xref: /openbmc/linux/mm/page_alloc.c (revision da2014a2)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53 
54 /*
55  * Array of node states.
56  */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 	[N_POSSIBLE] = NODE_MASK_ALL,
59 	[N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 	[N_CPU] = { { [0] = 1UL } },
66 #endif	/* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69 
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74 
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78 
79 static void __free_pages_ok(struct page *page, unsigned int order);
80 
81 /*
82  * results with 256, 32 in the lowmem_reserve sysctl:
83  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84  *	1G machine -> (16M dma, 784M normal, 224M high)
85  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88  *
89  * TBD: should special case ZONE_DMA32 machines here - in those we normally
90  * don't need any ZONE_NORMAL reservation
91  */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 	 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 	 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 	 32,
101 #endif
102 	 32,
103 };
104 
105 EXPORT_SYMBOL(totalram_pages);
106 
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 	 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 	 "DMA32",
113 #endif
114 	 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 	 "HighMem",
117 #endif
118 	 "Movable",
119 };
120 
121 int min_free_kbytes = 1024;
122 
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126 
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128   /*
129    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130    * ranges of memory (RAM) that may be registered with add_active_range().
131    * Ranges passed to add_active_range() will be merged if possible
132    * so the number of times add_active_range() can be called is
133    * related to the number of nodes and the number of holes
134    */
135   #ifdef CONFIG_MAX_ACTIVE_REGIONS
136     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138   #else
139     #if MAX_NUMNODES >= 32
140       /* If there can be many nodes, allow up to 50 holes per node */
141       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142     #else
143       /* By default, allow up to 256 distinct regions */
144       #define MAX_ACTIVE_REGIONS 256
145     #endif
146   #endif
147 
148   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149   static int __meminitdata nr_nodemap_entries;
150   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156   static unsigned long __initdata required_kernelcore;
157   static unsigned long __initdata required_movablecore;
158   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 
160   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161   int movable_zone;
162   EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169 
170 int page_group_by_mobility_disabled __read_mostly;
171 
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 	set_pageblock_flags_group(page, (unsigned long)migratetype,
175 					PB_migrate, PB_migrate_end);
176 }
177 
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 	int ret = 0;
182 	unsigned seq;
183 	unsigned long pfn = page_to_pfn(page);
184 
185 	do {
186 		seq = zone_span_seqbegin(zone);
187 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 			ret = 1;
189 		else if (pfn < zone->zone_start_pfn)
190 			ret = 1;
191 	} while (zone_span_seqretry(zone, seq));
192 
193 	return ret;
194 }
195 
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 	if (!pfn_valid_within(page_to_pfn(page)))
199 		return 0;
200 	if (zone != page_zone(page))
201 		return 0;
202 
203 	return 1;
204 }
205 /*
206  * Temporary debugging check for pages not lying within a given zone.
207  */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 	if (page_outside_zone_boundaries(zone, page))
211 		return 1;
212 	if (!page_is_consistent(zone, page))
213 		return 1;
214 
215 	return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 	return 0;
221 }
222 #endif
223 
224 static void bad_page(struct page *page)
225 {
226 	void *pc = page_get_page_cgroup(page);
227 
228 	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 		current->comm, page, (int)(2*sizeof(unsigned long)),
231 		(unsigned long)page->flags, page->mapping,
232 		page_mapcount(page), page_count(page));
233 	if (pc) {
234 		printk(KERN_EMERG "cgroup:%p\n", pc);
235 		page_reset_bad_cgroup(page);
236 	}
237 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 		KERN_EMERG "Backtrace:\n");
239 	dump_stack();
240 	page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 	set_page_count(page, 0);
242 	reset_page_mapcount(page);
243 	page->mapping = NULL;
244 	add_taint(TAINT_BAD_PAGE);
245 }
246 
247 /*
248  * Higher-order pages are called "compound pages".  They are structured thusly:
249  *
250  * The first PAGE_SIZE page is called the "head page".
251  *
252  * The remaining PAGE_SIZE pages are called "tail pages".
253  *
254  * All pages have PG_compound set.  All pages have their ->private pointing at
255  * the head page (even the head page has this).
256  *
257  * The first tail page's ->lru.next holds the address of the compound page's
258  * put_page() function.  Its ->lru.prev holds the order of allocation.
259  * This usage means that zero-order pages may not be compound.
260  */
261 
262 static void free_compound_page(struct page *page)
263 {
264 	__free_pages_ok(page, compound_order(page));
265 }
266 
267 void prep_compound_page(struct page *page, unsigned long order)
268 {
269 	int i;
270 	int nr_pages = 1 << order;
271 
272 	set_compound_page_dtor(page, free_compound_page);
273 	set_compound_order(page, order);
274 	__SetPageHead(page);
275 	for (i = 1; i < nr_pages; i++) {
276 		struct page *p = page + i;
277 
278 		__SetPageTail(p);
279 		p->first_page = page;
280 	}
281 }
282 
283 static void destroy_compound_page(struct page *page, unsigned long order)
284 {
285 	int i;
286 	int nr_pages = 1 << order;
287 
288 	if (unlikely(compound_order(page) != order))
289 		bad_page(page);
290 
291 	if (unlikely(!PageHead(page)))
292 			bad_page(page);
293 	__ClearPageHead(page);
294 	for (i = 1; i < nr_pages; i++) {
295 		struct page *p = page + i;
296 
297 		if (unlikely(!PageTail(p) |
298 				(p->first_page != page)))
299 			bad_page(page);
300 		__ClearPageTail(p);
301 	}
302 }
303 
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305 {
306 	int i;
307 
308 	/*
309 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
311 	 */
312 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 	for (i = 0; i < (1 << order); i++)
314 		clear_highpage(page + i);
315 }
316 
317 static inline void set_page_order(struct page *page, int order)
318 {
319 	set_page_private(page, order);
320 	__SetPageBuddy(page);
321 }
322 
323 static inline void rmv_page_order(struct page *page)
324 {
325 	__ClearPageBuddy(page);
326 	set_page_private(page, 0);
327 }
328 
329 /*
330  * Locate the struct page for both the matching buddy in our
331  * pair (buddy1) and the combined O(n+1) page they form (page).
332  *
333  * 1) Any buddy B1 will have an order O twin B2 which satisfies
334  * the following equation:
335  *     B2 = B1 ^ (1 << O)
336  * For example, if the starting buddy (buddy2) is #8 its order
337  * 1 buddy is #10:
338  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339  *
340  * 2) Any buddy B will have an order O+1 parent P which
341  * satisfies the following equation:
342  *     P = B & ~(1 << O)
343  *
344  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345  */
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348 {
349 	unsigned long buddy_idx = page_idx ^ (1 << order);
350 
351 	return page + (buddy_idx - page_idx);
352 }
353 
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
356 {
357 	return (page_idx & ~(1 << order));
358 }
359 
360 /*
361  * This function checks whether a page is free && is the buddy
362  * we can do coalesce a page and its buddy if
363  * (a) the buddy is not in a hole &&
364  * (b) the buddy is in the buddy system &&
365  * (c) a page and its buddy have the same order &&
366  * (d) a page and its buddy are in the same zone.
367  *
368  * For recording whether a page is in the buddy system, we use PG_buddy.
369  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370  *
371  * For recording page's order, we use page_private(page).
372  */
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 								int order)
375 {
376 	if (!pfn_valid_within(page_to_pfn(buddy)))
377 		return 0;
378 
379 	if (page_zone_id(page) != page_zone_id(buddy))
380 		return 0;
381 
382 	if (PageBuddy(buddy) && page_order(buddy) == order) {
383 		BUG_ON(page_count(buddy) != 0);
384 		return 1;
385 	}
386 	return 0;
387 }
388 
389 /*
390  * Freeing function for a buddy system allocator.
391  *
392  * The concept of a buddy system is to maintain direct-mapped table
393  * (containing bit values) for memory blocks of various "orders".
394  * The bottom level table contains the map for the smallest allocatable
395  * units of memory (here, pages), and each level above it describes
396  * pairs of units from the levels below, hence, "buddies".
397  * At a high level, all that happens here is marking the table entry
398  * at the bottom level available, and propagating the changes upward
399  * as necessary, plus some accounting needed to play nicely with other
400  * parts of the VM system.
401  * At each level, we keep a list of pages, which are heads of continuous
402  * free pages of length of (1 << order) and marked with PG_buddy. Page's
403  * order is recorded in page_private(page) field.
404  * So when we are allocating or freeing one, we can derive the state of the
405  * other.  That is, if we allocate a small block, and both were
406  * free, the remainder of the region must be split into blocks.
407  * If a block is freed, and its buddy is also free, then this
408  * triggers coalescing into a block of larger size.
409  *
410  * -- wli
411  */
412 
413 static inline void __free_one_page(struct page *page,
414 		struct zone *zone, unsigned int order)
415 {
416 	unsigned long page_idx;
417 	int order_size = 1 << order;
418 	int migratetype = get_pageblock_migratetype(page);
419 
420 	if (unlikely(PageCompound(page)))
421 		destroy_compound_page(page, order);
422 
423 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424 
425 	VM_BUG_ON(page_idx & (order_size - 1));
426 	VM_BUG_ON(bad_range(zone, page));
427 
428 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 	while (order < MAX_ORDER-1) {
430 		unsigned long combined_idx;
431 		struct page *buddy;
432 
433 		buddy = __page_find_buddy(page, page_idx, order);
434 		if (!page_is_buddy(page, buddy, order))
435 			break;
436 
437 		/* Our buddy is free, merge with it and move up one order. */
438 		list_del(&buddy->lru);
439 		zone->free_area[order].nr_free--;
440 		rmv_page_order(buddy);
441 		combined_idx = __find_combined_index(page_idx, order);
442 		page = page + (combined_idx - page_idx);
443 		page_idx = combined_idx;
444 		order++;
445 	}
446 	set_page_order(page, order);
447 	list_add(&page->lru,
448 		&zone->free_area[order].free_list[migratetype]);
449 	zone->free_area[order].nr_free++;
450 }
451 
452 static inline int free_pages_check(struct page *page)
453 {
454 	if (unlikely(page_mapcount(page) |
455 		(page->mapping != NULL)  |
456 		(page_get_page_cgroup(page) != NULL) |
457 		(page_count(page) != 0)  |
458 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
459 		bad_page(page);
460 	if (PageDirty(page))
461 		__ClearPageDirty(page);
462 	/*
463 	 * For now, we report if PG_reserved was found set, but do not
464 	 * clear it, and do not free the page.  But we shall soon need
465 	 * to do more, for when the ZERO_PAGE count wraps negative.
466 	 */
467 	return PageReserved(page);
468 }
469 
470 /*
471  * Frees a list of pages.
472  * Assumes all pages on list are in same zone, and of same order.
473  * count is the number of pages to free.
474  *
475  * If the zone was previously in an "all pages pinned" state then look to
476  * see if this freeing clears that state.
477  *
478  * And clear the zone's pages_scanned counter, to hold off the "all pages are
479  * pinned" detection logic.
480  */
481 static void free_pages_bulk(struct zone *zone, int count,
482 					struct list_head *list, int order)
483 {
484 	spin_lock(&zone->lock);
485 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
486 	zone->pages_scanned = 0;
487 	while (count--) {
488 		struct page *page;
489 
490 		VM_BUG_ON(list_empty(list));
491 		page = list_entry(list->prev, struct page, lru);
492 		/* have to delete it as __free_one_page list manipulates */
493 		list_del(&page->lru);
494 		__free_one_page(page, zone, order);
495 	}
496 	spin_unlock(&zone->lock);
497 }
498 
499 static void free_one_page(struct zone *zone, struct page *page, int order)
500 {
501 	spin_lock(&zone->lock);
502 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 	zone->pages_scanned = 0;
504 	__free_one_page(page, zone, order);
505 	spin_unlock(&zone->lock);
506 }
507 
508 static void __free_pages_ok(struct page *page, unsigned int order)
509 {
510 	unsigned long flags;
511 	int i;
512 	int reserved = 0;
513 
514 	for (i = 0 ; i < (1 << order) ; ++i)
515 		reserved += free_pages_check(page + i);
516 	if (reserved)
517 		return;
518 
519 	if (!PageHighMem(page)) {
520 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
521 		debug_check_no_obj_freed(page_address(page),
522 					   PAGE_SIZE << order);
523 	}
524 	arch_free_page(page, order);
525 	kernel_map_pages(page, 1 << order, 0);
526 
527 	local_irq_save(flags);
528 	__count_vm_events(PGFREE, 1 << order);
529 	free_one_page(page_zone(page), page, order);
530 	local_irq_restore(flags);
531 }
532 
533 /*
534  * permit the bootmem allocator to evade page validation on high-order frees
535  */
536 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
537 {
538 	if (order == 0) {
539 		__ClearPageReserved(page);
540 		set_page_count(page, 0);
541 		set_page_refcounted(page);
542 		__free_page(page);
543 	} else {
544 		int loop;
545 
546 		prefetchw(page);
547 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
548 			struct page *p = &page[loop];
549 
550 			if (loop + 1 < BITS_PER_LONG)
551 				prefetchw(p + 1);
552 			__ClearPageReserved(p);
553 			set_page_count(p, 0);
554 		}
555 
556 		set_page_refcounted(page);
557 		__free_pages(page, order);
558 	}
559 }
560 
561 
562 /*
563  * The order of subdivision here is critical for the IO subsystem.
564  * Please do not alter this order without good reasons and regression
565  * testing. Specifically, as large blocks of memory are subdivided,
566  * the order in which smaller blocks are delivered depends on the order
567  * they're subdivided in this function. This is the primary factor
568  * influencing the order in which pages are delivered to the IO
569  * subsystem according to empirical testing, and this is also justified
570  * by considering the behavior of a buddy system containing a single
571  * large block of memory acted on by a series of small allocations.
572  * This behavior is a critical factor in sglist merging's success.
573  *
574  * -- wli
575  */
576 static inline void expand(struct zone *zone, struct page *page,
577 	int low, int high, struct free_area *area,
578 	int migratetype)
579 {
580 	unsigned long size = 1 << high;
581 
582 	while (high > low) {
583 		area--;
584 		high--;
585 		size >>= 1;
586 		VM_BUG_ON(bad_range(zone, &page[size]));
587 		list_add(&page[size].lru, &area->free_list[migratetype]);
588 		area->nr_free++;
589 		set_page_order(&page[size], high);
590 	}
591 }
592 
593 /*
594  * This page is about to be returned from the page allocator
595  */
596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
597 {
598 	if (unlikely(page_mapcount(page) |
599 		(page->mapping != NULL)  |
600 		(page_get_page_cgroup(page) != NULL) |
601 		(page_count(page) != 0)  |
602 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
603 		bad_page(page);
604 
605 	/*
606 	 * For now, we report if PG_reserved was found set, but do not
607 	 * clear it, and do not allocate the page: as a safety net.
608 	 */
609 	if (PageReserved(page))
610 		return 1;
611 
612 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
613 			1 << PG_referenced | 1 << PG_arch_1 |
614 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
615 	set_page_private(page, 0);
616 	set_page_refcounted(page);
617 
618 	arch_alloc_page(page, order);
619 	kernel_map_pages(page, 1 << order, 1);
620 
621 	if (gfp_flags & __GFP_ZERO)
622 		prep_zero_page(page, order, gfp_flags);
623 
624 	if (order && (gfp_flags & __GFP_COMP))
625 		prep_compound_page(page, order);
626 
627 	return 0;
628 }
629 
630 /*
631  * Go through the free lists for the given migratetype and remove
632  * the smallest available page from the freelists
633  */
634 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
635 						int migratetype)
636 {
637 	unsigned int current_order;
638 	struct free_area * area;
639 	struct page *page;
640 
641 	/* Find a page of the appropriate size in the preferred list */
642 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
643 		area = &(zone->free_area[current_order]);
644 		if (list_empty(&area->free_list[migratetype]))
645 			continue;
646 
647 		page = list_entry(area->free_list[migratetype].next,
648 							struct page, lru);
649 		list_del(&page->lru);
650 		rmv_page_order(page);
651 		area->nr_free--;
652 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
653 		expand(zone, page, order, current_order, area, migratetype);
654 		return page;
655 	}
656 
657 	return NULL;
658 }
659 
660 
661 /*
662  * This array describes the order lists are fallen back to when
663  * the free lists for the desirable migrate type are depleted
664  */
665 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
666 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
667 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
668 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
669 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
670 };
671 
672 /*
673  * Move the free pages in a range to the free lists of the requested type.
674  * Note that start_page and end_pages are not aligned on a pageblock
675  * boundary. If alignment is required, use move_freepages_block()
676  */
677 static int move_freepages(struct zone *zone,
678 			  struct page *start_page, struct page *end_page,
679 			  int migratetype)
680 {
681 	struct page *page;
682 	unsigned long order;
683 	int pages_moved = 0;
684 
685 #ifndef CONFIG_HOLES_IN_ZONE
686 	/*
687 	 * page_zone is not safe to call in this context when
688 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
689 	 * anyway as we check zone boundaries in move_freepages_block().
