1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page-debug-flags.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 #define MIN_PERCPU_PAGELIST_FRACTION (8) 73 74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 75 DEFINE_PER_CPU(int, numa_node); 76 EXPORT_PER_CPU_SYMBOL(numa_node); 77 #endif 78 79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 80 /* 81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 84 * defined in <linux/topology.h>. 85 */ 86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 87 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 88 #endif 89 90 /* 91 * Array of node states. 92 */ 93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 94 [N_POSSIBLE] = NODE_MASK_ALL, 95 [N_ONLINE] = { { [0] = 1UL } }, 96 #ifndef CONFIG_NUMA 97 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 98 #ifdef CONFIG_HIGHMEM 99 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 100 #endif 101 #ifdef CONFIG_MOVABLE_NODE 102 [N_MEMORY] = { { [0] = 1UL } }, 103 #endif 104 [N_CPU] = { { [0] = 1UL } }, 105 #endif /* NUMA */ 106 }; 107 EXPORT_SYMBOL(node_states); 108 109 /* Protect totalram_pages and zone->managed_pages */ 110 static DEFINE_SPINLOCK(managed_page_count_lock); 111 112 unsigned long totalram_pages __read_mostly; 113 unsigned long totalreserve_pages __read_mostly; 114 /* 115 * When calculating the number of globally allowed dirty pages, there 116 * is a certain number of per-zone reserves that should not be 117 * considered dirtyable memory. This is the sum of those reserves 118 * over all existing zones that contribute dirtyable memory. 119 */ 120 unsigned long dirty_balance_reserve __read_mostly; 121 122 int percpu_pagelist_fraction; 123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 124 125 #ifdef CONFIG_PM_SLEEP 126 /* 127 * The following functions are used by the suspend/hibernate code to temporarily 128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 129 * while devices are suspended. To avoid races with the suspend/hibernate code, 130 * they should always be called with pm_mutex held (gfp_allowed_mask also should 131 * only be modified with pm_mutex held, unless the suspend/hibernate code is 132 * guaranteed not to run in parallel with that modification). 133 */ 134 135 static gfp_t saved_gfp_mask; 136 137 void pm_restore_gfp_mask(void) 138 { 139 WARN_ON(!mutex_is_locked(&pm_mutex)); 140 if (saved_gfp_mask) { 141 gfp_allowed_mask = saved_gfp_mask; 142 saved_gfp_mask = 0; 143 } 144 } 145 146 void pm_restrict_gfp_mask(void) 147 { 148 WARN_ON(!mutex_is_locked(&pm_mutex)); 149 WARN_ON(saved_gfp_mask); 150 saved_gfp_mask = gfp_allowed_mask; 151 gfp_allowed_mask &= ~GFP_IOFS; 152 } 153 154 bool pm_suspended_storage(void) 155 { 156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 157 return false; 158 return true; 159 } 160 #endif /* CONFIG_PM_SLEEP */ 161 162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 163 int pageblock_order __read_mostly; 164 #endif 165 166 static void __free_pages_ok(struct page *page, unsigned int order); 167 168 /* 169 * results with 256, 32 in the lowmem_reserve sysctl: 170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 171 * 1G machine -> (16M dma, 784M normal, 224M high) 172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 175 * 176 * TBD: should special case ZONE_DMA32 machines here - in those we normally 177 * don't need any ZONE_NORMAL reservation 178 */ 179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 180 #ifdef CONFIG_ZONE_DMA 181 256, 182 #endif 183 #ifdef CONFIG_ZONE_DMA32 184 256, 185 #endif 186 #ifdef CONFIG_HIGHMEM 187 32, 188 #endif 189 32, 190 }; 191 192 EXPORT_SYMBOL(totalram_pages); 193 194 static char * const zone_names[MAX_NR_ZONES] = { 195 #ifdef CONFIG_ZONE_DMA 196 "DMA", 197 #endif 198 #ifdef CONFIG_ZONE_DMA32 199 "DMA32", 200 #endif 201 "Normal", 202 #ifdef CONFIG_HIGHMEM 203 "HighMem", 204 #endif 205 "Movable", 206 }; 207 208 int min_free_kbytes = 1024; 209 int user_min_free_kbytes = -1; 210 211 static unsigned long __meminitdata nr_kernel_pages; 212 static unsigned long __meminitdata nr_all_pages; 213 static unsigned long __meminitdata dma_reserve; 214 215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 218 static unsigned long __initdata required_kernelcore; 219 static unsigned long __initdata required_movablecore; 220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 221 222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 223 int movable_zone; 224 EXPORT_SYMBOL(movable_zone); 225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 226 227 #if MAX_NUMNODES > 1 228 int nr_node_ids __read_mostly = MAX_NUMNODES; 229 int nr_online_nodes __read_mostly = 1; 230 EXPORT_SYMBOL(nr_node_ids); 231 EXPORT_SYMBOL(nr_online_nodes); 232 #endif 233 234 int page_group_by_mobility_disabled __read_mostly; 235 236 void set_pageblock_migratetype(struct page *page, int migratetype) 237 { 238 if (unlikely(page_group_by_mobility_disabled && 239 migratetype < MIGRATE_PCPTYPES)) 240 migratetype = MIGRATE_UNMOVABLE; 241 242 set_pageblock_flags_group(page, (unsigned long)migratetype, 243 PB_migrate, PB_migrate_end); 244 } 245 246 bool oom_killer_disabled __read_mostly; 247 248 #ifdef CONFIG_DEBUG_VM 249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 250 { 251 int ret = 0; 252 unsigned seq; 253 unsigned long pfn = page_to_pfn(page); 254 unsigned long sp, start_pfn; 255 256 do { 257 seq = zone_span_seqbegin(zone); 258 start_pfn = zone->zone_start_pfn; 259 sp = zone->spanned_pages; 260 if (!zone_spans_pfn(zone, pfn)) 261 ret = 1; 262 } while (zone_span_seqretry(zone, seq)); 263 264 if (ret) 265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 266 pfn, zone_to_nid(zone), zone->name, 267 start_pfn, start_pfn + sp); 268 269 return ret; 270 } 271 272 static int page_is_consistent(struct zone *zone, struct page *page) 273 { 274 if (!pfn_valid_within(page_to_pfn(page))) 275 return 0; 276 if (zone != page_zone(page)) 277 return 0; 278 279 return 1; 280 } 281 /* 282 * Temporary debugging check for pages not lying within a given zone. 283 */ 284 static int bad_range(struct zone *zone, struct page *page) 285 { 286 if (page_outside_zone_boundaries(zone, page)) 287 return 1; 288 if (!page_is_consistent(zone, page)) 289 return 1; 290 291 return 0; 292 } 293 #else 294 static inline int bad_range(struct zone *zone, struct page *page) 295 { 296 return 0; 297 } 298 #endif 299 300 static void bad_page(struct page *page, const char *reason, 301 unsigned long bad_flags) 302 { 303 static unsigned long resume; 304 static unsigned long nr_shown; 305 static unsigned long nr_unshown; 306 307 /* Don't complain about poisoned pages */ 308 if (PageHWPoison(page)) { 309 page_mapcount_reset(page); /* remove PageBuddy */ 310 return; 311 } 312 313 /* 314 * Allow a burst of 60 reports, then keep quiet for that minute; 315 * or allow a steady drip of one report per second. 316 */ 317 if (nr_shown == 60) { 318 if (time_before(jiffies, resume)) { 319 nr_unshown++; 320 goto out; 321 } 322 if (nr_unshown) { 323 printk(KERN_ALERT 324 "BUG: Bad page state: %lu messages suppressed\n", 325 nr_unshown); 326 nr_unshown = 0; 327 } 328 nr_shown = 0; 329 } 330 if (nr_shown++ == 0) 331 resume = jiffies + 60 * HZ; 332 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 334 current->comm, page_to_pfn(page)); 335 dump_page_badflags(page, reason, bad_flags); 336 337 print_modules(); 338 dump_stack(); 339 out: 340 /* Leave bad fields for debug, except PageBuddy could make trouble */ 341 page_mapcount_reset(page); /* remove PageBuddy */ 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 343 } 344 345 /* 346 * Higher-order pages are called "compound pages". They are structured thusly: 347 * 348 * The first PAGE_SIZE page is called the "head page". 349 * 350 * The remaining PAGE_SIZE pages are called "tail pages". 351 * 352 * All pages have PG_compound set. All tail pages have their ->first_page 353 * pointing at the head page. 354 * 355 * The first tail page's ->lru.next holds the address of the compound page's 356 * put_page() function. Its ->lru.prev holds the order of allocation. 357 * This usage means that zero-order pages may not be compound. 358 */ 359 360 static void free_compound_page(struct page *page) 361 { 362 __free_pages_ok(page, compound_order(page)); 363 } 364 365 void prep_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 370 set_compound_page_dtor(page, free_compound_page); 371 set_compound_order(page, order); 372 __SetPageHead(page); 373 for (i = 1; i < nr_pages; i++) { 374 struct page *p = page + i; 375 set_page_count(p, 0); 376 p->first_page = page; 377 /* Make sure p->first_page is always valid for PageTail() */ 378 smp_wmb(); 379 __SetPageTail(p); 380 } 381 } 382 383 /* update __split_huge_page_refcount if you change this function */ 384 static int destroy_compound_page(struct page *page, unsigned long order) 385 { 386 int i; 387 int nr_pages = 1 << order; 388 int bad = 0; 389 390 if (unlikely(compound_order(page) != order)) { 391 bad_page(page, "wrong compound order", 0); 392 bad++; 393 } 394 395 __ClearPageHead(page); 396 397 for (i = 1; i < nr_pages; i++) { 398 struct page *p = page + i; 399 400 if (unlikely(!PageTail(p))) { 401 bad_page(page, "PageTail not set", 0); 402 bad++; 403 } else if (unlikely(p->first_page != page)) { 404 bad_page(page, "first_page not consistent", 0); 405 bad++; 406 } 407 __ClearPageTail(p); 408 } 409 410 return bad; 411 } 412 413 static inline void prep_zero_page(struct page *page, unsigned int order, 414 gfp_t gfp_flags) 415 { 416 int i; 417 418 /* 419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 420 * and __GFP_HIGHMEM from hard or soft interrupt context. 421 */ 422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 423 for (i = 0; i < (1 << order); i++) 424 clear_highpage(page + i); 425 } 426 427 #ifdef CONFIG_DEBUG_PAGEALLOC 428 unsigned int _debug_guardpage_minorder; 429 430 static int __init debug_guardpage_minorder_setup(char *buf) 431 { 432 unsigned long res; 433 434 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 435 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 436 return 0; 437 } 438 _debug_guardpage_minorder = res; 439 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 440 return 0; 441 } 442 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 443 444 static inline void set_page_guard_flag(struct page *page) 445 { 446 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 447 } 448 449 static inline void clear_page_guard_flag(struct page *page) 450 { 451 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 452 } 453 #else 454 static inline void set_page_guard_flag(struct page *page) { } 455 static inline void clear_page_guard_flag(struct page *page) { } 456 #endif 457 458 static inline void set_page_order(struct page *page, unsigned int order) 459 { 460 set_page_private(page, order); 461 __SetPageBuddy(page); 462 } 463 464 static inline void rmv_page_order(struct page *page) 465 { 466 __ClearPageBuddy(page); 467 set_page_private(page, 0); 468 } 469 470 /* 471 * Locate the struct page for both the matching buddy in our 472 * pair (buddy1) and the combined O(n+1) page they form (page). 473 * 474 * 1) Any buddy B1 will have an order O twin B2 which satisfies 475 * the following equation: 476 * B2 = B1 ^ (1 << O) 477 * For example, if the starting buddy (buddy2) is #8 its order 478 * 1 buddy is #10: 479 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 480 * 481 * 2) Any buddy B will have an order O+1 parent P which 482 * satisfies the following equation: 483 * P = B & ~(1 << O) 484 * 485 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 486 */ 487 static inline unsigned long 488 __find_buddy_index(unsigned long page_idx, unsigned int order) 489 { 490 return page_idx ^ (1 << order); 491 } 492 493 /* 494 * This function checks whether a page is free && is the buddy 495 * we can do coalesce a page and its buddy if 496 * (a) the buddy is not in a hole && 497 * (b) the buddy is in the buddy system && 498 * (c) a page and its buddy have the same order && 499 * (d) a page and its buddy are in the same zone. 500 * 501 * For recording whether a page is in the buddy system, we set ->_mapcount 502 * PAGE_BUDDY_MAPCOUNT_VALUE. 503 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 504 * serialized by zone->lock. 505 * 506 * For recording page's order, we use page_private(page). 507 */ 508 static inline int page_is_buddy(struct page *page, struct page *buddy, 509 unsigned int order) 510 { 511 if (!pfn_valid_within(page_to_pfn(buddy))) 512 return 0; 513 514 if (page_is_guard(buddy) && page_order(buddy) == order) { 515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 516 517 if (page_zone_id(page) != page_zone_id(buddy)) 518 return 0; 519 520 return 1; 521 } 522 523 if (PageBuddy(buddy) && page_order(buddy) == order) { 524 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 525 526 /* 527 * zone check is done late to avoid uselessly 528 * calculating zone/node ids for pages that could 529 * never merge. 530 */ 531 if (page_zone_id(page) != page_zone_id(buddy)) 532 return 0; 533 534 return 1; 535 } 536 return 0; 537 } 538 539 /* 540 * Freeing function for a buddy system allocator. 541 * 542 * The concept of a buddy system is to maintain direct-mapped table 543 * (containing bit values) for memory blocks of various "orders". 544 * The bottom level table contains the map for the smallest allocatable 545 * units of memory (here, pages), and each level above it describes 546 * pairs of units from the levels below, hence, "buddies". 547 * At a high level, all that happens here is marking the table entry 548 * at the bottom level available, and propagating the changes upward 549 * as necessary, plus some accounting needed to play nicely with other 550 * parts of the VM system. 551 * At each level, we keep a list of pages, which are heads of continuous 552 * free pages of length of (1 << order) and marked with _mapcount 553 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 554 * field. 555 * So when we are allocating or freeing one, we can derive the state of the 556 * other. That is, if we allocate a small block, and both were 557 * free, the remainder of the region must be split into blocks. 558 * If a block is freed, and its buddy is also free, then this 559 * triggers coalescing into a block of larger size. 560 * 561 * -- nyc 562 */ 563 564 static inline void __free_one_page(struct page *page, 565 unsigned long pfn, 566 struct zone *zone, unsigned int order, 567 int migratetype) 568 { 569 unsigned long page_idx; 570 unsigned long combined_idx; 571 unsigned long uninitialized_var(buddy_idx); 572 struct page *buddy; 573 574 VM_BUG_ON(!zone_is_initialized(zone)); 575 576 if (unlikely(PageCompound(page))) 577 if (unlikely(destroy_compound_page(page, order))) 578 return; 579 580 VM_BUG_ON(migratetype == -1); 581 582 page_idx = pfn & ((1 << MAX_ORDER) - 1); 583 584 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 585 VM_BUG_ON_PAGE(bad_range(zone, page), page); 586 587 while (order < MAX_ORDER-1) { 588 buddy_idx = __find_buddy_index(page_idx, order); 589 buddy = page + (buddy_idx - page_idx); 590 if (!page_is_buddy(page, buddy, order)) 591 break; 592 /* 593 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 594 * merge with it and move up one order. 595 */ 596 if (page_is_guard(buddy)) { 597 clear_page_guard_flag(buddy); 598 set_page_private(page, 0); 599 __mod_zone_freepage_state(zone, 1 << order, 600 migratetype); 601 } else { 602 list_del(&buddy->lru); 603 zone->free_area[order].nr_free--; 604 rmv_page_order(buddy); 605 } 606 combined_idx = buddy_idx & page_idx; 607 page = page + (combined_idx - page_idx); 608 page_idx = combined_idx; 609 order++; 610 } 611 set_page_order(page, order); 612 613 /* 614 * If this is not the largest possible page, check if the buddy 615 * of the next-highest order is free. If it is, it's possible 616 * that pages are being freed that will coalesce soon. In case, 617 * that is happening, add the free page to the tail of the list 618 * so it's less likely to be used soon and more likely to be merged 619 * as a higher order page 620 */ 621 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 622 struct page *higher_page, *higher_buddy; 623 combined_idx = buddy_idx & page_idx; 624 higher_page = page + (combined_idx - page_idx); 625 buddy_idx = __find_buddy_index(combined_idx, order + 1); 626 higher_buddy = higher_page + (buddy_idx - combined_idx); 627 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 628 list_add_tail(&page->lru, 629 &zone->free_area[order].free_list[migratetype]); 630 goto out; 631 } 632 } 633 634 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 635 out: 636 zone->free_area[order].nr_free++; 637 } 638 639 static inline int free_pages_check(struct page *page) 640 { 641 const char *bad_reason = NULL; 642 unsigned long bad_flags = 0; 643 644 if (unlikely(page_mapcount(page))) 645 bad_reason = "nonzero mapcount"; 646 if (unlikely(page->mapping != NULL)) 647 bad_reason = "non-NULL mapping"; 648 if (unlikely(atomic_read(&page->_count) != 0)) 649 bad_reason = "nonzero _count"; 650 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 651 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 652 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 653 } 654 if (unlikely(mem_cgroup_bad_page_check(page))) 655 bad_reason = "cgroup check failed"; 656 if (unlikely(bad_reason)) { 657 bad_page(page, bad_reason, bad_flags); 658 return 1; 659 } 660 page_cpupid_reset_last(page); 661 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 662 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 663 return 0; 664 } 665 666 /* 667 * Frees a number of pages from the PCP lists 668 * Assumes all pages on list are in same zone, and of same order. 669 * count is the number of pages to free. 670 * 671 * If the zone was previously in an "all pages pinned" state then look to 672 * see if this freeing clears that state. 673 * 674 * And clear the zone's pages_scanned counter, to hold off the "all pages are 675 * pinned" detection logic. 676 */ 677 static void free_pcppages_bulk(struct zone *zone, int count, 678 struct per_cpu_pages *pcp) 679 { 680 int migratetype = 0; 681 int batch_free = 0; 682 int to_free = count; 683 684 spin_lock(&zone->lock); 685 zone->pages_scanned = 0; 686 687 while (to_free) { 688 struct page *page; 689 struct list_head *list; 690 691 /* 692 * Remove pages from lists in a round-robin fashion. A 693 * batch_free count is maintained that is incremented when an 694 * empty list is encountered. This is so more pages are freed 695 * off fuller lists instead of spinning excessively around empty 696 * lists 697 */ 698 do { 699 batch_free++; 700 if (++migratetype == MIGRATE_PCPTYPES) 701 migratetype = 0; 702 list = &pcp->lists[migratetype]; 703 } while (list_empty(list)); 704 705 /* This is the only non-empty list. Free them all. */ 706 if (batch_free == MIGRATE_PCPTYPES) 707 batch_free = to_free; 708 709 do { 710 int mt; /* migratetype of the to-be-freed page */ 711 712 page = list_entry(list->prev, struct page, lru); 713 /* must delete as __free_one_page list manipulates */ 714 list_del(&page->lru); 715 mt = get_freepage_migratetype(page); 716 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 717 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 718 trace_mm_page_pcpu_drain(page, 0, mt); 719 if (likely(!is_migrate_isolate_page(page))) { 720 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 721 if (is_migrate_cma(mt)) 722 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 723 } 724 } while (--to_free && --batch_free && !list_empty(list)); 725 } 726 spin_unlock(&zone->lock); 727 } 728 729 static void free_one_page(struct zone *zone, 730 struct page *page, unsigned long pfn, 731 unsigned int order, 732 int migratetype) 733 { 734 spin_lock(&zone->lock); 735 zone->pages_scanned = 0; 736 737 __free_one_page(page, pfn, zone, order, migratetype); 738 if (unlikely(!is_migrate_isolate(migratetype))) 739 __mod_zone_freepage_state(zone, 1 << order, migratetype); 740 spin_unlock(&zone->lock); 741 } 742 743 static bool free_pages_prepare(struct page *page, unsigned int order) 744 { 745 int i; 746 int bad = 0; 747 748 trace_mm_page_free(page, order); 749 kmemcheck_free_shadow(page, order); 750 751 if (PageAnon(page)) 752 page->mapping = NULL; 753 for (i = 0; i < (1 << order); i++) 754 bad += free_pages_check(page + i); 755 if (bad) 756 return false; 757 758 if (!PageHighMem(page)) { 759 debug_check_no_locks_freed(page_address(page), 760 PAGE_SIZE << order); 761 debug_check_no_obj_freed(page_address(page), 762 PAGE_SIZE << order); 763 } 764 arch_free_page(page, order); 765 kernel_map_pages(page, 1 << order, 0); 766 767 return true; 768 } 769 770 static void __free_pages_ok(struct page *page, unsigned int order) 771 { 772 unsigned long flags; 773 int migratetype; 774 unsigned long pfn = page_to_pfn(page); 775 776 if (!free_pages_prepare(page, order)) 777 return; 778 779 migratetype = get_pfnblock_migratetype(page, pfn); 780 local_irq_save(flags); 781 __count_vm_events(PGFREE, 1 << order); 782 set_freepage_migratetype(page, migratetype); 783 free_one_page(page_zone(page), page, pfn, order, migratetype); 784 local_irq_restore(flags); 785 } 786 787 void __init __free_pages_bootmem(struct page *page, unsigned int order) 788 { 789 unsigned int nr_pages = 1 << order; 790 struct page *p = page; 791 unsigned int loop; 792 793 prefetchw(p); 794 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 795 prefetchw(p + 1); 796 __ClearPageReserved(p); 797 set_page_count(p, 0); 798 } 799 __ClearPageReserved(p); 800 set_page_count(p, 0); 801 802 page_zone(page)->managed_pages += nr_pages; 803 set_page_refcounted(page); 804 __free_pages(page, order); 805 } 806 807 #ifdef CONFIG_CMA 808 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 809 void __init init_cma_reserved_pageblock(struct page *page) 810 { 811 unsigned i = pageblock_nr_pages; 812 struct page *p = page; 813 814 do { 815 __ClearPageReserved(p); 816 set_page_count(p, 0); 817 } while (++p, --i); 818 819 set_page_refcounted(page); 820 set_pageblock_migratetype(page, MIGRATE_CMA); 821 __free_pages(page, pageblock_order); 822 adjust_managed_page_count(page, pageblock_nr_pages); 823 } 824 #endif 825 826 /* 827 * The order of subdivision here is critical for the IO subsystem. 828 * Please do not alter this order without good reasons and regression 829 * testing. Specifically, as large blocks of memory are subdivided, 830 * the order in which smaller blocks are delivered depends on the order 831 * they're subdivided in this function. This is the primary factor 832 * influencing the order in which pages are delivered to the IO 833 * subsystem according to empirical testing, and this is also justified 834 * by considering the behavior of a buddy system containing a single 835 * large block of memory acted on by a series of small allocations. 836 * This behavior is a critical factor in sglist merging's success. 837 * 838 * -- nyc 839 */ 840 static inline void expand(struct zone *zone, struct page *page, 841 int low, int high, struct free_area *area, 842 int migratetype) 843 { 844 unsigned long size = 1 << high; 845 846 while (high > low) { 847 area--; 848 high--; 849 size >>= 1; 850 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 851 852 #ifdef CONFIG_DEBUG_PAGEALLOC 853 if (high < debug_guardpage_minorder()) { 854 /* 855 * Mark as guard pages (or page), that will allow to 856 * merge back to allocator when buddy will be freed. 