1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page-debug-flags.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 #define MIN_PERCPU_PAGELIST_FRACTION (8) 73 74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 75 DEFINE_PER_CPU(int, numa_node); 76 EXPORT_PER_CPU_SYMBOL(numa_node); 77 #endif 78 79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 80 /* 81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 84 * defined in <linux/topology.h>. 85 */ 86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 87 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 88 #endif 89 90 /* 91 * Array of node states. 92 */ 93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 94 [N_POSSIBLE] = NODE_MASK_ALL, 95 [N_ONLINE] = { { [0] = 1UL } }, 96 #ifndef CONFIG_NUMA 97 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 98 #ifdef CONFIG_HIGHMEM 99 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 100 #endif 101 #ifdef CONFIG_MOVABLE_NODE 102 [N_MEMORY] = { { [0] = 1UL } }, 103 #endif 104 [N_CPU] = { { [0] = 1UL } }, 105 #endif /* NUMA */ 106 }; 107 EXPORT_SYMBOL(node_states); 108 109 /* Protect totalram_pages and zone->managed_pages */ 110 static DEFINE_SPINLOCK(managed_page_count_lock); 111 112 unsigned long totalram_pages __read_mostly; 113 unsigned long totalreserve_pages __read_mostly; 114 /* 115 * When calculating the number of globally allowed dirty pages, there 116 * is a certain number of per-zone reserves that should not be 117 * considered dirtyable memory. This is the sum of those reserves 118 * over all existing zones that contribute dirtyable memory. 119 */ 120 unsigned long dirty_balance_reserve __read_mostly; 121 122 int percpu_pagelist_fraction; 123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 124 125 #ifdef CONFIG_PM_SLEEP 126 /* 127 * The following functions are used by the suspend/hibernate code to temporarily 128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 129 * while devices are suspended. To avoid races with the suspend/hibernate code, 130 * they should always be called with pm_mutex held (gfp_allowed_mask also should 131 * only be modified with pm_mutex held, unless the suspend/hibernate code is 132 * guaranteed not to run in parallel with that modification). 133 */ 134 135 static gfp_t saved_gfp_mask; 136 137 void pm_restore_gfp_mask(void) 138 { 139 WARN_ON(!mutex_is_locked(&pm_mutex)); 140 if (saved_gfp_mask) { 141 gfp_allowed_mask = saved_gfp_mask; 142 saved_gfp_mask = 0; 143 } 144 } 145 146 void pm_restrict_gfp_mask(void) 147 { 148 WARN_ON(!mutex_is_locked(&pm_mutex)); 149 WARN_ON(saved_gfp_mask); 150 saved_gfp_mask = gfp_allowed_mask; 151 gfp_allowed_mask &= ~GFP_IOFS; 152 } 153 154 bool pm_suspended_storage(void) 155 { 156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 157 return false; 158 return true; 159 } 160 #endif /* CONFIG_PM_SLEEP */ 161 162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 163 int pageblock_order __read_mostly; 164 #endif 165 166 static void __free_pages_ok(struct page *page, unsigned int order); 167 168 /* 169 * results with 256, 32 in the lowmem_reserve sysctl: 170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 171 * 1G machine -> (16M dma, 784M normal, 224M high) 172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 175 * 176 * TBD: should special case ZONE_DMA32 machines here - in those we normally 177 * don't need any ZONE_NORMAL reservation 178 */ 179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 180 #ifdef CONFIG_ZONE_DMA 181 256, 182 #endif 183 #ifdef CONFIG_ZONE_DMA32 184 256, 185 #endif 186 #ifdef CONFIG_HIGHMEM 187 32, 188 #endif 189 32, 190 }; 191 192 EXPORT_SYMBOL(totalram_pages); 193 194 static char * const zone_names[MAX_NR_ZONES] = { 195 #ifdef CONFIG_ZONE_DMA 196 "DMA", 197 #endif 198 #ifdef CONFIG_ZONE_DMA32 199 "DMA32", 200 #endif 201 "Normal", 202 #ifdef CONFIG_HIGHMEM 203 "HighMem", 204 #endif 205 "Movable", 206 }; 207 208 int min_free_kbytes = 1024; 209 int user_min_free_kbytes = -1; 210 211 static unsigned long __meminitdata nr_kernel_pages; 212 static unsigned long __meminitdata nr_all_pages; 213 static unsigned long __meminitdata dma_reserve; 214 215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 218 static unsigned long __initdata required_kernelcore; 219 static unsigned long __initdata required_movablecore; 220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 221 222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 223 int movable_zone; 224 EXPORT_SYMBOL(movable_zone); 225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 226 227 #if MAX_NUMNODES > 1 228 int nr_node_ids __read_mostly = MAX_NUMNODES; 229 int nr_online_nodes __read_mostly = 1; 230 EXPORT_SYMBOL(nr_node_ids); 231 EXPORT_SYMBOL(nr_online_nodes); 232 #endif 233 234 int page_group_by_mobility_disabled __read_mostly; 235 236 void set_pageblock_migratetype(struct page *page, int migratetype) 237 { 238 if (unlikely(page_group_by_mobility_disabled && 239 migratetype < MIGRATE_PCPTYPES)) 240 migratetype = MIGRATE_UNMOVABLE; 241 242 set_pageblock_flags_group(page, (unsigned long)migratetype, 243 PB_migrate, PB_migrate_end); 244 } 245 246 bool oom_killer_disabled __read_mostly; 247 248 #ifdef CONFIG_DEBUG_VM 249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 250 { 251 int ret = 0; 252 unsigned seq; 253 unsigned long pfn = page_to_pfn(page); 254 unsigned long sp, start_pfn; 255 256 do { 257 seq = zone_span_seqbegin(zone); 258 start_pfn = zone->zone_start_pfn; 259 sp = zone->spanned_pages; 260 if (!zone_spans_pfn(zone, pfn)) 261 ret = 1; 262 } while (zone_span_seqretry(zone, seq)); 263 264 if (ret) 265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 266 pfn, zone_to_nid(zone), zone->name, 267 start_pfn, start_pfn + sp); 268 269 return ret; 270 } 271 272 static int page_is_consistent(struct zone *zone, struct page *page) 273 { 274 if (!pfn_valid_within(page_to_pfn(page))) 275 return 0; 276 if (zone != page_zone(page)) 277 return 0; 278 279 return 1; 280 } 281 /* 282 * Temporary debugging check for pages not lying within a given zone. 283 */ 284 static int bad_range(struct zone *zone, struct page *page) 285 { 286 if (page_outside_zone_boundaries(zone, page)) 287 return 1; 288 if (!page_is_consistent(zone, page)) 289 return 1; 290 291 return 0; 292 } 293 #else 294 static inline int bad_range(struct zone *zone, struct page *page) 295 { 296 return 0; 297 } 298 #endif 299 300 static void bad_page(struct page *page, const char *reason, 301 unsigned long bad_flags) 302 { 303 static unsigned long resume; 304 static unsigned long nr_shown; 305 static unsigned long nr_unshown; 306 307 /* Don't complain about poisoned pages */ 308 if (PageHWPoison(page)) { 309 page_mapcount_reset(page); /* remove PageBuddy */ 310 return; 311 } 312 313 /* 314 * Allow a burst of 60 reports, then keep quiet for that minute; 315 * or allow a steady drip of one report per second. 316 */ 317 if (nr_shown == 60) { 318 if (time_before(jiffies, resume)) { 319 nr_unshown++; 320 goto out; 321 } 322 if (nr_unshown) { 323 printk(KERN_ALERT 324 "BUG: Bad page state: %lu messages suppressed\n", 325 nr_unshown); 326 nr_unshown = 0; 327 } 328 nr_shown = 0; 329 } 330 if (nr_shown++ == 0) 331 resume = jiffies + 60 * HZ; 332 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 334 current->comm, page_to_pfn(page)); 335 dump_page_badflags(page, reason, bad_flags); 336 337 print_modules(); 338 dump_stack(); 339 out: 340 /* Leave bad fields for debug, except PageBuddy could make trouble */ 341 page_mapcount_reset(page); /* remove PageBuddy */ 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 343 } 344 345 /* 346 * Higher-order pages are called "compound pages". They are structured thusly: 347 * 348 * The first PAGE_SIZE page is called the "head page". 349 * 350 * The remaining PAGE_SIZE pages are called "tail pages". 351 * 352 * All pages have PG_compound set. All tail pages have their ->first_page 353 * pointing at the head page. 354 * 355 * The first tail page's ->lru.next holds the address of the compound page's 356 * put_page() function. Its ->lru.prev holds the order of allocation. 357 * This usage means that zero-order pages may not be compound. 358 */ 359 360 static void free_compound_page(struct page *page) 361 { 362 __free_pages_ok(page, compound_order(page)); 363 } 364 365 void prep_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 370 set_compound_page_dtor(page, free_compound_page); 371 set_compound_order(page, order); 372 __SetPageHead(page); 373 for (i = 1; i < nr_pages; i++) { 374 struct page *p = page + i; 375 set_page_count(p, 0); 376 p->first_page = page; 377 /* Make sure p->first_page is always valid for PageTail() */ 378 smp_wmb(); 379 __SetPageTail(p); 380 } 381 } 382 383 /* update __split_huge_page_refcount if you change this function */ 384 static int destroy_compound_page(struct page *page, unsigned long order) 385 { 386 int i; 387 int nr_pages = 1 << order; 388 int bad = 0; 389 390 if (unlikely(compound_order(page) != order)) { 391 bad_page(page, "wrong compound order", 0); 392 bad++; 393 } 394 395 __ClearPageHead(page); 396 397 for (i = 1; i < nr_pages; i++) { 398 struct page *p = page + i; 399 400 if (unlikely(!PageTail(p))) { 401 bad_page(page, "PageTail not set", 0); 402 bad++; 403 } else if (unlikely(p->first_page != page)) { 404 bad_page(page, "first_page not consistent", 0); 405 bad++; 406 } 407 __ClearPageTail(p); 408 } 409 410 return bad; 411 } 412 413 static inline void prep_zero_page(struct page *page, unsigned int order, 414 gfp_t gfp_flags) 415 { 416 int i; 417 418 /* 419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 420 * and __GFP_HIGHMEM from hard or soft interrupt context. 421 */ 422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 423 for (i = 0; i < (1 << order); i++) 424 clear_highpage(page + i); 425 } 426 427 #ifdef CONFIG_DEBUG_PAGEALLOC 428 unsigned int _debug_guardpage_minorder; 429 430 static int __init debug_guardpage_minorder_setup(char *buf) 431 { 432 unsigned long res; 433 434 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 435 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 436 return 0; 437 } 438 _debug_guardpage_minorder = res; 439 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 440 return 0; 441 } 442 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 443 444 static inline void set_page_guard_flag(struct page *page) 445 { 446 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 447 } 448 449 static inline void clear_page_guard_flag(struct page *page) 450 { 451 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 452 } 453 #else 454 static inline void set_page_guard_flag(struct page *page) { } 455 static inline void clear_page_guard_flag(struct page *page) { } 456 #endif 457 458 static inline void set_page_order(struct page *page, unsigned int order) 459 { 460 set_page_private(page, order); 461 __SetPageBuddy(page); 462 } 463 464 static inline void rmv_page_order(struct page *page) 465 { 466 __ClearPageBuddy(page); 467 set_page_private(page, 0); 468 } 469 470 /* 471 * Locate the struct page for both the matching buddy in our 472 * pair (buddy1) and the combined O(n+1) page they form (page). 473 * 474 * 1) Any buddy B1 will have an order O twin B2 which satisfies 475 * the following equation: 476 * B2 = B1 ^ (1 << O) 477 * For example, if the starting buddy (buddy2) is #8 its order 478 * 1 buddy is #10: 479 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 480 * 481 * 2) Any buddy B will have an order O+1 parent P which 482 * satisfies the following equation: 483 * P = B & ~(1 << O) 484 * 485 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 486 */ 487 static inline unsigned long 488 __find_buddy_index(unsigned long page_idx, unsigned int order) 489 { 490 return page_idx ^ (1 << order); 491 } 492 493 /* 494 * This function checks whether a page is free && is the buddy 495 * we can do coalesce a page and its buddy if 496 * (a) the buddy is not in a hole && 497 * (b) the buddy is in the buddy system && 498 * (c) a page and its buddy have the same order && 499 * (d) a page and its buddy are in the same zone. 500 * 501 * For recording whether a page is in the buddy system, we set ->_mapcount 502 * PAGE_BUDDY_MAPCOUNT_VALUE. 503 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 504 * serialized by zone->lock. 505 * 506 * For recording page's order, we use page_private(page). 507 */ 508 static inline int page_is_buddy(struct page *page, struct page *buddy, 509 unsigned int order) 510 { 511 if (!pfn_valid_within(page_to_pfn(buddy))) 512 return 0; 513 514 if (page_is_guard(buddy) && page_order(buddy) == order) { 515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 516 517 if (page_zone_id(page) != page_zone_id(buddy)) 518 return 0; 519 520 return 1; 521 } 522 523 if (PageBuddy(buddy) && page_order(buddy) == order) { 524 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 525 526 /* 527 * zone check is done late to avoid uselessly 528 * calculating zone/node ids for pages that could 529 * never merge. 530 */ 531 if (page_zone_id(page) != page_zone_id(buddy)) 532 return 0; 533 534 return 1; 535 } 536 return 0; 537 } 538 539 /* 540 * Freeing function for a buddy system allocator. 541 * 542 * The concept of a buddy system is to maintain direct-mapped table 543 * (containing bit values) for memory blocks of various "orders". 544 * The bottom level table contains the map for the smallest allocatable 545 * units of memory (here, pages), and each level above it describes 546 * pairs of units from the levels below, hence, "buddies". 547 * At a high level, all that happens here is marking the table entry 548 * at the bottom level available, and propagating the changes upward 549 * as necessary, plus some accounting needed to play nicely with other 550 * parts of the VM system. 551 * At each level, we keep a list of pages, which are heads of continuous 552 * free pages of length of (1 << order) and marked with _mapcount 553 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 554 * field. 555 * So when we are allocating or freeing one, we can derive the state of the 556 * other. That is, if we allocate a small block, and both were 557 * free, the remainder of the region must be split into blocks. 558 * If a block is freed, and its buddy is also free, then this 559 * triggers coalescing into a block of larger size. 560 * 561 * -- nyc 562 */ 563 564 static inline void __free_one_page(struct page *page, 565 unsigned long pfn, 566 struct zone *zone, unsigned int order, 567 int migratetype) 568 { 569 unsigned long page_idx; 570 unsigned long combined_idx; 571 unsigned long uninitialized_var(buddy_idx); 572 struct page *buddy; 573 574 VM_BUG_ON(!zone_is_initialized(zone)); 575 576 if (unlikely(PageCompound(page))) 577 if (unlikely(destroy_compound_page(page, order))) 578 return; 579 580 VM_BUG_ON(migratetype == -1); 581 582 page_idx = pfn & ((1 << MAX_ORDER) - 1); 583 584 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 585 VM_BUG_ON_PAGE(bad_range(zone, page), page); 586 587 while (order < MAX_ORDER-1) { 588 buddy_idx = __find_buddy_index(page_idx, order); 589 buddy = page + (buddy_idx - page_idx); 590 if (!page_is_buddy(page, buddy, order)) 591 break; 592 /* 593 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 594 * merge with it and move up one order. 595 */ 596 if (page_is_guard(buddy)) { 597 clear_page_guard_flag(buddy); 598 set_page_private(page, 0); 599 __mod_zone_freepage_state(zone, 1 << order, 600 migratetype); 601 } else { 602 list_del(&buddy->lru); 603 zone->free_area[order].nr_free--; 604 rmv_page_order(buddy); 605 } 606 combined_idx = buddy_idx & page_idx; 607 page = page + (combined_idx - page_idx); 608 page_idx = combined_idx; 609 order++; 610 } 611 set_page_order(page, order); 612 613 /* 614 * If this is not the largest possible page, check if the buddy 615 * of the next-highest order is free. If it is, it's possible 616 * that pages are being freed that will coalesce soon. In case, 617 * that is happening, add the free page to the tail of the list 618 * so it's less likely to be used soon and more likely to be merged 619 * as a higher order page 620 */ 621 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 622 struct page *higher_page, *higher_buddy; 623 combined_idx = buddy_idx & page_idx; 624 higher_page = page + (combined_idx - page_idx); 625 buddy_idx = __find_buddy_index(combined_idx, order + 1); 626 higher_buddy = higher_page + (buddy_idx - combined_idx); 627 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 628 list_add_tail(&page->lru, 629 &zone->free_area[order].free_list[migratetype]); 630 goto out; 631 } 632 } 633 634 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 635 out: 636 zone->free_area[order].nr_free++; 637 } 638 639 static inline int free_pages_check(struct page *page) 640 { 641 const char *bad_reason = NULL; 642 unsigned long bad_flags = 0; 643 644 if (unlikely(page_mapcount(page))) 645 bad_reason = "nonzero mapcount"; 646 if (unlikely(page->mapping != NULL)) 647 bad_reason = "non-NULL mapping"; 648 if (unlikely(atomic_read(&page->_count) != 0)) 649 bad_reason = "nonzero _count"; 650 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 651 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 652 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 653 } 654 if (unlikely(mem_cgroup_bad_page_check(page))) 655 bad_reason = "cgroup check failed"; 656 if (unlikely(bad_reason)) { 657 bad_page(page, bad_reason, bad_flags); 658 return 1; 659 } 660 page_cpupid_reset_last(page); 661 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 662 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 663 return 0; 664 } 665 666 /* 667 * Frees a number of pages from the PCP lists 668 * Assumes all pages on list are in same zone, and of same order. 669 * count is the number of pages to free. 670 * 671 * If the zone was previously in an "all pages pinned" state then look to 672 * see if this freeing clears that state. 673 * 674 * And clear the zone's pages_scanned counter, to hold off the "all pages are 675 * pinned" detection logic. 676 */ 677 static void free_pcppages_bulk(struct zone *zone, int count, 678 struct per_cpu_pages *pcp) 679 { 680 int migratetype = 0; 681 int batch_free = 0; 682 int to_free = count; 683 684 spin_lock(&zone->lock); 685 zone->pages_scanned = 0; 686 687 while (to_free) { 688 struct page *page; 689 struct list_head *list; 690 691 /* 692 * Remove pages from lists in a round-robin fashion. A 693 * batch_free count is maintained that is incremented when an 694 * empty list is encountered. This is so more pages are freed 695 * off fuller lists instead of spinning excessively around empty 696 * lists 697 */ 698 do { 699 batch_free++; 700 if (++migratetype == MIGRATE_PCPTYPES) 701 migratetype = 0; 702 list = &pcp->lists[migratetype]; 703 } while (list_empty(list)); 704 705 /* This is the only non-empty list. Free them all. */ 706 if (batch_free == MIGRATE_PCPTYPES) 707 batch_free = to_free; 708 709 do { 710 int mt; /* migratetype of the to-be-freed page */ 711 712 page = list_entry(list->prev, struct page, lru); 713 /* must delete as __free_one_page list manipulates */ 714 list_del(&page->lru); 715 mt = get_freepage_migratetype(page); 716 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 717 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 718 trace_mm_page_pcpu_drain(page, 0, mt); 719 if (likely(!is_migrate_isolate_page(page))) { 720 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 721 if (is_migrate_cma(mt)) 722 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 723 } 724 } while (--to_free && --batch_free && !list_empty(list)); 725 } 726 spin_unlock(&zone->lock); 727 } 728 729 static void free_one_page(struct zone *zone, 730 struct page *page, unsigned long pfn, 731 unsigned int order, 732 int migratetype) 733 { 734 spin_lock(&zone->lock); 735 zone->pages_scanned = 0; 736 737 __free_one_page(page, pfn, zone, order, migratetype); 738 if (unlikely(!is_migrate_isolate(migratetype))) 739 __mod_zone_freepage_state(zone, 1 << order, migratetype); 740 spin_unlock(&zone->lock); 741 } 742 743 static bool free_pages_prepare(struct page *page, unsigned int order) 744 { 745 int i; 746 int bad = 0; 747 748 trace_mm_page_free(page, order); 749 kmemcheck_free_shadow(page, order); 750 751 if (PageAnon(page)) 752 page->mapping = NULL; 753 for (i = 0; i < (1 << order); i++) 754 bad += free_pages_check(page + i); 755 if (bad) 756 return false; 757 758 if (!PageHighMem(page)) { 759 debug_check_no_locks_freed(page_address(page), 760 PAGE_SIZE << order); 761 debug_check_no_obj_freed(page_address(page), 762 PAGE_SIZE << order); 763 } 764 arch_free_page(page, order); 765 kernel_map_pages(page, 1 << order, 0); 766 767 return true; 768 } 769 770 static void __free_pages_ok(struct page *page, unsigned int order) 771 { 772 unsigned long flags; 773 int migratetype; 774 unsigned long pfn = page_to_pfn(page); 775 776 if (!free_pages_prepare(page, order)) 777 return; 778 779 migratetype = get_pfnblock_migratetype(page, pfn); 780 local_irq_save(flags); 781 __count_vm_events(PGFREE, 1 << order); 782 set_freepage_migratetype(page, migratetype); 783 free_one_page(page_zone(page), page, pfn, order, migratetype); 784 local_irq_restore(flags); 785 } 786 787 void __init __free_pages_bootmem(struct page *page, unsigned int order) 788 { 789 unsigned int nr_pages = 1 << order; 790 struct page *p = page; 791 unsigned int loop; 792 793 prefetchw(p); 794 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 795 prefetchw(p + 1); 796 __ClearPageReserved(p); 797 set_page_count(p, 0); 798 } 799 __ClearPageReserved(p); 800 set_page_count(p, 0); 801 802 page_zone(page)->managed_pages += nr_pages; 803 set_page_refcounted(page); 804 __free_pages(page, order); 805 } 806 807 #ifdef CONFIG_CMA 808 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 809 void __init init_cma_reserved_pageblock(struct page *page) 810 { 811 unsigned i = pageblock_nr_pages; 812 struct page *p = page; 813 814 do { 815 __ClearPageReserved(p); 816 set_page_count(p, 0); 817 } while (++p, --i); 818 819 set_pageblock_migratetype(page, MIGRATE_CMA); 820 821 if (pageblock_order >= MAX_ORDER) { 822 i = pageblock_nr_pages; 823 p = page; 824 do { 825 set_page_refcounted(p); 826 __free_pages(p, MAX_ORDER - 1); 827 p += MAX_ORDER_NR_PAGES; 828 } while (i -= MAX_ORDER_NR_PAGES); 829 } else { 830 set_page_refcounted(page); 831 __free_pages(page, pageblock_order); 832 } 833 834 adjust_managed_page_count(page, pageblock_nr_pages); 835 } 836 #endif 837 838 /* 839 * The order of subdivision here is critical for the IO subsystem. 840 * Please do not alter this order without good reasons and regression 841 * testing. Specifically, as large blocks of memory are subdivided, 842 * the order in which smaller blocks are delivered depends on the order 843 * they're subdivided in this function. This is the primary factor 844 * influencing the order in which pages are delivered to the IO 845 * subsystem according to empirical testing, and this is also justified 846 * by considering the behavior of a buddy system containing a single 847 * large block of memory acted on by a series of small allocations. 848 * This behavior is a critical factor in sglist merging's success. 849 * 850 * -- nyc 851 */ 852 static inline void expand(struct zone *zone, struct page *page, 853 int low, int high, struct free_area *area, 854 int migratetype) 855 { 856 unsigned long size = 1 << high; 857 858 while (high > low) { 859 area--; 860 high--; 861 size >>= 1; 862 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 863 864 #ifdef CONFIG_DEBUG_PAGEALLOC 865 if (high < debug_guardpage_minorder()) { 866 /* 867 * Mark as guard pages (or page), that will allow to 868 * merge back to allocator when buddy will be freed. 