690 	 * Remove at a later date when no bug reports exist related to
691 	 * grouping pages by mobility
692 	 */
693 	BUG_ON(page_zone(start_page) != page_zone(end_page));
694 #endif
695 
696 	for (page = start_page; page <= end_page;) {
697 		if (!pfn_valid_within(page_to_pfn(page))) {
698 			page++;
699 			continue;
700 		}
701 
702 		if (!PageBuddy(page)) {
703 			page++;
704 			continue;
705 		}
706 
707 		order = page_order(page);
708 		list_del(&page->lru);
709 		list_add(&page->lru,
710 			&zone->free_area[order].free_list[migratetype]);
711 		page += 1 << order;
712 		pages_moved += 1 << order;
713 	}
714 
715 	return pages_moved;
716 }
717 
718 static int move_freepages_block(struct zone *zone, struct page *page,
719 				int migratetype)
720 {
721 	unsigned long start_pfn, end_pfn;
722 	struct page *start_page, *end_page;
723 
724 	start_pfn = page_to_pfn(page);
725 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
726 	start_page = pfn_to_page(start_pfn);
727 	end_page = start_page + pageblock_nr_pages - 1;
728 	end_pfn = start_pfn + pageblock_nr_pages - 1;
729 
730 	/* Do not cross zone boundaries */
731 	if (start_pfn < zone->zone_start_pfn)
732 		start_page = page;
733 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
734 		return 0;
735 
736 	return move_freepages(zone, start_page, end_page, migratetype);
737 }
738 
739 /* Remove an element from the buddy allocator from the fallback list */
740 static struct page *__rmqueue_fallback(struct zone *zone, int order,
741 						int start_migratetype)
742 {
743 	struct free_area * area;
744 	int current_order;
745 	struct page *page;
746 	int migratetype, i;
747 
748 	/* Find the largest possible block of pages in the other list */
749 	for (current_order = MAX_ORDER-1; current_order >= order;
750 						--current_order) {
751 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
752 			migratetype = fallbacks[start_migratetype][i];
753 
754 			/* MIGRATE_RESERVE handled later if necessary */
755 			if (migratetype == MIGRATE_RESERVE)
756 				continue;
757 
758 			area = &(zone->free_area[current_order]);
759 			if (list_empty(&area->free_list[migratetype]))
760 				continue;
761 
762 			page = list_entry(area->free_list[migratetype].next,
763 					struct page, lru);
764 			area->nr_free--;
765 
766 			/*
767 			 * If breaking a large block of pages, move all free
768 			 * pages to the preferred allocation list. If falling
769 			 * back for a reclaimable kernel allocation, be more
770 			 * agressive about taking ownership of free pages
771 			 */
772 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
773 					start_migratetype == MIGRATE_RECLAIMABLE) {
774 				unsigned long pages;
775 				pages = move_freepages_block(zone, page,
776 								start_migratetype);
777 
778 				/* Claim the whole block if over half of it is free */
779 				if (pages >= (1 << (pageblock_order-1)))
780 					set_pageblock_migratetype(page,
781 								start_migratetype);
782 
783 				migratetype = start_migratetype;
784 			}
785 
786 			/* Remove the page from the freelists */
787 			list_del(&page->lru);
788 			rmv_page_order(page);
789 			__mod_zone_page_state(zone, NR_FREE_PAGES,
790 							-(1UL << order));
791 
792 			if (current_order == pageblock_order)
793 				set_pageblock_migratetype(page,
794 							start_migratetype);
795 
796 			expand(zone, page, order, current_order, area, migratetype);
797 			return page;
798 		}
799 	}
800 
801 	/* Use MIGRATE_RESERVE rather than fail an allocation */
802 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
803 }
804 
805 /*
806  * Do the hard work of removing an element from the buddy allocator.
807  * Call me with the zone->lock already held.
808  */
809 static struct page *__rmqueue(struct zone *zone, unsigned int order,
810 						int migratetype)
811 {
812 	struct page *page;
813 
814 	page = __rmqueue_smallest(zone, order, migratetype);
815 
816 	if (unlikely(!page))
817 		page = __rmqueue_fallback(zone, order, migratetype);
818 
819 	return page;
820 }
821 
822 /*
823  * Obtain a specified number of elements from the buddy allocator, all under
824  * a single hold of the lock, for efficiency.  Add them to the supplied list.
825  * Returns the number of new pages which were placed at *list.
826  */
827 static int rmqueue_bulk(struct zone *zone, unsigned int order,
828 			unsigned long count, struct list_head *list,
829 			int migratetype)
830 {
831 	int i;
832 
833 	spin_lock(&zone->lock);
834 	for (i = 0; i < count; ++i) {
835 		struct page *page = __rmqueue(zone, order, migratetype);
836 		if (unlikely(page == NULL))
837 			break;
838 
839 		/*
840 		 * Split buddy pages returned by expand() are received here
841 		 * in physical page order. The page is added to the callers and
842 		 * list and the list head then moves forward. From the callers
843 		 * perspective, the linked list is ordered by page number in
844 		 * some conditions. This is useful for IO devices that can
845 		 * merge IO requests if the physical pages are ordered
846 		 * properly.
847 		 */
848 		list_add(&page->lru, list);
849 		set_page_private(page, migratetype);
850 		list = &page->lru;
851 	}
852 	spin_unlock(&zone->lock);
853 	return i;
854 }
855 
856 #ifdef CONFIG_NUMA
857 /*
858  * Called from the vmstat counter updater to drain pagesets of this
859  * currently executing processor on remote nodes after they have
860  * expired.
861  *
862  * Note that this function must be called with the thread pinned to
863  * a single processor.
864  */
865 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
866 {
867 	unsigned long flags;
868 	int to_drain;
869 
870 	local_irq_save(flags);
871 	if (pcp->count >= pcp->batch)
872 		to_drain = pcp->batch;
873 	else
874 		to_drain = pcp->count;
875 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
876 	pcp->count -= to_drain;
877 	local_irq_restore(flags);
878 }
879 #endif
880 
881 /*
882  * Drain pages of the indicated processor.
883  *
884  * The processor must either be the current processor and the
885  * thread pinned to the current processor or a processor that
886  * is not online.
887  */
888 static void drain_pages(unsigned int cpu)
889 {
890 	unsigned long flags;
891 	struct zone *zone;
892 
893 	for_each_zone(zone) {
894 		struct per_cpu_pageset *pset;
895 		struct per_cpu_pages *pcp;
896 
897 		if (!populated_zone(zone))
898 			continue;
899 
900 		pset = zone_pcp(zone, cpu);
901 
902 		pcp = &pset->pcp;
903 		local_irq_save(flags);
904 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
905 		pcp->count = 0;
906 		local_irq_restore(flags);
907 	}
908 }
909 
910 /*
911  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
912  */
913 void drain_local_pages(void *arg)
914 {
915 	drain_pages(smp_processor_id());
916 }
917 
918 /*
919  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
920  */
921 void drain_all_pages(void)
922 {
923 	on_each_cpu(drain_local_pages, NULL, 1);
924 }
925 
926 #ifdef CONFIG_HIBERNATION
927 
928 void mark_free_pages(struct zone *zone)
929 {
930 	unsigned long pfn, max_zone_pfn;
931 	unsigned long flags;
932 	int order, t;
933 	struct list_head *curr;
934 
935 	if (!zone->spanned_pages)
936 		return;
937 
938 	spin_lock_irqsave(&zone->lock, flags);
939 
940 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
941 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
942 		if (pfn_valid(pfn)) {
943 			struct page *page = pfn_to_page(pfn);
944 
945 			if (!swsusp_page_is_forbidden(page))
946 				swsusp_unset_page_free(page);
947 		}
948 
949 	for_each_migratetype_order(order, t) {
950 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
951 			unsigned long i;
952 
953 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
954 			for (i = 0; i < (1UL << order); i++)
955 				swsusp_set_page_free(pfn_to_page(pfn + i));
956 		}
957 	}
958 	spin_unlock_irqrestore(&zone->lock, flags);
959 }
960 #endif /* CONFIG_PM */
961 
962 /*
963  * Free a 0-order page
964  */
965 static void free_hot_cold_page(struct page *page, int cold)
966 {
967 	struct zone *zone = page_zone(page);
968 	struct per_cpu_pages *pcp;
969 	unsigned long flags;
970 
971 	if (PageAnon(page))
972 		page->mapping = NULL;
973 	if (free_pages_check(page))
974 		return;
975 
976 	if (!PageHighMem(page)) {
977 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
978 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
979 	}
980 	arch_free_page(page, 0);
981 	kernel_map_pages(page, 1, 0);
982 
983 	pcp = &zone_pcp(zone, get_cpu())->pcp;
984 	local_irq_save(flags);
985 	__count_vm_event(PGFREE);
986 	if (cold)
987 		list_add_tail(&page->lru, &pcp->list);
988 	else
989 		list_add(&page->lru, &pcp->list);
990 	set_page_private(page, get_pageblock_migratetype(page));
991 	pcp->count++;
992 	if (pcp->count >= pcp->high) {
993 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
994 		pcp->count -= pcp->batch;
995 	}
996 	local_irq_restore(flags);
997 	put_cpu();
998 }
999 
1000 void free_hot_page(struct page *page)
1001 {
1002 	free_hot_cold_page(page, 0);
1003 }
1004 
1005 void free_cold_page(struct page *page)
1006 {
1007 	free_hot_cold_page(page, 1);
1008 }
1009 
1010 /*
1011  * split_page takes a non-compound higher-order page, and splits it into
1012  * n (1<<order) sub-pages: page[0..n]
1013  * Each sub-page must be freed individually.
1014  *
1015  * Note: this is probably too low level an operation for use in drivers.
1016  * Please consult with lkml before using this in your driver.
1017  */
1018 void split_page(struct page *page, unsigned int order)
1019 {
1020 	int i;
1021 
1022 	VM_BUG_ON(PageCompound(page));
1023 	VM_BUG_ON(!page_count(page));
1024 	for (i = 1; i < (1 << order); i++)
1025 		set_page_refcounted(page + i);
1026 }
1027 
1028 /*
1029  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1030  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1031  * or two.
1032  */
1033 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1034 			struct zone *zone, int order, gfp_t gfp_flags)
1035 {
1036 	unsigned long flags;
1037 	struct page *page;
1038 	int cold = !!(gfp_flags & __GFP_COLD);
1039 	int cpu;
1040 	int migratetype = allocflags_to_migratetype(gfp_flags);
1041 
1042 again:
1043 	cpu  = get_cpu();
1044 	if (likely(order == 0)) {
1045 		struct per_cpu_pages *pcp;
1046 
1047 		pcp = &zone_pcp(zone, cpu)->pcp;
1048 		local_irq_save(flags);
1049 		if (!pcp->count) {
1050 			pcp->count = rmqueue_bulk(zone, 0,
1051 					pcp->batch, &pcp->list, migratetype);
1052 			if (unlikely(!pcp->count))
1053 				goto failed;
1054 		}
1055 
1056 		/* Find a page of the appropriate migrate type */
1057 		if (cold) {
1058 			list_for_each_entry_reverse(page, &pcp->list, lru)
1059 				if (page_private(page) == migratetype)
1060 					break;
1061 		} else {
1062 			list_for_each_entry(page, &pcp->list, lru)
1063 				if (page_private(page) == migratetype)
1064 					break;
1065 		}
1066 
1067 		/* Allocate more to the pcp list if necessary */
1068 		if (unlikely(&page->lru == &pcp->list)) {
1069 			pcp->count += rmqueue_bulk(zone, 0,
1070 					pcp->batch, &pcp->list, migratetype);
1071 			page = list_entry(pcp->list.next, struct page, lru);
1072 		}
1073 
1074 		list_del(&page->lru);
1075 		pcp->count--;
1076 	} else {
1077 		spin_lock_irqsave(&zone->lock, flags);
1078 		page = __rmqueue(zone, order, migratetype);
1079 		spin_unlock(&zone->lock);
1080 		if (!page)
1081 			goto failed;
1082 	}
1083 
1084 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1085 	zone_statistics(preferred_zone, zone);
1086 	local_irq_restore(flags);
1087 	put_cpu();
1088 
1089 	VM_BUG_ON(bad_range(zone, page));
1090 	if (prep_new_page(page, order, gfp_flags))
1091 		goto again;
1092 	return page;
1093 
1094 failed:
1095 	local_irq_restore(flags);
1096 	put_cpu();
1097 	return NULL;
1098 }
1099 
1100 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1101 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1102 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1103 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1104 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1105 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1106 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1107 
1108 #ifdef CONFIG_FAIL_PAGE_ALLOC
1109 
1110 static struct fail_page_alloc_attr {
1111 	struct fault_attr attr;
1112 
1113 	u32 ignore_gfp_highmem;
1114 	u32 ignore_gfp_wait;
1115 	u32 min_order;
1116 
1117 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1118 
1119 	struct dentry *ignore_gfp_highmem_file;
1120 	struct dentry *ignore_gfp_wait_file;
1121 	struct dentry *min_order_file;
1122 
1123 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1124 
1125 } fail_page_alloc = {
1126 	.attr = FAULT_ATTR_INITIALIZER,
1127 	.ignore_gfp_wait = 1,
1128 	.ignore_gfp_highmem = 1,
1129 	.min_order = 1,
1130 };
1131 
1132 static int __init setup_fail_page_alloc(char *str)
1133 {
1134 	return setup_fault_attr(&fail_page_alloc.attr, str);
1135 }
1136 __setup("fail_page_alloc=", setup_fail_page_alloc);
1137 
1138 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1139 {
1140 	if (order < fail_page_alloc.min_order)
1141 		return 0;
1142 	if (gfp_mask & __GFP_NOFAIL)
1143 		return 0;
1144 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1145 		return 0;
1146 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1147 		return 0;
1148 
1149 	return should_fail(&fail_page_alloc.attr, 1 << order);
1150 }
1151 
1152 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1153 
1154 static int __init fail_page_alloc_debugfs(void)
1155 {
1156 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1157 	struct dentry *dir;
1158 	int err;
1159 
1160 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1161 				       "fail_page_alloc");
1162 	if (err)
1163 		return err;
1164 	dir = fail_page_alloc.attr.dentries.dir;
1165 
1166 	fail_page_alloc.ignore_gfp_wait_file =
1167 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1168 				      &fail_page_alloc.ignore_gfp_wait);
1169 
1170 	fail_page_alloc.ignore_gfp_highmem_file =
1171 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1172 				      &fail_page_alloc.ignore_gfp_highmem);
1173 	fail_page_alloc.min_order_file =
1174 		debugfs_create_u32("min-order", mode, dir,
1175 				   &fail_page_alloc.min_order);
1176 
1177 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1178             !fail_page_alloc.ignore_gfp_highmem_file ||
1179             !fail_page_alloc.min_order_file) {
1180 		err = -ENOMEM;
1181 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1182 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1183 		debugfs_remove(fail_page_alloc.min_order_file);
1184 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1185 	}
1186 
1187 	return err;
1188 }
1189 
1190 late_initcall(fail_page_alloc_debugfs);
1191 
1192 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1193 
1194 #else /* CONFIG_FAIL_PAGE_ALLOC */
1195 
1196 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1197 {
1198 	return 0;
1199 }
1200 
1201 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1202 
1203 /*
1204  * Return 1 if free pages are above 'mark'. This takes into account the order
1205  * of the allocation.
1206  */
1207 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1208 		      int classzone_idx, int alloc_flags)
1209 {
1210 	/* free_pages my go negative - that's OK */
1211 	long min = mark;
1212 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1213 	int o;
1214 
1215 	if (alloc_flags & ALLOC_HIGH)
1216 		min -= min / 2;
1217 	if (alloc_flags & ALLOC_HARDER)
1218 		min -= min / 4;
1219 
1220 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1221 		return 0;
1222 	for (o = 0; o < order; o++) {
1223 		/* At the next order, this order's pages become unavailable */
1224 		free_pages -= z->free_area[o].nr_free << o;
1225 
1226 		/* Require fewer higher order pages to be free */
1227 		min >>= 1;
1228 
1229 		if (free_pages <= min)
1230 			return 0;
1231 	}
1232 	return 1;
1233 }
1234 
1235 #ifdef CONFIG_NUMA
1236 /*
1237  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1238  * skip over zones that are not allowed by the cpuset, or that have
1239  * been recently (in last second) found to be nearly full.  See further
1240  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1241  * that have to skip over a lot of full or unallowed zones.
1242  *
1243  * If the zonelist cache is present in the passed in zonelist, then
1244  * returns a pointer to the allowed node mask (either the current
1245  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1246  *
1247  * If the zonelist cache is not available for this zonelist, does
1248  * nothing and returns NULL.
1249  *
1250  * If the fullzones BITMAP in the zonelist cache is stale (more than
1251  * a second since last zap'd) then we zap it out (clear its bits.)
1252  *
1253  * We hold off even calling zlc_setup, until after we've checked the
1254  * first zone in the zonelist, on the theory that most allocations will
1255  * be satisfied from that first zone, so best to examine that zone as
1256  * quickly as we can.
1257  */
1258 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1259 {
1260 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1261 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1262 
1263 	zlc = zonelist->zlcache_ptr;
1264 	if (!zlc)
1265 		return NULL;
1266 
1267 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1268 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1269 		zlc->last_full_zap = jiffies;
1270 	}
1271 
1272 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1273 					&cpuset_current_mems_allowed :
1274 					&node_states[N_HIGH_MEMORY];
1275 	return allowednodes;
1276 }
1277 
1278 /*
1279  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1280  * if it is worth looking at further for free memory:
1281  *  1) Check that the zone isn't thought to be full (doesn't have its
1282  *     bit set in the zonelist_cache fullzones BITMAP).
1283  *  2) Check that the zones node (obtained from the zonelist_cache
1284  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1285  * Return true (non-zero) if zone is worth looking at further, or
1286  * else return false (zero) if it is not.
1287  *
1288  * This check -ignores- the distinction between various watermarks,
1289  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1290  * found to be full for any variation of these watermarks, it will
1291  * be considered full for up to one second by all requests, unless
1292  * we are so low on memory on all allowed nodes that we are forced
1293  * into the second scan of the zonelist.
1294  *
1295  * In the second scan we ignore this zonelist cache and exactly
1296  * apply the watermarks to all zones, even it is slower to do so.
1297  * We are low on memory in the second scan, and should leave no stone
1298  * unturned looking for a free page.
1299  */
1300 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1301 						nodemask_t *allowednodes)
1302 {
1303 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1304 	int i;				/* index of *z in zonelist zones */
1305 	int n;				/* node that zone *z is on */
1306 
1307 	zlc = zonelist->zlcache_ptr;
1308 	if (!zlc)
1309 		return 1;
1310 
1311 	i = z - zonelist->_zonerefs;
1312 	n = zlc->z_to_n[i];
1313 
1314 	/* This zone is worth trying if it is allowed but not full */
1315 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1316 }
1317 
1318 /*
1319  * Given 'z' scanning a zonelist, set the corresponding bit in
1320  * zlc->fullzones, so that subsequent attempts to allocate a page
1321  * from that zone don't waste time re-examining it.