857 * Corresponding page table entries will not be touched, 858 * pages will stay not present in virtual address space 859 */ 860 INIT_LIST_HEAD(&page[size].lru); 861 set_page_guard_flag(&page[size]); 862 set_page_private(&page[size], high); 863 /* Guard pages are not available for any usage */ 864 __mod_zone_freepage_state(zone, -(1 << high), 865 migratetype); 866 continue; 867 } 868 #endif 869 list_add(&page[size].lru, &area->free_list[migratetype]); 870 area->nr_free++; 871 set_page_order(&page[size], high); 872 } 873 } 874 875 /* 876 * This page is about to be returned from the page allocator 877 */ 878 static inline int check_new_page(struct page *page) 879 { 880 const char *bad_reason = NULL; 881 unsigned long bad_flags = 0; 882 883 if (unlikely(page_mapcount(page))) 884 bad_reason = "nonzero mapcount"; 885 if (unlikely(page->mapping != NULL)) 886 bad_reason = "non-NULL mapping"; 887 if (unlikely(atomic_read(&page->_count) != 0)) 888 bad_reason = "nonzero _count"; 889 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 890 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 891 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 892 } 893 if (unlikely(mem_cgroup_bad_page_check(page))) 894 bad_reason = "cgroup check failed"; 895 if (unlikely(bad_reason)) { 896 bad_page(page, bad_reason, bad_flags); 897 return 1; 898 } 899 return 0; 900 } 901 902 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags) 903 { 904 int i; 905 906 for (i = 0; i < (1 << order); i++) { 907 struct page *p = page + i; 908 if (unlikely(check_new_page(p))) 909 return 1; 910 } 911 912 set_page_private(page, 0); 913 set_page_refcounted(page); 914 915 arch_alloc_page(page, order); 916 kernel_map_pages(page, 1 << order, 1); 917 918 if (gfp_flags & __GFP_ZERO) 919 prep_zero_page(page, order, gfp_flags); 920 921 if (order && (gfp_flags & __GFP_COMP)) 922 prep_compound_page(page, order); 923 924 return 0; 925 } 926 927 /* 928 * Go through the free lists for the given migratetype and remove 929 * the smallest available page from the freelists 930 */ 931 static inline 932 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 933 int migratetype) 934 { 935 unsigned int current_order; 936 struct free_area *area; 937 struct page *page; 938 939 /* Find a page of the appropriate size in the preferred list */ 940 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 941 area = &(zone->free_area[current_order]); 942 if (list_empty(&area->free_list[migratetype])) 943 continue; 944 945 page = list_entry(area->free_list[migratetype].next, 946 struct page, lru); 947 list_del(&page->lru); 948 rmv_page_order(page); 949 area->nr_free--; 950 expand(zone, page, order, current_order, area, migratetype); 951 set_freepage_migratetype(page, migratetype); 952 return page; 953 } 954 955 return NULL; 956 } 957 958 959 /* 960 * This array describes the order lists are fallen back to when 961 * the free lists for the desirable migrate type are depleted 962 */ 963 static int fallbacks[MIGRATE_TYPES][4] = { 964 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 965 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 966 #ifdef CONFIG_CMA 967 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 968 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 969 #else 970 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 971 #endif 972 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 973 #ifdef CONFIG_MEMORY_ISOLATION 974 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 975 #endif 976 }; 977 978 /* 979 * Move the free pages in a range to the free lists of the requested type. 980 * Note that start_page and end_pages are not aligned on a pageblock 981 * boundary. If alignment is required, use move_freepages_block() 982 */ 983 int move_freepages(struct zone *zone, 984 struct page *start_page, struct page *end_page, 985 int migratetype) 986 { 987 struct page *page; 988 unsigned long order; 989 int pages_moved = 0; 990 991 #ifndef CONFIG_HOLES_IN_ZONE 992 /* 993 * page_zone is not safe to call in this context when 994 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 995 * anyway as we check zone boundaries in move_freepages_block(). 996 * Remove at a later date when no bug reports exist related to 997 * grouping pages by mobility 998 */ 999 BUG_ON(page_zone(start_page) != page_zone(end_page)); 1000 #endif 1001 1002 for (page = start_page; page <= end_page;) { 1003 /* Make sure we are not inadvertently changing nodes */ 1004 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1005 1006 if (!pfn_valid_within(page_to_pfn(page))) { 1007 page++; 1008 continue; 1009 } 1010 1011 if (!PageBuddy(page)) { 1012 page++; 1013 continue; 1014 } 1015 1016 order = page_order(page); 1017 list_move(&page->lru, 1018 &zone->free_area[order].free_list[migratetype]); 1019 set_freepage_migratetype(page, migratetype); 1020 page += 1 << order; 1021 pages_moved += 1 << order; 1022 } 1023 1024 return pages_moved; 1025 } 1026 1027 int move_freepages_block(struct zone *zone, struct page *page, 1028 int migratetype) 1029 { 1030 unsigned long start_pfn, end_pfn; 1031 struct page *start_page, *end_page; 1032 1033 start_pfn = page_to_pfn(page); 1034 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1035 start_page = pfn_to_page(start_pfn); 1036 end_page = start_page + pageblock_nr_pages - 1; 1037 end_pfn = start_pfn + pageblock_nr_pages - 1; 1038 1039 /* Do not cross zone boundaries */ 1040 if (!zone_spans_pfn(zone, start_pfn)) 1041 start_page = page; 1042 if (!zone_spans_pfn(zone, end_pfn)) 1043 return 0; 1044 1045 return move_freepages(zone, start_page, end_page, migratetype); 1046 } 1047 1048 static void change_pageblock_range(struct page *pageblock_page, 1049 int start_order, int migratetype) 1050 { 1051 int nr_pageblocks = 1 << (start_order - pageblock_order); 1052 1053 while (nr_pageblocks--) { 1054 set_pageblock_migratetype(pageblock_page, migratetype); 1055 pageblock_page += pageblock_nr_pages; 1056 } 1057 } 1058 1059 /* 1060 * If breaking a large block of pages, move all free pages to the preferred 1061 * allocation list. If falling back for a reclaimable kernel allocation, be 1062 * more aggressive about taking ownership of free pages. 1063 * 1064 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1065 * nor move CMA pages to different free lists. We don't want unmovable pages 1066 * to be allocated from MIGRATE_CMA areas. 1067 * 1068 * Returns the new migratetype of the pageblock (or the same old migratetype 1069 * if it was unchanged). 1070 */ 1071 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1072 int start_type, int fallback_type) 1073 { 1074 int current_order = page_order(page); 1075 1076 /* 1077 * When borrowing from MIGRATE_CMA, we need to release the excess 1078 * buddy pages to CMA itself. We also ensure the freepage_migratetype 1079 * is set to CMA so it is returned to the correct freelist in case 1080 * the page ends up being not actually allocated from the pcp lists. 1081 */ 1082 if (is_migrate_cma(fallback_type)) 1083 return fallback_type; 1084 1085 /* Take ownership for orders >= pageblock_order */ 1086 if (current_order >= pageblock_order) { 1087 change_pageblock_range(page, current_order, start_type); 1088 return start_type; 1089 } 1090 1091 if (current_order >= pageblock_order / 2 || 1092 start_type == MIGRATE_RECLAIMABLE || 1093 page_group_by_mobility_disabled) { 1094 int pages; 1095 1096 pages = move_freepages_block(zone, page, start_type); 1097 1098 /* Claim the whole block if over half of it is free */ 1099 if (pages >= (1 << (pageblock_order-1)) || 1100 page_group_by_mobility_disabled) { 1101 1102 set_pageblock_migratetype(page, start_type); 1103 return start_type; 1104 } 1105 1106 } 1107 1108 return fallback_type; 1109 } 1110 1111 /* Remove an element from the buddy allocator from the fallback list */ 1112 static inline struct page * 1113 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1114 { 1115 struct free_area *area; 1116 unsigned int current_order; 1117 struct page *page; 1118 int migratetype, new_type, i; 1119 1120 /* Find the largest possible block of pages in the other list */ 1121 for (current_order = MAX_ORDER-1; 1122 current_order >= order && current_order <= MAX_ORDER-1; 1123 --current_order) { 1124 for (i = 0;; i++) { 1125 migratetype = fallbacks[start_migratetype][i]; 1126 1127 /* MIGRATE_RESERVE handled later if necessary */ 1128 if (migratetype == MIGRATE_RESERVE) 1129 break; 1130 1131 area = &(zone->free_area[current_order]); 1132 if (list_empty(&area->free_list[migratetype])) 1133 continue; 1134 1135 page = list_entry(area->free_list[migratetype].next, 1136 struct page, lru); 1137 area->nr_free--; 1138 1139 new_type = try_to_steal_freepages(zone, page, 1140 start_migratetype, 1141 migratetype); 1142 1143 /* Remove the page from the freelists */ 1144 list_del(&page->lru); 1145 rmv_page_order(page); 1146 1147 expand(zone, page, order, current_order, area, 1148 new_type); 1149 /* The freepage_migratetype may differ from pageblock's 1150 * migratetype depending on the decisions in 1151 * try_to_steal_freepages. This is OK as long as it does 1152 * not differ for MIGRATE_CMA type. 1153 */ 1154 set_freepage_migratetype(page, new_type); 1155 1156 trace_mm_page_alloc_extfrag(page, order, current_order, 1157 start_migratetype, migratetype, new_type); 1158 1159 return page; 1160 } 1161 } 1162 1163 return NULL; 1164 } 1165 1166 /* 1167 * Do the hard work of removing an element from the buddy allocator. 1168 * Call me with the zone->lock already held. 1169 */ 1170 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1171 int migratetype) 1172 { 1173 struct page *page; 1174 1175 retry_reserve: 1176 page = __rmqueue_smallest(zone, order, migratetype); 1177 1178 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1179 page = __rmqueue_fallback(zone, order, migratetype); 1180 1181 /* 1182 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1183 * is used because __rmqueue_smallest is an inline function 1184 * and we want just one call site 1185 */ 1186 if (!page) { 1187 migratetype = MIGRATE_RESERVE; 1188 goto retry_reserve; 1189 } 1190 } 1191 1192 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1193 return page; 1194 } 1195 1196 /* 1197 * Obtain a specified number of elements from the buddy allocator, all under 1198 * a single hold of the lock, for efficiency. Add them to the supplied list. 1199 * Returns the number of new pages which were placed at *list. 1200 */ 1201 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1202 unsigned long count, struct list_head *list, 1203 int migratetype, bool cold) 1204 { 1205 int i; 1206 1207 spin_lock(&zone->lock); 1208 for (i = 0; i < count; ++i) { 1209 struct page *page = __rmqueue(zone, order, migratetype); 1210 if (unlikely(page == NULL)) 1211 break; 1212 1213 /* 1214 * Split buddy pages returned by expand() are received here 1215 * in physical page order. The page is added to the callers and 1216 * list and the list head then moves forward. From the callers 1217 * perspective, the linked list is ordered by page number in 1218 * some conditions. This is useful for IO devices that can 1219 * merge IO requests if the physical pages are ordered 1220 * properly. 1221 */ 1222 if (likely(!cold)) 1223 list_add(&page->lru, list); 1224 else 1225 list_add_tail(&page->lru, list); 1226 list = &page->lru; 1227 if (is_migrate_cma(get_freepage_migratetype(page))) 1228 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1229 -(1 << order)); 1230 } 1231 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1232 spin_unlock(&zone->lock); 1233 return i; 1234 } 1235 1236 #ifdef CONFIG_NUMA 1237 /* 1238 * Called from the vmstat counter updater to drain pagesets of this 1239 * currently executing processor on remote nodes after they have 1240 * expired. 1241 * 1242 * Note that this function must be called with the thread pinned to 1243 * a single processor. 1244 */ 1245 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1246 { 1247 unsigned long flags; 1248 int to_drain; 1249 unsigned long batch; 1250 1251 local_irq_save(flags); 1252 batch = ACCESS_ONCE(pcp->batch); 1253 if (pcp->count >= batch) 1254 to_drain = batch; 1255 else 1256 to_drain = pcp->count; 1257 if (to_drain > 0) { 1258 free_pcppages_bulk(zone, to_drain, pcp); 1259 pcp->count -= to_drain; 1260 } 1261 local_irq_restore(flags); 1262 } 1263 #endif 1264 1265 /* 1266 * Drain pages of the indicated processor. 1267 * 1268 * The processor must either be the current processor and the 1269 * thread pinned to the current processor or a processor that 1270 * is not online. 1271 */ 1272 static void drain_pages(unsigned int cpu) 1273 { 1274 unsigned long flags; 1275 struct zone *zone; 1276 1277 for_each_populated_zone(zone) { 1278 struct per_cpu_pageset *pset; 1279 struct per_cpu_pages *pcp; 1280 1281 local_irq_save(flags); 1282 pset = per_cpu_ptr(zone->pageset, cpu); 1283 1284 pcp = &pset->pcp; 1285 if (pcp->count) { 1286 free_pcppages_bulk(zone, pcp->count, pcp); 1287 pcp->count = 0; 1288 } 1289 local_irq_restore(flags); 1290 } 1291 } 1292 1293 /* 1294 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1295 */ 1296 void drain_local_pages(void *arg) 1297 { 1298 drain_pages(smp_processor_id()); 1299 } 1300 1301 /* 1302 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1303 * 1304 * Note that this code is protected against sending an IPI to an offline 1305 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1306 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1307 * nothing keeps CPUs from showing up after we populated the cpumask and 1308 * before the call to on_each_cpu_mask(). 1309 */ 1310 void drain_all_pages(void) 1311 { 1312 int cpu; 1313 struct per_cpu_pageset *pcp; 1314 struct zone *zone; 1315 1316 /* 1317 * Allocate in the BSS so we wont require allocation in 1318 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1319 */ 1320 static cpumask_t cpus_with_pcps; 1321 1322 /* 1323 * We don't care about racing with CPU hotplug event 1324 * as offline notification will cause the notified 1325 * cpu to drain that CPU pcps and on_each_cpu_mask 1326 * disables preemption as part of its processing 1327 */ 1328 for_each_online_cpu(cpu) { 1329 bool has_pcps = false; 1330 for_each_populated_zone(zone) { 1331 pcp = per_cpu_ptr(zone->pageset, cpu); 1332 if (pcp->pcp.count) { 1333 has_pcps = true; 1334 break; 1335 } 1336 } 1337 if (has_pcps) 1338 cpumask_set_cpu(cpu, &cpus_with_pcps); 1339 else 1340 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1341 } 1342 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1343 } 1344 1345 #ifdef CONFIG_HIBERNATION 1346 1347 void mark_free_pages(struct zone *zone) 1348 { 1349 unsigned long pfn, max_zone_pfn; 1350 unsigned long flags; 1351 unsigned int order, t; 1352 struct list_head *curr; 1353 1354 if (zone_is_empty(zone)) 1355 return; 1356 1357 spin_lock_irqsave(&zone->lock, flags); 1358 1359 max_zone_pfn = zone_end_pfn(zone); 1360 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1361 if (pfn_valid(pfn)) { 1362 struct page *page = pfn_to_page(pfn); 1363 1364 if (!swsusp_page_is_forbidden(page)) 1365 swsusp_unset_page_free(page); 1366 } 1367 1368 for_each_migratetype_order(order, t) { 1369 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1370 unsigned long i; 1371 1372 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1373 for (i = 0; i < (1UL << order); i++) 1374 swsusp_set_page_free(pfn_to_page(pfn + i)); 1375 } 1376 } 1377 spin_unlock_irqrestore(&zone->lock, flags); 1378 } 1379 #endif /* CONFIG_PM */ 1380 1381 /* 1382 * Free a 0-order page 1383 * cold == true ? free a cold page : free a hot page 1384 */ 1385 void free_hot_cold_page(struct page *page, bool cold) 1386 { 1387 struct zone *zone = page_zone(page); 1388 struct per_cpu_pages *pcp; 1389 unsigned long flags; 1390 unsigned long pfn = page_to_pfn(page); 1391 int migratetype; 1392 1393 if (!free_pages_prepare(page, 0)) 1394 return; 1395 1396 migratetype = get_pfnblock_migratetype(page, pfn); 1397 set_freepage_migratetype(page, migratetype); 1398 local_irq_save(flags); 1399 __count_vm_event(PGFREE); 1400 1401 /* 1402 * We only track unmovable, reclaimable and movable on pcp lists. 1403 * Free ISOLATE pages back to the allocator because they are being 1404 * offlined but treat RESERVE as movable pages so we can get those 1405 * areas back if necessary. Otherwise, we may have to free 1406 * excessively into the page allocator 1407 */ 1408 if (migratetype >= MIGRATE_PCPTYPES) { 1409 if (unlikely(is_migrate_isolate(migratetype))) { 1410 free_one_page(zone, page, pfn, 0, migratetype); 1411 goto out; 1412 } 1413 migratetype = MIGRATE_MOVABLE; 1414 } 1415 1416 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1417 if (!cold) 1418 list_add(&page->lru, &pcp->lists[migratetype]); 1419 else 1420 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1421 pcp->count++; 1422 if (pcp->count >= pcp->high) { 1423 unsigned long batch = ACCESS_ONCE(pcp->batch); 1424 free_pcppages_bulk(zone, batch, pcp); 1425 pcp->count -= batch; 1426 } 1427 1428 out: 1429 local_irq_restore(flags); 1430 } 1431 1432 /* 1433 * Free a list of 0-order pages 1434 */ 1435 void free_hot_cold_page_list(struct list_head *list, bool cold) 1436 { 1437 struct page *page, *next; 1438 1439 list_for_each_entry_safe(page, next, list, lru) { 1440 trace_mm_page_free_batched(page, cold); 1441 free_hot_cold_page(page, cold); 1442 } 1443 } 1444 1445 /* 1446 * split_page takes a non-compound higher-order page, and splits it into 1447 * n (1<<order) sub-pages: page[0..n] 1448 * Each sub-page must be freed individually. 1449 * 1450 * Note: this is probably too low level an operation for use in drivers. 1451 * Please consult with lkml before using this in your driver. 1452 */ 1453 void split_page(struct page *page, unsigned int order) 1454 { 1455 int i; 1456 1457 VM_BUG_ON_PAGE(PageCompound(page), page); 1458 VM_BUG_ON_PAGE(!page_count(page), page); 1459 1460 #ifdef CONFIG_KMEMCHECK 1461 /* 1462 * Split shadow pages too, because free(page[0]) would 1463 * otherwise free the whole shadow. 1464 */ 1465 if (kmemcheck_page_is_tracked(page)) 1466 split_page(virt_to_page(page[0].shadow), order); 1467 #endif 1468 1469 for (i = 1; i < (1 << order); i++) 1470 set_page_refcounted(page + i); 1471 } 1472 EXPORT_SYMBOL_GPL(split_page); 1473 1474 static int __isolate_free_page(struct page *page, unsigned int order) 1475 { 1476 unsigned long watermark; 1477 struct zone *zone; 1478 int mt; 1479 1480 BUG_ON(!PageBuddy(page)); 1481 1482 zone = page_zone(page); 1483 mt = get_pageblock_migratetype(page); 1484 1485 if (!is_migrate_isolate(mt)) { 1486 /* Obey watermarks as if the page was being allocated */ 1487 watermark = low_wmark_pages(zone) + (1 << order); 1488 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1489 return 0; 1490 1491 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1492 } 1493 1494 /* Remove page from free list */ 1495 list_del(&page->lru); 1496 zone->free_area[order].nr_free--; 1497 rmv_page_order(page); 1498 1499 /* Set the pageblock if the isolated page is at least a pageblock */ 1500 if (order >= pageblock_order - 1) { 1501 struct page *endpage = page + (1 << order) - 1; 1502 for (; page < endpage; page += pageblock_nr_pages) { 1503 int mt = get_pageblock_migratetype(page); 1504 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1505 set_pageblock_migratetype(page, 1506 MIGRATE_MOVABLE); 1507 } 1508 } 1509 1510 return 1UL << order; 1511 } 1512 1513 /* 1514 * Similar to split_page except the page is already free. As this is only 1515 * being used for migration, the migratetype of the block also changes. 1516 * As this is called with interrupts disabled, the caller is responsible 1517 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1518 * are enabled. 1519 * 1520 * Note: this is probably too low level an operation for use in drivers. 1521 * Please consult with lkml before using this in your driver. 1522 */ 1523 int split_free_page(struct page *page) 1524 { 1525 unsigned int order; 1526 int nr_pages; 1527 1528 order = page_order(page); 1529 1530 nr_pages = __isolate_free_page(page, order); 1531 if (!nr_pages) 1532 return 0; 1533 1534 /* Split into individual pages */ 1535 set_page_refcounted(page); 1536 split_page(page, order); 1537 return nr_pages; 1538 } 1539 1540 /* 1541 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1542 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1543 * or two. 1544 */ 1545 static inline 1546 struct page *buffered_rmqueue(struct zone *preferred_zone, 1547 struct zone *zone, unsigned int order, 1548 gfp_t gfp_flags, int migratetype) 1549 { 1550 unsigned long flags; 1551 struct page *page; 1552 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1553 1554 again: 1555 if (likely(order == 0)) { 1556 struct per_cpu_pages *pcp; 1557 struct list_head *list; 1558 1559 local_irq_save(flags); 1560 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1561 list = &pcp->lists[migratetype]; 1562 if (list_empty(list)) { 1563 pcp->count += rmqueue_bulk(zone, 0, 1564 pcp->batch, list, 1565 migratetype, cold); 1566 if (unlikely(list_empty(list))) 1567 goto failed; 1568 } 1569 1570 if (cold) 1571 page = list_entry(list->prev, struct page, lru); 1572 else 1573 page = list_entry(list->next, struct page, lru); 1574 1575 list_del(&page->lru); 1576 pcp->count--; 1577 } else { 1578 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1579 /* 1580 * __GFP_NOFAIL is not to be used in new code. 1581 * 1582 * All __GFP_NOFAIL callers should be fixed so that they 1583 * properly detect and handle allocation failures. 1584 * 1585 * We most definitely don't want callers attempting to 1586 * allocate greater than order-1 page units with 1587 * __GFP_NOFAIL. 1588 */ 1589 WARN_ON_ONCE(order > 1); 1590 } 1591 spin_lock_irqsave(&zone->lock, flags); 1592 page = __rmqueue(zone, order, migratetype); 1593 spin_unlock(&zone->lock); 1594 if (!page) 1595 goto failed; 1596 __mod_zone_freepage_state(zone, -(1 << order), 1597 get_freepage_migratetype(page)); 1598 } 1599 1600 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1601 1602 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1603 zone_statistics(preferred_zone, zone, gfp_flags); 1604 local_irq_restore(flags); 1605 1606 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1607 if (prep_new_page(page, order, gfp_flags)) 1608 goto again; 1609 return page; 1610 1611 failed: 1612 local_irq_restore(flags); 1613 return NULL; 1614 } 1615 1616 #ifdef CONFIG_FAIL_PAGE_ALLOC 1617 1618 static struct { 1619 struct fault_attr attr; 1620 1621 u32 ignore_gfp_highmem; 1622 u32 ignore_gfp_wait; 1623 u32 min_order; 1624 } fail_page_alloc = { 1625 .attr = FAULT_ATTR_INITIALIZER, 1626 .ignore_gfp_wait = 1, 1627 .ignore_gfp_highmem = 1, 1628 .min_order = 1, 1629 }; 1630 1631 static int __init setup_fail_page_alloc(char *str) 1632 { 1633 return setup_fault_attr(&fail_page_alloc.attr, str); 1634 } 1635 __setup("fail_page_alloc=", setup_fail_page_alloc); 1636 1637 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1638 { 1639 if (order < fail_page_alloc.min_order) 1640 return false; 1641 if (gfp_mask & __GFP_NOFAIL) 1642 return false; 1643 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1644 return false; 1645 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1646 return false; 1647 1648 return should_fail(&fail_page_alloc.attr, 1 << order); 1649 } 1650 1651 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1652 1653 static int __init fail_page_alloc_debugfs(void) 1654 { 1655 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1656 struct dentry *dir; 1657 1658 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1659 &fail_page_alloc.attr); 1660 if (IS_ERR(dir)) 1661 return PTR_ERR(dir); 1662 1663 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1664 &fail_page_alloc.ignore_gfp_wait)) 1665 goto fail; 1666 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1667 &fail_page_alloc.ignore_gfp_highmem)) 1668 goto fail; 1669 if (!debugfs_create_u32("min-order", mode, dir, 1670 &fail_page_alloc.min_order)) 1671 goto fail; 1672 1673 return 0; 1674 fail: 1675 debugfs_remove_recursive(dir); 1676 1677 return -ENOMEM; 1678 } 1679 1680 late_initcall(fail_page_alloc_debugfs); 1681 1682 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1683 1684 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1685 1686 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1687 { 1688 return false; 1689 } 1690 1691 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1692 1693 /* 1694 * Return true if free pages are above 'mark'. This takes into account the order 1695 * of the allocation. 1696 */ 1697 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1698 unsigned long mark, int classzone_idx, int alloc_flags, 1699 long free_pages) 1700 { 1701 /* free_pages my go negative - that's OK */ 1702 long min = mark; 1703 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1704 int o; 1705 long free_cma = 0; 1706 1707 free_pages -= (1 << order) - 1; 1708 if (alloc_flags & ALLOC_HIGH) 1709 min -= min / 2; 1710 if (alloc_flags & ALLOC_HARDER) 1711 min -= min / 4; 1712 #ifdef CONFIG_CMA 1713 /* If allocation can't use CMA areas don't use free CMA pages */ 1714 if (!(alloc_flags & ALLOC_CMA)) 1715 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1716 #endif 1717 1718 if (free_pages - free_cma <= min + lowmem_reserve) 1719 return false; 1720 for (o = 0; o < order; o++) { 1721 /* At the next order, this order's pages become unavailable */ 1722 free_pages -= z->free_area[o].nr_free << o; 1723 1724 /* Require fewer higher order pages to be free */ 1725 min >>= 1; 1726 1727 if (free_pages <= min) 1728 return false; 1729 } 1730 return true; 1731 } 1732 1733 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1734 int classzone_idx, int alloc_flags) 1735 { 1736 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1737 zone_page_state(z, NR_FREE_PAGES)); 1738 } 1739 1740 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1741 unsigned long mark, int classzone_idx, int alloc_flags) 1742 { 1743 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1744 1745 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1746 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1747 1748 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1749 free_pages); 1750 } 1751 1752 #ifdef CONFIG_NUMA 1753 /* 1754 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1755 * skip over zones that are not allowed by the cpuset, or that have 1756 * been recently (in last second) found to be nearly full. See further 1757 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1758 * that have to skip over a lot of full or unallowed zones. 1759 * 1760 * If the zonelist cache is present in the passed zonelist, then 1761 * returns a pointer to the allowed node mask (either the current 1762 * tasks mems_allowed, or node_states[N_MEMORY].) 