869 * Corresponding page table entries will not be touched, 870 * pages will stay not present in virtual address space 871 */ 872 INIT_LIST_HEAD(&page[size].lru); 873 set_page_guard_flag(&page[size]); 874 set_page_private(&page[size], high); 875 /* Guard pages are not available for any usage */ 876 __mod_zone_freepage_state(zone, -(1 << high), 877 migratetype); 878 continue; 879 } 880 #endif 881 list_add(&page[size].lru, &area->free_list[migratetype]); 882 area->nr_free++; 883 set_page_order(&page[size], high); 884 } 885 } 886 887 /* 888 * This page is about to be returned from the page allocator 889 */ 890 static inline int check_new_page(struct page *page) 891 { 892 const char *bad_reason = NULL; 893 unsigned long bad_flags = 0; 894 895 if (unlikely(page_mapcount(page))) 896 bad_reason = "nonzero mapcount"; 897 if (unlikely(page->mapping != NULL)) 898 bad_reason = "non-NULL mapping"; 899 if (unlikely(atomic_read(&page->_count) != 0)) 900 bad_reason = "nonzero _count"; 901 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 902 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 903 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 904 } 905 if (unlikely(mem_cgroup_bad_page_check(page))) 906 bad_reason = "cgroup check failed"; 907 if (unlikely(bad_reason)) { 908 bad_page(page, bad_reason, bad_flags); 909 return 1; 910 } 911 return 0; 912 } 913 914 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags) 915 { 916 int i; 917 918 for (i = 0; i < (1 << order); i++) { 919 struct page *p = page + i; 920 if (unlikely(check_new_page(p))) 921 return 1; 922 } 923 924 set_page_private(page, 0); 925 set_page_refcounted(page); 926 927 arch_alloc_page(page, order); 928 kernel_map_pages(page, 1 << order, 1); 929 930 if (gfp_flags & __GFP_ZERO) 931 prep_zero_page(page, order, gfp_flags); 932 933 if (order && (gfp_flags & __GFP_COMP)) 934 prep_compound_page(page, order); 935 936 return 0; 937 } 938 939 /* 940 * Go through the free lists for the given migratetype and remove 941 * the smallest available page from the freelists 942 */ 943 static inline 944 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 945 int migratetype) 946 { 947 unsigned int current_order; 948 struct free_area *area; 949 struct page *page; 950 951 /* Find a page of the appropriate size in the preferred list */ 952 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 953 area = &(zone->free_area[current_order]); 954 if (list_empty(&area->free_list[migratetype])) 955 continue; 956 957 page = list_entry(area->free_list[migratetype].next, 958 struct page, lru); 959 list_del(&page->lru); 960 rmv_page_order(page); 961 area->nr_free--; 962 expand(zone, page, order, current_order, area, migratetype); 963 set_freepage_migratetype(page, migratetype); 964 return page; 965 } 966 967 return NULL; 968 } 969 970 971 /* 972 * This array describes the order lists are fallen back to when 973 * the free lists for the desirable migrate type are depleted 974 */ 975 static int fallbacks[MIGRATE_TYPES][4] = { 976 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 977 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 978 #ifdef CONFIG_CMA 979 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 980 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 981 #else 982 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 983 #endif 984 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 985 #ifdef CONFIG_MEMORY_ISOLATION 986 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 987 #endif 988 }; 989 990 /* 991 * Move the free pages in a range to the free lists of the requested type. 992 * Note that start_page and end_pages are not aligned on a pageblock 993 * boundary. If alignment is required, use move_freepages_block() 994 */ 995 int move_freepages(struct zone *zone, 996 struct page *start_page, struct page *end_page, 997 int migratetype) 998 { 999 struct page *page; 1000 unsigned long order; 1001 int pages_moved = 0; 1002 1003 #ifndef CONFIG_HOLES_IN_ZONE 1004 /* 1005 * page_zone is not safe to call in this context when 1006 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1007 * anyway as we check zone boundaries in move_freepages_block(). 1008 * Remove at a later date when no bug reports exist related to 1009 * grouping pages by mobility 1010 */ 1011 BUG_ON(page_zone(start_page) != page_zone(end_page)); 1012 #endif 1013 1014 for (page = start_page; page <= end_page;) { 1015 /* Make sure we are not inadvertently changing nodes */ 1016 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1017 1018 if (!pfn_valid_within(page_to_pfn(page))) { 1019 page++; 1020 continue; 1021 } 1022 1023 if (!PageBuddy(page)) { 1024 page++; 1025 continue; 1026 } 1027 1028 order = page_order(page); 1029 list_move(&page->lru, 1030 &zone->free_area[order].free_list[migratetype]); 1031 set_freepage_migratetype(page, migratetype); 1032 page += 1 << order; 1033 pages_moved += 1 << order; 1034 } 1035 1036 return pages_moved; 1037 } 1038 1039 int move_freepages_block(struct zone *zone, struct page *page, 1040 int migratetype) 1041 { 1042 unsigned long start_pfn, end_pfn; 1043 struct page *start_page, *end_page; 1044 1045 start_pfn = page_to_pfn(page); 1046 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1047 start_page = pfn_to_page(start_pfn); 1048 end_page = start_page + pageblock_nr_pages - 1; 1049 end_pfn = start_pfn + pageblock_nr_pages - 1; 1050 1051 /* Do not cross zone boundaries */ 1052 if (!zone_spans_pfn(zone, start_pfn)) 1053 start_page = page; 1054 if (!zone_spans_pfn(zone, end_pfn)) 1055 return 0; 1056 1057 return move_freepages(zone, start_page, end_page, migratetype); 1058 } 1059 1060 static void change_pageblock_range(struct page *pageblock_page, 1061 int start_order, int migratetype) 1062 { 1063 int nr_pageblocks = 1 << (start_order - pageblock_order); 1064 1065 while (nr_pageblocks--) { 1066 set_pageblock_migratetype(pageblock_page, migratetype); 1067 pageblock_page += pageblock_nr_pages; 1068 } 1069 } 1070 1071 /* 1072 * If breaking a large block of pages, move all free pages to the preferred 1073 * allocation list. If falling back for a reclaimable kernel allocation, be 1074 * more aggressive about taking ownership of free pages. 1075 * 1076 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1077 * nor move CMA pages to different free lists. We don't want unmovable pages 1078 * to be allocated from MIGRATE_CMA areas. 1079 * 1080 * Returns the new migratetype of the pageblock (or the same old migratetype 1081 * if it was unchanged). 1082 */ 1083 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1084 int start_type, int fallback_type) 1085 { 1086 int current_order = page_order(page); 1087 1088 /* 1089 * When borrowing from MIGRATE_CMA, we need to release the excess 1090 * buddy pages to CMA itself. We also ensure the freepage_migratetype 1091 * is set to CMA so it is returned to the correct freelist in case 1092 * the page ends up being not actually allocated from the pcp lists. 1093 */ 1094 if (is_migrate_cma(fallback_type)) 1095 return fallback_type; 1096 1097 /* Take ownership for orders >= pageblock_order */ 1098 if (current_order >= pageblock_order) { 1099 change_pageblock_range(page, current_order, start_type); 1100 return start_type; 1101 } 1102 1103 if (current_order >= pageblock_order / 2 || 1104 start_type == MIGRATE_RECLAIMABLE || 1105 page_group_by_mobility_disabled) { 1106 int pages; 1107 1108 pages = move_freepages_block(zone, page, start_type); 1109 1110 /* Claim the whole block if over half of it is free */ 1111 if (pages >= (1 << (pageblock_order-1)) || 1112 page_group_by_mobility_disabled) { 1113 1114 set_pageblock_migratetype(page, start_type); 1115 return start_type; 1116 } 1117 1118 } 1119 1120 return fallback_type; 1121 } 1122 1123 /* Remove an element from the buddy allocator from the fallback list */ 1124 static inline struct page * 1125 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1126 { 1127 struct free_area *area; 1128 unsigned int current_order; 1129 struct page *page; 1130 int migratetype, new_type, i; 1131 1132 /* Find the largest possible block of pages in the other list */ 1133 for (current_order = MAX_ORDER-1; 1134 current_order >= order && current_order <= MAX_ORDER-1; 1135 --current_order) { 1136 for (i = 0;; i++) { 1137 migratetype = fallbacks[start_migratetype][i]; 1138 1139 /* MIGRATE_RESERVE handled later if necessary */ 1140 if (migratetype == MIGRATE_RESERVE) 1141 break; 1142 1143 area = &(zone->free_area[current_order]); 1144 if (list_empty(&area->free_list[migratetype])) 1145 continue; 1146 1147 page = list_entry(area->free_list[migratetype].next, 1148 struct page, lru); 1149 area->nr_free--; 1150 1151 new_type = try_to_steal_freepages(zone, page, 1152 start_migratetype, 1153 migratetype); 1154 1155 /* Remove the page from the freelists */ 1156 list_del(&page->lru); 1157 rmv_page_order(page); 1158 1159 expand(zone, page, order, current_order, area, 1160 new_type); 1161 /* The freepage_migratetype may differ from pageblock's 1162 * migratetype depending on the decisions in 1163 * try_to_steal_freepages. This is OK as long as it does 1164 * not differ for MIGRATE_CMA type. 1165 */ 1166 set_freepage_migratetype(page, new_type); 1167 1168 trace_mm_page_alloc_extfrag(page, order, current_order, 1169 start_migratetype, migratetype, new_type); 1170 1171 return page; 1172 } 1173 } 1174 1175 return NULL; 1176 } 1177 1178 /* 1179 * Do the hard work of removing an element from the buddy allocator. 1180 * Call me with the zone->lock already held. 1181 */ 1182 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1183 int migratetype) 1184 { 1185 struct page *page; 1186 1187 retry_reserve: 1188 page = __rmqueue_smallest(zone, order, migratetype); 1189 1190 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1191 page = __rmqueue_fallback(zone, order, migratetype); 1192 1193 /* 1194 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1195 * is used because __rmqueue_smallest is an inline function 1196 * and we want just one call site 1197 */ 1198 if (!page) { 1199 migratetype = MIGRATE_RESERVE; 1200 goto retry_reserve; 1201 } 1202 } 1203 1204 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1205 return page; 1206 } 1207 1208 /* 1209 * Obtain a specified number of elements from the buddy allocator, all under 1210 * a single hold of the lock, for efficiency. Add them to the supplied list. 1211 * Returns the number of new pages which were placed at *list. 1212 */ 1213 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1214 unsigned long count, struct list_head *list, 1215 int migratetype, bool cold) 1216 { 1217 int i; 1218 1219 spin_lock(&zone->lock); 1220 for (i = 0; i < count; ++i) { 1221 struct page *page = __rmqueue(zone, order, migratetype); 1222 if (unlikely(page == NULL)) 1223 break; 1224 1225 /* 1226 * Split buddy pages returned by expand() are received here 1227 * in physical page order. The page is added to the callers and 1228 * list and the list head then moves forward. From the callers 1229 * perspective, the linked list is ordered by page number in 1230 * some conditions. This is useful for IO devices that can 1231 * merge IO requests if the physical pages are ordered 1232 * properly. 1233 */ 1234 if (likely(!cold)) 1235 list_add(&page->lru, list); 1236 else 1237 list_add_tail(&page->lru, list); 1238 list = &page->lru; 1239 if (is_migrate_cma(get_freepage_migratetype(page))) 1240 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1241 -(1 << order)); 1242 } 1243 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1244 spin_unlock(&zone->lock); 1245 return i; 1246 } 1247 1248 #ifdef CONFIG_NUMA 1249 /* 1250 * Called from the vmstat counter updater to drain pagesets of this 1251 * currently executing processor on remote nodes after they have 1252 * expired. 1253 * 1254 * Note that this function must be called with the thread pinned to 1255 * a single processor. 1256 */ 1257 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1258 { 1259 unsigned long flags; 1260 int to_drain; 1261 unsigned long batch; 1262 1263 local_irq_save(flags); 1264 batch = ACCESS_ONCE(pcp->batch); 1265 if (pcp->count >= batch) 1266 to_drain = batch; 1267 else 1268 to_drain = pcp->count; 1269 if (to_drain > 0) { 1270 free_pcppages_bulk(zone, to_drain, pcp); 1271 pcp->count -= to_drain; 1272 } 1273 local_irq_restore(flags); 1274 } 1275 #endif 1276 1277 /* 1278 * Drain pages of the indicated processor. 1279 * 1280 * The processor must either be the current processor and the 1281 * thread pinned to the current processor or a processor that 1282 * is not online. 1283 */ 1284 static void drain_pages(unsigned int cpu) 1285 { 1286 unsigned long flags; 1287 struct zone *zone; 1288 1289 for_each_populated_zone(zone) { 1290 struct per_cpu_pageset *pset; 1291 struct per_cpu_pages *pcp; 1292 1293 local_irq_save(flags); 1294 pset = per_cpu_ptr(zone->pageset, cpu); 1295 1296 pcp = &pset->pcp; 1297 if (pcp->count) { 1298 free_pcppages_bulk(zone, pcp->count, pcp); 1299 pcp->count = 0; 1300 } 1301 local_irq_restore(flags); 1302 } 1303 } 1304 1305 /* 1306 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1307 */ 1308 void drain_local_pages(void *arg) 1309 { 1310 drain_pages(smp_processor_id()); 1311 } 1312 1313 /* 1314 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1315 * 1316 * Note that this code is protected against sending an IPI to an offline 1317 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1318 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1319 * nothing keeps CPUs from showing up after we populated the cpumask and 1320 * before the call to on_each_cpu_mask(). 1321 */ 1322 void drain_all_pages(void) 1323 { 1324 int cpu; 1325 struct per_cpu_pageset *pcp; 1326 struct zone *zone; 1327 1328 /* 1329 * Allocate in the BSS so we wont require allocation in 1330 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1331 */ 1332 static cpumask_t cpus_with_pcps; 1333 1334 /* 1335 * We don't care about racing with CPU hotplug event 1336 * as offline notification will cause the notified 1337 * cpu to drain that CPU pcps and on_each_cpu_mask 1338 * disables preemption as part of its processing 1339 */ 1340 for_each_online_cpu(cpu) { 1341 bool has_pcps = false; 1342 for_each_populated_zone(zone) { 1343 pcp = per_cpu_ptr(zone->pageset, cpu); 1344 if (pcp->pcp.count) { 1345 has_pcps = true; 1346 break; 1347 } 1348 } 1349 if (has_pcps) 1350 cpumask_set_cpu(cpu, &cpus_with_pcps); 1351 else 1352 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1353 } 1354 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1355 } 1356 1357 #ifdef CONFIG_HIBERNATION 1358 1359 void mark_free_pages(struct zone *zone) 1360 { 1361 unsigned long pfn, max_zone_pfn; 1362 unsigned long flags; 1363 unsigned int order, t; 1364 struct list_head *curr; 1365 1366 if (zone_is_empty(zone)) 1367 return; 1368 1369 spin_lock_irqsave(&zone->lock, flags); 1370 1371 max_zone_pfn = zone_end_pfn(zone); 1372 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1373 if (pfn_valid(pfn)) { 1374 struct page *page = pfn_to_page(pfn); 1375 1376 if (!swsusp_page_is_forbidden(page)) 1377 swsusp_unset_page_free(page); 1378 } 1379 1380 for_each_migratetype_order(order, t) { 1381 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1382 unsigned long i; 1383 1384 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1385 for (i = 0; i < (1UL << order); i++) 1386 swsusp_set_page_free(pfn_to_page(pfn + i)); 1387 } 1388 } 1389 spin_unlock_irqrestore(&zone->lock, flags); 1390 } 1391 #endif /* CONFIG_PM */ 1392 1393 /* 1394 * Free a 0-order page 1395 * cold == true ? free a cold page : free a hot page 1396 */ 1397 void free_hot_cold_page(struct page *page, bool cold) 1398 { 1399 struct zone *zone = page_zone(page); 1400 struct per_cpu_pages *pcp; 1401 unsigned long flags; 1402 unsigned long pfn = page_to_pfn(page); 1403 int migratetype; 1404 1405 if (!free_pages_prepare(page, 0)) 1406 return; 1407 1408 migratetype = get_pfnblock_migratetype(page, pfn); 1409 set_freepage_migratetype(page, migratetype); 1410 local_irq_save(flags); 1411 __count_vm_event(PGFREE); 1412 1413 /* 1414 * We only track unmovable, reclaimable and movable on pcp lists. 1415 * Free ISOLATE pages back to the allocator because they are being 1416 * offlined but treat RESERVE as movable pages so we can get those 1417 * areas back if necessary. Otherwise, we may have to free 1418 * excessively into the page allocator 1419 */ 1420 if (migratetype >= MIGRATE_PCPTYPES) { 1421 if (unlikely(is_migrate_isolate(migratetype))) { 1422 free_one_page(zone, page, pfn, 0, migratetype); 1423 goto out; 1424 } 1425 migratetype = MIGRATE_MOVABLE; 1426 } 1427 1428 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1429 if (!cold) 1430 list_add(&page->lru, &pcp->lists[migratetype]); 1431 else 1432 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1433 pcp->count++; 1434 if (pcp->count >= pcp->high) { 1435 unsigned long batch = ACCESS_ONCE(pcp->batch); 1436 free_pcppages_bulk(zone, batch, pcp); 1437 pcp->count -= batch; 1438 } 1439 1440 out: 1441 local_irq_restore(flags); 1442 } 1443 1444 /* 1445 * Free a list of 0-order pages 1446 */ 1447 void free_hot_cold_page_list(struct list_head *list, bool cold) 1448 { 1449 struct page *page, *next; 1450 1451 list_for_each_entry_safe(page, next, list, lru) { 1452 trace_mm_page_free_batched(page, cold); 1453 free_hot_cold_page(page, cold); 1454 } 1455 } 1456 1457 /* 1458 * split_page takes a non-compound higher-order page, and splits it into 1459 * n (1<<order) sub-pages: page[0..n] 1460 * Each sub-page must be freed individually. 1461 * 1462 * Note: this is probably too low level an operation for use in drivers. 1463 * Please consult with lkml before using this in your driver. 1464 */ 1465 void split_page(struct page *page, unsigned int order) 1466 { 1467 int i; 1468 1469 VM_BUG_ON_PAGE(PageCompound(page), page); 1470 VM_BUG_ON_PAGE(!page_count(page), page); 1471 1472 #ifdef CONFIG_KMEMCHECK 1473 /* 1474 * Split shadow pages too, because free(page[0]) would 1475 * otherwise free the whole shadow. 1476 */ 1477 if (kmemcheck_page_is_tracked(page)) 1478 split_page(virt_to_page(page[0].shadow), order); 1479 #endif 1480 1481 for (i = 1; i < (1 << order); i++) 1482 set_page_refcounted(page + i); 1483 } 1484 EXPORT_SYMBOL_GPL(split_page); 1485 1486 static int __isolate_free_page(struct page *page, unsigned int order) 1487 { 1488 unsigned long watermark; 1489 struct zone *zone; 1490 int mt; 1491 1492 BUG_ON(!PageBuddy(page)); 1493 1494 zone = page_zone(page); 1495 mt = get_pageblock_migratetype(page); 1496 1497 if (!is_migrate_isolate(mt)) { 1498 /* Obey watermarks as if the page was being allocated */ 1499 watermark = low_wmark_pages(zone) + (1 << order); 1500 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1501 return 0; 1502 1503 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1504 } 1505 1506 /* Remove page from free list */ 1507 list_del(&page->lru); 1508 zone->free_area[order].nr_free--; 1509 rmv_page_order(page); 1510 1511 /* Set the pageblock if the isolated page is at least a pageblock */ 1512 if (order >= pageblock_order - 1) { 1513 struct page *endpage = page + (1 << order) - 1; 1514 for (; page < endpage; page += pageblock_nr_pages) { 1515 int mt = get_pageblock_migratetype(page); 1516 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1517 set_pageblock_migratetype(page, 1518 MIGRATE_MOVABLE); 1519 } 1520 } 1521 1522 return 1UL << order; 1523 } 1524 1525 /* 1526 * Similar to split_page except the page is already free. As this is only 1527 * being used for migration, the migratetype of the block also changes. 1528 * As this is called with interrupts disabled, the caller is responsible 1529 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1530 * are enabled. 1531 * 1532 * Note: this is probably too low level an operation for use in drivers. 1533 * Please consult with lkml before using this in your driver. 1534 */ 1535 int split_free_page(struct page *page) 1536 { 1537 unsigned int order; 1538 int nr_pages; 1539 1540 order = page_order(page); 1541 1542 nr_pages = __isolate_free_page(page, order); 1543 if (!nr_pages) 1544 return 0; 1545 1546 /* Split into individual pages */ 1547 set_page_refcounted(page); 1548 split_page(page, order); 1549 return nr_pages; 1550 } 1551 1552 /* 1553 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1554 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1555 * or two. 1556 */ 1557 static inline 1558 struct page *buffered_rmqueue(struct zone *preferred_zone, 1559 struct zone *zone, unsigned int order, 1560 gfp_t gfp_flags, int migratetype) 1561 { 1562 unsigned long flags; 1563 struct page *page; 1564 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1565 1566 again: 1567 if (likely(order == 0)) { 1568 struct per_cpu_pages *pcp; 1569 struct list_head *list; 1570 1571 local_irq_save(flags); 1572 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1573 list = &pcp->lists[migratetype]; 1574 if (list_empty(list)) { 1575 pcp->count += rmqueue_bulk(zone, 0, 1576 pcp->batch, list, 1577 migratetype, cold); 1578 if (unlikely(list_empty(list))) 1579 goto failed; 1580 } 1581 1582 if (cold) 1583 page = list_entry(list->prev, struct page, lru); 1584 else 1585 page = list_entry(list->next, struct page, lru); 1586 1587 list_del(&page->lru); 1588 pcp->count--; 1589 } else { 1590 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1591 /* 1592 * __GFP_NOFAIL is not to be used in new code. 1593 * 1594 * All __GFP_NOFAIL callers should be fixed so that they 1595 * properly detect and handle allocation failures. 1596 * 1597 * We most definitely don't want callers attempting to 1598 * allocate greater than order-1 page units with 1599 * __GFP_NOFAIL. 1600 */ 1601 WARN_ON_ONCE(order > 1); 1602 } 1603 spin_lock_irqsave(&zone->lock, flags); 1604 page = __rmqueue(zone, order, migratetype); 1605 spin_unlock(&zone->lock); 1606 if (!page) 1607 goto failed; 1608 __mod_zone_freepage_state(zone, -(1 << order), 1609 get_freepage_migratetype(page)); 1610 } 1611 1612 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1613 1614 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1615 zone_statistics(preferred_zone, zone, gfp_flags); 1616 local_irq_restore(flags); 1617 1618 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1619 if (prep_new_page(page, order, gfp_flags)) 1620 goto again; 1621 return page; 1622 1623 failed: 1624 local_irq_restore(flags); 1625 return NULL; 1626 } 1627 1628 #ifdef CONFIG_FAIL_PAGE_ALLOC 1629 1630 static struct { 1631 struct fault_attr attr; 1632 1633 u32 ignore_gfp_highmem; 1634 u32 ignore_gfp_wait; 1635 u32 min_order; 1636 } fail_page_alloc = { 1637 .attr = FAULT_ATTR_INITIALIZER, 1638 .ignore_gfp_wait = 1, 1639 .ignore_gfp_highmem = 1, 1640 .min_order = 1, 1641 }; 1642 1643 static int __init setup_fail_page_alloc(char *str) 1644 { 1645 return setup_fault_attr(&fail_page_alloc.attr, str); 1646 } 1647 __setup("fail_page_alloc=", setup_fail_page_alloc); 1648 1649 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1650 { 1651 if (order < fail_page_alloc.min_order) 1652 return false; 1653 if (gfp_mask & __GFP_NOFAIL) 1654 return false; 1655 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1656 return false; 1657 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1658 return false; 1659 1660 return should_fail(&fail_page_alloc.attr, 1 << order); 1661 } 1662 1663 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1664 1665 static int __init fail_page_alloc_debugfs(void) 1666 { 1667 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1668 struct dentry *dir; 1669 1670 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1671 &fail_page_alloc.attr); 1672 if (IS_ERR(dir)) 1673 return PTR_ERR(dir); 1674 1675 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1676 &fail_page_alloc.ignore_gfp_wait)) 1677 goto fail; 1678 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1679 &fail_page_alloc.ignore_gfp_highmem)) 1680 goto fail; 1681 if (!debugfs_create_u32("min-order", mode, dir, 1682 &fail_page_alloc.min_order)) 1683 goto fail; 1684 1685 return 0; 1686 fail: 1687 debugfs_remove_recursive(dir); 1688 1689 return -ENOMEM; 1690 } 1691 1692 late_initcall(fail_page_alloc_debugfs); 1693 1694 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1695 1696 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1697 1698 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1699 { 1700 return false; 1701 } 1702 1703 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1704 1705 /* 1706 * Return true if free pages are above 'mark'. This takes into account the order 1707 * of the allocation. 1708 */ 1709 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1710 unsigned long mark, int classzone_idx, int alloc_flags, 1711 long free_pages) 1712 { 1713 /* free_pages my go negative - that's OK */ 1714 long min = mark; 1715 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1716 int o; 1717 long free_cma = 0; 1718 1719 free_pages -= (1 << order) - 1; 1720 if (alloc_flags & ALLOC_HIGH) 1721 min -= min / 2; 1722 if (alloc_flags & ALLOC_HARDER) 1723 min -= min / 4; 1724 #ifdef CONFIG_CMA 1725 /* If allocation can't use CMA areas don't use free CMA pages */ 1726 if (!(alloc_flags & ALLOC_CMA)) 1727 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1728 #endif 1729 1730 if (free_pages - free_cma <= min + lowmem_reserve) 1731 return false; 1732 for (o = 0; o < order; o++) { 1733 /* At the next order, this order's pages become unavailable */ 1734 free_pages -= z->free_area[o].nr_free << o; 1735 1736 /* Require fewer higher order pages to be free */ 1737 min >>= 1; 1738 1739 if (free_pages <= min) 1740 return false; 1741 } 1742 return true; 1743 } 1744 1745 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1746 int classzone_idx, int alloc_flags) 1747 { 1748 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1749 zone_page_state(z, NR_FREE_PAGES)); 1750 } 1751 1752 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1753 unsigned long mark, int classzone_idx, int alloc_flags) 1754 { 1755 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1756 1757 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1758 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1759 1760 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1761 free_pages); 1762 } 1763 1764 #ifdef CONFIG_NUMA 1765 /* 1766 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1767 * skip over zones that are not allowed by the cpuset, or that have 1768 * been recently (in last second) found to be nearly full. See further 1769 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1770 * that have to skip over a lot of full or unallowed zones. 1771 * 1772 * If the zonelist cache is present in the passed zonelist, then 1773 * returns a pointer to the allowed node mask (either the current 1774 * tasks mems_allowed, or node_states[N_MEMORY].) 1775 * 1776 * If the zonelist cache is not available for this zonelist, does 1777 * nothing and returns NULL. 1778 * 1779 * If the fullzones BITMAP in the zonelist cache is stale (more than 1780 * a second since last zap'd) then we zap it out (clear its bits.) 1781 * 1782 * We hold off even calling zlc_setup, until after we've checked the 1783 * first zone in the zonelist, on the theory that most allocations will 1784 * be satisfied from that first zone, so best to examine that zone as 1785 * quickly as we can. 1786 */ 1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1788 { 1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1790 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1791 1792 zlc = zonelist->zlcache_ptr; 1793 if (!zlc) 1794 return NULL; 1795 1796 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1797 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1798 zlc->last_full_zap = jiffies; 1799 } 1800 1801 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1802 &cpuset_current_mems_allowed : 1803 &node_states[N_MEMORY]; 1804 return allowednodes; 1805 } 1806 1807 /* 1808 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1809 * if it is worth looking at further for free memory: 1810 * 1) Check that the zone isn't thought to be full (doesn't have its 1811 * bit set in the zonelist_cache fullzones BITMAP). 1812 * 2) Check that the zones node (obtained from the zonelist_cache 1813 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1814 * Return true (non-zero) if zone is worth looking at further, or 1815 * else return false (zero) if it is not. 1816 * 1817 * This check -ignores- the distinction between various watermarks, 1818 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1819 * found to be full for any variation of these watermarks, it will 1820 * be considered full for up to one second by all requests, unless 1821 * we are so low on memory on all allowed nodes that we are forced 1822 * into the second scan of the zonelist. 1823 * 1824 * In the second scan we ignore this zonelist cache and exactly 1825 * apply the watermarks to all zones, even it is slower to do so. 1826 * We are low on memory in the second scan, and should leave no stone 1827 * unturned looking for a free page. 1828 */ 1829 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1830 nodemask_t *allowednodes) 1831 { 1832 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1833 int i; /* index of *z in zonelist zones */ 1834 int n; /* node that zone *z is on */ 1835 1836 zlc = zonelist->zlcache_ptr; 1837 if (!zlc) 1838 return 1; 1839 1840 i = z - zonelist->_zonerefs; 1841 n = zlc->z_to_n[i]; 1842 1843 /* This zone is worth trying if it is allowed but not full */ 1844 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1845 } 1846 1847 /* 1848 * Given 'z' scanning a zonelist, set the corresponding bit in 1849 * zlc->fullzones, so that subsequent attempts to allocate a page 1850 * from that zone don't waste time re-examining it. 1851 */ 1852 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1853 { 1854 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1855 int i; /* index of *z in zonelist zones */ 1856 1857 zlc = zonelist->zlcache_ptr; 1858 if (!zlc) 1859 return; 1860 1861 i = z - zonelist->_zonerefs; 1862 1863 set_bit(i, zlc->fullzones); 1864 } 1865 1866 /* 1867 * clear all zones full, called after direct reclaim makes progress so that 1868 * a zone that was recently full is not skipped over for up to a second 1869 */ 1870 static void zlc_clear_zones_full(struct zonelist *zonelist) 1871 { 1872 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1873 1874 zlc = zonelist->zlcache_ptr; 1875 if (!zlc) 1876 return; 1877 1878 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1879 } 1880 1881 static bool zone_local(struct zone *local_zone, struct zone *zone) 1882 { 1883 return local_zone->node == zone->node; 1884 } 1885 1886 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1887 { 1888 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 1889 RECLAIM_DISTANCE; 1890 } 1891 1892 #else /* CONFIG_NUMA */ 1893 1894 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1895 { 1896 return NULL; 1897 } 1898 1899 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1900 nodemask_t *allowednodes) 1901 { 1902 return 1; 1903 } 1904 1905 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1906 { 1907 } 1908 1909 static void zlc_clear_zones_full(struct zonelist *zonelist) 1910 { 1911 } 1912 1913 static bool zone_local(struct zone *local_zone, struct zone *zone) 1914 { 1915 return true; 1916 } 1917 1918 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1919 { 1920 return true; 1921 } 1922 1923 #endif /* CONFIG_NUMA */ 1924 1925 /* 1926 * get_page_from_freelist goes through the zonelist trying to allocate 1927 * a page. 1928 */ 1929 static struct page * 1930 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1931 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1932 struct zone *preferred_zone, int classzone_idx, int migratetype) 1933 { 1934 struct zoneref *z; 1935 struct page *page = NULL; 1936 struct zone *zone; 1937 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1938 int zlc_active = 0; /* set if using zonelist_cache */ 1939 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1940 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 1941 (gfp_mask & __GFP_WRITE); 1942 1943 zonelist_scan: 1944 /* 1945 * Scan zonelist, looking for a zone with enough free. 1946 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1947 */ 1948 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1949 high_zoneidx, nodemask) { 1950 unsigned long mark; 1951 1952 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1953 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1954 continue; 1955 if (cpusets_enabled() && 1956 (alloc_flags & ALLOC_CPUSET) && 1957 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1958 continue; 1959 /* 1960 * Distribute pages in proportion to the individual 1961 * zone size to ensure fair page aging. The zone a 1962 * page was allocated in should have no effect on the 1963 * time the page has in memory before being reclaimed. 1964 */ 1965 if (alloc_flags & ALLOC_FAIR) { 1966 if (!zone_local(preferred_zone, zone)) 1967 continue; 1968 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0) 1969 continue; 1970 } 1971 /* 1972 * When allocating a page cache page for writing, we 1973 * want to get it from a zone that is within its dirty 1974 * limit, such that no single zone holds more than its 1975 * proportional share of globally allowed dirty pages. 1976 * The dirty limits take into account the zone's 1977 * lowmem reserves and high watermark so that kswapd 1978 * should be able to balance it without having to 1979 * write pages from its LRU list. 1980 * 1981 * This may look like it could increase pressure on 1982 * lower zones by failing allocations in higher zones 1983 * before they are full. But the pages that do spill 1984 * over are limited as the lower zones are protected 1985 * by this very same mechanism. It should not become 1986 * a practical burden to them. 1987 * 1988 * XXX: For now, allow allocations to potentially 1989 * exceed the per-zone dirty limit in the slowpath 1990 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1991 * which is important when on a NUMA setup the allowed 1992 * zones are together not big enough to reach the 1993 * global limit. The proper fix for these situations 1994 * will require awareness of zones in the 1995 * dirty-throttling and the flusher threads. 1996 */ 1997 if (consider_zone_dirty && !zone_dirty_ok(zone)) 1998 continue; 1999 2000 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2001 if (!zone_watermark_ok(zone, order, mark, 2002 classzone_idx, alloc_flags)) { 2003 int ret; 2004 2005 /* Checked here to keep the fast path fast */ 2006 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2007 if (alloc_flags & ALLOC_NO_WATERMARKS) 2008 goto try_this_zone; 2009 2010 if (IS_ENABLED(CONFIG_NUMA) && 2011 !did_zlc_setup && nr_online_nodes > 1) { 2012 /* 2013 * we do zlc_setup if there are multiple nodes 2014 * and before considering the first zone allowed 2015 * by the cpuset. 2016 */ 2017 allowednodes = zlc_setup(zonelist, alloc_flags); 2018 zlc_active = 1; 2019 did_zlc_setup = 1; 2020 } 2021 2022 if (zone_reclaim_mode == 0 || 2023 !zone_allows_reclaim(preferred_zone, zone)) 2024 goto this_zone_full; 2025 2026 /* 2027 * As we may have just activated ZLC, check if the first 2028 * eligible zone has failed zone_reclaim recently. 2029 */ 2030 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2031 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2032 continue; 2033 2034 ret = zone_reclaim(zone, gfp_mask, order); 2035 switch (ret) { 2036 case ZONE_RECLAIM_NOSCAN: 2037 /* did not scan */ 2038 continue; 2039 case ZONE_RECLAIM_FULL: 2040 /* scanned but unreclaimable */ 2041 continue; 2042 default: 2043 /* did we reclaim enough */ 2044 if (zone_watermark_ok(zone, order, mark, 2045 classzone_idx, alloc_flags)) 2046 goto try_this_zone; 2047 2048 /* 2049 * Failed to reclaim enough to meet watermark. 2050 * Only mark the zone full if checking the min 2051 * watermark or if we failed to reclaim just 2052 * 1<<order pages or else the page allocator 2053 * fastpath will prematurely mark zones full 2054 * when the watermark is between the low and 2055 * min watermarks. 2056 */ 2057 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2058 ret == ZONE_RECLAIM_SOME) 2059 goto this_zone_full; 2060 2061 continue; 2062 } 2063 } 2064 2065 try_this_zone: 2066 page = buffered_rmqueue(preferred_zone, zone, order, 2067 gfp_mask, migratetype); 2068 if (page) 2069 break; 2070 this_zone_full: 2071 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2072 zlc_mark_zone_full(zonelist, z); 2073 } 2074 2075 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 2076 /* Disable zlc cache for second zonelist scan */ 2077 zlc_active = 0; 2078 goto zonelist_scan; 2079 } 2080 2081 if (page) 2082 /* 2083 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2084 * necessary to allocate the page. The expectation is 2085 * that the caller is taking steps that will free more 2086 * memory. The caller should avoid the page being used 2087 * for !PFMEMALLOC purposes. 2088 */ 2089 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2090 2091 return page; 2092 } 2093 2094 /* 2095 * Large machines with many possible nodes should not always dump per-node 2096 * meminfo in irq context. 2097 */ 2098 static inline bool should_suppress_show_mem(void) 2099 { 2100 bool ret = false; 2101 2102 #if NODES_SHIFT > 8 2103 ret = in_interrupt(); 2104 #endif 2105 return ret; 2106 } 2107 2108 static DEFINE_RATELIMIT_STATE(nopage_rs, 2109 DEFAULT_RATELIMIT_INTERVAL, 2110 DEFAULT_RATELIMIT_BURST); 2111 2112 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2113 { 2114 unsigned int filter = SHOW_MEM_FILTER_NODES; 2115 2116 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2117 debug_guardpage_minorder() > 0) 2118 return; 2119 2120 /* 2121 * This documents exceptions given to allocations in certain 2122 * contexts that are allowed to allocate outside current's set 2123 * of allowed nodes. 2124 */ 2125 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2126 if (test_thread_flag(TIF_MEMDIE) || 2127 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2128 filter &= ~SHOW_MEM_FILTER_NODES; 2129 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2130 filter &= ~SHOW_MEM_FILTER_NODES; 2131 2132 if (fmt) { 2133 struct va_format vaf; 2134 va_list args; 2135 2136 va_start(args, fmt); 2137 2138 vaf.fmt = fmt; 2139 vaf.va = &args; 2140 2141 pr_warn("%pV", &vaf); 2142 2143 va_end(args); 2144 } 2145 2146 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2147 current->comm, order, gfp_mask); 2148 2149 dump_stack(); 2150 if (!should_suppress_show_mem()) 2151 show_mem(filter); 2152 } 2153 2154 static inline int 2155 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2156 unsigned long did_some_progress, 2157 unsigned long pages_reclaimed) 2158 { 2159 /* Do not loop if specifically requested */ 2160 if (gfp_mask & __GFP_NORETRY) 2161 return 0; 2162 2163 /* Always retry if specifically requested */ 2164 if (gfp_mask & __GFP_NOFAIL) 2165 return 1; 2166 2167 /* 2168 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2169 * making forward progress without invoking OOM. Suspend also disables 2170 * storage devices so kswapd will not help. Bail if we are suspending. 2171 */ 2172 if (!did_some_progress && pm_suspended_storage()) 2173 return 0; 2174 2175 /* 2176 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2177 * means __GFP_NOFAIL, but that may not be true in other 2178 * implementations. 2179 */ 2180 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2181 return 1; 2182 2183 /* 2184 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2185 * specified, then we retry until we no longer reclaim any pages 2186 * (above), or we've reclaimed an order of pages at least as 2187 * large as the allocation's order. In both cases, if the 2188 * allocation still fails, we stop retrying. 2189 */ 2190 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2191 return 1; 2192 2193 return 0; 2194 } 2195 2196 static inline struct page * 2197 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2198 struct zonelist *zonelist, enum zone_type high_zoneidx, 2199 nodemask_t *nodemask, struct zone *preferred_zone, 2200 int classzone_idx, int migratetype) 2201 { 2202 struct page *page; 2203 2204 /* Acquire the OOM killer lock for the zones in zonelist */ 2205 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2206 schedule_timeout_uninterruptible(1); 2207 return NULL; 2208 } 2209 2210 /* 2211 * Go through the zonelist yet one more time, keep very high watermark 2212 * here, this is only to catch a parallel oom killing, we must fail if 2213 * we're still under heavy pressure. 2214 */ 2215 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2216 order, zonelist, high_zoneidx, 2217 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2218 preferred_zone, classzone_idx, migratetype); 2219 if (page) 2220 goto out; 2221 2222 if (!(gfp_mask & __GFP_NOFAIL)) { 2223 /* The OOM killer will not help higher order allocs */ 2224 if (order > PAGE_ALLOC_COSTLY_ORDER) 2225 goto out; 2226 /* The OOM killer does not needlessly kill tasks for lowmem */ 2227 if (high_zoneidx < ZONE_NORMAL) 2228 goto out; 2229 /* 2230 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2231 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2232 * The caller should handle page allocation failure by itself if 2233 * it specifies __GFP_THISNODE. 2234 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2235 */ 2236 if (gfp_mask & __GFP_THISNODE) 2237 goto out; 2238 } 2239 /* Exhausted what can be done so it's blamo time */ 2240 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2241 2242 out: 2243 clear_zonelist_oom(zonelist, gfp_mask); 2244 return page; 2245 } 2246 2247 #ifdef CONFIG_COMPACTION 2248 /* Try memory compaction for high-order allocations before reclaim */ 2249 static struct page * 2250 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2251 struct zonelist *zonelist, enum zone_type high_zoneidx, 2252 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2253 int classzone_idx, int migratetype, enum migrate_mode mode, 2254 bool *contended_compaction, bool *deferred_compaction, 2255 unsigned long *did_some_progress) 2256 { 2257 if (!order) 2258 return NULL; 2259 2260 if (compaction_deferred(preferred_zone, order)) { 2261 *deferred_compaction = true; 2262 return NULL; 2263 } 2264 2265 current->flags |= PF_MEMALLOC; 2266 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2267 nodemask, mode, 2268 contended_compaction); 2269 current->flags &= ~PF_MEMALLOC; 2270 2271 if (*did_some_progress != COMPACT_SKIPPED) { 2272 struct page *page; 2273 2274 /* Page migration frees to the PCP lists but we want merging */ 2275 drain_pages(get_cpu()); 2276 put_cpu(); 2277 2278 page = get_page_from_freelist(gfp_mask, nodemask, 2279 order, zonelist, high_zoneidx, 2280 alloc_flags & ~ALLOC_NO_WATERMARKS, 2281 preferred_zone, classzone_idx, migratetype); 2282 if (page) { 2283 preferred_zone->compact_blockskip_flush = false; 2284 compaction_defer_reset(preferred_zone, order, true); 2285 count_vm_event(COMPACTSUCCESS); 2286 return page; 2287 } 2288 2289 /* 2290 * It's bad if compaction run occurs and fails. 2291 * The most likely reason is that pages exist, 2292 * but not enough to satisfy watermarks. 2293 */ 2294 count_vm_event(COMPACTFAIL); 2295 2296 /* 2297 * As async compaction considers a subset of pageblocks, only 2298 * defer if the failure was a sync compaction failure. 2299 */ 2300 if (mode != MIGRATE_ASYNC) 2301 defer_compaction(preferred_zone, order); 2302 2303 cond_resched(); 2304 } 2305 2306 return NULL; 2307 } 2308 #else 2309 static inline struct page * 2310 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2311 struct zonelist *zonelist, enum zone_type high_zoneidx, 2312 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2313 int classzone_idx, int migratetype, 2314 enum migrate_mode mode, bool *contended_compaction, 2315 bool *deferred_compaction, unsigned long *did_some_progress) 2316 { 2317 return NULL; 2318 } 2319 #endif /* CONFIG_COMPACTION */ 2320 2321 /* Perform direct synchronous page reclaim */ 2322 static int 2323 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2324 nodemask_t *nodemask) 2325 { 2326 struct reclaim_state reclaim_state; 2327 int progress; 2328 2329 cond_resched(); 2330 2331 /* We now go into synchronous reclaim */ 2332 cpuset_memory_pressure_bump(); 2333 current->flags |= PF_MEMALLOC; 2334 lockdep_set_current_reclaim_state(gfp_mask); 2335 reclaim_state.reclaimed_slab = 0; 2336 current->reclaim_state = &reclaim_state; 2337 2338 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2339 2340 current->reclaim_state = NULL; 2341 lockdep_clear_current_reclaim_state(); 2342 current->flags &= ~PF_MEMALLOC; 2343 2344 cond_resched(); 2345 2346 return progress; 2347 } 2348 2349 /* The really slow allocator path where we enter direct reclaim */ 2350 static inline struct page * 2351 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2352 struct zonelist *zonelist, enum zone_type high_zoneidx, 2353 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2354 int classzone_idx, int migratetype, unsigned long *did_some_progress) 2355 { 2356 struct page *page = NULL; 2357 bool drained = false; 2358 2359 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2360 nodemask); 2361 if (unlikely(!(*did_some_progress))) 2362 return NULL; 2363 2364 /* After successful reclaim, reconsider all zones for allocation */ 2365 if (IS_ENABLED(CONFIG_NUMA)) 2366 zlc_clear_zones_full(zonelist); 2367 2368 retry: 2369 page = get_page_from_freelist(gfp_mask, nodemask, order, 2370 zonelist, high_zoneidx, 2371 alloc_flags & ~ALLOC_NO_WATERMARKS, 2372 preferred_zone, classzone_idx, 2373 migratetype); 2374 2375 /* 2376 * If an allocation failed after direct reclaim, it could be because 2377 * pages are pinned on the per-cpu lists. Drain them and try again 2378 */ 2379 if (!page && !drained) { 2380 drain_all_pages(); 2381 drained = true; 2382 goto retry; 2383 } 2384 2385 return page; 2386 } 2387 2388 /* 2389 * This is called in the allocator slow-path if the allocation request is of 2390 * sufficient urgency to ignore watermarks and take other desperate measures 2391 */ 2392 static inline struct page * 2393 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2394 struct zonelist *zonelist, enum zone_type high_zoneidx, 2395 nodemask_t *nodemask, struct zone *preferred_zone, 2396 int classzone_idx, int migratetype) 2397 { 2398 struct page *page; 2399 2400 do { 2401 page = get_page_from_freelist(gfp_mask, nodemask, order, 2402 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2403 preferred_zone, classzone_idx, migratetype); 2404 2405 if (!page && gfp_mask & __GFP_NOFAIL) 2406 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2407 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2408 2409 return page; 2410 } 2411 2412 static void reset_alloc_batches(struct zonelist *zonelist, 2413 enum zone_type high_zoneidx, 2414 struct zone *preferred_zone) 2415 { 2416 struct zoneref *z; 2417 struct zone *zone; 2418 2419 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 2420 /* 2421 * Only reset the batches of zones that were actually 2422 * considered in the fairness pass, we don't want to 2423 * trash fairness information for zones that are not 2424 * actually part of this zonelist's round-robin cycle. 2425 */ 2426 if (!zone_local(preferred_zone, zone)) 2427 continue; 2428 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2429 high_wmark_pages(zone) - low_wmark_pages(zone) - 2430 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2431 } 2432 } 2433 2434 static void wake_all_kswapds(unsigned int order, 2435 struct zonelist *zonelist, 2436 enum zone_type high_zoneidx, 2437 struct zone *preferred_zone) 2438 { 2439 struct zoneref *z; 2440 struct zone *zone; 2441 2442 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2443 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2444 } 2445 2446 static inline int 2447 gfp_to_alloc_flags(gfp_t gfp_mask) 2448 { 2449 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2450 const gfp_t wait = gfp_mask & __GFP_WAIT; 2451 2452 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2453 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2454 2455 /* 2456 * The caller may dip into page reserves a bit more if the caller 2457 * cannot run direct reclaim, or if the caller has realtime scheduling 2458 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2459 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2460 */ 2461 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2462 2463 if (!wait) { 2464 /* 2465 * Not worth trying to allocate harder for 2466 * __GFP_NOMEMALLOC even if it can't schedule. 2467 */ 2468 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2469 alloc_flags |= ALLOC_HARDER; 2470 /* 2471 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2472 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2473 */ 2474 alloc_flags &= ~ALLOC_CPUSET; 2475 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2476 alloc_flags |= ALLOC_HARDER; 2477 2478 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2479 if (gfp_mask & __GFP_MEMALLOC) 2480 alloc_flags |= ALLOC_NO_WATERMARKS; 2481 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2482 alloc_flags |= ALLOC_NO_WATERMARKS; 2483 else if (!in_interrupt() && 2484 ((current->flags & PF_MEMALLOC) || 2485 unlikely(test_thread_flag(TIF_MEMDIE)))) 2486 alloc_flags |= ALLOC_NO_WATERMARKS; 2487 } 2488 #ifdef CONFIG_CMA 2489 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2490 alloc_flags |= ALLOC_CMA; 2491 #endif 2492 return alloc_flags; 2493 } 2494 2495 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2496 { 2497 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2498 } 2499 2500 static inline struct page * 2501 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2502 struct zonelist *zonelist, enum zone_type high_zoneidx, 2503 nodemask_t *nodemask, struct zone *preferred_zone, 2504 int classzone_idx, int migratetype) 2505 { 2506 const gfp_t wait = gfp_mask & __GFP_WAIT; 2507 struct page *page = NULL; 2508 int alloc_flags; 2509 unsigned long pages_reclaimed = 0; 2510 unsigned long did_some_progress; 2511 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2512 bool deferred_compaction = false; 2513 bool contended_compaction = false; 2514 2515 /* 2516 * In the slowpath, we sanity check order to avoid ever trying to 2517 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2518 * be using allocators in order of preference for an area that is 2519 * too large. 2520 */ 2521 if (order >= MAX_ORDER) { 2522 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2523 return NULL; 2524 } 2525 2526 /* 2527 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2528 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2529 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2530 * using a larger set of nodes after it has established that the 2531 * allowed per node queues are empty and that nodes are 2532 * over allocated. 2533 */ 2534 if (IS_ENABLED(CONFIG_NUMA) && 2535 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2536 goto nopage; 2537 2538 restart: 2539 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2540 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone); 2541 2542 /* 2543 * OK, we're below the kswapd watermark and have kicked background 2544 * reclaim. Now things get more complex, so set up alloc_flags according 2545 * to how we want to proceed. 2546 */ 2547 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2548 2549 /* 2550 * Find the true preferred zone if the allocation is unconstrained by 2551 * cpusets. 2552 */ 2553 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) { 2554 struct zoneref *preferred_zoneref; 2555 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2556 NULL, &preferred_zone); 2557 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2558 } 2559 2560 rebalance: 2561 /* This is the last chance, in general, before the goto nopage. */ 2562 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2563 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2564 preferred_zone, classzone_idx, migratetype); 2565 if (page) 2566 goto got_pg; 2567 2568 /* Allocate without watermarks if the context allows */ 2569 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2570 /* 2571 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2572 * the allocation is high priority and these type of 2573 * allocations are system rather than user orientated 2574 */ 2575 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2576 2577 page = __alloc_pages_high_priority(gfp_mask, order, 2578 zonelist, high_zoneidx, nodemask, 2579 preferred_zone, classzone_idx, migratetype); 2580 if (page) { 2581 goto got_pg; 2582 } 2583 } 2584 2585 /* Atomic allocations - we can't balance anything */ 2586 if (!wait) { 2587 /* 2588 * All existing users of the deprecated __GFP_NOFAIL are 2589 * blockable, so warn of any new users that actually allow this 2590 * type of allocation to fail. 2591 */ 2592 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2593 goto nopage; 2594 } 2595 2596 /* Avoid recursion of direct reclaim */ 2597 if (current->flags & PF_MEMALLOC) 2598 goto nopage; 2599 2600 /* Avoid allocations with no watermarks from looping endlessly */ 2601 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2602 goto nopage; 2603 2604 /* 2605 * Try direct compaction. The first pass is asynchronous. Subsequent 2606 * attempts after direct reclaim are synchronous 2607 */ 2608 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2609 high_zoneidx, nodemask, alloc_flags, 2610 preferred_zone, 2611 classzone_idx, migratetype, 2612 migration_mode, &contended_compaction, 2613 &deferred_compaction, 2614 &did_some_progress); 2615 if (page) 2616 goto got_pg; 2617 2618 /* 2619 * It can become very expensive to allocate transparent hugepages at 2620 * fault, so use asynchronous memory compaction for THP unless it is 2621 * khugepaged trying to collapse. 2622 */ 2623 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD)) 2624 migration_mode = MIGRATE_SYNC_LIGHT; 2625 2626 /* 2627 * If compaction is deferred for high-order allocations, it is because 2628 * sync compaction recently failed. In this is the case and the caller 2629 * requested a movable allocation that does not heavily disrupt the 2630 * system then fail the allocation instead of entering direct reclaim. 2631 */ 2632 if ((deferred_compaction || contended_compaction) && 2633 (gfp_mask & __GFP_NO_KSWAPD)) 2634 goto nopage; 2635 2636 /* Try direct reclaim and then allocating */ 2637 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2638 zonelist, high_zoneidx, 2639 nodemask, 2640 alloc_flags, preferred_zone, 2641 classzone_idx, migratetype, 2642 &did_some_progress); 2643 if (page) 2644 goto got_pg; 2645 2646 /* 2647 * If we failed to make any progress reclaiming, then we are 2648 * running out of options and have to consider going OOM 2649 */ 2650 if (!did_some_progress) { 2651 if (oom_gfp_allowed(gfp_mask)) { 2652 if (oom_killer_disabled) 2653 goto nopage; 2654 /* Coredumps can quickly deplete all memory reserves */ 2655 if ((current->flags & PF_DUMPCORE) && 2656 !(gfp_mask & __GFP_NOFAIL)) 2657 goto nopage; 2658 page = __alloc_pages_may_oom(gfp_mask, order, 2659 zonelist, high_zoneidx, 2660 nodemask, preferred_zone, 2661 classzone_idx, migratetype); 2662 if (page) 2663 goto got_pg; 2664 2665 if (!(gfp_mask & __GFP_NOFAIL)) { 2666 /* 2667 * The oom killer is not called for high-order 2668 * allocations that may fail, so if no progress 2669 * is being made, there are no other options and 2670 * retrying is unlikely to help. 2671 */ 2672 if (order > PAGE_ALLOC_COSTLY_ORDER) 2673 goto nopage; 2674 /* 2675 * The oom killer is not called for lowmem 2676 * allocations to prevent needlessly killing 2677 * innocent tasks. 2678 */ 2679 if (high_zoneidx < ZONE_NORMAL) 2680 goto nopage; 2681 } 2682 2683 goto restart; 2684 } 2685 } 2686 2687 /* Check if we should retry the allocation */ 2688 pages_reclaimed += did_some_progress; 2689 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2690 pages_reclaimed)) { 2691 /* Wait for some write requests to complete then retry */ 2692 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2693 goto rebalance; 2694 } else { 2695 /* 2696 * High-order allocations do not necessarily loop after 2697 * direct reclaim and reclaim/compaction depends on compaction 2698 * being called after reclaim so call directly if necessary 2699 */ 2700 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, 2701 high_zoneidx, nodemask, alloc_flags, 2702 preferred_zone, 2703 classzone_idx, migratetype, 2704 migration_mode, &contended_compaction, 2705 &deferred_compaction, 2706 &did_some_progress); 2707 if (page) 2708 goto got_pg; 2709 } 2710 2711 nopage: 2712 warn_alloc_failed(gfp_mask, order, NULL); 2713 return page; 2714 got_pg: 2715 if (kmemcheck_enabled) 2716 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2717 2718 return page; 2719 } 2720 2721 /* 2722 * This is the 'heart' of the zoned buddy allocator. 2723 */ 2724 struct page * 2725 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2726 struct zonelist *zonelist, nodemask_t *nodemask) 2727 { 2728 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2729 struct zone *preferred_zone; 2730 struct zoneref *preferred_zoneref; 2731 struct page *page = NULL; 2732 int migratetype = allocflags_to_migratetype(gfp_mask); 2733 unsigned int cpuset_mems_cookie; 2734 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2735 int classzone_idx; 2736 2737 gfp_mask &= gfp_allowed_mask; 2738 2739 lockdep_trace_alloc(gfp_mask); 2740 2741 might_sleep_if(gfp_mask & __GFP_WAIT); 2742 2743 if (should_fail_alloc_page(gfp_mask, order)) 2744 return NULL; 2745 2746 /* 2747 * Check the zones suitable for the gfp_mask contain at least one 2748 * valid zone. It's possible to have an empty zonelist as a result 2749 * of GFP_THISNODE and a memoryless node 2750 */ 2751 if (unlikely(!zonelist->_zonerefs->zone)) 2752 return NULL; 2753 2754 retry_cpuset: 2755 cpuset_mems_cookie = read_mems_allowed_begin(); 2756 2757 /* The preferred zone is used for statistics later */ 2758 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, 2759 nodemask ? : &cpuset_current_mems_allowed, 2760 &preferred_zone); 2761 if (!preferred_zone) 2762 goto out; 2763 classzone_idx = zonelist_zone_idx(preferred_zoneref); 2764 2765 #ifdef CONFIG_CMA 2766 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2767 alloc_flags |= ALLOC_CMA; 2768 #endif 2769 retry: 2770 /* First allocation attempt */ 2771 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2772 zonelist, high_zoneidx, alloc_flags, 2773 preferred_zone, classzone_idx, migratetype); 2774 if (unlikely(!page)) { 2775 /* 2776 * The first pass makes sure allocations are spread 2777 * fairly within the local node. However, the local 2778 * node might have free pages left after the fairness 2779 * batches are exhausted, and remote zones haven't 2780 * even been considered yet. Try once more without 2781 * fairness, and include remote zones now, before 2782 * entering the slowpath and waking kswapd: prefer 2783 * spilling to a remote zone over swapping locally. 2784 */ 2785 if (alloc_flags & ALLOC_FAIR) { 2786 reset_alloc_batches(zonelist, high_zoneidx, 2787 preferred_zone); 2788 alloc_flags &= ~ALLOC_FAIR; 2789 goto retry; 2790 } 2791 /* 2792 * Runtime PM, block IO and its error handling path 2793 * can deadlock because I/O on the device might not 2794 * complete. 2795 */ 2796 gfp_mask = memalloc_noio_flags(gfp_mask); 2797 page = __alloc_pages_slowpath(gfp_mask, order, 2798 zonelist, high_zoneidx, nodemask, 2799 preferred_zone, classzone_idx, migratetype); 2800 } 2801 2802 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2803 2804 out: 2805 /* 2806 * When updating a task's mems_allowed, it is possible to race with 2807 * parallel threads in such a way that an allocation can fail while 2808 * the mask is being updated. If a page allocation is about to fail, 2809 * check if the cpuset changed during allocation and if so, retry. 2810 */ 2811 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2812 goto retry_cpuset; 2813 2814 return page; 2815 } 2816 EXPORT_SYMBOL(__alloc_pages_nodemask); 2817 2818 /* 2819 * Common helper functions. 2820 */ 2821 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2822 { 2823 struct page *page; 2824 2825 /* 2826 * __get_free_pages() returns a 32-bit address, which cannot represent 2827 * a highmem page 2828 */ 2829 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2830 2831 page = alloc_pages(gfp_mask, order); 2832 if (!page) 2833 return 0; 2834 return (unsigned long) page_address(page); 2835 } 2836 EXPORT_SYMBOL(__get_free_pages); 2837 2838 unsigned long get_zeroed_page(gfp_t gfp_mask) 2839 { 2840 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2841 } 2842 EXPORT_SYMBOL(get_zeroed_page); 2843 2844 void __free_pages(struct page *page, unsigned int order) 2845 { 2846 if (put_page_testzero(page)) { 2847 if (order == 0) 2848 free_hot_cold_page(page, false); 2849 else 2850 __free_pages_ok(page, order); 2851 } 2852 } 2853 2854 EXPORT_SYMBOL(__free_pages); 2855 2856 void free_pages(unsigned long addr, unsigned int order) 2857 { 2858 if (addr != 0) { 2859 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2860 __free_pages(virt_to_page((void *)addr), order); 2861 } 2862 } 2863 2864 EXPORT_SYMBOL(free_pages); 2865 2866 /* 2867 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2868 * of the current memory cgroup. 2869 * 2870 * It should be used when the caller would like to use kmalloc, but since the 2871 * allocation is large, it has to fall back to the page allocator. 2872 */ 2873 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2874 { 2875 struct page *page; 2876 struct mem_cgroup *memcg = NULL; 2877 2878 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2879 return NULL; 2880 page = alloc_pages(gfp_mask, order); 2881 memcg_kmem_commit_charge(page, memcg, order); 2882 return page; 2883 } 2884 2885 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 2886 { 2887 struct page *page; 2888 struct mem_cgroup *memcg = NULL; 2889 2890 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2891 return NULL; 2892 page = alloc_pages_node(nid, gfp_mask, order); 2893 memcg_kmem_commit_charge(page, memcg, order); 2894 return page; 2895 } 2896 2897 /* 2898 * __free_kmem_pages and free_kmem_pages will free pages allocated with 2899 * alloc_kmem_pages. 2900 */ 2901 void __free_kmem_pages(struct page *page, unsigned int order) 2902 { 2903 memcg_kmem_uncharge_pages(page, order); 2904 __free_pages(page, order); 2905 } 2906 2907 void free_kmem_pages(unsigned long addr, unsigned int order) 2908 { 2909 if (addr != 0) { 2910 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2911 __free_kmem_pages(virt_to_page((void *)addr), order); 2912 } 2913 } 2914 2915 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2916 { 2917 if (addr) { 2918 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2919 unsigned long used = addr + PAGE_ALIGN(size); 2920 2921 split_page(virt_to_page((void *)addr), order); 2922 while (used < alloc_end) { 2923 free_page(used); 2924 used += PAGE_SIZE; 2925 } 2926 } 2927 return (void *)addr; 2928 } 2929 2930 /** 2931 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2932 * @size: the number of bytes to allocate 2933 * @gfp_mask: GFP flags for the allocation 2934 * 2935 * This function is similar to alloc_pages(), except that it allocates the 2936 * minimum number of pages to satisfy the request. alloc_pages() can only 2937 * allocate memory in power-of-two pages. 2938 * 2939 * This function is also limited by MAX_ORDER. 2940 * 2941 * Memory allocated by this function must be released by free_pages_exact(). 2942 */ 2943 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2944 { 2945 unsigned int order = get_order(size); 2946 unsigned long addr; 2947 2948 addr = __get_free_pages(gfp_mask, order); 2949 return make_alloc_exact(addr, order, size); 2950 } 2951 EXPORT_SYMBOL(alloc_pages_exact); 2952 2953 /** 2954 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2955 * pages on a node. 2956 * @nid: the preferred node ID where memory should be allocated 2957 * @size: the number of bytes to allocate 2958 * @gfp_mask: GFP flags for the allocation 2959 * 2960 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2961 * back. 2962 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2963 * but is not exact. 2964 */ 2965 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2966 { 2967 unsigned order = get_order(size); 2968 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2969 if (!p) 2970 return NULL; 2971 return make_alloc_exact((unsigned long)page_address(p), order, size); 2972 } 2973 EXPORT_SYMBOL(alloc_pages_exact_nid); 2974 2975 /** 2976 * free_pages_exact - release memory allocated via alloc_pages_exact() 2977 * @virt: the value returned by alloc_pages_exact. 2978 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2979 * 2980 * Release the memory allocated by a previous call to alloc_pages_exact. 2981 */ 2982 void free_pages_exact(void *virt, size_t size) 2983 { 2984 unsigned long addr = (unsigned long)virt; 2985 unsigned long end = addr + PAGE_ALIGN(size); 2986 2987 while (addr < end) { 2988 free_page(addr); 2989 addr += PAGE_SIZE; 2990 } 2991 } 2992 EXPORT_SYMBOL(free_pages_exact); 2993 2994 /** 2995 * nr_free_zone_pages - count number of pages beyond high watermark 2996 * @offset: The zone index of the highest zone 2997 * 2998 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2999 * high watermark within all zones at or below a given zone index. For each 3000 * zone, the number of pages is calculated as: 3001 * managed_pages - high_pages 3002 */ 3003 static unsigned long nr_free_zone_pages(int offset) 3004 { 3005 struct zoneref *z; 3006 struct zone *zone; 3007 3008 /* Just pick one node, since fallback list is circular */ 3009 unsigned long sum = 0; 3010 3011 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3012 3013 for_each_zone_zonelist(zone, z, zonelist, offset) { 3014 unsigned long size = zone->managed_pages; 3015 unsigned long high = high_wmark_pages(zone); 3016 if (size > high) 3017 sum += size - high; 3018 } 3019 3020 return sum; 3021 } 3022 3023 /** 3024 * nr_free_buffer_pages - count number of pages beyond high watermark 3025 * 3026 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3027 * watermark within ZONE_DMA and ZONE_NORMAL. 3028 */ 3029 unsigned long nr_free_buffer_pages(void) 3030 { 3031 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3032 } 3033 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3034 3035 /** 3036 * nr_free_pagecache_pages - count number of pages beyond high watermark 3037 * 3038 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3039 * high watermark within all zones. 3040 */ 3041 unsigned long nr_free_pagecache_pages(void) 3042 { 3043 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3044 } 3045 3046 static inline void show_node(struct zone *zone) 3047 { 3048 if (IS_ENABLED(CONFIG_NUMA)) 3049 printk("Node %d ", zone_to_nid(zone)); 3050 } 3051 3052 void si_meminfo(struct sysinfo *val) 3053 { 3054 val->totalram = totalram_pages; 3055 val->sharedram = 0; 3056 val->freeram = global_page_state(NR_FREE_PAGES); 3057 val->bufferram = nr_blockdev_pages(); 3058 val->totalhigh = totalhigh_pages; 3059 val->freehigh = nr_free_highpages(); 3060 val->mem_unit = PAGE_SIZE; 3061 } 3062 3063 EXPORT_SYMBOL(si_meminfo); 3064 3065 #ifdef CONFIG_NUMA 3066 void si_meminfo_node(struct sysinfo *val, int nid) 3067 { 3068 int zone_type; /* needs to be signed */ 3069 unsigned long managed_pages = 0; 3070 pg_data_t *pgdat = NODE_DATA(nid); 3071 3072 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3073 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3074 val->totalram = managed_pages; 3075 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3076 #ifdef CONFIG_HIGHMEM 3077 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3078 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3079 NR_FREE_PAGES); 3080 #else 3081 val->totalhigh = 0; 3082 val->freehigh = 0; 3083 #endif 3084 val->mem_unit = PAGE_SIZE; 3085 } 3086 #endif 3087 3088 /* 3089 * Determine whether the node should be displayed or not, depending on whether 3090 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3091 */ 3092 bool skip_free_areas_node(unsigned int flags, int nid) 3093 { 3094 bool ret = false; 3095 unsigned int cpuset_mems_cookie; 3096 3097 if (!(flags & SHOW_MEM_FILTER_NODES)) 3098 goto out; 3099 3100 do { 3101 cpuset_mems_cookie = read_mems_allowed_begin(); 3102 ret = !node_isset(nid, cpuset_current_mems_allowed); 3103 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3104 out: 3105 return ret; 3106 } 3107 3108 #define K(x) ((x) << (PAGE_SHIFT-10)) 3109 3110 static void show_migration_types(unsigned char type) 3111 { 3112 static const char types[MIGRATE_TYPES] = { 3113 [MIGRATE_UNMOVABLE] = 'U', 3114 [MIGRATE_RECLAIMABLE] = 'E', 3115 [MIGRATE_MOVABLE] = 'M', 3116 [MIGRATE_RESERVE] = 'R', 3117 #ifdef CONFIG_CMA 3118 [MIGRATE_CMA] = 'C', 3119 #endif 3120 #ifdef CONFIG_MEMORY_ISOLATION 3121 [MIGRATE_ISOLATE] = 'I', 3122 #endif 3123 }; 3124 char tmp[MIGRATE_TYPES + 1]; 3125 char *p = tmp; 3126 int i; 3127 3128 for (i = 0; i < MIGRATE_TYPES; i++) { 3129 if (type & (1 << i)) 3130 *p++ = types[i]; 3131 } 3132 3133 *p = '\0'; 3134 printk("(%s) ", tmp); 3135 } 3136 3137 /* 3138 * Show free area list (used inside shift_scroll-lock stuff) 3139 * We also calculate the percentage fragmentation. We do this by counting the 3140 * memory on each free list with the exception of the first item on the list. 3141 * Suppresses nodes that are not allowed by current's cpuset if 3142 * SHOW_MEM_FILTER_NODES is passed. 3143 */ 3144 void show_free_areas(unsigned int filter) 3145 { 3146 int cpu; 3147 struct zone *zone; 3148 3149 for_each_populated_zone(zone) { 3150 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3151 continue; 3152 show_node(zone); 3153 printk("%s per-cpu:\n", zone->name); 3154 3155 for_each_online_cpu(cpu) { 3156 struct per_cpu_pageset *pageset; 3157 3158 pageset = per_cpu_ptr(zone->pageset, cpu); 3159 3160 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3161 cpu, pageset->pcp.high, 3162 pageset->pcp.batch, pageset->pcp.count); 3163 } 3164 } 3165 3166 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3167 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3168 " unevictable:%lu" 3169 " dirty:%lu writeback:%lu unstable:%lu\n" 3170 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3171 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3172 " free_cma:%lu\n", 3173 global_page_state(NR_ACTIVE_ANON), 3174 global_page_state(NR_INACTIVE_ANON), 3175 global_page_state(NR_ISOLATED_ANON), 3176 global_page_state(NR_ACTIVE_FILE), 3177 global_page_state(NR_INACTIVE_FILE), 3178 global_page_state(NR_ISOLATED_FILE), 3179 global_page_state(NR_UNEVICTABLE), 3180 global_page_state(NR_FILE_DIRTY), 3181 global_page_state(NR_WRITEBACK), 3182 global_page_state(NR_UNSTABLE_NFS), 3183 global_page_state(NR_FREE_PAGES), 3184 global_page_state(NR_SLAB_RECLAIMABLE), 3185 global_page_state(NR_SLAB_UNRECLAIMABLE), 3186 global_page_state(NR_FILE_MAPPED), 3187 global_page_state(NR_SHMEM), 3188 global_page_state(NR_PAGETABLE), 3189 global_page_state(NR_BOUNCE), 3190 global_page_state(NR_FREE_CMA_PAGES)); 3191 3192 for_each_populated_zone(zone) { 3193 int i; 3194 3195 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3196 continue; 3197 show_node(zone); 3198 printk("%s" 3199 " free:%lukB" 3200 " min:%lukB" 3201 " low:%lukB" 3202 " high:%lukB" 3203 " active_anon:%lukB" 3204 " inactive_anon:%lukB" 3205 " active_file:%lukB" 3206 " inactive_file:%lukB" 3207 " unevictable:%lukB" 3208 " isolated(anon):%lukB" 3209 " isolated(file):%lukB" 3210 " present:%lukB" 3211 " managed:%lukB" 3212 " mlocked:%lukB" 3213 " dirty:%lukB" 3214 " writeback:%lukB" 3215 " mapped:%lukB" 3216 " shmem:%lukB" 3217 " slab_reclaimable:%lukB" 3218 " slab_unreclaimable:%lukB" 3219 " kernel_stack:%lukB" 3220 " pagetables:%lukB" 3221 " unstable:%lukB" 3222 " bounce:%lukB" 3223 " free_cma:%lukB" 3224 " writeback_tmp:%lukB" 3225 " pages_scanned:%lu" 3226 " all_unreclaimable? %s" 3227 "\n", 3228 zone->name, 3229 K(zone_page_state(zone, NR_FREE_PAGES)), 3230 K(min_wmark_pages(zone)), 3231 K(low_wmark_pages(zone)), 3232 K(high_wmark_pages(zone)), 3233 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3234 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3235 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3236 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3237 K(zone_page_state(zone, NR_UNEVICTABLE)), 3238 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3239 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3240 K(zone->present_pages), 3241 K(zone->managed_pages), 3242 K(zone_page_state(zone, NR_MLOCK)), 3243 K(zone_page_state(zone, NR_FILE_DIRTY)), 3244 K(zone_page_state(zone, NR_WRITEBACK)), 3245 K(zone_page_state(zone, NR_FILE_MAPPED)), 3246 K(zone_page_state(zone, NR_SHMEM)), 3247 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3248 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3249 zone_page_state(zone, NR_KERNEL_STACK) * 3250 THREAD_SIZE / 1024, 3251 K(zone_page_state(zone, NR_PAGETABLE)), 3252 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3253 K(zone_page_state(zone, NR_BOUNCE)), 3254 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3255 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3256 zone->pages_scanned, 3257 (!zone_reclaimable(zone) ? "yes" : "no") 3258 ); 3259 printk("lowmem_reserve[]:"); 3260 for (i = 0; i < MAX_NR_ZONES; i++) 3261 printk(" %lu", zone->lowmem_reserve[i]); 3262 printk("\n"); 3263 } 3264 3265 for_each_populated_zone(zone) { 3266 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3267 unsigned char types[MAX_ORDER]; 3268 3269 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3270 continue; 3271 show_node(zone); 3272 printk("%s: ", zone->name); 3273 3274 spin_lock_irqsave(&zone->lock, flags); 3275 for (order = 0; order < MAX_ORDER; order++) { 3276 struct free_area *area = &zone->free_area[order]; 3277 int type; 3278 3279 nr[order] = area->nr_free; 3280 total += nr[order] << order; 3281 3282 types[order] = 0; 3283 for (type = 0; type < MIGRATE_TYPES; type++) { 3284 if (!list_empty(&area->free_list[type])) 3285 types[order] |= 1 << type; 3286 } 3287 } 3288 spin_unlock_irqrestore(&zone->lock, flags); 3289 for (order = 0; order < MAX_ORDER; order++) { 3290 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3291 if (nr[order]) 3292 show_migration_types(types[order]); 3293 } 3294 printk("= %lukB\n", K(total)); 3295 } 3296 3297 hugetlb_show_meminfo(); 3298 3299 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3300 3301 show_swap_cache_info(); 3302 } 3303 3304 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3305 { 3306 zoneref->zone = zone; 3307 zoneref->zone_idx = zone_idx(zone); 3308 } 3309 3310 /* 3311 * Builds allocation fallback zone lists. 3312 * 3313 * Add all populated zones of a node to the zonelist. 3314 */ 3315 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3316 int nr_zones) 3317 { 3318 struct zone *zone; 3319 enum zone_type zone_type = MAX_NR_ZONES; 3320 3321 do { 3322 zone_type--; 3323 zone = pgdat->node_zones + zone_type; 3324 if (populated_zone(zone)) { 3325 zoneref_set_zone(zone, 3326 &zonelist->_zonerefs[nr_zones++]); 3327 check_highest_zone(zone_type); 3328 } 3329 } while (zone_type); 3330 3331 return nr_zones; 3332 } 3333 3334 3335 /* 3336 * zonelist_order: 3337 * 0 = automatic detection of better ordering. 3338 * 1 = order by ([node] distance, -zonetype) 3339 * 2 = order by (-zonetype, [node] distance) 3340 * 3341 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3342 * the same zonelist. So only NUMA can configure this param. 3343 */ 3344 #define ZONELIST_ORDER_DEFAULT 0 3345 #define ZONELIST_ORDER_NODE 1 3346 #define ZONELIST_ORDER_ZONE 2 3347 3348 /* zonelist order in the kernel. 3349 * set_zonelist_order() will set this to NODE or ZONE. 3350 */ 3351 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3352 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3353 3354 3355 #ifdef CONFIG_NUMA 3356 /* The value user specified ....changed by config */ 3357 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3358 /* string for sysctl */ 3359 #define NUMA_ZONELIST_ORDER_LEN 16 3360 char numa_zonelist_order[16] = "default"; 3361 3362 /* 3363 * interface for configure zonelist ordering. 3364 * command line option "numa_zonelist_order" 3365 * = "[dD]efault - default, automatic configuration. 3366 * = "[nN]ode - order by node locality, then by zone within node 3367 * = "[zZ]one - order by zone, then by locality within zone 3368 */ 3369 3370 static int __parse_numa_zonelist_order(char *s) 3371 { 3372 if (*s == 'd' || *s == 'D') { 3373 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3374 } else if (*s == 'n' || *s == 'N') { 3375 user_zonelist_order = ZONELIST_ORDER_NODE; 3376 } else if (*s == 'z' || *s == 'Z') { 3377 user_zonelist_order = ZONELIST_ORDER_ZONE; 3378 } else { 3379 printk(KERN_WARNING 3380 "Ignoring invalid numa_zonelist_order value: " 3381 "%s\n", s); 3382 return -EINVAL; 3383 } 3384 return 0; 3385 } 3386 3387 static __init int setup_numa_zonelist_order(char *s) 3388 { 3389 int ret; 3390 3391 if (!s) 3392 return 0; 3393 3394 ret = __parse_numa_zonelist_order(s); 3395 if (ret == 0) 3396 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3397 3398 return ret; 3399 } 3400 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3401 3402 /* 3403 * sysctl handler for numa_zonelist_order 3404 */ 3405 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3406 void __user *buffer, size_t *length, 3407 loff_t *ppos) 3408 { 3409 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3410 int ret; 3411 static DEFINE_MUTEX(zl_order_mutex); 3412 3413 mutex_lock(&zl_order_mutex); 3414 if (write) { 3415 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3416 ret = -EINVAL; 3417 goto out; 3418 } 3419 strcpy(saved_string, (char *)table->data); 3420 } 3421 ret = proc_dostring(table, write, buffer, length, ppos); 3422 if (ret) 3423 goto out; 3424 if (write) { 3425 int oldval = user_zonelist_order; 3426 3427 ret = __parse_numa_zonelist_order((char *)table->data); 3428 if (ret) { 3429 /* 3430 * bogus value. restore saved string 3431 */ 3432 strncpy((char *)table->data, saved_string, 3433 NUMA_ZONELIST_ORDER_LEN); 3434 user_zonelist_order = oldval; 3435 } else if (oldval != user_zonelist_order) { 3436 mutex_lock(&zonelists_mutex); 3437 build_all_zonelists(NULL, NULL); 3438 mutex_unlock(&zonelists_mutex); 3439 } 3440 } 3441 out: 3442 mutex_unlock(&zl_order_mutex); 3443 return ret; 3444 } 3445 3446 3447 #define MAX_NODE_LOAD (nr_online_nodes) 3448 static int node_load[MAX_NUMNODES]; 3449 3450 /** 3451 * find_next_best_node - find the next node that should appear in a given node's fallback list 3452 * @node: node whose fallback list we're appending 3453 * @used_node_mask: nodemask_t of already used nodes 3454 * 3455 * We use a number of factors to determine which is the next node that should 3456 * appear on a given node's fallback list. The node should not have appeared 3457 * already in @node's fallback list, and it should be the next closest node 3458 * according to the distance array (which contains arbitrary distance values 3459 * from each node to each node in the system), and should also prefer nodes 3460 * with no CPUs, since presumably they'll have very little allocation pressure 3461 * on them otherwise. 3462 * It returns -1 if no node is found. 3463 */ 3464 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3465 { 3466 int n, val; 3467 int min_val = INT_MAX; 3468 int best_node = NUMA_NO_NODE; 3469 const struct cpumask *tmp = cpumask_of_node(0); 3470 3471 /* Use the local node if we haven't already */ 3472 if (!node_isset(node, *used_node_mask)) { 3473 node_set(node, *used_node_mask); 3474 return node; 3475 } 3476 3477 for_each_node_state(n, N_MEMORY) { 3478 3479 /* Don't want a node to appear more than once */ 3480 if (node_isset(n, *used_node_mask)) 3481 continue; 3482 3483 /* Use the distance array to find the distance */ 3484 val = node_distance(node, n); 3485 3486 /* Penalize nodes under us ("prefer the next node") */ 3487 val += (n < node); 3488 3489 /* Give preference to headless and unused nodes */ 3490 tmp = cpumask_of_node(n); 3491 if (!cpumask_empty(tmp)) 3492 val += PENALTY_FOR_NODE_WITH_CPUS; 3493 3494 /* Slight preference for less loaded node */ 3495 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3496 val += node_load[n]; 3497 3498 if (val < min_val) { 3499 min_val = val; 3500 best_node = n; 3501 } 3502 } 3503 3504 if (best_node >= 0) 3505 node_set(best_node, *used_node_mask); 3506 3507 return best_node; 3508 } 3509 3510 3511 /* 3512 * Build zonelists ordered by node and zones within node. 3513 * This results in maximum locality--normal zone overflows into local 3514 * DMA zone, if any--but risks exhausting DMA zone. 3515 */ 3516 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3517 { 3518 int j; 3519 struct zonelist *zonelist; 3520 3521 zonelist = &pgdat->node_zonelists[0]; 3522 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3523 ; 3524 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3525 zonelist->_zonerefs[j].zone = NULL; 3526 zonelist->_zonerefs[j].zone_idx = 0; 3527 } 3528 3529 /* 3530 * Build gfp_thisnode zonelists 3531 */ 3532 static void build_thisnode_zonelists(pg_data_t *pgdat) 3533 { 3534 int j; 3535 struct zonelist *zonelist; 3536 3537 zonelist = &pgdat->node_zonelists[1]; 3538 j = build_zonelists_node(pgdat, zonelist, 0); 3539 zonelist->_zonerefs[j].zone = NULL; 3540 zonelist->_zonerefs[j].zone_idx = 0; 3541 } 3542 3543 /* 3544 * Build zonelists ordered by zone and nodes within zones. 3545 * This results in conserving DMA zone[s] until all Normal memory is 3546 * exhausted, but results in overflowing to remote node while memory 3547 * may still exist in local DMA zone. 3548 */ 3549 static int node_order[MAX_NUMNODES]; 3550 3551 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3552 { 3553 int pos, j, node; 3554 int zone_type; /* needs to be signed */ 3555 struct zone *z; 3556 struct zonelist *zonelist; 3557 3558 zonelist = &pgdat->node_zonelists[0]; 3559 pos = 0; 3560 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3561 for (j = 0; j < nr_nodes; j++) { 3562 node = node_order[j]; 3563 z = &NODE_DATA(node)->node_zones[zone_type]; 3564 if (populated_zone(z)) { 3565 zoneref_set_zone(z, 3566 &zonelist->_zonerefs[pos++]); 3567 check_highest_zone(zone_type); 3568 } 3569 } 3570 } 3571 zonelist->_zonerefs[pos].zone = NULL; 3572 zonelist->_zonerefs[pos].zone_idx = 0; 3573 } 3574 3575 static int default_zonelist_order(void) 3576 { 3577 int nid, zone_type; 3578 unsigned long low_kmem_size, total_size; 3579 struct zone *z; 3580 int average_size; 3581 /* 3582 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3583 * If they are really small and used heavily, the system can fall 3584 * into OOM very easily. 3585 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3586 */ 3587 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3588 low_kmem_size = 0; 3589 total_size = 0; 3590 for_each_online_node(nid) { 3591 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3592 z = &NODE_DATA(nid)->node_zones[zone_type]; 3593 if (populated_zone(z)) { 3594 if (zone_type < ZONE_NORMAL) 3595 low_kmem_size += z->managed_pages; 3596 total_size += z->managed_pages; 3597 } else if (zone_type == ZONE_NORMAL) { 3598 /* 3599 * If any node has only lowmem, then node order 3600 * is preferred to allow kernel allocations 3601 * locally; otherwise, they can easily infringe 3602 * on other nodes when there is an abundance of 3603 * lowmem available to allocate from. 3604 */ 3605 return ZONELIST_ORDER_NODE; 3606 } 3607 } 3608 } 3609 if (!low_kmem_size || /* there are no DMA area. */ 3610 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3611 return ZONELIST_ORDER_NODE; 3612 /* 3613 * look into each node's config. 3614 * If there is a node whose DMA/DMA32 memory is very big area on 3615 * local memory, NODE_ORDER may be suitable. 3616 */ 3617 average_size = total_size / 3618 (nodes_weight(node_states[N_MEMORY]) + 1); 3619 for_each_online_node(nid) { 3620 low_kmem_size = 0; 3621 total_size = 0; 3622 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3623 z = &NODE_DATA(nid)->node_zones[zone_type]; 3624 if (populated_zone(z)) { 3625 if (zone_type < ZONE_NORMAL) 3626 low_kmem_size += z->present_pages; 3627 total_size += z->present_pages; 3628 } 3629 } 3630 if (low_kmem_size && 3631 total_size > average_size && /* ignore small node */ 3632 low_kmem_size > total_size * 70/100) 3633 return ZONELIST_ORDER_NODE; 3634 } 3635 return ZONELIST_ORDER_ZONE; 3636 } 3637 3638 static void set_zonelist_order(void) 3639 { 3640 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3641 current_zonelist_order = default_zonelist_order(); 3642 else 3643 current_zonelist_order = user_zonelist_order; 3644 } 3645 3646 static void build_zonelists(pg_data_t *pgdat) 3647 { 3648 int j, node, load; 3649 enum zone_type i; 3650 nodemask_t used_mask; 3651 int local_node, prev_node; 3652 struct zonelist *zonelist; 3653 int order = current_zonelist_order; 3654 3655 /* initialize zonelists */ 3656 for (i = 0; i < MAX_ZONELISTS; i++) { 3657 zonelist = pgdat->node_zonelists + i; 3658 zonelist->_zonerefs[0].zone = NULL; 3659 zonelist->_zonerefs[0].zone_idx = 0; 3660 } 3661 3662 /* NUMA-aware ordering of nodes */ 3663 local_node = pgdat->node_id; 3664 load = nr_online_nodes; 3665 prev_node = local_node; 3666 nodes_clear(used_mask); 3667 3668 memset(node_order, 0, sizeof(node_order)); 3669 j = 0; 3670 3671 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3672 /* 3673 * We don't want to pressure a particular node. 3674 * So adding penalty to the first node in same 3675 * distance group to make it round-robin. 3676 */ 3677 if (node_distance(local_node, node) != 3678 node_distance(local_node, prev_node)) 3679 node_load[node] = load; 3680 3681 prev_node = node; 3682 load--; 3683 if (order == ZONELIST_ORDER_NODE) 3684 build_zonelists_in_node_order(pgdat, node); 3685 else 3686 node_order[j++] = node; /* remember order */ 3687 } 3688 3689 if (order == ZONELIST_ORDER_ZONE) { 3690 /* calculate node order -- i.e., DMA last! */ 3691 build_zonelists_in_zone_order(pgdat, j); 3692 } 3693 3694 build_thisnode_zonelists(pgdat); 3695 } 3696 3697 /* Construct the zonelist performance cache - see further mmzone.h */ 3698 static void build_zonelist_cache(pg_data_t *pgdat) 3699 { 3700 struct zonelist *zonelist; 3701 struct zonelist_cache *zlc; 3702 struct zoneref *z; 3703 3704 zonelist = &pgdat->node_zonelists[0]; 3705 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3706 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3707 for (z = zonelist->_zonerefs; z->zone; z++) 3708 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3709 } 3710 3711 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3712 /* 3713 * Return node id of node used for "local" allocations. 3714 * I.e., first node id of first zone in arg node's generic zonelist. 3715 * Used for initializing percpu 'numa_mem', which is used primarily 3716 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3717 */ 3718 int local_memory_node(int node) 3719 { 3720 struct zone *zone; 3721 3722 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3723 gfp_zone(GFP_KERNEL), 3724 NULL, 3725 &zone); 3726 return zone->node; 3727 } 3728 #endif 3729 3730 #else /* CONFIG_NUMA */ 3731 3732 static void set_zonelist_order(void) 3733 { 3734 current_zonelist_order = ZONELIST_ORDER_ZONE; 3735 } 3736 3737 static void build_zonelists(pg_data_t *pgdat) 3738 { 3739 int node, local_node; 3740 enum zone_type j; 3741 struct zonelist *zonelist; 3742 3743 local_node = pgdat->node_id; 3744 3745 zonelist = &pgdat->node_zonelists[0]; 3746 j = build_zonelists_node(pgdat, zonelist, 0); 3747 3748 /* 3749 * Now we build the zonelist so that it contains the zones 3750 * of all the other nodes. 3751 * We don't want to pressure a particular node, so when 3752 * building the zones for node N, we make sure that the 3753 * zones coming right after the local ones are those from 3754 * node N+1 (modulo N) 3755 */ 3756 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3757 if (!node_online(node)) 3758 continue; 3759 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3760 } 3761 for (node = 0; node < local_node; node++) { 3762 if (!node_online(node)) 3763 continue; 3764 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3765 } 3766 3767 zonelist->_zonerefs[j].zone = NULL; 3768 zonelist->_zonerefs[j].zone_idx = 0; 3769 } 3770 3771 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3772 static void build_zonelist_cache(pg_data_t *pgdat) 3773 { 3774 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3775 } 3776 3777 #endif /* CONFIG_NUMA */ 3778 3779 /* 3780 * Boot pageset table. One per cpu which is going to be used for all 3781 * zones and all nodes. The parameters will be set in such a way 3782 * that an item put on a list will immediately be handed over to 3783 * the buddy list. This is safe since pageset manipulation is done 3784 * with interrupts disabled. 3785 * 3786 * The boot_pagesets must be kept even after bootup is complete for 3787 * unused processors and/or zones. They do play a role for bootstrapping 3788 * hotplugged processors. 3789 * 3790 * zoneinfo_show() and maybe other functions do 3791 * not check if the processor is online before following the pageset pointer. 3792 * Other parts of the kernel may not check if the zone is available. 3793 */ 3794 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3795 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3796 static void setup_zone_pageset(struct zone *zone); 3797 3798 /* 3799 * Global mutex to protect against size modification of zonelists 3800 * as well as to serialize pageset setup for the new populated zone. 3801 */ 3802 DEFINE_MUTEX(zonelists_mutex); 3803 3804 /* return values int ....just for stop_machine() */ 3805 static int __build_all_zonelists(void *data) 3806 { 3807 int nid; 3808 int cpu; 3809 pg_data_t *self = data; 3810 3811 #ifdef CONFIG_NUMA 3812 memset(node_load, 0, sizeof(node_load)); 3813 #endif 3814 3815 if (self && !node_online(self->node_id)) { 3816 build_zonelists(self); 3817 build_zonelist_cache(self); 3818 } 3819 3820 for_each_online_node(nid) { 3821 pg_data_t *pgdat = NODE_DATA(nid); 3822 3823 build_zonelists(pgdat); 3824 build_zonelist_cache(pgdat); 3825 } 3826 3827 /* 3828 * Initialize the boot_pagesets that are going to be used 3829 * for bootstrapping processors. The real pagesets for 3830 * each zone will be allocated later when the per cpu 3831 * allocator is available. 3832 * 3833 * boot_pagesets are used also for bootstrapping offline 3834 * cpus if the system is already booted because the pagesets 3835 * are needed to initialize allocators on a specific cpu too. 3836 * F.e. the percpu allocator needs the page allocator which 3837 * needs the percpu allocator in order to allocate its pagesets 3838 * (a chicken-egg dilemma). 3839 */ 3840 for_each_possible_cpu(cpu) { 3841 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3842 3843 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3844 /* 3845 * We now know the "local memory node" for each node-- 3846 * i.e., the node of the first zone in the generic zonelist. 3847 * Set up numa_mem percpu variable for on-line cpus. During 3848 * boot, only the boot cpu should be on-line; we'll init the 3849 * secondary cpus' numa_mem as they come on-line. During 3850 * node/memory hotplug, we'll fixup all on-line cpus. 3851 */ 3852 if (cpu_online(cpu)) 3853 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3854 #endif 3855 } 3856 3857 return 0; 3858 } 3859 3860 /* 3861 * Called with zonelists_mutex held always 3862 * unless system_state == SYSTEM_BOOTING. 3863 */ 3864 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3865 { 3866 set_zonelist_order(); 3867 3868 if (system_state == SYSTEM_BOOTING) { 3869 __build_all_zonelists(NULL); 3870 mminit_verify_zonelist(); 3871 cpuset_init_current_mems_allowed(); 3872 } else { 3873 #ifdef CONFIG_MEMORY_HOTPLUG 3874 if (zone) 3875 setup_zone_pageset(zone); 3876 #endif 3877 /* we have to stop all cpus to guarantee there is no user 3878 of zonelist */ 3879 stop_machine(__build_all_zonelists, pgdat, NULL); 3880 /* cpuset refresh routine should be here */ 3881 } 3882 vm_total_pages = nr_free_pagecache_pages(); 3883 /* 3884 * Disable grouping by mobility if the number of pages in the 3885 * system is too low to allow the mechanism to work. It would be 3886 * more accurate, but expensive to check per-zone. This check is 3887 * made on memory-hotadd so a system can start with mobility 3888 * disabled and enable it later 3889 */ 3890 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3891 page_group_by_mobility_disabled = 1; 3892 else 3893 page_group_by_mobility_disabled = 0; 3894 3895 printk("Built %i zonelists in %s order, mobility grouping %s. " 3896 "Total pages: %ld\n", 3897 nr_online_nodes, 3898 zonelist_order_name[current_zonelist_order], 3899 page_group_by_mobility_disabled ? "off" : "on", 3900 vm_total_pages); 3901 #ifdef CONFIG_NUMA 3902 printk("Policy zone: %s\n", zone_names[policy_zone]); 3903 #endif 3904 } 3905 3906 /* 3907 * Helper functions to size the waitqueue hash table. 3908 * Essentially these want to choose hash table sizes sufficiently 3909 * large so that collisions trying to wait on pages are rare. 3910 * But in fact, the number of active page waitqueues on typical 3911 * systems is ridiculously low, less than 200. So this is even 3912 * conservative, even though it seems large. 3913 * 3914 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3915 * waitqueues, i.e. the size of the waitq table given the number of pages. 3916 */ 3917 #define PAGES_PER_WAITQUEUE 256 3918 3919 #ifndef CONFIG_MEMORY_HOTPLUG 3920 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3921 { 3922 unsigned long size = 1; 3923 3924 pages /= PAGES_PER_WAITQUEUE; 3925 3926 while (size < pages) 3927 size <<= 1; 3928 3929 /* 3930 * Once we have dozens or even hundreds of threads sleeping 3931 * on IO we've got bigger problems than wait queue collision. 3932 * Limit the size of the wait table to a reasonable size. 3933 */ 3934 size = min(size, 4096UL); 3935 3936 return max(size, 4UL); 3937 } 3938 #else 3939 /* 3940 * A zone's size might be changed by hot-add, so it is not possible to determine 3941 * a suitable size for its wait_table. So we use the maximum size now. 3942 * 3943 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3944 * 3945 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3946 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3947 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3948 * 3949 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3950 * or more by the traditional way. (See above). It equals: 3951 * 3952 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3953 * ia64(16K page size) : = ( 8G + 4M)byte. 3954 * powerpc (64K page size) : = (32G +16M)byte. 3955 */ 3956 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3957 { 3958 return 4096UL; 3959 } 3960 #endif 3961 3962 /* 3963 * This is an integer logarithm so that shifts can be used later 3964 * to extract the more random high bits from the multiplicative 3965 * hash function before the remainder is taken. 3966 */ 3967 static inline unsigned long wait_table_bits(unsigned long size) 3968 { 3969 return ffz(~size); 3970 } 3971 3972 /* 3973 * Check if a pageblock contains reserved pages 3974 */ 3975 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3976 { 3977 unsigned long pfn; 3978 3979 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3980 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3981 return 1; 3982 } 3983 return 0; 3984 } 3985 3986 /* 3987 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3988 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3989 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3990 * higher will lead to a bigger reserve which will get freed as contiguous 3991 * blocks as reclaim kicks in 3992 */ 3993 static void setup_zone_migrate_reserve(struct zone *zone) 3994 { 3995 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3996 struct page *page; 3997 unsigned long block_migratetype; 3998 int reserve; 3999 int old_reserve; 4000 4001 /* 4002 * Get the start pfn, end pfn and the number of blocks to reserve 4003 * We have to be careful to be aligned to pageblock_nr_pages to 4004 * make sure that we always check pfn_valid for the first page in 4005 * the block. 4006 */ 4007 start_pfn = zone->zone_start_pfn; 4008 end_pfn = zone_end_pfn(zone); 4009 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4010 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4011 pageblock_order; 4012 4013 /* 4014 * Reserve blocks are generally in place to help high-order atomic 4015 * allocations that are short-lived. A min_free_kbytes value that 4016 * would result in more than 2 reserve blocks for atomic allocations 4017 * is assumed to be in place to help anti-fragmentation for the 4018 * future allocation of hugepages at runtime. 4019 */ 4020 reserve = min(2, reserve); 4021 old_reserve = zone->nr_migrate_reserve_block; 4022 4023 /* When memory hot-add, we almost always need to do nothing */ 4024 if (reserve == old_reserve) 4025 return; 4026 zone->nr_migrate_reserve_block = reserve; 4027 4028 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4029 if (!pfn_valid(pfn)) 4030 continue; 4031 page = pfn_to_page(pfn); 4032 4033 /* Watch out for overlapping nodes */ 4034 if (page_to_nid(page) != zone_to_nid(zone)) 4035 continue; 4036 4037 block_migratetype = get_pageblock_migratetype(page); 4038 4039 /* Only test what is necessary when the reserves are not met */ 4040 if (reserve > 0) { 4041 /* 4042 * Blocks with reserved pages will never free, skip 4043 * them. 4044 */ 4045 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4046 if (pageblock_is_reserved(pfn, block_end_pfn)) 4047 continue; 4048 4049 /* If this block is reserved, account for it */ 4050 if (block_migratetype == MIGRATE_RESERVE) { 4051 reserve--; 4052 continue; 4053 } 4054 4055 /* Suitable for reserving if this block is movable */ 4056 if (block_migratetype == MIGRATE_MOVABLE) { 4057 set_pageblock_migratetype(page, 4058 MIGRATE_RESERVE); 4059 move_freepages_block(zone, page, 4060 MIGRATE_RESERVE); 4061 reserve--; 4062 continue; 4063 } 4064 } else if (!old_reserve) { 4065 /* 4066 * At boot time we don't need to scan the whole zone 4067 * for turning off MIGRATE_RESERVE. 4068 */ 4069 break; 4070 } 4071 4072 /* 4073 * If the reserve is met and this is a previous reserved block, 4074 * take it back 4075 */ 4076 if (block_migratetype == MIGRATE_RESERVE) { 4077 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4078 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4079 } 4080 } 4081 } 4082 4083 /* 4084 * Initially all pages are reserved - free ones are freed 4085 * up by free_all_bootmem() once the early boot process is 4086 * done. Non-atomic initialization, single-pass. 4087 */ 4088 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4089 unsigned long start_pfn, enum memmap_context context) 4090 { 4091 struct page *page; 4092 unsigned long end_pfn = start_pfn + size; 4093 unsigned long pfn; 4094 struct zone *z; 4095 4096 if (highest_memmap_pfn < end_pfn - 1) 4097 highest_memmap_pfn = end_pfn - 1; 4098 4099 z = &NODE_DATA(nid)->node_zones[zone]; 4100 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4101 /* 4102 * There can be holes in boot-time mem_map[]s 4103 * handed to this function. They do not 4104 * exist on hotplugged memory. 4105 */ 4106 if (context == MEMMAP_EARLY) { 4107 if (!early_pfn_valid(pfn)) 4108 continue; 4109 if (!early_pfn_in_nid(pfn, nid)) 4110 continue; 4111 } 4112 page = pfn_to_page(pfn); 4113 set_page_links(page, zone, nid, pfn); 4114 mminit_verify_page_links(page, zone, nid, pfn); 4115 init_page_count(page); 4116 page_mapcount_reset(page); 4117 page_cpupid_reset_last(page); 4118 SetPageReserved(page); 4119 /* 4120 * Mark the block movable so that blocks are reserved for 4121 * movable at startup. This will force kernel allocations 4122 * to reserve their blocks rather than leaking throughout 4123 * the address space during boot when many long-lived 4124 * kernel allocations are made. Later some blocks near 4125 * the start are marked MIGRATE_RESERVE by 4126 * setup_zone_migrate_reserve() 4127 * 4128 * bitmap is created for zone's valid pfn range. but memmap 4129 * can be created for invalid pages (for alignment) 4130 * check here not to call set_pageblock_migratetype() against 4131 * pfn out of zone. 4132 */ 4133 if ((z->zone_start_pfn <= pfn) 4134 && (pfn < zone_end_pfn(z)) 4135 && !(pfn & (pageblock_nr_pages - 1))) 4136 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4137 4138 INIT_LIST_HEAD(&page->lru); 4139 #ifdef WANT_PAGE_VIRTUAL 4140 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4141 if (!is_highmem_idx(zone)) 4142 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4143 #endif 4144 } 4145 } 4146 4147 static void __meminit zone_init_free_lists(struct zone *zone) 4148 { 4149 unsigned int order, t; 4150 for_each_migratetype_order(order, t) { 4151 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4152 zone->free_area[order].nr_free = 0; 4153 } 4154 } 4155 4156 #ifndef __HAVE_ARCH_MEMMAP_INIT 4157 #define memmap_init(size, nid, zone, start_pfn) \ 4158 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4159 #endif 4160 4161 static int zone_batchsize(struct zone *zone) 4162 { 4163 #ifdef CONFIG_MMU 4164 int batch; 4165 4166 /* 4167 * The per-cpu-pages pools are set to around 1000th of the 4168 * size of the zone. But no more than 1/2 of a meg. 4169 * 4170 * OK, so we don't know how big the cache is. So guess. 4171 */ 4172 batch = zone->managed_pages / 1024; 4173 if (batch * PAGE_SIZE > 512 * 1024) 4174 batch = (512 * 1024) / PAGE_SIZE; 4175 batch /= 4; /* We effectively *= 4 below */ 4176 if (batch < 1) 4177 batch = 1; 4178 4179 /* 4180 * Clamp the batch to a 2^n - 1 value. Having a power 4181 * of 2 value was found to be more likely to have 4182 * suboptimal cache aliasing properties in some cases. 4183 * 4184 * For example if 2 tasks are alternately allocating 4185 * batches of pages, one task can end up with a lot 4186 * of pages of one half of the possible page colors 4187 * and the other with pages of the other colors. 