1322  */
1323 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1324 {
1325 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1326 	int i;				/* index of *z in zonelist zones */
1327 
1328 	zlc = zonelist->zlcache_ptr;
1329 	if (!zlc)
1330 		return;
1331 
1332 	i = z - zonelist->_zonerefs;
1333 
1334 	set_bit(i, zlc->fullzones);
1335 }
1336 
1337 #else	/* CONFIG_NUMA */
1338 
1339 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1340 {
1341 	return NULL;
1342 }
1343 
1344 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1345 				nodemask_t *allowednodes)
1346 {
1347 	return 1;
1348 }
1349 
1350 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1351 {
1352 }
1353 #endif	/* CONFIG_NUMA */
1354 
1355 /*
1356  * get_page_from_freelist goes through the zonelist trying to allocate
1357  * a page.
1358  */
1359 static struct page *
1360 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1361 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1362 {
1363 	struct zoneref *z;
1364 	struct page *page = NULL;
1365 	int classzone_idx;
1366 	struct zone *zone, *preferred_zone;
1367 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1368 	int zlc_active = 0;		/* set if using zonelist_cache */
1369 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1370 
1371 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1372 							&preferred_zone);
1373 	if (!preferred_zone)
1374 		return NULL;
1375 
1376 	classzone_idx = zone_idx(preferred_zone);
1377 
1378 zonelist_scan:
1379 	/*
1380 	 * Scan zonelist, looking for a zone with enough free.
1381 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1382 	 */
1383 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1384 						high_zoneidx, nodemask) {
1385 		if (NUMA_BUILD && zlc_active &&
1386 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1387 				continue;
1388 		if ((alloc_flags & ALLOC_CPUSET) &&
1389 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1390 				goto try_next_zone;
1391 
1392 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1393 			unsigned long mark;
1394 			if (alloc_flags & ALLOC_WMARK_MIN)
1395 				mark = zone->pages_min;
1396 			else if (alloc_flags & ALLOC_WMARK_LOW)
1397 				mark = zone->pages_low;
1398 			else
1399 				mark = zone->pages_high;
1400 			if (!zone_watermark_ok(zone, order, mark,
1401 				    classzone_idx, alloc_flags)) {
1402 				if (!zone_reclaim_mode ||
1403 				    !zone_reclaim(zone, gfp_mask, order))
1404 					goto this_zone_full;
1405 			}
1406 		}
1407 
1408 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1409 		if (page)
1410 			break;
1411 this_zone_full:
1412 		if (NUMA_BUILD)
1413 			zlc_mark_zone_full(zonelist, z);
1414 try_next_zone:
1415 		if (NUMA_BUILD && !did_zlc_setup) {
1416 			/* we do zlc_setup after the first zone is tried */
1417 			allowednodes = zlc_setup(zonelist, alloc_flags);
1418 			zlc_active = 1;
1419 			did_zlc_setup = 1;
1420 		}
1421 	}
1422 
1423 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1424 		/* Disable zlc cache for second zonelist scan */
1425 		zlc_active = 0;
1426 		goto zonelist_scan;
1427 	}
1428 	return page;
1429 }
1430 
1431 /*
1432  * This is the 'heart' of the zoned buddy allocator.
1433  */
1434 struct page *
1435 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1436 			struct zonelist *zonelist, nodemask_t *nodemask)
1437 {
1438 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1439 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1440 	struct zoneref *z;
1441 	struct zone *zone;
1442 	struct page *page;
1443 	struct reclaim_state reclaim_state;
1444 	struct task_struct *p = current;
1445 	int do_retry;
1446 	int alloc_flags;
1447 	unsigned long did_some_progress;
1448 	unsigned long pages_reclaimed = 0;
1449 
1450 	might_sleep_if(wait);
1451 
1452 	if (should_fail_alloc_page(gfp_mask, order))
1453 		return NULL;
1454 
1455 restart:
1456 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1457 
1458 	if (unlikely(!z->zone)) {
1459 		/*
1460 		 * Happens if we have an empty zonelist as a result of
1461 		 * GFP_THISNODE being used on a memoryless node
1462 		 */
1463 		return NULL;
1464 	}
1465 
1466 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1467 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1468 	if (page)
1469 		goto got_pg;
1470 
1471 	/*
1472 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1473 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1474 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1475 	 * using a larger set of nodes after it has established that the
1476 	 * allowed per node queues are empty and that nodes are
1477 	 * over allocated.
1478 	 */
1479 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1480 		goto nopage;
1481 
1482 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1483 		wakeup_kswapd(zone, order);
1484 
1485 	/*
1486 	 * OK, we're below the kswapd watermark and have kicked background
1487 	 * reclaim. Now things get more complex, so set up alloc_flags according
1488 	 * to how we want to proceed.
1489 	 *
1490 	 * The caller may dip into page reserves a bit more if the caller
1491 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1492 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1493 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1494 	 */
1495 	alloc_flags = ALLOC_WMARK_MIN;
1496 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1497 		alloc_flags |= ALLOC_HARDER;
1498 	if (gfp_mask & __GFP_HIGH)
1499 		alloc_flags |= ALLOC_HIGH;
1500 	if (wait)
1501 		alloc_flags |= ALLOC_CPUSET;
1502 
1503 	/*
1504 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1505 	 * coming from realtime tasks go deeper into reserves.
1506 	 *
1507 	 * This is the last chance, in general, before the goto nopage.
1508 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1509 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1510 	 */
1511 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1512 						high_zoneidx, alloc_flags);
1513 	if (page)
1514 		goto got_pg;
1515 
1516 	/* This allocation should allow future memory freeing. */
1517 
1518 rebalance:
1519 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1520 			&& !in_interrupt()) {
1521 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1522 nofail_alloc:
1523 			/* go through the zonelist yet again, ignoring mins */
1524 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1525 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1526 			if (page)
1527 				goto got_pg;
1528 			if (gfp_mask & __GFP_NOFAIL) {
1529 				congestion_wait(WRITE, HZ/50);
1530 				goto nofail_alloc;
1531 			}
1532 		}
1533 		goto nopage;
1534 	}
1535 
1536 	/* Atomic allocations - we can't balance anything */
1537 	if (!wait)
1538 		goto nopage;
1539 
1540 	cond_resched();
1541 
1542 	/* We now go into synchronous reclaim */
1543 	cpuset_memory_pressure_bump();
1544 	p->flags |= PF_MEMALLOC;
1545 	reclaim_state.reclaimed_slab = 0;
1546 	p->reclaim_state = &reclaim_state;
1547 
1548 	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1549 
1550 	p->reclaim_state = NULL;
1551 	p->flags &= ~PF_MEMALLOC;
1552 
1553 	cond_resched();
1554 
1555 	if (order != 0)
1556 		drain_all_pages();
1557 
1558 	if (likely(did_some_progress)) {
1559 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1560 					zonelist, high_zoneidx, alloc_flags);
1561 		if (page)
1562 			goto got_pg;
1563 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1564 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1565 			schedule_timeout_uninterruptible(1);
1566 			goto restart;
1567 		}
1568 
1569 		/*
1570 		 * Go through the zonelist yet one more time, keep
1571 		 * very high watermark here, this is only to catch
1572 		 * a parallel oom killing, we must fail if we're still
1573 		 * under heavy pressure.
1574 		 */
1575 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1576 			order, zonelist, high_zoneidx,
1577 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1578 		if (page) {
1579 			clear_zonelist_oom(zonelist, gfp_mask);
1580 			goto got_pg;
1581 		}
1582 
1583 		/* The OOM killer will not help higher order allocs so fail */
1584 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1585 			clear_zonelist_oom(zonelist, gfp_mask);
1586 			goto nopage;
1587 		}
1588 
1589 		out_of_memory(zonelist, gfp_mask, order);
1590 		clear_zonelist_oom(zonelist, gfp_mask);
1591 		goto restart;
1592 	}
1593 
1594 	/*
1595 	 * Don't let big-order allocations loop unless the caller explicitly
1596 	 * requests that.  Wait for some write requests to complete then retry.
1597 	 *
1598 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1599 	 * means __GFP_NOFAIL, but that may not be true in other
1600 	 * implementations.
1601 	 *
1602 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1603 	 * specified, then we retry until we no longer reclaim any pages
1604 	 * (above), or we've reclaimed an order of pages at least as
1605 	 * large as the allocation's order. In both cases, if the
1606 	 * allocation still fails, we stop retrying.
1607 	 */
1608 	pages_reclaimed += did_some_progress;
1609 	do_retry = 0;
1610 	if (!(gfp_mask & __GFP_NORETRY)) {
1611 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1612 			do_retry = 1;
1613 		} else {
1614 			if (gfp_mask & __GFP_REPEAT &&
1615 				pages_reclaimed < (1 << order))
1616 					do_retry = 1;
1617 		}
1618 		if (gfp_mask & __GFP_NOFAIL)
1619 			do_retry = 1;
1620 	}
1621 	if (do_retry) {
1622 		congestion_wait(WRITE, HZ/50);
1623 		goto rebalance;
1624 	}
1625 
1626 nopage:
1627 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1628 		printk(KERN_WARNING "%s: page allocation failure."
1629 			" order:%d, mode:0x%x\n",
1630 			p->comm, order, gfp_mask);
1631 		dump_stack();
1632 		show_mem();
1633 	}
1634 got_pg:
1635 	return page;
1636 }
1637 EXPORT_SYMBOL(__alloc_pages_internal);
1638 
1639 /*
1640  * Common helper functions.
1641  */
1642 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1643 {
1644 	struct page * page;
1645 	page = alloc_pages(gfp_mask, order);
1646 	if (!page)
1647 		return 0;
1648 	return (unsigned long) page_address(page);
1649 }
1650 
1651 EXPORT_SYMBOL(__get_free_pages);
1652 
1653 unsigned long get_zeroed_page(gfp_t gfp_mask)
1654 {
1655 	struct page * page;
1656 
1657 	/*
1658 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1659 	 * a highmem page
1660 	 */
1661 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1662 
1663 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1664 	if (page)
1665 		return (unsigned long) page_address(page);
1666 	return 0;
1667 }
1668 
1669 EXPORT_SYMBOL(get_zeroed_page);
1670 
1671 void __pagevec_free(struct pagevec *pvec)
1672 {
1673 	int i = pagevec_count(pvec);
1674 
1675 	while (--i >= 0)
1676 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1677 }
1678 
1679 void __free_pages(struct page *page, unsigned int order)
1680 {
1681 	if (put_page_testzero(page)) {
1682 		if (order == 0)
1683 			free_hot_page(page);
1684 		else
1685 			__free_pages_ok(page, order);
1686 	}
1687 }
1688 
1689 EXPORT_SYMBOL(__free_pages);
1690 
1691 void free_pages(unsigned long addr, unsigned int order)
1692 {
1693 	if (addr != 0) {
1694 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1695 		__free_pages(virt_to_page((void *)addr), order);
1696 	}
1697 }
1698 
1699 EXPORT_SYMBOL(free_pages);
1700 
1701 /**
1702  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1703  * @size: the number of bytes to allocate
1704  * @gfp_mask: GFP flags for the allocation
1705  *
1706  * This function is similar to alloc_pages(), except that it allocates the
1707  * minimum number of pages to satisfy the request.  alloc_pages() can only
1708  * allocate memory in power-of-two pages.
1709  *
1710  * This function is also limited by MAX_ORDER.
1711  *
1712  * Memory allocated by this function must be released by free_pages_exact().
1713  */
1714 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1715 {
1716 	unsigned int order = get_order(size);
1717 	unsigned long addr;
1718 
1719 	addr = __get_free_pages(gfp_mask, order);
1720 	if (addr) {
1721 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1722 		unsigned long used = addr + PAGE_ALIGN(size);
1723 
1724 		split_page(virt_to_page(addr), order);
1725 		while (used < alloc_end) {
1726 			free_page(used);
1727 			used += PAGE_SIZE;
1728 		}
1729 	}
1730 
1731 	return (void *)addr;
1732 }
1733 EXPORT_SYMBOL(alloc_pages_exact);
1734 
1735 /**
1736  * free_pages_exact - release memory allocated via alloc_pages_exact()
1737  * @virt: the value returned by alloc_pages_exact.
1738  * @size: size of allocation, same value as passed to alloc_pages_exact().
1739  *
1740  * Release the memory allocated by a previous call to alloc_pages_exact.
1741  */
1742 void free_pages_exact(void *virt, size_t size)
1743 {
1744 	unsigned long addr = (unsigned long)virt;
1745 	unsigned long end = addr + PAGE_ALIGN(size);
1746 
1747 	while (addr < end) {
1748 		free_page(addr);
1749 		addr += PAGE_SIZE;
1750 	}
1751 }
1752 EXPORT_SYMBOL(free_pages_exact);
1753 
1754 static unsigned int nr_free_zone_pages(int offset)
1755 {
1756 	struct zoneref *z;
1757 	struct zone *zone;
1758 
1759 	/* Just pick one node, since fallback list is circular */
1760 	unsigned int sum = 0;
1761 
1762 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1763 
1764 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1765 		unsigned long size = zone->present_pages;
1766 		unsigned long high = zone->pages_high;
1767 		if (size > high)
1768 			sum += size - high;
1769 	}
1770 
1771 	return sum;
1772 }
1773 
1774 /*
1775  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1776  */
1777 unsigned int nr_free_buffer_pages(void)
1778 {
1779 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1780 }
1781 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1782 
1783 /*
1784  * Amount of free RAM allocatable within all zones
1785  */
1786 unsigned int nr_free_pagecache_pages(void)
1787 {
1788 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1789 }
1790 
1791 static inline void show_node(struct zone *zone)
1792 {
1793 	if (NUMA_BUILD)
1794 		printk("Node %d ", zone_to_nid(zone));
1795 }
1796 
1797 void si_meminfo(struct sysinfo *val)
1798 {
1799 	val->totalram = totalram_pages;
1800 	val->sharedram = 0;
1801 	val->freeram = global_page_state(NR_FREE_PAGES);
1802 	val->bufferram = nr_blockdev_pages();
1803 	val->totalhigh = totalhigh_pages;
1804 	val->freehigh = nr_free_highpages();
1805 	val->mem_unit = PAGE_SIZE;
1806 }
1807 
1808 EXPORT_SYMBOL(si_meminfo);
1809 
1810 #ifdef CONFIG_NUMA
1811 void si_meminfo_node(struct sysinfo *val, int nid)
1812 {
1813 	pg_data_t *pgdat = NODE_DATA(nid);
1814 
1815 	val->totalram = pgdat->node_present_pages;
1816 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1817 #ifdef CONFIG_HIGHMEM
1818 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1819 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1820 			NR_FREE_PAGES);
1821 #else
1822 	val->totalhigh = 0;
1823 	val->freehigh = 0;
1824 #endif
1825 	val->mem_unit = PAGE_SIZE;
1826 }
1827 #endif
1828 
1829 #define K(x) ((x) << (PAGE_SHIFT-10))
1830 
1831 /*
1832  * Show free area list (used inside shift_scroll-lock stuff)
1833  * We also calculate the percentage fragmentation. We do this by counting the
1834  * memory on each free list with the exception of the first item on the list.
1835  */
1836 void show_free_areas(void)
1837 {
1838 	int cpu;
1839 	struct zone *zone;
1840 
1841 	for_each_zone(zone) {
1842 		if (!populated_zone(zone))
1843 			continue;
1844 
1845 		show_node(zone);
1846 		printk("%s per-cpu:\n", zone->name);
1847 
1848 		for_each_online_cpu(cpu) {
1849 			struct per_cpu_pageset *pageset;
1850 
1851 			pageset = zone_pcp(zone, cpu);
1852 
1853 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1854 			       cpu, pageset->pcp.high,
1855 			       pageset->pcp.batch, pageset->pcp.count);
1856 		}
1857 	}
1858 
1859 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1860 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1861 		global_page_state(NR_ACTIVE),
1862 		global_page_state(NR_INACTIVE),
1863 		global_page_state(NR_FILE_DIRTY),
1864 		global_page_state(NR_WRITEBACK),
1865 		global_page_state(NR_UNSTABLE_NFS),
1866 		global_page_state(NR_FREE_PAGES),
1867 		global_page_state(NR_SLAB_RECLAIMABLE) +
1868 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1869 		global_page_state(NR_FILE_MAPPED),
1870 		global_page_state(NR_PAGETABLE),
1871 		global_page_state(NR_BOUNCE));
1872 
1873 	for_each_zone(zone) {
1874 		int i;
1875 
1876 		if (!populated_zone(zone))
1877 			continue;
1878 
1879 		show_node(zone);
1880 		printk("%s"
1881 			" free:%lukB"
1882 			" min:%lukB"
1883 			" low:%lukB"
1884 			" high:%lukB"
1885 			" active:%lukB"
1886 			" inactive:%lukB"
1887 			" present:%lukB"
1888 			" pages_scanned:%lu"
1889 			" all_unreclaimable? %s"
1890 			"\n",
1891 			zone->name,
1892 			K(zone_page_state(zone, NR_FREE_PAGES)),
1893 			K(zone->pages_min),
1894 			K(zone->pages_low),
1895 			K(zone->pages_high),
1896 			K(zone_page_state(zone, NR_ACTIVE)),
1897 			K(zone_page_state(zone, NR_INACTIVE)),
1898 			K(zone->present_pages),
1899 			zone->pages_scanned,
1900 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1901 			);
1902 		printk("lowmem_reserve[]:");
1903 		for (i = 0; i < MAX_NR_ZONES; i++)
1904 			printk(" %lu", zone->lowmem_reserve[i]);
1905 		printk("\n");
1906 	}
1907 
1908 	for_each_zone(zone) {
1909  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1910 
1911 		if (!populated_zone(zone))
1912 			continue;
1913 
1914 		show_node(zone);
1915 		printk("%s: ", zone->name);
1916 
1917 		spin_lock_irqsave(&zone->lock, flags);
1918 		for (order = 0; order < MAX_ORDER; order++) {
1919 			nr[order] = zone->free_area[order].nr_free;
1920 			total += nr[order] << order;
1921 		}
1922 		spin_unlock_irqrestore(&zone->lock, flags);
1923 		for (order = 0; order < MAX_ORDER; order++)
1924 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1925 		printk("= %lukB\n", K(total));
1926 	}
1927 
1928 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1929 
1930 	show_swap_cache_info();
1931 }
1932 
1933 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1934 {
1935 	zoneref->zone = zone;
1936 	zoneref->zone_idx = zone_idx(zone);
1937 }
1938 
1939 /*
1940  * Builds allocation fallback zone lists.
