1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 76 #include <asm/sections.h> 77 #include <asm/tlbflush.h> 78 #include <asm/div64.h> 79 #include "internal.h" 80 #include "shuffle.h" 81 #include "page_reporting.h" 82 83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 84 typedef int __bitwise fpi_t; 85 86 /* No special request */ 87 #define FPI_NONE ((__force fpi_t)0) 88 89 /* 90 * Skip free page reporting notification for the (possibly merged) page. 91 * This does not hinder free page reporting from grabbing the page, 92 * reporting it and marking it "reported" - it only skips notifying 93 * the free page reporting infrastructure about a newly freed page. For 94 * example, used when temporarily pulling a page from a freelist and 95 * putting it back unmodified. 96 */ 97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 98 99 /* 100 * Place the (possibly merged) page to the tail of the freelist. Will ignore 101 * page shuffling (relevant code - e.g., memory onlining - is expected to 102 * shuffle the whole zone). 103 * 104 * Note: No code should rely on this flag for correctness - it's purely 105 * to allow for optimizations when handing back either fresh pages 106 * (memory onlining) or untouched pages (page isolation, free page 107 * reporting). 108 */ 109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 110 111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 112 static DEFINE_MUTEX(pcp_batch_high_lock); 113 #define MIN_PERCPU_PAGELIST_FRACTION (8) 114 115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 116 DEFINE_PER_CPU(int, numa_node); 117 EXPORT_PER_CPU_SYMBOL(numa_node); 118 #endif 119 120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 121 122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 123 /* 124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 127 * defined in <linux/topology.h>. 128 */ 129 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 130 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 131 #endif 132 133 /* work_structs for global per-cpu drains */ 134 struct pcpu_drain { 135 struct zone *zone; 136 struct work_struct work; 137 }; 138 static DEFINE_MUTEX(pcpu_drain_mutex); 139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 140 141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 142 volatile unsigned long latent_entropy __latent_entropy; 143 EXPORT_SYMBOL(latent_entropy); 144 #endif 145 146 /* 147 * Array of node states. 148 */ 149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 150 [N_POSSIBLE] = NODE_MASK_ALL, 151 [N_ONLINE] = { { [0] = 1UL } }, 152 #ifndef CONFIG_NUMA 153 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 154 #ifdef CONFIG_HIGHMEM 155 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 156 #endif 157 [N_MEMORY] = { { [0] = 1UL } }, 158 [N_CPU] = { { [0] = 1UL } }, 159 #endif /* NUMA */ 160 }; 161 EXPORT_SYMBOL(node_states); 162 163 atomic_long_t _totalram_pages __read_mostly; 164 EXPORT_SYMBOL(_totalram_pages); 165 unsigned long totalreserve_pages __read_mostly; 166 unsigned long totalcma_pages __read_mostly; 167 168 int percpu_pagelist_fraction; 169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 170 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 171 EXPORT_SYMBOL(init_on_alloc); 172 173 DEFINE_STATIC_KEY_FALSE(init_on_free); 174 EXPORT_SYMBOL(init_on_free); 175 176 static bool _init_on_alloc_enabled_early __read_mostly 177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 178 static int __init early_init_on_alloc(char *buf) 179 { 180 181 return kstrtobool(buf, &_init_on_alloc_enabled_early); 182 } 183 early_param("init_on_alloc", early_init_on_alloc); 184 185 static bool _init_on_free_enabled_early __read_mostly 186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 187 static int __init early_init_on_free(char *buf) 188 { 189 return kstrtobool(buf, &_init_on_free_enabled_early); 190 } 191 early_param("init_on_free", early_init_on_free); 192 193 /* 194 * A cached value of the page's pageblock's migratetype, used when the page is 195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 196 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 197 * Also the migratetype set in the page does not necessarily match the pcplist 198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 199 * other index - this ensures that it will be put on the correct CMA freelist. 200 */ 201 static inline int get_pcppage_migratetype(struct page *page) 202 { 203 return page->index; 204 } 205 206 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 207 { 208 page->index = migratetype; 209 } 210 211 #ifdef CONFIG_PM_SLEEP 212 /* 213 * The following functions are used by the suspend/hibernate code to temporarily 214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 215 * while devices are suspended. To avoid races with the suspend/hibernate code, 216 * they should always be called with system_transition_mutex held 217 * (gfp_allowed_mask also should only be modified with system_transition_mutex 218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 219 * with that modification). 220 */ 221 222 static gfp_t saved_gfp_mask; 223 224 void pm_restore_gfp_mask(void) 225 { 226 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 227 if (saved_gfp_mask) { 228 gfp_allowed_mask = saved_gfp_mask; 229 saved_gfp_mask = 0; 230 } 231 } 232 233 void pm_restrict_gfp_mask(void) 234 { 235 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 236 WARN_ON(saved_gfp_mask); 237 saved_gfp_mask = gfp_allowed_mask; 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 239 } 240 241 bool pm_suspended_storage(void) 242 { 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 244 return false; 245 return true; 246 } 247 #endif /* CONFIG_PM_SLEEP */ 248 249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 250 unsigned int pageblock_order __read_mostly; 251 #endif 252 253 static void __free_pages_ok(struct page *page, unsigned int order, 254 fpi_t fpi_flags); 255 256 /* 257 * results with 256, 32 in the lowmem_reserve sysctl: 258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 259 * 1G machine -> (16M dma, 784M normal, 224M high) 260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 263 * 264 * TBD: should special case ZONE_DMA32 machines here - in those we normally 265 * don't need any ZONE_NORMAL reservation 266 */ 267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 268 #ifdef CONFIG_ZONE_DMA 269 [ZONE_DMA] = 256, 270 #endif 271 #ifdef CONFIG_ZONE_DMA32 272 [ZONE_DMA32] = 256, 273 #endif 274 [ZONE_NORMAL] = 32, 275 #ifdef CONFIG_HIGHMEM 276 [ZONE_HIGHMEM] = 0, 277 #endif 278 [ZONE_MOVABLE] = 0, 279 }; 280 281 static char * const zone_names[MAX_NR_ZONES] = { 282 #ifdef CONFIG_ZONE_DMA 283 "DMA", 284 #endif 285 #ifdef CONFIG_ZONE_DMA32 286 "DMA32", 287 #endif 288 "Normal", 289 #ifdef CONFIG_HIGHMEM 290 "HighMem", 291 #endif 292 "Movable", 293 #ifdef CONFIG_ZONE_DEVICE 294 "Device", 295 #endif 296 }; 297 298 const char * const migratetype_names[MIGRATE_TYPES] = { 299 "Unmovable", 300 "Movable", 301 "Reclaimable", 302 "HighAtomic", 303 #ifdef CONFIG_CMA 304 "CMA", 305 #endif 306 #ifdef CONFIG_MEMORY_ISOLATION 307 "Isolate", 308 #endif 309 }; 310 311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 312 [NULL_COMPOUND_DTOR] = NULL, 313 [COMPOUND_PAGE_DTOR] = free_compound_page, 314 #ifdef CONFIG_HUGETLB_PAGE 315 [HUGETLB_PAGE_DTOR] = free_huge_page, 316 #endif 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 319 #endif 320 }; 321 322 int min_free_kbytes = 1024; 323 int user_min_free_kbytes = -1; 324 #ifdef CONFIG_DISCONTIGMEM 325 /* 326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 327 * are not on separate NUMA nodes. Functionally this works but with 328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 329 * quite small. By default, do not boost watermarks on discontigmem as in 330 * many cases very high-order allocations like THP are likely to be 331 * unsupported and the premature reclaim offsets the advantage of long-term 332 * fragmentation avoidance. 333 */ 334 int watermark_boost_factor __read_mostly; 335 #else 336 int watermark_boost_factor __read_mostly = 15000; 337 #endif 338 int watermark_scale_factor = 10; 339 340 static unsigned long nr_kernel_pages __initdata; 341 static unsigned long nr_all_pages __initdata; 342 static unsigned long dma_reserve __initdata; 343 344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 346 static unsigned long required_kernelcore __initdata; 347 static unsigned long required_kernelcore_percent __initdata; 348 static unsigned long required_movablecore __initdata; 349 static unsigned long required_movablecore_percent __initdata; 350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 351 static bool mirrored_kernelcore __meminitdata; 352 353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 354 int movable_zone; 355 EXPORT_SYMBOL(movable_zone); 356 357 #if MAX_NUMNODES > 1 358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 359 unsigned int nr_online_nodes __read_mostly = 1; 360 EXPORT_SYMBOL(nr_node_ids); 361 EXPORT_SYMBOL(nr_online_nodes); 362 #endif 363 364 int page_group_by_mobility_disabled __read_mostly; 365 366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 367 /* 368 * During boot we initialize deferred pages on-demand, as needed, but once 369 * page_alloc_init_late() has finished, the deferred pages are all initialized, 370 * and we can permanently disable that path. 371 */ 372 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 373 374 /* 375 * Calling kasan_free_pages() only after deferred memory initialization 376 * has completed. Poisoning pages during deferred memory init will greatly 377 * lengthen the process and cause problem in large memory systems as the 378 * deferred pages initialization is done with interrupt disabled. 379 * 380 * Assuming that there will be no reference to those newly initialized 381 * pages before they are ever allocated, this should have no effect on 382 * KASAN memory tracking as the poison will be properly inserted at page 383 * allocation time. The only corner case is when pages are allocated by 384 * on-demand allocation and then freed again before the deferred pages 385 * initialization is done, but this is not likely to happen. 386 */ 387 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 388 { 389 if (!static_branch_unlikely(&deferred_pages)) 390 kasan_free_pages(page, order); 391 } 392 393 /* Returns true if the struct page for the pfn is uninitialised */ 394 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 395 { 396 int nid = early_pfn_to_nid(pfn); 397 398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 399 return true; 400 401 return false; 402 } 403 404 /* 405 * Returns true when the remaining initialisation should be deferred until 406 * later in the boot cycle when it can be parallelised. 407 */ 408 static bool __meminit 409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 410 { 411 static unsigned long prev_end_pfn, nr_initialised; 412 413 /* 414 * prev_end_pfn static that contains the end of previous zone 415 * No need to protect because called very early in boot before smp_init. 416 */ 417 if (prev_end_pfn != end_pfn) { 418 prev_end_pfn = end_pfn; 419 nr_initialised = 0; 420 } 421 422 /* Always populate low zones for address-constrained allocations */ 423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 424 return false; 425 426 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 427 return true; 428 /* 429 * We start only with one section of pages, more pages are added as 430 * needed until the rest of deferred pages are initialized. 431 */ 432 nr_initialised++; 433 if ((nr_initialised > PAGES_PER_SECTION) && 434 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 435 NODE_DATA(nid)->first_deferred_pfn = pfn; 436 return true; 437 } 438 return false; 439 } 440 #else 441 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 442 443 static inline bool early_page_uninitialised(unsigned long pfn) 444 { 445 return false; 446 } 447 448 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 449 { 450 return false; 451 } 452 #endif 453 454 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 455 static inline unsigned long *get_pageblock_bitmap(struct page *page, 456 unsigned long pfn) 457 { 458 #ifdef CONFIG_SPARSEMEM 459 return section_to_usemap(__pfn_to_section(pfn)); 460 #else 461 return page_zone(page)->pageblock_flags; 462 #endif /* CONFIG_SPARSEMEM */ 463 } 464 465 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 466 { 467 #ifdef CONFIG_SPARSEMEM 468 pfn &= (PAGES_PER_SECTION-1); 469 #else 470 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 471 #endif /* CONFIG_SPARSEMEM */ 472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 473 } 474 475 static __always_inline 476 unsigned long __get_pfnblock_flags_mask(struct page *page, 477 unsigned long pfn, 478 unsigned long mask) 479 { 480 unsigned long *bitmap; 481 unsigned long bitidx, word_bitidx; 482 unsigned long word; 483 484 bitmap = get_pageblock_bitmap(page, pfn); 485 bitidx = pfn_to_bitidx(page, pfn); 486 word_bitidx = bitidx / BITS_PER_LONG; 487 bitidx &= (BITS_PER_LONG-1); 488 489 word = bitmap[word_bitidx]; 490 return (word >> bitidx) & mask; 491 } 492 493 /** 494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 495 * @page: The page within the block of interest 496 * @pfn: The target page frame number 497 * @mask: mask of bits that the caller is interested in 498 * 499 * Return: pageblock_bits flags 500 */ 501 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 502 unsigned long mask) 503 { 504 return __get_pfnblock_flags_mask(page, pfn, mask); 505 } 506 507 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 508 { 509 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 510 } 511 512 /** 513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 514 * @page: The page within the block of interest 515 * @flags: The flags to set 516 * @pfn: The target page frame number 517 * @mask: mask of bits that the caller is interested in 518 */ 519 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 520 unsigned long pfn, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 mask <<= bitidx; 538 flags <<= bitidx; 539 540 word = READ_ONCE(bitmap[word_bitidx]); 541 for (;;) { 542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 543 if (word == old_word) 544 break; 545 word = old_word; 546 } 547 } 548 549 void set_pageblock_migratetype(struct page *page, int migratetype) 550 { 551 if (unlikely(page_group_by_mobility_disabled && 552 migratetype < MIGRATE_PCPTYPES)) 553 migratetype = MIGRATE_UNMOVABLE; 554 555 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 556 page_to_pfn(page), MIGRATETYPE_MASK); 557 } 558 559 #ifdef CONFIG_DEBUG_VM 560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 561 { 562 int ret = 0; 563 unsigned seq; 564 unsigned long pfn = page_to_pfn(page); 565 unsigned long sp, start_pfn; 566 567 do { 568 seq = zone_span_seqbegin(zone); 569 start_pfn = zone->zone_start_pfn; 570 sp = zone->spanned_pages; 571 if (!zone_spans_pfn(zone, pfn)) 572 ret = 1; 573 } while (zone_span_seqretry(zone, seq)); 574 575 if (ret) 576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 577 pfn, zone_to_nid(zone), zone->name, 578 start_pfn, start_pfn + sp); 579 580 return ret; 581 } 582 583 static int page_is_consistent(struct zone *zone, struct page *page) 584 { 585 if (!pfn_valid_within(page_to_pfn(page))) 586 return 0; 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591 } 592 /* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596 { 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603 } 604 #else 605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 return 0; 608 } 609 #endif 610 611 static void bad_page(struct page *page, const char *reason) 612 { 613 static unsigned long resume; 614 static unsigned long nr_shown; 615 static unsigned long nr_unshown; 616 617 /* 618 * Allow a burst of 60 reports, then keep quiet for that minute; 619 * or allow a steady drip of one report per second. 620 */ 621 if (nr_shown == 60) { 622 if (time_before(jiffies, resume)) { 623 nr_unshown++; 624 goto out; 625 } 626 if (nr_unshown) { 627 pr_alert( 628 "BUG: Bad page state: %lu messages suppressed\n", 629 nr_unshown); 630 nr_unshown = 0; 631 } 632 nr_shown = 0; 633 } 634 if (nr_shown++ == 0) 635 resume = jiffies + 60 * HZ; 636 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 638 current->comm, page_to_pfn(page)); 639 __dump_page(page, reason); 640 dump_page_owner(page); 641 642 print_modules(); 643 dump_stack(); 644 out: 645 /* Leave bad fields for debug, except PageBuddy could make trouble */ 646 page_mapcount_reset(page); /* remove PageBuddy */ 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 648 } 649 650 /* 651 * Higher-order pages are called "compound pages". They are structured thusly: 652 * 653 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 654 * 655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 657 * 658 * The first tail page's ->compound_dtor holds the offset in array of compound 659 * page destructors. See compound_page_dtors. 660 * 661 * The first tail page's ->compound_order holds the order of allocation. 662 * This usage means that zero-order pages may not be compound. 663 */ 664 665 void free_compound_page(struct page *page) 666 { 667 mem_cgroup_uncharge(page); 668 __free_pages_ok(page, compound_order(page), FPI_NONE); 669 } 670 671 void prep_compound_page(struct page *page, unsigned int order) 672 { 673 int i; 674 int nr_pages = 1 << order; 675 676 __SetPageHead(page); 677 for (i = 1; i < nr_pages; i++) { 678 struct page *p = page + i; 679 set_page_count(p, 0); 680 p->mapping = TAIL_MAPPING; 681 set_compound_head(p, page); 682 } 683 684 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 685 set_compound_order(page, order); 686 atomic_set(compound_mapcount_ptr(page), -1); 687 if (hpage_pincount_available(page)) 688 atomic_set(compound_pincount_ptr(page), 0); 689 } 690 691 #ifdef CONFIG_DEBUG_PAGEALLOC 692 unsigned int _debug_guardpage_minorder; 693 694 bool _debug_pagealloc_enabled_early __read_mostly 695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 698 EXPORT_SYMBOL(_debug_pagealloc_enabled); 699 700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 701 702 static int __init early_debug_pagealloc(char *buf) 703 { 704 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 705 } 706 early_param("debug_pagealloc", early_debug_pagealloc); 707 708 static int __init debug_guardpage_minorder_setup(char *buf) 709 { 710 unsigned long res; 711 712 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 713 pr_err("Bad debug_guardpage_minorder value\n"); 714 return 0; 715 } 716 _debug_guardpage_minorder = res; 717 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 718 return 0; 719 } 720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 721 722 static inline bool set_page_guard(struct zone *zone, struct page *page, 723 unsigned int order, int migratetype) 724 { 725 if (!debug_guardpage_enabled()) 726 return false; 727 728 if (order >= debug_guardpage_minorder()) 729 return false; 730 731 __SetPageGuard(page); 732 INIT_LIST_HEAD(&page->lru); 733 set_page_private(page, order); 734 /* Guard pages are not available for any usage */ 735 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 736 737 return true; 738 } 739 740 static inline void clear_page_guard(struct zone *zone, struct page *page, 741 unsigned int order, int migratetype) 742 { 743 if (!debug_guardpage_enabled()) 744 return; 745 746 __ClearPageGuard(page); 747 748 set_page_private(page, 0); 749 if (!is_migrate_isolate(migratetype)) 750 __mod_zone_freepage_state(zone, (1 << order), migratetype); 751 } 752 #else 753 static inline bool set_page_guard(struct zone *zone, struct page *page, 754 unsigned int order, int migratetype) { return false; } 755 static inline void clear_page_guard(struct zone *zone, struct page *page, 756 unsigned int order, int migratetype) {} 757 #endif 758 759 /* 760 * Enable static keys related to various memory debugging and hardening options. 761 * Some override others, and depend on early params that are evaluated in the 762 * order of appearance. So we need to first gather the full picture of what was 763 * enabled, and then make decisions. 764 */ 765 void init_mem_debugging_and_hardening(void) 766 { 767 if (_init_on_alloc_enabled_early) { 768 if (page_poisoning_enabled()) 769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 770 "will take precedence over init_on_alloc\n"); 771 else 772 static_branch_enable(&init_on_alloc); 773 } 774 if (_init_on_free_enabled_early) { 775 if (page_poisoning_enabled()) 776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 777 "will take precedence over init_on_free\n"); 778 else 779 static_branch_enable(&init_on_free); 780 } 781 782 #ifdef CONFIG_PAGE_POISONING 783 /* 784 * Page poisoning is debug page alloc for some arches. If 785 * either of those options are enabled, enable poisoning. 786 */ 787 if (page_poisoning_enabled() || 788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 789 debug_pagealloc_enabled())) 790 static_branch_enable(&_page_poisoning_enabled); 791 #endif 792 793 #ifdef CONFIG_DEBUG_PAGEALLOC 794 if (!debug_pagealloc_enabled()) 795 return; 796 797 static_branch_enable(&_debug_pagealloc_enabled); 798 799 if (!debug_guardpage_minorder()) 800 return; 801 802 static_branch_enable(&_debug_guardpage_enabled); 803 #endif 804 } 805 806 static inline void set_buddy_order(struct page *page, unsigned int order) 807 { 808 set_page_private(page, order); 809 __SetPageBuddy(page); 810 } 811 812 /* 813 * This function checks whether a page is free && is the buddy 814 * we can coalesce a page and its buddy if 815 * (a) the buddy is not in a hole (check before calling!) && 816 * (b) the buddy is in the buddy system && 817 * (c) a page and its buddy have the same order && 818 * (d) a page and its buddy are in the same zone. 819 * 820 * For recording whether a page is in the buddy system, we set PageBuddy. 821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 822 * 823 * For recording page's order, we use page_private(page). 824 */ 825 static inline bool page_is_buddy(struct page *page, struct page *buddy, 826 unsigned int order) 827 { 828 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 829 return false; 830 831 if (buddy_order(buddy) != order) 832 return false; 833 834 /* 835 * zone check is done late to avoid uselessly calculating 836 * zone/node ids for pages that could never merge. 837 */ 838 if (page_zone_id(page) != page_zone_id(buddy)) 839 return false; 840 841 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 842 843 return true; 844 } 845 846 #ifdef CONFIG_COMPACTION 847 static inline struct capture_control *task_capc(struct zone *zone) 848 { 849 struct capture_control *capc = current->capture_control; 850 851 return unlikely(capc) && 852 !(current->flags & PF_KTHREAD) && 853 !capc->page && 854 capc->cc->zone == zone ? capc : NULL; 855 } 856 857 static inline bool 858 compaction_capture(struct capture_control *capc, struct page *page, 859 int order, int migratetype) 860 { 861 if (!capc || order != capc->cc->order) 862 return false; 863 864 /* Do not accidentally pollute CMA or isolated regions*/ 865 if (is_migrate_cma(migratetype) || 866 is_migrate_isolate(migratetype)) 867 return false; 868 869 /* 870 * Do not let lower order allocations polluate a movable pageblock. 871 * This might let an unmovable request use a reclaimable pageblock 872 * and vice-versa but no more than normal fallback logic which can 873 * have trouble finding a high-order free page. 874 */ 875 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 876 return false; 877 878 capc->page = page; 879 return true; 880 } 881 882 #else 883 static inline struct capture_control *task_capc(struct zone *zone) 884 { 885 return NULL; 886 } 887 888 static inline bool 889 compaction_capture(struct capture_control *capc, struct page *page, 890 int order, int migratetype) 891 { 892 return false; 893 } 894 #endif /* CONFIG_COMPACTION */ 895 896 /* Used for pages not on another list */ 897 static inline void add_to_free_list(struct page *page, struct zone *zone, 898 unsigned int order, int migratetype) 899 { 900 struct free_area *area = &zone->free_area[order]; 901 902 list_add(&page->lru, &area->free_list[migratetype]); 903 area->nr_free++; 904 } 905 906 /* Used for pages not on another list */ 907 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 908 unsigned int order, int migratetype) 909 { 910 struct free_area *area = &zone->free_area[order]; 911 912 list_add_tail(&page->lru, &area->free_list[migratetype]); 913 area->nr_free++; 914 } 915 916 /* 917 * Used for pages which are on another list. Move the pages to the tail 918 * of the list - so the moved pages won't immediately be considered for 919 * allocation again (e.g., optimization for memory onlining). 920 */ 921 static inline void move_to_free_list(struct page *page, struct zone *zone, 922 unsigned int order, int migratetype) 923 { 924 struct free_area *area = &zone->free_area[order]; 925 926 list_move_tail(&page->lru, &area->free_list[migratetype]); 927 } 928 929 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 930 unsigned int order) 931 { 932 /* clear reported state and update reported page count */ 933 if (page_reported(page)) 934 __ClearPageReported(page); 935 936 list_del(&page->lru); 937 __ClearPageBuddy(page); 938 set_page_private(page, 0); 939 zone->free_area[order].nr_free--; 940 } 941 942 /* 943 * If this is not the largest possible page, check if the buddy 944 * of the next-highest order is free. If it is, it's possible 945 * that pages are being freed that will coalesce soon. In case, 946 * that is happening, add the free page to the tail of the list 947 * so it's less likely to be used soon and more likely to be merged 948 * as a higher order page 949 */ 950 static inline bool 951 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 952 struct page *page, unsigned int order) 953 { 954 struct page *higher_page, *higher_buddy; 955 unsigned long combined_pfn; 956 957 if (order >= MAX_ORDER - 2) 958 return false; 959 960 if (!pfn_valid_within(buddy_pfn)) 961 return false; 962 963 combined_pfn = buddy_pfn & pfn; 964 higher_page = page + (combined_pfn - pfn); 965 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 966 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 967 968 return pfn_valid_within(buddy_pfn) && 969 page_is_buddy(higher_page, higher_buddy, order + 1); 970 } 971 972 /* 973 * Freeing function for a buddy system allocator. 974 * 975 * The concept of a buddy system is to maintain direct-mapped table 976 * (containing bit values) for memory blocks of various "orders". 977 * The bottom level table contains the map for the smallest allocatable 978 * units of memory (here, pages), and each level above it describes 979 * pairs of units from the levels below, hence, "buddies". 980 * At a high level, all that happens here is marking the table entry 981 * at the bottom level available, and propagating the changes upward 982 * as necessary, plus some accounting needed to play nicely with other 983 * parts of the VM system. 984 * At each level, we keep a list of pages, which are heads of continuous 985 * free pages of length of (1 << order) and marked with PageBuddy. 986 * Page's order is recorded in page_private(page) field. 987 * So when we are allocating or freeing one, we can derive the state of the 988 * other. That is, if we allocate a small block, and both were 989 * free, the remainder of the region must be split into blocks. 990 * If a block is freed, and its buddy is also free, then this 991 * triggers coalescing into a block of larger size. 992 * 993 * -- nyc 994 */ 995 996 static inline void __free_one_page(struct page *page, 997 unsigned long pfn, 998 struct zone *zone, unsigned int order, 999 int migratetype, fpi_t fpi_flags) 1000 { 1001 struct capture_control *capc = task_capc(zone); 1002 unsigned long buddy_pfn; 1003 unsigned long combined_pfn; 1004 unsigned int max_order; 1005 struct page *buddy; 1006 bool to_tail; 1007 1008 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1009 1010 VM_BUG_ON(!zone_is_initialized(zone)); 1011 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1012 1013 VM_BUG_ON(migratetype == -1); 1014 if (likely(!is_migrate_isolate(migratetype))) 1015 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1016 1017 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1018 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1019 1020 continue_merging: 1021 while (order < max_order) { 1022 if (compaction_capture(capc, page, order, migratetype)) { 1023 __mod_zone_freepage_state(zone, -(1 << order), 1024 migratetype); 1025 return; 1026 } 1027 buddy_pfn = __find_buddy_pfn(pfn, order); 1028 buddy = page + (buddy_pfn - pfn); 1029 1030 if (!pfn_valid_within(buddy_pfn)) 1031 goto done_merging; 1032 if (!page_is_buddy(page, buddy, order)) 1033 goto done_merging; 1034 /* 1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1036 * merge with it and move up one order. 1037 */ 1038 if (page_is_guard(buddy)) 1039 clear_page_guard(zone, buddy, order, migratetype); 1040 else 1041 del_page_from_free_list(buddy, zone, order); 1042 combined_pfn = buddy_pfn & pfn; 1043 page = page + (combined_pfn - pfn); 1044 pfn = combined_pfn; 1045 order++; 1046 } 1047 if (order < MAX_ORDER - 1) { 1048 /* If we are here, it means order is >= pageblock_order. 1049 * We want to prevent merge between freepages on isolate 1050 * pageblock and normal pageblock. Without this, pageblock 1051 * isolation could cause incorrect freepage or CMA accounting. 1052 * 1053 * We don't want to hit this code for the more frequent 1054 * low-order merging. 1055 */ 1056 if (unlikely(has_isolate_pageblock(zone))) { 1057 int buddy_mt; 1058 1059 buddy_pfn = __find_buddy_pfn(pfn, order); 1060 buddy = page + (buddy_pfn - pfn); 1061 buddy_mt = get_pageblock_migratetype(buddy); 1062 1063 if (migratetype != buddy_mt 1064 && (is_migrate_isolate(migratetype) || 1065 is_migrate_isolate(buddy_mt))) 1066 goto done_merging; 1067 } 1068 max_order = order + 1; 1069 goto continue_merging; 1070 } 1071 1072 done_merging: 1073 set_buddy_order(page, order); 1074 1075 if (fpi_flags & FPI_TO_TAIL) 1076 to_tail = true; 1077 else if (is_shuffle_order(order)) 1078 to_tail = shuffle_pick_tail(); 1079 else 1080 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1081 1082 if (to_tail) 1083 add_to_free_list_tail(page, zone, order, migratetype); 1084 else 1085 add_to_free_list(page, zone, order, migratetype); 1086 1087 /* Notify page reporting subsystem of freed page */ 1088 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1089 page_reporting_notify_free(order); 1090 } 1091 1092 /* 1093 * A bad page could be due to a number of fields. Instead of multiple branches, 1094 * try and check multiple fields with one check. The caller must do a detailed 1095 * check if necessary. 1096 */ 1097 static inline bool page_expected_state(struct page *page, 1098 unsigned long check_flags) 1099 { 1100 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1101 return false; 1102 1103 if (unlikely((unsigned long)page->mapping | 1104 page_ref_count(page) | 1105 #ifdef CONFIG_MEMCG 1106 (unsigned long)page_memcg(page) | 1107 #endif 1108 (page->flags & check_flags))) 1109 return false; 1110 1111 return true; 1112 } 1113 1114 static const char *page_bad_reason(struct page *page, unsigned long flags) 1115 { 1116 const char *bad_reason = NULL; 1117 1118 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1119 bad_reason = "nonzero mapcount"; 1120 if (unlikely(page->mapping != NULL)) 1121 bad_reason = "non-NULL mapping"; 1122 if (unlikely(page_ref_count(page) != 0)) 1123 bad_reason = "nonzero _refcount"; 1124 if (unlikely(page->flags & flags)) { 1125 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1126 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1127 else 1128 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1129 } 1130 #ifdef CONFIG_MEMCG 1131 if (unlikely(page_memcg(page))) 1132 bad_reason = "page still charged to cgroup"; 1133 #endif 1134 return bad_reason; 1135 } 1136 1137 static void check_free_page_bad(struct page *page) 1138 { 1139 bad_page(page, 1140 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1141 } 1142 1143 static inline int check_free_page(struct page *page) 1144 { 1145 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1146 return 0; 1147 1148 /* Something has gone sideways, find it */ 1149 check_free_page_bad(page); 1150 return 1; 1151 } 1152 1153 static int free_tail_pages_check(struct page *head_page, struct page *page) 1154 { 1155 int ret = 1; 1156 1157 /* 1158 * We rely page->lru.next never has bit 0 set, unless the page 1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1160 */ 1161 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1162 1163 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1164 ret = 0; 1165 goto out; 1166 } 1167 switch (page - head_page) { 1168 case 1: 1169 /* the first tail page: ->mapping may be compound_mapcount() */ 1170 if (unlikely(compound_mapcount(page))) { 1171 bad_page(page, "nonzero compound_mapcount"); 1172 goto out; 1173 } 1174 break; 1175 case 2: 1176 /* 1177 * the second tail page: ->mapping is 1178 * deferred_list.next -- ignore value. 1179 */ 1180 break; 1181 default: 1182 if (page->mapping != TAIL_MAPPING) { 1183 bad_page(page, "corrupted mapping in tail page"); 1184 goto out; 1185 } 1186 break; 1187 } 1188 if (unlikely(!PageTail(page))) { 1189 bad_page(page, "PageTail not set"); 1190 goto out; 1191 } 1192 if (unlikely(compound_head(page) != head_page)) { 1193 bad_page(page, "compound_head not consistent"); 1194 goto out; 1195 } 1196 ret = 0; 1197 out: 1198 page->mapping = NULL; 1199 clear_compound_head(page); 1200 return ret; 1201 } 1202 1203 static void kernel_init_free_pages(struct page *page, int numpages) 1204 { 1205 int i; 1206 1207 /* s390's use of memset() could override KASAN redzones. */ 1208 kasan_disable_current(); 1209 for (i = 0; i < numpages; i++) { 1210 page_kasan_tag_reset(page + i); 1211 clear_highpage(page + i); 1212 } 1213 kasan_enable_current(); 1214 } 1215 1216 static __always_inline bool free_pages_prepare(struct page *page, 1217 unsigned int order, bool check_free) 1218 { 1219 int bad = 0; 1220 1221 VM_BUG_ON_PAGE(PageTail(page), page); 1222 1223 trace_mm_page_free(page, order); 1224 1225 if (unlikely(PageHWPoison(page)) && !order) { 1226 /* 1227 * Do not let hwpoison pages hit pcplists/buddy 1228 * Untie memcg state and reset page's owner 1229 */ 1230 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1231 __memcg_kmem_uncharge_page(page, order); 1232 reset_page_owner(page, order); 1233 return false; 1234 } 1235 1236 /* 1237 * Check tail pages before head page information is cleared to 1238 * avoid checking PageCompound for order-0 pages. 