xref: /openbmc/linux/mm/page_alloc.c (revision d2168146)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
73 
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78 
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84  * defined in <linux/topology.h>.
85  */
86 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 #endif
89 
90 /*
91  * Array of node states.
92  */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 	[N_POSSIBLE] = NODE_MASK_ALL,
95 	[N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 	[N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 	[N_CPU] = { { [0] = 1UL } },
105 #endif	/* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108 
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111 
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 /*
115  * When calculating the number of globally allowed dirty pages, there
116  * is a certain number of per-zone reserves that should not be
117  * considered dirtyable memory.  This is the sum of those reserves
118  * over all existing zones that contribute dirtyable memory.
119  */
120 unsigned long dirty_balance_reserve __read_mostly;
121 
122 int percpu_pagelist_fraction;
123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
124 
125 #ifdef CONFIG_PM_SLEEP
126 /*
127  * The following functions are used by the suspend/hibernate code to temporarily
128  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129  * while devices are suspended.  To avoid races with the suspend/hibernate code,
130  * they should always be called with pm_mutex held (gfp_allowed_mask also should
131  * only be modified with pm_mutex held, unless the suspend/hibernate code is
132  * guaranteed not to run in parallel with that modification).
133  */
134 
135 static gfp_t saved_gfp_mask;
136 
137 void pm_restore_gfp_mask(void)
138 {
139 	WARN_ON(!mutex_is_locked(&pm_mutex));
140 	if (saved_gfp_mask) {
141 		gfp_allowed_mask = saved_gfp_mask;
142 		saved_gfp_mask = 0;
143 	}
144 }
145 
146 void pm_restrict_gfp_mask(void)
147 {
148 	WARN_ON(!mutex_is_locked(&pm_mutex));
149 	WARN_ON(saved_gfp_mask);
150 	saved_gfp_mask = gfp_allowed_mask;
151 	gfp_allowed_mask &= ~GFP_IOFS;
152 }
153 
154 bool pm_suspended_storage(void)
155 {
156 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 		return false;
158 	return true;
159 }
160 #endif /* CONFIG_PM_SLEEP */
161 
162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163 int pageblock_order __read_mostly;
164 #endif
165 
166 static void __free_pages_ok(struct page *page, unsigned int order);
167 
168 /*
169  * results with 256, 32 in the lowmem_reserve sysctl:
170  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171  *	1G machine -> (16M dma, 784M normal, 224M high)
172  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175  *
176  * TBD: should special case ZONE_DMA32 machines here - in those we normally
177  * don't need any ZONE_NORMAL reservation
178  */
179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
180 #ifdef CONFIG_ZONE_DMA
181 	 256,
182 #endif
183 #ifdef CONFIG_ZONE_DMA32
184 	 256,
185 #endif
186 #ifdef CONFIG_HIGHMEM
187 	 32,
188 #endif
189 	 32,
190 };
191 
192 EXPORT_SYMBOL(totalram_pages);
193 
194 static char * const zone_names[MAX_NR_ZONES] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 "DMA",
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 "DMA32",
200 #endif
201 	 "Normal",
202 #ifdef CONFIG_HIGHMEM
203 	 "HighMem",
204 #endif
205 	 "Movable",
206 };
207 
208 int min_free_kbytes = 1024;
209 int user_min_free_kbytes = -1;
210 
211 static unsigned long __meminitdata nr_kernel_pages;
212 static unsigned long __meminitdata nr_all_pages;
213 static unsigned long __meminitdata dma_reserve;
214 
215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __initdata required_kernelcore;
219 static unsigned long __initdata required_movablecore;
220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
221 
222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 int movable_zone;
224 EXPORT_SYMBOL(movable_zone);
225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
226 
227 #if MAX_NUMNODES > 1
228 int nr_node_ids __read_mostly = MAX_NUMNODES;
229 int nr_online_nodes __read_mostly = 1;
230 EXPORT_SYMBOL(nr_node_ids);
231 EXPORT_SYMBOL(nr_online_nodes);
232 #endif
233 
234 int page_group_by_mobility_disabled __read_mostly;
235 
236 void set_pageblock_migratetype(struct page *page, int migratetype)
237 {
238 	if (unlikely(page_group_by_mobility_disabled &&
239 		     migratetype < MIGRATE_PCPTYPES))
240 		migratetype = MIGRATE_UNMOVABLE;
241 
242 	set_pageblock_flags_group(page, (unsigned long)migratetype,
243 					PB_migrate, PB_migrate_end);
244 }
245 
246 bool oom_killer_disabled __read_mostly;
247 
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 	int ret = 0;
252 	unsigned seq;
253 	unsigned long pfn = page_to_pfn(page);
254 	unsigned long sp, start_pfn;
255 
256 	do {
257 		seq = zone_span_seqbegin(zone);
258 		start_pfn = zone->zone_start_pfn;
259 		sp = zone->spanned_pages;
260 		if (!zone_spans_pfn(zone, pfn))
261 			ret = 1;
262 	} while (zone_span_seqretry(zone, seq));
263 
264 	if (ret)
265 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 			pfn, zone_to_nid(zone), zone->name,
267 			start_pfn, start_pfn + sp);
268 
269 	return ret;
270 }
271 
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 	if (!pfn_valid_within(page_to_pfn(page)))
275 		return 0;
276 	if (zone != page_zone(page))
277 		return 0;
278 
279 	return 1;
280 }
281 /*
282  * Temporary debugging check for pages not lying within a given zone.
283  */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 	if (page_outside_zone_boundaries(zone, page))
287 		return 1;
288 	if (!page_is_consistent(zone, page))
289 		return 1;
290 
291 	return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 	return 0;
297 }
298 #endif
299 
300 static void bad_page(struct page *page, const char *reason,
301 		unsigned long bad_flags)
302 {
303 	static unsigned long resume;
304 	static unsigned long nr_shown;
305 	static unsigned long nr_unshown;
306 
307 	/* Don't complain about poisoned pages */
308 	if (PageHWPoison(page)) {
309 		page_mapcount_reset(page); /* remove PageBuddy */
310 		return;
311 	}
312 
313 	/*
314 	 * Allow a burst of 60 reports, then keep quiet for that minute;
315 	 * or allow a steady drip of one report per second.
