1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 #include <linux/memory.h> 52 #include <linux/compaction.h> 53 #include <trace/events/kmem.h> 54 #include <linux/ftrace_event.h> 55 56 #include <asm/tlbflush.h> 57 #include <asm/div64.h> 58 #include "internal.h" 59 60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 61 DEFINE_PER_CPU(int, numa_node); 62 EXPORT_PER_CPU_SYMBOL(numa_node); 63 #endif 64 65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 66 /* 67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 70 * defined in <linux/topology.h>. 71 */ 72 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 73 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 74 #endif 75 76 /* 77 * Array of node states. 78 */ 79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 80 [N_POSSIBLE] = NODE_MASK_ALL, 81 [N_ONLINE] = { { [0] = 1UL } }, 82 #ifndef CONFIG_NUMA 83 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 84 #ifdef CONFIG_HIGHMEM 85 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 86 #endif 87 [N_CPU] = { { [0] = 1UL } }, 88 #endif /* NUMA */ 89 }; 90 EXPORT_SYMBOL(node_states); 91 92 unsigned long totalram_pages __read_mostly; 93 unsigned long totalreserve_pages __read_mostly; 94 int percpu_pagelist_fraction; 95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 96 97 #ifdef CONFIG_PM_SLEEP 98 /* 99 * The following functions are used by the suspend/hibernate code to temporarily 100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 101 * while devices are suspended. To avoid races with the suspend/hibernate code, 102 * they should always be called with pm_mutex held (gfp_allowed_mask also should 103 * only be modified with pm_mutex held, unless the suspend/hibernate code is 104 * guaranteed not to run in parallel with that modification). 105 */ 106 void set_gfp_allowed_mask(gfp_t mask) 107 { 108 WARN_ON(!mutex_is_locked(&pm_mutex)); 109 gfp_allowed_mask = mask; 110 } 111 112 gfp_t clear_gfp_allowed_mask(gfp_t mask) 113 { 114 gfp_t ret = gfp_allowed_mask; 115 116 WARN_ON(!mutex_is_locked(&pm_mutex)); 117 gfp_allowed_mask &= ~mask; 118 return ret; 119 } 120 #endif /* CONFIG_PM_SLEEP */ 121 122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 123 int pageblock_order __read_mostly; 124 #endif 125 126 static void __free_pages_ok(struct page *page, unsigned int order); 127 128 /* 129 * results with 256, 32 in the lowmem_reserve sysctl: 130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 131 * 1G machine -> (16M dma, 784M normal, 224M high) 132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 135 * 136 * TBD: should special case ZONE_DMA32 machines here - in those we normally 137 * don't need any ZONE_NORMAL reservation 138 */ 139 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 140 #ifdef CONFIG_ZONE_DMA 141 256, 142 #endif 143 #ifdef CONFIG_ZONE_DMA32 144 256, 145 #endif 146 #ifdef CONFIG_HIGHMEM 147 32, 148 #endif 149 32, 150 }; 151 152 EXPORT_SYMBOL(totalram_pages); 153 154 static char * const zone_names[MAX_NR_ZONES] = { 155 #ifdef CONFIG_ZONE_DMA 156 "DMA", 157 #endif 158 #ifdef CONFIG_ZONE_DMA32 159 "DMA32", 160 #endif 161 "Normal", 162 #ifdef CONFIG_HIGHMEM 163 "HighMem", 164 #endif 165 "Movable", 166 }; 167 168 int min_free_kbytes = 1024; 169 170 static unsigned long __meminitdata nr_kernel_pages; 171 static unsigned long __meminitdata nr_all_pages; 172 static unsigned long __meminitdata dma_reserve; 173 174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 175 /* 176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 177 * ranges of memory (RAM) that may be registered with add_active_range(). 178 * Ranges passed to add_active_range() will be merged if possible 179 * so the number of times add_active_range() can be called is 180 * related to the number of nodes and the number of holes 181 */ 182 #ifdef CONFIG_MAX_ACTIVE_REGIONS 183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 185 #else 186 #if MAX_NUMNODES >= 32 187 /* If there can be many nodes, allow up to 50 holes per node */ 188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 189 #else 190 /* By default, allow up to 256 distinct regions */ 191 #define MAX_ACTIVE_REGIONS 256 192 #endif 193 #endif 194 195 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 196 static int __meminitdata nr_nodemap_entries; 197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 198 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 199 static unsigned long __initdata required_kernelcore; 200 static unsigned long __initdata required_movablecore; 201 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 202 203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 204 int movable_zone; 205 EXPORT_SYMBOL(movable_zone); 206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 207 208 #if MAX_NUMNODES > 1 209 int nr_node_ids __read_mostly = MAX_NUMNODES; 210 int nr_online_nodes __read_mostly = 1; 211 EXPORT_SYMBOL(nr_node_ids); 212 EXPORT_SYMBOL(nr_online_nodes); 213 #endif 214 215 int page_group_by_mobility_disabled __read_mostly; 216 217 static void set_pageblock_migratetype(struct page *page, int migratetype) 218 { 219 220 if (unlikely(page_group_by_mobility_disabled)) 221 migratetype = MIGRATE_UNMOVABLE; 222 223 set_pageblock_flags_group(page, (unsigned long)migratetype, 224 PB_migrate, PB_migrate_end); 225 } 226 227 bool oom_killer_disabled __read_mostly; 228 229 #ifdef CONFIG_DEBUG_VM 230 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 231 { 232 int ret = 0; 233 unsigned seq; 234 unsigned long pfn = page_to_pfn(page); 235 236 do { 237 seq = zone_span_seqbegin(zone); 238 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 239 ret = 1; 240 else if (pfn < zone->zone_start_pfn) 241 ret = 1; 242 } while (zone_span_seqretry(zone, seq)); 243 244 return ret; 245 } 246 247 static int page_is_consistent(struct zone *zone, struct page *page) 248 { 249 if (!pfn_valid_within(page_to_pfn(page))) 250 return 0; 251 if (zone != page_zone(page)) 252 return 0; 253 254 return 1; 255 } 256 /* 257 * Temporary debugging check for pages not lying within a given zone. 258 */ 259 static int bad_range(struct zone *zone, struct page *page) 260 { 261 if (page_outside_zone_boundaries(zone, page)) 262 return 1; 263 if (!page_is_consistent(zone, page)) 264 return 1; 265 266 return 0; 267 } 268 #else 269 static inline int bad_range(struct zone *zone, struct page *page) 270 { 271 return 0; 272 } 273 #endif 274 275 static void bad_page(struct page *page) 276 { 277 static unsigned long resume; 278 static unsigned long nr_shown; 279 static unsigned long nr_unshown; 280 281 /* Don't complain about poisoned pages */ 282 if (PageHWPoison(page)) { 283 __ClearPageBuddy(page); 284 return; 285 } 286 287 /* 288 * Allow a burst of 60 reports, then keep quiet for that minute; 289 * or allow a steady drip of one report per second. 290 */ 291 if (nr_shown == 60) { 292 if (time_before(jiffies, resume)) { 293 nr_unshown++; 294 goto out; 295 } 296 if (nr_unshown) { 297 printk(KERN_ALERT 298 "BUG: Bad page state: %lu messages suppressed\n", 299 nr_unshown); 300 nr_unshown = 0; 301 } 302 nr_shown = 0; 303 } 304 if (nr_shown++ == 0) 305 resume = jiffies + 60 * HZ; 306 307 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 308 current->comm, page_to_pfn(page)); 309 dump_page(page); 310 311 dump_stack(); 312 out: 313 /* Leave bad fields for debug, except PageBuddy could make trouble */ 314 __ClearPageBuddy(page); 315 add_taint(TAINT_BAD_PAGE); 316 } 317 318 /* 319 * Higher-order pages are called "compound pages". They are structured thusly: 320 * 321 * The first PAGE_SIZE page is called the "head page". 322 * 323 * The remaining PAGE_SIZE pages are called "tail pages". 324 * 325 * All pages have PG_compound set. All pages have their ->private pointing at 326 * the head page (even the head page has this). 327 * 328 * The first tail page's ->lru.next holds the address of the compound page's 329 * put_page() function. Its ->lru.prev holds the order of allocation. 330 * This usage means that zero-order pages may not be compound. 331 */ 332 333 static void free_compound_page(struct page *page) 334 { 335 __free_pages_ok(page, compound_order(page)); 336 } 337 338 void prep_compound_page(struct page *page, unsigned long order) 339 { 340 int i; 341 int nr_pages = 1 << order; 342 343 set_compound_page_dtor(page, free_compound_page); 344 set_compound_order(page, order); 345 __SetPageHead(page); 346 for (i = 1; i < nr_pages; i++) { 347 struct page *p = page + i; 348 349 __SetPageTail(p); 350 p->first_page = page; 351 } 352 } 353 354 static int destroy_compound_page(struct page *page, unsigned long order) 355 { 356 int i; 357 int nr_pages = 1 << order; 358 int bad = 0; 359 360 if (unlikely(compound_order(page) != order) || 361 unlikely(!PageHead(page))) { 362 bad_page(page); 363 bad++; 364 } 365 366 __ClearPageHead(page); 367 368 for (i = 1; i < nr_pages; i++) { 369 struct page *p = page + i; 370 371 if (unlikely(!PageTail(p) || (p->first_page != page))) { 372 bad_page(page); 373 bad++; 374 } 375 __ClearPageTail(p); 376 } 377 378 return bad; 379 } 380 381 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 382 { 383 int i; 384 385 /* 386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 387 * and __GFP_HIGHMEM from hard or soft interrupt context. 388 */ 389 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 390 for (i = 0; i < (1 << order); i++) 391 clear_highpage(page + i); 392 } 393 394 static inline void set_page_order(struct page *page, int order) 395 { 396 set_page_private(page, order); 397 __SetPageBuddy(page); 398 } 399 400 static inline void rmv_page_order(struct page *page) 401 { 402 __ClearPageBuddy(page); 403 set_page_private(page, 0); 404 } 405 406 /* 407 * Locate the struct page for both the matching buddy in our 408 * pair (buddy1) and the combined O(n+1) page they form (page). 409 * 410 * 1) Any buddy B1 will have an order O twin B2 which satisfies 411 * the following equation: 412 * B2 = B1 ^ (1 << O) 413 * For example, if the starting buddy (buddy2) is #8 its order 414 * 1 buddy is #10: 415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 416 * 417 * 2) Any buddy B will have an order O+1 parent P which 418 * satisfies the following equation: 419 * P = B & ~(1 << O) 420 * 421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 422 */ 423 static inline struct page * 424 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 425 { 426 unsigned long buddy_idx = page_idx ^ (1 << order); 427 428 return page + (buddy_idx - page_idx); 429 } 430 431 static inline unsigned long 432 __find_combined_index(unsigned long page_idx, unsigned int order) 433 { 434 return (page_idx & ~(1 << order)); 435 } 436 437 /* 438 * This function checks whether a page is free && is the buddy 439 * we can do coalesce a page and its buddy if 440 * (a) the buddy is not in a hole && 441 * (b) the buddy is in the buddy system && 442 * (c) a page and its buddy have the same order && 443 * (d) a page and its buddy are in the same zone. 444 * 445 * For recording whether a page is in the buddy system, we use PG_buddy. 446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 447 * 448 * For recording page's order, we use page_private(page). 449 */ 450 static inline int page_is_buddy(struct page *page, struct page *buddy, 451 int order) 452 { 453 if (!pfn_valid_within(page_to_pfn(buddy))) 454 return 0; 455 456 if (page_zone_id(page) != page_zone_id(buddy)) 457 return 0; 458 459 if (PageBuddy(buddy) && page_order(buddy) == order) { 460 VM_BUG_ON(page_count(buddy) != 0); 461 return 1; 462 } 463 return 0; 464 } 465 466 /* 467 * Freeing function for a buddy system allocator. 468 * 469 * The concept of a buddy system is to maintain direct-mapped table 470 * (containing bit values) for memory blocks of various "orders". 471 * The bottom level table contains the map for the smallest allocatable 472 * units of memory (here, pages), and each level above it describes 473 * pairs of units from the levels below, hence, "buddies". 474 * At a high level, all that happens here is marking the table entry 475 * at the bottom level available, and propagating the changes upward 476 * as necessary, plus some accounting needed to play nicely with other 477 * parts of the VM system. 478 * At each level, we keep a list of pages, which are heads of continuous 479 * free pages of length of (1 << order) and marked with PG_buddy. Page's 480 * order is recorded in page_private(page) field. 481 * So when we are allocating or freeing one, we can derive the state of the 482 * other. That is, if we allocate a small block, and both were 483 * free, the remainder of the region must be split into blocks. 484 * If a block is freed, and its buddy is also free, then this 485 * triggers coalescing into a block of larger size. 486 * 487 * -- wli 488 */ 489 490 static inline void __free_one_page(struct page *page, 491 struct zone *zone, unsigned int order, 492 int migratetype) 493 { 494 unsigned long page_idx; 495 unsigned long combined_idx; 496 struct page *buddy; 497 498 if (unlikely(PageCompound(page))) 499 if (unlikely(destroy_compound_page(page, order))) 500 return; 501 502 VM_BUG_ON(migratetype == -1); 503 504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 505 506 VM_BUG_ON(page_idx & ((1 << order) - 1)); 507 VM_BUG_ON(bad_range(zone, page)); 508 509 while (order < MAX_ORDER-1) { 510 buddy = __page_find_buddy(page, page_idx, order); 511 if (!page_is_buddy(page, buddy, order)) 512 break; 513 514 /* Our buddy is free, merge with it and move up one order. */ 515 list_del(&buddy->lru); 516 zone->free_area[order].nr_free--; 517 rmv_page_order(buddy); 518 combined_idx = __find_combined_index(page_idx, order); 519 page = page + (combined_idx - page_idx); 520 page_idx = combined_idx; 521 order++; 522 } 523 set_page_order(page, order); 524 525 /* 526 * If this is not the largest possible page, check if the buddy 527 * of the next-highest order is free. If it is, it's possible 528 * that pages are being freed that will coalesce soon. In case, 529 * that is happening, add the free page to the tail of the list 530 * so it's less likely to be used soon and more likely to be merged 531 * as a higher order page 532 */ 533 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) { 534 struct page *higher_page, *higher_buddy; 535 combined_idx = __find_combined_index(page_idx, order); 536 higher_page = page + combined_idx - page_idx; 537 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1); 538 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 539 list_add_tail(&page->lru, 540 &zone->free_area[order].free_list[migratetype]); 541 goto out; 542 } 543 } 544 545 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 546 out: 547 zone->free_area[order].nr_free++; 548 } 549 550 /* 551 * free_page_mlock() -- clean up attempts to free and mlocked() page. 552 * Page should not be on lru, so no need to fix that up. 553 * free_pages_check() will verify... 554 */ 555 static inline void free_page_mlock(struct page *page) 556 { 557 __dec_zone_page_state(page, NR_MLOCK); 558 __count_vm_event(UNEVICTABLE_MLOCKFREED); 559 } 560 561 static inline int free_pages_check(struct page *page) 562 { 563 if (unlikely(page_mapcount(page) | 564 (page->mapping != NULL) | 565 (atomic_read(&page->_count) != 0) | 566 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 567 bad_page(page); 568 return 1; 569 } 570 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 571 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 572 return 0; 573 } 574 575 /* 576 * Frees a number of pages from the PCP lists 577 * Assumes all pages on list are in same zone, and of same order. 578 * count is the number of pages to free. 579 * 580 * If the zone was previously in an "all pages pinned" state then look to 581 * see if this freeing clears that state. 582 * 583 * And clear the zone's pages_scanned counter, to hold off the "all pages are 584 * pinned" detection logic. 585 */ 586 static void free_pcppages_bulk(struct zone *zone, int count, 587 struct per_cpu_pages *pcp) 588 { 589 int migratetype = 0; 590 int batch_free = 0; 591 int to_free = count; 592 593 spin_lock(&zone->lock); 594 zone->all_unreclaimable = 0; 595 zone->pages_scanned = 0; 596 597 while (to_free) { 598 struct page *page; 599 struct list_head *list; 600 601 /* 602 * Remove pages from lists in a round-robin fashion. A 603 * batch_free count is maintained that is incremented when an 604 * empty list is encountered. This is so more pages are freed 605 * off fuller lists instead of spinning excessively around empty 606 * lists 607 */ 608 do { 609 batch_free++; 610 if (++migratetype == MIGRATE_PCPTYPES) 611 migratetype = 0; 612 list = &pcp->lists[migratetype]; 613 } while (list_empty(list)); 614 615 do { 616 page = list_entry(list->prev, struct page, lru); 617 /* must delete as __free_one_page list manipulates */ 618 list_del(&page->lru); 619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 620 __free_one_page(page, zone, 0, page_private(page)); 621 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 622 } while (--to_free && --batch_free && !list_empty(list)); 623 } 624 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 625 spin_unlock(&zone->lock); 626 } 627 628 static void free_one_page(struct zone *zone, struct page *page, int order, 629 int migratetype) 630 { 631 spin_lock(&zone->lock); 632 zone->all_unreclaimable = 0; 633 zone->pages_scanned = 0; 634 635 __free_one_page(page, zone, order, migratetype); 636 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 637 spin_unlock(&zone->lock); 638 } 639 640 static bool free_pages_prepare(struct page *page, unsigned int order) 641 { 642 int i; 643 int bad = 0; 644 645 trace_mm_page_free_direct(page, order); 646 kmemcheck_free_shadow(page, order); 647 648 for (i = 0; i < (1 << order); i++) { 649 struct page *pg = page + i; 650 651 if (PageAnon(pg)) 652 pg->mapping = NULL; 653 bad += free_pages_check(pg); 654 } 655 if (bad) 656 return false; 657 658 if (!PageHighMem(page)) { 659 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 660 debug_check_no_obj_freed(page_address(page), 661 PAGE_SIZE << order); 662 } 663 arch_free_page(page, order); 664 kernel_map_pages(page, 1 << order, 0); 665 666 return true; 667 } 668 669 static void __free_pages_ok(struct page *page, unsigned int order) 670 { 671 unsigned long flags; 672 int wasMlocked = __TestClearPageMlocked(page); 673 674 if (!free_pages_prepare(page, order)) 675 return; 676 677 local_irq_save(flags); 678 if (unlikely(wasMlocked)) 679 free_page_mlock(page); 680 __count_vm_events(PGFREE, 1 << order); 681 free_one_page(page_zone(page), page, order, 682 get_pageblock_migratetype(page)); 683 local_irq_restore(flags); 684 } 685 686 /* 687 * permit the bootmem allocator to evade page validation on high-order frees 688 */ 689 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 690 { 691 if (order == 0) { 692 __ClearPageReserved(page); 693 set_page_count(page, 0); 694 set_page_refcounted(page); 695 __free_page(page); 696 } else { 697 int loop; 698 699 prefetchw(page); 700 for (loop = 0; loop < BITS_PER_LONG; loop++) { 701 struct page *p = &page[loop]; 702 703 if (loop + 1 < BITS_PER_LONG) 704 prefetchw(p + 1); 705 __ClearPageReserved(p); 706 set_page_count(p, 0); 707 } 708 709 set_page_refcounted(page); 710 __free_pages(page, order); 711 } 712 } 713 714 715 /* 716 * The order of subdivision here is critical for the IO subsystem. 717 * Please do not alter this order without good reasons and regression 718 * testing. Specifically, as large blocks of memory are subdivided, 719 * the order in which smaller blocks are delivered depends on the order 720 * they're subdivided in this function. This is the primary factor 721 * influencing the order in which pages are delivered to the IO 722 * subsystem according to empirical testing, and this is also justified 723 * by considering the behavior of a buddy system containing a single 724 * large block of memory acted on by a series of small allocations. 725 * This behavior is a critical factor in sglist merging's success. 726 * 727 * -- wli 728 */ 729 static inline void expand(struct zone *zone, struct page *page, 730 int low, int high, struct free_area *area, 731 int migratetype) 732 { 733 unsigned long size = 1 << high; 734 735 while (high > low) { 736 area--; 737 high--; 738 size >>= 1; 739 VM_BUG_ON(bad_range(zone, &page[size])); 740 list_add(&page[size].lru, &area->free_list[migratetype]); 741 area->nr_free++; 742 set_page_order(&page[size], high); 743 } 744 } 745 746 /* 747 * This page is about to be returned from the page allocator 748 */ 749 static inline int check_new_page(struct page *page) 750 { 751 if (unlikely(page_mapcount(page) | 752 (page->mapping != NULL) | 753 (atomic_read(&page->_count) != 0) | 754 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 755 bad_page(page); 756 return 1; 757 } 758 return 0; 759 } 760 761 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 762 { 763 int i; 764 765 for (i = 0; i < (1 << order); i++) { 766 struct page *p = page + i; 767 if (unlikely(check_new_page(p))) 768 return 1; 769 } 770 771 set_page_private(page, 0); 772 set_page_refcounted(page); 773 774 arch_alloc_page(page, order); 775 kernel_map_pages(page, 1 << order, 1); 776 777 if (gfp_flags & __GFP_ZERO) 778 prep_zero_page(page, order, gfp_flags); 779 780 if (order && (gfp_flags & __GFP_COMP)) 781 prep_compound_page(page, order); 782 783 return 0; 784 } 785 786 /* 787 * Go through the free lists for the given migratetype and remove 788 * the smallest available page from the freelists 789 */ 790 static inline 791 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 792 int migratetype) 793 { 794 unsigned int current_order; 795 struct free_area * area; 796 struct page *page; 797 798 /* Find a page of the appropriate size in the preferred list */ 799 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 800 area = &(zone->free_area[current_order]); 801 if (list_empty(&area->free_list[migratetype])) 802 continue; 803 804 page = list_entry(area->free_list[migratetype].next, 805 struct page, lru); 806 list_del(&page->lru); 807 rmv_page_order(page); 808 area->nr_free--; 809 expand(zone, page, order, current_order, area, migratetype); 810 return page; 811 } 812 813 return NULL; 814 } 815 816 817 /* 818 * This array describes the order lists are fallen back to when 819 * the free lists for the desirable migrate type are depleted 820 */ 821 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 822 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 823 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 824 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 825 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 826 }; 827 828 /* 829 * Move the free pages in a range to the free lists of the requested type. 830 * Note that start_page and end_pages are not aligned on a pageblock 831 * boundary. If alignment is required, use move_freepages_block() 832 */ 833 static int move_freepages(struct zone *zone, 834 struct page *start_page, struct page *end_page, 835 int migratetype) 836 { 837 struct page *page; 838 unsigned long order; 839 int pages_moved = 0; 840 841 #ifndef CONFIG_HOLES_IN_ZONE 842 /* 843 * page_zone is not safe to call in this context when 844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 845 * anyway as we check zone boundaries in move_freepages_block(). 846 * Remove at a later date when no bug reports exist related to 847 * grouping pages by mobility 848 */ 849 BUG_ON(page_zone(start_page) != page_zone(end_page)); 850 #endif 851 852 for (page = start_page; page <= end_page;) { 853 /* Make sure we are not inadvertently changing nodes */ 854 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 855 856 if (!pfn_valid_within(page_to_pfn(page))) { 857 page++; 858 continue; 859 } 860 861 if (!PageBuddy(page)) { 862 page++; 863 continue; 864 } 865 866 order = page_order(page); 867 list_del(&page->lru); 868 list_add(&page->lru, 869 &zone->free_area[order].free_list[migratetype]); 870 page += 1 << order; 871 pages_moved += 1 << order; 872 } 873 874 return pages_moved; 875 } 876 877 static int move_freepages_block(struct zone *zone, struct page *page, 878 int migratetype) 879 { 880 unsigned long start_pfn, end_pfn; 881 struct page *start_page, *end_page; 882 883 start_pfn = page_to_pfn(page); 884 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 885 start_page = pfn_to_page(start_pfn); 886 end_page = start_page + pageblock_nr_pages - 1; 887 end_pfn = start_pfn + pageblock_nr_pages - 1; 888 889 /* Do not cross zone boundaries */ 890 if (start_pfn < zone->zone_start_pfn) 891 start_page = page; 892 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 893 return 0; 894 895 return move_freepages(zone, start_page, end_page, migratetype); 896 } 897 898 static void change_pageblock_range(struct page *pageblock_page, 899 int start_order, int migratetype) 900 { 901 int nr_pageblocks = 1 << (start_order - pageblock_order); 902 903 while (nr_pageblocks--) { 904 set_pageblock_migratetype(pageblock_page, migratetype); 905 pageblock_page += pageblock_nr_pages; 906 } 907 } 908 909 /* Remove an element from the buddy allocator from the fallback list */ 910 static inline struct page * 911 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 912 { 913 struct free_area * area; 914 int current_order; 915 struct page *page; 916 int migratetype, i; 917 918 /* Find the largest possible block of pages in the other list */ 919 for (current_order = MAX_ORDER-1; current_order >= order; 920 --current_order) { 921 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 922 migratetype = fallbacks[start_migratetype][i]; 923 924 /* MIGRATE_RESERVE handled later if necessary */ 925 if (migratetype == MIGRATE_RESERVE) 926 continue; 927 928 area = &(zone->free_area[current_order]); 929 if (list_empty(&area->free_list[migratetype])) 930 continue; 931 932 page = list_entry(area->free_list[migratetype].next, 933 struct page, lru); 934 area->nr_free--; 935 936 /* 937 * If breaking a large block of pages, move all free 938 * pages to the preferred allocation list. If falling 939 * back for a reclaimable kernel allocation, be more 940 * agressive about taking ownership of free pages 941 */ 942 if (unlikely(current_order >= (pageblock_order >> 1)) || 943 start_migratetype == MIGRATE_RECLAIMABLE || 944 page_group_by_mobility_disabled) { 945 unsigned long pages; 946 pages = move_freepages_block(zone, page, 947 start_migratetype); 948 949 /* Claim the whole block if over half of it is free */ 950 if (pages >= (1 << (pageblock_order-1)) || 951 page_group_by_mobility_disabled) 952 set_pageblock_migratetype(page, 953 start_migratetype); 954 955 migratetype = start_migratetype; 956 } 957 958 /* Remove the page from the freelists */ 959 list_del(&page->lru); 960 rmv_page_order(page); 961 962 /* Take ownership for orders >= pageblock_order */ 963 if (current_order >= pageblock_order) 964 change_pageblock_range(page, current_order, 965 start_migratetype); 966 967 expand(zone, page, order, current_order, area, migratetype); 968 969 trace_mm_page_alloc_extfrag(page, order, current_order, 970 start_migratetype, migratetype); 971 972 return page; 973 } 974 } 975 976 return NULL; 977 } 978 979 /* 980 * Do the hard work of removing an element from the buddy allocator. 981 * Call me with the zone->lock already held. 982 */ 983 static struct page *__rmqueue(struct zone *zone, unsigned int order, 984 int migratetype) 985 { 986 struct page *page; 987 988 retry_reserve: 989 page = __rmqueue_smallest(zone, order, migratetype); 990 991 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 992 page = __rmqueue_fallback(zone, order, migratetype); 993 994 /* 995 * Use MIGRATE_RESERVE rather than fail an allocation. goto 996 * is used because __rmqueue_smallest is an inline function 997 * and we want just one call site 998 */ 999 if (!page) { 1000 migratetype = MIGRATE_RESERVE; 1001 goto retry_reserve; 1002 } 1003 } 1004 1005 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1006 return page; 1007 } 1008 1009 /* 1010 * Obtain a specified number of elements from the buddy allocator, all under 1011 * a single hold of the lock, for efficiency. Add them to the supplied list. 1012 * Returns the number of new pages which were placed at *list. 1013 */ 1014 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1015 unsigned long count, struct list_head *list, 1016 int migratetype, int cold) 1017 { 1018 int i; 1019 1020 spin_lock(&zone->lock); 1021 for (i = 0; i < count; ++i) { 1022 struct page *page = __rmqueue(zone, order, migratetype); 1023 if (unlikely(page == NULL)) 1024 break; 1025 1026 /* 1027 * Split buddy pages returned by expand() are received here 1028 * in physical page order. The page is added to the callers and 1029 * list and the list head then moves forward. From the callers 1030 * perspective, the linked list is ordered by page number in 1031 * some conditions. This is useful for IO devices that can 1032 * merge IO requests if the physical pages are ordered 1033 * properly. 1034 */ 1035 if (likely(cold == 0)) 1036 list_add(&page->lru, list); 1037 else 1038 list_add_tail(&page->lru, list); 1039 set_page_private(page, migratetype); 1040 list = &page->lru; 1041 } 1042 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1043 spin_unlock(&zone->lock); 1044 return i; 1045 } 1046 1047 #ifdef CONFIG_NUMA 1048 /* 1049 * Called from the vmstat counter updater to drain pagesets of this 1050 * currently executing processor on remote nodes after they have 1051 * expired. 1052 * 1053 * Note that this function must be called with the thread pinned to 1054 * a single processor. 1055 */ 1056 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1057 { 1058 unsigned long flags; 1059 int to_drain; 1060 1061 local_irq_save(flags); 1062 if (pcp->count >= pcp->batch) 1063 to_drain = pcp->batch; 1064 else 1065 to_drain = pcp->count; 1066 free_pcppages_bulk(zone, to_drain, pcp); 1067 pcp->count -= to_drain; 1068 local_irq_restore(flags); 1069 } 1070 #endif 1071 1072 /* 1073 * Drain pages of the indicated processor. 1074 * 1075 * The processor must either be the current processor and the 1076 * thread pinned to the current processor or a processor that 1077 * is not online. 1078 */ 1079 static void drain_pages(unsigned int cpu) 1080 { 1081 unsigned long flags; 1082 struct zone *zone; 1083 1084 for_each_populated_zone(zone) { 1085 struct per_cpu_pageset *pset; 1086 struct per_cpu_pages *pcp; 1087 1088 local_irq_save(flags); 1089 pset = per_cpu_ptr(zone->pageset, cpu); 1090 1091 pcp = &pset->pcp; 1092 free_pcppages_bulk(zone, pcp->count, pcp); 1093 pcp->count = 0; 1094 local_irq_restore(flags); 1095 } 1096 } 1097 1098 /* 1099 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1100 */ 1101 void drain_local_pages(void *arg) 1102 { 1103 drain_pages(smp_processor_id()); 1104 } 1105 1106 /* 1107 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1108 */ 1109 void drain_all_pages(void) 1110 { 1111 on_each_cpu(drain_local_pages, NULL, 1); 1112 } 1113 1114 #ifdef CONFIG_HIBERNATION 1115 1116 void mark_free_pages(struct zone *zone) 1117 { 1118 unsigned long pfn, max_zone_pfn; 1119 unsigned long flags; 1120 int order, t; 1121 struct list_head *curr; 1122 1123 if (!zone->spanned_pages) 1124 return; 1125 1126 spin_lock_irqsave(&zone->lock, flags); 1127 1128 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1129 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1130 if (pfn_valid(pfn)) { 1131 struct page *page = pfn_to_page(pfn); 1132 1133 if (!swsusp_page_is_forbidden(page)) 1134 swsusp_unset_page_free(page); 1135 } 1136 1137 for_each_migratetype_order(order, t) { 1138 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1139 unsigned long i; 1140 1141 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1142 for (i = 0; i < (1UL << order); i++) 1143 swsusp_set_page_free(pfn_to_page(pfn + i)); 1144 } 1145 } 1146 spin_unlock_irqrestore(&zone->lock, flags); 1147 } 1148 #endif /* CONFIG_PM */ 1149 1150 /* 1151 * Free a 0-order page 1152 * cold == 1 ? free a cold page : free a hot page 1153 */ 1154 void free_hot_cold_page(struct page *page, int cold) 1155 { 1156 struct zone *zone = page_zone(page); 1157 struct per_cpu_pages *pcp; 1158 unsigned long flags; 1159 int migratetype; 1160 int wasMlocked = __TestClearPageMlocked(page); 1161 1162 if (!free_pages_prepare(page, 0)) 1163 return; 1164 1165 migratetype = get_pageblock_migratetype(page); 1166 set_page_private(page, migratetype); 1167 local_irq_save(flags); 1168 if (unlikely(wasMlocked)) 1169 free_page_mlock(page); 1170 __count_vm_event(PGFREE); 1171 1172 /* 1173 * We only track unmovable, reclaimable and movable on pcp lists. 1174 * Free ISOLATE pages back to the allocator because they are being 1175 * offlined but treat RESERVE as movable pages so we can get those 1176 * areas back if necessary. Otherwise, we may have to free 1177 * excessively into the page allocator 1178 */ 1179 if (migratetype >= MIGRATE_PCPTYPES) { 1180 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1181 free_one_page(zone, page, 0, migratetype); 1182 goto out; 1183 } 1184 migratetype = MIGRATE_MOVABLE; 1185 } 1186 1187 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1188 if (cold) 1189 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1190 else 1191 list_add(&page->lru, &pcp->lists[migratetype]); 1192 pcp->count++; 1193 if (pcp->count >= pcp->high) { 1194 free_pcppages_bulk(zone, pcp->batch, pcp); 1195 pcp->count -= pcp->batch; 1196 } 1197 1198 out: 1199 local_irq_restore(flags); 1200 } 1201 1202 /* 1203 * split_page takes a non-compound higher-order page, and splits it into 1204 * n (1<<order) sub-pages: page[0..n] 1205 * Each sub-page must be freed individually. 1206 * 1207 * Note: this is probably too low level an operation for use in drivers. 1208 * Please consult with lkml before using this in your driver. 1209 */ 1210 void split_page(struct page *page, unsigned int order) 1211 { 1212 int i; 1213 1214 VM_BUG_ON(PageCompound(page)); 1215 VM_BUG_ON(!page_count(page)); 1216 1217 #ifdef CONFIG_KMEMCHECK 1218 /* 1219 * Split shadow pages too, because free(page[0]) would 1220 * otherwise free the whole shadow. 1221 */ 1222 if (kmemcheck_page_is_tracked(page)) 1223 split_page(virt_to_page(page[0].shadow), order); 1224 #endif 1225 1226 for (i = 1; i < (1 << order); i++) 1227 set_page_refcounted(page + i); 1228 } 1229 1230 /* 1231 * Similar to split_page except the page is already free. As this is only 1232 * being used for migration, the migratetype of the block also changes. 1233 * As this is called with interrupts disabled, the caller is responsible 1234 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1235 * are enabled. 1236 * 1237 * Note: this is probably too low level an operation for use in drivers. 1238 * Please consult with lkml before using this in your driver. 1239 */ 1240 int split_free_page(struct page *page) 1241 { 1242 unsigned int order; 1243 unsigned long watermark; 1244 struct zone *zone; 1245 1246 BUG_ON(!PageBuddy(page)); 1247 1248 zone = page_zone(page); 1249 order = page_order(page); 1250 1251 /* Obey watermarks as if the page was being allocated */ 1252 watermark = low_wmark_pages(zone) + (1 << order); 1253 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1254 return 0; 1255 1256 /* Remove page from free list */ 1257 list_del(&page->lru); 1258 zone->free_area[order].nr_free--; 1259 rmv_page_order(page); 1260 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1261 1262 /* Split into individual pages */ 1263 set_page_refcounted(page); 1264 split_page(page, order); 1265 1266 if (order >= pageblock_order - 1) { 1267 struct page *endpage = page + (1 << order) - 1; 1268 for (; page < endpage; page += pageblock_nr_pages) 1269 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1270 } 1271 1272 return 1 << order; 1273 } 1274 1275 /* 1276 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1277 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1278 * or two. 1279 */ 1280 static inline 1281 struct page *buffered_rmqueue(struct zone *preferred_zone, 1282 struct zone *zone, int order, gfp_t gfp_flags, 1283 int migratetype) 1284 { 1285 unsigned long flags; 1286 struct page *page; 1287 int cold = !!(gfp_flags & __GFP_COLD); 1288 1289 again: 1290 if (likely(order == 0)) { 1291 struct per_cpu_pages *pcp; 1292 struct list_head *list; 1293 1294 local_irq_save(flags); 1295 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1296 list = &pcp->lists[migratetype]; 1297 if (list_empty(list)) { 1298 pcp->count += rmqueue_bulk(zone, 0, 1299 pcp->batch, list, 1300 migratetype, cold); 1301 if (unlikely(list_empty(list))) 1302 goto failed; 1303 } 1304 1305 if (cold) 1306 page = list_entry(list->prev, struct page, lru); 1307 else 1308 page = list_entry(list->next, struct page, lru); 1309 1310 list_del(&page->lru); 1311 pcp->count--; 1312 } else { 1313 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1314 /* 1315 * __GFP_NOFAIL is not to be used in new code. 1316 * 1317 * All __GFP_NOFAIL callers should be fixed so that they 1318 * properly detect and handle allocation failures. 1319 * 1320 * We most definitely don't want callers attempting to 1321 * allocate greater than order-1 page units with 1322 * __GFP_NOFAIL. 1323 */ 1324 WARN_ON_ONCE(order > 1); 1325 } 1326 spin_lock_irqsave(&zone->lock, flags); 1327 page = __rmqueue(zone, order, migratetype); 1328 spin_unlock(&zone->lock); 1329 if (!page) 1330 goto failed; 1331 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1332 } 1333 1334 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1335 zone_statistics(preferred_zone, zone); 1336 local_irq_restore(flags); 1337 1338 VM_BUG_ON(bad_range(zone, page)); 1339 if (prep_new_page(page, order, gfp_flags)) 1340 goto again; 1341 return page; 1342 1343 failed: 1344 local_irq_restore(flags); 1345 return NULL; 1346 } 1347 1348 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1349 #define ALLOC_WMARK_MIN WMARK_MIN 1350 #define ALLOC_WMARK_LOW WMARK_LOW 1351 #define ALLOC_WMARK_HIGH WMARK_HIGH 1352 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1353 1354 /* Mask to get the watermark bits */ 1355 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1356 1357 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1358 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1359 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1360 1361 #ifdef CONFIG_FAIL_PAGE_ALLOC 1362 1363 static struct fail_page_alloc_attr { 1364 struct fault_attr attr; 1365 1366 u32 ignore_gfp_highmem; 1367 u32 ignore_gfp_wait; 1368 u32 min_order; 1369 1370 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1371 1372 struct dentry *ignore_gfp_highmem_file; 1373 struct dentry *ignore_gfp_wait_file; 1374 struct dentry *min_order_file; 1375 1376 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1377 1378 } fail_page_alloc = { 1379 .attr = FAULT_ATTR_INITIALIZER, 1380 .ignore_gfp_wait = 1, 1381 .ignore_gfp_highmem = 1, 1382 .min_order = 1, 1383 }; 1384 1385 static int __init setup_fail_page_alloc(char *str) 1386 { 1387 return setup_fault_attr(&fail_page_alloc.attr, str); 1388 } 1389 __setup("fail_page_alloc=", setup_fail_page_alloc); 1390 1391 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1392 { 1393 if (order < fail_page_alloc.min_order) 1394 return 0; 1395 if (gfp_mask & __GFP_NOFAIL) 1396 return 0; 1397 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1398 return 0; 1399 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1400 return 0; 1401 1402 return should_fail(&fail_page_alloc.attr, 1 << order); 1403 } 1404 1405 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1406 1407 static int __init fail_page_alloc_debugfs(void) 1408 { 1409 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1410 struct dentry *dir; 1411 int err; 1412 1413 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1414 "fail_page_alloc"); 1415 if (err) 1416 return err; 1417 dir = fail_page_alloc.attr.dentries.dir; 1418 1419 fail_page_alloc.ignore_gfp_wait_file = 1420 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1421 &fail_page_alloc.ignore_gfp_wait); 1422 1423 fail_page_alloc.ignore_gfp_highmem_file = 1424 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1425 &fail_page_alloc.ignore_gfp_highmem); 1426 fail_page_alloc.min_order_file = 1427 debugfs_create_u32("min-order", mode, dir, 1428 &fail_page_alloc.min_order); 1429 1430 if (!fail_page_alloc.ignore_gfp_wait_file || 1431 !fail_page_alloc.ignore_gfp_highmem_file || 1432 !fail_page_alloc.min_order_file) { 1433 err = -ENOMEM; 1434 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1435 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1436 debugfs_remove(fail_page_alloc.min_order_file); 1437 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1438 } 1439 1440 return err; 1441 } 1442 1443 late_initcall(fail_page_alloc_debugfs); 1444 1445 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1446 1447 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1448 1449 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1450 { 1451 return 0; 1452 } 1453 1454 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1455 1456 /* 1457 * Return 1 if free pages are above 'mark'. This takes into account the order 1458 * of the allocation. 1459 */ 1460 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1461 int classzone_idx, int alloc_flags) 1462 { 1463 /* free_pages my go negative - that's OK */ 1464 long min = mark; 1465 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1; 1466 int o; 1467 1468 if (alloc_flags & ALLOC_HIGH) 1469 min -= min / 2; 1470 if (alloc_flags & ALLOC_HARDER) 1471 min -= min / 4; 1472 1473 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1474 return 0; 1475 for (o = 0; o < order; o++) { 1476 /* At the next order, this order's pages become unavailable */ 1477 free_pages -= z->free_area[o].nr_free << o; 1478 1479 /* Require fewer higher order pages to be free */ 1480 min >>= 1; 1481 1482 if (free_pages <= min) 1483 return 0; 1484 } 1485 return 1; 1486 } 1487 1488 #ifdef CONFIG_NUMA 1489 /* 1490 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1491 * skip over zones that are not allowed by the cpuset, or that have 1492 * been recently (in last second) found to be nearly full. See further 1493 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1494 * that have to skip over a lot of full or unallowed zones. 1495 * 1496 * If the zonelist cache is present in the passed in zonelist, then 1497 * returns a pointer to the allowed node mask (either the current 1498 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1499 * 1500 * If the zonelist cache is not available for this zonelist, does 1501 * nothing and returns NULL. 1502 * 1503 * If the fullzones BITMAP in the zonelist cache is stale (more than 1504 * a second since last zap'd) then we zap it out (clear its bits.) 1505 * 1506 * We hold off even calling zlc_setup, until after we've checked the 1507 * first zone in the zonelist, on the theory that most allocations will 1508 * be satisfied from that first zone, so best to examine that zone as 1509 * quickly as we can. 1510 */ 1511 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1512 { 1513 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1514 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1515 1516 zlc = zonelist->zlcache_ptr; 1517 if (!zlc) 1518 return NULL; 1519 1520 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1521 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1522 zlc->last_full_zap = jiffies; 1523 } 1524 1525 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1526 &cpuset_current_mems_allowed : 1527 &node_states[N_HIGH_MEMORY]; 1528 return allowednodes; 1529 } 1530 1531 /* 1532 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1533 * if it is worth looking at further for free memory: 1534 * 1) Check that the zone isn't thought to be full (doesn't have its 1535 * bit set in the zonelist_cache fullzones BITMAP). 1536 * 2) Check that the zones node (obtained from the zonelist_cache 1537 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1538 * Return true (non-zero) if zone is worth looking at further, or 1539 * else return false (zero) if it is not. 1540 * 1541 * This check -ignores- the distinction between various watermarks, 1542 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1543 * found to be full for any variation of these watermarks, it will 1544 * be considered full for up to one second by all requests, unless 1545 * we are so low on memory on all allowed nodes that we are forced 1546 * into the second scan of the zonelist. 1547 * 1548 * In the second scan we ignore this zonelist cache and exactly 1549 * apply the watermarks to all zones, even it is slower to do so. 1550 * We are low on memory in the second scan, and should leave no stone 1551 * unturned looking for a free page. 1552 */ 1553 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1554 nodemask_t *allowednodes) 1555 { 1556 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1557 int i; /* index of *z in zonelist zones */ 1558 int n; /* node that zone *z is on */ 1559 1560 zlc = zonelist->zlcache_ptr; 1561 if (!zlc) 1562 return 1; 1563 1564 i = z - zonelist->_zonerefs; 1565 n = zlc->z_to_n[i]; 1566 1567 /* This zone is worth trying if it is allowed but not full */ 1568 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1569 } 1570 1571 /* 1572 * Given 'z' scanning a zonelist, set the corresponding bit in 1573 * zlc->fullzones, so that subsequent attempts to allocate a page 1574 * from that zone don't waste time re-examining it. 1575 */ 1576 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1577 { 1578 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1579 int i; /* index of *z in zonelist zones */ 1580 1581 zlc = zonelist->zlcache_ptr; 1582 if (!zlc) 1583 return; 1584 1585 i = z - zonelist->_zonerefs; 1586 1587 set_bit(i, zlc->fullzones); 1588 } 1589 1590 #else /* CONFIG_NUMA */ 1591 1592 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1593 { 1594 return NULL; 1595 } 1596 1597 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1598 nodemask_t *allowednodes) 1599 { 1600 return 1; 1601 } 1602 1603 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1604 { 1605 } 1606 #endif /* CONFIG_NUMA */ 1607 1608 /* 1609 * get_page_from_freelist goes through the zonelist trying to allocate 1610 * a page. 1611 */ 1612 static struct page * 1613 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1614 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1615 struct zone *preferred_zone, int migratetype) 1616 { 1617 struct zoneref *z; 1618 struct page *page = NULL; 1619 int classzone_idx; 1620 struct zone *zone; 1621 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1622 int zlc_active = 0; /* set if using zonelist_cache */ 1623 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1624 1625 classzone_idx = zone_idx(preferred_zone); 1626 zonelist_scan: 1627 /* 1628 * Scan zonelist, looking for a zone with enough free. 1629 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1630 */ 1631 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1632 high_zoneidx, nodemask) { 1633 if (NUMA_BUILD && zlc_active && 1634 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1635 continue; 1636 if ((alloc_flags & ALLOC_CPUSET) && 1637 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1638 goto try_next_zone; 1639 1640 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1641 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1642 unsigned long mark; 1643 int ret; 1644 1645 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1646 if (zone_watermark_ok(zone, order, mark, 1647 classzone_idx, alloc_flags)) 1648 goto try_this_zone; 1649 1650 if (zone_reclaim_mode == 0) 1651 goto this_zone_full; 1652 1653 ret = zone_reclaim(zone, gfp_mask, order); 1654 switch (ret) { 1655 case ZONE_RECLAIM_NOSCAN: 1656 /* did not scan */ 1657 goto try_next_zone; 1658 case ZONE_RECLAIM_FULL: 1659 /* scanned but unreclaimable */ 1660 goto this_zone_full; 1661 default: 1662 /* did we reclaim enough */ 1663 if (!zone_watermark_ok(zone, order, mark, 1664 classzone_idx, alloc_flags)) 1665 goto this_zone_full; 1666 } 1667 } 1668 1669 try_this_zone: 1670 page = buffered_rmqueue(preferred_zone, zone, order, 1671 gfp_mask, migratetype); 1672 if (page) 1673 break; 1674 this_zone_full: 1675 if (NUMA_BUILD) 1676 zlc_mark_zone_full(zonelist, z); 1677 try_next_zone: 1678 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1679 /* 1680 * we do zlc_setup after the first zone is tried but only 1681 * if there are multiple nodes make it worthwhile 1682 */ 1683 allowednodes = zlc_setup(zonelist, alloc_flags); 1684 zlc_active = 1; 1685 did_zlc_setup = 1; 1686 } 1687 } 1688 1689 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1690 /* Disable zlc cache for second zonelist scan */ 1691 zlc_active = 0; 1692 goto zonelist_scan; 1693 } 1694 return page; 1695 } 1696 1697 static inline int 1698 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1699 unsigned long pages_reclaimed) 1700 { 1701 /* Do not loop if specifically requested */ 1702 if (gfp_mask & __GFP_NORETRY) 1703 return 0; 1704 1705 /* 1706 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1707 * means __GFP_NOFAIL, but that may not be true in other 1708 * implementations. 1709 */ 1710 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1711 return 1; 1712 1713 /* 1714 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1715 * specified, then we retry until we no longer reclaim any pages 1716 * (above), or we've reclaimed an order of pages at least as 1717 * large as the allocation's order. In both cases, if the 1718 * allocation still fails, we stop retrying. 1719 */ 1720 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1721 return 1; 1722 1723 /* 1724 * Don't let big-order allocations loop unless the caller 1725 * explicitly requests that. 1726 */ 1727 if (gfp_mask & __GFP_NOFAIL) 1728 return 1; 1729 1730 return 0; 1731 } 1732 1733 static inline struct page * 1734 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1735 struct zonelist *zonelist, enum zone_type high_zoneidx, 1736 nodemask_t *nodemask, struct zone *preferred_zone, 1737 int migratetype) 1738 { 1739 struct page *page; 1740 1741 /* Acquire the OOM killer lock for the zones in zonelist */ 1742 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1743 schedule_timeout_uninterruptible(1); 1744 return NULL; 1745 } 1746 1747 /* 1748 * Go through the zonelist yet one more time, keep very high watermark 1749 * here, this is only to catch a parallel oom killing, we must fail if 1750 * we're still under heavy pressure. 1751 */ 1752 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1753 order, zonelist, high_zoneidx, 1754 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1755 preferred_zone, migratetype); 1756 if (page) 1757 goto out; 1758 1759 if (!(gfp_mask & __GFP_NOFAIL)) { 1760 /* The OOM killer will not help higher order allocs */ 1761 if (order > PAGE_ALLOC_COSTLY_ORDER) 1762 goto out; 1763 /* The OOM killer does not needlessly kill tasks for lowmem */ 1764 if (high_zoneidx < ZONE_NORMAL) 1765 goto out; 1766 /* 1767 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1768 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1769 * The caller should handle page allocation failure by itself if 1770 * it specifies __GFP_THISNODE. 1771 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1772 */ 1773 if (gfp_mask & __GFP_THISNODE) 1774 goto out; 1775 } 1776 /* Exhausted what can be done so it's blamo time */ 1777 out_of_memory(zonelist, gfp_mask, order, nodemask); 1778 1779 out: 1780 clear_zonelist_oom(zonelist, gfp_mask); 1781 return page; 1782 } 1783 1784 #ifdef CONFIG_COMPACTION 1785 /* Try memory compaction for high-order allocations before reclaim */ 1786 static struct page * 1787 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1788 struct zonelist *zonelist, enum zone_type high_zoneidx, 1789 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1790 int migratetype, unsigned long *did_some_progress) 1791 { 1792 struct page *page; 1793 1794 if (!order || compaction_deferred(preferred_zone)) 1795 return NULL; 1796 1797 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1798 nodemask); 1799 if (*did_some_progress != COMPACT_SKIPPED) { 1800 1801 /* Page migration frees to the PCP lists but we want merging */ 1802 drain_pages(get_cpu()); 1803 put_cpu(); 1804 1805 page = get_page_from_freelist(gfp_mask, nodemask, 1806 order, zonelist, high_zoneidx, 1807 alloc_flags, preferred_zone, 1808 migratetype); 1809 if (page) { 1810 preferred_zone->compact_considered = 0; 1811 preferred_zone->compact_defer_shift = 0; 1812 count_vm_event(COMPACTSUCCESS); 1813 return page; 1814 } 1815 1816 /* 1817 * It's bad if compaction run occurs and fails. 1818 * The most likely reason is that pages exist, 1819 * but not enough to satisfy watermarks. 1820 */ 1821 count_vm_event(COMPACTFAIL); 1822 defer_compaction(preferred_zone); 1823 1824 cond_resched(); 1825 } 1826 1827 return NULL; 1828 } 1829 #else 1830 static inline struct page * 1831 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1832 struct zonelist *zonelist, enum zone_type high_zoneidx, 1833 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1834 int migratetype, unsigned long *did_some_progress) 1835 { 1836 return NULL; 1837 } 1838 #endif /* CONFIG_COMPACTION */ 1839 1840 /* The really slow allocator path where we enter direct reclaim */ 1841 static inline struct page * 1842 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1843 struct zonelist *zonelist, enum zone_type high_zoneidx, 1844 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1845 int migratetype, unsigned long *did_some_progress) 1846 { 1847 struct page *page = NULL; 1848 struct reclaim_state reclaim_state; 1849 struct task_struct *p = current; 1850 bool drained = false; 1851 1852 cond_resched(); 1853 1854 /* We now go into synchronous reclaim */ 1855 cpuset_memory_pressure_bump(); 1856 p->flags |= PF_MEMALLOC; 1857 lockdep_set_current_reclaim_state(gfp_mask); 1858 reclaim_state.reclaimed_slab = 0; 1859 p->reclaim_state = &reclaim_state; 1860 1861 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1862 1863 p->reclaim_state = NULL; 1864 lockdep_clear_current_reclaim_state(); 1865 p->flags &= ~PF_MEMALLOC; 1866 1867 cond_resched(); 1868 1869 if (unlikely(!(*did_some_progress))) 1870 return NULL; 1871 1872 retry: 1873 page = get_page_from_freelist(gfp_mask, nodemask, order, 1874 zonelist, high_zoneidx, 1875 alloc_flags, preferred_zone, 1876 migratetype); 1877 1878 /* 1879 * If an allocation failed after direct reclaim, it could be because 1880 * pages are pinned on the per-cpu lists. Drain them and try again 1881 */ 1882 if (!page && !drained) { 1883 drain_all_pages(); 1884 drained = true; 1885 goto retry; 1886 } 1887 1888 return page; 1889 } 1890 1891 /* 1892 * This is called in the allocator slow-path if the allocation request is of 1893 * sufficient urgency to ignore watermarks and take other desperate measures 1894 */ 1895 static inline struct page * 1896 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1897 struct zonelist *zonelist, enum zone_type high_zoneidx, 1898 nodemask_t *nodemask, struct zone *preferred_zone, 1899 int migratetype) 1900 { 1901 struct page *page; 1902 1903 do { 1904 page = get_page_from_freelist(gfp_mask, nodemask, order, 1905 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1906 preferred_zone, migratetype); 1907 1908 if (!page && gfp_mask & __GFP_NOFAIL) 1909 congestion_wait(BLK_RW_ASYNC, HZ/50); 1910 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1911 1912 return page; 1913 } 1914 1915 static inline 1916 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1917 enum zone_type high_zoneidx) 1918 { 1919 struct zoneref *z; 1920 struct zone *zone; 1921 1922 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1923 wakeup_kswapd(zone, order); 1924 } 1925 1926 static inline int 1927 gfp_to_alloc_flags(gfp_t gfp_mask) 1928 { 1929 struct task_struct *p = current; 1930 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1931 const gfp_t wait = gfp_mask & __GFP_WAIT; 1932 1933 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1934 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1935 1936 /* 1937 * The caller may dip into page reserves a bit more if the caller 1938 * cannot run direct reclaim, or if the caller has realtime scheduling 1939 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1940 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1941 */ 1942 alloc_flags |= (gfp_mask & __GFP_HIGH); 1943 1944 if (!wait) { 1945 alloc_flags |= ALLOC_HARDER; 1946 /* 1947 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1948 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1949 */ 1950 alloc_flags &= ~ALLOC_CPUSET; 1951 } else if (unlikely(rt_task(p)) && !in_interrupt()) 1952 alloc_flags |= ALLOC_HARDER; 1953 1954 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1955 if (!in_interrupt() && 1956 ((p->flags & PF_MEMALLOC) || 1957 unlikely(test_thread_flag(TIF_MEMDIE)))) 1958 alloc_flags |= ALLOC_NO_WATERMARKS; 1959 } 1960 1961 return alloc_flags; 1962 } 1963 1964 static inline struct page * 1965 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1966 struct zonelist *zonelist, enum zone_type high_zoneidx, 1967 nodemask_t *nodemask, struct zone *preferred_zone, 1968 int migratetype) 1969 { 1970 const gfp_t wait = gfp_mask & __GFP_WAIT; 1971 struct page *page = NULL; 1972 int alloc_flags; 1973 unsigned long pages_reclaimed = 0; 1974 unsigned long did_some_progress; 1975 struct task_struct *p = current; 1976 1977 /* 1978 * In the slowpath, we sanity check order to avoid ever trying to 1979 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1980 * be using allocators in order of preference for an area that is 1981 * too large. 1982 */ 1983 if (order >= MAX_ORDER) { 1984 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1985 return NULL; 1986 } 1987 1988 /* 1989 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1990 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1991 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1992 * using a larger set of nodes after it has established that the 1993 * allowed per node queues are empty and that nodes are 1994 * over allocated. 1995 */ 1996 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1997 goto nopage; 1998 1999 restart: 2000 wake_all_kswapd(order, zonelist, high_zoneidx); 2001 2002 /* 2003 * OK, we're below the kswapd watermark and have kicked background 2004 * reclaim. Now things get more complex, so set up alloc_flags according 2005 * to how we want to proceed. 2006 */ 2007 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2008 2009 /* This is the last chance, in general, before the goto nopage. */ 2010 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2011 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2012 preferred_zone, migratetype); 2013 if (page) 2014 goto got_pg; 2015 2016 rebalance: 2017 /* Allocate without watermarks if the context allows */ 2018 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2019 page = __alloc_pages_high_priority(gfp_mask, order, 2020 zonelist, high_zoneidx, nodemask, 2021 preferred_zone, migratetype); 2022 if (page) 2023 goto got_pg; 2024 } 2025 2026 /* Atomic allocations - we can't balance anything */ 2027 if (!wait) 2028 goto nopage; 2029 2030 /* Avoid recursion of direct reclaim */ 2031 if (p->flags & PF_MEMALLOC) 2032 goto nopage; 2033 2034 /* Avoid allocations with no watermarks from looping endlessly */ 2035 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2036 goto nopage; 2037 2038 /* Try direct compaction */ 2039 page = __alloc_pages_direct_compact(gfp_mask, order, 2040 zonelist, high_zoneidx, 2041 nodemask, 2042 alloc_flags, preferred_zone, 2043 migratetype, &did_some_progress); 2044 if (page) 2045 goto got_pg; 2046 2047 /* Try direct reclaim and then allocating */ 2048 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2049 zonelist, high_zoneidx, 2050 nodemask, 2051 alloc_flags, preferred_zone, 2052 migratetype, &did_some_progress); 2053 if (page) 2054 goto got_pg; 2055 2056 /* 2057 * If we failed to make any progress reclaiming, then we are 2058 * running out of options and have to consider going OOM 2059 */ 2060 if (!did_some_progress) { 2061 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2062 if (oom_killer_disabled) 2063 goto nopage; 2064 page = __alloc_pages_may_oom(gfp_mask, order, 2065 zonelist, high_zoneidx, 2066 nodemask, preferred_zone, 2067 migratetype); 2068 if (page) 2069 goto got_pg; 2070 2071 if (!(gfp_mask & __GFP_NOFAIL)) { 2072 /* 2073 * The oom killer is not called for high-order 2074 * allocations that may fail, so if no progress 2075 * is being made, there are no other options and 2076 * retrying is unlikely to help. 2077 */ 2078 if (order > PAGE_ALLOC_COSTLY_ORDER) 2079 goto nopage; 2080 /* 2081 * The oom killer is not called for lowmem 2082 * allocations to prevent needlessly killing 2083 * innocent tasks. 2084 */ 2085 if (high_zoneidx < ZONE_NORMAL) 2086 goto nopage; 2087 } 2088 2089 goto restart; 2090 } 2091 } 2092 2093 /* Check if we should retry the allocation */ 2094 pages_reclaimed += did_some_progress; 2095 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2096 /* Wait for some write requests to complete then retry */ 2097 congestion_wait(BLK_RW_ASYNC, HZ/50); 2098 goto rebalance; 2099 } 2100 2101 nopage: 2102 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 2103 printk(KERN_WARNING "%s: page allocation failure." 2104 " order:%d, mode:0x%x\n", 2105 p->comm, order, gfp_mask); 2106 dump_stack(); 2107 show_mem(); 2108 } 2109 return page; 2110 got_pg: 2111 if (kmemcheck_enabled) 2112 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2113 return page; 2114 2115 } 2116 2117 /* 2118 * This is the 'heart' of the zoned buddy allocator. 2119 */ 2120 struct page * 2121 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2122 struct zonelist *zonelist, nodemask_t *nodemask) 2123 { 2124 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2125 struct zone *preferred_zone; 2126 struct page *page; 2127 int migratetype = allocflags_to_migratetype(gfp_mask); 2128 2129 gfp_mask &= gfp_allowed_mask; 2130 2131 lockdep_trace_alloc(gfp_mask); 2132 2133 might_sleep_if(gfp_mask & __GFP_WAIT); 2134 2135 if (should_fail_alloc_page(gfp_mask, order)) 2136 return NULL; 2137 2138 /* 2139 * Check the zones suitable for the gfp_mask contain at least one 2140 * valid zone. It's possible to have an empty zonelist as a result 2141 * of GFP_THISNODE and a memoryless node 2142 */ 2143 if (unlikely(!zonelist->_zonerefs->zone)) 2144 return NULL; 2145 2146 get_mems_allowed(); 2147 /* The preferred zone is used for statistics later */ 2148 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 2149 if (!preferred_zone) { 2150 put_mems_allowed(); 2151 return NULL; 2152 } 2153 2154 /* First allocation attempt */ 2155 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2156 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2157 preferred_zone, migratetype); 2158 if (unlikely(!page)) 2159 page = __alloc_pages_slowpath(gfp_mask, order, 2160 zonelist, high_zoneidx, nodemask, 2161 preferred_zone, migratetype); 2162 put_mems_allowed(); 2163 2164 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2165 return page; 2166 } 2167 EXPORT_SYMBOL(__alloc_pages_nodemask); 2168 2169 /* 2170 * Common helper functions. 2171 */ 2172 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2173 { 2174 struct page *page; 2175 2176 /* 2177 * __get_free_pages() returns a 32-bit address, which cannot represent 2178 * a highmem page 2179 */ 2180 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2181 2182 page = alloc_pages(gfp_mask, order); 2183 if (!page) 2184 return 0; 2185 return (unsigned long) page_address(page); 2186 } 2187 EXPORT_SYMBOL(__get_free_pages); 2188 2189 unsigned long get_zeroed_page(gfp_t gfp_mask) 2190 { 2191 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2192 } 2193 EXPORT_SYMBOL(get_zeroed_page); 2194 2195 void __pagevec_free(struct pagevec *pvec) 2196 { 2197 int i = pagevec_count(pvec); 2198 2199 while (--i >= 0) { 2200 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2201 free_hot_cold_page(pvec->pages[i], pvec->cold); 2202 } 2203 } 2204 2205 void __free_pages(struct page *page, unsigned int order) 2206 { 2207 if (put_page_testzero(page)) { 2208 if (order == 0) 2209 free_hot_cold_page(page, 0); 2210 else 2211 __free_pages_ok(page, order); 2212 } 2213 } 2214 2215 EXPORT_SYMBOL(__free_pages); 2216 2217 void free_pages(unsigned long addr, unsigned int order) 2218 { 2219 if (addr != 0) { 2220 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2221 __free_pages(virt_to_page((void *)addr), order); 2222 } 2223 } 2224 2225 EXPORT_SYMBOL(free_pages); 2226 2227 /** 2228 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2229 * @size: the number of bytes to allocate 2230 * @gfp_mask: GFP flags for the allocation 2231 * 2232 * This function is similar to alloc_pages(), except that it allocates the 2233 * minimum number of pages to satisfy the request. alloc_pages() can only 2234 * allocate memory in power-of-two pages. 2235 * 2236 * This function is also limited by MAX_ORDER. 2237 * 2238 * Memory allocated by this function must be released by free_pages_exact(). 2239 */ 2240 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2241 { 2242 unsigned int order = get_order(size); 2243 unsigned long addr; 2244 2245 addr = __get_free_pages(gfp_mask, order); 2246 if (addr) { 2247 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2248 unsigned long used = addr + PAGE_ALIGN(size); 2249 2250 split_page(virt_to_page((void *)addr), order); 2251 while (used < alloc_end) { 2252 free_page(used); 2253 used += PAGE_SIZE; 2254 } 2255 } 2256 2257 return (void *)addr; 2258 } 2259 EXPORT_SYMBOL(alloc_pages_exact); 2260 2261 /** 2262 * free_pages_exact - release memory allocated via alloc_pages_exact() 2263 * @virt: the value returned by alloc_pages_exact. 2264 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2265 * 2266 * Release the memory allocated by a previous call to alloc_pages_exact. 2267 */ 2268 void free_pages_exact(void *virt, size_t size) 2269 { 2270 unsigned long addr = (unsigned long)virt; 2271 unsigned long end = addr + PAGE_ALIGN(size); 2272 2273 while (addr < end) { 2274 free_page(addr); 2275 addr += PAGE_SIZE; 2276 } 2277 } 2278 EXPORT_SYMBOL(free_pages_exact); 2279 2280 static unsigned int nr_free_zone_pages(int offset) 2281 { 2282 struct zoneref *z; 2283 struct zone *zone; 2284 2285 /* Just pick one node, since fallback list is circular */ 2286 unsigned int sum = 0; 2287 2288 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2289 2290 for_each_zone_zonelist(zone, z, zonelist, offset) { 2291 unsigned long size = zone->present_pages; 2292 unsigned long high = high_wmark_pages(zone); 2293 if (size > high) 2294 sum += size - high; 2295 } 2296 2297 return sum; 2298 } 2299 2300 /* 2301 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2302 */ 2303 unsigned int nr_free_buffer_pages(void) 2304 { 2305 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2306 } 2307 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2308 2309 /* 2310 * Amount of free RAM allocatable within all zones 2311 */ 2312 unsigned int nr_free_pagecache_pages(void) 2313 { 2314 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2315 } 2316 2317 static inline void show_node(struct zone *zone) 2318 { 2319 if (NUMA_BUILD) 2320 printk("Node %d ", zone_to_nid(zone)); 2321 } 2322 2323 void si_meminfo(struct sysinfo *val) 2324 { 2325 val->totalram = totalram_pages; 2326 val->sharedram = 0; 2327 val->freeram = global_page_state(NR_FREE_PAGES); 2328 val->bufferram = nr_blockdev_pages(); 2329 val->totalhigh = totalhigh_pages; 2330 val->freehigh = nr_free_highpages(); 2331 val->mem_unit = PAGE_SIZE; 2332 } 2333 2334 EXPORT_SYMBOL(si_meminfo); 2335 2336 #ifdef CONFIG_NUMA 2337 void si_meminfo_node(struct sysinfo *val, int nid) 2338 { 2339 pg_data_t *pgdat = NODE_DATA(nid); 2340 2341 val->totalram = pgdat->node_present_pages; 2342 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2343 #ifdef CONFIG_HIGHMEM 2344 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2345 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2346 NR_FREE_PAGES); 2347 #else 2348 val->totalhigh = 0; 2349 val->freehigh = 0; 2350 #endif 2351 val->mem_unit = PAGE_SIZE; 2352 } 2353 #endif 2354 2355 #define K(x) ((x) << (PAGE_SHIFT-10)) 2356 2357 /* 2358 * Show free area list (used inside shift_scroll-lock stuff) 2359 * We also calculate the percentage fragmentation. We do this by counting the 2360 * memory on each free list with the exception of the first item on the list. 2361 */ 2362 void show_free_areas(void) 2363 { 2364 int cpu; 2365 struct zone *zone; 2366 2367 for_each_populated_zone(zone) { 2368 show_node(zone); 2369 printk("%s per-cpu:\n", zone->name); 2370 2371 for_each_online_cpu(cpu) { 2372 struct per_cpu_pageset *pageset; 2373 2374 pageset = per_cpu_ptr(zone->pageset, cpu); 2375 2376 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2377 cpu, pageset->pcp.high, 2378 pageset->pcp.batch, pageset->pcp.count); 2379 } 2380 } 2381 2382 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2383 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2384 " unevictable:%lu" 2385 " dirty:%lu writeback:%lu unstable:%lu\n" 2386 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2387 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2388 global_page_state(NR_ACTIVE_ANON), 2389 global_page_state(NR_INACTIVE_ANON), 2390 global_page_state(NR_ISOLATED_ANON), 2391 global_page_state(NR_ACTIVE_FILE), 2392 global_page_state(NR_INACTIVE_FILE), 2393 global_page_state(NR_ISOLATED_FILE), 2394 global_page_state(NR_UNEVICTABLE), 2395 global_page_state(NR_FILE_DIRTY), 2396 global_page_state(NR_WRITEBACK), 2397 global_page_state(NR_UNSTABLE_NFS), 2398 global_page_state(NR_FREE_PAGES), 2399 global_page_state(NR_SLAB_RECLAIMABLE), 2400 global_page_state(NR_SLAB_UNRECLAIMABLE), 2401 global_page_state(NR_FILE_MAPPED), 2402 global_page_state(NR_SHMEM), 2403 global_page_state(NR_PAGETABLE), 2404 global_page_state(NR_BOUNCE)); 2405 2406 for_each_populated_zone(zone) { 2407 int i; 2408 2409 show_node(zone); 2410 printk("%s" 2411 " free:%lukB" 2412 " min:%lukB" 2413 " low:%lukB" 2414 " high:%lukB" 2415 " active_anon:%lukB" 2416 " inactive_anon:%lukB" 2417 " active_file:%lukB" 2418 " inactive_file:%lukB" 2419 " unevictable:%lukB" 2420 " isolated(anon):%lukB" 2421 " isolated(file):%lukB" 2422 " present:%lukB" 2423 " mlocked:%lukB" 2424 " dirty:%lukB" 2425 " writeback:%lukB" 2426 " mapped:%lukB" 2427 " shmem:%lukB" 2428 " slab_reclaimable:%lukB" 2429 " slab_unreclaimable:%lukB" 2430 " kernel_stack:%lukB" 2431 " pagetables:%lukB" 2432 " unstable:%lukB" 2433 " bounce:%lukB" 2434 " writeback_tmp:%lukB" 2435 " pages_scanned:%lu" 2436 " all_unreclaimable? %s" 2437 "\n", 2438 zone->name, 2439 K(zone_nr_free_pages(zone)), 2440 K(min_wmark_pages(zone)), 2441 K(low_wmark_pages(zone)), 2442 K(high_wmark_pages(zone)), 2443 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2444 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2445 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2446 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2447 K(zone_page_state(zone, NR_UNEVICTABLE)), 2448 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2449 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2450 K(zone->present_pages), 2451 K(zone_page_state(zone, NR_MLOCK)), 2452 K(zone_page_state(zone, NR_FILE_DIRTY)), 2453 K(zone_page_state(zone, NR_WRITEBACK)), 2454 K(zone_page_state(zone, NR_FILE_MAPPED)), 2455 K(zone_page_state(zone, NR_SHMEM)), 2456 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2457 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2458 zone_page_state(zone, NR_KERNEL_STACK) * 2459 THREAD_SIZE / 1024, 2460 K(zone_page_state(zone, NR_PAGETABLE)), 2461 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2462 K(zone_page_state(zone, NR_BOUNCE)), 2463 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2464 zone->pages_scanned, 2465 (zone->all_unreclaimable ? "yes" : "no") 2466 ); 2467 printk("lowmem_reserve[]:"); 2468 for (i = 0; i < MAX_NR_ZONES; i++) 2469 printk(" %lu", zone->lowmem_reserve[i]); 2470 printk("\n"); 2471 } 2472 2473 for_each_populated_zone(zone) { 2474 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2475 2476 show_node(zone); 2477 printk("%s: ", zone->name); 2478 2479 spin_lock_irqsave(&zone->lock, flags); 2480 for (order = 0; order < MAX_ORDER; order++) { 2481 nr[order] = zone->free_area[order].nr_free; 2482 total += nr[order] << order; 2483 } 2484 spin_unlock_irqrestore(&zone->lock, flags); 2485 for (order = 0; order < MAX_ORDER; order++) 2486 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2487 printk("= %lukB\n", K(total)); 2488 } 2489 2490 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2491 2492 show_swap_cache_info(); 2493 } 2494 2495 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2496 { 2497 zoneref->zone = zone; 2498 zoneref->zone_idx = zone_idx(zone); 2499 } 2500 2501 /* 2502 * Builds allocation fallback zone lists. 2503 * 2504 * Add all populated zones of a node to the zonelist. 2505 */ 2506 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2507 int nr_zones, enum zone_type zone_type) 2508 { 2509 struct zone *zone; 2510 2511 BUG_ON(zone_type >= MAX_NR_ZONES); 2512 zone_type++; 2513 2514 do { 2515 zone_type--; 2516 zone = pgdat->node_zones + zone_type; 2517 if (populated_zone(zone)) { 2518 zoneref_set_zone(zone, 2519 &zonelist->_zonerefs[nr_zones++]); 2520 check_highest_zone(zone_type); 2521 } 2522 2523 } while (zone_type); 2524 return nr_zones; 2525 } 2526 2527 2528 /* 2529 * zonelist_order: 2530 * 0 = automatic detection of better ordering. 2531 * 1 = order by ([node] distance, -zonetype) 2532 * 2 = order by (-zonetype, [node] distance) 2533 * 2534 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2535 * the same zonelist. So only NUMA can configure this param. 2536 */ 2537 #define ZONELIST_ORDER_DEFAULT 0 2538 #define ZONELIST_ORDER_NODE 1 2539 #define ZONELIST_ORDER_ZONE 2 2540 2541 /* zonelist order in the kernel. 2542 * set_zonelist_order() will set this to NODE or ZONE. 2543 */ 2544 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2545 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2546 2547 2548 #ifdef CONFIG_NUMA 2549 /* The value user specified ....changed by config */ 2550 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2551 /* string for sysctl */ 2552 #define NUMA_ZONELIST_ORDER_LEN 16 2553 char numa_zonelist_order[16] = "default"; 2554 2555 /* 2556 * interface for configure zonelist ordering. 2557 * command line option "numa_zonelist_order" 2558 * = "[dD]efault - default, automatic configuration. 2559 * = "[nN]ode - order by node locality, then by zone within node 2560 * = "[zZ]one - order by zone, then by locality within zone 2561 */ 2562 2563 static int __parse_numa_zonelist_order(char *s) 2564 { 2565 if (*s == 'd' || *s == 'D') { 2566 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2567 } else if (*s == 'n' || *s == 'N') { 2568 user_zonelist_order = ZONELIST_ORDER_NODE; 2569 } else if (*s == 'z' || *s == 'Z') { 2570 user_zonelist_order = ZONELIST_ORDER_ZONE; 2571 } else { 2572 printk(KERN_WARNING 2573 "Ignoring invalid numa_zonelist_order value: " 2574 "%s\n", s); 2575 return -EINVAL; 2576 } 2577 return 0; 2578 } 2579 2580 static __init int setup_numa_zonelist_order(char *s) 2581 { 2582 if (s) 2583 return __parse_numa_zonelist_order(s); 2584 return 0; 2585 } 2586 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2587 2588 /* 2589 * sysctl handler for numa_zonelist_order 2590 */ 2591 int numa_zonelist_order_handler(ctl_table *table, int write, 2592 void __user *buffer, size_t *length, 2593 loff_t *ppos) 2594 { 2595 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2596 int ret; 2597 static DEFINE_MUTEX(zl_order_mutex); 2598 2599 mutex_lock(&zl_order_mutex); 2600 if (write) 2601 strcpy(saved_string, (char*)table->data); 2602 ret = proc_dostring(table, write, buffer, length, ppos); 2603 if (ret) 2604 goto out; 2605 if (write) { 2606 int oldval = user_zonelist_order; 2607 if (__parse_numa_zonelist_order((char*)table->data)) { 2608 /* 2609 * bogus value. restore saved string 2610 */ 2611 strncpy((char*)table->data, saved_string, 2612 NUMA_ZONELIST_ORDER_LEN); 2613 user_zonelist_order = oldval; 2614 } else if (oldval != user_zonelist_order) { 2615 mutex_lock(&zonelists_mutex); 2616 build_all_zonelists(NULL); 2617 mutex_unlock(&zonelists_mutex); 2618 } 2619 } 2620 out: 2621 mutex_unlock(&zl_order_mutex); 2622 return ret; 2623 } 2624 2625 2626 #define MAX_NODE_LOAD (nr_online_nodes) 2627 static int node_load[MAX_NUMNODES]; 2628 2629 /** 2630 * find_next_best_node - find the next node that should appear in a given node's fallback list 2631 * @node: node whose fallback list we're appending 2632 * @used_node_mask: nodemask_t of already used nodes 2633 * 2634 * We use a number of factors to determine which is the next node that should 2635 * appear on a given node's fallback list. The node should not have appeared 2636 * already in @node's fallback list, and it should be the next closest node 2637 * according to the distance array (which contains arbitrary distance values 2638 * from each node to each node in the system), and should also prefer nodes 2639 * with no CPUs, since presumably they'll have very little allocation pressure 2640 * on them otherwise. 2641 * It returns -1 if no node is found. 2642 */ 2643 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2644 { 2645 int n, val; 2646 int min_val = INT_MAX; 2647 int best_node = -1; 2648 const struct cpumask *tmp = cpumask_of_node(0); 2649 2650 /* Use the local node if we haven't already */ 2651 if (!node_isset(node, *used_node_mask)) { 2652 node_set(node, *used_node_mask); 2653 return node; 2654 } 2655 2656 for_each_node_state(n, N_HIGH_MEMORY) { 2657 2658 /* Don't want a node to appear more than once */ 2659 if (node_isset(n, *used_node_mask)) 2660 continue; 2661 2662 /* Use the distance array to find the distance */ 2663 val = node_distance(node, n); 2664 2665 /* Penalize nodes under us ("prefer the next node") */ 2666 val += (n < node); 2667 2668 /* Give preference to headless and unused nodes */ 2669 tmp = cpumask_of_node(n); 2670 if (!cpumask_empty(tmp)) 2671 val += PENALTY_FOR_NODE_WITH_CPUS; 2672 2673 /* Slight preference for less loaded node */ 2674 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2675 val += node_load[n]; 2676 2677 if (val < min_val) { 2678 min_val = val; 2679 best_node = n; 2680 } 2681 } 2682 2683 if (best_node >= 0) 2684 node_set(best_node, *used_node_mask); 2685 2686 return best_node; 2687 } 2688 2689 2690 /* 2691 * Build zonelists ordered by node and zones within node. 2692 * This results in maximum locality--normal zone overflows into local 2693 * DMA zone, if any--but risks exhausting DMA zone. 2694 */ 2695 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2696 { 2697 int j; 2698 struct zonelist *zonelist; 2699 2700 zonelist = &pgdat->node_zonelists[0]; 2701 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2702 ; 2703 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2704 MAX_NR_ZONES - 1); 2705 zonelist->_zonerefs[j].zone = NULL; 2706 zonelist->_zonerefs[j].zone_idx = 0; 2707 } 2708 2709 /* 2710 * Build gfp_thisnode zonelists 2711 */ 2712 static void build_thisnode_zonelists(pg_data_t *pgdat) 2713 { 2714 int j; 2715 struct zonelist *zonelist; 2716 2717 zonelist = &pgdat->node_zonelists[1]; 2718 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2719 zonelist->_zonerefs[j].zone = NULL; 2720 zonelist->_zonerefs[j].zone_idx = 0; 2721 } 2722 2723 /* 2724 * Build zonelists ordered by zone and nodes within zones. 2725 * This results in conserving DMA zone[s] until all Normal memory is 2726 * exhausted, but results in overflowing to remote node while memory 2727 * may still exist in local DMA zone. 2728 */ 2729 static int node_order[MAX_NUMNODES]; 2730 2731 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2732 { 2733 int pos, j, node; 2734 int zone_type; /* needs to be signed */ 2735 struct zone *z; 2736 struct zonelist *zonelist; 2737 2738 zonelist = &pgdat->node_zonelists[0]; 2739 pos = 0; 2740 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2741 for (j = 0; j < nr_nodes; j++) { 2742 node = node_order[j]; 2743 z = &NODE_DATA(node)->node_zones[zone_type]; 2744 if (populated_zone(z)) { 2745 zoneref_set_zone(z, 2746 &zonelist->_zonerefs[pos++]); 2747 check_highest_zone(zone_type); 2748 } 2749 } 2750 } 2751 zonelist->_zonerefs[pos].zone = NULL; 2752 zonelist->_zonerefs[pos].zone_idx = 0; 2753 } 2754 2755 static int default_zonelist_order(void) 2756 { 2757 int nid, zone_type; 2758 unsigned long low_kmem_size,total_size; 2759 struct zone *z; 2760 int average_size; 2761 /* 2762 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2763 * If they are really small and used heavily, the system can fall 2764 * into OOM very easily. 2765 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2766 */ 2767 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2768 low_kmem_size = 0; 2769 total_size = 0; 2770 for_each_online_node(nid) { 2771 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2772 z = &NODE_DATA(nid)->node_zones[zone_type]; 2773 if (populated_zone(z)) { 2774 if (zone_type < ZONE_NORMAL) 2775 low_kmem_size += z->present_pages; 2776 total_size += z->present_pages; 2777 } else if (zone_type == ZONE_NORMAL) { 2778 /* 2779 * If any node has only lowmem, then node order 2780 * is preferred to allow kernel allocations 2781 * locally; otherwise, they can easily infringe 2782 * on other nodes when there is an abundance of 2783 * lowmem available to allocate from. 2784 */ 2785 return ZONELIST_ORDER_NODE; 2786 } 2787 } 2788 } 2789 if (!low_kmem_size || /* there are no DMA area. */ 2790 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2791 return ZONELIST_ORDER_NODE; 2792 /* 2793 * look into each node's config. 2794 * If there is a node whose DMA/DMA32 memory is very big area on 2795 * local memory, NODE_ORDER may be suitable. 2796 */ 2797 average_size = total_size / 2798 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2799 for_each_online_node(nid) { 2800 low_kmem_size = 0; 2801 total_size = 0; 2802 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2803 z = &NODE_DATA(nid)->node_zones[zone_type]; 2804 if (populated_zone(z)) { 2805 if (zone_type < ZONE_NORMAL) 2806 low_kmem_size += z->present_pages; 2807 total_size += z->present_pages; 2808 } 2809 } 2810 if (low_kmem_size && 2811 total_size > average_size && /* ignore small node */ 2812 low_kmem_size > total_size * 70/100) 2813 return ZONELIST_ORDER_NODE; 2814 } 2815 return ZONELIST_ORDER_ZONE; 2816 } 2817 2818 static void set_zonelist_order(void) 2819 { 2820 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2821 current_zonelist_order = default_zonelist_order(); 2822 else 2823 current_zonelist_order = user_zonelist_order; 2824 } 2825 2826 static void build_zonelists(pg_data_t *pgdat) 2827 { 2828 int j, node, load; 2829 enum zone_type i; 2830 nodemask_t used_mask; 2831 int local_node, prev_node; 2832 struct zonelist *zonelist; 2833 int order = current_zonelist_order; 2834 2835 /* initialize zonelists */ 2836 for (i = 0; i < MAX_ZONELISTS; i++) { 2837 zonelist = pgdat->node_zonelists + i; 2838 zonelist->_zonerefs[0].zone = NULL; 2839 zonelist->_zonerefs[0].zone_idx = 0; 2840 } 2841 2842 /* NUMA-aware ordering of nodes */ 2843 local_node = pgdat->node_id; 2844 load = nr_online_nodes; 2845 prev_node = local_node; 2846 nodes_clear(used_mask); 2847 2848 memset(node_order, 0, sizeof(node_order)); 2849 j = 0; 2850 2851 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2852 int distance = node_distance(local_node, node); 2853 2854 /* 2855 * If another node is sufficiently far away then it is better 2856 * to reclaim pages in a zone before going off node. 2857 */ 2858 if (distance > RECLAIM_DISTANCE) 2859 zone_reclaim_mode = 1; 2860 2861 /* 2862 * We don't want to pressure a particular node. 2863 * So adding penalty to the first node in same 2864 * distance group to make it round-robin. 2865 */ 2866 if (distance != node_distance(local_node, prev_node)) 2867 node_load[node] = load; 2868 2869 prev_node = node; 2870 load--; 2871 if (order == ZONELIST_ORDER_NODE) 2872 build_zonelists_in_node_order(pgdat, node); 2873 else 2874 node_order[j++] = node; /* remember order */ 2875 } 2876 2877 if (order == ZONELIST_ORDER_ZONE) { 2878 /* calculate node order -- i.e., DMA last! */ 2879 build_zonelists_in_zone_order(pgdat, j); 2880 } 2881 2882 build_thisnode_zonelists(pgdat); 2883 } 2884 2885 /* Construct the zonelist performance cache - see further mmzone.h */ 2886 static void build_zonelist_cache(pg_data_t *pgdat) 2887 { 2888 struct zonelist *zonelist; 2889 struct zonelist_cache *zlc; 2890 struct zoneref *z; 2891 2892 zonelist = &pgdat->node_zonelists[0]; 2893 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2894 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2895 for (z = zonelist->_zonerefs; z->zone; z++) 2896 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2897 } 2898 2899 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 2900 /* 2901 * Return node id of node used for "local" allocations. 2902 * I.e., first node id of first zone in arg node's generic zonelist. 2903 * Used for initializing percpu 'numa_mem', which is used primarily 2904 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 2905 */ 2906 int local_memory_node(int node) 2907 { 2908 struct zone *zone; 2909 2910 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 2911 gfp_zone(GFP_KERNEL), 2912 NULL, 2913 &zone); 2914 return zone->node; 2915 } 2916 #endif 2917 2918 #else /* CONFIG_NUMA */ 2919 2920 static void set_zonelist_order(void) 2921 { 2922 current_zonelist_order = ZONELIST_ORDER_ZONE; 2923 } 2924 2925 static void build_zonelists(pg_data_t *pgdat) 2926 { 2927 int node, local_node; 2928 enum zone_type j; 2929 struct zonelist *zonelist; 2930 2931 local_node = pgdat->node_id; 2932 2933 zonelist = &pgdat->node_zonelists[0]; 2934 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2935 2936 /* 2937 * Now we build the zonelist so that it contains the zones 2938 * of all the other nodes. 2939 * We don't want to pressure a particular node, so when 2940 * building the zones for node N, we make sure that the 2941 * zones coming right after the local ones are those from 2942 * node N+1 (modulo N) 2943 */ 2944 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2945 if (!node_online(node)) 2946 continue; 2947 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2948 MAX_NR_ZONES - 1); 2949 } 2950 for (node = 0; node < local_node; node++) { 2951 if (!node_online(node)) 2952 continue; 2953 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2954 MAX_NR_ZONES - 1); 2955 } 2956 2957 zonelist->_zonerefs[j].zone = NULL; 2958 zonelist->_zonerefs[j].zone_idx = 0; 2959 } 2960 2961 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2962 static void build_zonelist_cache(pg_data_t *pgdat) 2963 { 2964 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2965 } 2966 2967 #endif /* CONFIG_NUMA */ 2968 2969 /* 2970 * Boot pageset table. One per cpu which is going to be used for all 2971 * zones and all nodes. The parameters will be set in such a way 2972 * that an item put on a list will immediately be handed over to 2973 * the buddy list. This is safe since pageset manipulation is done 2974 * with interrupts disabled. 2975 * 2976 * The boot_pagesets must be kept even after bootup is complete for 2977 * unused processors and/or zones. They do play a role for bootstrapping 2978 * hotplugged processors. 2979 * 2980 * zoneinfo_show() and maybe other functions do 2981 * not check if the processor is online before following the pageset pointer. 2982 * Other parts of the kernel may not check if the zone is available. 2983 */ 2984 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 2985 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 2986 static void setup_zone_pageset(struct zone *zone); 2987 2988 /* 2989 * Global mutex to protect against size modification of zonelists 2990 * as well as to serialize pageset setup for the new populated zone. 2991 */ 2992 DEFINE_MUTEX(zonelists_mutex); 2993 2994 /* return values int ....just for stop_machine() */ 2995 static __init_refok int __build_all_zonelists(void *data) 2996 { 2997 int nid; 2998 int cpu; 2999 3000 #ifdef CONFIG_NUMA 3001 memset(node_load, 0, sizeof(node_load)); 3002 #endif 3003 for_each_online_node(nid) { 3004 pg_data_t *pgdat = NODE_DATA(nid); 3005 3006 build_zonelists(pgdat); 3007 build_zonelist_cache(pgdat); 3008 } 3009 3010 #ifdef CONFIG_MEMORY_HOTPLUG 3011 /* Setup real pagesets for the new zone */ 3012 if (data) { 3013 struct zone *zone = data; 3014 setup_zone_pageset(zone); 3015 } 3016 #endif 3017 3018 /* 3019 * Initialize the boot_pagesets that are going to be used 3020 * for bootstrapping processors. The real pagesets for 3021 * each zone will be allocated later when the per cpu 3022 * allocator is available. 3023 * 3024 * boot_pagesets are used also for bootstrapping offline 3025 * cpus if the system is already booted because the pagesets 3026 * are needed to initialize allocators on a specific cpu too. 3027 * F.e. the percpu allocator needs the page allocator which 3028 * needs the percpu allocator in order to allocate its pagesets 3029 * (a chicken-egg dilemma). 3030 */ 3031 for_each_possible_cpu(cpu) { 3032 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3033 3034 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3035 /* 3036 * We now know the "local memory node" for each node-- 3037 * i.e., the node of the first zone in the generic zonelist. 3038 * Set up numa_mem percpu variable for on-line cpus. During 3039 * boot, only the boot cpu should be on-line; we'll init the 3040 * secondary cpus' numa_mem as they come on-line. During 3041 * node/memory hotplug, we'll fixup all on-line cpus. 3042 */ 3043 if (cpu_online(cpu)) 3044 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3045 #endif 3046 } 3047 3048 return 0; 3049 } 3050 3051 /* 3052 * Called with zonelists_mutex held always 3053 * unless system_state == SYSTEM_BOOTING. 3054 */ 3055 void build_all_zonelists(void *data) 3056 { 3057 set_zonelist_order(); 3058 3059 if (system_state == SYSTEM_BOOTING) { 3060 __build_all_zonelists(NULL); 3061 mminit_verify_zonelist(); 3062 cpuset_init_current_mems_allowed(); 3063 } else { 3064 /* we have to stop all cpus to guarantee there is no user 3065 of zonelist */ 3066 stop_machine(__build_all_zonelists, data, NULL); 3067 /* cpuset refresh routine should be here */ 3068 } 3069 vm_total_pages = nr_free_pagecache_pages(); 3070 /* 3071 * Disable grouping by mobility if the number of pages in the 3072 * system is too low to allow the mechanism to work. It would be 3073 * more accurate, but expensive to check per-zone. This check is 3074 * made on memory-hotadd so a system can start with mobility 3075 * disabled and enable it later 3076 */ 3077 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3078 page_group_by_mobility_disabled = 1; 3079 else 3080 page_group_by_mobility_disabled = 0; 3081 3082 printk("Built %i zonelists in %s order, mobility grouping %s. " 3083 "Total pages: %ld\n", 3084 nr_online_nodes, 3085 zonelist_order_name[current_zonelist_order], 3086 page_group_by_mobility_disabled ? "off" : "on", 3087 vm_total_pages); 3088 #ifdef CONFIG_NUMA 3089 printk("Policy zone: %s\n", zone_names[policy_zone]); 3090 #endif 3091 } 3092 3093 /* 3094 * Helper functions to size the waitqueue hash table. 3095 * Essentially these want to choose hash table sizes sufficiently 3096 * large so that collisions trying to wait on pages are rare. 3097 * But in fact, the number of active page waitqueues on typical 3098 * systems is ridiculously low, less than 200. So this is even 3099 * conservative, even though it seems large. 3100 * 3101 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3102 * waitqueues, i.e. the size of the waitq table given the number of pages. 3103 */ 3104 #define PAGES_PER_WAITQUEUE 256 3105 3106 #ifndef CONFIG_MEMORY_HOTPLUG 3107 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3108 { 3109 unsigned long size = 1; 3110 3111 pages /= PAGES_PER_WAITQUEUE; 3112 3113 while (size < pages) 3114 size <<= 1; 3115 3116 /* 3117 * Once we have dozens or even hundreds of threads sleeping 3118 * on IO we've got bigger problems than wait queue collision. 3119 * Limit the size of the wait table to a reasonable size. 3120 */ 3121 size = min(size, 4096UL); 3122 3123 return max(size, 4UL); 3124 } 3125 #else 3126 /* 3127 * A zone's size might be changed by hot-add, so it is not possible to determine 3128 * a suitable size for its wait_table. So we use the maximum size now. 3129 * 3130 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3131 * 3132 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3133 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3134 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3135 * 3136 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3137 * or more by the traditional way. (See above). It equals: 3138 * 3139 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3140 * ia64(16K page size) : = ( 8G + 4M)byte. 3141 * powerpc (64K page size) : = (32G +16M)byte. 3142 */ 3143 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3144 { 3145 return 4096UL; 3146 } 3147 #endif 3148 3149 /* 3150 * This is an integer logarithm so that shifts can be used later 3151 * to extract the more random high bits from the multiplicative 3152 * hash function before the remainder is taken. 3153 */ 3154 static inline unsigned long wait_table_bits(unsigned long size) 3155 { 3156 return ffz(~size); 3157 } 3158 3159 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3160 3161 /* 3162 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3163 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3164 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3165 * higher will lead to a bigger reserve which will get freed as contiguous 3166 * blocks as reclaim kicks in 3167 */ 3168 static void setup_zone_migrate_reserve(struct zone *zone) 3169 { 3170 unsigned long start_pfn, pfn, end_pfn; 3171 struct page *page; 3172 unsigned long block_migratetype; 3173 int reserve; 3174 3175 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3176 start_pfn = zone->zone_start_pfn; 3177 end_pfn = start_pfn + zone->spanned_pages; 3178 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3179 pageblock_order; 3180 3181 /* 3182 * Reserve blocks are generally in place to help high-order atomic 3183 * allocations that are short-lived. A min_free_kbytes value that 3184 * would result in more than 2 reserve blocks for atomic allocations 3185 * is assumed to be in place to help anti-fragmentation for the 3186 * future allocation of hugepages at runtime. 3187 */ 3188 reserve = min(2, reserve); 3189 3190 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3191 if (!pfn_valid(pfn)) 3192 continue; 3193 page = pfn_to_page(pfn); 3194 3195 /* Watch out for overlapping nodes */ 3196 if (page_to_nid(page) != zone_to_nid(zone)) 3197 continue; 3198 3199 /* Blocks with reserved pages will never free, skip them. */ 3200 if (PageReserved(page)) 3201 continue; 3202 3203 block_migratetype = get_pageblock_migratetype(page); 3204 3205 /* If this block is reserved, account for it */ 3206 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3207 reserve--; 3208 continue; 3209 } 3210 3211 /* Suitable for reserving if this block is movable */ 3212 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3213 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3214 move_freepages_block(zone, page, MIGRATE_RESERVE); 3215 reserve--; 3216 continue; 3217 } 3218 3219 /* 3220 * If the reserve is met and this is a previous reserved block, 3221 * take it back 3222 */ 3223 if (block_migratetype == MIGRATE_RESERVE) { 3224 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3225 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3226 } 3227 } 3228 } 3229 3230 /* 3231 * Initially all pages are reserved - free ones are freed 3232 * up by free_all_bootmem() once the early boot process is 3233 * done. Non-atomic initialization, single-pass. 3234 */ 3235 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3236 unsigned long start_pfn, enum memmap_context context) 3237 { 3238 struct page *page; 3239 unsigned long end_pfn = start_pfn + size; 3240 unsigned long pfn; 3241 struct zone *z; 3242 3243 if (highest_memmap_pfn < end_pfn - 1) 3244 highest_memmap_pfn = end_pfn - 1; 3245 3246 z = &NODE_DATA(nid)->node_zones[zone]; 3247 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3248 /* 3249 * There can be holes in boot-time mem_map[]s 3250 * handed to this function. They do not 3251 * exist on hotplugged memory. 3252 */ 3253 if (context == MEMMAP_EARLY) { 3254 if (!early_pfn_valid(pfn)) 3255 continue; 3256 if (!early_pfn_in_nid(pfn, nid)) 3257 continue; 3258 } 3259 page = pfn_to_page(pfn); 3260 set_page_links(page, zone, nid, pfn); 3261 mminit_verify_page_links(page, zone, nid, pfn); 3262 init_page_count(page); 3263 reset_page_mapcount(page); 3264 SetPageReserved(page); 3265 /* 3266 * Mark the block movable so that blocks are reserved for 3267 * movable at startup. This will force kernel allocations 3268 * to reserve their blocks rather than leaking throughout 3269 * the address space during boot when many long-lived 3270 * kernel allocations are made. Later some blocks near 3271 * the start are marked MIGRATE_RESERVE by 3272 * setup_zone_migrate_reserve() 3273 * 3274 * bitmap is created for zone's valid pfn range. but memmap 3275 * can be created for invalid pages (for alignment) 3276 * check here not to call set_pageblock_migratetype() against 3277 * pfn out of zone. 3278 */ 3279 if ((z->zone_start_pfn <= pfn) 3280 && (pfn < z->zone_start_pfn + z->spanned_pages) 3281 && !(pfn & (pageblock_nr_pages - 1))) 3282 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3283 3284 INIT_LIST_HEAD(&page->lru); 3285 #ifdef WANT_PAGE_VIRTUAL 3286 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3287 if (!is_highmem_idx(zone)) 3288 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3289 #endif 3290 } 3291 } 3292 3293 static void __meminit zone_init_free_lists(struct zone *zone) 3294 { 3295 int order, t; 3296 for_each_migratetype_order(order, t) { 3297 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3298 zone->free_area[order].nr_free = 0; 3299 } 3300 } 3301 3302 #ifndef __HAVE_ARCH_MEMMAP_INIT 3303 #define memmap_init(size, nid, zone, start_pfn) \ 3304 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3305 #endif 3306 3307 static int zone_batchsize(struct zone *zone) 3308 { 3309 #ifdef CONFIG_MMU 3310 int batch; 3311 3312 /* 3313 * The per-cpu-pages pools are set to around 1000th of the 3314 * size of the zone. But no more than 1/2 of a meg. 3315 * 3316 * OK, so we don't know how big the cache is. So guess. 3317 */ 3318 batch = zone->present_pages / 1024; 3319 if (batch * PAGE_SIZE > 512 * 1024) 3320 batch = (512 * 1024) / PAGE_SIZE; 3321 batch /= 4; /* We effectively *= 4 below */ 3322 if (batch < 1) 3323 batch = 1; 3324 3325 /* 3326 * Clamp the batch to a 2^n - 1 value. Having a power 3327 * of 2 value was found to be more likely to have 3328 * suboptimal cache aliasing properties in some cases. 3329 * 3330 * For example if 2 tasks are alternately allocating 3331 * batches of pages, one task can end up with a lot 3332 * of pages of one half of the possible page colors 3333 * and the other with pages of the other colors. 3334 */ 3335 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3336 3337 return batch; 3338 3339 #else 3340 /* The deferral and batching of frees should be suppressed under NOMMU 3341 * conditions. 3342 * 3343 * The problem is that NOMMU needs to be able to allocate large chunks 3344 * of contiguous memory as there's no hardware page translation to 3345 * assemble apparent contiguous memory from discontiguous pages. 3346 * 3347 * Queueing large contiguous runs of pages for batching, however, 3348 * causes the pages to actually be freed in smaller chunks. As there 3349 * can be a significant delay between the individual batches being 3350 * recycled, this leads to the once large chunks of space being 3351 * fragmented and becoming unavailable for high-order allocations. 3352 */ 3353 return 0; 3354 #endif 3355 } 3356 3357 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3358 { 3359 struct per_cpu_pages *pcp; 3360 int migratetype; 3361 3362 memset(p, 0, sizeof(*p)); 3363 3364 pcp = &p->pcp; 3365 pcp->count = 0; 3366 pcp->high = 6 * batch; 3367 pcp->batch = max(1UL, 1 * batch); 3368 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3369 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3370 } 3371 3372 /* 3373 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3374 * to the value high for the pageset p. 3375 */ 3376 3377 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3378 unsigned long high) 3379 { 3380 struct per_cpu_pages *pcp; 3381 3382 pcp = &p->pcp; 3383 pcp->high = high; 3384 pcp->batch = max(1UL, high/4); 3385 if ((high/4) > (PAGE_SHIFT * 8)) 3386 pcp->batch = PAGE_SHIFT * 8; 3387 } 3388 3389 static __meminit void setup_zone_pageset(struct zone *zone) 3390 { 3391 int cpu; 3392 3393 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3394 3395 for_each_possible_cpu(cpu) { 3396 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3397 3398 setup_pageset(pcp, zone_batchsize(zone)); 3399 3400 if (percpu_pagelist_fraction) 3401 setup_pagelist_highmark(pcp, 3402 (zone->present_pages / 3403 percpu_pagelist_fraction)); 3404 } 3405 } 3406 3407 /* 3408 * Allocate per cpu pagesets and initialize them. 3409 * Before this call only boot pagesets were available. 3410 */ 3411 void __init setup_per_cpu_pageset(void) 3412 { 3413 struct zone *zone; 3414 3415 for_each_populated_zone(zone) 3416 setup_zone_pageset(zone); 3417 } 3418 3419 static noinline __init_refok 3420 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3421 { 3422 int i; 3423 struct pglist_data *pgdat = zone->zone_pgdat; 3424 size_t alloc_size; 3425 3426 /* 3427 * The per-page waitqueue mechanism uses hashed waitqueues 3428 * per zone. 3429 */ 3430 zone->wait_table_hash_nr_entries = 3431 wait_table_hash_nr_entries(zone_size_pages); 3432 zone->wait_table_bits = 3433 wait_table_bits(zone->wait_table_hash_nr_entries); 3434 alloc_size = zone->wait_table_hash_nr_entries 3435 * sizeof(wait_queue_head_t); 3436 3437 if (!slab_is_available()) { 3438 zone->wait_table = (wait_queue_head_t *) 3439 alloc_bootmem_node(pgdat, alloc_size); 3440 } else { 3441 /* 3442 * This case means that a zone whose size was 0 gets new memory 3443 * via memory hot-add. 3444 * But it may be the case that a new node was hot-added. In 3445 * this case vmalloc() will not be able to use this new node's 3446 * memory - this wait_table must be initialized to use this new 3447 * node itself as well. 3448 * To use this new node's memory, further consideration will be 3449 * necessary. 3450 */ 3451 zone->wait_table = vmalloc(alloc_size); 3452 } 3453 if (!zone->wait_table) 3454 return -ENOMEM; 3455 3456 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3457 init_waitqueue_head(zone->wait_table + i); 3458 3459 return 0; 3460 } 3461 3462 static int __zone_pcp_update(void *data) 3463 { 3464 struct zone *zone = data; 3465 int cpu; 3466 unsigned long batch = zone_batchsize(zone), flags; 3467 3468 for_each_possible_cpu(cpu) { 3469 struct per_cpu_pageset *pset; 3470 struct per_cpu_pages *pcp; 3471 3472 pset = per_cpu_ptr(zone->pageset, cpu); 3473 pcp = &pset->pcp; 3474 3475 local_irq_save(flags); 3476 free_pcppages_bulk(zone, pcp->count, pcp); 3477 setup_pageset(pset, batch); 3478 local_irq_restore(flags); 3479 } 3480 return 0; 3481 } 3482 3483 void zone_pcp_update(struct zone *zone) 3484 { 3485 stop_machine(__zone_pcp_update, zone, NULL); 3486 } 3487 3488 static __meminit void zone_pcp_init(struct zone *zone) 3489 { 3490 /* 3491 * per cpu subsystem is not up at this point. The following code 3492 * relies on the ability of the linker to provide the 3493 * offset of a (static) per cpu variable into the per cpu area. 3494 */ 3495 zone->pageset = &boot_pageset; 3496 3497 if (zone->present_pages) 3498 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3499 zone->name, zone->present_pages, 3500 zone_batchsize(zone)); 3501 } 3502 3503 __meminit int init_currently_empty_zone(struct zone *zone, 3504 unsigned long zone_start_pfn, 3505 unsigned long size, 3506 enum memmap_context context) 3507 { 3508 struct pglist_data *pgdat = zone->zone_pgdat; 3509 int ret; 3510 ret = zone_wait_table_init(zone, size); 3511 if (ret) 3512 return ret; 3513 pgdat->nr_zones = zone_idx(zone) + 1; 3514 3515 zone->zone_start_pfn = zone_start_pfn; 3516 3517 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3518 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3519 pgdat->node_id, 3520 (unsigned long)zone_idx(zone), 3521 zone_start_pfn, (zone_start_pfn + size)); 3522 3523 zone_init_free_lists(zone); 3524 3525 return 0; 3526 } 3527 3528 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3529 /* 3530 * Basic iterator support. Return the first range of PFNs for a node 3531 * Note: nid == MAX_NUMNODES returns first region regardless of node 3532 */ 3533 static int __meminit first_active_region_index_in_nid(int nid) 3534 { 3535 int i; 3536 3537 for (i = 0; i < nr_nodemap_entries; i++) 3538 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3539 return i; 3540 3541 return -1; 3542 } 3543 3544 /* 3545 * Basic iterator support. Return the next active range of PFNs for a node 3546 * Note: nid == MAX_NUMNODES returns next region regardless of node 3547 */ 3548 static int __meminit next_active_region_index_in_nid(int index, int nid) 3549 { 3550 for (index = index + 1; index < nr_nodemap_entries; index++) 3551 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3552 return index; 3553 3554 return -1; 3555 } 3556 3557 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3558 /* 3559 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3560 * Architectures may implement their own version but if add_active_range() 3561 * was used and there are no special requirements, this is a convenient 3562 * alternative 3563 */ 3564 int __meminit __early_pfn_to_nid(unsigned long pfn) 3565 { 3566 int i; 3567 3568 for (i = 0; i < nr_nodemap_entries; i++) { 3569 unsigned long start_pfn = early_node_map[i].start_pfn; 3570 unsigned long end_pfn = early_node_map[i].end_pfn; 3571 3572 if (start_pfn <= pfn && pfn < end_pfn) 3573 return early_node_map[i].nid; 3574 } 3575 /* This is a memory hole */ 3576 return -1; 3577 } 3578 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3579 3580 int __meminit early_pfn_to_nid(unsigned long pfn) 3581 { 3582 int nid; 3583 3584 nid = __early_pfn_to_nid(pfn); 3585 if (nid >= 0) 3586 return nid; 3587 /* just returns 0 */ 3588 return 0; 3589 } 3590 3591 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3592 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3593 { 3594 int nid; 3595 3596 nid = __early_pfn_to_nid(pfn); 3597 if (nid >= 0 && nid != node) 3598 return false; 3599 return true; 3600 } 3601 #endif 3602 3603 /* Basic iterator support to walk early_node_map[] */ 3604 #define for_each_active_range_index_in_nid(i, nid) \ 3605 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3606 i = next_active_region_index_in_nid(i, nid)) 3607 3608 /** 3609 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3610 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3611 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3612 * 3613 * If an architecture guarantees that all ranges registered with 3614 * add_active_ranges() contain no holes and may be freed, this 3615 * this function may be used instead of calling free_bootmem() manually. 3616 */ 3617 void __init free_bootmem_with_active_regions(int nid, 3618 unsigned long max_low_pfn) 3619 { 3620 int i; 3621 3622 for_each_active_range_index_in_nid(i, nid) { 3623 unsigned long size_pages = 0; 3624 unsigned long end_pfn = early_node_map[i].end_pfn; 3625 3626 if (early_node_map[i].start_pfn >= max_low_pfn) 3627 continue; 3628 3629 if (end_pfn > max_low_pfn) 3630 end_pfn = max_low_pfn; 3631 3632 size_pages = end_pfn - early_node_map[i].start_pfn; 3633 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3634 PFN_PHYS(early_node_map[i].start_pfn), 3635 size_pages << PAGE_SHIFT); 3636 } 3637 } 3638 3639 int __init add_from_early_node_map(struct range *range, int az, 3640 int nr_range, int nid) 3641 { 3642 int i; 3643 u64 start, end; 3644 3645 /* need to go over early_node_map to find out good range for node */ 3646 for_each_active_range_index_in_nid(i, nid) { 3647 start = early_node_map[i].start_pfn; 3648 end = early_node_map[i].end_pfn; 3649 nr_range = add_range(range, az, nr_range, start, end); 3650 } 3651 return nr_range; 3652 } 3653 3654 #ifdef CONFIG_NO_BOOTMEM 3655 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, 3656 u64 goal, u64 limit) 3657 { 3658 int i; 3659 void *ptr; 3660 3661 if (limit > get_max_mapped()) 3662 limit = get_max_mapped(); 3663 3664 /* need to go over early_node_map to find out good range for node */ 3665 for_each_active_range_index_in_nid(i, nid) { 3666 u64 addr; 3667 u64 ei_start, ei_last; 3668 3669 ei_last = early_node_map[i].end_pfn; 3670 ei_last <<= PAGE_SHIFT; 3671 ei_start = early_node_map[i].start_pfn; 3672 ei_start <<= PAGE_SHIFT; 3673 addr = find_early_area(ei_start, ei_last, 3674 goal, limit, size, align); 3675 3676 if (addr == -1ULL) 3677 continue; 3678 3679 #if 0 3680 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n", 3681 nid, 3682 ei_start, ei_last, goal, limit, size, 3683 align, addr); 3684 #endif 3685 3686 ptr = phys_to_virt(addr); 3687 memset(ptr, 0, size); 3688 reserve_early_without_check(addr, addr + size, "BOOTMEM"); 3689 /* 3690 * The min_count is set to 0 so that bootmem allocated blocks 3691 * are never reported as leaks. 3692 */ 3693 kmemleak_alloc(ptr, size, 0, 0); 3694 return ptr; 3695 } 3696 3697 return NULL; 3698 } 3699 #endif 3700 3701 3702 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3703 { 3704 int i; 3705 int ret; 3706 3707 for_each_active_range_index_in_nid(i, nid) { 3708 ret = work_fn(early_node_map[i].start_pfn, 3709 early_node_map[i].end_pfn, data); 3710 if (ret) 3711 break; 3712 } 3713 } 3714 /** 3715 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3716 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3717 * 3718 * If an architecture guarantees that all ranges registered with 3719 * add_active_ranges() contain no holes and may be freed, this 3720 * function may be used instead of calling memory_present() manually. 3721 */ 3722 void __init sparse_memory_present_with_active_regions(int nid) 3723 { 3724 int i; 3725 3726 for_each_active_range_index_in_nid(i, nid) 3727 memory_present(early_node_map[i].nid, 3728 early_node_map[i].start_pfn, 3729 early_node_map[i].end_pfn); 3730 } 3731 3732 /** 3733 * get_pfn_range_for_nid - Return the start and end page frames for a node 3734 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3735 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3736 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3737 * 3738 * It returns the start and end page frame of a node based on information 3739 * provided by an arch calling add_active_range(). If called for a node 3740 * with no available memory, a warning is printed and the start and end 3741 * PFNs will be 0. 3742 */ 3743 void __meminit get_pfn_range_for_nid(unsigned int nid, 3744 unsigned long *start_pfn, unsigned long *end_pfn) 3745 { 3746 int i; 3747 *start_pfn = -1UL; 3748 *end_pfn = 0; 3749 3750 for_each_active_range_index_in_nid(i, nid) { 3751 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3752 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3753 } 3754 3755 if (*start_pfn == -1UL) 3756 *start_pfn = 0; 3757 } 3758 3759 /* 3760 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3761 * assumption is made that zones within a node are ordered in monotonic 3762 * increasing memory addresses so that the "highest" populated zone is used 3763 */ 3764 static void __init find_usable_zone_for_movable(void) 3765 { 3766 int zone_index; 3767 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3768 if (zone_index == ZONE_MOVABLE) 3769 continue; 3770 3771 if (arch_zone_highest_possible_pfn[zone_index] > 3772 arch_zone_lowest_possible_pfn[zone_index]) 3773 break; 3774 } 3775 3776 VM_BUG_ON(zone_index == -1); 3777 movable_zone = zone_index; 3778 } 3779 3780 /* 3781 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3782 * because it is sized independant of architecture. Unlike the other zones, 3783 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3784 * in each node depending on the size of each node and how evenly kernelcore 3785 * is distributed. This helper function adjusts the zone ranges 3786 * provided by the architecture for a given node by using the end of the 3787 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3788 * zones within a node are in order of monotonic increases memory addresses 3789 */ 3790 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3791 unsigned long zone_type, 3792 unsigned long node_start_pfn, 3793 unsigned long node_end_pfn, 3794 unsigned long *zone_start_pfn, 3795 unsigned long *zone_end_pfn) 3796 { 3797 /* Only adjust if ZONE_MOVABLE is on this node */ 3798 if (zone_movable_pfn[nid]) { 3799 /* Size ZONE_MOVABLE */ 3800 if (zone_type == ZONE_MOVABLE) { 3801 *zone_start_pfn = zone_movable_pfn[nid]; 3802 *zone_end_pfn = min(node_end_pfn, 3803 arch_zone_highest_possible_pfn[movable_zone]); 3804 3805 /* Adjust for ZONE_MOVABLE starting within this range */ 3806 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3807 *zone_end_pfn > zone_movable_pfn[nid]) { 3808 *zone_end_pfn = zone_movable_pfn[nid]; 3809 3810 /* Check if this whole range is within ZONE_MOVABLE */ 3811 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3812 *zone_start_pfn = *zone_end_pfn; 3813 } 3814 } 3815 3816 /* 3817 * Return the number of pages a zone spans in a node, including holes 3818 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3819 */ 3820 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3821 unsigned long zone_type, 3822 unsigned long *ignored) 3823 { 3824 unsigned long node_start_pfn, node_end_pfn; 3825 unsigned long zone_start_pfn, zone_end_pfn; 3826 3827 /* Get the start and end of the node and zone */ 3828 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3829 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3830 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3831 adjust_zone_range_for_zone_movable(nid, zone_type, 3832 node_start_pfn, node_end_pfn, 3833 &zone_start_pfn, &zone_end_pfn); 3834 3835 /* Check that this node has pages within the zone's required range */ 3836 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3837 return 0; 3838 3839 /* Move the zone boundaries inside the node if necessary */ 3840 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3841 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3842 3843 /* Return the spanned pages */ 3844 return zone_end_pfn - zone_start_pfn; 3845 } 3846 3847 /* 3848 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3849 * then all holes in the requested range will be accounted for. 3850 */ 3851 unsigned long __meminit __absent_pages_in_range(int nid, 3852 unsigned long range_start_pfn, 3853 unsigned long range_end_pfn) 3854 { 3855 int i = 0; 3856 unsigned long prev_end_pfn = 0, hole_pages = 0; 3857 unsigned long start_pfn; 3858 3859 /* Find the end_pfn of the first active range of pfns in the node */ 3860 i = first_active_region_index_in_nid(nid); 3861 if (i == -1) 3862 return 0; 3863 3864 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3865 3866 /* Account for ranges before physical memory on this node */ 3867 if (early_node_map[i].start_pfn > range_start_pfn) 3868 hole_pages = prev_end_pfn - range_start_pfn; 3869 3870 /* Find all holes for the zone within the node */ 3871 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3872 3873 /* No need to continue if prev_end_pfn is outside the zone */ 3874 if (prev_end_pfn >= range_end_pfn) 3875 break; 3876 3877 /* Make sure the end of the zone is not within the hole */ 3878 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3879 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3880 3881 /* Update the hole size cound and move on */ 3882 if (start_pfn > range_start_pfn) { 3883 BUG_ON(prev_end_pfn > start_pfn); 3884 hole_pages += start_pfn - prev_end_pfn; 3885 } 3886 prev_end_pfn = early_node_map[i].end_pfn; 3887 } 3888 3889 /* Account for ranges past physical memory on this node */ 3890 if (range_end_pfn > prev_end_pfn) 3891 hole_pages += range_end_pfn - 3892 max(range_start_pfn, prev_end_pfn); 3893 3894 return hole_pages; 3895 } 3896 3897 /** 3898 * absent_pages_in_range - Return number of page frames in holes within a range 3899 * @start_pfn: The start PFN to start searching for holes 3900 * @end_pfn: The end PFN to stop searching for holes 3901 * 3902 * It returns the number of pages frames in memory holes within a range. 3903 */ 3904 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3905 unsigned long end_pfn) 3906 { 3907 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3908 } 3909 3910 /* Return the number of page frames in holes in a zone on a node */ 3911 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3912 unsigned long zone_type, 3913 unsigned long *ignored) 3914 { 3915 unsigned long node_start_pfn, node_end_pfn; 3916 unsigned long zone_start_pfn, zone_end_pfn; 3917 3918 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3919 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3920 node_start_pfn); 3921 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3922 node_end_pfn); 3923 3924 adjust_zone_range_for_zone_movable(nid, zone_type, 3925 node_start_pfn, node_end_pfn, 3926 &zone_start_pfn, &zone_end_pfn); 3927 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3928 } 3929 3930 #else 3931 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3932 unsigned long zone_type, 3933 unsigned long *zones_size) 3934 { 3935 return zones_size[zone_type]; 3936 } 3937 3938 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3939 unsigned long zone_type, 3940 unsigned long *zholes_size) 3941 { 3942 if (!zholes_size) 3943 return 0; 3944 3945 return zholes_size[zone_type]; 3946 } 3947 3948 #endif 3949 3950 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3951 unsigned long *zones_size, unsigned long *zholes_size) 3952 { 3953 unsigned long realtotalpages, totalpages = 0; 3954 enum zone_type i; 3955 3956 for (i = 0; i < MAX_NR_ZONES; i++) 3957 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3958 zones_size); 3959 pgdat->node_spanned_pages = totalpages; 3960 3961 realtotalpages = totalpages; 3962 for (i = 0; i < MAX_NR_ZONES; i++) 3963 realtotalpages -= 3964 zone_absent_pages_in_node(pgdat->node_id, i, 3965 zholes_size); 3966 pgdat->node_present_pages = realtotalpages; 3967 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3968 realtotalpages); 3969 } 3970 3971 #ifndef CONFIG_SPARSEMEM 3972 /* 3973 * Calculate the size of the zone->blockflags rounded to an unsigned long 3974 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3975 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3976 * round what is now in bits to nearest long in bits, then return it in 3977 * bytes. 3978 */ 3979 static unsigned long __init usemap_size(unsigned long zonesize) 3980 { 3981 unsigned long usemapsize; 3982 3983 usemapsize = roundup(zonesize, pageblock_nr_pages); 3984 usemapsize = usemapsize >> pageblock_order; 3985 usemapsize *= NR_PAGEBLOCK_BITS; 3986 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3987 3988 return usemapsize / 8; 3989 } 3990 3991 static void __init setup_usemap(struct pglist_data *pgdat, 3992 struct zone *zone, unsigned long zonesize) 3993 { 3994 unsigned long usemapsize = usemap_size(zonesize); 3995 zone->pageblock_flags = NULL; 3996 if (usemapsize) 3997 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3998 } 3999 #else 4000 static void inline setup_usemap(struct pglist_data *pgdat, 4001 struct zone *zone, unsigned long zonesize) {} 4002 #endif /* CONFIG_SPARSEMEM */ 4003 4004 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4005 4006 /* Return a sensible default order for the pageblock size. */ 4007 static inline int pageblock_default_order(void) 4008 { 4009 if (HPAGE_SHIFT > PAGE_SHIFT) 4010 return HUGETLB_PAGE_ORDER; 4011 4012 return MAX_ORDER-1; 4013 } 4014 4015 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4016 static inline void __init set_pageblock_order(unsigned int order) 4017 { 4018 /* Check that pageblock_nr_pages has not already been setup */ 4019 if (pageblock_order) 4020 return; 4021 4022 /* 4023 * Assume the largest contiguous order of interest is a huge page. 4024 * This value may be variable depending on boot parameters on IA64 4025 */ 4026 pageblock_order = order; 4027 } 4028 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4029 4030 /* 4031 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4032 * and pageblock_default_order() are unused as pageblock_order is set 4033 * at compile-time. See include/linux/pageblock-flags.h for the values of 4034 * pageblock_order based on the kernel config 4035 */ 4036 static inline int pageblock_default_order(unsigned int order) 4037 { 4038 return MAX_ORDER-1; 4039 } 4040 #define set_pageblock_order(x) do {} while (0) 4041 4042 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4043 4044 /* 4045 * Set up the zone data structures: 4046 * - mark all pages reserved 4047 * - mark all memory queues empty 4048 * - clear the memory bitmaps 4049 */ 4050 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4051 unsigned long *zones_size, unsigned long *zholes_size) 4052 { 4053 enum zone_type j; 4054 int nid = pgdat->node_id; 4055 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4056 int ret; 4057 4058 pgdat_resize_init(pgdat); 4059 pgdat->nr_zones = 0; 4060 init_waitqueue_head(&pgdat->kswapd_wait); 4061 pgdat->kswapd_max_order = 0; 4062 pgdat_page_cgroup_init(pgdat); 4063 4064 for (j = 0; j < MAX_NR_ZONES; j++) { 4065 struct zone *zone = pgdat->node_zones + j; 4066 unsigned long size, realsize, memmap_pages; 4067 enum lru_list l; 4068 4069 size = zone_spanned_pages_in_node(nid, j, zones_size); 4070 realsize = size - zone_absent_pages_in_node(nid, j, 4071 zholes_size); 4072 4073 /* 4074 * Adjust realsize so that it accounts for how much memory 4075 * is used by this zone for memmap. This affects the watermark 4076 * and per-cpu initialisations 4077 */ 4078 memmap_pages = 4079 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4080 if (realsize >= memmap_pages) { 4081 realsize -= memmap_pages; 4082 if (memmap_pages) 4083 printk(KERN_DEBUG 4084 " %s zone: %lu pages used for memmap\n", 4085 zone_names[j], memmap_pages); 4086 } else 4087 printk(KERN_WARNING 4088 " %s zone: %lu pages exceeds realsize %lu\n", 4089 zone_names[j], memmap_pages, realsize); 4090 4091 /* Account for reserved pages */ 4092 if (j == 0 && realsize > dma_reserve) { 4093 realsize -= dma_reserve; 4094 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4095 zone_names[0], dma_reserve); 4096 } 4097 4098 if (!is_highmem_idx(j)) 4099 nr_kernel_pages += realsize; 4100 nr_all_pages += realsize; 4101 4102 zone->spanned_pages = size; 4103 zone->present_pages = realsize; 4104 #ifdef CONFIG_NUMA 4105 zone->node = nid; 4106 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4107 / 100; 4108 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4109 #endif 4110 zone->name = zone_names[j]; 4111 spin_lock_init(&zone->lock); 4112 spin_lock_init(&zone->lru_lock); 4113 zone_seqlock_init(zone); 4114 zone->zone_pgdat = pgdat; 4115 4116 zone_pcp_init(zone); 4117 for_each_lru(l) { 4118 INIT_LIST_HEAD(&zone->lru[l].list); 4119 zone->reclaim_stat.nr_saved_scan[l] = 0; 4120 } 4121 zone->reclaim_stat.recent_rotated[0] = 0; 4122 zone->reclaim_stat.recent_rotated[1] = 0; 4123 zone->reclaim_stat.recent_scanned[0] = 0; 4124 zone->reclaim_stat.recent_scanned[1] = 0; 4125 zap_zone_vm_stats(zone); 4126 zone->flags = 0; 4127 if (!size) 4128 continue; 4129 4130 set_pageblock_order(pageblock_default_order()); 4131 setup_usemap(pgdat, zone, size); 4132 ret = init_currently_empty_zone(zone, zone_start_pfn, 4133 size, MEMMAP_EARLY); 4134 BUG_ON(ret); 4135 memmap_init(size, nid, j, zone_start_pfn); 4136 zone_start_pfn += size; 4137 } 4138 } 4139 4140 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4141 { 4142 /* Skip empty nodes */ 4143 if (!pgdat->node_spanned_pages) 4144 return; 4145 4146 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4147 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4148 if (!pgdat->node_mem_map) { 4149 unsigned long size, start, end; 4150 struct page *map; 4151 4152 /* 4153 * The zone's endpoints aren't required to be MAX_ORDER 4154 * aligned but the node_mem_map endpoints must be in order 4155 * for the buddy allocator to function correctly. 4156 */ 4157 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4158 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4159 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4160 size = (end - start) * sizeof(struct page); 4161 map = alloc_remap(pgdat->node_id, size); 4162 if (!map) 4163 map = alloc_bootmem_node(pgdat, size); 4164 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4165 } 4166 #ifndef CONFIG_NEED_MULTIPLE_NODES 4167 /* 4168 * With no DISCONTIG, the global mem_map is just set as node 0's 4169 */ 4170 if (pgdat == NODE_DATA(0)) { 4171 mem_map = NODE_DATA(0)->node_mem_map; 4172 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4173 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4174 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4175 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4176 } 4177 #endif 4178 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4179 } 4180 4181 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4182 unsigned long node_start_pfn, unsigned long *zholes_size) 4183 { 4184 pg_data_t *pgdat = NODE_DATA(nid); 4185 4186 pgdat->node_id = nid; 4187 pgdat->node_start_pfn = node_start_pfn; 4188 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4189 4190 alloc_node_mem_map(pgdat); 4191 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4192 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4193 nid, (unsigned long)pgdat, 4194 (unsigned long)pgdat->node_mem_map); 4195 #endif 4196 4197 free_area_init_core(pgdat, zones_size, zholes_size); 4198 } 4199 4200 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4201 4202 #if MAX_NUMNODES > 1 4203 /* 4204 * Figure out the number of possible node ids. 4205 */ 4206 static void __init setup_nr_node_ids(void) 4207 { 4208 unsigned int node; 4209 unsigned int highest = 0; 4210 4211 for_each_node_mask(node, node_possible_map) 4212 highest = node; 4213 nr_node_ids = highest + 1; 4214 } 4215 #else 4216 static inline void setup_nr_node_ids(void) 4217 { 4218 } 4219 #endif 4220 4221 /** 4222 * add_active_range - Register a range of PFNs backed by physical memory 4223 * @nid: The node ID the range resides on 4224 * @start_pfn: The start PFN of the available physical memory 4225 * @end_pfn: The end PFN of the available physical memory 4226 * 4227 * These ranges are stored in an early_node_map[] and later used by 4228 * free_area_init_nodes() to calculate zone sizes and holes. If the 4229 * range spans a memory hole, it is up to the architecture to ensure 4230 * the memory is not freed by the bootmem allocator. If possible 4231 * the range being registered will be merged with existing ranges. 4232 */ 4233 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4234 unsigned long end_pfn) 4235 { 4236 int i; 4237 4238 mminit_dprintk(MMINIT_TRACE, "memory_register", 4239 "Entering add_active_range(%d, %#lx, %#lx) " 4240 "%d entries of %d used\n", 4241 nid, start_pfn, end_pfn, 4242 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4243 4244 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4245 4246 /* Merge with existing active regions if possible */ 4247 for (i = 0; i < nr_nodemap_entries; i++) { 4248 if (early_node_map[i].nid != nid) 4249 continue; 4250 4251 /* Skip if an existing region covers this new one */ 4252 if (start_pfn >= early_node_map[i].start_pfn && 4253 end_pfn <= early_node_map[i].end_pfn) 4254 return; 4255 4256 /* Merge forward if suitable */ 4257 if (start_pfn <= early_node_map[i].end_pfn && 4258 end_pfn > early_node_map[i].end_pfn) { 4259 early_node_map[i].end_pfn = end_pfn; 4260 return; 4261 } 4262 4263 /* Merge backward if suitable */ 4264 if (start_pfn < early_node_map[i].start_pfn && 4265 end_pfn >= early_node_map[i].start_pfn) { 4266 early_node_map[i].start_pfn = start_pfn; 4267 return; 4268 } 4269 } 4270 4271 /* Check that early_node_map is large enough */ 4272 if (i >= MAX_ACTIVE_REGIONS) { 4273 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4274 MAX_ACTIVE_REGIONS); 4275 return; 4276 } 4277 4278 early_node_map[i].nid = nid; 4279 early_node_map[i].start_pfn = start_pfn; 4280 early_node_map[i].end_pfn = end_pfn; 4281 nr_nodemap_entries = i + 1; 4282 } 4283 4284 /** 4285 * remove_active_range - Shrink an existing registered range of PFNs 4286 * @nid: The node id the range is on that should be shrunk 4287 * @start_pfn: The new PFN of the range 4288 * @end_pfn: The new PFN of the range 4289 * 4290 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4291 * The map is kept near the end physical page range that has already been 4292 * registered. This function allows an arch to shrink an existing registered 4293 * range. 4294 */ 4295 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4296 unsigned long end_pfn) 4297 { 4298 int i, j; 4299 int removed = 0; 4300 4301 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4302 nid, start_pfn, end_pfn); 4303 4304 /* Find the old active region end and shrink */ 4305 for_each_active_range_index_in_nid(i, nid) { 4306 if (early_node_map[i].start_pfn >= start_pfn && 4307 early_node_map[i].end_pfn <= end_pfn) { 4308 /* clear it */ 4309 early_node_map[i].start_pfn = 0; 4310 early_node_map[i].end_pfn = 0; 4311 removed = 1; 4312 continue; 4313 } 4314 if (early_node_map[i].start_pfn < start_pfn && 4315 early_node_map[i].end_pfn > start_pfn) { 4316 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4317 early_node_map[i].end_pfn = start_pfn; 4318 if (temp_end_pfn > end_pfn) 4319 add_active_range(nid, end_pfn, temp_end_pfn); 4320 continue; 4321 } 4322 if (early_node_map[i].start_pfn >= start_pfn && 4323 early_node_map[i].end_pfn > end_pfn && 4324 early_node_map[i].start_pfn < end_pfn) { 4325 early_node_map[i].start_pfn = end_pfn; 4326 continue; 4327 } 4328 } 4329 4330 if (!removed) 4331 return; 4332 4333 /* remove the blank ones */ 4334 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4335 if (early_node_map[i].nid != nid) 4336 continue; 4337 if (early_node_map[i].end_pfn) 4338 continue; 4339 /* we found it, get rid of it */ 4340 for (j = i; j < nr_nodemap_entries - 1; j++) 4341 memcpy(&early_node_map[j], &early_node_map[j+1], 4342 sizeof(early_node_map[j])); 4343 j = nr_nodemap_entries - 1; 4344 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4345 nr_nodemap_entries--; 4346 } 4347 } 4348 4349 /** 4350 * remove_all_active_ranges - Remove all currently registered regions 4351 * 4352 * During discovery, it may be found that a table like SRAT is invalid 4353 * and an alternative discovery method must be used. This function removes 4354 * all currently registered regions. 4355 */ 4356 void __init remove_all_active_ranges(void) 4357 { 4358 memset(early_node_map, 0, sizeof(early_node_map)); 4359 nr_nodemap_entries = 0; 4360 } 4361 4362 /* Compare two active node_active_regions */ 4363 static int __init cmp_node_active_region(const void *a, const void *b) 4364 { 4365 struct node_active_region *arange = (struct node_active_region *)a; 4366 struct node_active_region *brange = (struct node_active_region *)b; 4367 4368 /* Done this way to avoid overflows */ 4369 if (arange->start_pfn > brange->start_pfn) 4370 return 1; 4371 if (arange->start_pfn < brange->start_pfn) 4372 return -1; 4373 4374 return 0; 4375 } 4376 4377 /* sort the node_map by start_pfn */ 4378 void __init sort_node_map(void) 4379 { 4380 sort(early_node_map, (size_t)nr_nodemap_entries, 4381 sizeof(struct node_active_region), 4382 cmp_node_active_region, NULL); 4383 } 4384 4385 /* Find the lowest pfn for a node */ 4386 static unsigned long __init find_min_pfn_for_node(int nid) 4387 { 4388 int i; 4389 unsigned long min_pfn = ULONG_MAX; 4390 4391 /* Assuming a sorted map, the first range found has the starting pfn */ 4392 for_each_active_range_index_in_nid(i, nid) 4393 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4394 4395 if (min_pfn == ULONG_MAX) { 4396 printk(KERN_WARNING 4397 "Could not find start_pfn for node %d\n", nid); 4398 return 0; 4399 } 4400 4401 return min_pfn; 4402 } 4403 4404 /** 4405 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4406 * 4407 * It returns the minimum PFN based on information provided via 4408 * add_active_range(). 4409 */ 4410 unsigned long __init find_min_pfn_with_active_regions(void) 4411 { 4412 return find_min_pfn_for_node(MAX_NUMNODES); 4413 } 4414 4415 /* 4416 * early_calculate_totalpages() 4417 * Sum pages in active regions for movable zone. 4418 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4419 */ 4420 static unsigned long __init early_calculate_totalpages(void) 4421 { 4422 int i; 4423 unsigned long totalpages = 0; 4424 4425 for (i = 0; i < nr_nodemap_entries; i++) { 4426 unsigned long pages = early_node_map[i].end_pfn - 4427 early_node_map[i].start_pfn; 4428 totalpages += pages; 4429 if (pages) 4430 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4431 } 4432 return totalpages; 4433 } 4434 4435 /* 4436 * Find the PFN the Movable zone begins in each node. Kernel memory 4437 * is spread evenly between nodes as long as the nodes have enough 4438 * memory. When they don't, some nodes will have more kernelcore than 4439 * others 4440 */ 4441 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4442 { 4443 int i, nid; 4444 unsigned long usable_startpfn; 4445 unsigned long kernelcore_node, kernelcore_remaining; 4446 /* save the state before borrow the nodemask */ 4447 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4448 unsigned long totalpages = early_calculate_totalpages(); 4449 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4450 4451 /* 4452 * If movablecore was specified, calculate what size of 4453 * kernelcore that corresponds so that memory usable for 4454 * any allocation type is evenly spread. If both kernelcore 4455 * and movablecore are specified, then the value of kernelcore 4456 * will be used for required_kernelcore if it's greater than 4457 * what movablecore would have allowed. 4458 */ 4459 if (required_movablecore) { 4460 unsigned long corepages; 4461 4462 /* 4463 * Round-up so that ZONE_MOVABLE is at least as large as what 4464 * was requested by the user 4465 */ 4466 required_movablecore = 4467 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4468 corepages = totalpages - required_movablecore; 4469 4470 required_kernelcore = max(required_kernelcore, corepages); 4471 } 4472 4473 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4474 if (!required_kernelcore) 4475 goto out; 4476 4477 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4478 find_usable_zone_for_movable(); 4479 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4480 4481 restart: 4482 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4483 kernelcore_node = required_kernelcore / usable_nodes; 4484 for_each_node_state(nid, N_HIGH_MEMORY) { 4485 /* 4486 * Recalculate kernelcore_node if the division per node 4487 * now exceeds what is necessary to satisfy the requested 4488 * amount of memory for the kernel 4489 */ 4490 if (required_kernelcore < kernelcore_node) 4491 kernelcore_node = required_kernelcore / usable_nodes; 4492 4493 /* 4494 * As the map is walked, we track how much memory is usable 4495 * by the kernel using kernelcore_remaining. When it is 4496 * 0, the rest of the node is usable by ZONE_MOVABLE 4497 */ 4498 kernelcore_remaining = kernelcore_node; 4499 4500 /* Go through each range of PFNs within this node */ 4501 for_each_active_range_index_in_nid(i, nid) { 4502 unsigned long start_pfn, end_pfn; 4503 unsigned long size_pages; 4504 4505 start_pfn = max(early_node_map[i].start_pfn, 4506 zone_movable_pfn[nid]); 4507 end_pfn = early_node_map[i].end_pfn; 4508 if (start_pfn >= end_pfn) 4509 continue; 4510 4511 /* Account for what is only usable for kernelcore */ 4512 if (start_pfn < usable_startpfn) { 4513 unsigned long kernel_pages; 4514 kernel_pages = min(end_pfn, usable_startpfn) 4515 - start_pfn; 4516 4517 kernelcore_remaining -= min(kernel_pages, 4518 kernelcore_remaining); 4519 required_kernelcore -= min(kernel_pages, 4520 required_kernelcore); 4521 4522 /* Continue if range is now fully accounted */ 4523 if (end_pfn <= usable_startpfn) { 4524 4525 /* 4526 * Push zone_movable_pfn to the end so 4527 * that if we have to rebalance 4528 * kernelcore across nodes, we will 4529 * not double account here 4530 */ 4531 zone_movable_pfn[nid] = end_pfn; 4532 continue; 4533 } 4534 start_pfn = usable_startpfn; 4535 } 4536 4537 /* 4538 * The usable PFN range for ZONE_MOVABLE is from 4539 * start_pfn->end_pfn. Calculate size_pages as the 4540 * number of pages used as kernelcore 4541 */ 4542 size_pages = end_pfn - start_pfn; 4543 if (size_pages > kernelcore_remaining) 4544 size_pages = kernelcore_remaining; 4545 zone_movable_pfn[nid] = start_pfn + size_pages; 4546 4547 /* 4548 * Some kernelcore has been met, update counts and 4549 * break if the kernelcore for this node has been 4550 * satisified 4551 */ 4552 required_kernelcore -= min(required_kernelcore, 4553 size_pages); 4554 kernelcore_remaining -= size_pages; 4555 if (!kernelcore_remaining) 4556 break; 4557 } 4558 } 4559 4560 /* 4561 * If there is still required_kernelcore, we do another pass with one 4562 * less node in the count. This will push zone_movable_pfn[nid] further 4563 * along on the nodes that still have memory until kernelcore is 4564 * satisified 4565 */ 4566 usable_nodes--; 4567 if (usable_nodes && required_kernelcore > usable_nodes) 4568 goto restart; 4569 4570 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4571 for (nid = 0; nid < MAX_NUMNODES; nid++) 4572 zone_movable_pfn[nid] = 4573 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4574 4575 out: 4576 /* restore the node_state */ 4577 node_states[N_HIGH_MEMORY] = saved_node_state; 4578 } 4579 4580 /* Any regular memory on that node ? */ 4581 static void check_for_regular_memory(pg_data_t *pgdat) 4582 { 4583 #ifdef CONFIG_HIGHMEM 4584 enum zone_type zone_type; 4585 4586 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4587 struct zone *zone = &pgdat->node_zones[zone_type]; 4588 if (zone->present_pages) 4589 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4590 } 4591 #endif 4592 } 4593 4594 /** 4595 * free_area_init_nodes - Initialise all pg_data_t and zone data 4596 * @max_zone_pfn: an array of max PFNs for each zone 4597 * 4598 * This will call free_area_init_node() for each active node in the system. 4599 * Using the page ranges provided by add_active_range(), the size of each 4600 * zone in each node and their holes is calculated. If the maximum PFN 4601 * between two adjacent zones match, it is assumed that the zone is empty. 4602 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4603 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4604 * starts where the previous one ended. For example, ZONE_DMA32 starts 4605 * at arch_max_dma_pfn. 4606 */ 4607 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4608 { 4609 unsigned long nid; 4610 int i; 4611 4612 /* Sort early_node_map as initialisation assumes it is sorted */ 4613 sort_node_map(); 4614 4615 /* Record where the zone boundaries are */ 4616 memset(arch_zone_lowest_possible_pfn, 0, 4617 sizeof(arch_zone_lowest_possible_pfn)); 4618 memset(arch_zone_highest_possible_pfn, 0, 4619 sizeof(arch_zone_highest_possible_pfn)); 4620 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4621 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4622 for (i = 1; i < MAX_NR_ZONES; i++) { 4623 if (i == ZONE_MOVABLE) 4624 continue; 4625 arch_zone_lowest_possible_pfn[i] = 4626 arch_zone_highest_possible_pfn[i-1]; 4627 arch_zone_highest_possible_pfn[i] = 4628 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4629 } 4630 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4631 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4632 4633 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4634 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4635 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4636 4637 /* Print out the zone ranges */ 4638 printk("Zone PFN ranges:\n"); 4639 for (i = 0; i < MAX_NR_ZONES; i++) { 4640 if (i == ZONE_MOVABLE) 4641 continue; 4642 printk(" %-8s ", zone_names[i]); 4643 if (arch_zone_lowest_possible_pfn[i] == 4644 arch_zone_highest_possible_pfn[i]) 4645 printk("empty\n"); 4646 else 4647 printk("%0#10lx -> %0#10lx\n", 4648 arch_zone_lowest_possible_pfn[i], 4649 arch_zone_highest_possible_pfn[i]); 4650 } 4651 4652 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4653 printk("Movable zone start PFN for each node\n"); 4654 for (i = 0; i < MAX_NUMNODES; i++) { 4655 if (zone_movable_pfn[i]) 4656 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4657 } 4658 4659 /* Print out the early_node_map[] */ 4660 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4661 for (i = 0; i < nr_nodemap_entries; i++) 4662 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4663 early_node_map[i].start_pfn, 4664 early_node_map[i].end_pfn); 4665 4666 /* Initialise every node */ 4667 mminit_verify_pageflags_layout(); 4668 setup_nr_node_ids(); 4669 for_each_online_node(nid) { 4670 pg_data_t *pgdat = NODE_DATA(nid); 4671 free_area_init_node(nid, NULL, 4672 find_min_pfn_for_node(nid), NULL); 4673 4674 /* Any memory on that node */ 4675 if (pgdat->node_present_pages) 4676 node_set_state(nid, N_HIGH_MEMORY); 4677 check_for_regular_memory(pgdat); 4678 } 4679 } 4680 4681 static int __init cmdline_parse_core(char *p, unsigned long *core) 4682 { 4683 unsigned long long coremem; 4684 if (!p) 4685 return -EINVAL; 4686 4687 coremem = memparse(p, &p); 4688 *core = coremem >> PAGE_SHIFT; 4689 4690 /* Paranoid check that UL is enough for the coremem value */ 4691 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4692 4693 return 0; 4694 } 4695 4696 /* 4697 * kernelcore=size sets the amount of memory for use for allocations that 4698 * cannot be reclaimed or migrated. 4699 */ 4700 static int __init cmdline_parse_kernelcore(char *p) 4701 { 4702 return cmdline_parse_core(p, &required_kernelcore); 4703 } 4704 4705 /* 4706 * movablecore=size sets the amount of memory for use for allocations that 4707 * can be reclaimed or migrated. 4708 */ 4709 static int __init cmdline_parse_movablecore(char *p) 4710 { 4711 return cmdline_parse_core(p, &required_movablecore); 4712 } 4713 4714 early_param("kernelcore", cmdline_parse_kernelcore); 4715 early_param("movablecore", cmdline_parse_movablecore); 4716 4717 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4718 4719 /** 4720 * set_dma_reserve - set the specified number of pages reserved in the first zone 4721 * @new_dma_reserve: The number of pages to mark reserved 4722 * 4723 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4724 * In the DMA zone, a significant percentage may be consumed by kernel image 4725 * and other unfreeable allocations which can skew the watermarks badly. This 4726 * function may optionally be used to account for unfreeable pages in the 4727 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4728 * smaller per-cpu batchsize. 4729 */ 4730 void __init set_dma_reserve(unsigned long new_dma_reserve) 4731 { 4732 dma_reserve = new_dma_reserve; 4733 } 4734 4735 #ifndef CONFIG_NEED_MULTIPLE_NODES 4736 struct pglist_data __refdata contig_page_data = { 4737 #ifndef CONFIG_NO_BOOTMEM 4738 .bdata = &bootmem_node_data[0] 4739 #endif 4740 }; 4741 EXPORT_SYMBOL(contig_page_data); 4742 #endif 4743 4744 void __init free_area_init(unsigned long *zones_size) 4745 { 4746 free_area_init_node(0, zones_size, 4747 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4748 } 4749 4750 static int page_alloc_cpu_notify(struct notifier_block *self, 4751 unsigned long action, void *hcpu) 4752 { 4753 int cpu = (unsigned long)hcpu; 4754 4755 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4756 drain_pages(cpu); 4757 4758 /* 4759 * Spill the event counters of the dead processor 4760 * into the current processors event counters. 4761 * This artificially elevates the count of the current 4762 * processor. 4763 */ 4764 vm_events_fold_cpu(cpu); 4765 4766 /* 4767 * Zero the differential counters of the dead processor 4768 * so that the vm statistics are consistent. 4769 * 4770 * This is only okay since the processor is dead and cannot 4771 * race with what we are doing. 4772 */ 4773 refresh_cpu_vm_stats(cpu); 4774 } 4775 return NOTIFY_OK; 4776 } 4777 4778 void __init page_alloc_init(void) 4779 { 4780 hotcpu_notifier(page_alloc_cpu_notify, 0); 4781 } 4782 4783 /* 4784 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4785 * or min_free_kbytes changes. 4786 */ 4787 static void calculate_totalreserve_pages(void) 4788 { 4789 struct pglist_data *pgdat; 4790 unsigned long reserve_pages = 0; 4791 enum zone_type i, j; 4792 4793 for_each_online_pgdat(pgdat) { 4794 for (i = 0; i < MAX_NR_ZONES; i++) { 4795 struct zone *zone = pgdat->node_zones + i; 4796 unsigned long max = 0; 4797 4798 /* Find valid and maximum lowmem_reserve in the zone */ 4799 for (j = i; j < MAX_NR_ZONES; j++) { 4800 if (zone->lowmem_reserve[j] > max) 4801 max = zone->lowmem_reserve[j]; 4802 } 4803 4804 /* we treat the high watermark as reserved pages. */ 4805 max += high_wmark_pages(zone); 4806 4807 if (max > zone->present_pages) 4808 max = zone->present_pages; 4809 reserve_pages += max; 4810 } 4811 } 4812 totalreserve_pages = reserve_pages; 4813 } 4814 4815 /* 4816 * setup_per_zone_lowmem_reserve - called whenever 4817 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4818 * has a correct pages reserved value, so an adequate number of 4819 * pages are left in the zone after a successful __alloc_pages(). 4820 */ 4821 static void setup_per_zone_lowmem_reserve(void) 4822 { 4823 struct pglist_data *pgdat; 4824 enum zone_type j, idx; 4825 4826 for_each_online_pgdat(pgdat) { 4827 for (j = 0; j < MAX_NR_ZONES; j++) { 4828 struct zone *zone = pgdat->node_zones + j; 4829 unsigned long present_pages = zone->present_pages; 4830 4831 zone->lowmem_reserve[j] = 0; 4832 4833 idx = j; 4834 while (idx) { 4835 struct zone *lower_zone; 4836 4837 idx--; 4838 4839 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4840 sysctl_lowmem_reserve_ratio[idx] = 1; 4841 4842 lower_zone = pgdat->node_zones + idx; 4843 lower_zone->lowmem_reserve[j] = present_pages / 4844 sysctl_lowmem_reserve_ratio[idx]; 4845 present_pages += lower_zone->present_pages; 4846 } 4847 } 4848 } 4849 4850 /* update totalreserve_pages */ 4851 calculate_totalreserve_pages(); 4852 } 4853 4854 /** 4855 * setup_per_zone_wmarks - called when min_free_kbytes changes 4856 * or when memory is hot-{added|removed} 4857 * 4858 * Ensures that the watermark[min,low,high] values for each zone are set 4859 * correctly with respect to min_free_kbytes. 4860 */ 4861 void setup_per_zone_wmarks(void) 4862 { 4863 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4864 unsigned long lowmem_pages = 0; 4865 struct zone *zone; 4866 unsigned long flags; 4867 4868 /* Calculate total number of !ZONE_HIGHMEM pages */ 4869 for_each_zone(zone) { 4870 if (!is_highmem(zone)) 4871 lowmem_pages += zone->present_pages; 4872 } 4873 4874 for_each_zone(zone) { 4875 u64 tmp; 4876 4877 spin_lock_irqsave(&zone->lock, flags); 4878 tmp = (u64)pages_min * zone->present_pages; 4879 do_div(tmp, lowmem_pages); 4880 if (is_highmem(zone)) { 4881 /* 4882 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4883 * need highmem pages, so cap pages_min to a small 4884 * value here. 4885 * 4886 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4887 * deltas controls asynch page reclaim, and so should 4888 * not be capped for highmem. 4889 */ 4890 int min_pages; 4891 4892 min_pages = zone->present_pages / 1024; 4893 if (min_pages < SWAP_CLUSTER_MAX) 4894 min_pages = SWAP_CLUSTER_MAX; 4895 if (min_pages > 128) 4896 min_pages = 128; 4897 zone->watermark[WMARK_MIN] = min_pages; 4898 } else { 4899 /* 4900 * If it's a lowmem zone, reserve a number of pages 4901 * proportionate to the zone's size. 4902 */ 4903 zone->watermark[WMARK_MIN] = tmp; 4904 } 4905 4906 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4907 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4908 setup_zone_migrate_reserve(zone); 4909 spin_unlock_irqrestore(&zone->lock, flags); 4910 } 4911 4912 /* update totalreserve_pages */ 4913 calculate_totalreserve_pages(); 4914 } 4915 4916 /* 4917 * The inactive anon list should be small enough that the VM never has to 4918 * do too much work, but large enough that each inactive page has a chance 4919 * to be referenced again before it is swapped out. 4920 * 4921 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4922 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4923 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4924 * the anonymous pages are kept on the inactive list. 4925 * 4926 * total target max 4927 * memory ratio inactive anon 4928 * ------------------------------------- 4929 * 10MB 1 5MB 4930 * 100MB 1 50MB 4931 * 1GB 3 250MB 4932 * 10GB 10 0.9GB 4933 * 100GB 31 3GB 4934 * 1TB 101 10GB 4935 * 10TB 320 32GB 4936 */ 4937 void calculate_zone_inactive_ratio(struct zone *zone) 4938 { 4939 unsigned int gb, ratio; 4940 4941 /* Zone size in gigabytes */ 4942 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4943 if (gb) 4944 ratio = int_sqrt(10 * gb); 4945 else 4946 ratio = 1; 4947 4948 zone->inactive_ratio = ratio; 4949 } 4950 4951 static void __init setup_per_zone_inactive_ratio(void) 4952 { 4953 struct zone *zone; 4954 4955 for_each_zone(zone) 4956 calculate_zone_inactive_ratio(zone); 4957 } 4958 4959 /* 4960 * Initialise min_free_kbytes. 4961 * 4962 * For small machines we want it small (128k min). For large machines 4963 * we want it large (64MB max). But it is not linear, because network 4964 * bandwidth does not increase linearly with machine size. We use 4965 * 4966 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4967 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4968 * 4969 * which yields 4970 * 4971 * 16MB: 512k 4972 * 32MB: 724k 4973 * 64MB: 1024k 4974 * 128MB: 1448k 4975 * 256MB: 2048k 4976 * 512MB: 2896k 4977 * 1024MB: 4096k 4978 * 2048MB: 5792k 4979 * 4096MB: 8192k 4980 * 8192MB: 11584k 4981 * 16384MB: 16384k 4982 */ 4983 static int __init init_per_zone_wmark_min(void) 4984 { 4985 unsigned long lowmem_kbytes; 4986 4987 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4988 4989 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4990 if (min_free_kbytes < 128) 4991 min_free_kbytes = 128; 4992 if (min_free_kbytes > 65536) 4993 min_free_kbytes = 65536; 4994 setup_per_zone_wmarks(); 4995 setup_per_zone_lowmem_reserve(); 4996 setup_per_zone_inactive_ratio(); 4997 return 0; 4998 } 4999 module_init(init_per_zone_wmark_min) 5000 5001 /* 5002 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5003 * that we can call two helper functions whenever min_free_kbytes 5004 * changes. 5005 */ 5006 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5007 void __user *buffer, size_t *length, loff_t *ppos) 5008 { 5009 proc_dointvec(table, write, buffer, length, ppos); 5010 if (write) 5011 setup_per_zone_wmarks(); 5012 return 0; 5013 } 5014 5015 #ifdef CONFIG_NUMA 5016 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5017 void __user *buffer, size_t *length, loff_t *ppos) 5018 { 5019 struct zone *zone; 5020 int rc; 5021 5022 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5023 if (rc) 5024 return rc; 5025 5026 for_each_zone(zone) 5027 zone->min_unmapped_pages = (zone->present_pages * 5028 sysctl_min_unmapped_ratio) / 100; 5029 return 0; 5030 } 5031 5032 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5033 void __user *buffer, size_t *length, loff_t *ppos) 5034 { 5035 struct zone *zone; 5036 int rc; 5037 5038 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5039 if (rc) 5040 return rc; 5041 5042 for_each_zone(zone) 5043 zone->min_slab_pages = (zone->present_pages * 5044 sysctl_min_slab_ratio) / 100; 5045 return 0; 5046 } 5047 #endif 5048 5049 /* 5050 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5051 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5052 * whenever sysctl_lowmem_reserve_ratio changes. 5053 * 5054 * The reserve ratio obviously has absolutely no relation with the 5055 * minimum watermarks. The lowmem reserve ratio can only make sense 5056 * if in function of the boot time zone sizes. 5057 */ 5058 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5059 void __user *buffer, size_t *length, loff_t *ppos) 5060 { 5061 proc_dointvec_minmax(table, write, buffer, length, ppos); 5062 setup_per_zone_lowmem_reserve(); 5063 return 0; 5064 } 5065 5066 /* 5067 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5068 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5069 * can have before it gets flushed back to buddy allocator. 5070 */ 5071 5072 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5073 void __user *buffer, size_t *length, loff_t *ppos) 5074 { 5075 struct zone *zone; 5076 unsigned int cpu; 5077 int ret; 5078 5079 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5080 if (!write || (ret == -EINVAL)) 5081 return ret; 5082 for_each_populated_zone(zone) { 5083 for_each_possible_cpu(cpu) { 5084 unsigned long high; 5085 high = zone->present_pages / percpu_pagelist_fraction; 5086 setup_pagelist_highmark( 5087 per_cpu_ptr(zone->pageset, cpu), high); 5088 } 5089 } 5090 return 0; 5091 } 5092 5093 int hashdist = HASHDIST_DEFAULT; 5094 5095 #ifdef CONFIG_NUMA 5096 static int __init set_hashdist(char *str) 5097 { 5098 if (!str) 5099 return 0; 5100 hashdist = simple_strtoul(str, &str, 0); 5101 return 1; 5102 } 5103 __setup("hashdist=", set_hashdist); 5104 #endif 5105 5106 /* 5107 * allocate a large system hash table from bootmem 5108 * - it is assumed that the hash table must contain an exact power-of-2 5109 * quantity of entries 5110 * - limit is the number of hash buckets, not the total allocation size 5111 */ 5112 void *__init alloc_large_system_hash(const char *tablename, 5113 unsigned long bucketsize, 5114 unsigned long numentries, 5115 int scale, 5116 int flags, 5117 unsigned int *_hash_shift, 5118 unsigned int *_hash_mask, 5119 unsigned long limit) 5120 { 5121 unsigned long long max = limit; 5122 unsigned long log2qty, size; 5123 void *table = NULL; 5124 5125 /* allow the kernel cmdline to have a say */ 5126 if (!numentries) { 5127 /* round applicable memory size up to nearest megabyte */ 5128 numentries = nr_kernel_pages; 5129 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5130 numentries >>= 20 - PAGE_SHIFT; 5131 numentries <<= 20 - PAGE_SHIFT; 5132 5133 /* limit to 1 bucket per 2^scale bytes of low memory */ 5134 if (scale > PAGE_SHIFT) 5135 numentries >>= (scale - PAGE_SHIFT); 5136 else 5137 numentries <<= (PAGE_SHIFT - scale); 5138 5139 /* Make sure we've got at least a 0-order allocation.. */ 5140 if (unlikely(flags & HASH_SMALL)) { 5141 /* Makes no sense without HASH_EARLY */ 5142 WARN_ON(!(flags & HASH_EARLY)); 5143 if (!(numentries >> *_hash_shift)) { 5144 numentries = 1UL << *_hash_shift; 5145 BUG_ON(!numentries); 5146 } 5147 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5148 numentries = PAGE_SIZE / bucketsize; 5149 } 5150 numentries = roundup_pow_of_two(numentries); 5151 5152 /* limit allocation size to 1/16 total memory by default */ 5153 if (max == 0) { 5154 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5155 do_div(max, bucketsize); 5156 } 5157 5158 if (numentries > max) 5159 numentries = max; 5160 5161 log2qty = ilog2(numentries); 5162 5163 do { 5164 size = bucketsize << log2qty; 5165 if (flags & HASH_EARLY) 5166 table = alloc_bootmem_nopanic(size); 5167 else if (hashdist) 5168 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5169 else { 5170 /* 5171 * If bucketsize is not a power-of-two, we may free 5172 * some pages at the end of hash table which 5173 * alloc_pages_exact() automatically does 5174 */ 5175 if (get_order(size) < MAX_ORDER) { 5176 table = alloc_pages_exact(size, GFP_ATOMIC); 5177 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5178 } 5179 } 5180 } while (!table && size > PAGE_SIZE && --log2qty); 5181 5182 if (!table) 5183 panic("Failed to allocate %s hash table\n", tablename); 5184 5185 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5186 tablename, 5187 (1UL << log2qty), 5188 ilog2(size) - PAGE_SHIFT, 5189 size); 5190 5191 if (_hash_shift) 5192 *_hash_shift = log2qty; 5193 if (_hash_mask) 5194 *_hash_mask = (1 << log2qty) - 1; 5195 5196 return table; 5197 } 5198 5199 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5200 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5201 unsigned long pfn) 5202 { 5203 #ifdef CONFIG_SPARSEMEM 5204 return __pfn_to_section(pfn)->pageblock_flags; 5205 #else 5206 return zone->pageblock_flags; 5207 #endif /* CONFIG_SPARSEMEM */ 5208 } 5209 5210 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5211 { 5212 #ifdef CONFIG_SPARSEMEM 5213 pfn &= (PAGES_PER_SECTION-1); 5214 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5215 #else 5216 pfn = pfn - zone->zone_start_pfn; 5217 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5218 #endif /* CONFIG_SPARSEMEM */ 5219 } 5220 5221 /** 5222 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5223 * @page: The page within the block of interest 5224 * @start_bitidx: The first bit of interest to retrieve 5225 * @end_bitidx: The last bit of interest 5226 * returns pageblock_bits flags 5227 */ 5228 unsigned long get_pageblock_flags_group(struct page *page, 5229 int start_bitidx, int end_bitidx) 5230 { 5231 struct zone *zone; 5232 unsigned long *bitmap; 5233 unsigned long pfn, bitidx; 5234 unsigned long flags = 0; 5235 unsigned long value = 1; 5236 5237 zone = page_zone(page); 5238 pfn = page_to_pfn(page); 5239 bitmap = get_pageblock_bitmap(zone, pfn); 5240 bitidx = pfn_to_bitidx(zone, pfn); 5241 5242 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5243 if (test_bit(bitidx + start_bitidx, bitmap)) 5244 flags |= value; 5245 5246 return flags; 5247 } 5248 5249 /** 5250 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5251 * @page: The page within the block of interest 5252 * @start_bitidx: The first bit of interest 5253 * @end_bitidx: The last bit of interest 5254 * @flags: The flags to set 5255 */ 5256 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5257 int start_bitidx, int end_bitidx) 5258 { 5259 struct zone *zone; 5260 unsigned long *bitmap; 5261 unsigned long pfn, bitidx; 5262 unsigned long value = 1; 5263 5264 zone = page_zone(page); 5265 pfn = page_to_pfn(page); 5266 bitmap = get_pageblock_bitmap(zone, pfn); 5267 bitidx = pfn_to_bitidx(zone, pfn); 5268 VM_BUG_ON(pfn < zone->zone_start_pfn); 5269 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5270 5271 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5272 if (flags & value) 5273 __set_bit(bitidx + start_bitidx, bitmap); 5274 else 5275 __clear_bit(bitidx + start_bitidx, bitmap); 5276 } 5277 5278 /* 5279 * This is designed as sub function...plz see page_isolation.c also. 5280 * set/clear page block's type to be ISOLATE. 5281 * page allocater never alloc memory from ISOLATE block. 5282 */ 5283 5284 int set_migratetype_isolate(struct page *page) 5285 { 5286 struct zone *zone; 5287 struct page *curr_page; 5288 unsigned long flags, pfn, iter; 5289 unsigned long immobile = 0; 5290 struct memory_isolate_notify arg; 5291 int notifier_ret; 5292 int ret = -EBUSY; 5293 int zone_idx; 5294 5295 zone = page_zone(page); 5296 zone_idx = zone_idx(zone); 5297 5298 spin_lock_irqsave(&zone->lock, flags); 5299 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE || 5300 zone_idx == ZONE_MOVABLE) { 5301 ret = 0; 5302 goto out; 5303 } 5304 5305 pfn = page_to_pfn(page); 5306 arg.start_pfn = pfn; 5307 arg.nr_pages = pageblock_nr_pages; 5308 arg.pages_found = 0; 5309 5310 /* 5311 * It may be possible to isolate a pageblock even if the 5312 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5313 * notifier chain is used by balloon drivers to return the 5314 * number of pages in a range that are held by the balloon 5315 * driver to shrink memory. If all the pages are accounted for 5316 * by balloons, are free, or on the LRU, isolation can continue. 5317 * Later, for example, when memory hotplug notifier runs, these 5318 * pages reported as "can be isolated" should be isolated(freed) 5319 * by the balloon driver through the memory notifier chain. 5320 */ 5321 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5322 notifier_ret = notifier_to_errno(notifier_ret); 5323 if (notifier_ret || !arg.pages_found) 5324 goto out; 5325 5326 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) { 5327 if (!pfn_valid_within(pfn)) 5328 continue; 5329 5330 curr_page = pfn_to_page(iter); 5331 if (!page_count(curr_page) || PageLRU(curr_page)) 5332 continue; 5333 5334 immobile++; 5335 } 5336 5337 if (arg.pages_found == immobile) 5338 ret = 0; 5339 5340 out: 5341 if (!ret) { 5342 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5343 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5344 } 5345 5346 spin_unlock_irqrestore(&zone->lock, flags); 5347 if (!ret) 5348 drain_all_pages(); 5349 return ret; 5350 } 5351 5352 void unset_migratetype_isolate(struct page *page) 5353 { 5354 struct zone *zone; 5355 unsigned long flags; 5356 zone = page_zone(page); 5357 spin_lock_irqsave(&zone->lock, flags); 5358 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5359 goto out; 5360 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5361 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5362 out: 5363 spin_unlock_irqrestore(&zone->lock, flags); 5364 } 5365 5366 #ifdef CONFIG_MEMORY_HOTREMOVE 5367 /* 5368 * All pages in the range must be isolated before calling this. 5369 */ 5370 void 5371 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5372 { 5373 struct page *page; 5374 struct zone *zone; 5375 int order, i; 5376 unsigned long pfn; 5377 unsigned long flags; 5378 /* find the first valid pfn */ 5379 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5380 if (pfn_valid(pfn)) 5381 break; 5382 if (pfn == end_pfn) 5383 return; 5384 zone = page_zone(pfn_to_page(pfn)); 5385 spin_lock_irqsave(&zone->lock, flags); 5386 pfn = start_pfn; 5387 while (pfn < end_pfn) { 5388 if (!pfn_valid(pfn)) { 5389 pfn++; 5390 continue; 5391 } 5392 page = pfn_to_page(pfn); 5393 BUG_ON(page_count(page)); 5394 BUG_ON(!PageBuddy(page)); 5395 order = page_order(page); 5396 #ifdef CONFIG_DEBUG_VM 5397 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5398 pfn, 1 << order, end_pfn); 5399 #endif 5400 list_del(&page->lru); 5401 rmv_page_order(page); 5402 zone->free_area[order].nr_free--; 5403 __mod_zone_page_state(zone, NR_FREE_PAGES, 5404 - (1UL << order)); 5405 for (i = 0; i < (1 << order); i++) 5406 SetPageReserved((page+i)); 5407 pfn += (1 << order); 5408 } 5409 spin_unlock_irqrestore(&zone->lock, flags); 5410 } 5411 #endif 5412 5413 #ifdef CONFIG_MEMORY_FAILURE 5414 bool is_free_buddy_page(struct page *page) 5415 { 5416 struct zone *zone = page_zone(page); 5417 unsigned long pfn = page_to_pfn(page); 5418 unsigned long flags; 5419 int order; 5420 5421 spin_lock_irqsave(&zone->lock, flags); 5422 for (order = 0; order < MAX_ORDER; order++) { 5423 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5424 5425 if (PageBuddy(page_head) && page_order(page_head) >= order) 5426 break; 5427 } 5428 spin_unlock_irqrestore(&zone->lock, flags); 5429 5430 return order < MAX_ORDER; 5431 } 5432 #endif 5433 5434 static struct trace_print_flags pageflag_names[] = { 5435 {1UL << PG_locked, "locked" }, 5436 {1UL << PG_error, "error" }, 5437 {1UL << PG_referenced, "referenced" }, 5438 {1UL << PG_uptodate, "uptodate" }, 5439 {1UL << PG_dirty, "dirty" }, 5440 {1UL << PG_lru, "lru" }, 5441 {1UL << PG_active, "active" }, 5442 {1UL << PG_slab, "slab" }, 5443 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5444 {1UL << PG_arch_1, "arch_1" }, 5445 {1UL << PG_reserved, "reserved" }, 5446 {1UL << PG_private, "private" }, 5447 {1UL << PG_private_2, "private_2" }, 5448 {1UL << PG_writeback, "writeback" }, 5449 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5450 {1UL << PG_head, "head" }, 5451 {1UL << PG_tail, "tail" }, 5452 #else 5453 {1UL << PG_compound, "compound" }, 5454 #endif 5455 {1UL << PG_swapcache, "swapcache" }, 5456 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5457 {1UL << PG_reclaim, "reclaim" }, 5458 {1UL << PG_buddy, "buddy" }, 5459 {1UL << PG_swapbacked, "swapbacked" }, 5460 {1UL << PG_unevictable, "unevictable" }, 5461 #ifdef CONFIG_MMU 5462 {1UL << PG_mlocked, "mlocked" }, 5463 #endif 5464 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5465 {1UL << PG_uncached, "uncached" }, 5466 #endif 5467 #ifdef CONFIG_MEMORY_FAILURE 5468 {1UL << PG_hwpoison, "hwpoison" }, 5469 #endif 5470 {-1UL, NULL }, 5471 }; 5472 5473 static void dump_page_flags(unsigned long flags) 5474 { 5475 const char *delim = ""; 5476 unsigned long mask; 5477 int i; 5478 5479 printk(KERN_ALERT "page flags: %#lx(", flags); 5480 5481 /* remove zone id */ 5482 flags &= (1UL << NR_PAGEFLAGS) - 1; 5483 5484 for (i = 0; pageflag_names[i].name && flags; i++) { 5485 5486 mask = pageflag_names[i].mask; 5487 if ((flags & mask) != mask) 5488 continue; 5489 5490 flags &= ~mask; 5491 printk("%s%s", delim, pageflag_names[i].name); 5492 delim = "|"; 5493 } 5494 5495 /* check for left over flags */ 5496 if (flags) 5497 printk("%s%#lx", delim, flags); 5498 5499 printk(")\n"); 5500 } 5501 5502 void dump_page(struct page *page) 5503 { 5504 printk(KERN_ALERT 5505 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5506 page, page_count(page), page_mapcount(page), 5507 page->mapping, page->index); 5508 dump_page_flags(page->flags); 5509 } 5510