xref: /openbmc/linux/mm/page_alloc.c (revision d78c317f)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 	[N_CPU] = { { [0] = 1UL } },
94 #endif	/* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97 
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101  * When calculating the number of globally allowed dirty pages, there
102  * is a certain number of per-zone reserves that should not be
103  * considered dirtyable memory.  This is the sum of those reserves
104  * over all existing zones that contribute dirtyable memory.
105  */
106 unsigned long dirty_balance_reserve __read_mostly;
107 
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110 
111 #ifdef CONFIG_PM_SLEEP
112 /*
113  * The following functions are used by the suspend/hibernate code to temporarily
114  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115  * while devices are suspended.  To avoid races with the suspend/hibernate code,
116  * they should always be called with pm_mutex held (gfp_allowed_mask also should
117  * only be modified with pm_mutex held, unless the suspend/hibernate code is
118  * guaranteed not to run in parallel with that modification).
119  */
120 
121 static gfp_t saved_gfp_mask;
122 
123 void pm_restore_gfp_mask(void)
124 {
125 	WARN_ON(!mutex_is_locked(&pm_mutex));
126 	if (saved_gfp_mask) {
127 		gfp_allowed_mask = saved_gfp_mask;
128 		saved_gfp_mask = 0;
129 	}
130 }
131 
132 void pm_restrict_gfp_mask(void)
133 {
134 	WARN_ON(!mutex_is_locked(&pm_mutex));
135 	WARN_ON(saved_gfp_mask);
136 	saved_gfp_mask = gfp_allowed_mask;
137 	gfp_allowed_mask &= ~GFP_IOFS;
138 }
139 
140 bool pm_suspended_storage(void)
141 {
142 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 		return false;
144 	return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147 
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151 
152 static void __free_pages_ok(struct page *page, unsigned int order);
153 
154 /*
155  * results with 256, 32 in the lowmem_reserve sysctl:
156  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157  *	1G machine -> (16M dma, 784M normal, 224M high)
158  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161  *
162  * TBD: should special case ZONE_DMA32 machines here - in those we normally
163  * don't need any ZONE_NORMAL reservation
164  */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 	 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 	 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 	 32,
174 #endif
175 	 32,
176 };
177 
178 EXPORT_SYMBOL(totalram_pages);
179 
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 	 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 	 "DMA32",
186 #endif
187 	 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 	 "HighMem",
190 #endif
191 	 "Movable",
192 };
193 
194 int min_free_kbytes = 1024;
195 
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199 
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206 
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211 
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218 
219 int page_group_by_mobility_disabled __read_mostly;
220 
221 static void set_pageblock_migratetype(struct page *page, int migratetype)
222 {
223 
224 	if (unlikely(page_group_by_mobility_disabled))
225 		migratetype = MIGRATE_UNMOVABLE;
226 
227 	set_pageblock_flags_group(page, (unsigned long)migratetype,
228 					PB_migrate, PB_migrate_end);
229 }
230 
231 bool oom_killer_disabled __read_mostly;
232 
233 #ifdef CONFIG_DEBUG_VM
234 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
235 {
236 	int ret = 0;
237 	unsigned seq;
238 	unsigned long pfn = page_to_pfn(page);
239 
240 	do {
241 		seq = zone_span_seqbegin(zone);
242 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243 			ret = 1;
244 		else if (pfn < zone->zone_start_pfn)
245 			ret = 1;
246 	} while (zone_span_seqretry(zone, seq));
247 
248 	return ret;
249 }
250 
251 static int page_is_consistent(struct zone *zone, struct page *page)
252 {
253 	if (!pfn_valid_within(page_to_pfn(page)))
254 		return 0;
255 	if (zone != page_zone(page))
256 		return 0;
257 
258 	return 1;
259 }
260 /*
261  * Temporary debugging check for pages not lying within a given zone.
262  */
263 static int bad_range(struct zone *zone, struct page *page)
264 {
265 	if (page_outside_zone_boundaries(zone, page))
266 		return 1;
267 	if (!page_is_consistent(zone, page))
268 		return 1;
269 
270 	return 0;
271 }
272 #else
273 static inline int bad_range(struct zone *zone, struct page *page)
274 {
275 	return 0;
276 }
277 #endif
278 
279 static void bad_page(struct page *page)
280 {
281 	static unsigned long resume;
282 	static unsigned long nr_shown;
283 	static unsigned long nr_unshown;
284 
285 	/* Don't complain about poisoned pages */
286 	if (PageHWPoison(page)) {
287 		reset_page_mapcount(page); /* remove PageBuddy */
288 		return;
289 	}
290 
291 	/*
292 	 * Allow a burst of 60 reports, then keep quiet for that minute;
293 	 * or allow a steady drip of one report per second.
294 	 */
295 	if (nr_shown == 60) {
296 		if (time_before(jiffies, resume)) {
297 			nr_unshown++;
298 			goto out;
299 		}
300 		if (nr_unshown) {
301 			printk(KERN_ALERT
302 			      "BUG: Bad page state: %lu messages suppressed\n",
303 				nr_unshown);
304 			nr_unshown = 0;
305 		}
306 		nr_shown = 0;
307 	}
308 	if (nr_shown++ == 0)
309 		resume = jiffies + 60 * HZ;
310 
311 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
312 		current->comm, page_to_pfn(page));
313 	dump_page(page);
314 
315 	print_modules();
316 	dump_stack();
317 out:
318 	/* Leave bad fields for debug, except PageBuddy could make trouble */
319 	reset_page_mapcount(page); /* remove PageBuddy */
320 	add_taint(TAINT_BAD_PAGE);
321 }
322 
323 /*
324  * Higher-order pages are called "compound pages".  They are structured thusly:
325  *
326  * The first PAGE_SIZE page is called the "head page".
327  *
328  * The remaining PAGE_SIZE pages are called "tail pages".
329  *
330  * All pages have PG_compound set.  All tail pages have their ->first_page
331  * pointing at the head page.
332  *
333  * The first tail page's ->lru.next holds the address of the compound page's
334  * put_page() function.  Its ->lru.prev holds the order of allocation.
335  * This usage means that zero-order pages may not be compound.
336  */
337 
338 static void free_compound_page(struct page *page)
339 {
340 	__free_pages_ok(page, compound_order(page));
341 }
342 
343 void prep_compound_page(struct page *page, unsigned long order)
344 {
345 	int i;
346 	int nr_pages = 1 << order;
347 
348 	set_compound_page_dtor(page, free_compound_page);
349 	set_compound_order(page, order);
350 	__SetPageHead(page);
351 	for (i = 1; i < nr_pages; i++) {
352 		struct page *p = page + i;
353 		__SetPageTail(p);
354 		set_page_count(p, 0);
355 		p->first_page = page;
356 	}
357 }
358 
359 /* update __split_huge_page_refcount if you change this function */
360 static int destroy_compound_page(struct page *page, unsigned long order)
361 {
362 	int i;
363 	int nr_pages = 1 << order;
364 	int bad = 0;
365 
366 	if (unlikely(compound_order(page) != order) ||
367 	    unlikely(!PageHead(page))) {
368 		bad_page(page);
369 		bad++;
370 	}
371 
372 	__ClearPageHead(page);
373 
374 	for (i = 1; i < nr_pages; i++) {
375 		struct page *p = page + i;
376 
377 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
378 			bad_page(page);
379 			bad++;
380 		}
381 		__ClearPageTail(p);
382 	}
383 
384 	return bad;
385 }
386 
387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388 {
389 	int i;
390 
391 	/*
392 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 	 */
395 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
396 	for (i = 0; i < (1 << order); i++)
397 		clear_highpage(page + i);
398 }
399 
400 #ifdef CONFIG_DEBUG_PAGEALLOC
401 unsigned int _debug_guardpage_minorder;
402 
403 static int __init debug_guardpage_minorder_setup(char *buf)
404 {
405 	unsigned long res;
406 
407 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
408 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409 		return 0;
410 	}
411 	_debug_guardpage_minorder = res;
412 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413 	return 0;
414 }
415 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
416 
417 static inline void set_page_guard_flag(struct page *page)
418 {
419 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
420 }
421 
422 static inline void clear_page_guard_flag(struct page *page)
423 {
424 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426 #else
427 static inline void set_page_guard_flag(struct page *page) { }
428 static inline void clear_page_guard_flag(struct page *page) { }
429 #endif
430 
431 static inline void set_page_order(struct page *page, int order)
432 {
433 	set_page_private(page, order);
434 	__SetPageBuddy(page);
435 }
436 
437 static inline void rmv_page_order(struct page *page)
438 {
439 	__ClearPageBuddy(page);
440 	set_page_private(page, 0);
441 }
442 
443 /*
444  * Locate the struct page for both the matching buddy in our
445  * pair (buddy1) and the combined O(n+1) page they form (page).
446  *
447  * 1) Any buddy B1 will have an order O twin B2 which satisfies
448  * the following equation:
449  *     B2 = B1 ^ (1 << O)
450  * For example, if the starting buddy (buddy2) is #8 its order
451  * 1 buddy is #10:
452  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
453  *
454  * 2) Any buddy B will have an order O+1 parent P which
455  * satisfies the following equation:
456  *     P = B & ~(1 << O)
457  *
458  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
459  */
460 static inline unsigned long
461 __find_buddy_index(unsigned long page_idx, unsigned int order)
462 {
463 	return page_idx ^ (1 << order);
464 }
465 
466 /*
467  * This function checks whether a page is free && is the buddy
468  * we can do coalesce a page and its buddy if
469  * (a) the buddy is not in a hole &&
470  * (b) the buddy is in the buddy system &&
471  * (c) a page and its buddy have the same order &&
472  * (d) a page and its buddy are in the same zone.
473  *
474  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
476  *
477  * For recording page's order, we use page_private(page).
478  */
479 static inline int page_is_buddy(struct page *page, struct page *buddy,
480 								int order)
481 {
482 	if (!pfn_valid_within(page_to_pfn(buddy)))
483 		return 0;
484 
485 	if (page_zone_id(page) != page_zone_id(buddy))
486 		return 0;
487 
488 	if (page_is_guard(buddy) && page_order(buddy) == order) {
489 		VM_BUG_ON(page_count(buddy) != 0);
490 		return 1;
491 	}
492 
493 	if (PageBuddy(buddy) && page_order(buddy) == order) {
494 		VM_BUG_ON(page_count(buddy) != 0);
495 		return 1;
496 	}
497 	return 0;
498 }
499 
500 /*
501  * Freeing function for a buddy system allocator.
502  *
503  * The concept of a buddy system is to maintain direct-mapped table
504  * (containing bit values) for memory blocks of various "orders".
505  * The bottom level table contains the map for the smallest allocatable
506  * units of memory (here, pages), and each level above it describes
507  * pairs of units from the levels below, hence, "buddies".
508  * At a high level, all that happens here is marking the table entry
509  * at the bottom level available, and propagating the changes upward
510  * as necessary, plus some accounting needed to play nicely with other
511  * parts of the VM system.
512  * At each level, we keep a list of pages, which are heads of continuous
513  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
514  * order is recorded in page_private(page) field.
515  * So when we are allocating or freeing one, we can derive the state of the
516  * other.  That is, if we allocate a small block, and both were
517  * free, the remainder of the region must be split into blocks.
518  * If a block is freed, and its buddy is also free, then this
519  * triggers coalescing into a block of larger size.
520  *
521  * -- wli
522  */
523 
524 static inline void __free_one_page(struct page *page,
525 		struct zone *zone, unsigned int order,
526 		int migratetype)
527 {
528 	unsigned long page_idx;
529 	unsigned long combined_idx;
530 	unsigned long uninitialized_var(buddy_idx);
531 	struct page *buddy;
532 
533 	if (unlikely(PageCompound(page)))
534 		if (unlikely(destroy_compound_page(page, order)))
535 			return;
536 
537 	VM_BUG_ON(migratetype == -1);
538 
539 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
540 
541 	VM_BUG_ON(page_idx & ((1 << order) - 1));
542 	VM_BUG_ON(bad_range(zone, page));
543 
544 	while (order < MAX_ORDER-1) {
545 		buddy_idx = __find_buddy_index(page_idx, order);
546 		buddy = page + (buddy_idx - page_idx);
547 		if (!page_is_buddy(page, buddy, order))
548 			break;
549 		/*
550 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 		 * merge with it and move up one order.
552 		 */
553 		if (page_is_guard(buddy)) {
554 			clear_page_guard_flag(buddy);
555 			set_page_private(page, 0);
556 			__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557 		} else {
558 			list_del(&buddy->lru);
559 			zone->free_area[order].nr_free--;
560 			rmv_page_order(buddy);
561 		}
562 		combined_idx = buddy_idx & page_idx;
563 		page = page + (combined_idx - page_idx);
564 		page_idx = combined_idx;
565 		order++;
566 	}
567 	set_page_order(page, order);
568 
569 	/*
570 	 * If this is not the largest possible page, check if the buddy
571 	 * of the next-highest order is free. If it is, it's possible
572 	 * that pages are being freed that will coalesce soon. In case,
573 	 * that is happening, add the free page to the tail of the list
574 	 * so it's less likely to be used soon and more likely to be merged
575 	 * as a higher order page
576 	 */
577 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
578 		struct page *higher_page, *higher_buddy;
579 		combined_idx = buddy_idx & page_idx;
580 		higher_page = page + (combined_idx - page_idx);
581 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
582 		higher_buddy = page + (buddy_idx - combined_idx);
583 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584 			list_add_tail(&page->lru,
585 				&zone->free_area[order].free_list[migratetype]);
586 			goto out;
587 		}
588 	}
589 
590 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591 out:
592 	zone->free_area[order].nr_free++;
593 }
594 
595 /*
596  * free_page_mlock() -- clean up attempts to free and mlocked() page.
597  * Page should not be on lru, so no need to fix that up.
598  * free_pages_check() will verify...
599  */
600 static inline void free_page_mlock(struct page *page)
601 {
602 	__dec_zone_page_state(page, NR_MLOCK);
603 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
604 }
605 
606 static inline int free_pages_check(struct page *page)
607 {
608 	if (unlikely(page_mapcount(page) |
609 		(page->mapping != NULL)  |
610 		(atomic_read(&page->_count) != 0) |
611 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 		(mem_cgroup_bad_page_check(page)))) {
613 		bad_page(page);
614 		return 1;
615 	}
616 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618 	return 0;
619 }
620 
621 /*
622  * Frees a number of pages from the PCP lists
623  * Assumes all pages on list are in same zone, and of same order.
624  * count is the number of pages to free.
625  *
626  * If the zone was previously in an "all pages pinned" state then look to
627  * see if this freeing clears that state.
628  *
629  * And clear the zone's pages_scanned counter, to hold off the "all pages are
630  * pinned" detection logic.
631  */
632 static void free_pcppages_bulk(struct zone *zone, int count,
633 					struct per_cpu_pages *pcp)
634 {
635 	int migratetype = 0;
636 	int batch_free = 0;
637 	int to_free = count;
638 
639 	spin_lock(&zone->lock);
640 	zone->all_unreclaimable = 0;
641 	zone->pages_scanned = 0;
642 
643 	while (to_free) {
644 		struct page *page;
645 		struct list_head *list;
646 
647 		/*
648 		 * Remove pages from lists in a round-robin fashion. A
649 		 * batch_free count is maintained that is incremented when an
650 		 * empty list is encountered.  This is so more pages are freed
651 		 * off fuller lists instead of spinning excessively around empty
652 		 * lists
653 		 */
654 		do {
655 			batch_free++;
656 			if (++migratetype == MIGRATE_PCPTYPES)
657 				migratetype = 0;
658 			list = &pcp->lists[migratetype];
659 		} while (list_empty(list));
660 
661 		/* This is the only non-empty list. Free them all. */
662 		if (batch_free == MIGRATE_PCPTYPES)
663 			batch_free = to_free;
664 
665 		do {
666 			page = list_entry(list->prev, struct page, lru);
667 			/* must delete as __free_one_page list manipulates */
668 			list_del(&page->lru);
669 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 			__free_one_page(page, zone, 0, page_private(page));
671 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
672 		} while (--to_free && --batch_free && !list_empty(list));
673 	}
674 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
675 	spin_unlock(&zone->lock);
676 }
677 
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 				int migratetype)
680 {
681 	spin_lock(&zone->lock);
682 	zone->all_unreclaimable = 0;
683 	zone->pages_scanned = 0;
684 
685 	__free_one_page(page, zone, order, migratetype);
686 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
687 	spin_unlock(&zone->lock);
688 }
689 
690 static bool free_pages_prepare(struct page *page, unsigned int order)
691 {
692 	int i;
693 	int bad = 0;
694 
695 	trace_mm_page_free(page, order);
696 	kmemcheck_free_shadow(page, order);
697 
698 	if (PageAnon(page))
699 		page->mapping = NULL;
700 	for (i = 0; i < (1 << order); i++)
701 		bad += free_pages_check(page + i);
702 	if (bad)
703 		return false;
704 
705 	if (!PageHighMem(page)) {
706 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
707 		debug_check_no_obj_freed(page_address(page),
708 					   PAGE_SIZE << order);
709 	}
710 	arch_free_page(page, order);
711 	kernel_map_pages(page, 1 << order, 0);
712 
713 	return true;
714 }
715 
716 static void __free_pages_ok(struct page *page, unsigned int order)
717 {
718 	unsigned long flags;
719 	int wasMlocked = __TestClearPageMlocked(page);
720 
721 	if (!free_pages_prepare(page, order))
722 		return;
723 
724 	local_irq_save(flags);
725 	if (unlikely(wasMlocked))
726 		free_page_mlock(page);
727 	__count_vm_events(PGFREE, 1 << order);
728 	free_one_page(page_zone(page), page, order,
729 					get_pageblock_migratetype(page));
730 	local_irq_restore(flags);
731 }
732 
733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
734 {
735 	unsigned int nr_pages = 1 << order;
736 	unsigned int loop;
737 
738 	prefetchw(page);
739 	for (loop = 0; loop < nr_pages; loop++) {
740 		struct page *p = &page[loop];
741 
742 		if (loop + 1 < nr_pages)
743 			prefetchw(p + 1);
744 		__ClearPageReserved(p);
745 		set_page_count(p, 0);
746 	}
747 
748 	set_page_refcounted(page);
749 	__free_pages(page, order);
750 }
751 
752 
753 /*
754  * The order of subdivision here is critical for the IO subsystem.
755  * Please do not alter this order without good reasons and regression
756  * testing. Specifically, as large blocks of memory are subdivided,
757  * the order in which smaller blocks are delivered depends on the order
758  * they're subdivided in this function. This is the primary factor
759  * influencing the order in which pages are delivered to the IO
760  * subsystem according to empirical testing, and this is also justified
761  * by considering the behavior of a buddy system containing a single
762  * large block of memory acted on by a series of small allocations.
763  * This behavior is a critical factor in sglist merging's success.
764  *
765  * -- wli
766  */
767 static inline void expand(struct zone *zone, struct page *page,
768 	int low, int high, struct free_area *area,
769 	int migratetype)
770 {
771 	unsigned long size = 1 << high;
772 
773 	while (high > low) {
774 		area--;
775 		high--;
776 		size >>= 1;
777 		VM_BUG_ON(bad_range(zone, &page[size]));
778 
779 #ifdef CONFIG_DEBUG_PAGEALLOC
780 		if (high < debug_guardpage_minorder()) {
781 			/*
782 			 * Mark as guard pages (or page), that will allow to
783 			 * merge back to allocator when buddy will be freed.
784 			 * Corresponding page table entries will not be touched,
785 			 * pages will stay not present in virtual address space
786 			 */
787 			INIT_LIST_HEAD(&page[size].lru);
788 			set_page_guard_flag(&page[size]);
789 			set_page_private(&page[size], high);
790 			/* Guard pages are not available for any usage */
791 			__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
792 			continue;
793 		}
794 #endif
795 		list_add(&page[size].lru, &area->free_list[migratetype]);
796 		area->nr_free++;
797 		set_page_order(&page[size], high);
798 	}
799 }
800 
801 /*
802  * This page is about to be returned from the page allocator
803  */
804 static inline int check_new_page(struct page *page)
805 {
806 	if (unlikely(page_mapcount(page) |
807 		(page->mapping != NULL)  |
808 		(atomic_read(&page->_count) != 0)  |
809 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
810 		(mem_cgroup_bad_page_check(page)))) {
811 		bad_page(page);
812 		return 1;
813 	}
814 	return 0;
815 }
816 
817 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
818 {
819 	int i;
820 
821 	for (i = 0; i < (1 << order); i++) {
822 		struct page *p = page + i;
823 		if (unlikely(check_new_page(p)))
824 			return 1;
825 	}
826 
827 	set_page_private(page, 0);
828 	set_page_refcounted(page);
829 
830 	arch_alloc_page(page, order);
831 	kernel_map_pages(page, 1 << order, 1);
832 
833 	if (gfp_flags & __GFP_ZERO)
834 		prep_zero_page(page, order, gfp_flags);
835 
836 	if (order && (gfp_flags & __GFP_COMP))
837 		prep_compound_page(page, order);
838 
839 	return 0;
840 }
841 
842 /*
843  * Go through the free lists for the given migratetype and remove
844  * the smallest available page from the freelists
845  */
846 static inline
847 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
848 						int migratetype)
849 {
850 	unsigned int current_order;
851 	struct free_area * area;
852 	struct page *page;
853 
854 	/* Find a page of the appropriate size in the preferred list */
855 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
856 		area = &(zone->free_area[current_order]);
857 		if (list_empty(&area->free_list[migratetype]))
858 			continue;
859 
860 		page = list_entry(area->free_list[migratetype].next,
861 							struct page, lru);
862 		list_del(&page->lru);
863 		rmv_page_order(page);
864 		area->nr_free--;
865 		expand(zone, page, order, current_order, area, migratetype);
866 		return page;
867 	}
868 
869 	return NULL;
870 }
871 
872 
873 /*
874  * This array describes the order lists are fallen back to when
875  * the free lists for the desirable migrate type are depleted
876  */
877 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
878 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
879 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
880 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
881 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
882 };
883 
884 /*
885  * Move the free pages in a range to the free lists of the requested type.