316 	 */
317 	if (nr_shown == 60) {
318 		if (time_before(jiffies, resume)) {
319 			nr_unshown++;
320 			goto out;
321 		}
322 		if (nr_unshown) {
323 			printk(KERN_ALERT
324 			      "BUG: Bad page state: %lu messages suppressed\n",
325 				nr_unshown);
326 			nr_unshown = 0;
327 		}
328 		nr_shown = 0;
329 	}
330 	if (nr_shown++ == 0)
331 		resume = jiffies + 60 * HZ;
332 
333 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
334 		current->comm, page_to_pfn(page));
335 	dump_page_badflags(page, reason, bad_flags);
336 
337 	print_modules();
338 	dump_stack();
339 out:
340 	/* Leave bad fields for debug, except PageBuddy could make trouble */
341 	page_mapcount_reset(page); /* remove PageBuddy */
342 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344 
345 /*
346  * Higher-order pages are called "compound pages".  They are structured thusly:
347  *
348  * The first PAGE_SIZE page is called the "head page".
349  *
350  * The remaining PAGE_SIZE pages are called "tail pages".
351  *
352  * All pages have PG_compound set.  All tail pages have their ->first_page
353  * pointing at the head page.
354  *
355  * The first tail page's ->lru.next holds the address of the compound page's
356  * put_page() function.  Its ->lru.prev holds the order of allocation.
357  * This usage means that zero-order pages may not be compound.
358  */
359 
360 static void free_compound_page(struct page *page)
361 {
362 	__free_pages_ok(page, compound_order(page));
363 }
364 
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 
370 	set_compound_page_dtor(page, free_compound_page);
371 	set_compound_order(page, order);
372 	__SetPageHead(page);
373 	for (i = 1; i < nr_pages; i++) {
374 		struct page *p = page + i;
375 		set_page_count(p, 0);
376 		p->first_page = page;
377 		/* Make sure p->first_page is always valid for PageTail() */
378 		smp_wmb();
379 		__SetPageTail(p);
380 	}
381 }
382 
383 /* update __split_huge_page_refcount if you change this function */
384 static int destroy_compound_page(struct page *page, unsigned long order)
385 {
386 	int i;
387 	int nr_pages = 1 << order;
388 	int bad = 0;
389 
390 	if (unlikely(compound_order(page) != order)) {
391 		bad_page(page, "wrong compound order", 0);
392 		bad++;
393 	}
394 
395 	__ClearPageHead(page);
396 
397 	for (i = 1; i < nr_pages; i++) {
398 		struct page *p = page + i;
399 
400 		if (unlikely(!PageTail(p))) {
401 			bad_page(page, "PageTail not set", 0);
402 			bad++;
403 		} else if (unlikely(p->first_page != page)) {
404 			bad_page(page, "first_page not consistent", 0);
405 			bad++;
406 		}
407 		__ClearPageTail(p);
408 	}
409 
410 	return bad;
411 }
412 
413 static inline void prep_zero_page(struct page *page, unsigned int order,
414 							gfp_t gfp_flags)
415 {
416 	int i;
417 
418 	/*
419 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
420 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 	 */
422 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
423 	for (i = 0; i < (1 << order); i++)
424 		clear_highpage(page + i);
425 }
426 
427 #ifdef CONFIG_DEBUG_PAGEALLOC
428 unsigned int _debug_guardpage_minorder;
429 
430 static int __init debug_guardpage_minorder_setup(char *buf)
431 {
432 	unsigned long res;
433 
434 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
435 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
436 		return 0;
437 	}
438 	_debug_guardpage_minorder = res;
439 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
440 	return 0;
441 }
442 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
443 
444 static inline void set_page_guard_flag(struct page *page)
445 {
446 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
447 }
448 
449 static inline void clear_page_guard_flag(struct page *page)
450 {
451 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
452 }
453 #else
454 static inline void set_page_guard_flag(struct page *page) { }
455 static inline void clear_page_guard_flag(struct page *page) { }
456 #endif
457 
458 static inline void set_page_order(struct page *page, unsigned int order)
459 {
460 	set_page_private(page, order);
461 	__SetPageBuddy(page);
462 }
463 
464 static inline void rmv_page_order(struct page *page)
465 {
466 	__ClearPageBuddy(page);
467 	set_page_private(page, 0);
468 }
469 
470 /*
471  * Locate the struct page for both the matching buddy in our
472  * pair (buddy1) and the combined O(n+1) page they form (page).
473  *
474  * 1) Any buddy B1 will have an order O twin B2 which satisfies
475  * the following equation:
476  *     B2 = B1 ^ (1 << O)
477  * For example, if the starting buddy (buddy2) is #8 its order
478  * 1 buddy is #10:
479  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
480  *
481  * 2) Any buddy B will have an order O+1 parent P which
482  * satisfies the following equation:
483  *     P = B & ~(1 << O)
484  *
485  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
486  */
487 static inline unsigned long
488 __find_buddy_index(unsigned long page_idx, unsigned int order)
489 {
490 	return page_idx ^ (1 << order);
491 }
492 
493 /*
494  * This function checks whether a page is free && is the buddy
495  * we can do coalesce a page and its buddy if
496  * (a) the buddy is not in a hole &&
497  * (b) the buddy is in the buddy system &&
498  * (c) a page and its buddy have the same order &&
499  * (d) a page and its buddy are in the same zone.
500  *
501  * For recording whether a page is in the buddy system, we set ->_mapcount
502  * PAGE_BUDDY_MAPCOUNT_VALUE.
503  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
504  * serialized by zone->lock.
505  *
506  * For recording page's order, we use page_private(page).
507  */
508 static inline int page_is_buddy(struct page *page, struct page *buddy,
509 							unsigned int order)
510 {
511 	if (!pfn_valid_within(page_to_pfn(buddy)))
512 		return 0;
513 
514 	if (page_is_guard(buddy) && page_order(buddy) == order) {
515 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
516 
517 		if (page_zone_id(page) != page_zone_id(buddy))
518 			return 0;
519 
520 		return 1;
521 	}
522 
523 	if (PageBuddy(buddy) && page_order(buddy) == order) {
524 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
525 
526 		/*
527 		 * zone check is done late to avoid uselessly
528 		 * calculating zone/node ids for pages that could
529 		 * never merge.
530 		 */
531 		if (page_zone_id(page) != page_zone_id(buddy))
532 			return 0;
533 
534 		return 1;
535 	}
536 	return 0;
537 }
538 
539 /*
540  * Freeing function for a buddy system allocator.
541  *
542  * The concept of a buddy system is to maintain direct-mapped table
543  * (containing bit values) for memory blocks of various "orders".
544  * The bottom level table contains the map for the smallest allocatable
545  * units of memory (here, pages), and each level above it describes
546  * pairs of units from the levels below, hence, "buddies".
547  * At a high level, all that happens here is marking the table entry
548  * at the bottom level available, and propagating the changes upward
549  * as necessary, plus some accounting needed to play nicely with other
550  * parts of the VM system.
551  * At each level, we keep a list of pages, which are heads of continuous
552  * free pages of length of (1 << order) and marked with _mapcount
553  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
554  * field.