1763 * 1764 * If the zonelist cache is not available for this zonelist, does 1765 * nothing and returns NULL. 1766 * 1767 * If the fullzones BITMAP in the zonelist cache is stale (more than 1768 * a second since last zap'd) then we zap it out (clear its bits.) 1769 * 1770 * We hold off even calling zlc_setup, until after we've checked the 1771 * first zone in the zonelist, on the theory that most allocations will 1772 * be satisfied from that first zone, so best to examine that zone as 1773 * quickly as we can. 1774 */ 1775 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1776 { 1777 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1778 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1779 1780 zlc = zonelist->zlcache_ptr; 1781 if (!zlc) 1782 return NULL; 1783 1784 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1785 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1786 zlc->last_full_zap = jiffies; 1787 } 1788 1789 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1790 &cpuset_current_mems_allowed : 1791 &node_states[N_MEMORY]; 1792 return allowednodes; 1793 } 1794 1795 /* 1796 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1797 * if it is worth looking at further for free memory: 1798 * 1) Check that the zone isn't thought to be full (doesn't have its 1799 * bit set in the zonelist_cache fullzones BITMAP). 1800 * 2) Check that the zones node (obtained from the zonelist_cache 1801 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1802 * Return true (non-zero) if zone is worth looking at further, or 1803 * else return false (zero) if it is not. 1804 * 1805 * This check -ignores- the distinction between various watermarks, 1806 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1807 * found to be full for any variation of these watermarks, it will 1808 * be considered full for up to one second by all requests, unless 1809 * we are so low on memory on all allowed nodes that we are forced 1810 * into the second scan of the zonelist. 1811 * 1812 * In the second scan we ignore this zonelist cache and exactly 1813 * apply the watermarks to all zones, even it is slower to do so. 1814 * We are low on memory in the second scan, and should leave no stone 1815 * unturned looking for a free page. 1816 */ 1817 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1818 nodemask_t *allowednodes) 1819 { 1820 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1821 int i; /* index of *z in zonelist zones */ 1822 int n; /* node that zone *z is on */ 1823 1824 zlc = zonelist->zlcache_ptr; 1825 if (!zlc) 1826 return 1; 1827 1828 i = z - zonelist->_zonerefs; 1829 n = zlc->z_to_n[i]; 1830 1831 /* This zone is worth trying if it is allowed but not full */ 1832 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1833 } 1834 1835 /* 1836 * Given 'z' scanning a zonelist, set the corresponding bit in 1837 * zlc->fullzones, so that subsequent attempts to allocate a page 1838 * from that zone don't waste time re-examining it. 1839 */ 1840 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1841 { 1842 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1843 int i; /* index of *z in zonelist zones */ 1844 1845 zlc = zonelist->zlcache_ptr; 1846 if (!zlc) 1847 return; 1848 1849 i = z - zonelist->_zonerefs; 1850 1851 set_bit(i, zlc->fullzones); 1852 } 1853 1854 /* 1855 * clear all zones full, called after direct reclaim makes progress so that 1856 * a zone that was recently full is not skipped over for up to a second 1857 */ 1858 static void zlc_clear_zones_full(struct zonelist *zonelist) 1859 { 1860 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1861 1862 zlc = zonelist->zlcache_ptr; 1863 if (!zlc) 1864 return; 1865 1866 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1867 } 1868 1869 static bool zone_local(struct zone *local_zone, struct zone *zone) 1870 { 1871 return local_zone->node == zone->node; 1872 } 1873 1874 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1875 { 1876 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 1877 RECLAIM_DISTANCE; 1878 } 1879 1880 #else /* CONFIG_NUMA */ 1881 1882 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1883 { 1884 return NULL; 1885 } 1886 1887 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1888 nodemask_t *allowednodes) 1889 { 1890 return 1; 1891 } 1892 1893 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1894 { 1895 } 1896 1897 static void zlc_clear_zones_full(struct zonelist *zonelist) 1898 { 1899 } 1900 1901 static bool zone_local(struct zone *local_zone, struct zone *zone) 1902 { 1903 return true; 1904 } 1905 1906 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1907 { 1908 return true; 1909 } 1910 1911 #endif /* CONFIG_NUMA */ 1912 1913 /* 1914 * get_page_from_freelist goes through the zonelist trying to allocate 1915 * a page. 1916 */ 1917 static struct page * 1918 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1919 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1920 struct zone *preferred_zone, int classzone_idx, int migratetype) 1921 { 1922 struct zoneref *z; 1923 struct page *page = NULL; 1924 struct zone *zone; 1925 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1926 int zlc_active = 0; /* set if using zonelist_cache */ 1927 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1928 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 1929 (gfp_mask & __GFP_WRITE); 1930 1931 zonelist_scan: 1932 /* 1933 * Scan zonelist, looking for a zone with enough free. 1934 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1935 */ 1936 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1937 high_zoneidx, nodemask) { 1938 unsigned long mark; 1939 1940 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1941 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1942 continue; 1943 if (cpusets_enabled() && 1944 (alloc_flags & ALLOC_CPUSET) && 1945 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1946 continue; 1947 /* 1948 * Distribute pages in proportion to the individual 1949 * zone size to ensure fair page aging. The zone a 1950 * page was allocated in should have no effect on the 1951 * time the page has in memory before being reclaimed. 1952 */ 1953 if (alloc_flags & ALLOC_FAIR) { 1954 if (!zone_local(preferred_zone, zone)) 1955 continue; 1956 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0) 1957 continue; 1958 } 1959 /* 1960 * When allocating a page cache page for writing, we 1961 * want to get it from a zone that is within its dirty 1962 * limit, such that no single zone holds more than its 1963 * proportional share of globally allowed dirty pages. 1964 * The dirty limits take into account the zone's 1965 * lowmem reserves and high watermark so that kswapd 1966 * should be able to balance it without having to 1967 * write pages from its LRU list. 1968 * 1969 * This may look like it could increase pressure on 1970 * lower zones by failing allocations in higher zones 1971 * before they are full. But the pages that do spill 1972 * over are limited as the lower zones are protected 1973 * by this very same mechanism. It should not become 1974 * a practical burden to them. 1975 * 1976 * XXX: For now, allow allocations to potentially 1977 * exceed the per-zone dirty limit in the slowpath 1978 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1979 * which is important when on a NUMA setup the allowed 1980 * zones are together not big enough to reach the 1981 * global limit. The proper fix for these situations 1982 * will require awareness of zones in the 1983 * dirty-throttling and the flusher threads. 1984 */ 1985 if (consider_zone_dirty && !zone_dirty_ok(zone)) 1986 continue; 1987 1988 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1989 if (!zone_watermark_ok(zone, order, mark, 1990 classzone_idx, alloc_flags)) { 1991 int ret; 1992 1993 /* Checked here to keep the fast path fast */ 1994 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1995 if (alloc_flags & ALLOC_NO_WATERMARKS) 1996 goto try_this_zone; 1997 1998 if (IS_ENABLED(CONFIG_NUMA) && 1999 !did_zlc_setup && nr_online_nodes > 1) { 2000 /* 2001 * we do zlc_setup if there are multiple nodes 2002 * and before considering the first zone allowed 2003 * by the cpuset. 2004 */ 2005 allowednodes = zlc_setup(zonelist, alloc_flags); 2006 zlc_active = 1; 2007 did_zlc_setup = 1; 2008 } 2009 2010 if (zone_reclaim_mode == 0 || 2011 !zone_allows_reclaim(preferred_zone, zone)) 2012 goto this_zone_full; 2013 2014 /* 2015 * As we may have just activated ZLC, check if the first 2016 * eligible zone has failed zone_reclaim recently. 2017 */ 2018 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2019 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2020 continue; 2021 2022 ret = zone_reclaim(zone, gfp_mask, order); 2023 switch (ret) { 2024 case ZONE_RECLAIM_NOSCAN: 2025 /* did not scan */ 2026 continue; 2027 case ZONE_RECLAIM_FULL: 2028 /* scanned but unreclaimable */ 2029 continue; 2030 default: 2031 /* did we reclaim enough */ 2032 if (zone_watermark_ok(zone, order, mark, 2033 classzone_idx, alloc_flags)) 2034 goto try_this_zone; 2035 2036 /* 2037 * Failed to reclaim enough to meet watermark. 2038 * Only mark the zone full if checking the min 2039 * watermark or if we failed to reclaim just 2040 * 1<<order pages or else the page allocator 2041 * fastpath will prematurely mark zones full 2042 * when the watermark is between the low and 2043 * min watermarks. 2044 */ 2045 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2046 ret == ZONE_RECLAIM_SOME) 2047 goto this_zone_full; 2048 2049 continue; 2050 } 2051 } 2052 2053 try_this_zone: 2054 page = buffered_rmqueue(preferred_zone, zone, order, 2055 gfp_mask, migratetype); 2056 if (page) 2057 break; 2058 this_zone_full: 2059 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2060 zlc_mark_zone_full(zonelist, z); 2061 } 2062 2063 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 2064 /* Disable zlc cache for second zonelist scan */ 2065 zlc_active = 0; 2066 goto zonelist_scan; 2067 } 2068 2069 if (page) 2070 /* 2071 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2072 * necessary to allocate the page. The expectation is 2073 * that the caller is taking steps that will free more 2074 * memory. The caller should avoid the page being used 2075 * for !PFMEMALLOC purposes. 2076 */ 2077 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2078 2079 return page; 2080 } 2081 2082 /* 2083 * Large machines with many possible nodes should not always dump per-node 2084 * meminfo in irq context. 2085 */ 2086 static inline bool should_suppress_show_mem(void) 2087 { 2088 bool ret = false; 2089 2090 #if NODES_SHIFT > 8 2091 ret = in_interrupt(); 2092 #endif 2093 return ret; 2094 } 2095 2096 static DEFINE_RATELIMIT_STATE(nopage_rs, 2097 DEFAULT_RATELIMIT_INTERVAL, 2098 DEFAULT_RATELIMIT_BURST); 2099 2100 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2101 { 2102 unsigned int filter = SHOW_MEM_FILTER_NODES; 2103 2104 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2105 debug_guardpage_minorder() > 0) 2106 return; 2107 2108 /* 2109 * This documents exceptions given to allocations in certain 2110 * contexts that are allowed to allocate outside current's set 2111 * of allowed nodes. 2112 */ 2113 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2114 if (test_thread_flag(TIF_MEMDIE) || 2115 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2116 filter &= ~SHOW_MEM_FILTER_NODES; 2117 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2118 filter &= ~SHOW_MEM_FILTER_NODES; 2119 2120 if (fmt) { 2121 struct va_format vaf; 2122 va_list args; 2123 2124 va_start(args, fmt); 2125 2126 vaf.fmt = fmt; 2127 vaf.va = &args; 2128 2129 pr_warn("%pV", &vaf); 2130 2131 va_end(args); 2132 } 2133 2134 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2135 current->comm, order, gfp_mask); 2136 2137 dump_stack(); 2138 if (!should_suppress_show_mem()) 2139 show_mem(filter); 2140 } 2141 2142 static inline int 2143 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2144 unsigned long did_some_progress, 2145 unsigned long pages_reclaimed) 2146 { 2147 /* Do not loop if specifically requested */ 2148 if (gfp_mask & __GFP_NORETRY) 2149 return 0; 2150 2151 /* Always retry if specifically requested */ 2152 if (gfp_mask & __GFP_NOFAIL) 2153 return 1; 2154 2155 /* 2156 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2157 * making forward progress without invoking OOM. Suspend also disables 2158 * storage devices so kswapd will not help. Bail if we are suspending. 2159 */ 2160 if (!did_some_progress && pm_suspended_storage()) 2161 return 0; 2162 2163 /* 2164 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2165 * means __GFP_NOFAIL, but that may not be true in other 2166 * implementations. 2167 */ 2168 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2169 return 1; 2170 2171 /* 2172 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2173 * specified, then we retry until we no longer reclaim any pages 2174 * (above), or we've reclaimed an order of pages at least as 2175 * large as the allocation's order. In both cases, if the 2176 * allocation still fails, we stop retrying. 2177 */ 2178 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2179 return 1; 2180 2181 return 0; 2182 } 2183 2184 static inline struct page * 2185 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2186 struct zonelist *zonelist, enum zone_type high_zoneidx, 2187 nodemask_t *nodemask, struct zone *preferred_zone, 2188 int classzone_idx, int migratetype) 2189 { 2190 struct page *page; 2191 2192 /* Acquire the OOM killer lock for the zones in zonelist */ 2193 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2194 schedule_timeout_uninterruptible(1); 2195 return NULL; 2196 } 2197 2198 /* 2199 * Go through the zonelist yet one more time, keep very high watermark 2200 * here, this is only to catch a parallel oom killing, we must fail if 2201 * we're still under heavy pressure. 2202 */ 2203 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2204 order, zonelist, high_zoneidx, 2205 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2206 preferred_zone, classzone_idx, migratetype); 2207 if (page) 2208 goto out; 2209 2210 if (!(gfp_mask & __GFP_NOFAIL)) { 2211 /* The OOM killer will not help higher order allocs */ 2212 if (order > PAGE_ALLOC_COSTLY_ORDER) 2213 goto out; 2214 /* The OOM killer does not needlessly kill tasks for lowmem */ 2215 if (high_zoneidx < ZONE_NORMAL) 2216 goto out; 2217 /* 2218 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2219 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2220 * The caller should handle page allocation failure by itself if 2221 * it specifies __GFP_THISNODE. 2222 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2223 */ 2224 if (gfp_mask & __GFP_THISNODE) 2225 goto out; 2226 } 2227 /* Exhausted what can be done so it's blamo time */ 2228 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2229 2230 out: 2231 clear_zonelist_oom(zonelist, gfp_mask); 2232 return page; 2233 } 2234 2235 #ifdef CONFIG_COMPACTION 2236 /* Try memory compaction for high-order allocations before reclaim */ 2237 static struct page * 2238 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2239 struct zonelist *zonelist, enum zone_type high_zoneidx, 2240 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2241 int classzone_idx, int migratetype, enum migrate_mode mode, 2242 bool *contended_compaction, bool *deferred_compaction, 2243 unsigned long *did_some_progress) 2244 { 2245 if (!order) 2246 return NULL; 2247 2248 if (compaction_deferred(preferred_zone, order)) { 2249 *deferred_compaction = true; 2250 return NULL; 2251 } 2252 2253 current->flags |= PF_MEMALLOC; 2254 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2255 nodemask, mode, 2256 contended_compaction); 2257 current->flags &= ~PF_MEMALLOC; 2258 2259 if (*did_some_progress != COMPACT_SKIPPED) { 2260 struct page *page; 2261 2262 /* Page migration frees to the PCP lists but we want merging */ 2263 drain_pages(get_cpu()); 2264 put_cpu(); 2265 2266 page = get_page_from_freelist(gfp_mask, nodemask, 2267 order, zonelist, high_zoneidx, 2268 alloc_flags & ~ALLOC_NO_WATERMARKS, 2269 preferred_zone, classzone_idx, migratetype); 2270 if (page) { 2271 preferred_zone->compact_blockskip_flush = false; 2272 compaction_defer_reset(preferred_zone, order, true); 2273 count_vm_event(COMPACTSUCCESS); 2274 return page; 2275 } 2276 2277 /* 2278 * It's bad if compaction run occurs and fails. 2279 * The most likely reason is that pages exist, 2280 * but not enough to satisfy watermarks. 2281 */ 2282 count_vm_event(COMPACTFAIL); 2283 2284 /* 2285 * As async compaction considers a subset of pageblocks, only 2286 * defer if the failure was a sync compaction failure. 2287 */ 2288 if (mode != MIGRATE_ASYNC) 2289 defer_compaction(preferred_zone, order); 2290 2291 cond_resched(); 2292 } 2293 2294 return NULL; 2295 } 2296 #else 2297 static inline struct page * 2298 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2299 struct zonelist *zonelist, enum zone_type high_zoneidx, 2300 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2301 int classzone_idx, int migratetype, 2302 enum migrate_mode mode, bool *contended_compaction, 2303 bool *deferred_compaction, unsigned long *did_some_progress) 2304 { 2305 return NULL; 2306 } 2307 #endif /* CONFIG_COMPACTION */ 2308 2309 /* Perform direct synchronous page reclaim */ 2310 static int 2311 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2312 nodemask_t *nodemask) 2313 { 2314 struct reclaim_state reclaim_state; 2315 int progress; 2316 2317 cond_resched(); 2318 2319 /* We now go into synchronous reclaim */ 2320 cpuset_memory_pressure_bump(); 2321 current->flags |= PF_MEMALLOC; 2322 lockdep_set_current_reclaim_state(gfp_mask); 2323 reclaim_state.reclaimed_slab = 0; 2324 current->reclaim_state = &reclaim_state; 2325 2326 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2327 2328 current->reclaim_state = NULL; 2329 lockdep_clear_current_reclaim_state(); 2330 current->flags &= ~PF_MEMALLOC; 2331 2332 cond_resched(); 2333 2334 return progress; 2335 } 2336 2337 /* The really slow allocator path where we enter direct reclaim */ 2338 static inline struct page * 2339 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2340 struct zonelist *zonelist, enum zone_type high_zoneidx, 2341 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2342 int classzone_idx, int migratetype, unsigned long *did_some_progress) 2343 { 2344 struct page *page = NULL; 2345 bool drained = false; 2346 2347 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2348 nodemask); 2349 if (unlikely(!(*did_some_progress))) 2350 return NULL; 2351 2352 /* After successful reclaim, reconsider all zones for allocation */ 2353 if (IS_ENABLED(CONFIG_NUMA)) 2354 zlc_clear_zones_full(zonelist); 2355 2356 retry: 2357 page = get_page_from_freelist(gfp_mask, nodemask, order, 2358 zonelist, high_zoneidx, 2359 alloc_flags & ~ALLOC_NO_WATERMARKS, 2360 preferred_zone, classzone_idx, 2361 migratetype); 2362 2363 /* 2364 * If an allocation failed after direct reclaim, it could be because 2365 * pages are pinned on the per-cpu lists. Drain them and try again 2366 */ 2367 if (!page && !drained) { 2368 drain_all_pages(); 2369 drained = true; 2370 goto retry; 2371 } 2372 2373 return page; 2374 } 2375 2376 /* 2377 * This is called in the allocator slow-path if the allocation request is of 2378 * sufficient urgency to ignore watermarks and take other desperate measures 2379 */ 2380 static inline struct page * 2381 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2382 struct zonelist *zonelist, enum zone_type high_zoneidx, 2383 nodemask_t *nodemask, struct zone *preferred_zone, 2384 int classzone_idx, int migratetype) 2385 { 2386 struct page *page; 2387 2388 do { 2389 page = get_page_from_freelist(gfp_mask, nodemask, order, 2390 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2391 preferred_zone, classzone_idx, migratetype); 2392 2393 if (!page && gfp_mask & __GFP_NOFAIL) 2394 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2395 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2396 2397 return page; 2398 } 2399 2400 static void reset_alloc_batches(struct zonelist *zonelist, 2401 enum zone_type high_zoneidx, 2402 struct zone *preferred_zone) 2403 { 2404 struct zoneref *z; 2405 struct zone *zone; 2406 2407 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 2408 /* 2409 * Only reset the batches of zones that were actually 2410 * considered in the fairness pass, we don't want to 2411 * trash fairness information for zones that are not 2412 * actually part of this zonelist's round-robin cycle. 2413 */ 2414 if (!zone_local(preferred_zone, zone)) 2415 continue; 2416 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2417 high_wmark_pages(zone) - low_wmark_pages(zone) - 2418 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2419 } 2420 } 2421 2422 static void wake_all_kswapds(unsigned int order, 2423 struct zonelist *zonelist, 2424 enum zone_type high_zoneidx, 2425 struct zone *preferred_zone) 2426 { 2427 struct zoneref *z; 2428 struct zone *zone; 2429 2430 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2431 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2432 } 2433 2434 static inline int 2435 gfp_to_alloc_flags(gfp_t gfp_mask) 2436 { 2437 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2438 const gfp_t wait = gfp_mask & __GFP_WAIT; 2439 2440 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2441 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2442 2443 /* 2444 * The caller may dip into page reserves a bit more if the caller 2445 * cannot run direct reclaim, or if the caller has realtime scheduling 2446 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2447 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2448 */ 2449 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2450 2451 if (!wait) { 2452 /* 2453 * Not worth trying to allocate harder for 2454 * __GFP_NOMEMALLOC even if it can't schedule. 2455 */ 2456 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2457 alloc_flags |= ALLOC_HARDER; 2458 /* 2459 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2460 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2461 */ 2462 alloc_flags &= ~ALLOC_CPUSET; 2463 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2464 alloc_flags |= ALLOC_HARDER; 2465 2466 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2467 if (gfp_mask & __GFP_MEMALLOC) 2468 alloc_flags |= ALLOC_NO_WATERMARKS; 2469 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2470 alloc_flags |= ALLOC_NO_WATERMARKS; 2471 else if (!in_interrupt() && 2472 ((current->flags & PF_MEMALLOC) || 2473 unlikely(test_thread_flag(TIF_MEMDIE)))) 2474 alloc_flags |= ALLOC_NO_WATERMARKS; 2475 } 2476 #ifdef CONFIG_CMA 2477 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2478 alloc_flags |= ALLOC_CMA; 2479 #endif 2480 return alloc_flags; 2481 } 2482 2483 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2484 { 2485 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2486 } 2487 2488 static inline struct page * 2489 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2490 struct zonelist *zonelist, enum zone_type high_zoneidx, 2491 nodemask_t *nodemask, struct zone *preferred_zone, 2492 int classzone_idx, int migratetype) 2493 { 2494 const gfp_t wait = gfp_mask & __GFP_WAIT; 2495 struct page *page = NULL; 2496 int alloc_flags; 2497 unsigned long pages_reclaimed = 0; 2498 unsigned long did_some_progress; 2499 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2500 bool deferred_compaction = false; 2501 bool contended_compaction = false; 2502 2503 /* 2504 * In the slowpath, we sanity check order to avoid ever trying to 2505 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2506 * be using allocators in order of preference for an area that is 2507 * too large. 2508 */ 2509 if (order >= MAX_ORDER) { 2510 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2511 return NULL; 2512 } 2513 2514 /* 2515 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2516 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2517 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2518 * using a larger set of nodes after it has established that the 2519 * allowed per node queues are empty and that nodes are 2520 * over allocated. 2521 */ 2522 if (IS_ENABLED(CONFIG_NUMA) && 2523 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2524 goto nopage; 2525 2526 restart: 2527 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2528 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone); 2529 2530 /* 2531 * OK, we're below the kswapd watermark and have kicked background 2532 * reclaim. Now things get more complex, so set up alloc_flags according 2533 * to how we want to proceed. 2534 */ 2535 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2536 2537 /* 2538 * Find the true preferred zone if the allocation is unconstrained by 2539 * cpusets. 