4188 */ 4189 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4190 4191 return batch; 4192 4193 #else 4194 /* The deferral and batching of frees should be suppressed under NOMMU 4195 * conditions. 4196 * 4197 * The problem is that NOMMU needs to be able to allocate large chunks 4198 * of contiguous memory as there's no hardware page translation to 4199 * assemble apparent contiguous memory from discontiguous pages. 4200 * 4201 * Queueing large contiguous runs of pages for batching, however, 4202 * causes the pages to actually be freed in smaller chunks. As there 4203 * can be a significant delay between the individual batches being 4204 * recycled, this leads to the once large chunks of space being 4205 * fragmented and becoming unavailable for high-order allocations. 4206 */ 4207 return 0; 4208 #endif 4209 } 4210 4211 /* 4212 * pcp->high and pcp->batch values are related and dependent on one another: 4213 * ->batch must never be higher then ->high. 4214 * The following function updates them in a safe manner without read side 4215 * locking. 4216 * 4217 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4218 * those fields changing asynchronously (acording the the above rule). 4219 * 4220 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4221 * outside of boot time (or some other assurance that no concurrent updaters 4222 * exist). 4223 */ 4224 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4225 unsigned long batch) 4226 { 4227 /* start with a fail safe value for batch */ 4228 pcp->batch = 1; 4229 smp_wmb(); 4230 4231 /* Update high, then batch, in order */ 4232 pcp->high = high; 4233 smp_wmb(); 4234 4235 pcp->batch = batch; 4236 } 4237 4238 /* a companion to pageset_set_high() */ 4239 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4240 { 4241 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4242 } 4243 4244 static void pageset_init(struct per_cpu_pageset *p) 4245 { 4246 struct per_cpu_pages *pcp; 4247 int migratetype; 4248 4249 memset(p, 0, sizeof(*p)); 4250 4251 pcp = &p->pcp; 4252 pcp->count = 0; 4253 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4254 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4255 } 4256 4257 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4258 { 4259 pageset_init(p); 4260 pageset_set_batch(p, batch); 4261 } 4262 4263 /* 4264 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4265 * to the value high for the pageset p. 4266 */ 4267 static void pageset_set_high(struct per_cpu_pageset *p, 4268 unsigned long high) 4269 { 4270 unsigned long batch = max(1UL, high / 4); 4271 if ((high / 4) > (PAGE_SHIFT * 8)) 4272 batch = PAGE_SHIFT * 8; 4273 4274 pageset_update(&p->pcp, high, batch); 4275 } 4276 4277 static void pageset_set_high_and_batch(struct zone *zone, 4278 struct per_cpu_pageset *pcp) 4279 { 4280 if (percpu_pagelist_fraction) 4281 pageset_set_high(pcp, 4282 (zone->managed_pages / 4283 percpu_pagelist_fraction)); 4284 else 4285 pageset_set_batch(pcp, zone_batchsize(zone)); 4286 } 4287 4288 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4289 { 4290 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4291 4292 pageset_init(pcp); 4293 pageset_set_high_and_batch(zone, pcp); 4294 } 4295 4296 static void __meminit setup_zone_pageset(struct zone *zone) 4297 { 4298 int cpu; 4299 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4300 for_each_possible_cpu(cpu) 4301 zone_pageset_init(zone, cpu); 4302 } 4303 4304 /* 4305 * Allocate per cpu pagesets and initialize them. 4306 * Before this call only boot pagesets were available. 4307 */ 4308 void __init setup_per_cpu_pageset(void) 4309 { 4310 struct zone *zone; 4311 4312 for_each_populated_zone(zone) 4313 setup_zone_pageset(zone); 4314 } 4315 4316 static noinline __init_refok 4317 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4318 { 4319 int i; 4320 size_t alloc_size; 4321 4322 /* 4323 * The per-page waitqueue mechanism uses hashed waitqueues 4324 * per zone. 4325 */ 4326 zone->wait_table_hash_nr_entries = 4327 wait_table_hash_nr_entries(zone_size_pages); 4328 zone->wait_table_bits = 4329 wait_table_bits(zone->wait_table_hash_nr_entries); 4330 alloc_size = zone->wait_table_hash_nr_entries 4331 * sizeof(wait_queue_head_t); 4332 4333 if (!slab_is_available()) { 4334 zone->wait_table = (wait_queue_head_t *) 4335 memblock_virt_alloc_node_nopanic( 4336 alloc_size, zone->zone_pgdat->node_id); 4337 } else { 4338 /* 4339 * This case means that a zone whose size was 0 gets new memory 4340 * via memory hot-add. 4341 * But it may be the case that a new node was hot-added. In 4342 * this case vmalloc() will not be able to use this new node's 4343 * memory - this wait_table must be initialized to use this new 4344 * node itself as well. 4345 * To use this new node's memory, further consideration will be 4346 * necessary. 4347 */ 4348 zone->wait_table = vmalloc(alloc_size); 4349 } 4350 if (!zone->wait_table) 4351 return -ENOMEM; 4352 4353 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4354 init_waitqueue_head(zone->wait_table + i); 4355 4356 return 0; 4357 } 4358 4359 static __meminit void zone_pcp_init(struct zone *zone) 4360 { 4361 /* 4362 * per cpu subsystem is not up at this point. The following code 4363 * relies on the ability of the linker to provide the 4364 * offset of a (static) per cpu variable into the per cpu area. 4365 */ 4366 zone->pageset = &boot_pageset; 4367 4368 if (populated_zone(zone)) 4369 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4370 zone->name, zone->present_pages, 4371 zone_batchsize(zone)); 4372 } 4373 4374 int __meminit init_currently_empty_zone(struct zone *zone, 4375 unsigned long zone_start_pfn, 4376 unsigned long size, 4377 enum memmap_context context) 4378 { 4379 struct pglist_data *pgdat = zone->zone_pgdat; 4380 int ret; 4381 ret = zone_wait_table_init(zone, size); 4382 if (ret) 4383 return ret; 4384 pgdat->nr_zones = zone_idx(zone) + 1; 4385 4386 zone->zone_start_pfn = zone_start_pfn; 4387 4388 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4389 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4390 pgdat->node_id, 4391 (unsigned long)zone_idx(zone), 4392 zone_start_pfn, (zone_start_pfn + size)); 4393 4394 zone_init_free_lists(zone); 4395 4396 return 0; 4397 } 4398 4399 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4400 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4401 /* 4402 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4403 */ 4404 int __meminit __early_pfn_to_nid(unsigned long pfn) 4405 { 4406 unsigned long start_pfn, end_pfn; 4407 int nid; 4408 /* 4409 * NOTE: The following SMP-unsafe globals are only used early in boot 4410 * when the kernel is running single-threaded. 4411 */ 4412 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4413 static int __meminitdata last_nid; 4414 4415 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4416 return last_nid; 4417 4418 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4419 if (nid != -1) { 4420 last_start_pfn = start_pfn; 4421 last_end_pfn = end_pfn; 4422 last_nid = nid; 4423 } 4424 4425 return nid; 4426 } 4427 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4428 4429 int __meminit early_pfn_to_nid(unsigned long pfn) 4430 { 4431 int nid; 4432 4433 nid = __early_pfn_to_nid(pfn); 4434 if (nid >= 0) 4435 return nid; 4436 /* just returns 0 */ 4437 return 0; 4438 } 4439 4440 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4441 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4442 { 4443 int nid; 4444 4445 nid = __early_pfn_to_nid(pfn); 4446 if (nid >= 0 && nid != node) 4447 return false; 4448 return true; 4449 } 4450 #endif 4451 4452 /** 4453 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4454 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4455 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4456 * 4457 * If an architecture guarantees that all ranges registered contain no holes 4458 * and may be freed, this this function may be used instead of calling 4459 * memblock_free_early_nid() manually. 4460 */ 4461 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4462 { 4463 unsigned long start_pfn, end_pfn; 4464 int i, this_nid; 4465 4466 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4467 start_pfn = min(start_pfn, max_low_pfn); 4468 end_pfn = min(end_pfn, max_low_pfn); 4469 4470 if (start_pfn < end_pfn) 4471 memblock_free_early_nid(PFN_PHYS(start_pfn), 4472 (end_pfn - start_pfn) << PAGE_SHIFT, 4473 this_nid); 4474 } 4475 } 4476 4477 /** 4478 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4479 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4480 * 4481 * If an architecture guarantees that all ranges registered contain no holes and may 4482 * be freed, this function may be used instead of calling memory_present() manually. 4483 */ 4484 void __init sparse_memory_present_with_active_regions(int nid) 4485 { 4486 unsigned long start_pfn, end_pfn; 4487 int i, this_nid; 4488 4489 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4490 memory_present(this_nid, start_pfn, end_pfn); 4491 } 4492 4493 /** 4494 * get_pfn_range_for_nid - Return the start and end page frames for a node 4495 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4496 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4497 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4498 * 4499 * It returns the start and end page frame of a node based on information 4500 * provided by memblock_set_node(). If called for a node 4501 * with no available memory, a warning is printed and the start and end 4502 * PFNs will be 0. 4503 */ 4504 void __meminit get_pfn_range_for_nid(unsigned int nid, 4505 unsigned long *start_pfn, unsigned long *end_pfn) 4506 { 4507 unsigned long this_start_pfn, this_end_pfn; 4508 int i; 4509 4510 *start_pfn = -1UL; 4511 *end_pfn = 0; 4512 4513 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4514 *start_pfn = min(*start_pfn, this_start_pfn); 4515 *end_pfn = max(*end_pfn, this_end_pfn); 4516 } 4517 4518 if (*start_pfn == -1UL) 4519 *start_pfn = 0; 4520 } 4521 4522 /* 4523 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4524 * assumption is made that zones within a node are ordered in monotonic 4525 * increasing memory addresses so that the "highest" populated zone is used 4526 */ 4527 static void __init find_usable_zone_for_movable(void) 4528 { 4529 int zone_index; 4530 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4531 if (zone_index == ZONE_MOVABLE) 4532 continue; 4533 4534 if (arch_zone_highest_possible_pfn[zone_index] > 4535 arch_zone_lowest_possible_pfn[zone_index]) 4536 break; 4537 } 4538 4539 VM_BUG_ON(zone_index == -1); 4540 movable_zone = zone_index; 4541 } 4542 4543 /* 4544 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4545 * because it is sized independent of architecture. Unlike the other zones, 4546 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4547 * in each node depending on the size of each node and how evenly kernelcore 4548 * is distributed. This helper function adjusts the zone ranges 4549 * provided by the architecture for a given node by using the end of the 4550 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4551 * zones within a node are in order of monotonic increases memory addresses 4552 */ 4553 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4554 unsigned long zone_type, 4555 unsigned long node_start_pfn, 4556 unsigned long node_end_pfn, 4557 unsigned long *zone_start_pfn, 4558 unsigned long *zone_end_pfn) 4559 { 4560 /* Only adjust if ZONE_MOVABLE is on this node */ 4561 if (zone_movable_pfn[nid]) { 4562 /* Size ZONE_MOVABLE */ 4563 if (zone_type == ZONE_MOVABLE) { 4564 *zone_start_pfn = zone_movable_pfn[nid]; 4565 *zone_end_pfn = min(node_end_pfn, 4566 arch_zone_highest_possible_pfn[movable_zone]); 4567 4568 /* Adjust for ZONE_MOVABLE starting within this range */ 4569 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4570 *zone_end_pfn > zone_movable_pfn[nid]) { 4571 *zone_end_pfn = zone_movable_pfn[nid]; 4572 4573 /* Check if this whole range is within ZONE_MOVABLE */ 4574 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4575 *zone_start_pfn = *zone_end_pfn; 4576 } 4577 } 4578 4579 /* 4580 * Return the number of pages a zone spans in a node, including holes 4581 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4582 */ 4583 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4584 unsigned long zone_type, 4585 unsigned long node_start_pfn, 4586 unsigned long node_end_pfn, 4587 unsigned long *ignored) 4588 { 4589 unsigned long zone_start_pfn, zone_end_pfn; 4590 4591 /* Get the start and end of the zone */ 4592 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4593 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4594 adjust_zone_range_for_zone_movable(nid, zone_type, 4595 node_start_pfn, node_end_pfn, 4596 &zone_start_pfn, &zone_end_pfn); 4597 4598 /* Check that this node has pages within the zone's required range */ 4599 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4600 return 0; 4601 4602 /* Move the zone boundaries inside the node if necessary */ 4603 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4604 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4605 4606 /* Return the spanned pages */ 4607 return zone_end_pfn - zone_start_pfn; 4608 } 4609 4610 /* 4611 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4612 * then all holes in the requested range will be accounted for. 4613 */ 4614 unsigned long __meminit __absent_pages_in_range(int nid, 4615 unsigned long range_start_pfn, 4616 unsigned long range_end_pfn) 4617 { 4618 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4619 unsigned long start_pfn, end_pfn; 4620 int i; 4621 4622 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4623 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4624 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4625 nr_absent -= end_pfn - start_pfn; 4626 } 4627 return nr_absent; 4628 } 4629 4630 /** 4631 * absent_pages_in_range - Return number of page frames in holes within a range 4632 * @start_pfn: The start PFN to start searching for holes 4633 * @end_pfn: The end PFN to stop searching for holes 4634 * 4635 * It returns the number of pages frames in memory holes within a range. 4636 */ 4637 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4638 unsigned long end_pfn) 4639 { 4640 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4641 } 4642 4643 /* Return the number of page frames in holes in a zone on a node */ 4644 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4645 unsigned long zone_type, 4646 unsigned long node_start_pfn, 4647 unsigned long node_end_pfn, 4648 unsigned long *ignored) 4649 { 4650 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4651 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4652 unsigned long zone_start_pfn, zone_end_pfn; 4653 4654 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4655 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4656 4657 adjust_zone_range_for_zone_movable(nid, zone_type, 4658 node_start_pfn, node_end_pfn, 4659 &zone_start_pfn, &zone_end_pfn); 4660 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4661 } 4662 4663 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4664 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4665 unsigned long zone_type, 4666 unsigned long node_start_pfn, 4667 unsigned long node_end_pfn, 4668 unsigned long *zones_size) 4669 { 4670 return zones_size[zone_type]; 4671 } 4672 4673 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4674 unsigned long zone_type, 4675 unsigned long node_start_pfn, 4676 unsigned long node_end_pfn, 4677 unsigned long *zholes_size) 4678 { 4679 if (!zholes_size) 4680 return 0; 4681 4682 return zholes_size[zone_type]; 4683 } 4684 4685 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4686 4687 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4688 unsigned long node_start_pfn, 4689 unsigned long node_end_pfn, 4690 unsigned long *zones_size, 4691 unsigned long *zholes_size) 4692 { 4693 unsigned long realtotalpages, totalpages = 0; 4694 enum zone_type i; 4695 4696 for (i = 0; i < MAX_NR_ZONES; i++) 4697 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4698 node_start_pfn, 4699 node_end_pfn, 4700 zones_size); 4701 pgdat->node_spanned_pages = totalpages; 4702 4703 realtotalpages = totalpages; 4704 for (i = 0; i < MAX_NR_ZONES; i++) 4705 realtotalpages -= 4706 zone_absent_pages_in_node(pgdat->node_id, i, 4707 node_start_pfn, node_end_pfn, 4708 zholes_size); 4709 pgdat->node_present_pages = realtotalpages; 4710 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4711 realtotalpages); 4712 } 4713 4714 #ifndef CONFIG_SPARSEMEM 4715 /* 4716 * Calculate the size of the zone->blockflags rounded to an unsigned long 4717 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4718 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4719 * round what is now in bits to nearest long in bits, then return it in 4720 * bytes. 4721 */ 4722 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4723 { 4724 unsigned long usemapsize; 4725 4726 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4727 usemapsize = roundup(zonesize, pageblock_nr_pages); 4728 usemapsize = usemapsize >> pageblock_order; 4729 usemapsize *= NR_PAGEBLOCK_BITS; 4730 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4731 4732 return usemapsize / 8; 4733 } 4734 4735 static void __init setup_usemap(struct pglist_data *pgdat, 4736 struct zone *zone, 4737 unsigned long zone_start_pfn, 4738 unsigned long zonesize) 4739 { 4740 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4741 zone->pageblock_flags = NULL; 4742 if (usemapsize) 4743 zone->pageblock_flags = 4744 memblock_virt_alloc_node_nopanic(usemapsize, 4745 pgdat->node_id); 4746 } 4747 #else 4748 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4749 unsigned long zone_start_pfn, unsigned long zonesize) {} 4750 #endif /* CONFIG_SPARSEMEM */ 4751 4752 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4753 4754 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4755 void __paginginit set_pageblock_order(void) 4756 { 4757 unsigned int order; 4758 4759 /* Check that pageblock_nr_pages has not already been setup */ 4760 if (pageblock_order) 4761 return; 4762 4763 if (HPAGE_SHIFT > PAGE_SHIFT) 4764 order = HUGETLB_PAGE_ORDER; 4765 else 4766 order = MAX_ORDER - 1; 4767 4768 /* 4769 * Assume the largest contiguous order of interest is a huge page. 4770 * This value may be variable depending on boot parameters on IA64 and 4771 * powerpc. 4772 */ 4773 pageblock_order = order; 4774 } 4775 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4776 4777 /* 4778 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4779 * is unused as pageblock_order is set at compile-time. See 4780 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4781 * the kernel config 4782 */ 4783 void __paginginit set_pageblock_order(void) 4784 { 4785 } 4786 4787 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4788 4789 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4790 unsigned long present_pages) 4791 { 4792 unsigned long pages = spanned_pages; 4793 4794 /* 4795 * Provide a more accurate estimation if there are holes within 4796 * the zone and SPARSEMEM is in use. If there are holes within the 4797 * zone, each populated memory region may cost us one or two extra 4798 * memmap pages due to alignment because memmap pages for each 4799 * populated regions may not naturally algined on page boundary. 4800 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4801 */ 4802 if (spanned_pages > present_pages + (present_pages >> 4) && 4803 IS_ENABLED(CONFIG_SPARSEMEM)) 4804 pages = present_pages; 4805 4806 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4807 } 4808 4809 /* 4810 * Set up the zone data structures: 4811 * - mark all pages reserved 4812 * - mark all memory queues empty 4813 * - clear the memory bitmaps 4814 * 4815 * NOTE: pgdat should get zeroed by caller. 4816 */ 4817 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4818 unsigned long node_start_pfn, unsigned long node_end_pfn, 4819 unsigned long *zones_size, unsigned long *zholes_size) 4820 { 4821 enum zone_type j; 4822 int nid = pgdat->node_id; 4823 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4824 int ret; 4825 4826 pgdat_resize_init(pgdat); 4827 #ifdef CONFIG_NUMA_BALANCING 4828 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4829 pgdat->numabalancing_migrate_nr_pages = 0; 4830 pgdat->numabalancing_migrate_next_window = jiffies; 4831 #endif 4832 init_waitqueue_head(&pgdat->kswapd_wait); 4833 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4834 pgdat_page_cgroup_init(pgdat); 4835 4836 for (j = 0; j < MAX_NR_ZONES; j++) { 4837 struct zone *zone = pgdat->node_zones + j; 4838 unsigned long size, realsize, freesize, memmap_pages; 4839 4840 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4841 node_end_pfn, zones_size); 4842 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4843 node_start_pfn, 4844 node_end_pfn, 4845 zholes_size); 4846 4847 /* 4848 * Adjust freesize so that it accounts for how much memory 4849 * is used by this zone for memmap. This affects the watermark 4850 * and per-cpu initialisations 4851 */ 4852 memmap_pages = calc_memmap_size(size, realsize); 4853 if (freesize >= memmap_pages) { 4854 freesize -= memmap_pages; 4855 if (memmap_pages) 4856 printk(KERN_DEBUG 4857 " %s zone: %lu pages used for memmap\n", 4858 zone_names[j], memmap_pages); 4859 } else 4860 printk(KERN_WARNING 4861 " %s zone: %lu pages exceeds freesize %lu\n", 4862 zone_names[j], memmap_pages, freesize); 4863 4864 /* Account for reserved pages */ 4865 if (j == 0 && freesize > dma_reserve) { 4866 freesize -= dma_reserve; 4867 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4868 zone_names[0], dma_reserve); 4869 } 4870 4871 if (!is_highmem_idx(j)) 4872 nr_kernel_pages += freesize; 4873 /* Charge for highmem memmap if there are enough kernel pages */ 4874 else if (nr_kernel_pages > memmap_pages * 2) 4875 nr_kernel_pages -= memmap_pages; 4876 nr_all_pages += freesize; 4877 4878 zone->spanned_pages = size; 4879 zone->present_pages = realsize; 4880 /* 4881 * Set an approximate value for lowmem here, it will be adjusted 4882 * when the bootmem allocator frees pages into the buddy system. 4883 * And all highmem pages will be managed by the buddy system. 4884 */ 4885 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4886 #ifdef CONFIG_NUMA 4887 zone->node = nid; 4888 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4889 / 100; 4890 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4891 #endif 4892 zone->name = zone_names[j]; 4893 spin_lock_init(&zone->lock); 4894 spin_lock_init(&zone->lru_lock); 4895 zone_seqlock_init(zone); 4896 zone->zone_pgdat = pgdat; 4897 zone_pcp_init(zone); 4898 4899 /* For bootup, initialized properly in watermark setup */ 4900 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4901 4902 lruvec_init(&zone->lruvec); 4903 if (!size) 4904 continue; 4905 4906 set_pageblock_order(); 4907 setup_usemap(pgdat, zone, zone_start_pfn, size); 4908 ret = init_currently_empty_zone(zone, zone_start_pfn, 4909 size, MEMMAP_EARLY); 4910 BUG_ON(ret); 4911 memmap_init(size, nid, j, zone_start_pfn); 4912 zone_start_pfn += size; 4913 } 4914 } 4915 4916 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4917 { 4918 /* Skip empty nodes */ 4919 if (!pgdat->node_spanned_pages) 4920 return; 4921 4922 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4923 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4924 if (!pgdat->node_mem_map) { 4925 unsigned long size, start, end; 4926 struct page *map; 4927 4928 /* 4929 * The zone's endpoints aren't required to be MAX_ORDER 4930 * aligned but the node_mem_map endpoints must be in order 4931 * for the buddy allocator to function correctly. 4932 */ 4933 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4934 end = pgdat_end_pfn(pgdat); 4935 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4936 size = (end - start) * sizeof(struct page); 4937 map = alloc_remap(pgdat->node_id, size); 4938 if (!map) 4939 map = memblock_virt_alloc_node_nopanic(size, 4940 pgdat->node_id); 4941 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4942 } 4943 #ifndef CONFIG_NEED_MULTIPLE_NODES 4944 /* 4945 * With no DISCONTIG, the global mem_map is just set as node 0's 4946 */ 4947 if (pgdat == NODE_DATA(0)) { 4948 mem_map = NODE_DATA(0)->node_mem_map; 4949 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4950 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4951 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4952 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4953 } 4954 #endif 4955 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4956 } 4957 4958 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4959 unsigned long node_start_pfn, unsigned long *zholes_size) 4960 { 4961 pg_data_t *pgdat = NODE_DATA(nid); 4962 unsigned long start_pfn = 0; 4963 unsigned long end_pfn = 0; 4964 4965 /* pg_data_t should be reset to zero when it's allocated */ 4966 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4967 4968 pgdat->node_id = nid; 4969 pgdat->node_start_pfn = node_start_pfn; 4970 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4971 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4972 #endif 4973 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4974 zones_size, zholes_size); 4975 4976 alloc_node_mem_map(pgdat); 4977 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4978 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4979 nid, (unsigned long)pgdat, 4980 (unsigned long)pgdat->node_mem_map); 4981 #endif 4982 4983 free_area_init_core(pgdat, start_pfn, end_pfn, 4984 zones_size, zholes_size); 4985 } 4986 4987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4988 4989 #if MAX_NUMNODES > 1 4990 /* 4991 * Figure out the number of possible node ids. 4992 */ 4993 void __init setup_nr_node_ids(void) 4994 { 4995 unsigned int node; 4996 unsigned int highest = 0; 4997 4998 for_each_node_mask(node, node_possible_map) 4999 highest = node; 5000 nr_node_ids = highest + 1; 5001 } 5002 #endif 5003 5004 /** 5005 * node_map_pfn_alignment - determine the maximum internode alignment 5006 * 5007 * This function should be called after node map is populated and sorted. 5008 * It calculates the maximum power of two alignment which can distinguish 5009 * all the nodes. 5010 * 5011 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5012 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5013 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5014 * shifted, 1GiB is enough and this function will indicate so. 5015 * 5016 * This is used to test whether pfn -> nid mapping of the chosen memory 5017 * model has fine enough granularity to avoid incorrect mapping for the 5018 * populated node map. 5019 * 5020 * Returns the determined alignment in pfn's. 0 if there is no alignment 5021 * requirement (single node). 5022 */ 5023 unsigned long __init node_map_pfn_alignment(void) 5024 { 5025 unsigned long accl_mask = 0, last_end = 0; 5026 unsigned long start, end, mask; 5027 int last_nid = -1; 5028 int i, nid; 5029 5030 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5031 if (!start || last_nid < 0 || last_nid == nid) { 5032 last_nid = nid; 5033 last_end = end; 5034 continue; 5035 } 5036 5037 /* 5038 * Start with a mask granular enough to pin-point to the 5039 * start pfn and tick off bits one-by-one until it becomes 5040 * too coarse to separate the current node from the last. 5041 */ 5042 mask = ~((1 << __ffs(start)) - 1); 5043 while (mask && last_end <= (start & (mask << 1))) 5044 mask <<= 1; 5045 5046 /* accumulate all internode masks */ 5047 accl_mask |= mask; 5048 } 5049 5050 /* convert mask to number of pages */ 5051 return ~accl_mask + 1; 5052 } 5053 5054 /* Find the lowest pfn for a node */ 5055 static unsigned long __init find_min_pfn_for_node(int nid) 5056 { 5057 unsigned long min_pfn = ULONG_MAX; 5058 unsigned long start_pfn; 5059 int i; 5060 5061 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5062 min_pfn = min(min_pfn, start_pfn); 5063 5064 if (min_pfn == ULONG_MAX) { 5065 printk(KERN_WARNING 5066 "Could not find start_pfn for node %d\n", nid); 5067 return 0; 5068 } 5069 5070 return min_pfn; 5071 } 5072 5073 /** 5074 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5075 * 5076 * It returns the minimum PFN based on information provided via 5077 * memblock_set_node(). 5078 */ 5079 unsigned long __init find_min_pfn_with_active_regions(void) 5080 { 5081 return find_min_pfn_for_node(MAX_NUMNODES); 5082 } 5083 5084 /* 5085 * early_calculate_totalpages() 5086 * Sum pages in active regions for movable zone. 5087 * Populate N_MEMORY for calculating usable_nodes. 5088 */ 5089 static unsigned long __init early_calculate_totalpages(void) 5090 { 5091 unsigned long totalpages = 0; 5092 unsigned long start_pfn, end_pfn; 5093 int i, nid; 5094 5095 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5096 unsigned long pages = end_pfn - start_pfn; 5097 5098 totalpages += pages; 5099 if (pages) 5100 node_set_state(nid, N_MEMORY); 5101 } 5102 return totalpages; 5103 } 5104 5105 /* 5106 * Find the PFN the Movable zone begins in each node. Kernel memory 5107 * is spread evenly between nodes as long as the nodes have enough 5108 * memory. When they don't, some nodes will have more kernelcore than 5109 * others 5110 */ 5111 static void __init find_zone_movable_pfns_for_nodes(void) 5112 { 5113 int i, nid; 5114 unsigned long usable_startpfn; 5115 unsigned long kernelcore_node, kernelcore_remaining; 5116 /* save the state before borrow the nodemask */ 5117 nodemask_t saved_node_state = node_states[N_MEMORY]; 5118 unsigned long totalpages = early_calculate_totalpages(); 5119 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5120 struct memblock_region *r; 5121 5122 /* Need to find movable_zone earlier when movable_node is specified. */ 5123 find_usable_zone_for_movable(); 5124 5125 /* 5126 * If movable_node is specified, ignore kernelcore and movablecore 5127 * options. 5128 */ 5129 if (movable_node_is_enabled()) { 5130 for_each_memblock(memory, r) { 5131 if (!memblock_is_hotpluggable(r)) 5132 continue; 5133 5134 nid = r->nid; 5135 5136 usable_startpfn = PFN_DOWN(r->base); 5137 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5138 min(usable_startpfn, zone_movable_pfn[nid]) : 5139 usable_startpfn; 5140 } 5141 5142 goto out2; 5143 } 5144 5145 /* 5146 * If movablecore=nn[KMG] was specified, calculate what size of 5147 * kernelcore that corresponds so that memory usable for 5148 * any allocation type is evenly spread. If both kernelcore 5149 * and movablecore are specified, then the value of kernelcore 5150 * will be used for required_kernelcore if it's greater than 5151 * what movablecore would have allowed. 5152 */ 5153 if (required_movablecore) { 5154 unsigned long corepages; 5155 5156 /* 5157 * Round-up so that ZONE_MOVABLE is at least as large as what 5158 * was requested by the user 5159 */ 5160 required_movablecore = 5161 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5162 corepages = totalpages - required_movablecore; 5163 5164 required_kernelcore = max(required_kernelcore, corepages); 5165 } 5166 5167 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5168 if (!required_kernelcore) 5169 goto out; 5170 5171 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5172 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5173 5174 restart: 5175 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5176 kernelcore_node = required_kernelcore / usable_nodes; 5177 for_each_node_state(nid, N_MEMORY) { 5178 unsigned long start_pfn, end_pfn; 5179 5180 /* 5181 * Recalculate kernelcore_node if the division per node 5182 * now exceeds what is necessary to satisfy the requested 5183 * amount of memory for the kernel 5184 */ 5185 if (required_kernelcore < kernelcore_node) 5186 kernelcore_node = required_kernelcore / usable_nodes; 5187 5188 /* 5189 * As the map is walked, we track how much memory is usable 5190 * by the kernel using kernelcore_remaining. When it is 5191 * 0, the rest of the node is usable by ZONE_MOVABLE 5192 */ 5193 kernelcore_remaining = kernelcore_node; 5194 5195 /* Go through each range of PFNs within this node */ 5196 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5197 unsigned long size_pages; 5198 5199 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5200 if (start_pfn >= end_pfn) 5201 continue; 5202 5203 /* Account for what is only usable for kernelcore */ 5204 if (start_pfn < usable_startpfn) { 5205 unsigned long kernel_pages; 5206 kernel_pages = min(end_pfn, usable_startpfn) 5207 - start_pfn; 5208 5209 kernelcore_remaining -= min(kernel_pages, 5210 kernelcore_remaining); 5211 required_kernelcore -= min(kernel_pages, 5212 required_kernelcore); 5213 5214 /* Continue if range is now fully accounted */ 5215 if (end_pfn <= usable_startpfn) { 5216 5217 /* 5218 * Push zone_movable_pfn to the end so 5219 * that if we have to rebalance 5220 * kernelcore across nodes, we will 5221 * not double account here 5222 */ 5223 zone_movable_pfn[nid] = end_pfn; 5224 continue; 5225 } 5226 start_pfn = usable_startpfn; 5227 } 5228 5229 /* 5230 * The usable PFN range for ZONE_MOVABLE is from 5231 * start_pfn->end_pfn. Calculate size_pages as the 5232 * number of pages used as kernelcore 5233 */ 5234 size_pages = end_pfn - start_pfn; 5235 if (size_pages > kernelcore_remaining) 5236 size_pages = kernelcore_remaining; 5237 zone_movable_pfn[nid] = start_pfn + size_pages; 5238 5239 /* 5240 * Some kernelcore has been met, update counts and 5241 * break if the kernelcore for this node has been 5242 * satisfied 5243 */ 5244 required_kernelcore -= min(required_kernelcore, 5245 size_pages); 5246 kernelcore_remaining -= size_pages; 5247 if (!kernelcore_remaining) 5248 break; 5249 } 5250 } 5251 5252 /* 5253 * If there is still required_kernelcore, we do another pass with one 5254 * less node in the count. This will push zone_movable_pfn[nid] further 5255 * along on the nodes that still have memory until kernelcore is 5256 * satisfied 5257 */ 5258 usable_nodes--; 5259 if (usable_nodes && required_kernelcore > usable_nodes) 5260 goto restart; 5261 5262 out2: 5263 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5264 for (nid = 0; nid < MAX_NUMNODES; nid++) 5265 zone_movable_pfn[nid] = 5266 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5267 5268 out: 5269 /* restore the node_state */ 5270 node_states[N_MEMORY] = saved_node_state; 5271 } 5272 5273 /* Any regular or high memory on that node ? */ 5274 static void check_for_memory(pg_data_t *pgdat, int nid) 5275 { 5276 enum zone_type zone_type; 5277 5278 if (N_MEMORY == N_NORMAL_MEMORY) 5279 return; 5280 5281 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5282 struct zone *zone = &pgdat->node_zones[zone_type]; 5283 if (populated_zone(zone)) { 5284 node_set_state(nid, N_HIGH_MEMORY); 5285 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5286 zone_type <= ZONE_NORMAL) 5287 node_set_state(nid, N_NORMAL_MEMORY); 5288 break; 5289 } 5290 } 5291 } 5292 5293 /** 5294 * free_area_init_nodes - Initialise all pg_data_t and zone data 5295 * @max_zone_pfn: an array of max PFNs for each zone 5296 * 5297 * This will call free_area_init_node() for each active node in the system. 5298 * Using the page ranges provided by memblock_set_node(), the size of each 5299 * zone in each node and their holes is calculated. If the maximum PFN 5300 * between two adjacent zones match, it is assumed that the zone is empty. 5301 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5302 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5303 * starts where the previous one ended. For example, ZONE_DMA32 starts 5304 * at arch_max_dma_pfn. 5305 */ 5306 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5307 { 5308 unsigned long start_pfn, end_pfn; 5309 int i, nid; 5310 5311 /* Record where the zone boundaries are */ 5312 memset(arch_zone_lowest_possible_pfn, 0, 5313 sizeof(arch_zone_lowest_possible_pfn)); 5314 memset(arch_zone_highest_possible_pfn, 0, 5315 sizeof(arch_zone_highest_possible_pfn)); 5316 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5317 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5318 for (i = 1; i < MAX_NR_ZONES; i++) { 5319 if (i == ZONE_MOVABLE) 5320 continue; 5321 arch_zone_lowest_possible_pfn[i] = 5322 arch_zone_highest_possible_pfn[i-1]; 5323 arch_zone_highest_possible_pfn[i] = 5324 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5325 } 5326 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5327 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5328 5329 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5330 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5331 find_zone_movable_pfns_for_nodes(); 5332 5333 /* Print out the zone ranges */ 5334 printk("Zone ranges:\n"); 5335 for (i = 0; i < MAX_NR_ZONES; i++) { 5336 if (i == ZONE_MOVABLE) 5337 continue; 5338 printk(KERN_CONT " %-8s ", zone_names[i]); 5339 if (arch_zone_lowest_possible_pfn[i] == 5340 arch_zone_highest_possible_pfn[i]) 5341 printk(KERN_CONT "empty\n"); 5342 else 5343 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5344 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5345 (arch_zone_highest_possible_pfn[i] 5346 << PAGE_SHIFT) - 1); 5347 } 5348 5349 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5350 printk("Movable zone start for each node\n"); 5351 for (i = 0; i < MAX_NUMNODES; i++) { 5352 if (zone_movable_pfn[i]) 5353 printk(" Node %d: %#010lx\n", i, 5354 zone_movable_pfn[i] << PAGE_SHIFT); 5355 } 5356 5357 /* Print out the early node map */ 5358 printk("Early memory node ranges\n"); 5359 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5360 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5361 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5362 5363 /* Initialise every node */ 5364 mminit_verify_pageflags_layout(); 5365 setup_nr_node_ids(); 5366 for_each_online_node(nid) { 5367 pg_data_t *pgdat = NODE_DATA(nid); 5368 free_area_init_node(nid, NULL, 5369 find_min_pfn_for_node(nid), NULL); 5370 5371 /* Any memory on that node */ 5372 if (pgdat->node_present_pages) 5373 node_set_state(nid, N_MEMORY); 5374 check_for_memory(pgdat, nid); 5375 } 5376 } 5377 5378 static int __init cmdline_parse_core(char *p, unsigned long *core) 5379 { 5380 unsigned long long coremem; 5381 if (!p) 5382 return -EINVAL; 5383 5384 coremem = memparse(p, &p); 5385 *core = coremem >> PAGE_SHIFT; 5386 5387 /* Paranoid check that UL is enough for the coremem value */ 5388 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5389 5390 return 0; 5391 } 5392 5393 /* 5394 * kernelcore=size sets the amount of memory for use for allocations that 5395 * cannot be reclaimed or migrated. 5396 */ 5397 static int __init cmdline_parse_kernelcore(char *p) 5398 { 5399 return cmdline_parse_core(p, &required_kernelcore); 5400 } 5401 5402 /* 5403 * movablecore=size sets the amount of memory for use for allocations that 5404 * can be reclaimed or migrated. 5405 */ 5406 static int __init cmdline_parse_movablecore(char *p) 5407 { 5408 return cmdline_parse_core(p, &required_movablecore); 5409 } 5410 5411 early_param("kernelcore", cmdline_parse_kernelcore); 5412 early_param("movablecore", cmdline_parse_movablecore); 5413 5414 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5415 5416 void adjust_managed_page_count(struct page *page, long count) 5417 { 5418 spin_lock(&managed_page_count_lock); 5419 page_zone(page)->managed_pages += count; 5420 totalram_pages += count; 5421 #ifdef CONFIG_HIGHMEM 5422 if (PageHighMem(page)) 5423 totalhigh_pages += count; 5424 #endif 5425 spin_unlock(&managed_page_count_lock); 5426 } 5427 EXPORT_SYMBOL(adjust_managed_page_count); 5428 5429 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5430 { 5431 void *pos; 5432 unsigned long pages = 0; 5433 5434 start = (void *)PAGE_ALIGN((unsigned long)start); 5435 end = (void *)((unsigned long)end & PAGE_MASK); 5436 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5437 if ((unsigned int)poison <= 0xFF) 5438 memset(pos, poison, PAGE_SIZE); 5439 free_reserved_page(virt_to_page(pos)); 5440 } 5441 5442 if (pages && s) 5443 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5444 s, pages << (PAGE_SHIFT - 10), start, end); 5445 5446 return pages; 5447 } 5448 EXPORT_SYMBOL(free_reserved_area); 5449 5450 #ifdef CONFIG_HIGHMEM 5451 void free_highmem_page(struct page *page) 5452 { 5453 __free_reserved_page(page); 5454 totalram_pages++; 5455 page_zone(page)->managed_pages++; 5456 totalhigh_pages++; 5457 } 5458 #endif 5459 5460 5461 void __init mem_init_print_info(const char *str) 5462 { 5463 unsigned long physpages, codesize, datasize, rosize, bss_size; 5464 unsigned long init_code_size, init_data_size; 5465 5466 physpages = get_num_physpages(); 5467 codesize = _etext - _stext; 5468 datasize = _edata - _sdata; 5469 rosize = __end_rodata - __start_rodata; 5470 bss_size = __bss_stop - __bss_start; 5471 init_data_size = __init_end - __init_begin; 5472 init_code_size = _einittext - _sinittext; 5473 5474 /* 5475 * Detect special cases and adjust section sizes accordingly: 5476 * 1) .init.* may be embedded into .data sections 5477 * 2) .init.text.* may be out of [__init_begin, __init_end], 5478 * please refer to arch/tile/kernel/vmlinux.lds.S. 5479 * 3) .rodata.* may be embedded into .text or .data sections. 5480 */ 5481 #define adj_init_size(start, end, size, pos, adj) \ 5482 do { \ 5483 if (start <= pos && pos < end && size > adj) \ 5484 size -= adj; \ 5485 } while (0) 5486 5487 adj_init_size(__init_begin, __init_end, init_data_size, 5488 _sinittext, init_code_size); 5489 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5490 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5491 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5492 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5493 5494 #undef adj_init_size 5495 5496 printk("Memory: %luK/%luK available " 5497 "(%luK kernel code, %luK rwdata, %luK rodata, " 5498 "%luK init, %luK bss, %luK reserved" 5499 #ifdef CONFIG_HIGHMEM 5500 ", %luK highmem" 5501 #endif 5502 "%s%s)\n", 5503 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5504 codesize >> 10, datasize >> 10, rosize >> 10, 5505 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5506 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5507 #ifdef CONFIG_HIGHMEM 5508 totalhigh_pages << (PAGE_SHIFT-10), 5509 #endif 5510 str ? ", " : "", str ? str : ""); 5511 } 5512 5513 /** 5514 * set_dma_reserve - set the specified number of pages reserved in the first zone 5515 * @new_dma_reserve: The number of pages to mark reserved 5516 * 5517 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5518 * In the DMA zone, a significant percentage may be consumed by kernel image 5519 * and other unfreeable allocations which can skew the watermarks badly. This 5520 * function may optionally be used to account for unfreeable pages in the 5521 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5522 * smaller per-cpu batchsize. 5523 */ 5524 void __init set_dma_reserve(unsigned long new_dma_reserve) 5525 { 5526 dma_reserve = new_dma_reserve; 5527 } 5528 5529 void __init free_area_init(unsigned long *zones_size) 5530 { 5531 free_area_init_node(0, zones_size, 5532 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5533 } 5534 5535 static int page_alloc_cpu_notify(struct notifier_block *self, 5536 unsigned long action, void *hcpu) 5537 { 5538 int cpu = (unsigned long)hcpu; 5539 5540 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5541 lru_add_drain_cpu(cpu); 5542 drain_pages(cpu); 5543 5544 /* 5545 * Spill the event counters of the dead processor 5546 * into the current processors event counters. 5547 * This artificially elevates the count of the current 5548 * processor. 5549 */ 5550 vm_events_fold_cpu(cpu); 5551 5552 /* 5553 * Zero the differential counters of the dead processor 5554 * so that the vm statistics are consistent. 5555 * 5556 * This is only okay since the processor is dead and cannot 5557 * race with what we are doing. 5558 */ 5559 cpu_vm_stats_fold(cpu); 5560 } 5561 return NOTIFY_OK; 5562 } 5563 5564 void __init page_alloc_init(void) 5565 { 5566 hotcpu_notifier(page_alloc_cpu_notify, 0); 5567 } 5568 5569 /* 5570 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5571 * or min_free_kbytes changes. 5572 */ 5573 static void calculate_totalreserve_pages(void) 5574 { 5575 struct pglist_data *pgdat; 5576 unsigned long reserve_pages = 0; 5577 enum zone_type i, j; 5578 5579 for_each_online_pgdat(pgdat) { 5580 for (i = 0; i < MAX_NR_ZONES; i++) { 5581 struct zone *zone = pgdat->node_zones + i; 5582 unsigned long max = 0; 5583 5584 /* Find valid and maximum lowmem_reserve in the zone */ 5585 for (j = i; j < MAX_NR_ZONES; j++) { 5586 if (zone->lowmem_reserve[j] > max) 5587 max = zone->lowmem_reserve[j]; 5588 } 5589 5590 /* we treat the high watermark as reserved pages. */ 5591 max += high_wmark_pages(zone); 5592 5593 if (max > zone->managed_pages) 5594 max = zone->managed_pages; 5595 reserve_pages += max; 5596 /* 5597 * Lowmem reserves are not available to 5598 * GFP_HIGHUSER page cache allocations and 5599 * kswapd tries to balance zones to their high 5600 * watermark. As a result, neither should be 5601 * regarded as dirtyable memory, to prevent a 5602 * situation where reclaim has to clean pages 5603 * in order to balance the zones. 5604 */ 5605 zone->dirty_balance_reserve = max; 5606 } 5607 } 5608 dirty_balance_reserve = reserve_pages; 5609 totalreserve_pages = reserve_pages; 5610 } 5611 5612 /* 5613 * setup_per_zone_lowmem_reserve - called whenever 5614 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5615 * has a correct pages reserved value, so an adequate number of 5616 * pages are left in the zone after a successful __alloc_pages(). 5617 */ 5618 static void setup_per_zone_lowmem_reserve(void) 5619 { 5620 struct pglist_data *pgdat; 5621 enum zone_type j, idx; 5622 5623 for_each_online_pgdat(pgdat) { 5624 for (j = 0; j < MAX_NR_ZONES; j++) { 5625 struct zone *zone = pgdat->node_zones + j; 5626 unsigned long managed_pages = zone->managed_pages; 5627 5628 zone->lowmem_reserve[j] = 0; 5629 5630 idx = j; 5631 while (idx) { 5632 struct zone *lower_zone; 5633 5634 idx--; 5635 5636 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5637 sysctl_lowmem_reserve_ratio[idx] = 1; 5638 5639 lower_zone = pgdat->node_zones + idx; 5640 lower_zone->lowmem_reserve[j] = managed_pages / 5641 sysctl_lowmem_reserve_ratio[idx]; 5642 managed_pages += lower_zone->managed_pages; 5643 } 5644 } 5645 } 5646 5647 /* update totalreserve_pages */ 5648 calculate_totalreserve_pages(); 5649 } 5650 5651 static void __setup_per_zone_wmarks(void) 5652 { 5653 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5654 unsigned long lowmem_pages = 0; 5655 struct zone *zone; 5656 unsigned long flags; 5657 5658 /* Calculate total number of !ZONE_HIGHMEM pages */ 5659 for_each_zone(zone) { 5660 if (!is_highmem(zone)) 5661 lowmem_pages += zone->managed_pages; 5662 } 5663 5664 for_each_zone(zone) { 5665 u64 tmp; 5666 5667 spin_lock_irqsave(&zone->lock, flags); 5668 tmp = (u64)pages_min * zone->managed_pages; 5669 do_div(tmp, lowmem_pages); 5670 if (is_highmem(zone)) { 5671 /* 5672 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5673 * need highmem pages, so cap pages_min to a small 5674 * value here. 5675 * 5676 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5677 * deltas controls asynch page reclaim, and so should 5678 * not be capped for highmem. 5679 */ 5680 unsigned long min_pages; 5681 5682 min_pages = zone->managed_pages / 1024; 5683 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5684 zone->watermark[WMARK_MIN] = min_pages; 5685 } else { 5686 /* 5687 * If it's a lowmem zone, reserve a number of pages 5688 * proportionate to the zone's size. 5689 */ 5690 zone->watermark[WMARK_MIN] = tmp; 5691 } 5692 5693 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5694 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5695 5696 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5697 high_wmark_pages(zone) - 5698 low_wmark_pages(zone) - 5699 zone_page_state(zone, NR_ALLOC_BATCH)); 5700 5701 setup_zone_migrate_reserve(zone); 5702 spin_unlock_irqrestore(&zone->lock, flags); 5703 } 5704 5705 /* update totalreserve_pages */ 5706 calculate_totalreserve_pages(); 5707 } 5708 5709 /** 5710 * setup_per_zone_wmarks - called when min_free_kbytes changes 5711 * or when memory is hot-{added|removed} 5712 * 5713 * Ensures that the watermark[min,low,high] values for each zone are set 5714 * correctly with respect to min_free_kbytes. 5715 */ 5716 void setup_per_zone_wmarks(void) 5717 { 5718 mutex_lock(&zonelists_mutex); 5719 __setup_per_zone_wmarks(); 5720 mutex_unlock(&zonelists_mutex); 5721 } 5722 5723 /* 5724 * The inactive anon list should be small enough that the VM never has to 5725 * do too much work, but large enough that each inactive page has a chance 5726 * to be referenced again before it is swapped out. 5727 * 5728 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5729 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5730 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5731 * the anonymous pages are kept on the inactive list. 5732 * 5733 * total target max 5734 * memory ratio inactive anon 5735 * ------------------------------------- 5736 * 10MB 1 5MB 5737 * 100MB 1 50MB 5738 * 1GB 3 250MB 5739 * 10GB 10 0.9GB 5740 * 100GB 31 3GB 5741 * 1TB 101 10GB 5742 * 10TB 320 32GB 5743 */ 5744 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5745 { 5746 unsigned int gb, ratio; 5747 5748 /* Zone size in gigabytes */ 5749 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5750 if (gb) 5751 ratio = int_sqrt(10 * gb); 5752 else 5753 ratio = 1; 5754 5755 zone->inactive_ratio = ratio; 5756 } 5757 5758 static void __meminit setup_per_zone_inactive_ratio(void) 5759 { 5760 struct zone *zone; 5761 5762 for_each_zone(zone) 5763 calculate_zone_inactive_ratio(zone); 5764 } 5765 5766 /* 5767 * Initialise min_free_kbytes. 5768 * 5769 * For small machines we want it small (128k min). For large machines 5770 * we want it large (64MB max). But it is not linear, because network 5771 * bandwidth does not increase linearly with machine size. We use 5772 * 5773 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5774 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5775 * 5776 * which yields 5777 * 5778 * 16MB: 512k 5779 * 32MB: 724k 5780 * 64MB: 1024k 5781 * 128MB: 1448k 5782 * 256MB: 2048k 5783 * 512MB: 2896k 5784 * 1024MB: 4096k 5785 * 2048MB: 5792k 5786 * 4096MB: 8192k 5787 * 8192MB: 11584k 5788 * 16384MB: 16384k 5789 */ 5790 int __meminit init_per_zone_wmark_min(void) 5791 { 5792 unsigned long lowmem_kbytes; 5793 int new_min_free_kbytes; 5794 5795 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5796 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5797 5798 if (new_min_free_kbytes > user_min_free_kbytes) { 5799 min_free_kbytes = new_min_free_kbytes; 5800 if (min_free_kbytes < 128) 5801 min_free_kbytes = 128; 5802 if (min_free_kbytes > 65536) 5803 min_free_kbytes = 65536; 5804 } else { 5805 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5806 new_min_free_kbytes, user_min_free_kbytes); 5807 } 5808 setup_per_zone_wmarks(); 5809 refresh_zone_stat_thresholds(); 5810 setup_per_zone_lowmem_reserve(); 5811 setup_per_zone_inactive_ratio(); 5812 return 0; 5813 } 5814 module_init(init_per_zone_wmark_min) 5815 5816 /* 5817 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5818 * that we can call two helper functions whenever min_free_kbytes 5819 * changes. 5820 */ 5821 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5822 void __user *buffer, size_t *length, loff_t *ppos) 5823 { 5824 int rc; 5825 5826 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5827 if (rc) 5828 return rc; 5829 5830 if (write) { 5831 user_min_free_kbytes = min_free_kbytes; 5832 setup_per_zone_wmarks(); 5833 } 5834 return 0; 5835 } 5836 5837 #ifdef CONFIG_NUMA 5838 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5839 void __user *buffer, size_t *length, loff_t *ppos) 5840 { 5841 struct zone *zone; 5842 int rc; 5843 5844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5845 if (rc) 5846 return rc; 5847 5848 for_each_zone(zone) 5849 zone->min_unmapped_pages = (zone->managed_pages * 5850 sysctl_min_unmapped_ratio) / 100; 5851 return 0; 5852 } 5853 5854 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5855 void __user *buffer, size_t *length, loff_t *ppos) 5856 { 5857 struct zone *zone; 5858 int rc; 5859 5860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5861 if (rc) 5862 return rc; 5863 5864 for_each_zone(zone) 5865 zone->min_slab_pages = (zone->managed_pages * 5866 sysctl_min_slab_ratio) / 100; 5867 return 0; 5868 } 5869 #endif 5870 5871 /* 5872 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5873 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5874 * whenever sysctl_lowmem_reserve_ratio changes. 5875 * 5876 * The reserve ratio obviously has absolutely no relation with the 5877 * minimum watermarks. The lowmem reserve ratio can only make sense 5878 * if in function of the boot time zone sizes. 5879 */ 5880 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5881 void __user *buffer, size_t *length, loff_t *ppos) 5882 { 5883 proc_dointvec_minmax(table, write, buffer, length, ppos); 5884 setup_per_zone_lowmem_reserve(); 5885 return 0; 5886 } 5887 5888 /* 5889 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5890 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5891 * pagelist can have before it gets flushed back to buddy allocator. 5892 */ 5893 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5894 void __user *buffer, size_t *length, loff_t *ppos) 5895 { 5896 struct zone *zone; 5897 int old_percpu_pagelist_fraction; 5898 int ret; 5899 5900 mutex_lock(&pcp_batch_high_lock); 5901 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 5902 5903 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5904 if (!write || ret < 0) 5905 goto out; 5906 5907 /* Sanity checking to avoid pcp imbalance */ 5908 if (percpu_pagelist_fraction && 5909 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 5910 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 5911 ret = -EINVAL; 5912 goto out; 5913 } 5914 5915 /* No change? */ 5916 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 5917 goto out; 5918 5919 for_each_populated_zone(zone) { 5920 unsigned int cpu; 5921 5922 for_each_possible_cpu(cpu) 5923 pageset_set_high_and_batch(zone, 5924 per_cpu_ptr(zone->pageset, cpu)); 5925 } 5926 out: 5927 mutex_unlock(&pcp_batch_high_lock); 5928 return ret; 5929 } 5930 5931 int hashdist = HASHDIST_DEFAULT; 5932 5933 #ifdef CONFIG_NUMA 5934 static int __init set_hashdist(char *str) 5935 { 5936 if (!str) 5937 return 0; 5938 hashdist = simple_strtoul(str, &str, 0); 5939 return 1; 5940 } 5941 __setup("hashdist=", set_hashdist); 5942 #endif 5943 5944 /* 5945 * allocate a large system hash table from bootmem 5946 * - it is assumed that the hash table must contain an exact power-of-2 5947 * quantity of entries 5948 * - limit is the number of hash buckets, not the total allocation size 5949 */ 5950 void *__init alloc_large_system_hash(const char *tablename, 5951 unsigned long bucketsize, 5952 unsigned long numentries, 5953 int scale, 5954 int flags, 5955 unsigned int *_hash_shift, 5956 unsigned int *_hash_mask, 5957 unsigned long low_limit, 5958 unsigned long high_limit) 5959 { 5960 unsigned long long max = high_limit; 5961 unsigned long log2qty, size; 5962 void *table = NULL; 5963 5964 /* allow the kernel cmdline to have a say */ 5965 if (!numentries) { 5966 /* round applicable memory size up to nearest megabyte */ 5967 numentries = nr_kernel_pages; 5968 5969 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5970 if (PAGE_SHIFT < 20) 5971 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5972 5973 /* limit to 1 bucket per 2^scale bytes of low memory */ 5974 if (scale > PAGE_SHIFT) 5975 numentries >>= (scale - PAGE_SHIFT); 5976 else 5977 numentries <<= (PAGE_SHIFT - scale); 5978 5979 /* Make sure we've got at least a 0-order allocation.. */ 5980 if (unlikely(flags & HASH_SMALL)) { 5981 /* Makes no sense without HASH_EARLY */ 5982 WARN_ON(!(flags & HASH_EARLY)); 5983 if (!(numentries >> *_hash_shift)) { 5984 numentries = 1UL << *_hash_shift; 5985 BUG_ON(!numentries); 5986 } 5987 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5988 numentries = PAGE_SIZE / bucketsize; 5989 } 5990 numentries = roundup_pow_of_two(numentries); 5991 5992 /* limit allocation size to 1/16 total memory by default */ 5993 if (max == 0) { 5994 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5995 do_div(max, bucketsize); 5996 } 5997 max = min(max, 0x80000000ULL); 5998 5999 if (numentries < low_limit) 6000 numentries = low_limit; 6001 if (numentries > max) 6002 numentries = max; 6003 6004 log2qty = ilog2(numentries); 6005 6006 do { 6007 size = bucketsize << log2qty; 6008 if (flags & HASH_EARLY) 6009 table = memblock_virt_alloc_nopanic(size, 0); 6010 else if (hashdist) 6011 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6012 else { 6013 /* 6014 * If bucketsize is not a power-of-two, we may free 6015 * some pages at the end of hash table which 6016 * alloc_pages_exact() automatically does 6017 */ 6018 if (get_order(size) < MAX_ORDER) { 6019 table = alloc_pages_exact(size, GFP_ATOMIC); 6020 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6021 } 6022 } 6023 } while (!table && size > PAGE_SIZE && --log2qty); 6024 6025 if (!table) 6026 panic("Failed to allocate %s hash table\n", tablename); 6027 6028 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6029 tablename, 6030 (1UL << log2qty), 6031 ilog2(size) - PAGE_SHIFT, 6032 size); 6033 6034 if (_hash_shift) 6035 *_hash_shift = log2qty; 6036 if (_hash_mask) 6037 *_hash_mask = (1 << log2qty) - 1; 6038 6039 return table; 6040 } 6041 6042 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6043 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6044 unsigned long pfn) 6045 { 6046 #ifdef CONFIG_SPARSEMEM 6047 return __pfn_to_section(pfn)->pageblock_flags; 6048 #else 6049 return zone->pageblock_flags; 6050 #endif /* CONFIG_SPARSEMEM */ 6051 } 6052 6053 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6054 { 6055 #ifdef CONFIG_SPARSEMEM 6056 pfn &= (PAGES_PER_SECTION-1); 6057 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6058 #else 6059 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6060 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6061 #endif /* CONFIG_SPARSEMEM */ 6062 } 6063 6064 /** 6065 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 6066 * @page: The page within the block of interest 6067 * @start_bitidx: The first bit of interest to retrieve 6068 * @end_bitidx: The last bit of interest 6069 * returns pageblock_bits flags 6070 */ 6071 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6072 unsigned long end_bitidx, 6073 unsigned long mask) 6074 { 6075 struct zone *zone; 6076 unsigned long *bitmap; 6077 unsigned long bitidx, word_bitidx; 6078 unsigned long word; 6079 6080 zone = page_zone(page); 6081 bitmap = get_pageblock_bitmap(zone, pfn); 6082 bitidx = pfn_to_bitidx(zone, pfn); 6083 word_bitidx = bitidx / BITS_PER_LONG; 6084 bitidx &= (BITS_PER_LONG-1); 6085 6086 word = bitmap[word_bitidx]; 6087 bitidx += end_bitidx; 6088 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6089 } 6090 6091 /** 6092 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6093 * @page: The page within the block of interest 6094 * @start_bitidx: The first bit of interest 6095 * @end_bitidx: The last bit of interest 6096 * @flags: The flags to set 6097 */ 6098 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6099 unsigned long pfn, 6100 unsigned long end_bitidx, 6101 unsigned long mask) 6102 { 6103 struct zone *zone; 6104 unsigned long *bitmap; 6105 unsigned long bitidx, word_bitidx; 6106 unsigned long old_word, word; 6107 6108 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6109 6110 zone = page_zone(page); 6111 bitmap = get_pageblock_bitmap(zone, pfn); 6112 bitidx = pfn_to_bitidx(zone, pfn); 6113 word_bitidx = bitidx / BITS_PER_LONG; 6114 bitidx &= (BITS_PER_LONG-1); 6115 6116 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6117 6118 bitidx += end_bitidx; 6119 mask <<= (BITS_PER_LONG - bitidx - 1); 6120 flags <<= (BITS_PER_LONG - bitidx - 1); 6121 6122 word = ACCESS_ONCE(bitmap[word_bitidx]); 6123 for (;;) { 6124 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6125 if (word == old_word) 6126 break; 6127 word = old_word; 6128 } 6129 } 6130 6131 /* 6132 * This function checks whether pageblock includes unmovable pages or not. 6133 * If @count is not zero, it is okay to include less @count unmovable pages 6134 * 6135 * PageLRU check without isolation or lru_lock could race so that 6136 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6137 * expect this function should be exact. 6138 */ 6139 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6140 bool skip_hwpoisoned_pages) 6141 { 6142 unsigned long pfn, iter, found; 6143 int mt; 6144 6145 /* 6146 * For avoiding noise data, lru_add_drain_all() should be called 6147 * If ZONE_MOVABLE, the zone never contains unmovable pages 6148 */ 6149 if (zone_idx(zone) == ZONE_MOVABLE) 6150 return false; 6151 mt = get_pageblock_migratetype(page); 6152 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6153 return false; 6154 6155 pfn = page_to_pfn(page); 6156 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6157 unsigned long check = pfn + iter; 6158 6159 if (!pfn_valid_within(check)) 6160 continue; 6161 6162 page = pfn_to_page(check); 6163 6164 /* 6165 * Hugepages are not in LRU lists, but they're movable. 6166 * We need not scan over tail pages bacause we don't 6167 * handle each tail page individually in migration. 6168 */ 6169 if (PageHuge(page)) { 6170 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6171 continue; 6172 } 6173 6174 /* 6175 * We can't use page_count without pin a page 6176 * because another CPU can free compound page. 6177 * This check already skips compound tails of THP 6178 * because their page->_count is zero at all time. 6179 */ 6180 if (!atomic_read(&page->_count)) { 6181 if (PageBuddy(page)) 6182 iter += (1 << page_order(page)) - 1; 6183 continue; 6184 } 6185 6186 /* 6187 * The HWPoisoned page may be not in buddy system, and 6188 * page_count() is not 0. 6189 */ 6190 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6191 continue; 6192 6193 if (!PageLRU(page)) 6194 found++; 6195 /* 6196 * If there are RECLAIMABLE pages, we need to check it. 6197 * But now, memory offline itself doesn't call shrink_slab() 6198 * and it still to be fixed. 6199 */ 6200 /* 6201 * If the page is not RAM, page_count()should be 0. 6202 * we don't need more check. This is an _used_ not-movable page. 6203 * 6204 * The problematic thing here is PG_reserved pages. PG_reserved 6205 * is set to both of a memory hole page and a _used_ kernel 6206 * page at boot. 6207 */ 6208 if (found > count) 6209 return true; 6210 } 6211 return false; 6212 } 6213 6214 bool is_pageblock_removable_nolock(struct page *page) 6215 { 6216 struct zone *zone; 6217 unsigned long pfn; 6218 6219 /* 6220 * We have to be careful here because we are iterating over memory 6221 * sections which are not zone aware so we might end up outside of 6222 * the zone but still within the section. 6223 * We have to take care about the node as well. If the node is offline 6224 * its NODE_DATA will be NULL - see page_zone. 6225 */ 6226 if (!node_online(page_to_nid(page))) 6227 return false; 6228 6229 zone = page_zone(page); 6230 pfn = page_to_pfn(page); 6231 if (!zone_spans_pfn(zone, pfn)) 6232 return false; 6233 6234 return !has_unmovable_pages(zone, page, 0, true); 6235 } 6236 6237 #ifdef CONFIG_CMA 6238 6239 static unsigned long pfn_max_align_down(unsigned long pfn) 6240 { 6241 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6242 pageblock_nr_pages) - 1); 6243 } 6244 6245 static unsigned long pfn_max_align_up(unsigned long pfn) 6246 { 6247 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6248 pageblock_nr_pages)); 6249 } 6250 6251 /* [start, end) must belong to a single zone. */ 6252 static int __alloc_contig_migrate_range(struct compact_control *cc, 6253 unsigned long start, unsigned long end) 6254 { 6255 /* This function is based on compact_zone() from compaction.c. */ 6256 unsigned long nr_reclaimed; 6257 unsigned long pfn = start; 6258 unsigned int tries = 0; 6259 int ret = 0; 6260 6261 migrate_prep(); 6262 6263 while (pfn < end || !list_empty(&cc->migratepages)) { 6264 if (fatal_signal_pending(current)) { 6265 ret = -EINTR; 6266 break; 6267 } 6268 6269 if (list_empty(&cc->migratepages)) { 6270 cc->nr_migratepages = 0; 6271 pfn = isolate_migratepages_range(cc->zone, cc, 6272 pfn, end, true); 6273 if (!pfn) { 6274 ret = -EINTR; 6275 break; 6276 } 6277 tries = 0; 6278 } else if (++tries == 5) { 6279 ret = ret < 0 ? ret : -EBUSY; 6280 break; 6281 } 6282 6283 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6284 &cc->migratepages); 6285 cc->nr_migratepages -= nr_reclaimed; 6286 6287 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6288 NULL, 0, cc->mode, MR_CMA); 6289 } 6290 if (ret < 0) { 6291 putback_movable_pages(&cc->migratepages); 6292 return ret; 6293 } 6294 return 0; 6295 } 6296 6297 /** 6298 * alloc_contig_range() -- tries to allocate given range of pages 6299 * @start: start PFN to allocate 6300 * @end: one-past-the-last PFN to allocate 6301 * @migratetype: migratetype of the underlaying pageblocks (either 6302 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6303 * in range must have the same migratetype and it must 6304 * be either of the two. 6305 * 6306 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6307 * aligned, however it's the caller's responsibility to guarantee that 6308 * we are the only thread that changes migrate type of pageblocks the 6309 * pages fall in. 6310 * 6311 * The PFN range must belong to a single zone. 6312 * 6313 * Returns zero on success or negative error code. On success all 6314 * pages which PFN is in [start, end) are allocated for the caller and 6315 * need to be freed with free_contig_range(). 6316 */ 6317 int alloc_contig_range(unsigned long start, unsigned long end, 6318 unsigned migratetype) 6319 { 6320 unsigned long outer_start, outer_end; 6321 int ret = 0, order; 6322 6323 struct compact_control cc = { 6324 .nr_migratepages = 0, 6325 .order = -1, 6326 .zone = page_zone(pfn_to_page(start)), 6327 .mode = MIGRATE_SYNC, 6328 .ignore_skip_hint = true, 6329 }; 6330 INIT_LIST_HEAD(&cc.migratepages); 6331 6332 /* 6333 * What we do here is we mark all pageblocks in range as 6334 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6335 * have different sizes, and due to the way page allocator 6336 * work, we align the range to biggest of the two pages so 6337 * that page allocator won't try to merge buddies from 6338 * different pageblocks and change MIGRATE_ISOLATE to some 6339 * other migration type. 6340 * 6341 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6342 * migrate the pages from an unaligned range (ie. pages that 6343 * we are interested in). This will put all the pages in 6344 * range back to page allocator as MIGRATE_ISOLATE. 6345 * 6346 * When this is done, we take the pages in range from page 6347 * allocator removing them from the buddy system. This way 6348 * page allocator will never consider using them. 6349 * 6350 * This lets us mark the pageblocks back as 6351 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6352 * aligned range but not in the unaligned, original range are 6353 * put back to page allocator so that buddy can use them. 6354 */ 6355 6356 ret = start_isolate_page_range(pfn_max_align_down(start), 6357 pfn_max_align_up(end), migratetype, 6358 false); 6359 if (ret) 6360 return ret; 6361 6362 ret = __alloc_contig_migrate_range(&cc, start, end); 6363 if (ret) 6364 goto done; 6365 6366 /* 6367 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6368 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6369 * more, all pages in [start, end) are free in page allocator. 6370 * What we are going to do is to allocate all pages from 6371 * [start, end) (that is remove them from page allocator). 6372 * 6373 * The only problem is that pages at the beginning and at the 6374 * end of interesting range may be not aligned with pages that 6375 * page allocator holds, ie. they can be part of higher order 6376 * pages. Because of this, we reserve the bigger range and 6377 * once this is done free the pages we are not interested in. 6378 * 6379 * We don't have to hold zone->lock here because the pages are 6380 * isolated thus they won't get removed from buddy. 6381 */ 6382 6383 lru_add_drain_all(); 6384 drain_all_pages(); 6385 6386 order = 0; 6387 outer_start = start; 6388 while (!PageBuddy(pfn_to_page(outer_start))) { 6389 if (++order >= MAX_ORDER) { 6390 ret = -EBUSY; 6391 goto done; 6392 } 6393 outer_start &= ~0UL << order; 6394 } 6395 6396 /* Make sure the range is really isolated. */ 6397 if (test_pages_isolated(outer_start, end, false)) { 6398 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6399 outer_start, end); 6400 ret = -EBUSY; 6401 goto done; 6402 } 6403 6404 6405 /* Grab isolated pages from freelists. */ 6406 outer_end = isolate_freepages_range(&cc, outer_start, end); 6407 if (!outer_end) { 6408 ret = -EBUSY; 6409 goto done; 6410 } 6411 6412 /* Free head and tail (if any) */ 6413 if (start != outer_start) 6414 free_contig_range(outer_start, start - outer_start); 6415 if (end != outer_end) 6416 free_contig_range(end, outer_end - end); 6417 6418 done: 6419 undo_isolate_page_range(pfn_max_align_down(start), 6420 pfn_max_align_up(end), migratetype); 6421 return ret; 6422 } 6423 6424 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6425 { 6426 unsigned int count = 0; 6427 6428 for (; nr_pages--; pfn++) { 6429 struct page *page = pfn_to_page(pfn); 6430 6431 count += page_count(page) != 1; 6432 __free_page(page); 6433 } 6434 WARN(count != 0, "%d pages are still in use!\n", count); 6435 } 6436 #endif 6437 6438 #ifdef CONFIG_MEMORY_HOTPLUG 6439 /* 6440 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6441 * page high values need to be recalulated. 6442 */ 6443 void __meminit zone_pcp_update(struct zone *zone) 6444 { 6445 unsigned cpu; 6446 mutex_lock(&pcp_batch_high_lock); 6447 for_each_possible_cpu(cpu) 6448 pageset_set_high_and_batch(zone, 6449 per_cpu_ptr(zone->pageset, cpu)); 6450 mutex_unlock(&pcp_batch_high_lock); 6451 } 6452 #endif 6453 6454 void zone_pcp_reset(struct zone *zone) 6455 { 6456 unsigned long flags; 6457 int cpu; 6458 struct per_cpu_pageset *pset; 6459 6460 /* avoid races with drain_pages() */ 6461 local_irq_save(flags); 6462 if (zone->pageset != &boot_pageset) { 6463 for_each_online_cpu(cpu) { 6464 pset = per_cpu_ptr(zone->pageset, cpu); 6465 drain_zonestat(zone, pset); 6466 } 6467 free_percpu(zone->pageset); 6468 zone->pageset = &boot_pageset; 6469 } 6470 local_irq_restore(flags); 6471 } 6472 6473 #ifdef CONFIG_MEMORY_HOTREMOVE 6474 /* 6475 * All pages in the range must be isolated before calling this. 6476 */ 6477 void 6478 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6479 { 6480 struct page *page; 6481 struct zone *zone; 6482 unsigned int order, i; 6483 unsigned long pfn; 6484 unsigned long flags; 6485 /* find the first valid pfn */ 6486 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6487 if (pfn_valid(pfn)) 6488 break; 6489 if (pfn == end_pfn) 6490 return; 6491 zone = page_zone(pfn_to_page(pfn)); 6492 spin_lock_irqsave(&zone->lock, flags); 6493 pfn = start_pfn; 6494 while (pfn < end_pfn) { 6495 if (!pfn_valid(pfn)) { 6496 pfn++; 6497 continue; 6498 } 6499 page = pfn_to_page(pfn); 6500 /* 6501 * The HWPoisoned page may be not in buddy system, and 6502 * page_count() is not 0. 6503 */ 6504 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6505 pfn++; 6506 SetPageReserved(page); 6507 continue; 6508 } 6509 6510 BUG_ON(page_count(page)); 6511 BUG_ON(!PageBuddy(page)); 6512 order = page_order(page); 6513 #ifdef CONFIG_DEBUG_VM 6514 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6515 pfn, 1 << order, end_pfn); 6516 #endif 6517 list_del(&page->lru); 6518 rmv_page_order(page); 6519 zone->free_area[order].nr_free--; 6520 for (i = 0; i < (1 << order); i++) 6521 SetPageReserved((page+i)); 6522 pfn += (1 << order); 6523 } 6524 spin_unlock_irqrestore(&zone->lock, flags); 6525 } 6526 #endif 6527 6528 #ifdef CONFIG_MEMORY_FAILURE 6529 bool is_free_buddy_page(struct page *page) 6530 { 6531 struct zone *zone = page_zone(page); 6532 unsigned long pfn = page_to_pfn(page); 6533 unsigned long flags; 6534 unsigned int order; 6535 6536 spin_lock_irqsave(&zone->lock, flags); 6537 for (order = 0; order < MAX_ORDER; order++) { 6538 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6539 6540 if (PageBuddy(page_head) && page_order(page_head) >= order) 6541 break; 6542 } 6543 spin_unlock_irqrestore(&zone->lock, flags); 6544 6545 return order < MAX_ORDER; 6546 } 6547 #endif 6548 6549 static const struct trace_print_flags pageflag_names[] = { 6550 {1UL << PG_locked, "locked" }, 6551 {1UL << PG_error, "error" }, 6552 {1UL << PG_referenced, "referenced" }, 6553 {1UL << PG_uptodate, "uptodate" }, 6554 {1UL << PG_dirty, "dirty" }, 6555 {1UL << PG_lru, "lru" }, 6556 {1UL << PG_active, "active" }, 6557 {1UL << PG_slab, "slab" }, 6558 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6559 {1UL << PG_arch_1, "arch_1" }, 6560 {1UL << PG_reserved, "reserved" }, 6561 {1UL << PG_private, "private" }, 6562 {1UL << PG_private_2, "private_2" }, 6563 {1UL << PG_writeback, "writeback" }, 6564 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6565 {1UL << PG_head, "head" }, 6566 {1UL << PG_tail, "tail" }, 6567 #else 6568 {1UL << PG_compound, "compound" }, 6569 #endif 6570 {1UL << PG_swapcache, "swapcache" }, 6571 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6572 {1UL << PG_reclaim, "reclaim" }, 6573 {1UL << PG_swapbacked, "swapbacked" }, 6574 {1UL << PG_unevictable, "unevictable" }, 6575 #ifdef CONFIG_MMU 6576 {1UL << PG_mlocked, "mlocked" }, 6577 #endif 6578 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6579 {1UL << PG_uncached, "uncached" }, 6580 #endif 6581 #ifdef CONFIG_MEMORY_FAILURE 6582 {1UL << PG_hwpoison, "hwpoison" }, 6583 #endif 6584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6585 {1UL << PG_compound_lock, "compound_lock" }, 6586 #endif 6587 }; 6588 6589 static void dump_page_flags(unsigned long flags) 6590 { 6591 const char *delim = ""; 6592 unsigned long mask; 6593 int i; 6594 6595 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6596 6597 printk(KERN_ALERT "page flags: %#lx(", flags); 6598 6599 /* remove zone id */ 6600 flags &= (1UL << NR_PAGEFLAGS) - 1; 6601 6602 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6603 6604 mask = pageflag_names[i].mask; 6605 if ((flags & mask) != mask) 6606 continue; 6607 6608 flags &= ~mask; 6609 printk("%s%s", delim, pageflag_names[i].name); 6610 delim = "|"; 6611 } 6612 6613 /* check for left over flags */ 6614 if (flags) 6615 printk("%s%#lx", delim, flags); 6616 6617 printk(")\n"); 6618 } 6619 6620 void dump_page_badflags(struct page *page, const char *reason, 6621 unsigned long badflags) 6622 { 6623 printk(KERN_ALERT 6624 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6625 page, atomic_read(&page->_count), page_mapcount(page), 6626 page->mapping, page->index); 6627 dump_page_flags(page->flags); 6628 if (reason) 6629 pr_alert("page dumped because: %s\n", reason); 6630 if (page->flags & badflags) { 6631 pr_alert("bad because of flags:\n"); 6632 dump_page_flags(page->flags & badflags); 6633 } 6634 mem_cgroup_print_bad_page(page); 6635 } 6636 6637 void dump_page(struct page *page, const char *reason) 6638 { 6639 dump_page_badflags(page, reason, 0); 6640 } 6641 EXPORT_SYMBOL(dump_page); 6642