555  * So when we are allocating or freeing one, we can derive the state of the
556  * other.  That is, if we allocate a small block, and both were
557  * free, the remainder of the region must be split into blocks.
558  * If a block is freed, and its buddy is also free, then this
559  * triggers coalescing into a block of larger size.
560  *
561  * -- nyc
562  */
563 
564 static inline void __free_one_page(struct page *page,
565 		unsigned long pfn,
566 		struct zone *zone, unsigned int order,
567 		int migratetype)
568 {
569 	unsigned long page_idx;
570 	unsigned long combined_idx;
571 	unsigned long uninitialized_var(buddy_idx);
572 	struct page *buddy;
573 
574 	VM_BUG_ON(!zone_is_initialized(zone));
575 
576 	if (unlikely(PageCompound(page)))
577 		if (unlikely(destroy_compound_page(page, order)))
578 			return;
579 
580 	VM_BUG_ON(migratetype == -1);
581 
582 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
583 
584 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
585 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
586 
587 	while (order < MAX_ORDER-1) {
588 		buddy_idx = __find_buddy_index(page_idx, order);
589 		buddy = page + (buddy_idx - page_idx);
590 		if (!page_is_buddy(page, buddy, order))
591 			break;
592 		/*
593 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
594 		 * merge with it and move up one order.
595 		 */
596 		if (page_is_guard(buddy)) {
597 			clear_page_guard_flag(buddy);
598 			set_page_private(page, 0);
599 			__mod_zone_freepage_state(zone, 1 << order,
600 						  migratetype);
601 		} else {
602 			list_del(&buddy->lru);
603 			zone->free_area[order].nr_free--;
604 			rmv_page_order(buddy);
605 		}
606 		combined_idx = buddy_idx & page_idx;
607 		page = page + (combined_idx - page_idx);
608 		page_idx = combined_idx;
609 		order++;
610 	}
611 	set_page_order(page, order);
612 
613 	/*
614 	 * If this is not the largest possible page, check if the buddy
615 	 * of the next-highest order is free. If it is, it's possible
616 	 * that pages are being freed that will coalesce soon. In case,
617 	 * that is happening, add the free page to the tail of the list
618 	 * so it's less likely to be used soon and more likely to be merged
619 	 * as a higher order page
620 	 */
621 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
622 		struct page *higher_page, *higher_buddy;
623 		combined_idx = buddy_idx & page_idx;
624 		higher_page = page + (combined_idx - page_idx);
625 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
626 		higher_buddy = higher_page + (buddy_idx - combined_idx);
627 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
628 			list_add_tail(&page->lru,
629 				&zone->free_area[order].free_list[migratetype]);
630 			goto out;
631 		}
632 	}
633 
634 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
635 out:
636 	zone->free_area[order].nr_free++;
637 }
638 
639 static inline int free_pages_check(struct page *page)
640 {
641 	const char *bad_reason = NULL;
642 	unsigned long bad_flags = 0;
643 
644 	if (unlikely(page_mapcount(page)))
645 		bad_reason = "nonzero mapcount";
646 	if (unlikely(page->mapping != NULL))
647 		bad_reason = "non-NULL mapping";
648 	if (unlikely(atomic_read(&page->_count) != 0))
649 		bad_reason = "nonzero _count";
650 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
651 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
652 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
653 	}
654 	if (unlikely(mem_cgroup_bad_page_check(page)))
655 		bad_reason = "cgroup check failed";
656 	if (unlikely(bad_reason)) {
657 		bad_page(page, bad_reason, bad_flags);
658 		return 1;
659 	}
660 	page_cpupid_reset_last(page);
661 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
662 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
663 	return 0;
664 }
665 
666 /*
667  * Frees a number of pages from the PCP lists
668  * Assumes all pages on list are in same zone, and of same order.
669  * count is the number of pages to free.
670  *
671  * If the zone was previously in an "all pages pinned" state then look to
672  * see if this freeing clears that state.
673  *
674  * And clear the zone's pages_scanned counter, to hold off the "all pages are
675  * pinned" detection logic.
676  */
677 static void free_pcppages_bulk(struct zone *zone, int count,
678 					struct per_cpu_pages *pcp)
679 {
680 	int migratetype = 0;
681 	int batch_free = 0;
682 	int to_free = count;
683 
684 	spin_lock(&zone->lock);
685 	zone->pages_scanned = 0;
686 
687 	while (to_free) {
688 		struct page *page;
689 		struct list_head *list;
690 
691 		/*
692 		 * Remove pages from lists in a round-robin fashion. A
693 		 * batch_free count is maintained that is incremented when an
694 		 * empty list is encountered.  This is so more pages are freed
695 		 * off fuller lists instead of spinning excessively around empty
696 		 * lists
697 		 */
698 		do {
699 			batch_free++;
700 			if (++migratetype == MIGRATE_PCPTYPES)
701 				migratetype = 0;
702 			list = &pcp->lists[migratetype];
703 		} while (list_empty(list));
704 
705 		/* This is the only non-empty list. Free them all. */
706 		if (batch_free == MIGRATE_PCPTYPES)
707 			batch_free = to_free;
708 
709 		do {
710 			int mt;	/* migratetype of the to-be-freed page */
711 
712 			page = list_entry(list->prev, struct page, lru);
713 			/* must delete as __free_one_page list manipulates */
714 			list_del(&page->lru);
715 			mt = get_freepage_migratetype(page);
716 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
717 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
718 			trace_mm_page_pcpu_drain(page, 0, mt);
719 			if (likely(!is_migrate_isolate_page(page))) {
720 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
721 				if (is_migrate_cma(mt))
722 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
723 			}
724 		} while (--to_free && --batch_free && !list_empty(list));
725 	}
726 	spin_unlock(&zone->lock);
727 }
728 
729 static void free_one_page(struct zone *zone,
730 				struct page *page, unsigned long pfn,
731 				unsigned int order,
732 				int migratetype)
733 {
734 	spin_lock(&zone->lock);
735 	zone->pages_scanned = 0;
736 
737 	__free_one_page(page, pfn, zone, order, migratetype);
738 	if (unlikely(!is_migrate_isolate(migratetype)))
739 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
740 	spin_unlock(&zone->lock);
741 }
742 
743 static bool free_pages_prepare(struct page *page, unsigned int order)
744 {
745 	int i;
746 	int bad = 0;
747 
748 	trace_mm_page_free(page, order);
749 	kmemcheck_free_shadow(page, order);
750 
751 	if (PageAnon(page))
752 		page->mapping = NULL;
753 	for (i = 0; i < (1 << order); i++)
754 		bad += free_pages_check(page + i);
755 	if (bad)
756 		return false;
757 
758 	if (!PageHighMem(page)) {
759 		debug_check_no_locks_freed(page_address(page),
760 					   PAGE_SIZE << order);
761 		debug_check_no_obj_freed(page_address(page),
762 					   PAGE_SIZE << order);
763 	}
764 	arch_free_page(page, order);
