xref: /openbmc/linux/mm/page_alloc.c (revision d5532ee7)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
55 
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
58 #include "internal.h"
59 
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node);
62 EXPORT_PER_CPU_SYMBOL(numa_node);
63 #endif
64 
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
66 /*
67  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70  * defined in <linux/topology.h>.
71  */
72 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74 #endif
75 
76 /*
77  * Array of node states.
78  */
79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 	[N_POSSIBLE] = NODE_MASK_ALL,
81 	[N_ONLINE] = { { [0] = 1UL } },
82 #ifndef CONFIG_NUMA
83 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
84 #ifdef CONFIG_HIGHMEM
85 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
86 #endif
87 	[N_CPU] = { { [0] = 1UL } },
88 #endif	/* NUMA */
89 };
90 EXPORT_SYMBOL(node_states);
91 
92 unsigned long totalram_pages __read_mostly;
93 unsigned long totalreserve_pages __read_mostly;
94 int percpu_pagelist_fraction;
95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
96 
97 #ifdef CONFIG_PM_SLEEP
98 /*
99  * The following functions are used by the suspend/hibernate code to temporarily
100  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101  * while devices are suspended.  To avoid races with the suspend/hibernate code,
102  * they should always be called with pm_mutex held (gfp_allowed_mask also should
103  * only be modified with pm_mutex held, unless the suspend/hibernate code is
104  * guaranteed not to run in parallel with that modification).
105  */
106 void set_gfp_allowed_mask(gfp_t mask)
107 {
108 	WARN_ON(!mutex_is_locked(&pm_mutex));
109 	gfp_allowed_mask = mask;
110 }
111 
112 gfp_t clear_gfp_allowed_mask(gfp_t mask)
113 {
114 	gfp_t ret = gfp_allowed_mask;
115 
116 	WARN_ON(!mutex_is_locked(&pm_mutex));
117 	gfp_allowed_mask &= ~mask;
118 	return ret;
119 }
120 #endif /* CONFIG_PM_SLEEP */
121 
122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123 int pageblock_order __read_mostly;
124 #endif
125 
126 static void __free_pages_ok(struct page *page, unsigned int order);
127 
128 /*
129  * results with 256, 32 in the lowmem_reserve sysctl:
130  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131  *	1G machine -> (16M dma, 784M normal, 224M high)
132  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
135  *
136  * TBD: should special case ZONE_DMA32 machines here - in those we normally
137  * don't need any ZONE_NORMAL reservation
138  */
139 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
140 #ifdef CONFIG_ZONE_DMA
141 	 256,
142 #endif
143 #ifdef CONFIG_ZONE_DMA32
144 	 256,
145 #endif
146 #ifdef CONFIG_HIGHMEM
147 	 32,
148 #endif
149 	 32,
150 };
151 
152 EXPORT_SYMBOL(totalram_pages);
153 
154 static char * const zone_names[MAX_NR_ZONES] = {
155 #ifdef CONFIG_ZONE_DMA
156 	 "DMA",
157 #endif
158 #ifdef CONFIG_ZONE_DMA32
159 	 "DMA32",
160 #endif
161 	 "Normal",
162 #ifdef CONFIG_HIGHMEM
163 	 "HighMem",
164 #endif
165 	 "Movable",
166 };
167 
168 int min_free_kbytes = 1024;
169 
170 static unsigned long __meminitdata nr_kernel_pages;
171 static unsigned long __meminitdata nr_all_pages;
172 static unsigned long __meminitdata dma_reserve;
173 
174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
175   /*
176    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
177    * ranges of memory (RAM) that may be registered with add_active_range().
178    * Ranges passed to add_active_range() will be merged if possible
179    * so the number of times add_active_range() can be called is
180    * related to the number of nodes and the number of holes
181    */
182   #ifdef CONFIG_MAX_ACTIVE_REGIONS
183     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
185   #else
186     #if MAX_NUMNODES >= 32
187       /* If there can be many nodes, allow up to 50 holes per node */
188       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
189     #else
190       /* By default, allow up to 256 distinct regions */
191       #define MAX_ACTIVE_REGIONS 256
192     #endif
193   #endif
194 
195   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
196   static int __meminitdata nr_nodemap_entries;
197   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
198   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
199   static unsigned long __initdata required_kernelcore;
200   static unsigned long __initdata required_movablecore;
201   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
202 
203   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
204   int movable_zone;
205   EXPORT_SYMBOL(movable_zone);
206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
207 
208 #if MAX_NUMNODES > 1
209 int nr_node_ids __read_mostly = MAX_NUMNODES;
210 int nr_online_nodes __read_mostly = 1;
211 EXPORT_SYMBOL(nr_node_ids);
212 EXPORT_SYMBOL(nr_online_nodes);
213 #endif
214 
215 int page_group_by_mobility_disabled __read_mostly;
216 
217 static void set_pageblock_migratetype(struct page *page, int migratetype)
218 {
219 
220 	if (unlikely(page_group_by_mobility_disabled))
221 		migratetype = MIGRATE_UNMOVABLE;
222 
223 	set_pageblock_flags_group(page, (unsigned long)migratetype,
224 					PB_migrate, PB_migrate_end);
225 }
226 
227 bool oom_killer_disabled __read_mostly;
228 
229 #ifdef CONFIG_DEBUG_VM
230 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
231 {
232 	int ret = 0;
233 	unsigned seq;
234 	unsigned long pfn = page_to_pfn(page);
235 
236 	do {
237 		seq = zone_span_seqbegin(zone);
238 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
239 			ret = 1;
240 		else if (pfn < zone->zone_start_pfn)
241 			ret = 1;
242 	} while (zone_span_seqretry(zone, seq));
243 
244 	return ret;
245 }
246 
247 static int page_is_consistent(struct zone *zone, struct page *page)
248 {
249 	if (!pfn_valid_within(page_to_pfn(page)))
250 		return 0;
251 	if (zone != page_zone(page))
252 		return 0;
253 
254 	return 1;
255 }
256 /*
257  * Temporary debugging check for pages not lying within a given zone.
258  */
259 static int bad_range(struct zone *zone, struct page *page)
260 {
261 	if (page_outside_zone_boundaries(zone, page))
262 		return 1;
263 	if (!page_is_consistent(zone, page))
264 		return 1;
265 
266 	return 0;
267 }
268 #else
269 static inline int bad_range(struct zone *zone, struct page *page)
270 {
271 	return 0;
272 }
273 #endif
274 
275 static void bad_page(struct page *page)
276 {
277 	static unsigned long resume;
278 	static unsigned long nr_shown;
279 	static unsigned long nr_unshown;
280 
281 	/* Don't complain about poisoned pages */
282 	if (PageHWPoison(page)) {
283 		__ClearPageBuddy(page);
284 		return;
285 	}
286 
287 	/*
288 	 * Allow a burst of 60 reports, then keep quiet for that minute;
289 	 * or allow a steady drip of one report per second.
290 	 */
291 	if (nr_shown == 60) {
292 		if (time_before(jiffies, resume)) {
293 			nr_unshown++;
294 			goto out;
295 		}
296 		if (nr_unshown) {
297 			printk(KERN_ALERT
298 			      "BUG: Bad page state: %lu messages suppressed\n",
299 				nr_unshown);
300 			nr_unshown = 0;
301 		}
302 		nr_shown = 0;
303 	}
304 	if (nr_shown++ == 0)
305 		resume = jiffies + 60 * HZ;
306 
307 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
308 		current->comm, page_to_pfn(page));
309 	dump_page(page);
310 
311 	dump_stack();
312 out:
313 	/* Leave bad fields for debug, except PageBuddy could make trouble */
314 	__ClearPageBuddy(page);
315 	add_taint(TAINT_BAD_PAGE);
316 }
317 
318 /*
319  * Higher-order pages are called "compound pages".  They are structured thusly:
320  *
321  * The first PAGE_SIZE page is called the "head page".
322  *
323  * The remaining PAGE_SIZE pages are called "tail pages".
324  *
325  * All pages have PG_compound set.  All pages have their ->private pointing at
326  * the head page (even the head page has this).
327  *
328  * The first tail page's ->lru.next holds the address of the compound page's
329  * put_page() function.  Its ->lru.prev holds the order of allocation.
330  * This usage means that zero-order pages may not be compound.
331  */
332 
333 static void free_compound_page(struct page *page)
334 {
335 	__free_pages_ok(page, compound_order(page));
336 }
337 
338 void prep_compound_page(struct page *page, unsigned long order)
339 {
340 	int i;
341 	int nr_pages = 1 << order;
342 
343 	set_compound_page_dtor(page, free_compound_page);
344 	set_compound_order(page, order);
345 	__SetPageHead(page);
346 	for (i = 1; i < nr_pages; i++) {
347 		struct page *p = page + i;
348 
349 		__SetPageTail(p);
350 		p->first_page = page;
351 	}
352 }
353 
354 static int destroy_compound_page(struct page *page, unsigned long order)
355 {
356 	int i;
357 	int nr_pages = 1 << order;
358 	int bad = 0;
359 
360 	if (unlikely(compound_order(page) != order) ||
361 	    unlikely(!PageHead(page))) {
362 		bad_page(page);
363 		bad++;
364 	}
365 
366 	__ClearPageHead(page);
367 
368 	for (i = 1; i < nr_pages; i++) {
369 		struct page *p = page + i;
370 
371 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
372 			bad_page(page);
373 			bad++;
374 		}
375 		__ClearPageTail(p);
376 	}
377 
378 	return bad;
379 }
380 
381 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
382 {
383 	int i;
384 
385 	/*
386 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
388 	 */
389 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
390 	for (i = 0; i < (1 << order); i++)
391 		clear_highpage(page + i);
392 }
393 
394 static inline void set_page_order(struct page *page, int order)
395 {
396 	set_page_private(page, order);
397 	__SetPageBuddy(page);
398 }
399 
400 static inline void rmv_page_order(struct page *page)
401 {
402 	__ClearPageBuddy(page);
403 	set_page_private(page, 0);
404 }
405 
406 /*
407  * Locate the struct page for both the matching buddy in our
408  * pair (buddy1) and the combined O(n+1) page they form (page).
409  *
410  * 1) Any buddy B1 will have an order O twin B2 which satisfies
411  * the following equation:
412  *     B2 = B1 ^ (1 << O)
413  * For example, if the starting buddy (buddy2) is #8 its order
414  * 1 buddy is #10:
415  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
416  *
417  * 2) Any buddy B will have an order O+1 parent P which
418  * satisfies the following equation:
419  *     P = B & ~(1 << O)
420  *
421  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
422  */
423 static inline struct page *
424 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
425 {
426 	unsigned long buddy_idx = page_idx ^ (1 << order);
427 
428 	return page + (buddy_idx - page_idx);
429 }
430 
431 static inline unsigned long
432 __find_combined_index(unsigned long page_idx, unsigned int order)
433 {
434 	return (page_idx & ~(1 << order));
435 }
436 
437 /*
438  * This function checks whether a page is free && is the buddy
439  * we can do coalesce a page and its buddy if
440  * (a) the buddy is not in a hole &&
441  * (b) the buddy is in the buddy system &&
442  * (c) a page and its buddy have the same order &&
443  * (d) a page and its buddy are in the same zone.
444  *
445  * For recording whether a page is in the buddy system, we use PG_buddy.
446  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
447  *
448  * For recording page's order, we use page_private(page).
449  */
450 static inline int page_is_buddy(struct page *page, struct page *buddy,
451 								int order)
452 {
453 	if (!pfn_valid_within(page_to_pfn(buddy)))
454 		return 0;
455 
456 	if (page_zone_id(page) != page_zone_id(buddy))
457 		return 0;
458 
459 	if (PageBuddy(buddy) && page_order(buddy) == order) {
460 		VM_BUG_ON(page_count(buddy) != 0);
461 		return 1;
462 	}
463 	return 0;
464 }
465 
466 /*
467  * Freeing function for a buddy system allocator.
468  *
469  * The concept of a buddy system is to maintain direct-mapped table
470  * (containing bit values) for memory blocks of various "orders".
471  * The bottom level table contains the map for the smallest allocatable
472  * units of memory (here, pages), and each level above it describes
473  * pairs of units from the levels below, hence, "buddies".
474  * At a high level, all that happens here is marking the table entry
475  * at the bottom level available, and propagating the changes upward
476  * as necessary, plus some accounting needed to play nicely with other
477  * parts of the VM system.
478  * At each level, we keep a list of pages, which are heads of continuous
479  * free pages of length of (1 << order) and marked with PG_buddy. Page's
480  * order is recorded in page_private(page) field.
481  * So when we are allocating or freeing one, we can derive the state of the
482  * other.  That is, if we allocate a small block, and both were
483  * free, the remainder of the region must be split into blocks.
484  * If a block is freed, and its buddy is also free, then this
485  * triggers coalescing into a block of larger size.
486  *
487  * -- wli
488  */
489 
490 static inline void __free_one_page(struct page *page,
491 		struct zone *zone, unsigned int order,
492 		int migratetype)
493 {
494 	unsigned long page_idx;
495 	unsigned long combined_idx;
496 	struct page *buddy;
497 
498 	if (unlikely(PageCompound(page)))
499 		if (unlikely(destroy_compound_page(page, order)))
500 			return;
501 
502 	VM_BUG_ON(migratetype == -1);
503 
504 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505 
506 	VM_BUG_ON(page_idx & ((1 << order) - 1));
507 	VM_BUG_ON(bad_range(zone, page));
508 
509 	while (order < MAX_ORDER-1) {
510 		buddy = __page_find_buddy(page, page_idx, order);
511 		if (!page_is_buddy(page, buddy, order))
512 			break;
513 
514 		/* Our buddy is free, merge with it and move up one order. */
515 		list_del(&buddy->lru);
516 		zone->free_area[order].nr_free--;
517 		rmv_page_order(buddy);
518 		combined_idx = __find_combined_index(page_idx, order);
519 		page = page + (combined_idx - page_idx);
520 		page_idx = combined_idx;
521 		order++;
522 	}
523 	set_page_order(page, order);
524 
525 	/*
526 	 * If this is not the largest possible page, check if the buddy
527 	 * of the next-highest order is free. If it is, it's possible
528 	 * that pages are being freed that will coalesce soon. In case,
529 	 * that is happening, add the free page to the tail of the list
530 	 * so it's less likely to be used soon and more likely to be merged
531 	 * as a higher order page
532 	 */
533 	if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
534 		struct page *higher_page, *higher_buddy;
535 		combined_idx = __find_combined_index(page_idx, order);
536 		higher_page = page + combined_idx - page_idx;
537 		higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
538 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
539 			list_add_tail(&page->lru,
540 				&zone->free_area[order].free_list[migratetype]);
541 			goto out;
542 		}
543 	}
544 
545 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
546 out:
547 	zone->free_area[order].nr_free++;
548 }
549 
550 /*
551  * free_page_mlock() -- clean up attempts to free and mlocked() page.
552  * Page should not be on lru, so no need to fix that up.
553  * free_pages_check() will verify...
554  */
555 static inline void free_page_mlock(struct page *page)
556 {
557 	__dec_zone_page_state(page, NR_MLOCK);
558 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
559 }
560 
561 static inline int free_pages_check(struct page *page)
562 {
563 	if (unlikely(page_mapcount(page) |
564 		(page->mapping != NULL)  |
565 		(atomic_read(&page->_count) != 0) |
566 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
567 		bad_page(page);
568 		return 1;
569 	}
570 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
571 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
572 	return 0;
573 }
574 
575 /*
576  * Frees a number of pages from the PCP lists
577  * Assumes all pages on list are in same zone, and of same order.
578  * count is the number of pages to free.
579  *
580  * If the zone was previously in an "all pages pinned" state then look to
581  * see if this freeing clears that state.
582  *
583  * And clear the zone's pages_scanned counter, to hold off the "all pages are
584  * pinned" detection logic.
585  */
586 static void free_pcppages_bulk(struct zone *zone, int count,
587 					struct per_cpu_pages *pcp)
588 {
589 	int migratetype = 0;
590 	int batch_free = 0;
591 	int to_free = count;
592 
593 	spin_lock(&zone->lock);
594 	zone->all_unreclaimable = 0;
595 	zone->pages_scanned = 0;
596 
597 	while (to_free) {
598 		struct page *page;
599 		struct list_head *list;
600 
601 		/*
602 		 * Remove pages from lists in a round-robin fashion. A
603 		 * batch_free count is maintained that is incremented when an
604 		 * empty list is encountered.  This is so more pages are freed
605 		 * off fuller lists instead of spinning excessively around empty
606 		 * lists
607 		 */
608 		do {
609 			batch_free++;
610 			if (++migratetype == MIGRATE_PCPTYPES)
611 				migratetype = 0;
612 			list = &pcp->lists[migratetype];
613 		} while (list_empty(list));
614 
615 		do {
616 			page = list_entry(list->prev, struct page, lru);
617 			/* must delete as __free_one_page list manipulates */
618 			list_del(&page->lru);
619 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 			__free_one_page(page, zone, 0, page_private(page));
621 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
622 		} while (--to_free && --batch_free && !list_empty(list));
623 	}
624 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
625 	spin_unlock(&zone->lock);
626 }
627 
628 static void free_one_page(struct zone *zone, struct page *page, int order,
629 				int migratetype)
630 {
631 	spin_lock(&zone->lock);
632 	zone->all_unreclaimable = 0;
633 	zone->pages_scanned = 0;
634 
635 	__free_one_page(page, zone, order, migratetype);
636 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
637 	spin_unlock(&zone->lock);
638 }
639 
640 static bool free_pages_prepare(struct page *page, unsigned int order)
641 {
642 	int i;
643 	int bad = 0;
644 
645 	trace_mm_page_free_direct(page, order);
646 	kmemcheck_free_shadow(page, order);
647 
648 	for (i = 0; i < (1 << order); i++) {
649 		struct page *pg = page + i;
650 
651 		if (PageAnon(pg))
652 			pg->mapping = NULL;
653 		bad += free_pages_check(pg);
654 	}
655 	if (bad)
656 		return false;
657 
658 	if (!PageHighMem(page)) {
659 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
660 		debug_check_no_obj_freed(page_address(page),
661 					   PAGE_SIZE << order);
662 	}
663 	arch_free_page(page, order);
664 	kernel_map_pages(page, 1 << order, 0);
665 
666 	return true;
667 }
668 
669 static void __free_pages_ok(struct page *page, unsigned int order)
670 {
671 	unsigned long flags;
672 	int wasMlocked = __TestClearPageMlocked(page);
673 
674 	if (!free_pages_prepare(page, order))
675 		return;
676 
677 	local_irq_save(flags);
678 	if (unlikely(wasMlocked))
679 		free_page_mlock(page);
680 	__count_vm_events(PGFREE, 1 << order);
681 	free_one_page(page_zone(page), page, order,
682 					get_pageblock_migratetype(page));
683 	local_irq_restore(flags);
684 }
685 
686 /*
687  * permit the bootmem allocator to evade page validation on high-order frees
688  */
689 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
690 {
691 	if (order == 0) {
692 		__ClearPageReserved(page);
693 		set_page_count(page, 0);
694 		set_page_refcounted(page);
695 		__free_page(page);
696 	} else {
697 		int loop;
698 
699 		prefetchw(page);
700 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
701 			struct page *p = &page[loop];
702 
703 			if (loop + 1 < BITS_PER_LONG)
704 				prefetchw(p + 1);
705 			__ClearPageReserved(p);
706 			set_page_count(p, 0);
707 		}
708 
709 		set_page_refcounted(page);
710 		__free_pages(page, order);
711 	}
712 }
713 
714 
715 /*
716  * The order of subdivision here is critical for the IO subsystem.
717  * Please do not alter this order without good reasons and regression
718  * testing. Specifically, as large blocks of memory are subdivided,
719  * the order in which smaller blocks are delivered depends on the order
720  * they're subdivided in this function. This is the primary factor
721  * influencing the order in which pages are delivered to the IO
722  * subsystem according to empirical testing, and this is also justified
723  * by considering the behavior of a buddy system containing a single
724  * large block of memory acted on by a series of small allocations.
725  * This behavior is a critical factor in sglist merging's success.
726  *
727  * -- wli
728  */
729 static inline void expand(struct zone *zone, struct page *page,
730 	int low, int high, struct free_area *area,
731 	int migratetype)
732 {
733 	unsigned long size = 1 << high;
734 
735 	while (high > low) {
736 		area--;
737 		high--;
738 		size >>= 1;
739 		VM_BUG_ON(bad_range(zone, &page[size]));
740 		list_add(&page[size].lru, &area->free_list[migratetype]);
741 		area->nr_free++;
742 		set_page_order(&page[size], high);
743 	}
744 }
745 
746 /*
747  * This page is about to be returned from the page allocator
748  */
749 static inline int check_new_page(struct page *page)
750 {
751 	if (unlikely(page_mapcount(page) |
752 		(page->mapping != NULL)  |
753 		(atomic_read(&page->_count) != 0)  |
754 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
755 		bad_page(page);
756 		return 1;
757 	}
758 	return 0;
759 }
760 
761 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
762 {
763 	int i;
764 
765 	for (i = 0; i < (1 << order); i++) {
766 		struct page *p = page + i;
767 		if (unlikely(check_new_page(p)))
768 			return 1;
769 	}
770 
771 	set_page_private(page, 0);
772 	set_page_refcounted(page);
773 
774 	arch_alloc_page(page, order);
775 	kernel_map_pages(page, 1 << order, 1);
776 
777 	if (gfp_flags & __GFP_ZERO)
778 		prep_zero_page(page, order, gfp_flags);
779 
780 	if (order && (gfp_flags & __GFP_COMP))
781 		prep_compound_page(page, order);
782 
783 	return 0;
784 }
785 
786 /*
787  * Go through the free lists for the given migratetype and remove
788  * the smallest available page from the freelists
789  */
790 static inline
791 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
792 						int migratetype)
793 {
794 	unsigned int current_order;
795 	struct free_area * area;
796 	struct page *page;
797 
798 	/* Find a page of the appropriate size in the preferred list */
799 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
800 		area = &(zone->free_area[current_order]);
801 		if (list_empty(&area->free_list[migratetype]))
802 			continue;
803 
804 		page = list_entry(area->free_list[migratetype].next,
805 							struct page, lru);
806 		list_del(&page->lru);
807 		rmv_page_order(page);
808 		area->nr_free--;
809 		expand(zone, page, order, current_order, area, migratetype);
810 		return page;
811 	}
812 
813 	return NULL;
814 }
815 
816 
817 /*
818  * This array describes the order lists are fallen back to when
819  * the free lists for the desirable migrate type are depleted
820  */
821 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
822 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
823 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
824 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
825 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
826 };
827 
828 /*
829  * Move the free pages in a range to the free lists of the requested type.
830  * Note that start_page and end_pages are not aligned on a pageblock
831  * boundary. If alignment is required, use move_freepages_block()
832  */
833 static int move_freepages(struct zone *zone,
834 			  struct page *start_page, struct page *end_page,
835 			  int migratetype)
836 {
837 	struct page *page;
838 	unsigned long order;
839 	int pages_moved = 0;
840 
841 #ifndef CONFIG_HOLES_IN_ZONE
842 	/*
843 	 * page_zone is not safe to call in this context when
844 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
845 	 * anyway as we check zone boundaries in move_freepages_block().
846 	 * Remove at a later date when no bug reports exist related to
847 	 * grouping pages by mobility
848 	 */
849 	BUG_ON(page_zone(start_page) != page_zone(end_page));
850 #endif
851 
852 	for (page = start_page; page <= end_page;) {
853 		/* Make sure we are not inadvertently changing nodes */
854 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
855 
856 		if (!pfn_valid_within(page_to_pfn(page))) {
857 			page++;
858 			continue;
859 		}
860 
861 		if (!PageBuddy(page)) {
862 			page++;
863 			continue;
864 		}
865 
866 		order = page_order(page);
867 		list_del(&page->lru);
868 		list_add(&page->lru,
869 			&zone->free_area[order].free_list[migratetype]);
870 		page += 1 << order;
871 		pages_moved += 1 << order;
872 	}
873 
874 	return pages_moved;
875 }
876 
877 static int move_freepages_block(struct zone *zone, struct page *page,
878 				int migratetype)
879 {
880 	unsigned long start_pfn, end_pfn;
881 	struct page *start_page, *end_page;
882 
883 	start_pfn = page_to_pfn(page);
884 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
885 	start_page = pfn_to_page(start_pfn);
886 	end_page = start_page + pageblock_nr_pages - 1;
887 	end_pfn = start_pfn + pageblock_nr_pages - 1;
888 
889 	/* Do not cross zone boundaries */
890 	if (start_pfn < zone->zone_start_pfn)
891 		start_page = page;
892 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
893 		return 0;
894 
895 	return move_freepages(zone, start_page, end_page, migratetype);
896 }
897 
898 static void change_pageblock_range(struct page *pageblock_page,
899 					int start_order, int migratetype)
900 {
901 	int nr_pageblocks = 1 << (start_order - pageblock_order);
902 
903 	while (nr_pageblocks--) {
904 		set_pageblock_migratetype(pageblock_page, migratetype);
905 		pageblock_page += pageblock_nr_pages;
906 	}
907 }
908 
909 /* Remove an element from the buddy allocator from the fallback list */
910 static inline struct page *
911 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
912 {
913 	struct free_area * area;
914 	int current_order;
915 	struct page *page;
916 	int migratetype, i;
917 
918 	/* Find the largest possible block of pages in the other list */
919 	for (current_order = MAX_ORDER-1; current_order >= order;
920 						--current_order) {
921 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
922 			migratetype = fallbacks[start_migratetype][i];
923 
924 			/* MIGRATE_RESERVE handled later if necessary */
925 			if (migratetype == MIGRATE_RESERVE)
926 				continue;
927 
928 			area = &(zone->free_area[current_order]);
929 			if (list_empty(&area->free_list[migratetype]))
930 				continue;
931 
932 			page = list_entry(area->free_list[migratetype].next,
933 					struct page, lru);
934 			area->nr_free--;
935 
936 			/*
937 			 * If breaking a large block of pages, move all free
938 			 * pages to the preferred allocation list. If falling
939 			 * back for a reclaimable kernel allocation, be more
940 			 * agressive about taking ownership of free pages
941 			 */
942 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
943 					start_migratetype == MIGRATE_RECLAIMABLE ||
944 					page_group_by_mobility_disabled) {
945 				unsigned long pages;
946 				pages = move_freepages_block(zone, page,
947 								start_migratetype);
948 
949 				/* Claim the whole block if over half of it is free */
950 				if (pages >= (1 << (pageblock_order-1)) ||
951 						page_group_by_mobility_disabled)
952 					set_pageblock_migratetype(page,
953 								start_migratetype);
954 
955 				migratetype = start_migratetype;
956 			}
957 
958 			/* Remove the page from the freelists */
959 			list_del(&page->lru);
960 			rmv_page_order(page);
961 
962 			/* Take ownership for orders >= pageblock_order */
963 			if (current_order >= pageblock_order)
964 				change_pageblock_range(page, current_order,
965 							start_migratetype);
966 
967 			expand(zone, page, order, current_order, area, migratetype);
968 
969 			trace_mm_page_alloc_extfrag(page, order, current_order,
970 				start_migratetype, migratetype);
971 
972 			return page;
973 		}
974 	}
975 
976 	return NULL;
977 }
978 
979 /*
980  * Do the hard work of removing an element from the buddy allocator.
981  * Call me with the zone->lock already held.
982  */
983 static struct page *__rmqueue(struct zone *zone, unsigned int order,
984 						int migratetype)
985 {
986 	struct page *page;
987 
988 retry_reserve:
989 	page = __rmqueue_smallest(zone, order, migratetype);
990 
991 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
992 		page = __rmqueue_fallback(zone, order, migratetype);
993 
994 		/*
995 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
996 		 * is used because __rmqueue_smallest is an inline function
997 		 * and we want just one call site
998 		 */
999 		if (!page) {
1000 			migratetype = MIGRATE_RESERVE;
1001 			goto retry_reserve;
1002 		}
1003 	}
1004 
1005 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1006 	return page;
1007 }
1008 
1009 /*
1010  * Obtain a specified number of elements from the buddy allocator, all under
1011  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1012  * Returns the number of new pages which were placed at *list.
1013  */
1014 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1015 			unsigned long count, struct list_head *list,
1016 			int migratetype, int cold)
1017 {
1018 	int i;
1019 
1020 	spin_lock(&zone->lock);
1021 	for (i = 0; i < count; ++i) {
1022 		struct page *page = __rmqueue(zone, order, migratetype);
1023 		if (unlikely(page == NULL))
1024 			break;
1025 
1026 		/*
1027 		 * Split buddy pages returned by expand() are received here
1028 		 * in physical page order. The page is added to the callers and
1029 		 * list and the list head then moves forward. From the callers
1030 		 * perspective, the linked list is ordered by page number in
1031 		 * some conditions. This is useful for IO devices that can
1032 		 * merge IO requests if the physical pages are ordered
1033 		 * properly.
1034 		 */
1035 		if (likely(cold == 0))
1036 			list_add(&page->lru, list);
1037 		else
1038 			list_add_tail(&page->lru, list);
1039 		set_page_private(page, migratetype);
1040 		list = &page->lru;
1041 	}
1042 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1043 	spin_unlock(&zone->lock);
1044 	return i;
1045 }
1046 
1047 #ifdef CONFIG_NUMA
1048 /*
1049  * Called from the vmstat counter updater to drain pagesets of this
1050  * currently executing processor on remote nodes after they have
1051  * expired.
1052  *
1053  * Note that this function must be called with the thread pinned to
1054  * a single processor.
1055  */
1056 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1057 {
1058 	unsigned long flags;
1059 	int to_drain;
1060 
1061 	local_irq_save(flags);
1062 	if (pcp->count >= pcp->batch)
1063 		to_drain = pcp->batch;
1064 	else
1065 		to_drain = pcp->count;
1066 	free_pcppages_bulk(zone, to_drain, pcp);
1067 	pcp->count -= to_drain;
1068 	local_irq_restore(flags);
1069 }
1070 #endif
1071 
1072 /*
1073  * Drain pages of the indicated processor.
1074  *
1075  * The processor must either be the current processor and the
1076  * thread pinned to the current processor or a processor that
1077  * is not online.
1078  */
1079 static void drain_pages(unsigned int cpu)
1080 {
1081 	unsigned long flags;
1082 	struct zone *zone;
1083 
1084 	for_each_populated_zone(zone) {
1085 		struct per_cpu_pageset *pset;
1086 		struct per_cpu_pages *pcp;
1087 
1088 		local_irq_save(flags);
1089 		pset = per_cpu_ptr(zone->pageset, cpu);
1090 
1091 		pcp = &pset->pcp;
1092 		free_pcppages_bulk(zone, pcp->count, pcp);
1093 		pcp->count = 0;
1094 		local_irq_restore(flags);
1095 	}
1096 }
1097 
1098 /*
1099  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1100  */
1101 void drain_local_pages(void *arg)
1102 {
1103 	drain_pages(smp_processor_id());
1104 }
1105 
1106 /*
1107  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1108  */
1109 void drain_all_pages(void)
1110 {
1111 	on_each_cpu(drain_local_pages, NULL, 1);
1112 }
1113 
1114 #ifdef CONFIG_HIBERNATION
1115 
1116 void mark_free_pages(struct zone *zone)
1117 {
1118 	unsigned long pfn, max_zone_pfn;
1119 	unsigned long flags;
1120 	int order, t;
1121 	struct list_head *curr;
1122 
1123 	if (!zone->spanned_pages)
1124 		return;
1125 
1126 	spin_lock_irqsave(&zone->lock, flags);
1127 
1128 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1129 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1130 		if (pfn_valid(pfn)) {
1131 			struct page *page = pfn_to_page(pfn);
1132 
1133 			if (!swsusp_page_is_forbidden(page))
1134 				swsusp_unset_page_free(page);
1135 		}
1136 
1137 	for_each_migratetype_order(order, t) {
1138 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1139 			unsigned long i;
1140 
1141 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1142 			for (i = 0; i < (1UL << order); i++)
1143 				swsusp_set_page_free(pfn_to_page(pfn + i));
1144 		}
1145 	}
1146 	spin_unlock_irqrestore(&zone->lock, flags);
1147 }
1148 #endif /* CONFIG_PM */
1149 
1150 /*
1151  * Free a 0-order page
1152  * cold == 1 ? free a cold page : free a hot page
1153  */
1154 void free_hot_cold_page(struct page *page, int cold)
1155 {
1156 	struct zone *zone = page_zone(page);
1157 	struct per_cpu_pages *pcp;
1158 	unsigned long flags;
1159 	int migratetype;
1160 	int wasMlocked = __TestClearPageMlocked(page);
1161 
1162 	if (!free_pages_prepare(page, 0))
1163 		return;
1164 
1165 	migratetype = get_pageblock_migratetype(page);
1166 	set_page_private(page, migratetype);
1167 	local_irq_save(flags);
1168 	if (unlikely(wasMlocked))
1169 		free_page_mlock(page);
1170 	__count_vm_event(PGFREE);
1171 
1172 	/*
1173 	 * We only track unmovable, reclaimable and movable on pcp lists.
1174 	 * Free ISOLATE pages back to the allocator because they are being
1175 	 * offlined but treat RESERVE as movable pages so we can get those
1176 	 * areas back if necessary. Otherwise, we may have to free
1177 	 * excessively into the page allocator
1178 	 */
1179 	if (migratetype >= MIGRATE_PCPTYPES) {
1180 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1181 			free_one_page(zone, page, 0, migratetype);
1182 			goto out;
1183 		}
1184 		migratetype = MIGRATE_MOVABLE;
1185 	}
1186 
1187 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1188 	if (cold)
1189 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1190 	else
1191 		list_add(&page->lru, &pcp->lists[migratetype]);
1192 	pcp->count++;
1193 	if (pcp->count >= pcp->high) {
1194 		free_pcppages_bulk(zone, pcp->batch, pcp);
1195 		pcp->count -= pcp->batch;
1196 	}
1197 
1198 out:
1199 	local_irq_restore(flags);
1200 }
1201 
1202 /*
1203  * split_page takes a non-compound higher-order page, and splits it into
1204  * n (1<<order) sub-pages: page[0..n]
1205  * Each sub-page must be freed individually.
1206  *
1207  * Note: this is probably too low level an operation for use in drivers.
1208  * Please consult with lkml before using this in your driver.
1209  */
1210 void split_page(struct page *page, unsigned int order)
1211 {
1212 	int i;
1213 
1214 	VM_BUG_ON(PageCompound(page));
1215 	VM_BUG_ON(!page_count(page));
1216 
1217 #ifdef CONFIG_KMEMCHECK
1218 	/*
1219 	 * Split shadow pages too, because free(page[0]) would
1220 	 * otherwise free the whole shadow.
1221 	 */
1222 	if (kmemcheck_page_is_tracked(page))
1223 		split_page(virt_to_page(page[0].shadow), order);
1224 #endif
1225 
1226 	for (i = 1; i < (1 << order); i++)
1227 		set_page_refcounted(page + i);
1228 }
1229 
1230 /*
1231  * Similar to split_page except the page is already free. As this is only
1232  * being used for migration, the migratetype of the block also changes.
1233  * As this is called with interrupts disabled, the caller is responsible
1234  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1235  * are enabled.
1236  *
1237  * Note: this is probably too low level an operation for use in drivers.
1238  * Please consult with lkml before using this in your driver.
1239  */
1240 int split_free_page(struct page *page)
1241 {
1242 	unsigned int order;
1243 	unsigned long watermark;
1244 	struct zone *zone;
1245 
1246 	BUG_ON(!PageBuddy(page));
1247 
1248 	zone = page_zone(page);
1249 	order = page_order(page);
1250 
1251 	/* Obey watermarks as if the page was being allocated */
1252 	watermark = low_wmark_pages(zone) + (1 << order);
1253 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1254 		return 0;
1255 
1256 	/* Remove page from free list */
1257 	list_del(&page->lru);
1258 	zone->free_area[order].nr_free--;
1259 	rmv_page_order(page);
1260 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1261 
1262 	/* Split into individual pages */
1263 	set_page_refcounted(page);
1264 	split_page(page, order);
1265 
1266 	if (order >= pageblock_order - 1) {
1267 		struct page *endpage = page + (1 << order) - 1;
1268 		for (; page < endpage; page += pageblock_nr_pages)
1269 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1270 	}
1271 
1272 	return 1 << order;
1273 }
1274 
1275 /*
1276  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1277  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1278  * or two.
1279  */
1280 static inline
1281 struct page *buffered_rmqueue(struct zone *preferred_zone,
1282 			struct zone *zone, int order, gfp_t gfp_flags,
1283 			int migratetype)
1284 {
1285 	unsigned long flags;
1286 	struct page *page;
1287 	int cold = !!(gfp_flags & __GFP_COLD);
1288 
1289 again:
1290 	if (likely(order == 0)) {
1291 		struct per_cpu_pages *pcp;
1292 		struct list_head *list;
1293 
1294 		local_irq_save(flags);
1295 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1296 		list = &pcp->lists[migratetype];
1297 		if (list_empty(list)) {
1298 			pcp->count += rmqueue_bulk(zone, 0,
1299 					pcp->batch, list,
1300 					migratetype, cold);
1301 			if (unlikely(list_empty(list)))
1302 				goto failed;
1303 		}
1304 
1305 		if (cold)
1306 			page = list_entry(list->prev, struct page, lru);
1307 		else
1308 			page = list_entry(list->next, struct page, lru);
1309 
1310 		list_del(&page->lru);
1311 		pcp->count--;
1312 	} else {
1313 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1314 			/*
1315 			 * __GFP_NOFAIL is not to be used in new code.
1316 			 *
1317 			 * All __GFP_NOFAIL callers should be fixed so that they
1318 			 * properly detect and handle allocation failures.
1319 			 *
1320 			 * We most definitely don't want callers attempting to
1321 			 * allocate greater than order-1 page units with
1322 			 * __GFP_NOFAIL.
1323 			 */
1324 			WARN_ON_ONCE(order > 1);
1325 		}
1326 		spin_lock_irqsave(&zone->lock, flags);
1327 		page = __rmqueue(zone, order, migratetype);
1328 		spin_unlock(&zone->lock);
1329 		if (!page)
1330 			goto failed;
1331 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1332 	}
1333 
1334 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1335 	zone_statistics(preferred_zone, zone);
1336 	local_irq_restore(flags);
1337 
1338 	VM_BUG_ON(bad_range(zone, page));
1339 	if (prep_new_page(page, order, gfp_flags))
1340 		goto again;
1341 	return page;
1342 
1343 failed:
1344 	local_irq_restore(flags);
1345 	return NULL;
1346 }
1347 
1348 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1349 #define ALLOC_WMARK_MIN		WMARK_MIN
1350 #define ALLOC_WMARK_LOW		WMARK_LOW
1351 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1352 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1353 
1354 /* Mask to get the watermark bits */
1355 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1356 
1357 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1358 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1359 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1360 
1361 #ifdef CONFIG_FAIL_PAGE_ALLOC
1362 
1363 static struct fail_page_alloc_attr {
1364 	struct fault_attr attr;
1365 
1366 	u32 ignore_gfp_highmem;
1367 	u32 ignore_gfp_wait;
1368 	u32 min_order;
1369 
1370 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1371 
1372 	struct dentry *ignore_gfp_highmem_file;
1373 	struct dentry *ignore_gfp_wait_file;
1374 	struct dentry *min_order_file;
1375 
1376 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1377 
1378 } fail_page_alloc = {
1379 	.attr = FAULT_ATTR_INITIALIZER,
1380 	.ignore_gfp_wait = 1,
1381 	.ignore_gfp_highmem = 1,
1382 	.min_order = 1,
1383 };
1384 
1385 static int __init setup_fail_page_alloc(char *str)
1386 {
1387 	return setup_fault_attr(&fail_page_alloc.attr, str);
1388 }
1389 __setup("fail_page_alloc=", setup_fail_page_alloc);
1390 
1391 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1392 {
1393 	if (order < fail_page_alloc.min_order)
1394 		return 0;
1395 	if (gfp_mask & __GFP_NOFAIL)
1396 		return 0;
1397 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1398 		return 0;
1399 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1400 		return 0;
1401 
1402 	return should_fail(&fail_page_alloc.attr, 1 << order);
1403 }
1404 
1405 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1406 
1407 static int __init fail_page_alloc_debugfs(void)
1408 {
1409 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1410 	struct dentry *dir;
1411 	int err;
1412 
1413 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1414 				       "fail_page_alloc");
1415 	if (err)
1416 		return err;
1417 	dir = fail_page_alloc.attr.dentries.dir;
1418 
1419 	fail_page_alloc.ignore_gfp_wait_file =
1420 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1421 				      &fail_page_alloc.ignore_gfp_wait);
1422 
1423 	fail_page_alloc.ignore_gfp_highmem_file =
1424 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1425 				      &fail_page_alloc.ignore_gfp_highmem);
1426 	fail_page_alloc.min_order_file =
1427 		debugfs_create_u32("min-order", mode, dir,
1428 				   &fail_page_alloc.min_order);
1429 
1430 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1431             !fail_page_alloc.ignore_gfp_highmem_file ||
1432             !fail_page_alloc.min_order_file) {
1433 		err = -ENOMEM;
1434 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1435 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1436 		debugfs_remove(fail_page_alloc.min_order_file);
1437 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1438 	}
1439 
1440 	return err;
1441 }
1442 
1443 late_initcall(fail_page_alloc_debugfs);
1444 
1445 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1446 
1447 #else /* CONFIG_FAIL_PAGE_ALLOC */
1448 
1449 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1450 {
1451 	return 0;
1452 }
1453 
1454 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1455 
1456 /*
1457  * Return 1 if free pages are above 'mark'. This takes into account the order
1458  * of the allocation.
1459  */
1460 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1461 		      int classzone_idx, int alloc_flags)
1462 {
1463 	/* free_pages my go negative - that's OK */
1464 	long min = mark;
1465 	long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1466 	int o;
1467 
1468 	if (alloc_flags & ALLOC_HIGH)
1469 		min -= min / 2;
1470 	if (alloc_flags & ALLOC_HARDER)
1471 		min -= min / 4;
1472 
1473 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1474 		return 0;
1475 	for (o = 0; o < order; o++) {
1476 		/* At the next order, this order's pages become unavailable */
1477 		free_pages -= z->free_area[o].nr_free << o;
1478 
1479 		/* Require fewer higher order pages to be free */
1480 		min >>= 1;
1481 
1482 		if (free_pages <= min)
1483 			return 0;
1484 	}
1485 	return 1;
1486 }
1487 
1488 #ifdef CONFIG_NUMA
1489 /*
1490  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1491  * skip over zones that are not allowed by the cpuset, or that have
1492  * been recently (in last second) found to be nearly full.  See further
1493  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1494  * that have to skip over a lot of full or unallowed zones.
1495  *
1496  * If the zonelist cache is present in the passed in zonelist, then
1497  * returns a pointer to the allowed node mask (either the current
1498  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1499  *
1500  * If the zonelist cache is not available for this zonelist, does
1501  * nothing and returns NULL.
1502  *
1503  * If the fullzones BITMAP in the zonelist cache is stale (more than
1504  * a second since last zap'd) then we zap it out (clear its bits.)
1505  *
1506  * We hold off even calling zlc_setup, until after we've checked the
1507  * first zone in the zonelist, on the theory that most allocations will
1508  * be satisfied from that first zone, so best to examine that zone as
1509  * quickly as we can.
1510  */
1511 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1512 {
1513 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1514 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1515 
1516 	zlc = zonelist->zlcache_ptr;
1517 	if (!zlc)
1518 		return NULL;
1519 
1520 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1521 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1522 		zlc->last_full_zap = jiffies;
1523 	}
1524 
1525 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1526 					&cpuset_current_mems_allowed :
1527 					&node_states[N_HIGH_MEMORY];
1528 	return allowednodes;
1529 }
1530 
1531 /*
1532  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1533  * if it is worth looking at further for free memory:
1534  *  1) Check that the zone isn't thought to be full (doesn't have its
1535  *     bit set in the zonelist_cache fullzones BITMAP).
1536  *  2) Check that the zones node (obtained from the zonelist_cache
1537  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1538  * Return true (non-zero) if zone is worth looking at further, or
1539  * else return false (zero) if it is not.
1540  *
1541  * This check -ignores- the distinction between various watermarks,
1542  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1543  * found to be full for any variation of these watermarks, it will
1544  * be considered full for up to one second by all requests, unless
1545  * we are so low on memory on all allowed nodes that we are forced
1546  * into the second scan of the zonelist.
1547  *
1548  * In the second scan we ignore this zonelist cache and exactly
1549  * apply the watermarks to all zones, even it is slower to do so.
1550  * We are low on memory in the second scan, and should leave no stone
1551  * unturned looking for a free page.
1552  */
1553 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1554 						nodemask_t *allowednodes)
1555 {
1556 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1557 	int i;				/* index of *z in zonelist zones */
1558 	int n;				/* node that zone *z is on */
1559 
1560 	zlc = zonelist->zlcache_ptr;
1561 	if (!zlc)
1562 		return 1;
1563 
1564 	i = z - zonelist->_zonerefs;
1565 	n = zlc->z_to_n[i];
1566 
1567 	/* This zone is worth trying if it is allowed but not full */
1568 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1569 }
1570 
1571 /*
1572  * Given 'z' scanning a zonelist, set the corresponding bit in
1573  * zlc->fullzones, so that subsequent attempts to allocate a page
1574  * from that zone don't waste time re-examining it.
1575  */
1576 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1577 {
1578 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1579 	int i;				/* index of *z in zonelist zones */
1580 
1581 	zlc = zonelist->zlcache_ptr;
1582 	if (!zlc)
1583 		return;
1584 
1585 	i = z - zonelist->_zonerefs;
1586 
1587 	set_bit(i, zlc->fullzones);
1588 }
1589 
1590 #else	/* CONFIG_NUMA */
1591 
1592 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1593 {
1594 	return NULL;
1595 }
1596 
1597 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1598 				nodemask_t *allowednodes)
1599 {
1600 	return 1;
1601 }
1602 
1603 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1604 {
1605 }
1606 #endif	/* CONFIG_NUMA */
1607 
1608 /*
1609  * get_page_from_freelist goes through the zonelist trying to allocate
1610  * a page.
1611  */
1612 static struct page *
1613 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1614 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1615 		struct zone *preferred_zone, int migratetype)
1616 {
1617 	struct zoneref *z;
1618 	struct page *page = NULL;
1619 	int classzone_idx;
1620 	struct zone *zone;
1621 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1622 	int zlc_active = 0;		/* set if using zonelist_cache */
1623 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1624 
1625 	classzone_idx = zone_idx(preferred_zone);
1626 zonelist_scan:
1627 	/*
1628 	 * Scan zonelist, looking for a zone with enough free.
1629 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1630 	 */
1631 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1632 						high_zoneidx, nodemask) {
1633 		if (NUMA_BUILD && zlc_active &&
1634 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1635 				continue;
1636 		if ((alloc_flags & ALLOC_CPUSET) &&
1637 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1638 				goto try_next_zone;
1639 
1640 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1641 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1642 			unsigned long mark;
1643 			int ret;
1644 
1645 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1646 			if (zone_watermark_ok(zone, order, mark,
1647 				    classzone_idx, alloc_flags))
1648 				goto try_this_zone;
1649 
1650 			if (zone_reclaim_mode == 0)
1651 				goto this_zone_full;
1652 
1653 			ret = zone_reclaim(zone, gfp_mask, order);
1654 			switch (ret) {
1655 			case ZONE_RECLAIM_NOSCAN:
1656 				/* did not scan */
1657 				goto try_next_zone;
1658 			case ZONE_RECLAIM_FULL:
1659 				/* scanned but unreclaimable */
1660 				goto this_zone_full;
1661 			default:
1662 				/* did we reclaim enough */
1663 				if (!zone_watermark_ok(zone, order, mark,
1664 						classzone_idx, alloc_flags))
1665 					goto this_zone_full;
1666 			}
1667 		}
1668 
1669 try_this_zone:
1670 		page = buffered_rmqueue(preferred_zone, zone, order,
1671 						gfp_mask, migratetype);
1672 		if (page)
1673 			break;
1674 this_zone_full:
1675 		if (NUMA_BUILD)
1676 			zlc_mark_zone_full(zonelist, z);
1677 try_next_zone:
1678 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1679 			/*
1680 			 * we do zlc_setup after the first zone is tried but only
1681 			 * if there are multiple nodes make it worthwhile
1682 			 */
1683 			allowednodes = zlc_setup(zonelist, alloc_flags);
1684 			zlc_active = 1;
1685 			did_zlc_setup = 1;
1686 		}
1687 	}
1688 
1689 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1690 		/* Disable zlc cache for second zonelist scan */
1691 		zlc_active = 0;
1692 		goto zonelist_scan;
1693 	}
1694 	return page;
1695 }
1696 
1697 static inline int
1698 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1699 				unsigned long pages_reclaimed)
1700 {
1701 	/* Do not loop if specifically requested */
1702 	if (gfp_mask & __GFP_NORETRY)
1703 		return 0;
1704 
1705 	/*
1706 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1707 	 * means __GFP_NOFAIL, but that may not be true in other
1708 	 * implementations.
1709 	 */
1710 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1711 		return 1;
1712 
1713 	/*
1714 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1715 	 * specified, then we retry until we no longer reclaim any pages
1716 	 * (above), or we've reclaimed an order of pages at least as
1717 	 * large as the allocation's order. In both cases, if the
1718 	 * allocation still fails, we stop retrying.
1719 	 */
1720 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1721 		return 1;
1722 
1723 	/*
1724 	 * Don't let big-order allocations loop unless the caller
1725 	 * explicitly requests that.
1726 	 */
1727 	if (gfp_mask & __GFP_NOFAIL)
1728 		return 1;
1729 
1730 	return 0;
1731 }
1732 
1733 static inline struct page *
1734 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1735 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1736 	nodemask_t *nodemask, struct zone *preferred_zone,
1737 	int migratetype)
1738 {
1739 	struct page *page;
1740 
1741 	/* Acquire the OOM killer lock for the zones in zonelist */
1742 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1743 		schedule_timeout_uninterruptible(1);
1744 		return NULL;
1745 	}
1746 
1747 	/*
1748 	 * Go through the zonelist yet one more time, keep very high watermark
1749 	 * here, this is only to catch a parallel oom killing, we must fail if
1750 	 * we're still under heavy pressure.
1751 	 */
1752 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1753 		order, zonelist, high_zoneidx,
1754 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1755 		preferred_zone, migratetype);
1756 	if (page)
1757 		goto out;
1758 
1759 	if (!(gfp_mask & __GFP_NOFAIL)) {
1760 		/* The OOM killer will not help higher order allocs */
1761 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1762 			goto out;
1763 		/* The OOM killer does not needlessly kill tasks for lowmem */
1764 		if (high_zoneidx < ZONE_NORMAL)
1765 			goto out;
1766 		/*
1767 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1768 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1769 		 * The caller should handle page allocation failure by itself if
1770 		 * it specifies __GFP_THISNODE.
1771 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1772 		 */
1773 		if (gfp_mask & __GFP_THISNODE)
1774 			goto out;
1775 	}
1776 	/* Exhausted what can be done so it's blamo time */
1777 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1778 
1779 out:
1780 	clear_zonelist_oom(zonelist, gfp_mask);
1781 	return page;
1782 }
1783 
1784 #ifdef CONFIG_COMPACTION
1785 /* Try memory compaction for high-order allocations before reclaim */
1786 static struct page *
1787 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1788 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1789 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1790 	int migratetype, unsigned long *did_some_progress)
1791 {
1792 	struct page *page;
1793 
1794 	if (!order || compaction_deferred(preferred_zone))
1795 		return NULL;
1796 
1797 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1798 								nodemask);
1799 	if (*did_some_progress != COMPACT_SKIPPED) {
1800 
1801 		/* Page migration frees to the PCP lists but we want merging */
1802 		drain_pages(get_cpu());
1803 		put_cpu();
1804 
1805 		page = get_page_from_freelist(gfp_mask, nodemask,
1806 				order, zonelist, high_zoneidx,
1807 				alloc_flags, preferred_zone,
1808 				migratetype);
1809 		if (page) {
1810 			preferred_zone->compact_considered = 0;
1811 			preferred_zone->compact_defer_shift = 0;
1812 			count_vm_event(COMPACTSUCCESS);
1813 			return page;
1814 		}
1815 
1816 		/*
1817 		 * It's bad if compaction run occurs and fails.
1818 		 * The most likely reason is that pages exist,
1819 		 * but not enough to satisfy watermarks.
1820 		 */
1821 		count_vm_event(COMPACTFAIL);
1822 		defer_compaction(preferred_zone);
1823 
1824 		cond_resched();
1825 	}
1826 
1827 	return NULL;
1828 }
1829 #else
1830 static inline struct page *
1831 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1832 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1833 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1834 	int migratetype, unsigned long *did_some_progress)
1835 {
1836 	return NULL;
1837 }
1838 #endif /* CONFIG_COMPACTION */
1839 
1840 /* The really slow allocator path where we enter direct reclaim */
1841 static inline struct page *
1842 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1843 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1844 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1845 	int migratetype, unsigned long *did_some_progress)
1846 {
1847 	struct page *page = NULL;
1848 	struct reclaim_state reclaim_state;
1849 	struct task_struct *p = current;
1850 	bool drained = false;
1851 
1852 	cond_resched();
1853 
1854 	/* We now go into synchronous reclaim */
1855 	cpuset_memory_pressure_bump();
1856 	p->flags |= PF_MEMALLOC;
1857 	lockdep_set_current_reclaim_state(gfp_mask);
1858 	reclaim_state.reclaimed_slab = 0;
1859 	p->reclaim_state = &reclaim_state;
1860 
1861 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1862 
1863 	p->reclaim_state = NULL;
1864 	lockdep_clear_current_reclaim_state();
1865 	p->flags &= ~PF_MEMALLOC;
1866 
1867 	cond_resched();
1868 
1869 	if (unlikely(!(*did_some_progress)))
1870 		return NULL;
1871 
1872 retry:
1873 	page = get_page_from_freelist(gfp_mask, nodemask, order,
1874 					zonelist, high_zoneidx,
1875 					alloc_flags, preferred_zone,
1876 					migratetype);
1877 
1878 	/*
1879 	 * If an allocation failed after direct reclaim, it could be because
1880 	 * pages are pinned on the per-cpu lists. Drain them and try again
1881 	 */
1882 	if (!page && !drained) {
1883 		drain_all_pages();
1884 		drained = true;
1885 		goto retry;
1886 	}
1887 
1888 	return page;
1889 }
1890 
1891 /*
1892  * This is called in the allocator slow-path if the allocation request is of
1893  * sufficient urgency to ignore watermarks and take other desperate measures
1894  */
1895 static inline struct page *
1896 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1897 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1898 	nodemask_t *nodemask, struct zone *preferred_zone,
1899 	int migratetype)
1900 {
1901 	struct page *page;
1902 
1903 	do {
1904 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1905 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1906 			preferred_zone, migratetype);
1907 
1908 		if (!page && gfp_mask & __GFP_NOFAIL)
1909 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1910 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1911 
1912 	return page;
1913 }
1914 
1915 static inline
1916 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1917 						enum zone_type high_zoneidx)
1918 {
1919 	struct zoneref *z;
1920 	struct zone *zone;
1921 
1922 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1923 		wakeup_kswapd(zone, order);
1924 }
1925 
1926 static inline int
1927 gfp_to_alloc_flags(gfp_t gfp_mask)
1928 {
1929 	struct task_struct *p = current;
1930 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1931 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1932 
1933 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1934 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1935 
1936 	/*
1937 	 * The caller may dip into page reserves a bit more if the caller
1938 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1939 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1940 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1941 	 */
1942 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1943 
1944 	if (!wait) {
1945 		alloc_flags |= ALLOC_HARDER;
1946 		/*
1947 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1948 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1949 		 */
1950 		alloc_flags &= ~ALLOC_CPUSET;
1951 	} else if (unlikely(rt_task(p)) && !in_interrupt())
1952 		alloc_flags |= ALLOC_HARDER;
1953 
1954 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1955 		if (!in_interrupt() &&
1956 		    ((p->flags & PF_MEMALLOC) ||
1957 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1958 			alloc_flags |= ALLOC_NO_WATERMARKS;
1959 	}
1960 
1961 	return alloc_flags;
1962 }
1963 
1964 static inline struct page *
1965 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1966 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1967 	nodemask_t *nodemask, struct zone *preferred_zone,
1968 	int migratetype)
1969 {
1970 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1971 	struct page *page = NULL;
1972 	int alloc_flags;
1973 	unsigned long pages_reclaimed = 0;
1974 	unsigned long did_some_progress;
1975 	struct task_struct *p = current;
1976 
1977 	/*
1978 	 * In the slowpath, we sanity check order to avoid ever trying to
1979 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1980 	 * be using allocators in order of preference for an area that is
1981 	 * too large.
1982 	 */
1983 	if (order >= MAX_ORDER) {
1984 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1985 		return NULL;
1986 	}
1987 
1988 	/*
1989 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1990 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1991 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1992 	 * using a larger set of nodes after it has established that the
1993 	 * allowed per node queues are empty and that nodes are
1994 	 * over allocated.
1995 	 */
1996 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1997 		goto nopage;
1998 
1999 restart:
2000 	wake_all_kswapd(order, zonelist, high_zoneidx);
2001 
2002 	/*
2003 	 * OK, we're below the kswapd watermark and have kicked background
2004 	 * reclaim. Now things get more complex, so set up alloc_flags according
2005 	 * to how we want to proceed.
2006 	 */
2007 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2008 
2009 	/* This is the last chance, in general, before the goto nopage. */
2010 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2011 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2012 			preferred_zone, migratetype);
2013 	if (page)
2014 		goto got_pg;
2015 
2016 rebalance:
2017 	/* Allocate without watermarks if the context allows */
2018 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2019 		page = __alloc_pages_high_priority(gfp_mask, order,
2020 				zonelist, high_zoneidx, nodemask,
2021 				preferred_zone, migratetype);
2022 		if (page)
2023 			goto got_pg;
2024 	}
2025 
2026 	/* Atomic allocations - we can't balance anything */
2027 	if (!wait)
2028 		goto nopage;
2029 
2030 	/* Avoid recursion of direct reclaim */
2031 	if (p->flags & PF_MEMALLOC)
2032 		goto nopage;
2033 
2034 	/* Avoid allocations with no watermarks from looping endlessly */
2035 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2036 		goto nopage;
2037 
2038 	/* Try direct compaction */
2039 	page = __alloc_pages_direct_compact(gfp_mask, order,
2040 					zonelist, high_zoneidx,
2041 					nodemask,
2042 					alloc_flags, preferred_zone,
2043 					migratetype, &did_some_progress);
2044 	if (page)
2045 		goto got_pg;
2046 
2047 	/* Try direct reclaim and then allocating */
2048 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2049 					zonelist, high_zoneidx,
2050 					nodemask,
2051 					alloc_flags, preferred_zone,
2052 					migratetype, &did_some_progress);
2053 	if (page)
2054 		goto got_pg;
2055 
2056 	/*
2057 	 * If we failed to make any progress reclaiming, then we are
2058 	 * running out of options and have to consider going OOM
2059 	 */
2060 	if (!did_some_progress) {
2061 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2062 			if (oom_killer_disabled)
2063 				goto nopage;
2064 			page = __alloc_pages_may_oom(gfp_mask, order,
2065 					zonelist, high_zoneidx,
2066 					nodemask, preferred_zone,
2067 					migratetype);
2068 			if (page)
2069 				goto got_pg;
2070 
2071 			if (!(gfp_mask & __GFP_NOFAIL)) {
2072 				/*
2073 				 * The oom killer is not called for high-order
2074 				 * allocations that may fail, so if no progress
2075 				 * is being made, there are no other options and
2076 				 * retrying is unlikely to help.
2077 				 */
2078 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2079 					goto nopage;
2080 				/*
2081 				 * The oom killer is not called for lowmem
2082 				 * allocations to prevent needlessly killing
2083 				 * innocent tasks.
2084 				 */
2085 				if (high_zoneidx < ZONE_NORMAL)
2086 					goto nopage;
2087 			}
2088 
2089 			goto restart;
2090 		}
2091 	}
2092 
2093 	/* Check if we should retry the allocation */
2094 	pages_reclaimed += did_some_progress;
2095 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2096 		/* Wait for some write requests to complete then retry */
2097 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2098 		goto rebalance;
2099 	}
2100 
2101 nopage:
2102 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2103 		printk(KERN_WARNING "%s: page allocation failure."
2104 			" order:%d, mode:0x%x\n",
2105 			p->comm, order, gfp_mask);
2106 		dump_stack();
2107 		show_mem();
2108 	}
2109 	return page;
2110 got_pg:
2111 	if (kmemcheck_enabled)
2112 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2113 	return page;
2114 
2115 }
2116 
2117 /*
2118  * This is the 'heart' of the zoned buddy allocator.
2119  */
2120 struct page *
2121 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2122 			struct zonelist *zonelist, nodemask_t *nodemask)
2123 {
2124 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2125 	struct zone *preferred_zone;
2126 	struct page *page;
2127 	int migratetype = allocflags_to_migratetype(gfp_mask);
2128 
2129 	gfp_mask &= gfp_allowed_mask;
2130 
2131 	lockdep_trace_alloc(gfp_mask);
2132 
2133 	might_sleep_if(gfp_mask & __GFP_WAIT);
2134 
2135 	if (should_fail_alloc_page(gfp_mask, order))
2136 		return NULL;
2137 
2138 	/*
2139 	 * Check the zones suitable for the gfp_mask contain at least one
2140 	 * valid zone. It's possible to have an empty zonelist as a result
2141 	 * of GFP_THISNODE and a memoryless node
2142 	 */
2143 	if (unlikely(!zonelist->_zonerefs->zone))
2144 		return NULL;
2145 
2146 	get_mems_allowed();
2147 	/* The preferred zone is used for statistics later */
2148 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2149 	if (!preferred_zone) {
2150 		put_mems_allowed();
2151 		return NULL;
2152 	}
2153 
2154 	/* First allocation attempt */
2155 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2156 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2157 			preferred_zone, migratetype);
2158 	if (unlikely(!page))
2159 		page = __alloc_pages_slowpath(gfp_mask, order,
2160 				zonelist, high_zoneidx, nodemask,
2161 				preferred_zone, migratetype);
2162 	put_mems_allowed();
2163 
2164 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2165 	return page;
2166 }
2167 EXPORT_SYMBOL(__alloc_pages_nodemask);
2168 
2169 /*
2170  * Common helper functions.
2171  */
2172 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2173 {
2174 	struct page *page;
2175 
2176 	/*
2177 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2178 	 * a highmem page
2179 	 */
2180 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2181 
2182 	page = alloc_pages(gfp_mask, order);
2183 	if (!page)
2184 		return 0;
2185 	return (unsigned long) page_address(page);
2186 }
2187 EXPORT_SYMBOL(__get_free_pages);
2188 
2189 unsigned long get_zeroed_page(gfp_t gfp_mask)
2190 {
2191 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2192 }
2193 EXPORT_SYMBOL(get_zeroed_page);
2194 
2195 void __pagevec_free(struct pagevec *pvec)
2196 {
2197 	int i = pagevec_count(pvec);
2198 
2199 	while (--i >= 0) {
2200 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2201 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2202 	}
2203 }
2204 
2205 void __free_pages(struct page *page, unsigned int order)
2206 {
2207 	if (put_page_testzero(page)) {
2208 		if (order == 0)
2209 			free_hot_cold_page(page, 0);
2210 		else
2211 			__free_pages_ok(page, order);
2212 	}
2213 }
2214 
2215 EXPORT_SYMBOL(__free_pages);
2216 
2217 void free_pages(unsigned long addr, unsigned int order)
2218 {
2219 	if (addr != 0) {
2220 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2221 		__free_pages(virt_to_page((void *)addr), order);
2222 	}
2223 }
2224 
2225 EXPORT_SYMBOL(free_pages);
2226 
2227 /**
2228  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2229  * @size: the number of bytes to allocate
2230  * @gfp_mask: GFP flags for the allocation
2231  *
2232  * This function is similar to alloc_pages(), except that it allocates the
2233  * minimum number of pages to satisfy the request.  alloc_pages() can only
2234  * allocate memory in power-of-two pages.
2235  *
2236  * This function is also limited by MAX_ORDER.
2237  *
2238  * Memory allocated by this function must be released by free_pages_exact().
2239  */
2240 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2241 {
2242 	unsigned int order = get_order(size);
2243 	unsigned long addr;
2244 
2245 	addr = __get_free_pages(gfp_mask, order);
2246 	if (addr) {
2247 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2248 		unsigned long used = addr + PAGE_ALIGN(size);
2249 
2250 		split_page(virt_to_page((void *)addr), order);
2251 		while (used < alloc_end) {
2252 			free_page(used);
2253 			used += PAGE_SIZE;
2254 		}
2255 	}
2256 
2257 	return (void *)addr;
2258 }
2259 EXPORT_SYMBOL(alloc_pages_exact);
2260 
2261 /**
2262  * free_pages_exact - release memory allocated via alloc_pages_exact()
2263  * @virt: the value returned by alloc_pages_exact.
2264  * @size: size of allocation, same value as passed to alloc_pages_exact().
2265  *
2266  * Release the memory allocated by a previous call to alloc_pages_exact.
2267  */
2268 void free_pages_exact(void *virt, size_t size)
2269 {
2270 	unsigned long addr = (unsigned long)virt;
2271 	unsigned long end = addr + PAGE_ALIGN(size);
2272 
2273 	while (addr < end) {
2274 		free_page(addr);
2275 		addr += PAGE_SIZE;
2276 	}
2277 }
2278 EXPORT_SYMBOL(free_pages_exact);
2279 
2280 static unsigned int nr_free_zone_pages(int offset)
2281 {
2282 	struct zoneref *z;
2283 	struct zone *zone;
2284 
2285 	/* Just pick one node, since fallback list is circular */
2286 	unsigned int sum = 0;
2287 
2288 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2289 
2290 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2291 		unsigned long size = zone->present_pages;
2292 		unsigned long high = high_wmark_pages(zone);
2293 		if (size > high)
2294 			sum += size - high;
2295 	}
2296 
2297 	return sum;
2298 }
2299 
2300 /*
2301  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2302  */
2303 unsigned int nr_free_buffer_pages(void)
2304 {
2305 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2306 }
2307 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2308 
2309 /*
2310  * Amount of free RAM allocatable within all zones
2311  */
2312 unsigned int nr_free_pagecache_pages(void)
2313 {
2314 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2315 }
2316 
2317 static inline void show_node(struct zone *zone)
2318 {
2319 	if (NUMA_BUILD)
2320 		printk("Node %d ", zone_to_nid(zone));
2321 }
2322 
2323 void si_meminfo(struct sysinfo *val)
2324 {
2325 	val->totalram = totalram_pages;
2326 	val->sharedram = 0;
2327 	val->freeram = global_page_state(NR_FREE_PAGES);
2328 	val->bufferram = nr_blockdev_pages();
2329 	val->totalhigh = totalhigh_pages;
2330 	val->freehigh = nr_free_highpages();
2331 	val->mem_unit = PAGE_SIZE;
2332 }
2333 
2334 EXPORT_SYMBOL(si_meminfo);
2335 
2336 #ifdef CONFIG_NUMA
2337 void si_meminfo_node(struct sysinfo *val, int nid)
2338 {
2339 	pg_data_t *pgdat = NODE_DATA(nid);
2340 
2341 	val->totalram = pgdat->node_present_pages;
2342 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2343 #ifdef CONFIG_HIGHMEM
2344 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2345 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2346 			NR_FREE_PAGES);
2347 #else
2348 	val->totalhigh = 0;
2349 	val->freehigh = 0;
2350 #endif
2351 	val->mem_unit = PAGE_SIZE;
2352 }
2353 #endif
2354 
2355 #define K(x) ((x) << (PAGE_SHIFT-10))
2356 
2357 /*
2358  * Show free area list (used inside shift_scroll-lock stuff)
2359  * We also calculate the percentage fragmentation. We do this by counting the
2360  * memory on each free list with the exception of the first item on the list.
2361  */
2362 void show_free_areas(void)
2363 {
2364 	int cpu;
2365 	struct zone *zone;
2366 
2367 	for_each_populated_zone(zone) {
2368 		show_node(zone);
2369 		printk("%s per-cpu:\n", zone->name);
2370 
2371 		for_each_online_cpu(cpu) {
2372 			struct per_cpu_pageset *pageset;
2373 
2374 			pageset = per_cpu_ptr(zone->pageset, cpu);
2375 
2376 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2377 			       cpu, pageset->pcp.high,
2378 			       pageset->pcp.batch, pageset->pcp.count);
2379 		}
2380 	}
2381 
2382 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2383 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2384 		" unevictable:%lu"
2385 		" dirty:%lu writeback:%lu unstable:%lu\n"
2386 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2387 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2388 		global_page_state(NR_ACTIVE_ANON),
2389 		global_page_state(NR_INACTIVE_ANON),
2390 		global_page_state(NR_ISOLATED_ANON),
2391 		global_page_state(NR_ACTIVE_FILE),
2392 		global_page_state(NR_INACTIVE_FILE),
2393 		global_page_state(NR_ISOLATED_FILE),
2394 		global_page_state(NR_UNEVICTABLE),
2395 		global_page_state(NR_FILE_DIRTY),
2396 		global_page_state(NR_WRITEBACK),
2397 		global_page_state(NR_UNSTABLE_NFS),
2398 		global_page_state(NR_FREE_PAGES),
2399 		global_page_state(NR_SLAB_RECLAIMABLE),
2400 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2401 		global_page_state(NR_FILE_MAPPED),
2402 		global_page_state(NR_SHMEM),
2403 		global_page_state(NR_PAGETABLE),
2404 		global_page_state(NR_BOUNCE));
2405 
2406 	for_each_populated_zone(zone) {
2407 		int i;
2408 
2409 		show_node(zone);
2410 		printk("%s"
2411 			" free:%lukB"
2412 			" min:%lukB"
2413 			" low:%lukB"
2414 			" high:%lukB"
2415 			" active_anon:%lukB"
2416 			" inactive_anon:%lukB"
2417 			" active_file:%lukB"
2418 			" inactive_file:%lukB"
2419 			" unevictable:%lukB"
2420 			" isolated(anon):%lukB"
2421 			" isolated(file):%lukB"
2422 			" present:%lukB"
2423 			" mlocked:%lukB"
2424 			" dirty:%lukB"
2425 			" writeback:%lukB"
2426 			" mapped:%lukB"
2427 			" shmem:%lukB"
2428 			" slab_reclaimable:%lukB"
2429 			" slab_unreclaimable:%lukB"
2430 			" kernel_stack:%lukB"
2431 			" pagetables:%lukB"
2432 			" unstable:%lukB"
2433 			" bounce:%lukB"
2434 			" writeback_tmp:%lukB"
2435 			" pages_scanned:%lu"
2436 			" all_unreclaimable? %s"
2437 			"\n",
2438 			zone->name,
2439 			K(zone_nr_free_pages(zone)),
2440 			K(min_wmark_pages(zone)),
2441 			K(low_wmark_pages(zone)),
2442 			K(high_wmark_pages(zone)),
2443 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2444 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2445 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2446 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2447 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2448 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2449 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2450 			K(zone->present_pages),
2451 			K(zone_page_state(zone, NR_MLOCK)),
2452 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2453 			K(zone_page_state(zone, NR_WRITEBACK)),
2454 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2455 			K(zone_page_state(zone, NR_SHMEM)),
2456 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2457 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2458 			zone_page_state(zone, NR_KERNEL_STACK) *
2459 				THREAD_SIZE / 1024,
2460 			K(zone_page_state(zone, NR_PAGETABLE)),
2461 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2462 			K(zone_page_state(zone, NR_BOUNCE)),
2463 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2464 			zone->pages_scanned,
2465 			(zone->all_unreclaimable ? "yes" : "no")
2466 			);
2467 		printk("lowmem_reserve[]:");
2468 		for (i = 0; i < MAX_NR_ZONES; i++)
2469 			printk(" %lu", zone->lowmem_reserve[i]);
2470 		printk("\n");
2471 	}
2472 
2473 	for_each_populated_zone(zone) {
2474  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2475 
2476 		show_node(zone);
2477 		printk("%s: ", zone->name);
2478 
2479 		spin_lock_irqsave(&zone->lock, flags);
2480 		for (order = 0; order < MAX_ORDER; order++) {
2481 			nr[order] = zone->free_area[order].nr_free;
2482 			total += nr[order] << order;
2483 		}
2484 		spin_unlock_irqrestore(&zone->lock, flags);
2485 		for (order = 0; order < MAX_ORDER; order++)
2486 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2487 		printk("= %lukB\n", K(total));
2488 	}
2489 
2490 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2491 
2492 	show_swap_cache_info();
2493 }
2494 
2495 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2496 {
2497 	zoneref->zone = zone;
2498 	zoneref->zone_idx = zone_idx(zone);
2499 }
2500 
2501 /*
2502  * Builds allocation fallback zone lists.
2503  *
2504  * Add all populated zones of a node to the zonelist.
2505  */
2506 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2507 				int nr_zones, enum zone_type zone_type)
2508 {
2509 	struct zone *zone;
2510 
2511 	BUG_ON(zone_type >= MAX_NR_ZONES);
2512 	zone_type++;
2513 
2514 	do {
2515 		zone_type--;
2516 		zone = pgdat->node_zones + zone_type;
2517 		if (populated_zone(zone)) {
2518 			zoneref_set_zone(zone,
2519 				&zonelist->_zonerefs[nr_zones++]);
2520 			check_highest_zone(zone_type);
2521 		}
2522 
2523 	} while (zone_type);
2524 	return nr_zones;
2525 }
2526 
2527 
2528 /*
2529  *  zonelist_order:
2530  *  0 = automatic detection of better ordering.
2531  *  1 = order by ([node] distance, -zonetype)
2532  *  2 = order by (-zonetype, [node] distance)
2533  *
2534  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2535  *  the same zonelist. So only NUMA can configure this param.
2536  */
2537 #define ZONELIST_ORDER_DEFAULT  0
2538 #define ZONELIST_ORDER_NODE     1
2539 #define ZONELIST_ORDER_ZONE     2
2540 
2541 /* zonelist order in the kernel.
2542  * set_zonelist_order() will set this to NODE or ZONE.
2543  */
2544 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2545 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2546 
2547 
2548 #ifdef CONFIG_NUMA
2549 /* The value user specified ....changed by config */
2550 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2551 /* string for sysctl */
2552 #define NUMA_ZONELIST_ORDER_LEN	16
2553 char numa_zonelist_order[16] = "default";
2554 
2555 /*
2556  * interface for configure zonelist ordering.
2557  * command line option "numa_zonelist_order"
2558  *	= "[dD]efault	- default, automatic configuration.
2559  *	= "[nN]ode 	- order by node locality, then by zone within node
2560  *	= "[zZ]one      - order by zone, then by locality within zone
2561  */
2562 
2563 static int __parse_numa_zonelist_order(char *s)
2564 {
2565 	if (*s == 'd' || *s == 'D') {
2566 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2567 	} else if (*s == 'n' || *s == 'N') {
2568 		user_zonelist_order = ZONELIST_ORDER_NODE;
2569 	} else if (*s == 'z' || *s == 'Z') {
2570 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2571 	} else {
2572 		printk(KERN_WARNING
2573 			"Ignoring invalid numa_zonelist_order value:  "
2574 			"%s\n", s);
2575 		return -EINVAL;
2576 	}
2577 	return 0;
2578 }
2579 
2580 static __init int setup_numa_zonelist_order(char *s)
2581 {
2582 	if (s)
2583 		return __parse_numa_zonelist_order(s);
2584 	return 0;
2585 }
2586 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2587 
2588 /*
2589  * sysctl handler for numa_zonelist_order
2590  */
2591 int numa_zonelist_order_handler(ctl_table *table, int write,
2592 		void __user *buffer, size_t *length,
2593 		loff_t *ppos)
2594 {
2595 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2596 	int ret;
2597 	static DEFINE_MUTEX(zl_order_mutex);
2598 
2599 	mutex_lock(&zl_order_mutex);
2600 	if (write)
2601 		strcpy(saved_string, (char*)table->data);
2602 	ret = proc_dostring(table, write, buffer, length, ppos);
2603 	if (ret)
2604 		goto out;
2605 	if (write) {
2606 		int oldval = user_zonelist_order;
2607 		if (__parse_numa_zonelist_order((char*)table->data)) {
2608 			/*
2609 			 * bogus value.  restore saved string
2610 			 */
2611 			strncpy((char*)table->data, saved_string,
2612 				NUMA_ZONELIST_ORDER_LEN);
2613 			user_zonelist_order = oldval;
2614 		} else if (oldval != user_zonelist_order) {
2615 			mutex_lock(&zonelists_mutex);
2616 			build_all_zonelists(NULL);
2617 			mutex_unlock(&zonelists_mutex);
2618 		}
2619 	}
2620 out:
2621 	mutex_unlock(&zl_order_mutex);
2622 	return ret;
2623 }
2624 
2625 
2626 #define MAX_NODE_LOAD (nr_online_nodes)
2627 static int node_load[MAX_NUMNODES];
2628 
2629 /**
2630  * find_next_best_node - find the next node that should appear in a given node's fallback list
2631  * @node: node whose fallback list we're appending
2632  * @used_node_mask: nodemask_t of already used nodes
2633  *
2634  * We use a number of factors to determine which is the next node that should
2635  * appear on a given node's fallback list.  The node should not have appeared
2636  * already in @node's fallback list, and it should be the next closest node
2637  * according to the distance array (which contains arbitrary distance values
2638  * from each node to each node in the system), and should also prefer nodes
2639  * with no CPUs, since presumably they'll have very little allocation pressure
2640  * on them otherwise.
2641  * It returns -1 if no node is found.
2642  */
2643 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2644 {
2645 	int n, val;
2646 	int min_val = INT_MAX;
2647 	int best_node = -1;
2648 	const struct cpumask *tmp = cpumask_of_node(0);
2649 
2650 	/* Use the local node if we haven't already */
2651 	if (!node_isset(node, *used_node_mask)) {
2652 		node_set(node, *used_node_mask);
2653 		return node;
2654 	}
2655 
2656 	for_each_node_state(n, N_HIGH_MEMORY) {
2657 
2658 		/* Don't want a node to appear more than once */
2659 		if (node_isset(n, *used_node_mask))
2660 			continue;
2661 
2662 		/* Use the distance array to find the distance */
2663 		val = node_distance(node, n);
2664 
2665 		/* Penalize nodes under us ("prefer the next node") */
2666 		val += (n < node);
2667 
2668 		/* Give preference to headless and unused nodes */
2669 		tmp = cpumask_of_node(n);
2670 		if (!cpumask_empty(tmp))
2671 			val += PENALTY_FOR_NODE_WITH_CPUS;
2672 
2673 		/* Slight preference for less loaded node */
2674 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2675 		val += node_load[n];
2676 
2677 		if (val < min_val) {
2678 			min_val = val;
2679 			best_node = n;
2680 		}
2681 	}
2682 
2683 	if (best_node >= 0)
2684 		node_set(best_node, *used_node_mask);
2685 
2686 	return best_node;
2687 }
2688 
2689 
2690 /*
2691  * Build zonelists ordered by node and zones within node.
2692  * This results in maximum locality--normal zone overflows into local
2693  * DMA zone, if any--but risks exhausting DMA zone.
2694  */
2695 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2696 {
2697 	int j;
2698 	struct zonelist *zonelist;
2699 
2700 	zonelist = &pgdat->node_zonelists[0];
2701 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2702 		;
2703 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2704 							MAX_NR_ZONES - 1);
2705 	zonelist->_zonerefs[j].zone = NULL;
2706 	zonelist->_zonerefs[j].zone_idx = 0;
2707 }
2708 
2709 /*
2710  * Build gfp_thisnode zonelists
2711  */
2712 static void build_thisnode_zonelists(pg_data_t *pgdat)
2713 {
2714 	int j;
2715 	struct zonelist *zonelist;
2716 
2717 	zonelist = &pgdat->node_zonelists[1];
2718 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2719 	zonelist->_zonerefs[j].zone = NULL;
2720 	zonelist->_zonerefs[j].zone_idx = 0;
2721 }
2722 
2723 /*
2724  * Build zonelists ordered by zone and nodes within zones.
2725  * This results in conserving DMA zone[s] until all Normal memory is
2726  * exhausted, but results in overflowing to remote node while memory
2727  * may still exist in local DMA zone.
2728  */
2729 static int node_order[MAX_NUMNODES];
2730 
2731 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2732 {
2733 	int pos, j, node;
2734 	int zone_type;		/* needs to be signed */
2735 	struct zone *z;
2736 	struct zonelist *zonelist;
2737 
2738 	zonelist = &pgdat->node_zonelists[0];
2739 	pos = 0;
2740 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2741 		for (j = 0; j < nr_nodes; j++) {
2742 			node = node_order[j];
2743 			z = &NODE_DATA(node)->node_zones[zone_type];
2744 			if (populated_zone(z)) {
2745 				zoneref_set_zone(z,
2746 					&zonelist->_zonerefs[pos++]);
2747 				check_highest_zone(zone_type);
2748 			}
2749 		}
2750 	}
2751 	zonelist->_zonerefs[pos].zone = NULL;
2752 	zonelist->_zonerefs[pos].zone_idx = 0;
2753 }
2754 
2755 static int default_zonelist_order(void)
2756 {
2757 	int nid, zone_type;
2758 	unsigned long low_kmem_size,total_size;
2759 	struct zone *z;
2760 	int average_size;
2761 	/*
2762          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2763 	 * If they are really small and used heavily, the system can fall
2764 	 * into OOM very easily.
2765 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2766 	 */
2767 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2768 	low_kmem_size = 0;
2769 	total_size = 0;
2770 	for_each_online_node(nid) {
2771 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2772 			z = &NODE_DATA(nid)->node_zones[zone_type];
2773 			if (populated_zone(z)) {
2774 				if (zone_type < ZONE_NORMAL)
2775 					low_kmem_size += z->present_pages;
2776 				total_size += z->present_pages;
2777 			} else if (zone_type == ZONE_NORMAL) {
2778 				/*
2779 				 * If any node has only lowmem, then node order
2780 				 * is preferred to allow kernel allocations
2781 				 * locally; otherwise, they can easily infringe
2782 				 * on other nodes when there is an abundance of
2783 				 * lowmem available to allocate from.
2784 				 */
2785 				return ZONELIST_ORDER_NODE;
2786 			}
2787 		}
2788 	}
2789 	if (!low_kmem_size ||  /* there are no DMA area. */
2790 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2791 		return ZONELIST_ORDER_NODE;
2792 	/*
2793 	 * look into each node's config.
2794   	 * If there is a node whose DMA/DMA32 memory is very big area on
2795  	 * local memory, NODE_ORDER may be suitable.
2796          */
2797 	average_size = total_size /
2798 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2799 	for_each_online_node(nid) {
2800 		low_kmem_size = 0;
2801 		total_size = 0;
2802 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2803 			z = &NODE_DATA(nid)->node_zones[zone_type];
2804 			if (populated_zone(z)) {
2805 				if (zone_type < ZONE_NORMAL)
2806 					low_kmem_size += z->present_pages;
2807 				total_size += z->present_pages;
2808 			}
2809 		}
2810 		if (low_kmem_size &&
2811 		    total_size > average_size && /* ignore small node */
2812 		    low_kmem_size > total_size * 70/100)
2813 			return ZONELIST_ORDER_NODE;
2814 	}
2815 	return ZONELIST_ORDER_ZONE;
2816 }
2817 
2818 static void set_zonelist_order(void)
2819 {
2820 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2821 		current_zonelist_order = default_zonelist_order();
2822 	else
2823 		current_zonelist_order = user_zonelist_order;
2824 }
2825 
2826 static void build_zonelists(pg_data_t *pgdat)
2827 {
2828 	int j, node, load;
2829 	enum zone_type i;
2830 	nodemask_t used_mask;
2831 	int local_node, prev_node;
2832 	struct zonelist *zonelist;
2833 	int order = current_zonelist_order;
2834 
2835 	/* initialize zonelists */
2836 	for (i = 0; i < MAX_ZONELISTS; i++) {
2837 		zonelist = pgdat->node_zonelists + i;
2838 		zonelist->_zonerefs[0].zone = NULL;
2839 		zonelist->_zonerefs[0].zone_idx = 0;
2840 	}
2841 
2842 	/* NUMA-aware ordering of nodes */
2843 	local_node = pgdat->node_id;
2844 	load = nr_online_nodes;
2845 	prev_node = local_node;
2846 	nodes_clear(used_mask);
2847 
2848 	memset(node_order, 0, sizeof(node_order));
2849 	j = 0;
2850 
2851 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2852 		int distance = node_distance(local_node, node);
2853 
2854 		/*
2855 		 * If another node is sufficiently far away then it is better
2856 		 * to reclaim pages in a zone before going off node.
2857 		 */
2858 		if (distance > RECLAIM_DISTANCE)
2859 			zone_reclaim_mode = 1;
2860 
2861 		/*
2862 		 * We don't want to pressure a particular node.
2863 		 * So adding penalty to the first node in same
2864 		 * distance group to make it round-robin.
2865 		 */
2866 		if (distance != node_distance(local_node, prev_node))
2867 			node_load[node] = load;
2868 
2869 		prev_node = node;
2870 		load--;
2871 		if (order == ZONELIST_ORDER_NODE)
2872 			build_zonelists_in_node_order(pgdat, node);
2873 		else
2874 			node_order[j++] = node;	/* remember order */
2875 	}
2876 
2877 	if (order == ZONELIST_ORDER_ZONE) {
2878 		/* calculate node order -- i.e., DMA last! */
2879 		build_zonelists_in_zone_order(pgdat, j);
2880 	}
2881 
2882 	build_thisnode_zonelists(pgdat);
2883 }
2884 
2885 /* Construct the zonelist performance cache - see further mmzone.h */
2886 static void build_zonelist_cache(pg_data_t *pgdat)
2887 {
2888 	struct zonelist *zonelist;
2889 	struct zonelist_cache *zlc;
2890 	struct zoneref *z;
2891 
2892 	zonelist = &pgdat->node_zonelists[0];
2893 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2894 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2895 	for (z = zonelist->_zonerefs; z->zone; z++)
2896 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2897 }
2898 
2899 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2900 /*
2901  * Return node id of node used for "local" allocations.
2902  * I.e., first node id of first zone in arg node's generic zonelist.
2903  * Used for initializing percpu 'numa_mem', which is used primarily
2904  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2905  */
2906 int local_memory_node(int node)
2907 {
2908 	struct zone *zone;
2909 
2910 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2911 				   gfp_zone(GFP_KERNEL),
2912 				   NULL,
2913 				   &zone);
2914 	return zone->node;
2915 }
2916 #endif
2917 
2918 #else	/* CONFIG_NUMA */
2919 
2920 static void set_zonelist_order(void)
2921 {
2922 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2923 }
2924 
2925 static void build_zonelists(pg_data_t *pgdat)
2926 {
2927 	int node, local_node;
2928 	enum zone_type j;
2929 	struct zonelist *zonelist;
2930 
2931 	local_node = pgdat->node_id;
2932 
2933 	zonelist = &pgdat->node_zonelists[0];
2934 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2935 
2936 	/*
2937 	 * Now we build the zonelist so that it contains the zones
2938 	 * of all the other nodes.
2939 	 * We don't want to pressure a particular node, so when
2940 	 * building the zones for node N, we make sure that the
2941 	 * zones coming right after the local ones are those from
2942 	 * node N+1 (modulo N)
2943 	 */
2944 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2945 		if (!node_online(node))
2946 			continue;
2947 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2948 							MAX_NR_ZONES - 1);
2949 	}
2950 	for (node = 0; node < local_node; node++) {
2951 		if (!node_online(node))
2952 			continue;
2953 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2954 							MAX_NR_ZONES - 1);
2955 	}
2956 
2957 	zonelist->_zonerefs[j].zone = NULL;
2958 	zonelist->_zonerefs[j].zone_idx = 0;
2959 }
2960 
2961 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2962 static void build_zonelist_cache(pg_data_t *pgdat)
2963 {
2964 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2965 }
2966 
2967 #endif	/* CONFIG_NUMA */
2968 
2969 /*
2970  * Boot pageset table. One per cpu which is going to be used for all
2971  * zones and all nodes. The parameters will be set in such a way
2972  * that an item put on a list will immediately be handed over to
2973  * the buddy list. This is safe since pageset manipulation is done
2974  * with interrupts disabled.
2975  *
2976  * The boot_pagesets must be kept even after bootup is complete for
2977  * unused processors and/or zones. They do play a role for bootstrapping
2978  * hotplugged processors.
2979  *
2980  * zoneinfo_show() and maybe other functions do
2981  * not check if the processor is online before following the pageset pointer.
2982  * Other parts of the kernel may not check if the zone is available.
2983  */
2984 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2985 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2986 static void setup_zone_pageset(struct zone *zone);
2987 
2988 /*
2989  * Global mutex to protect against size modification of zonelists
2990  * as well as to serialize pageset setup for the new populated zone.
2991  */
2992 DEFINE_MUTEX(zonelists_mutex);
2993 
2994 /* return values int ....just for stop_machine() */
2995 static __init_refok int __build_all_zonelists(void *data)
2996 {
2997 	int nid;
2998 	int cpu;
2999 
3000 #ifdef CONFIG_NUMA
3001 	memset(node_load, 0, sizeof(node_load));
3002 #endif
3003 	for_each_online_node(nid) {
3004 		pg_data_t *pgdat = NODE_DATA(nid);
3005 
3006 		build_zonelists(pgdat);
3007 		build_zonelist_cache(pgdat);
3008 	}
3009 
3010 #ifdef CONFIG_MEMORY_HOTPLUG
3011 	/* Setup real pagesets for the new zone */
3012 	if (data) {
3013 		struct zone *zone = data;
3014 		setup_zone_pageset(zone);
3015 	}
3016 #endif
3017 
3018 	/*
3019 	 * Initialize the boot_pagesets that are going to be used
3020 	 * for bootstrapping processors. The real pagesets for
3021 	 * each zone will be allocated later when the per cpu
3022 	 * allocator is available.
3023 	 *
3024 	 * boot_pagesets are used also for bootstrapping offline
3025 	 * cpus if the system is already booted because the pagesets
3026 	 * are needed to initialize allocators on a specific cpu too.
3027 	 * F.e. the percpu allocator needs the page allocator which
3028 	 * needs the percpu allocator in order to allocate its pagesets
3029 	 * (a chicken-egg dilemma).
3030 	 */
3031 	for_each_possible_cpu(cpu) {
3032 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3033 
3034 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3035 		/*
3036 		 * We now know the "local memory node" for each node--
3037 		 * i.e., the node of the first zone in the generic zonelist.
3038 		 * Set up numa_mem percpu variable for on-line cpus.  During
3039 		 * boot, only the boot cpu should be on-line;  we'll init the
3040 		 * secondary cpus' numa_mem as they come on-line.  During
3041 		 * node/memory hotplug, we'll fixup all on-line cpus.
3042 		 */
3043 		if (cpu_online(cpu))
3044 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3045 #endif
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 /*
3052  * Called with zonelists_mutex held always
3053  * unless system_state == SYSTEM_BOOTING.
3054  */
3055 void build_all_zonelists(void *data)
3056 {
3057 	set_zonelist_order();
3058 
3059 	if (system_state == SYSTEM_BOOTING) {
3060 		__build_all_zonelists(NULL);
3061 		mminit_verify_zonelist();
3062 		cpuset_init_current_mems_allowed();
3063 	} else {
3064 		/* we have to stop all cpus to guarantee there is no user
3065 		   of zonelist */
3066 		stop_machine(__build_all_zonelists, data, NULL);
3067 		/* cpuset refresh routine should be here */
3068 	}
3069 	vm_total_pages = nr_free_pagecache_pages();
3070 	/*
3071 	 * Disable grouping by mobility if the number of pages in the
3072 	 * system is too low to allow the mechanism to work. It would be
3073 	 * more accurate, but expensive to check per-zone. This check is
3074 	 * made on memory-hotadd so a system can start with mobility
3075 	 * disabled and enable it later
3076 	 */
3077 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3078 		page_group_by_mobility_disabled = 1;
3079 	else
3080 		page_group_by_mobility_disabled = 0;
3081 
3082 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3083 		"Total pages: %ld\n",
3084 			nr_online_nodes,
3085 			zonelist_order_name[current_zonelist_order],
3086 			page_group_by_mobility_disabled ? "off" : "on",
3087 			vm_total_pages);
3088 #ifdef CONFIG_NUMA
3089 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3090 #endif
3091 }
3092 
3093 /*
3094  * Helper functions to size the waitqueue hash table.
3095  * Essentially these want to choose hash table sizes sufficiently
3096  * large so that collisions trying to wait on pages are rare.
3097  * But in fact, the number of active page waitqueues on typical
3098  * systems is ridiculously low, less than 200. So this is even
3099  * conservative, even though it seems large.
3100  *
3101  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3102  * waitqueues, i.e. the size of the waitq table given the number of pages.
3103  */
3104 #define PAGES_PER_WAITQUEUE	256
3105 
3106 #ifndef CONFIG_MEMORY_HOTPLUG
3107 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3108 {
3109 	unsigned long size = 1;
3110 
3111 	pages /= PAGES_PER_WAITQUEUE;
3112 
3113 	while (size < pages)
3114 		size <<= 1;
3115 
3116 	/*
3117 	 * Once we have dozens or even hundreds of threads sleeping
3118 	 * on IO we've got bigger problems than wait queue collision.
3119 	 * Limit the size of the wait table to a reasonable size.
3120 	 */
3121 	size = min(size, 4096UL);
3122 
3123 	return max(size, 4UL);
3124 }
3125 #else
3126 /*
3127  * A zone's size might be changed by hot-add, so it is not possible to determine
3128  * a suitable size for its wait_table.  So we use the maximum size now.
3129  *
3130  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3131  *
3132  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3133  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3134  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3135  *
3136  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3137  * or more by the traditional way. (See above).  It equals:
3138  *
3139  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3140  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3141  *    powerpc (64K page size)             : =  (32G +16M)byte.
3142  */
3143 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3144 {
3145 	return 4096UL;
3146 }
3147 #endif
3148 
3149 /*
3150  * This is an integer logarithm so that shifts can be used later
3151  * to extract the more random high bits from the multiplicative
3152  * hash function before the remainder is taken.
3153  */
3154 static inline unsigned long wait_table_bits(unsigned long size)
3155 {
3156 	return ffz(~size);
3157 }
3158 
3159 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3160 
3161 /*
3162  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3163  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3164  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3165  * higher will lead to a bigger reserve which will get freed as contiguous
3166  * blocks as reclaim kicks in
3167  */
3168 static void setup_zone_migrate_reserve(struct zone *zone)
3169 {
3170 	unsigned long start_pfn, pfn, end_pfn;
3171 	struct page *page;
3172 	unsigned long block_migratetype;
3173 	int reserve;
3174 
3175 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3176 	start_pfn = zone->zone_start_pfn;
3177 	end_pfn = start_pfn + zone->spanned_pages;
3178 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3179 							pageblock_order;
3180 
3181 	/*
3182 	 * Reserve blocks are generally in place to help high-order atomic
3183 	 * allocations that are short-lived. A min_free_kbytes value that
3184 	 * would result in more than 2 reserve blocks for atomic allocations
3185 	 * is assumed to be in place to help anti-fragmentation for the
3186 	 * future allocation of hugepages at runtime.
3187 	 */
3188 	reserve = min(2, reserve);
3189 
3190 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3191 		if (!pfn_valid(pfn))
3192 			continue;
3193 		page = pfn_to_page(pfn);
3194 
3195 		/* Watch out for overlapping nodes */
3196 		if (page_to_nid(page) != zone_to_nid(zone))
3197 			continue;
3198 
3199 		/* Blocks with reserved pages will never free, skip them. */
3200 		if (PageReserved(page))
3201 			continue;
3202 
3203 		block_migratetype = get_pageblock_migratetype(page);
3204 
3205 		/* If this block is reserved, account for it */
3206 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3207 			reserve--;
3208 			continue;
3209 		}
3210 
3211 		/* Suitable for reserving if this block is movable */
3212 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3213 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3214 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3215 			reserve--;
3216 			continue;
3217 		}
3218 
3219 		/*
3220 		 * If the reserve is met and this is a previous reserved block,
3221 		 * take it back
3222 		 */
3223 		if (block_migratetype == MIGRATE_RESERVE) {
3224 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3225 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3226 		}
3227 	}
3228 }
3229 
3230 /*
3231  * Initially all pages are reserved - free ones are freed
3232  * up by free_all_bootmem() once the early boot process is
3233  * done. Non-atomic initialization, single-pass.
3234  */
3235 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3236 		unsigned long start_pfn, enum memmap_context context)
3237 {
3238 	struct page *page;
3239 	unsigned long end_pfn = start_pfn + size;
3240 	unsigned long pfn;
3241 	struct zone *z;
3242 
3243 	if (highest_memmap_pfn < end_pfn - 1)
3244 		highest_memmap_pfn = end_pfn - 1;
3245 
3246 	z = &NODE_DATA(nid)->node_zones[zone];
3247 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3248 		/*
3249 		 * There can be holes in boot-time mem_map[]s
3250 		 * handed to this function.  They do not
3251 		 * exist on hotplugged memory.
3252 		 */
3253 		if (context == MEMMAP_EARLY) {
3254 			if (!early_pfn_valid(pfn))
3255 				continue;
3256 			if (!early_pfn_in_nid(pfn, nid))
3257 				continue;
3258 		}
3259 		page = pfn_to_page(pfn);
3260 		set_page_links(page, zone, nid, pfn);
3261 		mminit_verify_page_links(page, zone, nid, pfn);
3262 		init_page_count(page);
3263 		reset_page_mapcount(page);
3264 		SetPageReserved(page);
3265 		/*
3266 		 * Mark the block movable so that blocks are reserved for
3267 		 * movable at startup. This will force kernel allocations
3268 		 * to reserve their blocks rather than leaking throughout
3269 		 * the address space during boot when many long-lived
3270 		 * kernel allocations are made. Later some blocks near
3271 		 * the start are marked MIGRATE_RESERVE by
3272 		 * setup_zone_migrate_reserve()
3273 		 *
3274 		 * bitmap is created for zone's valid pfn range. but memmap
3275 		 * can be created for invalid pages (for alignment)
3276 		 * check here not to call set_pageblock_migratetype() against
3277 		 * pfn out of zone.
3278 		 */
3279 		if ((z->zone_start_pfn <= pfn)
3280 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3281 		    && !(pfn & (pageblock_nr_pages - 1)))
3282 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3283 
3284 		INIT_LIST_HEAD(&page->lru);
3285 #ifdef WANT_PAGE_VIRTUAL
3286 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3287 		if (!is_highmem_idx(zone))
3288 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3289 #endif
3290 	}
3291 }
3292 
3293 static void __meminit zone_init_free_lists(struct zone *zone)
3294 {
3295 	int order, t;
3296 	for_each_migratetype_order(order, t) {
3297 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3298 		zone->free_area[order].nr_free = 0;
3299 	}
3300 }
3301 
3302 #ifndef __HAVE_ARCH_MEMMAP_INIT
3303 #define memmap_init(size, nid, zone, start_pfn) \
3304 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3305 #endif
3306 
3307 static int zone_batchsize(struct zone *zone)
3308 {
3309 #ifdef CONFIG_MMU
3310 	int batch;
3311 
3312 	/*
3313 	 * The per-cpu-pages pools are set to around 1000th of the
3314 	 * size of the zone.  But no more than 1/2 of a meg.
3315 	 *
3316 	 * OK, so we don't know how big the cache is.  So guess.
3317 	 */
3318 	batch = zone->present_pages / 1024;
3319 	if (batch * PAGE_SIZE > 512 * 1024)
3320 		batch = (512 * 1024) / PAGE_SIZE;
3321 	batch /= 4;		/* We effectively *= 4 below */
3322 	if (batch < 1)
3323 		batch = 1;
3324 
3325 	/*
3326 	 * Clamp the batch to a 2^n - 1 value. Having a power
3327 	 * of 2 value was found to be more likely to have
3328 	 * suboptimal cache aliasing properties in some cases.
3329 	 *
3330 	 * For example if 2 tasks are alternately allocating
3331 	 * batches of pages, one task can end up with a lot
3332 	 * of pages of one half of the possible page colors
3333 	 * and the other with pages of the other colors.
3334 	 */
3335 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3336 
3337 	return batch;
3338 
3339 #else
3340 	/* The deferral and batching of frees should be suppressed under NOMMU
3341 	 * conditions.
3342 	 *
3343 	 * The problem is that NOMMU needs to be able to allocate large chunks
3344 	 * of contiguous memory as there's no hardware page translation to
3345 	 * assemble apparent contiguous memory from discontiguous pages.
3346 	 *
3347 	 * Queueing large contiguous runs of pages for batching, however,
3348 	 * causes the pages to actually be freed in smaller chunks.  As there
3349 	 * can be a significant delay between the individual batches being
3350 	 * recycled, this leads to the once large chunks of space being
3351 	 * fragmented and becoming unavailable for high-order allocations.
3352 	 */
3353 	return 0;
3354 #endif
3355 }
3356 
3357 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3358 {
3359 	struct per_cpu_pages *pcp;
3360 	int migratetype;
3361 
3362 	memset(p, 0, sizeof(*p));
3363 
3364 	pcp = &p->pcp;
3365 	pcp->count = 0;
3366 	pcp->high = 6 * batch;
3367 	pcp->batch = max(1UL, 1 * batch);
3368 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3369 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3370 }
3371 
3372 /*
3373  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3374  * to the value high for the pageset p.
3375  */
3376 
3377 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3378 				unsigned long high)
3379 {
3380 	struct per_cpu_pages *pcp;
3381 
3382 	pcp = &p->pcp;
3383 	pcp->high = high;
3384 	pcp->batch = max(1UL, high/4);
3385 	if ((high/4) > (PAGE_SHIFT * 8))
3386 		pcp->batch = PAGE_SHIFT * 8;
3387 }
3388 
3389 static __meminit void setup_zone_pageset(struct zone *zone)
3390 {
3391 	int cpu;
3392 
3393 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3394 
3395 	for_each_possible_cpu(cpu) {
3396 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3397 
3398 		setup_pageset(pcp, zone_batchsize(zone));
3399 
3400 		if (percpu_pagelist_fraction)
3401 			setup_pagelist_highmark(pcp,
3402 				(zone->present_pages /
3403 					percpu_pagelist_fraction));
3404 	}
3405 }
3406 
3407 /*
3408  * Allocate per cpu pagesets and initialize them.
3409  * Before this call only boot pagesets were available.
3410  */
3411 void __init setup_per_cpu_pageset(void)
3412 {
3413 	struct zone *zone;
3414 
3415 	for_each_populated_zone(zone)
3416 		setup_zone_pageset(zone);
3417 }
3418 
3419 static noinline __init_refok
3420 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3421 {
3422 	int i;
3423 	struct pglist_data *pgdat = zone->zone_pgdat;
3424 	size_t alloc_size;
3425 
3426 	/*
3427 	 * The per-page waitqueue mechanism uses hashed waitqueues
3428 	 * per zone.
3429 	 */
3430 	zone->wait_table_hash_nr_entries =
3431 		 wait_table_hash_nr_entries(zone_size_pages);
3432 	zone->wait_table_bits =
3433 		wait_table_bits(zone->wait_table_hash_nr_entries);
3434 	alloc_size = zone->wait_table_hash_nr_entries
3435 					* sizeof(wait_queue_head_t);
3436 
3437 	if (!slab_is_available()) {
3438 		zone->wait_table = (wait_queue_head_t *)
3439 			alloc_bootmem_node(pgdat, alloc_size);
3440 	} else {
3441 		/*
3442 		 * This case means that a zone whose size was 0 gets new memory
3443 		 * via memory hot-add.
3444 		 * But it may be the case that a new node was hot-added.  In
3445 		 * this case vmalloc() will not be able to use this new node's
3446 		 * memory - this wait_table must be initialized to use this new
3447 		 * node itself as well.
3448 		 * To use this new node's memory, further consideration will be
3449 		 * necessary.
3450 		 */
3451 		zone->wait_table = vmalloc(alloc_size);
3452 	}
3453 	if (!zone->wait_table)
3454 		return -ENOMEM;
3455 
3456 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3457 		init_waitqueue_head(zone->wait_table + i);
3458 
3459 	return 0;
3460 }
3461 
3462 static int __zone_pcp_update(void *data)
3463 {
3464 	struct zone *zone = data;
3465 	int cpu;
3466 	unsigned long batch = zone_batchsize(zone), flags;
3467 
3468 	for_each_possible_cpu(cpu) {
3469 		struct per_cpu_pageset *pset;
3470 		struct per_cpu_pages *pcp;
3471 
3472 		pset = per_cpu_ptr(zone->pageset, cpu);
3473 		pcp = &pset->pcp;
3474 
3475 		local_irq_save(flags);
3476 		free_pcppages_bulk(zone, pcp->count, pcp);
3477 		setup_pageset(pset, batch);
3478 		local_irq_restore(flags);
3479 	}
3480 	return 0;
3481 }
3482 
3483 void zone_pcp_update(struct zone *zone)
3484 {
3485 	stop_machine(__zone_pcp_update, zone, NULL);
3486 }
3487 
3488 static __meminit void zone_pcp_init(struct zone *zone)
3489 {
3490 	/*
3491 	 * per cpu subsystem is not up at this point. The following code
3492 	 * relies on the ability of the linker to provide the
3493 	 * offset of a (static) per cpu variable into the per cpu area.
3494 	 */
3495 	zone->pageset = &boot_pageset;
3496 
3497 	if (zone->present_pages)
3498 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3499 			zone->name, zone->present_pages,
3500 					 zone_batchsize(zone));
3501 }
3502 
3503 __meminit int init_currently_empty_zone(struct zone *zone,
3504 					unsigned long zone_start_pfn,
3505 					unsigned long size,
3506 					enum memmap_context context)
3507 {
3508 	struct pglist_data *pgdat = zone->zone_pgdat;
3509 	int ret;
3510 	ret = zone_wait_table_init(zone, size);
3511 	if (ret)
3512 		return ret;
3513 	pgdat->nr_zones = zone_idx(zone) + 1;
3514 
3515 	zone->zone_start_pfn = zone_start_pfn;
3516 
3517 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3518 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3519 			pgdat->node_id,
3520 			(unsigned long)zone_idx(zone),
3521 			zone_start_pfn, (zone_start_pfn + size));
3522 
3523 	zone_init_free_lists(zone);
3524 
3525 	return 0;
3526 }
3527 
3528 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3529 /*
3530  * Basic iterator support. Return the first range of PFNs for a node
3531  * Note: nid == MAX_NUMNODES returns first region regardless of node
3532  */
3533 static int __meminit first_active_region_index_in_nid(int nid)
3534 {
3535 	int i;
3536 
3537 	for (i = 0; i < nr_nodemap_entries; i++)
3538 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3539 			return i;
3540 
3541 	return -1;
3542 }
3543 
3544 /*
3545  * Basic iterator support. Return the next active range of PFNs for a node
3546  * Note: nid == MAX_NUMNODES returns next region regardless of node
3547  */
3548 static int __meminit next_active_region_index_in_nid(int index, int nid)
3549 {
3550 	for (index = index + 1; index < nr_nodemap_entries; index++)
3551 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3552 			return index;
3553 
3554 	return -1;
3555 }
3556 
3557 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3558 /*
3559  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3560  * Architectures may implement their own version but if add_active_range()
3561  * was used and there are no special requirements, this is a convenient
3562  * alternative
3563  */
3564 int __meminit __early_pfn_to_nid(unsigned long pfn)
3565 {
3566 	int i;
3567 
3568 	for (i = 0; i < nr_nodemap_entries; i++) {
3569 		unsigned long start_pfn = early_node_map[i].start_pfn;
3570 		unsigned long end_pfn = early_node_map[i].end_pfn;
3571 
3572 		if (start_pfn <= pfn && pfn < end_pfn)
3573 			return early_node_map[i].nid;
3574 	}
3575 	/* This is a memory hole */
3576 	return -1;
3577 }
3578 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3579 
3580 int __meminit early_pfn_to_nid(unsigned long pfn)
3581 {
3582 	int nid;
3583 
3584 	nid = __early_pfn_to_nid(pfn);
3585 	if (nid >= 0)
3586 		return nid;
3587 	/* just returns 0 */
3588 	return 0;
3589 }
3590 
3591 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3592 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3593 {
3594 	int nid;
3595 
3596 	nid = __early_pfn_to_nid(pfn);
3597 	if (nid >= 0 && nid != node)
3598 		return false;
3599 	return true;
3600 }
3601 #endif
3602 
3603 /* Basic iterator support to walk early_node_map[] */
3604 #define for_each_active_range_index_in_nid(i, nid) \
3605 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3606 				i = next_active_region_index_in_nid(i, nid))
3607 
3608 /**
3609  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3610  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3611  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3612  *
3613  * If an architecture guarantees that all ranges registered with
3614  * add_active_ranges() contain no holes and may be freed, this
3615  * this function may be used instead of calling free_bootmem() manually.
3616  */
3617 void __init free_bootmem_with_active_regions(int nid,
3618 						unsigned long max_low_pfn)
3619 {
3620 	int i;
3621 
3622 	for_each_active_range_index_in_nid(i, nid) {
3623 		unsigned long size_pages = 0;
3624 		unsigned long end_pfn = early_node_map[i].end_pfn;
3625 
3626 		if (early_node_map[i].start_pfn >= max_low_pfn)
3627 			continue;
3628 
3629 		if (end_pfn > max_low_pfn)
3630 			end_pfn = max_low_pfn;
3631 
3632 		size_pages = end_pfn - early_node_map[i].start_pfn;
3633 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3634 				PFN_PHYS(early_node_map[i].start_pfn),
3635 				size_pages << PAGE_SHIFT);
3636 	}
3637 }
3638 
3639 int __init add_from_early_node_map(struct range *range, int az,
3640 				   int nr_range, int nid)
3641 {
3642 	int i;
3643 	u64 start, end;
3644 
3645 	/* need to go over early_node_map to find out good range for node */
3646 	for_each_active_range_index_in_nid(i, nid) {
3647 		start = early_node_map[i].start_pfn;
3648 		end = early_node_map[i].end_pfn;
3649 		nr_range = add_range(range, az, nr_range, start, end);
3650 	}
3651 	return nr_range;
3652 }
3653 
3654 #ifdef CONFIG_NO_BOOTMEM
3655 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3656 					u64 goal, u64 limit)
3657 {
3658 	int i;
3659 	void *ptr;
3660 
3661 	if (limit > get_max_mapped())
3662 		limit = get_max_mapped();
3663 
3664 	/* need to go over early_node_map to find out good range for node */
3665 	for_each_active_range_index_in_nid(i, nid) {
3666 		u64 addr;
3667 		u64 ei_start, ei_last;
3668 
3669 		ei_last = early_node_map[i].end_pfn;
3670 		ei_last <<= PAGE_SHIFT;
3671 		ei_start = early_node_map[i].start_pfn;
3672 		ei_start <<= PAGE_SHIFT;
3673 		addr = find_early_area(ei_start, ei_last,
3674 					 goal, limit, size, align);
3675 
3676 		if (addr == -1ULL)
3677 			continue;
3678 
3679 #if 0
3680 		printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3681 				nid,
3682 				ei_start, ei_last, goal, limit, size,
3683 				align, addr);
3684 #endif
3685 
3686 		ptr = phys_to_virt(addr);
3687 		memset(ptr, 0, size);
3688 		reserve_early_without_check(addr, addr + size, "BOOTMEM");
3689 		/*
3690 		 * The min_count is set to 0 so that bootmem allocated blocks
3691 		 * are never reported as leaks.
3692 		 */
3693 		kmemleak_alloc(ptr, size, 0, 0);
3694 		return ptr;
3695 	}
3696 
3697 	return NULL;
3698 }
3699 #endif
3700 
3701 
3702 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3703 {
3704 	int i;
3705 	int ret;
3706 
3707 	for_each_active_range_index_in_nid(i, nid) {
3708 		ret = work_fn(early_node_map[i].start_pfn,
3709 			      early_node_map[i].end_pfn, data);
3710 		if (ret)
3711 			break;
3712 	}
3713 }
3714 /**
3715  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3716  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3717  *
3718  * If an architecture guarantees that all ranges registered with
3719  * add_active_ranges() contain no holes and may be freed, this
3720  * function may be used instead of calling memory_present() manually.
3721  */
3722 void __init sparse_memory_present_with_active_regions(int nid)
3723 {
3724 	int i;
3725 
3726 	for_each_active_range_index_in_nid(i, nid)
3727 		memory_present(early_node_map[i].nid,
3728 				early_node_map[i].start_pfn,
3729 				early_node_map[i].end_pfn);
3730 }
3731 
3732 /**
3733  * get_pfn_range_for_nid - Return the start and end page frames for a node
3734  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3735  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3736  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3737  *
3738  * It returns the start and end page frame of a node based on information
3739  * provided by an arch calling add_active_range(). If called for a node
3740  * with no available memory, a warning is printed and the start and end
3741  * PFNs will be 0.
3742  */
3743 void __meminit get_pfn_range_for_nid(unsigned int nid,
3744 			unsigned long *start_pfn, unsigned long *end_pfn)
3745 {
3746 	int i;
3747 	*start_pfn = -1UL;
3748 	*end_pfn = 0;
3749 
3750 	for_each_active_range_index_in_nid(i, nid) {
3751 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3752 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3753 	}
3754 
3755 	if (*start_pfn == -1UL)
3756 		*start_pfn = 0;
3757 }
3758 
3759 /*
3760  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3761  * assumption is made that zones within a node are ordered in monotonic
3762  * increasing memory addresses so that the "highest" populated zone is used
3763  */
3764 static void __init find_usable_zone_for_movable(void)
3765 {
3766 	int zone_index;
3767 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3768 		if (zone_index == ZONE_MOVABLE)
3769 			continue;
3770 
3771 		if (arch_zone_highest_possible_pfn[zone_index] >
3772 				arch_zone_lowest_possible_pfn[zone_index])
3773 			break;
3774 	}
3775 
3776 	VM_BUG_ON(zone_index == -1);
3777 	movable_zone = zone_index;
3778 }
3779 
3780 /*
3781  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3782  * because it is sized independant of architecture. Unlike the other zones,
3783  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3784  * in each node depending on the size of each node and how evenly kernelcore
3785  * is distributed. This helper function adjusts the zone ranges
3786  * provided by the architecture for a given node by using the end of the
3787  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3788  * zones within a node are in order of monotonic increases memory addresses
3789  */
3790 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3791 					unsigned long zone_type,
3792 					unsigned long node_start_pfn,
3793 					unsigned long node_end_pfn,
3794 					unsigned long *zone_start_pfn,
3795 					unsigned long *zone_end_pfn)
3796 {
3797 	/* Only adjust if ZONE_MOVABLE is on this node */
3798 	if (zone_movable_pfn[nid]) {
3799 		/* Size ZONE_MOVABLE */
3800 		if (zone_type == ZONE_MOVABLE) {
3801 			*zone_start_pfn = zone_movable_pfn[nid];
3802 			*zone_end_pfn = min(node_end_pfn,
3803 				arch_zone_highest_possible_pfn[movable_zone]);
3804 
3805 		/* Adjust for ZONE_MOVABLE starting within this range */
3806 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3807 				*zone_end_pfn > zone_movable_pfn[nid]) {
3808 			*zone_end_pfn = zone_movable_pfn[nid];
3809 
3810 		/* Check if this whole range is within ZONE_MOVABLE */
3811 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3812 			*zone_start_pfn = *zone_end_pfn;
3813 	}
3814 }
3815 
3816 /*
3817  * Return the number of pages a zone spans in a node, including holes
3818  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3819  */
3820 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3821 					unsigned long zone_type,
3822 					unsigned long *ignored)
3823 {
3824 	unsigned long node_start_pfn, node_end_pfn;
3825 	unsigned long zone_start_pfn, zone_end_pfn;
3826 
3827 	/* Get the start and end of the node and zone */
3828 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3829 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3830 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3831 	adjust_zone_range_for_zone_movable(nid, zone_type,
3832 				node_start_pfn, node_end_pfn,
3833 				&zone_start_pfn, &zone_end_pfn);
3834 
3835 	/* Check that this node has pages within the zone's required range */
3836 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3837 		return 0;
3838 
3839 	/* Move the zone boundaries inside the node if necessary */
3840 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3841 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3842 
3843 	/* Return the spanned pages */
3844 	return zone_end_pfn - zone_start_pfn;
3845 }
3846 
3847 /*
3848  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3849  * then all holes in the requested range will be accounted for.
3850  */
3851 unsigned long __meminit __absent_pages_in_range(int nid,
3852 				unsigned long range_start_pfn,
3853 				unsigned long range_end_pfn)
3854 {
3855 	int i = 0;
3856 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3857 	unsigned long start_pfn;
3858 
3859 	/* Find the end_pfn of the first active range of pfns in the node */
3860 	i = first_active_region_index_in_nid(nid);
3861 	if (i == -1)
3862 		return 0;
3863 
3864 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3865 
3866 	/* Account for ranges before physical memory on this node */
3867 	if (early_node_map[i].start_pfn > range_start_pfn)
3868 		hole_pages = prev_end_pfn - range_start_pfn;
3869 
3870 	/* Find all holes for the zone within the node */
3871 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3872 
3873 		/* No need to continue if prev_end_pfn is outside the zone */
3874 		if (prev_end_pfn >= range_end_pfn)
3875 			break;
3876 
3877 		/* Make sure the end of the zone is not within the hole */
3878 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3879 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3880 
3881 		/* Update the hole size cound and move on */
3882 		if (start_pfn > range_start_pfn) {
3883 			BUG_ON(prev_end_pfn > start_pfn);
3884 			hole_pages += start_pfn - prev_end_pfn;
3885 		}
3886 		prev_end_pfn = early_node_map[i].end_pfn;
3887 	}
3888 
3889 	/* Account for ranges past physical memory on this node */
3890 	if (range_end_pfn > prev_end_pfn)
3891 		hole_pages += range_end_pfn -
3892 				max(range_start_pfn, prev_end_pfn);
3893 
3894 	return hole_pages;
3895 }
3896 
3897 /**
3898  * absent_pages_in_range - Return number of page frames in holes within a range
3899  * @start_pfn: The start PFN to start searching for holes
3900  * @end_pfn: The end PFN to stop searching for holes
3901  *
3902  * It returns the number of pages frames in memory holes within a range.
3903  */
3904 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3905 							unsigned long end_pfn)
3906 {
3907 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3908 }
3909 
3910 /* Return the number of page frames in holes in a zone on a node */
3911 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3912 					unsigned long zone_type,
3913 					unsigned long *ignored)
3914 {
3915 	unsigned long node_start_pfn, node_end_pfn;
3916 	unsigned long zone_start_pfn, zone_end_pfn;
3917 
3918 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3919 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3920 							node_start_pfn);
3921 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3922 							node_end_pfn);
3923 
3924 	adjust_zone_range_for_zone_movable(nid, zone_type,
3925 			node_start_pfn, node_end_pfn,
3926 			&zone_start_pfn, &zone_end_pfn);
3927 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3928 }
3929 
3930 #else
3931 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3932 					unsigned long zone_type,
3933 					unsigned long *zones_size)
3934 {
3935 	return zones_size[zone_type];
3936 }
3937 
3938 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3939 						unsigned long zone_type,
3940 						unsigned long *zholes_size)
3941 {
3942 	if (!zholes_size)
3943 		return 0;
3944 
3945 	return zholes_size[zone_type];
3946 }
3947 
3948 #endif
3949 
3950 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3951 		unsigned long *zones_size, unsigned long *zholes_size)
3952 {
3953 	unsigned long realtotalpages, totalpages = 0;
3954 	enum zone_type i;
3955 
3956 	for (i = 0; i < MAX_NR_ZONES; i++)
3957 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3958 								zones_size);
3959 	pgdat->node_spanned_pages = totalpages;
3960 
3961 	realtotalpages = totalpages;
3962 	for (i = 0; i < MAX_NR_ZONES; i++)
3963 		realtotalpages -=
3964 			zone_absent_pages_in_node(pgdat->node_id, i,
3965 								zholes_size);
3966 	pgdat->node_present_pages = realtotalpages;
3967 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3968 							realtotalpages);
3969 }
3970 
3971 #ifndef CONFIG_SPARSEMEM
3972 /*
3973  * Calculate the size of the zone->blockflags rounded to an unsigned long
3974  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3975  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3976  * round what is now in bits to nearest long in bits, then return it in
3977  * bytes.
3978  */
3979 static unsigned long __init usemap_size(unsigned long zonesize)
3980 {
3981 	unsigned long usemapsize;
3982 
3983 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3984 	usemapsize = usemapsize >> pageblock_order;
3985 	usemapsize *= NR_PAGEBLOCK_BITS;
3986 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3987 
3988 	return usemapsize / 8;
3989 }
3990 
3991 static void __init setup_usemap(struct pglist_data *pgdat,
3992 				struct zone *zone, unsigned long zonesize)
3993 {
3994 	unsigned long usemapsize = usemap_size(zonesize);
3995 	zone->pageblock_flags = NULL;
3996 	if (usemapsize)
3997 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3998 }
3999 #else
4000 static void inline setup_usemap(struct pglist_data *pgdat,
4001 				struct zone *zone, unsigned long zonesize) {}
4002 #endif /* CONFIG_SPARSEMEM */
4003 
4004 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4005 
4006 /* Return a sensible default order for the pageblock size. */
4007 static inline int pageblock_default_order(void)
4008 {
4009 	if (HPAGE_SHIFT > PAGE_SHIFT)
4010 		return HUGETLB_PAGE_ORDER;
4011 
4012 	return MAX_ORDER-1;
4013 }
4014 
4015 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4016 static inline void __init set_pageblock_order(unsigned int order)
4017 {
4018 	/* Check that pageblock_nr_pages has not already been setup */
4019 	if (pageblock_order)
4020 		return;
4021 
4022 	/*
4023 	 * Assume the largest contiguous order of interest is a huge page.
4024 	 * This value may be variable depending on boot parameters on IA64
4025 	 */
4026 	pageblock_order = order;
4027 }
4028 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4029 
4030 /*
4031  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4032  * and pageblock_default_order() are unused as pageblock_order is set
4033  * at compile-time. See include/linux/pageblock-flags.h for the values of
4034  * pageblock_order based on the kernel config
4035  */
4036 static inline int pageblock_default_order(unsigned int order)
4037 {
4038 	return MAX_ORDER-1;
4039 }
4040 #define set_pageblock_order(x)	do {} while (0)
4041 
4042 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4043 
4044 /*
4045  * Set up the zone data structures:
4046  *   - mark all pages reserved
4047  *   - mark all memory queues empty
4048  *   - clear the memory bitmaps
4049  */
4050 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4051 		unsigned long *zones_size, unsigned long *zholes_size)
4052 {
4053 	enum zone_type j;
4054 	int nid = pgdat->node_id;
4055 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4056 	int ret;
4057 
4058 	pgdat_resize_init(pgdat);
4059 	pgdat->nr_zones = 0;
4060 	init_waitqueue_head(&pgdat->kswapd_wait);
4061 	pgdat->kswapd_max_order = 0;
4062 	pgdat_page_cgroup_init(pgdat);
4063 
4064 	for (j = 0; j < MAX_NR_ZONES; j++) {
4065 		struct zone *zone = pgdat->node_zones + j;
4066 		unsigned long size, realsize, memmap_pages;
4067 		enum lru_list l;
4068 
4069 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4070 		realsize = size - zone_absent_pages_in_node(nid, j,
4071 								zholes_size);
4072 
4073 		/*
4074 		 * Adjust realsize so that it accounts for how much memory
4075 		 * is used by this zone for memmap. This affects the watermark
4076 		 * and per-cpu initialisations
4077 		 */
4078 		memmap_pages =
4079 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4080 		if (realsize >= memmap_pages) {
4081 			realsize -= memmap_pages;
4082 			if (memmap_pages)
4083 				printk(KERN_DEBUG
4084 				       "  %s zone: %lu pages used for memmap\n",
4085 				       zone_names[j], memmap_pages);
4086 		} else
4087 			printk(KERN_WARNING
4088 				"  %s zone: %lu pages exceeds realsize %lu\n",
4089 				zone_names[j], memmap_pages, realsize);
4090 
4091 		/* Account for reserved pages */
4092 		if (j == 0 && realsize > dma_reserve) {
4093 			realsize -= dma_reserve;
4094 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4095 					zone_names[0], dma_reserve);
4096 		}
4097 
4098 		if (!is_highmem_idx(j))
4099 			nr_kernel_pages += realsize;
4100 		nr_all_pages += realsize;
4101 
4102 		zone->spanned_pages = size;
4103 		zone->present_pages = realsize;
4104 #ifdef CONFIG_NUMA
4105 		zone->node = nid;
4106 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4107 						/ 100;
4108 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4109 #endif
4110 		zone->name = zone_names[j];
4111 		spin_lock_init(&zone->lock);
4112 		spin_lock_init(&zone->lru_lock);
4113 		zone_seqlock_init(zone);
4114 		zone->zone_pgdat = pgdat;
4115 
4116 		zone_pcp_init(zone);
4117 		for_each_lru(l) {
4118 			INIT_LIST_HEAD(&zone->lru[l].list);
4119 			zone->reclaim_stat.nr_saved_scan[l] = 0;
4120 		}
4121 		zone->reclaim_stat.recent_rotated[0] = 0;
4122 		zone->reclaim_stat.recent_rotated[1] = 0;
4123 		zone->reclaim_stat.recent_scanned[0] = 0;
4124 		zone->reclaim_stat.recent_scanned[1] = 0;
4125 		zap_zone_vm_stats(zone);
4126 		zone->flags = 0;
4127 		if (!size)
4128 			continue;
4129 
4130 		set_pageblock_order(pageblock_default_order());
4131 		setup_usemap(pgdat, zone, size);
4132 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4133 						size, MEMMAP_EARLY);
4134 		BUG_ON(ret);
4135 		memmap_init(size, nid, j, zone_start_pfn);
4136 		zone_start_pfn += size;
4137 	}
4138 }
4139 
4140 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4141 {
4142 	/* Skip empty nodes */
4143 	if (!pgdat->node_spanned_pages)
4144 		return;
4145 
4146 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4147 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4148 	if (!pgdat->node_mem_map) {
4149 		unsigned long size, start, end;
4150 		struct page *map;
4151 
4152 		/*
4153 		 * The zone's endpoints aren't required to be MAX_ORDER
4154 		 * aligned but the node_mem_map endpoints must be in order
4155 		 * for the buddy allocator to function correctly.
4156 		 */
4157 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4158 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4159 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4160 		size =  (end - start) * sizeof(struct page);
4161 		map = alloc_remap(pgdat->node_id, size);
4162 		if (!map)
4163 			map = alloc_bootmem_node(pgdat, size);
4164 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4165 	}
4166 #ifndef CONFIG_NEED_MULTIPLE_NODES
4167 	/*
4168 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4169 	 */
4170 	if (pgdat == NODE_DATA(0)) {
4171 		mem_map = NODE_DATA(0)->node_mem_map;
4172 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4173 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4174 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4175 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4176 	}
4177 #endif
4178 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4179 }
4180 
4181 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4182 		unsigned long node_start_pfn, unsigned long *zholes_size)
4183 {
4184 	pg_data_t *pgdat = NODE_DATA(nid);
4185 
4186 	pgdat->node_id = nid;
4187 	pgdat->node_start_pfn = node_start_pfn;
4188 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4189 
4190 	alloc_node_mem_map(pgdat);
4191 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4192 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4193 		nid, (unsigned long)pgdat,
4194 		(unsigned long)pgdat->node_mem_map);
4195 #endif
4196 
4197 	free_area_init_core(pgdat, zones_size, zholes_size);
4198 }
4199 
4200 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4201 
4202 #if MAX_NUMNODES > 1
4203 /*
4204  * Figure out the number of possible node ids.
4205  */
4206 static void __init setup_nr_node_ids(void)
4207 {
4208 	unsigned int node;
4209 	unsigned int highest = 0;
4210 
4211 	for_each_node_mask(node, node_possible_map)
4212 		highest = node;
4213 	nr_node_ids = highest + 1;
4214 }
4215 #else
4216 static inline void setup_nr_node_ids(void)
4217 {
4218 }
4219 #endif
4220 
4221 /**
4222  * add_active_range - Register a range of PFNs backed by physical memory
4223  * @nid: The node ID the range resides on
4224  * @start_pfn: The start PFN of the available physical memory
4225  * @end_pfn: The end PFN of the available physical memory
4226  *
4227  * These ranges are stored in an early_node_map[] and later used by
4228  * free_area_init_nodes() to calculate zone sizes and holes. If the
4229  * range spans a memory hole, it is up to the architecture to ensure
4230  * the memory is not freed by the bootmem allocator. If possible
4231  * the range being registered will be merged with existing ranges.
4232  */
4233 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4234 						unsigned long end_pfn)
4235 {
4236 	int i;
4237 
4238 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4239 			"Entering add_active_range(%d, %#lx, %#lx) "
4240 			"%d entries of %d used\n",
4241 			nid, start_pfn, end_pfn,
4242 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4243 
4244 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4245 
4246 	/* Merge with existing active regions if possible */
4247 	for (i = 0; i < nr_nodemap_entries; i++) {
4248 		if (early_node_map[i].nid != nid)
4249 			continue;
4250 
4251 		/* Skip if an existing region covers this new one */
4252 		if (start_pfn >= early_node_map[i].start_pfn &&
4253 				end_pfn <= early_node_map[i].end_pfn)
4254 			return;
4255 
4256 		/* Merge forward if suitable */
4257 		if (start_pfn <= early_node_map[i].end_pfn &&
4258 				end_pfn > early_node_map[i].end_pfn) {
4259 			early_node_map[i].end_pfn = end_pfn;
4260 			return;
4261 		}
4262 
4263 		/* Merge backward if suitable */
4264 		if (start_pfn < early_node_map[i].start_pfn &&
4265 				end_pfn >= early_node_map[i].start_pfn) {
4266 			early_node_map[i].start_pfn = start_pfn;
4267 			return;
4268 		}
4269 	}
4270 
4271 	/* Check that early_node_map is large enough */
4272 	if (i >= MAX_ACTIVE_REGIONS) {
4273 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4274 							MAX_ACTIVE_REGIONS);
4275 		return;
4276 	}
4277 
4278 	early_node_map[i].nid = nid;
4279 	early_node_map[i].start_pfn = start_pfn;
4280 	early_node_map[i].end_pfn = end_pfn;
4281 	nr_nodemap_entries = i + 1;
4282 }
4283 
4284 /**
4285  * remove_active_range - Shrink an existing registered range of PFNs
4286  * @nid: The node id the range is on that should be shrunk
4287  * @start_pfn: The new PFN of the range
4288  * @end_pfn: The new PFN of the range
4289  *
4290  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4291  * The map is kept near the end physical page range that has already been
4292  * registered. This function allows an arch to shrink an existing registered
4293  * range.
4294  */
4295 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4296 				unsigned long end_pfn)
4297 {
4298 	int i, j;
4299 	int removed = 0;
4300 
4301 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4302 			  nid, start_pfn, end_pfn);
4303 
4304 	/* Find the old active region end and shrink */
4305 	for_each_active_range_index_in_nid(i, nid) {
4306 		if (early_node_map[i].start_pfn >= start_pfn &&
4307 		    early_node_map[i].end_pfn <= end_pfn) {
4308 			/* clear it */
4309 			early_node_map[i].start_pfn = 0;
4310 			early_node_map[i].end_pfn = 0;
4311 			removed = 1;
4312 			continue;
4313 		}
4314 		if (early_node_map[i].start_pfn < start_pfn &&
4315 		    early_node_map[i].end_pfn > start_pfn) {
4316 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4317 			early_node_map[i].end_pfn = start_pfn;
4318 			if (temp_end_pfn > end_pfn)
4319 				add_active_range(nid, end_pfn, temp_end_pfn);
4320 			continue;
4321 		}
4322 		if (early_node_map[i].start_pfn >= start_pfn &&
4323 		    early_node_map[i].end_pfn > end_pfn &&
4324 		    early_node_map[i].start_pfn < end_pfn) {
4325 			early_node_map[i].start_pfn = end_pfn;
4326 			continue;
4327 		}
4328 	}
4329 
4330 	if (!removed)
4331 		return;
4332 
4333 	/* remove the blank ones */
4334 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4335 		if (early_node_map[i].nid != nid)
4336 			continue;
4337 		if (early_node_map[i].end_pfn)
4338 			continue;
4339 		/* we found it, get rid of it */
4340 		for (j = i; j < nr_nodemap_entries - 1; j++)
4341 			memcpy(&early_node_map[j], &early_node_map[j+1],
4342 				sizeof(early_node_map[j]));
4343 		j = nr_nodemap_entries - 1;
4344 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4345 		nr_nodemap_entries--;
4346 	}
4347 }
4348 
4349 /**
4350  * remove_all_active_ranges - Remove all currently registered regions
4351  *
4352  * During discovery, it may be found that a table like SRAT is invalid
4353  * and an alternative discovery method must be used. This function removes
4354  * all currently registered regions.
4355  */
4356 void __init remove_all_active_ranges(void)
4357 {
4358 	memset(early_node_map, 0, sizeof(early_node_map));
4359 	nr_nodemap_entries = 0;
4360 }
4361 
4362 /* Compare two active node_active_regions */
4363 static int __init cmp_node_active_region(const void *a, const void *b)
4364 {
4365 	struct node_active_region *arange = (struct node_active_region *)a;
4366 	struct node_active_region *brange = (struct node_active_region *)b;
4367 
4368 	/* Done this way to avoid overflows */
4369 	if (arange->start_pfn > brange->start_pfn)
4370 		return 1;
4371 	if (arange->start_pfn < brange->start_pfn)
4372 		return -1;
4373 
4374 	return 0;
4375 }
4376 
4377 /* sort the node_map by start_pfn */
4378 void __init sort_node_map(void)
4379 {
4380 	sort(early_node_map, (size_t)nr_nodemap_entries,
4381 			sizeof(struct node_active_region),
4382 			cmp_node_active_region, NULL);
4383 }
4384 
4385 /* Find the lowest pfn for a node */
4386 static unsigned long __init find_min_pfn_for_node(int nid)
4387 {
4388 	int i;
4389 	unsigned long min_pfn = ULONG_MAX;
4390 
4391 	/* Assuming a sorted map, the first range found has the starting pfn */
4392 	for_each_active_range_index_in_nid(i, nid)
4393 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4394 
4395 	if (min_pfn == ULONG_MAX) {
4396 		printk(KERN_WARNING
4397 			"Could not find start_pfn for node %d\n", nid);
4398 		return 0;
4399 	}
4400 
4401 	return min_pfn;
4402 }
4403 
4404 /**
4405  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4406  *
4407  * It returns the minimum PFN based on information provided via
4408  * add_active_range().
4409  */
4410 unsigned long __init find_min_pfn_with_active_regions(void)
4411 {
4412 	return find_min_pfn_for_node(MAX_NUMNODES);
4413 }
4414 
4415 /*
4416  * early_calculate_totalpages()
4417  * Sum pages in active regions for movable zone.
4418  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4419  */
4420 static unsigned long __init early_calculate_totalpages(void)
4421 {
4422 	int i;
4423 	unsigned long totalpages = 0;
4424 
4425 	for (i = 0; i < nr_nodemap_entries; i++) {
4426 		unsigned long pages = early_node_map[i].end_pfn -
4427 						early_node_map[i].start_pfn;
4428 		totalpages += pages;
4429 		if (pages)
4430 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4431 	}
4432   	return totalpages;
4433 }
4434 
4435 /*
4436  * Find the PFN the Movable zone begins in each node. Kernel memory
4437  * is spread evenly between nodes as long as the nodes have enough
4438  * memory. When they don't, some nodes will have more kernelcore than
4439  * others
4440  */
4441 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4442 {
4443 	int i, nid;
4444 	unsigned long usable_startpfn;
4445 	unsigned long kernelcore_node, kernelcore_remaining;
4446 	/* save the state before borrow the nodemask */
4447 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4448 	unsigned long totalpages = early_calculate_totalpages();
4449 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4450 
4451 	/*
4452 	 * If movablecore was specified, calculate what size of
4453 	 * kernelcore that corresponds so that memory usable for
4454 	 * any allocation type is evenly spread. If both kernelcore
4455 	 * and movablecore are specified, then the value of kernelcore
4456 	 * will be used for required_kernelcore if it's greater than
4457 	 * what movablecore would have allowed.
4458 	 */
4459 	if (required_movablecore) {
4460 		unsigned long corepages;
4461 
4462 		/*
4463 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4464 		 * was requested by the user
4465 		 */
4466 		required_movablecore =
4467 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4468 		corepages = totalpages - required_movablecore;
4469 
4470 		required_kernelcore = max(required_kernelcore, corepages);
4471 	}
4472 
4473 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4474 	if (!required_kernelcore)
4475 		goto out;
4476 
4477 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4478 	find_usable_zone_for_movable();
4479 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4480 
4481 restart:
4482 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4483 	kernelcore_node = required_kernelcore / usable_nodes;
4484 	for_each_node_state(nid, N_HIGH_MEMORY) {
4485 		/*
4486 		 * Recalculate kernelcore_node if the division per node
4487 		 * now exceeds what is necessary to satisfy the requested
4488 		 * amount of memory for the kernel
4489 		 */
4490 		if (required_kernelcore < kernelcore_node)
4491 			kernelcore_node = required_kernelcore / usable_nodes;
4492 
4493 		/*
4494 		 * As the map is walked, we track how much memory is usable
4495 		 * by the kernel using kernelcore_remaining. When it is
4496 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4497 		 */
4498 		kernelcore_remaining = kernelcore_node;
4499 
4500 		/* Go through each range of PFNs within this node */
4501 		for_each_active_range_index_in_nid(i, nid) {
4502 			unsigned long start_pfn, end_pfn;
4503 			unsigned long size_pages;
4504 
4505 			start_pfn = max(early_node_map[i].start_pfn,
4506 						zone_movable_pfn[nid]);
4507 			end_pfn = early_node_map[i].end_pfn;
4508 			if (start_pfn >= end_pfn)
4509 				continue;
4510 
4511 			/* Account for what is only usable for kernelcore */
4512 			if (start_pfn < usable_startpfn) {
4513 				unsigned long kernel_pages;
4514 				kernel_pages = min(end_pfn, usable_startpfn)
4515 								- start_pfn;
4516 
4517 				kernelcore_remaining -= min(kernel_pages,
4518 							kernelcore_remaining);
4519 				required_kernelcore -= min(kernel_pages,
4520 							required_kernelcore);
4521 
4522 				/* Continue if range is now fully accounted */
4523 				if (end_pfn <= usable_startpfn) {
4524 
4525 					/*
4526 					 * Push zone_movable_pfn to the end so
4527 					 * that if we have to rebalance
4528 					 * kernelcore across nodes, we will
4529 					 * not double account here
4530 					 */
4531 					zone_movable_pfn[nid] = end_pfn;
4532 					continue;
4533 				}
4534 				start_pfn = usable_startpfn;
4535 			}
4536 
4537 			/*
4538 			 * The usable PFN range for ZONE_MOVABLE is from
4539 			 * start_pfn->end_pfn. Calculate size_pages as the
4540 			 * number of pages used as kernelcore
4541 			 */
4542 			size_pages = end_pfn - start_pfn;
4543 			if (size_pages > kernelcore_remaining)
4544 				size_pages = kernelcore_remaining;
4545 			zone_movable_pfn[nid] = start_pfn + size_pages;
4546 
4547 			/*
4548 			 * Some kernelcore has been met, update counts and
4549 			 * break if the kernelcore for this node has been
4550 			 * satisified
4551 			 */
4552 			required_kernelcore -= min(required_kernelcore,
4553 								size_pages);
4554 			kernelcore_remaining -= size_pages;
4555 			if (!kernelcore_remaining)
4556 				break;
4557 		}
4558 	}
4559 
4560 	/*
4561 	 * If there is still required_kernelcore, we do another pass with one
4562 	 * less node in the count. This will push zone_movable_pfn[nid] further
4563 	 * along on the nodes that still have memory until kernelcore is
4564 	 * satisified
4565 	 */
4566 	usable_nodes--;
4567 	if (usable_nodes && required_kernelcore > usable_nodes)
4568 		goto restart;
4569 
4570 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4571 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4572 		zone_movable_pfn[nid] =
4573 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4574 
4575 out:
4576 	/* restore the node_state */
4577 	node_states[N_HIGH_MEMORY] = saved_node_state;
4578 }
4579 
4580 /* Any regular memory on that node ? */
4581 static void check_for_regular_memory(pg_data_t *pgdat)
4582 {
4583 #ifdef CONFIG_HIGHMEM
4584 	enum zone_type zone_type;
4585 
4586 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4587 		struct zone *zone = &pgdat->node_zones[zone_type];
4588 		if (zone->present_pages)
4589 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4590 	}
4591 #endif
4592 }
4593 
4594 /**
4595  * free_area_init_nodes - Initialise all pg_data_t and zone data
4596  * @max_zone_pfn: an array of max PFNs for each zone
4597  *
4598  * This will call free_area_init_node() for each active node in the system.
4599  * Using the page ranges provided by add_active_range(), the size of each
4600  * zone in each node and their holes is calculated. If the maximum PFN
4601  * between two adjacent zones match, it is assumed that the zone is empty.
4602  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4603  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4604  * starts where the previous one ended. For example, ZONE_DMA32 starts
4605  * at arch_max_dma_pfn.
4606  */
4607 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4608 {
4609 	unsigned long nid;
4610 	int i;
4611 
4612 	/* Sort early_node_map as initialisation assumes it is sorted */
4613 	sort_node_map();
4614 
4615 	/* Record where the zone boundaries are */
4616 	memset(arch_zone_lowest_possible_pfn, 0,
4617 				sizeof(arch_zone_lowest_possible_pfn));
4618 	memset(arch_zone_highest_possible_pfn, 0,
4619 				sizeof(arch_zone_highest_possible_pfn));
4620 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4621 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4622 	for (i = 1; i < MAX_NR_ZONES; i++) {
4623 		if (i == ZONE_MOVABLE)
4624 			continue;
4625 		arch_zone_lowest_possible_pfn[i] =
4626 			arch_zone_highest_possible_pfn[i-1];
4627 		arch_zone_highest_possible_pfn[i] =
4628 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4629 	}
4630 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4631 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4632 
4633 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4634 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4635 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4636 
4637 	/* Print out the zone ranges */
4638 	printk("Zone PFN ranges:\n");
4639 	for (i = 0; i < MAX_NR_ZONES; i++) {
4640 		if (i == ZONE_MOVABLE)
4641 			continue;
4642 		printk("  %-8s ", zone_names[i]);
4643 		if (arch_zone_lowest_possible_pfn[i] ==
4644 				arch_zone_highest_possible_pfn[i])
4645 			printk("empty\n");
4646 		else
4647 			printk("%0#10lx -> %0#10lx\n",
4648 				arch_zone_lowest_possible_pfn[i],
4649 				arch_zone_highest_possible_pfn[i]);
4650 	}
4651 
4652 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4653 	printk("Movable zone start PFN for each node\n");
4654 	for (i = 0; i < MAX_NUMNODES; i++) {
4655 		if (zone_movable_pfn[i])
4656 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4657 	}
4658 
4659 	/* Print out the early_node_map[] */
4660 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4661 	for (i = 0; i < nr_nodemap_entries; i++)
4662 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4663 						early_node_map[i].start_pfn,
4664 						early_node_map[i].end_pfn);
4665 
4666 	/* Initialise every node */
4667 	mminit_verify_pageflags_layout();
4668 	setup_nr_node_ids();
4669 	for_each_online_node(nid) {
4670 		pg_data_t *pgdat = NODE_DATA(nid);
4671 		free_area_init_node(nid, NULL,
4672 				find_min_pfn_for_node(nid), NULL);
4673 
4674 		/* Any memory on that node */
4675 		if (pgdat->node_present_pages)
4676 			node_set_state(nid, N_HIGH_MEMORY);
4677 		check_for_regular_memory(pgdat);
4678 	}
4679 }
4680 
4681 static int __init cmdline_parse_core(char *p, unsigned long *core)
4682 {
4683 	unsigned long long coremem;
4684 	if (!p)
4685 		return -EINVAL;
4686 
4687 	coremem = memparse(p, &p);
4688 	*core = coremem >> PAGE_SHIFT;
4689 
4690 	/* Paranoid check that UL is enough for the coremem value */
4691 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4692 
4693 	return 0;
4694 }
4695 
4696 /*
4697  * kernelcore=size sets the amount of memory for use for allocations that
4698  * cannot be reclaimed or migrated.
4699  */
4700 static int __init cmdline_parse_kernelcore(char *p)
4701 {
4702 	return cmdline_parse_core(p, &required_kernelcore);
4703 }
4704 
4705 /*
4706  * movablecore=size sets the amount of memory for use for allocations that
4707  * can be reclaimed or migrated.
4708  */
4709 static int __init cmdline_parse_movablecore(char *p)
4710 {
4711 	return cmdline_parse_core(p, &required_movablecore);
4712 }
4713 
4714 early_param("kernelcore", cmdline_parse_kernelcore);
4715 early_param("movablecore", cmdline_parse_movablecore);
4716 
4717 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4718 
4719 /**
4720  * set_dma_reserve - set the specified number of pages reserved in the first zone
4721  * @new_dma_reserve: The number of pages to mark reserved
4722  *
4723  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4724  * In the DMA zone, a significant percentage may be consumed by kernel image
4725  * and other unfreeable allocations which can skew the watermarks badly. This
4726  * function may optionally be used to account for unfreeable pages in the
4727  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4728  * smaller per-cpu batchsize.
4729  */
4730 void __init set_dma_reserve(unsigned long new_dma_reserve)
4731 {
4732 	dma_reserve = new_dma_reserve;
4733 }
4734 
4735 #ifndef CONFIG_NEED_MULTIPLE_NODES
4736 struct pglist_data __refdata contig_page_data = {
4737 #ifndef CONFIG_NO_BOOTMEM
4738  .bdata = &bootmem_node_data[0]
4739 #endif
4740  };
4741 EXPORT_SYMBOL(contig_page_data);
4742 #endif
4743 
4744 void __init free_area_init(unsigned long *zones_size)
4745 {
4746 	free_area_init_node(0, zones_size,
4747 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4748 }
4749 
4750 static int page_alloc_cpu_notify(struct notifier_block *self,
4751 				 unsigned long action, void *hcpu)
4752 {
4753 	int cpu = (unsigned long)hcpu;
4754 
4755 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4756 		drain_pages(cpu);
4757 
4758 		/*
4759 		 * Spill the event counters of the dead processor
4760 		 * into the current processors event counters.
4761 		 * This artificially elevates the count of the current
4762 		 * processor.
4763 		 */
4764 		vm_events_fold_cpu(cpu);
4765 
4766 		/*
4767 		 * Zero the differential counters of the dead processor
4768 		 * so that the vm statistics are consistent.
4769 		 *
4770 		 * This is only okay since the processor is dead and cannot
4771 		 * race with what we are doing.
4772 		 */
4773 		refresh_cpu_vm_stats(cpu);
4774 	}
4775 	return NOTIFY_OK;
4776 }
4777 
4778 void __init page_alloc_init(void)
4779 {
4780 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4781 }
4782 
4783 /*
4784  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4785  *	or min_free_kbytes changes.
4786  */
4787 static void calculate_totalreserve_pages(void)
4788 {
4789 	struct pglist_data *pgdat;
4790 	unsigned long reserve_pages = 0;
4791 	enum zone_type i, j;
4792 
4793 	for_each_online_pgdat(pgdat) {
4794 		for (i = 0; i < MAX_NR_ZONES; i++) {
4795 			struct zone *zone = pgdat->node_zones + i;
4796 			unsigned long max = 0;
4797 
4798 			/* Find valid and maximum lowmem_reserve in the zone */
4799 			for (j = i; j < MAX_NR_ZONES; j++) {
4800 				if (zone->lowmem_reserve[j] > max)
4801 					max = zone->lowmem_reserve[j];
4802 			}
4803 
4804 			/* we treat the high watermark as reserved pages. */
4805 			max += high_wmark_pages(zone);
4806 
4807 			if (max > zone->present_pages)
4808 				max = zone->present_pages;
4809 			reserve_pages += max;
4810 		}
4811 	}
4812 	totalreserve_pages = reserve_pages;
4813 }
4814 
4815 /*
4816  * setup_per_zone_lowmem_reserve - called whenever
4817  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4818  *	has a correct pages reserved value, so an adequate number of
4819  *	pages are left in the zone after a successful __alloc_pages().
4820  */
4821 static void setup_per_zone_lowmem_reserve(void)
4822 {
4823 	struct pglist_data *pgdat;
4824 	enum zone_type j, idx;
4825 
4826 	for_each_online_pgdat(pgdat) {
4827 		for (j = 0; j < MAX_NR_ZONES; j++) {
4828 			struct zone *zone = pgdat->node_zones + j;
4829 			unsigned long present_pages = zone->present_pages;
4830 
4831 			zone->lowmem_reserve[j] = 0;
4832 
4833 			idx = j;
4834 			while (idx) {
4835 				struct zone *lower_zone;
4836 
4837 				idx--;
4838 
4839 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4840 					sysctl_lowmem_reserve_ratio[idx] = 1;
4841 
4842 				lower_zone = pgdat->node_zones + idx;
4843 				lower_zone->lowmem_reserve[j] = present_pages /
4844 					sysctl_lowmem_reserve_ratio[idx];
4845 				present_pages += lower_zone->present_pages;
4846 			}
4847 		}
4848 	}
4849 
4850 	/* update totalreserve_pages */
4851 	calculate_totalreserve_pages();
4852 }
4853 
4854 /**
4855  * setup_per_zone_wmarks - called when min_free_kbytes changes
4856  * or when memory is hot-{added|removed}
4857  *
4858  * Ensures that the watermark[min,low,high] values for each zone are set
4859  * correctly with respect to min_free_kbytes.
4860  */
4861 void setup_per_zone_wmarks(void)
4862 {
4863 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4864 	unsigned long lowmem_pages = 0;
4865 	struct zone *zone;
4866 	unsigned long flags;
4867 
4868 	/* Calculate total number of !ZONE_HIGHMEM pages */
4869 	for_each_zone(zone) {
4870 		if (!is_highmem(zone))
4871 			lowmem_pages += zone->present_pages;
4872 	}
4873 
4874 	for_each_zone(zone) {
4875 		u64 tmp;
4876 
4877 		spin_lock_irqsave(&zone->lock, flags);
4878 		tmp = (u64)pages_min * zone->present_pages;
4879 		do_div(tmp, lowmem_pages);
4880 		if (is_highmem(zone)) {
4881 			/*
4882 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4883 			 * need highmem pages, so cap pages_min to a small
4884 			 * value here.
4885 			 *
4886 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4887 			 * deltas controls asynch page reclaim, and so should
4888 			 * not be capped for highmem.
4889 			 */
4890 			int min_pages;
4891 
4892 			min_pages = zone->present_pages / 1024;
4893 			if (min_pages < SWAP_CLUSTER_MAX)
4894 				min_pages = SWAP_CLUSTER_MAX;
4895 			if (min_pages > 128)
4896 				min_pages = 128;
4897 			zone->watermark[WMARK_MIN] = min_pages;
4898 		} else {
4899 			/*
4900 			 * If it's a lowmem zone, reserve a number of pages
4901 			 * proportionate to the zone's size.
4902 			 */
4903 			zone->watermark[WMARK_MIN] = tmp;
4904 		}
4905 
4906 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4907 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4908 		setup_zone_migrate_reserve(zone);
4909 		spin_unlock_irqrestore(&zone->lock, flags);
4910 	}
4911 
4912 	/* update totalreserve_pages */
4913 	calculate_totalreserve_pages();
4914 }
4915 
4916 /*
4917  * The inactive anon list should be small enough that the VM never has to
4918  * do too much work, but large enough that each inactive page has a chance
4919  * to be referenced again before it is swapped out.
4920  *
4921  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4922  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4923  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4924  * the anonymous pages are kept on the inactive list.
4925  *
4926  * total     target    max
4927  * memory    ratio     inactive anon
4928  * -------------------------------------
4929  *   10MB       1         5MB
4930  *  100MB       1        50MB
4931  *    1GB       3       250MB
4932  *   10GB      10       0.9GB
4933  *  100GB      31         3GB
4934  *    1TB     101        10GB
4935  *   10TB     320        32GB
4936  */
4937 void calculate_zone_inactive_ratio(struct zone *zone)
4938 {
4939 	unsigned int gb, ratio;
4940 
4941 	/* Zone size in gigabytes */
4942 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4943 	if (gb)
4944 		ratio = int_sqrt(10 * gb);
4945 	else
4946 		ratio = 1;
4947 
4948 	zone->inactive_ratio = ratio;
4949 }
4950 
4951 static void __init setup_per_zone_inactive_ratio(void)
4952 {
4953 	struct zone *zone;
4954 
4955 	for_each_zone(zone)
4956 		calculate_zone_inactive_ratio(zone);
4957 }
4958 
4959 /*
4960  * Initialise min_free_kbytes.
4961  *
4962  * For small machines we want it small (128k min).  For large machines
4963  * we want it large (64MB max).  But it is not linear, because network
4964  * bandwidth does not increase linearly with machine size.  We use
4965  *
4966  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4967  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4968  *
4969  * which yields
4970  *
4971  * 16MB:	512k
4972  * 32MB:	724k
4973  * 64MB:	1024k
4974  * 128MB:	1448k
4975  * 256MB:	2048k
4976  * 512MB:	2896k
4977  * 1024MB:	4096k
4978  * 2048MB:	5792k
4979  * 4096MB:	8192k
4980  * 8192MB:	11584k
4981  * 16384MB:	16384k
4982  */
4983 static int __init init_per_zone_wmark_min(void)
4984 {
4985 	unsigned long lowmem_kbytes;
4986 
4987 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4988 
4989 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4990 	if (min_free_kbytes < 128)
4991 		min_free_kbytes = 128;
4992 	if (min_free_kbytes > 65536)
4993 		min_free_kbytes = 65536;
4994 	setup_per_zone_wmarks();
4995 	setup_per_zone_lowmem_reserve();
4996 	setup_per_zone_inactive_ratio();
4997 	return 0;
4998 }
4999 module_init(init_per_zone_wmark_min)
5000 
5001 /*
5002  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5003  *	that we can call two helper functions whenever min_free_kbytes
5004  *	changes.
5005  */
5006 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5007 	void __user *buffer, size_t *length, loff_t *ppos)
5008 {
5009 	proc_dointvec(table, write, buffer, length, ppos);
5010 	if (write)
5011 		setup_per_zone_wmarks();
5012 	return 0;
5013 }
5014 
5015 #ifdef CONFIG_NUMA
5016 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5017 	void __user *buffer, size_t *length, loff_t *ppos)
5018 {
5019 	struct zone *zone;
5020 	int rc;
5021 
5022 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5023 	if (rc)
5024 		return rc;
5025 
5026 	for_each_zone(zone)
5027 		zone->min_unmapped_pages = (zone->present_pages *
5028 				sysctl_min_unmapped_ratio) / 100;
5029 	return 0;
5030 }
5031 
5032 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5033 	void __user *buffer, size_t *length, loff_t *ppos)
5034 {
5035 	struct zone *zone;
5036 	int rc;
5037 
5038 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5039 	if (rc)
5040 		return rc;
5041 
5042 	for_each_zone(zone)
5043 		zone->min_slab_pages = (zone->present_pages *
5044 				sysctl_min_slab_ratio) / 100;
5045 	return 0;
5046 }
5047 #endif
5048 
5049 /*
5050  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5051  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5052  *	whenever sysctl_lowmem_reserve_ratio changes.
5053  *
5054  * The reserve ratio obviously has absolutely no relation with the
5055  * minimum watermarks. The lowmem reserve ratio can only make sense
5056  * if in function of the boot time zone sizes.
5057  */
5058 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5059 	void __user *buffer, size_t *length, loff_t *ppos)
5060 {
5061 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5062 	setup_per_zone_lowmem_reserve();
5063 	return 0;
5064 }
5065 
5066 /*
5067  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5068  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5069  * can have before it gets flushed back to buddy allocator.
5070  */
5071 
5072 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5073 	void __user *buffer, size_t *length, loff_t *ppos)
5074 {
5075 	struct zone *zone;
5076 	unsigned int cpu;
5077 	int ret;
5078 
5079 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5080 	if (!write || (ret == -EINVAL))
5081 		return ret;
5082 	for_each_populated_zone(zone) {
5083 		for_each_possible_cpu(cpu) {
5084 			unsigned long  high;
5085 			high = zone->present_pages / percpu_pagelist_fraction;
5086 			setup_pagelist_highmark(
5087 				per_cpu_ptr(zone->pageset, cpu), high);
5088 		}
5089 	}
5090 	return 0;
5091 }
5092 
5093 int hashdist = HASHDIST_DEFAULT;
5094 
5095 #ifdef CONFIG_NUMA
5096 static int __init set_hashdist(char *str)
5097 {
5098 	if (!str)
5099 		return 0;
5100 	hashdist = simple_strtoul(str, &str, 0);
5101 	return 1;
5102 }
5103 __setup("hashdist=", set_hashdist);
5104 #endif
5105 
5106 /*
5107  * allocate a large system hash table from bootmem
5108  * - it is assumed that the hash table must contain an exact power-of-2
5109  *   quantity of entries
5110  * - limit is the number of hash buckets, not the total allocation size
5111  */
5112 void *__init alloc_large_system_hash(const char *tablename,
5113 				     unsigned long bucketsize,
5114 				     unsigned long numentries,
5115 				     int scale,
5116 				     int flags,
5117 				     unsigned int *_hash_shift,
5118 				     unsigned int *_hash_mask,
5119 				     unsigned long limit)
5120 {
5121 	unsigned long long max = limit;
5122 	unsigned long log2qty, size;
5123 	void *table = NULL;
5124 
5125 	/* allow the kernel cmdline to have a say */
5126 	if (!numentries) {
5127 		/* round applicable memory size up to nearest megabyte */
5128 		numentries = nr_kernel_pages;
5129 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5130 		numentries >>= 20 - PAGE_SHIFT;
5131 		numentries <<= 20 - PAGE_SHIFT;
5132 
5133 		/* limit to 1 bucket per 2^scale bytes of low memory */
5134 		if (scale > PAGE_SHIFT)
5135 			numentries >>= (scale - PAGE_SHIFT);
5136 		else
5137 			numentries <<= (PAGE_SHIFT - scale);
5138 
5139 		/* Make sure we've got at least a 0-order allocation.. */
5140 		if (unlikely(flags & HASH_SMALL)) {
5141 			/* Makes no sense without HASH_EARLY */
5142 			WARN_ON(!(flags & HASH_EARLY));
5143 			if (!(numentries >> *_hash_shift)) {
5144 				numentries = 1UL << *_hash_shift;
5145 				BUG_ON(!numentries);
5146 			}
5147 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5148 			numentries = PAGE_SIZE / bucketsize;
5149 	}
5150 	numentries = roundup_pow_of_two(numentries);
5151 
5152 	/* limit allocation size to 1/16 total memory by default */
5153 	if (max == 0) {
5154 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5155 		do_div(max, bucketsize);
5156 	}
5157 
5158 	if (numentries > max)
5159 		numentries = max;
5160 
5161 	log2qty = ilog2(numentries);
5162 
5163 	do {
5164 		size = bucketsize << log2qty;
5165 		if (flags & HASH_EARLY)
5166 			table = alloc_bootmem_nopanic(size);
5167 		else if (hashdist)
5168 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5169 		else {
5170 			/*
5171 			 * If bucketsize is not a power-of-two, we may free
5172 			 * some pages at the end of hash table which
5173 			 * alloc_pages_exact() automatically does
5174 			 */
5175 			if (get_order(size) < MAX_ORDER) {
5176 				table = alloc_pages_exact(size, GFP_ATOMIC);
5177 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5178 			}
5179 		}
5180 	} while (!table && size > PAGE_SIZE && --log2qty);
5181 
5182 	if (!table)
5183 		panic("Failed to allocate %s hash table\n", tablename);
5184 
5185 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5186 	       tablename,
5187 	       (1UL << log2qty),
5188 	       ilog2(size) - PAGE_SHIFT,
5189 	       size);
5190 
5191 	if (_hash_shift)
5192 		*_hash_shift = log2qty;
5193 	if (_hash_mask)
5194 		*_hash_mask = (1 << log2qty) - 1;
5195 
5196 	return table;
5197 }
5198 
5199 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5200 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5201 							unsigned long pfn)
5202 {
5203 #ifdef CONFIG_SPARSEMEM
5204 	return __pfn_to_section(pfn)->pageblock_flags;
5205 #else
5206 	return zone->pageblock_flags;
5207 #endif /* CONFIG_SPARSEMEM */
5208 }
5209 
5210 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5211 {
5212 #ifdef CONFIG_SPARSEMEM
5213 	pfn &= (PAGES_PER_SECTION-1);
5214 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5215 #else
5216 	pfn = pfn - zone->zone_start_pfn;
5217 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5218 #endif /* CONFIG_SPARSEMEM */
5219 }
5220 
5221 /**
5222  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5223  * @page: The page within the block of interest
5224  * @start_bitidx: The first bit of interest to retrieve
5225  * @end_bitidx: The last bit of interest
5226  * returns pageblock_bits flags
5227  */
5228 unsigned long get_pageblock_flags_group(struct page *page,
5229 					int start_bitidx, int end_bitidx)
5230 {
5231 	struct zone *zone;
5232 	unsigned long *bitmap;
5233 	unsigned long pfn, bitidx;
5234 	unsigned long flags = 0;
5235 	unsigned long value = 1;
5236 
5237 	zone = page_zone(page);
5238 	pfn = page_to_pfn(page);
5239 	bitmap = get_pageblock_bitmap(zone, pfn);
5240 	bitidx = pfn_to_bitidx(zone, pfn);
5241 
5242 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5243 		if (test_bit(bitidx + start_bitidx, bitmap))
5244 			flags |= value;
5245 
5246 	return flags;
5247 }
5248 
5249 /**
5250  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5251  * @page: The page within the block of interest
5252  * @start_bitidx: The first bit of interest
5253  * @end_bitidx: The last bit of interest
5254  * @flags: The flags to set
5255  */
5256 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5257 					int start_bitidx, int end_bitidx)
5258 {
5259 	struct zone *zone;
5260 	unsigned long *bitmap;
5261 	unsigned long pfn, bitidx;
5262 	unsigned long value = 1;
5263 
5264 	zone = page_zone(page);
5265 	pfn = page_to_pfn(page);
5266 	bitmap = get_pageblock_bitmap(zone, pfn);
5267 	bitidx = pfn_to_bitidx(zone, pfn);
5268 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5269 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5270 
5271 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5272 		if (flags & value)
5273 			__set_bit(bitidx + start_bitidx, bitmap);
5274 		else
5275 			__clear_bit(bitidx + start_bitidx, bitmap);
5276 }
5277 
5278 /*
5279  * This is designed as sub function...plz see page_isolation.c also.
5280  * set/clear page block's type to be ISOLATE.
5281  * page allocater never alloc memory from ISOLATE block.
5282  */
5283 
5284 int set_migratetype_isolate(struct page *page)
5285 {
5286 	struct zone *zone;
5287 	struct page *curr_page;
5288 	unsigned long flags, pfn, iter;
5289 	unsigned long immobile = 0;
5290 	struct memory_isolate_notify arg;
5291 	int notifier_ret;
5292 	int ret = -EBUSY;
5293 	int zone_idx;
5294 
5295 	zone = page_zone(page);
5296 	zone_idx = zone_idx(zone);
5297 
5298 	spin_lock_irqsave(&zone->lock, flags);
5299 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5300 	    zone_idx == ZONE_MOVABLE) {
5301 		ret = 0;
5302 		goto out;
5303 	}
5304 
5305 	pfn = page_to_pfn(page);
5306 	arg.start_pfn = pfn;
5307 	arg.nr_pages = pageblock_nr_pages;
5308 	arg.pages_found = 0;
5309 
5310 	/*
5311 	 * It may be possible to isolate a pageblock even if the
5312 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5313 	 * notifier chain is used by balloon drivers to return the
5314 	 * number of pages in a range that are held by the balloon
5315 	 * driver to shrink memory. If all the pages are accounted for
5316 	 * by balloons, are free, or on the LRU, isolation can continue.
5317 	 * Later, for example, when memory hotplug notifier runs, these
5318 	 * pages reported as "can be isolated" should be isolated(freed)
5319 	 * by the balloon driver through the memory notifier chain.
5320 	 */
5321 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5322 	notifier_ret = notifier_to_errno(notifier_ret);
5323 	if (notifier_ret || !arg.pages_found)
5324 		goto out;
5325 
5326 	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5327 		if (!pfn_valid_within(pfn))
5328 			continue;
5329 
5330 		curr_page = pfn_to_page(iter);
5331 		if (!page_count(curr_page) || PageLRU(curr_page))
5332 			continue;
5333 
5334 		immobile++;
5335 	}
5336 
5337 	if (arg.pages_found == immobile)
5338 		ret = 0;
5339 
5340 out:
5341 	if (!ret) {
5342 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5343 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5344 	}
5345 
5346 	spin_unlock_irqrestore(&zone->lock, flags);
5347 	if (!ret)
5348 		drain_all_pages();
5349 	return ret;
5350 }
5351 
5352 void unset_migratetype_isolate(struct page *page)
5353 {
5354 	struct zone *zone;
5355 	unsigned long flags;
5356 	zone = page_zone(page);
5357 	spin_lock_irqsave(&zone->lock, flags);
5358 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5359 		goto out;
5360 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5361 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5362 out:
5363 	spin_unlock_irqrestore(&zone->lock, flags);
5364 }
5365 
5366 #ifdef CONFIG_MEMORY_HOTREMOVE
5367 /*
5368  * All pages in the range must be isolated before calling this.
5369  */
5370 void
5371 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5372 {
5373 	struct page *page;
5374 	struct zone *zone;
5375 	int order, i;
5376 	unsigned long pfn;
5377 	unsigned long flags;
5378 	/* find the first valid pfn */
5379 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5380 		if (pfn_valid(pfn))
5381 			break;
5382 	if (pfn == end_pfn)
5383 		return;
5384 	zone = page_zone(pfn_to_page(pfn));
5385 	spin_lock_irqsave(&zone->lock, flags);
5386 	pfn = start_pfn;
5387 	while (pfn < end_pfn) {
5388 		if (!pfn_valid(pfn)) {
5389 			pfn++;
5390 			continue;
5391 		}
5392 		page = pfn_to_page(pfn);
5393 		BUG_ON(page_count(page));
5394 		BUG_ON(!PageBuddy(page));
5395 		order = page_order(page);
5396 #ifdef CONFIG_DEBUG_VM
5397 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5398 		       pfn, 1 << order, end_pfn);
5399 #endif
5400 		list_del(&page->lru);
5401 		rmv_page_order(page);
5402 		zone->free_area[order].nr_free--;
5403 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5404 				      - (1UL << order));
5405 		for (i = 0; i < (1 << order); i++)
5406 			SetPageReserved((page+i));
5407 		pfn += (1 << order);
5408 	}
5409 	spin_unlock_irqrestore(&zone->lock, flags);
5410 }
5411 #endif
5412 
5413 #ifdef CONFIG_MEMORY_FAILURE
5414 bool is_free_buddy_page(struct page *page)
5415 {
5416 	struct zone *zone = page_zone(page);
5417 	unsigned long pfn = page_to_pfn(page);
5418 	unsigned long flags;
5419 	int order;
5420 
5421 	spin_lock_irqsave(&zone->lock, flags);
5422 	for (order = 0; order < MAX_ORDER; order++) {
5423 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5424 
5425 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5426 			break;
5427 	}
5428 	spin_unlock_irqrestore(&zone->lock, flags);
5429 
5430 	return order < MAX_ORDER;
5431 }
5432 #endif
5433 
5434 static struct trace_print_flags pageflag_names[] = {
5435 	{1UL << PG_locked,		"locked"	},
5436 	{1UL << PG_error,		"error"		},
5437 	{1UL << PG_referenced,		"referenced"	},
5438 	{1UL << PG_uptodate,		"uptodate"	},
5439 	{1UL << PG_dirty,		"dirty"		},
5440 	{1UL << PG_lru,			"lru"		},
5441 	{1UL << PG_active,		"active"	},
5442 	{1UL << PG_slab,		"slab"		},
5443 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5444 	{1UL << PG_arch_1,		"arch_1"	},
5445 	{1UL << PG_reserved,		"reserved"	},
5446 	{1UL << PG_private,		"private"	},
5447 	{1UL << PG_private_2,		"private_2"	},
5448 	{1UL << PG_writeback,		"writeback"	},
5449 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5450 	{1UL << PG_head,		"head"		},
5451 	{1UL << PG_tail,		"tail"		},
5452 #else
5453 	{1UL << PG_compound,		"compound"	},
5454 #endif
5455 	{1UL << PG_swapcache,		"swapcache"	},
5456 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5457 	{1UL << PG_reclaim,		"reclaim"	},
5458 	{1UL << PG_buddy,		"buddy"		},
5459 	{1UL << PG_swapbacked,		"swapbacked"	},
5460 	{1UL << PG_unevictable,		"unevictable"	},
5461 #ifdef CONFIG_MMU
5462 	{1UL << PG_mlocked,		"mlocked"	},
5463 #endif
5464 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5465 	{1UL << PG_uncached,		"uncached"	},
5466 #endif
5467 #ifdef CONFIG_MEMORY_FAILURE
5468 	{1UL << PG_hwpoison,		"hwpoison"	},
5469 #endif
5470 	{-1UL,				NULL		},
5471 };
5472 
5473 static void dump_page_flags(unsigned long flags)
5474 {
5475 	const char *delim = "";
5476 	unsigned long mask;
5477 	int i;
5478 
5479 	printk(KERN_ALERT "page flags: %#lx(", flags);
5480 
5481 	/* remove zone id */
5482 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5483 
5484 	for (i = 0; pageflag_names[i].name && flags; i++) {
5485 
5486 		mask = pageflag_names[i].mask;
5487 		if ((flags & mask) != mask)
5488 			continue;
5489 
5490 		flags &= ~mask;
5491 		printk("%s%s", delim, pageflag_names[i].name);
5492 		delim = "|";
5493 	}
5494 
5495 	/* check for left over flags */
5496 	if (flags)
5497 		printk("%s%#lx", delim, flags);
5498 
5499 	printk(")\n");
5500 }
5501 
5502 void dump_page(struct page *page)
5503 {
5504 	printk(KERN_ALERT
5505 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5506 		page, page_count(page), page_mapcount(page),
5507 		page->mapping, page->index);
5508 	dump_page_flags(page->flags);
5509 }
5510