1941  *
1942  * Add all populated zones of a node to the zonelist.
1943  */
1944 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1945 				int nr_zones, enum zone_type zone_type)
1946 {
1947 	struct zone *zone;
1948 
1949 	BUG_ON(zone_type >= MAX_NR_ZONES);
1950 	zone_type++;
1951 
1952 	do {
1953 		zone_type--;
1954 		zone = pgdat->node_zones + zone_type;
1955 		if (populated_zone(zone)) {
1956 			zoneref_set_zone(zone,
1957 				&zonelist->_zonerefs[nr_zones++]);
1958 			check_highest_zone(zone_type);
1959 		}
1960 
1961 	} while (zone_type);
1962 	return nr_zones;
1963 }
1964 
1965 
1966 /*
1967  *  zonelist_order:
1968  *  0 = automatic detection of better ordering.
1969  *  1 = order by ([node] distance, -zonetype)
1970  *  2 = order by (-zonetype, [node] distance)
1971  *
1972  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1973  *  the same zonelist. So only NUMA can configure this param.
1974  */
1975 #define ZONELIST_ORDER_DEFAULT  0
1976 #define ZONELIST_ORDER_NODE     1
1977 #define ZONELIST_ORDER_ZONE     2
1978 
1979 /* zonelist order in the kernel.
1980  * set_zonelist_order() will set this to NODE or ZONE.
1981  */
1982 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1983 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1984 
1985 
1986 #ifdef CONFIG_NUMA
1987 /* The value user specified ....changed by config */
1988 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1989 /* string for sysctl */
1990 #define NUMA_ZONELIST_ORDER_LEN	16
1991 char numa_zonelist_order[16] = "default";
1992 
1993 /*
1994  * interface for configure zonelist ordering.
1995  * command line option "numa_zonelist_order"
1996  *	= "[dD]efault	- default, automatic configuration.
1997  *	= "[nN]ode 	- order by node locality, then by zone within node
1998  *	= "[zZ]one      - order by zone, then by locality within zone
1999  */
2000 
2001 static int __parse_numa_zonelist_order(char *s)
2002 {
2003 	if (*s == 'd' || *s == 'D') {
2004 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2005 	} else if (*s == 'n' || *s == 'N') {
2006 		user_zonelist_order = ZONELIST_ORDER_NODE;
2007 	} else if (*s == 'z' || *s == 'Z') {
2008 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2009 	} else {
2010 		printk(KERN_WARNING
2011 			"Ignoring invalid numa_zonelist_order value:  "
2012 			"%s\n", s);
2013 		return -EINVAL;
2014 	}
2015 	return 0;
2016 }
2017 
2018 static __init int setup_numa_zonelist_order(char *s)
2019 {
2020 	if (s)
2021 		return __parse_numa_zonelist_order(s);
2022 	return 0;
2023 }
2024 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2025 
2026 /*
2027  * sysctl handler for numa_zonelist_order
2028  */
2029 int numa_zonelist_order_handler(ctl_table *table, int write,
2030 		struct file *file, void __user *buffer, size_t *length,
2031 		loff_t *ppos)
2032 {
2033 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2034 	int ret;
2035 
2036 	if (write)
2037 		strncpy(saved_string, (char*)table->data,
2038 			NUMA_ZONELIST_ORDER_LEN);
2039 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2040 	if (ret)
2041 		return ret;
2042 	if (write) {
2043 		int oldval = user_zonelist_order;
2044 		if (__parse_numa_zonelist_order((char*)table->data)) {
2045 			/*
2046 			 * bogus value.  restore saved string
2047 			 */
2048 			strncpy((char*)table->data, saved_string,
2049 				NUMA_ZONELIST_ORDER_LEN);
2050 			user_zonelist_order = oldval;
2051 		} else if (oldval != user_zonelist_order)
2052 			build_all_zonelists();
2053 	}
2054 	return 0;
2055 }
2056 
2057 
2058 #define MAX_NODE_LOAD (num_online_nodes())
2059 static int node_load[MAX_NUMNODES];
2060 
2061 /**
2062  * find_next_best_node - find the next node that should appear in a given node's fallback list
2063  * @node: node whose fallback list we're appending
2064  * @used_node_mask: nodemask_t of already used nodes
2065  *
2066  * We use a number of factors to determine which is the next node that should
2067  * appear on a given node's fallback list.  The node should not have appeared
2068  * already in @node's fallback list, and it should be the next closest node
2069  * according to the distance array (which contains arbitrary distance values
2070  * from each node to each node in the system), and should also prefer nodes
2071  * with no CPUs, since presumably they'll have very little allocation pressure
2072  * on them otherwise.
2073  * It returns -1 if no node is found.
2074  */
2075 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2076 {
2077 	int n, val;
2078 	int min_val = INT_MAX;
2079 	int best_node = -1;
2080 	node_to_cpumask_ptr(tmp, 0);
2081 
2082 	/* Use the local node if we haven't already */
2083 	if (!node_isset(node, *used_node_mask)) {
2084 		node_set(node, *used_node_mask);
2085 		return node;
2086 	}
2087 
2088 	for_each_node_state(n, N_HIGH_MEMORY) {
2089 
2090 		/* Don't want a node to appear more than once */
2091 		if (node_isset(n, *used_node_mask))
2092 			continue;
2093 
2094 		/* Use the distance array to find the distance */
2095 		val = node_distance(node, n);
2096 
2097 		/* Penalize nodes under us ("prefer the next node") */
2098 		val += (n < node);
2099 
2100 		/* Give preference to headless and unused nodes */
2101 		node_to_cpumask_ptr_next(tmp, n);
2102 		if (!cpus_empty(*tmp))
2103 			val += PENALTY_FOR_NODE_WITH_CPUS;
2104 
2105 		/* Slight preference for less loaded node */
2106 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2107 		val += node_load[n];
2108 
2109 		if (val < min_val) {
2110 			min_val = val;
2111 			best_node = n;
2112 		}
2113 	}
2114 
2115 	if (best_node >= 0)
2116 		node_set(best_node, *used_node_mask);
2117 
2118 	return best_node;
2119 }
2120 
2121 
2122 /*
2123  * Build zonelists ordered by node and zones within node.
2124  * This results in maximum locality--normal zone overflows into local
2125  * DMA zone, if any--but risks exhausting DMA zone.
2126  */
2127 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2128 {
2129 	int j;
2130 	struct zonelist *zonelist;
2131 
2132 	zonelist = &pgdat->node_zonelists[0];
2133 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2134 		;
2135 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2136 							MAX_NR_ZONES - 1);
2137 	zonelist->_zonerefs[j].zone = NULL;
2138 	zonelist->_zonerefs[j].zone_idx = 0;
2139 }
2140 
2141 /*
2142  * Build gfp_thisnode zonelists
2143  */
2144 static void build_thisnode_zonelists(pg_data_t *pgdat)
2145 {
2146 	int j;
2147 	struct zonelist *zonelist;
2148 
2149 	zonelist = &pgdat->node_zonelists[1];
2150 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2151 	zonelist->_zonerefs[j].zone = NULL;
2152 	zonelist->_zonerefs[j].zone_idx = 0;
2153 }
2154 
2155 /*
2156  * Build zonelists ordered by zone and nodes within zones.
2157  * This results in conserving DMA zone[s] until all Normal memory is
2158  * exhausted, but results in overflowing to remote node while memory
2159  * may still exist in local DMA zone.
2160  */
2161 static int node_order[MAX_NUMNODES];
2162 
2163 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2164 {
2165 	int pos, j, node;
2166 	int zone_type;		/* needs to be signed */
2167 	struct zone *z;
2168 	struct zonelist *zonelist;
2169 
2170 	zonelist = &pgdat->node_zonelists[0];
2171 	pos = 0;
2172 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2173 		for (j = 0; j < nr_nodes; j++) {
2174 			node = node_order[j];
2175 			z = &NODE_DATA(node)->node_zones[zone_type];
2176 			if (populated_zone(z)) {
2177 				zoneref_set_zone(z,
2178 					&zonelist->_zonerefs[pos++]);
2179 				check_highest_zone(zone_type);
2180 			}
2181 		}
2182 	}
2183 	zonelist->_zonerefs[pos].zone = NULL;
2184 	zonelist->_zonerefs[pos].zone_idx = 0;
2185 }
2186 
2187 static int default_zonelist_order(void)
2188 {
2189 	int nid, zone_type;
2190 	unsigned long low_kmem_size,total_size;
2191 	struct zone *z;
2192 	int average_size;
2193 	/*
2194          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2195 	 * If they are really small and used heavily, the system can fall
2196 	 * into OOM very easily.
2197 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2198 	 */
2199 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2200 	low_kmem_size = 0;
2201 	total_size = 0;
2202 	for_each_online_node(nid) {
2203 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2204 			z = &NODE_DATA(nid)->node_zones[zone_type];
2205 			if (populated_zone(z)) {
2206 				if (zone_type < ZONE_NORMAL)
2207 					low_kmem_size += z->present_pages;
2208 				total_size += z->present_pages;
2209 			}
2210 		}
2211 	}
2212 	if (!low_kmem_size ||  /* there are no DMA area. */
2213 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2214 		return ZONELIST_ORDER_NODE;
2215 	/*
2216 	 * look into each node's config.
2217   	 * If there is a node whose DMA/DMA32 memory is very big area on
2218  	 * local memory, NODE_ORDER may be suitable.
2219          */
2220 	average_size = total_size /
2221 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2222 	for_each_online_node(nid) {
2223 		low_kmem_size = 0;
2224 		total_size = 0;
2225 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2226 			z = &NODE_DATA(nid)->node_zones[zone_type];
2227 			if (populated_zone(z)) {
2228 				if (zone_type < ZONE_NORMAL)
2229 					low_kmem_size += z->present_pages;
2230 				total_size += z->present_pages;
2231 			}
2232 		}
2233 		if (low_kmem_size &&
2234 		    total_size > average_size && /* ignore small node */
2235 		    low_kmem_size > total_size * 70/100)
2236 			return ZONELIST_ORDER_NODE;
2237 	}
2238 	return ZONELIST_ORDER_ZONE;
2239 }
2240 
2241 static void set_zonelist_order(void)
2242 {
2243 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2244 		current_zonelist_order = default_zonelist_order();
2245 	else
2246 		current_zonelist_order = user_zonelist_order;
2247 }
2248 
2249 static void build_zonelists(pg_data_t *pgdat)
2250 {
2251 	int j, node, load;
2252 	enum zone_type i;
2253 	nodemask_t used_mask;
2254 	int local_node, prev_node;
2255 	struct zonelist *zonelist;
2256 	int order = current_zonelist_order;
2257 
2258 	/* initialize zonelists */
2259 	for (i = 0; i < MAX_ZONELISTS; i++) {
2260 		zonelist = pgdat->node_zonelists + i;
2261 		zonelist->_zonerefs[0].zone = NULL;
2262 		zonelist->_zonerefs[0].zone_idx = 0;
2263 	}
2264 
2265 	/* NUMA-aware ordering of nodes */
2266 	local_node = pgdat->node_id;
2267 	load = num_online_nodes();
2268 	prev_node = local_node;
2269 	nodes_clear(used_mask);
2270 
2271 	memset(node_load, 0, sizeof(node_load));
2272 	memset(node_order, 0, sizeof(node_order));
2273 	j = 0;
2274 
2275 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2276 		int distance = node_distance(local_node, node);
2277 
2278 		/*
2279 		 * If another node is sufficiently far away then it is better
2280 		 * to reclaim pages in a zone before going off node.
2281 		 */
2282 		if (distance > RECLAIM_DISTANCE)
2283 			zone_reclaim_mode = 1;
2284 
2285 		/*
2286 		 * We don't want to pressure a particular node.
2287 		 * So adding penalty to the first node in same
2288 		 * distance group to make it round-robin.
2289 		 */
2290 		if (distance != node_distance(local_node, prev_node))
2291 			node_load[node] = load;
2292 
2293 		prev_node = node;
2294 		load--;
2295 		if (order == ZONELIST_ORDER_NODE)
2296 			build_zonelists_in_node_order(pgdat, node);
2297 		else
2298 			node_order[j++] = node;	/* remember order */
2299 	}
2300 
2301 	if (order == ZONELIST_ORDER_ZONE) {
2302 		/* calculate node order -- i.e., DMA last! */
2303 		build_zonelists_in_zone_order(pgdat, j);
2304 	}
2305 
2306 	build_thisnode_zonelists(pgdat);
2307 }
2308 
2309 /* Construct the zonelist performance cache - see further mmzone.h */
2310 static void build_zonelist_cache(pg_data_t *pgdat)
2311 {
2312 	struct zonelist *zonelist;
2313 	struct zonelist_cache *zlc;
2314 	struct zoneref *z;
2315 
2316 	zonelist = &pgdat->node_zonelists[0];
2317 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2318 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2319 	for (z = zonelist->_zonerefs; z->zone; z++)
2320 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2321 }
2322 
2323 
2324 #else	/* CONFIG_NUMA */
2325 
2326 static void set_zonelist_order(void)
2327 {
2328 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2329 }
2330 
2331 static void build_zonelists(pg_data_t *pgdat)
2332 {
2333 	int node, local_node;
2334 	enum zone_type j;
2335 	struct zonelist *zonelist;
2336 
2337 	local_node = pgdat->node_id;
2338 
2339 	zonelist = &pgdat->node_zonelists[0];
2340 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2341 
2342 	/*
2343 	 * Now we build the zonelist so that it contains the zones
2344 	 * of all the other nodes.
2345 	 * We don't want to pressure a particular node, so when
2346 	 * building the zones for node N, we make sure that the
2347 	 * zones coming right after the local ones are those from
2348 	 * node N+1 (modulo N)
2349 	 */
2350 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2351 		if (!node_online(node))
2352 			continue;
2353 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2354 							MAX_NR_ZONES - 1);
2355 	}
2356 	for (node = 0; node < local_node; node++) {
2357 		if (!node_online(node))
2358 			continue;
2359 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2360 							MAX_NR_ZONES - 1);
2361 	}
2362 
2363 	zonelist->_zonerefs[j].zone = NULL;
2364 	zonelist->_zonerefs[j].zone_idx = 0;
2365 }
2366 
2367 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2368 static void build_zonelist_cache(pg_data_t *pgdat)
2369 {
2370 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2371 }
2372 
2373 #endif	/* CONFIG_NUMA */
2374 
2375 /* return values int ....just for stop_machine() */
2376 static int __build_all_zonelists(void *dummy)
2377 {
2378 	int nid;
2379 
2380 	for_each_online_node(nid) {
2381 		pg_data_t *pgdat = NODE_DATA(nid);
2382 
2383 		build_zonelists(pgdat);
2384 		build_zonelist_cache(pgdat);
2385 	}
2386 	return 0;
2387 }
2388 
2389 void build_all_zonelists(void)
2390 {
2391 	set_zonelist_order();
2392 
2393 	if (system_state == SYSTEM_BOOTING) {
2394 		__build_all_zonelists(NULL);
2395 		mminit_verify_zonelist();
2396 		cpuset_init_current_mems_allowed();
2397 	} else {
2398 		/* we have to stop all cpus to guarantee there is no user
2399 		   of zonelist */
2400 		stop_machine(__build_all_zonelists, NULL, NULL);
2401 		/* cpuset refresh routine should be here */
2402 	}
2403 	vm_total_pages = nr_free_pagecache_pages();
2404 	/*
2405 	 * Disable grouping by mobility if the number of pages in the
2406 	 * system is too low to allow the mechanism to work. It would be
2407 	 * more accurate, but expensive to check per-zone. This check is
2408 	 * made on memory-hotadd so a system can start with mobility
2409 	 * disabled and enable it later
2410 	 */
2411 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2412 		page_group_by_mobility_disabled = 1;
2413 	else
2414 		page_group_by_mobility_disabled = 0;
2415 
2416 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2417 		"Total pages: %ld\n",
2418 			num_online_nodes(),
2419 			zonelist_order_name[current_zonelist_order],
2420 			page_group_by_mobility_disabled ? "off" : "on",
2421 			vm_total_pages);
2422 #ifdef CONFIG_NUMA
2423 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2424 #endif
2425 }
2426 
2427 /*
2428  * Helper functions to size the waitqueue hash table.
2429  * Essentially these want to choose hash table sizes sufficiently
2430  * large so that collisions trying to wait on pages are rare.
2431  * But in fact, the number of active page waitqueues on typical
2432  * systems is ridiculously low, less than 200. So this is even
2433  * conservative, even though it seems large.
2434  *
2435  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2436  * waitqueues, i.e. the size of the waitq table given the number of pages.
2437  */
2438 #define PAGES_PER_WAITQUEUE	256
2439 
2440 #ifndef CONFIG_MEMORY_HOTPLUG
2441 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2442 {
2443 	unsigned long size = 1;
2444 
2445 	pages /= PAGES_PER_WAITQUEUE;
2446 
2447 	while (size < pages)
2448 		size <<= 1;
2449 
2450 	/*
2451 	 * Once we have dozens or even hundreds of threads sleeping
2452 	 * on IO we've got bigger problems than wait queue collision.
2453 	 * Limit the size of the wait table to a reasonable size.