765 	kernel_map_pages(page, 1 << order, 0);
766 
767 	return true;
768 }
769 
770 static void __free_pages_ok(struct page *page, unsigned int order)
771 {
772 	unsigned long flags;
773 	int migratetype;
774 	unsigned long pfn = page_to_pfn(page);
775 
776 	if (!free_pages_prepare(page, order))
777 		return;
778 
779 	migratetype = get_pfnblock_migratetype(page, pfn);
780 	local_irq_save(flags);
781 	__count_vm_events(PGFREE, 1 << order);
782 	set_freepage_migratetype(page, migratetype);
783 	free_one_page(page_zone(page), page, pfn, order, migratetype);
784 	local_irq_restore(flags);
785 }
786 
787 void __init __free_pages_bootmem(struct page *page, unsigned int order)
788 {
789 	unsigned int nr_pages = 1 << order;
790 	struct page *p = page;
791 	unsigned int loop;
792 
793 	prefetchw(p);
794 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
795 		prefetchw(p + 1);
796 		__ClearPageReserved(p);
797 		set_page_count(p, 0);
798 	}
799 	__ClearPageReserved(p);
800 	set_page_count(p, 0);
801 
802 	page_zone(page)->managed_pages += nr_pages;
803 	set_page_refcounted(page);
804 	__free_pages(page, order);
805 }
806 
807 #ifdef CONFIG_CMA
808 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
809 void __init init_cma_reserved_pageblock(struct page *page)
810 {
811 	unsigned i = pageblock_nr_pages;
812 	struct page *p = page;
813 
814 	do {
815 		__ClearPageReserved(p);
816 		set_page_count(p, 0);
817 	} while (++p, --i);
818 
819 	set_pageblock_migratetype(page, MIGRATE_CMA);
820 
821 	if (pageblock_order >= MAX_ORDER) {
822 		i = pageblock_nr_pages;
823 		p = page;
824 		do {
825 			set_page_refcounted(p);
826 			__free_pages(p, MAX_ORDER - 1);
827 			p += MAX_ORDER_NR_PAGES;
828 		} while (i -= MAX_ORDER_NR_PAGES);
829 	} else {
830 		set_page_refcounted(page);
831 		__free_pages(page, pageblock_order);
832 	}
833 
834 	adjust_managed_page_count(page, pageblock_nr_pages);
835 }
836 #endif
837 
838 /*
839  * The order of subdivision here is critical for the IO subsystem.
840  * Please do not alter this order without good reasons and regression
841  * testing. Specifically, as large blocks of memory are subdivided,
842  * the order in which smaller blocks are delivered depends on the order
843  * they're subdivided in this function. This is the primary factor
844  * influencing the order in which pages are delivered to the IO
845  * subsystem according to empirical testing, and this is also justified
846  * by considering the behavior of a buddy system containing a single
847  * large block of memory acted on by a series of small allocations.
848  * This behavior is a critical factor in sglist merging's success.
849  *
850  * -- nyc
851  */
852 static inline void expand(struct zone *zone, struct page *page,
853 	int low, int high, struct free_area *area,
854 	int migratetype)
855 {
856 	unsigned long size = 1 << high;
857 
858 	while (high > low) {
859 		area--;
860 		high--;
861 		size >>= 1;
862 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
863 
864 #ifdef CONFIG_DEBUG_PAGEALLOC
865 		if (high < debug_guardpage_minorder()) {
866 			/*
867 			 * Mark as guard pages (or page), that will allow to
868 			 * merge back to allocator when buddy will be freed.
869 			 * Corresponding page table entries will not be touched,
870 			 * pages will stay not present in virtual address space
871 			 */
872 			INIT_LIST_HEAD(&page[size].lru);
873 			set_page_guard_flag(&page[size]);
874 			set_page_private(&page[size], high);
875 			/* Guard pages are not available for any usage */
876 			__mod_zone_freepage_state(zone, -(1 << high),
877 						  migratetype);
878 			continue;
879 		}
880 #endif
881 		list_add(&page[size].lru, &area->free_list[migratetype]);
882 		area->nr_free++;
883 		set_page_order(&page[size], high);
884 	}
885 }
886 
887 /*
888  * This page is about to be returned from the page allocator
889  */
890 static inline int check_new_page(struct page *page)
891 {
892 	const char *bad_reason = NULL;
893 	unsigned long bad_flags = 0;
894 
895 	if (unlikely(page_mapcount(page)))
896 		bad_reason = "nonzero mapcount";
897 	if (unlikely(page->mapping != NULL))
898 		bad_reason = "non-NULL mapping";
899 	if (unlikely(atomic_read(&page->_count) != 0))
900 		bad_reason = "nonzero _count";
901 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
902 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
903 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
904 	}
905 	if (unlikely(mem_cgroup_bad_page_check(page)))
906 		bad_reason = "cgroup check failed";
907 	if (unlikely(bad_reason)) {
908 		bad_page(page, bad_reason, bad_flags);
909 		return 1;
910 	}
911 	return 0;
912 }
913 
914 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
915 {
916 	int i;
917 
918 	for (i = 0; i < (1 << order); i++) {
919 		struct page *p = page + i;
920 		if (unlikely(check_new_page(p)))
921 			return 1;
922 	}
923 
924 	set_page_private(page, 0);
925 	set_page_refcounted(page);
926 
927 	arch_alloc_page(page, order);
928 	kernel_map_pages(page, 1 << order, 1);
929 
930 	if (gfp_flags & __GFP_ZERO)
931 		prep_zero_page(page, order, gfp_flags);
932 
933 	if (order && (gfp_flags & __GFP_COMP))
934 		prep_compound_page(page, order);
935 
936 	return 0;
937 }
938 
939 /*
940  * Go through the free lists for the given migratetype and remove
941  * the smallest available page from the freelists
942  */
943 static inline
944 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
945 						int migratetype)
946 {
947 	unsigned int current_order;
948 	struct free_area *area;
949 	struct page *page;
950 
951 	/* Find a page of the appropriate size in the preferred list */
952 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
953 		area = &(zone->free_area[current_order]);
954 		if (list_empty(&area->free_list[migratetype]))
955 			continue;
956 
957 		page = list_entry(area->free_list[migratetype].next,
958 							struct page, lru);
959 		list_del(&page->lru);
960 		rmv_page_order(page);
961 		area->nr_free--;
962 		expand(zone, page, order, current_order, area, migratetype);
963 		set_freepage_migratetype(page, migratetype);
964 		return page;
965 	}
966 
967 	return NULL;
968 }
969 
970 
971 /*
972  * This array describes the order lists are fallen back to when
973  * the free lists for the desirable migrate type are depleted
974  */
975 static int fallbacks[MIGRATE_TYPES][4] = {
976 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
977 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
978 #ifdef CONFIG_CMA
979 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
980 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
981 #else
982 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
983 #endif
984 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
985 #ifdef CONFIG_MEMORY_ISOLATION
986 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
987 #endif
988 };
989 
990 /*
991  * Move the free pages in a range to the free lists of the requested type.
992  * Note that start_page and end_pages are not aligned on a pageblock
993  * boundary. If alignment is required, use move_freepages_block()
994  */
995 int move_freepages(struct zone *zone,
996 			  struct page *start_page, struct page *end_page,
997 			  int migratetype)
998 {
999 	struct page *page;
1000 	unsigned long order;
1001 	int pages_moved = 0;
1002 
1003 #ifndef CONFIG_HOLES_IN_ZONE
1004 	/*
1005 	 * page_zone is not safe to call in this context when
1006 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1007 	 * anyway as we check zone boundaries in move_freepages_block().
1008 	 * Remove at a later date when no bug reports exist related to
1009 	 * grouping pages by mobility
1010 	 */
1011 	BUG_ON(page_zone(start_page) != page_zone(end_page));
1012 #endif
1013 
1014 	for (page = start_page; page <= end_page;) {
1015 		/* Make sure we are not inadvertently changing nodes */
1016 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1017 
1018 		if (!pfn_valid_within(page_to_pfn(page))) {
1019 			page++;
1020 			continue;
1021 		}
1022 
1023 		if (!PageBuddy(page)) {
1024 			page++;
1025 			continue;
1026 		}
1027 
1028 		order = page_order(page);
1029 		list_move(&page->lru,
1030 			  &zone->free_area[order].free_list[migratetype]);
1031 		set_freepage_migratetype(page, migratetype);
1032 		page += 1 << order;
1033 		pages_moved += 1 << order;
1034 	}
1035 
1036 	return pages_moved;
1037 }
1038 
1039 int move_freepages_block(struct zone *zone, struct page *page,
1040 				int migratetype)
1041 {
1042 	unsigned long start_pfn, end_pfn;
1043 	struct page *start_page, *end_page;
1044 
1045 	start_pfn = page_to_pfn(page);
1046 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1047 	start_page = pfn_to_page(start_pfn);
1048 	end_page = start_page + pageblock_nr_pages - 1;
1049 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1050 
1051 	/* Do not cross zone boundaries */
1052 	if (!zone_spans_pfn(zone, start_pfn))
1053 		start_page = page;
1054 	if (!zone_spans_pfn(zone, end_pfn))
1055 		return 0;
1056 
1057 	return move_freepages(zone, start_page, end_page, migratetype);
1058 }
1059 
1060 static void change_pageblock_range(struct page *pageblock_page,
1061 					int start_order, int migratetype)
1062 {
1063 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1064 
1065 	while (nr_pageblocks--) {
1066 		set_pageblock_migratetype(pageblock_page, migratetype);
1067 		pageblock_page += pageblock_nr_pages;
1068 	}
1069 }
1070 
1071 /*
1072  * If breaking a large block of pages, move all free pages to the preferred
1073  * allocation list. If falling back for a reclaimable kernel allocation, be
1074  * more aggressive about taking ownership of free pages.
1075  *
1076  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1077  * nor move CMA pages to different free lists. We don't want unmovable pages
1078  * to be allocated from MIGRATE_CMA areas.
1079  *
1080  * Returns the new migratetype of the pageblock (or the same old migratetype
1081  * if it was unchanged).
1082  */
1083 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1084 				  int start_type, int fallback_type)
1085 {
1086 	int current_order = page_order(page);
1087 
1088 	/*
1089 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1090 	 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1091 	 * is set to CMA so it is returned to the correct freelist in case
1092 	 * the page ends up being not actually allocated from the pcp lists.
1093 	 */
1094 	if (is_migrate_cma(fallback_type))
1095 		return fallback_type;
1096 
1097 	/* Take ownership for orders >= pageblock_order */
1098 	if (current_order >= pageblock_order) {
1099 		change_pageblock_range(page, current_order, start_type);
1100 		return start_type;
1101 	}
1102 
1103 	if (current_order >= pageblock_order / 2 ||
1104 	    start_type == MIGRATE_RECLAIMABLE ||
1105 	    page_group_by_mobility_disabled) {
1106 		int pages;
1107 
1108 		pages = move_freepages_block(zone, page, start_type);
1109 
1110 		/* Claim the whole block if over half of it is free */
1111 		if (pages >= (1 << (pageblock_order-1)) ||
1112 				page_group_by_mobility_disabled) {
1113 
1114 			set_pageblock_migratetype(page, start_type);
1115 			return start_type;
1116 		}
1117 
1118 	}
1119 
1120 	return fallback_type;
1121 }
1122 
1123 /* Remove an element from the buddy allocator from the fallback list */
1124 static inline struct page *
1125 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1126 {
1127 	struct free_area *area;
1128 	unsigned int current_order;
1129 	struct page *page;
1130 	int migratetype, new_type, i;
1131 
1132 	/* Find the largest possible block of pages in the other list */
1133 	for (current_order = MAX_ORDER-1;
1134 				current_order >= order && current_order <= MAX_ORDER-1;
1135 				--current_order) {
1136 		for (i = 0;; i++) {
1137 			migratetype = fallbacks[start_migratetype][i];
1138 
1139 			/* MIGRATE_RESERVE handled later if necessary */
1140 			if (migratetype == MIGRATE_RESERVE)
1141 				break;
1142 
1143 			area = &(zone->free_area[current_order]);
1144 			if (list_empty(&area->free_list[migratetype]))
1145 				continue;
1146 
1147 			page = list_entry(area->free_list[migratetype].next,
1148 					struct page, lru);
1149 			area->nr_free--;
1150 
1151 			new_type = try_to_steal_freepages(zone, page,
1152 							  start_migratetype,
1153 							  migratetype);
1154 
1155 			/* Remove the page from the freelists */
1156 			list_del(&page->lru);
1157 			rmv_page_order(page);
1158 
1159 			expand(zone, page, order, current_order, area,
1160 			       new_type);
1161 			/* The freepage_migratetype may differ from pageblock's
1162 			 * migratetype depending on the decisions in
1163 			 * try_to_steal_freepages. This is OK as long as it does
1164 			 * not differ for MIGRATE_CMA type.
1165 			 */
1166 			set_freepage_migratetype(page, new_type);
1167 
1168 			trace_mm_page_alloc_extfrag(page, order, current_order,
1169 				start_migratetype, migratetype, new_type);
1170 
1171 			return page;
1172 		}
1173 	}
1174 
1175 	return NULL;
1176 }
1177 
1178 /*
1179  * Do the hard work of removing an element from the buddy allocator.
1180  * Call me with the zone->lock already held.
1181  */
1182 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1183 						int migratetype)
1184 {
1185 	struct page *page;
1186 
1187 retry_reserve:
1188 	page = __rmqueue_smallest(zone, order, migratetype);
1189 
1190 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1191 		page = __rmqueue_fallback(zone, order, migratetype);
1192 
1193 		/*
1194 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1195 		 * is used because __rmqueue_smallest is an inline function
1196 		 * and we want just one call site
1197 		 */
1198 		if (!page) {
1199 			migratetype = MIGRATE_RESERVE;
1200 			goto retry_reserve;
1201 		}
1202 	}
1203 
1204 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1205 	return page;
1206 }
1207 
1208 /*
1209  * Obtain a specified number of elements from the buddy allocator, all under
1210  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1211  * Returns the number of new pages which were placed at *list.
1212  */
1213 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1214 			unsigned long count, struct list_head *list,
1215 			int migratetype, bool cold)
1216 {
1217 	int i;
1218 
1219 	spin_lock(&zone->lock);
1220 	for (i = 0; i < count; ++i) {
1221 		struct page *page = __rmqueue(zone, order, migratetype);
1222 		if (unlikely(page == NULL))
1223 			break;
1224 
1225 		/*
1226 		 * Split buddy pages returned by expand() are received here
1227 		 * in physical page order. The page is added to the callers and
1228 		 * list and the list head then moves forward. From the callers
1229 		 * perspective, the linked list is ordered by page number in
1230 		 * some conditions. This is useful for IO devices that can
1231 		 * merge IO requests if the physical pages are ordered
1232 		 * properly.
1233 		 */
1234 		if (likely(!cold))
1235 			list_add(&page->lru, list);
1236 		else
1237 			list_add_tail(&page->lru, list);
1238 		list = &page->lru;
1239 		if (is_migrate_cma(get_freepage_migratetype(page)))
1240 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1241 					      -(1 << order));
1242 	}
1243 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1244 	spin_unlock(&zone->lock);
1245 	return i;
1246 }
1247 
1248 #ifdef CONFIG_NUMA
1249 /*
1250  * Called from the vmstat counter updater to drain pagesets of this
1251  * currently executing processor on remote nodes after they have
1252  * expired.
1253  *
1254  * Note that this function must be called with the thread pinned to
1255  * a single processor.
1256  */
1257 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1258 {
1259 	unsigned long flags;
1260 	int to_drain;
1261 	unsigned long batch;
1262 
1263 	local_irq_save(flags);
1264 	batch = ACCESS_ONCE(pcp->batch);
1265 	if (pcp->count >= batch)
1266 		to_drain = batch;
1267 	else
1268 		to_drain = pcp->count;
1269 	if (to_drain > 0) {
1270 		free_pcppages_bulk(zone, to_drain, pcp);
1271 		pcp->count -= to_drain;
1272 	}
1273 	local_irq_restore(flags);
1274 }
1275 #endif
1276 
1277 /*
1278  * Drain pages of the indicated processor.
1279  *
1280  * The processor must either be the current processor and the
1281  * thread pinned to the current processor or a processor that
1282  * is not online.
1283  */
1284 static void drain_pages(unsigned int cpu)
1285 {
1286 	unsigned long flags;
1287 	struct zone *zone;
1288 
1289 	for_each_populated_zone(zone) {
1290 		struct per_cpu_pageset *pset;
1291 		struct per_cpu_pages *pcp;
1292 
1293 		local_irq_save(flags);
1294 		pset = per_cpu_ptr(zone->pageset, cpu);
1295 
1296 		pcp = &pset->pcp;
1297 		if (pcp->count) {
1298 			free_pcppages_bulk(zone, pcp->count, pcp);
1299 			pcp->count = 0;
1300 		}
1301 		local_irq_restore(flags);
1302 	}
1303 }
1304 
1305 /*
1306  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1307  */
1308 void drain_local_pages(void *arg)
1309 {
1310 	drain_pages(smp_processor_id());
1311 }
1312 
1313 /*
1314  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1315  *
1316  * Note that this code is protected against sending an IPI to an offline
1317  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1318  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1319  * nothing keeps CPUs from showing up after we populated the cpumask and
1320  * before the call to on_each_cpu_mask().
1321  */
1322 void drain_all_pages(void)
1323 {
1324 	int cpu;
1325 	struct per_cpu_pageset *pcp;
1326 	struct zone *zone;
1327 
1328 	/*
1329 	 * Allocate in the BSS so we wont require allocation in
1330 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1331 	 */
1332 	static cpumask_t cpus_with_pcps;
1333 
1334 	/*
1335 	 * We don't care about racing with CPU hotplug event
1336 	 * as offline notification will cause the notified
1337 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1338 	 * disables preemption as part of its processing
1339 	 */
1340 	for_each_online_cpu(cpu) {
1341 		bool has_pcps = false;
1342 		for_each_populated_zone(zone) {
1343 			pcp = per_cpu_ptr(zone->pageset, cpu);
1344 			if (pcp->pcp.count) {
1345 				has_pcps = true;
1346 				break;
1347 			}
1348 		}
1349 		if (has_pcps)
1350 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1351 		else
1352 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1353 	}
1354 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1355 }
1356 
1357 #ifdef CONFIG_HIBERNATION
1358 
1359 void mark_free_pages(struct zone *zone)
1360 {
1361 	unsigned long pfn, max_zone_pfn;
1362 	unsigned long flags;
1363 	unsigned int order, t;
1364 	struct list_head *curr;
1365 
1366 	if (zone_is_empty(zone))
1367 		return;
1368 
1369 	spin_lock_irqsave(&zone->lock, flags);
1370 
1371 	max_zone_pfn = zone_end_pfn(zone);
1372 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1373 		if (pfn_valid(pfn)) {
1374 			struct page *page = pfn_to_page(pfn);
1375 
1376 			if (!swsusp_page_is_forbidden(page))
1377 				swsusp_unset_page_free(page);
1378 		}
1379 
1380 	for_each_migratetype_order(order, t) {
1381 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1382 			unsigned long i;
1383 
1384 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1385 			for (i = 0; i < (1UL << order); i++)
1386 				swsusp_set_page_free(pfn_to_page(pfn + i));
1387 		}
1388 	}
1389 	spin_unlock_irqrestore(&zone->lock, flags);
1390 }
1391 #endif /* CONFIG_PM */
1392 
1393 /*
1394  * Free a 0-order page
1395  * cold == true ? free a cold page : free a hot page
1396  */
1397 void free_hot_cold_page(struct page *page, bool cold)
1398 {
1399 	struct zone *zone = page_zone(page);
1400 	struct per_cpu_pages *pcp;
1401 	unsigned long flags;
1402 	unsigned long pfn = page_to_pfn(page);
1403 	int migratetype;
1404 
1405 	if (!free_pages_prepare(page, 0))
1406 		return;
1407 
1408 	migratetype = get_pfnblock_migratetype(page, pfn);
1409 	set_freepage_migratetype(page, migratetype);
1410 	local_irq_save(flags);
1411 	__count_vm_event(PGFREE);
1412 
1413 	/*
1414 	 * We only track unmovable, reclaimable and movable on pcp lists.
1415 	 * Free ISOLATE pages back to the allocator because they are being
1416 	 * offlined but treat RESERVE as movable pages so we can get those
1417 	 * areas back if necessary. Otherwise, we may have to free
1418 	 * excessively into the page allocator
1419 	 */
1420 	if (migratetype >= MIGRATE_PCPTYPES) {
1421 		if (unlikely(is_migrate_isolate(migratetype))) {
1422 			free_one_page(zone, page, pfn, 0, migratetype);
1423 			goto out;
1424 		}
1425 		migratetype = MIGRATE_MOVABLE;
1426 	}
1427 
1428 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1429 	if (!cold)
1430 		list_add(&page->lru, &pcp->lists[migratetype]);
1431 	else
1432 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1433 	pcp->count++;
1434 	if (pcp->count >= pcp->high) {
1435 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1436 		free_pcppages_bulk(zone, batch, pcp);
1437 		pcp->count -= batch;
1438 	}
1439 
1440 out:
1441 	local_irq_restore(flags);
1442 }
1443 
1444 /*
1445  * Free a list of 0-order pages
1446  */
1447 void free_hot_cold_page_list(struct list_head *list, bool cold)
1448 {
1449 	struct page *page, *next;
1450 
1451 	list_for_each_entry_safe(page, next, list, lru) {
1452 		trace_mm_page_free_batched(page, cold);
1453 		free_hot_cold_page(page, cold);
1454 	}
1455 }
1456 
1457 /*
1458  * split_page takes a non-compound higher-order page, and splits it into
1459  * n (1<<order) sub-pages: page[0..n]
1460  * Each sub-page must be freed individually.
1461  *
1462  * Note: this is probably too low level an operation for use in drivers.
1463  * Please consult with lkml before using this in your driver.
1464  */
1465 void split_page(struct page *page, unsigned int order)
1466 {
1467 	int i;
1468 
1469 	VM_BUG_ON_PAGE(PageCompound(page), page);
1470 	VM_BUG_ON_PAGE(!page_count(page), page);
1471 
1472 #ifdef CONFIG_KMEMCHECK
1473 	/*
1474 	 * Split shadow pages too, because free(page[0]) would
1475 	 * otherwise free the whole shadow.
1476 	 */
1477 	if (kmemcheck_page_is_tracked(page))
1478 		split_page(virt_to_page(page[0].shadow), order);
1479 #endif
1480 
1481 	for (i = 1; i < (1 << order); i++)
1482 		set_page_refcounted(page + i);
1483 }
1484 EXPORT_SYMBOL_GPL(split_page);
1485 
1486 static int __isolate_free_page(struct page *page, unsigned int order)
1487 {
1488 	unsigned long watermark;
1489 	struct zone *zone;
1490 	int mt;
1491 
1492 	BUG_ON(!PageBuddy(page));
1493 
1494 	zone = page_zone(page);
1495 	mt = get_pageblock_migratetype(page);
1496 
1497 	if (!is_migrate_isolate(mt)) {
1498 		/* Obey watermarks as if the page was being allocated */
1499 		watermark = low_wmark_pages(zone) + (1 << order);
1500 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1501 			return 0;
1502 
1503 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1504 	}
1505 
1506 	/* Remove page from free list */
1507 	list_del(&page->lru);
1508 	zone->free_area[order].nr_free--;
1509 	rmv_page_order(page);
1510 
1511 	/* Set the pageblock if the isolated page is at least a pageblock */
1512 	if (order >= pageblock_order - 1) {
1513 		struct page *endpage = page + (1 << order) - 1;
1514 		for (; page < endpage; page += pageblock_nr_pages) {
1515 			int mt = get_pageblock_migratetype(page);
1516 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1517 				set_pageblock_migratetype(page,
1518 							  MIGRATE_MOVABLE);
1519 		}
1520 	}
1521 
1522 	return 1UL << order;
1523 }
1524 
1525 /*
1526  * Similar to split_page except the page is already free. As this is only
1527  * being used for migration, the migratetype of the block also changes.
1528  * As this is called with interrupts disabled, the caller is responsible
1529  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1530  * are enabled.
1531  *
1532  * Note: this is probably too low level an operation for use in drivers.
1533  * Please consult with lkml before using this in your driver.
1534  */
1535 int split_free_page(struct page *page)
1536 {
1537 	unsigned int order;
1538 	int nr_pages;
1539 
1540 	order = page_order(page);
1541 
1542 	nr_pages = __isolate_free_page(page, order);
1543 	if (!nr_pages)
1544 		return 0;
1545 
1546 	/* Split into individual pages */
1547 	set_page_refcounted(page);
1548 	split_page(page, order);
1549 	return nr_pages;
1550 }
1551 
1552 /*
1553  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1554  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1555  * or two.
1556  */
1557 static inline
1558 struct page *buffered_rmqueue(struct zone *preferred_zone,
1559 			struct zone *zone, unsigned int order,
1560 			gfp_t gfp_flags, int migratetype)
1561 {
1562 	unsigned long flags;
1563 	struct page *page;
1564 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1565 
1566 again:
1567 	if (likely(order == 0)) {
1568 		struct per_cpu_pages *pcp;
1569 		struct list_head *list;
1570 
1571 		local_irq_save(flags);
1572 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1573 		list = &pcp->lists[migratetype];
1574 		if (list_empty(list)) {
1575 			pcp->count += rmqueue_bulk(zone, 0,
1576 					pcp->batch, list,
1577 					migratetype, cold);
1578 			if (unlikely(list_empty(list)))
1579 				goto failed;
1580 		}
1581 
1582 		if (cold)
1583 			page = list_entry(list->prev, struct page, lru);
1584 		else
1585 			page = list_entry(list->next, struct page, lru);
1586 
1587 		list_del(&page->lru);
1588 		pcp->count--;
1589 	} else {
1590 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1591 			/*
1592 			 * __GFP_NOFAIL is not to be used in new code.
1593 			 *
1594 			 * All __GFP_NOFAIL callers should be fixed so that they
1595 			 * properly detect and handle allocation failures.
1596 			 *
1597 			 * We most definitely don't want callers attempting to
1598 			 * allocate greater than order-1 page units with
1599 			 * __GFP_NOFAIL.
1600 			 */
1601 			WARN_ON_ONCE(order > 1);
1602 		}
1603 		spin_lock_irqsave(&zone->lock, flags);
1604 		page = __rmqueue(zone, order, migratetype);
1605 		spin_unlock(&zone->lock);
1606 		if (!page)
1607 			goto failed;
1608 		__mod_zone_freepage_state(zone, -(1 << order),
1609 					  get_freepage_migratetype(page));
1610 	}
1611 
1612 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1613 
1614 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1615 	zone_statistics(preferred_zone, zone, gfp_flags);
1616 	local_irq_restore(flags);
1617 
1618 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1619 	if (prep_new_page(page, order, gfp_flags))
1620 		goto again;
1621 	return page;
1622 
1623 failed:
1624 	local_irq_restore(flags);
1625 	return NULL;
1626 }
1627 
1628 #ifdef CONFIG_FAIL_PAGE_ALLOC
1629 
1630 static struct {
1631 	struct fault_attr attr;
1632 
1633 	u32 ignore_gfp_highmem;
1634 	u32 ignore_gfp_wait;
1635 	u32 min_order;
1636 } fail_page_alloc = {
1637 	.attr = FAULT_ATTR_INITIALIZER,
1638 	.ignore_gfp_wait = 1,
1639 	.ignore_gfp_highmem = 1,
1640 	.min_order = 1,
1641 };
1642 
1643 static int __init setup_fail_page_alloc(char *str)
1644 {
1645 	return setup_fault_attr(&fail_page_alloc.attr, str);
1646 }
1647 __setup("fail_page_alloc=", setup_fail_page_alloc);
1648 
1649 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1650 {
1651 	if (order < fail_page_alloc.min_order)
1652 		return false;
1653 	if (gfp_mask & __GFP_NOFAIL)
1654 		return false;
1655 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1656 		return false;
1657 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1658 		return false;
1659 
1660 	return should_fail(&fail_page_alloc.attr, 1 << order);
1661 }
1662 
1663 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1664 
1665 static int __init fail_page_alloc_debugfs(void)
1666 {
1667 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1668 	struct dentry *dir;
1669 
1670 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1671 					&fail_page_alloc.attr);
1672 	if (IS_ERR(dir))
1673 		return PTR_ERR(dir);
1674 
1675 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1676 				&fail_page_alloc.ignore_gfp_wait))
1677 		goto fail;
1678 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1679 				&fail_page_alloc.ignore_gfp_highmem))
1680 		goto fail;
1681 	if (!debugfs_create_u32("min-order", mode, dir,
1682 				&fail_page_alloc.min_order))
1683 		goto fail;
1684 
1685 	return 0;
1686 fail:
1687 	debugfs_remove_recursive(dir);
1688 
1689 	return -ENOMEM;
1690 }
1691 
1692 late_initcall(fail_page_alloc_debugfs);
1693 
1694 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1695 
1696 #else /* CONFIG_FAIL_PAGE_ALLOC */
1697 
1698 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1699 {
1700 	return false;
1701 }
1702 
1703 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1704 
1705 /*
1706  * Return true if free pages are above 'mark'. This takes into account the order
1707  * of the allocation.
1708  */
1709 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1710 			unsigned long mark, int classzone_idx, int alloc_flags,
1711 			long free_pages)
1712 {
1713 	/* free_pages my go negative - that's OK */
1714 	long min = mark;
1715 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1716 	int o;
1717 	long free_cma = 0;
1718 
1719 	free_pages -= (1 << order) - 1;
1720 	if (alloc_flags & ALLOC_HIGH)
1721 		min -= min / 2;
1722 	if (alloc_flags & ALLOC_HARDER)
1723 		min -= min / 4;
1724 #ifdef CONFIG_CMA
1725 	/* If allocation can't use CMA areas don't use free CMA pages */
1726 	if (!(alloc_flags & ALLOC_CMA))
1727 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1728 #endif
1729 
1730 	if (free_pages - free_cma <= min + lowmem_reserve)
1731 		return false;
1732 	for (o = 0; o < order; o++) {
1733 		/* At the next order, this order's pages become unavailable */
1734 		free_pages -= z->free_area[o].nr_free << o;
1735 
1736 		/* Require fewer higher order pages to be free */
1737 		min >>= 1;
1738 
1739 		if (free_pages <= min)
1740 			return false;
1741 	}
1742 	return true;
1743 }
1744 
1745 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1746 		      int classzone_idx, int alloc_flags)
1747 {
1748 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1749 					zone_page_state(z, NR_FREE_PAGES));
1750 }
1751 
1752 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1753 			unsigned long mark, int classzone_idx, int alloc_flags)
1754 {
1755 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1756 
1757 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1758 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1759 
1760 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1761 								free_pages);
1762 }
1763 
1764 #ifdef CONFIG_NUMA
1765 /*
1766  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1767  * skip over zones that are not allowed by the cpuset, or that have
1768  * been recently (in last second) found to be nearly full.  See further
1769  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1770  * that have to skip over a lot of full or unallowed zones.
1771  *
1772  * If the zonelist cache is present in the passed zonelist, then
1773  * returns a pointer to the allowed node mask (either the current
1774  * tasks mems_allowed, or node_states[N_MEMORY].)
1775  *
1776  * If the zonelist cache is not available for this zonelist, does
1777  * nothing and returns NULL.
1778  *
1779  * If the fullzones BITMAP in the zonelist cache is stale (more than
1780  * a second since last zap'd) then we zap it out (clear its bits.)
1781  *
1782  * We hold off even calling zlc_setup, until after we've checked the
1783  * first zone in the zonelist, on the theory that most allocations will
1784  * be satisfied from that first zone, so best to examine that zone as
1785  * quickly as we can.
1786  */
1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1788 {
1789 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1790 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1791 
1792 	zlc = zonelist->zlcache_ptr;
1793 	if (!zlc)
1794 		return NULL;
1795 
1796 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1797 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1798 		zlc->last_full_zap = jiffies;
1799 	}
1800 
1801 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1802 					&cpuset_current_mems_allowed :
1803 					&node_states[N_MEMORY];
1804 	return allowednodes;
1805 }
1806 
1807 /*
1808  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1809  * if it is worth looking at further for free memory:
1810  *  1) