xref: /openbmc/linux/mm/page_alloc.c (revision d32f834cd6873d9a5ed18ad028700f60d1688cf3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
79 #include "internal.h"
80 #include "shuffle.h"
81 #include "page_reporting.h"
82 
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t;
85 
86 /* No special request */
87 #define FPI_NONE		((__force fpi_t)0)
88 
89 /*
90  * Skip free page reporting notification for the (possibly merged) page.
91  * This does not hinder free page reporting from grabbing the page,
92  * reporting it and marking it "reported" -  it only skips notifying
93  * the free page reporting infrastructure about a newly freed page. For
94  * example, used when temporarily pulling a page from a freelist and
95  * putting it back unmodified.
96  */
97 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
98 
99 /*
100  * Place the (possibly merged) page to the tail of the freelist. Will ignore
101  * page shuffling (relevant code - e.g., memory onlining - is expected to
102  * shuffle the whole zone).
103  *
104  * Note: No code should rely on this flag for correctness - it's purely
105  *       to allow for optimizations when handing back either fresh pages
106  *       (memory onlining) or untouched pages (page isolation, free page
107  *       reporting).
108  */
109 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
110 
111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112 static DEFINE_MUTEX(pcp_batch_high_lock);
113 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
114 
115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116 DEFINE_PER_CPU(int, numa_node);
117 EXPORT_PER_CPU_SYMBOL(numa_node);
118 #endif
119 
120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121 
122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
123 /*
124  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127  * defined in <linux/topology.h>.
128  */
129 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
130 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131 #endif
132 
133 /* work_structs for global per-cpu drains */
134 struct pcpu_drain {
135 	struct zone *zone;
136 	struct work_struct work;
137 };
138 static DEFINE_MUTEX(pcpu_drain_mutex);
139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
140 
141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142 volatile unsigned long latent_entropy __latent_entropy;
143 EXPORT_SYMBOL(latent_entropy);
144 #endif
145 
146 /*
147  * Array of node states.
148  */
149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 	[N_POSSIBLE] = NODE_MASK_ALL,
151 	[N_ONLINE] = { { [0] = 1UL } },
152 #ifndef CONFIG_NUMA
153 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
154 #ifdef CONFIG_HIGHMEM
155 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
156 #endif
157 	[N_MEMORY] = { { [0] = 1UL } },
158 	[N_CPU] = { { [0] = 1UL } },
159 #endif	/* NUMA */
160 };
161 EXPORT_SYMBOL(node_states);
162 
163 atomic_long_t _totalram_pages __read_mostly;
164 EXPORT_SYMBOL(_totalram_pages);
165 unsigned long totalreserve_pages __read_mostly;
166 unsigned long totalcma_pages __read_mostly;
167 
168 int percpu_pagelist_fraction;
169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
170 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
171 EXPORT_SYMBOL(init_on_alloc);
172 
173 DEFINE_STATIC_KEY_FALSE(init_on_free);
174 EXPORT_SYMBOL(init_on_free);
175 
176 static bool _init_on_alloc_enabled_early __read_mostly
177 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
178 static int __init early_init_on_alloc(char *buf)
179 {
180 
181 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
182 }
183 early_param("init_on_alloc", early_init_on_alloc);
184 
185 static bool _init_on_free_enabled_early __read_mostly
186 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
187 static int __init early_init_on_free(char *buf)
188 {
189 	return kstrtobool(buf, &_init_on_free_enabled_early);
190 }
191 early_param("init_on_free", early_init_on_free);
192 
193 /*
194  * A cached value of the page's pageblock's migratetype, used when the page is
195  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197  * Also the migratetype set in the page does not necessarily match the pcplist
198  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199  * other index - this ensures that it will be put on the correct CMA freelist.
200  */
201 static inline int get_pcppage_migratetype(struct page *page)
202 {
203 	return page->index;
204 }
205 
206 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207 {
208 	page->index = migratetype;
209 }
210 
211 #ifdef CONFIG_PM_SLEEP
212 /*
213  * The following functions are used by the suspend/hibernate code to temporarily
214  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215  * while devices are suspended.  To avoid races with the suspend/hibernate code,
216  * they should always be called with system_transition_mutex held
217  * (gfp_allowed_mask also should only be modified with system_transition_mutex
218  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219  * with that modification).
220  */
221 
222 static gfp_t saved_gfp_mask;
223 
224 void pm_restore_gfp_mask(void)
225 {
226 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
227 	if (saved_gfp_mask) {
228 		gfp_allowed_mask = saved_gfp_mask;
229 		saved_gfp_mask = 0;
230 	}
231 }
232 
233 void pm_restrict_gfp_mask(void)
234 {
235 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
236 	WARN_ON(saved_gfp_mask);
237 	saved_gfp_mask = gfp_allowed_mask;
238 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
239 }
240 
241 bool pm_suspended_storage(void)
242 {
243 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
244 		return false;
245 	return true;
246 }
247 #endif /* CONFIG_PM_SLEEP */
248 
249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250 unsigned int pageblock_order __read_mostly;
251 #endif
252 
253 static void __free_pages_ok(struct page *page, unsigned int order,
254 			    fpi_t fpi_flags);
255 
256 /*
257  * results with 256, 32 in the lowmem_reserve sysctl:
258  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259  *	1G machine -> (16M dma, 784M normal, 224M high)
260  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
263  *
264  * TBD: should special case ZONE_DMA32 machines here - in those we normally
265  * don't need any ZONE_NORMAL reservation
266  */
267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
268 #ifdef CONFIG_ZONE_DMA
269 	[ZONE_DMA] = 256,
270 #endif
271 #ifdef CONFIG_ZONE_DMA32
272 	[ZONE_DMA32] = 256,
273 #endif
274 	[ZONE_NORMAL] = 32,
275 #ifdef CONFIG_HIGHMEM
276 	[ZONE_HIGHMEM] = 0,
277 #endif
278 	[ZONE_MOVABLE] = 0,
279 };
280 
281 static char * const zone_names[MAX_NR_ZONES] = {
282 #ifdef CONFIG_ZONE_DMA
283 	 "DMA",
284 #endif
285 #ifdef CONFIG_ZONE_DMA32
286 	 "DMA32",
287 #endif
288 	 "Normal",
289 #ifdef CONFIG_HIGHMEM
290 	 "HighMem",
291 #endif
292 	 "Movable",
293 #ifdef CONFIG_ZONE_DEVICE
294 	 "Device",
295 #endif
296 };
297 
298 const char * const migratetype_names[MIGRATE_TYPES] = {
299 	"Unmovable",
300 	"Movable",
301 	"Reclaimable",
302 	"HighAtomic",
303 #ifdef CONFIG_CMA
304 	"CMA",
305 #endif
306 #ifdef CONFIG_MEMORY_ISOLATION
307 	"Isolate",
308 #endif
309 };
310 
311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 	[NULL_COMPOUND_DTOR] = NULL,
313 	[COMPOUND_PAGE_DTOR] = free_compound_page,
314 #ifdef CONFIG_HUGETLB_PAGE
315 	[HUGETLB_PAGE_DTOR] = free_huge_page,
316 #endif
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
319 #endif
320 };
321 
322 int min_free_kbytes = 1024;
323 int user_min_free_kbytes = -1;
324 #ifdef CONFIG_DISCONTIGMEM
325 /*
326  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327  * are not on separate NUMA nodes. Functionally this works but with
328  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329  * quite small. By default, do not boost watermarks on discontigmem as in
330  * many cases very high-order allocations like THP are likely to be
331  * unsupported and the premature reclaim offsets the advantage of long-term
332  * fragmentation avoidance.
333  */
334 int watermark_boost_factor __read_mostly;
335 #else
336 int watermark_boost_factor __read_mostly = 15000;
337 #endif
338 int watermark_scale_factor = 10;
339 
340 static unsigned long nr_kernel_pages __initdata;
341 static unsigned long nr_all_pages __initdata;
342 static unsigned long dma_reserve __initdata;
343 
344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
346 static unsigned long required_kernelcore __initdata;
347 static unsigned long required_kernelcore_percent __initdata;
348 static unsigned long required_movablecore __initdata;
349 static unsigned long required_movablecore_percent __initdata;
350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
351 static bool mirrored_kernelcore __meminitdata;
352 
353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354 int movable_zone;
355 EXPORT_SYMBOL(movable_zone);
356 
357 #if MAX_NUMNODES > 1
358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
359 unsigned int nr_online_nodes __read_mostly = 1;
360 EXPORT_SYMBOL(nr_node_ids);
361 EXPORT_SYMBOL(nr_online_nodes);
362 #endif
363 
364 int page_group_by_mobility_disabled __read_mostly;
365 
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
367 /*
368  * During boot we initialize deferred pages on-demand, as needed, but once
369  * page_alloc_init_late() has finished, the deferred pages are all initialized,
370  * and we can permanently disable that path.
371  */
372 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373 
374 /*
375  * Calling kasan_free_pages() only after deferred memory initialization
376  * has completed. Poisoning pages during deferred memory init will greatly
377  * lengthen the process and cause problem in large memory systems as the
378  * deferred pages initialization is done with interrupt disabled.
379  *
380  * Assuming that there will be no reference to those newly initialized
381  * pages before they are ever allocated, this should have no effect on
382  * KASAN memory tracking as the poison will be properly inserted at page
383  * allocation time. The only corner case is when pages are allocated by
384  * on-demand allocation and then freed again before the deferred pages
385  * initialization is done, but this is not likely to happen.
386  */
387 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388 {
389 	if (!static_branch_unlikely(&deferred_pages))
390 		kasan_free_pages(page, order);
391 }
392 
393 /* Returns true if the struct page for the pfn is uninitialised */
394 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
395 {
396 	int nid = early_pfn_to_nid(pfn);
397 
398 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
399 		return true;
400 
401 	return false;
402 }
403 
404 /*
405  * Returns true when the remaining initialisation should be deferred until
406  * later in the boot cycle when it can be parallelised.
407  */
408 static bool __meminit
409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
410 {
411 	static unsigned long prev_end_pfn, nr_initialised;
412 
413 	/*
414 	 * prev_end_pfn static that contains the end of previous zone
415 	 * No need to protect because called very early in boot before smp_init.
416 	 */
417 	if (prev_end_pfn != end_pfn) {
418 		prev_end_pfn = end_pfn;
419 		nr_initialised = 0;
420 	}
421 
422 	/* Always populate low zones for address-constrained allocations */
423 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
424 		return false;
425 
426 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
427 		return true;
428 	/*
429 	 * We start only with one section of pages, more pages are added as
430 	 * needed until the rest of deferred pages are initialized.
431 	 */
432 	nr_initialised++;
433 	if ((nr_initialised > PAGES_PER_SECTION) &&
434 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
435 		NODE_DATA(nid)->first_deferred_pfn = pfn;
436 		return true;
437 	}
438 	return false;
439 }
440 #else
441 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
442 
443 static inline bool early_page_uninitialised(unsigned long pfn)
444 {
445 	return false;
446 }
447 
448 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
449 {
450 	return false;
451 }
452 #endif
453 
454 /* Return a pointer to the bitmap storing bits affecting a block of pages */
455 static inline unsigned long *get_pageblock_bitmap(struct page *page,
456 							unsigned long pfn)
457 {
458 #ifdef CONFIG_SPARSEMEM
459 	return section_to_usemap(__pfn_to_section(pfn));
460 #else
461 	return page_zone(page)->pageblock_flags;
462 #endif /* CONFIG_SPARSEMEM */
463 }
464 
465 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
466 {
467 #ifdef CONFIG_SPARSEMEM
468 	pfn &= (PAGES_PER_SECTION-1);
469 #else
470 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
471 #endif /* CONFIG_SPARSEMEM */
472 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
473 }
474 
475 static __always_inline
476 unsigned long __get_pfnblock_flags_mask(struct page *page,
477 					unsigned long pfn,
478 					unsigned long mask)
479 {
480 	unsigned long *bitmap;
481 	unsigned long bitidx, word_bitidx;
482 	unsigned long word;
483 
484 	bitmap = get_pageblock_bitmap(page, pfn);
485 	bitidx = pfn_to_bitidx(page, pfn);
486 	word_bitidx = bitidx / BITS_PER_LONG;
487 	bitidx &= (BITS_PER_LONG-1);
488 
489 	word = bitmap[word_bitidx];
490 	return (word >> bitidx) & mask;
491 }
492 
493 /**
494  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
495  * @page: The page within the block of interest
496  * @pfn: The target page frame number
497  * @mask: mask of bits that the caller is interested in
498  *
499  * Return: pageblock_bits flags
500  */
501 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
502 					unsigned long mask)
503 {
504 	return __get_pfnblock_flags_mask(page, pfn, mask);
505 }
506 
507 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
508 {
509 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
510 }
511 
512 /**
513  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
514  * @page: The page within the block of interest
515  * @flags: The flags to set
516  * @pfn: The target page frame number
517  * @mask: mask of bits that the caller is interested in
518  */
519 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 					unsigned long pfn,
521 					unsigned long mask)
522 {
523 	unsigned long *bitmap;
524 	unsigned long bitidx, word_bitidx;
525 	unsigned long old_word, word;
526 
527 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 
530 	bitmap = get_pageblock_bitmap(page, pfn);
531 	bitidx = pfn_to_bitidx(page, pfn);
532 	word_bitidx = bitidx / BITS_PER_LONG;
533 	bitidx &= (BITS_PER_LONG-1);
534 
535 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 
537 	mask <<= bitidx;
538 	flags <<= bitidx;
539 
540 	word = READ_ONCE(bitmap[word_bitidx]);
541 	for (;;) {
542 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 		if (word == old_word)
544 			break;
545 		word = old_word;
546 	}
547 }
548 
549 void set_pageblock_migratetype(struct page *page, int migratetype)
550 {
551 	if (unlikely(page_group_by_mobility_disabled &&
552 		     migratetype < MIGRATE_PCPTYPES))
553 		migratetype = MIGRATE_UNMOVABLE;
554 
555 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
556 				page_to_pfn(page), MIGRATETYPE_MASK);
557 }
558 
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
561 {
562 	int ret = 0;
563 	unsigned seq;
564 	unsigned long pfn = page_to_pfn(page);
565 	unsigned long sp, start_pfn;
566 
567 	do {
568 		seq = zone_span_seqbegin(zone);
569 		start_pfn = zone->zone_start_pfn;
570 		sp = zone->spanned_pages;
571 		if (!zone_spans_pfn(zone, pfn))
572 			ret = 1;
573 	} while (zone_span_seqretry(zone, seq));
574 
575 	if (ret)
576 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 			pfn, zone_to_nid(zone), zone->name,
578 			start_pfn, start_pfn + sp);
579 
580 	return ret;
581 }
582 
583 static int page_is_consistent(struct zone *zone, struct page *page)
584 {
585 	if (!pfn_valid_within(page_to_pfn(page)))
586 		return 0;
587 	if (zone != page_zone(page))
588 		return 0;
589 
590 	return 1;
591 }
592 /*
593  * Temporary debugging check for pages not lying within a given zone.
594  */
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596 {
597 	if (page_outside_zone_boundaries(zone, page))
598 		return 1;
599 	if (!page_is_consistent(zone, page))
600 		return 1;
601 
602 	return 0;
603 }
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 	return 0;
608 }
609 #endif
610 
611 static void bad_page(struct page *page, const char *reason)
612 {
613 	static unsigned long resume;
614 	static unsigned long nr_shown;
615 	static unsigned long nr_unshown;
616 
617 	/*
618 	 * Allow a burst of 60 reports, then keep quiet for that minute;
619 	 * or allow a steady drip of one report per second.
620 	 */
621 	if (nr_shown == 60) {
622 		if (time_before(jiffies, resume)) {
623 			nr_unshown++;
624 			goto out;
625 		}
626 		if (nr_unshown) {
627 			pr_alert(
628 			      "BUG: Bad page state: %lu messages suppressed\n",
629 				nr_unshown);
630 			nr_unshown = 0;
631 		}
632 		nr_shown = 0;
633 	}
634 	if (nr_shown++ == 0)
635 		resume = jiffies + 60 * HZ;
636 
637 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
638 		current->comm, page_to_pfn(page));
639 	__dump_page(page, reason);
640 	dump_page_owner(page);
641 
642 	print_modules();
643 	dump_stack();
644 out:
645 	/* Leave bad fields for debug, except PageBuddy could make trouble */
646 	page_mapcount_reset(page); /* remove PageBuddy */
647 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
648 }
649 
650 /*
651  * Higher-order pages are called "compound pages".  They are structured thusly:
652  *
653  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
654  *
655  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
657  *
658  * The first tail page's ->compound_dtor holds the offset in array of compound
659  * page destructors. See compound_page_dtors.
660  *
661  * The first tail page's ->compound_order holds the order of allocation.
662  * This usage means that zero-order pages may not be compound.
663  */
664 
665 void free_compound_page(struct page *page)
666 {
667 	mem_cgroup_uncharge(page);
668 	__free_pages_ok(page, compound_order(page), FPI_NONE);
669 }
670 
671 void prep_compound_page(struct page *page, unsigned int order)
672 {
673 	int i;
674 	int nr_pages = 1 << order;
675 
676 	__SetPageHead(page);
677 	for (i = 1; i < nr_pages; i++) {
678 		struct page *p = page + i;
679 		set_page_count(p, 0);
680 		p->mapping = TAIL_MAPPING;
681 		set_compound_head(p, page);
682 	}
683 
684 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
685 	set_compound_order(page, order);
686 	atomic_set(compound_mapcount_ptr(page), -1);
687 	if (hpage_pincount_available(page))
688 		atomic_set(compound_pincount_ptr(page), 0);
689 }
690 
691 #ifdef CONFIG_DEBUG_PAGEALLOC
692 unsigned int _debug_guardpage_minorder;
693 
694 bool _debug_pagealloc_enabled_early __read_mostly
695 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
698 EXPORT_SYMBOL(_debug_pagealloc_enabled);
699 
700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
701 
702 static int __init early_debug_pagealloc(char *buf)
703 {
704 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
705 }
706 early_param("debug_pagealloc", early_debug_pagealloc);
707 
708 static int __init debug_guardpage_minorder_setup(char *buf)
709 {
710 	unsigned long res;
711 
712 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
713 		pr_err("Bad debug_guardpage_minorder value\n");
714 		return 0;
715 	}
716 	_debug_guardpage_minorder = res;
717 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
718 	return 0;
719 }
720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
721 
722 static inline bool set_page_guard(struct zone *zone, struct page *page,
723 				unsigned int order, int migratetype)
724 {
725 	if (!debug_guardpage_enabled())
726 		return false;
727 
728 	if (order >= debug_guardpage_minorder())
729 		return false;
730 
731 	__SetPageGuard(page);
732 	INIT_LIST_HEAD(&page->lru);
733 	set_page_private(page, order);
734 	/* Guard pages are not available for any usage */
735 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
736 
737 	return true;
738 }
739 
740 static inline void clear_page_guard(struct zone *zone, struct page *page,
741 				unsigned int order, int migratetype)
742 {
743 	if (!debug_guardpage_enabled())
744 		return;
745 
746 	__ClearPageGuard(page);
747 
748 	set_page_private(page, 0);
749 	if (!is_migrate_isolate(migratetype))
750 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
751 }
752 #else
753 static inline bool set_page_guard(struct zone *zone, struct page *page,
754 			unsigned int order, int migratetype) { return false; }
755 static inline void clear_page_guard(struct zone *zone, struct page *page,
756 				unsigned int order, int migratetype) {}
757 #endif
758 
759 /*
760  * Enable static keys related to various memory debugging and hardening options.
761  * Some override others, and depend on early params that are evaluated in the
762  * order of appearance. So we need to first gather the full picture of what was
763  * enabled, and then make decisions.
764  */
765 void init_mem_debugging_and_hardening(void)
766 {
767 	if (_init_on_alloc_enabled_early) {
768 		if (page_poisoning_enabled())
769 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
770 				"will take precedence over init_on_alloc\n");
771 		else
772 			static_branch_enable(&init_on_alloc);
773 	}
774 	if (_init_on_free_enabled_early) {
775 		if (page_poisoning_enabled())
776 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
777 				"will take precedence over init_on_free\n");
778 		else
779 			static_branch_enable(&init_on_free);
780 	}
781 
782 #ifdef CONFIG_PAGE_POISONING
783 	/*
784 	 * Page poisoning is debug page alloc for some arches. If
785 	 * either of those options are enabled, enable poisoning.
786 	 */
787 	if (page_poisoning_enabled() ||
788 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
789 	      debug_pagealloc_enabled()))
790 		static_branch_enable(&_page_poisoning_enabled);
791 #endif
792 
793 #ifdef CONFIG_DEBUG_PAGEALLOC
794 	if (!debug_pagealloc_enabled())
795 		return;
796 
797 	static_branch_enable(&_debug_pagealloc_enabled);
798 
799 	if (!debug_guardpage_minorder())
800 		return;
801 
802 	static_branch_enable(&_debug_guardpage_enabled);
803 #endif
804 }
805 
806 static inline void set_buddy_order(struct page *page, unsigned int order)
807 {
808 	set_page_private(page, order);
809 	__SetPageBuddy(page);
810 }
811 
812 /*
813  * This function checks whether a page is free && is the buddy
814  * we can coalesce a page and its buddy if
815  * (a) the buddy is not in a hole (check before calling!) &&
816  * (b) the buddy is in the buddy system &&
817  * (c) a page and its buddy have the same order &&
818  * (d) a page and its buddy are in the same zone.
819  *
820  * For recording whether a page is in the buddy system, we set PageBuddy.
821  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
822  *
823  * For recording page's order, we use page_private(page).
824  */
825 static inline bool page_is_buddy(struct page *page, struct page *buddy,
826 							unsigned int order)
827 {
828 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
829 		return false;
830 
831 	if (buddy_order(buddy) != order)
832 		return false;
833 
834 	/*
835 	 * zone check is done late to avoid uselessly calculating
836 	 * zone/node ids for pages that could never merge.
837 	 */
838 	if (page_zone_id(page) != page_zone_id(buddy))
839 		return false;
840 
841 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
842 
843 	return true;
844 }
845 
846 #ifdef CONFIG_COMPACTION
847 static inline struct capture_control *task_capc(struct zone *zone)
848 {
849 	struct capture_control *capc = current->capture_control;
850 
851 	return unlikely(capc) &&
852 		!(current->flags & PF_KTHREAD) &&
853 		!capc->page &&
854 		capc->cc->zone == zone ? capc : NULL;
855 }
856 
857 static inline bool
858 compaction_capture(struct capture_control *capc, struct page *page,
859 		   int order, int migratetype)
860 {
861 	if (!capc || order != capc->cc->order)
862 		return false;
863 
864 	/* Do not accidentally pollute CMA or isolated regions*/
865 	if (is_migrate_cma(migratetype) ||
866 	    is_migrate_isolate(migratetype))
867 		return false;
868 
869 	/*
870 	 * Do not let lower order allocations polluate a movable pageblock.
871 	 * This might let an unmovable request use a reclaimable pageblock
872 	 * and vice-versa but no more than normal fallback logic which can
873 	 * have trouble finding a high-order free page.
874 	 */
875 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
876 		return false;
877 
878 	capc->page = page;
879 	return true;
880 }
881 
882 #else
883 static inline struct capture_control *task_capc(struct zone *zone)
884 {
885 	return NULL;
886 }
887 
888 static inline bool
889 compaction_capture(struct capture_control *capc, struct page *page,
890 		   int order, int migratetype)
891 {
892 	return false;
893 }
894 #endif /* CONFIG_COMPACTION */
895 
896 /* Used for pages not on another list */
897 static inline void add_to_free_list(struct page *page, struct zone *zone,
898 				    unsigned int order, int migratetype)
899 {
900 	struct free_area *area = &zone->free_area[order];
901 
902 	list_add(&page->lru, &area->free_list[migratetype]);
903 	area->nr_free++;
904 }
905 
906 /* Used for pages not on another list */
907 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
908 					 unsigned int order, int migratetype)
909 {
910 	struct free_area *area = &zone->free_area[order];
911 
912 	list_add_tail(&page->lru, &area->free_list[migratetype]);
913 	area->nr_free++;
914 }
915 
916 /*
917  * Used for pages which are on another list. Move the pages to the tail
918  * of the list - so the moved pages won't immediately be considered for
919  * allocation again (e.g., optimization for memory onlining).
920  */
921 static inline void move_to_free_list(struct page *page, struct zone *zone,
922 				     unsigned int order, int migratetype)
923 {
924 	struct free_area *area = &zone->free_area[order];
925 
926 	list_move_tail(&page->lru, &area->free_list[migratetype]);
927 }
928 
929 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
930 					   unsigned int order)
931 {
932 	/* clear reported state and update reported page count */
933 	if (page_reported(page))
934 		__ClearPageReported(page);
935 
936 	list_del(&page->lru);
937 	__ClearPageBuddy(page);
938 	set_page_private(page, 0);
939 	zone->free_area[order].nr_free--;
940 }
941 
942 /*
943  * If this is not the largest possible page, check if the buddy
944  * of the next-highest order is free. If it is, it's possible
945  * that pages are being freed that will coalesce soon. In case,
946  * that is happening, add the free page to the tail of the list
947  * so it's less likely to be used soon and more likely to be merged
948  * as a higher order page
949  */
950 static inline bool
951 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
952 		   struct page *page, unsigned int order)
953 {
954 	struct page *higher_page, *higher_buddy;
955 	unsigned long combined_pfn;
956 
957 	if (order >= MAX_ORDER - 2)
958 		return false;
959 
960 	if (!pfn_valid_within(buddy_pfn))
961 		return false;
962 
963 	combined_pfn = buddy_pfn & pfn;
964 	higher_page = page + (combined_pfn - pfn);
965 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
966 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
967 
968 	return pfn_valid_within(buddy_pfn) &&
969 	       page_is_buddy(higher_page, higher_buddy, order + 1);
970 }
971 
972 /*
973  * Freeing function for a buddy system allocator.
974  *
975  * The concept of a buddy system is to maintain direct-mapped table
976  * (containing bit values) for memory blocks of various "orders".
977  * The bottom level table contains the map for the smallest allocatable
978  * units of memory (here, pages), and each level above it describes
979  * pairs of units from the levels below, hence, "buddies".
980  * At a high level, all that happens here is marking the table entry
981  * at the bottom level available, and propagating the changes upward
982  * as necessary, plus some accounting needed to play nicely with other
983  * parts of the VM system.
984  * At each level, we keep a list of pages, which are heads of continuous
985  * free pages of length of (1 << order) and marked with PageBuddy.
986  * Page's order is recorded in page_private(page) field.
987  * So when we are allocating or freeing one, we can derive the state of the
988  * other.  That is, if we allocate a small block, and both were
989  * free, the remainder of the region must be split into blocks.
990  * If a block is freed, and its buddy is also free, then this
991  * triggers coalescing into a block of larger size.
992  *
993  * -- nyc
994  */
995 
996 static inline void __free_one_page(struct page *page,
997 		unsigned long pfn,
998 		struct zone *zone, unsigned int order,
999 		int migratetype, fpi_t fpi_flags)
1000 {
1001 	struct capture_control *capc = task_capc(zone);
1002 	unsigned long buddy_pfn;
1003 	unsigned long combined_pfn;
1004 	unsigned int max_order;
1005 	struct page *buddy;
1006 	bool to_tail;
1007 
1008 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1009 
1010 	VM_BUG_ON(!zone_is_initialized(zone));
1011 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1012 
1013 	VM_BUG_ON(migratetype == -1);
1014 	if (likely(!is_migrate_isolate(migratetype)))
1015 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1016 
1017 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1018 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1019 
1020 continue_merging:
1021 	while (order < max_order) {
1022 		if (compaction_capture(capc, page, order, migratetype)) {
1023 			__mod_zone_freepage_state(zone, -(1 << order),
1024 								migratetype);
1025 			return;
1026 		}
1027 		buddy_pfn = __find_buddy_pfn(pfn, order);
1028 		buddy = page + (buddy_pfn - pfn);
1029 
1030 		if (!pfn_valid_within(buddy_pfn))
1031 			goto done_merging;
1032 		if (!page_is_buddy(page, buddy, order))
1033 			goto done_merging;
1034 		/*
1035 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036 		 * merge with it and move up one order.
1037 		 */
1038 		if (page_is_guard(buddy))
1039 			clear_page_guard(zone, buddy, order, migratetype);
1040 		else
1041 			del_page_from_free_list(buddy, zone, order);
1042 		combined_pfn = buddy_pfn & pfn;
1043 		page = page + (combined_pfn - pfn);
1044 		pfn = combined_pfn;
1045 		order++;
1046 	}
1047 	if (order < MAX_ORDER - 1) {
1048 		/* If we are here, it means order is >= pageblock_order.
1049 		 * We want to prevent merge between freepages on isolate
1050 		 * pageblock and normal pageblock. Without this, pageblock
1051 		 * isolation could cause incorrect freepage or CMA accounting.
1052 		 *
1053 		 * We don't want to hit this code for the more frequent
1054 		 * low-order merging.
1055 		 */
1056 		if (unlikely(has_isolate_pageblock(zone))) {
1057 			int buddy_mt;
1058 
1059 			buddy_pfn = __find_buddy_pfn(pfn, order);
1060 			buddy = page + (buddy_pfn - pfn);
1061 			buddy_mt = get_pageblock_migratetype(buddy);
1062 
1063 			if (migratetype != buddy_mt
1064 					&& (is_migrate_isolate(migratetype) ||
1065 						is_migrate_isolate(buddy_mt)))
1066 				goto done_merging;
1067 		}
1068 		max_order = order + 1;
1069 		goto continue_merging;
1070 	}
1071 
1072 done_merging:
1073 	set_buddy_order(page, order);
1074 
1075 	if (fpi_flags & FPI_TO_TAIL)
1076 		to_tail = true;
1077 	else if (is_shuffle_order(order))
1078 		to_tail = shuffle_pick_tail();
1079 	else
1080 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1081 
1082 	if (to_tail)
1083 		add_to_free_list_tail(page, zone, order, migratetype);
1084 	else
1085 		add_to_free_list(page, zone, order, migratetype);
1086 
1087 	/* Notify page reporting subsystem of freed page */
1088 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1089 		page_reporting_notify_free(order);
1090 }
1091 
1092 /*
1093  * A bad page could be due to a number of fields. Instead of multiple branches,
1094  * try and check multiple fields with one check. The caller must do a detailed
1095  * check if necessary.
1096  */
1097 static inline bool page_expected_state(struct page *page,
1098 					unsigned long check_flags)
1099 {
1100 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1101 		return false;
1102 
1103 	if (unlikely((unsigned long)page->mapping |
1104 			page_ref_count(page) |
1105 #ifdef CONFIG_MEMCG
1106 			(unsigned long)page_memcg(page) |
1107 #endif
1108 			(page->flags & check_flags)))
1109 		return false;
1110 
1111 	return true;
1112 }
1113 
1114 static const char *page_bad_reason(struct page *page, unsigned long flags)
1115 {
1116 	const char *bad_reason = NULL;
1117 
1118 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1119 		bad_reason = "nonzero mapcount";
1120 	if (unlikely(page->mapping != NULL))
1121 		bad_reason = "non-NULL mapping";
1122 	if (unlikely(page_ref_count(page) != 0))
1123 		bad_reason = "nonzero _refcount";
1124 	if (unlikely(page->flags & flags)) {
1125 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1126 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1127 		else
1128 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1129 	}
1130 #ifdef CONFIG_MEMCG
1131 	if (unlikely(page_memcg(page)))
1132 		bad_reason = "page still charged to cgroup";
1133 #endif
1134 	return bad_reason;
1135 }
1136 
1137 static void check_free_page_bad(struct page *page)
1138 {
1139 	bad_page(page,
1140 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1141 }
1142 
1143 static inline int check_free_page(struct page *page)
1144 {
1145 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1146 		return 0;
1147 
1148 	/* Something has gone sideways, find it */
1149 	check_free_page_bad(page);
1150 	return 1;
1151 }
1152 
1153 static int free_tail_pages_check(struct page *head_page, struct page *page)
1154 {
1155 	int ret = 1;
1156 
1157 	/*
1158 	 * We rely page->lru.next never has bit 0 set, unless the page
1159 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1160 	 */
1161 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1162 
1163 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1164 		ret = 0;
1165 		goto out;
1166 	}
1167 	switch (page - head_page) {
1168 	case 1:
1169 		/* the first tail page: ->mapping may be compound_mapcount() */
1170 		if (unlikely(compound_mapcount(page))) {
1171 			bad_page(page, "nonzero compound_mapcount");
1172 			goto out;
1173 		}
1174 		break;
1175 	case 2:
1176 		/*
1177 		 * the second tail page: ->mapping is
1178 		 * deferred_list.next -- ignore value.
1179 		 */
1180 		break;
1181 	default:
1182 		if (page->mapping != TAIL_MAPPING) {
1183 			bad_page(page, "corrupted mapping in tail page");
1184 			goto out;
1185 		}
1186 		break;
1187 	}
1188 	if (unlikely(!PageTail(page))) {
1189 		bad_page(page, "PageTail not set");
1190 		goto out;
1191 	}
1192 	if (unlikely(compound_head(page) != head_page)) {
1193 		bad_page(page, "compound_head not consistent");
1194 		goto out;
1195 	}
1196 	ret = 0;
1197 out:
1198 	page->mapping = NULL;
1199 	clear_compound_head(page);
1200 	return ret;
1201 }
1202 
1203 static void kernel_init_free_pages(struct page *page, int numpages)
1204 {
1205 	int i;
1206 
1207 	/* s390's use of memset() could override KASAN redzones. */
1208 	kasan_disable_current();
1209 	for (i = 0; i < numpages; i++) {
1210 		page_kasan_tag_reset(page + i);
1211 		clear_highpage(page + i);
1212 	}
1213 	kasan_enable_current();
1214 }
1215 
1216 static __always_inline bool free_pages_prepare(struct page *page,
1217 					unsigned int order, bool check_free)
1218 {
1219 	int bad = 0;
1220 
1221 	VM_BUG_ON_PAGE(PageTail(page), page);
1222 
1223 	trace_mm_page_free(page, order);
1224 
1225 	if (unlikely(PageHWPoison(page)) && !order) {
1226 		/*
1227 		 * Do not let hwpoison pages hit pcplists/buddy
1228 		 * Untie memcg state and reset page's owner
1229 		 */
1230 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1231 			__memcg_kmem_uncharge_page(page, order);
1232 		reset_page_owner(page, order);
1233 		return false;
1234 	}
1235 
1236 	/*
1237 	 * Check tail pages before head page information is cleared to
1238 	 * avoid checking PageCompound for order-0 pages.