1239 */ 1240 if (unlikely(order)) { 1241 bool compound = PageCompound(page); 1242 int i; 1243 1244 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1245 1246 if (compound) 1247 ClearPageDoubleMap(page); 1248 for (i = 1; i < (1 << order); i++) { 1249 if (compound) 1250 bad += free_tail_pages_check(page, page + i); 1251 if (unlikely(check_free_page(page + i))) { 1252 bad++; 1253 continue; 1254 } 1255 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1256 } 1257 } 1258 if (PageMappingFlags(page)) 1259 page->mapping = NULL; 1260 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1261 __memcg_kmem_uncharge_page(page, order); 1262 if (check_free) 1263 bad += check_free_page(page); 1264 if (bad) 1265 return false; 1266 1267 page_cpupid_reset_last(page); 1268 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1269 reset_page_owner(page, order); 1270 1271 if (!PageHighMem(page)) { 1272 debug_check_no_locks_freed(page_address(page), 1273 PAGE_SIZE << order); 1274 debug_check_no_obj_freed(page_address(page), 1275 PAGE_SIZE << order); 1276 } 1277 if (want_init_on_free()) 1278 kernel_init_free_pages(page, 1 << order); 1279 1280 kernel_poison_pages(page, 1 << order); 1281 1282 /* 1283 * arch_free_page() can make the page's contents inaccessible. s390 1284 * does this. So nothing which can access the page's contents should 1285 * happen after this. 1286 */ 1287 arch_free_page(page, order); 1288 1289 debug_pagealloc_unmap_pages(page, 1 << order); 1290 1291 kasan_free_nondeferred_pages(page, order); 1292 1293 return true; 1294 } 1295 1296 #ifdef CONFIG_DEBUG_VM 1297 /* 1298 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1299 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1300 * moved from pcp lists to free lists. 1301 */ 1302 static bool free_pcp_prepare(struct page *page) 1303 { 1304 return free_pages_prepare(page, 0, true); 1305 } 1306 1307 static bool bulkfree_pcp_prepare(struct page *page) 1308 { 1309 if (debug_pagealloc_enabled_static()) 1310 return check_free_page(page); 1311 else 1312 return false; 1313 } 1314 #else 1315 /* 1316 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1317 * moving from pcp lists to free list in order to reduce overhead. With 1318 * debug_pagealloc enabled, they are checked also immediately when being freed 1319 * to the pcp lists. 1320 */ 1321 static bool free_pcp_prepare(struct page *page) 1322 { 1323 if (debug_pagealloc_enabled_static()) 1324 return free_pages_prepare(page, 0, true); 1325 else 1326 return free_pages_prepare(page, 0, false); 1327 } 1328 1329 static bool bulkfree_pcp_prepare(struct page *page) 1330 { 1331 return check_free_page(page); 1332 } 1333 #endif /* CONFIG_DEBUG_VM */ 1334 1335 static inline void prefetch_buddy(struct page *page) 1336 { 1337 unsigned long pfn = page_to_pfn(page); 1338 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1339 struct page *buddy = page + (buddy_pfn - pfn); 1340 1341 prefetch(buddy); 1342 } 1343 1344 /* 1345 * Frees a number of pages from the PCP lists 1346 * Assumes all pages on list are in same zone, and of same order. 1347 * count is the number of pages to free. 1348 * 1349 * If the zone was previously in an "all pages pinned" state then look to 1350 * see if this freeing clears that state. 1351 * 1352 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1353 * pinned" detection logic. 1354 */ 1355 static void free_pcppages_bulk(struct zone *zone, int count, 1356 struct per_cpu_pages *pcp) 1357 { 1358 int migratetype = 0; 1359 int batch_free = 0; 1360 int prefetch_nr = READ_ONCE(pcp->batch); 1361 bool isolated_pageblocks; 1362 struct page *page, *tmp; 1363 LIST_HEAD(head); 1364 1365 /* 1366 * Ensure proper count is passed which otherwise would stuck in the 1367 * below while (list_empty(list)) loop. 1368 */ 1369 count = min(pcp->count, count); 1370 while (count) { 1371 struct list_head *list; 1372 1373 /* 1374 * Remove pages from lists in a round-robin fashion. A 1375 * batch_free count is maintained that is incremented when an 1376 * empty list is encountered. This is so more pages are freed 1377 * off fuller lists instead of spinning excessively around empty 1378 * lists 1379 */ 1380 do { 1381 batch_free++; 1382 if (++migratetype == MIGRATE_PCPTYPES) 1383 migratetype = 0; 1384 list = &pcp->lists[migratetype]; 1385 } while (list_empty(list)); 1386 1387 /* This is the only non-empty list. Free them all. */ 1388 if (batch_free == MIGRATE_PCPTYPES) 1389 batch_free = count; 1390 1391 do { 1392 page = list_last_entry(list, struct page, lru); 1393 /* must delete to avoid corrupting pcp list */ 1394 list_del(&page->lru); 1395 pcp->count--; 1396 1397 if (bulkfree_pcp_prepare(page)) 1398 continue; 1399 1400 list_add_tail(&page->lru, &head); 1401 1402 /* 1403 * We are going to put the page back to the global 1404 * pool, prefetch its buddy to speed up later access 1405 * under zone->lock. It is believed the overhead of 1406 * an additional test and calculating buddy_pfn here 1407 * can be offset by reduced memory latency later. To 1408 * avoid excessive prefetching due to large count, only 1409 * prefetch buddy for the first pcp->batch nr of pages. 1410 */ 1411 if (prefetch_nr) { 1412 prefetch_buddy(page); 1413 prefetch_nr--; 1414 } 1415 } while (--count && --batch_free && !list_empty(list)); 1416 } 1417 1418 spin_lock(&zone->lock); 1419 isolated_pageblocks = has_isolate_pageblock(zone); 1420 1421 /* 1422 * Use safe version since after __free_one_page(), 1423 * page->lru.next will not point to original list. 1424 */ 1425 list_for_each_entry_safe(page, tmp, &head, lru) { 1426 int mt = get_pcppage_migratetype(page); 1427 /* MIGRATE_ISOLATE page should not go to pcplists */ 1428 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1429 /* Pageblock could have been isolated meanwhile */ 1430 if (unlikely(isolated_pageblocks)) 1431 mt = get_pageblock_migratetype(page); 1432 1433 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1434 trace_mm_page_pcpu_drain(page, 0, mt); 1435 } 1436 spin_unlock(&zone->lock); 1437 } 1438 1439 static void free_one_page(struct zone *zone, 1440 struct page *page, unsigned long pfn, 1441 unsigned int order, 1442 int migratetype, fpi_t fpi_flags) 1443 { 1444 spin_lock(&zone->lock); 1445 if (unlikely(has_isolate_pageblock(zone) || 1446 is_migrate_isolate(migratetype))) { 1447 migratetype = get_pfnblock_migratetype(page, pfn); 1448 } 1449 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1450 spin_unlock(&zone->lock); 1451 } 1452 1453 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1454 unsigned long zone, int nid) 1455 { 1456 mm_zero_struct_page(page); 1457 set_page_links(page, zone, nid, pfn); 1458 init_page_count(page); 1459 page_mapcount_reset(page); 1460 page_cpupid_reset_last(page); 1461 page_kasan_tag_reset(page); 1462 1463 INIT_LIST_HEAD(&page->lru); 1464 #ifdef WANT_PAGE_VIRTUAL 1465 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1466 if (!is_highmem_idx(zone)) 1467 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1468 #endif 1469 } 1470 1471 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1472 static void __meminit init_reserved_page(unsigned long pfn) 1473 { 1474 pg_data_t *pgdat; 1475 int nid, zid; 1476 1477 if (!early_page_uninitialised(pfn)) 1478 return; 1479 1480 nid = early_pfn_to_nid(pfn); 1481 pgdat = NODE_DATA(nid); 1482 1483 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1484 struct zone *zone = &pgdat->node_zones[zid]; 1485 1486 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1487 break; 1488 } 1489 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1490 } 1491 #else 1492 static inline void init_reserved_page(unsigned long pfn) 1493 { 1494 } 1495 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1496 1497 /* 1498 * Initialised pages do not have PageReserved set. This function is 1499 * called for each range allocated by the bootmem allocator and 1500 * marks the pages PageReserved. The remaining valid pages are later 1501 * sent to the buddy page allocator. 1502 */ 1503 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1504 { 1505 unsigned long start_pfn = PFN_DOWN(start); 1506 unsigned long end_pfn = PFN_UP(end); 1507 1508 for (; start_pfn < end_pfn; start_pfn++) { 1509 if (pfn_valid(start_pfn)) { 1510 struct page *page = pfn_to_page(start_pfn); 1511 1512 init_reserved_page(start_pfn); 1513 1514 /* Avoid false-positive PageTail() */ 1515 INIT_LIST_HEAD(&page->lru); 1516 1517 /* 1518 * no need for atomic set_bit because the struct 1519 * page is not visible yet so nobody should 1520 * access it yet. 1521 */ 1522 __SetPageReserved(page); 1523 } 1524 } 1525 } 1526 1527 static void __free_pages_ok(struct page *page, unsigned int order, 1528 fpi_t fpi_flags) 1529 { 1530 unsigned long flags; 1531 int migratetype; 1532 unsigned long pfn = page_to_pfn(page); 1533 1534 if (!free_pages_prepare(page, order, true)) 1535 return; 1536 1537 migratetype = get_pfnblock_migratetype(page, pfn); 1538 local_irq_save(flags); 1539 __count_vm_events(PGFREE, 1 << order); 1540 free_one_page(page_zone(page), page, pfn, order, migratetype, 1541 fpi_flags); 1542 local_irq_restore(flags); 1543 } 1544 1545 void __free_pages_core(struct page *page, unsigned int order) 1546 { 1547 unsigned int nr_pages = 1 << order; 1548 struct page *p = page; 1549 unsigned int loop; 1550 1551 /* 1552 * When initializing the memmap, __init_single_page() sets the refcount 1553 * of all pages to 1 ("allocated"/"not free"). We have to set the 1554 * refcount of all involved pages to 0. 1555 */ 1556 prefetchw(p); 1557 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1558 prefetchw(p + 1); 1559 __ClearPageReserved(p); 1560 set_page_count(p, 0); 1561 } 1562 __ClearPageReserved(p); 1563 set_page_count(p, 0); 1564 1565 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1566 1567 /* 1568 * Bypass PCP and place fresh pages right to the tail, primarily 1569 * relevant for memory onlining. 1570 */ 1571 __free_pages_ok(page, order, FPI_TO_TAIL); 1572 } 1573 1574 #ifdef CONFIG_NEED_MULTIPLE_NODES 1575 1576 /* 1577 * During memory init memblocks map pfns to nids. The search is expensive and 1578 * this caches recent lookups. The implementation of __early_pfn_to_nid 1579 * treats start/end as pfns. 1580 */ 1581 struct mminit_pfnnid_cache { 1582 unsigned long last_start; 1583 unsigned long last_end; 1584 int last_nid; 1585 }; 1586 1587 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1588 1589 /* 1590 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1591 */ 1592 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1593 struct mminit_pfnnid_cache *state) 1594 { 1595 unsigned long start_pfn, end_pfn; 1596 int nid; 1597 1598 if (state->last_start <= pfn && pfn < state->last_end) 1599 return state->last_nid; 1600 1601 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1602 if (nid != NUMA_NO_NODE) { 1603 state->last_start = start_pfn; 1604 state->last_end = end_pfn; 1605 state->last_nid = nid; 1606 } 1607 1608 return nid; 1609 } 1610 1611 int __meminit early_pfn_to_nid(unsigned long pfn) 1612 { 1613 static DEFINE_SPINLOCK(early_pfn_lock); 1614 int nid; 1615 1616 spin_lock(&early_pfn_lock); 1617 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1618 if (nid < 0) 1619 nid = first_online_node; 1620 spin_unlock(&early_pfn_lock); 1621 1622 return nid; 1623 } 1624 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1625 1626 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1627 unsigned int order) 1628 { 1629 if (early_page_uninitialised(pfn)) 1630 return; 1631 __free_pages_core(page, order); 1632 } 1633 1634 /* 1635 * Check that the whole (or subset of) a pageblock given by the interval of 1636 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1637 * with the migration of free compaction scanner. The scanners then need to 1638 * use only pfn_valid_within() check for arches that allow holes within 1639 * pageblocks. 1640 * 1641 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1642 * 1643 * It's possible on some configurations to have a setup like node0 node1 node0 1644 * i.e. it's possible that all pages within a zones range of pages do not 1645 * belong to a single zone. We assume that a border between node0 and node1 1646 * can occur within a single pageblock, but not a node0 node1 node0 1647 * interleaving within a single pageblock. It is therefore sufficient to check 1648 * the first and last page of a pageblock and avoid checking each individual 1649 * page in a pageblock. 1650 */ 1651 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1652 unsigned long end_pfn, struct zone *zone) 1653 { 1654 struct page *start_page; 1655 struct page *end_page; 1656 1657 /* end_pfn is one past the range we are checking */ 1658 end_pfn--; 1659 1660 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1661 return NULL; 1662 1663 start_page = pfn_to_online_page(start_pfn); 1664 if (!start_page) 1665 return NULL; 1666 1667 if (page_zone(start_page) != zone) 1668 return NULL; 1669 1670 end_page = pfn_to_page(end_pfn); 1671 1672 /* This gives a shorter code than deriving page_zone(end_page) */ 1673 if (page_zone_id(start_page) != page_zone_id(end_page)) 1674 return NULL; 1675 1676 return start_page; 1677 } 1678 1679 void set_zone_contiguous(struct zone *zone) 1680 { 1681 unsigned long block_start_pfn = zone->zone_start_pfn; 1682 unsigned long block_end_pfn; 1683 1684 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1685 for (; block_start_pfn < zone_end_pfn(zone); 1686 block_start_pfn = block_end_pfn, 1687 block_end_pfn += pageblock_nr_pages) { 1688 1689 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1690 1691 if (!__pageblock_pfn_to_page(block_start_pfn, 1692 block_end_pfn, zone)) 1693 return; 1694 cond_resched(); 1695 } 1696 1697 /* We confirm that there is no hole */ 1698 zone->contiguous = true; 1699 } 1700 1701 void clear_zone_contiguous(struct zone *zone) 1702 { 1703 zone->contiguous = false; 1704 } 1705 1706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1707 static void __init deferred_free_range(unsigned long pfn, 1708 unsigned long nr_pages) 1709 { 1710 struct page *page; 1711 unsigned long i; 1712 1713 if (!nr_pages) 1714 return; 1715 1716 page = pfn_to_page(pfn); 1717 1718 /* Free a large naturally-aligned chunk if possible */ 1719 if (nr_pages == pageblock_nr_pages && 1720 (pfn & (pageblock_nr_pages - 1)) == 0) { 1721 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1722 __free_pages_core(page, pageblock_order); 1723 return; 1724 } 1725 1726 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1727 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1728 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1729 __free_pages_core(page, 0); 1730 } 1731 } 1732 1733 /* Completion tracking for deferred_init_memmap() threads */ 1734 static atomic_t pgdat_init_n_undone __initdata; 1735 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1736 1737 static inline void __init pgdat_init_report_one_done(void) 1738 { 1739 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1740 complete(&pgdat_init_all_done_comp); 1741 } 1742 1743 /* 1744 * Returns true if page needs to be initialized or freed to buddy allocator. 1745 * 1746 * First we check if pfn is valid on architectures where it is possible to have 1747 * holes within pageblock_nr_pages. On systems where it is not possible, this 1748 * function is optimized out. 1749 * 1750 * Then, we check if a current large page is valid by only checking the validity 1751 * of the head pfn. 1752 */ 1753 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1754 { 1755 if (!pfn_valid_within(pfn)) 1756 return false; 1757 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1758 return false; 1759 return true; 1760 } 1761 1762 /* 1763 * Free pages to buddy allocator. Try to free aligned pages in 1764 * pageblock_nr_pages sizes. 1765 */ 1766 static void __init deferred_free_pages(unsigned long pfn, 1767 unsigned long end_pfn) 1768 { 1769 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1770 unsigned long nr_free = 0; 1771 1772 for (; pfn < end_pfn; pfn++) { 1773 if (!deferred_pfn_valid(pfn)) { 1774 deferred_free_range(pfn - nr_free, nr_free); 1775 nr_free = 0; 1776 } else if (!(pfn & nr_pgmask)) { 1777 deferred_free_range(pfn - nr_free, nr_free); 1778 nr_free = 1; 1779 } else { 1780 nr_free++; 1781 } 1782 } 1783 /* Free the last block of pages to allocator */ 1784 deferred_free_range(pfn - nr_free, nr_free); 1785 } 1786 1787 /* 1788 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1789 * by performing it only once every pageblock_nr_pages. 1790 * Return number of pages initialized. 1791 */ 1792 static unsigned long __init deferred_init_pages(struct zone *zone, 1793 unsigned long pfn, 1794 unsigned long end_pfn) 1795 { 1796 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1797 int nid = zone_to_nid(zone); 1798 unsigned long nr_pages = 0; 1799 int zid = zone_idx(zone); 1800 struct page *page = NULL; 1801 1802 for (; pfn < end_pfn; pfn++) { 1803 if (!deferred_pfn_valid(pfn)) { 1804 page = NULL; 1805 continue; 1806 } else if (!page || !(pfn & nr_pgmask)) { 1807 page = pfn_to_page(pfn); 1808 } else { 1809 page++; 1810 } 1811 __init_single_page(page, pfn, zid, nid); 1812 nr_pages++; 1813 } 1814 return (nr_pages); 1815 } 1816 1817 /* 1818 * This function is meant to pre-load the iterator for the zone init. 1819 * Specifically it walks through the ranges until we are caught up to the 1820 * first_init_pfn value and exits there. If we never encounter the value we 1821 * return false indicating there are no valid ranges left. 1822 */ 1823 static bool __init 1824 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1825 unsigned long *spfn, unsigned long *epfn, 1826 unsigned long first_init_pfn) 1827 { 1828 u64 j; 1829 1830 /* 1831 * Start out by walking through the ranges in this zone that have 1832 * already been initialized. We don't need to do anything with them 1833 * so we just need to flush them out of the system. 1834 */ 1835 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1836 if (*epfn <= first_init_pfn) 1837 continue; 1838 if (*spfn < first_init_pfn) 1839 *spfn = first_init_pfn; 1840 *i = j; 1841 return true; 1842 } 1843 1844 return false; 1845 } 1846 1847 /* 1848 * Initialize and free pages. We do it in two loops: first we initialize 1849 * struct page, then free to buddy allocator, because while we are 1850 * freeing pages we can access pages that are ahead (computing buddy 1851 * page in __free_one_page()). 1852 * 1853 * In order to try and keep some memory in the cache we have the loop 1854 * broken along max page order boundaries. This way we will not cause 1855 * any issues with the buddy page computation. 1856 */ 1857 static unsigned long __init 1858 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1859 unsigned long *end_pfn) 1860 { 1861 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1862 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1863 unsigned long nr_pages = 0; 1864 u64 j = *i; 1865 1866 /* First we loop through and initialize the page values */ 1867 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1868 unsigned long t; 1869 1870 if (mo_pfn <= *start_pfn) 1871 break; 1872 1873 t = min(mo_pfn, *end_pfn); 1874 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1875 1876 if (mo_pfn < *end_pfn) { 1877 *start_pfn = mo_pfn; 1878 break; 1879 } 1880 } 1881 1882 /* Reset values and now loop through freeing pages as needed */ 1883 swap(j, *i); 1884 1885 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1886 unsigned long t; 1887 1888 if (mo_pfn <= spfn) 1889 break; 1890 1891 t = min(mo_pfn, epfn); 1892 deferred_free_pages(spfn, t); 1893 1894 if (mo_pfn <= epfn) 1895 break; 1896 } 1897 1898 return nr_pages; 1899 } 1900 1901 static void __init 1902 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1903 void *arg) 1904 { 1905 unsigned long spfn, epfn; 1906 struct zone *zone = arg; 1907 u64 i; 1908 1909 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1910 1911 /* 1912 * Initialize and free pages in MAX_ORDER sized increments so that we 1913 * can avoid introducing any issues with the buddy allocator. 1914 */ 1915 while (spfn < end_pfn) { 1916 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1917 cond_resched(); 1918 } 1919 } 1920 1921 /* An arch may override for more concurrency. */ 1922 __weak int __init 1923 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1924 { 1925 return 1; 1926 } 1927 1928 /* Initialise remaining memory on a node */ 1929 static int __init deferred_init_memmap(void *data) 1930 { 1931 pg_data_t *pgdat = data; 1932 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1933 unsigned long spfn = 0, epfn = 0; 1934 unsigned long first_init_pfn, flags; 1935 unsigned long start = jiffies; 1936 struct zone *zone; 1937 int zid, max_threads; 1938 u64 i; 1939 1940 /* Bind memory initialisation thread to a local node if possible */ 1941 if (!cpumask_empty(cpumask)) 1942 set_cpus_allowed_ptr(current, cpumask); 1943 1944 pgdat_resize_lock(pgdat, &flags); 1945 first_init_pfn = pgdat->first_deferred_pfn; 1946 if (first_init_pfn == ULONG_MAX) { 1947 pgdat_resize_unlock(pgdat, &flags); 1948 pgdat_init_report_one_done(); 1949 return 0; 1950 } 1951 1952 /* Sanity check boundaries */ 1953 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1954 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1955 pgdat->first_deferred_pfn = ULONG_MAX; 1956 1957 /* 1958 * Once we unlock here, the zone cannot be grown anymore, thus if an 1959 * interrupt thread must allocate this early in boot, zone must be 1960 * pre-grown prior to start of deferred page initialization. 1961 */ 1962 pgdat_resize_unlock(pgdat, &flags); 1963 1964 /* Only the highest zone is deferred so find it */ 1965 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1966 zone = pgdat->node_zones + zid; 1967 if (first_init_pfn < zone_end_pfn(zone)) 1968 break; 1969 } 1970 1971 /* If the zone is empty somebody else may have cleared out the zone */ 1972 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1973 first_init_pfn)) 1974 goto zone_empty; 1975 1976 max_threads = deferred_page_init_max_threads(cpumask); 1977 1978 while (spfn < epfn) { 1979 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1980 struct padata_mt_job job = { 1981 .thread_fn = deferred_init_memmap_chunk, 1982 .fn_arg = zone, 1983 .start = spfn, 1984 .size = epfn_align - spfn, 1985 .align = PAGES_PER_SECTION, 1986 .min_chunk = PAGES_PER_SECTION, 1987 .max_threads = max_threads, 1988 }; 1989 1990 padata_do_multithreaded(&job); 1991 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1992 epfn_align); 1993 } 1994 zone_empty: 1995 /* Sanity check that the next zone really is unpopulated */ 1996 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1997 1998 pr_info("node %d deferred pages initialised in %ums\n", 1999 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2000 2001 pgdat_init_report_one_done(); 2002 return 0; 2003 } 2004 2005 /* 2006 * If this zone has deferred pages, try to grow it by initializing enough 2007 * deferred pages to satisfy the allocation specified by order, rounded up to 2008 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2009 * of SECTION_SIZE bytes by initializing struct pages in increments of 2010 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2011 * 2012 * Return true when zone was grown, otherwise return false. We return true even 2013 * when we grow less than requested, to let the caller decide if there are 2014 * enough pages to satisfy the allocation. 2015 * 2016 * Note: We use noinline because this function is needed only during boot, and 2017 * it is called from a __ref function _deferred_grow_zone. This way we are 2018 * making sure that it is not inlined into permanent text section. 2019 */ 2020 static noinline bool __init 2021 deferred_grow_zone(struct zone *zone, unsigned int order) 2022 { 2023 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2024 pg_data_t *pgdat = zone->zone_pgdat; 2025 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2026 unsigned long spfn, epfn, flags; 2027 unsigned long nr_pages = 0; 2028 u64 i; 2029 2030 /* Only the last zone may have deferred pages */ 2031 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2032 return false; 2033 2034 pgdat_resize_lock(pgdat, &flags); 2035 2036 /* 2037 * If someone grew this zone while we were waiting for spinlock, return 2038 * true, as there might be enough pages already. 2039 */ 2040 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2041 pgdat_resize_unlock(pgdat, &flags); 2042 return true; 2043 } 2044 2045 /* If the zone is empty somebody else may have cleared out the zone */ 2046 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2047 first_deferred_pfn)) { 2048 pgdat->first_deferred_pfn = ULONG_MAX; 2049 pgdat_resize_unlock(pgdat, &flags); 2050 /* Retry only once. */ 2051 return first_deferred_pfn != ULONG_MAX; 2052 } 2053 2054 /* 2055 * Initialize and free pages in MAX_ORDER sized increments so 2056 * that we can avoid introducing any issues with the buddy 2057 * allocator. 2058 */ 2059 while (spfn < epfn) { 2060 /* update our first deferred PFN for this section */ 2061 first_deferred_pfn = spfn; 2062 2063 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2064 touch_nmi_watchdog(); 2065 2066 /* We should only stop along section boundaries */ 2067 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2068 continue; 2069 2070 /* If our quota has been met we can stop here */ 2071 if (nr_pages >= nr_pages_needed) 2072 break; 2073 } 2074 2075 pgdat->first_deferred_pfn = spfn; 2076 pgdat_resize_unlock(pgdat, &flags); 2077 2078 return nr_pages > 0; 2079 } 2080 2081 /* 2082 * deferred_grow_zone() is __init, but it is called from 2083 * get_page_from_freelist() during early boot until deferred_pages permanently 2084 * disables this call. This is why we have refdata wrapper to avoid warning, 2085 * and to ensure that the function body gets unloaded. 2086 */ 2087 static bool __ref 2088 _deferred_grow_zone(struct zone *zone, unsigned int order) 2089 { 2090 return deferred_grow_zone(zone, order); 2091 } 2092 2093 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2094 2095 void __init page_alloc_init_late(void) 2096 { 2097 struct zone *zone; 2098 int nid; 2099 2100 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2101 2102 /* There will be num_node_state(N_MEMORY) threads */ 2103 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2104 for_each_node_state(nid, N_MEMORY) { 2105 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2106 } 2107 2108 /* Block until all are initialised */ 2109 wait_for_completion(&pgdat_init_all_done_comp); 2110 2111 /* 2112 * The number of managed pages has changed due to the initialisation 2113 * so the pcpu batch and high limits needs to be updated or the limits 2114 * will be artificially small. 2115 */ 2116 for_each_populated_zone(zone) 2117 zone_pcp_update(zone); 2118 2119 /* 2120 * We initialized the rest of the deferred pages. Permanently disable 2121 * on-demand struct page initialization. 2122 */ 2123 static_branch_disable(&deferred_pages); 2124 2125 /* Reinit limits that are based on free pages after the kernel is up */ 2126 files_maxfiles_init(); 2127 #endif 2128 2129 buffer_init(); 2130 2131 /* Discard memblock private memory */ 2132 memblock_discard(); 2133 2134 for_each_node_state(nid, N_MEMORY) 2135 shuffle_free_memory(NODE_DATA(nid)); 2136 2137 for_each_populated_zone(zone) 2138 set_zone_contiguous(zone); 2139 } 2140 2141 #ifdef CONFIG_CMA 2142 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2143 void __init init_cma_reserved_pageblock(struct page *page) 2144 { 2145 unsigned i = pageblock_nr_pages; 2146 struct page *p = page; 2147 2148 do { 2149 __ClearPageReserved(p); 2150 set_page_count(p, 0); 2151 } while (++p, --i); 2152 2153 set_pageblock_migratetype(page, MIGRATE_CMA); 2154 2155 if (pageblock_order >= MAX_ORDER) { 2156 i = pageblock_nr_pages; 2157 p = page; 2158 do { 2159 set_page_refcounted(p); 2160 __free_pages(p, MAX_ORDER - 1); 2161 p += MAX_ORDER_NR_PAGES; 2162 } while (i -= MAX_ORDER_NR_PAGES); 2163 } else { 2164 set_page_refcounted(page); 2165 __free_pages(page, pageblock_order); 2166 } 2167 2168 adjust_managed_page_count(page, pageblock_nr_pages); 2169 } 2170 #endif 2171 2172 /* 2173 * The order of subdivision here is critical for the IO subsystem. 2174 * Please do not alter this order without good reasons and regression 2175 * testing. Specifically, as large blocks of memory are subdivided, 2176 * the order in which smaller blocks are delivered depends on the order 2177 * they're subdivided in this function. This is the primary factor 2178 * influencing the order in which pages are delivered to the IO 2179 * subsystem according to empirical testing, and this is also justified 2180 * by considering the behavior of a buddy system containing a single 2181 * large block of memory acted on by a series of small allocations. 2182 * This behavior is a critical factor in sglist merging's success. 2183 * 2184 * -- nyc 2185 */ 2186 static inline void expand(struct zone *zone, struct page *page, 2187 int low, int high, int migratetype) 2188 { 2189 unsigned long size = 1 << high; 2190 2191 while (high > low) { 2192 high--; 2193 size >>= 1; 2194 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2195 2196 /* 2197 * Mark as guard pages (or page), that will allow to 2198 * merge back to allocator when buddy will be freed. 2199 * Corresponding page table entries will not be touched, 2200 * pages will stay not present in virtual address space 2201 */ 2202 if (set_page_guard(zone, &page[size], high, migratetype)) 2203 continue; 2204 2205 add_to_free_list(&page[size], zone, high, migratetype); 2206 set_buddy_order(&page[size], high); 2207 } 2208 } 2209 2210 static void check_new_page_bad(struct page *page) 2211 { 2212 if (unlikely(page->flags & __PG_HWPOISON)) { 2213 /* Don't complain about hwpoisoned pages */ 2214 page_mapcount_reset(page); /* remove PageBuddy */ 2215 return; 2216 } 2217 2218 bad_page(page, 2219 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2220 } 2221 2222 /* 2223 * This page is about to be returned from the page allocator 2224 */ 2225 static inline int check_new_page(struct page *page) 2226 { 2227 if (likely(page_expected_state(page, 2228 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2229 return 0; 2230 2231 check_new_page_bad(page); 2232 return 1; 2233 } 2234 2235 #ifdef CONFIG_DEBUG_VM 2236 /* 2237 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2238 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2239 * also checked when pcp lists are refilled from the free lists. 2240 */ 2241 static inline bool check_pcp_refill(struct page *page) 2242 { 2243 if (debug_pagealloc_enabled_static()) 2244 return check_new_page(page); 2245 else 2246 return false; 2247 } 2248 2249 static inline bool check_new_pcp(struct page *page) 2250 { 2251 return check_new_page(page); 2252 } 2253 #else 2254 /* 2255 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2256 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2257 * enabled, they are also checked when being allocated from the pcp lists. 2258 */ 2259 static inline bool check_pcp_refill(struct page *page) 2260 { 2261 return check_new_page(page); 2262 } 2263 static inline bool check_new_pcp(struct page *page) 2264 { 2265 if (debug_pagealloc_enabled_static()) 2266 return check_new_page(page); 2267 else 2268 return false; 2269 } 2270 #endif /* CONFIG_DEBUG_VM */ 2271 2272 static bool check_new_pages(struct page *page, unsigned int order) 2273 { 2274 int i; 2275 for (i = 0; i < (1 << order); i++) { 2276 struct page *p = page + i; 2277 2278 if (unlikely(check_new_page(p))) 2279 return true; 2280 } 2281 2282 return false; 2283 } 2284 2285 inline void post_alloc_hook(struct page *page, unsigned int order, 2286 gfp_t gfp_flags) 2287 { 2288 set_page_private(page, 0); 2289 set_page_refcounted(page); 2290 2291 arch_alloc_page(page, order); 2292 debug_pagealloc_map_pages(page, 1 << order); 2293 kasan_alloc_pages(page, order); 2294 kernel_unpoison_pages(page, 1 << order); 2295 set_page_owner(page, order, gfp_flags); 2296 2297 if (!want_init_on_free() && want_init_on_alloc(gfp_flags)) 2298 kernel_init_free_pages(page, 1 << order); 2299 } 2300 2301 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2302 unsigned int alloc_flags) 2303 { 2304 post_alloc_hook(page, order, gfp_flags); 2305 2306 if (order && (gfp_flags & __GFP_COMP)) 2307 prep_compound_page(page, order); 2308 2309 /* 2310 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2311 * allocate the page. The expectation is that the caller is taking 2312 * steps that will free more memory. The caller should avoid the page 2313 * being used for !PFMEMALLOC purposes. 2314 */ 2315 if (alloc_flags & ALLOC_NO_WATERMARKS) 2316 set_page_pfmemalloc(page); 2317 else 2318 clear_page_pfmemalloc(page); 2319 } 2320 2321 /* 2322 * Go through the free lists for the given migratetype and remove 2323 * the smallest available page from the freelists 2324 */ 2325 static __always_inline 2326 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2327 int migratetype) 2328 { 2329 unsigned int current_order; 2330 struct free_area *area; 2331 struct page *page; 2332 2333 /* Find a page of the appropriate size in the preferred list */ 2334 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2335 area = &(zone->free_area[current_order]); 2336 page = get_page_from_free_area(area, migratetype); 2337 if (!page) 2338 continue; 2339 del_page_from_free_list(page, zone, current_order); 2340 expand(zone, page, order, current_order, migratetype); 2341 set_pcppage_migratetype(page, migratetype); 2342 return page; 2343 } 2344 2345 return NULL; 2346 } 2347 2348 2349 /* 2350 * This array describes the order lists are fallen back to when 2351 * the free lists for the desirable migrate type are depleted 2352 */ 2353 static int fallbacks[MIGRATE_TYPES][3] = { 2354 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2355 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2356 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2357 #ifdef CONFIG_CMA 2358 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2359 #endif 2360 #ifdef CONFIG_MEMORY_ISOLATION 2361 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2362 #endif 2363 }; 2364 2365 #ifdef CONFIG_CMA 2366 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2367 unsigned int order) 2368 { 2369 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2370 } 2371 #else 2372 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2373 unsigned int order) { return NULL; } 2374 #endif 2375 2376 /* 2377 * Move the free pages in a range to the freelist tail of the requested type. 2378 * Note that start_page and end_pages are not aligned on a pageblock 2379 * boundary. If alignment is required, use move_freepages_block() 2380 */ 2381 static int move_freepages(struct zone *zone, 2382 struct page *start_page, struct page *end_page, 2383 int migratetype, int *num_movable) 2384 { 2385 struct page *page; 2386 unsigned int order; 2387 int pages_moved = 0; 2388 2389 for (page = start_page; page <= end_page;) { 2390 if (!pfn_valid_within(page_to_pfn(page))) { 2391 page++; 2392 continue; 2393 } 2394 2395 if (!PageBuddy(page)) { 2396 /* 2397 * We assume that pages that could be isolated for 2398 * migration are movable. But we don't actually try 2399 * isolating, as that would be expensive. 2400 */ 2401 if (num_movable && 2402 (PageLRU(page) || __PageMovable(page))) 2403 (*num_movable)++; 2404 2405 page++; 2406 continue; 2407 } 2408 2409 /* Make sure we are not inadvertently changing nodes */ 2410 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2411 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2412 2413 order = buddy_order(page); 2414 move_to_free_list(page, zone, order, migratetype); 2415 page += 1 << order; 2416 pages_moved += 1 << order; 2417 } 2418 2419 return pages_moved; 2420 } 2421 2422 int move_freepages_block(struct zone *zone, struct page *page, 2423 int migratetype, int *num_movable) 2424 { 2425 unsigned long start_pfn, end_pfn; 2426 struct page *start_page, *end_page; 2427 2428 if (num_movable) 2429 *num_movable = 0; 2430 2431 start_pfn = page_to_pfn(page); 2432 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2433 start_page = pfn_to_page(start_pfn); 2434 end_page = start_page + pageblock_nr_pages - 1; 2435 end_pfn = start_pfn + pageblock_nr_pages - 1; 2436 2437 /* Do not cross zone boundaries */ 2438 if (!zone_spans_pfn(zone, start_pfn)) 2439 start_page = page; 2440 if (!zone_spans_pfn(zone, end_pfn)) 2441 return 0; 2442 2443 return move_freepages(zone, start_page, end_page, migratetype, 2444 num_movable); 2445 } 2446 2447 static void change_pageblock_range(struct page *pageblock_page, 2448 int start_order, int migratetype) 2449 { 2450 int nr_pageblocks = 1 << (start_order - pageblock_order); 2451 2452 while (nr_pageblocks--) { 2453 set_pageblock_migratetype(pageblock_page, migratetype); 2454 pageblock_page += pageblock_nr_pages; 2455 } 2456 } 2457 2458 /* 2459 * When we are falling back to another migratetype during allocation, try to 2460 * steal extra free pages from the same pageblocks to satisfy further 2461 * allocations, instead of polluting multiple pageblocks. 2462 * 2463 * If we are stealing a relatively large buddy page, it is likely there will 2464 * be more free pages in the pageblock, so try to steal them all. For 2465 * reclaimable and unmovable allocations, we steal regardless of page size, 2466 * as fragmentation caused by those allocations polluting movable pageblocks 2467 * is worse than movable allocations stealing from unmovable and reclaimable 2468 * pageblocks. 2469 */ 2470 static bool can_steal_fallback(unsigned int order, int start_mt) 2471 { 2472 /* 2473 * Leaving this order check is intended, although there is 2474 * relaxed order check in next check. The reason is that 2475 * we can actually steal whole pageblock if this condition met, 2476 * but, below check doesn't guarantee it and that is just heuristic 2477 * so could be changed anytime. 2478 */ 2479 if (order >= pageblock_order) 2480 return true; 2481 2482 if (order >= pageblock_order / 2 || 2483 start_mt == MIGRATE_RECLAIMABLE || 2484 start_mt == MIGRATE_UNMOVABLE || 2485 page_group_by_mobility_disabled) 2486 return true; 2487 2488 return false; 2489 } 2490 2491 static inline bool boost_watermark(struct zone *zone) 2492 { 2493 unsigned long max_boost; 2494 2495 if (!watermark_boost_factor) 2496 return false; 2497 /* 2498 * Don't bother in zones that are unlikely to produce results. 2499 * On small machines, including kdump capture kernels running 2500 * in a small area, boosting the watermark can cause an out of 2501 * memory situation immediately. 2502 */ 2503 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2504 return false; 2505 2506 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2507 watermark_boost_factor, 10000); 2508 2509 /* 2510 * high watermark may be uninitialised if fragmentation occurs 2511 * very early in boot so do not boost. We do not fall 2512 * through and boost by pageblock_nr_pages as failing 2513 * allocations that early means that reclaim is not going 2514 * to help and it may even be impossible to reclaim the 2515 * boosted watermark resulting in a hang. 2516 */ 2517 if (!max_boost) 2518 return false; 2519 2520 max_boost = max(pageblock_nr_pages, max_boost); 2521 2522 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2523 max_boost); 2524 2525 return true; 2526 } 2527 2528 /* 2529 * This function implements actual steal behaviour. If order is large enough, 2530 * we can steal whole pageblock. If not, we first move freepages in this 2531 * pageblock to our migratetype and determine how many already-allocated pages 2532 * are there in the pageblock with a compatible migratetype. If at least half 2533 * of pages are free or compatible, we can change migratetype of the pageblock 2534 * itself, so pages freed in the future will be put on the correct free list. 2535 */ 2536 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2537 unsigned int alloc_flags, int start_type, bool whole_block) 2538 { 2539 unsigned int current_order = buddy_order(page); 2540 int free_pages, movable_pages, alike_pages; 2541 int old_block_type; 2542 2543 old_block_type = get_pageblock_migratetype(page); 2544 2545 /* 2546 * This can happen due to races and we want to prevent broken 2547 * highatomic accounting. 2548 */ 2549 if (is_migrate_highatomic(old_block_type)) 2550 goto single_page; 2551 2552 /* Take ownership for orders >= pageblock_order */ 2553 if (current_order >= pageblock_order) { 2554 change_pageblock_range(page, current_order, start_type); 2555 goto single_page; 2556 } 2557 2558 /* 2559 * Boost watermarks to increase reclaim pressure to reduce the 2560 * likelihood of future fallbacks. Wake kswapd now as the node 2561 * may be balanced overall and kswapd will not wake naturally. 2562 */ 2563 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2564 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2565 2566 /* We are not allowed to try stealing from the whole block */ 2567 if (!whole_block) 2568 goto single_page; 2569 2570 free_pages = move_freepages_block(zone, page, start_type, 2571 &movable_pages); 2572 /* 2573 * Determine how many pages are compatible with our allocation. 2574 * For movable allocation, it's the number of movable pages which 2575 * we just obtained. For other types it's a bit more tricky. 2576 */ 2577 if (start_type == MIGRATE_MOVABLE) { 2578 alike_pages = movable_pages; 2579 } else { 2580 /* 2581 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2582 * to MOVABLE pageblock, consider all non-movable pages as 2583 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2584 * vice versa, be conservative since we can't distinguish the 2585 * exact migratetype of non-movable pages. 2586 */ 2587 if (old_block_type == MIGRATE_MOVABLE) 2588 alike_pages = pageblock_nr_pages 2589 - (free_pages + movable_pages); 2590 else 2591 alike_pages = 0; 2592 } 2593 2594 /* moving whole block can fail due to zone boundary conditions */ 2595 if (!free_pages) 2596 goto single_page; 2597 2598 /* 2599 * If a sufficient number of pages in the block are either free or of 2600 * comparable migratability as our allocation, claim the whole block. 2601 */ 2602 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2603 page_group_by_mobility_disabled) 2604 set_pageblock_migratetype(page, start_type); 2605 2606 return; 2607 2608 single_page: 2609 move_to_free_list(page, zone, current_order, start_type); 2610 } 2611 2612 /* 2613 * Check whether there is a suitable fallback freepage with requested order. 2614 * If only_stealable is true, this function returns fallback_mt only if 2615 * we can steal other freepages all together. This would help to reduce 2616 * fragmentation due to mixed migratetype pages in one pageblock. 2617 */ 2618 int find_suitable_fallback(struct free_area *area, unsigned int order, 2619 int migratetype, bool only_stealable, bool *can_steal) 2620 { 2621 int i; 2622 int fallback_mt; 2623 2624 if (area->nr_free == 0) 2625 return -1; 2626 2627 *can_steal = false; 2628 for (i = 0;; i++) { 2629 fallback_mt = fallbacks[migratetype][i]; 2630 if (fallback_mt == MIGRATE_TYPES) 2631 break; 2632 2633 if (free_area_empty(area, fallback_mt)) 2634 continue; 2635 2636 if (can_steal_fallback(order, migratetype)) 2637 *can_steal = true; 2638 2639 if (!only_stealable) 2640 return fallback_mt; 2641 2642 if (*can_steal) 2643 return fallback_mt; 2644 } 2645 2646 return -1; 2647 } 2648 2649 /* 2650 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2651 * there are no empty page blocks that contain a page with a suitable order 2652 */ 2653 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2654 unsigned int alloc_order) 2655 { 2656 int mt; 2657 unsigned long max_managed, flags; 2658 2659 /* 2660 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2661 * Check is race-prone but harmless. 2662 */ 2663 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2664 if (zone->nr_reserved_highatomic >= max_managed) 2665 return; 2666 2667 spin_lock_irqsave(&zone->lock, flags); 2668 2669 /* Recheck the nr_reserved_highatomic limit under the lock */ 2670 if (zone->nr_reserved_highatomic >= max_managed) 2671 goto out_unlock; 2672 2673 /* Yoink! */ 2674 mt = get_pageblock_migratetype(page); 2675 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2676 && !is_migrate_cma(mt)) { 2677 zone->nr_reserved_highatomic += pageblock_nr_pages; 2678 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2679 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2680 } 2681 2682 out_unlock: 2683 spin_unlock_irqrestore(&zone->lock, flags); 2684 } 2685 2686 /* 2687 * Used when an allocation is about to fail under memory pressure. This 2688 * potentially hurts the reliability of high-order allocations when under 2689 * intense memory pressure but failed atomic allocations should be easier 2690 * to recover from than an OOM. 2691 * 2692 * If @force is true, try to unreserve a pageblock even though highatomic 2693 * pageblock is exhausted. 2694 */ 2695 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2696 bool force) 2697 { 2698 struct zonelist *zonelist = ac->zonelist; 2699 unsigned long flags; 2700 struct zoneref *z; 2701 struct zone *zone; 2702 struct page *page; 2703 int order; 2704 bool ret; 2705 2706 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2707 ac->nodemask) { 2708 /* 2709 * Preserve at least one pageblock unless memory pressure 2710 * is really high. 2711 */ 2712 if (!force && zone->nr_reserved_highatomic <= 2713 pageblock_nr_pages) 2714 continue; 2715 2716 spin_lock_irqsave(&zone->lock, flags); 2717 for (order = 0; order < MAX_ORDER; order++) { 2718 struct free_area *area = &(zone->free_area[order]); 2719 2720 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2721 if (!page) 2722 continue; 2723 2724 /* 2725 * In page freeing path, migratetype change is racy so 2726 * we can counter several free pages in a pageblock 2727 * in this loop althoug we changed the pageblock type 2728 * from highatomic to ac->migratetype. So we should 2729 * adjust the count once. 2730 */ 2731 if (is_migrate_highatomic_page(page)) { 2732 /* 2733 * It should never happen but changes to 2734 * locking could inadvertently allow a per-cpu 2735 * drain to add pages to MIGRATE_HIGHATOMIC 2736 * while unreserving so be safe and watch for 2737 * underflows. 2738 */ 2739 zone->nr_reserved_highatomic -= min( 2740 pageblock_nr_pages, 2741 zone->nr_reserved_highatomic); 2742 } 2743 2744 /* 2745 * Convert to ac->migratetype and avoid the normal 2746 * pageblock stealing heuristics. Minimally, the caller 2747 * is doing the work and needs the pages. More 2748 * importantly, if the block was always converted to 2749 * MIGRATE_UNMOVABLE or another type then the number 2750 * of pageblocks that cannot be completely freed 2751 * may increase. 2752 */ 2753 set_pageblock_migratetype(page, ac->migratetype); 2754 ret = move_freepages_block(zone, page, ac->migratetype, 2755 NULL); 2756 if (ret) { 2757 spin_unlock_irqrestore(&zone->lock, flags); 2758 return ret; 2759 } 2760 } 2761 spin_unlock_irqrestore(&zone->lock, flags); 2762 } 2763 2764 return false; 2765 } 2766 2767 /* 2768 * Try finding a free buddy page on the fallback list and put it on the free 2769 * list of requested migratetype, possibly along with other pages from the same 2770 * block, depending on fragmentation avoidance heuristics. Returns true if 2771 * fallback was found so that __rmqueue_smallest() can grab it. 2772 * 2773 * The use of signed ints for order and current_order is a deliberate 2774 * deviation from the rest of this file, to make the for loop 2775 * condition simpler. 2776 */ 2777 static __always_inline bool 2778 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2779 unsigned int alloc_flags) 2780 { 2781 struct free_area *area; 2782 int current_order; 2783 int min_order = order; 2784 struct page *page; 2785 int fallback_mt; 2786 bool can_steal; 2787 2788 /* 2789 * Do not steal pages from freelists belonging to other pageblocks 2790 * i.e. orders < pageblock_order. If there are no local zones free, 2791 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2792 */ 2793 if (alloc_flags & ALLOC_NOFRAGMENT) 2794 min_order = pageblock_order; 2795 2796 /* 2797 * Find the largest available free page in the other list. This roughly 2798 * approximates finding the pageblock with the most free pages, which 2799 * would be too costly to do exactly. 2800 */ 2801 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2802 --current_order) { 2803 area = &(zone->free_area[current_order]); 2804 fallback_mt = find_suitable_fallback(area, current_order, 2805 start_migratetype, false, &can_steal); 2806 if (fallback_mt == -1) 2807 continue; 2808 2809 /* 2810 * We cannot steal all free pages from the pageblock and the 2811 * requested migratetype is movable. In that case it's better to 2812 * steal and split the smallest available page instead of the 2813 * largest available page, because even if the next movable 2814 * allocation falls back into a different pageblock than this 2815 * one, it won't cause permanent fragmentation. 2816 */ 2817 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2818 && current_order > order) 2819 goto find_smallest; 2820 2821 goto do_steal; 2822 } 2823 2824 return false; 2825 2826 find_smallest: 2827 for (current_order = order; current_order < MAX_ORDER; 2828 current_order++) { 2829 area = &(zone->free_area[current_order]); 2830 fallback_mt = find_suitable_fallback(area, current_order, 2831 start_migratetype, false, &can_steal); 2832 if (fallback_mt != -1) 2833 break; 2834 } 2835 2836 /* 2837 * This should not happen - we already found a suitable fallback 2838 * when looking for the largest page. 2839 */ 2840 VM_BUG_ON(current_order == MAX_ORDER); 2841 2842 do_steal: 2843 page = get_page_from_free_area(area, fallback_mt); 2844 2845 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2846 can_steal); 2847 2848 trace_mm_page_alloc_extfrag(page, order, current_order, 2849 start_migratetype, fallback_mt); 2850 2851 return true; 2852 2853 } 2854 2855 /* 2856 * Do the hard work of removing an element from the buddy allocator. 2857 * Call me with the zone->lock already held. 2858 */ 2859 static __always_inline struct page * 2860 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2861 unsigned int alloc_flags) 2862 { 2863 struct page *page; 2864 2865 if (IS_ENABLED(CONFIG_CMA)) { 2866 /* 2867 * Balance movable allocations between regular and CMA areas by 2868 * allocating from CMA when over half of the zone's free memory 2869 * is in the CMA area. 2870 */ 2871 if (alloc_flags & ALLOC_CMA && 2872 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2873 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2874 page = __rmqueue_cma_fallback(zone, order); 2875 if (page) 2876 goto out; 2877 } 2878 } 2879 retry: 2880 page = __rmqueue_smallest(zone, order, migratetype); 2881 if (unlikely(!page)) { 2882 if (alloc_flags & ALLOC_CMA) 2883 page = __rmqueue_cma_fallback(zone, order); 2884 2885 if (!page && __rmqueue_fallback(zone, order, migratetype, 2886 alloc_flags)) 2887 goto retry; 2888 } 2889 out: 2890 if (page) 2891 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2892 return page; 2893 } 2894 2895 /* 2896 * Obtain a specified number of elements from the buddy allocator, all under 2897 * a single hold of the lock, for efficiency. Add them to the supplied list. 2898 * Returns the number of new pages which were placed at *list. 2899 */ 2900 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2901 unsigned long count, struct list_head *list, 2902 int migratetype, unsigned int alloc_flags) 2903 { 2904 int i, alloced = 0; 2905 2906 spin_lock(&zone->lock); 2907 for (i = 0; i < count; ++i) { 2908 struct page *page = __rmqueue(zone, order, migratetype, 2909 alloc_flags); 2910 if (unlikely(page == NULL)) 2911 break; 2912 2913 if (unlikely(check_pcp_refill(page))) 2914 continue; 2915 2916 /* 2917 * Split buddy pages returned by expand() are received here in 2918 * physical page order. The page is added to the tail of 2919 * caller's list. From the callers perspective, the linked list 2920 * is ordered by page number under some conditions. This is 2921 * useful for IO devices that can forward direction from the 2922 * head, thus also in the physical page order. This is useful 2923 * for IO devices that can merge IO requests if the physical 2924 * pages are ordered properly. 2925 */ 2926 list_add_tail(&page->lru, list); 2927 alloced++; 2928 if (is_migrate_cma(get_pcppage_migratetype(page))) 2929 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2930 -(1 << order)); 2931 } 2932 2933 /* 2934 * i pages were removed from the buddy list even if some leak due 2935 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2936 * on i. Do not confuse with 'alloced' which is the number of 2937 * pages added to the pcp list. 2938 */ 2939 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2940 spin_unlock(&zone->lock); 2941 return alloced; 2942 } 2943 2944 #ifdef CONFIG_NUMA 2945 /* 2946 * Called from the vmstat counter updater to drain pagesets of this 2947 * currently executing processor on remote nodes after they have 2948 * expired. 2949 * 2950 * Note that this function must be called with the thread pinned to 2951 * a single processor. 2952 */ 2953 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2954 { 2955 unsigned long flags; 2956 int to_drain, batch; 2957 2958 local_irq_save(flags); 2959 batch = READ_ONCE(pcp->batch); 2960 to_drain = min(pcp->count, batch); 2961 if (to_drain > 0) 2962 free_pcppages_bulk(zone, to_drain, pcp); 2963 local_irq_restore(flags); 2964 } 2965 #endif 2966 2967 /* 2968 * Drain pcplists of the indicated processor and zone. 2969 * 2970 * The processor must either be the current processor and the 2971 * thread pinned to the current processor or a processor that 2972 * is not online. 2973 */ 2974 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2975 { 2976 unsigned long flags; 2977 struct per_cpu_pageset *pset; 2978 struct per_cpu_pages *pcp; 2979 2980 local_irq_save(flags); 2981 pset = per_cpu_ptr(zone->pageset, cpu); 2982 2983 pcp = &pset->pcp; 2984 if (pcp->count) 2985 free_pcppages_bulk(zone, pcp->count, pcp); 2986 local_irq_restore(flags); 2987 } 2988 2989 /* 2990 * Drain pcplists of all zones on the indicated processor. 2991 * 2992 * The processor must either be the current processor and the 2993 * thread pinned to the current processor or a processor that 2994 * is not online. 2995 */ 2996 static void drain_pages(unsigned int cpu) 2997 { 2998 struct zone *zone; 2999 3000 for_each_populated_zone(zone) { 3001 drain_pages_zone(cpu, zone); 3002 } 3003 } 3004 3005 /* 3006 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3007 * 3008 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3009 * the single zone's pages. 3010 */ 3011 void drain_local_pages(struct zone *zone) 3012 { 3013 int cpu = smp_processor_id(); 3014 3015 if (zone) 3016 drain_pages_zone(cpu, zone); 3017 else 3018 drain_pages(cpu); 3019 } 3020 3021 static void drain_local_pages_wq(struct work_struct *work) 3022 { 3023 struct pcpu_drain *drain; 3024 3025 drain = container_of(work, struct pcpu_drain, work); 3026 3027 /* 3028 * drain_all_pages doesn't use proper cpu hotplug protection so 3029 * we can race with cpu offline when the WQ can move this from 3030 * a cpu pinned worker to an unbound one. We can operate on a different 3031 * cpu which is allright but we also have to make sure to not move to 3032 * a different one. 3033 */ 3034 preempt_disable(); 3035 drain_local_pages(drain->zone); 3036 preempt_enable(); 3037 } 3038 3039 /* 3040 * The implementation of drain_all_pages(), exposing an extra parameter to 3041 * drain on all cpus. 3042 * 3043 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3044 * not empty. The check for non-emptiness can however race with a free to 3045 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3046 * that need the guarantee that every CPU has drained can disable the 3047 * optimizing racy check. 3048 */ 3049 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3050 { 3051 int cpu; 3052 3053 /* 3054 * Allocate in the BSS so we wont require allocation in 3055 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3056 */ 3057 static cpumask_t cpus_with_pcps; 3058 3059 /* 3060 * Make sure nobody triggers this path before mm_percpu_wq is fully 3061 * initialized. 3062 */ 3063 if (WARN_ON_ONCE(!mm_percpu_wq)) 3064 return; 3065 3066 /* 3067 * Do not drain if one is already in progress unless it's specific to 3068 * a zone. Such callers are primarily CMA and memory hotplug and need 3069 * the drain to be complete when the call returns. 3070 */ 3071 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3072 if (!zone) 3073 return; 3074 mutex_lock(&pcpu_drain_mutex); 3075 } 3076 3077 /* 3078 * We don't care about racing with CPU hotplug event 3079 * as offline notification will cause the notified 3080 * cpu to drain that CPU pcps and on_each_cpu_mask 3081 * disables preemption as part of its processing 3082 */ 3083 for_each_online_cpu(cpu) { 3084 struct per_cpu_pageset *pcp; 3085 struct zone *z; 3086 bool has_pcps = false; 3087 3088 if (force_all_cpus) { 3089 /* 3090 * The pcp.count check is racy, some callers need a 3091 * guarantee that no cpu is missed. 3092 */ 3093 has_pcps = true; 3094 } else if (zone) { 3095 pcp = per_cpu_ptr(zone->pageset, cpu); 3096 if (pcp->pcp.count) 3097 has_pcps = true; 3098 } else { 3099 for_each_populated_zone(z) { 3100 pcp = per_cpu_ptr(z->pageset, cpu); 3101 if (pcp->pcp.count) { 3102 has_pcps = true; 3103 break; 3104 } 3105 } 3106 } 3107 3108 if (has_pcps) 3109 cpumask_set_cpu(cpu, &cpus_with_pcps); 3110 else 3111 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3112 } 3113 3114 for_each_cpu(cpu, &cpus_with_pcps) { 3115 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3116 3117 drain->zone = zone; 3118 INIT_WORK(&drain->work, drain_local_pages_wq); 3119 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3120 } 3121 for_each_cpu(cpu, &cpus_with_pcps) 3122 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3123 3124 mutex_unlock(&pcpu_drain_mutex); 3125 } 3126 3127 /* 3128 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3129 * 3130 * When zone parameter is non-NULL, spill just the single zone's pages. 3131 * 3132 * Note that this can be extremely slow as the draining happens in a workqueue. 3133 */ 3134 void drain_all_pages(struct zone *zone) 3135 { 3136 __drain_all_pages(zone, false); 3137 } 3138 3139 #ifdef CONFIG_HIBERNATION 3140 3141 /* 3142 * Touch the watchdog for every WD_PAGE_COUNT pages. 3143 */ 3144 #define WD_PAGE_COUNT (128*1024) 3145 3146 void mark_free_pages(struct zone *zone) 3147 { 3148 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3149 unsigned long flags; 3150 unsigned int order, t; 3151 struct page *page; 3152 3153 if (zone_is_empty(zone)) 3154 return; 3155 3156 spin_lock_irqsave(&zone->lock, flags); 3157 3158 max_zone_pfn = zone_end_pfn(zone); 3159 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3160 if (pfn_valid(pfn)) { 3161 page = pfn_to_page(pfn); 3162 3163 if (!--page_count) { 3164 touch_nmi_watchdog(); 3165 page_count = WD_PAGE_COUNT; 3166 } 3167 3168 if (page_zone(page) != zone) 3169 continue; 3170 3171 if (!swsusp_page_is_forbidden(page)) 3172 swsusp_unset_page_free(page); 3173 } 3174 3175 for_each_migratetype_order(order, t) { 3176 list_for_each_entry(page, 3177 &zone->free_area[order].free_list[t], lru) { 3178 unsigned long i; 3179 3180 pfn = page_to_pfn(page); 3181 for (i = 0; i < (1UL << order); i++) { 3182 if (!--page_count) { 3183 touch_nmi_watchdog(); 3184 page_count = WD_PAGE_COUNT; 3185 } 3186 swsusp_set_page_free(pfn_to_page(pfn + i)); 3187 } 3188 } 3189 } 3190 spin_unlock_irqrestore(&zone->lock, flags); 3191 } 3192 #endif /* CONFIG_PM */ 3193 3194 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3195 { 3196 int migratetype; 3197 3198 if (!free_pcp_prepare(page)) 3199 return false; 3200 3201 migratetype = get_pfnblock_migratetype(page, pfn); 3202 set_pcppage_migratetype(page, migratetype); 3203 return true; 3204 } 3205 3206 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3207 { 3208 struct zone *zone = page_zone(page); 3209 struct per_cpu_pages *pcp; 3210 int migratetype; 3211 3212 migratetype = get_pcppage_migratetype(page); 3213 __count_vm_event(PGFREE); 3214 3215 /* 3216 * We only track unmovable, reclaimable and movable on pcp lists. 3217 * Free ISOLATE pages back to the allocator because they are being 3218 * offlined but treat HIGHATOMIC as movable pages so we can get those 3219 * areas back if necessary. Otherwise, we may have to free 3220 * excessively into the page allocator 3221 */ 3222 if (migratetype >= MIGRATE_PCPTYPES) { 3223 if (unlikely(is_migrate_isolate(migratetype))) { 3224 free_one_page(zone, page, pfn, 0, migratetype, 3225 FPI_NONE); 3226 return; 3227 } 3228 migratetype = MIGRATE_MOVABLE; 3229 } 3230 3231 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3232 list_add(&page->lru, &pcp->lists[migratetype]); 3233 pcp->count++; 3234 if (pcp->count >= READ_ONCE(pcp->high)) 3235 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp); 3236 } 3237 3238 /* 3239 * Free a 0-order page 3240 */ 3241 void free_unref_page(struct page *page) 3242 { 3243 unsigned long flags; 3244 unsigned long pfn = page_to_pfn(page); 3245 3246 if (!free_unref_page_prepare(page, pfn)) 3247 return; 3248 3249 local_irq_save(flags); 3250 free_unref_page_commit(page, pfn); 3251 local_irq_restore(flags); 3252 } 3253 3254 /* 3255 * Free a list of 0-order pages 3256 */ 3257 void free_unref_page_list(struct list_head *list) 3258 { 3259 struct page *page, *next; 3260 unsigned long flags, pfn; 3261 int batch_count = 0; 3262 3263 /* Prepare pages for freeing */ 3264 list_for_each_entry_safe(page, next, list, lru) { 3265 pfn = page_to_pfn(page); 3266 if (!free_unref_page_prepare(page, pfn)) 3267 list_del(&page->lru); 3268 set_page_private(page, pfn); 3269 } 3270 3271 local_irq_save(flags); 3272 list_for_each_entry_safe(page, next, list, lru) { 3273 unsigned long pfn = page_private(page); 3274 3275 set_page_private(page, 0); 3276 trace_mm_page_free_batched(page); 3277 free_unref_page_commit(page, pfn); 3278 3279 /* 3280 * Guard against excessive IRQ disabled times when we get 3281 * a large list of pages to free. 3282 */ 3283 if (++batch_count == SWAP_CLUSTER_MAX) { 3284 local_irq_restore(flags); 3285 batch_count = 0; 3286 local_irq_save(flags); 3287 } 3288 } 3289 local_irq_restore(flags); 3290 } 3291 3292 /* 3293 * split_page takes a non-compound higher-order page, and splits it into 3294 * n (1<<order) sub-pages: page[0..n] 3295 * Each sub-page must be freed individually. 3296 * 3297 * Note: this is probably too low level an operation for use in drivers. 3298 * Please consult with lkml before using this in your driver. 3299 */ 3300 void split_page(struct page *page, unsigned int order) 3301 { 3302 int i; 3303 3304 VM_BUG_ON_PAGE(PageCompound(page), page); 3305 VM_BUG_ON_PAGE(!page_count(page), page); 3306 3307 for (i = 1; i < (1 << order); i++) 3308 set_page_refcounted(page + i); 3309 split_page_owner(page, 1 << order); 3310 } 3311 EXPORT_SYMBOL_GPL(split_page); 3312 3313 int __isolate_free_page(struct page *page, unsigned int order) 3314 { 3315 unsigned long watermark; 3316 struct zone *zone; 3317 int mt; 3318 3319 BUG_ON(!PageBuddy(page)); 3320 3321 zone = page_zone(page); 3322 mt = get_pageblock_migratetype(page); 3323 3324 if (!is_migrate_isolate(mt)) { 3325 /* 3326 * Obey watermarks as if the page was being allocated. We can 3327 * emulate a high-order watermark check with a raised order-0 3328 * watermark, because we already know our high-order page 3329 * exists. 3330 */ 3331 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3332 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3333 return 0; 3334 3335 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3336 } 3337 3338 /* Remove page from free list */ 3339 3340 del_page_from_free_list(page, zone, order); 3341 3342 /* 3343 * Set the pageblock if the isolated page is at least half of a 3344 * pageblock 3345 */ 3346 if (order >= pageblock_order - 1) { 3347 struct page *endpage = page + (1 << order) - 1; 3348 for (; page < endpage; page += pageblock_nr_pages) { 3349 int mt = get_pageblock_migratetype(page); 3350 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3351 && !is_migrate_highatomic(mt)) 3352 set_pageblock_migratetype(page, 3353 MIGRATE_MOVABLE); 3354 } 3355 } 3356 3357 3358 return 1UL << order; 3359 } 3360 3361 /** 3362 * __putback_isolated_page - Return a now-isolated page back where we got it 3363 * @page: Page that was isolated 3364 * @order: Order of the isolated page 3365 * @mt: The page's pageblock's migratetype 3366 * 3367 * This function is meant to return a page pulled from the free lists via 3368 * __isolate_free_page back to the free lists they were pulled from. 3369 */ 3370 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3371 { 3372 struct zone *zone = page_zone(page); 3373 3374 /* zone lock should be held when this function is called */ 3375 lockdep_assert_held(&zone->lock); 3376 3377 /* Return isolated page to tail of freelist. */ 3378 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3379 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3380 } 3381 3382 /* 3383 * Update NUMA hit/miss statistics 3384 * 3385 * Must be called with interrupts disabled. 3386 */ 3387 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3388 { 3389 #ifdef CONFIG_NUMA 3390 enum numa_stat_item local_stat = NUMA_LOCAL; 3391 3392 /* skip numa counters update if numa stats is disabled */ 3393 if (!static_branch_likely(&vm_numa_stat_key)) 3394 return; 3395 3396 if (zone_to_nid(z) != numa_node_id()) 3397 local_stat = NUMA_OTHER; 3398 3399 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3400 __inc_numa_state(z, NUMA_HIT); 3401 else { 3402 __inc_numa_state(z, NUMA_MISS); 3403 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3404 } 3405 __inc_numa_state(z, local_stat); 3406 #endif 3407 } 3408 3409 /* Remove page from the per-cpu list, caller must protect the list */ 3410 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3411 unsigned int alloc_flags, 3412 struct per_cpu_pages *pcp, 3413 struct list_head *list) 3414 { 3415 struct page *page; 3416 3417 do { 3418 if (list_empty(list)) { 3419 pcp->count += rmqueue_bulk(zone, 0, 3420 READ_ONCE(pcp->batch), list, 3421 migratetype, alloc_flags); 3422 if (unlikely(list_empty(list))) 3423 return NULL; 3424 } 3425 3426 page = list_first_entry(list, struct page, lru); 3427 list_del(&page->lru); 3428 pcp->count--; 3429 } while (check_new_pcp(page)); 3430 3431 return page; 3432 } 3433 3434 /* Lock and remove page from the per-cpu list */ 3435 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3436 struct zone *zone, gfp_t gfp_flags, 3437 int migratetype, unsigned int alloc_flags) 3438 { 3439 struct per_cpu_pages *pcp; 3440 struct list_head *list; 3441 struct page *page; 3442 unsigned long flags; 3443 3444 local_irq_save(flags); 3445 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3446 list = &pcp->lists[migratetype]; 3447 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3448 if (page) { 3449 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3450 zone_statistics(preferred_zone, zone); 3451 } 3452 local_irq_restore(flags); 3453 return page; 3454 } 3455 3456 /* 3457 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3458 */ 3459 static inline 3460 struct page *rmqueue(struct zone *preferred_zone, 3461 struct zone *zone, unsigned int order, 3462 gfp_t gfp_flags, unsigned int alloc_flags, 3463 int migratetype) 3464 { 3465 unsigned long flags; 3466 struct page *page; 3467 3468 if (likely(order == 0)) { 3469 /* 3470 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3471 * we need to skip it when CMA area isn't allowed. 3472 */ 3473 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3474 migratetype != MIGRATE_MOVABLE) { 3475 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3476 migratetype, alloc_flags); 3477 goto out; 3478 } 3479 } 3480 3481 /* 3482 * We most definitely don't want callers attempting to 3483 * allocate greater than order-1 page units with __GFP_NOFAIL. 3484 */ 3485 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3486 spin_lock_irqsave(&zone->lock, flags); 3487 3488 do { 3489 page = NULL; 3490 /* 3491 * order-0 request can reach here when the pcplist is skipped 3492 * due to non-CMA allocation context. HIGHATOMIC area is 3493 * reserved for high-order atomic allocation, so order-0 3494 * request should skip it. 3495 */ 3496 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3497 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3498 if (page) 3499 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3500 } 3501 if (!page) 3502 page = __rmqueue(zone, order, migratetype, alloc_flags); 3503 } while (page && check_new_pages(page, order)); 3504 spin_unlock(&zone->lock); 3505 if (!page) 3506 goto failed; 3507 __mod_zone_freepage_state(zone, -(1 << order), 3508 get_pcppage_migratetype(page)); 3509 3510 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3511 zone_statistics(preferred_zone, zone); 3512 local_irq_restore(flags); 3513 3514 out: 3515 /* Separate test+clear to avoid unnecessary atomics */ 3516 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3517 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3518 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3519 } 3520 3521 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3522 return page; 3523 3524 failed: 3525 local_irq_restore(flags); 3526 return NULL; 3527 } 3528 3529 #ifdef CONFIG_FAIL_PAGE_ALLOC 3530 3531 static struct { 3532 struct fault_attr attr; 3533 3534 bool ignore_gfp_highmem; 3535 bool ignore_gfp_reclaim; 3536 u32 min_order; 3537 } fail_page_alloc = { 3538 .attr = FAULT_ATTR_INITIALIZER, 3539 .ignore_gfp_reclaim = true, 3540 .ignore_gfp_highmem = true, 3541 .min_order = 1, 3542 }; 3543 3544 static int __init setup_fail_page_alloc(char *str) 3545 { 3546 return setup_fault_attr(&fail_page_alloc.attr, str); 3547 } 3548 __setup("fail_page_alloc=", setup_fail_page_alloc); 3549 3550 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3551 { 3552 if (order < fail_page_alloc.min_order) 3553 return false; 3554 if (gfp_mask & __GFP_NOFAIL) 3555 return false; 3556 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3557 return false; 3558 if (fail_page_alloc.ignore_gfp_reclaim && 3559 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3560 return false; 3561 3562 return should_fail(&fail_page_alloc.attr, 1 << order); 3563 } 3564 3565 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3566 3567 static int __init fail_page_alloc_debugfs(void) 3568 { 3569 umode_t mode = S_IFREG | 0600; 3570 struct dentry *dir; 3571 3572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3573 &fail_page_alloc.attr); 3574 3575 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3576 &fail_page_alloc.ignore_gfp_reclaim); 3577 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3578 &fail_page_alloc.ignore_gfp_highmem); 3579 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3580 3581 return 0; 3582 } 3583 3584 late_initcall(fail_page_alloc_debugfs); 3585 3586 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3587 3588 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3589 3590 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3591 { 3592 return false; 3593 } 3594 3595 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3596 3597 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3598 { 3599 return __should_fail_alloc_page(gfp_mask, order); 3600 } 3601 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3602 3603 static inline long __zone_watermark_unusable_free(struct zone *z, 3604 unsigned int order, unsigned int alloc_flags) 3605 { 3606 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3607 long unusable_free = (1 << order) - 1; 3608 3609 /* 3610 * If the caller does not have rights to ALLOC_HARDER then subtract 3611 * the high-atomic reserves. This will over-estimate the size of the 3612 * atomic reserve but it avoids a search. 3613 */ 3614 if (likely(!alloc_harder)) 3615 unusable_free += z->nr_reserved_highatomic; 3616 3617 #ifdef CONFIG_CMA 3618 /* If allocation can't use CMA areas don't use free CMA pages */ 3619 if (!(alloc_flags & ALLOC_CMA)) 3620 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3621 #endif 3622 3623 return unusable_free; 3624 } 3625 3626 /* 3627 * Return true if free base pages are above 'mark'. For high-order checks it 3628 * will return true of the order-0 watermark is reached and there is at least 3629 * one free page of a suitable size. Checking now avoids taking the zone lock 3630 * to check in the allocation paths if no pages are free. 3631 */ 3632 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3633 int highest_zoneidx, unsigned int alloc_flags, 3634 long free_pages) 3635 { 3636 long min = mark; 3637 int o; 3638 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3639 3640 /* free_pages may go negative - that's OK */ 3641 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3642 3643 if (alloc_flags & ALLOC_HIGH) 3644 min -= min / 2; 3645 3646 if (unlikely(alloc_harder)) { 3647 /* 3648 * OOM victims can try even harder than normal ALLOC_HARDER 3649 * users on the grounds that it's definitely going to be in 3650 * the exit path shortly and free memory. Any allocation it 3651 * makes during the free path will be small and short-lived. 3652 */ 3653 if (alloc_flags & ALLOC_OOM) 3654 min -= min / 2; 3655 else 3656 min -= min / 4; 3657 } 3658 3659 /* 3660 * Check watermarks for an order-0 allocation request. If these 3661 * are not met, then a high-order request also cannot go ahead 3662 * even if a suitable page happened to be free. 3663 */ 3664 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3665 return false; 3666 3667 /* If this is an order-0 request then the watermark is fine */ 3668 if (!order) 3669 return true; 3670 3671 /* For a high-order request, check at least one suitable page is free */ 3672 for (o = order; o < MAX_ORDER; o++) { 3673 struct free_area *area = &z->free_area[o]; 3674 int mt; 3675 3676 if (!area->nr_free) 3677 continue; 3678 3679 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3680 if (!free_area_empty(area, mt)) 3681 return true; 3682 } 3683 3684 #ifdef CONFIG_CMA 3685 if ((alloc_flags & ALLOC_CMA) && 3686 !free_area_empty(area, MIGRATE_CMA)) { 3687 return true; 3688 } 3689 #endif 3690 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3691 return true; 3692 } 3693 return false; 3694 } 3695 3696 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3697 int highest_zoneidx, unsigned int alloc_flags) 3698 { 3699 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3700 zone_page_state(z, NR_FREE_PAGES)); 3701 } 3702 3703 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3704 unsigned long mark, int highest_zoneidx, 3705 unsigned int alloc_flags, gfp_t gfp_mask) 3706 { 3707 long free_pages; 3708 3709 free_pages = zone_page_state(z, NR_FREE_PAGES); 3710 3711 /* 3712 * Fast check for order-0 only. If this fails then the reserves 3713 * need to be calculated. 3714 */ 3715 if (!order) { 3716 long fast_free; 3717 3718 fast_free = free_pages; 3719 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3720 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3721 return true; 3722 } 3723 3724 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3725 free_pages)) 3726 return true; 3727 /* 3728 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3729 * when checking the min watermark. The min watermark is the 3730 * point where boosting is ignored so that kswapd is woken up 3731 * when below the low watermark. 3732 */ 3733 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3734 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3735 mark = z->_watermark[WMARK_MIN]; 3736 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3737 alloc_flags, free_pages); 3738 } 3739 3740 return false; 3741 } 3742 3743 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3744 unsigned long mark, int highest_zoneidx) 3745 { 3746 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3747 3748 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3749 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3750 3751 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3752 free_pages); 3753 } 3754 3755 #ifdef CONFIG_NUMA 3756 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3757 { 3758 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3759 node_reclaim_distance; 3760 } 3761 #else /* CONFIG_NUMA */ 3762 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3763 { 3764 return true; 3765 } 3766 #endif /* CONFIG_NUMA */ 3767 3768 /* 3769 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3770 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3771 * premature use of a lower zone may cause lowmem pressure problems that 3772 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3773 * probably too small. It only makes sense to spread allocations to avoid 3774 * fragmentation between the Normal and DMA32 zones. 3775 */ 3776 static inline unsigned int 3777 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3778 { 3779 unsigned int alloc_flags; 3780 3781 /* 3782 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3783 * to save a branch. 3784 */ 3785 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3786 3787 #ifdef CONFIG_ZONE_DMA32 3788 if (!zone) 3789 return alloc_flags; 3790 3791 if (zone_idx(zone) != ZONE_NORMAL) 3792 return alloc_flags; 3793 3794 /* 3795 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3796 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3797 * on UMA that if Normal is populated then so is DMA32. 3798 */ 3799 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3800 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3801 return alloc_flags; 3802 3803 alloc_flags |= ALLOC_NOFRAGMENT; 3804 #endif /* CONFIG_ZONE_DMA32 */ 3805 return alloc_flags; 3806 } 3807 3808 static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3809 unsigned int alloc_flags) 3810 { 3811 #ifdef CONFIG_CMA 3812 unsigned int pflags = current->flags; 3813 3814 if (!(pflags & PF_MEMALLOC_NOCMA) && 3815 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3816 alloc_flags |= ALLOC_CMA; 3817 3818 #endif 3819 return alloc_flags; 3820 } 3821 3822 /* 3823 * get_page_from_freelist goes through the zonelist trying to allocate 3824 * a page. 3825 */ 3826 static struct page * 3827 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3828 const struct alloc_context *ac) 3829 { 3830 struct zoneref *z; 3831 struct zone *zone; 3832 struct pglist_data *last_pgdat_dirty_limit = NULL; 3833 bool no_fallback; 3834 3835 retry: 3836 /* 3837 * Scan zonelist, looking for a zone with enough free. 3838 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3839 */ 3840 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3841 z = ac->preferred_zoneref; 3842 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3843 ac->nodemask) { 3844 struct page *page; 3845 unsigned long mark; 3846 3847 if (cpusets_enabled() && 3848 (alloc_flags & ALLOC_CPUSET) && 3849 !__cpuset_zone_allowed(zone, gfp_mask)) 3850 continue; 3851 /* 3852 * When allocating a page cache page for writing, we 3853 * want to get it from a node that is within its dirty 3854 * limit, such that no single node holds more than its 3855 * proportional share of globally allowed dirty pages. 3856 * The dirty limits take into account the node's 3857 * lowmem reserves and high watermark so that kswapd 3858 * should be able to balance it without having to 3859 * write pages from its LRU list. 3860 * 3861 * XXX: For now, allow allocations to potentially 3862 * exceed the per-node dirty limit in the slowpath 3863 * (spread_dirty_pages unset) before going into reclaim, 3864 * which is important when on a NUMA setup the allowed 3865 * nodes are together not big enough to reach the 3866 * global limit. The proper fix for these situations 3867 * will require awareness of nodes in the 3868 * dirty-throttling and the flusher threads. 3869 */ 3870 if (ac->spread_dirty_pages) { 3871 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3872 continue; 3873 3874 if (!node_dirty_ok(zone->zone_pgdat)) { 3875 last_pgdat_dirty_limit = zone->zone_pgdat; 3876 continue; 3877 } 3878 } 3879 3880 if (no_fallback && nr_online_nodes > 1 && 3881 zone != ac->preferred_zoneref->zone) { 3882 int local_nid; 3883 3884 /* 3885 * If moving to a remote node, retry but allow 3886 * fragmenting fallbacks. Locality is more important 3887 * than fragmentation avoidance. 3888 */ 3889 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3890 if (zone_to_nid(zone) != local_nid) { 3891 alloc_flags &= ~ALLOC_NOFRAGMENT; 3892 goto retry; 3893 } 3894 } 3895 3896 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3897 if (!zone_watermark_fast(zone, order, mark, 3898 ac->highest_zoneidx, alloc_flags, 3899 gfp_mask)) { 3900 int ret; 3901 3902 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3903 /* 3904 * Watermark failed for this zone, but see if we can 3905 * grow this zone if it contains deferred pages. 3906 */ 3907 if (static_branch_unlikely(&deferred_pages)) { 3908 if (_deferred_grow_zone(zone, order)) 3909 goto try_this_zone; 3910 } 3911 #endif 3912 /* Checked here to keep the fast path fast */ 3913 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3914 if (alloc_flags & ALLOC_NO_WATERMARKS) 3915 goto try_this_zone; 3916 3917 if (node_reclaim_mode == 0 || 3918 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3919 continue; 3920 3921 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3922 switch (ret) { 3923 case NODE_RECLAIM_NOSCAN: 3924 /* did not scan */ 3925 continue; 3926 case NODE_RECLAIM_FULL: 3927 /* scanned but unreclaimable */ 3928 continue; 3929 default: 3930 /* did we reclaim enough */ 3931 if (zone_watermark_ok(zone, order, mark, 3932 ac->highest_zoneidx, alloc_flags)) 3933 goto try_this_zone; 3934 3935 continue; 3936 } 3937 } 3938 3939 try_this_zone: 3940 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3941 gfp_mask, alloc_flags, ac->migratetype); 3942 if (page) { 3943 prep_new_page(page, order, gfp_mask, alloc_flags); 3944 3945 /* 3946 * If this is a high-order atomic allocation then check 3947 * if the pageblock should be reserved for the future 3948 */ 3949 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3950 reserve_highatomic_pageblock(page, zone, order); 3951 3952 return page; 3953 } else { 3954 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3955 /* Try again if zone has deferred pages */ 3956 if (static_branch_unlikely(&deferred_pages)) { 3957 if (_deferred_grow_zone(zone, order)) 3958 goto try_this_zone; 3959 } 3960 #endif 3961 } 3962 } 3963 3964 /* 3965 * It's possible on a UMA machine to get through all zones that are 3966 * fragmented. If avoiding fragmentation, reset and try again. 3967 */ 3968 if (no_fallback) { 3969 alloc_flags &= ~ALLOC_NOFRAGMENT; 3970 goto retry; 3971 } 3972 3973 return NULL; 3974 } 3975 3976 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3977 { 3978 unsigned int filter = SHOW_MEM_FILTER_NODES; 3979 3980 /* 3981 * This documents exceptions given to allocations in certain 3982 * contexts that are allowed to allocate outside current's set 3983 * of allowed nodes. 3984 */ 3985 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3986 if (tsk_is_oom_victim(current) || 3987 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3988 filter &= ~SHOW_MEM_FILTER_NODES; 3989 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3990 filter &= ~SHOW_MEM_FILTER_NODES; 3991 3992 show_mem(filter, nodemask); 3993 } 3994 3995 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3996 { 3997 struct va_format vaf; 3998 va_list args; 3999 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4000 4001 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4002 return; 4003 4004 va_start(args, fmt); 4005 vaf.fmt = fmt; 4006 vaf.va = &args; 4007 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4008 current->comm, &vaf, gfp_mask, &gfp_mask, 4009 nodemask_pr_args(nodemask)); 4010 va_end(args); 4011 4012 cpuset_print_current_mems_allowed(); 4013 pr_cont("\n"); 4014 dump_stack(); 4015 warn_alloc_show_mem(gfp_mask, nodemask); 4016 } 4017 4018 static inline struct page * 4019 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4020 unsigned int alloc_flags, 4021 const struct alloc_context *ac) 4022 { 4023 struct page *page; 4024 4025 page = get_page_from_freelist(gfp_mask, order, 4026 alloc_flags|ALLOC_CPUSET, ac); 4027 /* 4028 * fallback to ignore cpuset restriction if our nodes 4029 * are depleted 4030 */ 4031 if (!page) 4032 page = get_page_from_freelist(gfp_mask, order, 4033 alloc_flags, ac); 4034 4035 return page; 4036 } 4037 4038 static inline struct page * 4039 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4040 const struct alloc_context *ac, unsigned long *did_some_progress) 4041 { 4042 struct oom_control oc = { 4043 .zonelist = ac->zonelist, 4044 .nodemask = ac->nodemask, 4045 .memcg = NULL, 4046 .gfp_mask = gfp_mask, 4047 .order = order, 4048 }; 4049 struct page *page; 4050 4051 *did_some_progress = 0; 4052 4053 /* 4054 * Acquire the oom lock. If that fails, somebody else is 4055 * making progress for us. 4056 */ 4057 if (!mutex_trylock(&oom_lock)) { 4058 *did_some_progress = 1; 4059 schedule_timeout_uninterruptible(1); 4060 return NULL; 4061 } 4062 4063 /* 4064 * Go through the zonelist yet one more time, keep very high watermark 4065 * here, this is only to catch a parallel oom killing, we must fail if 4066 * we're still under heavy pressure. But make sure that this reclaim 4067 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4068 * allocation which will never fail due to oom_lock already held. 4069 */ 4070 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4071 ~__GFP_DIRECT_RECLAIM, order, 4072 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4073 if (page) 4074 goto out; 4075 4076 /* Coredumps can quickly deplete all memory reserves */ 4077 if (current->flags & PF_DUMPCORE) 4078 goto out; 4079 /* The OOM killer will not help higher order allocs */ 4080 if (order > PAGE_ALLOC_COSTLY_ORDER) 4081 goto out; 4082 /* 4083 * We have already exhausted all our reclaim opportunities without any 4084 * success so it is time to admit defeat. We will skip the OOM killer 4085 * because it is very likely that the caller has a more reasonable 4086 * fallback than shooting a random task. 4087 * 4088 * The OOM killer may not free memory on a specific node. 4089 */ 4090 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4091 goto out; 4092 /* The OOM killer does not needlessly kill tasks for lowmem */ 4093 if (ac->highest_zoneidx < ZONE_NORMAL) 4094 goto out; 4095 if (pm_suspended_storage()) 4096 goto out; 4097 /* 4098 * XXX: GFP_NOFS allocations should rather fail than rely on 4099 * other request to make a forward progress. 4100 * We are in an unfortunate situation where out_of_memory cannot 4101 * do much for this context but let's try it to at least get 4102 * access to memory reserved if the current task is killed (see 4103 * out_of_memory). Once filesystems are ready to handle allocation 4104 * failures more gracefully we should just bail out here. 4105 */ 4106 4107 /* Exhausted what can be done so it's blame time */ 4108 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4109 *did_some_progress = 1; 4110 4111 /* 4112 * Help non-failing allocations by giving them access to memory 4113 * reserves 4114 */ 4115 if (gfp_mask & __GFP_NOFAIL) 4116 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4117 ALLOC_NO_WATERMARKS, ac); 4118 } 4119 out: 4120 mutex_unlock(&oom_lock); 4121 return page; 4122 } 4123 4124 /* 4125 * Maximum number of compaction retries wit a progress before OOM 4126 * killer is consider as the only way to move forward. 4127 */ 4128 #define MAX_COMPACT_RETRIES 16 4129 4130 #ifdef CONFIG_COMPACTION 4131 /* Try memory compaction for high-order allocations before reclaim */ 4132 static struct page * 4133 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4134 unsigned int alloc_flags, const struct alloc_context *ac, 4135 enum compact_priority prio, enum compact_result *compact_result) 4136 { 4137 struct page *page = NULL; 4138 unsigned long pflags; 4139 unsigned int noreclaim_flag; 4140 4141 if (!order) 4142 return NULL; 4143 4144 psi_memstall_enter(&pflags); 4145 noreclaim_flag = memalloc_noreclaim_save(); 4146 4147 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4148 prio, &page); 4149 4150 memalloc_noreclaim_restore(noreclaim_flag); 4151 psi_memstall_leave(&pflags); 4152 4153 /* 4154 * At least in one zone compaction wasn't deferred or skipped, so let's 4155 * count a compaction stall 4156 */ 4157 count_vm_event(COMPACTSTALL); 4158 4159 /* Prep a captured page if available */ 4160 if (page) 4161 prep_new_page(page, order, gfp_mask, alloc_flags); 4162 4163 /* Try get a page from the freelist if available */ 4164 if (!page) 4165 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4166 4167 if (page) { 4168 struct zone *zone = page_zone(page); 4169 4170 zone->compact_blockskip_flush = false; 4171 compaction_defer_reset(zone, order, true); 4172 count_vm_event(COMPACTSUCCESS); 4173 return page; 4174 } 4175 4176 /* 4177 * It's bad if compaction run occurs and fails. The most likely reason 4178 * is that pages exist, but not enough to satisfy watermarks. 4179 */ 4180 count_vm_event(COMPACTFAIL); 4181 4182 cond_resched(); 4183 4184 return NULL; 4185 } 4186 4187 static inline bool 4188 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4189 enum compact_result compact_result, 4190 enum compact_priority *compact_priority, 4191 int *compaction_retries) 4192 { 4193 int max_retries = MAX_COMPACT_RETRIES; 4194 int min_priority; 4195 bool ret = false; 4196 int retries = *compaction_retries; 4197 enum compact_priority priority = *compact_priority; 4198 4199 if (!order) 4200 return false; 4201 4202 if (compaction_made_progress(compact_result)) 4203 (*compaction_retries)++; 4204 4205 /* 4206 * compaction considers all the zone as desperately out of memory 4207 * so it doesn't really make much sense to retry except when the 4208 * failure could be caused by insufficient priority 4209 */ 4210 if (compaction_failed(compact_result)) 4211 goto check_priority; 4212 4213 /* 4214 * compaction was skipped because there are not enough order-0 pages 4215 * to work with, so we retry only if it looks like reclaim can help. 4216 */ 4217 if (compaction_needs_reclaim(compact_result)) { 4218 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4219 goto out; 4220 } 4221 4222 /* 4223 * make sure the compaction wasn't deferred or didn't bail out early 4224 * due to locks contention before we declare that we should give up. 4225 * But the next retry should use a higher priority if allowed, so 4226 * we don't just keep bailing out endlessly. 4227 */ 4228 if (compaction_withdrawn(compact_result)) { 4229 goto check_priority; 4230 } 4231 4232 /* 4233 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4234 * costly ones because they are de facto nofail and invoke OOM 4235 * killer to move on while costly can fail and users are ready 4236 * to cope with that. 1/4 retries is rather arbitrary but we 4237 * would need much more detailed feedback from compaction to 4238 * make a better decision. 4239 */ 4240 if (order > PAGE_ALLOC_COSTLY_ORDER) 4241 max_retries /= 4; 4242 if (*compaction_retries <= max_retries) { 4243 ret = true; 4244 goto out; 4245 } 4246 4247 /* 4248 * Make sure there are attempts at the highest priority if we exhausted 4249 * all retries or failed at the lower priorities. 4250 */ 4251 check_priority: 4252 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4253 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4254 4255 if (*compact_priority > min_priority) { 4256 (*compact_priority)--; 4257 *compaction_retries = 0; 4258 ret = true; 4259 } 4260 out: 4261 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4262 return ret; 4263 } 4264 #else 4265 static inline struct page * 4266 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4267 unsigned int alloc_flags, const struct alloc_context *ac, 4268 enum compact_priority prio, enum compact_result *compact_result) 4269 { 4270 *compact_result = COMPACT_SKIPPED; 4271 return NULL; 4272 } 4273 4274 static inline bool 4275 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4276 enum compact_result compact_result, 4277 enum compact_priority *compact_priority, 4278 int *compaction_retries) 4279 { 4280 struct zone *zone; 4281 struct zoneref *z; 4282 4283 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4284 return false; 4285 4286 /* 4287 * There are setups with compaction disabled which would prefer to loop 4288 * inside the allocator rather than hit the oom killer prematurely. 4289 * Let's give them a good hope and keep retrying while the order-0 4290 * watermarks are OK. 4291 */ 4292 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4293 ac->highest_zoneidx, ac->nodemask) { 4294 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4295 ac->highest_zoneidx, alloc_flags)) 4296 return true; 4297 } 4298 return false; 4299 } 4300 #endif /* CONFIG_COMPACTION */ 4301 4302 #ifdef CONFIG_LOCKDEP 4303 static struct lockdep_map __fs_reclaim_map = 4304 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4305 4306 static bool __need_reclaim(gfp_t gfp_mask) 4307 { 4308 /* no reclaim without waiting on it */ 4309 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4310 return false; 4311 4312 /* this guy won't enter reclaim */ 4313 if (current->flags & PF_MEMALLOC) 4314 return false; 4315 4316 if (gfp_mask & __GFP_NOLOCKDEP) 4317 return false; 4318 4319 return true; 4320 } 4321 4322 void __fs_reclaim_acquire(void) 4323 { 4324 lock_map_acquire(&__fs_reclaim_map); 4325 } 4326 4327 void __fs_reclaim_release(void) 4328 { 4329 lock_map_release(&__fs_reclaim_map); 4330 } 4331 4332 void fs_reclaim_acquire(gfp_t gfp_mask) 4333 { 4334 gfp_mask = current_gfp_context(gfp_mask); 4335 4336 if (__need_reclaim(gfp_mask)) { 4337 if (gfp_mask & __GFP_FS) 4338 __fs_reclaim_acquire(); 4339 4340 #ifdef CONFIG_MMU_NOTIFIER 4341 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4342 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4343 #endif 4344 4345 } 4346 } 4347 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4348 4349 void fs_reclaim_release(gfp_t gfp_mask) 4350 { 4351 gfp_mask = current_gfp_context(gfp_mask); 4352 4353 if (__need_reclaim(gfp_mask)) { 4354 if (gfp_mask & __GFP_FS) 4355 __fs_reclaim_release(); 4356 } 4357 } 4358 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4359 #endif 4360 4361 /* Perform direct synchronous page reclaim */ 4362 static unsigned long 4363 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4364 const struct alloc_context *ac) 4365 { 4366 unsigned int noreclaim_flag; 4367 unsigned long pflags, progress; 4368 4369 cond_resched(); 4370 4371 /* We now go into synchronous reclaim */ 4372 cpuset_memory_pressure_bump(); 4373 psi_memstall_enter(&pflags); 4374 fs_reclaim_acquire(gfp_mask); 4375 noreclaim_flag = memalloc_noreclaim_save(); 4376 4377 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4378 ac->nodemask); 4379 4380 memalloc_noreclaim_restore(noreclaim_flag); 4381 fs_reclaim_release(gfp_mask); 4382 psi_memstall_leave(&pflags); 4383 4384 cond_resched(); 4385 4386 return progress; 4387 } 4388 4389 /* The really slow allocator path where we enter direct reclaim */ 4390 static inline struct page * 4391 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4392 unsigned int alloc_flags, const struct alloc_context *ac, 4393 unsigned long *did_some_progress) 4394 { 4395 struct page *page = NULL; 4396 bool drained = false; 4397 4398 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4399 if (unlikely(!(*did_some_progress))) 4400 return NULL; 4401 4402 retry: 4403 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4404 4405 /* 4406 * If an allocation failed after direct reclaim, it could be because 4407 * pages are pinned on the per-cpu lists or in high alloc reserves. 4408 * Shrink them and try again 4409 */ 4410 if (!page && !drained) { 4411 unreserve_highatomic_pageblock(ac, false); 4412 drain_all_pages(NULL); 4413 drained = true; 4414 goto retry; 4415 } 4416 4417 return page; 4418 } 4419 4420 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4421 const struct alloc_context *ac) 4422 { 4423 struct zoneref *z; 4424 struct zone *zone; 4425 pg_data_t *last_pgdat = NULL; 4426 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4427 4428 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4429 ac->nodemask) { 4430 if (last_pgdat != zone->zone_pgdat) 4431 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4432 last_pgdat = zone->zone_pgdat; 4433 } 4434 } 4435 4436 static inline unsigned int 4437 gfp_to_alloc_flags(gfp_t gfp_mask) 4438 { 4439 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4440 4441 /* 4442 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4443 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4444 * to save two branches. 4445 */ 4446 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4447 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4448 4449 /* 4450 * The caller may dip into page reserves a bit more if the caller 4451 * cannot run direct reclaim, or if the caller has realtime scheduling 4452 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4453 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4454 */ 4455 alloc_flags |= (__force int) 4456 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4457 4458 if (gfp_mask & __GFP_ATOMIC) { 4459 /* 4460 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4461 * if it can't schedule. 4462 */ 4463 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4464 alloc_flags |= ALLOC_HARDER; 4465 /* 4466 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4467 * comment for __cpuset_node_allowed(). 4468 */ 4469 alloc_flags &= ~ALLOC_CPUSET; 4470 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4471 alloc_flags |= ALLOC_HARDER; 4472 4473 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4474 4475 return alloc_flags; 4476 } 4477 4478 static bool oom_reserves_allowed(struct task_struct *tsk) 4479 { 4480 if (!tsk_is_oom_victim(tsk)) 4481 return false; 4482 4483 /* 4484 * !MMU doesn't have oom reaper so give access to memory reserves 4485 * only to the thread with TIF_MEMDIE set 4486 */ 4487 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4488 return false; 4489 4490 return true; 4491 } 4492 4493 /* 4494 * Distinguish requests which really need access to full memory 4495 * reserves from oom victims which can live with a portion of it 4496 */ 4497 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4498 { 4499 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4500 return 0; 4501 if (gfp_mask & __GFP_MEMALLOC) 4502 return ALLOC_NO_WATERMARKS; 4503 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4504 return ALLOC_NO_WATERMARKS; 4505 if (!in_interrupt()) { 4506 if (current->flags & PF_MEMALLOC) 4507 return ALLOC_NO_WATERMARKS; 4508 else if (oom_reserves_allowed(current)) 4509 return ALLOC_OOM; 4510 } 4511 4512 return 0; 4513 } 4514 4515 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4516 { 4517 return !!__gfp_pfmemalloc_flags(gfp_mask); 4518 } 4519 4520 /* 4521 * Checks whether it makes sense to retry the reclaim to make a forward progress 4522 * for the given allocation request. 4523 * 4524 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4525 * without success, or when we couldn't even meet the watermark if we 4526 * reclaimed all remaining pages on the LRU lists. 4527 * 4528 * Returns true if a retry is viable or false to enter the oom path. 4529 */ 4530 static inline bool 4531 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4532 struct alloc_context *ac, int alloc_flags, 4533 bool did_some_progress, int *no_progress_loops) 4534 { 4535 struct zone *zone; 4536 struct zoneref *z; 4537 bool ret = false; 4538 4539 /* 4540 * Costly allocations might have made a progress but this doesn't mean 4541 * their order will become available due to high fragmentation so 4542 * always increment the no progress counter for them 4543 */ 4544 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4545 *no_progress_loops = 0; 4546 else 4547 (*no_progress_loops)++; 4548 4549 /* 4550 * Make sure we converge to OOM if we cannot make any progress 4551 * several times in the row. 4552 */ 4553 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4554 /* Before OOM, exhaust highatomic_reserve */ 4555 return unreserve_highatomic_pageblock(ac, true); 4556 } 4557 4558 /* 4559 * Keep reclaiming pages while there is a chance this will lead 4560 * somewhere. If none of the target zones can satisfy our allocation 4561 * request even if all reclaimable pages are considered then we are 4562 * screwed and have to go OOM. 4563 */ 4564 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4565 ac->highest_zoneidx, ac->nodemask) { 4566 unsigned long available; 4567 unsigned long reclaimable; 4568 unsigned long min_wmark = min_wmark_pages(zone); 4569 bool wmark; 4570 4571 available = reclaimable = zone_reclaimable_pages(zone); 4572 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4573 4574 /* 4575 * Would the allocation succeed if we reclaimed all 4576 * reclaimable pages? 4577 */ 4578 wmark = __zone_watermark_ok(zone, order, min_wmark, 4579 ac->highest_zoneidx, alloc_flags, available); 4580 trace_reclaim_retry_zone(z, order, reclaimable, 4581 available, min_wmark, *no_progress_loops, wmark); 4582 if (wmark) { 4583 /* 4584 * If we didn't make any progress and have a lot of 4585 * dirty + writeback pages then we should wait for 4586 * an IO to complete to slow down the reclaim and 4587 * prevent from pre mature OOM 4588 */ 4589 if (!did_some_progress) { 4590 unsigned long write_pending; 4591 4592 write_pending = zone_page_state_snapshot(zone, 4593 NR_ZONE_WRITE_PENDING); 4594 4595 if (2 * write_pending > reclaimable) { 4596 congestion_wait(BLK_RW_ASYNC, HZ/10); 4597 return true; 4598 } 4599 } 4600 4601 ret = true; 4602 goto out; 4603 } 4604 } 4605 4606 out: 4607 /* 4608 * Memory allocation/reclaim might be called from a WQ context and the 4609 * current implementation of the WQ concurrency control doesn't 4610 * recognize that a particular WQ is congested if the worker thread is 4611 * looping without ever sleeping. Therefore we have to do a short sleep 4612 * here rather than calling cond_resched(). 4613 */ 4614 if (current->flags & PF_WQ_WORKER) 4615 schedule_timeout_uninterruptible(1); 4616 else 4617 cond_resched(); 4618 return ret; 4619 } 4620 4621 static inline bool 4622 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4623 { 4624 /* 4625 * It's possible that cpuset's mems_allowed and the nodemask from 4626 * mempolicy don't intersect. This should be normally dealt with by 4627 * policy_nodemask(), but it's possible to race with cpuset update in 4628 * such a way the check therein was true, and then it became false 4629 * before we got our cpuset_mems_cookie here. 4630 * This assumes that for all allocations, ac->nodemask can come only 4631 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4632 * when it does not intersect with the cpuset restrictions) or the 4633 * caller can deal with a violated nodemask. 4634 */ 4635 if (cpusets_enabled() && ac->nodemask && 4636 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4637 ac->nodemask = NULL; 4638 return true; 4639 } 4640 4641 /* 4642 * When updating a task's mems_allowed or mempolicy nodemask, it is 4643 * possible to race with parallel threads in such a way that our 4644 * allocation can fail while the mask is being updated. If we are about 4645 * to fail, check if the cpuset changed during allocation and if so, 4646 * retry. 4647 */ 4648 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4649 return true; 4650 4651 return false; 4652 } 4653 4654 static inline struct page * 4655 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4656 struct alloc_context *ac) 4657 { 4658 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4659 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4660 struct page *page = NULL; 4661 unsigned int alloc_flags; 4662 unsigned long did_some_progress; 4663 enum compact_priority compact_priority; 4664 enum compact_result compact_result; 4665 int compaction_retries; 4666 int no_progress_loops; 4667 unsigned int cpuset_mems_cookie; 4668 int reserve_flags; 4669 4670 /* 4671 * We also sanity check to catch abuse of atomic reserves being used by 4672 * callers that are not in atomic context. 4673 */ 4674 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4675 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4676 gfp_mask &= ~__GFP_ATOMIC; 4677 4678 retry_cpuset: 4679 compaction_retries = 0; 4680 no_progress_loops = 0; 4681 compact_priority = DEF_COMPACT_PRIORITY; 4682 cpuset_mems_cookie = read_mems_allowed_begin(); 4683 4684 /* 4685 * The fast path uses conservative alloc_flags to succeed only until 4686 * kswapd needs to be woken up, and to avoid the cost of setting up 4687 * alloc_flags precisely. So we do that now. 4688 */ 4689 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4690 4691 /* 4692 * We need to recalculate the starting point for the zonelist iterator 4693 * because we might have used different nodemask in the fast path, or 4694 * there was a cpuset modification and we are retrying - otherwise we 4695 * could end up iterating over non-eligible zones endlessly. 4696 */ 4697 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4698 ac->highest_zoneidx, ac->nodemask); 4699 if (!ac->preferred_zoneref->zone) 4700 goto nopage; 4701 4702 if (alloc_flags & ALLOC_KSWAPD) 4703 wake_all_kswapds(order, gfp_mask, ac); 4704 4705 /* 4706 * The adjusted alloc_flags might result in immediate success, so try 4707 * that first 4708 */ 4709 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4710 if (page) 4711 goto got_pg; 4712 4713 /* 4714 * For costly allocations, try direct compaction first, as it's likely 4715 * that we have enough base pages and don't need to reclaim. For non- 4716 * movable high-order allocations, do that as well, as compaction will 4717 * try prevent permanent fragmentation by migrating from blocks of the 4718 * same migratetype. 4719 * Don't try this for allocations that are allowed to ignore 4720 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4721 */ 4722 if (can_direct_reclaim && 4723 (costly_order || 4724 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4725 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4726 page = __alloc_pages_direct_compact(gfp_mask, order, 4727 alloc_flags, ac, 4728 INIT_COMPACT_PRIORITY, 4729 &compact_result); 4730 if (page) 4731 goto got_pg; 4732 4733 /* 4734 * Checks for costly allocations with __GFP_NORETRY, which 4735 * includes some THP page fault allocations 4736 */ 4737 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4738 /* 4739 * If allocating entire pageblock(s) and compaction 4740 * failed because all zones are below low watermarks 4741 * or is prohibited because it recently failed at this 4742 * order, fail immediately unless the allocator has 4743 * requested compaction and reclaim retry. 4744 * 4745 * Reclaim is 4746 * - potentially very expensive because zones are far 4747 * below their low watermarks or this is part of very 4748 * bursty high order allocations, 4749 * - not guaranteed to help because isolate_freepages() 4750 * may not iterate over freed pages as part of its 4751 * linear scan, and 4752 * - unlikely to make entire pageblocks free on its 4753 * own. 4754 */ 4755 if (compact_result == COMPACT_SKIPPED || 4756 compact_result == COMPACT_DEFERRED) 4757 goto nopage; 4758 4759 /* 4760 * Looks like reclaim/compaction is worth trying, but 4761 * sync compaction could be very expensive, so keep 4762 * using async compaction. 4763 */ 4764 compact_priority = INIT_COMPACT_PRIORITY; 4765 } 4766 } 4767 4768 retry: 4769 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4770 if (alloc_flags & ALLOC_KSWAPD) 4771 wake_all_kswapds(order, gfp_mask, ac); 4772 4773 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4774 if (reserve_flags) 4775 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4776 4777 /* 4778 * Reset the nodemask and zonelist iterators if memory policies can be 4779 * ignored. These allocations are high priority and system rather than 4780 * user oriented. 4781 */ 4782 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4783 ac->nodemask = NULL; 4784 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4785 ac->highest_zoneidx, ac->nodemask); 4786 } 4787 4788 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4789 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4790 if (page) 4791 goto got_pg; 4792 4793 /* Caller is not willing to reclaim, we can't balance anything */ 4794 if (!can_direct_reclaim) 4795 goto nopage; 4796 4797 /* Avoid recursion of direct reclaim */ 4798 if (current->flags & PF_MEMALLOC) 4799 goto nopage; 4800 4801 /* Try direct reclaim and then allocating */ 4802 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4803 &did_some_progress); 4804 if (page) 4805 goto got_pg; 4806 4807 /* Try direct compaction and then allocating */ 4808 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4809 compact_priority, &compact_result); 4810 if (page) 4811 goto got_pg; 4812 4813 /* Do not loop if specifically requested */ 4814 if (gfp_mask & __GFP_NORETRY) 4815 goto nopage; 4816 4817 /* 4818 * Do not retry costly high order allocations unless they are 4819 * __GFP_RETRY_MAYFAIL 4820 */ 4821 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4822 goto nopage; 4823 4824 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4825 did_some_progress > 0, &no_progress_loops)) 4826 goto retry; 4827 4828 /* 4829 * It doesn't make any sense to retry for the compaction if the order-0 4830 * reclaim is not able to make any progress because the current 4831 * implementation of the compaction depends on the sufficient amount 4832 * of free memory (see __compaction_suitable) 4833 */ 4834 if (did_some_progress > 0 && 4835 should_compact_retry(ac, order, alloc_flags, 4836 compact_result, &compact_priority, 4837 &compaction_retries)) 4838 goto retry; 4839 4840 4841 /* Deal with possible cpuset update races before we start OOM killing */ 4842 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4843 goto retry_cpuset; 4844 4845 /* Reclaim has failed us, start killing things */ 4846 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4847 if (page) 4848 goto got_pg; 4849 4850 /* Avoid allocations with no watermarks from looping endlessly */ 4851 if (tsk_is_oom_victim(current) && 4852 (alloc_flags & ALLOC_OOM || 4853 (gfp_mask & __GFP_NOMEMALLOC))) 4854 goto nopage; 4855 4856 /* Retry as long as the OOM killer is making progress */ 4857 if (did_some_progress) { 4858 no_progress_loops = 0; 4859 goto retry; 4860 } 4861 4862 nopage: 4863 /* Deal with possible cpuset update races before we fail */ 4864 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4865 goto retry_cpuset; 4866 4867 /* 4868 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4869 * we always retry 4870 */ 4871 if (gfp_mask & __GFP_NOFAIL) { 4872 /* 4873 * All existing users of the __GFP_NOFAIL are blockable, so warn 4874 * of any new users that actually require GFP_NOWAIT 4875 */ 4876 if (WARN_ON_ONCE(!can_direct_reclaim)) 4877 goto fail; 4878 4879 /* 4880 * PF_MEMALLOC request from this context is rather bizarre 4881 * because we cannot reclaim anything and only can loop waiting 4882 * for somebody to do a work for us 4883 */ 4884 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4885 4886 /* 4887 * non failing costly orders are a hard requirement which we 4888 * are not prepared for much so let's warn about these users 4889 * so that we can identify them and convert them to something 4890 * else. 4891 */ 4892 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4893 4894 /* 4895 * Help non-failing allocations by giving them access to memory 4896 * reserves but do not use ALLOC_NO_WATERMARKS because this 4897 * could deplete whole memory reserves which would just make 4898 * the situation worse 4899 */ 4900 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4901 if (page) 4902 goto got_pg; 4903 4904 cond_resched(); 4905 goto retry; 4906 } 4907 fail: 4908 warn_alloc(gfp_mask, ac->nodemask, 4909 "page allocation failure: order:%u", order); 4910 got_pg: 4911 return page; 4912 } 4913 4914 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4915 int preferred_nid, nodemask_t *nodemask, 4916 struct alloc_context *ac, gfp_t *alloc_mask, 4917 unsigned int *alloc_flags) 4918 { 4919 ac->highest_zoneidx = gfp_zone(gfp_mask); 4920 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4921 ac->nodemask = nodemask; 4922 ac->migratetype = gfp_migratetype(gfp_mask); 4923 4924 if (cpusets_enabled()) { 4925 *alloc_mask |= __GFP_HARDWALL; 4926 /* 4927 * When we are in the interrupt context, it is irrelevant 4928 * to the current task context. It means that any node ok. 4929 */ 4930 if (!in_interrupt() && !ac->nodemask) 4931 ac->nodemask = &cpuset_current_mems_allowed; 4932 else 4933 *alloc_flags |= ALLOC_CPUSET; 4934 } 4935 4936 fs_reclaim_acquire(gfp_mask); 4937 fs_reclaim_release(gfp_mask); 4938 4939 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4940 4941 if (should_fail_alloc_page(gfp_mask, order)) 4942 return false; 4943 4944 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4945 4946 /* Dirty zone balancing only done in the fast path */ 4947 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4948 4949 /* 4950 * The preferred zone is used for statistics but crucially it is 4951 * also used as the starting point for the zonelist iterator. It 4952 * may get reset for allocations that ignore memory policies. 4953 */ 4954 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4955 ac->highest_zoneidx, ac->nodemask); 4956 4957 return true; 4958 } 4959 4960 /* 4961 * This is the 'heart' of the zoned buddy allocator. 4962 */ 4963 struct page * 4964 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4965 nodemask_t *nodemask) 4966 { 4967 struct page *page; 4968 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4969 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4970 struct alloc_context ac = { }; 4971 4972 /* 4973 * There are several places where we assume that the order value is sane 4974 * so bail out early if the request is out of bound. 4975 */ 4976 if (unlikely(order >= MAX_ORDER)) { 4977 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4978 return NULL; 4979 } 4980 4981 gfp_mask &= gfp_allowed_mask; 4982 alloc_mask = gfp_mask; 4983 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4984 return NULL; 4985 4986 /* 4987 * Forbid the first pass from falling back to types that fragment 4988 * memory until all local zones are considered. 4989 */ 4990 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4991 4992 /* First allocation attempt */ 4993 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4994 if (likely(page)) 4995 goto out; 4996 4997 /* 4998 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4999 * resp. GFP_NOIO which has to be inherited for all allocation requests 5000 * from a particular context which has been marked by 5001 * memalloc_no{fs,io}_{save,restore}. 5002 */ 5003 alloc_mask = current_gfp_context(gfp_mask); 5004 ac.spread_dirty_pages = false; 5005 5006 /* 5007 * Restore the original nodemask if it was potentially replaced with 5008 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5009 */ 5010 ac.nodemask = nodemask; 5011 5012 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 5013 5014 out: 5015 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 5016 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 5017 __free_pages(page, order); 5018 page = NULL; 5019 } 5020 5021 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 5022 5023 return page; 5024 } 5025 EXPORT_SYMBOL(__alloc_pages_nodemask); 5026 5027 /* 5028 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5029 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5030 * you need to access high mem. 5031 */ 5032 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5033 { 5034 struct page *page; 5035 5036 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5037 if (!page) 5038 return 0; 5039 return (unsigned long) page_address(page); 5040 } 5041 EXPORT_SYMBOL(__get_free_pages); 5042 5043 unsigned long get_zeroed_page(gfp_t gfp_mask) 5044 { 5045 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5046 } 5047 EXPORT_SYMBOL(get_zeroed_page); 5048 5049 static inline void free_the_page(struct page *page, unsigned int order) 5050 { 5051 if (order == 0) /* Via pcp? */ 5052 free_unref_page(page); 5053 else 5054 __free_pages_ok(page, order, FPI_NONE); 5055 } 5056 5057 /** 5058 * __free_pages - Free pages allocated with alloc_pages(). 5059 * @page: The page pointer returned from alloc_pages(). 5060 * @order: The order of the allocation. 5061 * 5062 * This function can free multi-page allocations that are not compound 5063 * pages. It does not check that the @order passed in matches that of 5064 * the allocation, so it is easy to leak memory. Freeing more memory 5065 * than was allocated will probably emit a warning. 5066 * 5067 * If the last reference to this page is speculative, it will be released 5068 * by put_page() which only frees the first page of a non-compound 5069 * allocation. To prevent the remaining pages from being leaked, we free 5070 * the subsequent pages here. If you want to use the page's reference 5071 * count to decide when to free the allocation, you should allocate a 5072 * compound page, and use put_page() instead of __free_pages(). 5073 * 5074 * Context: May be called in interrupt context or while holding a normal 5075 * spinlock, but not in NMI context or while holding a raw spinlock. 5076 */ 5077 void __free_pages(struct page *page, unsigned int order) 5078 { 5079 if (put_page_testzero(page)) 5080 free_the_page(page, order); 5081 else if (!PageHead(page)) 5082 while (order-- > 0) 5083 free_the_page(page + (1 << order), order); 5084 } 5085 EXPORT_SYMBOL(__free_pages); 5086 5087 void free_pages(unsigned long addr, unsigned int order) 5088 { 5089 if (addr != 0) { 5090 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5091 __free_pages(virt_to_page((void *)addr), order); 5092 } 5093 } 5094 5095 EXPORT_SYMBOL(free_pages); 5096 5097 /* 5098 * Page Fragment: 5099 * An arbitrary-length arbitrary-offset area of memory which resides 5100 * within a 0 or higher order page. Multiple fragments within that page 5101 * are individually refcounted, in the page's reference counter. 5102 * 5103 * The page_frag functions below provide a simple allocation framework for 5104 * page fragments. This is used by the network stack and network device 5105 * drivers to provide a backing region of memory for use as either an 5106 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5107 */ 5108 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5109 gfp_t gfp_mask) 5110 { 5111 struct page *page = NULL; 5112 gfp_t gfp = gfp_mask; 5113 5114 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5115 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5116 __GFP_NOMEMALLOC; 5117 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5118 PAGE_FRAG_CACHE_MAX_ORDER); 5119 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5120 #endif 5121 if (unlikely(!page)) 5122 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5123 5124 nc->va = page ? page_address(page) : NULL; 5125 5126 return page; 5127 } 5128 5129 void __page_frag_cache_drain(struct page *page, unsigned int count) 5130 { 5131 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5132 5133 if (page_ref_sub_and_test(page, count)) 5134 free_the_page(page, compound_order(page)); 5135 } 5136 EXPORT_SYMBOL(__page_frag_cache_drain); 5137 5138 void *page_frag_alloc(struct page_frag_cache *nc, 5139 unsigned int fragsz, gfp_t gfp_mask) 5140 { 5141 unsigned int size = PAGE_SIZE; 5142 struct page *page; 5143 int offset; 5144 5145 if (unlikely(!nc->va)) { 5146 refill: 5147 page = __page_frag_cache_refill(nc, gfp_mask); 5148 if (!page) 5149 return NULL; 5150 5151 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5152 /* if size can vary use size else just use PAGE_SIZE */ 5153 size = nc->size; 5154 #endif 5155 /* Even if we own the page, we do not use atomic_set(). 5156 * This would break get_page_unless_zero() users. 5157 */ 5158 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5159 5160 /* reset page count bias and offset to start of new frag */ 5161 nc->pfmemalloc = page_is_pfmemalloc(page); 5162 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5163 nc->offset = size; 5164 } 5165 5166 offset = nc->offset - fragsz; 5167 if (unlikely(offset < 0)) { 5168 page = virt_to_page(nc->va); 5169 5170 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5171 goto refill; 5172 5173 if (unlikely(nc->pfmemalloc)) { 5174 free_the_page(page, compound_order(page)); 5175 goto refill; 5176 } 5177 5178 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5179 /* if size can vary use size else just use PAGE_SIZE */ 5180 size = nc->size; 5181 #endif 5182 /* OK, page count is 0, we can safely set it */ 5183 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5184 5185 /* reset page count bias and offset to start of new frag */ 5186 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5187 offset = size - fragsz; 5188 } 5189 5190 nc->pagecnt_bias--; 5191 nc->offset = offset; 5192 5193 return nc->va + offset; 5194 } 5195 EXPORT_SYMBOL(page_frag_alloc); 5196 5197 /* 5198 * Frees a page fragment allocated out of either a compound or order 0 page. 5199 */ 5200 void page_frag_free(void *addr) 5201 { 5202 struct page *page = virt_to_head_page(addr); 5203 5204 if (unlikely(put_page_testzero(page))) 5205 free_the_page(page, compound_order(page)); 5206 } 5207 EXPORT_SYMBOL(page_frag_free); 5208 5209 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5210 size_t size) 5211 { 5212 if (addr) { 5213 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5214 unsigned long used = addr + PAGE_ALIGN(size); 5215 5216 split_page(virt_to_page((void *)addr), order); 5217 while (used < alloc_end) { 5218 free_page(used); 5219 used += PAGE_SIZE; 5220 } 5221 } 5222 return (void *)addr; 5223 } 5224 5225 /** 5226 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5227 * @size: the number of bytes to allocate 5228 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5229 * 5230 * This function is similar to alloc_pages(), except that it allocates the 5231 * minimum number of pages to satisfy the request. alloc_pages() can only 5232 * allocate memory in power-of-two pages. 5233 * 5234 * This function is also limited by MAX_ORDER. 5235 * 5236 * Memory allocated by this function must be released by free_pages_exact(). 5237 * 5238 * Return: pointer to the allocated area or %NULL in case of error. 5239 */ 5240 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5241 { 5242 unsigned int order = get_order(size); 5243 unsigned long addr; 5244 5245 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5246 gfp_mask &= ~__GFP_COMP; 5247 5248 addr = __get_free_pages(gfp_mask, order); 5249 return make_alloc_exact(addr, order, size); 5250 } 5251 EXPORT_SYMBOL(alloc_pages_exact); 5252 5253 /** 5254 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5255 * pages on a node. 5256 * @nid: the preferred node ID where memory should be allocated 5257 * @size: the number of bytes to allocate 5258 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5259 * 5260 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5261 * back. 5262 * 5263 * Return: pointer to the allocated area or %NULL in case of error. 5264 */ 5265 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5266 { 5267 unsigned int order = get_order(size); 5268 struct page *p; 5269 5270 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5271 gfp_mask &= ~__GFP_COMP; 5272 5273 p = alloc_pages_node(nid, gfp_mask, order); 5274 if (!p) 5275 return NULL; 5276 return make_alloc_exact((unsigned long)page_address(p), order, size); 5277 } 5278 5279 /** 5280 * free_pages_exact - release memory allocated via alloc_pages_exact() 5281 * @virt: the value returned by alloc_pages_exact. 5282 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5283 * 5284 * Release the memory allocated by a previous call to alloc_pages_exact. 5285 */ 5286 void free_pages_exact(void *virt, size_t size) 5287 { 5288 unsigned long addr = (unsigned long)virt; 5289 unsigned long end = addr + PAGE_ALIGN(size); 5290 5291 while (addr < end) { 5292 free_page(addr); 5293 addr += PAGE_SIZE; 5294 } 5295 } 5296 EXPORT_SYMBOL(free_pages_exact); 5297 5298 /** 5299 * nr_free_zone_pages - count number of pages beyond high watermark 5300 * @offset: The zone index of the highest zone 5301 * 5302 * nr_free_zone_pages() counts the number of pages which are beyond the 5303 * high watermark within all zones at or below a given zone index. For each 5304 * zone, the number of pages is calculated as: 5305 * 5306 * nr_free_zone_pages = managed_pages - high_pages 5307 * 5308 * Return: number of pages beyond high watermark. 5309 */ 5310 static unsigned long nr_free_zone_pages(int offset) 5311 { 5312 struct zoneref *z; 5313 struct zone *zone; 5314 5315 /* Just pick one node, since fallback list is circular */ 5316 unsigned long sum = 0; 5317 5318 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5319 5320 for_each_zone_zonelist(zone, z, zonelist, offset) { 5321 unsigned long size = zone_managed_pages(zone); 5322 unsigned long high = high_wmark_pages(zone); 5323 if (size > high) 5324 sum += size - high; 5325 } 5326 5327 return sum; 5328 } 5329 5330 /** 5331 * nr_free_buffer_pages - count number of pages beyond high watermark 5332 * 5333 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5334 * watermark within ZONE_DMA and ZONE_NORMAL. 5335 * 5336 * Return: number of pages beyond high watermark within ZONE_DMA and 5337 * ZONE_NORMAL. 5338 */ 5339 unsigned long nr_free_buffer_pages(void) 5340 { 5341 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5342 } 5343 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5344 5345 static inline void show_node(struct zone *zone) 5346 { 5347 if (IS_ENABLED(CONFIG_NUMA)) 5348 printk("Node %d ", zone_to_nid(zone)); 5349 } 5350 5351 long si_mem_available(void) 5352 { 5353 long available; 5354 unsigned long pagecache; 5355 unsigned long wmark_low = 0; 5356 unsigned long pages[NR_LRU_LISTS]; 5357 unsigned long reclaimable; 5358 struct zone *zone; 5359 int lru; 5360 5361 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5362 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5363 5364 for_each_zone(zone) 5365 wmark_low += low_wmark_pages(zone); 5366 5367 /* 5368 * Estimate the amount of memory available for userspace allocations, 5369 * without causing swapping. 5370 */ 5371 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5372 5373 /* 5374 * Not all the page cache can be freed, otherwise the system will 5375 * start swapping. Assume at least half of the page cache, or the 5376 * low watermark worth of cache, needs to stay. 5377 */ 5378 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5379 pagecache -= min(pagecache / 2, wmark_low); 5380 available += pagecache; 5381 5382 /* 5383 * Part of the reclaimable slab and other kernel memory consists of 5384 * items that are in use, and cannot be freed. Cap this estimate at the 5385 * low watermark. 5386 */ 5387 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5388 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5389 available += reclaimable - min(reclaimable / 2, wmark_low); 5390 5391 if (available < 0) 5392 available = 0; 5393 return available; 5394 } 5395 EXPORT_SYMBOL_GPL(si_mem_available); 5396 5397 void si_meminfo(struct sysinfo *val) 5398 { 5399 val->totalram = totalram_pages(); 5400 val->sharedram = global_node_page_state(NR_SHMEM); 5401 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5402 val->bufferram = nr_blockdev_pages(); 5403 val->totalhigh = totalhigh_pages(); 5404 val->freehigh = nr_free_highpages(); 5405 val->mem_unit = PAGE_SIZE; 5406 } 5407 5408 EXPORT_SYMBOL(si_meminfo); 5409 5410 #ifdef CONFIG_NUMA 5411 void si_meminfo_node(struct sysinfo *val, int nid) 5412 { 5413 int zone_type; /* needs to be signed */ 5414 unsigned long managed_pages = 0; 5415 unsigned long managed_highpages = 0; 5416 unsigned long free_highpages = 0; 5417 pg_data_t *pgdat = NODE_DATA(nid); 5418 5419 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5420 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5421 val->totalram = managed_pages; 5422 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5423 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5424 #ifdef CONFIG_HIGHMEM 5425 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5426 struct zone *zone = &pgdat->node_zones[zone_type]; 5427 5428 if (is_highmem(zone)) { 5429 managed_highpages += zone_managed_pages(zone); 5430 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5431 } 5432 } 5433 val->totalhigh = managed_highpages; 5434 val->freehigh = free_highpages; 5435 #else 5436 val->totalhigh = managed_highpages; 5437 val->freehigh = free_highpages; 5438 #endif 5439 val->mem_unit = PAGE_SIZE; 5440 } 5441 #endif 5442 5443 /* 5444 * Determine whether the node should be displayed or not, depending on whether 5445 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5446 */ 5447 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5448 { 5449 if (!(flags & SHOW_MEM_FILTER_NODES)) 5450 return false; 5451 5452 /* 5453 * no node mask - aka implicit memory numa policy. Do not bother with 5454 * the synchronization - read_mems_allowed_begin - because we do not 5455 * have to be precise here. 5456 */ 5457 if (!nodemask) 5458 nodemask = &cpuset_current_mems_allowed; 5459 5460 return !node_isset(nid, *nodemask); 5461 } 5462 5463 #define K(x) ((x) << (PAGE_SHIFT-10)) 5464 5465 static void show_migration_types(unsigned char type) 5466 { 5467 static const char types[MIGRATE_TYPES] = { 5468 [MIGRATE_UNMOVABLE] = 'U', 5469 [MIGRATE_MOVABLE] = 'M', 5470 [MIGRATE_RECLAIMABLE] = 'E', 5471 [MIGRATE_HIGHATOMIC] = 'H', 5472 #ifdef CONFIG_CMA 5473 [MIGRATE_CMA] = 'C', 5474 #endif 5475 #ifdef CONFIG_MEMORY_ISOLATION 5476 [MIGRATE_ISOLATE] = 'I', 5477 #endif 5478 }; 5479 char tmp[MIGRATE_TYPES + 1]; 5480 char *p = tmp; 5481 int i; 5482 5483 for (i = 0; i < MIGRATE_TYPES; i++) { 5484 if (type & (1 << i)) 5485 *p++ = types[i]; 5486 } 5487 5488 *p = '\0'; 5489 printk(KERN_CONT "(%s) ", tmp); 5490 } 5491 5492 /* 5493 * Show free area list (used inside shift_scroll-lock stuff) 5494 * We also calculate the percentage fragmentation. We do this by counting the 5495 * memory on each free list with the exception of the first item on the list. 5496 * 5497 * Bits in @filter: 5498 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5499 * cpuset. 5500 */ 5501 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5502 { 5503 unsigned long free_pcp = 0; 5504 int cpu; 5505 struct zone *zone; 5506 pg_data_t *pgdat; 5507 5508 for_each_populated_zone(zone) { 5509 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5510 continue; 5511 5512 for_each_online_cpu(cpu) 5513 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5514 } 5515 5516 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5517 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5518 " unevictable:%lu dirty:%lu writeback:%lu\n" 5519 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5520 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5521 " free:%lu free_pcp:%lu free_cma:%lu\n", 5522 global_node_page_state(NR_ACTIVE_ANON), 5523 global_node_page_state(NR_INACTIVE_ANON), 5524 global_node_page_state(NR_ISOLATED_ANON), 5525 global_node_page_state(NR_ACTIVE_FILE), 5526 global_node_page_state(NR_INACTIVE_FILE), 5527 global_node_page_state(NR_ISOLATED_FILE), 5528 global_node_page_state(NR_UNEVICTABLE), 5529 global_node_page_state(NR_FILE_DIRTY), 5530 global_node_page_state(NR_WRITEBACK), 5531 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5532 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5533 global_node_page_state(NR_FILE_MAPPED), 5534 global_node_page_state(NR_SHMEM), 5535 global_node_page_state(NR_PAGETABLE), 5536 global_zone_page_state(NR_BOUNCE), 5537 global_zone_page_state(NR_FREE_PAGES), 5538 free_pcp, 5539 global_zone_page_state(NR_FREE_CMA_PAGES)); 5540 5541 for_each_online_pgdat(pgdat) { 5542 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5543 continue; 5544 5545 printk("Node %d" 5546 " active_anon:%lukB" 5547 " inactive_anon:%lukB" 5548 " active_file:%lukB" 5549 " inactive_file:%lukB" 5550 " unevictable:%lukB" 5551 " isolated(anon):%lukB" 5552 " isolated(file):%lukB" 5553 " mapped:%lukB" 5554 " dirty:%lukB" 5555 " writeback:%lukB" 5556 " shmem:%lukB" 5557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5558 " shmem_thp: %lukB" 5559 " shmem_pmdmapped: %lukB" 5560 " anon_thp: %lukB" 5561 #endif 5562 " writeback_tmp:%lukB" 5563 " kernel_stack:%lukB" 5564 #ifdef CONFIG_SHADOW_CALL_STACK 5565 " shadow_call_stack:%lukB" 5566 #endif 5567 " pagetables:%lukB" 5568 " all_unreclaimable? %s" 5569 "\n", 5570 pgdat->node_id, 5571 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5572 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5573 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5574 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5575 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5576 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5577 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5578 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5579 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5580 K(node_page_state(pgdat, NR_WRITEBACK)), 5581 K(node_page_state(pgdat, NR_SHMEM)), 5582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5583 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5584 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5585 * HPAGE_PMD_NR), 5586 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5587 #endif 5588 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5589 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5590 #ifdef CONFIG_SHADOW_CALL_STACK 5591 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5592 #endif 5593 K(node_page_state(pgdat, NR_PAGETABLE)), 5594 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5595 "yes" : "no"); 5596 } 5597 5598 for_each_populated_zone(zone) { 5599 int i; 5600 5601 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5602 continue; 5603 5604 free_pcp = 0; 5605 for_each_online_cpu(cpu) 5606 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5607 5608 show_node(zone); 5609 printk(KERN_CONT 5610 "%s" 5611 " free:%lukB" 5612 " min:%lukB" 5613 " low:%lukB" 5614 " high:%lukB" 5615 " reserved_highatomic:%luKB" 5616 " active_anon:%lukB" 5617 " inactive_anon:%lukB" 5618 " active_file:%lukB" 5619 " inactive_file:%lukB" 5620 " unevictable:%lukB" 5621 " writepending:%lukB" 5622 " present:%lukB" 5623 " managed:%lukB" 5624 " mlocked:%lukB" 5625 " bounce:%lukB" 5626 " free_pcp:%lukB" 5627 " local_pcp:%ukB" 5628 " free_cma:%lukB" 5629 "\n", 5630 zone->name, 5631 K(zone_page_state(zone, NR_FREE_PAGES)), 5632 K(min_wmark_pages(zone)), 5633 K(low_wmark_pages(zone)), 5634 K(high_wmark_pages(zone)), 5635 K(zone->nr_reserved_highatomic), 5636 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5637 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5638 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5639 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5640 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5641 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5642 K(zone->present_pages), 5643 K(zone_managed_pages(zone)), 5644 K(zone_page_state(zone, NR_MLOCK)), 5645 K(zone_page_state(zone, NR_BOUNCE)), 5646 K(free_pcp), 5647 K(this_cpu_read(zone->pageset->pcp.count)), 5648 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5649 printk("lowmem_reserve[]:"); 5650 for (i = 0; i < MAX_NR_ZONES; i++) 5651 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5652 printk(KERN_CONT "\n"); 5653 } 5654 5655 for_each_populated_zone(zone) { 5656 unsigned int order; 5657 unsigned long nr[MAX_ORDER], flags, total = 0; 5658 unsigned char types[MAX_ORDER]; 5659 5660 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5661 continue; 5662 show_node(zone); 5663 printk(KERN_CONT "%s: ", zone->name); 5664 5665 spin_lock_irqsave(&zone->lock, flags); 5666 for (order = 0; order < MAX_ORDER; order++) { 5667 struct free_area *area = &zone->free_area[order]; 5668 int type; 5669 5670 nr[order] = area->nr_free; 5671 total += nr[order] << order; 5672 5673 types[order] = 0; 5674 for (type = 0; type < MIGRATE_TYPES; type++) { 5675 if (!free_area_empty(area, type)) 5676 types[order] |= 1 << type; 5677 } 5678 } 5679 spin_unlock_irqrestore(&zone->lock, flags); 5680 for (order = 0; order < MAX_ORDER; order++) { 5681 printk(KERN_CONT "%lu*%lukB ", 5682 nr[order], K(1UL) << order); 5683 if (nr[order]) 5684 show_migration_types(types[order]); 5685 } 5686 printk(KERN_CONT "= %lukB\n", K(total)); 5687 } 5688 5689 hugetlb_show_meminfo(); 5690 5691 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5692 5693 show_swap_cache_info(); 5694 } 5695 5696 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5697 { 5698 zoneref->zone = zone; 5699 zoneref->zone_idx = zone_idx(zone); 5700 } 5701 5702 /* 5703 * Builds allocation fallback zone lists. 5704 * 5705 * Add all populated zones of a node to the zonelist. 5706 */ 5707 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5708 { 5709 struct zone *zone; 5710 enum zone_type zone_type = MAX_NR_ZONES; 5711 int nr_zones = 0; 5712 5713 do { 5714 zone_type--; 5715 zone = pgdat->node_zones + zone_type; 5716 if (managed_zone(zone)) { 5717 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5718 check_highest_zone(zone_type); 5719 } 5720 } while (zone_type); 5721 5722 return nr_zones; 5723 } 5724 5725 #ifdef CONFIG_NUMA 5726 5727 static int __parse_numa_zonelist_order(char *s) 5728 { 5729 /* 5730 * We used to support different zonlists modes but they turned 5731 * out to be just not useful. Let's keep the warning in place 5732 * if somebody still use the cmd line parameter so that we do 5733 * not fail it silently 5734 */ 5735 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5736 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5737 return -EINVAL; 5738 } 5739 return 0; 5740 } 5741 5742 char numa_zonelist_order[] = "Node"; 5743 5744 /* 5745 * sysctl handler for numa_zonelist_order 5746 */ 5747 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5748 void *buffer, size_t *length, loff_t *ppos) 5749 { 5750 if (write) 5751 return __parse_numa_zonelist_order(buffer); 5752 return proc_dostring(table, write, buffer, length, ppos); 5753 } 5754 5755 5756 #define MAX_NODE_LOAD (nr_online_nodes) 5757 static int node_load[MAX_NUMNODES]; 5758 5759 /** 5760 * find_next_best_node - find the next node that should appear in a given node's fallback list 5761 * @node: node whose fallback list we're appending 5762 * @used_node_mask: nodemask_t of already used nodes 5763 * 5764 * We use a number of factors to determine which is the next node that should 5765 * appear on a given node's fallback list. The node should not have appeared 5766 * already in @node's fallback list, and it should be the next closest node 5767 * according to the distance array (which contains arbitrary distance values 5768 * from each node to each node in the system), and should also prefer nodes 5769 * with no CPUs, since presumably they'll have very little allocation pressure 5770 * on them otherwise. 5771 * 5772 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5773 */ 5774 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5775 { 5776 int n, val; 5777 int min_val = INT_MAX; 5778 int best_node = NUMA_NO_NODE; 5779 5780 /* Use the local node if we haven't already */ 5781 if (!node_isset(node, *used_node_mask)) { 5782 node_set(node, *used_node_mask); 5783 return node; 5784 } 5785 5786 for_each_node_state(n, N_MEMORY) { 5787 5788 /* Don't want a node to appear more than once */ 5789 if (node_isset(n, *used_node_mask)) 5790 continue; 5791 5792 /* Use the distance array to find the distance */ 5793 val = node_distance(node, n); 5794 5795 /* Penalize nodes under us ("prefer the next node") */ 5796 val += (n < node); 5797 5798 /* Give preference to headless and unused nodes */ 5799 if (!cpumask_empty(cpumask_of_node(n))) 5800 val += PENALTY_FOR_NODE_WITH_CPUS; 5801 5802 /* Slight preference for less loaded node */ 5803 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5804 val += node_load[n]; 5805 5806 if (val < min_val) { 5807 min_val = val; 5808 best_node = n; 5809 } 5810 } 5811 5812 if (best_node >= 0) 5813 node_set(best_node, *used_node_mask); 5814 5815 return best_node; 5816 } 5817 5818 5819 /* 5820 * Build zonelists ordered by node and zones within node. 5821 * This results in maximum locality--normal zone overflows into local 5822 * DMA zone, if any--but risks exhausting DMA zone. 5823 */ 5824 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5825 unsigned nr_nodes) 5826 { 5827 struct zoneref *zonerefs; 5828 int i; 5829 5830 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5831 5832 for (i = 0; i < nr_nodes; i++) { 5833 int nr_zones; 5834 5835 pg_data_t *node = NODE_DATA(node_order[i]); 5836 5837 nr_zones = build_zonerefs_node(node, zonerefs); 5838 zonerefs += nr_zones; 5839 } 5840 zonerefs->zone = NULL; 5841 zonerefs->zone_idx = 0; 5842 } 5843 5844 /* 5845 * Build gfp_thisnode zonelists 5846 */ 5847 static void build_thisnode_zonelists(pg_data_t *pgdat) 5848 { 5849 struct zoneref *zonerefs; 5850 int nr_zones; 5851 5852 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5853 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5854 zonerefs += nr_zones; 5855 zonerefs->zone = NULL; 5856 zonerefs->zone_idx = 0; 5857 } 5858 5859 /* 5860 * Build zonelists ordered by zone and nodes within zones. 5861 * This results in conserving DMA zone[s] until all Normal memory is 5862 * exhausted, but results in overflowing to remote node while memory 5863 * may still exist in local DMA zone. 5864 */ 5865 5866 static void build_zonelists(pg_data_t *pgdat) 5867 { 5868 static int node_order[MAX_NUMNODES]; 5869 int node, load, nr_nodes = 0; 5870 nodemask_t used_mask = NODE_MASK_NONE; 5871 int local_node, prev_node; 5872 5873 /* NUMA-aware ordering of nodes */ 5874 local_node = pgdat->node_id; 5875 load = nr_online_nodes; 5876 prev_node = local_node; 5877 5878 memset(node_order, 0, sizeof(node_order)); 5879 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5880 /* 5881 * We don't want to pressure a particular node. 5882 * So adding penalty to the first node in same 5883 * distance group to make it round-robin. 5884 */ 5885 if (node_distance(local_node, node) != 5886 node_distance(local_node, prev_node)) 5887 node_load[node] = load; 5888 5889 node_order[nr_nodes++] = node; 5890 prev_node = node; 5891 load--; 5892 } 5893 5894 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5895 build_thisnode_zonelists(pgdat); 5896 } 5897 5898 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5899 /* 5900 * Return node id of node used for "local" allocations. 5901 * I.e., first node id of first zone in arg node's generic zonelist. 5902 * Used for initializing percpu 'numa_mem', which is used primarily 5903 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5904 */ 5905 int local_memory_node(int node) 5906 { 5907 struct zoneref *z; 5908 5909 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5910 gfp_zone(GFP_KERNEL), 5911 NULL); 5912 return zone_to_nid(z->zone); 5913 } 5914 #endif 5915 5916 static void setup_min_unmapped_ratio(void); 5917 static void setup_min_slab_ratio(void); 5918 #else /* CONFIG_NUMA */ 5919 5920 static void build_zonelists(pg_data_t *pgdat) 5921 { 5922 int node, local_node; 5923 struct zoneref *zonerefs; 5924 int nr_zones; 5925 5926 local_node = pgdat->node_id; 5927 5928 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5929 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5930 zonerefs += nr_zones; 5931 5932 /* 5933 * Now we build the zonelist so that it contains the zones 5934 * of all the other nodes. 5935 * We don't want to pressure a particular node, so when 5936 * building the zones for node N, we make sure that the 5937 * zones coming right after the local ones are those from 5938 * node N+1 (modulo N) 5939 */ 5940 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5941 if (!node_online(node)) 5942 continue; 5943 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5944 zonerefs += nr_zones; 5945 } 5946 for (node = 0; node < local_node; node++) { 5947 if (!node_online(node)) 5948 continue; 5949 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5950 zonerefs += nr_zones; 5951 } 5952 5953 zonerefs->zone = NULL; 5954 zonerefs->zone_idx = 0; 5955 } 5956 5957 #endif /* CONFIG_NUMA */ 5958 5959 /* 5960 * Boot pageset table. One per cpu which is going to be used for all 5961 * zones and all nodes. The parameters will be set in such a way 5962 * that an item put on a list will immediately be handed over to 5963 * the buddy list. This is safe since pageset manipulation is done 5964 * with interrupts disabled. 5965 * 5966 * The boot_pagesets must be kept even after bootup is complete for 5967 * unused processors and/or zones. They do play a role for bootstrapping 5968 * hotplugged processors. 5969 * 5970 * zoneinfo_show() and maybe other functions do 5971 * not check if the processor is online before following the pageset pointer. 5972 * Other parts of the kernel may not check if the zone is available. 5973 */ 5974 static void pageset_init(struct per_cpu_pageset *p); 5975 /* These effectively disable the pcplists in the boot pageset completely */ 5976 #define BOOT_PAGESET_HIGH 0 5977 #define BOOT_PAGESET_BATCH 1 5978 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5979 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5980 5981 static void __build_all_zonelists(void *data) 5982 { 5983 int nid; 5984 int __maybe_unused cpu; 5985 pg_data_t *self = data; 5986 static DEFINE_SPINLOCK(lock); 5987 5988 spin_lock(&lock); 5989 5990 #ifdef CONFIG_NUMA 5991 memset(node_load, 0, sizeof(node_load)); 5992 #endif 5993 5994 /* 5995 * This node is hotadded and no memory is yet present. So just 5996 * building zonelists is fine - no need to touch other nodes. 5997 */ 5998 if (self && !node_online(self->node_id)) { 5999 build_zonelists(self); 6000 } else { 6001 for_each_online_node(nid) { 6002 pg_data_t *pgdat = NODE_DATA(nid); 6003 6004 build_zonelists(pgdat); 6005 } 6006 6007 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6008 /* 6009 * We now know the "local memory node" for each node-- 6010 * i.e., the node of the first zone in the generic zonelist. 6011 * Set up numa_mem percpu variable for on-line cpus. During 6012 * boot, only the boot cpu should be on-line; we'll init the 6013 * secondary cpus' numa_mem as they come on-line. During 6014 * node/memory hotplug, we'll fixup all on-line cpus. 6015 */ 6016 for_each_online_cpu(cpu) 6017 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6018 #endif 6019 } 6020 6021 spin_unlock(&lock); 6022 } 6023 6024 static noinline void __init 6025 build_all_zonelists_init(void) 6026 { 6027 int cpu; 6028 6029 __build_all_zonelists(NULL); 6030 6031 /* 6032 * Initialize the boot_pagesets that are going to be used 6033 * for bootstrapping processors. The real pagesets for 6034 * each zone will be allocated later when the per cpu 6035 * allocator is available. 6036 * 6037 * boot_pagesets are used also for bootstrapping offline 6038 * cpus if the system is already booted because the pagesets 6039 * are needed to initialize allocators on a specific cpu too. 6040 * F.e. the percpu allocator needs the page allocator which 6041 * needs the percpu allocator in order to allocate its pagesets 6042 * (a chicken-egg dilemma). 6043 */ 6044 for_each_possible_cpu(cpu) 6045 pageset_init(&per_cpu(boot_pageset, cpu)); 6046 6047 mminit_verify_zonelist(); 6048 cpuset_init_current_mems_allowed(); 6049 } 6050 6051 /* 6052 * unless system_state == SYSTEM_BOOTING. 6053 * 6054 * __ref due to call of __init annotated helper build_all_zonelists_init 6055 * [protected by SYSTEM_BOOTING]. 6056 */ 6057 void __ref build_all_zonelists(pg_data_t *pgdat) 6058 { 6059 unsigned long vm_total_pages; 6060 6061 if (system_state == SYSTEM_BOOTING) { 6062 build_all_zonelists_init(); 6063 } else { 6064 __build_all_zonelists(pgdat); 6065 /* cpuset refresh routine should be here */ 6066 } 6067 /* Get the number of free pages beyond high watermark in all zones. */ 6068 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6069 /* 6070 * Disable grouping by mobility if the number of pages in the 6071 * system is too low to allow the mechanism to work. It would be 6072 * more accurate, but expensive to check per-zone. This check is 6073 * made on memory-hotadd so a system can start with mobility 6074 * disabled and enable it later 6075 */ 6076 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6077 page_group_by_mobility_disabled = 1; 6078 else 6079 page_group_by_mobility_disabled = 0; 6080 6081 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6082 nr_online_nodes, 6083 page_group_by_mobility_disabled ? "off" : "on", 6084 vm_total_pages); 6085 #ifdef CONFIG_NUMA 6086 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6087 #endif 6088 } 6089 6090 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6091 static bool __meminit 6092 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6093 { 6094 static struct memblock_region *r; 6095 6096 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6097 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6098 for_each_mem_region(r) { 6099 if (*pfn < memblock_region_memory_end_pfn(r)) 6100 break; 6101 } 6102 } 6103 if (*pfn >= memblock_region_memory_base_pfn(r) && 6104 memblock_is_mirror(r)) { 6105 *pfn = memblock_region_memory_end_pfn(r); 6106 return true; 6107 } 6108 } 6109 return false; 6110 } 6111 6112 /* 6113 * Initially all pages are reserved - free ones are freed 6114 * up by memblock_free_all() once the early boot process is 6115 * done. Non-atomic initialization, single-pass. 6116 * 6117 * All aligned pageblocks are initialized to the specified migratetype 6118 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6119 * zone stats (e.g., nr_isolate_pageblock) are touched. 6120 */ 6121 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 6122 unsigned long start_pfn, unsigned long zone_end_pfn, 6123 enum meminit_context context, 6124 struct vmem_altmap *altmap, int migratetype) 6125 { 6126 unsigned long pfn, end_pfn = start_pfn + size; 6127 struct page *page; 6128 6129 if (highest_memmap_pfn < end_pfn - 1) 6130 highest_memmap_pfn = end_pfn - 1; 6131 6132 #ifdef CONFIG_ZONE_DEVICE 6133 /* 6134 * Honor reservation requested by the driver for this ZONE_DEVICE 6135 * memory. We limit the total number of pages to initialize to just 6136 * those that might contain the memory mapping. We will defer the 6137 * ZONE_DEVICE page initialization until after we have released 6138 * the hotplug lock. 6139 */ 6140 if (zone == ZONE_DEVICE) { 6141 if (!altmap) 6142 return; 6143 6144 if (start_pfn == altmap->base_pfn) 6145 start_pfn += altmap->reserve; 6146 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6147 } 6148 #endif 6149 6150 for (pfn = start_pfn; pfn < end_pfn; ) { 6151 /* 6152 * There can be holes in boot-time mem_map[]s handed to this 6153 * function. They do not exist on hotplugged memory. 6154 */ 6155 if (context == MEMINIT_EARLY) { 6156 if (overlap_memmap_init(zone, &pfn)) 6157 continue; 6158 if (defer_init(nid, pfn, zone_end_pfn)) 6159 break; 6160 } 6161 6162 page = pfn_to_page(pfn); 6163 __init_single_page(page, pfn, zone, nid); 6164 if (context == MEMINIT_HOTPLUG) 6165 __SetPageReserved(page); 6166 6167 /* 6168 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6169 * such that unmovable allocations won't be scattered all 6170 * over the place during system boot. 6171 */ 6172 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6173 set_pageblock_migratetype(page, migratetype); 6174 cond_resched(); 6175 } 6176 pfn++; 6177 } 6178 } 6179 6180 #ifdef CONFIG_ZONE_DEVICE 6181 void __ref memmap_init_zone_device(struct zone *zone, 6182 unsigned long start_pfn, 6183 unsigned long nr_pages, 6184 struct dev_pagemap *pgmap) 6185 { 6186 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6187 struct pglist_data *pgdat = zone->zone_pgdat; 6188 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6189 unsigned long zone_idx = zone_idx(zone); 6190 unsigned long start = jiffies; 6191 int nid = pgdat->node_id; 6192 6193 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6194 return; 6195 6196 /* 6197 * The call to memmap_init_zone should have already taken care 6198 * of the pages reserved for the memmap, so we can just jump to 6199 * the end of that region and start processing the device pages. 6200 */ 6201 if (altmap) { 6202 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6203 nr_pages = end_pfn - start_pfn; 6204 } 6205 6206 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6207 struct page *page = pfn_to_page(pfn); 6208 6209 __init_single_page(page, pfn, zone_idx, nid); 6210 6211 /* 6212 * Mark page reserved as it will need to wait for onlining 6213 * phase for it to be fully associated with a zone. 6214 * 6215 * We can use the non-atomic __set_bit operation for setting 6216 * the flag as we are still initializing the pages. 6217 */ 6218 __SetPageReserved(page); 6219 6220 /* 6221 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6222 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6223 * ever freed or placed on a driver-private list. 6224 */ 6225 page->pgmap = pgmap; 6226 page->zone_device_data = NULL; 6227 6228 /* 6229 * Mark the block movable so that blocks are reserved for 6230 * movable at startup. This will force kernel allocations 6231 * to reserve their blocks rather than leaking throughout 6232 * the address space during boot when many long-lived 6233 * kernel allocations are made. 6234 * 6235 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6236 * because this is done early in section_activate() 6237 */ 6238 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6239 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6240 cond_resched(); 6241 } 6242 } 6243 6244 pr_info("%s initialised %lu pages in %ums\n", __func__, 6245 nr_pages, jiffies_to_msecs(jiffies - start)); 6246 } 6247 6248 #endif 6249 static void __meminit zone_init_free_lists(struct zone *zone) 6250 { 6251 unsigned int order, t; 6252 for_each_migratetype_order(order, t) { 6253 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6254 zone->free_area[order].nr_free = 0; 6255 } 6256 } 6257 6258 void __meminit __weak memmap_init(unsigned long size, int nid, 6259 unsigned long zone, 6260 unsigned long range_start_pfn) 6261 { 6262 unsigned long start_pfn, end_pfn; 6263 unsigned long range_end_pfn = range_start_pfn + size; 6264 int i; 6265 6266 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6267 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6268 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6269 6270 if (end_pfn > start_pfn) { 6271 size = end_pfn - start_pfn; 6272 memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn, 6273 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6274 } 6275 } 6276 } 6277 6278 static int zone_batchsize(struct zone *zone) 6279 { 6280 #ifdef CONFIG_MMU 6281 int batch; 6282 6283 /* 6284 * The per-cpu-pages pools are set to around 1000th of the 6285 * size of the zone. 6286 */ 6287 batch = zone_managed_pages(zone) / 1024; 6288 /* But no more than a meg. */ 6289 if (batch * PAGE_SIZE > 1024 * 1024) 6290 batch = (1024 * 1024) / PAGE_SIZE; 6291 batch /= 4; /* We effectively *= 4 below */ 6292 if (batch < 1) 6293 batch = 1; 6294 6295 /* 6296 * Clamp the batch to a 2^n - 1 value. Having a power 6297 * of 2 value was found to be more likely to have 6298 * suboptimal cache aliasing properties in some cases. 6299 * 6300 * For example if 2 tasks are alternately allocating 6301 * batches of pages, one task can end up with a lot 6302 * of pages of one half of the possible page colors 6303 * and the other with pages of the other colors. 6304 */ 6305 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6306 6307 return batch; 6308 6309 #else 6310 /* The deferral and batching of frees should be suppressed under NOMMU 6311 * conditions. 6312 * 6313 * The problem is that NOMMU needs to be able to allocate large chunks 6314 * of contiguous memory as there's no hardware page translation to 6315 * assemble apparent contiguous memory from discontiguous pages. 6316 * 6317 * Queueing large contiguous runs of pages for batching, however, 6318 * causes the pages to actually be freed in smaller chunks. As there 6319 * can be a significant delay between the individual batches being 6320 * recycled, this leads to the once large chunks of space being 6321 * fragmented and becoming unavailable for high-order allocations. 6322 */ 6323 return 0; 6324 #endif 6325 } 6326 6327 /* 6328 * pcp->high and pcp->batch values are related and generally batch is lower 6329 * than high. They are also related to pcp->count such that count is lower 6330 * than high, and as soon as it reaches high, the pcplist is flushed. 6331 * 6332 * However, guaranteeing these relations at all times would require e.g. write 6333 * barriers here but also careful usage of read barriers at the read side, and 6334 * thus be prone to error and bad for performance. Thus the update only prevents 6335 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6336 * can cope with those fields changing asynchronously, and fully trust only the 6337 * pcp->count field on the local CPU with interrupts disabled. 6338 * 6339 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6340 * outside of boot time (or some other assurance that no concurrent updaters 6341 * exist). 6342 */ 6343 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6344 unsigned long batch) 6345 { 6346 WRITE_ONCE(pcp->batch, batch); 6347 WRITE_ONCE(pcp->high, high); 6348 } 6349 6350 static void pageset_init(struct per_cpu_pageset *p) 6351 { 6352 struct per_cpu_pages *pcp; 6353 int migratetype; 6354 6355 memset(p, 0, sizeof(*p)); 6356 6357 pcp = &p->pcp; 6358 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6359 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6360 6361 /* 6362 * Set batch and high values safe for a boot pageset. A true percpu 6363 * pageset's initialization will update them subsequently. Here we don't 6364 * need to be as careful as pageset_update() as nobody can access the 6365 * pageset yet. 6366 */ 6367 pcp->high = BOOT_PAGESET_HIGH; 6368 pcp->batch = BOOT_PAGESET_BATCH; 6369 } 6370 6371 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6372 unsigned long batch) 6373 { 6374 struct per_cpu_pageset *p; 6375 int cpu; 6376 6377 for_each_possible_cpu(cpu) { 6378 p = per_cpu_ptr(zone->pageset, cpu); 6379 pageset_update(&p->pcp, high, batch); 6380 } 6381 } 6382 6383 /* 6384 * Calculate and set new high and batch values for all per-cpu pagesets of a 6385 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl. 6386 */ 6387 static void zone_set_pageset_high_and_batch(struct zone *zone) 6388 { 6389 unsigned long new_high, new_batch; 6390 6391 if (percpu_pagelist_fraction) { 6392 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction; 6393 new_batch = max(1UL, new_high / 4); 6394 if ((new_high / 4) > (PAGE_SHIFT * 8)) 6395 new_batch = PAGE_SHIFT * 8; 6396 } else { 6397 new_batch = zone_batchsize(zone); 6398 new_high = 6 * new_batch; 6399 new_batch = max(1UL, 1 * new_batch); 6400 } 6401 6402 if (zone->pageset_high == new_high && 6403 zone->pageset_batch == new_batch) 6404 return; 6405 6406 zone->pageset_high = new_high; 6407 zone->pageset_batch = new_batch; 6408 6409 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6410 } 6411 6412 void __meminit setup_zone_pageset(struct zone *zone) 6413 { 6414 struct per_cpu_pageset *p; 6415 int cpu; 6416 6417 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6418 for_each_possible_cpu(cpu) { 6419 p = per_cpu_ptr(zone->pageset, cpu); 6420 pageset_init(p); 6421 } 6422 6423 zone_set_pageset_high_and_batch(zone); 6424 } 6425 6426 /* 6427 * Allocate per cpu pagesets and initialize them. 6428 * Before this call only boot pagesets were available. 6429 */ 6430 void __init setup_per_cpu_pageset(void) 6431 { 6432 struct pglist_data *pgdat; 6433 struct zone *zone; 6434 int __maybe_unused cpu; 6435 6436 for_each_populated_zone(zone) 6437 setup_zone_pageset(zone); 6438 6439 #ifdef CONFIG_NUMA 6440 /* 6441 * Unpopulated zones continue using the boot pagesets. 6442 * The numa stats for these pagesets need to be reset. 6443 * Otherwise, they will end up skewing the stats of 6444 * the nodes these zones are associated with. 6445 */ 6446 for_each_possible_cpu(cpu) { 6447 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6448 memset(pcp->vm_numa_stat_diff, 0, 6449 sizeof(pcp->vm_numa_stat_diff)); 6450 } 6451 #endif 6452 6453 for_each_online_pgdat(pgdat) 6454 pgdat->per_cpu_nodestats = 6455 alloc_percpu(struct per_cpu_nodestat); 6456 } 6457 6458 static __meminit void zone_pcp_init(struct zone *zone) 6459 { 6460 /* 6461 * per cpu subsystem is not up at this point. The following code 6462 * relies on the ability of the linker to provide the 6463 * offset of a (static) per cpu variable into the per cpu area. 6464 */ 6465 zone->pageset = &boot_pageset; 6466 zone->pageset_high = BOOT_PAGESET_HIGH; 6467 zone->pageset_batch = BOOT_PAGESET_BATCH; 6468 6469 if (populated_zone(zone)) 6470 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6471 zone->name, zone->present_pages, 6472 zone_batchsize(zone)); 6473 } 6474 6475 void __meminit init_currently_empty_zone(struct zone *zone, 6476 unsigned long zone_start_pfn, 6477 unsigned long size) 6478 { 6479 struct pglist_data *pgdat = zone->zone_pgdat; 6480 int zone_idx = zone_idx(zone) + 1; 6481 6482 if (zone_idx > pgdat->nr_zones) 6483 pgdat->nr_zones = zone_idx; 6484 6485 zone->zone_start_pfn = zone_start_pfn; 6486 6487 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6488 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6489 pgdat->node_id, 6490 (unsigned long)zone_idx(zone), 6491 zone_start_pfn, (zone_start_pfn + size)); 6492 6493 zone_init_free_lists(zone); 6494 zone->initialized = 1; 6495 } 6496 6497 /** 6498 * get_pfn_range_for_nid - Return the start and end page frames for a node 6499 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6500 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6501 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6502 * 6503 * It returns the start and end page frame of a node based on information 6504 * provided by memblock_set_node(). If called for a node 6505 * with no available memory, a warning is printed and the start and end 6506 * PFNs will be 0. 6507 */ 6508 void __init get_pfn_range_for_nid(unsigned int nid, 6509 unsigned long *start_pfn, unsigned long *end_pfn) 6510 { 6511 unsigned long this_start_pfn, this_end_pfn; 6512 int i; 6513 6514 *start_pfn = -1UL; 6515 *end_pfn = 0; 6516 6517 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6518 *start_pfn = min(*start_pfn, this_start_pfn); 6519 *end_pfn = max(*end_pfn, this_end_pfn); 6520 } 6521 6522 if (*start_pfn == -1UL) 6523 *start_pfn = 0; 6524 } 6525 6526 /* 6527 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6528 * assumption is made that zones within a node are ordered in monotonic 6529 * increasing memory addresses so that the "highest" populated zone is used 6530 */ 6531 static void __init find_usable_zone_for_movable(void) 6532 { 6533 int zone_index; 6534 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6535 if (zone_index == ZONE_MOVABLE) 6536 continue; 6537 6538 if (arch_zone_highest_possible_pfn[zone_index] > 6539 arch_zone_lowest_possible_pfn[zone_index]) 6540 break; 6541 } 6542 6543 VM_BUG_ON(zone_index == -1); 6544 movable_zone = zone_index; 6545 } 6546 6547 /* 6548 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6549 * because it is sized independent of architecture. Unlike the other zones, 6550 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6551 * in each node depending on the size of each node and how evenly kernelcore 6552 * is distributed. This helper function adjusts the zone ranges 6553 * provided by the architecture for a given node by using the end of the 6554 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6555 * zones within a node are in order of monotonic increases memory addresses 6556 */ 6557 static void __init adjust_zone_range_for_zone_movable(int nid, 6558 unsigned long zone_type, 6559 unsigned long node_start_pfn, 6560 unsigned long node_end_pfn, 6561 unsigned long *zone_start_pfn, 6562 unsigned long *zone_end_pfn) 6563 { 6564 /* Only adjust if ZONE_MOVABLE is on this node */ 6565 if (zone_movable_pfn[nid]) { 6566 /* Size ZONE_MOVABLE */ 6567 if (zone_type == ZONE_MOVABLE) { 6568 *zone_start_pfn = zone_movable_pfn[nid]; 6569 *zone_end_pfn = min(node_end_pfn, 6570 arch_zone_highest_possible_pfn[movable_zone]); 6571 6572 /* Adjust for ZONE_MOVABLE starting within this range */ 6573 } else if (!mirrored_kernelcore && 6574 *zone_start_pfn < zone_movable_pfn[nid] && 6575 *zone_end_pfn > zone_movable_pfn[nid]) { 6576 *zone_end_pfn = zone_movable_pfn[nid]; 6577 6578 /* Check if this whole range is within ZONE_MOVABLE */ 6579 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6580 *zone_start_pfn = *zone_end_pfn; 6581 } 6582 } 6583 6584 /* 6585 * Return the number of pages a zone spans in a node, including holes 6586 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6587 */ 6588 static unsigned long __init zone_spanned_pages_in_node(int nid, 6589 unsigned long zone_type, 6590 unsigned long node_start_pfn, 6591 unsigned long node_end_pfn, 6592 unsigned long *zone_start_pfn, 6593 unsigned long *zone_end_pfn) 6594 { 6595 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6596 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6597 /* When hotadd a new node from cpu_up(), the node should be empty */ 6598 if (!node_start_pfn && !node_end_pfn) 6599 return 0; 6600 6601 /* Get the start and end of the zone */ 6602 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6603 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6604 adjust_zone_range_for_zone_movable(nid, zone_type, 6605 node_start_pfn, node_end_pfn, 6606 zone_start_pfn, zone_end_pfn); 6607 6608 /* Check that this node has pages within the zone's required range */ 6609 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6610 return 0; 6611 6612 /* Move the zone boundaries inside the node if necessary */ 6613 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6614 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6615 6616 /* Return the spanned pages */ 6617 return *zone_end_pfn - *zone_start_pfn; 6618 } 6619 6620 /* 6621 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6622 * then all holes in the requested range will be accounted for. 6623 */ 6624 unsigned long __init __absent_pages_in_range(int nid, 6625 unsigned long range_start_pfn, 6626 unsigned long range_end_pfn) 6627 { 6628 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6629 unsigned long start_pfn, end_pfn; 6630 int i; 6631 6632 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6633 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6634 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6635 nr_absent -= end_pfn - start_pfn; 6636 } 6637 return nr_absent; 6638 } 6639 6640 /** 6641 * absent_pages_in_range - Return number of page frames in holes within a range 6642 * @start_pfn: The start PFN to start searching for holes 6643 * @end_pfn: The end PFN to stop searching for holes 6644 * 6645 * Return: the number of pages frames in memory holes within a range. 6646 */ 6647 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6648 unsigned long end_pfn) 6649 { 6650 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6651 } 6652 6653 /* Return the number of page frames in holes in a zone on a node */ 6654 static unsigned long __init zone_absent_pages_in_node(int nid, 6655 unsigned long zone_type, 6656 unsigned long node_start_pfn, 6657 unsigned long node_end_pfn) 6658 { 6659 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6660 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6661 unsigned long zone_start_pfn, zone_end_pfn; 6662 unsigned long nr_absent; 6663 6664 /* When hotadd a new node from cpu_up(), the node should be empty */ 6665 if (!node_start_pfn && !node_end_pfn) 6666 return 0; 6667 6668 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6669 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6670 6671 adjust_zone_range_for_zone_movable(nid, zone_type, 6672 node_start_pfn, node_end_pfn, 6673 &zone_start_pfn, &zone_end_pfn); 6674 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6675 6676 /* 6677 * ZONE_MOVABLE handling. 6678 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6679 * and vice versa. 6680 */ 6681 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6682 unsigned long start_pfn, end_pfn; 6683 struct memblock_region *r; 6684 6685 for_each_mem_region(r) { 6686 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6687 zone_start_pfn, zone_end_pfn); 6688 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6689 zone_start_pfn, zone_end_pfn); 6690 6691 if (zone_type == ZONE_MOVABLE && 6692 memblock_is_mirror(r)) 6693 nr_absent += end_pfn - start_pfn; 6694 6695 if (zone_type == ZONE_NORMAL && 6696 !memblock_is_mirror(r)) 6697 nr_absent += end_pfn - start_pfn; 6698 } 6699 } 6700 6701 return nr_absent; 6702 } 6703 6704 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6705 unsigned long node_start_pfn, 6706 unsigned long node_end_pfn) 6707 { 6708 unsigned long realtotalpages = 0, totalpages = 0; 6709 enum zone_type i; 6710 6711 for (i = 0; i < MAX_NR_ZONES; i++) { 6712 struct zone *zone = pgdat->node_zones + i; 6713 unsigned long zone_start_pfn, zone_end_pfn; 6714 unsigned long spanned, absent; 6715 unsigned long size, real_size; 6716 6717 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6718 node_start_pfn, 6719 node_end_pfn, 6720 &zone_start_pfn, 6721 &zone_end_pfn); 6722 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6723 node_start_pfn, 6724 node_end_pfn); 6725 6726 size = spanned; 6727 real_size = size - absent; 6728 6729 if (size) 6730 zone->zone_start_pfn = zone_start_pfn; 6731 else 6732 zone->zone_start_pfn = 0; 6733 zone->spanned_pages = size; 6734 zone->present_pages = real_size; 6735 6736 totalpages += size; 6737 realtotalpages += real_size; 6738 } 6739 6740 pgdat->node_spanned_pages = totalpages; 6741 pgdat->node_present_pages = realtotalpages; 6742 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6743 realtotalpages); 6744 } 6745 6746 #ifndef CONFIG_SPARSEMEM 6747 /* 6748 * Calculate the size of the zone->blockflags rounded to an unsigned long 6749 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6750 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6751 * round what is now in bits to nearest long in bits, then return it in 6752 * bytes. 6753 */ 6754 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6755 { 6756 unsigned long usemapsize; 6757 6758 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6759 usemapsize = roundup(zonesize, pageblock_nr_pages); 6760 usemapsize = usemapsize >> pageblock_order; 6761 usemapsize *= NR_PAGEBLOCK_BITS; 6762 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6763 6764 return usemapsize / 8; 6765 } 6766 6767 static void __ref setup_usemap(struct pglist_data *pgdat, 6768 struct zone *zone, 6769 unsigned long zone_start_pfn, 6770 unsigned long zonesize) 6771 { 6772 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6773 zone->pageblock_flags = NULL; 6774 if (usemapsize) { 6775 zone->pageblock_flags = 6776 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6777 pgdat->node_id); 6778 if (!zone->pageblock_flags) 6779 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6780 usemapsize, zone->name, pgdat->node_id); 6781 } 6782 } 6783 #else 6784 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6785 unsigned long zone_start_pfn, unsigned long zonesize) {} 6786 #endif /* CONFIG_SPARSEMEM */ 6787 6788 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6789 6790 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6791 void __init set_pageblock_order(void) 6792 { 6793 unsigned int order; 6794 6795 /* Check that pageblock_nr_pages has not already been setup */ 6796 if (pageblock_order) 6797 return; 6798 6799 if (HPAGE_SHIFT > PAGE_SHIFT) 6800 order = HUGETLB_PAGE_ORDER; 6801 else 6802 order = MAX_ORDER - 1; 6803 6804 /* 6805 * Assume the largest contiguous order of interest is a huge page. 6806 * This value may be variable depending on boot parameters on IA64 and 6807 * powerpc. 6808 */ 6809 pageblock_order = order; 6810 } 6811 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6812 6813 /* 6814 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6815 * is unused as pageblock_order is set at compile-time. See 6816 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6817 * the kernel config 6818 */ 6819 void __init set_pageblock_order(void) 6820 { 6821 } 6822 6823 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6824 6825 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6826 unsigned long present_pages) 6827 { 6828 unsigned long pages = spanned_pages; 6829 6830 /* 6831 * Provide a more accurate estimation if there are holes within 6832 * the zone and SPARSEMEM is in use. If there are holes within the 6833 * zone, each populated memory region may cost us one or two extra 6834 * memmap pages due to alignment because memmap pages for each 6835 * populated regions may not be naturally aligned on page boundary. 6836 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6837 */ 6838 if (spanned_pages > present_pages + (present_pages >> 4) && 6839 IS_ENABLED(CONFIG_SPARSEMEM)) 6840 pages = present_pages; 6841 6842 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6843 } 6844 6845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6846 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6847 { 6848 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6849 6850 spin_lock_init(&ds_queue->split_queue_lock); 6851 INIT_LIST_HEAD(&ds_queue->split_queue); 6852 ds_queue->split_queue_len = 0; 6853 } 6854 #else 6855 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6856 #endif 6857 6858 #ifdef CONFIG_COMPACTION 6859 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6860 { 6861 init_waitqueue_head(&pgdat->kcompactd_wait); 6862 } 6863 #else 6864 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6865 #endif 6866 6867 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6868 { 6869 pgdat_resize_init(pgdat); 6870 6871 pgdat_init_split_queue(pgdat); 6872 pgdat_init_kcompactd(pgdat); 6873 6874 init_waitqueue_head(&pgdat->kswapd_wait); 6875 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6876 6877 pgdat_page_ext_init(pgdat); 6878 lruvec_init(&pgdat->__lruvec); 6879 } 6880 6881 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6882 unsigned long remaining_pages) 6883 { 6884 atomic_long_set(&zone->managed_pages, remaining_pages); 6885 zone_set_nid(zone, nid); 6886 zone->name = zone_names[idx]; 6887 zone->zone_pgdat = NODE_DATA(nid); 6888 spin_lock_init(&zone->lock); 6889 zone_seqlock_init(zone); 6890 zone_pcp_init(zone); 6891 } 6892 6893 /* 6894 * Set up the zone data structures 6895 * - init pgdat internals 6896 * - init all zones belonging to this node 6897 * 6898 * NOTE: this function is only called during memory hotplug 6899 */ 6900 #ifdef CONFIG_MEMORY_HOTPLUG 6901 void __ref free_area_init_core_hotplug(int nid) 6902 { 6903 enum zone_type z; 6904 pg_data_t *pgdat = NODE_DATA(nid); 6905 6906 pgdat_init_internals(pgdat); 6907 for (z = 0; z < MAX_NR_ZONES; z++) 6908 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6909 } 6910 #endif 6911 6912 /* 6913 * Set up the zone data structures: 6914 * - mark all pages reserved 6915 * - mark all memory queues empty 6916 * - clear the memory bitmaps 6917 * 6918 * NOTE: pgdat should get zeroed by caller. 6919 * NOTE: this function is only called during early init. 6920 */ 6921 static void __init free_area_init_core(struct pglist_data *pgdat) 6922 { 6923 enum zone_type j; 6924 int nid = pgdat->node_id; 6925 6926 pgdat_init_internals(pgdat); 6927 pgdat->per_cpu_nodestats = &boot_nodestats; 6928 6929 for (j = 0; j < MAX_NR_ZONES; j++) { 6930 struct zone *zone = pgdat->node_zones + j; 6931 unsigned long size, freesize, memmap_pages; 6932 unsigned long zone_start_pfn = zone->zone_start_pfn; 6933 6934 size = zone->spanned_pages; 6935 freesize = zone->present_pages; 6936 6937 /* 6938 * Adjust freesize so that it accounts for how much memory 6939 * is used by this zone for memmap. This affects the watermark 6940 * and per-cpu initialisations 6941 */ 6942 memmap_pages = calc_memmap_size(size, freesize); 6943 if (!is_highmem_idx(j)) { 6944 if (freesize >= memmap_pages) { 6945 freesize -= memmap_pages; 6946 if (memmap_pages) 6947 printk(KERN_DEBUG 6948 " %s zone: %lu pages used for memmap\n", 6949 zone_names[j], memmap_pages); 6950 } else 6951 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6952 zone_names[j], memmap_pages, freesize); 6953 } 6954 6955 /* Account for reserved pages */ 6956 if (j == 0 && freesize > dma_reserve) { 6957 freesize -= dma_reserve; 6958 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6959 zone_names[0], dma_reserve); 6960 } 6961 6962 if (!is_highmem_idx(j)) 6963 nr_kernel_pages += freesize; 6964 /* Charge for highmem memmap if there are enough kernel pages */ 6965 else if (nr_kernel_pages > memmap_pages * 2) 6966 nr_kernel_pages -= memmap_pages; 6967 nr_all_pages += freesize; 6968 6969 /* 6970 * Set an approximate value for lowmem here, it will be adjusted 6971 * when the bootmem allocator frees pages into the buddy system. 6972 * And all highmem pages will be managed by the buddy system. 6973 */ 6974 zone_init_internals(zone, j, nid, freesize); 6975 6976 if (!size) 6977 continue; 6978 6979 set_pageblock_order(); 6980 setup_usemap(pgdat, zone, zone_start_pfn, size); 6981 init_currently_empty_zone(zone, zone_start_pfn, size); 6982 memmap_init(size, nid, j, zone_start_pfn); 6983 } 6984 } 6985 6986 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6987 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6988 { 6989 unsigned long __maybe_unused start = 0; 6990 unsigned long __maybe_unused offset = 0; 6991 6992 /* Skip empty nodes */ 6993 if (!pgdat->node_spanned_pages) 6994 return; 6995 6996 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6997 offset = pgdat->node_start_pfn - start; 6998 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6999 if (!pgdat->node_mem_map) { 7000 unsigned long size, end; 7001 struct page *map; 7002 7003 /* 7004 * The zone's endpoints aren't required to be MAX_ORDER 7005 * aligned but the node_mem_map endpoints must be in order 7006 * for the buddy allocator to function correctly. 7007 */ 7008 end = pgdat_end_pfn(pgdat); 7009 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7010 size = (end - start) * sizeof(struct page); 7011 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7012 pgdat->node_id); 7013 if (!map) 7014 panic("Failed to allocate %ld bytes for node %d memory map\n", 7015 size, pgdat->node_id); 7016 pgdat->node_mem_map = map + offset; 7017 } 7018 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7019 __func__, pgdat->node_id, (unsigned long)pgdat, 7020 (unsigned long)pgdat->node_mem_map); 7021 #ifndef CONFIG_NEED_MULTIPLE_NODES 7022 /* 7023 * With no DISCONTIG, the global mem_map is just set as node 0's 7024 */ 7025 if (pgdat == NODE_DATA(0)) { 7026 mem_map = NODE_DATA(0)->node_mem_map; 7027 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7028 mem_map -= offset; 7029 } 7030 #endif 7031 } 7032 #else 7033 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7034 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 7035 7036 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7037 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7038 { 7039 pgdat->first_deferred_pfn = ULONG_MAX; 7040 } 7041 #else 7042 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7043 #endif 7044 7045 static void __init free_area_init_node(int nid) 7046 { 7047 pg_data_t *pgdat = NODE_DATA(nid); 7048 unsigned long start_pfn = 0; 7049 unsigned long end_pfn = 0; 7050 7051 /* pg_data_t should be reset to zero when it's allocated */ 7052 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7053 7054 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7055 7056 pgdat->node_id = nid; 7057 pgdat->node_start_pfn = start_pfn; 7058 pgdat->per_cpu_nodestats = NULL; 7059 7060 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7061 (u64)start_pfn << PAGE_SHIFT, 7062 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7063 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7064 7065 alloc_node_mem_map(pgdat); 7066 pgdat_set_deferred_range(pgdat); 7067 7068 free_area_init_core(pgdat); 7069 } 7070 7071 void __init free_area_init_memoryless_node(int nid) 7072 { 7073 free_area_init_node(nid); 7074 } 7075 7076 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 7077 /* 7078 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 7079 * PageReserved(). Return the number of struct pages that were initialized. 7080 */ 7081 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 7082 { 7083 unsigned long pfn; 7084 u64 pgcnt = 0; 7085 7086 for (pfn = spfn; pfn < epfn; pfn++) { 7087 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 7088 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 7089 + pageblock_nr_pages - 1; 7090 continue; 7091 } 7092 /* 7093 * Use a fake node/zone (0) for now. Some of these pages 7094 * (in memblock.reserved but not in memblock.memory) will 7095 * get re-initialized via reserve_bootmem_region() later. 7096 */ 7097 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 7098 __SetPageReserved(pfn_to_page(pfn)); 7099 pgcnt++; 7100 } 7101 7102 return pgcnt; 7103 } 7104 7105 /* 7106 * Only struct pages that are backed by physical memory are zeroed and 7107 * initialized by going through __init_single_page(). But, there are some 7108 * struct pages which are reserved in memblock allocator and their fields 7109 * may be accessed (for example page_to_pfn() on some configuration accesses 7110 * flags). We must explicitly initialize those struct pages. 7111 * 7112 * This function also addresses a similar issue where struct pages are left 7113 * uninitialized because the physical address range is not covered by 7114 * memblock.memory or memblock.reserved. That could happen when memblock 7115 * layout is manually configured via memmap=, or when the highest physical 7116 * address (max_pfn) does not end on a section boundary. 7117 */ 7118 static void __init init_unavailable_mem(void) 7119 { 7120 phys_addr_t start, end; 7121 u64 i, pgcnt; 7122 phys_addr_t next = 0; 7123 7124 /* 7125 * Loop through unavailable ranges not covered by memblock.memory. 7126 */ 7127 pgcnt = 0; 7128 for_each_mem_range(i, &start, &end) { 7129 if (next < start) 7130 pgcnt += init_unavailable_range(PFN_DOWN(next), 7131 PFN_UP(start)); 7132 next = end; 7133 } 7134 7135 /* 7136 * Early sections always have a fully populated memmap for the whole 7137 * section - see pfn_valid(). If the last section has holes at the 7138 * end and that section is marked "online", the memmap will be 7139 * considered initialized. Make sure that memmap has a well defined 7140 * state. 7141 */ 7142 pgcnt += init_unavailable_range(PFN_DOWN(next), 7143 round_up(max_pfn, PAGES_PER_SECTION)); 7144 7145 /* 7146 * Struct pages that do not have backing memory. This could be because 7147 * firmware is using some of this memory, or for some other reasons. 7148 */ 7149 if (pgcnt) 7150 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7151 } 7152 #else 7153 static inline void __init init_unavailable_mem(void) 7154 { 7155 } 7156 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7157 7158 #if MAX_NUMNODES > 1 7159 /* 7160 * Figure out the number of possible node ids. 7161 */ 7162 void __init setup_nr_node_ids(void) 7163 { 7164 unsigned int highest; 7165 7166 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7167 nr_node_ids = highest + 1; 7168 } 7169 #endif 7170 7171 /** 7172 * node_map_pfn_alignment - determine the maximum internode alignment 7173 * 7174 * This function should be called after node map is populated and sorted. 7175 * It calculates the maximum power of two alignment which can distinguish 7176 * all the nodes. 7177 * 7178 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7179 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7180 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7181 * shifted, 1GiB is enough and this function will indicate so. 7182 * 7183 * This is used to test whether pfn -> nid mapping of the chosen memory 7184 * model has fine enough granularity to avoid incorrect mapping for the 7185 * populated node map. 7186 * 7187 * Return: the determined alignment in pfn's. 0 if there is no alignment 7188 * requirement (single node). 7189 */ 7190 unsigned long __init node_map_pfn_alignment(void) 7191 { 7192 unsigned long accl_mask = 0, last_end = 0; 7193 unsigned long start, end, mask; 7194 int last_nid = NUMA_NO_NODE; 7195 int i, nid; 7196 7197 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7198 if (!start || last_nid < 0 || last_nid == nid) { 7199 last_nid = nid; 7200 last_end = end; 7201 continue; 7202 } 7203 7204 /* 7205 * Start with a mask granular enough to pin-point to the 7206 * start pfn and tick off bits one-by-one until it becomes 7207 * too coarse to separate the current node from the last. 7208 */ 7209 mask = ~((1 << __ffs(start)) - 1); 7210 while (mask && last_end <= (start & (mask << 1))) 7211 mask <<= 1; 7212 7213 /* accumulate all internode masks */ 7214 accl_mask |= mask; 7215 } 7216 7217 /* convert mask to number of pages */ 7218 return ~accl_mask + 1; 7219 } 7220 7221 /** 7222 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7223 * 7224 * Return: the minimum PFN based on information provided via 7225 * memblock_set_node(). 7226 */ 7227 unsigned long __init find_min_pfn_with_active_regions(void) 7228 { 7229 return PHYS_PFN(memblock_start_of_DRAM()); 7230 } 7231 7232 /* 7233 * early_calculate_totalpages() 7234 * Sum pages in active regions for movable zone. 7235 * Populate N_MEMORY for calculating usable_nodes. 7236 */ 7237 static unsigned long __init early_calculate_totalpages(void) 7238 { 7239 unsigned long totalpages = 0; 7240 unsigned long start_pfn, end_pfn; 7241 int i, nid; 7242 7243 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7244 unsigned long pages = end_pfn - start_pfn; 7245 7246 totalpages += pages; 7247 if (pages) 7248 node_set_state(nid, N_MEMORY); 7249 } 7250 return totalpages; 7251 } 7252 7253 /* 7254 * Find the PFN the Movable zone begins in each node. Kernel memory 7255 * is spread evenly between nodes as long as the nodes have enough 7256 * memory. When they don't, some nodes will have more kernelcore than 7257 * others 7258 */ 7259 static void __init find_zone_movable_pfns_for_nodes(void) 7260 { 7261 int i, nid; 7262 unsigned long usable_startpfn; 7263 unsigned long kernelcore_node, kernelcore_remaining; 7264 /* save the state before borrow the nodemask */ 7265 nodemask_t saved_node_state = node_states[N_MEMORY]; 7266 unsigned long totalpages = early_calculate_totalpages(); 7267 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7268 struct memblock_region *r; 7269 7270 /* Need to find movable_zone earlier when movable_node is specified. */ 7271 find_usable_zone_for_movable(); 7272 7273 /* 7274 * If movable_node is specified, ignore kernelcore and movablecore 7275 * options. 7276 */ 7277 if (movable_node_is_enabled()) { 7278 for_each_mem_region(r) { 7279 if (!memblock_is_hotpluggable(r)) 7280 continue; 7281 7282 nid = memblock_get_region_node(r); 7283 7284 usable_startpfn = PFN_DOWN(r->base); 7285 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7286 min(usable_startpfn, zone_movable_pfn[nid]) : 7287 usable_startpfn; 7288 } 7289 7290 goto out2; 7291 } 7292 7293 /* 7294 * If kernelcore=mirror is specified, ignore movablecore option 7295 */ 7296 if (mirrored_kernelcore) { 7297 bool mem_below_4gb_not_mirrored = false; 7298 7299 for_each_mem_region(r) { 7300 if (memblock_is_mirror(r)) 7301 continue; 7302 7303 nid = memblock_get_region_node(r); 7304 7305 usable_startpfn = memblock_region_memory_base_pfn(r); 7306 7307 if (usable_startpfn < 0x100000) { 7308 mem_below_4gb_not_mirrored = true; 7309 continue; 7310 } 7311 7312 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7313 min(usable_startpfn, zone_movable_pfn[nid]) : 7314 usable_startpfn; 7315 } 7316 7317 if (mem_below_4gb_not_mirrored) 7318 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7319 7320 goto out2; 7321 } 7322 7323 /* 7324 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7325 * amount of necessary memory. 7326 */ 7327 if (required_kernelcore_percent) 7328 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7329 10000UL; 7330 if (required_movablecore_percent) 7331 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7332 10000UL; 7333 7334 /* 7335 * If movablecore= was specified, calculate what size of 7336 * kernelcore that corresponds so that memory usable for 7337 * any allocation type is evenly spread. If both kernelcore 7338 * and movablecore are specified, then the value of kernelcore 7339 * will be used for required_kernelcore if it's greater than 7340 * what movablecore would have allowed. 7341 */ 7342 if (required_movablecore) { 7343 unsigned long corepages; 7344 7345 /* 7346 * Round-up so that ZONE_MOVABLE is at least as large as what 7347 * was requested by the user 7348 */ 7349 required_movablecore = 7350 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7351 required_movablecore = min(totalpages, required_movablecore); 7352 corepages = totalpages - required_movablecore; 7353 7354 required_kernelcore = max(required_kernelcore, corepages); 7355 } 7356 7357 /* 7358 * If kernelcore was not specified or kernelcore size is larger 7359 * than totalpages, there is no ZONE_MOVABLE. 7360 */ 7361 if (!required_kernelcore || required_kernelcore >= totalpages) 7362 goto out; 7363 7364 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7365 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7366 7367 restart: 7368 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7369 kernelcore_node = required_kernelcore / usable_nodes; 7370 for_each_node_state(nid, N_MEMORY) { 7371 unsigned long start_pfn, end_pfn; 7372 7373 /* 7374 * Recalculate kernelcore_node if the division per node 7375 * now exceeds what is necessary to satisfy the requested 7376 * amount of memory for the kernel 7377 */ 7378 if (required_kernelcore < kernelcore_node) 7379 kernelcore_node = required_kernelcore / usable_nodes; 7380 7381 /* 7382 * As the map is walked, we track how much memory is usable 7383 * by the kernel using kernelcore_remaining. When it is 7384 * 0, the rest of the node is usable by ZONE_MOVABLE 7385 */ 7386 kernelcore_remaining = kernelcore_node; 7387 7388 /* Go through each range of PFNs within this node */ 7389 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7390 unsigned long size_pages; 7391 7392 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7393 if (start_pfn >= end_pfn) 7394 continue; 7395 7396 /* Account for what is only usable for kernelcore */ 7397 if (start_pfn < usable_startpfn) { 7398 unsigned long kernel_pages; 7399 kernel_pages = min(end_pfn, usable_startpfn) 7400 - start_pfn; 7401 7402 kernelcore_remaining -= min(kernel_pages, 7403 kernelcore_remaining); 7404 required_kernelcore -= min(kernel_pages, 7405 required_kernelcore); 7406 7407 /* Continue if range is now fully accounted */ 7408 if (end_pfn <= usable_startpfn) { 7409 7410 /* 7411 * Push zone_movable_pfn to the end so 7412 * that if we have to rebalance 7413 * kernelcore across nodes, we will 7414 * not double account here 7415 */ 7416 zone_movable_pfn[nid] = end_pfn; 7417 continue; 7418 } 7419 start_pfn = usable_startpfn; 7420 } 7421 7422 /* 7423 * The usable PFN range for ZONE_MOVABLE is from 7424 * start_pfn->end_pfn. Calculate size_pages as the 7425 * number of pages used as kernelcore 7426 */ 7427 size_pages = end_pfn - start_pfn; 7428 if (size_pages > kernelcore_remaining) 7429 size_pages = kernelcore_remaining; 7430 zone_movable_pfn[nid] = start_pfn + size_pages; 7431 7432 /* 7433 * Some kernelcore has been met, update counts and 7434 * break if the kernelcore for this node has been 7435 * satisfied 7436 */ 7437 required_kernelcore -= min(required_kernelcore, 7438 size_pages); 7439 kernelcore_remaining -= size_pages; 7440 if (!kernelcore_remaining) 7441 break; 7442 } 7443 } 7444 7445 /* 7446 * If there is still required_kernelcore, we do another pass with one 7447 * less node in the count. This will push zone_movable_pfn[nid] further 7448 * along on the nodes that still have memory until kernelcore is 7449 * satisfied 7450 */ 7451 usable_nodes--; 7452 if (usable_nodes && required_kernelcore > usable_nodes) 7453 goto restart; 7454 7455 out2: 7456 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7457 for (nid = 0; nid < MAX_NUMNODES; nid++) 7458 zone_movable_pfn[nid] = 7459 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7460 7461 out: 7462 /* restore the node_state */ 7463 node_states[N_MEMORY] = saved_node_state; 7464 } 7465 7466 /* Any regular or high memory on that node ? */ 7467 static void check_for_memory(pg_data_t *pgdat, int nid) 7468 { 7469 enum zone_type zone_type; 7470 7471 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7472 struct zone *zone = &pgdat->node_zones[zone_type]; 7473 if (populated_zone(zone)) { 7474 if (IS_ENABLED(CONFIG_HIGHMEM)) 7475 node_set_state(nid, N_HIGH_MEMORY); 7476 if (zone_type <= ZONE_NORMAL) 7477 node_set_state(nid, N_NORMAL_MEMORY); 7478 break; 7479 } 7480 } 7481 } 7482 7483 /* 7484 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7485 * such cases we allow max_zone_pfn sorted in the descending order 7486 */ 7487 bool __weak arch_has_descending_max_zone_pfns(void) 7488 { 7489 return false; 7490 } 7491 7492 /** 7493 * free_area_init - Initialise all pg_data_t and zone data 7494 * @max_zone_pfn: an array of max PFNs for each zone 7495 * 7496 * This will call free_area_init_node() for each active node in the system. 7497 * Using the page ranges provided by memblock_set_node(), the size of each 7498 * zone in each node and their holes is calculated. If the maximum PFN 7499 * between two adjacent zones match, it is assumed that the zone is empty. 7500 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7501 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7502 * starts where the previous one ended. For example, ZONE_DMA32 starts 7503 * at arch_max_dma_pfn. 7504 */ 7505 void __init free_area_init(unsigned long *max_zone_pfn) 7506 { 7507 unsigned long start_pfn, end_pfn; 7508 int i, nid, zone; 7509 bool descending; 7510 7511 /* Record where the zone boundaries are */ 7512 memset(arch_zone_lowest_possible_pfn, 0, 7513 sizeof(arch_zone_lowest_possible_pfn)); 7514 memset(arch_zone_highest_possible_pfn, 0, 7515 sizeof(arch_zone_highest_possible_pfn)); 7516 7517 start_pfn = find_min_pfn_with_active_regions(); 7518 descending = arch_has_descending_max_zone_pfns(); 7519 7520 for (i = 0; i < MAX_NR_ZONES; i++) { 7521 if (descending) 7522 zone = MAX_NR_ZONES - i - 1; 7523 else 7524 zone = i; 7525 7526 if (zone == ZONE_MOVABLE) 7527 continue; 7528 7529 end_pfn = max(max_zone_pfn[zone], start_pfn); 7530 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7531 arch_zone_highest_possible_pfn[zone] = end_pfn; 7532 7533 start_pfn = end_pfn; 7534 } 7535 7536 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7537 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7538 find_zone_movable_pfns_for_nodes(); 7539 7540 /* Print out the zone ranges */ 7541 pr_info("Zone ranges:\n"); 7542 for (i = 0; i < MAX_NR_ZONES; i++) { 7543 if (i == ZONE_MOVABLE) 7544 continue; 7545 pr_info(" %-8s ", zone_names[i]); 7546 if (arch_zone_lowest_possible_pfn[i] == 7547 arch_zone_highest_possible_pfn[i]) 7548 pr_cont("empty\n"); 7549 else 7550 pr_cont("[mem %#018Lx-%#018Lx]\n", 7551 (u64)arch_zone_lowest_possible_pfn[i] 7552 << PAGE_SHIFT, 7553 ((u64)arch_zone_highest_possible_pfn[i] 7554 << PAGE_SHIFT) - 1); 7555 } 7556 7557 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7558 pr_info("Movable zone start for each node\n"); 7559 for (i = 0; i < MAX_NUMNODES; i++) { 7560 if (zone_movable_pfn[i]) 7561 pr_info(" Node %d: %#018Lx\n", i, 7562 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7563 } 7564 7565 /* 7566 * Print out the early node map, and initialize the 7567 * subsection-map relative to active online memory ranges to 7568 * enable future "sub-section" extensions of the memory map. 7569 */ 7570 pr_info("Early memory node ranges\n"); 7571 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7572 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7573 (u64)start_pfn << PAGE_SHIFT, 7574 ((u64)end_pfn << PAGE_SHIFT) - 1); 7575 subsection_map_init(start_pfn, end_pfn - start_pfn); 7576 } 7577 7578 /* Initialise every node */ 7579 mminit_verify_pageflags_layout(); 7580 setup_nr_node_ids(); 7581 init_unavailable_mem(); 7582 for_each_online_node(nid) { 7583 pg_data_t *pgdat = NODE_DATA(nid); 7584 free_area_init_node(nid); 7585 7586 /* Any memory on that node */ 7587 if (pgdat->node_present_pages) 7588 node_set_state(nid, N_MEMORY); 7589 check_for_memory(pgdat, nid); 7590 } 7591 } 7592 7593 static int __init cmdline_parse_core(char *p, unsigned long *core, 7594 unsigned long *percent) 7595 { 7596 unsigned long long coremem; 7597 char *endptr; 7598 7599 if (!p) 7600 return -EINVAL; 7601 7602 /* Value may be a percentage of total memory, otherwise bytes */ 7603 coremem = simple_strtoull(p, &endptr, 0); 7604 if (*endptr == '%') { 7605 /* Paranoid check for percent values greater than 100 */ 7606 WARN_ON(coremem > 100); 7607 7608 *percent = coremem; 7609 } else { 7610 coremem = memparse(p, &p); 7611 /* Paranoid check that UL is enough for the coremem value */ 7612 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7613 7614 *core = coremem >> PAGE_SHIFT; 7615 *percent = 0UL; 7616 } 7617 return 0; 7618 } 7619 7620 /* 7621 * kernelcore=size sets the amount of memory for use for allocations that 7622 * cannot be reclaimed or migrated. 7623 */ 7624 static int __init cmdline_parse_kernelcore(char *p) 7625 { 7626 /* parse kernelcore=mirror */ 7627 if (parse_option_str(p, "mirror")) { 7628 mirrored_kernelcore = true; 7629 return 0; 7630 } 7631 7632 return cmdline_parse_core(p, &required_kernelcore, 7633 &required_kernelcore_percent); 7634 } 7635 7636 /* 7637 * movablecore=size sets the amount of memory for use for allocations that 7638 * can be reclaimed or migrated. 7639 */ 7640 static int __init cmdline_parse_movablecore(char *p) 7641 { 7642 return cmdline_parse_core(p, &required_movablecore, 7643 &required_movablecore_percent); 7644 } 7645 7646 early_param("kernelcore", cmdline_parse_kernelcore); 7647 early_param("movablecore", cmdline_parse_movablecore); 7648 7649 void adjust_managed_page_count(struct page *page, long count) 7650 { 7651 atomic_long_add(count, &page_zone(page)->managed_pages); 7652 totalram_pages_add(count); 7653 #ifdef CONFIG_HIGHMEM 7654 if (PageHighMem(page)) 7655 totalhigh_pages_add(count); 7656 #endif 7657 } 7658 EXPORT_SYMBOL(adjust_managed_page_count); 7659 7660 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7661 { 7662 void *pos; 7663 unsigned long pages = 0; 7664 7665 start = (void *)PAGE_ALIGN((unsigned long)start); 7666 end = (void *)((unsigned long)end & PAGE_MASK); 7667 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7668 struct page *page = virt_to_page(pos); 7669 void *direct_map_addr; 7670 7671 /* 7672 * 'direct_map_addr' might be different from 'pos' 7673 * because some architectures' virt_to_page() 7674 * work with aliases. Getting the direct map 7675 * address ensures that we get a _writeable_ 7676 * alias for the memset(). 7677 */ 7678 direct_map_addr = page_address(page); 7679 /* 7680 * Perform a kasan-unchecked memset() since this memory 7681 * has not been initialized. 7682 */ 7683 direct_map_addr = kasan_reset_tag(direct_map_addr); 7684 if ((unsigned int)poison <= 0xFF) 7685 memset(direct_map_addr, poison, PAGE_SIZE); 7686 7687 free_reserved_page(page); 7688 } 7689 7690 if (pages && s) 7691 pr_info("Freeing %s memory: %ldK\n", 7692 s, pages << (PAGE_SHIFT - 10)); 7693 7694 return pages; 7695 } 7696 7697 #ifdef CONFIG_HIGHMEM 7698 void free_highmem_page(struct page *page) 7699 { 7700 __free_reserved_page(page); 7701 totalram_pages_inc(); 7702 atomic_long_inc(&page_zone(page)->managed_pages); 7703 totalhigh_pages_inc(); 7704 } 7705 #endif 7706 7707 7708 void __init mem_init_print_info(const char *str) 7709 { 7710 unsigned long physpages, codesize, datasize, rosize, bss_size; 7711 unsigned long init_code_size, init_data_size; 7712 7713 physpages = get_num_physpages(); 7714 codesize = _etext - _stext; 7715 datasize = _edata - _sdata; 7716 rosize = __end_rodata - __start_rodata; 7717 bss_size = __bss_stop - __bss_start; 7718 init_data_size = __init_end - __init_begin; 7719 init_code_size = _einittext - _sinittext; 7720 7721 /* 7722 * Detect special cases and adjust section sizes accordingly: 7723 * 1) .init.* may be embedded into .data sections 7724 * 2) .init.text.* may be out of [__init_begin, __init_end], 7725 * please refer to arch/tile/kernel/vmlinux.lds.S. 7726 * 3) .rodata.* may be embedded into .text or .data sections. 7727 */ 7728 #define adj_init_size(start, end, size, pos, adj) \ 7729 do { \ 7730 if (start <= pos && pos < end && size > adj) \ 7731 size -= adj; \ 7732 } while (0) 7733 7734 adj_init_size(__init_begin, __init_end, init_data_size, 7735 _sinittext, init_code_size); 7736 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7737 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7738 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7739 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7740 7741 #undef adj_init_size 7742 7743 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7744 #ifdef CONFIG_HIGHMEM 7745 ", %luK highmem" 7746 #endif 7747 "%s%s)\n", 7748 nr_free_pages() << (PAGE_SHIFT - 10), 7749 physpages << (PAGE_SHIFT - 10), 7750 codesize >> 10, datasize >> 10, rosize >> 10, 7751 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7752 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7753 totalcma_pages << (PAGE_SHIFT - 10), 7754 #ifdef CONFIG_HIGHMEM 7755 totalhigh_pages() << (PAGE_SHIFT - 10), 7756 #endif 7757 str ? ", " : "", str ? str : ""); 7758 } 7759 7760 /** 7761 * set_dma_reserve - set the specified number of pages reserved in the first zone 7762 * @new_dma_reserve: The number of pages to mark reserved 7763 * 7764 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7765 * In the DMA zone, a significant percentage may be consumed by kernel image 7766 * and other unfreeable allocations which can skew the watermarks badly. This 7767 * function may optionally be used to account for unfreeable pages in the 7768 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7769 * smaller per-cpu batchsize. 7770 */ 7771 void __init set_dma_reserve(unsigned long new_dma_reserve) 7772 { 7773 dma_reserve = new_dma_reserve; 7774 } 7775 7776 static int page_alloc_cpu_dead(unsigned int cpu) 7777 { 7778 7779 lru_add_drain_cpu(cpu); 7780 drain_pages(cpu); 7781 7782 /* 7783 * Spill the event counters of the dead processor 7784 * into the current processors event counters. 7785 * This artificially elevates the count of the current 7786 * processor. 7787 */ 7788 vm_events_fold_cpu(cpu); 7789 7790 /* 7791 * Zero the differential counters of the dead processor 7792 * so that the vm statistics are consistent. 7793 * 7794 * This is only okay since the processor is dead and cannot 7795 * race with what we are doing. 7796 */ 7797 cpu_vm_stats_fold(cpu); 7798 return 0; 7799 } 7800 7801 #ifdef CONFIG_NUMA 7802 int hashdist = HASHDIST_DEFAULT; 7803 7804 static int __init set_hashdist(char *str) 7805 { 7806 if (!str) 7807 return 0; 7808 hashdist = simple_strtoul(str, &str, 0); 7809 return 1; 7810 } 7811 __setup("hashdist=", set_hashdist); 7812 #endif 7813 7814 void __init page_alloc_init(void) 7815 { 7816 int ret; 7817 7818 #ifdef CONFIG_NUMA 7819 if (num_node_state(N_MEMORY) == 1) 7820 hashdist = 0; 7821 #endif 7822 7823 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7824 "mm/page_alloc:dead", NULL, 7825 page_alloc_cpu_dead); 7826 WARN_ON(ret < 0); 7827 } 7828 7829 /* 7830 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7831 * or min_free_kbytes changes. 