886  * Note that start_page and end_pages are not aligned on a pageblock
887  * boundary. If alignment is required, use move_freepages_block()
888  */
889 static int move_freepages(struct zone *zone,
890 			  struct page *start_page, struct page *end_page,
891 			  int migratetype)
892 {
893 	struct page *page;
894 	unsigned long order;
895 	int pages_moved = 0;
896 
897 #ifndef CONFIG_HOLES_IN_ZONE
898 	/*
899 	 * page_zone is not safe to call in this context when
900 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
901 	 * anyway as we check zone boundaries in move_freepages_block().
902 	 * Remove at a later date when no bug reports exist related to
903 	 * grouping pages by mobility
904 	 */
905 	BUG_ON(page_zone(start_page) != page_zone(end_page));
906 #endif
907 
908 	for (page = start_page; page <= end_page;) {
909 		/* Make sure we are not inadvertently changing nodes */
910 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
911 
912 		if (!pfn_valid_within(page_to_pfn(page))) {
913 			page++;
914 			continue;
915 		}
916 
917 		if (!PageBuddy(page)) {
918 			page++;
919 			continue;
920 		}
921 
922 		order = page_order(page);
923 		list_move(&page->lru,
924 			  &zone->free_area[order].free_list[migratetype]);
925 		page += 1 << order;
926 		pages_moved += 1 << order;
927 	}
928 
929 	return pages_moved;
930 }
931 
932 static int move_freepages_block(struct zone *zone, struct page *page,
933 				int migratetype)
934 {
935 	unsigned long start_pfn, end_pfn;
936 	struct page *start_page, *end_page;
937 
938 	start_pfn = page_to_pfn(page);
939 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
940 	start_page = pfn_to_page(start_pfn);
941 	end_page = start_page + pageblock_nr_pages - 1;
942 	end_pfn = start_pfn + pageblock_nr_pages - 1;
943 
944 	/* Do not cross zone boundaries */
945 	if (start_pfn < zone->zone_start_pfn)
946 		start_page = page;
947 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
948 		return 0;
949 
950 	return move_freepages(zone, start_page, end_page, migratetype);
951 }
952 
953 static void change_pageblock_range(struct page *pageblock_page,
954 					int start_order, int migratetype)
955 {
956 	int nr_pageblocks = 1 << (start_order - pageblock_order);
957 
958 	while (nr_pageblocks--) {
959 		set_pageblock_migratetype(pageblock_page, migratetype);
960 		pageblock_page += pageblock_nr_pages;
961 	}
962 }
963 
964 /* Remove an element from the buddy allocator from the fallback list */
965 static inline struct page *
966 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
967 {
968 	struct free_area * area;
969 	int current_order;
970 	struct page *page;
971 	int migratetype, i;
972 
973 	/* Find the largest possible block of pages in the other list */
974 	for (current_order = MAX_ORDER-1; current_order >= order;
975 						--current_order) {
976 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
977 			migratetype = fallbacks[start_migratetype][i];
978 
979 			/* MIGRATE_RESERVE handled later if necessary */
980 			if (migratetype == MIGRATE_RESERVE)
981 				continue;
982 
983 			area = &(zone->free_area[current_order]);
984 			if (list_empty(&area->free_list[migratetype]))
985 				continue;
986 
987 			page = list_entry(area->free_list[migratetype].next,
988 					struct page, lru);
989 			area->nr_free--;
990 
991 			/*
992 			 * If breaking a large block of pages, move all free
993 			 * pages to the preferred allocation list. If falling
994 			 * back for a reclaimable kernel allocation, be more
995 			 * aggressive about taking ownership of free pages
996 			 */
997 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
998 					start_migratetype == MIGRATE_RECLAIMABLE ||
999 					page_group_by_mobility_disabled) {
1000 				unsigned long pages;
1001 				pages = move_freepages_block(zone, page,
1002 								start_migratetype);
1003 
1004 				/* Claim the whole block if over half of it is free */
1005 				if (pages >= (1 << (pageblock_order-1)) ||
1006 						page_group_by_mobility_disabled)
1007 					set_pageblock_migratetype(page,
1008 								start_migratetype);
1009 
1010 				migratetype = start_migratetype;
1011 			}
1012 
1013 			/* Remove the page from the freelists */
1014 			list_del(&page->lru);
1015 			rmv_page_order(page);
1016 
1017 			/* Take ownership for orders >= pageblock_order */
1018 			if (current_order >= pageblock_order)
1019 				change_pageblock_range(page, current_order,
1020 							start_migratetype);
1021 
1022 			expand(zone, page, order, current_order, area, migratetype);
1023 
1024 			trace_mm_page_alloc_extfrag(page, order, current_order,
1025 				start_migratetype, migratetype);
1026 
1027 			return page;
1028 		}
1029 	}
1030 
1031 	return NULL;
1032 }
1033 
1034 /*
1035  * Do the hard work of removing an element from the buddy allocator.
1036  * Call me with the zone->lock already held.
1037  */
1038 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1039 						int migratetype)
1040 {
1041 	struct page *page;
1042 
1043 retry_reserve:
1044 	page = __rmqueue_smallest(zone, order, migratetype);
1045 
1046 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1047 		page = __rmqueue_fallback(zone, order, migratetype);
1048 
1049 		/*
1050 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1051 		 * is used because __rmqueue_smallest is an inline function
1052 		 * and we want just one call site
1053 		 */
1054 		if (!page) {
1055 			migratetype = MIGRATE_RESERVE;
1056 			goto retry_reserve;
1057 		}
1058 	}
1059 
1060 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1061 	return page;
1062 }
1063 
1064 /*
1065  * Obtain a specified number of elements from the buddy allocator, all under
1066  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1067  * Returns the number of new pages which were placed at *list.
1068  */
1069 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1070 			unsigned long count, struct list_head *list,
1071 			int migratetype, int cold)
1072 {
1073 	int i;
1074 
1075 	spin_lock(&zone->lock);
1076 	for (i = 0; i < count; ++i) {
1077 		struct page *page = __rmqueue(zone, order, migratetype);
1078 		if (unlikely(page == NULL))
1079 			break;
1080 
1081 		/*
1082 		 * Split buddy pages returned by expand() are received here
1083 		 * in physical page order. The page is added to the callers and
1084 		 * list and the list head then moves forward. From the callers
1085 		 * perspective, the linked list is ordered by page number in
1086 		 * some conditions. This is useful for IO devices that can
1087 		 * merge IO requests if the physical pages are ordered
1088 		 * properly.
1089 		 */
1090 		if (likely(cold == 0))
1091 			list_add(&page->lru, list);
1092 		else
1093 			list_add_tail(&page->lru, list);
1094 		set_page_private(page, migratetype);
1095 		list = &page->lru;
1096 	}
1097 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1098 	spin_unlock(&zone->lock);
1099 	return i;
1100 }
1101 
1102 #ifdef CONFIG_NUMA
1103 /*
1104  * Called from the vmstat counter updater to drain pagesets of this
1105  * currently executing processor on remote nodes after they have
1106  * expired.
1107  *
1108  * Note that this function must be called with the thread pinned to
1109  * a single processor.
1110  */
1111 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1112 {
1113 	unsigned long flags;
1114 	int to_drain;
1115 
1116 	local_irq_save(flags);
1117 	if (pcp->count >= pcp->batch)
1118 		to_drain = pcp->batch;
1119 	else
1120 		to_drain = pcp->count;
1121 	free_pcppages_bulk(zone, to_drain, pcp);
1122 	pcp->count -= to_drain;
1123 	local_irq_restore(flags);
1124 }
1125 #endif
1126 
1127 /*
1128  * Drain pages of the indicated processor.
1129  *
1130  * The processor must either be the current processor and the
1131  * thread pinned to the current processor or a processor that
1132  * is not online.
1133  */
1134 static void drain_pages(unsigned int cpu)
1135 {
1136 	unsigned long flags;
1137 	struct zone *zone;
1138 
1139 	for_each_populated_zone(zone) {
1140 		struct per_cpu_pageset *pset;
1141 		struct per_cpu_pages *pcp;
1142 
1143 		local_irq_save(flags);
1144 		pset = per_cpu_ptr(zone->pageset, cpu);
1145 
1146 		pcp = &pset->pcp;
1147 		if (pcp->count) {
1148 			free_pcppages_bulk(zone, pcp->count, pcp);
1149 			pcp->count = 0;
1150 		}
1151 		local_irq_restore(flags);
1152 	}
1153 }
1154 
1155 /*
1156  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1157  */
1158 void drain_local_pages(void *arg)
1159 {
1160 	drain_pages(smp_processor_id());
1161 }
1162 
1163 /*
1164  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1165  */
1166 void drain_all_pages(void)
1167 {
1168 	on_each_cpu(drain_local_pages, NULL, 1);
1169 }
1170 
1171 #ifdef CONFIG_HIBERNATION
1172 
1173 void mark_free_pages(struct zone *zone)
1174 {
1175 	unsigned long pfn, max_zone_pfn;
1176 	unsigned long flags;
1177 	int order, t;
1178 	struct list_head *curr;
1179 
1180 	if (!zone->spanned_pages)
1181 		return;
1182 
1183 	spin_lock_irqsave(&zone->lock, flags);
1184 
1185 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1186 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1187 		if (pfn_valid(pfn)) {
1188 			struct page *page = pfn_to_page(pfn);
1189 
1190 			if (!swsusp_page_is_forbidden(page))
1191 				swsusp_unset_page_free(page);
1192 		}
1193 
1194 	for_each_migratetype_order(order, t) {
1195 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1196 			unsigned long i;
1197 
1198 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1199 			for (i = 0; i < (1UL << order); i++)
1200 				swsusp_set_page_free(pfn_to_page(pfn + i));
1201 		}
1202 	}
1203 	spin_unlock_irqrestore(&zone->lock, flags);
1204 }
1205 #endif /* CONFIG_PM */
1206 
1207 /*
1208  * Free a 0-order page
1209  * cold == 1 ? free a cold page : free a hot page
1210  */
1211 void free_hot_cold_page(struct page *page, int cold)
1212 {
1213 	struct zone *zone = page_zone(page);
1214 	struct per_cpu_pages *pcp;
1215 	unsigned long flags;
1216 	int migratetype;
1217 	int wasMlocked = __TestClearPageMlocked(page);
1218 
1219 	if (!free_pages_prepare(page, 0))
1220 		return;
1221 
1222 	migratetype = get_pageblock_migratetype(page);
1223 	set_page_private(page, migratetype);
1224 	local_irq_save(flags);
1225 	if (unlikely(wasMlocked))
1226 		free_page_mlock(page);
1227 	__count_vm_event(PGFREE);
1228 
1229 	/*
1230 	 * We only track unmovable, reclaimable and movable on pcp lists.
1231 	 * Free ISOLATE pages back to the allocator because they are being
1232 	 * offlined but treat RESERVE as movable pages so we can get those
1233 	 * areas back if necessary. Otherwise, we may have to free
1234 	 * excessively into the page allocator
1235 	 */
1236 	if (migratetype >= MIGRATE_PCPTYPES) {
1237 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1238 			free_one_page(zone, page, 0, migratetype);
1239 			goto out;
1240 		}
1241 		migratetype = MIGRATE_MOVABLE;
1242 	}
1243 
1244 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1245 	if (cold)
1246 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1247 	else
1248 		list_add(&page->lru, &pcp->lists[migratetype]);
1249 	pcp->count++;
1250 	if (pcp->count >= pcp->high) {
1251 		free_pcppages_bulk(zone, pcp->batch, pcp);
1252 		pcp->count -= pcp->batch;
1253 	}
1254 
1255 out:
1256 	local_irq_restore(flags);
1257 }
1258 
1259 /*
1260  * Free a list of 0-order pages
1261  */
1262 void free_hot_cold_page_list(struct list_head *list, int cold)
1263 {
1264 	struct page *page, *next;
1265 
1266 	list_for_each_entry_safe(page, next, list, lru) {
1267 		trace_mm_page_free_batched(page, cold);
1268 		free_hot_cold_page(page, cold);
1269 	}
1270 }
1271 
1272 /*
1273  * split_page takes a non-compound higher-order page, and splits it into
1274  * n (1<<order) sub-pages: page[0..n]
1275  * Each sub-page must be freed individually.
1276  *
1277  * Note: this is probably too low level an operation for use in drivers.
1278  * Please consult with lkml before using this in your driver.
1279  */
1280 void split_page(struct page *page, unsigned int order)
1281 {
1282 	int i;
1283 
1284 	VM_BUG_ON(PageCompound(page));
1285 	VM_BUG_ON(!page_count(page));
1286 
1287 #ifdef CONFIG_KMEMCHECK
1288 	/*
1289 	 * Split shadow pages too, because free(page[0]) would
1290 	 * otherwise free the whole shadow.
1291 	 */
1292 	if (kmemcheck_page_is_tracked(page))
1293 		split_page(virt_to_page(page[0].shadow), order);
1294 #endif
1295 
1296 	for (i = 1; i < (1 << order); i++)
1297 		set_page_refcounted(page + i);
1298 }
1299 
1300 /*
1301  * Similar to split_page except the page is already free. As this is only
1302  * being used for migration, the migratetype of the block also changes.
1303  * As this is called with interrupts disabled, the caller is responsible
1304  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1305  * are enabled.
1306  *
1307  * Note: this is probably too low level an operation for use in drivers.
1308  * Please consult with lkml before using this in your driver.
1309  */
1310 int split_free_page(struct page *page)
1311 {
1312 	unsigned int order;
1313 	unsigned long watermark;
1314 	struct zone *zone;
1315 
1316 	BUG_ON(!PageBuddy(page));
1317 
1318 	zone = page_zone(page);
1319 	order = page_order(page);
1320 
1321 	/* Obey watermarks as if the page was being allocated */
1322 	watermark = low_wmark_pages(zone) + (1 << order);
1323 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1324 		return 0;
1325 
1326 	/* Remove page from free list */
1327 	list_del(&page->lru);
1328 	zone->free_area[order].nr_free--;
1329 	rmv_page_order(page);
1330 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1331 
1332 	/* Split into individual pages */
1333 	set_page_refcounted(page);
1334 	split_page(page, order);
1335 
1336 	if (order >= pageblock_order - 1) {
1337 		struct page *endpage = page + (1 << order) - 1;
1338 		for (; page < endpage; page += pageblock_nr_pages)
1339 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1340 	}
1341 
1342 	return 1 << order;
1343 }
1344 
1345 /*
1346  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1347  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1348  * or two.
1349  */
1350 static inline
1351 struct page *buffered_rmqueue(struct zone *preferred_zone,
1352 			struct zone *zone, int order, gfp_t gfp_flags,
1353 			int migratetype)
1354 {
1355 	unsigned long flags;
1356 	struct page *page;
1357 	int cold = !!(gfp_flags & __GFP_COLD);
1358 
1359 again:
1360 	if (likely(order == 0)) {
1361 		struct per_cpu_pages *pcp;
1362 		struct list_head *list;
1363 
1364 		local_irq_save(flags);
1365 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1366 		list = &pcp->lists[migratetype];
1367 		if (list_empty(list)) {
1368 			pcp->count += rmqueue_bulk(zone, 0,
1369 					pcp->batch, list,
1370 					migratetype, cold);
1371 			if (unlikely(list_empty(list)))
1372 				goto failed;
1373 		}
1374 
1375 		if (cold)
1376 			page = list_entry(list->prev, struct page, lru);
1377 		else
1378 			page = list_entry(list->next, struct page, lru);
1379 
1380 		list_del(&page->lru);
1381 		pcp->count--;
1382 	} else {
1383 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1384 			/*
1385 			 * __GFP_NOFAIL is not to be used in new code.
1386 			 *
1387 			 * All __GFP_NOFAIL callers should be fixed so that they
1388 			 * properly detect and handle allocation failures.
1389 			 *
1390 			 * We most definitely don't want callers attempting to
1391 			 * allocate greater than order-1 page units with
1392 			 * __GFP_NOFAIL.
1393 			 */
1394 			WARN_ON_ONCE(order > 1);
1395 		}
1396 		spin_lock_irqsave(&zone->lock, flags);
1397 		page = __rmqueue(zone, order, migratetype);
1398 		spin_unlock(&zone->lock);
1399 		if (!page)
1400 			goto failed;
1401 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1402 	}
1403 
1404 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1405 	zone_statistics(preferred_zone, zone, gfp_flags);
1406 	local_irq_restore(flags);
1407 
1408 	VM_BUG_ON(bad_range(zone, page));
1409 	if (prep_new_page(page, order, gfp_flags))
1410 		goto again;
1411 	return page;
1412 
1413 failed:
1414 	local_irq_restore(flags);
1415 	return NULL;
1416 }
1417 
1418 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1419 #define ALLOC_WMARK_MIN		WMARK_MIN
1420 #define ALLOC_WMARK_LOW		WMARK_LOW
1421 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1422 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1423 
1424 /* Mask to get the watermark bits */
1425 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1426 
1427 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1428 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1429 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1430 
1431 #ifdef CONFIG_FAIL_PAGE_ALLOC
1432 
1433 static struct {
1434 	struct fault_attr attr;
1435 
1436 	u32 ignore_gfp_highmem;
1437 	u32 ignore_gfp_wait;
1438 	u32 min_order;
1439 } fail_page_alloc = {
1440 	.attr = FAULT_ATTR_INITIALIZER,
1441 	.ignore_gfp_wait = 1,
1442 	.ignore_gfp_highmem = 1,
1443 	.min_order = 1,
1444 };
1445 
1446 static int __init setup_fail_page_alloc(char *str)
1447 {
1448 	return setup_fault_attr(&fail_page_alloc.attr, str);
1449 }
1450 __setup("fail_page_alloc=", setup_fail_page_alloc);
1451 
1452 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1453 {
1454 	if (order < fail_page_alloc.min_order)
1455 		return 0;
1456 	if (gfp_mask & __GFP_NOFAIL)
1457 		return 0;
1458 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1459 		return 0;
1460 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1461 		return 0;
1462 
1463 	return should_fail(&fail_page_alloc.attr, 1 << order);
1464 }
1465 
1466 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1467 
1468 static int __init fail_page_alloc_debugfs(void)
1469 {
1470 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1471 	struct dentry *dir;
1472 
1473 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1474 					&fail_page_alloc.attr);
1475 	if (IS_ERR(dir))
1476 		return PTR_ERR(dir);
1477 
1478 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1479 				&fail_page_alloc.ignore_gfp_wait))
1480 		goto fail;
1481 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1482 				&fail_page_alloc.ignore_gfp_highmem))
1483 		goto fail;
1484 	if (!debugfs_create_u32("min-order", mode, dir,
1485 				&fail_page_alloc.min_order))
1486 		goto fail;
1487 
1488 	return 0;
1489 fail:
1490 	debugfs_remove_recursive(dir);
1491 
1492 	return -ENOMEM;
1493 }
1494 
1495 late_initcall(fail_page_alloc_debugfs);
1496 
1497 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1498 
1499 #else /* CONFIG_FAIL_PAGE_ALLOC */
1500 
1501 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1502 {
1503 	return 0;
1504 }
1505 
1506 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1507 
1508 /*
1509  * Return true if free pages are above 'mark'. This takes into account the order
1510  * of the allocation.
1511  */
1512 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1513 		      int classzone_idx, int alloc_flags, long free_pages)
1514 {
1515 	/* free_pages my go negative - that's OK */
1516 	long min = mark;
1517 	int o;
1518 
1519 	free_pages -= (1 << order) - 1;
1520 	if (alloc_flags & ALLOC_HIGH)
1521 		min -= min / 2;
1522 	if (alloc_flags & ALLOC_HARDER)
1523 		min -= min / 4;
1524 
1525 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1526 		return false;
1527 	for (o = 0; o < order; o++) {
1528 		/* At the next order, this order's pages become unavailable */
1529 		free_pages -= z->free_area[o].nr_free << o;
1530 
1531 		/* Require fewer higher order pages to be free */
1532 		min >>= 1;
1533 
1534 		if (free_pages <= min)
1535 			return false;
1536 	}
1537 	return true;
1538 }
1539 
1540 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1541 		      int classzone_idx, int alloc_flags)
1542 {
1543 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1544 					zone_page_state(z, NR_FREE_PAGES));
1545 }
1546 
1547 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1548 		      int classzone_idx, int alloc_flags)
1549 {
1550 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1551 
1552 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1553 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1554 
1555 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1556 								free_pages);
1557 }
1558 
1559 #ifdef CONFIG_NUMA
1560 /*
1561  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1562  * skip over zones that are not allowed by the cpuset, or that have
1563  * been recently (in last second) found to be nearly full.  See further
1564  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1565  * that have to skip over a lot of full or unallowed zones.
1566  *
1567  * If the zonelist cache is present in the passed in zonelist, then
1568  * returns a pointer to the allowed node mask (either the current
1569  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1570  *
1571  * If the zonelist cache is not available for this zonelist, does
1572  * nothing and returns NULL.
1573  *
1574  * If the fullzones BITMAP in the zonelist cache is stale (more than
1575  * a second since last zap'd) then we zap it out (clear its bits.)
1576  *
1577  * We hold off even calling zlc_setup, until after we've checked the
1578  * first zone in the zonelist, on the theory that most allocations will
1579  * be satisfied from that first zone, so best to examine that zone as
1580  * quickly as we can.