1239 	 */
1240 	if (unlikely(order)) {
1241 		bool compound = PageCompound(page);
1242 		int i;
1243 
1244 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1245 
1246 		if (compound)
1247 			ClearPageDoubleMap(page);
1248 		for (i = 1; i < (1 << order); i++) {
1249 			if (compound)
1250 				bad += free_tail_pages_check(page, page + i);
1251 			if (unlikely(check_free_page(page + i))) {
1252 				bad++;
1253 				continue;
1254 			}
1255 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1256 		}
1257 	}
1258 	if (PageMappingFlags(page))
1259 		page->mapping = NULL;
1260 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1261 		__memcg_kmem_uncharge_page(page, order);
1262 	if (check_free)
1263 		bad += check_free_page(page);
1264 	if (bad)
1265 		return false;
1266 
1267 	page_cpupid_reset_last(page);
1268 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1269 	reset_page_owner(page, order);
1270 
1271 	if (!PageHighMem(page)) {
1272 		debug_check_no_locks_freed(page_address(page),
1273 					   PAGE_SIZE << order);
1274 		debug_check_no_obj_freed(page_address(page),
1275 					   PAGE_SIZE << order);
1276 	}
1277 	if (want_init_on_free())
1278 		kernel_init_free_pages(page, 1 << order);
1279 
1280 	kernel_poison_pages(page, 1 << order);
1281 
1282 	/*
1283 	 * arch_free_page() can make the page's contents inaccessible.  s390
1284 	 * does this.  So nothing which can access the page's contents should
1285 	 * happen after this.
1286 	 */
1287 	arch_free_page(page, order);
1288 
1289 	debug_pagealloc_unmap_pages(page, 1 << order);
1290 
1291 	kasan_free_nondeferred_pages(page, order);
1292 
1293 	return true;
1294 }
1295 
1296 #ifdef CONFIG_DEBUG_VM
1297 /*
1298  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1299  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1300  * moved from pcp lists to free lists.
1301  */
1302 static bool free_pcp_prepare(struct page *page)
1303 {
1304 	return free_pages_prepare(page, 0, true);
1305 }
1306 
1307 static bool bulkfree_pcp_prepare(struct page *page)
1308 {
1309 	if (debug_pagealloc_enabled_static())
1310 		return check_free_page(page);
1311 	else
1312 		return false;
1313 }
1314 #else
1315 /*
1316  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1317  * moving from pcp lists to free list in order to reduce overhead. With
1318  * debug_pagealloc enabled, they are checked also immediately when being freed
1319  * to the pcp lists.
1320  */
1321 static bool free_pcp_prepare(struct page *page)
1322 {
1323 	if (debug_pagealloc_enabled_static())
1324 		return free_pages_prepare(page, 0, true);
1325 	else
1326 		return free_pages_prepare(page, 0, false);
1327 }
1328 
1329 static bool bulkfree_pcp_prepare(struct page *page)
1330 {
1331 	return check_free_page(page);
1332 }
1333 #endif /* CONFIG_DEBUG_VM */
1334 
1335 static inline void prefetch_buddy(struct page *page)
1336 {
1337 	unsigned long pfn = page_to_pfn(page);
1338 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1339 	struct page *buddy = page + (buddy_pfn - pfn);
1340 
1341 	prefetch(buddy);
1342 }
1343 
1344 /*
1345  * Frees a number of pages from the PCP lists
1346  * Assumes all pages on list are in same zone, and of same order.
1347  * count is the number of pages to free.
1348  *
1349  * If the zone was previously in an "all pages pinned" state then look to
1350  * see if this freeing clears that state.
1351  *
1352  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1353  * pinned" detection logic.
1354  */
1355 static void free_pcppages_bulk(struct zone *zone, int count,
1356 					struct per_cpu_pages *pcp)
1357 {
1358 	int migratetype = 0;
1359 	int batch_free = 0;
1360 	int prefetch_nr = READ_ONCE(pcp->batch);
1361 	bool isolated_pageblocks;
1362 	struct page *page, *tmp;
1363 	LIST_HEAD(head);
1364 
1365 	/*
1366 	 * Ensure proper count is passed which otherwise would stuck in the
1367 	 * below while (list_empty(list)) loop.
1368 	 */
1369 	count = min(pcp->count, count);
1370 	while (count) {
1371 		struct list_head *list;
1372 
1373 		/*
1374 		 * Remove pages from lists in a round-robin fashion. A
1375 		 * batch_free count is maintained that is incremented when an
1376 		 * empty list is encountered.  This is so more pages are freed
1377 		 * off fuller lists instead of spinning excessively around empty
1378 		 * lists
1379 		 */
1380 		do {
1381 			batch_free++;
1382 			if (++migratetype == MIGRATE_PCPTYPES)
1383 				migratetype = 0;
1384 			list = &pcp->lists[migratetype];
1385 		} while (list_empty(list));
1386 
1387 		/* This is the only non-empty list. Free them all. */
1388 		if (batch_free == MIGRATE_PCPTYPES)
1389 			batch_free = count;
1390 
1391 		do {
1392 			page = list_last_entry(list, struct page, lru);
1393 			/* must delete to avoid corrupting pcp list */
1394 			list_del(&page->lru);
1395 			pcp->count--;
1396 
1397 			if (bulkfree_pcp_prepare(page))
1398 				continue;
1399 
1400 			list_add_tail(&page->lru, &head);
1401 
1402 			/*
1403 			 * We are going to put the page back to the global
1404 			 * pool, prefetch its buddy to speed up later access
1405 			 * under zone->lock. It is believed the overhead of
1406 			 * an additional test and calculating buddy_pfn here
1407 			 * can be offset by reduced memory latency later. To
1408 			 * avoid excessive prefetching due to large count, only
1409 			 * prefetch buddy for the first pcp->batch nr of pages.
1410 			 */
1411 			if (prefetch_nr) {
1412 				prefetch_buddy(page);
1413 				prefetch_nr--;
1414 			}
1415 		} while (--count && --batch_free && !list_empty(list));
1416 	}
1417 
1418 	spin_lock(&zone->lock);
1419 	isolated_pageblocks = has_isolate_pageblock(zone);
1420 
1421 	/*
1422 	 * Use safe version since after __free_one_page(),
1423 	 * page->lru.next will not point to original list.
1424 	 */
1425 	list_for_each_entry_safe(page, tmp, &head, lru) {
1426 		int mt = get_pcppage_migratetype(page);
1427 		/* MIGRATE_ISOLATE page should not go to pcplists */
1428 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1429 		/* Pageblock could have been isolated meanwhile */
1430 		if (unlikely(isolated_pageblocks))
1431 			mt = get_pageblock_migratetype(page);
1432 
1433 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1434 		trace_mm_page_pcpu_drain(page, 0, mt);
1435 	}
1436 	spin_unlock(&zone->lock);
1437 }
1438 
1439 static void free_one_page(struct zone *zone,
1440 				struct page *page, unsigned long pfn,
1441 				unsigned int order,
1442 				int migratetype, fpi_t fpi_flags)
1443 {
1444 	spin_lock(&zone->lock);
1445 	if (unlikely(has_isolate_pageblock(zone) ||
1446 		is_migrate_isolate(migratetype))) {
1447 		migratetype = get_pfnblock_migratetype(page, pfn);
1448 	}
1449 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1450 	spin_unlock(&zone->lock);
1451 }
1452 
1453 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1454 				unsigned long zone, int nid)
1455 {
1456 	mm_zero_struct_page(page);
1457 	set_page_links(page, zone, nid, pfn);
1458 	init_page_count(page);
1459 	page_mapcount_reset(page);
1460 	page_cpupid_reset_last(page);
1461 	page_kasan_tag_reset(page);
1462 
1463 	INIT_LIST_HEAD(&page->lru);
1464 #ifdef WANT_PAGE_VIRTUAL
1465 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1466 	if (!is_highmem_idx(zone))
1467 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1468 #endif
1469 }
1470 
1471 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1472 static void __meminit init_reserved_page(unsigned long pfn)
1473 {
1474 	pg_data_t *pgdat;
1475 	int nid, zid;
1476 
1477 	if (!early_page_uninitialised(pfn))
1478 		return;
1479 
1480 	nid = early_pfn_to_nid(pfn);
1481 	pgdat = NODE_DATA(nid);
1482 
1483 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1484 		struct zone *zone = &pgdat->node_zones[zid];
1485 
1486 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1487 			break;
1488 	}
1489 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1490 }
1491 #else
1492 static inline void init_reserved_page(unsigned long pfn)
1493 {
1494 }
1495 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1496 
1497 /*
1498  * Initialised pages do not have PageReserved set. This function is
1499  * called for each range allocated by the bootmem allocator and
1500  * marks the pages PageReserved. The remaining valid pages are later
1501  * sent to the buddy page allocator.
1502  */
1503 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1504 {
1505 	unsigned long start_pfn = PFN_DOWN(start);
1506 	unsigned long end_pfn = PFN_UP(end);
1507 
1508 	for (; start_pfn < end_pfn; start_pfn++) {
1509 		if (pfn_valid(start_pfn)) {
1510 			struct page *page = pfn_to_page(start_pfn);
1511 
1512 			init_reserved_page(start_pfn);
1513 
1514 			/* Avoid false-positive PageTail() */
1515 			INIT_LIST_HEAD(&page->lru);
1516 
1517 			/*
1518 			 * no need for atomic set_bit because the struct
1519 			 * page is not visible yet so nobody should
1520 			 * access it yet.
1521 			 */
1522 			__SetPageReserved(page);
1523 		}
1524 	}
1525 }
1526 
1527 static void __free_pages_ok(struct page *page, unsigned int order,
1528 			    fpi_t fpi_flags)
1529 {
1530 	unsigned long flags;
1531 	int migratetype;
1532 	unsigned long pfn = page_to_pfn(page);
1533 
1534 	if (!free_pages_prepare(page, order, true))
1535 		return;
1536 
1537 	migratetype = get_pfnblock_migratetype(page, pfn);
1538 	local_irq_save(flags);
1539 	__count_vm_events(PGFREE, 1 << order);
1540 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1541 		      fpi_flags);
1542 	local_irq_restore(flags);
1543 }
1544 
1545 void __free_pages_core(struct page *page, unsigned int order)
1546 {
1547 	unsigned int nr_pages = 1 << order;
1548 	struct page *p = page;
1549 	unsigned int loop;
1550 
1551 	/*
1552 	 * When initializing the memmap, __init_single_page() sets the refcount
1553 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1554 	 * refcount of all involved pages to 0.
1555 	 */
1556 	prefetchw(p);
1557 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1558 		prefetchw(p + 1);
1559 		__ClearPageReserved(p);
1560 		set_page_count(p, 0);
1561 	}
1562 	__ClearPageReserved(p);
1563 	set_page_count(p, 0);
1564 
1565 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1566 
1567 	/*
1568 	 * Bypass PCP and place fresh pages right to the tail, primarily
1569 	 * relevant for memory onlining.
1570 	 */
1571 	__free_pages_ok(page, order, FPI_TO_TAIL);
1572 }
1573 
1574 #ifdef CONFIG_NEED_MULTIPLE_NODES
1575 
1576 /*
1577  * During memory init memblocks map pfns to nids. The search is expensive and
1578  * this caches recent lookups. The implementation of __early_pfn_to_nid
1579  * treats start/end as pfns.
1580  */
1581 struct mminit_pfnnid_cache {
1582 	unsigned long last_start;
1583 	unsigned long last_end;
1584 	int last_nid;
1585 };
1586 
1587 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1588 
1589 /*
1590  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1591  */
1592 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1593 					struct mminit_pfnnid_cache *state)
1594 {
1595 	unsigned long start_pfn, end_pfn;
1596 	int nid;
1597 
1598 	if (state->last_start <= pfn && pfn < state->last_end)
1599 		return state->last_nid;
1600 
1601 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1602 	if (nid != NUMA_NO_NODE) {
1603 		state->last_start = start_pfn;
1604 		state->last_end = end_pfn;
1605 		state->last_nid = nid;
1606 	}
1607 
1608 	return nid;
1609 }
1610 
1611 int __meminit early_pfn_to_nid(unsigned long pfn)
1612 {
1613 	static DEFINE_SPINLOCK(early_pfn_lock);
1614 	int nid;
1615 
1616 	spin_lock(&early_pfn_lock);
1617 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1618 	if (nid < 0)
1619 		nid = first_online_node;
1620 	spin_unlock(&early_pfn_lock);
1621 
1622 	return nid;
1623 }
1624 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1625 
1626 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1627 							unsigned int order)
1628 {
1629 	if (early_page_uninitialised(pfn))
1630 		return;
1631 	__free_pages_core(page, order);
1632 }
1633 
1634 /*
1635  * Check that the whole (or subset of) a pageblock given by the interval of
1636  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1637  * with the migration of free compaction scanner. The scanners then need to
1638  * use only pfn_valid_within() check for arches that allow holes within
1639  * pageblocks.
1640  *
1641  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1642  *
1643  * It's possible on some configurations to have a setup like node0 node1 node0
1644  * i.e. it's possible that all pages within a zones range of pages do not
1645  * belong to a single zone. We assume that a border between node0 and node1
1646  * can occur within a single pageblock, but not a node0 node1 node0
1647  * interleaving within a single pageblock. It is therefore sufficient to check
1648  * the first and last page of a pageblock and avoid checking each individual
1649  * page in a pageblock.
1650  */
1651 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1652 				     unsigned long end_pfn, struct zone *zone)
1653 {
1654 	struct page *start_page;
1655 	struct page *end_page;
1656 
1657 	/* end_pfn is one past the range we are checking */
1658 	end_pfn--;
1659 
1660 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1661 		return NULL;
1662 
1663 	start_page = pfn_to_online_page(start_pfn);
1664 	if (!start_page)
1665 		return NULL;
1666 
1667 	if (page_zone(start_page) != zone)
1668 		return NULL;
1669 
1670 	end_page = pfn_to_page(end_pfn);
1671 
1672 	/* This gives a shorter code than deriving page_zone(end_page) */
1673 	if (page_zone_id(start_page) != page_zone_id(end_page))
1674 		return NULL;
1675 
1676 	return start_page;
1677 }
1678 
1679 void set_zone_contiguous(struct zone *zone)
1680 {
1681 	unsigned long block_start_pfn = zone->zone_start_pfn;
1682 	unsigned long block_end_pfn;
1683 
1684 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1685 	for (; block_start_pfn < zone_end_pfn(zone);
1686 			block_start_pfn = block_end_pfn,
1687 			 block_end_pfn += pageblock_nr_pages) {
1688 
1689 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1690 
1691 		if (!__pageblock_pfn_to_page(block_start_pfn,
1692 					     block_end_pfn, zone))
1693 			return;
1694 		cond_resched();
1695 	}
1696 
1697 	/* We confirm that there is no hole */
1698 	zone->contiguous = true;
1699 }
1700 
1701 void clear_zone_contiguous(struct zone *zone)
1702 {
1703 	zone->contiguous = false;
1704 }
1705 
1706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1707 static void __init deferred_free_range(unsigned long pfn,
1708 				       unsigned long nr_pages)
1709 {
1710 	struct page *page;
1711 	unsigned long i;
1712 
1713 	if (!nr_pages)
1714 		return;
1715 
1716 	page = pfn_to_page(pfn);
1717 
1718 	/* Free a large naturally-aligned chunk if possible */
1719 	if (nr_pages == pageblock_nr_pages &&
1720 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1721 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1722 		__free_pages_core(page, pageblock_order);
1723 		return;
1724 	}
1725 
1726 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1727 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1728 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1729 		__free_pages_core(page, 0);
1730 	}
1731 }
1732 
1733 /* Completion tracking for deferred_init_memmap() threads */
1734 static atomic_t pgdat_init_n_undone __initdata;
1735 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1736 
1737 static inline void __init pgdat_init_report_one_done(void)
1738 {
1739 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1740 		complete(&pgdat_init_all_done_comp);
1741 }
1742 
1743 /*
1744  * Returns true if page needs to be initialized or freed to buddy allocator.
1745  *
1746  * First we check if pfn is valid on architectures where it is possible to have
1747  * holes within pageblock_nr_pages. On systems where it is not possible, this
1748  * function is optimized out.
1749  *
1750  * Then, we check if a current large page is valid by only checking the validity
1751  * of the head pfn.
1752  */
1753 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1754 {
1755 	if (!pfn_valid_within(pfn))
1756 		return false;
1757 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1758 		return false;
1759 	return true;
1760 }
1761 
1762 /*
1763  * Free pages to buddy allocator. Try to free aligned pages in
1764  * pageblock_nr_pages sizes.
1765  */
1766 static void __init deferred_free_pages(unsigned long pfn,
1767 				       unsigned long end_pfn)
1768 {
1769 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1770 	unsigned long nr_free = 0;
1771 
1772 	for (; pfn < end_pfn; pfn++) {
1773 		if (!deferred_pfn_valid(pfn)) {
1774 			deferred_free_range(pfn - nr_free, nr_free);
1775 			nr_free = 0;
1776 		} else if (!(pfn & nr_pgmask)) {
1777 			deferred_free_range(pfn - nr_free, nr_free);
1778 			nr_free = 1;
1779 		} else {
1780 			nr_free++;
1781 		}
1782 	}
1783 	/* Free the last block of pages to allocator */
1784 	deferred_free_range(pfn - nr_free, nr_free);
1785 }
1786 
1787 /*
1788  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1789  * by performing it only once every pageblock_nr_pages.
1790  * Return number of pages initialized.
1791  */
1792 static unsigned long  __init deferred_init_pages(struct zone *zone,
1793 						 unsigned long pfn,
1794 						 unsigned long end_pfn)
1795 {
1796 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1797 	int nid = zone_to_nid(zone);
1798 	unsigned long nr_pages = 0;
1799 	int zid = zone_idx(zone);
1800 	struct page *page = NULL;
1801 
1802 	for (; pfn < end_pfn; pfn++) {
1803 		if (!deferred_pfn_valid(pfn)) {
1804 			page = NULL;
1805 			continue;
1806 		} else if (!page || !(pfn & nr_pgmask)) {
1807 			page = pfn_to_page(pfn);
1808 		} else {
1809 			page++;
1810 		}
1811 		__init_single_page(page, pfn, zid, nid);
1812 		nr_pages++;
1813 	}
1814 	return (nr_pages);
1815 }
1816 
1817 /*
1818  * This function is meant to pre-load the iterator for the zone init.
1819  * Specifically it walks through the ranges until we are caught up to the
1820  * first_init_pfn value and exits there. If we never encounter the value we
1821  * return false indicating there are no valid ranges left.
1822  */
1823 static bool __init
1824 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1825 				    unsigned long *spfn, unsigned long *epfn,
1826 				    unsigned long first_init_pfn)
1827 {
1828 	u64 j;
1829 
1830 	/*
1831 	 * Start out by walking through the ranges in this zone that have
1832 	 * already been initialized. We don't need to do anything with them
1833 	 * so we just need to flush them out of the system.
1834 	 */
1835 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1836 		if (*epfn <= first_init_pfn)
1837 			continue;
1838 		if (*spfn < first_init_pfn)
1839 			*spfn = first_init_pfn;
1840 		*i = j;
1841 		return true;
1842 	}
1843 
1844 	return false;
1845 }
1846 
1847 /*
1848  * Initialize and free pages. We do it in two loops: first we initialize
1849  * struct page, then free to buddy allocator, because while we are
1850  * freeing pages we can access pages that are ahead (computing buddy
1851  * page in __free_one_page()).
1852  *
1853  * In order to try and keep some memory in the cache we have the loop
1854  * broken along max page order boundaries. This way we will not cause
1855  * any issues with the buddy page computation.
1856  */
1857 static unsigned long __init
1858 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1859 		       unsigned long *end_pfn)
1860 {
1861 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1862 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1863 	unsigned long nr_pages = 0;
1864 	u64 j = *i;
1865 
1866 	/* First we loop through and initialize the page values */
1867 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1868 		unsigned long t;
1869 
1870 		if (mo_pfn <= *start_pfn)
1871 			break;
1872 
1873 		t = min(mo_pfn, *end_pfn);
1874 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1875 
1876 		if (mo_pfn < *end_pfn) {
1877 			*start_pfn = mo_pfn;
1878 			break;
1879 		}
1880 	}
1881 
1882 	/* Reset values and now loop through freeing pages as needed */
1883 	swap(j, *i);
1884 
1885 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1886 		unsigned long t;
1887 
1888 		if (mo_pfn <= spfn)
1889 			break;
1890 
1891 		t = min(mo_pfn, epfn);
1892 		deferred_free_pages(spfn, t);
1893 
1894 		if (mo_pfn <= epfn)
1895 			break;
1896 	}
1897 
1898 	return nr_pages;
1899 }
1900 
1901 static void __init
1902 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1903 			   void *arg)
1904 {
1905 	unsigned long spfn, epfn;
1906 	struct zone *zone = arg;
1907 	u64 i;
1908 
1909 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1910 
1911 	/*
1912 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1913 	 * can avoid introducing any issues with the buddy allocator.
1914 	 */
1915 	while (spfn < end_pfn) {
1916 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1917 		cond_resched();
1918 	}
1919 }
1920 
1921 /* An arch may override for more concurrency. */
1922 __weak int __init
1923 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1924 {
1925 	return 1;
1926 }
1927 
1928 /* Initialise remaining memory on a node */
1929 static int __init deferred_init_memmap(void *data)
1930 {
1931 	pg_data_t *pgdat = data;
1932 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1933 	unsigned long spfn = 0, epfn = 0;
1934 	unsigned long first_init_pfn, flags;
1935 	unsigned long start = jiffies;
1936 	struct zone *zone;
1937 	int zid, max_threads;
1938 	u64 i;
1939 
1940 	/* Bind memory initialisation thread to a local node if possible */
1941 	if (!cpumask_empty(cpumask))
1942 		set_cpus_allowed_ptr(current, cpumask);
1943 
1944 	pgdat_resize_lock(pgdat, &flags);
1945 	first_init_pfn = pgdat->first_deferred_pfn;
1946 	if (first_init_pfn == ULONG_MAX) {
1947 		pgdat_resize_unlock(pgdat, &flags);
1948 		pgdat_init_report_one_done();
1949 		return 0;
1950 	}
1951 
1952 	/* Sanity check boundaries */
1953 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1954 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1955 	pgdat->first_deferred_pfn = ULONG_MAX;
1956 
1957 	/*
1958 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1959 	 * interrupt thread must allocate this early in boot, zone must be
1960 	 * pre-grown prior to start of deferred page initialization.
1961 	 */
1962 	pgdat_resize_unlock(pgdat, &flags);
1963 
1964 	/* Only the highest zone is deferred so find it */
1965 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1966 		zone = pgdat->node_zones + zid;
1967 		if (first_init_pfn < zone_end_pfn(zone))
1968 			break;
1969 	}
1970 
1971 	/* If the zone is empty somebody else may have cleared out the zone */
1972 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1973 						 first_init_pfn))
1974 		goto zone_empty;
1975 
1976 	max_threads = deferred_page_init_max_threads(cpumask);
1977 
1978 	while (spfn < epfn) {
1979 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1980 		struct padata_mt_job job = {
1981 			.thread_fn   = deferred_init_memmap_chunk,
1982 			.fn_arg      = zone,
1983 			.start       = spfn,
1984 			.size        = epfn_align - spfn,
1985 			.align       = PAGES_PER_SECTION,
1986 			.min_chunk   = PAGES_PER_SECTION,
1987 			.max_threads = max_threads,
1988 		};
1989 
1990 		padata_do_multithreaded(&job);
1991 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1992 						    epfn_align);
1993 	}
1994 zone_empty:
1995 	/* Sanity check that the next zone really is unpopulated */
1996 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1997 
1998 	pr_info("node %d deferred pages initialised in %ums\n",
1999 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2000 
2001 	pgdat_init_report_one_done();
2002 	return 0;
2003 }
2004 
2005 /*
2006  * If this zone has deferred pages, try to grow it by initializing enough
2007  * deferred pages to satisfy the allocation specified by order, rounded up to
2008  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2009  * of SECTION_SIZE bytes by initializing struct pages in increments of
2010  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2011  *
2012  * Return true when zone was grown, otherwise return false. We return true even
2013  * when we grow less than requested, to let the caller decide if there are
2014  * enough pages to satisfy the allocation.
2015  *
2016  * Note: We use noinline because this function is needed only during boot, and
2017  * it is called from a __ref function _deferred_grow_zone. This way we are
2018  * making sure that it is not inlined into permanent text section.
2019  */
2020 static noinline bool __init
2021 deferred_grow_zone(struct zone *zone, unsigned int order)
2022 {
2023 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2024 	pg_data_t *pgdat = zone->zone_pgdat;
2025 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2026 	unsigned long spfn, epfn, flags;
2027 	unsigned long nr_pages = 0;
2028 	u64 i;
2029 
2030 	/* Only the last zone may have deferred pages */
2031 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2032 		return false;
2033 
2034 	pgdat_resize_lock(pgdat, &flags);
2035 
2036 	/*
2037 	 * If someone grew this zone while we were waiting for spinlock, return
2038 	 * true, as there might be enough pages already.
2039 	 */
2040 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2041 		pgdat_resize_unlock(pgdat, &flags);
2042 		return true;
2043 	}
2044 
2045 	/* If the zone is empty somebody else may have cleared out the zone */
2046 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2047 						 first_deferred_pfn)) {
2048 		pgdat->first_deferred_pfn = ULONG_MAX;
2049 		pgdat_resize_unlock(pgdat, &flags);
2050 		/* Retry only once. */
2051 		return first_deferred_pfn != ULONG_MAX;
2052 	}
2053 
2054 	/*
2055 	 * Initialize and free pages in MAX_ORDER sized increments so
2056 	 * that we can avoid introducing any issues with the buddy
2057 	 * allocator.
2058 	 */
2059 	while (spfn < epfn) {
2060 		/* update our first deferred PFN for this section */
2061 		first_deferred_pfn = spfn;
2062 
2063 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2064 		touch_nmi_watchdog();
2065 
2066 		/* We should only stop along section boundaries */
2067 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2068 			continue;
2069 
2070 		/* If our quota has been met we can stop here */
2071 		if (nr_pages >= nr_pages_needed)
2072 			break;
2073 	}
2074 
2075 	pgdat->first_deferred_pfn = spfn;
2076 	pgdat_resize_unlock(pgdat, &flags);
2077 
2078 	return nr_pages > 0;
2079 }
2080 
2081 /*
2082  * deferred_grow_zone() is __init, but it is called from
2083  * get_page_from_freelist() during early boot until deferred_pages permanently
2084  * disables this call. This is why we have refdata wrapper to avoid warning,
2085  * and to ensure that the function body gets unloaded.
2086  */
2087 static bool __ref
2088 _deferred_grow_zone(struct zone *zone, unsigned int order)
2089 {
2090 	return deferred_grow_zone(zone, order);
2091 }
2092 
2093 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2094 
2095 void __init page_alloc_init_late(void)
2096 {
2097 	struct zone *zone;
2098 	int nid;
2099 
2100 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2101 
2102 	/* There will be num_node_state(N_MEMORY) threads */
2103 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2104 	for_each_node_state(nid, N_MEMORY) {
2105 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2106 	}
2107 
2108 	/* Block until all are initialised */
2109 	wait_for_completion(&pgdat_init_all_done_comp);
2110 
2111 	/*
2112 	 * The number of managed pages has changed due to the initialisation
2113 	 * so the pcpu batch and high limits needs to be updated or the limits
2114 	 * will be artificially small.
2115 	 */
2116 	for_each_populated_zone(zone)
2117 		zone_pcp_update(zone);
2118 
2119 	/*
2120 	 * We initialized the rest of the deferred pages.  Permanently disable
2121 	 * on-demand struct page initialization.
2122 	 */
2123 	static_branch_disable(&deferred_pages);
2124 
2125 	/* Reinit limits that are based on free pages after the kernel is up */
2126 	files_maxfiles_init();
2127 #endif
2128 
2129 	buffer_init();
2130 
2131 	/* Discard memblock private memory */
2132 	memblock_discard();
2133 
2134 	for_each_node_state(nid, N_MEMORY)
2135 		shuffle_free_memory(NODE_DATA(nid));
2136 
2137 	for_each_populated_zone(zone)
2138 		set_zone_contiguous(zone);
2139 }
2140 
2141 #ifdef CONFIG_CMA
2142 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2143 void __init init_cma_reserved_pageblock(struct page *page)
2144 {
2145 	unsigned i = pageblock_nr_pages;
2146 	struct page *p = page;
2147 
2148 	do {
2149 		__ClearPageReserved(p);
2150 		set_page_count(p, 0);
2151 	} while (++p, --i);
2152 
2153 	set_pageblock_migratetype(page, MIGRATE_CMA);
2154 
2155 	if (pageblock_order >= MAX_ORDER) {
2156 		i = pageblock_nr_pages;
2157 		p = page;
2158 		do {
2159 			set_page_refcounted(p);
2160 			__free_pages(p, MAX_ORDER - 1);
2161 			p += MAX_ORDER_NR_PAGES;
2162 		} while (i -= MAX_ORDER_NR_PAGES);
2163 	} else {
2164 		set_page_refcounted(page);
2165 		__free_pages(page, pageblock_order);
2166 	}
2167 
2168 	adjust_managed_page_count(page, pageblock_nr_pages);
2169 }
2170 #endif
2171 
2172 /*
2173  * The order of subdivision here is critical for the IO subsystem.
2174  * Please do not alter this order without good reasons and regression
2175  * testing. Specifically, as large blocks of memory are subdivided,
2176  * the order in which smaller blocks are delivered depends on the order
2177  * they're subdivided in this function. This is the primary factor
2178  * influencing the order in which pages are delivered to the IO
2179  * subsystem according to empirical testing, and this is also justified
2180  * by considering the behavior of a buddy system containing a single
2181  * large block of memory acted on by a series of small allocations.
2182  * This behavior is a critical factor in sglist merging's success.
2183  *
2184  * -- nyc
2185  */
2186 static inline void expand(struct zone *zone, struct page *page,
2187 	int low, int high, int migratetype)
2188 {
2189 	unsigned long size = 1 << high;
2190 
2191 	while (high > low) {
2192 		high--;
2193 		size >>= 1;
2194 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2195 
2196 		/*
2197 		 * Mark as guard pages (or page), that will allow to
2198 		 * merge back to allocator when buddy will be freed.
2199 		 * Corresponding page table entries will not be touched,
2200 		 * pages will stay not present in virtual address space
2201 		 */
2202 		if (set_page_guard(zone, &page[size], high, migratetype))
2203 			continue;
2204 
2205 		add_to_free_list(&page[size], zone, high, migratetype);
2206 		set_buddy_order(&page[size], high);
2207 	}
2208 }
2209 
2210 static void check_new_page_bad(struct page *page)
2211 {
2212 	if (unlikely(page->flags & __PG_HWPOISON)) {
2213 		/* Don't complain about hwpoisoned pages */
2214 		page_mapcount_reset(page); /* remove PageBuddy */
2215 		return;
2216 	}
2217 
2218 	bad_page(page,
2219 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2220 }
2221 
2222 /*
2223  * This page is about to be returned from the page allocator
2224  */
2225 static inline int check_new_page(struct page *page)
2226 {
2227 	if (likely(page_expected_state(page,
2228 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2229 		return 0;
2230 
2231 	check_new_page_bad(page);
2232 	return 1;
2233 }
2234 
2235 #ifdef CONFIG_DEBUG_VM
2236 /*
2237  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2238  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2239  * also checked when pcp lists are refilled from the free lists.
2240  */
2241 static inline bool check_pcp_refill(struct page *page)
2242 {
2243 	if (debug_pagealloc_enabled_static())
2244 		return check_new_page(page);
2245 	else
2246 		return false;
2247 }
2248 
2249 static inline bool check_new_pcp(struct page *page)
2250 {
2251 	return check_new_page(page);
2252 }
2253 #else
2254 /*
2255  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2256  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2257  * enabled, they are also checked when being allocated from the pcp lists.
2258  */
2259 static inline bool check_pcp_refill(struct page *page)
2260 {
2261 	return check_new_page(page);
2262 }
2263 static inline bool check_new_pcp(struct page *page)
2264 {
2265 	if (debug_pagealloc_enabled_static())
2266 		return check_new_page(page);
2267 	else
2268 		return false;
2269 }
2270 #endif /* CONFIG_DEBUG_VM */
2271 
2272 static bool check_new_pages(struct page *page, unsigned int order)
2273 {
2274 	int i;
2275 	for (i = 0; i < (1 << order); i++) {
2276 		struct page *p = page + i;
2277 
2278 		if (unlikely(check_new_page(p)))
2279 			return true;
2280 	}
2281 
2282 	return false;
2283 }
2284 
2285 inline void post_alloc_hook(struct page *page, unsigned int order,
2286 				gfp_t gfp_flags)
2287 {
2288 	set_page_private(page, 0);
2289 	set_page_refcounted(page);
2290 
2291 	arch_alloc_page(page, order);
2292 	debug_pagealloc_map_pages(page, 1 << order);
2293 	kasan_alloc_pages(page, order);
2294 	kernel_unpoison_pages(page, 1 << order);
2295 	set_page_owner(page, order, gfp_flags);
2296 
2297 	if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
2298 		kernel_init_free_pages(page, 1 << order);
2299 }
2300 
2301 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2302 							unsigned int alloc_flags)
2303 {
2304 	post_alloc_hook(page, order, gfp_flags);
2305 
2306 	if (order && (gfp_flags & __GFP_COMP))
2307 		prep_compound_page(page, order);
2308 
2309 	/*
2310 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2311 	 * allocate the page. The expectation is that the caller is taking
2312 	 * steps that will free more memory. The caller should avoid the page
2313 	 * being used for !PFMEMALLOC purposes.
2314 	 */
2315 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2316 		set_page_pfmemalloc(page);
2317 	else
2318 		clear_page_pfmemalloc(page);
2319 }
2320 
2321 /*
2322  * Go through the free lists for the given migratetype and remove
2323  * the smallest available page from the freelists
2324  */
2325 static __always_inline
2326 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2327 						int migratetype)
2328 {
2329 	unsigned int current_order;
2330 	struct free_area *area;
2331 	struct page *page;
2332 
2333 	/* Find a page of the appropriate size in the preferred list */
2334 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2335 		area = &(zone->free_area[current_order]);
2336 		page = get_page_from_free_area(area, migratetype);
2337 		if (!page)
2338 			continue;
2339 		del_page_from_free_list(page, zone, current_order);
2340 		expand(zone, page, order, current_order, migratetype);
2341 		set_pcppage_migratetype(page, migratetype);
2342 		return page;
2343 	}
2344 
2345 	return NULL;
2346 }
2347 
2348 
2349 /*
2350  * This array describes the order lists are fallen back to when
2351  * the free lists for the desirable migrate type are depleted
2352  */
2353 static int fallbacks[MIGRATE_TYPES][3] = {
2354 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2355 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2356 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2357 #ifdef CONFIG_CMA
2358 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2359 #endif
2360 #ifdef CONFIG_MEMORY_ISOLATION
2361 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2362 #endif
2363 };
2364 
2365 #ifdef CONFIG_CMA
2366 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2367 					unsigned int order)
2368 {
2369 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2370 }
2371 #else
2372 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2373 					unsigned int order) { return NULL; }
2374 #endif
2375 
2376 /*
2377  * Move the free pages in a range to the freelist tail of the requested type.
2378  * Note that start_page and end_pages are not aligned on a pageblock
2379  * boundary. If alignment is required, use move_freepages_block()
2380  */
2381 static int move_freepages(struct zone *zone,
2382 			  struct page *start_page, struct page *end_page,
2383 			  int migratetype, int *num_movable)
2384 {
2385 	struct page *page;
2386 	unsigned int order;
2387 	int pages_moved = 0;
2388 
2389 	for (page = start_page; page <= end_page;) {
2390 		if (!pfn_valid_within(page_to_pfn(page))) {
2391 			page++;
2392 			continue;
2393 		}
2394 
2395 		if (!PageBuddy(page)) {
2396 			/*
2397 			 * We assume that pages that could be isolated for
2398 			 * migration are movable. But we don't actually try
2399 			 * isolating, as that would be expensive.
2400 			 */
2401 			if (num_movable &&
2402 					(PageLRU(page) || __PageMovable(page)))
2403 				(*num_movable)++;
2404 
2405 			page++;
2406 			continue;
2407 		}
2408 
2409 		/* Make sure we are not inadvertently changing nodes */
2410 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2411 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2412 
2413 		order = buddy_order(page);
2414 		move_to_free_list(page, zone, order, migratetype);
2415 		page += 1 << order;
2416 		pages_moved += 1 << order;
2417 	}
2418 
2419 	return pages_moved;
2420 }
2421 
2422 int move_freepages_block(struct zone *zone, struct page *page,
2423 				int migratetype, int *num_movable)
2424 {
2425 	unsigned long start_pfn, end_pfn;
2426 	struct page *start_page, *end_page;
2427 
2428 	if (num_movable)
2429 		*num_movable = 0;
2430 
2431 	start_pfn = page_to_pfn(page);
2432 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2433 	start_page = pfn_to_page(start_pfn);
2434 	end_page = start_page + pageblock_nr_pages - 1;
2435 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2436 
2437 	/* Do not cross zone boundaries */
2438 	if (!zone_spans_pfn(zone, start_pfn))
2439 		start_page = page;
2440 	if (!zone_spans_pfn(zone, end_pfn))
2441 		return 0;
2442 
2443 	return move_freepages(zone, start_page, end_page, migratetype,
2444 								num_movable);
2445 }
2446 
2447 static void change_pageblock_range(struct page *pageblock_page,
2448 					int start_order, int migratetype)
2449 {
2450 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2451 
2452 	while (nr_pageblocks--) {
2453 		set_pageblock_migratetype(pageblock_page, migratetype);
2454 		pageblock_page += pageblock_nr_pages;
2455 	}
2456 }
2457 
2458 /*
2459  * When we are falling back to another migratetype during allocation, try to
2460  * steal extra free pages from the same pageblocks to satisfy further
2461  * allocations, instead of polluting multiple pageblocks.
2462  *
2463  * If we are stealing a relatively large buddy page, it is likely there will
2464  * be more free pages in the pageblock, so try to steal them all. For
2465  * reclaimable and unmovable allocations, we steal regardless of page size,
2466  * as fragmentation caused by those allocations polluting movable pageblocks
2467  * is worse than movable allocations stealing from unmovable and reclaimable
2468  * pageblocks.
2469  */
2470 static bool can_steal_fallback(unsigned int order, int start_mt)
2471 {
2472 	/*
2473 	 * Leaving this order check is intended, although there is
2474 	 * relaxed order check in next check. The reason is that
2475 	 * we can actually steal whole pageblock if this condition met,
2476 	 * but, below check doesn't guarantee it and that is just heuristic
2477 	 * so could be changed anytime.
2478 	 */
2479 	if (order >= pageblock_order)
2480 		return true;
2481 
2482 	if (order >= pageblock_order / 2 ||
2483 		start_mt == MIGRATE_RECLAIMABLE ||
2484 		start_mt == MIGRATE_UNMOVABLE ||
2485 		page_group_by_mobility_disabled)
2486 		return true;
2487 
2488 	return false;
2489 }
2490 
2491 static inline bool boost_watermark(struct zone *zone)
2492 {
2493 	unsigned long max_boost;
2494 
2495 	if (!watermark_boost_factor)
2496 		return false;
2497 	/*
2498 	 * Don't bother in zones that are unlikely to produce results.
2499 	 * On small machines, including kdump capture kernels running
2500 	 * in a small area, boosting the watermark can cause an out of
2501 	 * memory situation immediately.
2502 	 */
2503 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2504 		return false;
2505 
2506 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2507 			watermark_boost_factor, 10000);
2508 
2509 	/*
2510 	 * high watermark may be uninitialised if fragmentation occurs
2511 	 * very early in boot so do not boost. We do not fall
2512 	 * through and boost by pageblock_nr_pages as failing
2513 	 * allocations that early means that reclaim is not going
2514 	 * to help and it may even be impossible to reclaim the
2515 	 * boosted watermark resulting in a hang.
2516 	 */
2517 	if (!max_boost)
2518 		return false;
2519 
2520 	max_boost = max(pageblock_nr_pages, max_boost);
2521 
2522 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2523 		max_boost);
2524 
2525 	return true;
2526 }
2527 
2528 /*
2529  * This function implements actual steal behaviour. If order is large enough,
2530  * we can steal whole pageblock. If not, we first move freepages in this
2531  * pageblock to our migratetype and determine how many already-allocated pages
2532  * are there in the pageblock with a compatible migratetype. If at least half
2533  * of pages are free or compatible, we can change migratetype of the pageblock
2534  * itself, so pages freed in the future will be put on the correct free list.
2535  */
2536 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2537 		unsigned int alloc_flags, int start_type, bool whole_block)
2538 {
2539 	unsigned int current_order = buddy_order(page);
2540 	int free_pages, movable_pages, alike_pages;
2541 	int old_block_type;
2542 
2543 	old_block_type = get_pageblock_migratetype(page);
2544 
2545 	/*
2546 	 * This can happen due to races and we want to prevent broken
2547 	 * highatomic accounting.
2548 	 */
2549 	if (is_migrate_highatomic(old_block_type))
2550 		goto single_page;
2551 
2552 	/* Take ownership for orders >= pageblock_order */
2553 	if (current_order >= pageblock_order) {
2554 		change_pageblock_range(page, current_order, start_type);
2555 		goto single_page;
2556 	}
2557 
2558 	/*
2559 	 * Boost watermarks to increase reclaim pressure to reduce the
2560 	 * likelihood of future fallbacks. Wake kswapd now as the node
2561 	 * may be balanced overall and kswapd will not wake naturally.
2562 	 */
2563 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2564 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2565 
2566 	/* We are not allowed to try stealing from the whole block */
2567 	if (!whole_block)
2568 		goto single_page;
2569 
2570 	free_pages = move_freepages_block(zone, page, start_type,
2571 						&movable_pages);
2572 	/*
2573 	 * Determine how many pages are compatible with our allocation.
2574 	 * For movable allocation, it's the number of movable pages which
2575 	 * we just obtained. For other types it's a bit more tricky.
2576 	 */
2577 	if (start_type == MIGRATE_MOVABLE) {
2578 		alike_pages = movable_pages;
2579 	} else {
2580 		/*
2581 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2582 		 * to MOVABLE pageblock, consider all non-movable pages as
2583 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2584 		 * vice versa, be conservative since we can't distinguish the
2585 		 * exact migratetype of non-movable pages.
2586 		 */
2587 		if (old_block_type == MIGRATE_MOVABLE)
2588 			alike_pages = pageblock_nr_pages
2589 						- (free_pages + movable_pages);
2590 		else
2591 			alike_pages = 0;
2592 	}
2593 
2594 	/* moving whole block can fail due to zone boundary conditions */
2595 	if (!free_pages)
2596 		goto single_page;
2597 
2598 	/*
2599 	 * If a sufficient number of pages in the block are either free or of
2600 	 * comparable migratability as our allocation, claim the whole block.
2601 	 */
2602 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2603 			page_group_by_mobility_disabled)
2604 		set_pageblock_migratetype(page, start_type);
2605 
2606 	return;
2607 
2608 single_page:
2609 	move_to_free_list(page, zone, current_order, start_type);
2610 }
2611 
2612 /*
2613  * Check whether there is a suitable fallback freepage with requested order.
2614  * If only_stealable is true, this function returns fallback_mt only if
2615  * we can steal other freepages all together. This would help to reduce
2616  * fragmentation due to mixed migratetype pages in one pageblock.
2617  */
2618 int find_suitable_fallback(struct free_area *area, unsigned int order,
2619 			int migratetype, bool only_stealable, bool *can_steal)
2620 {
2621 	int i;
2622 	int fallback_mt;
2623 
2624 	if (area->nr_free == 0)
2625 		return -1;
2626 
2627 	*can_steal = false;
2628 	for (i = 0;; i++) {
2629 		fallback_mt = fallbacks[migratetype][i];
2630 		if (fallback_mt == MIGRATE_TYPES)
2631 			break;
2632 
2633 		if (free_area_empty(area, fallback_mt))
2634 			continue;
2635 
2636 		if (can_steal_fallback(order, migratetype))
2637 			*can_steal = true;
2638 
2639 		if (!only_stealable)
2640 			return fallback_mt;
2641 
2642 		if (*can_steal)
2643 			return fallback_mt;
2644 	}
2645 
2646 	return -1;
2647 }
2648 
2649 /*
2650  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2651  * there are no empty page blocks that contain a page with a suitable order
2652  */
2653 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2654 				unsigned int alloc_order)
2655 {
2656 	int mt;
2657 	unsigned long max_managed, flags;
2658 
2659 	/*
2660 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2661 	 * Check is race-prone but harmless.
2662 	 */
2663 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2664 	if (zone->nr_reserved_highatomic >= max_managed)
2665 		return;
2666 
2667 	spin_lock_irqsave(&zone->lock, flags);
2668 
2669 	/* Recheck the nr_reserved_highatomic limit under the lock */
2670 	if (zone->nr_reserved_highatomic >= max_managed)
2671 		goto out_unlock;
2672 
2673 	/* Yoink! */
2674 	mt = get_pageblock_migratetype(page);
2675 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2676 	    && !is_migrate_cma(mt)) {
2677 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2678 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2679 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2680 	}
2681 
2682 out_unlock:
2683 	spin_unlock_irqrestore(&zone->lock, flags);
2684 }
2685 
2686 /*
2687  * Used when an allocation is about to fail under memory pressure. This
2688  * potentially hurts the reliability of high-order allocations when under
2689  * intense memory pressure but failed atomic allocations should be easier
2690  * to recover from than an OOM.
2691  *
2692  * If @force is true, try to unreserve a pageblock even though highatomic
2693  * pageblock is exhausted.
2694  */
2695 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2696 						bool force)
2697 {
2698 	struct zonelist *zonelist = ac->zonelist;
2699 	unsigned long flags;
2700 	struct zoneref *z;
2701 	struct zone *zone;
2702 	struct page *page;
2703 	int order;
2704 	bool ret;
2705 
2706 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2707 								ac->nodemask) {
2708 		/*
2709 		 * Preserve at least one pageblock unless memory pressure
2710 		 * is really high.
2711 		 */
2712 		if (!force && zone->nr_reserved_highatomic <=
2713 					pageblock_nr_pages)
2714 			continue;
2715 
2716 		spin_lock_irqsave(&zone->lock, flags);
2717 		for (order = 0; order < MAX_ORDER; order++) {
2718 			struct free_area *area = &(zone->free_area[order]);
2719 
2720 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2721 			if (!page)
2722 				continue;
2723 
2724 			/*
2725 			 * In page freeing path, migratetype change is racy so
2726 			 * we can counter several free pages in a pageblock
2727 			 * in this loop althoug we changed the pageblock type
2728 			 * from highatomic to ac->migratetype. So we should
2729 			 * adjust the count once.
2730 			 */
2731 			if (is_migrate_highatomic_page(page)) {
2732 				/*
2733 				 * It should never happen but changes to
2734 				 * locking could inadvertently allow a per-cpu
2735 				 * drain to add pages to MIGRATE_HIGHATOMIC
2736 				 * while unreserving so be safe and watch for
2737 				 * underflows.
2738 				 */
2739 				zone->nr_reserved_highatomic -= min(
2740 						pageblock_nr_pages,
2741 						zone->nr_reserved_highatomic);
2742 			}
2743 
2744 			/*
2745 			 * Convert to ac->migratetype and avoid the normal
2746 			 * pageblock stealing heuristics. Minimally, the caller
2747 			 * is doing the work and needs the pages. More
2748 			 * importantly, if the block was always converted to
2749 			 * MIGRATE_UNMOVABLE or another type then the number
2750 			 * of pageblocks that cannot be completely freed
2751 			 * may increase.
2752 			 */
2753 			set_pageblock_migratetype(page, ac->migratetype);
2754 			ret = move_freepages_block(zone, page, ac->migratetype,
2755 									NULL);
2756 			if (ret) {
2757 				spin_unlock_irqrestore(&zone->lock, flags);
2758 				return ret;
2759 			}
2760 		}
2761 		spin_unlock_irqrestore(&zone->lock, flags);
2762 	}
2763 
2764 	return false;
2765 }
2766 
2767 /*
2768  * Try finding a free buddy page on the fallback list and put it on the free
2769  * list of requested migratetype, possibly along with other pages from the same
2770  * block, depending on fragmentation avoidance heuristics. Returns true if
2771  * fallback was found so that __rmqueue_smallest() can grab it.
2772  *
2773  * The use of signed ints for order and current_order is a deliberate
2774  * deviation from the rest of this file, to make the for loop
2775  * condition simpler.
2776  */
2777 static __always_inline bool
2778 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2779 						unsigned int alloc_flags)
2780 {
2781 	struct free_area *area;
2782 	int current_order;
2783 	int min_order = order;
2784 	struct page *page;
2785 	int fallback_mt;
2786 	bool can_steal;
2787 
2788 	/*
2789 	 * Do not steal pages from freelists belonging to other pageblocks
2790 	 * i.e. orders < pageblock_order. If there are no local zones free,
2791 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2792 	 */
2793 	if (alloc_flags & ALLOC_NOFRAGMENT)
2794 		min_order = pageblock_order;
2795 
2796 	/*
2797 	 * Find the largest available free page in the other list. This roughly
2798 	 * approximates finding the pageblock with the most free pages, which
2799 	 * would be too costly to do exactly.
2800 	 */
2801 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2802 				--current_order) {
2803 		area = &(zone->free_area[current_order]);
2804 		fallback_mt = find_suitable_fallback(area, current_order,
2805 				start_migratetype, false, &can_steal);
2806 		if (fallback_mt == -1)
2807 			continue;
2808 
2809 		/*
2810 		 * We cannot steal all free pages from the pageblock and the
2811 		 * requested migratetype is movable. In that case it's better to
2812 		 * steal and split the smallest available page instead of the
2813 		 * largest available page, because even if the next movable
2814 		 * allocation falls back into a different pageblock than this
2815 		 * one, it won't cause permanent fragmentation.
2816 		 */
2817 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2818 					&& current_order > order)
2819 			goto find_smallest;
2820 
2821 		goto do_steal;
2822 	}
2823 
2824 	return false;
2825 
2826 find_smallest:
2827 	for (current_order = order; current_order < MAX_ORDER;
2828 							current_order++) {
2829 		area = &(zone->free_area[current_order]);
2830 		fallback_mt = find_suitable_fallback(area, current_order,
2831 				start_migratetype, false, &can_steal);
2832 		if (fallback_mt != -1)
2833 			break;
2834 	}
2835 
2836 	/*
2837 	 * This should not happen - we already found a suitable fallback
2838 	 * when looking for the largest page.
2839 	 */
2840 	VM_BUG_ON(current_order == MAX_ORDER);
2841 
2842 do_steal:
2843 	page = get_page_from_free_area(area, fallback_mt);
2844 
2845 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2846 								can_steal);
2847 
2848 	trace_mm_page_alloc_extfrag(page, order, current_order,
2849 		start_migratetype, fallback_mt);
2850 
2851 	return true;
2852 
2853 }
2854 
2855 /*
2856  * Do the hard work of removing an element from the buddy allocator.
2857  * Call me with the zone->lock already held.
2858  */
2859 static __always_inline struct page *
2860 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2861 						unsigned int alloc_flags)
2862 {
2863 	struct page *page;
2864 
2865 	if (IS_ENABLED(CONFIG_CMA)) {
2866 		/*
2867 		 * Balance movable allocations between regular and CMA areas by
2868 		 * allocating from CMA when over half of the zone's free memory
2869 		 * is in the CMA area.
2870 		 */
2871 		if (alloc_flags & ALLOC_CMA &&
2872 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2873 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2874 			page = __rmqueue_cma_fallback(zone, order);
2875 			if (page)
2876 				goto out;
2877 		}
2878 	}
2879 retry:
2880 	page = __rmqueue_smallest(zone, order, migratetype);
2881 	if (unlikely(!page)) {
2882 		if (alloc_flags & ALLOC_CMA)
2883 			page = __rmqueue_cma_fallback(zone, order);
2884 
2885 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2886 								alloc_flags))
2887 			goto retry;
2888 	}
2889 out:
2890 	if (page)
2891 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2892 	return page;
2893 }
2894 
2895 /*
2896  * Obtain a specified number of elements from the buddy allocator, all under
2897  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2898  * Returns the number of new pages which were placed at *list.
2899  */
2900 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2901 			unsigned long count, struct list_head *list,
2902 			int migratetype, unsigned int alloc_flags)
2903 {
2904 	int i, alloced = 0;
2905 
2906 	spin_lock(&zone->lock);
2907 	for (i = 0; i < count; ++i) {
2908 		struct page *page = __rmqueue(zone, order, migratetype,
2909 								alloc_flags);
2910 		if (unlikely(page == NULL))
2911 			break;
2912 
2913 		if (unlikely(check_pcp_refill(page)))
2914 			continue;
2915 
2916 		/*
2917 		 * Split buddy pages returned by expand() are received here in
2918 		 * physical page order. The page is added to the tail of
2919 		 * caller's list. From the callers perspective, the linked list
2920 		 * is ordered by page number under some conditions. This is
2921 		 * useful for IO devices that can forward direction from the
2922 		 * head, thus also in the physical page order. This is useful
2923 		 * for IO devices that can merge IO requests if the physical
2924 		 * pages are ordered properly.
2925 		 */
2926 		list_add_tail(&page->lru, list);
2927 		alloced++;
2928 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2929 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2930 					      -(1 << order));
2931 	}
2932 
2933 	/*
2934 	 * i pages were removed from the buddy list even if some leak due
2935 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2936 	 * on i. Do not confuse with 'alloced' which is the number of
2937 	 * pages added to the pcp list.
2938 	 */
2939 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2940 	spin_unlock(&zone->lock);
2941 	return alloced;
2942 }
2943 
2944 #ifdef CONFIG_NUMA
2945 /*
2946  * Called from the vmstat counter updater to drain pagesets of this
2947  * currently executing processor on remote nodes after they have
2948  * expired.
2949  *
2950  * Note that this function must be called with the thread pinned to
2951  * a single processor.
2952  */
2953 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2954 {
2955 	unsigned long flags;
2956 	int to_drain, batch;
2957 
2958 	local_irq_save(flags);
2959 	batch = READ_ONCE(pcp->batch);
2960 	to_drain = min(pcp->count, batch);
2961 	if (to_drain > 0)
2962 		free_pcppages_bulk(zone, to_drain, pcp);
2963 	local_irq_restore(flags);
2964 }
2965 #endif
2966 
2967 /*
2968  * Drain pcplists of the indicated processor and zone.
2969  *
2970  * The processor must either be the current processor and the
2971  * thread pinned to the current processor or a processor that
2972  * is not online.
2973  */
2974 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2975 {
2976 	unsigned long flags;
2977 	struct per_cpu_pageset *pset;
2978 	struct per_cpu_pages *pcp;
2979 
2980 	local_irq_save(flags);
2981 	pset = per_cpu_ptr(zone->pageset, cpu);
2982 
2983 	pcp = &pset->pcp;
2984 	if (pcp->count)
2985 		free_pcppages_bulk(zone, pcp->count, pcp);
2986 	local_irq_restore(flags);
2987 }
2988 
2989 /*
2990  * Drain pcplists of all zones on the indicated processor.
2991  *
2992  * The processor must either be the current processor and the
2993  * thread pinned to the current processor or a processor that
2994  * is not online.
2995  */
2996 static void drain_pages(unsigned int cpu)
2997 {
2998 	struct zone *zone;
2999 
3000 	for_each_populated_zone(zone) {
3001 		drain_pages_zone(cpu, zone);
3002 	}
3003 }
3004 
3005 /*
3006  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3007  *
3008  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3009  * the single zone's pages.
3010  */
3011 void drain_local_pages(struct zone *zone)
3012 {
3013 	int cpu = smp_processor_id();
3014 
3015 	if (zone)
3016 		drain_pages_zone(cpu, zone);
3017 	else
3018 		drain_pages(cpu);
3019 }
3020 
3021 static void drain_local_pages_wq(struct work_struct *work)
3022 {
3023 	struct pcpu_drain *drain;
3024 
3025 	drain = container_of(work, struct pcpu_drain, work);
3026 
3027 	/*
3028 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3029 	 * we can race with cpu offline when the WQ can move this from
3030 	 * a cpu pinned worker to an unbound one. We can operate on a different
3031 	 * cpu which is allright but we also have to make sure to not move to
3032 	 * a different one.
3033 	 */
3034 	preempt_disable();
3035 	drain_local_pages(drain->zone);
3036 	preempt_enable();
3037 }
3038 
3039 /*
3040  * The implementation of drain_all_pages(), exposing an extra parameter to
3041  * drain on all cpus.
3042  *
3043  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3044  * not empty. The check for non-emptiness can however race with a free to
3045  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3046  * that need the guarantee that every CPU has drained can disable the
3047  * optimizing racy check.
3048  */
3049 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3050 {
3051 	int cpu;
3052 
3053 	/*
3054 	 * Allocate in the BSS so we wont require allocation in
3055 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3056 	 */
3057 	static cpumask_t cpus_with_pcps;
3058 
3059 	/*
3060 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3061 	 * initialized.
3062 	 */
3063 	if (WARN_ON_ONCE(!mm_percpu_wq))
3064 		return;
3065 
3066 	/*
3067 	 * Do not drain if one is already in progress unless it's specific to
3068 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3069 	 * the drain to be complete when the call returns.
3070 	 */
3071 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3072 		if (!zone)
3073 			return;
3074 		mutex_lock(&pcpu_drain_mutex);
3075 	}
3076 
3077 	/*
3078 	 * We don't care about racing with CPU hotplug event
3079 	 * as offline notification will cause the notified
3080 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3081 	 * disables preemption as part of its processing
3082 	 */
3083 	for_each_online_cpu(cpu) {
3084 		struct per_cpu_pageset *pcp;
3085 		struct zone *z;
3086 		bool has_pcps = false;
3087 
3088 		if (force_all_cpus) {
3089 			/*
3090 			 * The pcp.count check is racy, some callers need a
3091 			 * guarantee that no cpu is missed.
3092 			 */
3093 			has_pcps = true;
3094 		} else if (zone) {
3095 			pcp = per_cpu_ptr(zone->pageset, cpu);
3096 			if (pcp->pcp.count)
3097 				has_pcps = true;
3098 		} else {
3099 			for_each_populated_zone(z) {
3100 				pcp = per_cpu_ptr(z->pageset, cpu);
3101 				if (pcp->pcp.count) {
3102 					has_pcps = true;
3103 					break;
3104 				}
3105 			}
3106 		}
3107 
3108 		if (has_pcps)
3109 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3110 		else
3111 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3112 	}
3113 
3114 	for_each_cpu(cpu, &cpus_with_pcps) {
3115 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3116 
3117 		drain->zone = zone;
3118 		INIT_WORK(&drain->work, drain_local_pages_wq);
3119 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3120 	}
3121 	for_each_cpu(cpu, &cpus_with_pcps)
3122 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3123 
3124 	mutex_unlock(&pcpu_drain_mutex);
3125 }
3126 
3127 /*
3128  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3129  *
3130  * When zone parameter is non-NULL, spill just the single zone's pages.
3131  *
3132  * Note that this can be extremely slow as the draining happens in a workqueue.
3133  */
3134 void drain_all_pages(struct zone *zone)
3135 {
3136 	__drain_all_pages(zone, false);
3137 }
3138 
3139 #ifdef CONFIG_HIBERNATION
3140 
3141 /*
3142  * Touch the watchdog for every WD_PAGE_COUNT pages.
3143  */
3144 #define WD_PAGE_COUNT	(128*1024)
3145 
3146 void mark_free_pages(struct zone *zone)
3147 {
3148 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3149 	unsigned long flags;
3150 	unsigned int order, t;
3151 	struct page *page;
3152 
3153 	if (zone_is_empty(zone))
3154 		return;
3155 
3156 	spin_lock_irqsave(&zone->lock, flags);
3157 
3158 	max_zone_pfn = zone_end_pfn(zone);
3159 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3160 		if (pfn_valid(pfn)) {
3161 			page = pfn_to_page(pfn);
3162 
3163 			if (!--page_count) {
3164 				touch_nmi_watchdog();
3165 				page_count = WD_PAGE_COUNT;
3166 			}
3167 
3168 			if (page_zone(page) != zone)
3169 				continue;
3170 
3171 			if (!swsusp_page_is_forbidden(page))
3172 				swsusp_unset_page_free(page);
3173 		}
3174 
3175 	for_each_migratetype_order(order, t) {
3176 		list_for_each_entry(page,
3177 				&zone->free_area[order].free_list[t], lru) {
3178 			unsigned long i;
3179 
3180 			pfn = page_to_pfn(page);
3181 			for (i = 0; i < (1UL << order); i++) {
3182 				if (!--page_count) {
3183 					touch_nmi_watchdog();
3184 					page_count = WD_PAGE_COUNT;
3185 				}
3186 				swsusp_set_page_free(pfn_to_page(pfn + i));
3187 			}
3188 		}
3189 	}
3190 	spin_unlock_irqrestore(&zone->lock, flags);
3191 }
3192 #endif /* CONFIG_PM */
3193 
3194 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3195 {
3196 	int migratetype;
3197 
3198 	if (!free_pcp_prepare(page))
3199 		return false;
3200 
3201 	migratetype = get_pfnblock_migratetype(page, pfn);
3202 	set_pcppage_migratetype(page, migratetype);
3203 	return true;
3204 }
3205 
3206 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3207 {
3208 	struct zone *zone = page_zone(page);
3209 	struct per_cpu_pages *pcp;
3210 	int migratetype;
3211 
3212 	migratetype = get_pcppage_migratetype(page);
3213 	__count_vm_event(PGFREE);
3214 
3215 	/*
3216 	 * We only track unmovable, reclaimable and movable on pcp lists.
3217 	 * Free ISOLATE pages back to the allocator because they are being
3218 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3219 	 * areas back if necessary. Otherwise, we may have to free
3220 	 * excessively into the page allocator
3221 	 */
3222 	if (migratetype >= MIGRATE_PCPTYPES) {
3223 		if (unlikely(is_migrate_isolate(migratetype))) {
3224 			free_one_page(zone, page, pfn, 0, migratetype,
3225 				      FPI_NONE);
3226 			return;
3227 		}
3228 		migratetype = MIGRATE_MOVABLE;
3229 	}
3230 
3231 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3232 	list_add(&page->lru, &pcp->lists[migratetype]);
3233 	pcp->count++;
3234 	if (pcp->count >= READ_ONCE(pcp->high))
3235 		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3236 }
3237 
3238 /*
3239  * Free a 0-order page
3240  */
3241 void free_unref_page(struct page *page)
3242 {
3243 	unsigned long flags;
3244 	unsigned long pfn = page_to_pfn(page);
3245 
3246 	if (!free_unref_page_prepare(page, pfn))
3247 		return;
3248 
3249 	local_irq_save(flags);
3250 	free_unref_page_commit(page, pfn);
3251 	local_irq_restore(flags);
3252 }
3253 
3254 /*
3255  * Free a list of 0-order pages
3256  */
3257 void free_unref_page_list(struct list_head *list)
3258 {
3259 	struct page *page, *next;
3260 	unsigned long flags, pfn;
3261 	int batch_count = 0;
3262 
3263 	/* Prepare pages for freeing */
3264 	list_for_each_entry_safe(page, next, list, lru) {
3265 		pfn = page_to_pfn(page);
3266 		if (!free_unref_page_prepare(page, pfn))
3267 			list_del(&page->lru);
3268 		set_page_private(page, pfn);
3269 	}
3270 
3271 	local_irq_save(flags);
3272 	list_for_each_entry_safe(page, next, list, lru) {
3273 		unsigned long pfn = page_private(page);
3274 
3275 		set_page_private(page, 0);
3276 		trace_mm_page_free_batched(page);
3277 		free_unref_page_commit(page, pfn);
3278 
3279 		/*
3280 		 * Guard against excessive IRQ disabled times when we get
3281 		 * a large list of pages to free.
3282 		 */
3283 		if (++batch_count == SWAP_CLUSTER_MAX) {
3284 			local_irq_restore(flags);
3285 			batch_count = 0;
3286 			local_irq_save(flags);
3287 		}
3288 	}
3289 	local_irq_restore(flags);
3290 }
3291 
3292 /*
3293  * split_page takes a non-compound higher-order page, and splits it into
3294  * n (1<<order) sub-pages: page[0..n]
3295  * Each sub-page must be freed individually.
3296  *
3297  * Note: this is probably too low level an operation for use in drivers.
3298  * Please consult with lkml before using this in your driver.
3299  */
3300 void split_page(struct page *page, unsigned int order)
3301 {
3302 	int i;
3303 
3304 	VM_BUG_ON_PAGE(PageCompound(page), page);
3305 	VM_BUG_ON_PAGE(!page_count(page), page);
3306 
3307 	for (i = 1; i < (1 << order); i++)
3308 		set_page_refcounted(page + i);
3309 	split_page_owner(page, 1 << order);
3310 }
3311 EXPORT_SYMBOL_GPL(split_page);
3312 
3313 int __isolate_free_page(struct page *page, unsigned int order)
3314 {
3315 	unsigned long watermark;
3316 	struct zone *zone;
3317 	int mt;
3318 
3319 	BUG_ON(!PageBuddy(page));
3320 
3321 	zone = page_zone(page);
3322 	mt = get_pageblock_migratetype(page);
3323 
3324 	if (!is_migrate_isolate(mt)) {
3325 		/*
3326 		 * Obey watermarks as if the page was being allocated. We can
3327 		 * emulate a high-order watermark check with a raised order-0
3328 		 * watermark, because we already know our high-order page
3329 		 * exists.
3330 		 */
3331 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3332 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3333 			return 0;
3334 
3335 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3336 	}
3337 
3338 	/* Remove page from free list */
3339 
3340 	del_page_from_free_list(page, zone, order);
3341 
3342 	/*
3343 	 * Set the pageblock if the isolated page is at least half of a
3344 	 * pageblock
3345 	 */
3346 	if (order >= pageblock_order - 1) {
3347 		struct page *endpage = page + (1 << order) - 1;
3348 		for (; page < endpage; page += pageblock_nr_pages) {
3349 			int mt = get_pageblock_migratetype(page);
3350 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3351 			    && !is_migrate_highatomic(mt))
3352 				set_pageblock_migratetype(page,
3353 							  MIGRATE_MOVABLE);
3354 		}
3355 	}
3356 
3357 
3358 	return 1UL << order;
3359 }
3360 
3361 /**
3362  * __putback_isolated_page - Return a now-isolated page back where we got it
3363  * @page: Page that was isolated
3364  * @order: Order of the isolated page
3365  * @mt: The page's pageblock's migratetype
3366  *
3367  * This function is meant to return a page pulled from the free lists via
3368  * __isolate_free_page back to the free lists they were pulled from.
3369  */
3370 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3371 {
3372 	struct zone *zone = page_zone(page);
3373 
3374 	/* zone lock should be held when this function is called */
3375 	lockdep_assert_held(&zone->lock);
3376 
3377 	/* Return isolated page to tail of freelist. */
3378 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3379 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3380 }
3381 
3382 /*
3383  * Update NUMA hit/miss statistics
3384  *
3385  * Must be called with interrupts disabled.
3386  */
3387 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3388 {
3389 #ifdef CONFIG_NUMA
3390 	enum numa_stat_item local_stat = NUMA_LOCAL;
3391 
3392 	/* skip numa counters update if numa stats is disabled */
3393 	if (!static_branch_likely(&vm_numa_stat_key))
3394 		return;
3395 
3396 	if (zone_to_nid(z) != numa_node_id())
3397 		local_stat = NUMA_OTHER;
3398 
3399 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3400 		__inc_numa_state(z, NUMA_HIT);
3401 	else {
3402 		__inc_numa_state(z, NUMA_MISS);
3403 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3404 	}
3405 	__inc_numa_state(z, local_stat);
3406 #endif
3407 }
3408 
3409 /* Remove page from the per-cpu list, caller must protect the list */
3410 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3411 			unsigned int alloc_flags,
3412 			struct per_cpu_pages *pcp,
3413 			struct list_head *list)
3414 {
3415 	struct page *page;
3416 
3417 	do {
3418 		if (list_empty(list)) {
3419 			pcp->count += rmqueue_bulk(zone, 0,
3420 					READ_ONCE(pcp->batch), list,
3421 					migratetype, alloc_flags);
3422 			if (unlikely(list_empty(list)))
3423 				return NULL;
3424 		}
3425 
3426 		page = list_first_entry(list, struct page, lru);
3427 		list_del(&page->lru);
3428 		pcp->count--;
3429 	} while (check_new_pcp(page));
3430 
3431 	return page;
3432 }
3433 
3434 /* Lock and remove page from the per-cpu list */
3435 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3436 			struct zone *zone, gfp_t gfp_flags,
3437 			int migratetype, unsigned int alloc_flags)
3438 {
3439 	struct per_cpu_pages *pcp;
3440 	struct list_head *list;
3441 	struct page *page;
3442 	unsigned long flags;
3443 
3444 	local_irq_save(flags);
3445 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3446 	list = &pcp->lists[migratetype];
3447 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3448 	if (page) {
3449 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3450 		zone_statistics(preferred_zone, zone);
3451 	}
3452 	local_irq_restore(flags);
3453 	return page;
3454 }
3455 
3456 /*
3457  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3458  */
3459 static inline
3460 struct page *rmqueue(struct zone *preferred_zone,
3461 			struct zone *zone, unsigned int order,
3462 			gfp_t gfp_flags, unsigned int alloc_flags,
3463 			int migratetype)
3464 {
3465 	unsigned long flags;
3466 	struct page *page;
3467 
3468 	if (likely(order == 0)) {
3469 		/*
3470 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3471 		 * we need to skip it when CMA area isn't allowed.
3472 		 */
3473 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3474 				migratetype != MIGRATE_MOVABLE) {
3475 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3476 					migratetype, alloc_flags);
3477 			goto out;
3478 		}
3479 	}
3480 
3481 	/*
3482 	 * We most definitely don't want callers attempting to
3483 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3484 	 */
3485 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3486 	spin_lock_irqsave(&zone->lock, flags);
3487 
3488 	do {
3489 		page = NULL;
3490 		/*
3491 		 * order-0 request can reach here when the pcplist is skipped
3492 		 * due to non-CMA allocation context. HIGHATOMIC area is
3493 		 * reserved for high-order atomic allocation, so order-0
3494 		 * request should skip it.
3495 		 */
3496 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3497 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3498 			if (page)
3499 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3500 		}
3501 		if (!page)
3502 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3503 	} while (page && check_new_pages(page, order));
3504 	spin_unlock(&zone->lock);
3505 	if (!page)
3506 		goto failed;
3507 	__mod_zone_freepage_state(zone, -(1 << order),
3508 				  get_pcppage_migratetype(page));
3509 
3510 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3511 	zone_statistics(preferred_zone, zone);
3512 	local_irq_restore(flags);
3513 
3514 out:
3515 	/* Separate test+clear to avoid unnecessary atomics */
3516 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3517 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3518 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3519 	}
3520 
3521 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3522 	return page;
3523 
3524 failed:
3525 	local_irq_restore(flags);
3526 	return NULL;
3527 }
3528 
3529 #ifdef CONFIG_FAIL_PAGE_ALLOC
3530 
3531 static struct {
3532 	struct fault_attr attr;
3533 
3534 	bool ignore_gfp_highmem;
3535 	bool ignore_gfp_reclaim;
3536 	u32 min_order;
3537 } fail_page_alloc = {
3538 	.attr = FAULT_ATTR_INITIALIZER,
3539 	.ignore_gfp_reclaim = true,
3540 	.ignore_gfp_highmem = true,
3541 	.min_order = 1,
3542 };
3543 
3544 static int __init setup_fail_page_alloc(char *str)
3545 {
3546 	return setup_fault_attr(&fail_page_alloc.attr, str);
3547 }
3548 __setup("fail_page_alloc=", setup_fail_page_alloc);
3549 
3550 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3551 {
3552 	if (order < fail_page_alloc.min_order)
3553 		return false;
3554 	if (gfp_mask & __GFP_NOFAIL)
3555 		return false;
3556 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3557 		return false;
3558 	if (fail_page_alloc.ignore_gfp_reclaim &&
3559 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3560 		return false;
3561 
3562 	return should_fail(&fail_page_alloc.attr, 1 << order);
3563 }
3564 
3565 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3566 
3567 static int __init fail_page_alloc_debugfs(void)
3568 {
3569 	umode_t mode = S_IFREG | 0600;
3570 	struct dentry *dir;
3571 
3572 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3573 					&fail_page_alloc.attr);
3574 
3575 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3576 			    &fail_page_alloc.ignore_gfp_reclaim);
3577 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3578 			    &fail_page_alloc.ignore_gfp_highmem);
3579 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3580 
3581 	return 0;
3582 }
3583 
3584 late_initcall(fail_page_alloc_debugfs);
3585 
3586 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3587 
3588 #else /* CONFIG_FAIL_PAGE_ALLOC */
3589 
3590 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3591 {
3592 	return false;
3593 }
3594 
3595 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3596 
3597 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3598 {
3599 	return __should_fail_alloc_page(gfp_mask, order);
3600 }
3601 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3602 
3603 static inline long __zone_watermark_unusable_free(struct zone *z,
3604 				unsigned int order, unsigned int alloc_flags)
3605 {
3606 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3607 	long unusable_free = (1 << order) - 1;
3608 
3609 	/*
3610 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3611 	 * the high-atomic reserves. This will over-estimate the size of the
3612 	 * atomic reserve but it avoids a search.
3613 	 */
3614 	if (likely(!alloc_harder))
3615 		unusable_free += z->nr_reserved_highatomic;
3616 
3617 #ifdef CONFIG_CMA
3618 	/* If allocation can't use CMA areas don't use free CMA pages */
3619 	if (!(alloc_flags & ALLOC_CMA))
3620 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3621 #endif
3622 
3623 	return unusable_free;
3624 }
3625 
3626 /*
3627  * Return true if free base pages are above 'mark'. For high-order checks it
3628  * will return true of the order-0 watermark is reached and there is at least
3629  * one free page of a suitable size. Checking now avoids taking the zone lock
3630  * to check in the allocation paths if no pages are free.
3631  */
3632 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3633 			 int highest_zoneidx, unsigned int alloc_flags,
3634 			 long free_pages)
3635 {
3636 	long min = mark;
3637 	int o;
3638 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3639 
3640 	/* free_pages may go negative - that's OK */
3641 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3642 
3643 	if (alloc_flags & ALLOC_HIGH)
3644 		min -= min / 2;
3645 
3646 	if (unlikely(alloc_harder)) {
3647 		/*
3648 		 * OOM victims can try even harder than normal ALLOC_HARDER
3649 		 * users on the grounds that it's definitely going to be in
3650 		 * the exit path shortly and free memory. Any allocation it
3651 		 * makes during the free path will be small and short-lived.
3652 		 */
3653 		if (alloc_flags & ALLOC_OOM)
3654 			min -= min / 2;
3655 		else
3656 			min -= min / 4;
3657 	}
3658 
3659 	/*
3660 	 * Check watermarks for an order-0 allocation request. If these
3661 	 * are not met, then a high-order request also cannot go ahead
3662 	 * even if a suitable page happened to be free.
3663 	 */
3664 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3665 		return false;
3666 
3667 	/* If this is an order-0 request then the watermark is fine */
3668 	if (!order)
3669 		return true;
3670 
3671 	/* For a high-order request, check at least one suitable page is free */
3672 	for (o = order; o < MAX_ORDER; o++) {
3673 		struct free_area *area = &z->free_area[o];
3674 		int mt;
3675 
3676 		if (!area->nr_free)
3677 			continue;
3678 
3679 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3680 			if (!free_area_empty(area, mt))
3681 				return true;
3682 		}
3683 
3684 #ifdef CONFIG_CMA
3685 		if ((alloc_flags & ALLOC_CMA) &&
3686 		    !free_area_empty(area, MIGRATE_CMA)) {
3687 			return true;
3688 		}
3689 #endif
3690 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3691 			return true;
3692 	}
3693 	return false;
3694 }
3695 
3696 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3697 		      int highest_zoneidx, unsigned int alloc_flags)
3698 {
3699 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3700 					zone_page_state(z, NR_FREE_PAGES));
3701 }
3702 
3703 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3704 				unsigned long mark, int highest_zoneidx,
3705 				unsigned int alloc_flags, gfp_t gfp_mask)
3706 {
3707 	long free_pages;
3708 
3709 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3710 
3711 	/*
3712 	 * Fast check for order-0 only. If this fails then the reserves
3713 	 * need to be calculated.
3714 	 */
3715 	if (!order) {
3716 		long fast_free;
3717 
3718 		fast_free = free_pages;
3719 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3720 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3721 			return true;
3722 	}
3723 
3724 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3725 					free_pages))
3726 		return true;
3727 	/*
3728 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3729 	 * when checking the min watermark. The min watermark is the
3730 	 * point where boosting is ignored so that kswapd is woken up
3731 	 * when below the low watermark.
3732 	 */
3733 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3734 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3735 		mark = z->_watermark[WMARK_MIN];
3736 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3737 					alloc_flags, free_pages);
3738 	}
3739 
3740 	return false;
3741 }
3742 
3743 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3744 			unsigned long mark, int highest_zoneidx)
3745 {
3746 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3747 
3748 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3749 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3750 
3751 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3752 								free_pages);
3753 }
3754 
3755 #ifdef CONFIG_NUMA
3756 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3757 {
3758 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3759 				node_reclaim_distance;
3760 }
3761 #else	/* CONFIG_NUMA */
3762 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3763 {
3764 	return true;
3765 }
3766 #endif	/* CONFIG_NUMA */
3767 
3768 /*
3769  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3770  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3771  * premature use of a lower zone may cause lowmem pressure problems that
3772  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3773  * probably too small. It only makes sense to spread allocations to avoid
3774  * fragmentation between the Normal and DMA32 zones.
3775  */
3776 static inline unsigned int
3777 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3778 {
3779 	unsigned int alloc_flags;
3780 
3781 	/*
3782 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3783 	 * to save a branch.
3784 	 */
3785 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3786 
3787 #ifdef CONFIG_ZONE_DMA32
3788 	if (!zone)
3789 		return alloc_flags;
3790 
3791 	if (zone_idx(zone) != ZONE_NORMAL)
3792 		return alloc_flags;
3793 
3794 	/*
3795 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3796 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3797 	 * on UMA that if Normal is populated then so is DMA32.
3798 	 */
3799 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3800 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3801 		return alloc_flags;
3802 
3803 	alloc_flags |= ALLOC_NOFRAGMENT;
3804 #endif /* CONFIG_ZONE_DMA32 */
3805 	return alloc_flags;
3806 }
3807 
3808 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3809 					unsigned int alloc_flags)
3810 {
3811 #ifdef CONFIG_CMA
3812 	unsigned int pflags = current->flags;
3813 
3814 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3815 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3816 		alloc_flags |= ALLOC_CMA;
3817 
3818 #endif
3819 	return alloc_flags;
3820 }
3821 
3822 /*
3823  * get_page_from_freelist goes through the zonelist trying to allocate
3824  * a page.
3825  */
3826 static struct page *
3827 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3828 						const struct alloc_context *ac)
3829 {
3830 	struct zoneref *z;
3831 	struct zone *zone;
3832 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3833 	bool no_fallback;
3834 
3835 retry:
3836 	/*
3837 	 * Scan zonelist, looking for a zone with enough free.
3838 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3839 	 */
3840 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3841 	z = ac->preferred_zoneref;
3842 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3843 					ac->nodemask) {
3844 		struct page *page;
3845 		unsigned long mark;
3846 
3847 		if (cpusets_enabled() &&
3848 			(alloc_flags & ALLOC_CPUSET) &&
3849 			!__cpuset_zone_allowed(zone, gfp_mask))
3850 				continue;
3851 		/*
3852 		 * When allocating a page cache page for writing, we
3853 		 * want to get it from a node that is within its dirty
3854 		 * limit, such that no single node holds more than its
3855 		 * proportional share of globally allowed dirty pages.
3856 		 * The dirty limits take into account the node's
3857 		 * lowmem reserves and high watermark so that kswapd
3858 		 * should be able to balance it without having to
3859 		 * write pages from its LRU list.
3860 		 *
3861 		 * XXX: For now, allow allocations to potentially
3862 		 * exceed the per-node dirty limit in the slowpath
3863 		 * (spread_dirty_pages unset) before going into reclaim,
3864 		 * which is important when on a NUMA setup the allowed
3865 		 * nodes are together not big enough to reach the
3866 		 * global limit.  The proper fix for these situations
3867 		 * will require awareness of nodes in the
3868 		 * dirty-throttling and the flusher threads.
3869 		 */
3870 		if (ac->spread_dirty_pages) {
3871 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3872 				continue;
3873 
3874 			if (!node_dirty_ok(zone->zone_pgdat)) {
3875 				last_pgdat_dirty_limit = zone->zone_pgdat;
3876 				continue;
3877 			}
3878 		}
3879 
3880 		if (no_fallback && nr_online_nodes > 1 &&
3881 		    zone != ac->preferred_zoneref->zone) {
3882 			int local_nid;
3883 
3884 			/*
3885 			 * If moving to a remote node, retry but allow
3886 			 * fragmenting fallbacks. Locality is more important
3887 			 * than fragmentation avoidance.
3888 			 */
3889 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3890 			if (zone_to_nid(zone) != local_nid) {
3891 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3892 				goto retry;
3893 			}
3894 		}
3895 
3896 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3897 		if (!zone_watermark_fast(zone, order, mark,
3898 				       ac->highest_zoneidx, alloc_flags,
3899 				       gfp_mask)) {
3900 			int ret;
3901 
3902 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3903 			/*
3904 			 * Watermark failed for this zone, but see if we can
3905 			 * grow this zone if it contains deferred pages.
3906 			 */
3907 			if (static_branch_unlikely(&deferred_pages)) {
3908 				if (_deferred_grow_zone(zone, order))
3909 					goto try_this_zone;
3910 			}
3911 #endif
3912 			/* Checked here to keep the fast path fast */
3913 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3914 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3915 				goto try_this_zone;
3916 
3917 			if (node_reclaim_mode == 0 ||
3918 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3919 				continue;
3920 
3921 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3922 			switch (ret) {
3923 			case NODE_RECLAIM_NOSCAN:
3924 				/* did not scan */
3925 				continue;
3926 			case NODE_RECLAIM_FULL:
3927 				/* scanned but unreclaimable */
3928 				continue;
3929 			default:
3930 				/* did we reclaim enough */
3931 				if (zone_watermark_ok(zone, order, mark,
3932 					ac->highest_zoneidx, alloc_flags))
3933 					goto try_this_zone;
3934 
3935 				continue;
3936 			}
3937 		}
3938 
3939 try_this_zone:
3940 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3941 				gfp_mask, alloc_flags, ac->migratetype);
3942 		if (page) {
3943 			prep_new_page(page, order, gfp_mask, alloc_flags);
3944 
3945 			/*
3946 			 * If this is a high-order atomic allocation then check
3947 			 * if the pageblock should be reserved for the future
3948 			 */
3949 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3950 				reserve_highatomic_pageblock(page, zone, order);
3951 
3952 			return page;
3953 		} else {
3954 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3955 			/* Try again if zone has deferred pages */
3956 			if (static_branch_unlikely(&deferred_pages)) {
3957 				if (_deferred_grow_zone(zone, order))
3958 					goto try_this_zone;
3959 			}
3960 #endif
3961 		}
3962 	}
3963 
3964 	/*
3965 	 * It's possible on a UMA machine to get through all zones that are
3966 	 * fragmented. If avoiding fragmentation, reset and try again.
3967 	 */
3968 	if (no_fallback) {
3969 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3970 		goto retry;
3971 	}
3972 
3973 	return NULL;
3974 }
3975 
3976 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3977 {
3978 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3979 
3980 	/*
3981 	 * This documents exceptions given to allocations in certain
3982 	 * contexts that are allowed to allocate outside current's set
3983 	 * of allowed nodes.
3984 	 */
3985 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3986 		if (tsk_is_oom_victim(current) ||
3987 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3988 			filter &= ~SHOW_MEM_FILTER_NODES;
3989 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3990 		filter &= ~SHOW_MEM_FILTER_NODES;
3991 
3992 	show_mem(filter, nodemask);
3993 }
3994 
3995 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3996 {
3997 	struct va_format vaf;
3998 	va_list args;
3999 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4000 
4001 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4002 		return;
4003 
4004 	va_start(args, fmt);
4005 	vaf.fmt = fmt;
4006 	vaf.va = &args;
4007 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4008 			current->comm, &vaf, gfp_mask, &gfp_mask,
4009 			nodemask_pr_args(nodemask));
4010 	va_end(args);
4011 
4012 	cpuset_print_current_mems_allowed();
4013 	pr_cont("\n");
4014 	dump_stack();
4015 	warn_alloc_show_mem(gfp_mask, nodemask);
4016 }
4017 
4018 static inline struct page *
4019 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4020 			      unsigned int alloc_flags,
4021 			      const struct alloc_context *ac)
4022 {
4023 	struct page *page;
4024 
4025 	page = get_page_from_freelist(gfp_mask, order,
4026 			alloc_flags|ALLOC_CPUSET, ac);
4027 	/*
4028 	 * fallback to ignore cpuset restriction if our nodes
4029 	 * are depleted
4030 	 */
4031 	if (!page)
4032 		page = get_page_from_freelist(gfp_mask, order,
4033 				alloc_flags, ac);
4034 
4035 	return page;
4036 }
4037 
4038 static inline struct page *
4039 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4040 	const struct alloc_context *ac, unsigned long *did_some_progress)
4041 {
4042 	struct oom_control oc = {
4043 		.zonelist = ac->zonelist,
4044 		.nodemask = ac->nodemask,
4045 		.memcg = NULL,
4046 		.gfp_mask = gfp_mask,
4047 		.order = order,
4048 	};
4049 	struct page *page;
4050 
4051 	*did_some_progress = 0;
4052 
4053 	/*
4054 	 * Acquire the oom lock.  If that fails, somebody else is
4055 	 * making progress for us.
4056 	 */
4057 	if (!mutex_trylock(&oom_lock)) {
4058 		*did_some_progress = 1;
4059 		schedule_timeout_uninterruptible(1);
4060 		return NULL;
4061 	}
4062 
4063 	/*
4064 	 * Go through the zonelist yet one more time, keep very high watermark
4065 	 * here, this is only to catch a parallel oom killing, we must fail if
4066 	 * we're still under heavy pressure. But make sure that this reclaim
4067 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4068 	 * allocation which will never fail due to oom_lock already held.
4069 	 */
4070 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4071 				      ~__GFP_DIRECT_RECLAIM, order,
4072 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4073 	if (page)
4074 		goto out;
4075 
4076 	/* Coredumps can quickly deplete all memory reserves */
4077 	if (current->flags & PF_DUMPCORE)
4078 		goto out;
4079 	/* The OOM killer will not help higher order allocs */
4080 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4081 		goto out;
4082 	/*
4083 	 * We have already exhausted all our reclaim opportunities without any
4084 	 * success so it is time to admit defeat. We will skip the OOM killer
4085 	 * because it is very likely that the caller has a more reasonable
4086 	 * fallback than shooting a random task.
4087 	 *
4088 	 * The OOM killer may not free memory on a specific node.
4089 	 */
4090 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4091 		goto out;
4092 	/* The OOM killer does not needlessly kill tasks for lowmem */
4093 	if (ac->highest_zoneidx < ZONE_NORMAL)
4094 		goto out;
4095 	if (pm_suspended_storage())
4096 		goto out;
4097 	/*
4098 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4099 	 * other request to make a forward progress.
4100 	 * We are in an unfortunate situation where out_of_memory cannot
4101 	 * do much for this context but let's try it to at least get
4102 	 * access to memory reserved if the current task is killed (see
4103 	 * out_of_memory). Once filesystems are ready to handle allocation
4104 	 * failures more gracefully we should just bail out here.
4105 	 */
4106 
4107 	/* Exhausted what can be done so it's blame time */
4108 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4109 		*did_some_progress = 1;
4110 
4111 		/*
4112 		 * Help non-failing allocations by giving them access to memory
4113 		 * reserves
4114 		 */
4115 		if (gfp_mask & __GFP_NOFAIL)
4116 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4117 					ALLOC_NO_WATERMARKS, ac);
4118 	}
4119 out:
4120 	mutex_unlock(&oom_lock);
4121 	return page;
4122 }
4123 
4124 /*
4125  * Maximum number of compaction retries wit a progress before OOM
4126  * killer is consider as the only way to move forward.
4127  */
4128 #define MAX_COMPACT_RETRIES 16
4129 
4130 #ifdef CONFIG_COMPACTION
4131 /* Try memory compaction for high-order allocations before reclaim */
4132 static struct page *
4133 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4134 		unsigned int alloc_flags, const struct alloc_context *ac,
4135 		enum compact_priority prio, enum compact_result *compact_result)
4136 {
4137 	struct page *page = NULL;
4138 	unsigned long pflags;
4139 	unsigned int noreclaim_flag;
4140 
4141 	if (!order)
4142 		return NULL;
4143 
4144 	psi_memstall_enter(&pflags);
4145 	noreclaim_flag = memalloc_noreclaim_save();
4146 
4147 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4148 								prio, &page);
4149 
4150 	memalloc_noreclaim_restore(noreclaim_flag);
4151 	psi_memstall_leave(&pflags);
4152 
4153 	/*
4154 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4155 	 * count a compaction stall
4156 	 */
4157 	count_vm_event(COMPACTSTALL);
4158 
4159 	/* Prep a captured page if available */
4160 	if (page)
4161 		prep_new_page(page, order, gfp_mask, alloc_flags);
4162 
4163 	/* Try get a page from the freelist if available */
4164 	if (!page)
4165 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4166 
4167 	if (page) {
4168 		struct zone *zone = page_zone(page);
4169 
4170 		zone->compact_blockskip_flush = false;
4171 		compaction_defer_reset(zone, order, true);
4172 		count_vm_event(COMPACTSUCCESS);
4173 		return page;
4174 	}
4175 
4176 	/*
4177 	 * It's bad if compaction run occurs and fails. The most likely reason
4178 	 * is that pages exist, but not enough to satisfy watermarks.
4179 	 */
4180 	count_vm_event(COMPACTFAIL);
4181 
4182 	cond_resched();
4183 
4184 	return NULL;
4185 }
4186 
4187 static inline bool
4188 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4189 		     enum compact_result compact_result,
4190 		     enum compact_priority *compact_priority,
4191 		     int *compaction_retries)
4192 {
4193 	int max_retries = MAX_COMPACT_RETRIES;
4194 	int min_priority;
4195 	bool ret = false;
4196 	int retries = *compaction_retries;
4197 	enum compact_priority priority = *compact_priority;
4198 
4199 	if (!order)
4200 		return false;
4201 
4202 	if (compaction_made_progress(compact_result))
4203 		(*compaction_retries)++;
4204 
4205 	/*
4206 	 * compaction considers all the zone as desperately out of memory
4207 	 * so it doesn't really make much sense to retry except when the
4208 	 * failure could be caused by insufficient priority
4209 	 */
4210 	if (compaction_failed(compact_result))
4211 		goto check_priority;
4212 
4213 	/*
4214 	 * compaction was skipped because there are not enough order-0 pages
4215 	 * to work with, so we retry only if it looks like reclaim can help.
4216 	 */
4217 	if (compaction_needs_reclaim(compact_result)) {
4218 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4219 		goto out;
4220 	}
4221 
4222 	/*
4223 	 * make sure the compaction wasn't deferred or didn't bail out early
4224 	 * due to locks contention before we declare that we should give up.
4225 	 * But the next retry should use a higher priority if allowed, so
4226 	 * we don't just keep bailing out endlessly.
4227 	 */
4228 	if (compaction_withdrawn(compact_result)) {
4229 		goto check_priority;
4230 	}
4231 
4232 	/*
4233 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4234 	 * costly ones because they are de facto nofail and invoke OOM
4235 	 * killer to move on while costly can fail and users are ready
4236 	 * to cope with that. 1/4 retries is rather arbitrary but we
4237 	 * would need much more detailed feedback from compaction to
4238 	 * make a better decision.
4239 	 */
4240 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4241 		max_retries /= 4;
4242 	if (*compaction_retries <= max_retries) {
4243 		ret = true;
4244 		goto out;
4245 	}
4246 
4247 	/*
4248 	 * Make sure there are attempts at the highest priority if we exhausted
4249 	 * all retries or failed at the lower priorities.
4250 	 */
4251 check_priority:
4252 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4253 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4254 
4255 	if (*compact_priority > min_priority) {
4256 		(*compact_priority)--;
4257 		*compaction_retries = 0;
4258 		ret = true;
4259 	}
4260 out:
4261 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4262 	return ret;
4263 }
4264 #else
4265 static inline struct page *
4266 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4267 		unsigned int alloc_flags, const struct alloc_context *ac,
4268 		enum compact_priority prio, enum compact_result *compact_result)
4269 {
4270 	*compact_result = COMPACT_SKIPPED;
4271 	return NULL;
4272 }
4273 
4274 static inline bool
4275 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4276 		     enum compact_result compact_result,
4277 		     enum compact_priority *compact_priority,
4278 		     int *compaction_retries)
4279 {
4280 	struct zone *zone;
4281 	struct zoneref *z;
4282 
4283 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4284 		return false;
4285 
4286 	/*
4287 	 * There are setups with compaction disabled which would prefer to loop
4288 	 * inside the allocator rather than hit the oom killer prematurely.
4289 	 * Let's give them a good hope and keep retrying while the order-0
4290 	 * watermarks are OK.
4291 	 */
4292 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4293 				ac->highest_zoneidx, ac->nodemask) {
4294 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4295 					ac->highest_zoneidx, alloc_flags))
4296 			return true;
4297 	}
4298 	return false;
4299 }
4300 #endif /* CONFIG_COMPACTION */
4301 
4302 #ifdef CONFIG_LOCKDEP
4303 static struct lockdep_map __fs_reclaim_map =
4304 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4305 
4306 static bool __need_reclaim(gfp_t gfp_mask)
4307 {
4308 	/* no reclaim without waiting on it */
4309 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4310 		return false;
4311 
4312 	/* this guy won't enter reclaim */
4313 	if (current->flags & PF_MEMALLOC)
4314 		return false;
4315 
4316 	if (gfp_mask & __GFP_NOLOCKDEP)
4317 		return false;
4318 
4319 	return true;
4320 }
4321 
4322 void __fs_reclaim_acquire(void)
4323 {
4324 	lock_map_acquire(&__fs_reclaim_map);
4325 }
4326 
4327 void __fs_reclaim_release(void)
4328 {
4329 	lock_map_release(&__fs_reclaim_map);
4330 }
4331 
4332 void fs_reclaim_acquire(gfp_t gfp_mask)
4333 {
4334 	gfp_mask = current_gfp_context(gfp_mask);
4335 
4336 	if (__need_reclaim(gfp_mask)) {
4337 		if (gfp_mask & __GFP_FS)
4338 			__fs_reclaim_acquire();
4339 
4340 #ifdef CONFIG_MMU_NOTIFIER
4341 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4342 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4343 #endif
4344 
4345 	}
4346 }
4347 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4348 
4349 void fs_reclaim_release(gfp_t gfp_mask)
4350 {
4351 	gfp_mask = current_gfp_context(gfp_mask);
4352 
4353 	if (__need_reclaim(gfp_mask)) {
4354 		if (gfp_mask & __GFP_FS)
4355 			__fs_reclaim_release();
4356 	}
4357 }
4358 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4359 #endif
4360 
4361 /* Perform direct synchronous page reclaim */
4362 static unsigned long
4363 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4364 					const struct alloc_context *ac)
4365 {
4366 	unsigned int noreclaim_flag;
4367 	unsigned long pflags, progress;
4368 
4369 	cond_resched();
4370 
4371 	/* We now go into synchronous reclaim */
4372 	cpuset_memory_pressure_bump();
4373 	psi_memstall_enter(&pflags);
4374 	fs_reclaim_acquire(gfp_mask);
4375 	noreclaim_flag = memalloc_noreclaim_save();
4376 
4377 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4378 								ac->nodemask);
4379 
4380 	memalloc_noreclaim_restore(noreclaim_flag);
4381 	fs_reclaim_release(gfp_mask);
4382 	psi_memstall_leave(&pflags);
4383 
4384 	cond_resched();
4385 
4386 	return progress;
4387 }
4388 
4389 /* The really slow allocator path where we enter direct reclaim */
4390 static inline struct page *
4391 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4392 		unsigned int alloc_flags, const struct alloc_context *ac,
4393 		unsigned long *did_some_progress)
4394 {
4395 	struct page *page = NULL;
4396 	bool drained = false;
4397 
4398 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4399 	if (unlikely(!(*did_some_progress)))
4400 		return NULL;
4401 
4402 retry:
4403 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4404 
4405 	/*
4406 	 * If an allocation failed after direct reclaim, it could be because
4407 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4408 	 * Shrink them and try again
4409 	 */
4410 	if (!page && !drained) {
4411 		unreserve_highatomic_pageblock(ac, false);
4412 		drain_all_pages(NULL);
4413 		drained = true;
4414 		goto retry;
4415 	}
4416 
4417 	return page;
4418 }
4419 
4420 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4421 			     const struct alloc_context *ac)
4422 {
4423 	struct zoneref *z;
4424 	struct zone *zone;
4425 	pg_data_t *last_pgdat = NULL;
4426 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4427 
4428 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4429 					ac->nodemask) {
4430 		if (last_pgdat != zone->zone_pgdat)
4431 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4432 		last_pgdat = zone->zone_pgdat;
4433 	}
4434 }
4435 
4436 static inline unsigned int
4437 gfp_to_alloc_flags(gfp_t gfp_mask)
4438 {
4439 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4440 
4441 	/*
4442 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4443 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4444 	 * to save two branches.
4445 	 */
4446 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4447 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4448 
4449 	/*
4450 	 * The caller may dip into page reserves a bit more if the caller
4451 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4452 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4453 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4454 	 */
4455 	alloc_flags |= (__force int)
4456 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4457 
4458 	if (gfp_mask & __GFP_ATOMIC) {
4459 		/*
4460 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4461 		 * if it can't schedule.
4462 		 */
4463 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4464 			alloc_flags |= ALLOC_HARDER;
4465 		/*
4466 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4467 		 * comment for __cpuset_node_allowed().
4468 		 */
4469 		alloc_flags &= ~ALLOC_CPUSET;
4470 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4471 		alloc_flags |= ALLOC_HARDER;
4472 
4473 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4474 
4475 	return alloc_flags;
4476 }
4477 
4478 static bool oom_reserves_allowed(struct task_struct *tsk)
4479 {
4480 	if (!tsk_is_oom_victim(tsk))
4481 		return false;
4482 
4483 	/*
4484 	 * !MMU doesn't have oom reaper so give access to memory reserves
4485 	 * only to the thread with TIF_MEMDIE set
4486 	 */
4487 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4488 		return false;
4489 
4490 	return true;
4491 }
4492 
4493 /*
4494  * Distinguish requests which really need access to full memory
4495  * reserves from oom victims which can live with a portion of it
4496  */
4497 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4498 {
4499 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4500 		return 0;
4501 	if (gfp_mask & __GFP_MEMALLOC)
4502 		return ALLOC_NO_WATERMARKS;
4503 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4504 		return ALLOC_NO_WATERMARKS;
4505 	if (!in_interrupt()) {
4506 		if (current->flags & PF_MEMALLOC)
4507 			return ALLOC_NO_WATERMARKS;
4508 		else if (oom_reserves_allowed(current))
4509 			return ALLOC_OOM;
4510 	}
4511 
4512 	return 0;
4513 }
4514 
4515 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4516 {
4517 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4518 }
4519 
4520 /*
4521  * Checks whether it makes sense to retry the reclaim to make a forward progress
4522  * for the given allocation request.
4523  *
4524  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4525  * without success, or when we couldn't even meet the watermark if we
4526  * reclaimed all remaining pages on the LRU lists.
4527  *
4528  * Returns true if a retry is viable or false to enter the oom path.
4529  */
4530 static inline bool
4531 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4532 		     struct alloc_context *ac, int alloc_flags,
4533 		     bool did_some_progress, int *no_progress_loops)
4534 {
4535 	struct zone *zone;
4536 	struct zoneref *z;
4537 	bool ret = false;
4538 
4539 	/*
4540 	 * Costly allocations might have made a progress but this doesn't mean
4541 	 * their order will become available due to high fragmentation so
4542 	 * always increment the no progress counter for them
4543 	 */
4544 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4545 		*no_progress_loops = 0;
4546 	else
4547 		(*no_progress_loops)++;
4548 
4549 	/*
4550 	 * Make sure we converge to OOM if we cannot make any progress
4551 	 * several times in the row.
4552 	 */
4553 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4554 		/* Before OOM, exhaust highatomic_reserve */
4555 		return unreserve_highatomic_pageblock(ac, true);
4556 	}
4557 
4558 	/*
4559 	 * Keep reclaiming pages while there is a chance this will lead
4560 	 * somewhere.  If none of the target zones can satisfy our allocation
4561 	 * request even if all reclaimable pages are considered then we are
4562 	 * screwed and have to go OOM.
4563 	 */
4564 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4565 				ac->highest_zoneidx, ac->nodemask) {
4566 		unsigned long available;
4567 		unsigned long reclaimable;
4568 		unsigned long min_wmark = min_wmark_pages(zone);
4569 		bool wmark;
4570 
4571 		available = reclaimable = zone_reclaimable_pages(zone);
4572 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4573 
4574 		/*
4575 		 * Would the allocation succeed if we reclaimed all
4576 		 * reclaimable pages?
4577 		 */
4578 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4579 				ac->highest_zoneidx, alloc_flags, available);
4580 		trace_reclaim_retry_zone(z, order, reclaimable,
4581 				available, min_wmark, *no_progress_loops, wmark);
4582 		if (wmark) {
4583 			/*
4584 			 * If we didn't make any progress and have a lot of
4585 			 * dirty + writeback pages then we should wait for
4586 			 * an IO to complete to slow down the reclaim and
4587 			 * prevent from pre mature OOM
4588 			 */
4589 			if (!did_some_progress) {
4590 				unsigned long write_pending;
4591 
4592 				write_pending = zone_page_state_snapshot(zone,
4593 							NR_ZONE_WRITE_PENDING);
4594 
4595 				if (2 * write_pending > reclaimable) {
4596 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4597 					return true;
4598 				}
4599 			}
4600 
4601 			ret = true;
4602 			goto out;
4603 		}
4604 	}
4605 
4606 out:
4607 	/*
4608 	 * Memory allocation/reclaim might be called from a WQ context and the
4609 	 * current implementation of the WQ concurrency control doesn't
4610 	 * recognize that a particular WQ is congested if the worker thread is
4611 	 * looping without ever sleeping. Therefore we have to do a short sleep
4612 	 * here rather than calling cond_resched().
4613 	 */
4614 	if (current->flags & PF_WQ_WORKER)
4615 		schedule_timeout_uninterruptible(1);
4616 	else
4617 		cond_resched();
4618 	return ret;
4619 }
4620 
4621 static inline bool
4622 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4623 {
4624 	/*
4625 	 * It's possible that cpuset's mems_allowed and the nodemask from
4626 	 * mempolicy don't intersect. This should be normally dealt with by
4627 	 * policy_nodemask(), but it's possible to race with cpuset update in
4628 	 * such a way the check therein was true, and then it became false
4629 	 * before we got our cpuset_mems_cookie here.
4630 	 * This assumes that for all allocations, ac->nodemask can come only
4631 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4632 	 * when it does not intersect with the cpuset restrictions) or the
4633 	 * caller can deal with a violated nodemask.
4634 	 */
4635 	if (cpusets_enabled() && ac->nodemask &&
4636 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4637 		ac->nodemask = NULL;
4638 		return true;
4639 	}
4640 
4641 	/*
4642 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4643 	 * possible to race with parallel threads in such a way that our
4644 	 * allocation can fail while the mask is being updated. If we are about
4645 	 * to fail, check if the cpuset changed during allocation and if so,
4646 	 * retry.