7832 */ 7833 static void calculate_totalreserve_pages(void) 7834 { 7835 struct pglist_data *pgdat; 7836 unsigned long reserve_pages = 0; 7837 enum zone_type i, j; 7838 7839 for_each_online_pgdat(pgdat) { 7840 7841 pgdat->totalreserve_pages = 0; 7842 7843 for (i = 0; i < MAX_NR_ZONES; i++) { 7844 struct zone *zone = pgdat->node_zones + i; 7845 long max = 0; 7846 unsigned long managed_pages = zone_managed_pages(zone); 7847 7848 /* Find valid and maximum lowmem_reserve in the zone */ 7849 for (j = i; j < MAX_NR_ZONES; j++) { 7850 if (zone->lowmem_reserve[j] > max) 7851 max = zone->lowmem_reserve[j]; 7852 } 7853 7854 /* we treat the high watermark as reserved pages. */ 7855 max += high_wmark_pages(zone); 7856 7857 if (max > managed_pages) 7858 max = managed_pages; 7859 7860 pgdat->totalreserve_pages += max; 7861 7862 reserve_pages += max; 7863 } 7864 } 7865 totalreserve_pages = reserve_pages; 7866 } 7867 7868 /* 7869 * setup_per_zone_lowmem_reserve - called whenever 7870 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7871 * has a correct pages reserved value, so an adequate number of 7872 * pages are left in the zone after a successful __alloc_pages(). 7873 */ 7874 static void setup_per_zone_lowmem_reserve(void) 7875 { 7876 struct pglist_data *pgdat; 7877 enum zone_type i, j; 7878 7879 for_each_online_pgdat(pgdat) { 7880 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 7881 struct zone *zone = &pgdat->node_zones[i]; 7882 int ratio = sysctl_lowmem_reserve_ratio[i]; 7883 bool clear = !ratio || !zone_managed_pages(zone); 7884 unsigned long managed_pages = 0; 7885 7886 for (j = i + 1; j < MAX_NR_ZONES; j++) { 7887 if (clear) { 7888 zone->lowmem_reserve[j] = 0; 7889 } else { 7890 struct zone *upper_zone = &pgdat->node_zones[j]; 7891 7892 managed_pages += zone_managed_pages(upper_zone); 7893 zone->lowmem_reserve[j] = managed_pages / ratio; 7894 } 7895 } 7896 } 7897 } 7898 7899 /* update totalreserve_pages */ 7900 calculate_totalreserve_pages(); 7901 } 7902 7903 static void __setup_per_zone_wmarks(void) 7904 { 7905 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7906 unsigned long lowmem_pages = 0; 7907 struct zone *zone; 7908 unsigned long flags; 7909 7910 /* Calculate total number of !ZONE_HIGHMEM pages */ 7911 for_each_zone(zone) { 7912 if (!is_highmem(zone)) 7913 lowmem_pages += zone_managed_pages(zone); 7914 } 7915 7916 for_each_zone(zone) { 7917 u64 tmp; 7918 7919 spin_lock_irqsave(&zone->lock, flags); 7920 tmp = (u64)pages_min * zone_managed_pages(zone); 7921 do_div(tmp, lowmem_pages); 7922 if (is_highmem(zone)) { 7923 /* 7924 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7925 * need highmem pages, so cap pages_min to a small 7926 * value here. 7927 * 7928 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7929 * deltas control async page reclaim, and so should 7930 * not be capped for highmem. 7931 */ 7932 unsigned long min_pages; 7933 7934 min_pages = zone_managed_pages(zone) / 1024; 7935 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7936 zone->_watermark[WMARK_MIN] = min_pages; 7937 } else { 7938 /* 7939 * If it's a lowmem zone, reserve a number of pages 7940 * proportionate to the zone's size. 7941 */ 7942 zone->_watermark[WMARK_MIN] = tmp; 7943 } 7944 7945 /* 7946 * Set the kswapd watermarks distance according to the 7947 * scale factor in proportion to available memory, but 7948 * ensure a minimum size on small systems. 7949 */ 7950 tmp = max_t(u64, tmp >> 2, 7951 mult_frac(zone_managed_pages(zone), 7952 watermark_scale_factor, 10000)); 7953 7954 zone->watermark_boost = 0; 7955 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7956 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7957 7958 spin_unlock_irqrestore(&zone->lock, flags); 7959 } 7960 7961 /* update totalreserve_pages */ 7962 calculate_totalreserve_pages(); 7963 } 7964 7965 /** 7966 * setup_per_zone_wmarks - called when min_free_kbytes changes 7967 * or when memory is hot-{added|removed} 7968 * 7969 * Ensures that the watermark[min,low,high] values for each zone are set 7970 * correctly with respect to min_free_kbytes. 7971 */ 7972 void setup_per_zone_wmarks(void) 7973 { 7974 static DEFINE_SPINLOCK(lock); 7975 7976 spin_lock(&lock); 7977 __setup_per_zone_wmarks(); 7978 spin_unlock(&lock); 7979 } 7980 7981 /* 7982 * Initialise min_free_kbytes. 7983 * 7984 * For small machines we want it small (128k min). For large machines 7985 * we want it large (256MB max). But it is not linear, because network 7986 * bandwidth does not increase linearly with machine size. We use 7987 * 7988 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7989 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7990 * 7991 * which yields 7992 * 7993 * 16MB: 512k 7994 * 32MB: 724k 7995 * 64MB: 1024k 7996 * 128MB: 1448k 7997 * 256MB: 2048k 7998 * 512MB: 2896k 7999 * 1024MB: 4096k 8000 * 2048MB: 5792k 8001 * 4096MB: 8192k 8002 * 8192MB: 11584k 8003 * 16384MB: 16384k 8004 */ 8005 int __meminit init_per_zone_wmark_min(void) 8006 { 8007 unsigned long lowmem_kbytes; 8008 int new_min_free_kbytes; 8009 8010 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8011 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8012 8013 if (new_min_free_kbytes > user_min_free_kbytes) { 8014 min_free_kbytes = new_min_free_kbytes; 8015 if (min_free_kbytes < 128) 8016 min_free_kbytes = 128; 8017 if (min_free_kbytes > 262144) 8018 min_free_kbytes = 262144; 8019 } else { 8020 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8021 new_min_free_kbytes, user_min_free_kbytes); 8022 } 8023 setup_per_zone_wmarks(); 8024 refresh_zone_stat_thresholds(); 8025 setup_per_zone_lowmem_reserve(); 8026 8027 #ifdef CONFIG_NUMA 8028 setup_min_unmapped_ratio(); 8029 setup_min_slab_ratio(); 8030 #endif 8031 8032 khugepaged_min_free_kbytes_update(); 8033 8034 return 0; 8035 } 8036 postcore_initcall(init_per_zone_wmark_min) 8037 8038 /* 8039 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8040 * that we can call two helper functions whenever min_free_kbytes 8041 * changes. 8042 */ 8043 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8044 void *buffer, size_t *length, loff_t *ppos) 8045 { 8046 int rc; 8047 8048 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8049 if (rc) 8050 return rc; 8051 8052 if (write) { 8053 user_min_free_kbytes = min_free_kbytes; 8054 setup_per_zone_wmarks(); 8055 } 8056 return 0; 8057 } 8058 8059 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8060 void *buffer, size_t *length, loff_t *ppos) 8061 { 8062 int rc; 8063 8064 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8065 if (rc) 8066 return rc; 8067 8068 if (write) 8069 setup_per_zone_wmarks(); 8070 8071 return 0; 8072 } 8073 8074 #ifdef CONFIG_NUMA 8075 static void setup_min_unmapped_ratio(void) 8076 { 8077 pg_data_t *pgdat; 8078 struct zone *zone; 8079 8080 for_each_online_pgdat(pgdat) 8081 pgdat->min_unmapped_pages = 0; 8082 8083 for_each_zone(zone) 8084 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8085 sysctl_min_unmapped_ratio) / 100; 8086 } 8087 8088 8089 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8090 void *buffer, size_t *length, loff_t *ppos) 8091 { 8092 int rc; 8093 8094 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8095 if (rc) 8096 return rc; 8097 8098 setup_min_unmapped_ratio(); 8099 8100 return 0; 8101 } 8102 8103 static void setup_min_slab_ratio(void) 8104 { 8105 pg_data_t *pgdat; 8106 struct zone *zone; 8107 8108 for_each_online_pgdat(pgdat) 8109 pgdat->min_slab_pages = 0; 8110 8111 for_each_zone(zone) 8112 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8113 sysctl_min_slab_ratio) / 100; 8114 } 8115 8116 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8117 void *buffer, size_t *length, loff_t *ppos) 8118 { 8119 int rc; 8120 8121 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8122 if (rc) 8123 return rc; 8124 8125 setup_min_slab_ratio(); 8126 8127 return 0; 8128 } 8129 #endif 8130 8131 /* 8132 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8133 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8134 * whenever sysctl_lowmem_reserve_ratio changes. 8135 * 8136 * The reserve ratio obviously has absolutely no relation with the 8137 * minimum watermarks. The lowmem reserve ratio can only make sense 8138 * if in function of the boot time zone sizes. 8139 */ 8140 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8141 void *buffer, size_t *length, loff_t *ppos) 8142 { 8143 int i; 8144 8145 proc_dointvec_minmax(table, write, buffer, length, ppos); 8146 8147 for (i = 0; i < MAX_NR_ZONES; i++) { 8148 if (sysctl_lowmem_reserve_ratio[i] < 1) 8149 sysctl_lowmem_reserve_ratio[i] = 0; 8150 } 8151 8152 setup_per_zone_lowmem_reserve(); 8153 return 0; 8154 } 8155 8156 /* 8157 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8158 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8159 * pagelist can have before it gets flushed back to buddy allocator. 8160 */ 8161 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8162 void *buffer, size_t *length, loff_t *ppos) 8163 { 8164 struct zone *zone; 8165 int old_percpu_pagelist_fraction; 8166 int ret; 8167 8168 mutex_lock(&pcp_batch_high_lock); 8169 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8170 8171 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8172 if (!write || ret < 0) 8173 goto out; 8174 8175 /* Sanity checking to avoid pcp imbalance */ 8176 if (percpu_pagelist_fraction && 8177 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8178 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8179 ret = -EINVAL; 8180 goto out; 8181 } 8182 8183 /* No change? */ 8184 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8185 goto out; 8186 8187 for_each_populated_zone(zone) 8188 zone_set_pageset_high_and_batch(zone); 8189 out: 8190 mutex_unlock(&pcp_batch_high_lock); 8191 return ret; 8192 } 8193 8194 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8195 /* 8196 * Returns the number of pages that arch has reserved but 8197 * is not known to alloc_large_system_hash(). 8198 */ 8199 static unsigned long __init arch_reserved_kernel_pages(void) 8200 { 8201 return 0; 8202 } 8203 #endif 8204 8205 /* 8206 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8207 * machines. As memory size is increased the scale is also increased but at 8208 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8209 * quadruples the scale is increased by one, which means the size of hash table 8210 * only doubles, instead of quadrupling as well. 8211 * Because 32-bit systems cannot have large physical memory, where this scaling 8212 * makes sense, it is disabled on such platforms. 8213 */ 8214 #if __BITS_PER_LONG > 32 8215 #define ADAPT_SCALE_BASE (64ul << 30) 8216 #define ADAPT_SCALE_SHIFT 2 8217 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8218 #endif 8219 8220 /* 8221 * allocate a large system hash table from bootmem 8222 * - it is assumed that the hash table must contain an exact power-of-2 8223 * quantity of entries 8224 * - limit is the number of hash buckets, not the total allocation size 8225 */ 8226 void *__init alloc_large_system_hash(const char *tablename, 8227 unsigned long bucketsize, 8228 unsigned long numentries, 8229 int scale, 8230 int flags, 8231 unsigned int *_hash_shift, 8232 unsigned int *_hash_mask, 8233 unsigned long low_limit, 8234 unsigned long high_limit) 8235 { 8236 unsigned long long max = high_limit; 8237 unsigned long log2qty, size; 8238 void *table = NULL; 8239 gfp_t gfp_flags; 8240 bool virt; 8241 8242 /* allow the kernel cmdline to have a say */ 8243 if (!numentries) { 8244 /* round applicable memory size up to nearest megabyte */ 8245 numentries = nr_kernel_pages; 8246 numentries -= arch_reserved_kernel_pages(); 8247 8248 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8249 if (PAGE_SHIFT < 20) 8250 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8251 8252 #if __BITS_PER_LONG > 32 8253 if (!high_limit) { 8254 unsigned long adapt; 8255 8256 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8257 adapt <<= ADAPT_SCALE_SHIFT) 8258 scale++; 8259 } 8260 #endif 8261 8262 /* limit to 1 bucket per 2^scale bytes of low memory */ 8263 if (scale > PAGE_SHIFT) 8264 numentries >>= (scale - PAGE_SHIFT); 8265 else 8266 numentries <<= (PAGE_SHIFT - scale); 8267 8268 /* Make sure we've got at least a 0-order allocation.. */ 8269 if (unlikely(flags & HASH_SMALL)) { 8270 /* Makes no sense without HASH_EARLY */ 8271 WARN_ON(!(flags & HASH_EARLY)); 8272 if (!(numentries >> *_hash_shift)) { 8273 numentries = 1UL << *_hash_shift; 8274 BUG_ON(!numentries); 8275 } 8276 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8277 numentries = PAGE_SIZE / bucketsize; 8278 } 8279 numentries = roundup_pow_of_two(numentries); 8280 8281 /* limit allocation size to 1/16 total memory by default */ 8282 if (max == 0) { 8283 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8284 do_div(max, bucketsize); 8285 } 8286 max = min(max, 0x80000000ULL); 8287 8288 if (numentries < low_limit) 8289 numentries = low_limit; 8290 if (numentries > max) 8291 numentries = max; 8292 8293 log2qty = ilog2(numentries); 8294 8295 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8296 do { 8297 virt = false; 8298 size = bucketsize << log2qty; 8299 if (flags & HASH_EARLY) { 8300 if (flags & HASH_ZERO) 8301 table = memblock_alloc(size, SMP_CACHE_BYTES); 8302 else 8303 table = memblock_alloc_raw(size, 8304 SMP_CACHE_BYTES); 8305 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8306 table = __vmalloc(size, gfp_flags); 8307 virt = true; 8308 } else { 8309 /* 8310 * If bucketsize is not a power-of-two, we may free 8311 * some pages at the end of hash table which 8312 * alloc_pages_exact() automatically does 8313 */ 8314 table = alloc_pages_exact(size, gfp_flags); 8315 kmemleak_alloc(table, size, 1, gfp_flags); 8316 } 8317 } while (!table && size > PAGE_SIZE && --log2qty); 8318 8319 if (!table) 8320 panic("Failed to allocate %s hash table\n", tablename); 8321 8322 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8323 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8324 virt ? "vmalloc" : "linear"); 8325 8326 if (_hash_shift) 8327 *_hash_shift = log2qty; 8328 if (_hash_mask) 8329 *_hash_mask = (1 << log2qty) - 1; 8330 8331 return table; 8332 } 8333 8334 /* 8335 * This function checks whether pageblock includes unmovable pages or not. 8336 * 8337 * PageLRU check without isolation or lru_lock could race so that 8338 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8339 * check without lock_page also may miss some movable non-lru pages at 8340 * race condition. So you can't expect this function should be exact. 8341 * 8342 * Returns a page without holding a reference. If the caller wants to 8343 * dereference that page (e.g., dumping), it has to make sure that it 8344 * cannot get removed (e.g., via memory unplug) concurrently. 8345 * 8346 */ 8347 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8348 int migratetype, int flags) 8349 { 8350 unsigned long iter = 0; 8351 unsigned long pfn = page_to_pfn(page); 8352 unsigned long offset = pfn % pageblock_nr_pages; 8353 8354 if (is_migrate_cma_page(page)) { 8355 /* 8356 * CMA allocations (alloc_contig_range) really need to mark 8357 * isolate CMA pageblocks even when they are not movable in fact 8358 * so consider them movable here. 8359 */ 8360 if (is_migrate_cma(migratetype)) 8361 return NULL; 8362 8363 return page; 8364 } 8365 8366 for (; iter < pageblock_nr_pages - offset; iter++) { 8367 if (!pfn_valid_within(pfn + iter)) 8368 continue; 8369 8370 page = pfn_to_page(pfn + iter); 8371 8372 /* 8373 * Both, bootmem allocations and memory holes are marked 8374 * PG_reserved and are unmovable. We can even have unmovable 8375 * allocations inside ZONE_MOVABLE, for example when 8376 * specifying "movablecore". 8377 */ 8378 if (PageReserved(page)) 8379 return page; 8380 8381 /* 8382 * If the zone is movable and we have ruled out all reserved 8383 * pages then it should be reasonably safe to assume the rest 8384 * is movable. 8385 */ 8386 if (zone_idx(zone) == ZONE_MOVABLE) 8387 continue; 8388 8389 /* 8390 * Hugepages are not in LRU lists, but they're movable. 8391 * THPs are on the LRU, but need to be counted as #small pages. 8392 * We need not scan over tail pages because we don't 8393 * handle each tail page individually in migration. 8394 */ 8395 if (PageHuge(page) || PageTransCompound(page)) { 8396 struct page *head = compound_head(page); 8397 unsigned int skip_pages; 8398 8399 if (PageHuge(page)) { 8400 if (!hugepage_migration_supported(page_hstate(head))) 8401 return page; 8402 } else if (!PageLRU(head) && !__PageMovable(head)) { 8403 return page; 8404 } 8405 8406 skip_pages = compound_nr(head) - (page - head); 8407 iter += skip_pages - 1; 8408 continue; 8409 } 8410 8411 /* 8412 * We can't use page_count without pin a page 8413 * because another CPU can free compound page. 8414 * This check already skips compound tails of THP 8415 * because their page->_refcount is zero at all time. 8416 */ 8417 if (!page_ref_count(page)) { 8418 if (PageBuddy(page)) 8419 iter += (1 << buddy_order(page)) - 1; 8420 continue; 8421 } 8422 8423 /* 8424 * The HWPoisoned page may be not in buddy system, and 8425 * page_count() is not 0. 8426 */ 8427 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8428 continue; 8429 8430 /* 8431 * We treat all PageOffline() pages as movable when offlining 8432 * to give drivers a chance to decrement their reference count 8433 * in MEM_GOING_OFFLINE in order to indicate that these pages 8434 * can be offlined as there are no direct references anymore. 8435 * For actually unmovable PageOffline() where the driver does 8436 * not support this, we will fail later when trying to actually 8437 * move these pages that still have a reference count > 0. 8438 * (false negatives in this function only) 8439 */ 8440 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8441 continue; 8442 8443 if (__PageMovable(page) || PageLRU(page)) 8444 continue; 8445 8446 /* 8447 * If there are RECLAIMABLE pages, we need to check 8448 * it. But now, memory offline itself doesn't call 8449 * shrink_node_slabs() and it still to be fixed. 8450 */ 8451 return page; 8452 } 8453 return NULL; 8454 } 8455 8456 #ifdef CONFIG_CONTIG_ALLOC 8457 static unsigned long pfn_max_align_down(unsigned long pfn) 8458 { 8459 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8460 pageblock_nr_pages) - 1); 8461 } 8462 8463 static unsigned long pfn_max_align_up(unsigned long pfn) 8464 { 8465 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8466 pageblock_nr_pages)); 8467 } 8468 8469 /* [start, end) must belong to a single zone. */ 8470 static int __alloc_contig_migrate_range(struct compact_control *cc, 8471 unsigned long start, unsigned long end) 8472 { 8473 /* This function is based on compact_zone() from compaction.c. */ 8474 unsigned int nr_reclaimed; 8475 unsigned long pfn = start; 8476 unsigned int tries = 0; 8477 int ret = 0; 8478 struct migration_target_control mtc = { 8479 .nid = zone_to_nid(cc->zone), 8480 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8481 }; 8482 8483 migrate_prep(); 8484 8485 while (pfn < end || !list_empty(&cc->migratepages)) { 8486 if (fatal_signal_pending(current)) { 8487 ret = -EINTR; 8488 break; 8489 } 8490 8491 if (list_empty(&cc->migratepages)) { 8492 cc->nr_migratepages = 0; 8493 pfn = isolate_migratepages_range(cc, pfn, end); 8494 if (!pfn) { 8495 ret = -EINTR; 8496 break; 8497 } 8498 tries = 0; 8499 } else if (++tries == 5) { 8500 ret = ret < 0 ? ret : -EBUSY; 8501 break; 8502 } 8503 8504 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8505 &cc->migratepages); 8506 cc->nr_migratepages -= nr_reclaimed; 8507 8508 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8509 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8510 } 8511 if (ret < 0) { 8512 putback_movable_pages(&cc->migratepages); 8513 return ret; 8514 } 8515 return 0; 8516 } 8517 8518 /** 8519 * alloc_contig_range() -- tries to allocate given range of pages 8520 * @start: start PFN to allocate 8521 * @end: one-past-the-last PFN to allocate 8522 * @migratetype: migratetype of the underlaying pageblocks (either 8523 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8524 * in range must have the same migratetype and it must 8525 * be either of the two. 8526 * @gfp_mask: GFP mask to use during compaction 8527 * 8528 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8529 * aligned. The PFN range must belong to a single zone. 8530 * 8531 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8532 * pageblocks in the range. Once isolated, the pageblocks should not 8533 * be modified by others. 8534 * 8535 * Return: zero on success or negative error code. On success all 8536 * pages which PFN is in [start, end) are allocated for the caller and 8537 * need to be freed with free_contig_range(). 8538 */ 8539 int alloc_contig_range(unsigned long start, unsigned long end, 8540 unsigned migratetype, gfp_t gfp_mask) 8541 { 8542 unsigned long outer_start, outer_end; 8543 unsigned int order; 8544 int ret = 0; 8545 8546 struct compact_control cc = { 8547 .nr_migratepages = 0, 8548 .order = -1, 8549 .zone = page_zone(pfn_to_page(start)), 8550 .mode = MIGRATE_SYNC, 8551 .ignore_skip_hint = true, 8552 .no_set_skip_hint = true, 8553 .gfp_mask = current_gfp_context(gfp_mask), 8554 .alloc_contig = true, 8555 }; 8556 INIT_LIST_HEAD(&cc.migratepages); 8557 8558 /* 8559 * What we do here is we mark all pageblocks in range as 8560 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8561 * have different sizes, and due to the way page allocator 8562 * work, we align the range to biggest of the two pages so 8563 * that page allocator won't try to merge buddies from 8564 * different pageblocks and change MIGRATE_ISOLATE to some 8565 * other migration type. 8566 * 8567 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8568 * migrate the pages from an unaligned range (ie. pages that 8569 * we are interested in). This will put all the pages in 8570 * range back to page allocator as MIGRATE_ISOLATE. 8571 * 8572 * When this is done, we take the pages in range from page 8573 * allocator removing them from the buddy system. This way 8574 * page allocator will never consider using them. 8575 * 8576 * This lets us mark the pageblocks back as 8577 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8578 * aligned range but not in the unaligned, original range are 8579 * put back to page allocator so that buddy can use them. 8580 */ 8581 8582 ret = start_isolate_page_range(pfn_max_align_down(start), 8583 pfn_max_align_up(end), migratetype, 0); 8584 if (ret) 8585 return ret; 8586 8587 drain_all_pages(cc.zone); 8588 8589 /* 8590 * In case of -EBUSY, we'd like to know which page causes problem. 8591 * So, just fall through. test_pages_isolated() has a tracepoint 8592 * which will report the busy page. 8593 * 8594 * It is possible that busy pages could become available before 8595 * the call to test_pages_isolated, and the range will actually be 8596 * allocated. So, if we fall through be sure to clear ret so that 8597 * -EBUSY is not accidentally used or returned to caller. 8598 */ 8599 ret = __alloc_contig_migrate_range(&cc, start, end); 8600 if (ret && ret != -EBUSY) 8601 goto done; 8602 ret =0; 8603 8604 /* 8605 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8606 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8607 * more, all pages in [start, end) are free in page allocator. 8608 * What we are going to do is to allocate all pages from 8609 * [start, end) (that is remove them from page allocator). 8610 * 8611 * The only problem is that pages at the beginning and at the 8612 * end of interesting range may be not aligned with pages that 8613 * page allocator holds, ie. they can be part of higher order 8614 * pages. Because of this, we reserve the bigger range and 8615 * once this is done free the pages we are not interested in. 8616 * 8617 * We don't have to hold zone->lock here because the pages are 8618 * isolated thus they won't get removed from buddy. 8619 */ 8620 8621 lru_add_drain_all(); 8622 8623 order = 0; 8624 outer_start = start; 8625 while (!PageBuddy(pfn_to_page(outer_start))) { 8626 if (++order >= MAX_ORDER) { 8627 outer_start = start; 8628 break; 8629 } 8630 outer_start &= ~0UL << order; 8631 } 8632 8633 if (outer_start != start) { 8634 order = buddy_order(pfn_to_page(outer_start)); 8635 8636 /* 8637 * outer_start page could be small order buddy page and 8638 * it doesn't include start page. Adjust outer_start 8639 * in this case to report failed page properly 8640 * on tracepoint in test_pages_isolated() 8641 */ 8642 if (outer_start + (1UL << order) <= start) 8643 outer_start = start; 8644 } 8645 8646 /* Make sure the range is really isolated. */ 8647 if (test_pages_isolated(outer_start, end, 0)) { 8648 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8649 __func__, outer_start, end); 8650 ret = -EBUSY; 8651 goto done; 8652 } 8653 8654 /* Grab isolated pages from freelists. */ 8655 outer_end = isolate_freepages_range(&cc, outer_start, end); 8656 if (!outer_end) { 8657 ret = -EBUSY; 8658 goto done; 8659 } 8660 8661 /* Free head and tail (if any) */ 8662 if (start != outer_start) 8663 free_contig_range(outer_start, start - outer_start); 8664 if (end != outer_end) 8665 free_contig_range(end, outer_end - end); 8666 8667 done: 8668 undo_isolate_page_range(pfn_max_align_down(start), 8669 pfn_max_align_up(end), migratetype); 8670 return ret; 8671 } 8672 EXPORT_SYMBOL(alloc_contig_range); 8673 8674 static int __alloc_contig_pages(unsigned long start_pfn, 8675 unsigned long nr_pages, gfp_t gfp_mask) 8676 { 8677 unsigned long end_pfn = start_pfn + nr_pages; 8678 8679 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8680 gfp_mask); 8681 } 8682 8683 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8684 unsigned long nr_pages) 8685 { 8686 unsigned long i, end_pfn = start_pfn + nr_pages; 8687 struct page *page; 8688 8689 for (i = start_pfn; i < end_pfn; i++) { 8690 page = pfn_to_online_page(i); 8691 if (!page) 8692 return false; 8693 8694 if (page_zone(page) != z) 8695 return false; 8696 8697 if (PageReserved(page)) 8698 return false; 8699 8700 if (page_count(page) > 0) 8701 return false; 8702 8703 if (PageHuge(page)) 8704 return false; 8705 } 8706 return true; 8707 } 8708 8709 static bool zone_spans_last_pfn(const struct zone *zone, 8710 unsigned long start_pfn, unsigned long nr_pages) 8711 { 8712 unsigned long last_pfn = start_pfn + nr_pages - 1; 8713 8714 return zone_spans_pfn(zone, last_pfn); 8715 } 8716 8717 /** 8718 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8719 * @nr_pages: Number of contiguous pages to allocate 8720 * @gfp_mask: GFP mask to limit search and used during compaction 8721 * @nid: Target node 8722 * @nodemask: Mask for other possible nodes 8723 * 8724 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8725 * on an applicable zonelist to find a contiguous pfn range which can then be 8726 * tried for allocation with alloc_contig_range(). This routine is intended 8727 * for allocation requests which can not be fulfilled with the buddy allocator. 8728 * 8729 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8730 * power of two then the alignment is guaranteed to be to the given nr_pages 8731 * (e.g. 1GB request would be aligned to 1GB). 8732 * 8733 * Allocated pages can be freed with free_contig_range() or by manually calling 8734 * __free_page() on each allocated page. 8735 * 8736 * Return: pointer to contiguous pages on success, or NULL if not successful. 8737 */ 8738 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8739 int nid, nodemask_t *nodemask) 8740 { 8741 unsigned long ret, pfn, flags; 8742 struct zonelist *zonelist; 8743 struct zone *zone; 8744 struct zoneref *z; 8745 8746 zonelist = node_zonelist(nid, gfp_mask); 8747 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8748 gfp_zone(gfp_mask), nodemask) { 8749 spin_lock_irqsave(&zone->lock, flags); 8750 8751 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8752 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8753 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8754 /* 8755 * We release the zone lock here because 8756 * alloc_contig_range() will also lock the zone 8757 * at some point. If there's an allocation 8758 * spinning on this lock, it may win the race 8759 * and cause alloc_contig_range() to fail... 8760 */ 8761 spin_unlock_irqrestore(&zone->lock, flags); 8762 ret = __alloc_contig_pages(pfn, nr_pages, 8763 gfp_mask); 8764 if (!ret) 8765 return pfn_to_page(pfn); 8766 spin_lock_irqsave(&zone->lock, flags); 8767 } 8768 pfn += nr_pages; 8769 } 8770 spin_unlock_irqrestore(&zone->lock, flags); 8771 } 8772 return NULL; 8773 } 8774 #endif /* CONFIG_CONTIG_ALLOC */ 8775 8776 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8777 { 8778 unsigned int count = 0; 8779 8780 for (; nr_pages--; pfn++) { 8781 struct page *page = pfn_to_page(pfn); 8782 8783 count += page_count(page) != 1; 8784 __free_page(page); 8785 } 8786 WARN(count != 0, "%d pages are still in use!\n", count); 8787 } 8788 EXPORT_SYMBOL(free_contig_range); 8789 8790 /* 8791 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8792 * page high values need to be recalulated. 8793 */ 8794 void __meminit zone_pcp_update(struct zone *zone) 8795 { 8796 mutex_lock(&pcp_batch_high_lock); 8797 zone_set_pageset_high_and_batch(zone); 8798 mutex_unlock(&pcp_batch_high_lock); 8799 } 8800 8801 /* 8802 * Effectively disable pcplists for the zone by setting the high limit to 0 8803 * and draining all cpus. A concurrent page freeing on another CPU that's about 8804 * to put the page on pcplist will either finish before the drain and the page 8805 * will be drained, or observe the new high limit and skip the pcplist. 8806 * 8807 * Must be paired with a call to zone_pcp_enable(). 8808 */ 8809 void zone_pcp_disable(struct zone *zone) 8810 { 8811 mutex_lock(&pcp_batch_high_lock); 8812 __zone_set_pageset_high_and_batch(zone, 0, 1); 8813 __drain_all_pages(zone, true); 8814 } 8815 8816 void zone_pcp_enable(struct zone *zone) 8817 { 8818 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 8819 mutex_unlock(&pcp_batch_high_lock); 8820 } 8821 8822 void zone_pcp_reset(struct zone *zone) 8823 { 8824 unsigned long flags; 8825 int cpu; 8826 struct per_cpu_pageset *pset; 8827 8828 /* avoid races with drain_pages() */ 8829 local_irq_save(flags); 8830 if (zone->pageset != &boot_pageset) { 8831 for_each_online_cpu(cpu) { 8832 pset = per_cpu_ptr(zone->pageset, cpu); 8833 drain_zonestat(zone, pset); 8834 } 8835 free_percpu(zone->pageset); 8836 zone->pageset = &boot_pageset; 8837 } 8838 local_irq_restore(flags); 8839 } 8840 8841 #ifdef CONFIG_MEMORY_HOTREMOVE 8842 /* 8843 * All pages in the range must be in a single zone, must not contain holes, 8844 * must span full sections, and must be isolated before calling this function. 8845 */ 8846 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8847 { 8848 unsigned long pfn = start_pfn; 8849 struct page *page; 8850 struct zone *zone; 8851 unsigned int order; 8852 unsigned long flags; 8853 8854 offline_mem_sections(pfn, end_pfn); 8855 zone = page_zone(pfn_to_page(pfn)); 8856 spin_lock_irqsave(&zone->lock, flags); 8857 while (pfn < end_pfn) { 8858 page = pfn_to_page(pfn); 8859 /* 8860 * The HWPoisoned page may be not in buddy system, and 8861 * page_count() is not 0. 8862 */ 8863 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8864 pfn++; 8865 continue; 8866 } 8867 /* 8868 * At this point all remaining PageOffline() pages have a 8869 * reference count of 0 and can simply be skipped. 8870 */ 8871 if (PageOffline(page)) { 8872 BUG_ON(page_count(page)); 8873 BUG_ON(PageBuddy(page)); 8874 pfn++; 8875 continue; 8876 } 8877 8878 BUG_ON(page_count(page)); 8879 BUG_ON(!PageBuddy(page)); 8880 order = buddy_order(page); 8881 del_page_from_free_list(page, zone, order); 8882 pfn += (1 << order); 8883 } 8884 spin_unlock_irqrestore(&zone->lock, flags); 8885 } 8886 #endif 8887 8888 bool is_free_buddy_page(struct page *page) 8889 { 8890 struct zone *zone = page_zone(page); 8891 unsigned long pfn = page_to_pfn(page); 8892 unsigned long flags; 8893 unsigned int order; 8894 8895 spin_lock_irqsave(&zone->lock, flags); 8896 for (order = 0; order < MAX_ORDER; order++) { 8897 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8898 8899 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 8900 break; 8901 } 8902 spin_unlock_irqrestore(&zone->lock, flags); 8903 8904 return order < MAX_ORDER; 8905 } 8906 8907 #ifdef CONFIG_MEMORY_FAILURE 8908 /* 8909 * Break down a higher-order page in sub-pages, and keep our target out of 8910 * buddy allocator. 8911 */ 8912 static void break_down_buddy_pages(struct zone *zone, struct page *page, 8913 struct page *target, int low, int high, 8914 int migratetype) 8915 { 8916 unsigned long size = 1 << high; 8917 struct page *current_buddy, *next_page; 8918 8919 while (high > low) { 8920 high--; 8921 size >>= 1; 8922 8923 if (target >= &page[size]) { 8924 next_page = page + size; 8925 current_buddy = page; 8926 } else { 8927 next_page = page; 8928 current_buddy = page + size; 8929 } 8930 8931 if (set_page_guard(zone, current_buddy, high, migratetype)) 8932 continue; 8933 8934 if (current_buddy != target) { 8935 add_to_free_list(current_buddy, zone, high, migratetype); 8936 set_buddy_order(current_buddy, high); 8937 page = next_page; 8938 } 8939 } 8940 } 8941 8942 /* 8943 * Take a page that will be marked as poisoned off the buddy allocator. 8944 */ 8945 bool take_page_off_buddy(struct page *page) 8946 { 8947 struct zone *zone = page_zone(page); 8948 unsigned long pfn = page_to_pfn(page); 8949 unsigned long flags; 8950 unsigned int order; 8951 bool ret = false; 8952 8953 spin_lock_irqsave(&zone->lock, flags); 8954 for (order = 0; order < MAX_ORDER; order++) { 8955 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8956 int page_order = buddy_order(page_head); 8957 8958 if (PageBuddy(page_head) && page_order >= order) { 8959 unsigned long pfn_head = page_to_pfn(page_head); 8960 int migratetype = get_pfnblock_migratetype(page_head, 8961 pfn_head); 8962 8963 del_page_from_free_list(page_head, zone, page_order); 8964 break_down_buddy_pages(zone, page_head, page, 0, 8965 page_order, migratetype); 8966 ret = true; 8967 break; 8968 } 8969 if (page_count(page_head) > 0) 8970 break; 8971 } 8972 spin_unlock_irqrestore(&zone->lock, flags); 8973 return ret; 8974 } 8975 #endif 8976