2540 */ 2541 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) { 2542 struct zoneref *preferred_zoneref; 2543 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2544 NULL, &preferred_zone); 2545 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2546 } 2547 2548 rebalance: 2549 /* This is the last chance, in general, before the goto nopage. */ 2550 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2551 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2552 preferred_zone, classzone_idx, migratetype); 2553 if (page) 2554 goto got_pg; 2555 2556 /* Allocate without watermarks if the context allows */ 2557 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2558 /* 2559 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2560 * the allocation is high priority and these type of 2561 * allocations are system rather than user orientated 2562 */ 2563 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2564 2565 page = __alloc_pages_high_priority(gfp_mask, order, 2566 zonelist, high_zoneidx, nodemask, 2567 preferred_zone, classzone_idx, migratetype); 2568 if (page) { 2569 goto got_pg; 2570 } 2571 } 2572 2573 /* Atomic allocations - we can't balance anything */ 2574 if (!wait) { 2575 /* 2576 * All existing users of the deprecated __GFP_NOFAIL are 2577 * blockable, so warn of any new users that actually allow this 2578 * type of allocation to fail. 2579 */ 2580 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2581 goto nopage; 2582 } 2583 2584 /* Avoid recursion of direct reclaim */ 2585 if (current->flags & PF_MEMALLOC) 2586 goto nopage; 2587 2588 /* Avoid allocations with no watermarks from looping endlessly */ 2589 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2590 goto nopage; 2591 2592 /* 2593 * Try direct compaction. The first pass is asynchronous. Subsequent 2594 * attempts after direct reclaim are synchronous 2595 */ 2596 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2597 high_zoneidx, nodemask, alloc_flags, 2598 preferred_zone, 2599 classzone_idx, migratetype, 2600 migration_mode, &contended_compaction, 2601 &deferred_compaction, 2602 &did_some_progress); 2603 if (page) 2604 goto got_pg; 2605 2606 /* 2607 * It can become very expensive to allocate transparent hugepages at 2608 * fault, so use asynchronous memory compaction for THP unless it is 2609 * khugepaged trying to collapse. 2610 */ 2611 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD)) 2612 migration_mode = MIGRATE_SYNC_LIGHT; 2613 2614 /* 2615 * If compaction is deferred for high-order allocations, it is because 2616 * sync compaction recently failed. In this is the case and the caller 2617 * requested a movable allocation that does not heavily disrupt the 2618 * system then fail the allocation instead of entering direct reclaim. 2619 */ 2620 if ((deferred_compaction || contended_compaction) && 2621 (gfp_mask & __GFP_NO_KSWAPD)) 2622 goto nopage; 2623 2624 /* Try direct reclaim and then allocating */ 2625 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2626 zonelist, high_zoneidx, 2627 nodemask, 2628 alloc_flags, preferred_zone, 2629 classzone_idx, migratetype, 2630 &did_some_progress); 2631 if (page) 2632 goto got_pg; 2633 2634 /* 2635 * If we failed to make any progress reclaiming, then we are 2636 * running out of options and have to consider going OOM 2637 */ 2638 if (!did_some_progress) { 2639 if (oom_gfp_allowed(gfp_mask)) { 2640 if (oom_killer_disabled) 2641 goto nopage; 2642 /* Coredumps can quickly deplete all memory reserves */ 2643 if ((current->flags & PF_DUMPCORE) && 2644 !(gfp_mask & __GFP_NOFAIL)) 2645 goto nopage; 2646 page = __alloc_pages_may_oom(gfp_mask, order, 2647 zonelist, high_zoneidx, 2648 nodemask, preferred_zone, 2649 classzone_idx, migratetype); 2650 if (page) 2651 goto got_pg; 2652 2653 if (!(gfp_mask & __GFP_NOFAIL)) { 2654 /* 2655 * The oom killer is not called for high-order 2656 * allocations that may fail, so if no progress 2657 * is being made, there are no other options and 2658 * retrying is unlikely to help. 2659 */ 2660 if (order > PAGE_ALLOC_COSTLY_ORDER) 2661 goto nopage; 2662 /* 2663 * The oom killer is not called for lowmem 2664 * allocations to prevent needlessly killing 2665 * innocent tasks. 2666 */ 2667 if (high_zoneidx < ZONE_NORMAL) 2668 goto nopage; 2669 } 2670 2671 goto restart; 2672 } 2673 } 2674 2675 /* Check if we should retry the allocation */ 2676 pages_reclaimed += did_some_progress; 2677 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2678 pages_reclaimed)) { 2679 /* Wait for some write requests to complete then retry */ 2680 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2681 goto rebalance; 2682 } else { 2683 /* 2684 * High-order allocations do not necessarily loop after 2685 * direct reclaim and reclaim/compaction depends on compaction 2686 * being called after reclaim so call directly if necessary 2687 */ 2688 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2689 high_zoneidx, nodemask, alloc_flags, 2690 preferred_zone, 2691 classzone_idx, migratetype, 2692 migration_mode, &contended_compaction, 2693 &deferred_compaction, 2694 &did_some_progress); 2695 if (page) 2696 goto got_pg; 2697 } 2698 2699 nopage: 2700 warn_alloc_failed(gfp_mask, order, NULL); 2701 return page; 2702 got_pg: 2703 if (kmemcheck_enabled) 2704 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2705 2706 return page; 2707 } 2708 2709 /* 2710 * This is the 'heart' of the zoned buddy allocator. 2711 */ 2712 struct page * 2713 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2714 struct zonelist *zonelist, nodemask_t *nodemask) 2715 { 2716 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2717 struct zone *preferred_zone; 2718 struct zoneref *preferred_zoneref; 2719 struct page *page = NULL; 2720 int migratetype = allocflags_to_migratetype(gfp_mask); 2721 unsigned int cpuset_mems_cookie; 2722 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2723 int classzone_idx; 2724 2725 gfp_mask &= gfp_allowed_mask; 2726 2727 lockdep_trace_alloc(gfp_mask); 2728 2729 might_sleep_if(gfp_mask & __GFP_WAIT); 2730 2731 if (should_fail_alloc_page(gfp_mask, order)) 2732 return NULL; 2733 2734 /* 2735 * Check the zones suitable for the gfp_mask contain at least one 2736 * valid zone. It's possible to have an empty zonelist as a result 2737 * of GFP_THISNODE and a memoryless node 2738 */ 2739 if (unlikely(!zonelist->_zonerefs->zone)) 2740 return NULL; 2741 2742 retry_cpuset: 2743 cpuset_mems_cookie = read_mems_allowed_begin(); 2744 2745 /* The preferred zone is used for statistics later */ 2746 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2747 nodemask ? : &cpuset_current_mems_allowed, 2748 &preferred_zone); 2749 if (!preferred_zone) 2750 goto out; 2751 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2752 2753 #ifdef CONFIG_CMA 2754 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2755 alloc_flags |= ALLOC_CMA; 2756 #endif 2757 retry: 2758 /* First allocation attempt */ 2759 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2760 zonelist, high_zoneidx, alloc_flags, 2761 preferred_zone, classzone_idx, migratetype); 2762 if (unlikely(!page)) { 2763 /* 2764 * The first pass makes sure allocations are spread 2765 * fairly within the local node. However, the local 2766 * node might have free pages left after the fairness 2767 * batches are exhausted, and remote zones haven't 2768 * even been considered yet. Try once more without 2769 * fairness, and include remote zones now, before 2770 * entering the slowpath and waking kswapd: prefer 2771 * spilling to a remote zone over swapping locally. 2772 */ 2773 if (alloc_flags & ALLOC_FAIR) { 2774 reset_alloc_batches(zonelist, high_zoneidx, 2775 preferred_zone); 2776 alloc_flags &= ~ALLOC_FAIR; 2777 goto retry; 2778 } 2779 /* 2780 * Runtime PM, block IO and its error handling path 2781 * can deadlock because I/O on the device might not 2782 * complete. 2783 */ 2784 gfp_mask = memalloc_noio_flags(gfp_mask); 2785 page = __alloc_pages_slowpath(gfp_mask, order, 2786 zonelist, high_zoneidx, nodemask, 2787 preferred_zone, classzone_idx, migratetype); 2788 } 2789 2790 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2791 2792 out: 2793 /* 2794 * When updating a task's mems_allowed, it is possible to race with 2795 * parallel threads in such a way that an allocation can fail while 2796 * the mask is being updated. If a page allocation is about to fail, 2797 * check if the cpuset changed during allocation and if so, retry. 2798 */ 2799 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2800 goto retry_cpuset; 2801 2802 return page; 2803 } 2804 EXPORT_SYMBOL(__alloc_pages_nodemask); 2805 2806 /* 2807 * Common helper functions. 2808 */ 2809 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2810 { 2811 struct page *page; 2812 2813 /* 2814 * __get_free_pages() returns a 32-bit address, which cannot represent 2815 * a highmem page 2816 */ 2817 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2818 2819 page = alloc_pages(gfp_mask, order); 2820 if (!page) 2821 return 0; 2822 return (unsigned long) page_address(page); 2823 } 2824 EXPORT_SYMBOL(__get_free_pages); 2825 2826 unsigned long get_zeroed_page(gfp_t gfp_mask) 2827 { 2828 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2829 } 2830 EXPORT_SYMBOL(get_zeroed_page); 2831 2832 void __free_pages(struct page *page, unsigned int order) 2833 { 2834 if (put_page_testzero(page)) { 2835 if (order == 0) 2836 free_hot_cold_page(page, false); 2837 else 2838 __free_pages_ok(page, order); 2839 } 2840 } 2841 2842 EXPORT_SYMBOL(__free_pages); 2843 2844 void free_pages(unsigned long addr, unsigned int order) 2845 { 2846 if (addr != 0) { 2847 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2848 __free_pages(virt_to_page((void *)addr), order); 2849 } 2850 } 2851 2852 EXPORT_SYMBOL(free_pages); 2853 2854 /* 2855 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2856 * of the current memory cgroup. 2857 * 2858 * It should be used when the caller would like to use kmalloc, but since the 2859 * allocation is large, it has to fall back to the page allocator. 2860 */ 2861 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2862 { 2863 struct page *page; 2864 struct mem_cgroup *memcg = NULL; 2865 2866 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2867 return NULL; 2868 page = alloc_pages(gfp_mask, order); 2869 memcg_kmem_commit_charge(page, memcg, order); 2870 return page; 2871 } 2872 2873 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 2874 { 2875 struct page *page; 2876 struct mem_cgroup *memcg = NULL; 2877 2878 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2879 return NULL; 2880 page = alloc_pages_node(nid, gfp_mask, order); 2881 memcg_kmem_commit_charge(page, memcg, order); 2882 return page; 2883 } 2884 2885 /* 2886 * __free_kmem_pages and free_kmem_pages will free pages allocated with 2887 * alloc_kmem_pages. 2888 */ 2889 void __free_kmem_pages(struct page *page, unsigned int order) 2890 { 2891 memcg_kmem_uncharge_pages(page, order); 2892 __free_pages(page, order); 2893 } 2894 2895 void free_kmem_pages(unsigned long addr, unsigned int order) 2896 { 2897 if (addr != 0) { 2898 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2899 __free_kmem_pages(virt_to_page((void *)addr), order); 2900 } 2901 } 2902 2903 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2904 { 2905 if (addr) { 2906 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2907 unsigned long used = addr + PAGE_ALIGN(size); 2908 2909 split_page(virt_to_page((void *)addr), order); 2910 while (used < alloc_end) { 2911 free_page(used); 2912 used += PAGE_SIZE; 2913 } 2914 } 2915 return (void *)addr; 2916 } 2917 2918 /** 2919 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2920 * @size: the number of bytes to allocate 2921 * @gfp_mask: GFP flags for the allocation 2922 * 2923 * This function is similar to alloc_pages(), except that it allocates the 2924 * minimum number of pages to satisfy the request. alloc_pages() can only 2925 * allocate memory in power-of-two pages. 2926 * 2927 * This function is also limited by MAX_ORDER. 2928 * 2929 * Memory allocated by this function must be released by free_pages_exact(). 2930 */ 2931 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2932 { 2933 unsigned int order = get_order(size); 2934 unsigned long addr; 2935 2936 addr = __get_free_pages(gfp_mask, order); 2937 return make_alloc_exact(addr, order, size); 2938 } 2939 EXPORT_SYMBOL(alloc_pages_exact); 2940 2941 /** 2942 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2943 * pages on a node. 2944 * @nid: the preferred node ID where memory should be allocated 2945 * @size: the number of bytes to allocate 2946 * @gfp_mask: GFP flags for the allocation 2947 * 2948 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2949 * back. 2950 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2951 * but is not exact. 2952 */ 2953 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2954 { 2955 unsigned order = get_order(size); 2956 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2957 if (!p) 2958 return NULL; 2959 return make_alloc_exact((unsigned long)page_address(p), order, size); 2960 } 2961 EXPORT_SYMBOL(alloc_pages_exact_nid); 2962 2963 /** 2964 * free_pages_exact - release memory allocated via alloc_pages_exact() 2965 * @virt: the value returned by alloc_pages_exact. 2966 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2967 * 2968 * Release the memory allocated by a previous call to alloc_pages_exact. 2969 */ 2970 void free_pages_exact(void *virt, size_t size) 2971 { 2972 unsigned long addr = (unsigned long)virt; 2973 unsigned long end = addr + PAGE_ALIGN(size); 2974 2975 while (addr < end) { 2976 free_page(addr); 2977 addr += PAGE_SIZE; 2978 } 2979 } 2980 EXPORT_SYMBOL(free_pages_exact); 2981 2982 /** 2983 * nr_free_zone_pages - count number of pages beyond high watermark 2984 * @offset: The zone index of the highest zone 2985 * 2986 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2987 * high watermark within all zones at or below a given zone index. For each 2988 * zone, the number of pages is calculated as: 2989 * managed_pages - high_pages 2990 */ 2991 static unsigned long nr_free_zone_pages(int offset) 2992 { 2993 struct zoneref *z; 2994 struct zone *zone; 2995 2996 /* Just pick one node, since fallback list is circular */ 2997 unsigned long sum = 0; 2998 2999 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3000 3001 for_each_zone_zonelist(zone, z, zonelist, offset) { 3002 unsigned long size = zone->managed_pages; 3003 unsigned long high = high_wmark_pages(zone); 3004 if (size > high) 3005 sum += size - high; 3006 } 3007 3008 return sum; 3009 } 3010 3011 /** 3012 * nr_free_buffer_pages - count number of pages beyond high watermark 3013 * 3014 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3015 * watermark within ZONE_DMA and ZONE_NORMAL. 3016 */ 3017 unsigned long nr_free_buffer_pages(void) 3018 { 3019 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3020 } 3021 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3022 3023 /** 3024 * nr_free_pagecache_pages - count number of pages beyond high watermark 3025 * 3026 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3027 * high watermark within all zones. 3028 */ 3029 unsigned long nr_free_pagecache_pages(void) 3030 { 3031 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3032 } 3033 3034 static inline void show_node(struct zone *zone) 3035 { 3036 if (IS_ENABLED(CONFIG_NUMA)) 3037 printk("Node %d ", zone_to_nid(zone)); 3038 } 3039 3040 void si_meminfo(struct sysinfo *val) 3041 { 3042 val->totalram = totalram_pages; 3043 val->sharedram = 0; 3044 val->freeram = global_page_state(NR_FREE_PAGES); 3045 val->bufferram = nr_blockdev_pages(); 3046 val->totalhigh = totalhigh_pages; 3047 val->freehigh = nr_free_highpages(); 3048 val->mem_unit = PAGE_SIZE; 3049 } 3050 3051 EXPORT_SYMBOL(si_meminfo); 3052 3053 #ifdef CONFIG_NUMA 3054 void si_meminfo_node(struct sysinfo *val, int nid) 3055 { 3056 int zone_type; /* needs to be signed */ 3057 unsigned long managed_pages = 0; 3058 pg_data_t *pgdat = NODE_DATA(nid); 3059 3060 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3061 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3062 val->totalram = managed_pages; 3063 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3064 #ifdef CONFIG_HIGHMEM 3065 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3066 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3067 NR_FREE_PAGES); 3068 #else 3069 val->totalhigh = 0; 3070 val->freehigh = 0; 3071 #endif 3072 val->mem_unit = PAGE_SIZE; 3073 } 3074 #endif 3075 3076 /* 3077 * Determine whether the node should be displayed or not, depending on whether 3078 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3079 */ 3080 bool skip_free_areas_node(unsigned int flags, int nid) 3081 { 3082 bool ret = false; 3083 unsigned int cpuset_mems_cookie; 3084 3085 if (!(flags & SHOW_MEM_FILTER_NODES)) 3086 goto out; 3087 3088 do { 3089 cpuset_mems_cookie = read_mems_allowed_begin(); 3090 ret = !node_isset(nid, cpuset_current_mems_allowed); 3091 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3092 out: 3093 return ret; 3094 } 3095 3096 #define K(x) ((x) << (PAGE_SHIFT-10)) 3097 3098 static void show_migration_types(unsigned char type) 3099 { 3100 static const char types[MIGRATE_TYPES] = { 3101 [MIGRATE_UNMOVABLE] = 'U', 3102 [MIGRATE_RECLAIMABLE] = 'E', 3103 [MIGRATE_MOVABLE] = 'M', 3104 [MIGRATE_RESERVE] = 'R', 3105 #ifdef CONFIG_CMA 3106 [MIGRATE_CMA] = 'C', 3107 #endif 3108 #ifdef CONFIG_MEMORY_ISOLATION 3109 [MIGRATE_ISOLATE] = 'I', 3110 #endif 3111 }; 3112 char tmp[MIGRATE_TYPES + 1]; 3113 char *p = tmp; 3114 int i; 3115 3116 for (i = 0; i < MIGRATE_TYPES; i++) { 3117 if (type & (1 << i)) 3118 *p++ = types[i]; 3119 } 3120 3121 *p = '\0'; 3122 printk("(%s) ", tmp); 3123 } 3124 3125 /* 3126 * Show free area list (used inside shift_scroll-lock stuff) 3127 * We also calculate the percentage fragmentation. We do this by counting the 3128 * memory on each free list with the exception of the first item on the list. 3129 * Suppresses nodes that are not allowed by current's cpuset if 3130 * SHOW_MEM_FILTER_NODES is passed. 3131 */ 3132 void show_free_areas(unsigned int filter) 3133 { 3134 int cpu; 3135 struct zone *zone; 3136 3137 for_each_populated_zone(zone) { 3138 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3139 continue; 3140 show_node(zone); 3141 printk("%s per-cpu:\n", zone->name); 3142 3143 for_each_online_cpu(cpu) { 3144 struct per_cpu_pageset *pageset; 3145 3146 pageset = per_cpu_ptr(zone->pageset, cpu); 3147 3148 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3149 cpu, pageset->pcp.high, 3150 pageset->pcp.batch, pageset->pcp.count); 3151 } 3152 } 3153 3154 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3155 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3156 " unevictable:%lu" 3157 " dirty:%lu writeback:%lu unstable:%lu\n" 3158 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3159 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3160 " free_cma:%lu\n", 3161 global_page_state(NR_ACTIVE_ANON), 3162 global_page_state(NR_INACTIVE_ANON), 3163 global_page_state(NR_ISOLATED_ANON), 3164 global_page_state(NR_ACTIVE_FILE), 3165 global_page_state(NR_INACTIVE_FILE), 3166 global_page_state(NR_ISOLATED_FILE), 3167 global_page_state(NR_UNEVICTABLE), 3168 global_page_state(NR_FILE_DIRTY), 3169 global_page_state(NR_WRITEBACK), 3170 global_page_state(NR_UNSTABLE_NFS), 3171 global_page_state(NR_FREE_PAGES), 3172 global_page_state(NR_SLAB_RECLAIMABLE), 3173 global_page_state(NR_SLAB_UNRECLAIMABLE), 3174 global_page_state(NR_FILE_MAPPED), 3175 global_page_state(NR_SHMEM), 3176 global_page_state(NR_PAGETABLE), 3177 global_page_state(NR_BOUNCE), 3178 global_page_state(NR_FREE_CMA_PAGES)); 3179 3180 for_each_populated_zone(zone) { 3181 int i; 3182 3183 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3184 continue; 3185 show_node(zone); 3186 printk("%s" 3187 " free:%lukB" 3188 " min:%lukB" 3189 " low:%lukB" 3190 " high:%lukB" 3191 " active_anon:%lukB" 3192 " inactive_anon:%lukB" 3193 " active_file:%lukB" 3194 " inactive_file:%lukB" 3195 " unevictable:%lukB" 3196 " isolated(anon):%lukB" 3197 " isolated(file):%lukB" 3198 " present:%lukB" 3199 " managed:%lukB" 3200 " mlocked:%lukB" 3201 " dirty:%lukB" 3202 " writeback:%lukB" 3203 " mapped:%lukB" 3204 " shmem:%lukB" 3205 " slab_reclaimable:%lukB" 3206 " slab_unreclaimable:%lukB" 3207 " kernel_stack:%lukB" 3208 " pagetables:%lukB" 3209 " unstable:%lukB" 3210 " bounce:%lukB" 3211 " free_cma:%lukB" 3212 " writeback_tmp:%lukB" 3213 " pages_scanned:%lu" 3214 " all_unreclaimable? %s" 3215 "\n", 3216 zone->name, 3217 K(zone_page_state(zone, NR_FREE_PAGES)), 3218 K(min_wmark_pages(zone)), 3219 K(low_wmark_pages(zone)), 3220 K(high_wmark_pages(zone)), 3221 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3222 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3223 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3224 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3225 K(zone_page_state(zone, NR_UNEVICTABLE)), 3226 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3227 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3228 K(zone->present_pages), 3229 K(zone->managed_pages), 3230 K(zone_page_state(zone, NR_MLOCK)), 3231 K(zone_page_state(zone, NR_FILE_DIRTY)), 3232 K(zone_page_state(zone, NR_WRITEBACK)), 3233 K(zone_page_state(zone, NR_FILE_MAPPED)), 3234 K(zone_page_state(zone, NR_SHMEM)), 3235 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3236 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3237 zone_page_state(zone, NR_KERNEL_STACK) * 3238 THREAD_SIZE / 1024, 3239 K(zone_page_state(zone, NR_PAGETABLE)), 3240 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3241 K(zone_page_state(zone, NR_BOUNCE)), 3242 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3243 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3244 zone->pages_scanned, 3245 (!zone_reclaimable(zone) ? "yes" : "no") 3246 ); 3247 printk("lowmem_reserve[]:"); 3248 for (i = 0; i < MAX_NR_ZONES; i++) 3249 printk(" %lu", zone->lowmem_reserve[i]); 3250 printk("\n"); 3251 } 3252 3253 for_each_populated_zone(zone) { 3254 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3255 unsigned char types[MAX_ORDER]; 3256 3257 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3258 continue; 3259 show_node(zone); 3260 printk("%s: ", zone->name); 3261 3262 spin_lock_irqsave(&zone->lock, flags); 3263 for (order = 0; order < MAX_ORDER; order++) { 3264 struct free_area *area = &zone->free_area[order]; 3265 int type; 3266 3267 nr[order] = area->nr_free; 3268 total += nr[order] << order; 3269 3270 types[order] = 0; 3271 for (type = 0; type < MIGRATE_TYPES; type++) { 3272 if (!list_empty(&area->free_list[type])) 3273 types[order] |= 1 << type; 3274 } 3275 } 3276 spin_unlock_irqrestore(&zone->lock, flags); 3277 for (order = 0; order < MAX_ORDER; order++) { 3278 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3279 if (nr[order]) 3280 show_migration_types(types[order]); 3281 } 3282 printk("= %lukB\n", K(total)); 3283 } 3284 3285 hugetlb_show_meminfo(); 3286 3287 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3288 3289 show_swap_cache_info(); 3290 } 3291 3292 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3293 { 3294 zoneref->zone = zone; 3295 zoneref->zone_idx = zone_idx(zone); 3296 } 3297 3298 /* 3299 * Builds allocation fallback zone lists. 3300 * 3301 * Add all populated zones of a node to the zonelist. 3302 */ 3303 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3304 int nr_zones) 3305 { 3306 struct zone *zone; 3307 enum zone_type zone_type = MAX_NR_ZONES; 3308 3309 do { 3310 zone_type--; 3311 zone = pgdat->node_zones + zone_type; 3312 if (populated_zone(zone)) { 3313 zoneref_set_zone(zone, 3314 &zonelist->_zonerefs[nr_zones++]); 3315 check_highest_zone(zone_type); 3316 } 3317 } while (zone_type); 3318 3319 return nr_zones; 3320 } 3321 3322 3323 /* 3324 * zonelist_order: 3325 * 0 = automatic detection of better ordering. 3326 * 1 = order by ([node] distance, -zonetype) 3327 * 2 = order by (-zonetype, [node] distance) 3328 * 3329 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3330 * the same zonelist. So only NUMA can configure this param. 3331 */ 3332 #define ZONELIST_ORDER_DEFAULT 0 3333 #define ZONELIST_ORDER_NODE 1 3334 #define ZONELIST_ORDER_ZONE 2 3335 3336 /* zonelist order in the kernel. 3337 * set_zonelist_order() will set this to NODE or ZONE. 3338 */ 3339 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3340 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3341 3342 3343 #ifdef CONFIG_NUMA 3344 /* The value user specified ....changed by config */ 3345 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3346 /* string for sysctl */ 3347 #define NUMA_ZONELIST_ORDER_LEN 16 3348 char numa_zonelist_order[16] = "default"; 3349 3350 /* 3351 * interface for configure zonelist ordering. 3352 * command line option "numa_zonelist_order" 3353 * = "[dD]efault - default, automatic configuration. 