4647 	 */
4648 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4649 		return true;
4650 
4651 	return false;
4652 }
4653 
4654 static inline struct page *
4655 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4656 						struct alloc_context *ac)
4657 {
4658 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4659 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4660 	struct page *page = NULL;
4661 	unsigned int alloc_flags;
4662 	unsigned long did_some_progress;
4663 	enum compact_priority compact_priority;
4664 	enum compact_result compact_result;
4665 	int compaction_retries;
4666 	int no_progress_loops;
4667 	unsigned int cpuset_mems_cookie;
4668 	int reserve_flags;
4669 
4670 	/*
4671 	 * We also sanity check to catch abuse of atomic reserves being used by
4672 	 * callers that are not in atomic context.
4673 	 */
4674 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4675 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4676 		gfp_mask &= ~__GFP_ATOMIC;
4677 
4678 retry_cpuset:
4679 	compaction_retries = 0;
4680 	no_progress_loops = 0;
4681 	compact_priority = DEF_COMPACT_PRIORITY;
4682 	cpuset_mems_cookie = read_mems_allowed_begin();
4683 
4684 	/*
4685 	 * The fast path uses conservative alloc_flags to succeed only until
4686 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4687 	 * alloc_flags precisely. So we do that now.
4688 	 */
4689 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4690 
4691 	/*
4692 	 * We need to recalculate the starting point for the zonelist iterator
4693 	 * because we might have used different nodemask in the fast path, or
4694 	 * there was a cpuset modification and we are retrying - otherwise we
4695 	 * could end up iterating over non-eligible zones endlessly.
4696 	 */
4697 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4698 					ac->highest_zoneidx, ac->nodemask);
4699 	if (!ac->preferred_zoneref->zone)
4700 		goto nopage;
4701 
4702 	if (alloc_flags & ALLOC_KSWAPD)
4703 		wake_all_kswapds(order, gfp_mask, ac);
4704 
4705 	/*
4706 	 * The adjusted alloc_flags might result in immediate success, so try
4707 	 * that first
4708 	 */
4709 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4710 	if (page)
4711 		goto got_pg;
4712 
4713 	/*
4714 	 * For costly allocations, try direct compaction first, as it's likely
4715 	 * that we have enough base pages and don't need to reclaim. For non-
4716 	 * movable high-order allocations, do that as well, as compaction will
4717 	 * try prevent permanent fragmentation by migrating from blocks of the
4718 	 * same migratetype.
4719 	 * Don't try this for allocations that are allowed to ignore
4720 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4721 	 */
4722 	if (can_direct_reclaim &&
4723 			(costly_order ||
4724 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4725 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4726 		page = __alloc_pages_direct_compact(gfp_mask, order,
4727 						alloc_flags, ac,
4728 						INIT_COMPACT_PRIORITY,
4729 						&compact_result);
4730 		if (page)
4731 			goto got_pg;
4732 
4733 		/*
4734 		 * Checks for costly allocations with __GFP_NORETRY, which
4735 		 * includes some THP page fault allocations
4736 		 */
4737 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4738 			/*
4739 			 * If allocating entire pageblock(s) and compaction
4740 			 * failed because all zones are below low watermarks
4741 			 * or is prohibited because it recently failed at this
4742 			 * order, fail immediately unless the allocator has
4743 			 * requested compaction and reclaim retry.
4744 			 *
4745 			 * Reclaim is
4746 			 *  - potentially very expensive because zones are far
4747 			 *    below their low watermarks or this is part of very
4748 			 *    bursty high order allocations,
4749 			 *  - not guaranteed to help because isolate_freepages()
4750 			 *    may not iterate over freed pages as part of its
4751 			 *    linear scan, and
4752 			 *  - unlikely to make entire pageblocks free on its
4753 			 *    own.
4754 			 */
4755 			if (compact_result == COMPACT_SKIPPED ||
4756 			    compact_result == COMPACT_DEFERRED)
4757 				goto nopage;
4758 
4759 			/*
4760 			 * Looks like reclaim/compaction is worth trying, but
4761 			 * sync compaction could be very expensive, so keep
4762 			 * using async compaction.
4763 			 */
4764 			compact_priority = INIT_COMPACT_PRIORITY;
4765 		}
4766 	}
4767 
4768 retry:
4769 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4770 	if (alloc_flags & ALLOC_KSWAPD)
4771 		wake_all_kswapds(order, gfp_mask, ac);
4772 
4773 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4774 	if (reserve_flags)
4775 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4776 
4777 	/*
4778 	 * Reset the nodemask and zonelist iterators if memory policies can be
4779 	 * ignored. These allocations are high priority and system rather than
4780 	 * user oriented.
4781 	 */
4782 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4783 		ac->nodemask = NULL;
4784 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4785 					ac->highest_zoneidx, ac->nodemask);
4786 	}
4787 
4788 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4789 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4790 	if (page)
4791 		goto got_pg;
4792 
4793 	/* Caller is not willing to reclaim, we can't balance anything */
4794 	if (!can_direct_reclaim)
4795 		goto nopage;
4796 
4797 	/* Avoid recursion of direct reclaim */
4798 	if (current->flags & PF_MEMALLOC)
4799 		goto nopage;
4800 
4801 	/* Try direct reclaim and then allocating */
4802 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4803 							&did_some_progress);
4804 	if (page)
4805 		goto got_pg;
4806 
4807 	/* Try direct compaction and then allocating */
4808 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4809 					compact_priority, &compact_result);
4810 	if (page)
4811 		goto got_pg;
4812 
4813 	/* Do not loop if specifically requested */
4814 	if (gfp_mask & __GFP_NORETRY)
4815 		goto nopage;
4816 
4817 	/*
4818 	 * Do not retry costly high order allocations unless they are
4819 	 * __GFP_RETRY_MAYFAIL
4820 	 */
4821 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4822 		goto nopage;
4823 
4824 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4825 				 did_some_progress > 0, &no_progress_loops))
4826 		goto retry;
4827 
4828 	/*
4829 	 * It doesn't make any sense to retry for the compaction if the order-0
4830 	 * reclaim is not able to make any progress because the current
4831 	 * implementation of the compaction depends on the sufficient amount
4832 	 * of free memory (see __compaction_suitable)
4833 	 */
4834 	if (did_some_progress > 0 &&
4835 			should_compact_retry(ac, order, alloc_flags,
4836 				compact_result, &compact_priority,
4837 				&compaction_retries))
4838 		goto retry;
4839 
4840 
4841 	/* Deal with possible cpuset update races before we start OOM killing */
4842 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4843 		goto retry_cpuset;
4844 
4845 	/* Reclaim has failed us, start killing things */
4846 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4847 	if (page)
4848 		goto got_pg;
4849 
4850 	/* Avoid allocations with no watermarks from looping endlessly */
4851 	if (tsk_is_oom_victim(current) &&
4852 	    (alloc_flags & ALLOC_OOM ||
4853 	     (gfp_mask & __GFP_NOMEMALLOC)))
4854 		goto nopage;
4855 
4856 	/* Retry as long as the OOM killer is making progress */
4857 	if (did_some_progress) {
4858 		no_progress_loops = 0;
4859 		goto retry;
4860 	}
4861 
4862 nopage:
4863 	/* Deal with possible cpuset update races before we fail */
4864 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4865 		goto retry_cpuset;
4866 
4867 	/*
4868 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4869 	 * we always retry
4870 	 */
4871 	if (gfp_mask & __GFP_NOFAIL) {
4872 		/*
4873 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4874 		 * of any new users that actually require GFP_NOWAIT
4875 		 */
4876 		if (WARN_ON_ONCE(!can_direct_reclaim))
4877 			goto fail;
4878 
4879 		/*
4880 		 * PF_MEMALLOC request from this context is rather bizarre
4881 		 * because we cannot reclaim anything and only can loop waiting
4882 		 * for somebody to do a work for us
4883 		 */
4884 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4885 
4886 		/*
4887 		 * non failing costly orders are a hard requirement which we
4888 		 * are not prepared for much so let's warn about these users
4889 		 * so that we can identify them and convert them to something
4890 		 * else.
4891 		 */
4892 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4893 
4894 		/*
4895 		 * Help non-failing allocations by giving them access to memory
4896 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4897 		 * could deplete whole memory reserves which would just make
4898 		 * the situation worse
4899 		 */
4900 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4901 		if (page)
4902 			goto got_pg;
4903 
4904 		cond_resched();
4905 		goto retry;
4906 	}
4907 fail:
4908 	warn_alloc(gfp_mask, ac->nodemask,
4909 			"page allocation failure: order:%u", order);
4910 got_pg:
4911 	return page;
4912 }
4913 
4914 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4915 		int preferred_nid, nodemask_t *nodemask,
4916 		struct alloc_context *ac, gfp_t *alloc_mask,
4917 		unsigned int *alloc_flags)
4918 {
4919 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4920 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4921 	ac->nodemask = nodemask;
4922 	ac->migratetype = gfp_migratetype(gfp_mask);
4923 
4924 	if (cpusets_enabled()) {
4925 		*alloc_mask |= __GFP_HARDWALL;
4926 		/*
4927 		 * When we are in the interrupt context, it is irrelevant
4928 		 * to the current task context. It means that any node ok.
4929 		 */
4930 		if (!in_interrupt() && !ac->nodemask)
4931 			ac->nodemask = &cpuset_current_mems_allowed;
4932 		else
4933 			*alloc_flags |= ALLOC_CPUSET;
4934 	}
4935 
4936 	fs_reclaim_acquire(gfp_mask);
4937 	fs_reclaim_release(gfp_mask);
4938 
4939 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4940 
4941 	if (should_fail_alloc_page(gfp_mask, order))
4942 		return false;
4943 
4944 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4945 
4946 	/* Dirty zone balancing only done in the fast path */
4947 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4948 
4949 	/*
4950 	 * The preferred zone is used for statistics but crucially it is
4951 	 * also used as the starting point for the zonelist iterator. It
4952 	 * may get reset for allocations that ignore memory policies.
4953 	 */
4954 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4955 					ac->highest_zoneidx, ac->nodemask);
4956 
4957 	return true;
4958 }
4959 
4960 /*
4961  * This is the 'heart' of the zoned buddy allocator.
4962  */
4963 struct page *
4964 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4965 							nodemask_t *nodemask)
4966 {
4967 	struct page *page;
4968 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4969 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4970 	struct alloc_context ac = { };
4971 
4972 	/*
4973 	 * There are several places where we assume that the order value is sane
4974 	 * so bail out early if the request is out of bound.
4975 	 */
4976 	if (unlikely(order >= MAX_ORDER)) {
4977 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4978 		return NULL;
4979 	}
4980 
4981 	gfp_mask &= gfp_allowed_mask;
4982 	alloc_mask = gfp_mask;
4983 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4984 		return NULL;
4985 
4986 	/*
4987 	 * Forbid the first pass from falling back to types that fragment
4988 	 * memory until all local zones are considered.
4989 	 */
4990 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4991 
4992 	/* First allocation attempt */
4993 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4994 	if (likely(page))
4995 		goto out;
4996 
4997 	/*
4998 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4999 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5000 	 * from a particular context which has been marked by
5001 	 * memalloc_no{fs,io}_{save,restore}.
5002 	 */
5003 	alloc_mask = current_gfp_context(gfp_mask);
5004 	ac.spread_dirty_pages = false;
5005 
5006 	/*
5007 	 * Restore the original nodemask if it was potentially replaced with
5008 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5009 	 */
5010 	ac.nodemask = nodemask;
5011 
5012 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5013 
5014 out:
5015 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5016 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5017 		__free_pages(page, order);
5018 		page = NULL;
5019 	}
5020 
5021 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5022 
5023 	return page;
5024 }
5025 EXPORT_SYMBOL(__alloc_pages_nodemask);
5026 
5027 /*
5028  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5029  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5030  * you need to access high mem.
5031  */
5032 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5033 {
5034 	struct page *page;
5035 
5036 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5037 	if (!page)
5038 		return 0;
5039 	return (unsigned long) page_address(page);
5040 }
5041 EXPORT_SYMBOL(__get_free_pages);
5042 
5043 unsigned long get_zeroed_page(gfp_t gfp_mask)
5044 {
5045 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5046 }
5047 EXPORT_SYMBOL(get_zeroed_page);
5048 
5049 static inline void free_the_page(struct page *page, unsigned int order)
5050 {
5051 	if (order == 0)		/* Via pcp? */
5052 		free_unref_page(page);
5053 	else
5054 		__free_pages_ok(page, order, FPI_NONE);
5055 }
5056 
5057 /**
5058  * __free_pages - Free pages allocated with alloc_pages().
5059  * @page: The page pointer returned from alloc_pages().
5060  * @order: The order of the allocation.
5061  *
5062  * This function can free multi-page allocations that are not compound
5063  * pages.  It does not check that the @order passed in matches that of
5064  * the allocation, so it is easy to leak memory.  Freeing more memory
5065  * than was allocated will probably emit a warning.
5066  *
5067  * If the last reference to this page is speculative, it will be released
5068  * by put_page() which only frees the first page of a non-compound
5069  * allocation.  To prevent the remaining pages from being leaked, we free
5070  * the subsequent pages here.  If you want to use the page's reference
5071  * count to decide when to free the allocation, you should allocate a
5072  * compound page, and use put_page() instead of __free_pages().
5073  *
5074  * Context: May be called in interrupt context or while holding a normal
5075  * spinlock, but not in NMI context or while holding a raw spinlock.
5076  */
5077 void __free_pages(struct page *page, unsigned int order)
5078 {
5079 	if (put_page_testzero(page))
5080 		free_the_page(page, order);
5081 	else if (!PageHead(page))
5082 		while (order-- > 0)
5083 			free_the_page(page + (1 << order), order);
5084 }
5085 EXPORT_SYMBOL(__free_pages);
5086 
5087 void free_pages(unsigned long addr, unsigned int order)
5088 {
5089 	if (addr != 0) {
5090 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5091 		__free_pages(virt_to_page((void *)addr), order);
5092 	}
5093 }
5094 
5095 EXPORT_SYMBOL(free_pages);
5096 
5097 /*
5098  * Page Fragment:
5099  *  An arbitrary-length arbitrary-offset area of memory which resides
5100  *  within a 0 or higher order page.  Multiple fragments within that page
5101  *  are individually refcounted, in the page's reference counter.
5102  *
5103  * The page_frag functions below provide a simple allocation framework for
5104  * page fragments.  This is used by the network stack and network device
5105  * drivers to provide a backing region of memory for use as either an
5106  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5107  */
5108 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5109 					     gfp_t gfp_mask)
5110 {
5111 	struct page *page = NULL;
5112 	gfp_t gfp = gfp_mask;
5113 
5114 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5115 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5116 		    __GFP_NOMEMALLOC;
5117 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5118 				PAGE_FRAG_CACHE_MAX_ORDER);
5119 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5120 #endif
5121 	if (unlikely(!page))
5122 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5123 
5124 	nc->va = page ? page_address(page) : NULL;
5125 
5126 	return page;
5127 }
5128 
5129 void __page_frag_cache_drain(struct page *page, unsigned int count)
5130 {
5131 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5132 
5133 	if (page_ref_sub_and_test(page, count))
5134 		free_the_page(page, compound_order(page));
5135 }
5136 EXPORT_SYMBOL(__page_frag_cache_drain);
5137 
5138 void *page_frag_alloc(struct page_frag_cache *nc,
5139 		      unsigned int fragsz, gfp_t gfp_mask)
5140 {
5141 	unsigned int size = PAGE_SIZE;
5142 	struct page *page;
5143 	int offset;
5144 
5145 	if (unlikely(!nc->va)) {
5146 refill:
5147 		page = __page_frag_cache_refill(nc, gfp_mask);
5148 		if (!page)
5149 			return NULL;
5150 
5151 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5152 		/* if size can vary use size else just use PAGE_SIZE */
5153 		size = nc->size;
5154 #endif
5155 		/* Even if we own the page, we do not use atomic_set().
5156 		 * This would break get_page_unless_zero() users.
5157 		 */
5158 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5159 
5160 		/* reset page count bias and offset to start of new frag */
5161 		nc->pfmemalloc = page_is_pfmemalloc(page);
5162 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5163 		nc->offset = size;
5164 	}
5165 
5166 	offset = nc->offset - fragsz;
5167 	if (unlikely(offset < 0)) {
5168 		page = virt_to_page(nc->va);
5169 
5170 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5171 			goto refill;
5172 
5173 		if (unlikely(nc->pfmemalloc)) {
5174 			free_the_page(page, compound_order(page));
5175 			goto refill;
5176 		}
5177 
5178 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5179 		/* if size can vary use size else just use PAGE_SIZE */
5180 		size = nc->size;
5181 #endif
5182 		/* OK, page count is 0, we can safely set it */
5183 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5184 
5185 		/* reset page count bias and offset to start of new frag */
5186 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5187 		offset = size - fragsz;
5188 	}
5189 
5190 	nc->pagecnt_bias--;
5191 	nc->offset = offset;
5192 
5193 	return nc->va + offset;
5194 }
5195 EXPORT_SYMBOL(page_frag_alloc);
5196 
5197 /*
5198  * Frees a page fragment allocated out of either a compound or order 0 page.
5199  */
5200 void page_frag_free(void *addr)
5201 {
5202 	struct page *page = virt_to_head_page(addr);
5203 
5204 	if (unlikely(put_page_testzero(page)))
5205 		free_the_page(page, compound_order(page));
5206 }
5207 EXPORT_SYMBOL(page_frag_free);
5208 
5209 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5210 		size_t size)
5211 {
5212 	if (addr) {
5213 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5214 		unsigned long used = addr + PAGE_ALIGN(size);
5215 
5216 		split_page(virt_to_page((void *)addr), order);
5217 		while (used < alloc_end) {
5218 			free_page(used);
5219 			used += PAGE_SIZE;
5220 		}
5221 	}
5222 	return (void *)addr;
5223 }
5224 
5225 /**
5226  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5227  * @size: the number of bytes to allocate
5228  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5229  *
5230  * This function is similar to alloc_pages(), except that it allocates the
5231  * minimum number of pages to satisfy the request.  alloc_pages() can only
5232  * allocate memory in power-of-two pages.
5233  *
5234  * This function is also limited by MAX_ORDER.
5235  *
5236  * Memory allocated by this function must be released by free_pages_exact().
5237  *
5238  * Return: pointer to the allocated area or %NULL in case of error.
5239  */
5240 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5241 {
5242 	unsigned int order = get_order(size);
5243 	unsigned long addr;
5244 
5245 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5246 		gfp_mask &= ~__GFP_COMP;
5247 
5248 	addr = __get_free_pages(gfp_mask, order);
5249 	return make_alloc_exact(addr, order, size);
5250 }
5251 EXPORT_SYMBOL(alloc_pages_exact);
5252 
5253 /**
5254  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5255  *			   pages on a node.
5256  * @nid: the preferred node ID where memory should be allocated
5257  * @size: the number of bytes to allocate
5258  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5259  *
5260  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5261  * back.
5262  *
5263  * Return: pointer to the allocated area or %NULL in case of error.
5264  */
5265 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5266 {
5267 	unsigned int order = get_order(size);
5268 	struct page *p;
5269 
5270 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5271 		gfp_mask &= ~__GFP_COMP;
5272 
5273 	p = alloc_pages_node(nid, gfp_mask, order);
5274 	if (!p)
5275 		return NULL;
5276 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5277 }
5278 
5279 /**
5280  * free_pages_exact - release memory allocated via alloc_pages_exact()
5281  * @virt: the value returned by alloc_pages_exact.
5282  * @size: size of allocation, same value as passed to alloc_pages_exact().
5283  *
5284  * Release the memory allocated by a previous call to alloc_pages_exact.
5285  */
5286 void free_pages_exact(void *virt, size_t size)
5287 {
5288 	unsigned long addr = (unsigned long)virt;
5289 	unsigned long end = addr + PAGE_ALIGN(size);
5290 
5291 	while (addr < end) {
5292 		free_page(addr);
5293 		addr += PAGE_SIZE;
5294 	}
5295 }
5296 EXPORT_SYMBOL(free_pages_exact);
5297 
5298 /**
5299  * nr_free_zone_pages - count number of pages beyond high watermark
5300  * @offset: The zone index of the highest zone
5301  *
5302  * nr_free_zone_pages() counts the number of pages which are beyond the
5303  * high watermark within all zones at or below a given zone index.  For each
5304  * zone, the number of pages is calculated as:
5305  *
5306  *     nr_free_zone_pages = managed_pages - high_pages
5307  *
5308  * Return: number of pages beyond high watermark.
5309  */
5310 static unsigned long nr_free_zone_pages(int offset)
5311 {
5312 	struct zoneref *z;
5313 	struct zone *zone;
5314 
5315 	/* Just pick one node, since fallback list is circular */
5316 	unsigned long sum = 0;
5317 
5318 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5319 
5320 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5321 		unsigned long size = zone_managed_pages(zone);
5322 		unsigned long high = high_wmark_pages(zone);
5323 		if (size > high)
5324 			sum += size - high;
5325 	}
5326 
5327 	return sum;
5328 }
5329 
5330 /**
5331  * nr_free_buffer_pages - count number of pages beyond high watermark
5332  *
5333  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5334  * watermark within ZONE_DMA and ZONE_NORMAL.
5335  *
5336  * Return: number of pages beyond high watermark within ZONE_DMA and
5337  * ZONE_NORMAL.
5338  */
5339 unsigned long nr_free_buffer_pages(void)
5340 {
5341 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5342 }
5343 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5344 
5345 static inline void show_node(struct zone *zone)
5346 {
5347 	if (IS_ENABLED(CONFIG_NUMA))
5348 		printk("Node %d ", zone_to_nid(zone));
5349 }
5350 
5351 long si_mem_available(void)
5352 {
5353 	long available;
5354 	unsigned long pagecache;
5355 	unsigned long wmark_low = 0;
5356 	unsigned long pages[NR_LRU_LISTS];
5357 	unsigned long reclaimable;
5358 	struct zone *zone;
5359 	int lru;
5360 
5361 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5362 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5363 
5364 	for_each_zone(zone)
5365 		wmark_low += low_wmark_pages(zone);
5366 
5367 	/*
5368 	 * Estimate the amount of memory available for userspace allocations,
5369 	 * without causing swapping.
5370 	 */
5371 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5372 
5373 	/*
5374 	 * Not all the page cache can be freed, otherwise the system will
5375 	 * start swapping. Assume at least half of the page cache, or the
5376 	 * low watermark worth of cache, needs to stay.
5377 	 */
5378 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5379 	pagecache -= min(pagecache / 2, wmark_low);
5380 	available += pagecache;
5381 
5382 	/*
5383 	 * Part of the reclaimable slab and other kernel memory consists of
5384 	 * items that are in use, and cannot be freed. Cap this estimate at the
5385 	 * low watermark.
5386 	 */
5387 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5388 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5389 	available += reclaimable - min(reclaimable / 2, wmark_low);
5390 
5391 	if (available < 0)
5392 		available = 0;
5393 	return available;
5394 }
5395 EXPORT_SYMBOL_GPL(si_mem_available);
5396 
5397 void si_meminfo(struct sysinfo *val)
5398 {
5399 	val->totalram = totalram_pages();
5400 	val->sharedram = global_node_page_state(NR_SHMEM);
5401 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5402 	val->bufferram = nr_blockdev_pages();
5403 	val->totalhigh = totalhigh_pages();
5404 	val->freehigh = nr_free_highpages();
5405 	val->mem_unit = PAGE_SIZE;
5406 }
5407 
5408 EXPORT_SYMBOL(si_meminfo);
5409 
5410 #ifdef CONFIG_NUMA
5411 void si_meminfo_node(struct sysinfo *val, int nid)
5412 {
5413 	int zone_type;		/* needs to be signed */
5414 	unsigned long managed_pages = 0;
5415 	unsigned long managed_highpages = 0;
5416 	unsigned long free_highpages = 0;
5417 	pg_data_t *pgdat = NODE_DATA(nid);
5418 
5419 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5420 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5421 	val->totalram = managed_pages;
5422 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5423 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5424 #ifdef CONFIG_HIGHMEM
5425 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5426 		struct zone *zone = &pgdat->node_zones[zone_type];
5427 
5428 		if (is_highmem(zone)) {
5429 			managed_highpages += zone_managed_pages(zone);
5430 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5431 		}
5432 	}
5433 	val->totalhigh = managed_highpages;
5434 	val->freehigh = free_highpages;
5435 #else
5436 	val->totalhigh = managed_highpages;
5437 	val->freehigh = free_highpages;
5438 #endif
5439 	val->mem_unit = PAGE_SIZE;
5440 }
5441 #endif
5442 
5443 /*
5444  * Determine whether the node should be displayed or not, depending on whether
5445  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5446  */
5447 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5448 {
5449 	if (!(flags & SHOW_MEM_FILTER_NODES))
5450 		return false;
5451 
5452 	/*
5453 	 * no node mask - aka implicit memory numa policy. Do not bother with
5454 	 * the synchronization - read_mems_allowed_begin - because we do not
5455 	 * have to be precise here.
5456 	 */
5457 	if (!nodemask)
5458 		nodemask = &cpuset_current_mems_allowed;
5459 
5460 	return !node_isset(nid, *nodemask);
5461 }
5462 
5463 #define K(x) ((x) << (PAGE_SHIFT-10))
5464 
5465 static void show_migration_types(unsigned char type)
5466 {
5467 	static const char types[MIGRATE_TYPES] = {
5468 		[MIGRATE_UNMOVABLE]	= 'U',
5469 		[MIGRATE_MOVABLE]	= 'M',
5470 		[MIGRATE_RECLAIMABLE]	= 'E',
5471 		[MIGRATE_HIGHATOMIC]	= 'H',
5472 #ifdef CONFIG_CMA
5473 		[MIGRATE_CMA]		= 'C',
5474 #endif
5475 #ifdef CONFIG_MEMORY_ISOLATION
5476 		[MIGRATE_ISOLATE]	= 'I',
5477 #endif
5478 	};
5479 	char tmp[MIGRATE_TYPES + 1];
5480 	char *p = tmp;
5481 	int i;
5482 
5483 	for (i = 0; i < MIGRATE_TYPES; i++) {
5484 		if (type & (1 << i))
5485 			*p++ = types[i];
5486 	}
5487 
5488 	*p = '\0';
5489 	printk(KERN_CONT "(%s) ", tmp);
5490 }
5491 
5492 /*
5493  * Show free area list (used inside shift_scroll-lock stuff)
5494  * We also calculate the percentage fragmentation. We do this by counting the
5495  * memory on each free list with the exception of the first item on the list.
5496  *
5497  * Bits in @filter:
5498  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5499  *   cpuset.
5500  */
5501 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5502 {
5503 	unsigned long free_pcp = 0;
5504 	int cpu;
5505 	struct zone *zone;
5506 	pg_data_t *pgdat;
5507 
5508 	for_each_populated_zone(zone) {
5509 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5510 			continue;
5511 
5512 		for_each_online_cpu(cpu)
5513 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5514 	}
5515 
5516 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5517 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5518 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5519 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5520 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5521 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5522 		global_node_page_state(NR_ACTIVE_ANON),
5523 		global_node_page_state(NR_INACTIVE_ANON),
5524 		global_node_page_state(NR_ISOLATED_ANON),
5525 		global_node_page_state(NR_ACTIVE_FILE),
5526 		global_node_page_state(NR_INACTIVE_FILE),
5527 		global_node_page_state(NR_ISOLATED_FILE),
5528 		global_node_page_state(NR_UNEVICTABLE),
5529 		global_node_page_state(NR_FILE_DIRTY),
5530 		global_node_page_state(NR_WRITEBACK),
5531 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5532 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5533 		global_node_page_state(NR_FILE_MAPPED),
5534 		global_node_page_state(NR_SHMEM),
5535 		global_node_page_state(NR_PAGETABLE),
5536 		global_zone_page_state(NR_BOUNCE),
5537 		global_zone_page_state(NR_FREE_PAGES),
5538 		free_pcp,
5539 		global_zone_page_state(NR_FREE_CMA_PAGES));
5540 
5541 	for_each_online_pgdat(pgdat) {
5542 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5543 			continue;
5544 
5545 		printk("Node %d"
5546 			" active_anon:%lukB"
5547 			" inactive_anon:%lukB"
5548 			" active_file:%lukB"
5549 			" inactive_file:%lukB"
5550 			" unevictable:%lukB"
5551 			" isolated(anon):%lukB"
5552 			" isolated(file):%lukB"
5553 			" mapped:%lukB"
5554 			" dirty:%lukB"
5555 			" writeback:%lukB"
5556 			" shmem:%lukB"
5557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5558 			" shmem_thp: %lukB"
5559 			" shmem_pmdmapped: %lukB"
5560 			" anon_thp: %lukB"
5561 #endif
5562 			" writeback_tmp:%lukB"
5563 			" kernel_stack:%lukB"
5564 #ifdef CONFIG_SHADOW_CALL_STACK
5565 			" shadow_call_stack:%lukB"
5566 #endif
5567 			" pagetables:%lukB"
5568 			" all_unreclaimable? %s"
5569 			"\n",
5570 			pgdat->node_id,
5571 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5572 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5573 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5574 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5575 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5576 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5577 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5578 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5579 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5580 			K(node_page_state(pgdat, NR_WRITEBACK)),
5581 			K(node_page_state(pgdat, NR_SHMEM)),
5582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5583 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5584 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5585 					* HPAGE_PMD_NR),
5586 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5587 #endif
5588 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5589 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5590 #ifdef CONFIG_SHADOW_CALL_STACK
5591 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5592 #endif
5593 			K(node_page_state(pgdat, NR_PAGETABLE)),
5594 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5595 				"yes" : "no");
5596 	}
5597 
5598 	for_each_populated_zone(zone) {
5599 		int i;
5600 
5601 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5602 			continue;
5603 
5604 		free_pcp = 0;
5605 		for_each_online_cpu(cpu)
5606 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5607 
5608 		show_node(zone);
5609 		printk(KERN_CONT
5610 			"%s"
5611 			" free:%lukB"
5612 			" min:%lukB"
5613 			" low:%lukB"
5614 			" high:%lukB"
5615 			" reserved_highatomic:%luKB"
5616 			" active_anon:%lukB"
5617 			" inactive_anon:%lukB"
5618 			" active_file:%lukB"
5619 			" inactive_file:%lukB"
5620 			" unevictable:%lukB"
5621 			" writepending:%lukB"
5622 			" present:%lukB"
5623 			" managed:%lukB"
5624 			" mlocked:%lukB"
5625 			" bounce:%lukB"
5626 			" free_pcp:%lukB"
5627 			" local_pcp:%ukB"
5628 			" free_cma:%lukB"
5629 			"\n",
5630 			zone->name,
5631 			K(zone_page_state(zone, NR_FREE_PAGES)),
5632 			K(min_wmark_pages(zone)),
5633 			K(low_wmark_pages(zone)),
5634 			K(high_wmark_pages(zone)),
5635 			K(zone->nr_reserved_highatomic),
5636 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5637 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5638 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5639 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5640 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5641 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5642 			K(zone->present_pages),
5643 			K(zone_managed_pages(zone)),
5644 			K(zone_page_state(zone, NR_MLOCK)),
5645 			K(zone_page_state(zone, NR_BOUNCE)),
5646 			K(free_pcp),
5647 			K(this_cpu_read(zone->pageset->pcp.count)),
5648 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5649 		printk("lowmem_reserve[]:");
5650 		for (i = 0; i < MAX_NR_ZONES; i++)
5651 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5652 		printk(KERN_CONT "\n");
5653 	}
5654 
5655 	for_each_populated_zone(zone) {
5656 		unsigned int order;
5657 		unsigned long nr[MAX_ORDER], flags, total = 0;
5658 		unsigned char types[MAX_ORDER];
5659 
5660 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5661 			continue;
5662 		show_node(zone);
5663 		printk(KERN_CONT "%s: ", zone->name);
5664 
5665 		spin_lock_irqsave(&zone->lock, flags);
5666 		for (order = 0; order < MAX_ORDER; order++) {
5667 			struct free_area *area = &zone->free_area[order];
5668 			int type;
5669 
5670 			nr[order] = area->nr_free;
5671 			total += nr[order] << order;
5672 
5673 			types[order] = 0;
5674 			for (type = 0; type < MIGRATE_TYPES; type++) {
5675 				if (!free_area_empty(area, type))
5676 					types[order] |= 1 << type;
5677 			}
5678 		}
5679 		spin_unlock_irqrestore(&zone->lock, flags);
5680 		for (order = 0; order < MAX_ORDER; order++) {
5681 			printk(KERN_CONT "%lu*%lukB ",
5682 			       nr[order], K(1UL) << order);
5683 			if (nr[order])
5684 				show_migration_types(types[order]);
5685 		}
5686 		printk(KERN_CONT "= %lukB\n", K(total));
5687 	}
5688 
5689 	hugetlb_show_meminfo();
5690 
5691 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5692 
5693 	show_swap_cache_info();
5694 }
5695 
5696 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5697 {
5698 	zoneref->zone = zone;
5699 	zoneref->zone_idx = zone_idx(zone);
5700 }
5701 
5702 /*
5703  * Builds allocation fallback zone lists.
5704  *
5705  * Add all populated zones of a node to the zonelist.
5706  */
5707 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5708 {
5709 	struct zone *zone;
5710 	enum zone_type zone_type = MAX_NR_ZONES;
5711 	int nr_zones = 0;
5712 
5713 	do {
5714 		zone_type--;
5715 		zone = pgdat->node_zones + zone_type;
5716 		if (managed_zone(zone)) {
5717 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5718 			check_highest_zone(zone_type);
5719 		}
5720 	} while (zone_type);
5721 
5722 	return nr_zones;
5723 }
5724 
5725 #ifdef CONFIG_NUMA
5726 
5727 static int __parse_numa_zonelist_order(char *s)
5728 {
5729 	/*
5730 	 * We used to support different zonlists modes but they turned
5731 	 * out to be just not useful. Let's keep the warning in place
5732 	 * if somebody still use the cmd line parameter so that we do
5733 	 * not fail it silently
5734 	 */
5735 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5736 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5737 		return -EINVAL;
5738 	}
5739 	return 0;
5740 }
5741 
5742 char numa_zonelist_order[] = "Node";
5743 
5744 /*
5745  * sysctl handler for numa_zonelist_order
5746  */
5747 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5748 		void *buffer, size_t *length, loff_t *ppos)
5749 {
5750 	if (write)
5751 		return __parse_numa_zonelist_order(buffer);
5752 	return proc_dostring(table, write, buffer, length, ppos);
5753 }
5754 
5755 
5756 #define MAX_NODE_LOAD (nr_online_nodes)
5757 static int node_load[MAX_NUMNODES];
5758 
5759 /**
5760  * find_next_best_node - find the next node that should appear in a given node's fallback list
5761  * @node: node whose fallback list we're appending
5762  * @used_node_mask: nodemask_t of already used nodes
5763  *
5764  * We use a number of factors to determine which is the next node that should
5765  * appear on a given node's fallback list.  The node should not have appeared
5766  * already in @node's fallback list, and it should be the next closest node
5767  * according to the distance array (which contains arbitrary distance values
5768  * from each node to each node in the system), and should also prefer nodes
5769  * with no CPUs, since presumably they'll have very little allocation pressure
5770  * on them otherwise.
5771  *
5772  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5773  */
5774 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5775 {
5776 	int n, val;
5777 	int min_val = INT_MAX;
5778 	int best_node = NUMA_NO_NODE;
5779 
5780 	/* Use the local node if we haven't already */
5781 	if (!node_isset(node, *used_node_mask)) {
5782 		node_set(node, *used_node_mask);
5783 		return node;
5784 	}
5785 
5786 	for_each_node_state(n, N_MEMORY) {
5787 
5788 		/* Don't want a node to appear more than once */
5789 		if (node_isset(n, *used_node_mask))
5790 			continue;
5791 
5792 		/* Use the distance array to find the distance */
5793 		val = node_distance(node, n);
5794 
5795 		/* Penalize nodes under us ("prefer the next node") */
5796 		val += (n < node);
5797 
5798 		/* Give preference to headless and unused nodes */
5799 		if (!cpumask_empty(cpumask_of_node(n)))
5800 			val += PENALTY_FOR_NODE_WITH_CPUS;
5801 
5802 		/* Slight preference for less loaded node */
5803 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5804 		val += node_load[n];
5805 
5806 		if (val < min_val) {
5807 			min_val = val;
5808 			best_node = n;
5809 		}
5810 	}
5811 
5812 	if (best_node >= 0)
5813 		node_set(best_node, *used_node_mask);
5814 
5815 	return best_node;
5816 }
5817 
5818 
5819 /*
5820  * Build zonelists ordered by node and zones within node.
5821  * This results in maximum locality--normal zone overflows into local
5822  * DMA zone, if any--but risks exhausting DMA zone.
5823  */
5824 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5825 		unsigned nr_nodes)
5826 {
5827 	struct zoneref *zonerefs;
5828 	int i;
5829 
5830 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5831 
5832 	for (i = 0; i < nr_nodes; i++) {
5833 		int nr_zones;
5834 
5835 		pg_data_t *node = NODE_DATA(node_order[i]);
5836 
5837 		nr_zones = build_zonerefs_node(node, zonerefs);
5838 		zonerefs += nr_zones;
5839 	}
5840 	zonerefs->zone = NULL;
5841 	zonerefs->zone_idx = 0;
5842 }
5843 
5844 /*
5845  * Build gfp_thisnode zonelists
5846  */
5847 static void build_thisnode_zonelists(pg_data_t *pgdat)
5848 {
5849 	struct zoneref *zonerefs;
5850 	int nr_zones;
5851 
5852 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5853 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5854 	zonerefs += nr_zones;
5855 	zonerefs->zone = NULL;
5856 	zonerefs->zone_idx = 0;
5857 }
5858 
5859 /*
5860  * Build zonelists ordered by zone and nodes within zones.
5861  * This results in conserving DMA zone[s] until all Normal memory is
5862  * exhausted, but results in overflowing to remote node while memory
5863  * may still exist in local DMA zone.
5864  */
5865 
5866 static void build_zonelists(pg_data_t *pgdat)
5867 {
5868 	static int node_order[MAX_NUMNODES];
5869 	int node, load, nr_nodes = 0;
5870 	nodemask_t used_mask = NODE_MASK_NONE;
5871 	int local_node, prev_node;
5872 
5873 	/* NUMA-aware ordering of nodes */
5874 	local_node = pgdat->node_id;
5875 	load = nr_online_nodes;
5876 	prev_node = local_node;
5877 
5878 	memset(node_order, 0, sizeof(node_order));
5879 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5880 		/*
5881 		 * We don't want to pressure a particular node.
5882 		 * So adding penalty to the first node in same
5883 		 * distance group to make it round-robin.
5884 		 */
5885 		if (node_distance(local_node, node) !=
5886 		    node_distance(local_node, prev_node))
5887 			node_load[node] = load;
5888 
5889 		node_order[nr_nodes++] = node;
5890 		prev_node = node;
5891 		load--;
5892 	}
5893 
5894 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5895 	build_thisnode_zonelists(pgdat);
5896 }
5897 
5898 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5899 /*
5900  * Return node id of node used for "local" allocations.
5901  * I.e., first node id of first zone in arg node's generic zonelist.
5902  * Used for initializing percpu 'numa_mem', which is used primarily
5903  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5904  */
5905 int local_memory_node(int node)
5906 {
5907 	struct zoneref *z;
5908 
5909 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5910 				   gfp_zone(GFP_KERNEL),
5911 				   NULL);
5912 	return zone_to_nid(z->zone);
5913 }
5914 #endif
5915 
5916 static void setup_min_unmapped_ratio(void);
5917 static void setup_min_slab_ratio(void);
5918 #else	/* CONFIG_NUMA */
5919 
5920 static void build_zonelists(pg_data_t *pgdat)
5921 {
5922 	int node, local_node;
5923 	struct zoneref *zonerefs;
5924 	int nr_zones;
5925 
5926 	local_node = pgdat->node_id;
5927 
5928 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5929 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5930 	zonerefs += nr_zones;
5931 
5932 	/*
5933 	 * Now we build the zonelist so that it contains the zones
5934 	 * of all the other nodes.
5935 	 * We don't want to pressure a particular node, so when
5936 	 * building the zones for node N, we make sure that the
5937 	 * zones coming right after the local ones are those from
5938 	 * node N+1 (modulo N)
5939 	 */
5940 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5941 		if (!node_online(node))
5942 			continue;
5943 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5944 		zonerefs += nr_zones;
5945 	}
5946 	for (node = 0; node < local_node; node++) {
5947 		if (!node_online(node))
5948 			continue;
5949 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5950 		zonerefs += nr_zones;
5951 	}
5952 
5953 	zonerefs->zone = NULL;
5954 	zonerefs->zone_idx = 0;
5955 }
5956 
5957 #endif	/* CONFIG_NUMA */
5958 
5959 /*
5960  * Boot pageset table. One per cpu which is going to be used for all
5961  * zones and all nodes. The parameters will be set in such a way
5962  * that an item put on a list will immediately be handed over to
5963  * the buddy list. This is safe since pageset manipulation is done
5964  * with interrupts disabled.
5965  *
5966  * The boot_pagesets must be kept even after bootup is complete for
5967  * unused processors and/or zones. They do play a role for bootstrapping
5968  * hotplugged processors.
5969  *
5970  * zoneinfo_show() and maybe other functions do
5971  * not check if the processor is online before following the pageset pointer.
5972  * Other parts of the kernel may not check if the zone is available.
5973  */
5974 static void pageset_init(struct per_cpu_pageset *p);
5975 /* These effectively disable the pcplists in the boot pageset completely */
5976 #define BOOT_PAGESET_HIGH	0
5977 #define BOOT_PAGESET_BATCH	1
5978 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5979 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5980 
5981 static void __build_all_zonelists(void *data)
5982 {
5983 	int nid;
5984 	int __maybe_unused cpu;
5985 	pg_data_t *self = data;
5986 	static DEFINE_SPINLOCK(lock);
5987 
5988 	spin_lock(&lock);
5989 
5990 #ifdef CONFIG_NUMA
5991 	memset(node_load, 0, sizeof(node_load));
5992 #endif
5993 
5994 	/*
5995 	 * This node is hotadded and no memory is yet present.   So just
5996 	 * building zonelists is fine - no need to touch other nodes.
5997 	 */
5998 	if (self && !node_online(self->node_id)) {
5999 		build_zonelists(self);
6000 	} else {
6001 		for_each_online_node(nid) {
6002 			pg_data_t *pgdat = NODE_DATA(nid);
6003 
6004 			build_zonelists(pgdat);
6005 		}
6006 
6007 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6008 		/*
6009 		 * We now know the "local memory node" for each node--
6010 		 * i.e., the node of the first zone in the generic zonelist.
6011 		 * Set up numa_mem percpu variable for on-line cpus.  During
6012 		 * boot, only the boot cpu should be on-line;  we'll init the
6013 		 * secondary cpus' numa_mem as they come on-line.  During
6014 		 * node/memory hotplug, we'll fixup all on-line cpus.
6015 		 */
6016 		for_each_online_cpu(cpu)
6017 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6018 #endif
6019 	}
6020 
6021 	spin_unlock(&lock);
6022 }
6023 
6024 static noinline void __init
6025 build_all_zonelists_init(void)
6026 {
6027 	int cpu;
6028 
6029 	__build_all_zonelists(NULL);
6030 
6031 	/*
6032 	 * Initialize the boot_pagesets that are going to be used
6033 	 * for bootstrapping processors. The real pagesets for
6034 	 * each zone will be allocated later when the per cpu
6035 	 * allocator is available.
6036 	 *
6037 	 * boot_pagesets are used also for bootstrapping offline
6038 	 * cpus if the system is already booted because the pagesets
6039 	 * are needed to initialize allocators on a specific cpu too.
6040 	 * F.e. the percpu allocator needs the page allocator which
6041 	 * needs the percpu allocator in order to allocate its pagesets
6042 	 * (a chicken-egg dilemma).
6043 	 */
6044 	for_each_possible_cpu(cpu)
6045 		pageset_init(&per_cpu(boot_pageset, cpu));
6046 
6047 	mminit_verify_zonelist();
6048 	cpuset_init_current_mems_allowed();
6049 }
6050 
6051 /*
6052  * unless system_state == SYSTEM_BOOTING.
6053  *
6054  * __ref due to call of __init annotated helper build_all_zonelists_init
6055  * [protected by SYSTEM_BOOTING].
6056  */
6057 void __ref build_all_zonelists(pg_data_t *pgdat)
6058 {
6059 	unsigned long vm_total_pages;
6060 
6061 	if (system_state == SYSTEM_BOOTING) {
6062 		build_all_zonelists_init();
6063 	} else {
6064 		__build_all_zonelists(pgdat);
6065 		/* cpuset refresh routine should be here */
6066 	}
6067 	/* Get the number of free pages beyond high watermark in all zones. */
6068 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6069 	/*
6070 	 * Disable grouping by mobility if the number of pages in the
6071 	 * system is too low to allow the mechanism to work. It would be
6072 	 * more accurate, but expensive to check per-zone. This check is
6073 	 * made on memory-hotadd so a system can start with mobility
6074 	 * disabled and enable it later
6075 	 */
6076 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6077 		page_group_by_mobility_disabled = 1;
6078 	else
6079 		page_group_by_mobility_disabled = 0;
6080 
6081 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6082 		nr_online_nodes,
6083 		page_group_by_mobility_disabled ? "off" : "on",
6084 		vm_total_pages);
6085 #ifdef CONFIG_NUMA
6086 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6087 #endif
6088 }
6089 
6090 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6091 static bool __meminit
6092 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6093 {
6094 	static struct memblock_region *r;
6095 
6096 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6097 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6098 			for_each_mem_region(r) {
6099 				if (*pfn < memblock_region_memory_end_pfn(r))
6100 					break;
6101 			}
6102 		}
6103 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6104 		    memblock_is_mirror(r)) {
6105 			*pfn = memblock_region_memory_end_pfn(r);
6106 			return true;
6107 		}
6108 	}
6109 	return false;
6110 }
6111 
6112 /*
6113  * Initially all pages are reserved - free ones are freed
6114  * up by memblock_free_all() once the early boot process is
6115  * done. Non-atomic initialization, single-pass.
6116  *
6117  * All aligned pageblocks are initialized to the specified migratetype
6118  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6119  * zone stats (e.g., nr_isolate_pageblock) are touched.
6120  */
6121 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6122 		unsigned long start_pfn, unsigned long zone_end_pfn,
6123 		enum meminit_context context,
6124 		struct vmem_altmap *altmap, int migratetype)
6125 {
6126 	unsigned long pfn, end_pfn = start_pfn + size;
6127 	struct page *page;
6128 
6129 	if (highest_memmap_pfn < end_pfn - 1)
6130 		highest_memmap_pfn = end_pfn - 1;
6131 
6132 #ifdef CONFIG_ZONE_DEVICE
6133 	/*
6134 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6135 	 * memory. We limit the total number of pages to initialize to just
6136 	 * those that might contain the memory mapping. We will defer the
6137 	 * ZONE_DEVICE page initialization until after we have released
6138 	 * the hotplug lock.
6139 	 */
6140 	if (zone == ZONE_DEVICE) {
6141 		if (!altmap)
6142 			return;
6143 
6144 		if (start_pfn == altmap->base_pfn)
6145 			start_pfn += altmap->reserve;
6146 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6147 	}
6148 #endif
6149 
6150 	for (pfn = start_pfn; pfn < end_pfn; ) {
6151 		/*
6152 		 * There can be holes in boot-time mem_map[]s handed to this
6153 		 * function.  They do not exist on hotplugged memory.
6154 		 */
6155 		if (context == MEMINIT_EARLY) {
6156 			if (overlap_memmap_init(zone, &pfn))
6157 				continue;
6158 			if (defer_init(nid, pfn, zone_end_pfn))
6159 				break;
6160 		}
6161 
6162 		page = pfn_to_page(pfn);
6163 		__init_single_page(page, pfn, zone, nid);
6164 		if (context == MEMINIT_HOTPLUG)
6165 			__SetPageReserved(page);
6166 
6167 		/*
6168 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6169 		 * such that unmovable allocations won't be scattered all
6170 		 * over the place during system boot.
6171 		 */
6172 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6173 			set_pageblock_migratetype(page, migratetype);
6174 			cond_resched();
6175 		}
6176 		pfn++;
6177 	}
6178 }
6179 
6180 #ifdef CONFIG_ZONE_DEVICE
6181 void __ref memmap_init_zone_device(struct zone *zone,
6182 				   unsigned long start_pfn,
6183 				   unsigned long nr_pages,
6184 				   struct dev_pagemap *pgmap)
6185 {
6186 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6187 	struct pglist_data *pgdat = zone->zone_pgdat;
6188 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6189 	unsigned long zone_idx = zone_idx(zone);
6190 	unsigned long start = jiffies;
6191 	int nid = pgdat->node_id;
6192 
6193 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6194 		return;
6195 
6196 	/*
6197 	 * The call to memmap_init_zone should have already taken care
6198 	 * of the pages reserved for the memmap, so we can just jump to
6199 	 * the end of that region and start processing the device pages.
6200 	 */
6201 	if (altmap) {
6202 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6203 		nr_pages = end_pfn - start_pfn;
6204 	}
6205 
6206 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6207 		struct page *page = pfn_to_page(pfn);
6208 
6209 		__init_single_page(page, pfn, zone_idx, nid);
6210 
6211 		/*
6212 		 * Mark page reserved as it will need to wait for onlining
6213 		 * phase for it to be fully associated with a zone.
6214 		 *
6215 		 * We can use the non-atomic __set_bit operation for setting
6216 		 * the flag as we are still initializing the pages.
6217 		 */
6218 		__SetPageReserved(page);
6219 
6220 		/*
6221 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6222 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6223 		 * ever freed or placed on a driver-private list.
6224 		 */
6225 		page->pgmap = pgmap;
6226 		page->zone_device_data = NULL;
6227 
6228 		/*
6229 		 * Mark the block movable so that blocks are reserved for
6230 		 * movable at startup. This will force kernel allocations
6231 		 * to reserve their blocks rather than leaking throughout
6232 		 * the address space during boot when many long-lived
6233 		 * kernel allocations are made.
6234 		 *
6235 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6236 		 * because this is done early in section_activate()
6237 		 */
6238 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6239 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6240 			cond_resched();
6241 		}
6242 	}
6243 
6244 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6245 		nr_pages, jiffies_to_msecs(jiffies - start));
6246 }
6247 
6248 #endif
6249 static void __meminit zone_init_free_lists(struct zone *zone)
6250 {
6251 	unsigned int order, t;
6252 	for_each_migratetype_order(order, t) {
6253 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6254 		zone->free_area[order].nr_free = 0;
6255 	}
6256 }
6257 
6258 void __meminit __weak memmap_init(unsigned long size, int nid,
6259 				  unsigned long zone,
6260 				  unsigned long range_start_pfn)
6261 {
6262 	unsigned long start_pfn, end_pfn;
6263 	unsigned long range_end_pfn = range_start_pfn + size;
6264 	int i;
6265 
6266 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6267 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6268 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6269 
6270 		if (end_pfn > start_pfn) {
6271 			size = end_pfn - start_pfn;
6272 			memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn,
6273 					 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6274 		}
6275 	}
6276 }
6277 
6278 static int zone_batchsize(struct zone *zone)
6279 {
6280 #ifdef CONFIG_MMU
6281 	int batch;
6282 
6283 	/*
6284 	 * The per-cpu-pages pools are set to around 1000th of the
6285 	 * size of the zone.
6286 	 */
6287 	batch = zone_managed_pages(zone) / 1024;
6288 	/* But no more than a meg. */
6289 	if (batch * PAGE_SIZE > 1024 * 1024)
6290 		batch = (1024 * 1024) / PAGE_SIZE;
6291 	batch /= 4;		/* We effectively *= 4 below */
6292 	if (batch < 1)
6293 		batch = 1;
6294 
6295 	/*
6296 	 * Clamp the batch to a 2^n - 1 value. Having a power
6297 	 * of 2 value was found to be more likely to have
6298 	 * suboptimal cache aliasing properties in some cases.
6299 	 *
6300 	 * For example if 2 tasks are alternately allocating
6301 	 * batches of pages, one task can end up with a lot
6302 	 * of pages of one half of the possible page colors
6303 	 * and the other with pages of the other colors.
6304 	 */
6305 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6306 
6307 	return batch;
6308 
6309 #else
6310 	/* The deferral and batching of frees should be suppressed under NOMMU
6311 	 * conditions.
6312 	 *
6313 	 * The problem is that NOMMU needs to be able to allocate large chunks
6314 	 * of contiguous memory as there's no hardware page translation to
6315 	 * assemble apparent contiguous memory from discontiguous pages.
6316 	 *
6317 	 * Queueing large contiguous runs of pages for batching, however,
6318 	 * causes the pages to actually be freed in smaller chunks.  As there
6319 	 * can be a significant delay between the individual batches being
6320 	 * recycled, this leads to the once large chunks of space being
6321 	 * fragmented and becoming unavailable for high-order allocations.
6322 	 */
6323 	return 0;
6324 #endif
6325 }
6326 
6327 /*
6328  * pcp->high and pcp->batch values are related and generally batch is lower
6329  * than high. They are also related to pcp->count such that count is lower
6330  * than high, and as soon as it reaches high, the pcplist is flushed.
6331  *
6332  * However, guaranteeing these relations at all times would require e.g. write
6333  * barriers here but also careful usage of read barriers at the read side, and
6334  * thus be prone to error and bad for performance. Thus the update only prevents
6335  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6336  * can cope with those fields changing asynchronously, and fully trust only the
6337  * pcp->count field on the local CPU with interrupts disabled.
6338  *
6339  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6340  * outside of boot time (or some other assurance that no concurrent updaters
6341  * exist).
6342  */
6343 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6344 		unsigned long batch)
6345 {
6346 	WRITE_ONCE(pcp->batch, batch);
6347 	WRITE_ONCE(pcp->high, high);
6348 }
6349 
6350 static void pageset_init(struct per_cpu_pageset *p)
6351 {
6352 	struct per_cpu_pages *pcp;
6353 	int migratetype;
6354 
6355 	memset(p, 0, sizeof(*p));
6356 
6357 	pcp = &p->pcp;
6358 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6359 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6360 
6361 	/*
6362 	 * Set batch and high values safe for a boot pageset. A true percpu
6363 	 * pageset's initialization will update them subsequently. Here we don't
6364 	 * need to be as careful as pageset_update() as nobody can access the
6365 	 * pageset yet.
6366 	 */
6367 	pcp->high = BOOT_PAGESET_HIGH;
6368 	pcp->batch = BOOT_PAGESET_BATCH;
6369 }
6370 
6371 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6372 		unsigned long batch)
6373 {
6374 	struct per_cpu_pageset *p;
6375 	int cpu;
6376 
6377 	for_each_possible_cpu(cpu) {
6378 		p = per_cpu_ptr(zone->pageset, cpu);
6379 		pageset_update(&p->pcp, high, batch);
6380 	}
6381 }
6382 
6383 /*
6384  * Calculate and set new high and batch values for all per-cpu pagesets of a
6385  * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6386  */
6387 static void zone_set_pageset_high_and_batch(struct zone *zone)
6388 {
6389 	unsigned long new_high, new_batch;
6390 
6391 	if (percpu_pagelist_fraction) {
6392 		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6393 		new_batch = max(1UL, new_high / 4);
6394 		if ((new_high / 4) > (PAGE_SHIFT * 8))
6395 			new_batch = PAGE_SHIFT * 8;
6396 	} else {
6397 		new_batch = zone_batchsize(zone);
6398 		new_high = 6 * new_batch;
6399 		new_batch = max(1UL, 1 * new_batch);
6400 	}
6401 
6402 	if (zone->pageset_high == new_high &&
6403 	    zone->pageset_batch == new_batch)
6404 		return;
6405 
6406 	zone->pageset_high = new_high;
6407 	zone->pageset_batch = new_batch;
6408 
6409 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6410 }
6411 
6412 void __meminit setup_zone_pageset(struct zone *zone)
6413 {
6414 	struct per_cpu_pageset *p;
6415 	int cpu;
6416 
6417 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6418 	for_each_possible_cpu(cpu) {
6419 		p = per_cpu_ptr(zone->pageset, cpu);
6420 		pageset_init(p);
6421 	}
6422 
6423 	zone_set_pageset_high_and_batch(zone);
6424 }
6425 
6426 /*
6427  * Allocate per cpu pagesets and initialize them.
6428  * Before this call only boot pagesets were available.
6429  */
6430 void __init setup_per_cpu_pageset(void)
6431 {
6432 	struct pglist_data *pgdat;
6433 	struct zone *zone;
6434 	int __maybe_unused cpu;
6435 
6436 	for_each_populated_zone(zone)
6437 		setup_zone_pageset(zone);
6438 
6439 #ifdef CONFIG_NUMA
6440 	/*
6441 	 * Unpopulated zones continue using the boot pagesets.
6442 	 * The numa stats for these pagesets need to be reset.
6443 	 * Otherwise, they will end up skewing the stats of
6444 	 * the nodes these zones are associated with.
6445 	 */
6446 	for_each_possible_cpu(cpu) {
6447 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6448 		memset(pcp->vm_numa_stat_diff, 0,
6449 		       sizeof(pcp->vm_numa_stat_diff));
6450 	}
6451 #endif
6452 
6453 	for_each_online_pgdat(pgdat)
6454 		pgdat->per_cpu_nodestats =
6455 			alloc_percpu(struct per_cpu_nodestat);
6456 }
6457 
6458 static __meminit void zone_pcp_init(struct zone *zone)
6459 {
6460 	/*
6461 	 * per cpu subsystem is not up at this point. The following code
6462 	 * relies on the ability of the linker to provide the
6463 	 * offset of a (static) per cpu variable into the per cpu area.
6464 	 */
6465 	zone->pageset = &boot_pageset;
6466 	zone->pageset_high = BOOT_PAGESET_HIGH;
6467 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6468 
6469 	if (populated_zone(zone))
6470 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6471 			zone->name, zone->present_pages,
6472 					 zone_batchsize(zone));
6473 }
6474 
6475 void __meminit init_currently_empty_zone(struct zone *zone,
6476 					unsigned long zone_start_pfn,
6477 					unsigned long size)
6478 {
6479 	struct pglist_data *pgdat = zone->zone_pgdat;
6480 	int zone_idx = zone_idx(zone) + 1;
6481 
6482 	if (zone_idx > pgdat->nr_zones)
6483 		pgdat->nr_zones = zone_idx;
6484 
6485 	zone->zone_start_pfn = zone_start_pfn;
6486 
6487 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6488 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6489 			pgdat->node_id,
6490 			(unsigned long)zone_idx(zone),
6491 			zone_start_pfn, (zone_start_pfn + size));
6492 
6493 	zone_init_free_lists(zone);
6494 	zone->initialized = 1;
6495 }
6496 
6497 /**
6498  * get_pfn_range_for_nid - Return the start and end page frames for a node
6499  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6500  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6501  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6502  *
6503  * It returns the start and end page frame of a node based on information
6504  * provided by memblock_set_node(). If called for a node
6505  * with no available memory, a warning is printed and the start and end
6506  * PFNs will be 0.
6507  */
6508 void __init get_pfn_range_for_nid(unsigned int nid,
6509 			unsigned long *start_pfn, unsigned long *end_pfn)
6510 {
6511 	unsigned long this_start_pfn, this_end_pfn;
6512 	int i;
6513 
6514 	*start_pfn = -1UL;
6515 	*end_pfn = 0;
6516 
6517 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6518 		*start_pfn = min(*start_pfn, this_start_pfn);
6519 		*end_pfn = max(*end_pfn, this_end_pfn);
6520 	}
6521 
6522 	if (*start_pfn == -1UL)
6523 		*start_pfn = 0;
6524 }
6525 
6526 /*
6527  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6528  * assumption is made that zones within a node are ordered in monotonic
6529  * increasing memory addresses so that the "highest" populated zone is used
6530  */
6531 static void __init find_usable_zone_for_movable(void)
6532 {
6533 	int zone_index;
6534 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6535 		if (zone_index == ZONE_MOVABLE)
6536 			continue;
6537 
6538 		if (arch_zone_highest_possible_pfn[zone_index] >
6539 				arch_zone_lowest_possible_pfn[zone_index])
6540 			break;
6541 	}
6542 
6543 	VM_BUG_ON(zone_index == -1);
6544 	movable_zone = zone_index;
6545 }
6546 
6547 /*
6548  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6549  * because it is sized independent of architecture. Unlike the other zones,
6550  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6551  * in each node depending on the size of each node and how evenly kernelcore
6552  * is distributed. This helper function adjusts the zone ranges
6553  * provided by the architecture for a given node by using the end of the
6554  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6555  * zones within a node are in order of monotonic increases memory addresses
6556  */
6557 static void __init adjust_zone_range_for_zone_movable(int nid,
6558 					unsigned long zone_type,
6559 					unsigned long node_start_pfn,
6560 					unsigned long node_end_pfn,
6561 					unsigned long *zone_start_pfn,
6562 					unsigned long *zone_end_pfn)
6563 {
6564 	/* Only adjust if ZONE_MOVABLE is on this node */
6565 	if (zone_movable_pfn[nid]) {
6566 		/* Size ZONE_MOVABLE */
6567 		if (zone_type == ZONE_MOVABLE) {
6568 			*zone_start_pfn = zone_movable_pfn[nid];
6569 			*zone_end_pfn = min(node_end_pfn,
6570 				arch_zone_highest_possible_pfn[movable_zone]);
6571 
6572 		/* Adjust for ZONE_MOVABLE starting within this range */
6573 		} else if (!mirrored_kernelcore &&
6574 			*zone_start_pfn < zone_movable_pfn[nid] &&
6575 			*zone_end_pfn > zone_movable_pfn[nid]) {
6576 			*zone_end_pfn = zone_movable_pfn[nid];
6577 
6578 		/* Check if this whole range is within ZONE_MOVABLE */
6579 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6580 			*zone_start_pfn = *zone_end_pfn;
6581 	}
6582 }
6583 
6584 /*
6585  * Return the number of pages a zone spans in a node, including holes
6586  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6587  */
6588 static unsigned long __init zone_spanned_pages_in_node(int nid,
6589 					unsigned long zone_type,
6590 					unsigned long node_start_pfn,
6591 					unsigned long node_end_pfn,
6592 					unsigned long *zone_start_pfn,
6593 					unsigned long *zone_end_pfn)
6594 {
6595 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6596 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6597 	/* When hotadd a new node from cpu_up(), the node should be empty */
6598 	if (!node_start_pfn && !node_end_pfn)
6599 		return 0;
6600 
6601 	/* Get the start and end of the zone */
6602 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6603 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6604 	adjust_zone_range_for_zone_movable(nid, zone_type,
6605 				node_start_pfn, node_end_pfn,
6606 				zone_start_pfn, zone_end_pfn);
6607 
6608 	/* Check that this node has pages within the zone's required range */
6609 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6610 		return 0;
6611 
6612 	/* Move the zone boundaries inside the node if necessary */
6613 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6614 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6615 
6616 	/* Return the spanned pages */
6617 	return *zone_end_pfn - *zone_start_pfn;
6618 }
6619 
6620 /*
6621  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6622  * then all holes in the requested range will be accounted for.
6623  */
6624 unsigned long __init __absent_pages_in_range(int nid,
6625 				unsigned long range_start_pfn,
6626 				unsigned long range_end_pfn)
6627 {
6628 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6629 	unsigned long start_pfn, end_pfn;
6630 	int i;
6631 
6632 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6633 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6634 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6635 		nr_absent -= end_pfn - start_pfn;
6636 	}
6637 	return nr_absent;
6638 }
6639 
6640 /**
6641  * absent_pages_in_range - Return number of page frames in holes within a range
6642  * @start_pfn: The start PFN to start searching for holes
6643  * @end_pfn: The end PFN to stop searching for holes
6644  *
6645  * Return: the number of pages frames in memory holes within a range.
6646  */
6647 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6648 							unsigned long end_pfn)
6649 {
6650 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6651 }
6652 
6653 /* Return the number of page frames in holes in a zone on a node */
6654 static unsigned long __init zone_absent_pages_in_node(int nid,
6655 					unsigned long zone_type,
6656 					unsigned long node_start_pfn,
6657 					unsigned long node_end_pfn)
6658 {
6659 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6660 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6661 	unsigned long zone_start_pfn, zone_end_pfn;
6662 	unsigned long nr_absent;
6663 
6664 	/* When hotadd a new node from cpu_up(), the node should be empty */
6665 	if (!node_start_pfn && !node_end_pfn)
6666 		return 0;
6667 
6668 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6669 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6670 
6671 	adjust_zone_range_for_zone_movable(nid, zone_type,
6672 			node_start_pfn, node_end_pfn,
6673 			&zone_start_pfn, &zone_end_pfn);
6674 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6675 
6676 	/*
6677 	 * ZONE_MOVABLE handling.
6678 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6679 	 * and vice versa.
6680 	 */
6681 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6682 		unsigned long start_pfn, end_pfn;
6683 		struct memblock_region *r;
6684 
6685 		for_each_mem_region(r) {
6686 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6687 					  zone_start_pfn, zone_end_pfn);
6688 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6689 					zone_start_pfn, zone_end_pfn);
6690 
6691 			if (zone_type == ZONE_MOVABLE &&
6692 			    memblock_is_mirror(r))
6693 				nr_absent += end_pfn - start_pfn;
6694 
6695 			if (zone_type == ZONE_NORMAL &&
6696 			    !memblock_is_mirror(r))
6697 				nr_absent += end_pfn - start_pfn;
6698 		}
6699 	}
6700 
6701 	return nr_absent;
6702 }
6703 
6704 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6705 						unsigned long node_start_pfn,
6706 						unsigned long node_end_pfn)
6707 {
6708 	unsigned long realtotalpages = 0, totalpages = 0;
6709 	enum zone_type i;
6710 
6711 	for (i = 0; i < MAX_NR_ZONES; i++) {
6712 		struct zone *zone = pgdat->node_zones + i;
6713 		unsigned long zone_start_pfn, zone_end_pfn;
6714 		unsigned long spanned, absent;
6715 		unsigned long size, real_size;
6716 
6717 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6718 						     node_start_pfn,
6719 						     node_end_pfn,
6720 						     &zone_start_pfn,
6721 						     &zone_end_pfn);
6722 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6723 						   node_start_pfn,
6724 						   node_end_pfn);
6725 
6726 		size = spanned;
6727 		real_size = size - absent;
6728 
6729 		if (size)
6730 			zone->zone_start_pfn = zone_start_pfn;
6731 		else
6732 			zone->zone_start_pfn = 0;
6733 		zone->spanned_pages = size;
6734 		zone->present_pages = real_size;
6735 
6736 		totalpages += size;
6737 		realtotalpages += real_size;
6738 	}
6739 
6740 	pgdat->node_spanned_pages = totalpages;
6741 	pgdat->node_present_pages = realtotalpages;
6742 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6743 							realtotalpages);
6744 }
6745 
6746 #ifndef CONFIG_SPARSEMEM
6747 /*
6748  * Calculate the size of the zone->blockflags rounded to an unsigned long
6749  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6750  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6751  * round what is now in bits to nearest long in bits, then return it in
6752  * bytes.
6753  */
6754 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6755 {
6756 	unsigned long usemapsize;
6757 
6758 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6759 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6760 	usemapsize = usemapsize >> pageblock_order;
6761 	usemapsize *= NR_PAGEBLOCK_BITS;
6762 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6763 
6764 	return usemapsize / 8;
6765 }
6766 
6767 static void __ref setup_usemap(struct pglist_data *pgdat,
6768 				struct zone *zone,
6769 				unsigned long zone_start_pfn,
6770 				unsigned long zonesize)
6771 {
6772 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6773 	zone->pageblock_flags = NULL;
6774 	if (usemapsize) {
6775 		zone->pageblock_flags =
6776 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6777 					    pgdat->node_id);
6778 		if (!zone->pageblock_flags)
6779 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6780 			      usemapsize, zone->name, pgdat->node_id);
6781 	}
6782 }
6783 #else
6784 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6785 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6786 #endif /* CONFIG_SPARSEMEM */
6787 
6788 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6789 
6790 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6791 void __init set_pageblock_order(void)
6792 {
6793 	unsigned int order;
6794 
6795 	/* Check that pageblock_nr_pages has not already been setup */
6796 	if (pageblock_order)
6797 		return;
6798 
6799 	if (HPAGE_SHIFT > PAGE_SHIFT)
6800 		order = HUGETLB_PAGE_ORDER;
6801 	else
6802 		order = MAX_ORDER - 1;
6803 
6804 	/*
6805 	 * Assume the largest contiguous order of interest is a huge page.
6806 	 * This value may be variable depending on boot parameters on IA64 and
6807 	 * powerpc.
6808 	 */
6809 	pageblock_order = order;
6810 }
6811 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6812 
6813 /*
6814  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6815  * is unused as pageblock_order is set at compile-time. See
6816  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6817  * the kernel config
6818  */
6819 void __init set_pageblock_order(void)
6820 {
6821 }
6822 
6823 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6824 
6825 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6826 						unsigned long present_pages)
6827 {
6828 	unsigned long pages = spanned_pages;
6829 
6830 	/*
6831 	 * Provide a more accurate estimation if there are holes within
6832 	 * the zone and SPARSEMEM is in use. If there are holes within the
6833 	 * zone, each populated memory region may cost us one or two extra
6834 	 * memmap pages due to alignment because memmap pages for each
6835 	 * populated regions may not be naturally aligned on page boundary.
6836 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6837 	 */
6838 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6839 	    IS_ENABLED(CONFIG_SPARSEMEM))
6840 		pages = present_pages;
6841 
6842 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6843 }
6844 
6845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6846 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6847 {
6848 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6849 
6850 	spin_lock_init(&ds_queue->split_queue_lock);
6851 	INIT_LIST_HEAD(&ds_queue->split_queue);
6852 	ds_queue->split_queue_len = 0;
6853 }
6854 #else
6855 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6856 #endif
6857 
6858 #ifdef CONFIG_COMPACTION
6859 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6860 {
6861 	init_waitqueue_head(&pgdat->kcompactd_wait);
6862 }
6863 #else
6864 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6865 #endif
6866 
6867 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6868 {
6869 	pgdat_resize_init(pgdat);
6870 
6871 	pgdat_init_split_queue(pgdat);
6872 	pgdat_init_kcompactd(pgdat);
6873 
6874 	init_waitqueue_head(&pgdat->kswapd_wait);
6875 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6876 
6877 	pgdat_page_ext_init(pgdat);
6878 	lruvec_init(&pgdat->__lruvec);
6879 }
6880 
6881 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6882 							unsigned long remaining_pages)
6883 {
6884 	atomic_long_set(&zone->managed_pages, remaining_pages);
6885 	zone_set_nid(zone, nid);
6886 	zone->name = zone_names[idx];
6887 	zone->zone_pgdat = NODE_DATA(nid);
6888 	spin_lock_init(&zone->lock);
6889 	zone_seqlock_init(zone);
6890 	zone_pcp_init(zone);
6891 }
6892 
6893 /*
6894  * Set up the zone data structures
6895  * - init pgdat internals
6896  * - init all zones belonging to this node
6897  *
6898  * NOTE: this function is only called during memory hotplug
6899  */
6900 #ifdef CONFIG_MEMORY_HOTPLUG
6901 void __ref free_area_init_core_hotplug(int nid)
6902 {
6903 	enum zone_type z;
6904 	pg_data_t *pgdat = NODE_DATA(nid);
6905 
6906 	pgdat_init_internals(pgdat);
6907 	for (z = 0; z < MAX_NR_ZONES; z++)
6908 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6909 }
6910 #endif
6911 
6912 /*
6913  * Set up the zone data structures:
6914  *   - mark all pages reserved
6915  *   - mark all memory queues empty
6916  *   - clear the memory bitmaps
6917  *
6918  * NOTE: pgdat should get zeroed by caller.
6919  * NOTE: this function is only called during early init.
6920  */
6921 static void __init free_area_init_core(struct pglist_data *pgdat)
6922 {
6923 	enum zone_type j;
6924 	int nid = pgdat->node_id;
6925 
6926 	pgdat_init_internals(pgdat);
6927 	pgdat->per_cpu_nodestats = &boot_nodestats;
6928 
6929 	for (j = 0; j < MAX_NR_ZONES; j++) {
6930 		struct zone *zone = pgdat->node_zones + j;
6931 		unsigned long size, freesize, memmap_pages;
6932 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6933 
6934 		size = zone->spanned_pages;
6935 		freesize = zone->present_pages;
6936 
6937 		/*
6938 		 * Adjust freesize so that it accounts for how much memory
6939 		 * is used by this zone for memmap. This affects the watermark
6940 		 * and per-cpu initialisations
6941 		 */
6942 		memmap_pages = calc_memmap_size(size, freesize);
6943 		if (!is_highmem_idx(j)) {
6944 			if (freesize >= memmap_pages) {
6945 				freesize -= memmap_pages;
6946 				if (memmap_pages)
6947 					printk(KERN_DEBUG
6948 					       "  %s zone: %lu pages used for memmap\n",
6949 					       zone_names[j], memmap_pages);
6950 			} else
6951 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6952 					zone_names[j], memmap_pages, freesize);
6953 		}
6954 
6955 		/* Account for reserved pages */
6956 		if (j == 0 && freesize > dma_reserve) {
6957 			freesize -= dma_reserve;
6958 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6959 					zone_names[0], dma_reserve);
6960 		}
6961 
6962 		if (!is_highmem_idx(j))
6963 			nr_kernel_pages += freesize;
6964 		/* Charge for highmem memmap if there are enough kernel pages */
6965 		else if (nr_kernel_pages > memmap_pages * 2)
6966 			nr_kernel_pages -= memmap_pages;
6967 		nr_all_pages += freesize;
6968 
6969 		/*
6970 		 * Set an approximate value for lowmem here, it will be adjusted
6971 		 * when the bootmem allocator frees pages into the buddy system.
6972 		 * And all highmem pages will be managed by the buddy system.
6973 		 */
6974 		zone_init_internals(zone, j, nid, freesize);
6975 
6976 		if (!size)
6977 			continue;
6978 
6979 		set_pageblock_order();
6980 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6981 		init_currently_empty_zone(zone, zone_start_pfn, size);
6982 		memmap_init(size, nid, j, zone_start_pfn);
6983 	}
6984 }
6985 
6986 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6987 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6988 {
6989 	unsigned long __maybe_unused start = 0;
6990 	unsigned long __maybe_unused offset = 0;
6991 
6992 	/* Skip empty nodes */
6993 	if (!pgdat->node_spanned_pages)
6994 		return;
6995 
6996 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6997 	offset = pgdat->node_start_pfn - start;
6998 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6999 	if (!pgdat->node_mem_map) {
7000 		unsigned long size, end;
7001 		struct page *map;
7002 
7003 		/*
7004 		 * The zone's endpoints aren't required to be MAX_ORDER
7005 		 * aligned but the node_mem_map endpoints must be in order
7006 		 * for the buddy allocator to function correctly.
7007 		 */
7008 		end = pgdat_end_pfn(pgdat);
7009 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7010 		size =  (end - start) * sizeof(struct page);
7011 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7012 					  pgdat->node_id);
7013 		if (!map)
7014 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7015 			      size, pgdat->node_id);
7016 		pgdat->node_mem_map = map + offset;
7017 	}
7018 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7019 				__func__, pgdat->node_id, (unsigned long)pgdat,
7020 				(unsigned long)pgdat->node_mem_map);
7021 #ifndef CONFIG_NEED_MULTIPLE_NODES
7022 	/*
7023 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7024 	 */
7025 	if (pgdat == NODE_DATA(0)) {
7026 		mem_map = NODE_DATA(0)->node_mem_map;
7027 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7028 			mem_map -= offset;
7029 	}
7030 #endif
7031 }
7032 #else
7033 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7034 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7035 
7036 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7037 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7038 {
7039 	pgdat->first_deferred_pfn = ULONG_MAX;
7040 }
7041 #else
7042 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7043 #endif
7044 
7045 static void __init free_area_init_node(int nid)
7046 {
7047 	pg_data_t *pgdat = NODE_DATA(nid);
7048 	unsigned long start_pfn = 0;
7049 	unsigned long end_pfn = 0;
7050 
7051 	/* pg_data_t should be reset to zero when it's allocated */
7052 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7053 
7054 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7055 
7056 	pgdat->node_id = nid;
7057 	pgdat->node_start_pfn = start_pfn;
7058 	pgdat->per_cpu_nodestats = NULL;
7059 
7060 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7061 		(u64)start_pfn << PAGE_SHIFT,
7062 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7063 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7064 
7065 	alloc_node_mem_map(pgdat);
7066 	pgdat_set_deferred_range(pgdat);
7067 
7068 	free_area_init_core(pgdat);
7069 }
7070 
7071 void __init free_area_init_memoryless_node(int nid)
7072 {
7073 	free_area_init_node(nid);
7074 }
7075 
7076 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7077 /*
7078  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7079  * PageReserved(). Return the number of struct pages that were initialized.
7080  */
7081 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7082 {
7083 	unsigned long pfn;
7084 	u64 pgcnt = 0;
7085 
7086 	for (pfn = spfn; pfn < epfn; pfn++) {
7087 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7088 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7089 				+ pageblock_nr_pages - 1;
7090 			continue;
7091 		}
7092 		/*
7093 		 * Use a fake node/zone (0) for now. Some of these pages
7094 		 * (in memblock.reserved but not in memblock.memory) will
7095 		 * get re-initialized via reserve_bootmem_region() later.
7096 		 */
7097 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7098 		__SetPageReserved(pfn_to_page(pfn));
7099 		pgcnt++;
7100 	}
7101 
7102 	return pgcnt;
7103 }
7104 
7105 /*
7106  * Only struct pages that are backed by physical memory are zeroed and
7107  * initialized by going through __init_single_page(). But, there are some
7108  * struct pages which are reserved in memblock allocator and their fields
7109  * may be accessed (for example page_to_pfn() on some configuration accesses
7110  * flags). We must explicitly initialize those struct pages.
7111  *
7112  * This function also addresses a similar issue where struct pages are left
7113  * uninitialized because the physical address range is not covered by
7114  * memblock.memory or memblock.reserved. That could happen when memblock
7115  * layout is manually configured via memmap=, or when the highest physical
7116  * address (max_pfn) does not end on a section boundary.
7117  */
7118 static void __init init_unavailable_mem(void)
7119 {
7120 	phys_addr_t start, end;
7121 	u64 i, pgcnt;
7122 	phys_addr_t next = 0;
7123 
7124 	/*
7125 	 * Loop through unavailable ranges not covered by memblock.memory.
7126 	 */
7127 	pgcnt = 0;
7128 	for_each_mem_range(i, &start, &end) {
7129 		if (next < start)
7130 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7131 							PFN_UP(start));
7132 		next = end;
7133 	}
7134 
7135 	/*
7136 	 * Early sections always have a fully populated memmap for the whole
7137 	 * section - see pfn_valid(). If the last section has holes at the
7138 	 * end and that section is marked "online", the memmap will be
7139 	 * considered initialized. Make sure that memmap has a well defined
7140 	 * state.
7141 	 */
7142 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7143 					round_up(max_pfn, PAGES_PER_SECTION));
7144 
7145 	/*
7146 	 * Struct pages that do not have backing memory. This could be because
7147 	 * firmware is using some of this memory, or for some other reasons.
7148 	 */
7149 	if (pgcnt)
7150 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7151 }
7152 #else
7153 static inline void __init init_unavailable_mem(void)
7154 {
7155 }
7156 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7157 
7158 #if MAX_NUMNODES > 1
7159 /*
7160  * Figure out the number of possible node ids.
7161  */
7162 void __init setup_nr_node_ids(void)
7163 {
7164 	unsigned int highest;
7165 
7166 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7167 	nr_node_ids = highest + 1;
7168 }
7169 #endif
7170 
7171 /**
7172  * node_map_pfn_alignment - determine the maximum internode alignment
7173  *
7174  * This function should be called after node map is populated and sorted.
7175  * It calculates the maximum power of two alignment which can distinguish
7176  * all the nodes.
7177  *
7178  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7179  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7180  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7181  * shifted, 1GiB is enough and this function will indicate so.
7182  *
7183  * This is used to test whether pfn -> nid mapping of the chosen memory
7184  * model has fine enough granularity to avoid incorrect mapping for the
7185  * populated node map.
7186  *
7187  * Return: the determined alignment in pfn's.  0 if there is no alignment
7188  * requirement (single node).
7189  */
7190 unsigned long __init node_map_pfn_alignment(void)
7191 {
7192 	unsigned long accl_mask = 0, last_end = 0;
7193 	unsigned long start, end, mask;
7194 	int last_nid = NUMA_NO_NODE;
7195 	int i, nid;
7196 
7197 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7198 		if (!start || last_nid < 0 || last_nid == nid) {
7199 			last_nid = nid;
7200 			last_end = end;
7201 			continue;
7202 		}
7203 
7204 		/*
7205 		 * Start with a mask granular enough to pin-point to the
7206 		 * start pfn and tick off bits one-by-one until it becomes
7207 		 * too coarse to separate the current node from the last.
7208 		 */
7209 		mask = ~((1 << __ffs(start)) - 1);
7210 		while (mask && last_end <= (start & (mask << 1)))
7211 			mask <<= 1;
7212 
7213 		/* accumulate all internode masks */
7214 		accl_mask |= mask;
7215 	}
7216 
7217 	/* convert mask to number of pages */
7218 	return ~accl_mask + 1;
7219 }
7220 
7221 /**
7222  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7223  *
7224  * Return: the minimum PFN based on information provided via
7225  * memblock_set_node().
7226  */
7227 unsigned long __init find_min_pfn_with_active_regions(void)
7228 {
7229 	return PHYS_PFN(memblock_start_of_DRAM());
7230 }
7231 
7232 /*
7233  * early_calculate_totalpages()
7234  * Sum pages in active regions for movable zone.
7235  * Populate N_MEMORY for calculating usable_nodes.
7236  */
7237 static unsigned long __init early_calculate_totalpages(void)
7238 {
7239 	unsigned long totalpages = 0;
7240 	unsigned long start_pfn, end_pfn;
7241 	int i, nid;
7242 
7243 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7244 		unsigned long pages = end_pfn - start_pfn;
7245 
7246 		totalpages += pages;
7247 		if (pages)
7248 			node_set_state(nid, N_MEMORY);
7249 	}
7250 	return totalpages;
7251 }
7252 
7253 /*
7254  * Find the PFN the Movable zone begins in each node. Kernel memory
7255  * is spread evenly between nodes as long as the nodes have enough
7256  * memory. When they don't, some nodes will have more kernelcore than
7257  * others
7258  */
7259 static void __init find_zone_movable_pfns_for_nodes(void)
7260 {
7261 	int i, nid;
7262 	unsigned long usable_startpfn;
7263 	unsigned long kernelcore_node, kernelcore_remaining;
7264 	/* save the state before borrow the nodemask */
7265 	nodemask_t saved_node_state = node_states[N_MEMORY];
7266 	unsigned long totalpages = early_calculate_totalpages();
7267 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7268 	struct memblock_region *r;
7269 
7270 	/* Need to find movable_zone earlier when movable_node is specified. */
7271 	find_usable_zone_for_movable();
7272 
7273 	/*
7274 	 * If movable_node is specified, ignore kernelcore and movablecore
7275 	 * options.
7276 	 */
7277 	if (movable_node_is_enabled()) {
7278 		for_each_mem_region(r) {
7279 			if (!memblock_is_hotpluggable(r))
7280 				continue;
7281 
7282 			nid = memblock_get_region_node(r);
7283 
7284 			usable_startpfn = PFN_DOWN(r->base);
7285 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7286 				min(usable_startpfn, zone_movable_pfn[nid]) :
7287 				usable_startpfn;
7288 		}
7289 
7290 		goto out2;
7291 	}
7292 
7293 	/*
7294 	 * If kernelcore=mirror is specified, ignore movablecore option
7295 	 */
7296 	if (mirrored_kernelcore) {
7297 		bool mem_below_4gb_not_mirrored = false;
7298 
7299 		for_each_mem_region(r) {
7300 			if (memblock_is_mirror(r))
7301 				continue;
7302 
7303 			nid = memblock_get_region_node(r);
7304 
7305 			usable_startpfn = memblock_region_memory_base_pfn(r);
7306 
7307 			if (usable_startpfn < 0x100000) {
7308 				mem_below_4gb_not_mirrored = true;
7309 				continue;
7310 			}
7311 
7312 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7313 				min(usable_startpfn, zone_movable_pfn[nid]) :
7314 				usable_startpfn;
7315 		}
7316 
7317 		if (mem_below_4gb_not_mirrored)
7318 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7319 
7320 		goto out2;
7321 	}
7322 
7323 	/*
7324 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7325 	 * amount of necessary memory.
7326 	 */
7327 	if (required_kernelcore_percent)
7328 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7329 				       10000UL;
7330 	if (required_movablecore_percent)
7331 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7332 					10000UL;
7333 
7334 	/*
7335 	 * If movablecore= was specified, calculate what size of
7336 	 * kernelcore that corresponds so that memory usable for
7337 	 * any allocation type is evenly spread. If both kernelcore
7338 	 * and movablecore are specified, then the value of kernelcore
7339 	 * will be used for required_kernelcore if it's greater than
7340 	 * what movablecore would have allowed.
7341 	 */
7342 	if (required_movablecore) {
7343 		unsigned long corepages;
7344 
7345 		/*
7346 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7347 		 * was requested by the user
7348 		 */
7349 		required_movablecore =
7350 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7351 		required_movablecore = min(totalpages, required_movablecore);
7352 		corepages = totalpages - required_movablecore;
7353 
7354 		required_kernelcore = max(required_kernelcore, corepages);
7355 	}
7356 
7357 	/*
7358 	 * If kernelcore was not specified or kernelcore size is larger
7359 	 * than totalpages, there is no ZONE_MOVABLE.
7360 	 */
7361 	if (!required_kernelcore || required_kernelcore >= totalpages)
7362 		goto out;
7363 
7364 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7365 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7366 
7367 restart:
7368 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7369 	kernelcore_node = required_kernelcore / usable_nodes;
7370 	for_each_node_state(nid, N_MEMORY) {
7371 		unsigned long start_pfn, end_pfn;
7372 
7373 		/*
7374 		 * Recalculate kernelcore_node if the division per node
7375 		 * now exceeds what is necessary to satisfy the requested
7376 		 * amount of memory for the kernel
7377 		 */
7378 		if (required_kernelcore < kernelcore_node)
7379 			kernelcore_node = required_kernelcore / usable_nodes;
7380 
7381 		/*
7382 		 * As the map is walked, we track how much memory is usable
7383 		 * by the kernel using kernelcore_remaining. When it is
7384 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7385 		 */
7386 		kernelcore_remaining = kernelcore_node;
7387 
7388 		/* Go through each range of PFNs within this node */
7389 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7390 			unsigned long size_pages;
7391 
7392 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7393 			if (start_pfn >= end_pfn)
7394 				continue;
7395 
7396 			/* Account for what is only usable for kernelcore */
7397 			if (start_pfn < usable_startpfn) {
7398 				unsigned long kernel_pages;
7399 				kernel_pages = min(end_pfn, usable_startpfn)
7400 								- start_pfn;
7401 
7402 				kernelcore_remaining -= min(kernel_pages,
7403 							kernelcore_remaining);
7404 				required_kernelcore -= min(kernel_pages,
7405 							required_kernelcore);
7406 
7407 				/* Continue if range is now fully accounted */
7408 				if (end_pfn <= usable_startpfn) {
7409 
7410 					/*
7411 					 * Push zone_movable_pfn to the end so
7412 					 * that if we have to rebalance
7413 					 * kernelcore across nodes, we will
7414 					 * not double account here
7415 					 */
7416 					zone_movable_pfn[nid] = end_pfn;
7417 					continue;
7418 				}
7419 				start_pfn = usable_startpfn;
7420 			}
7421 
7422 			/*
7423 			 * The usable PFN range for ZONE_MOVABLE is from
7424 			 * start_pfn->end_pfn. Calculate size_pages as the
7425 			 * number of pages used as kernelcore
7426 			 */
7427 			size_pages = end_pfn - start_pfn;
7428 			if (size_pages > kernelcore_remaining)
7429 				size_pages = kernelcore_remaining;
7430 			zone_movable_pfn[nid] = start_pfn + size_pages;
7431 
7432 			/*
7433 			 * Some kernelcore has been met, update counts and
7434 			 * break if the kernelcore for this node has been
7435 			 * satisfied
7436 			 */
7437 			required_kernelcore -= min(required_kernelcore,
7438 								size_pages);
7439 			kernelcore_remaining -= size_pages;
7440 			if (!kernelcore_remaining)
7441 				break;
7442 		}
7443 	}
7444 
7445 	/*
7446 	 * If there is still required_kernelcore, we do another pass with one
7447 	 * less node in the count. This will push zone_movable_pfn[nid] further
7448 	 * along on the nodes that still have memory until kernelcore is
7449 	 * satisfied
7450 	 */
7451 	usable_nodes--;
7452 	if (usable_nodes && required_kernelcore > usable_nodes)
7453 		goto restart;
7454 
7455 out2:
7456 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7457 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7458 		zone_movable_pfn[nid] =
7459 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7460 
7461 out:
7462 	/* restore the node_state */
7463 	node_states[N_MEMORY] = saved_node_state;
7464 }
7465 
7466 /* Any regular or high memory on that node ? */
7467 static void check_for_memory(pg_data_t *pgdat, int nid)
7468 {
7469 	enum zone_type zone_type;
7470 
7471 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7472 		struct zone *zone = &pgdat->node_zones[zone_type];
7473 		if (populated_zone(zone)) {
7474 			if (IS_ENABLED(CONFIG_HIGHMEM))
7475 				node_set_state(nid, N_HIGH_MEMORY);
7476 			if (zone_type <= ZONE_NORMAL)
7477 				node_set_state(nid, N_NORMAL_MEMORY);
7478 			break;
7479 		}
7480 	}
7481 }
7482 
7483 /*
7484  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7485  * such cases we allow max_zone_pfn sorted in the descending order
7486  */
7487 bool __weak arch_has_descending_max_zone_pfns(void)
7488 {
7489 	return false;
7490 }
7491 
7492 /**
7493  * free_area_init - Initialise all pg_data_t and zone data
7494  * @max_zone_pfn: an array of max PFNs for each zone
7495  *
7496  * This will call free_area_init_node() for each active node in the system.
7497  * Using the page ranges provided by memblock_set_node(), the size of each
7498  * zone in each node and their holes is calculated. If the maximum PFN
7499  * between two adjacent zones match, it is assumed that the zone is empty.
7500  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7501  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7502  * starts where the previous one ended. For example, ZONE_DMA32 starts
7503  * at arch_max_dma_pfn.
7504  */
7505 void __init free_area_init(unsigned long *max_zone_pfn)
7506 {
7507 	unsigned long start_pfn, end_pfn;
7508 	int i, nid, zone;
7509 	bool descending;
7510 
7511 	/* Record where the zone boundaries are */
7512 	memset(arch_zone_lowest_possible_pfn, 0,
7513 				sizeof(arch_zone_lowest_possible_pfn));
7514 	memset(arch_zone_highest_possible_pfn, 0,
7515 				sizeof(arch_zone_highest_possible_pfn));
7516 
7517 	start_pfn = find_min_pfn_with_active_regions();
7518 	descending = arch_has_descending_max_zone_pfns();
7519 
7520 	for (i = 0; i < MAX_NR_ZONES; i++) {
7521 		if (descending)
7522 			zone = MAX_NR_ZONES - i - 1;
7523 		else
7524 			zone = i;
7525 
7526 		if (zone == ZONE_MOVABLE)
7527 			continue;
7528 
7529 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7530 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7531 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7532 
7533 		start_pfn = end_pfn;
7534 	}
7535 
7536 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7537 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7538 	find_zone_movable_pfns_for_nodes();
7539 
7540 	/* Print out the zone ranges */
7541 	pr_info("Zone ranges:\n");
7542 	for (i = 0; i < MAX_NR_ZONES; i++) {
7543 		if (i == ZONE_MOVABLE)
7544 			continue;
7545 		pr_info("  %-8s ", zone_names[i]);
7546 		if (arch_zone_lowest_possible_pfn[i] ==
7547 				arch_zone_highest_possible_pfn[i])
7548 			pr_cont("empty\n");
7549 		else
7550 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7551 				(u64)arch_zone_lowest_possible_pfn[i]
7552 					<< PAGE_SHIFT,
7553 				((u64)arch_zone_highest_possible_pfn[i]
7554 					<< PAGE_SHIFT) - 1);
7555 	}
7556 
7557 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7558 	pr_info("Movable zone start for each node\n");
7559 	for (i = 0; i < MAX_NUMNODES; i++) {
7560 		if (zone_movable_pfn[i])
7561 			pr_info("  Node %d: %#018Lx\n", i,
7562 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7563 	}
7564 
7565 	/*
7566 	 * Print out the early node map, and initialize the
7567 	 * subsection-map relative to active online memory ranges to
7568 	 * enable future "sub-section" extensions of the memory map.
7569 	 */
7570 	pr_info("Early memory node ranges\n");
7571 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7572 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7573 			(u64)start_pfn << PAGE_SHIFT,
7574 			((u64)end_pfn << PAGE_SHIFT) - 1);
7575 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7576 	}
7577 
7578 	/* Initialise every node */
7579 	mminit_verify_pageflags_layout();
7580 	setup_nr_node_ids();
7581 	init_unavailable_mem();
7582 	for_each_online_node(nid) {
7583 		pg_data_t *pgdat = NODE_DATA(nid);
7584 		free_area_init_node(nid);
7585 
7586 		/* Any memory on that node */
7587 		if (pgdat->node_present_pages)
7588 			node_set_state(nid, N_MEMORY);
7589 		check_for_memory(pgdat, nid);
7590 	}
7591 }
7592 
7593 static int __init cmdline_parse_core(char *p, unsigned long *core,
7594 				     unsigned long *percent)
7595 {
7596 	unsigned long long coremem;
7597 	char *endptr;
7598 
7599 	if (!p)
7600 		return -EINVAL;
7601 
7602 	/* Value may be a percentage of total memory, otherwise bytes */
7603 	coremem = simple_strtoull(p, &endptr, 0);
7604 	if (*endptr == '%') {
7605 		/* Paranoid check for percent values greater than 100 */
7606 		WARN_ON(coremem > 100);
7607 
7608 		*percent = coremem;
7609 	} else {
7610 		coremem = memparse(p, &p);
7611 		/* Paranoid check that UL is enough for the coremem value */
7612 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7613 
7614 		*core = coremem >> PAGE_SHIFT;
7615 		*percent = 0UL;
7616 	}
7617 	return 0;
7618 }
7619 
7620 /*
7621  * kernelcore=size sets the amount of memory for use for allocations that
7622  * cannot be reclaimed or migrated.
7623  */
7624 static int __init cmdline_parse_kernelcore(char *p)
7625 {
7626 	/* parse kernelcore=mirror */
7627 	if (parse_option_str(p, "mirror")) {
7628 		mirrored_kernelcore = true;
7629 		return 0;
7630 	}
7631 
7632 	return cmdline_parse_core(p, &required_kernelcore,
7633 				  &required_kernelcore_percent);
7634 }
7635 
7636 /*
7637  * movablecore=size sets the amount of memory for use for allocations that
7638  * can be reclaimed or migrated.
7639  */
7640 static int __init cmdline_parse_movablecore(char *p)
7641 {
7642 	return cmdline_parse_core(p, &required_movablecore,
7643 				  &required_movablecore_percent);
7644 }
7645 
7646 early_param("kernelcore", cmdline_parse_kernelcore);
7647 early_param("movablecore", cmdline_parse_movablecore);
7648 
7649 void adjust_managed_page_count(struct page *page, long count)
7650 {
7651 	atomic_long_add(count, &page_zone(page)->managed_pages);
7652 	totalram_pages_add(count);
7653 #ifdef CONFIG_HIGHMEM
7654 	if (PageHighMem(page))
7655 		totalhigh_pages_add(count);
7656 #endif
7657 }
7658 EXPORT_SYMBOL(adjust_managed_page_count);
7659 
7660 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7661 {
7662 	void *pos;
7663 	unsigned long pages = 0;
7664 
7665 	start = (void *)PAGE_ALIGN((unsigned long)start);
7666 	end = (void *)((unsigned long)end & PAGE_MASK);
7667 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7668 		struct page *page = virt_to_page(pos);
7669 		void *direct_map_addr;
7670 
7671 		/*
7672 		 * 'direct_map_addr' might be different from 'pos'
7673 		 * because some architectures' virt_to_page()
7674 		 * work with aliases.  Getting the direct map
7675 		 * address ensures that we get a _writeable_
7676 		 * alias for the memset().
7677 		 */
7678 		direct_map_addr = page_address(page);
7679 		/*
7680 		 * Perform a kasan-unchecked memset() since this memory
7681 		 * has not been initialized.
7682 		 */
7683 		direct_map_addr = kasan_reset_tag(direct_map_addr);
7684 		if ((unsigned int)poison <= 0xFF)
7685 			memset(direct_map_addr, poison, PAGE_SIZE);
7686 
7687 		free_reserved_page(page);
7688 	}
7689 
7690 	if (pages && s)
7691 		pr_info("Freeing %s memory: %ldK\n",
7692 			s, pages << (PAGE_SHIFT - 10));
7693 
7694 	return pages;
7695 }
7696 
7697 #ifdef	CONFIG_HIGHMEM
7698 void free_highmem_page(struct page *page)
7699 {
7700 	__free_reserved_page(page);
7701 	totalram_pages_inc();
7702 	atomic_long_inc(&page_zone(page)->managed_pages);
7703 	totalhigh_pages_inc();
7704 }
7705 #endif
7706 
7707 
7708 void __init mem_init_print_info(const char *str)
7709 {
7710 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7711 	unsigned long init_code_size, init_data_size;
7712 
7713 	physpages = get_num_physpages();
7714 	codesize = _etext - _stext;
7715 	datasize = _edata - _sdata;
7716 	rosize = __end_rodata - __start_rodata;
7717 	bss_size = __bss_stop - __bss_start;
7718 	init_data_size = __init_end - __init_begin;
7719 	init_code_size = _einittext - _sinittext;
7720 
7721 	/*
7722 	 * Detect special cases and adjust section sizes accordingly:
7723 	 * 1) .init.* may be embedded into .data sections
7724 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7725 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7726 	 * 3) .rodata.* may be embedded into .text or .data sections.
7727 	 */
7728 #define adj_init_size(start, end, size, pos, adj) \
7729 	do { \
7730 		if (start <= pos && pos < end && size > adj) \
7731 			size -= adj; \
7732 	} while (0)
7733 
7734 	adj_init_size(__init_begin, __init_end, init_data_size,
7735 		     _sinittext, init_code_size);
7736 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7737 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7738 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7739 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7740 
7741 #undef	adj_init_size
7742 
7743 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7744 #ifdef	CONFIG_HIGHMEM
7745 		", %luK highmem"
7746 #endif
7747 		"%s%s)\n",
7748 		nr_free_pages() << (PAGE_SHIFT - 10),
7749 		physpages << (PAGE_SHIFT - 10),
7750 		codesize >> 10, datasize >> 10, rosize >> 10,
7751 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7752 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7753 		totalcma_pages << (PAGE_SHIFT - 10),
7754 #ifdef	CONFIG_HIGHMEM
7755 		totalhigh_pages() << (PAGE_SHIFT - 10),
7756 #endif
7757 		str ? ", " : "", str ? str : "");
7758 }
7759 
7760 /**
7761  * set_dma_reserve - set the specified number of pages reserved in the first zone
7762  * @new_dma_reserve: The number of pages to mark reserved
7763  *
7764  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7765  * In the DMA zone, a significant percentage may be consumed by kernel image
7766  * and other unfreeable allocations which can skew the watermarks badly. This
7767  * function may optionally be used to account for unfreeable pages in the
7768  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7769  * smaller per-cpu batchsize.
7770  */
7771 void __init set_dma_reserve(unsigned long new_dma_reserve)
7772 {
7773 	dma_reserve = new_dma_reserve;
7774 }
7775 
7776 static int page_alloc_cpu_dead(unsigned int cpu)
7777 {
7778 
7779 	lru_add_drain_cpu(cpu);
7780 	drain_pages(cpu);
7781 
7782 	/*
7783 	 * Spill the event counters of the dead processor
7784 	 * into the current processors event counters.
7785 	 * This artificially elevates the count of the current
7786 	 * processor.
7787 	 */
7788 	vm_events_fold_cpu(cpu);
7789 
7790 	/*
7791 	 * Zero the differential counters of the dead processor
7792 	 * so that the vm statistics are consistent.
7793 	 *
7794 	 * This is only okay since the processor is dead and cannot
7795 	 * race with what we are doing.
7796 	 */
7797 	cpu_vm_stats_fold(cpu);
7798 	return 0;
7799 }
7800 
7801 #ifdef CONFIG_NUMA
7802 int hashdist = HASHDIST_DEFAULT;
7803 
7804 static int __init set_hashdist(char *str)
7805 {
7806 	if (!str)
7807 		return 0;
7808 	hashdist = simple_strtoul(str, &str, 0);
7809 	return 1;
7810 }
7811 __setup("hashdist=", set_hashdist);
7812 #endif
7813 
7814 void __init page_alloc_init(void)
7815 {
7816 	int ret;
7817 
7818 #ifdef CONFIG_NUMA
7819 	if (num_node_state(N_MEMORY) == 1)
7820 		hashdist = 0;
7821 #endif
7822 
7823 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7824 					"mm/page_alloc:dead", NULL,
7825 					page_alloc_cpu_dead);
7826 	WARN_ON(ret < 0);
7827 }
7828 
7829 /*
7830  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7831  *	or min_free_kbytes changes.
7832  */
7833 static void calculate_totalreserve_pages(void)
7834 {
7835 	struct pglist_data *pgdat;
7836 	unsigned long reserve_pages = 0;
7837 	enum zone_type i, j;
7838 
7839 	for_each_online_pgdat(pgdat) {
7840 
7841 		pgdat->totalreserve_pages = 0;
7842 
7843 		for (i = 0; i < MAX_NR_ZONES; i++) {
7844 			struct zone *zone = pgdat->node_zones + i;
7845 			long max = 0;
7846 			unsigned long managed_pages = zone_managed_pages(zone);
7847 
7848 			/* Find valid and maximum lowmem_reserve in the zone */
7849 			for (j = i; j < MAX_NR_ZONES; j++) {
7850 				if (zone->lowmem_reserve[j] > max)
7851 					max = zone->lowmem_reserve[j];
7852 			}
7853 
7854 			/* we treat the high watermark as reserved pages. */
7855 			max += high_wmark_pages(zone);
7856 
7857 			if (max > managed_pages)
7858 				max = managed_pages;
7859 
7860 			pgdat->totalreserve_pages += max;
7861 
7862 			reserve_pages += max;
7863 		}
7864 	}
7865 	totalreserve_pages = reserve_pages;
7866 }
7867 
7868 /*
7869  * setup_per_zone_lowmem_reserve - called whenever
7870  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7871  *	has a correct pages reserved value, so an adequate number of
7872  *	pages are left in the zone after a successful __alloc_pages().
7873  */
7874 static void setup_per_zone_lowmem_reserve(void)
7875 {
7876 	struct pglist_data *pgdat;
7877 	enum zone_type i, j;
7878 
7879 	for_each_online_pgdat(pgdat) {
7880 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7881 			struct zone *zone = &pgdat->node_zones[i];
7882 			int ratio = sysctl_lowmem_reserve_ratio[i];
7883 			bool clear = !ratio || !zone_managed_pages(zone);
7884 			unsigned long managed_pages = 0;
7885 
7886 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
7887 				if (clear) {
7888 					zone->lowmem_reserve[j] = 0;
7889 				} else {
7890 					struct zone *upper_zone = &pgdat->node_zones[j];
7891 
7892 					managed_pages += zone_managed_pages(upper_zone);
7893 					zone->lowmem_reserve[j] = managed_pages / ratio;
7894 				}
7895 			}
7896 		}
7897 	}
7898 
7899 	/* update totalreserve_pages */
7900 	calculate_totalreserve_pages();
7901 }
7902 
7903 static void __setup_per_zone_wmarks(void)
7904 {
7905 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7906 	unsigned long lowmem_pages = 0;
7907 	struct zone *zone;
7908 	unsigned long flags;
7909 
7910 	/* Calculate total number of !ZONE_HIGHMEM pages */
7911 	for_each_zone(zone) {
7912 		if (!is_highmem(zone))
7913 			lowmem_pages += zone_managed_pages(zone);
7914 	}
7915 
7916 	for_each_zone(zone) {
7917 		u64 tmp;
7918 
7919 		spin_lock_irqsave(&zone->lock, flags);
7920 		tmp = (u64)pages_min * zone_managed_pages(zone);
7921 		do_div(tmp, lowmem_pages);
7922 		if (is_highmem(zone)) {
7923 			/*
7924 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7925 			 * need highmem pages, so cap pages_min to a small
7926 			 * value here.
7927 			 *
7928 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7929 			 * deltas control async page reclaim, and so should
7930 			 * not be capped for highmem.
7931 			 */
7932 			unsigned long min_pages;
7933 
7934 			min_pages = zone_managed_pages(zone) / 1024;
7935 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7936 			zone->_watermark[WMARK_MIN] = min_pages;
7937 		} else {
7938 			/*
7939 			 * If it's a lowmem zone, reserve a number of pages
7940 			 * proportionate to the zone's size.
7941 			 */
7942 			zone->_watermark[WMARK_MIN] = tmp;
7943 		}
7944 
7945 		/*
7946 		 * Set the kswapd watermarks distance according to the
7947 		 * scale factor in proportion to available memory, but
7948 		 * ensure a minimum size on small systems.
7949 		 */
7950 		tmp = max_t(u64, tmp >> 2,
7951 			    mult_frac(zone_managed_pages(zone),
7952 				      watermark_scale_factor, 10000));
7953 
7954 		zone->watermark_boost = 0;
7955 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7956 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7957 
7958 		spin_unlock_irqrestore(&zone->lock, flags);
7959 	}
7960 
7961 	/* update totalreserve_pages */
7962 	calculate_totalreserve_pages();
7963 }
7964 
7965 /**
7966  * setup_per_zone_wmarks - called when min_free_kbytes changes
7967  * or when memory is hot-{added|removed}
7968  *
7969  * Ensures that the watermark[min,low,high] values for each zone are set
7970  * correctly with respect to min_free_kbytes.
7971  */
7972 void setup_per_zone_wmarks(void)
7973 {
7974 	static DEFINE_SPINLOCK(lock);
7975 
7976 	spin_lock(&lock);
7977 	__setup_per_zone_wmarks();
7978 	spin_unlock(&lock);
7979 }
7980 
7981 /*
7982  * Initialise min_free_kbytes.
7983  *
7984  * For small machines we want it small (128k min).  For large machines
7985  * we want it large (256MB max).  But it is not linear, because network
7986  * bandwidth does not increase linearly with machine size.  We use
7987  *
7988  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7989  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7990  *
7991  * which yields
7992  *
7993  * 16MB:	512k
7994  * 32MB:	724k
7995  * 64MB:	1024k
7996  * 128MB:	1448k
7997  * 256MB:	2048k
7998  * 512MB:	2896k
7999  * 1024MB:	4096k
8000  * 2048MB:	5792k
8001  * 4096MB:	8192k
8002  * 8192MB:	11584k
8003  * 16384MB:	16384k
8004  */
8005 int __meminit init_per_zone_wmark_min(void)
8006 {
8007 	unsigned long lowmem_kbytes;
8008 	int new_min_free_kbytes;
8009 
8010 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8011 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8012 
8013 	if (new_min_free_kbytes > user_min_free_kbytes) {
8014 		min_free_kbytes = new_min_free_kbytes;
8015 		if (min_free_kbytes < 128)
8016 			min_free_kbytes = 128;
8017 		if (min_free_kbytes > 262144)
8018 			min_free_kbytes = 262144;
8019 	} else {
8020 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8021 				new_min_free_kbytes, user_min_free_kbytes);
8022 	}
8023 	setup_per_zone_wmarks();
8024 	refresh_zone_stat_thresholds();
8025 	setup_per_zone_lowmem_reserve();
8026 
8027 #ifdef CONFIG_NUMA
8028 	setup_min_unmapped_ratio();
8029 	setup_min_slab_ratio();
8030 #endif
8031 
8032 	khugepaged_min_free_kbytes_update();
8033 
8034 	return 0;
8035 }
8036 postcore_initcall(init_per_zone_wmark_min)
8037 
8038 /*
8039  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8040  *	that we can call two helper functions whenever min_free_kbytes
8041  *	changes.
8042  */
8043 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8044 		void *buffer, size_t *length, loff_t *ppos)
8045 {
8046 	int rc;
8047 
8048 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8049 	if (rc)
8050 		return rc;
8051 
8052 	if (write) {
8053 		user_min_free_kbytes = min_free_kbytes;
8054 		setup_per_zone_wmarks();
8055 	}
8056 	return 0;
8057 }
8058 
8059 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8060 		void *buffer, size_t *length, loff_t *ppos)
8061 {
8062 	int rc;
8063 
8064 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8065 	if (rc)
8066 		return rc;
8067 
8068 	if (write)
8069 		setup_per_zone_wmarks();
8070 
8071 	return 0;
8072 }
8073 
8074 #ifdef CONFIG_NUMA
8075 static void setup_min_unmapped_ratio(void)
8076 {
8077 	pg_data_t *pgdat;
8078 	struct zone *zone;
8079 
8080 	for_each_online_pgdat(pgdat)
8081 		pgdat->min_unmapped_pages = 0;
8082 
8083 	for_each_zone(zone)
8084 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8085 						         sysctl_min_unmapped_ratio) / 100;
8086 }
8087 
8088 
8089 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8090 		void *buffer, size_t *length, loff_t *ppos)
8091 {
8092 	int rc;
8093 
8094 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8095 	if (rc)
8096 		return rc;
8097 
8098 	setup_min_unmapped_ratio();
8099 
8100 	return 0;
8101 }
8102 
8103 static void setup_min_slab_ratio(void)
8104 {
8105 	pg_data_t *pgdat;
8106 	struct zone *zone;
8107 
8108 	for_each_online_pgdat(pgdat)
8109 		pgdat->min_slab_pages = 0;
8110 
8111 	for_each_zone(zone)
8112 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8113 						     sysctl_min_slab_ratio) / 100;
8114 }
8115 
8116 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8117 		void *buffer, size_t *length, loff_t *ppos)
8118 {
8119 	int rc;
8120 
8121 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8122 	if (rc)
8123 		return rc;
8124 
8125 	setup_min_slab_ratio();
8126 
8127 	return 0;
8128 }
8129 #endif
8130 
8131 /*
8132  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8133  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8134  *	whenever sysctl_lowmem_reserve_ratio changes.
8135  *
8136  * The reserve ratio obviously has absolutely no relation with the
8137  * minimum watermarks. The lowmem reserve ratio can only make sense
8138  * if in function of the boot time zone sizes.
8139  */
8140 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8141 		void *buffer, size_t *length, loff_t *ppos)
8142 {
8143 	int i;
8144 
8145 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8146 
8147 	for (i = 0; i < MAX_NR_ZONES; i++) {
8148 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8149 			sysctl_lowmem_reserve_ratio[i] = 0;
8150 	}
8151 
8152 	setup_per_zone_lowmem_reserve();
8153 	return 0;
8154 }
8155 
8156 /*
8157  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8158  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8159  * pagelist can have before it gets flushed back to buddy allocator.
8160  */
8161 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8162 		void *buffer, size_t *length, loff_t *ppos)
8163 {
8164 	struct zone *zone;
8165 	int old_percpu_pagelist_fraction;
8166 	int ret;
8167 
8168 	mutex_lock(&pcp_batch_high_lock);
8169 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8170 
8171 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8172 	if (!write || ret < 0)
8173 		goto out;
8174 
8175 	/* Sanity checking to avoid pcp imbalance */
8176 	if (percpu_pagelist_fraction &&
8177 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8178 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8179 		ret = -EINVAL;
8180 		goto out;
8181 	}
8182 
8183 	/* No change? */
8184 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8185 		goto out;
8186 
8187 	for_each_populated_zone(zone)
8188 		zone_set_pageset_high_and_batch(zone);
8189 out:
8190 	mutex_unlock(&pcp_batch_high_lock);
8191 	return ret;
8192 }
8193 
8194 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8195 /*
8196  * Returns the number of pages that arch has reserved but
8197  * is not known to alloc_large_system_hash().
8198  */
8199 static unsigned long __init arch_reserved_kernel_pages(void)
8200 {
8201 	return 0;
8202 }
8203 #endif
8204 
8205 /*
8206  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8207  * machines. As memory size is increased the scale is also increased but at
8208  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8209  * quadruples the scale is increased by one, which means the size of hash table
8210  * only doubles, instead of quadrupling as well.
8211  * Because 32-bit systems cannot have large physical memory, where this scaling
8212  * makes sense, it is disabled on such platforms.
8213  */
8214 #if __BITS_PER_LONG > 32
8215 #define ADAPT_SCALE_BASE	(64ul << 30)
8216 #define ADAPT_SCALE_SHIFT	2
8217 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8218 #endif
8219 
8220 /*
8221  * allocate a large system hash table from bootmem
8222  * - it is assumed that the hash table must contain an exact power-of-2
8223  *   quantity of entries
8224  * - limit is the number of hash buckets, not the total allocation size
8225  */
8226 void *__init alloc_large_system_hash(const char *tablename,
8227 				     unsigned long bucketsize,
8228 				     unsigned long numentries,
8229 				     int scale,
8230 				     int flags,
8231 				     unsigned int *_hash_shift,
8232 				     unsigned int *_hash_mask,
8233 				     unsigned long low_limit,
8234 				     unsigned long high_limit)
8235 {
8236 	unsigned long long max = high_limit;
8237 	unsigned long log2qty, size;
8238 	void *table = NULL;
8239 	gfp_t gfp_flags;
8240 	bool virt;
8241 
8242 	/* allow the kernel cmdline to have a say */
8243 	if (!numentries) {
8244 		/* round applicable memory size up to nearest megabyte */
8245 		numentries = nr_kernel_pages;
8246 		numentries -= arch_reserved_kernel_pages();
8247 
8248 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8249 		if (PAGE_SHIFT < 20)
8250 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8251 
8252 #if __BITS_PER_LONG > 32
8253 		if (!high_limit) {
8254 			unsigned long adapt;
8255 
8256 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8257 			     adapt <<= ADAPT_SCALE_SHIFT)
8258 				scale++;
8259 		}
8260 #endif
8261 
8262 		/* limit to 1 bucket per 2^scale bytes of low memory */
8263 		if (scale > PAGE_SHIFT)
8264 			numentries >>= (scale - PAGE_SHIFT);
8265 		else
8266 			numentries <<= (PAGE_SHIFT - scale);
8267 
8268 		/* Make sure we've got at least a 0-order allocation.. */
8269 		if (unlikely(flags & HASH_SMALL)) {
8270 			/* Makes no sense without HASH_EARLY */
8271 			WARN_ON(!(flags & HASH_EARLY));
8272 			if (!(numentries >> *_hash_shift)) {
8273 				numentries = 1UL << *_hash_shift;
8274 				BUG_ON(!numentries);
8275 			}
8276 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8277 			numentries = PAGE_SIZE / bucketsize;
8278 	}
8279 	numentries = roundup_pow_of_two(numentries);
8280 
8281 	/* limit allocation size to 1/16 total memory by default */
8282 	if (max == 0) {
8283 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8284 		do_div(max, bucketsize);
8285 	}
8286 	max = min(max, 0x80000000ULL);
8287 
8288 	if (numentries < low_limit)
8289 		numentries = low_limit;
8290 	if (numentries > max)
8291 		numentries = max;
8292 
8293 	log2qty = ilog2(numentries);
8294 
8295 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8296 	do {
8297 		virt = false;
8298 		size = bucketsize << log2qty;
8299 		if (flags & HASH_EARLY) {
8300 			if (flags & HASH_ZERO)
8301 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8302 			else
8303 				table = memblock_alloc_raw(size,
8304 							   SMP_CACHE_BYTES);
8305 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8306 			table = __vmalloc(size, gfp_flags);
8307 			virt = true;
8308 		} else {
8309 			/*
8310 			 * If bucketsize is not a power-of-two, we may free
8311 			 * some pages at the end of hash table which
8312 			 * alloc_pages_exact() automatically does
8313 			 */
8314 			table = alloc_pages_exact(size, gfp_flags);
8315 			kmemleak_alloc(table, size, 1, gfp_flags);
8316 		}
8317 	} while (!table && size > PAGE_SIZE && --log2qty);
8318 
8319 	if (!table)
8320 		panic("Failed to allocate %s hash table\n", tablename);
8321 
8322 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8323 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8324 		virt ? "vmalloc" : "linear");
8325 
8326 	if (_hash_shift)
8327 		*_hash_shift = log2qty;
8328 	if (_hash_mask)
8329 		*_hash_mask = (1 << log2qty) - 1;
8330 
8331 	return table;
8332 }
8333 
8334 /*
8335  * This function checks whether pageblock includes unmovable pages or not.
8336  *
8337  * PageLRU check without isolation or lru_lock could race so that
8338  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8339  * check without lock_page also may miss some movable non-lru pages at
8340  * race condition. So you can't expect this function should be exact.
8341  *
8342  * Returns a page without holding a reference. If the caller wants to
8343  * dereference that page (e.g., dumping), it has to make sure that it
8344  * cannot get removed (e.g., via memory unplug) concurrently.
8345  *
8346  */
8347 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8348 				 int migratetype, int flags)
8349 {
8350 	unsigned long iter = 0;
8351 	unsigned long pfn = page_to_pfn(page);
8352 	unsigned long offset = pfn % pageblock_nr_pages;
8353 
8354 	if (is_migrate_cma_page(page)) {
8355 		/*
8356 		 * CMA allocations (alloc_contig_range) really need to mark
8357 		 * isolate CMA pageblocks even when they are not movable in fact
8358 		 * so consider them movable here.
8359 		 */
8360 		if (is_migrate_cma(migratetype))
8361 			return NULL;
8362 
8363 		return page;
8364 	}
8365 
8366 	for (; iter < pageblock_nr_pages - offset; iter++) {
8367 		if (!pfn_valid_within(pfn + iter))
8368 			continue;
8369 
8370 		page = pfn_to_page(pfn + iter);
8371 
8372 		/*
8373 		 * Both, bootmem allocations and memory holes are marked
8374 		 * PG_reserved and are unmovable. We can even have unmovable
8375 		 * allocations inside ZONE_MOVABLE, for example when
8376 		 * specifying "movablecore".
8377 		 */
8378 		if (PageReserved(page))
8379 			return page;
8380 
8381 		/*
8382 		 * If the zone is movable and we have ruled out all reserved
8383 		 * pages then it should be reasonably safe to assume the rest
8384 		 * is movable.
8385 		 */
8386 		if (zone_idx(zone) == ZONE_MOVABLE)
8387 			continue;
8388 
8389 		/*
8390 		 * Hugepages are not in LRU lists, but they're movable.
8391 		 * THPs are on the LRU, but need to be counted as #small pages.
8392 		 * We need not scan over tail pages because we don't
8393 		 * handle each tail page individually in migration.
8394 		 */
8395 		if (PageHuge(page) || PageTransCompound(page)) {
8396 			struct page *head = compound_head(page);
8397 			unsigned int skip_pages;
8398 
8399 			if (PageHuge(page)) {
8400 				if (!hugepage_migration_supported(page_hstate(head)))
8401 					return page;
8402 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8403 				return page;
8404 			}
8405 
8406 			skip_pages = compound_nr(head) - (page - head);
8407 			iter += skip_pages - 1;
8408 			continue;
8409 		}
8410 
8411 		/*
8412 		 * We can't use page_count without pin a page
8413 		 * because another CPU can free compound page.
8414 		 * This check already skips compound tails of THP
8415 		 * because their page->_refcount is zero at all time.
8416 		 */
8417 		if (!page_ref_count(page)) {
8418 			if (PageBuddy(page))
8419 				iter += (1 << buddy_order(page)) - 1;
8420 			continue;
8421 		}
8422 
8423 		/*
8424 		 * The HWPoisoned page may be not in buddy system, and
8425 		 * page_count() is not 0.
8426 		 */
8427 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8428 			continue;
8429 
8430 		/*
8431 		 * We treat all PageOffline() pages as movable when offlining
8432 		 * to give drivers a chance to decrement their reference count
8433 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8434 		 * can be offlined as there are no direct references anymore.
8435 		 * For actually unmovable PageOffline() where the driver does
8436 		 * not support this, we will fail later when trying to actually
8437 		 * move these pages that still have a reference count > 0.
8438 		 * (false negatives in this function only)
8439 		 */
8440 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8441 			continue;
8442 
8443 		if (__PageMovable(page) || PageLRU(page))
8444 			continue;
8445 
8446 		/*
8447 		 * If there are RECLAIMABLE pages, we need to check
8448 		 * it.  But now, memory offline itself doesn't call
8449 		 * shrink_node_slabs() and it still to be fixed.
8450 		 */
8451 		return page;
8452 	}
8453 	return NULL;
8454 }
8455 
8456 #ifdef CONFIG_CONTIG_ALLOC
8457 static unsigned long pfn_max_align_down(unsigned long pfn)
8458 {
8459 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8460 			     pageblock_nr_pages) - 1);
8461 }
8462 
8463 static unsigned long pfn_max_align_up(unsigned long pfn)
8464 {
8465 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8466 				pageblock_nr_pages));
8467 }
8468 
8469 /* [start, end) must belong to a single zone. */
8470 static int __alloc_contig_migrate_range(struct compact_control *cc,
8471 					unsigned long start, unsigned long end)
8472 {
8473 	/* This function is based on compact_zone() from compaction.c. */
8474 	unsigned int nr_reclaimed;
8475 	unsigned long pfn = start;
8476 	unsigned int tries = 0;
8477 	int ret = 0;
8478 	struct migration_target_control mtc = {
8479 		.nid = zone_to_nid(cc->zone),
8480 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8481 	};
8482 
8483 	migrate_prep();
8484 
8485 	while (pfn < end || !list_empty(&cc->migratepages)) {
8486 		if (fatal_signal_pending(current)) {
8487 			ret = -EINTR;
8488 			break;
8489 		}
8490 
8491 		if (list_empty(&cc->migratepages)) {
8492 			cc->nr_migratepages = 0;
8493 			pfn = isolate_migratepages_range(cc, pfn, end);
8494 			if (!pfn) {
8495 				ret = -EINTR;
8496 				break;
8497 			}
8498 			tries = 0;
8499 		} else if (++tries == 5) {
8500 			ret = ret < 0 ? ret : -EBUSY;
8501 			break;
8502 		}
8503 
8504 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8505 							&cc->migratepages);
8506 		cc->nr_migratepages -= nr_reclaimed;
8507 
8508 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8509 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8510 	}
8511 	if (ret < 0) {
8512 		putback_movable_pages(&cc->migratepages);
8513 		return ret;
8514 	}
8515 	return 0;
8516 }
8517 
8518 /**
8519  * alloc_contig_range() -- tries to allocate given range of pages
8520  * @start:	start PFN to allocate
8521  * @end:	one-past-the-last PFN to allocate
8522  * @migratetype:	migratetype of the underlaying pageblocks (either
8523  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8524  *			in range must have the same migratetype and it must
8525  *			be either of the two.
8526  * @gfp_mask:	GFP mask to use during compaction
8527  *
8528  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8529  * aligned.  The PFN range must belong to a single zone.
8530  *
8531  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8532  * pageblocks in the range.  Once isolated, the pageblocks should not
8533  * be modified by others.
8534  *
8535  * Return: zero on success or negative error code.  On success all
8536  * pages which PFN is in [start, end) are allocated for the caller and
8537  * need to be freed with free_contig_range().
8538  */
8539 int alloc_contig_range(unsigned long start, unsigned long end,
8540 		       unsigned migratetype, gfp_t gfp_mask)
8541 {
8542 	unsigned long outer_start, outer_end;
8543 	unsigned int order;
8544 	int ret = 0;
8545 
8546 	struct compact_control cc = {
8547 		.nr_migratepages = 0,
8548 		.order = -1,
8549 		.zone = page_zone(pfn_to_page(start)),
8550 		.mode = MIGRATE_SYNC,
8551 		.ignore_skip_hint = true,
8552 		.no_set_skip_hint = true,
8553 		.gfp_mask = current_gfp_context(gfp_mask),
8554 		.alloc_contig = true,
8555 	};
8556 	INIT_LIST_HEAD(&cc.migratepages);
8557 
8558 	/*
8559 	 * What we do here is we mark all pageblocks in range as
8560 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8561 	 * have different sizes, and due to the way page allocator
8562 	 * work, we align the range to biggest of the two pages so
8563 	 * that page allocator won't try to merge buddies from
8564 	 * different pageblocks and change MIGRATE_ISOLATE to some
8565 	 * other migration type.
8566 	 *
8567 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8568 	 * migrate the pages from an unaligned range (ie. pages that
8569 	 * we are interested in).  This will put all the pages in
8570 	 * range back to page allocator as MIGRATE_ISOLATE.
8571 	 *
8572 	 * When this is done, we take the pages in range from page
8573 	 * allocator removing them from the buddy system.  This way
8574 	 * page allocator will never consider using them.
8575 	 *
8576 	 * This lets us mark the pageblocks back as
8577 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8578 	 * aligned range but not in the unaligned, original range are
8579 	 * put back to page allocator so that buddy can use them.
8580 	 */
8581 
8582 	ret = start_isolate_page_range(pfn_max_align_down(start),
8583 				       pfn_max_align_up(end), migratetype, 0);
8584 	if (ret)
8585 		return ret;
8586 
8587 	drain_all_pages(cc.zone);
8588 
8589 	/*
8590 	 * In case of -EBUSY, we'd like to know which page causes problem.
8591 	 * So, just fall through. test_pages_isolated() has a tracepoint
8592 	 * which will report the busy page.
8593 	 *
8594 	 * It is possible that busy pages could become available before
8595 	 * the call to test_pages_isolated, and the range will actually be
8596 	 * allocated.  So, if we fall through be sure to clear ret so that
8597 	 * -EBUSY is not accidentally used or returned to caller.
8598 	 */
8599 	ret = __alloc_contig_migrate_range(&cc, start, end);
8600 	if (ret && ret != -EBUSY)
8601 		goto done;
8602 	ret =0;
8603 
8604 	/*
8605 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8606 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8607 	 * more, all pages in [start, end) are free in page allocator.
8608 	 * What we are going to do is to allocate all pages from
8609 	 * [start, end) (that is remove them from page allocator).
8610 	 *
8611 	 * The only problem is that pages at the beginning and at the
8612 	 * end of interesting range may be not aligned with pages that
8613 	 * page allocator holds, ie. they can be part of higher order
8614 	 * pages.  Because of this, we reserve the bigger range and
8615 	 * once this is done free the pages we are not interested in.
8616 	 *
8617 	 * We don't have to hold zone->lock here because the pages are
8618 	 * isolated thus they won't get removed from buddy.
8619 	 */
8620 
8621 	lru_add_drain_all();
8622 
8623 	order = 0;
8624 	outer_start = start;
8625 	while (!PageBuddy(pfn_to_page(outer_start))) {
8626 		if (++order >= MAX_ORDER) {
8627 			outer_start = start;
8628 			break;
8629 		}
8630 		outer_start &= ~0UL << order;
8631 	}
8632 
8633 	if (outer_start != start) {
8634 		order = buddy_order(pfn_to_page(outer_start));
8635 
8636 		/*
8637 		 * outer_start page could be small order buddy page and
8638 		 * it doesn't include start page. Adjust outer_start
8639 		 * in this case to report failed page properly
8640 		 * on tracepoint in test_pages_isolated()
8641 		 */
8642 		if (outer_start + (1UL << order) <= start)
8643 			outer_start = start;
8644 	}
8645 
8646 	/* Make sure the range is really isolated. */
8647 	if (test_pages_isolated(outer_start, end, 0)) {
8648 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8649 			__func__, outer_start, end);
8650 		ret = -EBUSY;
8651 		goto done;
8652 	}
8653 
8654 	/* Grab isolated pages from freelists. */
8655 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8656 	if (!outer_end) {
8657 		ret = -EBUSY;
8658 		goto done;
8659 	}
8660 
8661 	/* Free head and tail (if any) */
8662 	if (start != outer_start)
8663 		free_contig_range(outer_start, start - outer_start);
8664 	if (end != outer_end)
8665 		free_contig_range(end, outer_end - end);
8666 
8667 done:
8668 	undo_isolate_page_range(pfn_max_align_down(start),
8669 				pfn_max_align_up(end), migratetype);
8670 	return ret;
8671 }
8672 EXPORT_SYMBOL(alloc_contig_range);
8673 
8674 static int __alloc_contig_pages(unsigned long start_pfn,
8675 				unsigned long nr_pages, gfp_t gfp_mask)
8676 {
8677 	unsigned long end_pfn = start_pfn + nr_pages;
8678 
8679 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8680 				  gfp_mask);
8681 }
8682 
8683 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8684 				   unsigned long nr_pages)
8685 {
8686 	unsigned long i, end_pfn = start_pfn + nr_pages;
8687 	struct page *page;
8688 
8689 	for (i = start_pfn; i < end_pfn; i++) {
8690 		page = pfn_to_online_page(i);
8691 		if (!page)
8692 			return false;
8693 
8694 		if (page_zone(page) != z)
8695 			return false;
8696 
8697 		if (PageReserved(page))
8698 			return false;
8699 
8700 		if (page_count(page) > 0)
8701 			return false;
8702 
8703 		if (PageHuge(page))
8704 			return false;
8705 	}
8706 	return true;
8707 }
8708 
8709 static bool zone_spans_last_pfn(const struct zone *zone,
8710 				unsigned long start_pfn, unsigned long nr_pages)
8711 {
8712 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8713 
8714 	return zone_spans_pfn(zone, last_pfn);
8715 }
8716 
8717 /**
8718  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8719  * @nr_pages:	Number of contiguous pages to allocate
8720  * @gfp_mask:	GFP mask to limit search and used during compaction
8721  * @nid:	Target node
8722  * @nodemask:	Mask for other possible nodes
8723  *
8724  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8725  * on an applicable zonelist to find a contiguous pfn range which can then be
8726  * tried for allocation with alloc_contig_range(). This routine is intended
8727  * for allocation requests which can not be fulfilled with the buddy allocator.
8728  *
8729  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8730  * power of two then the alignment is guaranteed to be to the given nr_pages
8731  * (e.g. 1GB request would be aligned to 1GB).
8732  *
8733  * Allocated pages can be freed with free_contig_range() or by manually calling
8734  * __free_page() on each allocated page.
8735  *
8736  * Return: pointer to contiguous pages on success, or NULL if not successful.
8737  */
8738 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8739 				int nid, nodemask_t *nodemask)
8740 {
8741 	unsigned long ret, pfn, flags;
8742 	struct zonelist *zonelist;
8743 	struct zone *zone;
8744 	struct zoneref *z;
8745 
8746 	zonelist = node_zonelist(nid, gfp_mask);
8747 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8748 					gfp_zone(gfp_mask), nodemask) {
8749 		spin_lock_irqsave(&zone->lock, flags);
8750 
8751 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8752 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8753 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8754 				/*
8755 				 * We release the zone lock here because
8756 				 * alloc_contig_range() will also lock the zone
8757 				 * at some point. If there's an allocation
8758 				 * spinning on this lock, it may win the race
8759 				 * and cause alloc_contig_range() to fail...
8760 				 */
8761 				spin_unlock_irqrestore(&zone->lock, flags);
8762 				ret = __alloc_contig_pages(pfn, nr_pages,
8763 							gfp_mask);
8764 				if (!ret)
8765 					return pfn_to_page(pfn);
8766 				spin_lock_irqsave(&zone->lock, flags);
8767 			}
8768 			pfn += nr_pages;
8769 		}
8770 		spin_unlock_irqrestore(&zone->lock, flags);
8771 	}
8772 	return NULL;
8773 }
8774 #endif /* CONFIG_CONTIG_ALLOC */
8775 
8776 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8777 {
8778 	unsigned int count = 0;
8779 
8780 	for (; nr_pages--; pfn++) {
8781 		struct page *page = pfn_to_page(pfn);
8782 
8783 		count += page_count(page) != 1;
8784 		__free_page(page);
8785 	}
8786 	WARN(count != 0, "%d pages are still in use!\n", count);
8787 }
8788 EXPORT_SYMBOL(free_contig_range);
8789 
8790 /*
8791  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8792  * page high values need to be recalulated.
8793  */
8794 void __meminit zone_pcp_update(struct zone *zone)
8795 {
8796 	mutex_lock(&pcp_batch_high_lock);
8797 	zone_set_pageset_high_and_batch(zone);
8798 	mutex_unlock(&pcp_batch_high_lock);
8799 }
8800 
8801 /*
8802  * Effectively disable pcplists for the zone by setting the high limit to 0
8803  * and draining all cpus. A concurrent page freeing on another CPU that's about
8804  * to put the page on pcplist will either finish before the drain and the page
8805  * will be drained, or observe the new high limit and skip the pcplist.
8806  *
8807  * Must be paired with a call to zone_pcp_enable().
8808  */
8809 void zone_pcp_disable(struct zone *zone)
8810 {
8811 	mutex_lock(&pcp_batch_high_lock);
8812 	__zone_set_pageset_high_and_batch(zone, 0, 1);
8813 	__drain_all_pages(zone, true);
8814 }
8815 
8816 void zone_pcp_enable(struct zone *zone)
8817 {
8818 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8819 	mutex_unlock(&pcp_batch_high_lock);
8820 }
8821 
8822 void zone_pcp_reset(struct zone *zone)
8823 {
8824 	unsigned long flags;
8825 	int cpu;
8826 	struct per_cpu_pageset *pset;
8827 
8828 	/* avoid races with drain_pages()  */
8829 	local_irq_save(flags);
8830 	if (zone->pageset != &boot_pageset) {
8831 		for_each_online_cpu(cpu) {
8832 			pset = per_cpu_ptr(zone->pageset, cpu);
8833 			drain_zonestat(zone, pset);
8834 		}
8835 		free_percpu(zone->pageset);
8836 		zone->pageset = &boot_pageset;
8837 	}
8838 	local_irq_restore(flags);
8839 }
8840 
8841 #ifdef CONFIG_MEMORY_HOTREMOVE
8842 /*
8843  * All pages in the range must be in a single zone, must not contain holes,
8844  * must span full sections, and must be isolated before calling this function.
8845  */
8846 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8847 {
8848 	unsigned long pfn = start_pfn;
8849 	struct page *page;
8850 	struct zone *zone;
8851 	unsigned int order;
8852 	unsigned long flags;
8853 
8854 	offline_mem_sections(pfn, end_pfn);
8855 	zone = page_zone(pfn_to_page(pfn));
8856 	spin_lock_irqsave(&zone->lock, flags);
8857 	while (pfn < end_pfn) {
8858 		page = pfn_to_page(pfn);
8859 		/*
8860 		 * The HWPoisoned page may be not in buddy system, and
8861 		 * page_count() is not 0.
8862 		 */
8863 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8864 			pfn++;
8865 			continue;
8866 		}
8867 		/*
8868 		 * At this point all remaining PageOffline() pages have a
8869 		 * reference count of 0 and can simply be skipped.
8870 		 */
8871 		if (PageOffline(page)) {
8872 			BUG_ON(page_count(page));
8873 			BUG_ON(PageBuddy(page));
8874 			pfn++;
8875 			continue;
8876 		}
8877 
8878 		BUG_ON(page_count(page));
8879 		BUG_ON(!PageBuddy(page));
8880 		order = buddy_order(page);
8881 		del_page_from_free_list(page, zone, order);
8882 		pfn += (1 << order);
8883 	}
8884 	spin_unlock_irqrestore(&zone->lock, flags);
8885 }
8886 #endif
8887 
8888 bool is_free_buddy_page(struct page *page)
8889 {
8890 	struct zone *zone = page_zone(page);
8891 	unsigned long pfn = page_to_pfn(page);
8892 	unsigned long flags;
8893 	unsigned int order;
8894 
8895 	spin_lock_irqsave(&zone->lock, flags);
8896 	for (order = 0; order < MAX_ORDER; order++) {
8897 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8898 
8899 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8900 			break;
8901 	}
8902 	spin_unlock_irqrestore(&zone->lock, flags);
8903 
8904 	return order < MAX_ORDER;
8905 }
8906 
8907 #ifdef CONFIG_MEMORY_FAILURE
8908 /*
8909  * Break down a higher-order page in sub-pages, and keep our target out of
8910  * buddy allocator.
8911  */
8912 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8913 				   struct page *target, int low, int high,
8914 				   int migratetype)
8915 {
8916 	unsigned long size = 1 << high;
8917 	struct page *current_buddy, *next_page;
8918 
8919 	while (high > low) {
8920 		high--;
8921 		size >>= 1;
8922 
8923 		if (target >= &page[size]) {
8924 			next_page = page + size;
8925 			current_buddy = page;
8926 		} else {
8927 			next_page = page;
8928 			current_buddy = page + size;
8929 		}
8930 
8931 		if (set_page_guard(zone, current_buddy, high, migratetype))
8932 			continue;
8933 
8934 		if (current_buddy != target) {
8935 			add_to_free_list(current_buddy, zone, high, migratetype);
8936 			set_buddy_order(current_buddy, high);
8937 			page = next_page;
8938 		}
8939 	}
8940 }
8941 
8942 /*
8943  * Take a page that will be marked as poisoned off the buddy allocator.
8944  */
8945 bool take_page_off_buddy(struct page *page)
8946 {
8947 	struct zone *zone = page_zone(page);
8948 	unsigned long pfn = page_to_pfn(page);
8949 	unsigned long flags;
8950 	unsigned int order;
8951 	bool ret = false;
8952 
8953 	spin_lock_irqsave(&zone->lock, flags);
8954 	for (order = 0; order < MAX_ORDER; order++) {
8955 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8956 		int page_order = buddy_order(page_head);
8957 
8958 		if (PageBuddy(page_head) && page_order >= order) {
8959 			unsigned long pfn_head = page_to_pfn(page_head);
8960 			int migratetype = get_pfnblock_migratetype(page_head,
8961 								   pfn_head);
8962 
8963 			del_page_from_free_list(page_head, zone, page_order);
8964 			break_down_buddy_pages(zone, page_head, page, 0,
8965 						page_order, migratetype);
8966 			ret = true;
8967 			break;
8968 		}
8969 		if (page_count(page_head) > 0)
8970 			break;
8971 	}
8972 	spin_unlock_irqrestore(&zone->lock, flags);
8973 	return ret;
8974 }
8975 #endif
8976