2454 	 */
2455 	size = min(size, 4096UL);
2456 
2457 	return max(size, 4UL);
2458 }
2459 #else
2460 /*
2461  * A zone's size might be changed by hot-add, so it is not possible to determine
2462  * a suitable size for its wait_table.  So we use the maximum size now.
2463  *
2464  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2465  *
2466  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2467  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2468  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2469  *
2470  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2471  * or more by the traditional way. (See above).  It equals:
2472  *
2473  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2474  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2475  *    powerpc (64K page size)             : =  (32G +16M)byte.
2476  */
2477 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2478 {
2479 	return 4096UL;
2480 }
2481 #endif
2482 
2483 /*
2484  * This is an integer logarithm so that shifts can be used later
2485  * to extract the more random high bits from the multiplicative
2486  * hash function before the remainder is taken.
2487  */
2488 static inline unsigned long wait_table_bits(unsigned long size)
2489 {
2490 	return ffz(~size);
2491 }
2492 
2493 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2494 
2495 /*
2496  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2497  * of blocks reserved is based on zone->pages_min. The memory within the
2498  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2499  * higher will lead to a bigger reserve which will get freed as contiguous
2500  * blocks as reclaim kicks in
2501  */
2502 static void setup_zone_migrate_reserve(struct zone *zone)
2503 {
2504 	unsigned long start_pfn, pfn, end_pfn;
2505 	struct page *page;
2506 	unsigned long reserve, block_migratetype;
2507 
2508 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2509 	start_pfn = zone->zone_start_pfn;
2510 	end_pfn = start_pfn + zone->spanned_pages;
2511 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2512 							pageblock_order;
2513 
2514 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2515 		if (!pfn_valid(pfn))
2516 			continue;
2517 		page = pfn_to_page(pfn);
2518 
2519 		/* Blocks with reserved pages will never free, skip them. */
2520 		if (PageReserved(page))
2521 			continue;
2522 
2523 		block_migratetype = get_pageblock_migratetype(page);
2524 
2525 		/* If this block is reserved, account for it */
2526 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2527 			reserve--;
2528 			continue;
2529 		}
2530 
2531 		/* Suitable for reserving if this block is movable */
2532 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2533 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2534 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2535 			reserve--;
2536 			continue;
2537 		}
2538 
2539 		/*
2540 		 * If the reserve is met and this is a previous reserved block,
2541 		 * take it back
2542 		 */
2543 		if (block_migratetype == MIGRATE_RESERVE) {
2544 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2545 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2546 		}
2547 	}
2548 }
2549 
2550 /*
2551  * Initially all pages are reserved - free ones are freed
2552  * up by free_all_bootmem() once the early boot process is
2553  * done. Non-atomic initialization, single-pass.
2554  */
2555 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2556 		unsigned long start_pfn, enum memmap_context context)
2557 {
2558 	struct page *page;
2559 	unsigned long end_pfn = start_pfn + size;
2560 	unsigned long pfn;
2561 	struct zone *z;
2562 
2563 	z = &NODE_DATA(nid)->node_zones[zone];
2564 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2565 		/*
2566 		 * There can be holes in boot-time mem_map[]s
2567 		 * handed to this function.  They do not
2568 		 * exist on hotplugged memory.
2569 		 */
2570 		if (context == MEMMAP_EARLY) {
2571 			if (!early_pfn_valid(pfn))
2572 				continue;
2573 			if (!early_pfn_in_nid(pfn, nid))
2574 				continue;
2575 		}
2576 		page = pfn_to_page(pfn);
2577 		set_page_links(page, zone, nid, pfn);
2578 		mminit_verify_page_links(page, zone, nid, pfn);
2579 		init_page_count(page);
2580 		reset_page_mapcount(page);
2581 		SetPageReserved(page);
2582 		/*
2583 		 * Mark the block movable so that blocks are reserved for
2584 		 * movable at startup. This will force kernel allocations
2585 		 * to reserve their blocks rather than leaking throughout
2586 		 * the address space during boot when many long-lived
2587 		 * kernel allocations are made. Later some blocks near
2588 		 * the start are marked MIGRATE_RESERVE by
2589 		 * setup_zone_migrate_reserve()
2590 		 *
2591 		 * bitmap is created for zone's valid pfn range. but memmap
2592 		 * can be created for invalid pages (for alignment)
2593 		 * check here not to call set_pageblock_migratetype() against
2594 		 * pfn out of zone.
2595 		 */
2596 		if ((z->zone_start_pfn <= pfn)
2597 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2598 		    && !(pfn & (pageblock_nr_pages - 1)))
2599 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2600 
2601 		INIT_LIST_HEAD(&page->lru);
2602 #ifdef WANT_PAGE_VIRTUAL
2603 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2604 		if (!is_highmem_idx(zone))
2605 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2606 #endif
2607 	}
2608 }
2609 
2610 static void __meminit zone_init_free_lists(struct zone *zone)
2611 {
2612 	int order, t;
2613 	for_each_migratetype_order(order, t) {
2614 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2615 		zone->free_area[order].nr_free = 0;
2616 	}
2617 }
2618 
2619 #ifndef __HAVE_ARCH_MEMMAP_INIT
2620 #define memmap_init(size, nid, zone, start_pfn) \
2621 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2622 #endif
2623 
2624 static int zone_batchsize(struct zone *zone)
2625 {
2626 	int batch;
2627 
2628 	/*
2629 	 * The per-cpu-pages pools are set to around 1000th of the
2630 	 * size of the zone.  But no more than 1/2 of a meg.
2631 	 *
2632 	 * OK, so we don't know how big the cache is.  So guess.
2633 	 */
2634 	batch = zone->present_pages / 1024;
2635 	if (batch * PAGE_SIZE > 512 * 1024)
2636 		batch = (512 * 1024) / PAGE_SIZE;
2637 	batch /= 4;		/* We effectively *= 4 below */
2638 	if (batch < 1)
2639 		batch = 1;
2640 
2641 	/*
2642 	 * Clamp the batch to a 2^n - 1 value. Having a power
2643 	 * of 2 value was found to be more likely to have
2644 	 * suboptimal cache aliasing properties in some cases.
2645 	 *
2646 	 * For example if 2 tasks are alternately allocating
2647 	 * batches of pages, one task can end up with a lot
2648 	 * of pages of one half of the possible page colors
2649 	 * and the other with pages of the other colors.
2650 	 */
2651 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2652 
2653 	return batch;
2654 }
2655 
2656 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2657 {
2658 	struct per_cpu_pages *pcp;
2659 
2660 	memset(p, 0, sizeof(*p));
2661 
2662 	pcp = &p->pcp;
2663 	pcp->count = 0;
2664 	pcp->high = 6 * batch;
2665 	pcp->batch = max(1UL, 1 * batch);
2666 	INIT_LIST_HEAD(&pcp->list);
2667 }
2668 
2669 /*
2670  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2671  * to the value high for the pageset p.
2672  */
2673 
2674 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2675 				unsigned long high)
2676 {
2677 	struct per_cpu_pages *pcp;
2678 
2679 	pcp = &p->pcp;
2680 	pcp->high = high;
2681 	pcp->batch = max(1UL, high/4);
2682 	if ((high/4) > (PAGE_SHIFT * 8))
2683 		pcp->batch = PAGE_SHIFT * 8;
2684 }
2685 
2686 
2687 #ifdef CONFIG_NUMA
2688 /*
2689  * Boot pageset table. One per cpu which is going to be used for all
2690  * zones and all nodes. The parameters will be set in such a way
2691  * that an item put on a list will immediately be handed over to
2692  * the buddy list. This is safe since pageset manipulation is done
2693  * with interrupts disabled.
2694  *
2695  * Some NUMA counter updates may also be caught by the boot pagesets.
2696  *
2697  * The boot_pagesets must be kept even after bootup is complete for
2698  * unused processors and/or zones. They do play a role for bootstrapping
2699  * hotplugged processors.
2700  *
2701  * zoneinfo_show() and maybe other functions do
2702  * not check if the processor is online before following the pageset pointer.
2703  * Other parts of the kernel may not check if the zone is available.
2704  */
2705 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2706 
2707 /*
2708  * Dynamically allocate memory for the
2709  * per cpu pageset array in struct zone.
2710  */
2711 static int __cpuinit process_zones(int cpu)
2712 {
2713 	struct zone *zone, *dzone;
2714 	int node = cpu_to_node(cpu);
2715 
2716 	node_set_state(node, N_CPU);	/* this node has a cpu */
2717 
2718 	for_each_zone(zone) {
2719 
2720 		if (!populated_zone(zone))
2721 			continue;
2722 
2723 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2724 					 GFP_KERNEL, node);
2725 		if (!zone_pcp(zone, cpu))
2726 			goto bad;
2727 
2728 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2729 
2730 		if (percpu_pagelist_fraction)
2731 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2732 			 	(zone->present_pages / percpu_pagelist_fraction));
2733 	}
2734 
2735 	return 0;
2736 bad:
2737 	for_each_zone(dzone) {
2738 		if (!populated_zone(dzone))
2739 			continue;
2740 		if (dzone == zone)
2741 			break;
2742 		kfree(zone_pcp(dzone, cpu));
2743 		zone_pcp(dzone, cpu) = NULL;
2744 	}
2745 	return -ENOMEM;
2746 }
2747 
2748 static inline void free_zone_pagesets(int cpu)
2749 {
2750 	struct zone *zone;
2751 
2752 	for_each_zone(zone) {
2753 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2754 
2755 		/* Free per_cpu_pageset if it is slab allocated */
2756 		if (pset != &boot_pageset[cpu])
2757 			kfree(pset);
2758 		zone_pcp(zone, cpu) = NULL;
2759 	}
2760 }
2761 
2762 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2763 		unsigned long action,
2764 		void *hcpu)
2765 {
2766 	int cpu = (long)hcpu;
2767 	int ret = NOTIFY_OK;
2768 
2769 	switch (action) {
2770 	case CPU_UP_PREPARE:
2771 	case CPU_UP_PREPARE_FROZEN:
2772 		if (process_zones(cpu))
2773 			ret = NOTIFY_BAD;
2774 		break;
2775 	case CPU_UP_CANCELED:
2776 	case CPU_UP_CANCELED_FROZEN:
2777 	case CPU_DEAD:
2778 	case CPU_DEAD_FROZEN:
2779 		free_zone_pagesets(cpu);
2780 		break;
2781 	default:
2782 		break;
2783 	}
2784 	return ret;
2785 }
2786 
2787 static struct notifier_block __cpuinitdata pageset_notifier =
2788 	{ &pageset_cpuup_callback, NULL, 0 };
2789 
2790 void __init setup_per_cpu_pageset(void)
2791 {
2792 	int err;
2793 
2794 	/* Initialize per_cpu_pageset for cpu 0.
2795 	 * A cpuup callback will do this for every cpu
2796 	 * as it comes online
2797 	 */
2798 	err = process_zones(smp_processor_id());
2799 	BUG_ON(err);
2800 	register_cpu_notifier(&pageset_notifier);
2801 }
2802 
2803 #endif
2804 
2805 static noinline __init_refok
2806 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2807 {
2808 	int i;
2809 	struct pglist_data *pgdat = zone->zone_pgdat;
2810 	size_t alloc_size;
2811 
2812 	/*
2813 	 * The per-page waitqueue mechanism uses hashed waitqueues
2814 	 * per zone.
2815 	 */
2816 	zone->wait_table_hash_nr_entries =
2817 		 wait_table_hash_nr_entries(zone_size_pages);
2818 	zone->wait_table_bits =
2819 		wait_table_bits(zone->wait_table_hash_nr_entries);
2820 	alloc_size = zone->wait_table_hash_nr_entries
2821 					* sizeof(wait_queue_head_t);
2822 
2823 	if (!slab_is_available()) {
2824 		zone->wait_table = (wait_queue_head_t *)
2825 			alloc_bootmem_node(pgdat, alloc_size);
2826 	} else {
2827 		/*
2828 		 * This case means that a zone whose size was 0 gets new memory
2829 		 * via memory hot-add.
2830 		 * But it may be the case that a new node was hot-added.  In
2831 		 * this case vmalloc() will not be able to use this new node's
2832 		 * memory - this wait_table must be initialized to use this new
2833 		 * node itself as well.
2834 		 * To use this new node's memory, further consideration will be
2835 		 * necessary.
2836 		 */
2837 		zone->wait_table = vmalloc(alloc_size);
2838 	}
2839 	if (!zone->wait_table)
2840 		return -ENOMEM;
2841 
2842 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2843 		init_waitqueue_head(zone->wait_table + i);
2844 
2845 	return 0;
2846 }
2847 
2848 static __meminit void zone_pcp_init(struct zone *zone)
2849 {
2850 	int cpu;
2851 	unsigned long batch = zone_batchsize(zone);
2852 
2853 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2854 #ifdef CONFIG_NUMA
2855 		/* Early boot. Slab allocator not functional yet */
2856 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2857 		setup_pageset(&boot_pageset[cpu],0);
2858 #else
2859 		setup_pageset(zone_pcp(zone,cpu), batch);
2860 #endif
2861 	}
2862 	if (zone->present_pages)
2863 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2864 			zone->name, zone->present_pages, batch);
2865 }
2866 
2867 __meminit int init_currently_empty_zone(struct zone *zone,
2868 					unsigned long zone_start_pfn,
2869 					unsigned long size,
2870 					enum memmap_context context)
2871 {
2872 	struct pglist_data *pgdat = zone->zone_pgdat;
2873 	int ret;
2874 	ret = zone_wait_table_init(zone, size);
2875 	if (ret)
2876 		return ret;
2877 	pgdat->nr_zones = zone_idx(zone) + 1;
2878 
2879 	zone->zone_start_pfn = zone_start_pfn;
2880 
2881 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2882 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2883 			pgdat->node_id,
2884 			(unsigned long)zone_idx(zone),
2885 			zone_start_pfn, (zone_start_pfn + size));
2886 
2887 	zone_init_free_lists(zone);
2888 
2889 	return 0;
2890 }
2891 
2892 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2893 /*
2894  * Basic iterator support. Return the first range of PFNs for a node
2895  * Note: nid == MAX_NUMNODES returns first region regardless of node
2896  */
2897 static int __meminit first_active_region_index_in_nid(int nid)
2898 {
2899 	int i;
2900 
2901 	for (i = 0; i < nr_nodemap_entries; i++)
2902 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2903 			return i;
2904 
2905 	return -1;
2906 }
2907 
2908 /*
2909  * Basic iterator support. Return the next active range of PFNs for a node
2910  * Note: nid == MAX_NUMNODES returns next region regardless of node
2911  */
2912 static int __meminit next_active_region_index_in_nid(int index, int nid)
2913 {
2914 	for (index = index + 1; index < nr_nodemap_entries; index++)
2915 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2916 			return index;
2917 
2918 	return -1;
2919 }
2920 
2921 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2922 /*
2923  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2924  * Architectures may implement their own version but if add_active_range()
2925  * was used and there are no special requirements, this is a convenient
2926  * alternative
2927  */
2928 int __meminit early_pfn_to_nid(unsigned long pfn)
2929 {
2930 	int i;
2931 
2932 	for (i = 0; i < nr_nodemap_entries; i++) {
2933 		unsigned long start_pfn = early_node_map[i].start_pfn;
2934 		unsigned long end_pfn = early_node_map[i].end_pfn;
2935 
2936 		if (start_pfn <= pfn && pfn < end_pfn)
2937 			return early_node_map[i].nid;
2938 	}
2939 
2940 	return 0;
2941 }
2942 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2943 
2944 /* Basic iterator support to walk early_node_map[] */
2945 #define for_each_active_range_index_in_nid(i, nid) \
2946 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2947 				i = next_active_region_index_in_nid(i, nid))
2948 
2949 /**
2950  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2951  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2952  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2953  *
2954  * If an architecture guarantees that all ranges registered with
2955  * add_active_ranges() contain no holes and may be freed, this
2956  * this function may be used instead of calling free_bootmem() manually.
2957  */
2958 void __init free_bootmem_with_active_regions(int nid,
2959 						unsigned long max_low_pfn)
2960 {
2961 	int i;
2962 
2963 	for_each_active_range_index_in_nid(i, nid) {
2964 		unsigned long size_pages = 0;
2965 		unsigned long end_pfn = early_node_map[i].end_pfn;
2966 
2967 		if (early_node_map[i].start_pfn >= max_low_pfn)
2968 			continue;
2969 
2970 		if (end_pfn > max_low_pfn)
2971 			end_pfn = max_low_pfn;
2972 
2973 		size_pages = end_pfn - early_node_map[i].start_pfn;
2974 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2975 				PFN_PHYS(early_node_map[i].start_pfn),
2976 				size_pages << PAGE_SHIFT);
2977 	}
2978 }
2979 
2980 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2981 {
2982 	int i;
2983 	int ret;
2984 
2985 	for_each_active_range_index_in_nid(i, nid) {
2986 		ret = work_fn(early_node_map[i].start_pfn,
2987 			      early_node_map[i].end_pfn, data);
2988 		if (ret)
2989 			break;
2990 	}
2991 }
2992 /**
2993  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2994  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2995  *
2996  * If an architecture guarantees that all ranges registered with
2997  * add_active_ranges() contain no holes and may be freed, this
2998  * function may be used instead of calling memory_present() manually.
2999  */
3000 void __init sparse_memory_present_with_active_regions(int nid)
3001 {
3002 	int i;
3003 
3004 	for_each_active_range_index_in_nid(i, nid)
3005 		memory_present(early_node_map[i].nid,
3006 				early_node_map[i].start_pfn,
3007 				early_node_map[i].end_pfn);
3008 }
3009 
3010 /**
3011  * push_node_boundaries - Push node boundaries to at least the requested boundary
3012  * @nid: The nid of the node to push the boundary for
3013  * @start_pfn: The start pfn of the node
3014  * @end_pfn: The end pfn of the node
3015  *
3016  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3017  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3018  * be hotplugged even though no physical memory exists. This function allows
3019  * an arch to push out the node boundaries so mem_map is allocated that can
3020  * be used later.
3021  */
3022 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3023 void __init push_node_boundaries(unsigned int nid,
3024 		unsigned long start_pfn, unsigned long end_pfn)
3025 {
3026 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3027 			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3028 			nid, start_pfn, end_pfn);
3029 
3030 	/* Initialise the boundary for this node if necessary */
3031 	if (node_boundary_end_pfn[nid] == 0)
3032 		node_boundary_start_pfn[nid] = -1UL;
3033 
3034 	/* Update the boundaries */
3035 	if (node_boundary_start_pfn[nid] > start_pfn)
3036 		node_boundary_start_pfn[nid] = start_pfn;
3037 	if (node_boundary_end_pfn[nid] < end_pfn)
3038 		node_boundary_end_pfn[nid] = end_pfn;
3039 }
3040 
3041 /* If necessary, push the node boundary out for reserve hotadd */
3042 static void __meminit account_node_boundary(unsigned int nid,
3043 		unsigned long *start_pfn, unsigned long *end_pfn)
3044 {
3045 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3046 			"Entering account_node_boundary(%u, %lu, %lu)\n",
3047 			nid, *start_pfn, *end_pfn);
3048 
3049 	/* Return if boundary information has not been provided */
3050 	if (node_boundary_end_pfn[nid] == 0)
3051 		return;
3052 
3053 	/* Check the boundaries and update if necessary */
3054 	if (node_boundary_start_pfn[nid] < *start_pfn)
3055 		*start_pfn = node_boundary_start_pfn[nid];
3056 	if (node_boundary_end_pfn[nid] > *end_pfn)
3057 		*end_pfn = node_boundary_end_pfn[nid];
3058 }
3059 #else
3060 void __init push_node_boundaries(unsigned int nid,
3061 		unsigned long start_pfn, unsigned long end_pfn) {}
3062 
3063 static void __meminit account_node_boundary(unsigned int nid,
3064 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3065 #endif
3066 
3067 
3068 /**
3069  * get_pfn_range_for_nid - Return the start and end page frames for a node
3070  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3071  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3072  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3073  *
3074  * It returns the start and end page frame of a node based on information
3075  * provided by an arch calling add_active_range(). If called for a node
3076  * with no available memory, a warning is printed and the start and end
3077  * PFNs will be 0.
3078  */
3079 void __meminit get_pfn_range_for_nid(unsigned int nid,
3080 			unsigned long *start_pfn, unsigned long *end_pfn)
3081 {
3082 	int i;
3083 	*start_pfn = -1UL;
3084 	*end_pfn = 0;
3085 
3086 	for_each_active_range_index_in_nid(i, nid) {
3087 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3088 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3089 	}
3090 
3091 	if (*start_pfn == -1UL)
3092 		*start_pfn = 0;
3093 
3094 	/* Push the node boundaries out if requested */
3095 	account_node_boundary(nid, start_pfn, end_pfn);
3096 }
3097 
3098 /*
3099  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3100  * assumption is made that zones within a node are ordered in monotonic
3101  * increasing memory addresses so that the "highest" populated zone is used
3102  */
3103 static void __init find_usable_zone_for_movable(void)
3104 {
3105 	int zone_index;
3106 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3107 		if (zone_index == ZONE_MOVABLE)
3108 			continue;
3109 
3110 		if (arch_zone_highest_possible_pfn[zone_index] >
3111 				arch_zone_lowest_possible_pfn[zone_index])
3112 			break;
3113 	}
3114 
3115 	VM_BUG_ON(zone_index == -1);
3116 	movable_zone = zone_index;
3117 }
3118 
3119 /*
3120  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3121  * because it is sized independant of architecture. Unlike the other zones,
3122  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3123  * in each node depending on the size of each node and how evenly kernelcore
3124  * is distributed. This helper function adjusts the zone ranges
3125  * provided by the architecture for a given node by using the end of the
3126  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3127  * zones within a node are in order of monotonic increases memory addresses
3128  */
3129 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3130 					unsigned long zone_type,
3131 					unsigned long node_start_pfn,
3132 					unsigned long node_end_pfn,
3133 					unsigned long *zone_start_pfn,
3134 					unsigned long *zone_end_pfn)
3135 {
3136 	/* Only adjust if ZONE_MOVABLE is on this node */
3137 	if (zone_movable_pfn[nid]) {
3138 		/* Size ZONE_MOVABLE */
3139 		if (zone_type == ZONE_MOVABLE) {
3140 			*zone_start_pfn = zone_movable_pfn[nid];
3141 			*zone_end_pfn = min(node_end_pfn,
3142 				arch_zone_highest_possible_pfn[movable_zone]);
3143 
3144 		/* Adjust for ZONE_MOVABLE starting within this range */
3145 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3146 				*zone_end_pfn > zone_movable_pfn[nid]) {
3147 			*zone_end_pfn = zone_movable_pfn[nid];
3148 
3149 		/* Check if this whole range is within ZONE_MOVABLE */
3150 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3151 			*zone_start_pfn = *zone_end_pfn;
3152 	}
3153 }
3154 
3155 /*
3156  * Return the number of pages a zone spans in a node, including holes
3157  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3158  */
3159 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3160 					unsigned long zone_type,
3161 					unsigned long *ignored)
3162 {
3163 	unsigned long node_start_pfn, node_end_pfn;
3164 	unsigned long zone_start_pfn, zone_end_pfn;
3165 
3166 	/* Get the start and end of the node and zone */
3167 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3168 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3169 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3170 	adjust_zone_range_for_zone_movable(nid, zone_type,
3171 				node_start_pfn, node_end_pfn,
3172 				&zone_start_pfn, &zone_end_pfn);
3173 
3174 	/* Check that this node has pages within the zone's required range */
3175 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3176 		return 0;
3177 
3178 	/* Move the zone boundaries inside the node if necessary */
3179 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3180 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3181 
3182 	/* Return the spanned pages */
3183 	return zone_end_pfn - zone_start_pfn;
3184 }
3185 
3186 /*
3187  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3188  * then all holes in the requested range will be accounted for.
3189  */
3190 static unsigned long __meminit __absent_pages_in_range(int nid,
3191 				unsigned long range_start_pfn,
3192 				unsigned long range_end_pfn)
3193 {
3194 	int i = 0;
3195 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3196 	unsigned long start_pfn;
3197 
3198 	/* Find the end_pfn of the first active range of pfns in the node */
3199 	i = first_active_region_index_in_nid(nid);
3200 	if (i == -1)
3201 		return 0;
3202 
3203 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3204 
3205 	/* Account for ranges before physical memory on this node */
3206 	if (early_node_map[i].start_pfn > range_start_pfn)
3207 		hole_pages = prev_end_pfn - range_start_pfn;
3208 
3209 	/* Find all holes for the zone within the node */
3210 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3211 
3212 		/* No need to continue if prev_end_pfn is outside the zone */
3213 		if (prev_end_pfn >= range_end_pfn)
3214 			break;
3215 
3216 		/* Make sure the end of the zone is not within the hole */
3217 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3218 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3219 
3220 		/* Update the hole size cound and move on */
3221 		if (start_pfn > range_start_pfn) {
3222 			BUG_ON(prev_end_pfn > start_pfn);
3223 			hole_pages += start_pfn - prev_end_pfn;
3224 		}
3225 		prev_end_pfn = early_node_map[i].end_pfn;
3226 	}
3227 
3228 	/* Account for ranges past physical memory on this node */
3229 	if (range_end_pfn > prev_end_pfn)
3230 		hole_pages += range_end_pfn -
3231 				max(range_start_pfn, prev_end_pfn);
3232 
3233 	return hole_pages;
3234 }
3235 
3236 /**
3237  * absent_pages_in_range - Return number of page frames in holes within a range
3238  * @start_pfn: The start PFN to start searching for holes
3239  * @end_pfn: The end PFN to stop searching for holes
3240  *
3241  * It returns the number of pages frames in memory holes within a range.
3242  */
3243 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3244 							unsigned long end_pfn)
3245 {
3246 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3247 }
3248 
3249 /* Return the number of page frames in holes in a zone on a node */
3250 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3251 					unsigned long zone_type,
3252 					unsigned long *ignored)
3253 {
3254 	unsigned long node_start_pfn, node_end_pfn;
3255 	unsigned long zone_start_pfn, zone_end_pfn;
3256 
3257 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3258 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3259 							node_start_pfn);
3260 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3261 							node_end_pfn);
3262 
3263 	adjust_zone_range_for_zone_movable(nid, zone_type,
3264 			node_start_pfn, node_end_pfn,
3265 			&zone_start_pfn, &zone_end_pfn);
3266 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3267 }
3268 
3269 #else
3270 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3271 					unsigned long zone_type,
3272 					unsigned long *zones_size)
3273 {
3274 	return zones_size[zone_type];
3275 }
3276 
3277 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3278 						unsigned long zone_type,
3279 						unsigned long *zholes_size)
3280 {
3281 	if (!zholes_size)
3282 		return 0;
3283 
3284 	return zholes_size[zone_type];
3285 }
3286 
3287 #endif
3288 
3289 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3290 		unsigned long *zones_size, unsigned long *zholes_size)
3291 {
3292 	unsigned long realtotalpages, totalpages = 0;
3293 	enum zone_type i;
3294 
3295 	for (i = 0; i < MAX_NR_ZONES; i++)
3296 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3297 								zones_size);
3298 	pgdat->node_spanned_pages = totalpages;
3299 
3300 	realtotalpages = totalpages;
3301 	for (i = 0; i < MAX_NR_ZONES; i++)
3302 		realtotalpages -=
3303 			zone_absent_pages_in_node(pgdat->node_id, i,
3304 								zholes_size);
3305 	pgdat->node_present_pages = realtotalpages;
3306 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3307 							realtotalpages);
3308 }
3309 
3310 #ifndef CONFIG_SPARSEMEM
3311 /*
3312  * Calculate the size of the zone->blockflags rounded to an unsigned long
3313  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3314  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3315  * round what is now in bits to nearest long in bits, then return it in
3316  * bytes.
3317  */
3318 static unsigned long __init usemap_size(unsigned long zonesize)
3319 {
3320 	unsigned long usemapsize;
3321 
3322 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3323 	usemapsize = usemapsize >> pageblock_order;
3324 	usemapsize *= NR_PAGEBLOCK_BITS;
3325 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3326 
3327 	return usemapsize / 8;
3328 }
3329 
3330 static void __init setup_usemap(struct pglist_data *pgdat,
3331 				struct zone *zone, unsigned long zonesize)
3332 {
3333 	unsigned long usemapsize = usemap_size(zonesize);
3334 	zone->pageblock_flags = NULL;
3335 	if (usemapsize) {
3336 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3337 		memset(zone->pageblock_flags, 0, usemapsize);
3338 	}
3339 }
3340 #else
3341 static void inline setup_usemap(struct pglist_data *pgdat,
3342 				struct zone *zone, unsigned long zonesize) {}
3343 #endif /* CONFIG_SPARSEMEM */
3344 
3345 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3346 
3347 /* Return a sensible default order for the pageblock size. */
3348 static inline int pageblock_default_order(void)
3349 {
3350 	if (HPAGE_SHIFT > PAGE_SHIFT)
3351 		return HUGETLB_PAGE_ORDER;
3352 
3353 	return MAX_ORDER-1;
3354 }
3355 
3356 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3357 static inline void __init set_pageblock_order(unsigned int order)
3358 {
3359 	/* Check that pageblock_nr_pages has not already been setup */
3360 	if (pageblock_order)
3361 		return;
3362 
3363 	/*
3364 	 * Assume the largest contiguous order of interest is a huge page.
3365 	 * This value may be variable depending on boot parameters on IA64
3366 	 */
3367 	pageblock_order = order;
3368 }
3369 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3370 
3371 /*
3372  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3373  * and pageblock_default_order() are unused as pageblock_order is set
3374  * at compile-time. See include/linux/pageblock-flags.h for the values of
3375  * pageblock_order based on the kernel config
3376  */
3377 static inline int pageblock_default_order(unsigned int order)
3378 {
3379 	return MAX_ORDER-1;
3380 }
3381 #define set_pageblock_order(x)	do {} while (0)
3382 
3383 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3384 
3385 /*
3386  * Set up the zone data structures:
3387  *   - mark all pages reserved
3388  *   - mark all memory queues empty
3389  *   - clear the memory bitmaps
3390  */
3391 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3392 		unsigned long *zones_size, unsigned long *zholes_size)
3393 {
3394 	enum zone_type j;
3395 	int nid = pgdat->node_id;
3396 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3397 	int ret;
3398 
3399 	pgdat_resize_init(pgdat);
3400 	pgdat->nr_zones = 0;
3401 	init_waitqueue_head(&pgdat->kswapd_wait);
3402 	pgdat->kswapd_max_order = 0;
3403 
3404 	for (j = 0; j < MAX_NR_ZONES; j++) {
3405 		struct zone *zone = pgdat->node_zones + j;
3406 		unsigned long size, realsize, memmap_pages;
3407 
3408 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3409 		realsize = size - zone_absent_pages_in_node(nid, j,
3410 								zholes_size);
3411 
3412 		/*
3413 		 * Adjust realsize so that it accounts for how much memory
3414 		 * is used by this zone for memmap. This affects the watermark
3415 		 * and per-cpu initialisations
3416 		 */
3417 		memmap_pages =
3418 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3419 		if (realsize >= memmap_pages) {
3420 			realsize -= memmap_pages;
3421 			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3422 				"%s zone: %lu pages used for memmap\n",
3423 				zone_names[j], memmap_pages);
3424 		} else
3425 			printk(KERN_WARNING
3426 				"  %s zone: %lu pages exceeds realsize %lu\n",
3427 				zone_names[j], memmap_pages, realsize);
3428 
3429 		/* Account for reserved pages */
3430 		if (j == 0 && realsize > dma_reserve) {
3431 			realsize -= dma_reserve;
3432 			mminit_dprintk(MMINIT_TRACE, "memmap_init",
3433 					"%s zone: %lu pages reserved\n",
3434 					zone_names[0], dma_reserve);
3435 		}
3436 
3437 		if (!is_highmem_idx(j))
3438 			nr_kernel_pages += realsize;
3439 		nr_all_pages += realsize;
3440 
3441 		zone->spanned_pages = size;
3442 		zone->present_pages = realsize;
3443 #ifdef CONFIG_NUMA
3444 		zone->node = nid;
3445 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3446 						/ 100;
3447 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3448 #endif
3449 		zone->name = zone_names[j];
3450 		spin_lock_init(&zone->lock);
3451 		spin_lock_init(&zone->lru_lock);
3452 		zone_seqlock_init(zone);
3453 		zone->zone_pgdat = pgdat;
3454 
3455 		zone->prev_priority = DEF_PRIORITY;
3456 
3457 		zone_pcp_init(zone);
3458 		INIT_LIST_HEAD(&zone->active_list);
3459 		INIT_LIST_HEAD(&zone->inactive_list);
3460 		zone->nr_scan_active = 0;
3461 		zone->nr_scan_inactive = 0;
3462 		zap_zone_vm_stats(zone);
3463 		zone->flags = 0;
3464 		if (!size)
3465 			continue;
3466 
3467 		set_pageblock_order(pageblock_default_order());
3468 		setup_usemap(pgdat, zone, size);
3469 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3470 						size, MEMMAP_EARLY);
3471 		BUG_ON(ret);
3472 		memmap_init(size, nid, j, zone_start_pfn);
3473 		zone_start_pfn += size;
3474 	}
3475 }
3476 
3477 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3478 {
3479 	/* Skip empty nodes */
3480 	if (!pgdat->node_spanned_pages)
3481 		return;
3482 
3483 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3484 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3485 	if (!pgdat->node_mem_map) {
3486 		unsigned long size, start, end;
3487 		struct page *map;
3488 
3489 		/*
3490 		 * The zone's endpoints aren't required to be MAX_ORDER
3491 		 * aligned but the node_mem_map endpoints must be in order
3492 		 * for the buddy allocator to function correctly.
3493 		 */
3494 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3495 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3496 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3497 		size =  (end - start) * sizeof(struct page);
3498 		map = alloc_remap(pgdat->node_id, size);
3499 		if (!map)
3500 			map = alloc_bootmem_node(pgdat, size);
3501 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3502 	}
3503 #ifndef CONFIG_NEED_MULTIPLE_NODES
3504 	/*
3505 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3506 	 */
3507 	if (pgdat == NODE_DATA(0)) {
3508 		mem_map = NODE_DATA(0)->node_mem_map;
3509 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3510 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3511 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3512 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3513 	}
3514 #endif
3515 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3516 }
3517 
3518 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3519 		unsigned long node_start_pfn, unsigned long *zholes_size)
3520 {
3521 	pg_data_t *pgdat = NODE_DATA(nid);
3522 
3523 	pgdat->node_id = nid;
3524 	pgdat->node_start_pfn = node_start_pfn;
3525 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3526 
3527 	alloc_node_mem_map(pgdat);
3528 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3529 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3530 		nid, (unsigned long)pgdat,
3531 		(unsigned long)pgdat->node_mem_map);
3532 #endif
3533 
3534 	free_area_init_core(pgdat, zones_size, zholes_size);
3535 }
3536 
3537 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3538 
3539 #if MAX_NUMNODES > 1
3540 /*
3541  * Figure out the number of possible node ids.
3542  */
3543 static void __init setup_nr_node_ids(void)
3544 {
3545 	unsigned int node;
3546 	unsigned int highest = 0;
3547 
3548 	for_each_node_mask(node, node_possible_map)
3549 		highest = node;
3550 	nr_node_ids = highest + 1;
3551 }
3552 #else
3553 static inline void setup_nr_node_ids(void)
3554 {
3555 }
3556 #endif
3557 
3558 /**
3559  * add_active_range - Register a range of PFNs backed by physical memory
3560  * @nid: The node ID the range resides on
3561  * @start_pfn: The start PFN of the available physical memory
3562  * @end_pfn: The end PFN of the available physical memory
3563  *
3564  * These ranges are stored in an early_node_map[] and later used by
3565  * free_area_init_nodes() to calculate zone sizes and holes. If the
3566  * range spans a memory hole, it is up to the architecture to ensure
3567  * the memory is not freed by the bootmem allocator. If possible
3568  * the range being registered will be merged with existing ranges.
3569  */
3570 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3571 						unsigned long end_pfn)
3572 {
3573 	int i;
3574 
3575 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3576 			"Entering add_active_range(%d, %#lx, %#lx) "
3577 			"%d entries of %d used\n",
3578 			nid, start_pfn, end_pfn,
3579 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3580 
3581 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3582 
3583 	/* Merge with existing active regions if possible */
3584 	for (i = 0; i < nr_nodemap_entries; i++) {
3585 		if (early_node_map[i].nid != nid)
3586 			continue;
3587 
3588 		/* Skip if an existing region covers this new one */
3589 		if (start_pfn >= early_node_map[i].start_pfn &&
3590 				end_pfn <= early_node_map[i].end_pfn)
3591 			return;
3592 
3593 		/* Merge forward if suitable */
3594 		if (start_pfn <= early_node_map[i].end_pfn &&
3595 				end_pfn > early_node_map[i].end_pfn) {
3596 			early_node_map[i].end_pfn = end_pfn;
3597 			return;
3598 		}
3599 
3600 		/* Merge backward if suitable */
3601 		if (start_pfn < early_node_map[i].end_pfn &&
3602 				end_pfn >= early_node_map[i].start_pfn) {
3603 			early_node_map[i].start_pfn = start_pfn;
3604 			return;
3605 		}
3606 	}
3607 
3608 	/* Check that early_node_map is large enough */
3609 	if (i >= MAX_ACTIVE_REGIONS) {
3610 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3611 							MAX_ACTIVE_REGIONS);
3612 		return;
3613 	}
3614 
3615 	early_node_map[i].nid = nid;
3616 	early_node_map[i].start_pfn = start_pfn;
3617 	early_node_map[i].end_pfn = end_pfn;
3618 	nr_nodemap_entries = i + 1;
3619 }
3620 
3621 /**
3622  * remove_active_range - Shrink an existing registered range of PFNs
3623  * @nid: The node id the range is on that should be shrunk
3624  * @start_pfn: The new PFN of the range
3625  * @end_pfn: The new PFN of the range
3626  *
3627  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3628  * The map is kept near the end physical page range that has already been
3629  * registered. This function allows an arch to shrink an existing registered
3630  * range.
3631  */
3632 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3633 				unsigned long end_pfn)
3634 {
3635 	int i, j;
3636 	int removed = 0;
3637 
3638 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3639 			  nid, start_pfn, end_pfn);
3640 
3641 	/* Find the old active region end and shrink */
3642 	for_each_active_range_index_in_nid(i, nid) {
3643 		if (early_node_map[i].start_pfn >= start_pfn &&
3644 		    early_node_map[i].end_pfn <= end_pfn) {
3645 			/* clear it */
3646 			early_node_map[i].start_pfn = 0;
3647 			early_node_map[i].end_pfn = 0;
3648 			removed = 1;
3649 			continue;
3650 		}
3651 		if (early_node_map[i].start_pfn < start_pfn &&
3652 		    early_node_map[i].end_pfn > start_pfn) {
3653 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3654 			early_node_map[i].end_pfn = start_pfn;
3655 			if (temp_end_pfn > end_pfn)
3656 				add_active_range(nid, end_pfn, temp_end_pfn);
3657 			continue;
3658 		}
3659 		if (early_node_map[i].start_pfn >= start_pfn &&
3660 		    early_node_map[i].end_pfn > end_pfn &&
3661 		    early_node_map[i].start_pfn < end_pfn) {
3662 			early_node_map[i].start_pfn = end_pfn;
3663 			continue;
3664 		}
3665 	}
3666 
3667 	if (!removed)
3668 		return;
3669 
3670 	/* remove the blank ones */
3671 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3672 		if (early_node_map[i].nid != nid)
3673 			continue;
3674 		if (early_node_map[i].end_pfn)
3675 			continue;
3676 		/* we found it, get rid of it */
3677 		for (j = i; j < nr_nodemap_entries - 1; j++)
3678 			memcpy(&early_node_map[j], &early_node_map[j+1],
3679 				sizeof(early_node_map[j]));
3680 		j = nr_nodemap_entries - 1;
3681 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3682 		nr_nodemap_entries--;
3683 	}
3684 }
3685 
3686 /**
3687  * remove_all_active_ranges - Remove all currently registered regions
3688  *
3689  * During discovery, it may be found that a table like SRAT is invalid
3690  * and an alternative discovery method must be used. This function removes
3691  * all currently registered regions.
3692  */
3693 void __init remove_all_active_ranges(void)
3694 {
3695 	memset(early_node_map, 0, sizeof(early_node_map));
3696 	nr_nodemap_entries = 0;
3697 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3698 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3699 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3700 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3701 }
3702 
3703 /* Compare two active node_active_regions */
3704 static int __init cmp_node_active_region(const void *a, const void *b)
3705 {
3706 	struct node_active_region *arange = (struct node_active_region *)a;
3707 	struct node_active_region *brange = (struct node_active_region *)b;
3708 
3709 	/* Done this way to avoid overflows */
3710 	if (arange->start_pfn > brange->start_pfn)
3711 		return 1;
3712 	if (arange->start_pfn < brange->start_pfn)
3713 		return -1;
3714 
3715 	return 0;
3716 }
3717 
3718 /* sort the node_map by start_pfn */
3719 static void __init sort_node_map(void)
3720 {
3721 	sort(early_node_map, (size_t)nr_nodemap_entries,
3722 			sizeof(struct node_active_region),
3723 			cmp_node_active_region, NULL);
3724 }
3725 
3726 /* Find the lowest pfn for a node */
3727 static unsigned long __init find_min_pfn_for_node(int nid)
3728 {
3729 	int i;
3730 	unsigned long min_pfn = ULONG_MAX;
3731 
3732 	/* Assuming a sorted map, the first range found has the starting pfn */
3733 	for_each_active_range_index_in_nid(i, nid)
3734 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3735 
3736 	if (min_pfn == ULONG_MAX) {
3737 		printk(KERN_WARNING
3738 			"Could not find start_pfn for node %d\n", nid);
3739 		return 0;
3740 	}
3741 
3742 	return min_pfn;
3743 }
3744 
3745 /**
3746  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3747  *
3748  * It returns the minimum PFN based on information provided via
3749  * add_active_range().
3750  */
3751 unsigned long __init find_min_pfn_with_active_regions(void)
3752 {
3753 	return find_min_pfn_for_node(MAX_NUMNODES);
3754 }
3755 
3756 /**
3757  * find_max_pfn_with_active_regions - Find the maximum PFN registered
3758  *
3759  * It returns the maximum PFN based on information provided via
3760  * add_active_range().
3761  */
3762 unsigned long __init find_max_pfn_with_active_regions(void)
3763 {
3764 	int i;
3765 	unsigned long max_pfn = 0;
3766 
3767 	for (i = 0; i < nr_nodemap_entries; i++)
3768 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3769 
3770 	return max_pfn;
3771 }
3772 
3773 /*
3774  * early_calculate_totalpages()
3775  * Sum pages in active regions for movable zone.
3776  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3777  */
3778 static unsigned long __init early_calculate_totalpages(void)
3779 {
3780 	int i;
3781 	unsigned long totalpages = 0;
3782 
3783 	for (i = 0; i < nr_nodemap_entries; i++) {
3784 		unsigned long pages = early_node_map[i].end_pfn -
3785 						early_node_map[i].start_pfn;
3786 		totalpages += pages;
3787 		if (pages)
3788 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3789 	}
3790   	return totalpages;
3791 }
3792 
3793 /*
3794  * Find the PFN the Movable zone begins in each node. Kernel memory
3795  * is spread evenly between nodes as long as the nodes have enough
3796  * memory. When they don't, some nodes will have more kernelcore than
3797  * others
3798  */
3799 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3800 {
3801 	int i, nid;
3802 	unsigned long usable_startpfn;
3803 	unsigned long kernelcore_node, kernelcore_remaining;
3804 	unsigned long totalpages = early_calculate_totalpages();
3805 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3806 
3807 	/*
3808 	 * If movablecore was specified, calculate what size of
3809 	 * kernelcore that corresponds so that memory usable for
3810 	 * any allocation type is evenly spread. If both kernelcore
3811 	 * and movablecore are specified, then the value of kernelcore
3812 	 * will be used for required_kernelcore if it's greater than
3813 	 * what movablecore would have allowed.
3814 	 */
3815 	if (required_movablecore) {
3816 		unsigned long corepages;
3817 
3818 		/*
3819 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3820 		 * was requested by the user
3821 		 */
3822 		required_movablecore =
3823 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3824 		corepages = totalpages - required_movablecore;
3825 
3826 		required_kernelcore = max(required_kernelcore, corepages);
3827 	}
3828 
3829 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3830 	if (!required_kernelcore)
3831 		return;
3832 
3833 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3834 	find_usable_zone_for_movable();
3835 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3836 
3837 restart:
3838 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3839 	kernelcore_node = required_kernelcore / usable_nodes;
3840 	for_each_node_state(nid, N_HIGH_MEMORY) {
3841 		/*
3842 		 * Recalculate kernelcore_node if the division per node
3843 		 * now exceeds what is necessary to satisfy the requested
3844 		 * amount of memory for the kernel
3845 		 */
3846 		if (required_kernelcore < kernelcore_node)
3847 			kernelcore_node = required_kernelcore / usable_nodes;
3848 
3849 		/*
3850 		 * As the map is walked, we track how much memory is usable
3851 		 * by the kernel using kernelcore_remaining. When it is
3852 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3853 		 */
3854 		kernelcore_remaining = kernelcore_node;
3855 
3856 		/* Go through each range of PFNs within this node */
3857 		for_each_active_range_index_in_nid(i, nid) {
3858 			unsigned long start_pfn, end_pfn;
3859 			unsigned long size_pages;
3860 
3861 			start_pfn = max(early_node_map[i].start_pfn,
3862 						zone_movable_pfn[nid]);
3863 			end_pfn = early_node_map[i].end_pfn;
3864 			if (start_pfn >= end_pfn)
3865 				continue;
3866 
3867 			/* Account for what is only usable for kernelcore */
3868 			if (start_pfn < usable_startpfn) {
3869 				unsigned long kernel_pages;
3870 				kernel_pages = min(end_pfn, usable_startpfn)
3871 								- start_pfn;
3872 
3873 				kernelcore_remaining -= min(kernel_pages,
3874 							kernelcore_remaining);
3875 				required_kernelcore -= min(kernel_pages,
3876 							required_kernelcore);
3877 
3878 				/* Continue if range is now fully accounted */
3879 				if (end_pfn <= usable_startpfn) {
3880 
3881 					/*
3882 					 * Push zone_movable_pfn to the end so
3883 					 * that if we have to rebalance
3884 					 * kernelcore across nodes, we will
3885 					 * not double account here
3886 					 */
3887 					zone_movable_pfn[nid] = end_pfn;
3888 					continue;
3889 				}
3890 				start_pfn = usable_startpfn;
3891 			}
3892 
3893 			/*
3894 			 * The usable PFN range for ZONE_MOVABLE is from
3895 			 * start_pfn->end_pfn. Calculate size_pages as the
3896 			 * number of pages used as kernelcore
3897 			 */
3898 			size_pages = end_pfn - start_pfn;
3899 			if (size_pages > kernelcore_remaining)
3900 				size_pages = kernelcore_remaining;
3901 			zone_movable_pfn[nid] = start_pfn + size_pages;
3902 
3903 			/*
3904 			 * Some kernelcore has been met, update counts and
3905 			 * break if the kernelcore for this node has been
3906 			 * satisified
3907 			 */
3908 			required_kernelcore -= min(required_kernelcore,
3909 								size_pages);
3910 			kernelcore_remaining -= size_pages;
3911 			if (!kernelcore_remaining)
3912 				break;
3913 		}
3914 	}
3915 
3916 	/*
3917 	 * If there is still required_kernelcore, we do another pass with one
3918 	 * less node in the count. This will push zone_movable_pfn[nid] further
3919 	 * along on the nodes that still have memory until kernelcore is
3920 	 * satisified
3921 	 */
3922 	usable_nodes--;
3923 	if (usable_nodes && required_kernelcore > usable_nodes)
3924 		goto restart;
3925 
3926 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3927 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3928 		zone_movable_pfn[nid] =
3929 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3930 }
3931 
3932 /* Any regular memory on that node ? */
3933 static void check_for_regular_memory(pg_data_t *pgdat)
3934 {
3935 #ifdef CONFIG_HIGHMEM
3936 	enum zone_type zone_type;
3937 
3938 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3939 		struct zone *zone = &pgdat->node_zones[zone_type];
3940 		if (zone->present_pages)
3941 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3942 	}
3943 #endif
3944 }
3945 
3946 /**
3947  * free_area_init_nodes - Initialise all pg_data_t and zone data
3948  * @max_zone_pfn: an array of max PFNs for each zone
3949  *
3950  * This will call free_area_init_node() for each active node in the system.
3951  * Using the page ranges provided by add_active_range(), the size of each
3952  * zone in each node and their holes is calculated. If the maximum PFN
3953  * between two adjacent zones match, it is assumed that the zone is empty.
3954  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3955  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3956  * starts where the previous one ended. For example, ZONE_DMA32 starts
3957  * at arch_max_dma_pfn.
3958  */
3959 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3960 {
3961 	unsigned long nid;
3962 	enum zone_type i;
3963 
3964 	/* Sort early_node_map as initialisation assumes it is sorted */
3965 	sort_node_map();
3966 
3967 	/* Record where the zone boundaries are */
3968 	memset(arch_zone_lowest_possible_pfn, 0,
3969 				sizeof(arch_zone_lowest_possible_pfn));
3970 	memset(arch_zone_highest_possible_pfn, 0,
3971 				sizeof(arch_zone_highest_possible_pfn));
3972 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3973 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3974 	for (i = 1; i < MAX_NR_ZONES; i++) {
3975 		if (i == ZONE_MOVABLE)
3976 			continue;
3977 		arch_zone_lowest_possible_pfn[i] =
3978 			arch_zone_highest_possible_pfn[i-1];
3979 		arch_zone_highest_possible_pfn[i] =
3980 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3981 	}
3982 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3983 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3984 
3985 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3986 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3987 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3988 
3989 	/* Print out the zone ranges */
3990 	printk("Zone PFN ranges:\n");
3991 	for (i = 0; i < MAX_NR_ZONES; i++) {
3992 		if (i == ZONE_MOVABLE)
3993 			continue;
3994 		printk("  %-8s %0#10lx -> %0#10lx\n",
3995 				zone_names[i],
3996 				arch_zone_lowest_possible_pfn[i],
3997 				arch_zone_highest_possible_pfn[i]);
3998 	}
3999 
4000 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4001 	printk("Movable zone start PFN for each node\n");
4002 	for (i = 0; i < MAX_NUMNODES; i++) {
4003 		if (zone_movable_pfn[i])
4004 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4005 	}
4006 
4007 	/* Print out the early_node_map[] */
4008 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4009 	for (i = 0; i < nr_nodemap_entries; i++)
4010 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4011 						early_node_map[i].start_pfn,
4012 						early_node_map[i].end_pfn);
4013 
4014 	/* Initialise every node */
4015 	mminit_verify_pageflags_layout();
4016 	setup_nr_node_ids();
4017 	for_each_online_node(nid) {
4018 		pg_data_t *pgdat = NODE_DATA(nid);
4019 		free_area_init_node(nid, NULL,
4020 				find_min_pfn_for_node(nid), NULL);
4021 
4022 		/* Any memory on that node */
4023 		if (pgdat->node_present_pages)
4024 			node_set_state(nid, N_HIGH_MEMORY);
4025 		check_for_regular_memory(pgdat);
4026 	}
4027 }
4028 
4029 static int __init cmdline_parse_core(char *p, unsigned long *core)
4030 {
4031 	unsigned long long coremem;
4032 	if (!p)
4033 		return -EINVAL;
4034 
4035 	coremem = memparse(p, &p);
4036 	*core = coremem >> PAGE_SHIFT;
4037 
4038 	/* Paranoid check that UL is enough for the coremem value */
4039 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4040 
4041 	return 0;
4042 }
4043 
4044 /*
4045  * kernelcore=size sets the amount of memory for use for allocations that
4046  * cannot be reclaimed or migrated.
4047  */
4048 static int __init cmdline_parse_kernelcore(char *p)
4049 {
4050 	return cmdline_parse_core(p, &required_kernelcore);
4051 }
4052 
4053 /*
4054  * movablecore=size sets the amount of memory for use for allocations that
4055  * can be reclaimed or migrated.
4056  */
4057 static int __init cmdline_parse_movablecore(char *p)
4058 {
4059 	return cmdline_parse_core(p, &required_movablecore);
4060 }
4061 
4062 early_param("kernelcore", cmdline_parse_kernelcore);
4063 early_param("movablecore", cmdline_parse_movablecore);
4064 
4065 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4066 
4067 /**
4068  * set_dma_reserve - set the specified number of pages reserved in the first zone
4069  * @new_dma_reserve: The number of pages to mark reserved
4070  *
4071  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4072  * In the DMA zone, a significant percentage may be consumed by kernel image
4073  * and other unfreeable allocations which can skew the watermarks badly. This
4074  * function may optionally be used to account for unfreeable pages in the
4075  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4076  * smaller per-cpu batchsize.
4077  */
4078 void __init set_dma_reserve(unsigned long new_dma_reserve)
4079 {
4080 	dma_reserve = new_dma_reserve;
4081 }
4082 
4083 #ifndef CONFIG_NEED_MULTIPLE_NODES
4084 struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] };
4085 EXPORT_SYMBOL(contig_page_data);
4086 #endif
4087 
4088 void __init free_area_init(unsigned long *zones_size)
4089 {
4090 	free_area_init_node(0, zones_size,
4091 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4092 }
4093 
4094 static int page_alloc_cpu_notify(struct notifier_block *self,
4095 				 unsigned long action, void *hcpu)
4096 {
4097 	int cpu = (unsigned long)hcpu;
4098 
4099 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4100 		drain_pages(cpu);
4101 
4102 		/*
4103 		 * Spill the event counters of the dead processor
4104 		 * into the current processors event counters.
4105 		 * This artificially elevates the count of the current
4106 		 * processor.
4107 		 */
4108 		vm_events_fold_cpu(cpu);
4109 
4110 		/*
4111 		 * Zero the differential counters of the dead processor
4112 		 * so that the vm statistics are consistent.
4113 		 *
4114 		 * This is only okay since the processor is dead and cannot
4115 		 * race with what we are doing.
4116 		 */
4117 		refresh_cpu_vm_stats(cpu);
4118 	}
4119 	return NOTIFY_OK;
4120 }
4121 
4122 void __init page_alloc_init(void)
4123 {
4124 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4125 }
4126 
4127 /*
4128  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4129  *	or min_free_kbytes changes.
4130  */
4131 static void calculate_totalreserve_pages(void)
4132 {
4133 	struct pglist_data *pgdat;
4134 	unsigned long reserve_pages = 0;
4135 	enum zone_type i, j;
4136 
4137 	for_each_online_pgdat(pgdat) {
4138 		for (i = 0; i < MAX_NR_ZONES; i++) {
4139 			struct zone *zone = pgdat->node_zones + i;
4140 			unsigned long max = 0;
4141 
4142 			/* Find valid and maximum lowmem_reserve in the zone */
4143 			for (j = i; j < MAX_NR_ZONES; j++) {
4144 				if (zone->lowmem_reserve[j] > max)
4145 					max = zone->lowmem_reserve[j];
4146 			}
4147 
4148 			/* we treat pages_high as reserved pages. */
4149 			max += zone->pages_high;
4150 
4151 			if (max > zone->present_pages)
4152 				max = zone->present_pages;
4153 			reserve_pages += max;
4154 		}
4155 	}
4156 	totalreserve_pages = reserve_pages;
4157 }
4158 
4159 /*
4160  * setup_per_zone_lowmem_reserve - called whenever
4161  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4162  *	has a correct pages reserved value, so an adequate number of
4163  *	pages are left in the zone after a successful __alloc_pages().
4164  */
4165 static void setup_per_zone_lowmem_reserve(void)
4166 {
4167 	struct pglist_data *pgdat;
4168 	enum zone_type j, idx;
4169 
4170 	for_each_online_pgdat(pgdat) {
4171 		for (j = 0; j < MAX_NR_ZONES; j++) {
4172 			struct zone *zone = pgdat->node_zones + j;
4173 			unsigned long present_pages = zone->present_pages;
4174 
4175 			zone->lowmem_reserve[j] = 0;
4176 
4177 			idx = j;
4178 			while (idx) {
4179 				struct zone *lower_zone;
4180 
4181 				idx--;
4182 
4183 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4184 					sysctl_lowmem_reserve_ratio[idx] = 1;
4185 
4186 				lower_zone = pgdat->node_zones + idx;
4187 				lower_zone->lowmem_reserve[j] = present_pages /
4188 					sysctl_lowmem_reserve_ratio[idx];
4189 				present_pages += lower_zone->present_pages;
4190 			}
4191 		}
4192 	}
4193 
4194 	/* update totalreserve_pages */
4195 	calculate_totalreserve_pages();
4196 }
4197 
4198 /**
4199  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4200  *
4201  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4202  * with respect to min_free_kbytes.
4203  */
4204 void setup_per_zone_pages_min(void)
4205 {
4206 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4207 	unsigned long lowmem_pages = 0;
4208 	struct zone *zone;
4209 	unsigned long flags;
4210 
4211 	/* Calculate total number of !ZONE_HIGHMEM pages */
4212 	for_each_zone(zone) {
4213 		if (!is_highmem(zone))
4214 			lowmem_pages += zone->present_pages;
4215 	}
4216 
4217 	for_each_zone(zone) {
4218 		u64 tmp;
4219 
4220 		spin_lock_irqsave(&zone->lru_lock, flags);
4221 		tmp = (u64)pages_min * zone->present_pages;
4222 		do_div(tmp, lowmem_pages);
4223 		if (is_highmem(zone)) {
4224 			/*
4225 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4226 			 * need highmem pages, so cap pages_min to a small
4227 			 * value here.
4228 			 *
4229 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4230 			 * deltas controls asynch page reclaim, and so should
4231 			 * not be capped for highmem.
4232 			 */
4233 			int min_pages;
4234 
4235 			min_pages = zone->present_pages / 1024;
4236 			if (min_pages < SWAP_CLUSTER_MAX)
4237 				min_pages = SWAP_CLUSTER_MAX;
4238 			if (min_pages > 128)
4239 				min_pages = 128;
4240 			zone->pages_min = min_pages;
4241 		} else {
4242 			/*
4243 			 * If it's a lowmem zone, reserve a number of pages
4244 			 * proportionate to the zone's size.
4245 			 */
4246 			zone->pages_min = tmp;
4247 		}
4248 
4249 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4250 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4251 		setup_zone_migrate_reserve(zone);
4252 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4253 	}
4254 
4255 	/* update totalreserve_pages */
4256 	calculate_totalreserve_pages();
4257 }
4258 
4259 /*
4260  * Initialise min_free_kbytes.
4261  *
4262  * For small machines we want it small (128k min).  For large machines
4263  * we want it large (64MB max).  But it is not linear, because network
4264  * bandwidth does not increase linearly with machine size.  We use
4265  *
4266  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4267  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4268  *
4269  * which yields
4270  *
4271  * 16MB:	512k
4272  * 32MB:	724k
4273  * 64MB:	1024k
4274  * 128MB:	1448k
4275  * 256MB:	2048k
4276  * 512MB:	2896k
4277  * 1024MB:	4096k
4278  * 2048MB:	5792k
4279  * 4096MB:	8192k
4280  * 8192MB:	11584k
4281  * 16384MB:	16384k
4282  */
4283 static int __init init_per_zone_pages_min(void)
4284 {
4285 	unsigned long lowmem_kbytes;
4286 
4287 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4288 
4289 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4290 	if (min_free_kbytes < 128)
4291 		min_free_kbytes = 128;
4292 	if (min_free_kbytes > 65536)
4293 		min_free_kbytes = 65536;
4294 	setup_per_zone_pages_min();
4295 	setup_per_zone_lowmem_reserve();
4296 	return 0;
4297 }
4298 module_init(init_per_zone_pages_min)
4299 
4300 /*
4301  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4302  *	that we can call two helper functions whenever min_free_kbytes
4303  *	changes.
4304  */
4305 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4306 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4307 {
4308 	proc_dointvec(table, write, file, buffer, length, ppos);
4309 	if (write)
4310 		setup_per_zone_pages_min();
4311 	return 0;
4312 }
4313 
4314 #ifdef CONFIG_NUMA
4315 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4316 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4317 {
4318 	struct zone *zone;
4319 	int rc;
4320 
4321 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4322 	if (rc)
4323 		return rc;
4324 
4325 	for_each_zone(zone)
4326 		zone->min_unmapped_pages = (zone->present_pages *
4327 				sysctl_min_unmapped_ratio) / 100;
4328 	return 0;
4329 }
4330 
4331 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4332 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4333 {
4334 	struct zone *zone;
4335 	int rc;
4336 
4337 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4338 	if (rc)
4339 		return rc;
4340 
4341 	for_each_zone(zone)
4342 		zone->min_slab_pages = (zone->present_pages *
4343 				sysctl_min_slab_ratio) / 100;
4344 	return 0;
4345 }
4346 #endif
4347 
4348 /*
4349  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4350  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4351  *	whenever sysctl_lowmem_reserve_ratio changes.
4352  *
4353  * The reserve ratio obviously has absolutely no relation with the
4354  * pages_min watermarks. The lowmem reserve ratio can only make sense
4355  * if in function of the boot time zone sizes.
4356  */
4357 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4358 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4359 {
4360 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4361 	setup_per_zone_lowmem_reserve();
4362 	return 0;
4363 }
4364 
4365 /*
4366  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4367  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4368  * can have before it gets flushed back to buddy allocator.
4369  */
4370 
4371 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4372 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4373 {
4374 	struct zone *zone;
4375 	unsigned int cpu;
4376 	int ret;
4377 
4378 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4379 	if (!write || (ret == -EINVAL))
4380 		return ret;
4381 	for_each_zone(zone) {
4382 		for_each_online_cpu(cpu) {
4383 			unsigned long  high;
4384 			high = zone->present_pages / percpu_pagelist_fraction;
4385 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4386 		}
4387 	}
4388 	return 0;
4389 }
4390 
4391 int hashdist = HASHDIST_DEFAULT;
4392 
4393 #ifdef CONFIG_NUMA
4394 static int __init set_hashdist(char *str)
4395 {
4396 	if (!str)
4397 		return 0;
4398 	hashdist = simple_strtoul(str, &str, 0);
4399 	return 1;
4400 }
4401 __setup("hashdist=", set_hashdist);
4402 #endif
4403 
4404 /*
4405  * allocate a large system hash table from bootmem
4406  * - it is assumed that the hash table must contain an exact power-of-2
4407  *   quantity of entries
4408  * - limit is the number of hash buckets, not the total allocation size
4409  */
4410 void *__init alloc_large_system_hash(const char *tablename,
4411 				     unsigned long bucketsize,
4412 				     unsigned long numentries,
4413 				     int scale,
4414 				     int flags,
4415 				     unsigned int *_hash_shift,
4416 				     unsigned int *_hash_mask,
4417 				     unsigned long limit)
4418 {
4419 	unsigned long long max = limit;
4420 	unsigned long log2qty, size;
4421 	void *table = NULL;
4422 
4423 	/* allow the kernel cmdline to have a say */
4424 	if (!numentries) {
4425 		/* round applicable memory size up to nearest megabyte */
4426 		numentries = nr_kernel_pages;
4427 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4428 		numentries >>= 20 - PAGE_SHIFT;
4429 		numentries <<= 20 - PAGE_SHIFT;
4430 
4431 		/* limit to 1 bucket per 2^scale bytes of low memory */
4432 		if (scale > PAGE_SHIFT)
4433 			numentries >>= (scale - PAGE_SHIFT);
4434 		else
4435 			numentries <<= (PAGE_SHIFT - scale);
4436 
4437 		/* Make sure we've got at least a 0-order allocation.. */
4438 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4439 			numentries = PAGE_SIZE / bucketsize;
4440 	}
4441 	numentries = roundup_pow_of_two(numentries);
4442 
4443 	/* limit allocation size to 1/16 total memory by default */
4444 	if (max == 0) {
4445 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4446 		do_div(max, bucketsize);
4447 	}
4448 
4449 	if (numentries > max)
4450 		numentries = max;
4451 
4452 	log2qty = ilog2(numentries);
4453 
4454 	do {
4455 		size = bucketsize << log2qty;
4456 		if (flags & HASH_EARLY)
4457 			table = alloc_bootmem(size);
4458 		else if (hashdist)
4459 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4460 		else {
4461 			unsigned long order = get_order(size);
4462 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4463 			/*
4464 			 * If bucketsize is not a power-of-two, we may free
4465 			 * some pages at the end of hash table.
4466 			 */
4467 			if (table) {
4468 				unsigned long alloc_end = (unsigned long)table +
4469 						(PAGE_SIZE << order);
4470 				unsigned long used = (unsigned long)table +
4471 						PAGE_ALIGN(size);
4472 				split_page(virt_to_page(table), order);
4473 				while (used < alloc_end) {
4474 					free_page(used);
4475 					used += PAGE_SIZE;
4476 				}
4477 			}
4478 		}
4479 	} while (!table && size > PAGE_SIZE && --log2qty);
4480 
4481 	if (!table)
4482 		panic("Failed to allocate %s hash table\n", tablename);
4483 
4484 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4485 	       tablename,
4486 	       (1U << log2qty),
4487 	       ilog2(size) - PAGE_SHIFT,
4488 	       size);
4489 
4490 	if (_hash_shift)
4491 		*_hash_shift = log2qty;
4492 	if (_hash_mask)
4493 		*_hash_mask = (1 << log2qty) - 1;
4494 
4495 	return table;
4496 }
4497 
4498 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4499 struct page *pfn_to_page(unsigned long pfn)
4500 {
4501 	return __pfn_to_page(pfn);
4502 }
4503 unsigned long page_to_pfn(struct page *page)
4504 {
4505 	return __page_to_pfn(page);
4506 }
4507 EXPORT_SYMBOL(pfn_to_page);
4508 EXPORT_SYMBOL(page_to_pfn);
4509 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4510 
4511 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4512 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4513 							unsigned long pfn)
4514 {
4515 #ifdef CONFIG_SPARSEMEM
4516 	return __pfn_to_section(pfn)->pageblock_flags;
4517 #else
4518 	return zone->pageblock_flags;
4519 #endif /* CONFIG_SPARSEMEM */
4520 }
4521 
4522 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4523 {
4524 #ifdef CONFIG_SPARSEMEM
4525 	pfn &= (PAGES_PER_SECTION-1);
4526 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4527 #else
4528 	pfn = pfn - zone->zone_start_pfn;
4529 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4530 #endif /* CONFIG_SPARSEMEM */
4531 }
4532 
4533 /**
4534  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4535  * @page: The page within the block of interest
4536  * @start_bitidx: The first bit of interest to retrieve
4537  * @end_bitidx: The last bit of interest
4538  * returns pageblock_bits flags
4539  */
4540 unsigned long get_pageblock_flags_group(struct page *page,
4541 					int start_bitidx, int end_bitidx)
4542 {
4543 	struct zone *zone;
4544 	unsigned long *bitmap;
4545 	unsigned long pfn, bitidx;
4546 	unsigned long flags = 0;
4547 	unsigned long value = 1;
4548 
4549 	zone = page_zone(page);
4550 	pfn = page_to_pfn(page);
4551 	bitmap = get_pageblock_bitmap(zone, pfn);
4552 	bitidx = pfn_to_bitidx(zone, pfn);
4553 
4554 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4555 		if (test_bit(bitidx + start_bitidx, bitmap))
4556 			flags |= value;
4557 
4558 	return flags;
4559 }
4560 
4561 /**
4562  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4563  * @page: The page within the block of interest
4564  * @start_bitidx: The first bit of interest
4565  * @end_bitidx: The last bit of interest
4566  * @flags: The flags to set
4567  */
4568 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4569 					int start_bitidx, int end_bitidx)
4570 {
4571 	struct zone *zone;
4572 	unsigned long *bitmap;
4573 	unsigned long pfn, bitidx;
4574 	unsigned long value = 1;
4575 
4576 	zone = page_zone(page);
4577 	pfn = page_to_pfn(page);
4578 	bitmap = get_pageblock_bitmap(zone, pfn);
4579 	bitidx = pfn_to_bitidx(zone, pfn);
4580 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4581 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4582 
4583 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4584 		if (flags & value)
4585 			__set_bit(bitidx + start_bitidx, bitmap);
4586 		else
4587 			__clear_bit(bitidx + start_bitidx, bitmap);
4588 }
4589 
4590 /*
4591  * This is designed as sub function...plz see page_isolation.c also.
4592  * set/clear page block's type to be ISOLATE.
4593  * page allocater never alloc memory from ISOLATE block.
4594  */
4595 
4596 int set_migratetype_isolate(struct page *page)
4597 {
4598 	struct zone *zone;
4599 	unsigned long flags;
4600 	int ret = -EBUSY;
4601 
4602 	zone = page_zone(page);
4603 	spin_lock_irqsave(&zone->lock, flags);
4604 	/*
4605 	 * In future, more migrate types will be able to be isolation target.
4606 	 */
4607 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4608 		goto out;
4609 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4610 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4611 	ret = 0;
4612 out:
4613 	spin_unlock_irqrestore(&zone->lock, flags);
4614 	if (!ret)
4615 		drain_all_pages();
4616 	return ret;
4617 }
4618 
4619 void unset_migratetype_isolate(struct page *page)
4620 {
4621 	struct zone *zone;
4622 	unsigned long flags;
4623 	zone = page_zone(page);
4624 	spin_lock_irqsave(&zone->lock, flags);
4625 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4626 		goto out;
4627 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4628 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4629 out:
4630 	spin_unlock_irqrestore(&zone->lock, flags);
4631 }
4632 
4633 #ifdef CONFIG_MEMORY_HOTREMOVE
4634 /*
4635  * All pages in the range must be isolated before calling this.
4636  */
4637 void
4638 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4639 {
4640 	struct page *page;
4641 	struct zone *zone;
4642 	int order, i;
4643 	unsigned long pfn;
4644 	unsigned long flags;
4645 	/* find the first valid pfn */
4646 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4647 		if (pfn_valid(pfn))
4648 			break;
4649 	if (pfn == end_pfn)
4650 		return;
4651 	zone = page_zone(pfn_to_page(pfn));
4652 	spin_lock_irqsave(&zone->lock, flags);
4653 	pfn = start_pfn;
4654 	while (pfn < end_pfn) {
4655 		if (!pfn_valid(pfn)) {
4656 			pfn++;
4657 			continue;
4658 		}
4659 		page = pfn_to_page(pfn);
4660 		BUG_ON(page_count(page));
4661 		BUG_ON(!PageBuddy(page));
4662 		order = page_order(page);
4663 #ifdef CONFIG_DEBUG_VM
4664 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4665 		       pfn, 1 << order, end_pfn);
4666 #endif
4667 		list_del(&page->lru);
4668 		rmv_page_order(page);
4669 		zone->free_area[order].nr_free--;
4670 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4671 				      - (1UL << order));
4672 		for (i = 0; i < (1 << order); i++)
4673 			SetPageReserved((page+i));
4674 		pfn += (1 << order);
4675 	}
4676 	spin_unlock_irqrestore(&zone->lock, flags);
4677 }
4678 #endif
4679