3354 * = "[nN]ode - order by node locality, then by zone within node 3355 * = "[zZ]one - order by zone, then by locality within zone 3356 */ 3357 3358 static int __parse_numa_zonelist_order(char *s) 3359 { 3360 if (*s == 'd' || *s == 'D') { 3361 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3362 } else if (*s == 'n' || *s == 'N') { 3363 user_zonelist_order = ZONELIST_ORDER_NODE; 3364 } else if (*s == 'z' || *s == 'Z') { 3365 user_zonelist_order = ZONELIST_ORDER_ZONE; 3366 } else { 3367 printk(KERN_WARNING 3368 "Ignoring invalid numa_zonelist_order value: " 3369 "%s\n", s); 3370 return -EINVAL; 3371 } 3372 return 0; 3373 } 3374 3375 static __init int setup_numa_zonelist_order(char *s) 3376 { 3377 int ret; 3378 3379 if (!s) 3380 return 0; 3381 3382 ret = __parse_numa_zonelist_order(s); 3383 if (ret == 0) 3384 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3385 3386 return ret; 3387 } 3388 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3389 3390 /* 3391 * sysctl handler for numa_zonelist_order 3392 */ 3393 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3394 void __user *buffer, size_t *length, 3395 loff_t *ppos) 3396 { 3397 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3398 int ret; 3399 static DEFINE_MUTEX(zl_order_mutex); 3400 3401 mutex_lock(&zl_order_mutex); 3402 if (write) { 3403 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3404 ret = -EINVAL; 3405 goto out; 3406 } 3407 strcpy(saved_string, (char *)table->data); 3408 } 3409 ret = proc_dostring(table, write, buffer, length, ppos); 3410 if (ret) 3411 goto out; 3412 if (write) { 3413 int oldval = user_zonelist_order; 3414 3415 ret = __parse_numa_zonelist_order((char *)table->data); 3416 if (ret) { 3417 /* 3418 * bogus value. restore saved string 3419 */ 3420 strncpy((char *)table->data, saved_string, 3421 NUMA_ZONELIST_ORDER_LEN); 3422 user_zonelist_order = oldval; 3423 } else if (oldval != user_zonelist_order) { 3424 mutex_lock(&zonelists_mutex); 3425 build_all_zonelists(NULL, NULL); 3426 mutex_unlock(&zonelists_mutex); 3427 } 3428 } 3429 out: 3430 mutex_unlock(&zl_order_mutex); 3431 return ret; 3432 } 3433 3434 3435 #define MAX_NODE_LOAD (nr_online_nodes) 3436 static int node_load[MAX_NUMNODES]; 3437 3438 /** 3439 * find_next_best_node - find the next node that should appear in a given node's fallback list 3440 * @node: node whose fallback list we're appending 3441 * @used_node_mask: nodemask_t of already used nodes 3442 * 3443 * We use a number of factors to determine which is the next node that should 3444 * appear on a given node's fallback list. The node should not have appeared 3445 * already in @node's fallback list, and it should be the next closest node 3446 * according to the distance array (which contains arbitrary distance values 3447 * from each node to each node in the system), and should also prefer nodes 3448 * with no CPUs, since presumably they'll have very little allocation pressure 3449 * on them otherwise. 3450 * It returns -1 if no node is found. 3451 */ 3452 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3453 { 3454 int n, val; 3455 int min_val = INT_MAX; 3456 int best_node = NUMA_NO_NODE; 3457 const struct cpumask *tmp = cpumask_of_node(0); 3458 3459 /* Use the local node if we haven't already */ 3460 if (!node_isset(node, *used_node_mask)) { 3461 node_set(node, *used_node_mask); 3462 return node; 3463 } 3464 3465 for_each_node_state(n, N_MEMORY) { 3466 3467 /* Don't want a node to appear more than once */ 3468 if (node_isset(n, *used_node_mask)) 3469 continue; 3470 3471 /* Use the distance array to find the distance */ 3472 val = node_distance(node, n); 3473 3474 /* Penalize nodes under us ("prefer the next node") */ 3475 val += (n < node); 3476 3477 /* Give preference to headless and unused nodes */ 3478 tmp = cpumask_of_node(n); 3479 if (!cpumask_empty(tmp)) 3480 val += PENALTY_FOR_NODE_WITH_CPUS; 3481 3482 /* Slight preference for less loaded node */ 3483 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3484 val += node_load[n]; 3485 3486 if (val < min_val) { 3487 min_val = val; 3488 best_node = n; 3489 } 3490 } 3491 3492 if (best_node >= 0) 3493 node_set(best_node, *used_node_mask); 3494 3495 return best_node; 3496 } 3497 3498 3499 /* 3500 * Build zonelists ordered by node and zones within node. 3501 * This results in maximum locality--normal zone overflows into local 3502 * DMA zone, if any--but risks exhausting DMA zone. 3503 */ 3504 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3505 { 3506 int j; 3507 struct zonelist *zonelist; 3508 3509 zonelist = &pgdat->node_zonelists[0]; 3510 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3511 ; 3512 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3513 zonelist->_zonerefs[j].zone = NULL; 3514 zonelist->_zonerefs[j].zone_idx = 0; 3515 } 3516 3517 /* 3518 * Build gfp_thisnode zonelists 3519 */ 3520 static void build_thisnode_zonelists(pg_data_t *pgdat) 3521 { 3522 int j; 3523 struct zonelist *zonelist; 3524 3525 zonelist = &pgdat->node_zonelists[1]; 3526 j = build_zonelists_node(pgdat, zonelist, 0); 3527 zonelist->_zonerefs[j].zone = NULL; 3528 zonelist->_zonerefs[j].zone_idx = 0; 3529 } 3530 3531 /* 3532 * Build zonelists ordered by zone and nodes within zones. 3533 * This results in conserving DMA zone[s] until all Normal memory is 3534 * exhausted, but results in overflowing to remote node while memory 3535 * may still exist in local DMA zone. 3536 */ 3537 static int node_order[MAX_NUMNODES]; 3538 3539 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3540 { 3541 int pos, j, node; 3542 int zone_type; /* needs to be signed */ 3543 struct zone *z; 3544 struct zonelist *zonelist; 3545 3546 zonelist = &pgdat->node_zonelists[0]; 3547 pos = 0; 3548 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3549 for (j = 0; j < nr_nodes; j++) { 3550 node = node_order[j]; 3551 z = &NODE_DATA(node)->node_zones[zone_type]; 3552 if (populated_zone(z)) { 3553 zoneref_set_zone(z, 3554 &zonelist->_zonerefs[pos++]); 3555 check_highest_zone(zone_type); 3556 } 3557 } 3558 } 3559 zonelist->_zonerefs[pos].zone = NULL; 3560 zonelist->_zonerefs[pos].zone_idx = 0; 3561 } 3562 3563 static int default_zonelist_order(void) 3564 { 3565 int nid, zone_type; 3566 unsigned long low_kmem_size, total_size; 3567 struct zone *z; 3568 int average_size; 3569 /* 3570 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3571 * If they are really small and used heavily, the system can fall 3572 * into OOM very easily. 3573 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3574 */ 3575 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3576 low_kmem_size = 0; 3577 total_size = 0; 3578 for_each_online_node(nid) { 3579 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3580 z = &NODE_DATA(nid)->node_zones[zone_type]; 3581 if (populated_zone(z)) { 3582 if (zone_type < ZONE_NORMAL) 3583 low_kmem_size += z->managed_pages; 3584 total_size += z->managed_pages; 3585 } else if (zone_type == ZONE_NORMAL) { 3586 /* 3587 * If any node has only lowmem, then node order 3588 * is preferred to allow kernel allocations 3589 * locally; otherwise, they can easily infringe 3590 * on other nodes when there is an abundance of 3591 * lowmem available to allocate from. 3592 */ 3593 return ZONELIST_ORDER_NODE; 3594 } 3595 } 3596 } 3597 if (!low_kmem_size || /* there are no DMA area. */ 3598 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3599 return ZONELIST_ORDER_NODE; 3600 /* 3601 * look into each node's config. 3602 * If there is a node whose DMA/DMA32 memory is very big area on 3603 * local memory, NODE_ORDER may be suitable. 3604 */ 3605 average_size = total_size / 3606 (nodes_weight(node_states[N_MEMORY]) + 1); 3607 for_each_online_node(nid) { 3608 low_kmem_size = 0; 3609 total_size = 0; 3610 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3611 z = &NODE_DATA(nid)->node_zones[zone_type]; 3612 if (populated_zone(z)) { 3613 if (zone_type < ZONE_NORMAL) 3614 low_kmem_size += z->present_pages; 3615 total_size += z->present_pages; 3616 } 3617 } 3618 if (low_kmem_size && 3619 total_size > average_size && /* ignore small node */ 3620 low_kmem_size > total_size * 70/100) 3621 return ZONELIST_ORDER_NODE; 3622 } 3623 return ZONELIST_ORDER_ZONE; 3624 } 3625 3626 static void set_zonelist_order(void) 3627 { 3628 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3629 current_zonelist_order = default_zonelist_order(); 3630 else 3631 current_zonelist_order = user_zonelist_order; 3632 } 3633 3634 static void build_zonelists(pg_data_t *pgdat) 3635 { 3636 int j, node, load; 3637 enum zone_type i; 3638 nodemask_t used_mask; 3639 int local_node, prev_node; 3640 struct zonelist *zonelist; 3641 int order = current_zonelist_order; 3642 3643 /* initialize zonelists */ 3644 for (i = 0; i < MAX_ZONELISTS; i++) { 3645 zonelist = pgdat->node_zonelists + i; 3646 zonelist->_zonerefs[0].zone = NULL; 3647 zonelist->_zonerefs[0].zone_idx = 0; 3648 } 3649 3650 /* NUMA-aware ordering of nodes */ 3651 local_node = pgdat->node_id; 3652 load = nr_online_nodes; 3653 prev_node = local_node; 3654 nodes_clear(used_mask); 3655 3656 memset(node_order, 0, sizeof(node_order)); 3657 j = 0; 3658 3659 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3660 /* 3661 * We don't want to pressure a particular node. 3662 * So adding penalty to the first node in same 3663 * distance group to make it round-robin. 3664 */ 3665 if (node_distance(local_node, node) != 3666 node_distance(local_node, prev_node)) 3667 node_load[node] = load; 3668 3669 prev_node = node; 3670 load--; 3671 if (order == ZONELIST_ORDER_NODE) 3672 build_zonelists_in_node_order(pgdat, node); 3673 else 3674 node_order[j++] = node; /* remember order */ 3675 } 3676 3677 if (order == ZONELIST_ORDER_ZONE) { 3678 /* calculate node order -- i.e., DMA last! */ 3679 build_zonelists_in_zone_order(pgdat, j); 3680 } 3681 3682 build_thisnode_zonelists(pgdat); 3683 } 3684 3685 /* Construct the zonelist performance cache - see further mmzone.h */ 3686 static void build_zonelist_cache(pg_data_t *pgdat) 3687 { 3688 struct zonelist *zonelist; 3689 struct zonelist_cache *zlc; 3690 struct zoneref *z; 3691 3692 zonelist = &pgdat->node_zonelists[0]; 3693 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3694 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3695 for (z = zonelist->_zonerefs; z->zone; z++) 3696 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3697 } 3698 3699 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3700 /* 3701 * Return node id of node used for "local" allocations. 3702 * I.e., first node id of first zone in arg node's generic zonelist. 3703 * Used for initializing percpu 'numa_mem', which is used primarily 3704 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3705 */ 3706 int local_memory_node(int node) 3707 { 3708 struct zone *zone; 3709 3710 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3711 gfp_zone(GFP_KERNEL), 3712 NULL, 3713 &zone); 3714 return zone->node; 3715 } 3716 #endif 3717 3718 #else /* CONFIG_NUMA */ 3719 3720 static void set_zonelist_order(void) 3721 { 3722 current_zonelist_order = ZONELIST_ORDER_ZONE; 3723 } 3724 3725 static void build_zonelists(pg_data_t *pgdat) 3726 { 3727 int node, local_node; 3728 enum zone_type j; 3729 struct zonelist *zonelist; 3730 3731 local_node = pgdat->node_id; 3732 3733 zonelist = &pgdat->node_zonelists[0]; 3734 j = build_zonelists_node(pgdat, zonelist, 0); 3735 3736 /* 3737 * Now we build the zonelist so that it contains the zones 3738 * of all the other nodes. 3739 * We don't want to pressure a particular node, so when 3740 * building the zones for node N, we make sure that the 3741 * zones coming right after the local ones are those from 3742 * node N+1 (modulo N) 3743 */ 3744 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3745 if (!node_online(node)) 3746 continue; 3747 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3748 } 3749 for (node = 0; node < local_node; node++) { 3750 if (!node_online(node)) 3751 continue; 3752 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3753 } 3754 3755 zonelist->_zonerefs[j].zone = NULL; 3756 zonelist->_zonerefs[j].zone_idx = 0; 3757 } 3758 3759 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3760 static void build_zonelist_cache(pg_data_t *pgdat) 3761 { 3762 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3763 } 3764 3765 #endif /* CONFIG_NUMA */ 3766 3767 /* 3768 * Boot pageset table. One per cpu which is going to be used for all 3769 * zones and all nodes. The parameters will be set in such a way 3770 * that an item put on a list will immediately be handed over to 3771 * the buddy list. This is safe since pageset manipulation is done 3772 * with interrupts disabled. 3773 * 3774 * The boot_pagesets must be kept even after bootup is complete for 3775 * unused processors and/or zones. They do play a role for bootstrapping 3776 * hotplugged processors. 3777 * 3778 * zoneinfo_show() and maybe other functions do 3779 * not check if the processor is online before following the pageset pointer. 3780 * Other parts of the kernel may not check if the zone is available. 3781 */ 3782 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3783 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3784 static void setup_zone_pageset(struct zone *zone); 3785 3786 /* 3787 * Global mutex to protect against size modification of zonelists 3788 * as well as to serialize pageset setup for the new populated zone. 3789 */ 3790 DEFINE_MUTEX(zonelists_mutex); 3791 3792 /* return values int ....just for stop_machine() */ 3793 static int __build_all_zonelists(void *data) 3794 { 3795 int nid; 3796 int cpu; 3797 pg_data_t *self = data; 3798 3799 #ifdef CONFIG_NUMA 3800 memset(node_load, 0, sizeof(node_load)); 3801 #endif 3802 3803 if (self && !node_online(self->node_id)) { 3804 build_zonelists(self); 3805 build_zonelist_cache(self); 3806 } 3807 3808 for_each_online_node(nid) { 3809 pg_data_t *pgdat = NODE_DATA(nid); 3810 3811 build_zonelists(pgdat); 3812 build_zonelist_cache(pgdat); 3813 } 3814 3815 /* 3816 * Initialize the boot_pagesets that are going to be used 3817 * for bootstrapping processors. The real pagesets for 3818 * each zone will be allocated later when the per cpu 3819 * allocator is available. 3820 * 3821 * boot_pagesets are used also for bootstrapping offline 3822 * cpus if the system is already booted because the pagesets 3823 * are needed to initialize allocators on a specific cpu too. 3824 * F.e. the percpu allocator needs the page allocator which 3825 * needs the percpu allocator in order to allocate its pagesets 3826 * (a chicken-egg dilemma). 3827 */ 3828 for_each_possible_cpu(cpu) { 3829 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3830 3831 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3832 /* 3833 * We now know the "local memory node" for each node-- 3834 * i.e., the node of the first zone in the generic zonelist. 3835 * Set up numa_mem percpu variable for on-line cpus. During 3836 * boot, only the boot cpu should be on-line; we'll init the 3837 * secondary cpus' numa_mem as they come on-line. During 3838 * node/memory hotplug, we'll fixup all on-line cpus. 3839 */ 3840 if (cpu_online(cpu)) 3841 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3842 #endif 3843 } 3844 3845 return 0; 3846 } 3847 3848 /* 3849 * Called with zonelists_mutex held always 3850 * unless system_state == SYSTEM_BOOTING. 3851 */ 3852 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3853 { 3854 set_zonelist_order(); 3855 3856 if (system_state == SYSTEM_BOOTING) { 3857 __build_all_zonelists(NULL); 3858 mminit_verify_zonelist(); 3859 cpuset_init_current_mems_allowed(); 3860 } else { 3861 #ifdef CONFIG_MEMORY_HOTPLUG 3862 if (zone) 3863 setup_zone_pageset(zone); 3864 #endif 3865 /* we have to stop all cpus to guarantee there is no user 3866 of zonelist */ 3867 stop_machine(__build_all_zonelists, pgdat, NULL); 3868 /* cpuset refresh routine should be here */ 3869 } 3870 vm_total_pages = nr_free_pagecache_pages(); 3871 /* 3872 * Disable grouping by mobility if the number of pages in the 3873 * system is too low to allow the mechanism to work. It would be 3874 * more accurate, but expensive to check per-zone. This check is 3875 * made on memory-hotadd so a system can start with mobility 3876 * disabled and enable it later 3877 */ 3878 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3879 page_group_by_mobility_disabled = 1; 3880 else 3881 page_group_by_mobility_disabled = 0; 3882 3883 printk("Built %i zonelists in %s order, mobility grouping %s. " 3884 "Total pages: %ld\n", 3885 nr_online_nodes, 3886 zonelist_order_name[current_zonelist_order], 3887 page_group_by_mobility_disabled ? "off" : "on", 3888 vm_total_pages); 3889 #ifdef CONFIG_NUMA 3890 printk("Policy zone: %s\n", zone_names[policy_zone]); 3891 #endif 3892 } 3893 3894 /* 3895 * Helper functions to size the waitqueue hash table. 3896 * Essentially these want to choose hash table sizes sufficiently 3897 * large so that collisions trying to wait on pages are rare. 3898 * But in fact, the number of active page waitqueues on typical 3899 * systems is ridiculously low, less than 200. So this is even 3900 * conservative, even though it seems large. 3901 * 3902 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3903 * waitqueues, i.e. the size of the waitq table given the number of pages. 3904 */ 3905 #define PAGES_PER_WAITQUEUE 256 3906 3907 #ifndef CONFIG_MEMORY_HOTPLUG 3908 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3909 { 3910 unsigned long size = 1; 3911 3912 pages /= PAGES_PER_WAITQUEUE; 3913 3914 while (size < pages) 3915 size <<= 1; 3916 3917 /* 3918 * Once we have dozens or even hundreds of threads sleeping 3919 * on IO we've got bigger problems than wait queue collision. 3920 * Limit the size of the wait table to a reasonable size. 3921 */ 3922 size = min(size, 4096UL); 3923 3924 return max(size, 4UL); 3925 } 3926 #else 3927 /* 3928 * A zone's size might be changed by hot-add, so it is not possible to determine 3929 * a suitable size for its wait_table. So we use the maximum size now. 3930 * 3931 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3932 * 3933 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3934 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3935 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3936 * 3937 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3938 * or more by the traditional way. (See above). It equals: 3939 * 3940 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3941 * ia64(16K page size) : = ( 8G + 4M)byte. 3942 * powerpc (64K page size) : = (32G +16M)byte. 3943 */ 3944 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3945 { 3946 return 4096UL; 3947 } 3948 #endif 3949 3950 /* 3951 * This is an integer logarithm so that shifts can be used later 3952 * to extract the more random high bits from the multiplicative 3953 * hash function before the remainder is taken. 3954 */ 3955 static inline unsigned long wait_table_bits(unsigned long size) 3956 { 3957 return ffz(~size); 3958 } 3959 3960 /* 3961 * Check if a pageblock contains reserved pages 3962 */ 3963 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3964 { 3965 unsigned long pfn; 3966 3967 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3968 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3969 return 1; 3970 } 3971 return 0; 3972 } 3973 3974 /* 3975 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3976 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3977 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3978 * higher will lead to a bigger reserve which will get freed as contiguous 3979 * blocks as reclaim kicks in 3980 */ 3981 static void setup_zone_migrate_reserve(struct zone *zone) 3982 { 3983 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3984 struct page *page; 3985 unsigned long block_migratetype; 3986 int reserve; 3987 int old_reserve; 3988 3989 /* 3990 * Get the start pfn, end pfn and the number of blocks to reserve 3991 * We have to be careful to be aligned to pageblock_nr_pages to 3992 * make sure that we always check pfn_valid for the first page in 3993 * the block. 3994 */ 3995 start_pfn = zone->zone_start_pfn; 3996 end_pfn = zone_end_pfn(zone); 3997 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3998 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3999 pageblock_order; 4000 4001 /* 4002 * Reserve blocks are generally in place to help high-order atomic 4003 * allocations that are short-lived. A min_free_kbytes value that 4004 * would result in more than 2 reserve blocks for atomic allocations 4005 * is assumed to be in place to help anti-fragmentation for the 4006 * future allocation of hugepages at runtime. 4007 */ 4008 reserve = min(2, reserve); 4009 old_reserve = zone->nr_migrate_reserve_block; 4010 4011 /* When memory hot-add, we almost always need to do nothing */ 4012 if (reserve == old_reserve) 4013 return; 4014 zone->nr_migrate_reserve_block = reserve; 4015 4016 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4017 if (!pfn_valid(pfn)) 4018 continue; 4019 page = pfn_to_page(pfn); 4020 4021 /* Watch out for overlapping nodes */ 4022 if (page_to_nid(page) != zone_to_nid(zone)) 4023 continue; 4024 4025 block_migratetype = get_pageblock_migratetype(page); 4026 4027 /* Only test what is necessary when the reserves are not met */ 4028 if (reserve > 0) { 4029 /* 4030 * Blocks with reserved pages will never free, skip 4031 * them. 4032 */ 4033 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4034 if (pageblock_is_reserved(pfn, block_end_pfn)) 4035 continue; 4036 4037 /* If this block is reserved, account for it */ 4038 if (block_migratetype == MIGRATE_RESERVE) { 4039 reserve--; 4040 continue; 4041 } 4042 4043 /* Suitable for reserving if this block is movable */ 4044 if (block_migratetype == MIGRATE_MOVABLE) { 4045 set_pageblock_migratetype(page, 4046 MIGRATE_RESERVE); 4047 move_freepages_block(zone, page, 4048 MIGRATE_RESERVE); 4049 reserve--; 4050 continue; 4051 } 4052 } else if (!old_reserve) { 4053 /* 4054 * At boot time we don't need to scan the whole zone 4055 * for turning off MIGRATE_RESERVE. 4056 */ 4057 break; 4058 } 4059 4060 /* 4061 * If the reserve is met and this is a previous reserved block, 4062 * take it back 4063 */ 4064 if (block_migratetype == MIGRATE_RESERVE) { 4065 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4066 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4067 } 4068 } 4069 } 4070 4071 /* 4072 * Initially all pages are reserved - free ones are freed 4073 * up by free_all_bootmem() once the early boot process is 4074 * done. Non-atomic initialization, single-pass. 4075 */ 4076 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4077 unsigned long start_pfn, enum memmap_context context) 4078 { 4079 struct page *page; 4080 unsigned long end_pfn = start_pfn + size; 4081 unsigned long pfn; 4082 struct zone *z; 4083 4084 if (highest_memmap_pfn < end_pfn - 1) 4085 highest_memmap_pfn = end_pfn - 1; 4086 4087 z = &NODE_DATA(nid)->node_zones[zone]; 4088 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4089 /* 4090 * There can be holes in boot-time mem_map[]s 4091 * handed to this function. They do not 4092 * exist on hotplugged memory. 4093 */ 4094 if (context == MEMMAP_EARLY) { 4095 if (!early_pfn_valid(pfn)) 4096 continue; 4097 if (!early_pfn_in_nid(pfn, nid)) 4098 continue; 4099 } 4100 page = pfn_to_page(pfn); 4101 set_page_links(page, zone, nid, pfn); 4102 mminit_verify_page_links(page, zone, nid, pfn); 4103 init_page_count(page); 4104 page_mapcount_reset(page); 4105 page_cpupid_reset_last(page); 4106 SetPageReserved(page); 4107 /* 4108 * Mark the block movable so that blocks are reserved for 4109 * movable at startup. This will force kernel allocations 4110 * to reserve their blocks rather than leaking throughout 4111 * the address space during boot when many long-lived 4112 * kernel allocations are made. Later some blocks near 4113 * the start are marked MIGRATE_RESERVE by 4114 * setup_zone_migrate_reserve() 4115 * 4116 * bitmap is created for zone's valid pfn range. but memmap 4117 * can be created for invalid pages (for alignment) 4118 * check here not to call set_pageblock_migratetype() against 4119 * pfn out of zone. 4120 */ 4121 if ((z->zone_start_pfn <= pfn) 4122 && (pfn < zone_end_pfn(z)) 4123 && !(pfn & (pageblock_nr_pages - 1))) 4124 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4125 4126 INIT_LIST_HEAD(&page->lru); 4127 #ifdef WANT_PAGE_VIRTUAL 4128 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4129 if (!is_highmem_idx(zone)) 4130 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4131 #endif 4132 } 4133 } 4134 4135 static void __meminit zone_init_free_lists(struct zone *zone) 4136 { 4137 unsigned int order, t; 4138 for_each_migratetype_order(order, t) { 4139 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4140 zone->free_area[order].nr_free = 0; 4141 } 4142 } 4143 4144 #ifndef __HAVE_ARCH_MEMMAP_INIT 4145 #define memmap_init(size, nid, zone, start_pfn) \ 4146 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4147 #endif 4148 4149 static int zone_batchsize(struct zone *zone) 4150 { 4151 #ifdef CONFIG_MMU 4152 int batch; 4153 4154 /* 4155 * The per-cpu-pages pools are set to around 1000th of the 4156 * size of the zone. But no more than 1/2 of a meg. 4157 * 4158 * OK, so we don't know how big the cache is. So guess. 4159 */ 4160 batch = zone->managed_pages / 1024; 4161 if (batch * PAGE_SIZE > 512 * 1024) 4162 batch = (512 * 1024) / PAGE_SIZE; 4163 batch /= 4; /* We effectively *= 4 below */ 4164 if (batch < 1) 4165 batch = 1; 4166 4167 /* 4168 * Clamp the batch to a 2^n - 1 value. Having a power 4169 * of 2 value was found to be more likely to have 4170 * suboptimal cache aliasing properties in some cases. 4171 * 4172 * For example if 2 tasks are alternately allocating 4173 * batches of pages, one task can end up with a lot 4174 * of pages of one half of the possible page colors 4175 * and the other with pages of the other colors. 4176 */ 4177 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4178 4179 return batch; 4180 4181 #else 4182 /* The deferral and batching of frees should be suppressed under NOMMU 4183 * conditions. 4184 * 4185 * The problem is that NOMMU needs to be able to allocate large chunks 4186 * of contiguous memory as there's no hardware page translation to 4187 * assemble apparent contiguous memory from discontiguous pages. 4188 * 4189 * Queueing large contiguous runs of pages for batching, however, 4190 * causes the pages to actually be freed in smaller chunks. As there 4191 * can be a significant delay between the individual batches being 4192 * recycled, this leads to the once large chunks of space being 4193 * fragmented and becoming unavailable for high-order allocations. 4194 */ 4195 return 0; 4196 #endif 4197 } 4198 4199 /* 4200 * pcp->high and pcp->batch values are related and dependent on one another: 4201 * ->batch must never be higher then ->high. 4202 * The following function updates them in a safe manner without read side 4203 * locking. 4204 * 4205 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4206 * those fields changing asynchronously (acording the the above rule). 4207 * 4208 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4209 * outside of boot time (or some other assurance that no concurrent updaters 4210 * exist). 4211 */ 4212 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4213 unsigned long batch) 4214 { 4215 /* start with a fail safe value for batch */ 4216 pcp->batch = 1; 4217 smp_wmb(); 4218 4219 /* Update high, then batch, in order */ 4220 pcp->high = high; 4221 smp_wmb(); 4222 4223 pcp->batch = batch; 4224 } 4225 4226 /* a companion to pageset_set_high() */ 4227 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4228 { 4229 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4230 } 4231 4232 static void pageset_init(struct per_cpu_pageset *p) 4233 { 4234 struct per_cpu_pages *pcp; 4235 int migratetype; 4236 4237 memset(p, 0, sizeof(*p)); 4238 4239 pcp = &p->pcp; 4240 pcp->count = 0; 4241 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4242 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4243 } 4244 4245 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4246 { 4247 pageset_init(p); 4248 pageset_set_batch(p, batch); 4249 } 4250 4251 /* 4252 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4253 * to the value high for the pageset p. 4254 */ 4255 static void pageset_set_high(struct per_cpu_pageset *p, 4256 unsigned long high) 4257 { 4258 unsigned long batch = max(1UL, high / 4); 4259 if ((high / 4) > (PAGE_SHIFT * 8)) 4260 batch = PAGE_SHIFT * 8; 4261 4262 pageset_update(&p->pcp, high, batch); 4263 } 4264 4265 static void pageset_set_high_and_batch(struct zone *zone, 4266 struct per_cpu_pageset *pcp) 4267 { 4268 if (percpu_pagelist_fraction) 4269 pageset_set_high(pcp, 4270 (zone->managed_pages / 4271 percpu_pagelist_fraction)); 4272 else 4273 pageset_set_batch(pcp, zone_batchsize(zone)); 4274 } 4275 4276 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4277 { 4278 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4279 4280 pageset_init(pcp); 4281 pageset_set_high_and_batch(zone, pcp); 4282 } 4283 4284 static void __meminit setup_zone_pageset(struct zone *zone) 4285 { 4286 int cpu; 4287 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4288 for_each_possible_cpu(cpu) 4289 zone_pageset_init(zone, cpu); 4290 } 4291 4292 /* 4293 * Allocate per cpu pagesets and initialize them. 4294 * Before this call only boot pagesets were available. 4295 */ 4296 void __init setup_per_cpu_pageset(void) 4297 { 4298 struct zone *zone; 4299 4300 for_each_populated_zone(zone) 4301 setup_zone_pageset(zone); 4302 } 4303 4304 static noinline __init_refok 4305 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4306 { 4307 int i; 4308 size_t alloc_size; 4309 4310 /* 4311 * The per-page waitqueue mechanism uses hashed waitqueues 4312 * per zone. 4313 */ 4314 zone->wait_table_hash_nr_entries = 4315 wait_table_hash_nr_entries(zone_size_pages); 4316 zone->wait_table_bits = 4317 wait_table_bits(zone->wait_table_hash_nr_entries); 4318 alloc_size = zone->wait_table_hash_nr_entries 4319 * sizeof(wait_queue_head_t); 4320 4321 if (!slab_is_available()) { 4322 zone->wait_table = (wait_queue_head_t *) 4323 memblock_virt_alloc_node_nopanic( 4324 alloc_size, zone->zone_pgdat->node_id); 4325 } else { 4326 /* 4327 * This case means that a zone whose size was 0 gets new memory 4328 * via memory hot-add. 4329 * But it may be the case that a new node was hot-added. In 4330 * this case vmalloc() will not be able to use this new node's 4331 * memory - this wait_table must be initialized to use this new 4332 * node itself as well. 4333 * To use this new node's memory, further consideration will be 4334 * necessary. 4335 */ 4336 zone->wait_table = vmalloc(alloc_size); 4337 } 4338 if (!zone->wait_table) 4339 return -ENOMEM; 4340 4341 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4342 init_waitqueue_head(zone->wait_table + i); 4343 4344 return 0; 4345 } 4346 4347 static __meminit void zone_pcp_init(struct zone *zone) 4348 { 4349 /* 4350 * per cpu subsystem is not up at this point. The following code 4351 * relies on the ability of the linker to provide the 4352 * offset of a (static) per cpu variable into the per cpu area. 4353 */ 4354 zone->pageset = &boot_pageset; 4355 4356 if (populated_zone(zone)) 4357 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4358 zone->name, zone->present_pages, 4359 zone_batchsize(zone)); 4360 } 4361 4362 int __meminit init_currently_empty_zone(struct zone *zone, 4363 unsigned long zone_start_pfn, 4364 unsigned long size, 4365 enum memmap_context context) 4366 { 4367 struct pglist_data *pgdat = zone->zone_pgdat; 4368 int ret; 4369 ret = zone_wait_table_init(zone, size); 4370 if (ret) 4371 return ret; 4372 pgdat->nr_zones = zone_idx(zone) + 1; 4373 4374 zone->zone_start_pfn = zone_start_pfn; 4375 4376 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4377 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4378 pgdat->node_id, 4379 (unsigned long)zone_idx(zone), 4380 zone_start_pfn, (zone_start_pfn + size)); 4381 4382 zone_init_free_lists(zone); 4383 4384 return 0; 4385 } 4386 4387 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4388 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4389 /* 4390 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4391 */ 4392 int __meminit __early_pfn_to_nid(unsigned long pfn) 4393 { 4394 unsigned long start_pfn, end_pfn; 4395 int nid; 4396 /* 4397 * NOTE: The following SMP-unsafe globals are only used early in boot 4398 * when the kernel is running single-threaded. 4399 */ 4400 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4401 static int __meminitdata last_nid; 4402 4403 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4404 return last_nid; 4405 4406 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4407 if (nid != -1) { 4408 last_start_pfn = start_pfn; 4409 last_end_pfn = end_pfn; 4410 last_nid = nid; 4411 } 4412 4413 return nid; 4414 } 4415 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4416 4417 int __meminit early_pfn_to_nid(unsigned long pfn) 4418 { 4419 int nid; 4420 4421 nid = __early_pfn_to_nid(pfn); 4422 if (nid >= 0) 4423 return nid; 4424 /* just returns 0 */ 4425 return 0; 4426 } 4427 4428 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4429 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4430 { 4431 int nid; 4432 4433 nid = __early_pfn_to_nid(pfn); 4434 if (nid >= 0 && nid != node) 4435 return false; 4436 return true; 4437 } 4438 #endif 4439 4440 /** 4441 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4442 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4443 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4444 * 4445 * If an architecture guarantees that all ranges registered contain no holes 4446 * and may be freed, this this function may be used instead of calling 4447 * memblock_free_early_nid() manually. 4448 */ 4449 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4450 { 4451 unsigned long start_pfn, end_pfn; 4452 int i, this_nid; 4453 4454 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4455 start_pfn = min(start_pfn, max_low_pfn); 4456 end_pfn = min(end_pfn, max_low_pfn); 4457 4458 if (start_pfn < end_pfn) 4459 memblock_free_early_nid(PFN_PHYS(start_pfn), 4460 (end_pfn - start_pfn) << PAGE_SHIFT, 4461 this_nid); 4462 } 4463 } 4464 4465 /** 4466 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4467 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4468 * 4469 * If an architecture guarantees that all ranges registered contain no holes and may 4470 * be freed, this function may be used instead of calling memory_present() manually. 4471 */ 4472 void __init sparse_memory_present_with_active_regions(int nid) 4473 { 4474 unsigned long start_pfn, end_pfn; 4475 int i, this_nid; 4476 4477 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4478 memory_present(this_nid, start_pfn, end_pfn); 4479 } 4480 4481 /** 4482 * get_pfn_range_for_nid - Return the start and end page frames for a node 4483 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4484 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4485 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4486 * 4487 * It returns the start and end page frame of a node based on information 4488 * provided by memblock_set_node(). If called for a node 4489 * with no available memory, a warning is printed and the start and end 4490 * PFNs will be 0. 4491 */ 4492 void __meminit get_pfn_range_for_nid(unsigned int nid, 4493 unsigned long *start_pfn, unsigned long *end_pfn) 4494 { 4495 unsigned long this_start_pfn, this_end_pfn; 4496 int i; 4497 4498 *start_pfn = -1UL; 4499 *end_pfn = 0; 4500 4501 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4502 *start_pfn = min(*start_pfn, this_start_pfn); 4503 *end_pfn = max(*end_pfn, this_end_pfn); 4504 } 4505 4506 if (*start_pfn == -1UL) 4507 *start_pfn = 0; 4508 } 4509 4510 /* 4511 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4512 * assumption is made that zones within a node are ordered in monotonic 4513 * increasing memory addresses so that the "highest" populated zone is used 4514 */ 4515 static void __init find_usable_zone_for_movable(void) 4516 { 4517 int zone_index; 4518 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4519 if (zone_index == ZONE_MOVABLE) 4520 continue; 4521 4522 if (arch_zone_highest_possible_pfn[zone_index] > 4523 arch_zone_lowest_possible_pfn[zone_index]) 4524 break; 4525 } 4526 4527 VM_BUG_ON(zone_index == -1); 4528 movable_zone = zone_index; 4529 } 4530 4531 /* 4532 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4533 * because it is sized independent of architecture. Unlike the other zones, 4534 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4535 * in each node depending on the size of each node and how evenly kernelcore 4536 * is distributed. This helper function adjusts the zone ranges 4537 * provided by the architecture for a given node by using the end of the 4538 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4539 * zones within a node are in order of monotonic increases memory addresses 4540 */ 4541 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4542 unsigned long zone_type, 4543 unsigned long node_start_pfn, 4544 unsigned long node_end_pfn, 4545 unsigned long *zone_start_pfn, 4546 unsigned long *zone_end_pfn) 4547 { 4548 /* Only adjust if ZONE_MOVABLE is on this node */ 4549 if (zone_movable_pfn[nid]) { 4550 /* Size ZONE_MOVABLE */ 4551 if (zone_type == ZONE_MOVABLE) { 4552 *zone_start_pfn = zone_movable_pfn[nid]; 4553 *zone_end_pfn = min(node_end_pfn, 4554 arch_zone_highest_possible_pfn[movable_zone]); 4555 4556 /* Adjust for ZONE_MOVABLE starting within this range */ 4557 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4558 *zone_end_pfn > zone_movable_pfn[nid]) { 4559 *zone_end_pfn = zone_movable_pfn[nid]; 4560 4561 /* Check if this whole range is within ZONE_MOVABLE */ 4562 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4563 *zone_start_pfn = *zone_end_pfn; 4564 } 4565 } 4566 4567 /* 4568 * Return the number of pages a zone spans in a node, including holes 4569 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4570 */ 4571 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4572 unsigned long zone_type, 4573 unsigned long node_start_pfn, 4574 unsigned long node_end_pfn, 4575 unsigned long *ignored) 4576 { 4577 unsigned long zone_start_pfn, zone_end_pfn; 4578 4579 /* Get the start and end of the zone */ 4580 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4581 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4582 adjust_zone_range_for_zone_movable(nid, zone_type, 4583 node_start_pfn, node_end_pfn, 4584 &zone_start_pfn, &zone_end_pfn); 4585 4586 /* Check that this node has pages within the zone's required range */ 4587 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4588 return 0; 4589 4590 /* Move the zone boundaries inside the node if necessary */ 4591 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4592 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4593 4594 /* Return the spanned pages */ 4595 return zone_end_pfn - zone_start_pfn; 4596 } 4597 4598 /* 4599 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4600 * then all holes in the requested range will be accounted for. 4601 */ 4602 unsigned long __meminit __absent_pages_in_range(int nid, 4603 unsigned long range_start_pfn, 4604 unsigned long range_end_pfn) 4605 { 4606 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4607 unsigned long start_pfn, end_pfn; 4608 int i; 4609 4610 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4611 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4612 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4613 nr_absent -= end_pfn - start_pfn; 4614 } 4615 return nr_absent; 4616 } 4617 4618 /** 4619 * absent_pages_in_range - Return number of page frames in holes within a range 4620 * @start_pfn: The start PFN to start searching for holes 4621 * @end_pfn: The end PFN to stop searching for holes 4622 * 4623 * It returns the number of pages frames in memory holes within a range. 4624 */ 4625 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4626 unsigned long end_pfn) 4627 { 4628 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4629 } 4630 4631 /* Return the number of page frames in holes in a zone on a node */ 4632 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4633 unsigned long zone_type, 4634 unsigned long node_start_pfn, 4635 unsigned long node_end_pfn, 4636 unsigned long *ignored) 4637 { 4638 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4639 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4640 unsigned long zone_start_pfn, zone_end_pfn; 4641 4642 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4643 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4644 4645 adjust_zone_range_for_zone_movable(nid, zone_type, 4646 node_start_pfn, node_end_pfn, 4647 &zone_start_pfn, &zone_end_pfn); 4648 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4649 } 4650 4651 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4652 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4653 unsigned long zone_type, 4654 unsigned long node_start_pfn, 4655 unsigned long node_end_pfn, 4656 unsigned long *zones_size) 4657 { 4658 return zones_size[zone_type]; 4659 } 4660 4661 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4662 unsigned long zone_type, 4663 unsigned long node_start_pfn, 4664 unsigned long node_end_pfn, 4665 unsigned long *zholes_size) 4666 { 4667 if (!zholes_size) 4668 return 0; 4669 4670 return zholes_size[zone_type]; 4671 } 4672 4673 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4674 4675 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4676 unsigned long node_start_pfn, 4677 unsigned long node_end_pfn, 4678 unsigned long *zones_size, 4679 unsigned long *zholes_size) 4680 { 4681 unsigned long realtotalpages, totalpages = 0; 4682 enum zone_type i; 4683 4684 for (i = 0; i < MAX_NR_ZONES; i++) 4685 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4686 node_start_pfn, 4687 node_end_pfn, 4688 zones_size); 4689 pgdat->node_spanned_pages = totalpages; 4690 4691 realtotalpages = totalpages; 4692 for (i = 0; i < MAX_NR_ZONES; i++) 4693 realtotalpages -= 4694 zone_absent_pages_in_node(pgdat->node_id, i, 4695 node_start_pfn, node_end_pfn, 4696 zholes_size); 4697 pgdat->node_present_pages = realtotalpages; 4698 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4699 realtotalpages); 4700 } 4701 4702 #ifndef CONFIG_SPARSEMEM 4703 /* 4704 * Calculate the size of the zone->blockflags rounded to an unsigned long 4705 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4706 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4707 * round what is now in bits to nearest long in bits, then return it in 4708 * bytes. 4709 */ 4710 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4711 { 4712 unsigned long usemapsize; 4713 4714 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4715 usemapsize = roundup(zonesize, pageblock_nr_pages); 4716 usemapsize = usemapsize >> pageblock_order; 4717 usemapsize *= NR_PAGEBLOCK_BITS; 4718 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4719 4720 return usemapsize / 8; 4721 } 4722 4723 static void __init setup_usemap(struct pglist_data *pgdat, 4724 struct zone *zone, 4725 unsigned long zone_start_pfn, 4726 unsigned long zonesize) 4727 { 4728 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4729 zone->pageblock_flags = NULL; 4730 if (usemapsize) 4731 zone->pageblock_flags = 4732 memblock_virt_alloc_node_nopanic(usemapsize, 4733 pgdat->node_id); 4734 } 4735 #else 4736 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4737 unsigned long zone_start_pfn, unsigned long zonesize) {} 4738 #endif /* CONFIG_SPARSEMEM */ 4739 4740 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4741 4742 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4743 void __paginginit set_pageblock_order(void) 4744 { 4745 unsigned int order; 4746 4747 /* Check that pageblock_nr_pages has not already been setup */ 4748 if (pageblock_order) 4749 return; 4750 4751 if (HPAGE_SHIFT > PAGE_SHIFT) 4752 order = HUGETLB_PAGE_ORDER; 4753 else 4754 order = MAX_ORDER - 1; 4755 4756 /* 4757 * Assume the largest contiguous order of interest is a huge page. 4758 * This value may be variable depending on boot parameters on IA64 and 4759 * powerpc. 4760 */ 4761 pageblock_order = order; 4762 } 4763 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4764 4765 /* 4766 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4767 * is unused as pageblock_order is set at compile-time. See 4768 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4769 * the kernel config 4770 */ 4771 void __paginginit set_pageblock_order(void) 4772 { 4773 } 4774 4775 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4776 4777 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4778 unsigned long present_pages) 4779 { 4780 unsigned long pages = spanned_pages; 4781 4782 /* 4783 * Provide a more accurate estimation if there are holes within 4784 * the zone and SPARSEMEM is in use. If there are holes within the 4785 * zone, each populated memory region may cost us one or two extra 4786 * memmap pages due to alignment because memmap pages for each 4787 * populated regions may not naturally algined on page boundary. 4788 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4789 */ 4790 if (spanned_pages > present_pages + (present_pages >> 4) && 4791 IS_ENABLED(CONFIG_SPARSEMEM)) 4792 pages = present_pages; 4793 4794 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4795 } 4796 4797 /* 4798 * Set up the zone data structures: 4799 * - mark all pages reserved 4800 * - mark all memory queues empty 4801 * - clear the memory bitmaps 4802 * 4803 * NOTE: pgdat should get zeroed by caller. 4804 */ 4805 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4806 unsigned long node_start_pfn, unsigned long node_end_pfn, 4807 unsigned long *zones_size, unsigned long *zholes_size) 4808 { 4809 enum zone_type j; 4810 int nid = pgdat->node_id; 4811 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4812 int ret; 4813 4814 pgdat_resize_init(pgdat); 4815 #ifdef CONFIG_NUMA_BALANCING 4816 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4817 pgdat->numabalancing_migrate_nr_pages = 0; 4818 pgdat->numabalancing_migrate_next_window = jiffies; 4819 #endif 4820 init_waitqueue_head(&pgdat->kswapd_wait); 4821 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4822 pgdat_page_cgroup_init(pgdat); 4823 4824 for (j = 0; j < MAX_NR_ZONES; j++) { 4825 struct zone *zone = pgdat->node_zones + j; 4826 unsigned long size, realsize, freesize, memmap_pages; 4827 4828 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4829 node_end_pfn, zones_size); 4830 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4831 node_start_pfn, 4832 node_end_pfn, 4833 zholes_size); 4834 4835 /* 4836 * Adjust freesize so that it accounts for how much memory 4837 * is used by this zone for memmap. This affects the watermark 4838 * and per-cpu initialisations 4839 */ 4840 memmap_pages = calc_memmap_size(size, realsize); 4841 if (freesize >= memmap_pages) { 4842 freesize -= memmap_pages; 4843 if (memmap_pages) 4844 printk(KERN_DEBUG 4845 " %s zone: %lu pages used for memmap\n", 4846 zone_names[j], memmap_pages); 4847 } else 4848 printk(KERN_WARNING 4849 " %s zone: %lu pages exceeds freesize %lu\n", 4850 zone_names[j], memmap_pages, freesize); 4851 4852 /* Account for reserved pages */ 4853 if (j == 0 && freesize > dma_reserve) { 4854 freesize -= dma_reserve; 4855 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4856 zone_names[0], dma_reserve); 4857 } 4858 4859 if (!is_highmem_idx(j)) 4860 nr_kernel_pages += freesize; 4861 /* Charge for highmem memmap if there are enough kernel pages */ 4862 else if (nr_kernel_pages > memmap_pages * 2) 4863 nr_kernel_pages -= memmap_pages; 4864 nr_all_pages += freesize; 4865 4866 zone->spanned_pages = size; 4867 zone->present_pages = realsize; 4868 /* 4869 * Set an approximate value for lowmem here, it will be adjusted 4870 * when the bootmem allocator frees pages into the buddy system. 4871 * And all highmem pages will be managed by the buddy system. 4872 */ 4873 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4874 #ifdef CONFIG_NUMA 4875 zone->node = nid; 4876 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4877 / 100; 4878 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4879 #endif 4880 zone->name = zone_names[j]; 4881 spin_lock_init(&zone->lock); 4882 spin_lock_init(&zone->lru_lock); 4883 zone_seqlock_init(zone); 4884 zone->zone_pgdat = pgdat; 4885 zone_pcp_init(zone); 4886 4887 /* For bootup, initialized properly in watermark setup */ 4888 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4889 4890 lruvec_init(&zone->lruvec); 4891 if (!size) 4892 continue; 4893 4894 set_pageblock_order(); 4895 setup_usemap(pgdat, zone, zone_start_pfn, size); 4896 ret = init_currently_empty_zone(zone, zone_start_pfn, 4897 size, MEMMAP_EARLY); 4898 BUG_ON(ret); 4899 memmap_init(size, nid, j, zone_start_pfn); 4900 zone_start_pfn += size; 4901 } 4902 } 4903 4904 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4905 { 4906 /* Skip empty nodes */ 4907 if (!pgdat->node_spanned_pages) 4908 return; 4909 4910 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4911 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4912 if (!pgdat->node_mem_map) { 4913 unsigned long size, start, end; 4914 struct page *map; 4915 4916 /* 4917 * The zone's endpoints aren't required to be MAX_ORDER 4918 * aligned but the node_mem_map endpoints must be in order 4919 * for the buddy allocator to function correctly. 4920 */ 4921 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4922 end = pgdat_end_pfn(pgdat); 4923 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4924 size = (end - start) * sizeof(struct page); 4925 map = alloc_remap(pgdat->node_id, size); 4926 if (!map) 4927 map = memblock_virt_alloc_node_nopanic(size, 4928 pgdat->node_id); 4929 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4930 } 4931 #ifndef CONFIG_NEED_MULTIPLE_NODES 4932 /* 4933 * With no DISCONTIG, the global mem_map is just set as node 0's 4934 */ 4935 if (pgdat == NODE_DATA(0)) { 4936 mem_map = NODE_DATA(0)->node_mem_map; 4937 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4938 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4939 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4940 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4941 } 4942 #endif 4943 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4944 } 4945 4946 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4947 unsigned long node_start_pfn, unsigned long *zholes_size) 4948 { 4949 pg_data_t *pgdat = NODE_DATA(nid); 4950 unsigned long start_pfn = 0; 4951 unsigned long end_pfn = 0; 4952 4953 /* pg_data_t should be reset to zero when it's allocated */ 4954 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4955 4956 pgdat->node_id = nid; 4957 pgdat->node_start_pfn = node_start_pfn; 4958 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4959 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4960 #endif 4961 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4962 zones_size, zholes_size); 4963 4964 alloc_node_mem_map(pgdat); 4965 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4966 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4967 nid, (unsigned long)pgdat, 4968 (unsigned long)pgdat->node_mem_map); 4969 #endif 4970 4971 free_area_init_core(pgdat, start_pfn, end_pfn, 4972 zones_size, zholes_size); 4973 } 4974 4975 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4976 4977 #if MAX_NUMNODES > 1 4978 /* 4979 * Figure out the number of possible node ids. 4980 */ 4981 void __init setup_nr_node_ids(void) 4982 { 4983 unsigned int node; 4984 unsigned int highest = 0; 4985 4986 for_each_node_mask(node, node_possible_map) 4987 highest = node; 4988 nr_node_ids = highest + 1; 4989 } 4990 #endif 4991 4992 /** 4993 * node_map_pfn_alignment - determine the maximum internode alignment 4994 * 4995 * This function should be called after node map is populated and sorted. 