1581  */
1582 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1583 {
1584 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1585 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1586 
1587 	zlc = zonelist->zlcache_ptr;
1588 	if (!zlc)
1589 		return NULL;
1590 
1591 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1592 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1593 		zlc->last_full_zap = jiffies;
1594 	}
1595 
1596 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1597 					&cpuset_current_mems_allowed :
1598 					&node_states[N_HIGH_MEMORY];
1599 	return allowednodes;
1600 }
1601 
1602 /*
1603  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1604  * if it is worth looking at further for free memory:
1605  *  1) Check that the zone isn't thought to be full (doesn't have its
1606  *     bit set in the zonelist_cache fullzones BITMAP).
1607  *  2) Check that the zones node (obtained from the zonelist_cache
1608  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1609  * Return true (non-zero) if zone is worth looking at further, or
1610  * else return false (zero) if it is not.
1611  *
1612  * This check -ignores- the distinction between various watermarks,
1613  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1614  * found to be full for any variation of these watermarks, it will
1615  * be considered full for up to one second by all requests, unless
1616  * we are so low on memory on all allowed nodes that we are forced
1617  * into the second scan of the zonelist.
1618  *
1619  * In the second scan we ignore this zonelist cache and exactly
1620  * apply the watermarks to all zones, even it is slower to do so.
1621  * We are low on memory in the second scan, and should leave no stone
1622  * unturned looking for a free page.
1623  */
1624 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1625 						nodemask_t *allowednodes)
1626 {
1627 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1628 	int i;				/* index of *z in zonelist zones */
1629 	int n;				/* node that zone *z is on */
1630 
1631 	zlc = zonelist->zlcache_ptr;
1632 	if (!zlc)
1633 		return 1;
1634 
1635 	i = z - zonelist->_zonerefs;
1636 	n = zlc->z_to_n[i];
1637 
1638 	/* This zone is worth trying if it is allowed but not full */
1639 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1640 }
1641 
1642 /*
1643  * Given 'z' scanning a zonelist, set the corresponding bit in
1644  * zlc->fullzones, so that subsequent attempts to allocate a page
1645  * from that zone don't waste time re-examining it.
1646  */
1647 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1648 {
1649 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1650 	int i;				/* index of *z in zonelist zones */
1651 
1652 	zlc = zonelist->zlcache_ptr;
1653 	if (!zlc)
1654 		return;
1655 
1656 	i = z - zonelist->_zonerefs;
1657 
1658 	set_bit(i, zlc->fullzones);
1659 }
1660 
1661 /*
1662  * clear all zones full, called after direct reclaim makes progress so that
1663  * a zone that was recently full is not skipped over for up to a second
1664  */
1665 static void zlc_clear_zones_full(struct zonelist *zonelist)
1666 {
1667 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1668 
1669 	zlc = zonelist->zlcache_ptr;
1670 	if (!zlc)
1671 		return;
1672 
1673 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1674 }
1675 
1676 #else	/* CONFIG_NUMA */
1677 
1678 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1679 {
1680 	return NULL;
1681 }
1682 
1683 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1684 				nodemask_t *allowednodes)
1685 {
1686 	return 1;
1687 }
1688 
1689 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1690 {
1691 }
1692 
1693 static void zlc_clear_zones_full(struct zonelist *zonelist)
1694 {
1695 }
1696 #endif	/* CONFIG_NUMA */
1697 
1698 /*
1699  * get_page_from_freelist goes through the zonelist trying to allocate
1700  * a page.
1701  */
1702 static struct page *
1703 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1704 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1705 		struct zone *preferred_zone, int migratetype)
1706 {
1707 	struct zoneref *z;
1708 	struct page *page = NULL;
1709 	int classzone_idx;
1710 	struct zone *zone;
1711 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1712 	int zlc_active = 0;		/* set if using zonelist_cache */
1713 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1714 
1715 	classzone_idx = zone_idx(preferred_zone);
1716 zonelist_scan:
1717 	/*
1718 	 * Scan zonelist, looking for a zone with enough free.
1719 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1720 	 */
1721 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1722 						high_zoneidx, nodemask) {
1723 		if (NUMA_BUILD && zlc_active &&
1724 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1725 				continue;
1726 		if ((alloc_flags & ALLOC_CPUSET) &&
1727 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1728 				continue;
1729 		/*
1730 		 * When allocating a page cache page for writing, we
1731 		 * want to get it from a zone that is within its dirty
1732 		 * limit, such that no single zone holds more than its
1733 		 * proportional share of globally allowed dirty pages.
1734 		 * The dirty limits take into account the zone's
1735 		 * lowmem reserves and high watermark so that kswapd
1736 		 * should be able to balance it without having to
1737 		 * write pages from its LRU list.
1738 		 *
1739 		 * This may look like it could increase pressure on
1740 		 * lower zones by failing allocations in higher zones
1741 		 * before they are full.  But the pages that do spill
1742 		 * over are limited as the lower zones are protected
1743 		 * by this very same mechanism.  It should not become
1744 		 * a practical burden to them.
1745 		 *
1746 		 * XXX: For now, allow allocations to potentially
1747 		 * exceed the per-zone dirty limit in the slowpath
1748 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1749 		 * which is important when on a NUMA setup the allowed
1750 		 * zones are together not big enough to reach the
1751 		 * global limit.  The proper fix for these situations
1752 		 * will require awareness of zones in the
1753 		 * dirty-throttling and the flusher threads.
1754 		 */
1755 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1756 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1757 			goto this_zone_full;
1758 
1759 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1760 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1761 			unsigned long mark;
1762 			int ret;
1763 
1764 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1765 			if (zone_watermark_ok(zone, order, mark,
1766 				    classzone_idx, alloc_flags))
1767 				goto try_this_zone;
1768 
1769 			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1770 				/*
1771 				 * we do zlc_setup if there are multiple nodes
1772 				 * and before considering the first zone allowed
1773 				 * by the cpuset.
1774 				 */
1775 				allowednodes = zlc_setup(zonelist, alloc_flags);
1776 				zlc_active = 1;
1777 				did_zlc_setup = 1;
1778 			}
1779 
1780 			if (zone_reclaim_mode == 0)
1781 				goto this_zone_full;
1782 
1783 			/*
1784 			 * As we may have just activated ZLC, check if the first
1785 			 * eligible zone has failed zone_reclaim recently.
1786 			 */
1787 			if (NUMA_BUILD && zlc_active &&
1788 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1789 				continue;
1790 
1791 			ret = zone_reclaim(zone, gfp_mask, order);
1792 			switch (ret) {
1793 			case ZONE_RECLAIM_NOSCAN:
1794 				/* did not scan */
1795 				continue;
1796 			case ZONE_RECLAIM_FULL:
1797 				/* scanned but unreclaimable */
1798 				continue;
1799 			default:
1800 				/* did we reclaim enough */
1801 				if (!zone_watermark_ok(zone, order, mark,
1802 						classzone_idx, alloc_flags))
1803 					goto this_zone_full;
1804 			}
1805 		}
1806 
1807 try_this_zone:
1808 		page = buffered_rmqueue(preferred_zone, zone, order,
1809 						gfp_mask, migratetype);
1810 		if (page)
1811 			break;
1812 this_zone_full:
1813 		if (NUMA_BUILD)
1814 			zlc_mark_zone_full(zonelist, z);
1815 	}
1816 
1817 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1818 		/* Disable zlc cache for second zonelist scan */
1819 		zlc_active = 0;
1820 		goto zonelist_scan;
1821 	}
1822 	return page;
1823 }
1824 
1825 /*
1826  * Large machines with many possible nodes should not always dump per-node
1827  * meminfo in irq context.
1828  */
1829 static inline bool should_suppress_show_mem(void)
1830 {
1831 	bool ret = false;
1832 
1833 #if NODES_SHIFT > 8
1834 	ret = in_interrupt();
1835 #endif
1836 	return ret;
1837 }
1838 
1839 static DEFINE_RATELIMIT_STATE(nopage_rs,
1840 		DEFAULT_RATELIMIT_INTERVAL,
1841 		DEFAULT_RATELIMIT_BURST);
1842 
1843 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1844 {
1845 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1846 
1847 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1848 	    debug_guardpage_minorder() > 0)
1849 		return;
1850 
1851 	/*
1852 	 * This documents exceptions given to allocations in certain
1853 	 * contexts that are allowed to allocate outside current's set
1854 	 * of allowed nodes.
1855 	 */
1856 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1857 		if (test_thread_flag(TIF_MEMDIE) ||
1858 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1859 			filter &= ~SHOW_MEM_FILTER_NODES;
1860 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1861 		filter &= ~SHOW_MEM_FILTER_NODES;
1862 
1863 	if (fmt) {
1864 		struct va_format vaf;
1865 		va_list args;
1866 
1867 		va_start(args, fmt);
1868 
1869 		vaf.fmt = fmt;
1870 		vaf.va = &args;
1871 
1872 		pr_warn("%pV", &vaf);
1873 
1874 		va_end(args);
1875 	}
1876 
1877 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1878 		current->comm, order, gfp_mask);
1879 
1880 	dump_stack();
1881 	if (!should_suppress_show_mem())
1882 		show_mem(filter);
1883 }
1884 
1885 static inline int
1886 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1887 				unsigned long did_some_progress,
1888 				unsigned long pages_reclaimed)
1889 {
1890 	/* Do not loop if specifically requested */
1891 	if (gfp_mask & __GFP_NORETRY)
1892 		return 0;
1893 
1894 	/* Always retry if specifically requested */
1895 	if (gfp_mask & __GFP_NOFAIL)
1896 		return 1;
1897 
1898 	/*
1899 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1900 	 * making forward progress without invoking OOM. Suspend also disables
1901 	 * storage devices so kswapd will not help. Bail if we are suspending.
1902 	 */
1903 	if (!did_some_progress && pm_suspended_storage())
1904 		return 0;
1905 
1906 	/*
1907 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1908 	 * means __GFP_NOFAIL, but that may not be true in other
1909 	 * implementations.
1910 	 */
1911 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1912 		return 1;
1913 
1914 	/*
1915 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1916 	 * specified, then we retry until we no longer reclaim any pages
1917 	 * (above), or we've reclaimed an order of pages at least as
1918 	 * large as the allocation's order. In both cases, if the
1919 	 * allocation still fails, we stop retrying.
1920 	 */
1921 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1922 		return 1;
1923 
1924 	return 0;
1925 }
1926 
1927 static inline struct page *
1928 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1929 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1930 	nodemask_t *nodemask, struct zone *preferred_zone,
1931 	int migratetype)
1932 {
1933 	struct page *page;
1934 
1935 	/* Acquire the OOM killer lock for the zones in zonelist */
1936 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1937 		schedule_timeout_uninterruptible(1);
1938 		return NULL;
1939 	}
1940 
1941 	/*
1942 	 * Go through the zonelist yet one more time, keep very high watermark
1943 	 * here, this is only to catch a parallel oom killing, we must fail if
1944 	 * we're still under heavy pressure.
1945 	 */
1946 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1947 		order, zonelist, high_zoneidx,
1948 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1949 		preferred_zone, migratetype);
1950 	if (page)
1951 		goto out;
1952 
1953 	if (!(gfp_mask & __GFP_NOFAIL)) {
1954 		/* The OOM killer will not help higher order allocs */
1955 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1956 			goto out;
1957 		/* The OOM killer does not needlessly kill tasks for lowmem */
1958 		if (high_zoneidx < ZONE_NORMAL)
1959 			goto out;
1960 		/*
1961 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1962 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1963 		 * The caller should handle page allocation failure by itself if
1964 		 * it specifies __GFP_THISNODE.
1965 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1966 		 */
1967 		if (gfp_mask & __GFP_THISNODE)
1968 			goto out;
1969 	}
1970 	/* Exhausted what can be done so it's blamo time */
1971 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1972 
1973 out:
1974 	clear_zonelist_oom(zonelist, gfp_mask);
1975 	return page;
1976 }
1977 
1978 #ifdef CONFIG_COMPACTION
1979 /* Try memory compaction for high-order allocations before reclaim */
1980 static struct page *
1981 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1982 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1983 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1984 	int migratetype, bool sync_migration,
1985 	bool *deferred_compaction,
1986 	unsigned long *did_some_progress)
1987 {
1988 	struct page *page;
1989 
1990 	if (!order)
1991 		return NULL;
1992 
1993 	if (compaction_deferred(preferred_zone)) {
1994 		*deferred_compaction = true;
1995 		return NULL;
1996 	}
1997 
1998 	current->flags |= PF_MEMALLOC;
1999 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2000 						nodemask, sync_migration);
2001 	current->flags &= ~PF_MEMALLOC;
2002 	if (*did_some_progress != COMPACT_SKIPPED) {
2003 
2004 		/* Page migration frees to the PCP lists but we want merging */
2005 		drain_pages(get_cpu());
2006 		put_cpu();
2007 
2008 		page = get_page_from_freelist(gfp_mask, nodemask,
2009 				order, zonelist, high_zoneidx,
2010 				alloc_flags, preferred_zone,
2011 				migratetype);
2012 		if (page) {
2013 			preferred_zone->compact_considered = 0;
2014 			preferred_zone->compact_defer_shift = 0;
2015 			count_vm_event(COMPACTSUCCESS);
2016 			return page;
2017 		}
2018 
2019 		/*
2020 		 * It's bad if compaction run occurs and fails.
2021 		 * The most likely reason is that pages exist,
2022 		 * but not enough to satisfy watermarks.
2023 		 */
2024 		count_vm_event(COMPACTFAIL);
2025 
2026 		/*
2027 		 * As async compaction considers a subset of pageblocks, only
2028 		 * defer if the failure was a sync compaction failure.
2029 		 */
2030 		if (sync_migration)
2031 			defer_compaction(preferred_zone);
2032 
2033 		cond_resched();
2034 	}
2035 
2036 	return NULL;
2037 }
2038 #else
2039 static inline struct page *
2040 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2041 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2042 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2043 	int migratetype, bool sync_migration,
2044 	bool *deferred_compaction,
2045 	unsigned long *did_some_progress)
2046 {
2047 	return NULL;
2048 }
2049 #endif /* CONFIG_COMPACTION */
2050 
2051 /* The really slow allocator path where we enter direct reclaim */
2052 static inline struct page *
2053 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2054 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2055 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2056 	int migratetype, unsigned long *did_some_progress)
2057 {
2058 	struct page *page = NULL;
2059 	struct reclaim_state reclaim_state;
2060 	bool drained = false;
2061 
2062 	cond_resched();
2063 
2064 	/* We now go into synchronous reclaim */
2065 	cpuset_memory_pressure_bump();
2066 	current->flags |= PF_MEMALLOC;
2067 	lockdep_set_current_reclaim_state(gfp_mask);
2068 	reclaim_state.reclaimed_slab = 0;
2069 	current->reclaim_state = &reclaim_state;
2070 
2071 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2072 
2073 	current->reclaim_state = NULL;
2074 	lockdep_clear_current_reclaim_state();
2075 	current->flags &= ~PF_MEMALLOC;
2076 
2077 	cond_resched();
2078 
2079 	if (unlikely(!(*did_some_progress)))
2080 		return NULL;
2081 
2082 	/* After successful reclaim, reconsider all zones for allocation */
2083 	if (NUMA_BUILD)
2084 		zlc_clear_zones_full(zonelist);
2085 
2086 retry:
2087 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2088 					zonelist, high_zoneidx,
2089 					alloc_flags, preferred_zone,
2090 					migratetype);
2091 
2092 	/*
2093 	 * If an allocation failed after direct reclaim, it could be because
2094 	 * pages are pinned on the per-cpu lists. Drain them and try again
2095 	 */
2096 	if (!page && !drained) {
2097 		drain_all_pages();
2098 		drained = true;
2099 		goto retry;
2100 	}
2101 
2102 	return page;
2103 }
2104 
2105 /*
2106  * This is called in the allocator slow-path if the allocation request is of
2107  * sufficient urgency to ignore watermarks and take other desperate measures
2108  */
2109 static inline struct page *
2110 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2111 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2112 	nodemask_t *nodemask, struct zone *preferred_zone,
2113 	int migratetype)
2114 {
2115 	struct page *page;
2116 
2117 	do {
2118 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2119 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2120 			preferred_zone, migratetype);
2121 
2122 		if (!page && gfp_mask & __GFP_NOFAIL)
2123 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2124 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2125 
2126 	return page;
2127 }
2128 
2129 static inline
2130 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2131 						enum zone_type high_zoneidx,
2132 						enum zone_type classzone_idx)
2133 {
2134 	struct zoneref *z;
2135 	struct zone *zone;
2136 
2137 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2138 		wakeup_kswapd(zone, order, classzone_idx);
2139 }
2140 
2141 static inline int
2142 gfp_to_alloc_flags(gfp_t gfp_mask)
2143 {
2144 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2145 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2146 
2147 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2148 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2149 
2150 	/*
2151 	 * The caller may dip into page reserves a bit more if the caller
2152 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2153 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2154 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2155 	 */
2156 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2157 
2158 	if (!wait) {
2159 		/*
2160 		 * Not worth trying to allocate harder for
2161 		 * __GFP_NOMEMALLOC even if it can't schedule.
2162 		 */
2163 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2164 			alloc_flags |= ALLOC_HARDER;
2165 		/*
2166 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2167 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2168 		 */
2169 		alloc_flags &= ~ALLOC_CPUSET;
2170 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2171 		alloc_flags |= ALLOC_HARDER;
2172 
2173 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2174 		if (!in_interrupt() &&
2175 		    ((current->flags & PF_MEMALLOC) ||
2176 		     unlikely(test_thread_flag(TIF_MEMDIE))))
2177 			alloc_flags |= ALLOC_NO_WATERMARKS;
2178 	}
2179 
2180 	return alloc_flags;
2181 }
2182 
2183 static inline struct page *
2184 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2185 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2186 	nodemask_t *nodemask, struct zone *preferred_zone,
2187 	int migratetype)
2188 {
2189 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2190 	struct page *page = NULL;
2191 	int alloc_flags;
2192 	unsigned long pages_reclaimed = 0;
2193 	unsigned long did_some_progress;
2194 	bool sync_migration = false;
2195 	bool deferred_compaction = false;
2196 
2197 	/*
2198 	 * In the slowpath, we sanity check order to avoid ever trying to
2199 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2200 	 * be using allocators in order of preference for an area that is
2201 	 * too large.
2202 	 */
2203 	if (order >= MAX_ORDER) {
2204 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2205 		return NULL;
2206 	}
2207 
2208 	/*
2209 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2210 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2211 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2212 	 * using a larger set of nodes after it has established that the
2213 	 * allowed per node queues are empty and that nodes are
2214 	 * over allocated.
2215 	 */
2216 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2217 		goto nopage;
2218 
2219 restart:
2220 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2221 		wake_all_kswapd(order, zonelist, high_zoneidx,
2222 						zone_idx(preferred_zone));
2223 
2224 	/*
2225 	 * OK, we're below the kswapd watermark and have kicked background
2226 	 * reclaim. Now things get more complex, so set up alloc_flags according
2227 	 * to how we want to proceed.
2228 	 */
2229 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2230 
2231 	/*
2232 	 * Find the true preferred zone if the allocation is unconstrained by
2233 	 * cpusets.
2234 	 */
2235 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2236 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2237 					&preferred_zone);
2238 
2239 rebalance:
2240 	/* This is the last chance, in general, before the goto nopage. */
2241 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2242 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2243 			preferred_zone, migratetype);
2244 	if (page)
2245 		goto got_pg;
2246 
2247 	/* Allocate without watermarks if the context allows */
2248 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2249 		page = __alloc_pages_high_priority(gfp_mask, order,
2250 				zonelist, high_zoneidx, nodemask,
2251 				preferred_zone, migratetype);
2252 		if (page)
2253 			goto got_pg;
2254 	}
2255 
2256 	/* Atomic allocations - we can't balance anything */
2257 	if (!wait)
2258 		goto nopage;
2259 
2260 	/* Avoid recursion of direct reclaim */
2261 	if (current->flags & PF_MEMALLOC)
2262 		goto nopage;
2263 
2264 	/* Avoid allocations with no watermarks from looping endlessly */
2265 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2266 		goto nopage;
2267 
2268 	/*
2269 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2270 	 * attempts after direct reclaim are synchronous
2271 	 */
2272 	page = __alloc_pages_direct_compact(gfp_mask, order,
2273 					zonelist, high_zoneidx,
2274 					nodemask,
2275 					alloc_flags, preferred_zone,
2276 					migratetype, sync_migration,
2277 					&deferred_compaction,
2278 					&did_some_progress);
2279 	if (page)
2280 		goto got_pg;
2281 	sync_migration = true;
2282 
2283 	/*
2284 	 * If compaction is deferred for high-order allocations, it is because
2285 	 * sync compaction recently failed. In this is the case and the caller
2286 	 * has requested the system not be heavily disrupted, fail the
2287 	 * allocation now instead of entering direct reclaim
2288 	 */
2289 	if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2290 		goto nopage;
2291 
2292 	/* Try direct reclaim and then allocating */
2293 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2294 					zonelist, high_zoneidx,
2295 					nodemask,
2296 					alloc_flags, preferred_zone,
2297 					migratetype, &did_some_progress);
2298 	if (page)
2299 		goto got_pg;
2300 
2301 	/*
2302 	 * If we failed to make any progress reclaiming, then we are
2303 	 * running out of options and have to consider going OOM
2304 	 */
2305 	if (!did_some_progress) {
2306 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2307 			if (oom_killer_disabled)
2308 				goto nopage;
2309 			page = __alloc_pages_may_oom(gfp_mask, order,
2310 					zonelist, high_zoneidx,
2311 					nodemask, preferred_zone,
2312 					migratetype);
2313 			if (page)
2314 				goto got_pg;
2315 
2316 			if (!(gfp_mask & __GFP_NOFAIL)) {
2317 				/*
2318 				 * The oom killer is not called for high-order
2319 				 * allocations that may fail, so if no progress
2320 				 * is being made, there are no other options and
2321 				 * retrying is unlikely to help.
2322 				 */
2323 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2324 					goto nopage;
2325 				/*
2326 				 * The oom killer is not called for lowmem
2327 				 * allocations to prevent needlessly killing
2328 				 * innocent tasks.
2329 				 */
2330 				if (high_zoneidx < ZONE_NORMAL)
2331 					goto nopage;
2332 			}
2333 
2334 			goto restart;
2335 		}
2336 	}
2337 
2338 	/* Check if we should retry the allocation */
2339 	pages_reclaimed += did_some_progress;
2340 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2341 						pages_reclaimed)) {
2342 		/* Wait for some write requests to complete then retry */
2343 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2344 		goto rebalance;
2345 	} else {
2346 		/*
2347 		 * High-order allocations do not necessarily loop after
2348 		 * direct reclaim and reclaim/compaction depends on compaction
2349 		 * being called after reclaim so call directly if necessary
2350 		 */
2351 		page = __alloc_pages_direct_compact(gfp_mask, order,
2352 					zonelist, high_zoneidx,
2353 					nodemask,
2354 					alloc_flags, preferred_zone,
2355 					migratetype, sync_migration,
2356 					&deferred_compaction,
2357 					&did_some_progress);
2358 		if (page)
2359 			goto got_pg;
2360 	}
2361 
2362 nopage:
2363 	warn_alloc_failed(gfp_mask, order, NULL);
2364 	return page;
2365 got_pg:
2366 	if (kmemcheck_enabled)
2367 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2368 	return page;
2369 
2370 }
2371 
2372 /*
2373  * This is the 'heart' of the zoned buddy allocator.
2374  */
2375 struct page *
2376 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2377 			struct zonelist *zonelist, nodemask_t *nodemask)
2378 {
2379 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2380 	struct zone *preferred_zone;
2381 	struct page *page;
2382 	int migratetype = allocflags_to_migratetype(gfp_mask);
2383 
2384 	gfp_mask &= gfp_allowed_mask;
2385 
2386 	lockdep_trace_alloc(gfp_mask);
2387 
2388 	might_sleep_if(gfp_mask & __GFP_WAIT);
2389 
2390 	if (should_fail_alloc_page(gfp_mask, order))
2391 		return NULL;
2392 
2393 	/*
2394 	 * Check the zones suitable for the gfp_mask contain at least one
2395 	 * valid zone. It's possible to have an empty zonelist as a result
2396 	 * of GFP_THISNODE and a memoryless node
2397 	 */
2398 	if (unlikely(!zonelist->_zonerefs->zone))
2399 		return NULL;
2400 
2401 	get_mems_allowed();
2402 	/* The preferred zone is used for statistics later */
2403 	first_zones_zonelist(zonelist, high_zoneidx,
2404 				nodemask ? : &cpuset_current_mems_allowed,
2405 				&preferred_zone);
2406 	if (!preferred_zone) {
2407 		put_mems_allowed();
2408 		return NULL;
2409 	}
2410 
2411 	/* First allocation attempt */
2412 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2413 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2414 			preferred_zone, migratetype);
2415 	if (unlikely(!page))
2416 		page = __alloc_pages_slowpath(gfp_mask, order,
2417 				zonelist, high_zoneidx, nodemask,
2418 				preferred_zone, migratetype);
2419 	put_mems_allowed();
2420 
2421 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2422 	return page;
2423 }
2424 EXPORT_SYMBOL(__alloc_pages_nodemask);
2425 
2426 /*
2427  * Common helper functions.
2428  */
2429 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2430 {
2431 	struct page *page;
2432 
2433 	/*
2434 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2435 	 * a highmem page
2436 	 */
2437 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2438 
2439 	page = alloc_pages(gfp_mask, order);
2440 	if (!page)
2441 		return 0;
2442 	return (unsigned long) page_address(page);
2443 }
2444 EXPORT_SYMBOL(__get_free_pages);
2445 
2446 unsigned long get_zeroed_page(gfp_t gfp_mask)
2447 {
2448 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2449 }
2450 EXPORT_SYMBOL(get_zeroed_page);
2451 
2452 void __free_pages(struct page *page, unsigned int order)
2453 {
2454 	if (put_page_testzero(page)) {
2455 		if (order == 0)
2456 			free_hot_cold_page(page, 0);
2457 		else
2458 			__free_pages_ok(page, order);
2459 	}
2460 }
2461 
2462 EXPORT_SYMBOL(__free_pages);
2463 
2464 void free_pages(unsigned long addr, unsigned int order)
2465 {
2466 	if (addr != 0) {
2467 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2468 		__free_pages(virt_to_page((void *)addr), order);
2469 	}
2470 }
2471 
2472 EXPORT_SYMBOL(free_pages);
2473 
2474 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2475 {
2476 	if (addr) {
2477 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2478 		unsigned long used = addr + PAGE_ALIGN(size);
2479 
2480 		split_page(virt_to_page((void *)addr), order);
2481 		while (used < alloc_end) {
2482 			free_page(used);
2483 			used += PAGE_SIZE;
2484 		}
2485 	}
2486 	return (void *)addr;
2487 }
2488 
2489 /**
2490  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2491  * @size: the number of bytes to allocate
2492  * @gfp_mask: GFP flags for the allocation
2493  *
2494  * This function is similar to alloc_pages(), except that it allocates the
2495  * minimum number of pages to satisfy the request.  alloc_pages() can only
2496  * allocate memory in power-of-two pages.
2497  *
2498  * This function is also limited by MAX_ORDER.
2499  *
2500  * Memory allocated by this function must be released by free_pages_exact().
2501  */
2502 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2503 {
2504 	unsigned int order = get_order(size);
2505 	unsigned long addr;
2506 
2507 	addr = __get_free_pages(gfp_mask, order);
2508 	return make_alloc_exact(addr, order, size);
2509 }
2510 EXPORT_SYMBOL(alloc_pages_exact);
2511 
2512 /**
2513  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2514  *			   pages on a node.
2515  * @nid: the preferred node ID where memory should be allocated
2516  * @size: the number of bytes to allocate
2517  * @gfp_mask: GFP flags for the allocation
2518  *
2519  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2520  * back.
2521  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2522  * but is not exact.
2523  */
2524 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2525 {
2526 	unsigned order = get_order(size);
2527 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2528 	if (!p)
2529 		return NULL;
2530 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2531 }
2532 EXPORT_SYMBOL(alloc_pages_exact_nid);
2533 
2534 /**
2535  * free_pages_exact - release memory allocated via alloc_pages_exact()
2536  * @virt: the value returned by alloc_pages_exact.
2537  * @size: size of allocation, same value as passed to alloc_pages_exact().
2538  *
2539  * Release the memory allocated by a previous call to alloc_pages_exact.
2540  */
2541 void free_pages_exact(void *virt, size_t size)
2542 {
2543 	unsigned long addr = (unsigned long)virt;
2544 	unsigned long end = addr + PAGE_ALIGN(size);
2545 
2546 	while (addr < end) {
2547 		free_page(addr);
2548 		addr += PAGE_SIZE;
2549 	}
2550 }
2551 EXPORT_SYMBOL(free_pages_exact);
2552 
2553 static unsigned int nr_free_zone_pages(int offset)
2554 {
2555 	struct zoneref *z;
2556 	struct zone *zone;
2557 
2558 	/* Just pick one node, since fallback list is circular */
2559 	unsigned int sum = 0;
2560 
2561 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2562 
2563 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2564 		unsigned long size = zone->present_pages;
2565 		unsigned long high = high_wmark_pages(zone);
2566 		if (size > high)
2567 			sum += size - high;
2568 	}
2569 
2570 	return sum;
2571 }
2572 
2573 /*
2574  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2575  */
2576 unsigned int nr_free_buffer_pages(void)
2577 {
2578 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2579 }
2580 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2581 
2582 /*
2583  * Amount of free RAM allocatable within all zones
2584  */
2585 unsigned int nr_free_pagecache_pages(void)
2586 {
2587 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2588 }
2589 
2590 static inline void show_node(struct zone *zone)
2591 {
2592 	if (NUMA_BUILD)
2593 		printk("Node %d ", zone_to_nid(zone));
2594 }
2595 
2596 void si_meminfo(struct sysinfo *val)
2597 {
2598 	val->totalram = totalram_pages;
2599 	val->sharedram = 0;
2600 	val->freeram = global_page_state(NR_FREE_PAGES);
2601 	val->bufferram = nr_blockdev_pages();
2602 	val->totalhigh = totalhigh_pages;
2603 	val->freehigh = nr_free_highpages();
2604 	val->mem_unit = PAGE_SIZE;
2605 }
2606 
2607 EXPORT_SYMBOL(si_meminfo);
2608 
2609 #ifdef CONFIG_NUMA
2610 void si_meminfo_node(struct sysinfo *val, int nid)
2611 {
2612 	pg_data_t *pgdat = NODE_DATA(nid);
2613 
2614 	val->totalram = pgdat->node_present_pages;
2615 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2616 #ifdef CONFIG_HIGHMEM
2617 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2618 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2619 			NR_FREE_PAGES);
2620 #else
2621 	val->totalhigh = 0;
2622 	val->freehigh = 0;
2623 #endif
2624 	val->mem_unit = PAGE_SIZE;
2625 }
2626 #endif
2627 
2628 /*
2629  * Determine whether the node should be displayed or not, depending on whether
2630  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2631  */
2632 bool skip_free_areas_node(unsigned int flags, int nid)
2633 {
2634 	bool ret = false;
2635 
2636 	if (!(flags & SHOW_MEM_FILTER_NODES))
2637 		goto out;
2638 
2639 	get_mems_allowed();
2640 	ret = !node_isset(nid, cpuset_current_mems_allowed);
2641 	put_mems_allowed();
2642 out:
2643 	return ret;
2644 }
2645 
2646 #define K(x) ((x) << (PAGE_SHIFT-10))
2647 
2648 /*
2649  * Show free area list (used inside shift_scroll-lock stuff)
2650  * We also calculate the percentage fragmentation. We do this by counting the
2651  * memory on each free list with the exception of the first item on the list.
2652  * Suppresses nodes that are not allowed by current's cpuset if
2653  * SHOW_MEM_FILTER_NODES is passed.
2654  */
2655 void show_free_areas(unsigned int filter)
2656 {
2657 	int cpu;
2658 	struct zone *zone;
2659 
2660 	for_each_populated_zone(zone) {
2661 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2662 			continue;
2663 		show_node(zone);
2664 		printk("%s per-cpu:\n", zone->name);
2665 
2666 		for_each_online_cpu(cpu) {
2667 			struct per_cpu_pageset *pageset;
2668 
2669 			pageset = per_cpu_ptr(zone->pageset, cpu);
2670 
2671 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2672 			       cpu, pageset->pcp.high,
2673 			       pageset->pcp.batch, pageset->pcp.count);
2674 		}
2675 	}
2676 
2677 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2678 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2679 		" unevictable:%lu"
2680 		" dirty:%lu writeback:%lu unstable:%lu\n"
2681 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2682 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2683 		global_page_state(NR_ACTIVE_ANON),
2684 		global_page_state(NR_INACTIVE_ANON),
2685 		global_page_state(NR_ISOLATED_ANON),
2686 		global_page_state(NR_ACTIVE_FILE),
2687 		global_page_state(NR_INACTIVE_FILE),
2688 		global_page_state(NR_ISOLATED_FILE),
2689 		global_page_state(NR_UNEVICTABLE),
2690 		global_page_state(NR_FILE_DIRTY),
2691 		global_page_state(NR_WRITEBACK),
2692 		global_page_state(NR_UNSTABLE_NFS),
2693 		global_page_state(NR_FREE_PAGES),
2694 		global_page_state(NR_SLAB_RECLAIMABLE),
2695 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2696 		global_page_state(NR_FILE_MAPPED),
2697 		global_page_state(NR_SHMEM),
2698 		global_page_state(NR_PAGETABLE),
2699 		global_page_state(NR_BOUNCE));
2700 
2701 	for_each_populated_zone(zone) {
2702 		int i;
2703 
2704 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2705 			continue;
2706 		show_node(zone);
2707 		printk("%s"
2708 			" free:%lukB"
2709 			" min:%lukB"
2710 			" low:%lukB"
2711 			" high:%lukB"
2712 			" active_anon:%lukB"
2713 			" inactive_anon:%lukB"
2714 			" active_file:%lukB"
2715 			" inactive_file:%lukB"
2716 			" unevictable:%lukB"
2717 			" isolated(anon):%lukB"
2718 			" isolated(file):%lukB"
2719 			" present:%lukB"
2720 			" mlocked:%lukB"
2721 			" dirty:%lukB"
2722 			" writeback:%lukB"
2723 			" mapped:%lukB"
2724 			" shmem:%lukB"
2725 			" slab_reclaimable:%lukB"
2726 			" slab_unreclaimable:%lukB"
2727 			" kernel_stack:%lukB"
2728 			" pagetables:%lukB"
2729 			" unstable:%lukB"
2730 			" bounce:%lukB"
2731 			" writeback_tmp:%lukB"
2732 			" pages_scanned:%lu"
2733 			" all_unreclaimable? %s"
2734 			"\n",
2735 			zone->name,
2736 			K(zone_page_state(zone, NR_FREE_PAGES)),
2737 			K(min_wmark_pages(zone)),
2738 			K(low_wmark_pages(zone)),
2739 			K(high_wmark_pages(zone)),
2740 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2741 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2742 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2743 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2744 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2745 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2746 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2747 			K(zone->present_pages),
2748 			K(zone_page_state(zone, NR_MLOCK)),
2749 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2750 			K(zone_page_state(zone, NR_WRITEBACK)),
2751 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2752 			K(zone_page_state(zone, NR_SHMEM)),
2753 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2754 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2755 			zone_page_state(zone, NR_KERNEL_STACK) *
2756 				THREAD_SIZE / 1024,
2757 			K(zone_page_state(zone, NR_PAGETABLE)),
2758 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2759 			K(zone_page_state(zone, NR_BOUNCE)),
2760 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2761 			zone->pages_scanned,
2762 			(zone->all_unreclaimable ? "yes" : "no")
2763 			);
2764 		printk("lowmem_reserve[]:");
2765 		for (i = 0; i < MAX_NR_ZONES; i++)
2766 			printk(" %lu", zone->lowmem_reserve[i]);
2767 		printk("\n");
2768 	}
2769 
2770 	for_each_populated_zone(zone) {
2771  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2772 
2773 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2774 			continue;
2775 		show_node(zone);
2776 		printk("%s: ", zone->name);
2777 
2778 		spin_lock_irqsave(&zone->lock, flags);
2779 		for (order = 0; order < MAX_ORDER; order++) {
2780 			nr[order] = zone->free_area[order].nr_free;
2781 			total += nr[order] << order;
2782 		}
2783 		spin_unlock_irqrestore(&zone->lock, flags);
2784 		for (order = 0; order < MAX_ORDER; order++)
2785 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2786 		printk("= %lukB\n", K(total));
2787 	}
2788 
2789 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2790 
2791 	show_swap_cache_info();
2792 }
2793 
2794 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2795 {
2796 	zoneref->zone = zone;
2797 	zoneref->zone_idx = zone_idx(zone);
2798 }
2799 
2800 /*
2801  * Builds allocation fallback zone lists.
2802  *
2803  * Add all populated zones of a node to the zonelist.
2804  */
2805 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2806 				int nr_zones, enum zone_type zone_type)
2807 {
2808 	struct zone *zone;
2809 
2810 	BUG_ON(zone_type >= MAX_NR_ZONES);
2811 	zone_type++;
2812 
2813 	do {
2814 		zone_type--;
2815 		zone = pgdat->node_zones + zone_type;
2816 		if (populated_zone(zone)) {
2817 			zoneref_set_zone(zone,
2818 				&zonelist->_zonerefs[nr_zones++]);
2819 			check_highest_zone(zone_type);
2820 		}
2821 
2822 	} while (zone_type);
2823 	return nr_zones;
2824 }
2825 
2826 
2827 /*
2828  *  zonelist_order:
2829  *  0 = automatic detection of better ordering.
2830  *  1 = order by ([node] distance, -zonetype)
2831  *  2 = order by (-zonetype, [node] distance)
2832  *
2833  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2834  *  the same zonelist. So only NUMA can configure this param.
2835  */
2836 #define ZONELIST_ORDER_DEFAULT  0
2837 #define ZONELIST_ORDER_NODE     1
2838 #define ZONELIST_ORDER_ZONE     2
2839 
2840 /* zonelist order in the kernel.
2841  * set_zonelist_order() will set this to NODE or ZONE.
2842  */
2843 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2844 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2845 
2846 
2847 #ifdef CONFIG_NUMA
2848 /* The value user specified ....changed by config */
2849 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2850 /* string for sysctl */
2851 #define NUMA_ZONELIST_ORDER_LEN	16
2852 char numa_zonelist_order[16] = "default";
2853 
2854 /*
2855  * interface for configure zonelist ordering.
2856  * command line option "numa_zonelist_order"
2857  *	= "[dD]efault	- default, automatic configuration.
2858  *	= "[nN]ode 	- order by node locality, then by zone within node
2859  *	= "[zZ]one      - order by zone, then by locality within zone
2860  */
2861 
2862 static int __parse_numa_zonelist_order(char *s)
2863 {
2864 	if (*s == 'd' || *s == 'D') {
2865 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2866 	} else if (*s == 'n' || *s == 'N') {
2867 		user_zonelist_order = ZONELIST_ORDER_NODE;
2868 	} else if (*s == 'z' || *s == 'Z') {
2869 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2870 	} else {
2871 		printk(KERN_WARNING
2872 			"Ignoring invalid numa_zonelist_order value:  "
2873 			"%s\n", s);
2874 		return -EINVAL;
2875 	}
2876 	return 0;
2877 }
2878 
2879 static __init int setup_numa_zonelist_order(char *s)
2880 {
2881 	int ret;
2882 
2883 	if (!s)
2884 		return 0;
2885 
2886 	ret = __parse_numa_zonelist_order(s);
2887 	if (ret == 0)
2888 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2889 
2890 	return ret;
2891 }
2892 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2893 
2894 /*
2895  * sysctl handler for numa_zonelist_order
2896  */
2897 int numa_zonelist_order_handler(ctl_table *table, int write,
2898 		void __user *buffer, size_t *length,
2899 		loff_t *ppos)
2900 {
2901 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2902 	int ret;
2903 	static DEFINE_MUTEX(zl_order_mutex);
2904 
2905 	mutex_lock(&zl_order_mutex);
2906 	if (write)
2907 		strcpy(saved_string, (char*)table->data);
2908 	ret = proc_dostring(table, write, buffer, length, ppos);
2909 	if (ret)
2910 		goto out;
2911 	if (write) {
2912 		int oldval = user_zonelist_order;
2913 		if (__parse_numa_zonelist_order((char*)table->data)) {
2914 			/*
2915 			 * bogus value.  restore saved string
2916 			 */
2917 			strncpy((char*)table->data, saved_string,
2918 				NUMA_ZONELIST_ORDER_LEN);
2919 			user_zonelist_order = oldval;
2920 		} else if (oldval != user_zonelist_order) {
2921 			mutex_lock(&zonelists_mutex);
2922 			build_all_zonelists(NULL);
2923 			mutex_unlock(&zonelists_mutex);
2924 		}
2925 	}
2926 out:
2927 	mutex_unlock(&zl_order_mutex);
2928 	return ret;
2929 }
2930 
2931 
2932 #define MAX_NODE_LOAD (nr_online_nodes)
2933 static int node_load[MAX_NUMNODES];
2934 
2935 /**
2936  * find_next_best_node - find the next node that should appear in a given node's fallback list
2937  * @node: node whose fallback list we're appending
2938  * @used_node_mask: nodemask_t of already used nodes
2939  *
2940  * We use a number of factors to determine which is the next node that should
2941  * appear on a given node's fallback list.  The node should not have appeared
2942  * already in @node's fallback list, and it should be the next closest node
2943  * according to the distance array (which contains arbitrary distance values
2944  * from each node to each node in the system), and should also prefer nodes
2945  * with no CPUs, since presumably they'll have very little allocation pressure
2946  * on them otherwise.
2947  * It returns -1 if no node is found.
2948  */
2949 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2950 {
2951 	int n, val;
2952 	int min_val = INT_MAX;
2953 	int best_node = -1;
2954 	const struct cpumask *tmp = cpumask_of_node(0);
2955 
2956 	/* Use the local node if we haven't already */
2957 	if (!node_isset(node, *used_node_mask)) {
2958 		node_set(node, *used_node_mask);
2959 		return node;
2960 	}
2961 
2962 	for_each_node_state(n, N_HIGH_MEMORY) {
2963 
2964 		/* Don't want a node to appear more than once */
2965 		if (node_isset(n, *used_node_mask))
2966 			continue;
2967 
2968 		/* Use the distance array to find the distance */
2969 		val = node_distance(node, n);
2970 
2971 		/* Penalize nodes under us ("prefer the next node") */
2972 		val += (n < node);
2973 
2974 		/* Give preference to headless and unused nodes */
2975 		tmp = cpumask_of_node(n);
2976 		if (!cpumask_empty(tmp))
2977 			val += PENALTY_FOR_NODE_WITH_CPUS;
2978 
2979 		/* Slight preference for less loaded node */
2980 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2981 		val += node_load[n];
2982 
2983 		if (val < min_val) {
2984 			min_val = val;
2985 			best_node = n;
2986 		}
2987 	}
2988 
2989 	if (best_node >= 0)
2990 		node_set(best_node, *used_node_mask);
2991 
2992 	return best_node;
2993 }
2994 
2995 
2996 /*
2997  * Build zonelists ordered by node and zones within node.
2998  * This results in maximum locality--normal zone overflows into local
2999  * DMA zone, if any--but risks exhausting DMA zone.
3000  */
3001 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3002 {
3003 	int j;
3004 	struct zonelist *zonelist;
3005 
3006 	zonelist = &pgdat->node_zonelists[0];
3007 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3008 		;
3009 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3010 							MAX_NR_ZONES - 1);
3011 	zonelist->_zonerefs[j].zone = NULL;
3012 	zonelist->_zonerefs[j].zone_idx = 0;
3013 }
3014 
3015 /*
3016  * Build gfp_thisnode zonelists
3017  */
3018 static void build_thisnode_zonelists(pg_data_t *pgdat)
3019 {
3020 	int j;
3021 	struct zonelist *zonelist;
3022 
3023 	zonelist = &pgdat->node_zonelists[1];
3024 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3025 	zonelist->_zonerefs[j].zone = NULL;
3026 	zonelist->_zonerefs[j].zone_idx = 0;
3027 }
3028 
3029 /*
3030  * Build zonelists ordered by zone and nodes within zones.
3031  * This results in conserving DMA zone[s] until all Normal memory is
3032  * exhausted, but results in overflowing to remote node while memory
3033  * may still exist in local DMA zone.
3034  */
3035 static int node_order[MAX_NUMNODES];
3036 
3037 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3038 {
3039 	int pos, j, node;
3040 	int zone_type;		/* needs to be signed */
3041 	struct zone *z;
3042 	struct zonelist *zonelist;
3043 
3044 	zonelist = &pgdat->node_zonelists[0];
3045 	pos = 0;
3046 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3047 		for (j = 0; j < nr_nodes; j++) {
3048 			node = node_order[j];
3049 			z = &NODE_DATA(node)->node_zones[zone_type];
3050 			if (populated_zone(z)) {
3051 				zoneref_set_zone(z,
3052 					&zonelist->_zonerefs[pos++]);
3053 				check_highest_zone(zone_type);
3054 			}
3055 		}
3056 	}
3057 	zonelist->_zonerefs[pos].zone = NULL;
3058 	zonelist->_zonerefs[pos].zone_idx = 0;
3059 }
3060 
3061 static int default_zonelist_order(void)
3062 {
3063 	int nid, zone_type;
3064 	unsigned long low_kmem_size,total_size;
3065 	struct zone *z;
3066 	int average_size;
3067 	/*
3068          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3069 	 * If they are really small and used heavily, the system can fall
3070 	 * into OOM very easily.
3071 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3072 	 */
3073 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3074 	low_kmem_size = 0;
3075 	total_size = 0;
3076 	for_each_online_node(nid) {
3077 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3078 			z = &NODE_DATA(nid)->node_zones[zone_type];
3079 			if (populated_zone(z)) {
3080 				if (zone_type < ZONE_NORMAL)
3081 					low_kmem_size += z->present_pages;
3082 				total_size += z->present_pages;
3083 			} else if (zone_type == ZONE_NORMAL) {
3084 				/*
3085 				 * If any node has only lowmem, then node order
3086 				 * is preferred to allow kernel allocations
3087 				 * locally; otherwise, they can easily infringe
3088 				 * on other nodes when there is an abundance of
3089 				 * lowmem available to allocate from.
3090 				 */
3091 				return ZONELIST_ORDER_NODE;
3092 			}
3093 		}
3094 	}
3095 	if (!low_kmem_size ||  /* there are no DMA area. */
3096 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3097 		return ZONELIST_ORDER_NODE;
3098 	/*
3099 	 * look into each node's config.
3100   	 * If there is a node whose DMA/DMA32 memory is very big area on
3101  	 * local memory, NODE_ORDER may be suitable.
3102          */
3103 	average_size = total_size /
3104 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3105 	for_each_online_node(nid) {
3106 		low_kmem_size = 0;
3107 		total_size = 0;
3108 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3109 			z = &NODE_DATA(nid)->node_zones[zone_type];
3110 			if (populated_zone(z)) {
3111 				if (zone_type < ZONE_NORMAL)
3112 					low_kmem_size += z->present_pages;
3113 				total_size += z->present_pages;
3114 			}
3115 		}
3116 		if (low_kmem_size &&
3117 		    total_size > average_size && /* ignore small node */
3118 		    low_kmem_size > total_size * 70/100)
3119 			return ZONELIST_ORDER_NODE;
3120 	}
3121 	return ZONELIST_ORDER_ZONE;
3122 }
3123 
3124 static void set_zonelist_order(void)
3125 {
3126 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3127 		current_zonelist_order = default_zonelist_order();
3128 	else
3129 		current_zonelist_order = user_zonelist_order;
3130 }
3131 
3132 static void build_zonelists(pg_data_t *pgdat)
3133 {
3134 	int j, node, load;
3135 	enum zone_type i;
3136 	nodemask_t used_mask;
3137 	int local_node, prev_node;
3138 	struct zonelist *zonelist;
3139 	int order = current_zonelist_order;
3140 
3141 	/* initialize zonelists */
3142 	for (i = 0; i < MAX_ZONELISTS; i++) {
3143 		zonelist = pgdat->node_zonelists + i;
3144 		zonelist->_zonerefs[0].zone = NULL;
3145 		zonelist->_zonerefs[0].zone_idx = 0;
3146 	}
3147 
3148 	/* NUMA-aware ordering of nodes */
3149 	local_node = pgdat->node_id;
3150 	load = nr_online_nodes;
3151 	prev_node = local_node;
3152 	nodes_clear(used_mask);
3153 
3154 	memset(node_order, 0, sizeof(node_order));
3155 	j = 0;
3156 
3157 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3158 		int distance = node_distance(local_node, node);
3159 
3160 		/*
3161 		 * If another node is sufficiently far away then it is better
3162 		 * to reclaim pages in a zone before going off node.
3163 		 */
3164 		if (distance > RECLAIM_DISTANCE)
3165 			zone_reclaim_mode = 1;
3166 
3167 		/*
3168 		 * We don't want to pressure a particular node.
3169 		 * So adding penalty to the first node in same
3170 		 * distance group to make it round-robin.
3171 		 */
3172 		if (distance != node_distance(local_node, prev_node))
3173 			node_load[node] = load;
3174 
3175 		prev_node = node;
3176 		load--;
3177 		if (order == ZONELIST_ORDER_NODE)
3178 			build_zonelists_in_node_order(pgdat, node);
3179 		else
3180 			node_order[j++] = node;	/* remember order */
3181 	}
3182 
3183 	if (order == ZONELIST_ORDER_ZONE) {
3184 		/* calculate node order -- i.e., DMA last! */
3185 		build_zonelists_in_zone_order(pgdat, j);
3186 	}
3187 
3188 	build_thisnode_zonelists(pgdat);
3189 }
3190 
3191 /* Construct the zonelist performance cache - see further mmzone.h */
3192 static void build_zonelist_cache(pg_data_t *pgdat)
3193 {
3194 	struct zonelist *zonelist;
3195 	struct zonelist_cache *zlc;
3196 	struct zoneref *z;
3197 
3198 	zonelist = &pgdat->node_zonelists[0];
3199 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3200 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3201 	for (z = zonelist->_zonerefs; z->zone; z++)
3202 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3203 }
3204 
3205 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3206 /*
3207  * Return node id of node used for "local" allocations.
3208  * I.e., first node id of first zone in arg node's generic zonelist.
3209  * Used for initializing percpu 'numa_mem', which is used primarily
3210  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3211  */
3212 int local_memory_node(int node)
3213 {
3214 	struct zone *zone;
3215 
3216 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3217 				   gfp_zone(GFP_KERNEL),
3218 				   NULL,
3219 				   &zone);
3220 	return zone->node;
3221 }
3222 #endif
3223 
3224 #else	/* CONFIG_NUMA */
3225 
3226 static void set_zonelist_order(void)
3227 {
3228 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3229 }
3230 
3231 static void build_zonelists(pg_data_t *pgdat)
3232 {
3233 	int node, local_node;
3234 	enum zone_type j;
3235 	struct zonelist *zonelist;
3236 
3237 	local_node = pgdat->node_id;
3238 
3239 	zonelist = &pgdat->node_zonelists[0];
3240 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3241 
3242 	/*
3243 	 * Now we build the zonelist so that it contains the zones
3244 	 * of all the other nodes.
3245 	 * We don't want to pressure a particular node, so when
3246 	 * building the zones for node N, we make sure that the
3247 	 * zones coming right after the local ones are those from
3248 	 * node N+1 (modulo N)
3249 	 */
3250 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3251 		if (!node_online(node))
3252 			continue;
3253 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3254 							MAX_NR_ZONES - 1);
3255 	}
3256 	for (node = 0; node < local_node; node++) {
3257 		if (!node_online(node))
3258 			continue;
3259 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3260 							MAX_NR_ZONES - 1);
3261 	}
3262 
3263 	zonelist->_zonerefs[j].zone = NULL;
3264 	zonelist->_zonerefs[j].zone_idx = 0;
3265 }
3266 
3267 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3268 static void build_zonelist_cache(pg_data_t *pgdat)
3269 {
3270 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3271 }
3272 
3273 #endif	/* CONFIG_NUMA */
3274 
3275 /*
3276  * Boot pageset table. One per cpu which is going to be used for all
3277  * zones and all nodes. The parameters will be set in such a way
3278  * that an item put on a list will immediately be handed over to
3279  * the buddy list. This is safe since pageset manipulation is done
3280  * with interrupts disabled.
3281  *
3282  * The boot_pagesets must be kept even after bootup is complete for
3283  * unused processors and/or zones. They do play a role for bootstrapping
3284  * hotplugged processors.
3285  *
3286  * zoneinfo_show() and maybe other functions do
3287  * not check if the processor is online before following the pageset pointer.
3288  * Other parts of the kernel may not check if the zone is available.
3289  */
3290 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3291 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3292 static void setup_zone_pageset(struct zone *zone);
3293 
3294 /*
3295  * Global mutex to protect against size modification of zonelists
3296  * as well as to serialize pageset setup for the new populated zone.
3297  */
3298 DEFINE_MUTEX(zonelists_mutex);
3299 
3300 /* return values int ....just for stop_machine() */
3301 static __init_refok int __build_all_zonelists(void *data)
3302 {
3303 	int nid;
3304 	int cpu;
3305 
3306 #ifdef CONFIG_NUMA
3307 	memset(node_load, 0, sizeof(node_load));
3308 #endif
3309 	for_each_online_node(nid) {
3310 		pg_data_t *pgdat = NODE_DATA(nid);
3311 
3312 		build_zonelists(pgdat);
3313 		build_zonelist_cache(pgdat);
3314 	}
3315 
3316 	/*
3317 	 * Initialize the boot_pagesets that are going to be used
3318 	 * for bootstrapping processors. The real pagesets for
3319 	 * each zone will be allocated later when the per cpu
3320 	 * allocator is available.
3321 	 *
3322 	 * boot_pagesets are used also for bootstrapping offline
3323 	 * cpus if the system is already booted because the pagesets
3324 	 * are needed to initialize allocators on a specific cpu too.
3325 	 * F.e. the percpu allocator needs the page allocator which
3326 	 * needs the percpu allocator in order to allocate its pagesets
3327 	 * (a chicken-egg dilemma).
3328 	 */
3329 	for_each_possible_cpu(cpu) {
3330 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3331 
3332 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3333 		/*
3334 		 * We now know the "local memory node" for each node--
3335 		 * i.e., the node of the first zone in the generic zonelist.
3336 		 * Set up numa_mem percpu variable for on-line cpus.  During
3337 		 * boot, only the boot cpu should be on-line;  we'll init the
3338 		 * secondary cpus' numa_mem as they come on-line.  During
3339 		 * node/memory hotplug, we'll fixup all on-line cpus.
3340 		 */
3341 		if (cpu_online(cpu))
3342 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3343 #endif
3344 	}
3345 
3346 	return 0;
3347 }
3348 
3349 /*
3350  * Called with zonelists_mutex held always
3351  * unless system_state == SYSTEM_BOOTING.
3352  */
3353 void __ref build_all_zonelists(void *data)
3354 {
3355 	set_zonelist_order();
3356 
3357 	if (system_state == SYSTEM_BOOTING) {
3358 		__build_all_zonelists(NULL);
3359 		mminit_verify_zonelist();
3360 		cpuset_init_current_mems_allowed();
3361 	} else {
3362 		/* we have to stop all cpus to guarantee there is no user
3363 		   of zonelist */
3364 #ifdef CONFIG_MEMORY_HOTPLUG
3365 		if (data)
3366 			setup_zone_pageset((struct zone *)data);
3367 #endif
3368 		stop_machine(__build_all_zonelists, NULL, NULL);
3369 		/* cpuset refresh routine should be here */
3370 	}
3371 	vm_total_pages = nr_free_pagecache_pages();
3372 	/*
3373 	 * Disable grouping by mobility if the number of pages in the
3374 	 * system is too low to allow the mechanism to work. It would be
3375 	 * more accurate, but expensive to check per-zone. This check is
3376 	 * made on memory-hotadd so a system can start with mobility
3377 	 * disabled and enable it later
3378 	 */
3379 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3380 		page_group_by_mobility_disabled = 1;
3381 	else
3382 		page_group_by_mobility_disabled = 0;
3383 
3384 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3385 		"Total pages: %ld\n",
3386 			nr_online_nodes,
3387 			zonelist_order_name[current_zonelist_order],
3388 			page_group_by_mobility_disabled ? "off" : "on",
3389 			vm_total_pages);
3390 #ifdef CONFIG_NUMA
3391 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3392 #endif
3393 }
3394 
3395 /*
3396  * Helper functions to size the waitqueue hash table.
3397  * Essentially these want to choose hash table sizes sufficiently
3398  * large so that collisions trying to wait on pages are rare.
3399  * But in fact, the number of active page waitqueues on typical
3400  * systems is ridiculously low, less than 200. So this is even
3401  * conservative, even though it seems large.
3402  *
3403  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3404  * waitqueues, i.e. the size of the waitq table given the number of pages.
3405  */
3406 #define PAGES_PER_WAITQUEUE	256
3407 
3408 #ifndef CONFIG_MEMORY_HOTPLUG
3409 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3410 {
3411 	unsigned long size = 1;
3412 
3413 	pages /= PAGES_PER_WAITQUEUE;
3414 
3415 	while (size < pages)
3416 		size <<= 1;
3417 
3418 	/*
3419 	 * Once we have dozens or even hundreds of threads sleeping
3420 	 * on IO we've got bigger problems than wait queue collision.
3421 	 * Limit the size of the wait table to a reasonable size.
3422 	 */
3423 	size = min(size, 4096UL);
3424 
3425 	return max(size, 4UL);
3426 }
3427 #else
3428 /*
3429  * A zone's size might be changed by hot-add, so it is not possible to determine
3430  * a suitable size for its wait_table.  So we use the maximum size now.
3431  *
3432  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3433  *
3434  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3435  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3436  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3437  *
3438  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3439  * or more by the traditional way. (See above).  It equals:
3440  *
3441  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3442  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3443  *    powerpc (64K page size)             : =  (32G +16M)byte.
3444  */
3445 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3446 {
3447 	return 4096UL;
3448 }
3449 #endif
3450 
3451 /*
3452  * This is an integer logarithm so that shifts can be used later
3453  * to extract the more random high bits from the multiplicative
3454  * hash function before the remainder is taken.
3455  */
3456 static inline unsigned long wait_table_bits(unsigned long size)
3457 {
3458 	return ffz(~size);
3459 }
3460 
3461 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3462 
3463 /*
3464  * Check if a pageblock contains reserved pages
3465  */
3466 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3467 {
3468 	unsigned long pfn;
3469 
3470 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3471 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3472 			return 1;
3473 	}
3474 	return 0;
3475 }
3476 
3477 /*
3478  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3479  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3480  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3481  * higher will lead to a bigger reserve which will get freed as contiguous
3482  * blocks as reclaim kicks in
3483  */
3484 static void setup_zone_migrate_reserve(struct zone *zone)
3485 {
3486 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3487 	struct page *page;
3488 	unsigned long block_migratetype;
3489 	int reserve;
3490 
3491 	/*
3492 	 * Get the start pfn, end pfn and the number of blocks to reserve
3493 	 * We have to be careful to be aligned to pageblock_nr_pages to
3494 	 * make sure that we always check pfn_valid for the first page in
3495 	 * the block.
3496 	 */
3497 	start_pfn = zone->zone_start_pfn;
3498 	end_pfn = start_pfn + zone->spanned_pages;
3499 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3500 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3501 							pageblock_order;
3502 
3503 	/*
3504 	 * Reserve blocks are generally in place to help high-order atomic
3505 	 * allocations that are short-lived. A min_free_kbytes value that
3506 	 * would result in more than 2 reserve blocks for atomic allocations
3507 	 * is assumed to be in place to help anti-fragmentation for the
3508 	 * future allocation of hugepages at runtime.
3509 	 */
3510 	reserve = min(2, reserve);
3511 
3512 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3513 		if (!pfn_valid(pfn))
3514 			continue;
3515 		page = pfn_to_page(pfn);
3516 
3517 		/* Watch out for overlapping nodes */
3518 		if (page_to_nid(page) != zone_to_nid(zone))
3519 			continue;
3520 
3521 		block_migratetype = get_pageblock_migratetype(page);
3522 
3523 		/* Only test what is necessary when the reserves are not met */
3524 		if (reserve > 0) {
3525 			/*
3526 			 * Blocks with reserved pages will never free, skip
3527 			 * them.
3528 			 */
3529 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3530 			if (pageblock_is_reserved(pfn, block_end_pfn))
3531 				continue;
3532 
3533 			/* If this block is reserved, account for it */
3534 			if (block_migratetype == MIGRATE_RESERVE) {
3535 				reserve--;
3536 				continue;
3537 			}
3538 
3539 			/* Suitable for reserving if this block is movable */
3540 			if (block_migratetype == MIGRATE_MOVABLE) {
3541 				set_pageblock_migratetype(page,
3542 							MIGRATE_RESERVE);
3543 				move_freepages_block(zone, page,
3544 							MIGRATE_RESERVE);
3545 				reserve--;
3546 				continue;
3547 			}
3548 		}
3549 
3550 		/*
3551 		 * If the reserve is met and this is a previous reserved block,
3552 		 * take it back
3553 		 */
3554 		if (block_migratetype == MIGRATE_RESERVE) {
3555 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3556 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3557 		}
3558 	}
3559 }
3560 
3561 /*
3562  * Initially all pages are reserved - free ones are freed
3563  * up by free_all_bootmem() once the early boot process is
3564  * done. Non-atomic initialization, single-pass.
3565  */
3566 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3567 		unsigned long start_pfn, enum memmap_context context)
3568 {
3569 	struct page *page;
3570 	unsigned long end_pfn = start_pfn + size;
3571 	unsigned long pfn;
3572 	struct zone *z;
3573 
3574 	if (highest_memmap_pfn < end_pfn - 1)
3575 		highest_memmap_pfn = end_pfn - 1;
3576 
3577 	z = &NODE_DATA(nid)->node_zones[zone];
3578 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3579 		/*
3580 		 * There can be holes in boot-time mem_map[]s
3581 		 * handed to this function.  They do not
3582 		 * exist on hotplugged memory.
3583 		 */
3584 		if (context == MEMMAP_EARLY) {
3585 			if (!early_pfn_valid(pfn))
3586 				continue;
3587 			if (!early_pfn_in_nid(pfn, nid))
3588 				continue;
3589 		}
3590 		page = pfn_to_page(pfn);
3591 		set_page_links(page, zone, nid, pfn);
3592 		mminit_verify_page_links(page, zone, nid, pfn);
3593 		init_page_count(page);
3594 		reset_page_mapcount(page);
3595 		SetPageReserved(page);
3596 		/*
3597 		 * Mark the block movable so that blocks are reserved for
3598 		 * movable at startup. This will force kernel allocations
3599 		 * to reserve their blocks rather than leaking throughout
3600 		 * the address space during boot when many long-lived
3601 		 * kernel allocations are made. Later some blocks near
3602 		 * the start are marked MIGRATE_RESERVE by
3603 		 * setup_zone_migrate_reserve()
3604 		 *
3605 		 * bitmap is created for zone's valid pfn range. but memmap
3606 		 * can be created for invalid pages (for alignment)
3607 		 * check here not to call set_pageblock_migratetype() against
3608 		 * pfn out of zone.
3609 		 */
3610 		if ((z->zone_start_pfn <= pfn)
3611 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3612 		    && !(pfn & (pageblock_nr_pages - 1)))
3613 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3614 
3615 		INIT_LIST_HEAD(&page->lru);
3616 #ifdef WANT_PAGE_VIRTUAL
3617 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3618 		if (!is_highmem_idx(zone))
3619 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3620 #endif
3621 	}
3622 }
3623 
3624 static void __meminit zone_init_free_lists(struct zone *zone)
3625 {
3626 	int order, t;
3627 	for_each_migratetype_order(order, t) {
3628 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3629 		zone->free_area[order].nr_free = 0;
3630 	}
3631 }
3632 
3633 #ifndef __HAVE_ARCH_MEMMAP_INIT
3634 #define memmap_init(size, nid, zone, start_pfn) \
3635 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3636 #endif
3637 
3638 static int zone_batchsize(struct zone *zone)
3639 {
3640 #ifdef CONFIG_MMU
3641 	int batch;
3642 
3643 	/*
3644 	 * The per-cpu-pages pools are set to around 1000th of the
3645 	 * size of the zone.  But no more than 1/2 of a meg.
3646 	 *
3647 	 * OK, so we don't know how big the cache is.  So guess.
3648 	 */
3649 	batch = zone->present_pages / 1024;
3650 	if (batch * PAGE_SIZE > 512 * 1024)
3651 		batch = (512 * 1024) / PAGE_SIZE;
3652 	batch /= 4;		/* We effectively *= 4 below */
3653 	if (batch < 1)
3654 		batch = 1;
3655 
3656 	/*
3657 	 * Clamp the batch to a 2^n - 1 value. Having a power
3658 	 * of 2 value was found to be more likely to have
3659 	 * suboptimal cache aliasing properties in some cases.
3660 	 *
3661 	 * For example if 2 tasks are alternately allocating
3662 	 * batches of pages, one task can end up with a lot
3663 	 * of pages of one half of the possible page colors
3664 	 * and the other with pages of the other colors.
3665 	 */
3666 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3667 
3668 	return batch;
3669 
3670 #else
3671 	/* The deferral and batching of frees should be suppressed under NOMMU
3672 	 * conditions.
3673 	 *
3674 	 * The problem is that NOMMU needs to be able to allocate large chunks
3675 	 * of contiguous memory as there's no hardware page translation to
3676 	 * assemble apparent contiguous memory from discontiguous pages.
3677 	 *
3678 	 * Queueing large contiguous runs of pages for batching, however,
3679 	 * causes the pages to actually be freed in smaller chunks.  As there
3680 	 * can be a significant delay between the individual batches being
3681 	 * recycled, this leads to the once large chunks of space being
3682 	 * fragmented and becoming unavailable for high-order allocations.
3683 	 */
3684 	return 0;
3685 #endif
3686 }
3687 
3688 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3689 {
3690 	struct per_cpu_pages *pcp;
3691 	int migratetype;
3692 
3693 	memset(p, 0, sizeof(*p));
3694 
3695 	pcp = &p->pcp;
3696 	pcp->count = 0;
3697 	pcp->high = 6 * batch;
3698 	pcp->batch = max(1UL, 1 * batch);
3699 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3700 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3701 }
3702 
3703 /*
3704  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3705  * to the value high for the pageset p.
3706  */
3707 
3708 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3709 				unsigned long high)
3710 {
3711 	struct per_cpu_pages *pcp;
3712 
3713 	pcp = &p->pcp;
3714 	pcp->high = high;
3715 	pcp->batch = max(1UL, high/4);
3716 	if ((high/4) > (PAGE_SHIFT * 8))
3717 		pcp->batch = PAGE_SHIFT * 8;
3718 }
3719 
3720 static void setup_zone_pageset(struct zone *zone)
3721 {
3722 	int cpu;
3723 
3724 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3725 
3726 	for_each_possible_cpu(cpu) {
3727 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3728 
3729 		setup_pageset(pcp, zone_batchsize(zone));
3730 
3731 		if (percpu_pagelist_fraction)
3732 			setup_pagelist_highmark(pcp,
3733 				(zone->present_pages /
3734 					percpu_pagelist_fraction));
3735 	}
3736 }
3737 
3738 /*
3739  * Allocate per cpu pagesets and initialize them.
3740  * Before this call only boot pagesets were available.
3741  */
3742 void __init setup_per_cpu_pageset(void)
3743 {
3744 	struct zone *zone;
3745 
3746 	for_each_populated_zone(zone)
3747 		setup_zone_pageset(zone);
3748 }
3749 
3750 static noinline __init_refok
3751 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3752 {
3753 	int i;
3754 	struct pglist_data *pgdat = zone->zone_pgdat;
3755 	size_t alloc_size;
3756 
3757 	/*
3758 	 * The per-page waitqueue mechanism uses hashed waitqueues
3759 	 * per zone.
3760 	 */
3761 	zone->wait_table_hash_nr_entries =
3762 		 wait_table_hash_nr_entries(zone_size_pages);
3763 	zone->wait_table_bits =
3764 		wait_table_bits(zone->wait_table_hash_nr_entries);
3765 	alloc_size = zone->wait_table_hash_nr_entries
3766 					* sizeof(wait_queue_head_t);
3767 
3768 	if (!slab_is_available()) {
3769 		zone->wait_table = (wait_queue_head_t *)
3770 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3771 	} else {
3772 		/*
3773 		 * This case means that a zone whose size was 0 gets new memory
3774 		 * via memory hot-add.
3775 		 * But it may be the case that a new node was hot-added.  In
3776 		 * this case vmalloc() will not be able to use this new node's
3777 		 * memory - this wait_table must be initialized to use this new
3778 		 * node itself as well.
3779 		 * To use this new node's memory, further consideration will be
3780 		 * necessary.
3781 		 */
3782 		zone->wait_table = vmalloc(alloc_size);
3783 	}
3784 	if (!zone->wait_table)
3785 		return -ENOMEM;
3786 
3787 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3788 		init_waitqueue_head(zone->wait_table + i);
3789 
3790 	return 0;
3791 }
3792 
3793 static int __zone_pcp_update(void *data)
3794 {
3795 	struct zone *zone = data;
3796 	int cpu;
3797 	unsigned long batch = zone_batchsize(zone), flags;
3798 
3799 	for_each_possible_cpu(cpu) {
3800 		struct per_cpu_pageset *pset;
3801 		struct per_cpu_pages *pcp;
3802 
3803 		pset = per_cpu_ptr(zone->pageset, cpu);
3804 		pcp = &pset->pcp;
3805 
3806 		local_irq_save(flags);
3807 		free_pcppages_bulk(zone, pcp->count, pcp);
3808 		setup_pageset(pset, batch);
3809 		local_irq_restore(flags);
3810 	}
3811 	return 0;
3812 }
3813 
3814 void zone_pcp_update(struct zone *zone)
3815 {
3816 	stop_machine(__zone_pcp_update, zone, NULL);
3817 }
3818 
3819 static __meminit void zone_pcp_init(struct zone *zone)
3820 {
3821 	/*
3822 	 * per cpu subsystem is not up at this point. The following code
3823 	 * relies on the ability of the linker to provide the
3824 	 * offset of a (static) per cpu variable into the per cpu area.
3825 	 */
3826 	zone->pageset = &boot_pageset;
3827 
3828 	if (zone->present_pages)
3829 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3830 			zone->name, zone->present_pages,
3831 					 zone_batchsize(zone));
3832 }
3833 
3834 __meminit int init_currently_empty_zone(struct zone *zone,
3835 					unsigned long zone_start_pfn,
3836 					unsigned long size,
3837 					enum memmap_context context)
3838 {
3839 	struct pglist_data *pgdat = zone->zone_pgdat;
3840 	int ret;
3841 	ret = zone_wait_table_init(zone, size);
3842 	if (ret)
3843 		return ret;
3844 	pgdat->nr_zones = zone_idx(zone) + 1;
3845 
3846 	zone->zone_start_pfn = zone_start_pfn;
3847 
3848 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3849 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3850 			pgdat->node_id,
3851 			(unsigned long)zone_idx(zone),
3852 			zone_start_pfn, (zone_start_pfn + size));
3853 
3854 	zone_init_free_lists(zone);
3855 
3856 	return 0;
3857 }
3858 
3859 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3860 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3861 /*
3862  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3863  * Architectures may implement their own version but if add_active_range()
3864  * was used and there are no special requirements, this is a convenient
3865  * alternative
3866  */
3867 int __meminit __early_pfn_to_nid(unsigned long pfn)
3868 {
3869 	unsigned long start_pfn, end_pfn;
3870 	int i, nid;
3871 
3872 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3873 		if (start_pfn <= pfn && pfn < end_pfn)
3874 			return nid;
3875 	/* This is a memory hole */
3876 	return -1;
3877 }
3878 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3879 
3880 int __meminit early_pfn_to_nid(unsigned long pfn)
3881 {
3882 	int nid;
3883 
3884 	nid = __early_pfn_to_nid(pfn);
3885 	if (nid >= 0)
3886 		return nid;
3887 	/* just returns 0 */
3888 	return 0;
3889 }
3890 
3891 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3892 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3893 {
3894 	int nid;
3895 
3896 	nid = __early_pfn_to_nid(pfn);
3897 	if (nid >= 0 && nid != node)
3898 		return false;
3899 	return true;
3900 }
3901 #endif
3902 
3903 /**
3904  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3905  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3906  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3907  *
3908  * If an architecture guarantees that all ranges registered with
3909  * add_active_ranges() contain no holes and may be freed, this
3910  * this function may be used instead of calling free_bootmem() manually.
3911  */
3912 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
3913 {
3914 	unsigned long start_pfn, end_pfn;
3915 	int i, this_nid;
3916 
3917 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3918 		start_pfn = min(start_pfn, max_low_pfn);
3919 		end_pfn = min(end_pfn, max_low_pfn);
3920 
3921 		if (start_pfn < end_pfn)
3922 			free_bootmem_node(NODE_DATA(this_nid),
3923 					  PFN_PHYS(start_pfn),
3924 					  (end_pfn - start_pfn) << PAGE_SHIFT);
3925 	}
3926 }
3927 
3928 int __init add_from_early_node_map(struct range *range, int az,
3929 				   int nr_range, int nid)
3930 {
3931 	unsigned long start_pfn, end_pfn;
3932 	int i;
3933 
3934 	/* need to go over early_node_map to find out good range for node */
3935 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3936 		nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
3937 	return nr_range;
3938 }
3939 
3940 /**
3941  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3942  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3943  *
3944  * If an architecture guarantees that all ranges registered with
3945  * add_active_ranges() contain no holes and may be freed, this
3946  * function may be used instead of calling memory_present() manually.
3947  */
3948 void __init sparse_memory_present_with_active_regions(int nid)
3949 {
3950 	unsigned long start_pfn, end_pfn;
3951 	int i, this_nid;
3952 
3953 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3954 		memory_present(this_nid, start_pfn, end_pfn);
3955 }
3956 
3957 /**
3958  * get_pfn_range_for_nid - Return the start and end page frames for a node
3959  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3960  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3961  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3962  *
3963  * It returns the start and end page frame of a node based on information
3964  * provided by an arch calling add_active_range(). If called for a node
3965  * with no available memory, a warning is printed and the start and end
3966  * PFNs will be 0.
3967  */
3968 void __meminit get_pfn_range_for_nid(unsigned int nid,
3969 			unsigned long *start_pfn, unsigned long *end_pfn)
3970 {
3971 	unsigned long this_start_pfn, this_end_pfn;
3972 	int i;
3973 
3974 	*start_pfn = -1UL;
3975 	*end_pfn = 0;
3976 
3977 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3978 		*start_pfn = min(*start_pfn, this_start_pfn);
3979 		*end_pfn = max(*end_pfn, this_end_pfn);
3980 	}
3981 
3982 	if (*start_pfn == -1UL)
3983 		*start_pfn = 0;
3984 }
3985 
3986 /*
3987  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3988  * assumption is made that zones within a node are ordered in monotonic
3989  * increasing memory addresses so that the "highest" populated zone is used
3990  */
3991 static void __init find_usable_zone_for_movable(void)
3992 {
3993 	int zone_index;
3994 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3995 		if (zone_index == ZONE_MOVABLE)
3996 			continue;
3997 
3998 		if (arch_zone_highest_possible_pfn[zone_index] >
3999 				arch_zone_lowest_possible_pfn[zone_index])
4000 			break;
4001 	}
4002 
4003 	VM_BUG_ON(zone_index == -1);
4004 	movable_zone = zone_index;
4005 }
4006 
4007 /*
4008  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4009  * because it is sized independent of architecture. Unlike the other zones,
4010  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4011  * in each node depending on the size of each node and how evenly kernelcore
4012  * is distributed. This helper function adjusts the zone ranges
4013  * provided by the architecture for a given node by using the end of the
4014  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4015  * zones within a node are in order of monotonic increases memory addresses
4016  */
4017 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4018 					unsigned long zone_type,
4019 					unsigned long node_start_pfn,
4020 					unsigned long node_end_pfn,
4021 					unsigned long *zone_start_pfn,
4022 					unsigned long *zone_end_pfn)
4023 {
4024 	/* Only adjust if ZONE_MOVABLE is on this node */
4025 	if (zone_movable_pfn[nid]) {
4026 		/* Size ZONE_MOVABLE */
4027 		if (zone_type == ZONE_MOVABLE) {
4028 			*zone_start_pfn = zone_movable_pfn[nid];
4029 			*zone_end_pfn = min(node_end_pfn,
4030 				arch_zone_highest_possible_pfn[movable_zone]);
4031 
4032 		/* Adjust for ZONE_MOVABLE starting within this range */
4033 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4034 				*zone_end_pfn > zone_movable_pfn[nid]) {
4035 			*zone_end_pfn = zone_movable_pfn[nid];
4036 
4037 		/* Check if this whole range is within ZONE_MOVABLE */
4038 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4039 			*zone_start_pfn = *zone_end_pfn;
4040 	}
4041 }
4042 
4043 /*
4044  * Return the number of pages a zone spans in a node, including holes
4045  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4046  */
4047 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4048 					unsigned long zone_type,
4049 					unsigned long *ignored)
4050 {
4051 	unsigned long node_start_pfn, node_end_pfn;
4052 	unsigned long zone_start_pfn, zone_end_pfn;
4053 
4054 	/* Get the start and end of the node and zone */
4055 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4056 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4057 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4058 	adjust_zone_range_for_zone_movable(nid, zone_type,
4059 				node_start_pfn, node_end_pfn,
4060 				&zone_start_pfn, &zone_end_pfn);
4061 
4062 	/* Check that this node has pages within the zone's required range */
4063 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4064 		return 0;
4065 
4066 	/* Move the zone boundaries inside the node if necessary */
4067 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4068 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4069 
4070 	/* Return the spanned pages */
4071 	return zone_end_pfn - zone_start_pfn;
4072 }
4073 
4074 /*
4075  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4076  * then all holes in the requested range will be accounted for.
4077  */
4078 unsigned long __meminit __absent_pages_in_range(int nid,
4079 				unsigned long range_start_pfn,
4080 				unsigned long range_end_pfn)
4081 {
4082 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4083 	unsigned long start_pfn, end_pfn;
4084 	int i;
4085 
4086 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4087 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4088 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4089 		nr_absent -= end_pfn - start_pfn;
4090 	}
4091 	return nr_absent;
4092 }
4093 
4094 /**
4095  * absent_pages_in_range - Return number of page frames in holes within a range
4096  * @start_pfn: The start PFN to start searching for holes
4097  * @end_pfn: The end PFN to stop searching for holes
4098  *
4099  * It returns the number of pages frames in memory holes within a range.
4100  */
4101 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4102 							unsigned long end_pfn)
4103 {
4104 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4105 }
4106 
4107 /* Return the number of page frames in holes in a zone on a node */
4108 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4109 					unsigned long zone_type,
4110 					unsigned long *ignored)
4111 {
4112 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4113 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4114 	unsigned long node_start_pfn, node_end_pfn;
4115 	unsigned long zone_start_pfn, zone_end_pfn;
4116 
4117 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4118 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4119 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4120 
4121 	adjust_zone_range_for_zone_movable(nid, zone_type,
4122 			node_start_pfn, node_end_pfn,
4123 			&zone_start_pfn, &zone_end_pfn);
4124 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4125 }
4126 
4127 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4128 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4129 					unsigned long zone_type,
4130 					unsigned long *zones_size)
4131 {
4132 	return zones_size[zone_type];
4133 }
4134 
4135 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4136 						unsigned long zone_type,
4137 						unsigned long *zholes_size)
4138 {
4139 	if (!zholes_size)
4140 		return 0;
4141 
4142 	return zholes_size[zone_type];
4143 }
4144 
4145 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4146 
4147 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4148 		unsigned long *zones_size, unsigned long *zholes_size)
4149 {
4150 	unsigned long realtotalpages, totalpages = 0;
4151 	enum zone_type i;
4152 
4153 	for (i = 0; i < MAX_NR_ZONES; i++)
4154 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4155 								zones_size);
4156 	pgdat->node_spanned_pages = totalpages;
4157 
4158 	realtotalpages = totalpages;
4159 	for (i = 0; i < MAX_NR_ZONES; i++)
4160 		realtotalpages -=
4161 			zone_absent_pages_in_node(pgdat->node_id, i,
4162 								zholes_size);
4163 	pgdat->node_present_pages = realtotalpages;
4164 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4165 							realtotalpages);
4166 }
4167 
4168 #ifndef CONFIG_SPARSEMEM
4169 /*
4170  * Calculate the size of the zone->blockflags rounded to an unsigned long
4171  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4172  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4173  * round what is now in bits to nearest long in bits, then return it in
4174  * bytes.
4175  */
4176 static unsigned long __init usemap_size(unsigned long zonesize)
4177 {
4178 	unsigned long usemapsize;
4179 
4180 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4181 	usemapsize = usemapsize >> pageblock_order;
4182 	usemapsize *= NR_PAGEBLOCK_BITS;
4183 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4184 
4185 	return usemapsize / 8;
4186 }
4187 
4188 static void __init setup_usemap(struct pglist_data *pgdat,
4189 				struct zone *zone, unsigned long zonesize)
4190 {
4191 	unsigned long usemapsize = usemap_size(zonesize);
4192 	zone->pageblock_flags = NULL;
4193 	if (usemapsize)
4194 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4195 								   usemapsize);
4196 }
4197 #else
4198 static inline void setup_usemap(struct pglist_data *pgdat,
4199 				struct zone *zone, unsigned long zonesize) {}
4200 #endif /* CONFIG_SPARSEMEM */
4201 
4202 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4203 
4204 /* Return a sensible default order for the pageblock size. */
4205 static inline int pageblock_default_order(void)
4206 {
4207 	if (HPAGE_SHIFT > PAGE_SHIFT)
4208 		return HUGETLB_PAGE_ORDER;
4209 
4210 	return MAX_ORDER-1;
4211 }
4212 
4213 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4214 static inline void __init set_pageblock_order(unsigned int order)
4215 {
4216 	/* Check that pageblock_nr_pages has not already been setup */
4217 	if (pageblock_order)
4218 		return;
4219 
4220 	/*
4221 	 * Assume the largest contiguous order of interest is a huge page.
4222 	 * This value may be variable depending on boot parameters on IA64
4223 	 */
4224 	pageblock_order = order;
4225 }
4226 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4227 
4228 /*
4229  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4230  * and pageblock_default_order() are unused as pageblock_order is set
4231  * at compile-time. See include/linux/pageblock-flags.h for the values of
4232  * pageblock_order based on the kernel config
4233  */
4234 static inline int pageblock_default_order(unsigned int order)
4235 {
4236 	return MAX_ORDER-1;
4237 }
4238 #define set_pageblock_order(x)	do {} while (0)
4239 
4240 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4241 
4242 /*
4243  * Set up the zone data structures:
4244  *   - mark all pages reserved
4245  *   - mark all memory queues empty
4246  *   - clear the memory bitmaps
4247  */
4248 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4249 		unsigned long *zones_size, unsigned long *zholes_size)
4250 {
4251 	enum zone_type j;
4252 	int nid = pgdat->node_id;
4253 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4254 	int ret;
4255 
4256 	pgdat_resize_init(pgdat);
4257 	pgdat->nr_zones = 0;
4258 	init_waitqueue_head(&pgdat->kswapd_wait);
4259 	pgdat->kswapd_max_order = 0;
4260 	pgdat_page_cgroup_init(pgdat);
4261 
4262 	for (j = 0; j < MAX_NR_ZONES; j++) {
4263 		struct zone *zone = pgdat->node_zones + j;
4264 		unsigned long size, realsize, memmap_pages;
4265 		enum lru_list lru;
4266 
4267 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4268 		realsize = size - zone_absent_pages_in_node(nid, j,
4269 								zholes_size);
4270 
4271 		/*
4272 		 * Adjust realsize so that it accounts for how much memory
4273 		 * is used by this zone for memmap. This affects the watermark
4274 		 * and per-cpu initialisations
4275 		 */
4276 		memmap_pages =
4277 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4278 		if (realsize >= memmap_pages) {
4279 			realsize -= memmap_pages;
4280 			if (memmap_pages)
4281 				printk(KERN_DEBUG
4282 				       "  %s zone: %lu pages used for memmap\n",
4283 				       zone_names[j], memmap_pages);
4284 		} else
4285 			printk(KERN_WARNING
4286 				"  %s zone: %lu pages exceeds realsize %lu\n",
4287 				zone_names[j], memmap_pages, realsize);
4288 
4289 		/* Account for reserved pages */
4290 		if (j == 0 && realsize > dma_reserve) {
4291 			realsize -= dma_reserve;
4292 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4293 					zone_names[0], dma_reserve);
4294 		}
4295 
4296 		if (!is_highmem_idx(j))
4297 			nr_kernel_pages += realsize;
4298 		nr_all_pages += realsize;
4299 
4300 		zone->spanned_pages = size;
4301 		zone->present_pages = realsize;
4302 #ifdef CONFIG_NUMA
4303 		zone->node = nid;
4304 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4305 						/ 100;
4306 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4307 #endif
4308 		zone->name = zone_names[j];
4309 		spin_lock_init(&zone->lock);
4310 		spin_lock_init(&zone->lru_lock);
4311 		zone_seqlock_init(zone);
4312 		zone->zone_pgdat = pgdat;
4313 
4314 		zone_pcp_init(zone);
4315 		for_each_lru(lru)
4316 			INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
4317 		zone->reclaim_stat.recent_rotated[0] = 0;
4318 		zone->reclaim_stat.recent_rotated[1] = 0;
4319 		zone->reclaim_stat.recent_scanned[0] = 0;
4320 		zone->reclaim_stat.recent_scanned[1] = 0;
4321 		zap_zone_vm_stats(zone);
4322 		zone->flags = 0;
4323 		if (!size)
4324 			continue;
4325 
4326 		set_pageblock_order(pageblock_default_order());
4327 		setup_usemap(pgdat, zone, size);
4328 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4329 						size, MEMMAP_EARLY);
4330 		BUG_ON(ret);
4331 		memmap_init(size, nid, j, zone_start_pfn);
4332 		zone_start_pfn += size;
4333 	}
4334 }
4335 
4336 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4337 {
4338 	/* Skip empty nodes */
4339 	if (!pgdat->node_spanned_pages)
4340 		return;
4341 
4342 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4343 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4344 	if (!pgdat->node_mem_map) {
4345 		unsigned long size, start, end;
4346 		struct page *map;
4347 
4348 		/*
4349 		 * The zone's endpoints aren't required to be MAX_ORDER
4350 		 * aligned but the node_mem_map endpoints must be in order
4351 		 * for the buddy allocator to function correctly.
4352 		 */
4353 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4354 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4355 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4356 		size =  (end - start) * sizeof(struct page);
4357 		map = alloc_remap(pgdat->node_id, size);
4358 		if (!map)
4359 			map = alloc_bootmem_node_nopanic(pgdat, size);
4360 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4361 	}
4362 #ifndef CONFIG_NEED_MULTIPLE_NODES
4363 	/*
4364 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4365 	 */
4366 	if (pgdat == NODE_DATA(0)) {
4367 		mem_map = NODE_DATA(0)->node_mem_map;
4368 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4369 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4370 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4371 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4372 	}
4373 #endif
4374 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4375 }
4376 
4377 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4378 		unsigned long node_start_pfn, unsigned long *zholes_size)
4379 {
4380 	pg_data_t *pgdat = NODE_DATA(nid);
4381 
4382 	pgdat->node_id = nid;
4383 	pgdat->node_start_pfn = node_start_pfn;
4384 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4385 
4386 	alloc_node_mem_map(pgdat);
4387 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4388 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4389 		nid, (unsigned long)pgdat,
4390 		(unsigned long)pgdat->node_mem_map);
4391 #endif
4392 
4393 	free_area_init_core(pgdat, zones_size, zholes_size);
4394 }
4395 
4396 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4397 
4398 #if MAX_NUMNODES > 1
4399 /*
4400  * Figure out the number of possible node ids.
4401  */
4402 static void __init setup_nr_node_ids(void)
4403 {
4404 	unsigned int node;
4405 	unsigned int highest = 0;
4406 
4407 	for_each_node_mask(node, node_possible_map)
4408 		highest = node;
4409 	nr_node_ids = highest + 1;
4410 }
4411 #else
4412 static inline void setup_nr_node_ids(void)
4413 {
4414 }
4415 #endif
4416 
4417 /**
4418  * node_map_pfn_alignment - determine the maximum internode alignment
4419  *
4420  * This function should be called after node map is populated and sorted.
4421  * It calculates the maximum power of two alignment which can distinguish
4422  * all the nodes.
4423  *
4424  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4425  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4426  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4427  * shifted, 1GiB is enough and this function will indicate so.
4428  *
4429  * This is used to test whether pfn -> nid mapping of the chosen memory
4430  * model has fine enough granularity to avoid incorrect mapping for the
4431  * populated node map.
4432  *
4433  * Returns the determined alignment in pfn's.  0 if there is no alignment
4434  * requirement (single node).
4435  */
4436 unsigned long __init node_map_pfn_alignment(void)
4437 {
4438 	unsigned long accl_mask = 0, last_end = 0;
4439 	unsigned long start, end, mask;
4440 	int last_nid = -1;
4441 	int i, nid;
4442 
4443 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4444 		if (!start || last_nid < 0 || last_nid == nid) {
4445 			last_nid = nid;
4446 			last_end = end;
4447 			continue;
4448 		}
4449 
4450 		/*
4451 		 * Start with a mask granular enough to pin-point to the
4452 		 * start pfn and tick off bits one-by-one until it becomes
4453 		 * too coarse to separate the current node from the last.
4454 		 */
4455 		mask = ~((1 << __ffs(start)) - 1);
4456 		while (mask && last_end <= (start & (mask << 1)))
4457 			mask <<= 1;
4458 
4459 		/* accumulate all internode masks */
4460 		accl_mask |= mask;
4461 	}
4462 
4463 	/* convert mask to number of pages */
4464 	return ~accl_mask + 1;
4465 }
4466 
4467 /* Find the lowest pfn for a node */
4468 static unsigned long __init find_min_pfn_for_node(int nid)
4469 {
4470 	unsigned long min_pfn = ULONG_MAX;
4471 	unsigned long start_pfn;
4472 	int i;
4473 
4474 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4475 		min_pfn = min(min_pfn, start_pfn);
4476 
4477 	if (min_pfn == ULONG_MAX) {
4478 		printk(KERN_WARNING
4479 			"Could not find start_pfn for node %d\n", nid);
4480 		return 0;
4481 	}
4482 
4483 	return min_pfn;
4484 }
4485 
4486 /**
4487  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4488  *
4489  * It returns the minimum PFN based on information provided via
4490  * add_active_range().
4491  */
4492 unsigned long __init find_min_pfn_with_active_regions(void)
4493 {
4494 	return find_min_pfn_for_node(MAX_NUMNODES);
4495 }
4496 
4497 /*
4498  * early_calculate_totalpages()
4499  * Sum pages in active regions for movable zone.
4500  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4501  */
4502 static unsigned long __init early_calculate_totalpages(void)
4503 {
4504 	unsigned long totalpages = 0;
4505 	unsigned long start_pfn, end_pfn;
4506 	int i, nid;
4507 
4508 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4509 		unsigned long pages = end_pfn - start_pfn;
4510 
4511 		totalpages += pages;
4512 		if (pages)
4513 			node_set_state(nid, N_HIGH_MEMORY);
4514 	}
4515   	return totalpages;
4516 }
4517 
4518 /*
4519  * Find the PFN the Movable zone begins in each node. Kernel memory
4520  * is spread evenly between nodes as long as the nodes have enough
4521  * memory. When they don't, some nodes will have more kernelcore than
4522  * others
4523  */
4524 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4525 {
4526 	int i, nid;
4527 	unsigned long usable_startpfn;
4528 	unsigned long kernelcore_node, kernelcore_remaining;
4529 	/* save the state before borrow the nodemask */
4530 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4531 	unsigned long totalpages = early_calculate_totalpages();
4532 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4533 
4534 	/*
4535 	 * If movablecore was specified, calculate what size of
4536 	 * kernelcore that corresponds so that memory usable for
4537 	 * any allocation type is evenly spread. If both kernelcore
4538 	 * and movablecore are specified, then the value of kernelcore
4539 	 * will be used for required_kernelcore if it's greater than
4540 	 * what movablecore would have allowed.
4541 	 */
4542 	if (required_movablecore) {
4543 		unsigned long corepages;
4544 
4545 		/*
4546 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4547 		 * was requested by the user
4548 		 */
4549 		required_movablecore =
4550 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4551 		corepages = totalpages - required_movablecore;
4552 
4553 		required_kernelcore = max(required_kernelcore, corepages);
4554 	}
4555 
4556 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4557 	if (!required_kernelcore)
4558 		goto out;
4559 
4560 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4561 	find_usable_zone_for_movable();
4562 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4563 
4564 restart:
4565 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4566 	kernelcore_node = required_kernelcore / usable_nodes;
4567 	for_each_node_state(nid, N_HIGH_MEMORY) {
4568 		unsigned long start_pfn, end_pfn;
4569 
4570 		/*
4571 		 * Recalculate kernelcore_node if the division per node
4572 		 * now exceeds what is necessary to satisfy the requested
4573 		 * amount of memory for the kernel
4574 		 */
4575 		if (required_kernelcore < kernelcore_node)
4576 			kernelcore_node = required_kernelcore / usable_nodes;
4577 
4578 		/*
4579 		 * As the map is walked, we track how much memory is usable
4580 		 * by the kernel using kernelcore_remaining. When it is
4581 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4582 		 */
4583 		kernelcore_remaining = kernelcore_node;
4584 
4585 		/* Go through each range of PFNs within this node */
4586 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4587 			unsigned long size_pages;
4588 
4589 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4590 			if (start_pfn >= end_pfn)
4591 				continue;
4592 
4593 			/* Account for what is only usable for kernelcore */
4594 			if (start_pfn < usable_startpfn) {
4595 				unsigned long kernel_pages;
4596 				kernel_pages = min(end_pfn, usable_startpfn)
4597 								- start_pfn;
4598 
4599 				kernelcore_remaining -= min(kernel_pages,
4600 							kernelcore_remaining);
4601 				required_kernelcore -= min(kernel_pages,
4602 							required_kernelcore);
4603 
4604 				/* Continue if range is now fully accounted */
4605 				if (end_pfn <= usable_startpfn) {
4606 
4607 					/*
4608 					 * Push zone_movable_pfn to the end so
4609 					 * that if we have to rebalance
4610 					 * kernelcore across nodes, we will
4611 					 * not double account here
4612 					 */
4613 					zone_movable_pfn[nid] = end_pfn;
4614 					continue;
4615 				}
4616 				start_pfn = usable_startpfn;
4617 			}
4618 
4619 			/*
4620 			 * The usable PFN range for ZONE_MOVABLE is from
4621 			 * start_pfn->end_pfn. Calculate size_pages as the
4622 			 * number of pages used as kernelcore
4623 			 */
4624 			size_pages = end_pfn - start_pfn;
4625 			if (size_pages > kernelcore_remaining)
4626 				size_pages = kernelcore_remaining;
4627 			zone_movable_pfn[nid] = start_pfn + size_pages;
4628 
4629 			/*
4630 			 * Some kernelcore has been met, update counts and
4631 			 * break if the kernelcore for this node has been
4632 			 * satisified
4633 			 */
4634 			required_kernelcore -= min(required_kernelcore,
4635 								size_pages);
4636 			kernelcore_remaining -= size_pages;
4637 			if (!kernelcore_remaining)
4638 				break;
4639 		}
4640 	}
4641 
4642 	/*
4643 	 * If there is still required_kernelcore, we do another pass with one
4644 	 * less node in the count. This will push zone_movable_pfn[nid] further
4645 	 * along on the nodes that still have memory until kernelcore is
4646 	 * satisified
4647 	 */
4648 	usable_nodes--;
4649 	if (usable_nodes && required_kernelcore > usable_nodes)
4650 		goto restart;
4651 
4652 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4653 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4654 		zone_movable_pfn[nid] =
4655 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4656 
4657 out:
4658 	/* restore the node_state */
4659 	node_states[N_HIGH_MEMORY] = saved_node_state;
4660 }
4661 
4662 /* Any regular memory on that node ? */
4663 static void check_for_regular_memory(pg_data_t *pgdat)
4664 {
4665 #ifdef CONFIG_HIGHMEM
4666 	enum zone_type zone_type;
4667 
4668 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4669 		struct zone *zone = &pgdat->node_zones[zone_type];
4670 		if (zone->present_pages) {
4671 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4672 			break;
4673 		}
4674 	}
4675 #endif
4676 }
4677 
4678 /**
4679  * free_area_init_nodes - Initialise all pg_data_t and zone data
4680  * @max_zone_pfn: an array of max PFNs for each zone
4681  *
4682  * This will call free_area_init_node() for each active node in the system.
4683  * Using the page ranges provided by add_active_range(), the size of each
4684  * zone in each node and their holes is calculated. If the maximum PFN
4685  * between two adjacent zones match, it is assumed that the zone is empty.
4686  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4687  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4688  * starts where the previous one ended. For example, ZONE_DMA32 starts
4689  * at arch_max_dma_pfn.
4690  */
4691 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4692 {
4693 	unsigned long start_pfn, end_pfn;
4694 	int i, nid;
4695 
4696 	/* Record where the zone boundaries are */
4697 	memset(arch_zone_lowest_possible_pfn, 0,
4698 				sizeof(arch_zone_lowest_possible_pfn));
4699 	memset(arch_zone_highest_possible_pfn, 0,
4700 				sizeof(arch_zone_highest_possible_pfn));
4701 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4702 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4703 	for (i = 1; i < MAX_NR_ZONES; i++) {
4704 		if (i == ZONE_MOVABLE)
4705 			continue;
4706 		arch_zone_lowest_possible_pfn[i] =
4707 			arch_zone_highest_possible_pfn[i-1];
4708 		arch_zone_highest_possible_pfn[i] =
4709 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4710 	}
4711 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4712 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4713 
4714 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4715 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4716 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4717 
4718 	/* Print out the zone ranges */
4719 	printk("Zone PFN ranges:\n");
4720 	for (i = 0; i < MAX_NR_ZONES; i++) {
4721 		if (i == ZONE_MOVABLE)
4722 			continue;
4723 		printk("  %-8s ", zone_names[i]);
4724 		if (arch_zone_lowest_possible_pfn[i] ==
4725 				arch_zone_highest_possible_pfn[i])
4726 			printk("empty\n");
4727 		else
4728 			printk("%0#10lx -> %0#10lx\n",
4729 				arch_zone_lowest_possible_pfn[i],
4730 				arch_zone_highest_possible_pfn[i]);
4731 	}
4732 
4733 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4734 	printk("Movable zone start PFN for each node\n");
4735 	for (i = 0; i < MAX_NUMNODES; i++) {
4736 		if (zone_movable_pfn[i])
4737 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4738 	}
4739 
4740 	/* Print out the early_node_map[] */
4741 	printk("Early memory PFN ranges\n");
4742 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4743 		printk("  %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4744 
4745 	/* Initialise every node */
4746 	mminit_verify_pageflags_layout();
4747 	setup_nr_node_ids();
4748 	for_each_online_node(nid) {
4749 		pg_data_t *pgdat = NODE_DATA(nid);
4750 		free_area_init_node(nid, NULL,
4751 				find_min_pfn_for_node(nid), NULL);
4752 
4753 		/* Any memory on that node */
4754 		if (pgdat->node_present_pages)
4755 			node_set_state(nid, N_HIGH_MEMORY);
4756 		check_for_regular_memory(pgdat);
4757 	}
4758 }
4759 
4760 static int __init cmdline_parse_core(char *p, unsigned long *core)
4761 {
4762 	unsigned long long coremem;
4763 	if (!p)
4764 		return -EINVAL;
4765 
4766 	coremem = memparse(p, &p);
4767 	*core = coremem >> PAGE_SHIFT;
4768 
4769 	/* Paranoid check that UL is enough for the coremem value */
4770 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4771 
4772 	return 0;
4773 }
4774 
4775 /*
4776  * kernelcore=size sets the amount of memory for use for allocations that
4777  * cannot be reclaimed or migrated.
4778  */
4779 static int __init cmdline_parse_kernelcore(char *p)
4780 {
4781 	return cmdline_parse_core(p, &required_kernelcore);
4782 }
4783 
4784 /*
4785  * movablecore=size sets the amount of memory for use for allocations that
4786  * can be reclaimed or migrated.
4787  */
4788 static int __init cmdline_parse_movablecore(char *p)
4789 {
4790 	return cmdline_parse_core(p, &required_movablecore);
4791 }
4792 
4793 early_param("kernelcore", cmdline_parse_kernelcore);
4794 early_param("movablecore", cmdline_parse_movablecore);
4795 
4796 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4797 
4798 /**
4799  * set_dma_reserve - set the specified number of pages reserved in the first zone
4800  * @new_dma_reserve: The number of pages to mark reserved
4801  *
4802  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4803  * In the DMA zone, a significant percentage may be consumed by kernel image
4804  * and other unfreeable allocations which can skew the watermarks badly. This
4805  * function may optionally be used to account for unfreeable pages in the
4806  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4807  * smaller per-cpu batchsize.
4808  */
4809 void __init set_dma_reserve(unsigned long new_dma_reserve)
4810 {
4811 	dma_reserve = new_dma_reserve;
4812 }
4813 
4814 void __init free_area_init(unsigned long *zones_size)
4815 {
4816 	free_area_init_node(0, zones_size,
4817 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4818 }
4819 
4820 static int page_alloc_cpu_notify(struct notifier_block *self,
4821 				 unsigned long action, void *hcpu)
4822 {
4823 	int cpu = (unsigned long)hcpu;
4824 
4825 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4826 		drain_pages(cpu);
4827 
4828 		/*
4829 		 * Spill the event counters of the dead processor
4830 		 * into the current processors event counters.
4831 		 * This artificially elevates the count of the current
4832 		 * processor.
4833 		 */
4834 		vm_events_fold_cpu(cpu);
4835 
4836 		/*
4837 		 * Zero the differential counters of the dead processor
4838 		 * so that the vm statistics are consistent.
4839 		 *
4840 		 * This is only okay since the processor is dead and cannot
4841 		 * race with what we are doing.
4842 		 */
4843 		refresh_cpu_vm_stats(cpu);
4844 	}
4845 	return NOTIFY_OK;
4846 }
4847 
4848 void __init page_alloc_init(void)
4849 {
4850 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4851 }
4852 
4853 /*
4854  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4855  *	or min_free_kbytes changes.
4856  */
4857 static void calculate_totalreserve_pages(void)
4858 {
4859 	struct pglist_data *pgdat;
4860 	unsigned long reserve_pages = 0;
4861 	enum zone_type i, j;
4862 
4863 	for_each_online_pgdat(pgdat) {
4864 		for (i = 0; i < MAX_NR_ZONES; i++) {
4865 			struct zone *zone = pgdat->node_zones + i;
4866 			unsigned long max = 0;
4867 
4868 			/* Find valid and maximum lowmem_reserve in the zone */
4869 			for (j = i; j < MAX_NR_ZONES; j++) {
4870 				if (zone->lowmem_reserve[j] > max)
4871 					max = zone->lowmem_reserve[j];
4872 			}
4873 
4874 			/* we treat the high watermark as reserved pages. */
4875 			max += high_wmark_pages(zone);
4876 
4877 			if (max > zone->present_pages)
4878 				max = zone->present_pages;
4879 			reserve_pages += max;
4880 			/*
4881 			 * Lowmem reserves are not available to
4882 			 * GFP_HIGHUSER page cache allocations and
4883 			 * kswapd tries to balance zones to their high
4884 			 * watermark.  As a result, neither should be
4885 			 * regarded as dirtyable memory, to prevent a
4886 			 * situation where reclaim has to clean pages
4887 			 * in order to balance the zones.
4888 			 */
4889 			zone->dirty_balance_reserve = max;
4890 		}
4891 	}
4892 	dirty_balance_reserve = reserve_pages;
4893 	totalreserve_pages = reserve_pages;
4894 }
4895 
4896 /*
4897  * setup_per_zone_lowmem_reserve - called whenever
4898  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4899  *	has a correct pages reserved value, so an adequate number of
4900  *	pages are left in the zone after a successful __alloc_pages().
4901  */
4902 static void setup_per_zone_lowmem_reserve(void)
4903 {
4904 	struct pglist_data *pgdat;
4905 	enum zone_type j, idx;
4906 
4907 	for_each_online_pgdat(pgdat) {
4908 		for (j = 0; j < MAX_NR_ZONES; j++) {
4909 			struct zone *zone = pgdat->node_zones + j;
4910 			unsigned long present_pages = zone->present_pages;
4911 
4912 			zone->lowmem_reserve[j] = 0;
4913 
4914 			idx = j;
4915 			while (idx) {
4916 				struct zone *lower_zone;
4917 
4918 				idx--;
4919 
4920 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4921 					sysctl_lowmem_reserve_ratio[idx] = 1;
4922 
4923 				lower_zone = pgdat->node_zones + idx;
4924 				lower_zone->lowmem_reserve[j] = present_pages /
4925 					sysctl_lowmem_reserve_ratio[idx];
4926 				present_pages += lower_zone->present_pages;
4927 			}
4928 		}
4929 	}
4930 
4931 	/* update totalreserve_pages */
4932 	calculate_totalreserve_pages();
4933 }
4934 
4935 /**
4936  * setup_per_zone_wmarks - called when min_free_kbytes changes
4937  * or when memory is hot-{added|removed}
4938  *
4939  * Ensures that the watermark[min,low,high] values for each zone are set
4940  * correctly with respect to min_free_kbytes.
4941  */
4942 void setup_per_zone_wmarks(void)
4943 {
4944 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4945 	unsigned long lowmem_pages = 0;
4946 	struct zone *zone;
4947 	unsigned long flags;
4948 
4949 	/* Calculate total number of !ZONE_HIGHMEM pages */
4950 	for_each_zone(zone) {
4951 		if (!is_highmem(zone))
4952 			lowmem_pages += zone->present_pages;
4953 	}
4954 
4955 	for_each_zone(zone) {
4956 		u64 tmp;
4957 
4958 		spin_lock_irqsave(&zone->lock, flags);
4959 		tmp = (u64)pages_min * zone->present_pages;
4960 		do_div(tmp, lowmem_pages);
4961 		if (is_highmem(zone)) {
4962 			/*
4963 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4964 			 * need highmem pages, so cap pages_min to a small
4965 			 * value here.
4966 			 *
4967 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4968 			 * deltas controls asynch page reclaim, and so should
4969 			 * not be capped for highmem.
4970 			 */
4971 			int min_pages;
4972 
4973 			min_pages = zone->present_pages / 1024;
4974 			if (min_pages < SWAP_CLUSTER_MAX)
4975 				min_pages = SWAP_CLUSTER_MAX;
4976 			if (min_pages > 128)
4977 				min_pages = 128;
4978 			zone->watermark[WMARK_MIN] = min_pages;
4979 		} else {
4980 			/*
4981 			 * If it's a lowmem zone, reserve a number of pages
4982 			 * proportionate to the zone's size.
4983 			 */
4984 			zone->watermark[WMARK_MIN] = tmp;
4985 		}
4986 
4987 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4988 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4989 		setup_zone_migrate_reserve(zone);
4990 		spin_unlock_irqrestore(&zone->lock, flags);
4991 	}
4992 
4993 	/* update totalreserve_pages */
4994 	calculate_totalreserve_pages();
4995 }
4996 
4997 /*
4998  * The inactive anon list should be small enough that the VM never has to
4999  * do too much work, but large enough that each inactive page has a chance
5000  * to be referenced again before it is swapped out.
5001  *
5002  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5003  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5004  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5005  * the anonymous pages are kept on the inactive list.
5006  *
5007  * total     target    max
5008  * memory    ratio     inactive anon
5009  * -------------------------------------
5010  *   10MB       1         5MB
5011  *  100MB       1        50MB
5012  *    1GB       3       250MB
5013  *   10GB      10       0.9GB
5014  *  100GB      31         3GB
5015  *    1TB     101        10GB
5016  *   10TB     320        32GB
5017  */
5018 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5019 {
5020 	unsigned int gb, ratio;
5021 
5022 	/* Zone size in gigabytes */
5023 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5024 	if (gb)
5025 		ratio = int_sqrt(10 * gb);
5026 	else
5027 		ratio = 1;
5028 
5029 	zone->inactive_ratio = ratio;
5030 }
5031 
5032 static void __meminit setup_per_zone_inactive_ratio(void)
5033 {
5034 	struct zone *zone;
5035 
5036 	for_each_zone(zone)
5037 		calculate_zone_inactive_ratio(zone);
5038 }
5039 
5040 /*
5041  * Initialise min_free_kbytes.
5042  *
5043  * For small machines we want it small (128k min).  For large machines
5044  * we want it large (64MB max).  But it is not linear, because network
5045  * bandwidth does not increase linearly with machine size.  We use
5046  *
5047  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5048  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5049  *
5050  * which yields
5051  *
5052  * 16MB:	512k
5053  * 32MB:	724k
5054  * 64MB:	1024k
5055  * 128MB:	1448k
5056  * 256MB:	2048k
5057  * 512MB:	2896k
5058  * 1024MB:	4096k
5059  * 2048MB:	5792k
5060  * 4096MB:	8192k
5061  * 8192MB:	11584k
5062  * 16384MB:	16384k
5063  */
5064 int __meminit init_per_zone_wmark_min(void)
5065 {
5066 	unsigned long lowmem_kbytes;
5067 
5068 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5069 
5070 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5071 	if (min_free_kbytes < 128)
5072 		min_free_kbytes = 128;
5073 	if (min_free_kbytes > 65536)
5074 		min_free_kbytes = 65536;
5075 	setup_per_zone_wmarks();
5076 	refresh_zone_stat_thresholds();
5077 	setup_per_zone_lowmem_reserve();
5078 	setup_per_zone_inactive_ratio();
5079 	return 0;
5080 }
5081 module_init(init_per_zone_wmark_min)
5082 
5083 /*
5084  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5085  *	that we can call two helper functions whenever min_free_kbytes
5086  *	changes.
5087  */
5088 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5089 	void __user *buffer, size_t *length, loff_t *ppos)
5090 {
5091 	proc_dointvec(table, write, buffer, length, ppos);
5092 	if (write)
5093 		setup_per_zone_wmarks();
5094 	return 0;
5095 }
5096 
5097 #ifdef CONFIG_NUMA
5098 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5099 	void __user *buffer, size_t *length, loff_t *ppos)
5100 {
5101 	struct zone *zone;
5102 	int rc;
5103 
5104 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5105 	if (rc)
5106 		return rc;
5107 
5108 	for_each_zone(zone)
5109 		zone->min_unmapped_pages = (zone->present_pages *
5110 				sysctl_min_unmapped_ratio) / 100;
5111 	return 0;
5112 }
5113 
5114 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5115 	void __user *buffer, size_t *length, loff_t *ppos)
5116 {
5117 	struct zone *zone;
5118 	int rc;
5119 
5120 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5121 	if (rc)
5122 		return rc;
5123 
5124 	for_each_zone(zone)
5125 		zone->min_slab_pages = (zone->present_pages *
5126 				sysctl_min_slab_ratio) / 100;
5127 	return 0;
5128 }
5129 #endif
5130 
5131 /*
5132  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5133  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5134  *	whenever sysctl_lowmem_reserve_ratio changes.
5135  *
5136  * The reserve ratio obviously has absolutely no relation with the
5137  * minimum watermarks. The lowmem reserve ratio can only make sense
5138  * if in function of the boot time zone sizes.
5139  */
5140 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5141 	void __user *buffer, size_t *length, loff_t *ppos)
5142 {
5143 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5144 	setup_per_zone_lowmem_reserve();
5145 	return 0;
5146 }
5147 
5148 /*
5149  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5150  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5151  * can have before it gets flushed back to buddy allocator.
5152  */
5153 
5154 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5155 	void __user *buffer, size_t *length, loff_t *ppos)
5156 {
5157 	struct zone *zone;
5158 	unsigned int cpu;
5159 	int ret;
5160 
5161 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5162 	if (!write || (ret == -EINVAL))
5163 		return ret;
5164 	for_each_populated_zone(zone) {
5165 		for_each_possible_cpu(cpu) {
5166 			unsigned long  high;
5167 			high = zone->present_pages / percpu_pagelist_fraction;
5168 			setup_pagelist_highmark(
5169 				per_cpu_ptr(zone->pageset, cpu), high);
5170 		}
5171 	}
5172 	return 0;
5173 }
5174 
5175 int hashdist = HASHDIST_DEFAULT;
5176 
5177 #ifdef CONFIG_NUMA
5178 static int __init set_hashdist(char *str)
5179 {
5180 	if (!str)
5181 		return 0;
5182 	hashdist = simple_strtoul(str, &str, 0);
5183 	return 1;
5184 }
5185 __setup("hashdist=", set_hashdist);
5186 #endif
5187 
5188 /*
5189  * allocate a large system hash table from bootmem
5190  * - it is assumed that the hash table must contain an exact power-of-2
5191  *   quantity of entries
5192  * - limit is the number of hash buckets, not the total allocation size
5193  */
5194 void *__init alloc_large_system_hash(const char *tablename,
5195 				     unsigned long bucketsize,
5196 				     unsigned long numentries,
5197 				     int scale,
5198 				     int flags,
5199 				     unsigned int *_hash_shift,
5200 				     unsigned int *_hash_mask,
5201 				     unsigned long limit)
5202 {
5203 	unsigned long long max = limit;
5204 	unsigned long log2qty, size;
5205 	void *table = NULL;
5206 
5207 	/* allow the kernel cmdline to have a say */
5208 	if (!numentries) {
5209 		/* round applicable memory size up to nearest megabyte */
5210 		numentries = nr_kernel_pages;
5211 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5212 		numentries >>= 20 - PAGE_SHIFT;
5213 		numentries <<= 20 - PAGE_SHIFT;
5214 
5215 		/* limit to 1 bucket per 2^scale bytes of low memory */
5216 		if (scale > PAGE_SHIFT)
5217 			numentries >>= (scale - PAGE_SHIFT);
5218 		else
5219 			numentries <<= (PAGE_SHIFT - scale);
5220 
5221 		/* Make sure we've got at least a 0-order allocation.. */
5222 		if (unlikely(flags & HASH_SMALL)) {
5223 			/* Makes no sense without HASH_EARLY */
5224 			WARN_ON(!(flags & HASH_EARLY));
5225 			if (!(numentries >> *_hash_shift)) {
5226 				numentries = 1UL << *_hash_shift;
5227 				BUG_ON(!numentries);
5228 			}
5229 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5230 			numentries = PAGE_SIZE / bucketsize;
5231 	}
5232 	numentries = roundup_pow_of_two(numentries);
5233 
5234 	/* limit allocation size to 1/16 total memory by default */
5235 	if (max == 0) {
5236 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5237 		do_div(max, bucketsize);
5238 	}
5239 
5240 	if (numentries > max)
5241 		numentries = max;
5242 
5243 	log2qty = ilog2(numentries);
5244 
5245 	do {
5246 		size = bucketsize << log2qty;
5247 		if (flags & HASH_EARLY)
5248 			table = alloc_bootmem_nopanic(size);
5249 		else if (hashdist)
5250 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5251 		else {
5252 			/*
5253 			 * If bucketsize is not a power-of-two, we may free
5254 			 * some pages at the end of hash table which
5255 			 * alloc_pages_exact() automatically does
5256 			 */
5257 			if (get_order(size) < MAX_ORDER) {
5258 				table = alloc_pages_exact(size, GFP_ATOMIC);
5259 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5260 			}
5261 		}
5262 	} while (!table && size > PAGE_SIZE && --log2qty);
5263 
5264 	if (!table)
5265 		panic("Failed to allocate %s hash table\n", tablename);
5266 
5267 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5268 	       tablename,
5269 	       (1UL << log2qty),
5270 	       ilog2(size) - PAGE_SHIFT,
5271 	       size);
5272 
5273 	if (_hash_shift)
5274 		*_hash_shift = log2qty;
5275 	if (_hash_mask)
5276 		*_hash_mask = (1 << log2qty) - 1;
5277 
5278 	return table;
5279 }
5280 
5281 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5282 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5283 							unsigned long pfn)
5284 {
5285 #ifdef CONFIG_SPARSEMEM
5286 	return __pfn_to_section(pfn)->pageblock_flags;
5287 #else
5288 	return zone->pageblock_flags;
5289 #endif /* CONFIG_SPARSEMEM */
5290 }
5291 
5292 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5293 {
5294 #ifdef CONFIG_SPARSEMEM
5295 	pfn &= (PAGES_PER_SECTION-1);
5296 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5297 #else
5298 	pfn = pfn - zone->zone_start_pfn;
5299 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5300 #endif /* CONFIG_SPARSEMEM */
5301 }
5302 
5303 /**
5304  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5305  * @page: The page within the block of interest
5306  * @start_bitidx: The first bit of interest to retrieve
5307  * @end_bitidx: The last bit of interest
5308  * returns pageblock_bits flags
5309  */
5310 unsigned long get_pageblock_flags_group(struct page *page,
5311 					int start_bitidx, int end_bitidx)
5312 {
5313 	struct zone *zone;
5314 	unsigned long *bitmap;
5315 	unsigned long pfn, bitidx;
5316 	unsigned long flags = 0;
5317 	unsigned long value = 1;
5318 
5319 	zone = page_zone(page);
5320 	pfn = page_to_pfn(page);
5321 	bitmap = get_pageblock_bitmap(zone, pfn);
5322 	bitidx = pfn_to_bitidx(zone, pfn);
5323 
5324 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5325 		if (test_bit(bitidx + start_bitidx, bitmap))
5326 			flags |= value;
5327 
5328 	return flags;
5329 }
5330 
5331 /**
5332  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5333  * @page: The page within the block of interest
5334  * @start_bitidx: The first bit of interest
5335  * @end_bitidx: The last bit of interest
5336  * @flags: The flags to set
5337  */
5338 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5339 					int start_bitidx, int end_bitidx)
5340 {
5341 	struct zone *zone;
5342 	unsigned long *bitmap;
5343 	unsigned long pfn, bitidx;
5344 	unsigned long value = 1;
5345 
5346 	zone = page_zone(page);
5347 	pfn = page_to_pfn(page);
5348 	bitmap = get_pageblock_bitmap(zone, pfn);
5349 	bitidx = pfn_to_bitidx(zone, pfn);
5350 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5351 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5352 
5353 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5354 		if (flags & value)
5355 			__set_bit(bitidx + start_bitidx, bitmap);
5356 		else
5357 			__clear_bit(bitidx + start_bitidx, bitmap);
5358 }
5359 
5360 /*
5361  * This is designed as sub function...plz see page_isolation.c also.
5362  * set/clear page block's type to be ISOLATE.
5363  * page allocater never alloc memory from ISOLATE block.
5364  */
5365 
5366 static int
5367 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5368 {
5369 	unsigned long pfn, iter, found;
5370 	/*
5371 	 * For avoiding noise data, lru_add_drain_all() should be called
5372 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5373 	 */
5374 	if (zone_idx(zone) == ZONE_MOVABLE)
5375 		return true;
5376 
5377 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5378 		return true;
5379 
5380 	pfn = page_to_pfn(page);
5381 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5382 		unsigned long check = pfn + iter;
5383 
5384 		if (!pfn_valid_within(check))
5385 			continue;
5386 
5387 		page = pfn_to_page(check);
5388 		if (!page_count(page)) {
5389 			if (PageBuddy(page))
5390 				iter += (1 << page_order(page)) - 1;
5391 			continue;
5392 		}
5393 		if (!PageLRU(page))
5394 			found++;
5395 		/*
5396 		 * If there are RECLAIMABLE pages, we need to check it.
5397 		 * But now, memory offline itself doesn't call shrink_slab()
5398 		 * and it still to be fixed.
5399 		 */
5400 		/*
5401 		 * If the page is not RAM, page_count()should be 0.
5402 		 * we don't need more check. This is an _used_ not-movable page.
5403 		 *
5404 		 * The problematic thing here is PG_reserved pages. PG_reserved
5405 		 * is set to both of a memory hole page and a _used_ kernel
5406 		 * page at boot.
5407 		 */
5408 		if (found > count)
5409 			return false;
5410 	}
5411 	return true;
5412 }
5413 
5414 bool is_pageblock_removable_nolock(struct page *page)
5415 {
5416 	struct zone *zone;
5417 	unsigned long pfn;
5418 
5419 	/*
5420 	 * We have to be careful here because we are iterating over memory
5421 	 * sections which are not zone aware so we might end up outside of
5422 	 * the zone but still within the section.
5423 	 * We have to take care about the node as well. If the node is offline
5424 	 * its NODE_DATA will be NULL - see page_zone.
5425 	 */
5426 	if (!node_online(page_to_nid(page)))
5427 		return false;
5428 
5429 	zone = page_zone(page);
5430 	pfn = page_to_pfn(page);
5431 	if (zone->zone_start_pfn > pfn ||
5432 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5433 		return false;
5434 
5435 	return __count_immobile_pages(zone, page, 0);
5436 }
5437 
5438 int set_migratetype_isolate(struct page *page)
5439 {
5440 	struct zone *zone;
5441 	unsigned long flags, pfn;
5442 	struct memory_isolate_notify arg;
5443 	int notifier_ret;
5444 	int ret = -EBUSY;
5445 
5446 	zone = page_zone(page);
5447 
5448 	spin_lock_irqsave(&zone->lock, flags);
5449 
5450 	pfn = page_to_pfn(page);
5451 	arg.start_pfn = pfn;
5452 	arg.nr_pages = pageblock_nr_pages;
5453 	arg.pages_found = 0;
5454 
5455 	/*
5456 	 * It may be possible to isolate a pageblock even if the
5457 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5458 	 * notifier chain is used by balloon drivers to return the
5459 	 * number of pages in a range that are held by the balloon
5460 	 * driver to shrink memory. If all the pages are accounted for
5461 	 * by balloons, are free, or on the LRU, isolation can continue.
5462 	 * Later, for example, when memory hotplug notifier runs, these
5463 	 * pages reported as "can be isolated" should be isolated(freed)
5464 	 * by the balloon driver through the memory notifier chain.
5465 	 */
5466 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5467 	notifier_ret = notifier_to_errno(notifier_ret);
5468 	if (notifier_ret)
5469 		goto out;
5470 	/*
5471 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5472 	 * We just check MOVABLE pages.
5473 	 */
5474 	if (__count_immobile_pages(zone, page, arg.pages_found))
5475 		ret = 0;
5476 
5477 	/*
5478 	 * immobile means "not-on-lru" paes. If immobile is larger than
5479 	 * removable-by-driver pages reported by notifier, we'll fail.
5480 	 */
5481 
5482 out:
5483 	if (!ret) {
5484 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5485 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5486 	}
5487 
5488 	spin_unlock_irqrestore(&zone->lock, flags);
5489 	if (!ret)
5490 		drain_all_pages();
5491 	return ret;
5492 }
5493 
5494 void unset_migratetype_isolate(struct page *page)
5495 {
5496 	struct zone *zone;
5497 	unsigned long flags;
5498 	zone = page_zone(page);
5499 	spin_lock_irqsave(&zone->lock, flags);
5500 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5501 		goto out;
5502 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5503 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5504 out:
5505 	spin_unlock_irqrestore(&zone->lock, flags);
5506 }
5507 
5508 #ifdef CONFIG_MEMORY_HOTREMOVE
5509 /*
5510  * All pages in the range must be isolated before calling this.
5511  */
5512 void
5513 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5514 {
5515 	struct page *page;
5516 	struct zone *zone;
5517 	int order, i;
5518 	unsigned long pfn;
5519 	unsigned long flags;
5520 	/* find the first valid pfn */
5521 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5522 		if (pfn_valid(pfn))
5523 			break;
5524 	if (pfn == end_pfn)
5525 		return;
5526 	zone = page_zone(pfn_to_page(pfn));
5527 	spin_lock_irqsave(&zone->lock, flags);
5528 	pfn = start_pfn;
5529 	while (pfn < end_pfn) {
5530 		if (!pfn_valid(pfn)) {
5531 			pfn++;
5532 			continue;
5533 		}
5534 		page = pfn_to_page(pfn);
5535 		BUG_ON(page_count(page));
5536 		BUG_ON(!PageBuddy(page));
5537 		order = page_order(page);
5538 #ifdef CONFIG_DEBUG_VM
5539 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5540 		       pfn, 1 << order, end_pfn);
5541 #endif
5542 		list_del(&page->lru);
5543 		rmv_page_order(page);
5544 		zone->free_area[order].nr_free--;
5545 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5546 				      - (1UL << order));
5547 		for (i = 0; i < (1 << order); i++)
5548 			SetPageReserved((page+i));
5549 		pfn += (1 << order);
5550 	}
5551 	spin_unlock_irqrestore(&zone->lock, flags);
5552 }
5553 #endif
5554 
5555 #ifdef CONFIG_MEMORY_FAILURE
5556 bool is_free_buddy_page(struct page *page)
5557 {
5558 	struct zone *zone = page_zone(page);
5559 	unsigned long pfn = page_to_pfn(page);
5560 	unsigned long flags;
5561 	int order;
5562 
5563 	spin_lock_irqsave(&zone->lock, flags);
5564 	for (order = 0; order < MAX_ORDER; order++) {
5565 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5566 
5567 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5568 			break;
5569 	}
5570 	spin_unlock_irqrestore(&zone->lock, flags);
5571 
5572 	return order < MAX_ORDER;
5573 }
5574 #endif
5575 
5576 static struct trace_print_flags pageflag_names[] = {
5577 	{1UL << PG_locked,		"locked"	},
5578 	{1UL << PG_error,		"error"		},
5579 	{1UL << PG_referenced,		"referenced"	},
5580 	{1UL << PG_uptodate,		"uptodate"	},
5581 	{1UL << PG_dirty,		"dirty"		},
5582 	{1UL << PG_lru,			"lru"		},
5583 	{1UL << PG_active,		"active"	},
5584 	{1UL << PG_slab,		"slab"		},
5585 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5586 	{1UL << PG_arch_1,		"arch_1"	},
5587 	{1UL << PG_reserved,		"reserved"	},
5588 	{1UL << PG_private,		"private"	},
5589 	{1UL << PG_private_2,		"private_2"	},
5590 	{1UL << PG_writeback,		"writeback"	},
5591 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5592 	{1UL << PG_head,		"head"		},
5593 	{1UL << PG_tail,		"tail"		},
5594 #else
5595 	{1UL << PG_compound,		"compound"	},
5596 #endif
5597 	{1UL << PG_swapcache,		"swapcache"	},
5598 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5599 	{1UL << PG_reclaim,		"reclaim"	},
5600 	{1UL << PG_swapbacked,		"swapbacked"	},
5601 	{1UL << PG_unevictable,		"unevictable"	},
5602 #ifdef CONFIG_MMU
5603 	{1UL << PG_mlocked,		"mlocked"	},
5604 #endif
5605 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5606 	{1UL << PG_uncached,		"uncached"	},
5607 #endif
5608 #ifdef CONFIG_MEMORY_FAILURE
5609 	{1UL << PG_hwpoison,		"hwpoison"	},
5610 #endif
5611 	{-1UL,				NULL		},
5612 };
5613 
5614 static void dump_page_flags(unsigned long flags)
5615 {
5616 	const char *delim = "";
5617 	unsigned long mask;
5618 	int i;
5619 
5620 	printk(KERN_ALERT "page flags: %#lx(", flags);
5621 
5622 	/* remove zone id */
5623 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5624 
5625 	for (i = 0; pageflag_names[i].name && flags; i++) {
5626 
5627 		mask = pageflag_names[i].mask;
5628 		if ((flags & mask) != mask)
5629 			continue;
5630 
5631 		flags &= ~mask;
5632 		printk("%s%s", delim, pageflag_names[i].name);
5633 		delim = "|";
5634 	}
5635 
5636 	/* check for left over flags */
5637 	if (flags)
5638 		printk("%s%#lx", delim, flags);
5639 
5640 	printk(")\n");
5641 }
5642 
5643 void dump_page(struct page *page)
5644 {
5645 	printk(KERN_ALERT
5646 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5647 		page, atomic_read(&page->_count), page_mapcount(page),
5648 		page->mapping, page->index);
5649 	dump_page_flags(page->flags);
5650 	mem_cgroup_print_bad_page(page);
5651 }
5652