestore(&zone->lock, flags);
6524 	return ret;
6525 }
6526 
6527 /*
6528  * Cancel takeoff done by take_page_off_buddy().
6529  */
6530 bool put_page_back_buddy(struct page *page)
6531 {
6532 	struct zone *zone = page_zone(page);
6533 	unsigned long pfn = page_to_pfn(page);
6534 	unsigned long flags;
6535 	int migratetype = get_pfnblock_migratetype(page, pfn);
6536 	bool ret = false;
6537 
6538 	spin_lock_irqsave(&zone->lock, flags);
6539 	if (put_page_testzero(page)) {
6540 		ClearPageHWPoisonTakenOff(page);
6541 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6542 		if (TestClearPageHWPoison(page)) {
6543 			ret = true;
6544 		}
6545 	}
6546 	spin_unlock_irqrestore(&zone->lock, flags);
6547 
6548 	return ret;
6549 }
6550 #endif
6551 
6552 #ifdef CONFIG_ZONE_DMA
6553 bool has_managed_dma(void)
6554 {
6555 	struct pglist_data *pgdat;
6556 
6557 	for_each_online_pgdat(pgdat) {
6558 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6559 
6560 		if (managed_zone(zone))
6561 			return true;
6562 	}
6563 	return false;
6564 }
6565 #endif /* CONFIG_ZONE_DMA */
6566 
6567 #ifdef CONFIG_UNACCEPTED_MEMORY
6568 
6569 /* Counts number of zones with unaccepted pages. */
6570 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6571 
6572 static bool lazy_accept = true;
6573 
6574 static int __init accept_memory_parse(char *p)
6575 {
6576 	if (!strcmp(p, "lazy")) {
6577 		lazy_accept = true;
6578 		return 0;
6579 	} else if (!strcmp(p, "eager")) {
6580 		lazy_accept = false;
6581 		return 0;
6582 	} else {
6583 		return -EINVAL;
6584 	}
6585 }
6586 early_param("accept_memory", accept_memory_parse);
6587 
6588 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6589 {
6590 	phys_addr_t start = page_to_phys(page);
6591 	phys_addr_t end = start + (PAGE_SIZE << order);
6592 
6593 	return range_contains_unaccepted_memory(start, end);
6594 }
6595 
6596 static void accept_page(struct page *page, unsigned int order)
6597 {
6598 	phys_addr_t start = page_to_phys(page);
6599 
6600 	accept_memory(start, start + (PAGE_SIZE << order));
6601 }
6602 
6603 static bool try_to_accept_memory_one(struct zone *zone)
6604 {
6605 	unsigned long flags;
6606 	struct page *page;
6607 	bool last;
6608 
6609 	if (list_empty(&zone->unaccepted_pages))
6610 		return false;
6611 
6612 	spin_lock_irqsave(&zone->lock, flags);
6613 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6614 					struct page, lru);
6615 	if (!page) {
6616 		spin_unlock_irqrestore(&zone->lock, flags);
6617 		return false;
6618 	}
6619 
6620 	list_del(&page->lru);
6621 	last = list_empty(&zone->unaccepted_pages);
6622 
6623 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6624 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6625 	spin_unlock_irqrestore(&zone->lock, flags);
6626 
6627 	accept_page(page, MAX_ORDER);
6628 
6629 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6630 
6631 	if (last)
6632 		static_branch_dec(&zones_with_unaccepted_pages);
6633 
6634 	return true;
6635 }
6636 
6637 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6638 {
6639 	long to_accept;
6640 	int ret = false;
6641 
6642 	/* How much to accept to get to high watermark? */
6643 	to_accept = high_wmark_pages(zone) -
6644 		    (zone_page_state(zone, NR_FREE_PAGES) -
6645 		    __zone_watermark_unusable_free(zone, order, 0));
6646 
6647 	/* Accept at least one page */
6648 	do {
6649 		if (!try_to_accept_memory_one(zone))
6650 			break;
6651 		ret = true;
6652 		to_accept -= MAX_ORDER_NR_PAGES;
6653 	} while (to_accept > 0);
6654 
6655 	return ret;
6656 }
6657 
6658 static inline bool has_unaccepted_memory(void)
6659 {
6660 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6661 }
6662 
6663 static bool __free_unaccepted(struct page *page)
6664 {
6665 	struct zone *zone = page_zone(page);
6666 	unsigned long flags;
6667 	bool first = false;
6668 
6669 	if (!lazy_accept)
6670 		return false;
6671 
6672 	spin_lock_irqsave(&zone->lock, flags);
6673 	first = list_empty(&zone->unaccepted_pages);
6674 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6675 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6676 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6677 	spin_unlock_irqrestore(&zone->lock, flags);
6678 
6679 	if (first)
6680 		static_branch_inc(&zones_with_unaccepted_pages);
6681 
6682 	return true;
6683 }
6684 
6685 #else
6686 
6687 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6688 {
6689 	return false;
6690 }
6691 
6692 static void accept_page(struct page *page, unsigned int order)
6693 {
6694 }
6695 
6696 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6697 {
6698 	return false;
6699 }
6700 
6701 static inline bool has_unaccepted_memory(void)
6702 {
6703 	return false;
6704 }
6705 
6706 static bool __free_unaccepted(struct page *page)
6707 {
6708 	BUILD_BUG();
6709 	return false;
6710 }
6711 
6712 #endif /* CONFIG_UNACCEPTED_MEMORY */
6713