4996 * It calculates the maximum power of two alignment which can distinguish 4997 * all the nodes. 4998 * 4999 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5000 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5001 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5002 * shifted, 1GiB is enough and this function will indicate so. 5003 * 5004 * This is used to test whether pfn -> nid mapping of the chosen memory 5005 * model has fine enough granularity to avoid incorrect mapping for the 5006 * populated node map. 5007 * 5008 * Returns the determined alignment in pfn's. 0 if there is no alignment 5009 * requirement (single node). 5010 */ 5011 unsigned long __init node_map_pfn_alignment(void) 5012 { 5013 unsigned long accl_mask = 0, last_end = 0; 5014 unsigned long start, end, mask; 5015 int last_nid = -1; 5016 int i, nid; 5017 5018 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5019 if (!start || last_nid < 0 || last_nid == nid) { 5020 last_nid = nid; 5021 last_end = end; 5022 continue; 5023 } 5024 5025 /* 5026 * Start with a mask granular enough to pin-point to the 5027 * start pfn and tick off bits one-by-one until it becomes 5028 * too coarse to separate the current node from the last. 5029 */ 5030 mask = ~((1 << __ffs(start)) - 1); 5031 while (mask && last_end <= (start & (mask << 1))) 5032 mask <<= 1; 5033 5034 /* accumulate all internode masks */ 5035 accl_mask |= mask; 5036 } 5037 5038 /* convert mask to number of pages */ 5039 return ~accl_mask + 1; 5040 } 5041 5042 /* Find the lowest pfn for a node */ 5043 static unsigned long __init find_min_pfn_for_node(int nid) 5044 { 5045 unsigned long min_pfn = ULONG_MAX; 5046 unsigned long start_pfn; 5047 int i; 5048 5049 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5050 min_pfn = min(min_pfn, start_pfn); 5051 5052 if (min_pfn == ULONG_MAX) { 5053 printk(KERN_WARNING 5054 "Could not find start_pfn for node %d\n", nid); 5055 return 0; 5056 } 5057 5058 return min_pfn; 5059 } 5060 5061 /** 5062 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5063 * 5064 * It returns the minimum PFN based on information provided via 5065 * memblock_set_node(). 5066 */ 5067 unsigned long __init find_min_pfn_with_active_regions(void) 5068 { 5069 return find_min_pfn_for_node(MAX_NUMNODES); 5070 } 5071 5072 /* 5073 * early_calculate_totalpages() 5074 * Sum pages in active regions for movable zone. 5075 * Populate N_MEMORY for calculating usable_nodes. 5076 */ 5077 static unsigned long __init early_calculate_totalpages(void) 5078 { 5079 unsigned long totalpages = 0; 5080 unsigned long start_pfn, end_pfn; 5081 int i, nid; 5082 5083 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5084 unsigned long pages = end_pfn - start_pfn; 5085 5086 totalpages += pages; 5087 if (pages) 5088 node_set_state(nid, N_MEMORY); 5089 } 5090 return totalpages; 5091 } 5092 5093 /* 5094 * Find the PFN the Movable zone begins in each node. Kernel memory 5095 * is spread evenly between nodes as long as the nodes have enough 5096 * memory. When they don't, some nodes will have more kernelcore than 5097 * others 5098 */ 5099 static void __init find_zone_movable_pfns_for_nodes(void) 5100 { 5101 int i, nid; 5102 unsigned long usable_startpfn; 5103 unsigned long kernelcore_node, kernelcore_remaining; 5104 /* save the state before borrow the nodemask */ 5105 nodemask_t saved_node_state = node_states[N_MEMORY]; 5106 unsigned long totalpages = early_calculate_totalpages(); 5107 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5108 struct memblock_region *r; 5109 5110 /* Need to find movable_zone earlier when movable_node is specified. */ 5111 find_usable_zone_for_movable(); 5112 5113 /* 5114 * If movable_node is specified, ignore kernelcore and movablecore 5115 * options. 5116 */ 5117 if (movable_node_is_enabled()) { 5118 for_each_memblock(memory, r) { 5119 if (!memblock_is_hotpluggable(r)) 5120 continue; 5121 5122 nid = r->nid; 5123 5124 usable_startpfn = PFN_DOWN(r->base); 5125 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5126 min(usable_startpfn, zone_movable_pfn[nid]) : 5127 usable_startpfn; 5128 } 5129 5130 goto out2; 5131 } 5132 5133 /* 5134 * If movablecore=nn[KMG] was specified, calculate what size of 5135 * kernelcore that corresponds so that memory usable for 5136 * any allocation type is evenly spread. If both kernelcore 5137 * and movablecore are specified, then the value of kernelcore 5138 * will be used for required_kernelcore if it's greater than 5139 * what movablecore would have allowed. 5140 */ 5141 if (required_movablecore) { 5142 unsigned long corepages; 5143 5144 /* 5145 * Round-up so that ZONE_MOVABLE is at least as large as what 5146 * was requested by the user 5147 */ 5148 required_movablecore = 5149 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5150 corepages = totalpages - required_movablecore; 5151 5152 required_kernelcore = max(required_kernelcore, corepages); 5153 } 5154 5155 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5156 if (!required_kernelcore) 5157 goto out; 5158 5159 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5160 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5161 5162 restart: 5163 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5164 kernelcore_node = required_kernelcore / usable_nodes; 5165 for_each_node_state(nid, N_MEMORY) { 5166 unsigned long start_pfn, end_pfn; 5167 5168 /* 5169 * Recalculate kernelcore_node if the division per node 5170 * now exceeds what is necessary to satisfy the requested 5171 * amount of memory for the kernel 5172 */ 5173 if (required_kernelcore < kernelcore_node) 5174 kernelcore_node = required_kernelcore / usable_nodes; 5175 5176 /* 5177 * As the map is walked, we track how much memory is usable 5178 * by the kernel using kernelcore_remaining. When it is 5179 * 0, the rest of the node is usable by ZONE_MOVABLE 5180 */ 5181 kernelcore_remaining = kernelcore_node; 5182 5183 /* Go through each range of PFNs within this node */ 5184 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5185 unsigned long size_pages; 5186 5187 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5188 if (start_pfn >= end_pfn) 5189 continue; 5190 5191 /* Account for what is only usable for kernelcore */ 5192 if (start_pfn < usable_startpfn) { 5193 unsigned long kernel_pages; 5194 kernel_pages = min(end_pfn, usable_startpfn) 5195 - start_pfn; 5196 5197 kernelcore_remaining -= min(kernel_pages, 5198 kernelcore_remaining); 5199 required_kernelcore -= min(kernel_pages, 5200 required_kernelcore); 5201 5202 /* Continue if range is now fully accounted */ 5203 if (end_pfn <= usable_startpfn) { 5204 5205 /* 5206 * Push zone_movable_pfn to the end so 5207 * that if we have to rebalance 5208 * kernelcore across nodes, we will 5209 * not double account here 5210 */ 5211 zone_movable_pfn[nid] = end_pfn; 5212 continue; 5213 } 5214 start_pfn = usable_startpfn; 5215 } 5216 5217 /* 5218 * The usable PFN range for ZONE_MOVABLE is from 5219 * start_pfn->end_pfn. Calculate size_pages as the 5220 * number of pages used as kernelcore 5221 */ 5222 size_pages = end_pfn - start_pfn; 5223 if (size_pages > kernelcore_remaining) 5224 size_pages = kernelcore_remaining; 5225 zone_movable_pfn[nid] = start_pfn + size_pages; 5226 5227 /* 5228 * Some kernelcore has been met, update counts and 5229 * break if the kernelcore for this node has been 5230 * satisfied 5231 */ 5232 required_kernelcore -= min(required_kernelcore, 5233 size_pages); 5234 kernelcore_remaining -= size_pages; 5235 if (!kernelcore_remaining) 5236 break; 5237 } 5238 } 5239 5240 /* 5241 * If there is still required_kernelcore, we do another pass with one 5242 * less node in the count. This will push zone_movable_pfn[nid] further 5243 * along on the nodes that still have memory until kernelcore is 5244 * satisfied 5245 */ 5246 usable_nodes--; 5247 if (usable_nodes && required_kernelcore > usable_nodes) 5248 goto restart; 5249 5250 out2: 5251 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5252 for (nid = 0; nid < MAX_NUMNODES; nid++) 5253 zone_movable_pfn[nid] = 5254 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5255 5256 out: 5257 /* restore the node_state */ 5258 node_states[N_MEMORY] = saved_node_state; 5259 } 5260 5261 /* Any regular or high memory on that node ? */ 5262 static void check_for_memory(pg_data_t *pgdat, int nid) 5263 { 5264 enum zone_type zone_type; 5265 5266 if (N_MEMORY == N_NORMAL_MEMORY) 5267 return; 5268 5269 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5270 struct zone *zone = &pgdat->node_zones[zone_type]; 5271 if (populated_zone(zone)) { 5272 node_set_state(nid, N_HIGH_MEMORY); 5273 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5274 zone_type <= ZONE_NORMAL) 5275 node_set_state(nid, N_NORMAL_MEMORY); 5276 break; 5277 } 5278 } 5279 } 5280 5281 /** 5282 * free_area_init_nodes - Initialise all pg_data_t and zone data 5283 * @max_zone_pfn: an array of max PFNs for each zone 5284 * 5285 * This will call free_area_init_node() for each active node in the system. 5286 * Using the page ranges provided by memblock_set_node(), the size of each 5287 * zone in each node and their holes is calculated. If the maximum PFN 5288 * between two adjacent zones match, it is assumed that the zone is empty. 5289 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5290 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5291 * starts where the previous one ended. For example, ZONE_DMA32 starts 5292 * at arch_max_dma_pfn. 5293 */ 5294 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5295 { 5296 unsigned long start_pfn, end_pfn; 5297 int i, nid; 5298 5299 /* Record where the zone boundaries are */ 5300 memset(arch_zone_lowest_possible_pfn, 0, 5301 sizeof(arch_zone_lowest_possible_pfn)); 5302 memset(arch_zone_highest_possible_pfn, 0, 5303 sizeof(arch_zone_highest_possible_pfn)); 5304 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5305 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5306 for (i = 1; i < MAX_NR_ZONES; i++) { 5307 if (i == ZONE_MOVABLE) 5308 continue; 5309 arch_zone_lowest_possible_pfn[i] = 5310 arch_zone_highest_possible_pfn[i-1]; 5311 arch_zone_highest_possible_pfn[i] = 5312 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5313 } 5314 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5315 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5316 5317 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5318 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5319 find_zone_movable_pfns_for_nodes(); 5320 5321 /* Print out the zone ranges */ 5322 printk("Zone ranges:\n"); 5323 for (i = 0; i < MAX_NR_ZONES; i++) { 5324 if (i == ZONE_MOVABLE) 5325 continue; 5326 printk(KERN_CONT " %-8s ", zone_names[i]); 5327 if (arch_zone_lowest_possible_pfn[i] == 5328 arch_zone_highest_possible_pfn[i]) 5329 printk(KERN_CONT "empty\n"); 5330 else 5331 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5332 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5333 (arch_zone_highest_possible_pfn[i] 5334 << PAGE_SHIFT) - 1); 5335 } 5336 5337 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5338 printk("Movable zone start for each node\n"); 5339 for (i = 0; i < MAX_NUMNODES; i++) { 5340 if (zone_movable_pfn[i]) 5341 printk(" Node %d: %#010lx\n", i, 5342 zone_movable_pfn[i] << PAGE_SHIFT); 5343 } 5344 5345 /* Print out the early node map */ 5346 printk("Early memory node ranges\n"); 5347 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5348 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5349 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5350 5351 /* Initialise every node */ 5352 mminit_verify_pageflags_layout(); 5353 setup_nr_node_ids(); 5354 for_each_online_node(nid) { 5355 pg_data_t *pgdat = NODE_DATA(nid); 5356 free_area_init_node(nid, NULL, 5357 find_min_pfn_for_node(nid), NULL); 5358 5359 /* Any memory on that node */ 5360 if (pgdat->node_present_pages) 5361 node_set_state(nid, N_MEMORY); 5362 check_for_memory(pgdat, nid); 5363 } 5364 } 5365 5366 static int __init cmdline_parse_core(char *p, unsigned long *core) 5367 { 5368 unsigned long long coremem; 5369 if (!p) 5370 return -EINVAL; 5371 5372 coremem = memparse(p, &p); 5373 *core = coremem >> PAGE_SHIFT; 5374 5375 /* Paranoid check that UL is enough for the coremem value */ 5376 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5377 5378 return 0; 5379 } 5380 5381 /* 5382 * kernelcore=size sets the amount of memory for use for allocations that 5383 * cannot be reclaimed or migrated. 5384 */ 5385 static int __init cmdline_parse_kernelcore(char *p) 5386 { 5387 return cmdline_parse_core(p, &required_kernelcore); 5388 } 5389 5390 /* 5391 * movablecore=size sets the amount of memory for use for allocations that 5392 * can be reclaimed or migrated. 5393 */ 5394 static int __init cmdline_parse_movablecore(char *p) 5395 { 5396 return cmdline_parse_core(p, &required_movablecore); 5397 } 5398 5399 early_param("kernelcore", cmdline_parse_kernelcore); 5400 early_param("movablecore", cmdline_parse_movablecore); 5401 5402 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5403 5404 void adjust_managed_page_count(struct page *page, long count) 5405 { 5406 spin_lock(&managed_page_count_lock); 5407 page_zone(page)->managed_pages += count; 5408 totalram_pages += count; 5409 #ifdef CONFIG_HIGHMEM 5410 if (PageHighMem(page)) 5411 totalhigh_pages += count; 5412 #endif 5413 spin_unlock(&managed_page_count_lock); 5414 } 5415 EXPORT_SYMBOL(adjust_managed_page_count); 5416 5417 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5418 { 5419 void *pos; 5420 unsigned long pages = 0; 5421 5422 start = (void *)PAGE_ALIGN((unsigned long)start); 5423 end = (void *)((unsigned long)end & PAGE_MASK); 5424 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5425 if ((unsigned int)poison <= 0xFF) 5426 memset(pos, poison, PAGE_SIZE); 5427 free_reserved_page(virt_to_page(pos)); 5428 } 5429 5430 if (pages && s) 5431 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5432 s, pages << (PAGE_SHIFT - 10), start, end); 5433 5434 return pages; 5435 } 5436 EXPORT_SYMBOL(free_reserved_area); 5437 5438 #ifdef CONFIG_HIGHMEM 5439 void free_highmem_page(struct page *page) 5440 { 5441 __free_reserved_page(page); 5442 totalram_pages++; 5443 page_zone(page)->managed_pages++; 5444 totalhigh_pages++; 5445 } 5446 #endif 5447 5448 5449 void __init mem_init_print_info(const char *str) 5450 { 5451 unsigned long physpages, codesize, datasize, rosize, bss_size; 5452 unsigned long init_code_size, init_data_size; 5453 5454 physpages = get_num_physpages(); 5455 codesize = _etext - _stext; 5456 datasize = _edata - _sdata; 5457 rosize = __end_rodata - __start_rodata; 5458 bss_size = __bss_stop - __bss_start; 5459 init_data_size = __init_end - __init_begin; 5460 init_code_size = _einittext - _sinittext; 5461 5462 /* 5463 * Detect special cases and adjust section sizes accordingly: 5464 * 1) .init.* may be embedded into .data sections 5465 * 2) .init.text.* may be out of [__init_begin, __init_end], 5466 * please refer to arch/tile/kernel/vmlinux.lds.S. 5467 * 3) .rodata.* may be embedded into .text or .data sections. 5468 */ 5469 #define adj_init_size(start, end, size, pos, adj) \ 5470 do { \ 5471 if (start <= pos && pos < end && size > adj) \ 5472 size -= adj; \ 5473 } while (0) 5474 5475 adj_init_size(__init_begin, __init_end, init_data_size, 5476 _sinittext, init_code_size); 5477 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5478 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5479 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5480 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5481 5482 #undef adj_init_size 5483 5484 printk("Memory: %luK/%luK available " 5485 "(%luK kernel code, %luK rwdata, %luK rodata, " 5486 "%luK init, %luK bss, %luK reserved" 5487 #ifdef CONFIG_HIGHMEM 5488 ", %luK highmem" 5489 #endif 5490 "%s%s)\n", 5491 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5492 codesize >> 10, datasize >> 10, rosize >> 10, 5493 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5494 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5495 #ifdef CONFIG_HIGHMEM 5496 totalhigh_pages << (PAGE_SHIFT-10), 5497 #endif 5498 str ? ", " : "", str ? str : ""); 5499 } 5500 5501 /** 5502 * set_dma_reserve - set the specified number of pages reserved in the first zone 5503 * @new_dma_reserve: The number of pages to mark reserved 5504 * 5505 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5506 * In the DMA zone, a significant percentage may be consumed by kernel image 5507 * and other unfreeable allocations which can skew the watermarks badly. This 5508 * function may optionally be used to account for unfreeable pages in the 5509 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5510 * smaller per-cpu batchsize. 5511 */ 5512 void __init set_dma_reserve(unsigned long new_dma_reserve) 5513 { 5514 dma_reserve = new_dma_reserve; 5515 } 5516 5517 void __init free_area_init(unsigned long *zones_size) 5518 { 5519 free_area_init_node(0, zones_size, 5520 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5521 } 5522 5523 static int page_alloc_cpu_notify(struct notifier_block *self, 5524 unsigned long action, void *hcpu) 5525 { 5526 int cpu = (unsigned long)hcpu; 5527 5528 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5529 lru_add_drain_cpu(cpu); 5530 drain_pages(cpu); 5531 5532 /* 5533 * Spill the event counters of the dead processor 5534 * into the current processors event counters. 5535 * This artificially elevates the count of the current 5536 * processor. 5537 */ 5538 vm_events_fold_cpu(cpu); 5539 5540 /* 5541 * Zero the differential counters of the dead processor 5542 * so that the vm statistics are consistent. 5543 * 5544 * This is only okay since the processor is dead and cannot 5545 * race with what we are doing. 5546 */ 5547 cpu_vm_stats_fold(cpu); 5548 } 5549 return NOTIFY_OK; 5550 } 5551 5552 void __init page_alloc_init(void) 5553 { 5554 hotcpu_notifier(page_alloc_cpu_notify, 0); 5555 } 5556 5557 /* 5558 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5559 * or min_free_kbytes changes. 5560 */ 5561 static void calculate_totalreserve_pages(void) 5562 { 5563 struct pglist_data *pgdat; 5564 unsigned long reserve_pages = 0; 5565 enum zone_type i, j; 5566 5567 for_each_online_pgdat(pgdat) { 5568 for (i = 0; i < MAX_NR_ZONES; i++) { 5569 struct zone *zone = pgdat->node_zones + i; 5570 unsigned long max = 0; 5571 5572 /* Find valid and maximum lowmem_reserve in the zone */ 5573 for (j = i; j < MAX_NR_ZONES; j++) { 5574 if (zone->lowmem_reserve[j] > max) 5575 max = zone->lowmem_reserve[j]; 5576 } 5577 5578 /* we treat the high watermark as reserved pages. */ 5579 max += high_wmark_pages(zone); 5580 5581 if (max > zone->managed_pages) 5582 max = zone->managed_pages; 5583 reserve_pages += max; 5584 /* 5585 * Lowmem reserves are not available to 5586 * GFP_HIGHUSER page cache allocations and 5587 * kswapd tries to balance zones to their high 5588 * watermark. As a result, neither should be 5589 * regarded as dirtyable memory, to prevent a 5590 * situation where reclaim has to clean pages 5591 * in order to balance the zones. 5592 */ 5593 zone->dirty_balance_reserve = max; 5594 } 5595 } 5596 dirty_balance_reserve = reserve_pages; 5597 totalreserve_pages = reserve_pages; 5598 } 5599 5600 /* 5601 * setup_per_zone_lowmem_reserve - called whenever 5602 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5603 * has a correct pages reserved value, so an adequate number of 5604 * pages are left in the zone after a successful __alloc_pages(). 5605 */ 5606 static void setup_per_zone_lowmem_reserve(void) 5607 { 5608 struct pglist_data *pgdat; 5609 enum zone_type j, idx; 5610 5611 for_each_online_pgdat(pgdat) { 5612 for (j = 0; j < MAX_NR_ZONES; j++) { 5613 struct zone *zone = pgdat->node_zones + j; 5614 unsigned long managed_pages = zone->managed_pages; 5615 5616 zone->lowmem_reserve[j] = 0; 5617 5618 idx = j; 5619 while (idx) { 5620 struct zone *lower_zone; 5621 5622 idx--; 5623 5624 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5625 sysctl_lowmem_reserve_ratio[idx] = 1; 5626 5627 lower_zone = pgdat->node_zones + idx; 5628 lower_zone->lowmem_reserve[j] = managed_pages / 5629 sysctl_lowmem_reserve_ratio[idx]; 5630 managed_pages += lower_zone->managed_pages; 5631 } 5632 } 5633 } 5634 5635 /* update totalreserve_pages */ 5636 calculate_totalreserve_pages(); 5637 } 5638 5639 static void __setup_per_zone_wmarks(void) 5640 { 5641 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5642 unsigned long lowmem_pages = 0; 5643 struct zone *zone; 5644 unsigned long flags; 5645 5646 /* Calculate total number of !ZONE_HIGHMEM pages */ 5647 for_each_zone(zone) { 5648 if (!is_highmem(zone)) 5649 lowmem_pages += zone->managed_pages; 5650 } 5651 5652 for_each_zone(zone) { 5653 u64 tmp; 5654 5655 spin_lock_irqsave(&zone->lock, flags); 5656 tmp = (u64)pages_min * zone->managed_pages; 5657 do_div(tmp, lowmem_pages); 5658 if (is_highmem(zone)) { 5659 /* 5660 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5661 * need highmem pages, so cap pages_min to a small 5662 * value here. 5663 * 5664 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5665 * deltas controls asynch page reclaim, and so should 5666 * not be capped for highmem. 5667 */ 5668 unsigned long min_pages; 5669 5670 min_pages = zone->managed_pages / 1024; 5671 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5672 zone->watermark[WMARK_MIN] = min_pages; 5673 } else { 5674 /* 5675 * If it's a lowmem zone, reserve a number of pages 5676 * proportionate to the zone's size. 5677 */ 5678 zone->watermark[WMARK_MIN] = tmp; 5679 } 5680 5681 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5682 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5683 5684 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5685 high_wmark_pages(zone) - 5686 low_wmark_pages(zone) - 5687 zone_page_state(zone, NR_ALLOC_BATCH)); 5688 5689 setup_zone_migrate_reserve(zone); 5690 spin_unlock_irqrestore(&zone->lock, flags); 5691 } 5692 5693 /* update totalreserve_pages */ 5694 calculate_totalreserve_pages(); 5695 } 5696 5697 /** 5698 * setup_per_zone_wmarks - called when min_free_kbytes changes 5699 * or when memory is hot-{added|removed} 5700 * 5701 * Ensures that the watermark[min,low,high] values for each zone are set 5702 * correctly with respect to min_free_kbytes. 5703 */ 5704 void setup_per_zone_wmarks(void) 5705 { 5706 mutex_lock(&zonelists_mutex); 5707 __setup_per_zone_wmarks(); 5708 mutex_unlock(&zonelists_mutex); 5709 } 5710 5711 /* 5712 * The inactive anon list should be small enough that the VM never has to 5713 * do too much work, but large enough that each inactive page has a chance 5714 * to be referenced again before it is swapped out. 5715 * 5716 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5717 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5718 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5719 * the anonymous pages are kept on the inactive list. 5720 * 5721 * total target max 5722 * memory ratio inactive anon 5723 * ------------------------------------- 5724 * 10MB 1 5MB 5725 * 100MB 1 50MB 5726 * 1GB 3 250MB 5727 * 10GB 10 0.9GB 5728 * 100GB 31 3GB 5729 * 1TB 101 10GB 5730 * 10TB 320 32GB 5731 */ 5732 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5733 { 5734 unsigned int gb, ratio; 5735 5736 /* Zone size in gigabytes */ 5737 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5738 if (gb) 5739 ratio = int_sqrt(10 * gb); 5740 else 5741 ratio = 1; 5742 5743 zone->inactive_ratio = ratio; 5744 } 5745 5746 static void __meminit setup_per_zone_inactive_ratio(void) 5747 { 5748 struct zone *zone; 5749 5750 for_each_zone(zone) 5751 calculate_zone_inactive_ratio(zone); 5752 } 5753 5754 /* 5755 * Initialise min_free_kbytes. 5756 * 5757 * For small machines we want it small (128k min). For large machines 5758 * we want it large (64MB max). But it is not linear, because network 5759 * bandwidth does not increase linearly with machine size. We use 5760 * 5761 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5762 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5763 * 5764 * which yields 5765 * 5766 * 16MB: 512k 5767 * 32MB: 724k 5768 * 64MB: 1024k 5769 * 128MB: 1448k 5770 * 256MB: 2048k 5771 * 512MB: 2896k 5772 * 1024MB: 4096k 5773 * 2048MB: 5792k 5774 * 4096MB: 8192k 5775 * 8192MB: 11584k 5776 * 16384MB: 16384k 5777 */ 5778 int __meminit init_per_zone_wmark_min(void) 5779 { 5780 unsigned long lowmem_kbytes; 5781 int new_min_free_kbytes; 5782 5783 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5784 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5785 5786 if (new_min_free_kbytes > user_min_free_kbytes) { 5787 min_free_kbytes = new_min_free_kbytes; 5788 if (min_free_kbytes < 128) 5789 min_free_kbytes = 128; 5790 if (min_free_kbytes > 65536) 5791 min_free_kbytes = 65536; 5792 } else { 5793 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5794 new_min_free_kbytes, user_min_free_kbytes); 5795 } 5796 setup_per_zone_wmarks(); 5797 refresh_zone_stat_thresholds(); 5798 setup_per_zone_lowmem_reserve(); 5799 setup_per_zone_inactive_ratio(); 5800 return 0; 5801 } 5802 module_init(init_per_zone_wmark_min) 5803 5804 /* 5805 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5806 * that we can call two helper functions whenever min_free_kbytes 5807 * changes. 5808 */ 5809 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5810 void __user *buffer, size_t *length, loff_t *ppos) 5811 { 5812 int rc; 5813 5814 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5815 if (rc) 5816 return rc; 5817 5818 if (write) { 5819 user_min_free_kbytes = min_free_kbytes; 5820 setup_per_zone_wmarks(); 5821 } 5822 return 0; 5823 } 5824 5825 #ifdef CONFIG_NUMA 5826 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5827 void __user *buffer, size_t *length, loff_t *ppos) 5828 { 5829 struct zone *zone; 5830 int rc; 5831 5832 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5833 if (rc) 5834 return rc; 5835 5836 for_each_zone(zone) 5837 zone->min_unmapped_pages = (zone->managed_pages * 5838 sysctl_min_unmapped_ratio) / 100; 5839 return 0; 5840 } 5841 5842 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5843 void __user *buffer, size_t *length, loff_t *ppos) 5844 { 5845 struct zone *zone; 5846 int rc; 5847 5848 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5849 if (rc) 5850 return rc; 5851 5852 for_each_zone(zone) 5853 zone->min_slab_pages = (zone->managed_pages * 5854 sysctl_min_slab_ratio) / 100; 5855 return 0; 5856 } 5857 #endif 5858 5859 /* 5860 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5861 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5862 * whenever sysctl_lowmem_reserve_ratio changes. 5863 * 5864 * The reserve ratio obviously has absolutely no relation with the 5865 * minimum watermarks. The lowmem reserve ratio can only make sense 5866 * if in function of the boot time zone sizes. 5867 */ 5868 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5869 void __user *buffer, size_t *length, loff_t *ppos) 5870 { 5871 proc_dointvec_minmax(table, write, buffer, length, ppos); 5872 setup_per_zone_lowmem_reserve(); 5873 return 0; 5874 } 5875 5876 /* 5877 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5878 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5879 * pagelist can have before it gets flushed back to buddy allocator. 5880 */ 5881 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5882 void __user *buffer, size_t *length, loff_t *ppos) 5883 { 5884 struct zone *zone; 5885 int old_percpu_pagelist_fraction; 5886 int ret; 5887 5888 mutex_lock(&pcp_batch_high_lock); 5889 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 5890 5891 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5892 if (!write || ret < 0) 5893 goto out; 5894 5895 /* Sanity checking to avoid pcp imbalance */ 5896 if (percpu_pagelist_fraction && 5897 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 5898 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 5899 ret = -EINVAL; 5900 goto out; 5901 } 5902 5903 /* No change? */ 5904 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 5905 goto out; 5906 5907 for_each_populated_zone(zone) { 5908 unsigned int cpu; 5909 5910 for_each_possible_cpu(cpu) 5911 pageset_set_high_and_batch(zone, 5912 per_cpu_ptr(zone->pageset, cpu)); 5913 } 5914 out: 5915 mutex_unlock(&pcp_batch_high_lock); 5916 return ret; 5917 } 5918 5919 int hashdist = HASHDIST_DEFAULT; 5920 5921 #ifdef CONFIG_NUMA 5922 static int __init set_hashdist(char *str) 5923 { 5924 if (!str) 5925 return 0; 5926 hashdist = simple_strtoul(str, &str, 0); 5927 return 1; 5928 } 5929 __setup("hashdist=", set_hashdist); 5930 #endif 5931 5932 /* 5933 * allocate a large system hash table from bootmem 5934 * - it is assumed that the hash table must contain an exact power-of-2 5935 * quantity of entries 5936 * - limit is the number of hash buckets, not the total allocation size 5937 */ 5938 void *__init alloc_large_system_hash(const char *tablename, 5939 unsigned long bucketsize, 5940 unsigned long numentries, 5941 int scale, 5942 int flags, 5943 unsigned int *_hash_shift, 5944 unsigned int *_hash_mask, 5945 unsigned long low_limit, 5946 unsigned long high_limit) 5947 { 5948 unsigned long long max = high_limit; 5949 unsigned long log2qty, size; 5950 void *table = NULL; 5951 5952 /* allow the kernel cmdline to have a say */ 5953 if (!numentries) { 5954 /* round applicable memory size up to nearest megabyte */ 5955 numentries = nr_kernel_pages; 5956 5957 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5958 if (PAGE_SHIFT < 20) 5959 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5960 5961 /* limit to 1 bucket per 2^scale bytes of low memory */ 5962 if (scale > PAGE_SHIFT) 5963 numentries >>= (scale - PAGE_SHIFT); 5964 else 5965 numentries <<= (PAGE_SHIFT - scale); 5966 5967 /* Make sure we've got at least a 0-order allocation.. */ 5968 if (unlikely(flags & HASH_SMALL)) { 5969 /* Makes no sense without HASH_EARLY */ 5970 WARN_ON(!(flags & HASH_EARLY)); 5971 if (!(numentries >> *_hash_shift)) { 5972 numentries = 1UL << *_hash_shift; 5973 BUG_ON(!numentries); 5974 } 5975 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5976 numentries = PAGE_SIZE / bucketsize; 5977 } 5978 numentries = roundup_pow_of_two(numentries); 5979 5980 /* limit allocation size to 1/16 total memory by default */ 5981 if (max == 0) { 5982 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5983 do_div(max, bucketsize); 5984 } 5985 max = min(max, 0x80000000ULL); 5986 5987 if (numentries < low_limit) 5988 numentries = low_limit; 5989 if (numentries > max) 5990 numentries = max; 5991 5992 log2qty = ilog2(numentries); 5993 5994 do { 5995 size = bucketsize << log2qty; 5996 if (flags & HASH_EARLY) 5997 table = memblock_virt_alloc_nopanic(size, 0); 5998 else if (hashdist) 5999 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6000 else { 6001 /* 6002 * If bucketsize is not a power-of-two, we may free 6003 * some pages at the end of hash table which 6004 * alloc_pages_exact() automatically does 6005 */ 6006 if (get_order(size) < MAX_ORDER) { 6007 table = alloc_pages_exact(size, GFP_ATOMIC); 6008 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6009 } 6010 } 6011 } while (!table && size > PAGE_SIZE && --log2qty); 6012 6013 if (!table) 6014 panic("Failed to allocate %s hash table\n", tablename); 6015 6016 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6017 tablename, 6018 (1UL << log2qty), 6019 ilog2(size) - PAGE_SHIFT, 6020 size); 6021 6022 if (_hash_shift) 6023 *_hash_shift = log2qty; 6024 if (_hash_mask) 6025 *_hash_mask = (1 << log2qty) - 1; 6026 6027 return table; 6028 } 6029 6030 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6031 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6032 unsigned long pfn) 6033 { 6034 #ifdef CONFIG_SPARSEMEM 6035 return __pfn_to_section(pfn)->pageblock_flags; 6036 #else 6037 return zone->pageblock_flags; 6038 #endif /* CONFIG_SPARSEMEM */ 6039 } 6040 6041 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6042 { 6043 #ifdef CONFIG_SPARSEMEM 6044 pfn &= (PAGES_PER_SECTION-1); 6045 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6046 #else 6047 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6048 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6049 #endif /* CONFIG_SPARSEMEM */ 6050 } 6051 6052 /** 6053 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 6054 * @page: The page within the block of interest 6055 * @start_bitidx: The first bit of interest to retrieve 6056 * @end_bitidx: The last bit of interest 6057 * returns pageblock_bits flags 6058 */ 6059 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6060 unsigned long end_bitidx, 6061 unsigned long mask) 6062 { 6063 struct zone *zone; 6064 unsigned long *bitmap; 6065 unsigned long bitidx, word_bitidx; 6066 unsigned long word; 6067 6068 zone = page_zone(page); 6069 bitmap = get_pageblock_bitmap(zone, pfn); 6070 bitidx = pfn_to_bitidx(zone, pfn); 6071 word_bitidx = bitidx / BITS_PER_LONG; 6072 bitidx &= (BITS_PER_LONG-1); 6073 6074 word = bitmap[word_bitidx]; 6075 bitidx += end_bitidx; 6076 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6077 } 6078 6079 /** 6080 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6081 * @page: The page within the block of interest 6082 * @start_bitidx: The first bit of interest 6083 * @end_bitidx: The last bit of interest 6084 * @flags: The flags to set 6085 */ 6086 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6087 unsigned long pfn, 6088 unsigned long end_bitidx, 6089 unsigned long mask) 6090 { 6091 struct zone *zone; 6092 unsigned long *bitmap; 6093 unsigned long bitidx, word_bitidx; 6094 unsigned long old_word, word; 6095 6096 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6097 6098 zone = page_zone(page); 6099 bitmap = get_pageblock_bitmap(zone, pfn); 6100 bitidx = pfn_to_bitidx(zone, pfn); 6101 word_bitidx = bitidx / BITS_PER_LONG; 6102 bitidx &= (BITS_PER_LONG-1); 6103 6104 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6105 6106 bitidx += end_bitidx; 6107 mask <<= (BITS_PER_LONG - bitidx - 1); 6108 flags <<= (BITS_PER_LONG - bitidx - 1); 6109 6110 word = ACCESS_ONCE(bitmap[word_bitidx]); 6111 for (;;) { 6112 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6113 if (word == old_word) 6114 break; 6115 word = old_word; 6116 } 6117 } 6118 6119 /* 6120 * This function checks whether pageblock includes unmovable pages or not. 6121 * If @count is not zero, it is okay to include less @count unmovable pages 6122 * 6123 * PageLRU check without isolation or lru_lock could race so that 6124 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6125 * expect this function should be exact. 6126 */ 6127 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6128 bool skip_hwpoisoned_pages) 6129 { 6130 unsigned long pfn, iter, found; 6131 int mt; 6132 6133 /* 6134 * For avoiding noise data, lru_add_drain_all() should be called 6135 * If ZONE_MOVABLE, the zone never contains unmovable pages 6136 */ 6137 if (zone_idx(zone) == ZONE_MOVABLE) 6138 return false; 6139 mt = get_pageblock_migratetype(page); 6140 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6141 return false; 6142 6143 pfn = page_to_pfn(page); 6144 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6145 unsigned long check = pfn + iter; 6146 6147 if (!pfn_valid_within(check)) 6148 continue; 6149 6150 page = pfn_to_page(check); 6151 6152 /* 6153 * Hugepages are not in LRU lists, but they're movable. 6154 * We need not scan over tail pages bacause we don't 6155 * handle each tail page individually in migration. 6156 */ 6157 if (PageHuge(page)) { 6158 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6159 continue; 6160 } 6161 6162 /* 6163 * We can't use page_count without pin a page 6164 * because another CPU can free compound page. 6165 * This check already skips compound tails of THP 6166 * because their page->_count is zero at all time. 6167 */ 6168 if (!atomic_read(&page->_count)) { 6169 if (PageBuddy(page)) 6170 iter += (1 << page_order(page)) - 1; 6171 continue; 6172 } 6173 6174 /* 6175 * The HWPoisoned page may be not in buddy system, and 6176 * page_count() is not 0. 6177 */ 6178 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6179 continue; 6180 6181 if (!PageLRU(page)) 6182 found++; 6183 /* 6184 * If there are RECLAIMABLE pages, we need to check it. 6185 * But now, memory offline itself doesn't call shrink_slab() 6186 * and it still to be fixed. 6187 */ 6188 /* 6189 * If the page is not RAM, page_count()should be 0. 6190 * we don't need more check. This is an _used_ not-movable page. 6191 * 6192 * The problematic thing here is PG_reserved pages. PG_reserved 6193 * is set to both of a memory hole page and a _used_ kernel 6194 * page at boot. 6195 */ 6196 if (found > count) 6197 return true; 6198 } 6199 return false; 6200 } 6201 6202 bool is_pageblock_removable_nolock(struct page *page) 6203 { 6204 struct zone *zone; 6205 unsigned long pfn; 6206 6207 /* 6208 * We have to be careful here because we are iterating over memory 6209 * sections which are not zone aware so we might end up outside of 6210 * the zone but still within the section. 6211 * We have to take care about the node as well. If the node is offline 6212 * its NODE_DATA will be NULL - see page_zone. 6213 */ 6214 if (!node_online(page_to_nid(page))) 6215 return false; 6216 6217 zone = page_zone(page); 6218 pfn = page_to_pfn(page); 6219 if (!zone_spans_pfn(zone, pfn)) 6220 return false; 6221 6222 return !has_unmovable_pages(zone, page, 0, true); 6223 } 6224 6225 #ifdef CONFIG_CMA 6226 6227 static unsigned long pfn_max_align_down(unsigned long pfn) 6228 { 6229 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6230 pageblock_nr_pages) - 1); 6231 } 6232 6233 static unsigned long pfn_max_align_up(unsigned long pfn) 6234 { 6235 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6236 pageblock_nr_pages)); 6237 } 6238 6239 /* [start, end) must belong to a single zone. */ 6240 static int __alloc_contig_migrate_range(struct compact_control *cc, 6241 unsigned long start, unsigned long end) 6242 { 6243 /* This function is based on compact_zone() from compaction.c. */ 6244 unsigned long nr_reclaimed; 6245 unsigned long pfn = start; 6246 unsigned int tries = 0; 6247 int ret = 0; 6248 6249 migrate_prep(); 6250 6251 while (pfn < end || !list_empty(&cc->migratepages)) { 6252 if (fatal_signal_pending(current)) { 6253 ret = -EINTR; 6254 break; 6255 } 6256 6257 if (list_empty(&cc->migratepages)) { 6258 cc->nr_migratepages = 0; 6259 pfn = isolate_migratepages_range(cc->zone, cc, 6260 pfn, end, true); 6261 if (!pfn) { 6262 ret = -EINTR; 6263 break; 6264 } 6265 tries = 0; 6266 } else if (++tries == 5) { 6267 ret = ret < 0 ? ret : -EBUSY; 6268 break; 6269 } 6270 6271 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6272 &cc->migratepages); 6273 cc->nr_migratepages -= nr_reclaimed; 6274 6275 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6276 NULL, 0, cc->mode, MR_CMA); 6277 } 6278 if (ret < 0) { 6279 putback_movable_pages(&cc->migratepages); 6280 return ret; 6281 } 6282 return 0; 6283 } 6284 6285 /** 6286 * alloc_contig_range() -- tries to allocate given range of pages 6287 * @start: start PFN to allocate 6288 * @end: one-past-the-last PFN to allocate 6289 * @migratetype: migratetype of the underlaying pageblocks (either 6290 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6291 * in range must have the same migratetype and it must 6292 * be either of the two. 6293 * 6294 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6295 * aligned, however it's the caller's responsibility to guarantee that 6296 * we are the only thread that changes migrate type of pageblocks the 6297 * pages fall in. 6298 * 6299 * The PFN range must belong to a single zone. 6300 * 6301 * Returns zero on success or negative error code. On success all 6302 * pages which PFN is in [start, end) are allocated for the caller and 6303 * need to be freed with free_contig_range(). 6304 */ 6305 int alloc_contig_range(unsigned long start, unsigned long end, 6306 unsigned migratetype) 6307 { 6308 unsigned long outer_start, outer_end; 6309 int ret = 0, order; 6310 6311 struct compact_control cc = { 6312 .nr_migratepages = 0, 6313 .order = -1, 6314 .zone = page_zone(pfn_to_page(start)), 6315 .mode = MIGRATE_SYNC, 6316 .ignore_skip_hint = true, 6317 }; 6318 INIT_LIST_HEAD(&cc.migratepages); 6319 6320 /* 6321 * What we do here is we mark all pageblocks in range as 6322 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6323 * have different sizes, and due to the way page allocator 6324 * work, we align the range to biggest of the two pages so 6325 * that page allocator won't try to merge buddies from 6326 * different pageblocks and change MIGRATE_ISOLATE to some 6327 * other migration type. 6328 * 6329 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6330 * migrate the pages from an unaligned range (ie. pages that 6331 * we are interested in). This will put all the pages in 6332 * range back to page allocator as MIGRATE_ISOLATE. 6333 * 6334 * When this is done, we take the pages in range from page 6335 * allocator removing them from the buddy system. This way 6336 * page allocator will never consider using them. 6337 * 6338 * This lets us mark the pageblocks back as 6339 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6340 * aligned range but not in the unaligned, original range are 6341 * put back to page allocator so that buddy can use them. 6342 */ 6343 6344 ret = start_isolate_page_range(pfn_max_align_down(start), 6345 pfn_max_align_up(end), migratetype, 6346 false); 6347 if (ret) 6348 return ret; 6349 6350 ret = __alloc_contig_migrate_range(&cc, start, end); 6351 if (ret) 6352 goto done; 6353 6354 /* 6355 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6356 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6357 * more, all pages in [start, end) are free in page allocator. 6358 * What we are going to do is to allocate all pages from 6359 * [start, end) (that is remove them from page allocator). 6360 * 6361 * The only problem is that pages at the beginning and at the 6362 * end of interesting range may be not aligned with pages that 6363 * page allocator holds, ie. they can be part of higher order 6364 * pages. Because of this, we reserve the bigger range and 6365 * once this is done free the pages we are not interested in. 6366 * 6367 * We don't have to hold zone->lock here because the pages are 6368 * isolated thus they won't get removed from buddy. 6369 */ 6370 6371 lru_add_drain_all(); 6372 drain_all_pages(); 6373 6374 order = 0; 6375 outer_start = start; 6376 while (!PageBuddy(pfn_to_page(outer_start))) { 6377 if (++order >= MAX_ORDER) { 6378 ret = -EBUSY; 6379 goto done; 6380 } 6381 outer_start &= ~0UL << order; 6382 } 6383 6384 /* Make sure the range is really isolated. */ 6385 if (test_pages_isolated(outer_start, end, false)) { 6386 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6387 outer_start, end); 6388 ret = -EBUSY; 6389 goto done; 6390 } 6391 6392 6393 /* Grab isolated pages from freelists. */ 6394 outer_end = isolate_freepages_range(&cc, outer_start, end); 6395 if (!outer_end) { 6396 ret = -EBUSY; 6397 goto done; 6398 } 6399 6400 /* Free head and tail (if any) */ 6401 if (start != outer_start) 6402 free_contig_range(outer_start, start - outer_start); 6403 if (end != outer_end) 6404 free_contig_range(end, outer_end - end); 6405 6406 done: 6407 undo_isolate_page_range(pfn_max_align_down(start), 6408 pfn_max_align_up(end), migratetype); 6409 return ret; 6410 } 6411 6412 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6413 { 6414 unsigned int count = 0; 6415 6416 for (; nr_pages--; pfn++) { 6417 struct page *page = pfn_to_page(pfn); 6418 6419 count += page_count(page) != 1; 6420 __free_page(page); 6421 } 6422 WARN(count != 0, "%d pages are still in use!\n", count); 6423 } 6424 #endif 6425 6426 #ifdef CONFIG_MEMORY_HOTPLUG 6427 /* 6428 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6429 * page high values need to be recalulated. 6430 */ 6431 void __meminit zone_pcp_update(struct zone *zone) 6432 { 6433 unsigned cpu; 6434 mutex_lock(&pcp_batch_high_lock); 6435 for_each_possible_cpu(cpu) 6436 pageset_set_high_and_batch(zone, 6437 per_cpu_ptr(zone->pageset, cpu)); 6438 mutex_unlock(&pcp_batch_high_lock); 6439 } 6440 #endif 6441 6442 void zone_pcp_reset(struct zone *zone) 6443 { 6444 unsigned long flags; 6445 int cpu; 6446 struct per_cpu_pageset *pset; 6447 6448 /* avoid races with drain_pages() */ 6449 local_irq_save(flags); 6450 if (zone->pageset != &boot_pageset) { 6451 for_each_online_cpu(cpu) { 6452 pset = per_cpu_ptr(zone->pageset, cpu); 6453 drain_zonestat(zone, pset); 6454 } 6455 free_percpu(zone->pageset); 6456 zone->pageset = &boot_pageset; 6457 } 6458 local_irq_restore(flags); 6459 } 6460 6461 #ifdef CONFIG_MEMORY_HOTREMOVE 6462 /* 6463 * All pages in the range must be isolated before calling this. 6464 */ 6465 void 6466 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6467 { 6468 struct page *page; 6469 struct zone *zone; 6470 unsigned int order, i; 6471 unsigned long pfn; 6472 unsigned long flags; 6473 /* find the first valid pfn */ 6474 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6475 if (pfn_valid(pfn)) 6476 break; 6477 if (pfn == end_pfn) 6478 return; 6479 zone = page_zone(pfn_to_page(pfn)); 6480 spin_lock_irqsave(&zone->lock, flags); 6481 pfn = start_pfn; 6482 while (pfn < end_pfn) { 6483 if (!pfn_valid(pfn)) { 6484 pfn++; 6485 continue; 6486 } 6487 page = pfn_to_page(pfn); 6488 /* 6489 * The HWPoisoned page may be not in buddy system, and 6490 * page_count() is not 0. 6491 */ 6492 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6493 pfn++; 6494 SetPageReserved(page); 6495 continue; 6496 } 6497 6498 BUG_ON(page_count(page)); 6499 BUG_ON(!PageBuddy(page)); 6500 order = page_order(page); 6501 #ifdef CONFIG_DEBUG_VM 6502 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6503 pfn, 1 << order, end_pfn); 6504 #endif 6505 list_del(&page->lru); 6506 rmv_page_order(page); 6507 zone->free_area[order].nr_free--; 6508 for (i = 0; i < (1 << order); i++) 6509 SetPageReserved((page+i)); 6510 pfn += (1 << order); 6511 } 6512 spin_unlock_irqrestore(&zone->lock, flags); 6513 } 6514 #endif 6515 6516 #ifdef CONFIG_MEMORY_FAILURE 6517 bool is_free_buddy_page(struct page *page) 6518 { 6519 struct zone *zone = page_zone(page); 6520 unsigned long pfn = page_to_pfn(page); 6521 unsigned long flags; 6522 unsigned int order; 6523 6524 spin_lock_irqsave(&zone->lock, flags); 6525 for (order = 0; order < MAX_ORDER; order++) { 6526 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6527 6528 if (PageBuddy(page_head) && page_order(page_head) >= order) 6529 break; 6530 } 6531 spin_unlock_irqrestore(&zone->lock, flags); 6532 6533 return order < MAX_ORDER; 6534 } 6535 #endif 6536 6537 static const struct trace_print_flags pageflag_names[] = { 6538 {1UL << PG_locked, "locked" }, 6539 {1UL << PG_error, "error" }, 6540 {1UL << PG_referenced, "referenced" }, 6541 {1UL << PG_uptodate, "uptodate" }, 6542 {1UL << PG_dirty, "dirty" }, 6543 {1UL << PG_lru, "lru" }, 6544 {1UL << PG_active, "active" }, 6545 {1UL << PG_slab, "slab" }, 6546 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6547 {1UL << PG_arch_1, "arch_1" }, 6548 {1UL << PG_reserved, "reserved" }, 6549 {1UL << PG_private, "private" }, 6550 {1UL << PG_private_2, "private_2" }, 6551 {1UL << PG_writeback, "writeback" }, 6552 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6553 {1UL << PG_head, "head" }, 6554 {1UL << PG_tail, "tail" }, 6555 #else 6556 {1UL << PG_compound, "compound" }, 6557 #endif 6558 {1UL << PG_swapcache, "swapcache" }, 6559 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6560 {1UL << PG_reclaim, "reclaim" }, 6561 {1UL << PG_swapbacked, "swapbacked" }, 6562 {1UL << PG_unevictable, "unevictable" }, 6563 #ifdef CONFIG_MMU 6564 {1UL << PG_mlocked, "mlocked" }, 6565 #endif 6566 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6567 {1UL << PG_uncached, "uncached" }, 6568 #endif 6569 #ifdef CONFIG_MEMORY_FAILURE 6570 {1UL << PG_hwpoison, "hwpoison" }, 6571 #endif 6572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6573 {1UL << PG_compound_lock, "compound_lock" }, 6574 #endif 6575 }; 6576 6577 static void dump_page_flags(unsigned long flags) 6578 { 6579 const char *delim = ""; 6580 unsigned long mask; 6581 int i; 6582 6583 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6584 6585 printk(KERN_ALERT "page flags: %#lx(", flags); 6586 6587 /* remove zone id */ 6588 flags &= (1UL << NR_PAGEFLAGS) - 1; 6589 6590 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6591 6592 mask = pageflag_names[i].mask; 6593 if ((flags & mask) != mask) 6594 continue; 6595 6596 flags &= ~mask; 6597 printk("%s%s", delim, pageflag_names[i].name); 6598 delim = "|"; 6599 } 6600 6601 /* check for left over flags */ 6602 if (flags) 6603 printk("%s%#lx", delim, flags); 6604 6605 printk(")\n"); 6606 } 6607 6608 void dump_page_badflags(struct page *page, const char *reason, 6609 unsigned long badflags) 6610 { 6611 printk(KERN_ALERT 6612 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6613 page, atomic_read(&page->_count), page_mapcount(page), 6614 page->mapping, page->index); 6615 dump_page_flags(page->flags); 6616 if (reason) 6617 pr_alert("page dumped because: %s\n", reason); 6618 if (page->flags & badflags) { 6619 pr_alert("bad because of flags:\n"); 6620 dump_page_flags(page->flags & badflags); 6621 } 6622 mem_cgroup_print_bad_page(page); 6623 } 6624 6625 void dump_page(struct page *page, const char *reason) 6626 { 6627 dump_page_badflags(page, reason, 0); 6628 } 6629 EXPORT_SYMBOL(dump_page); 6630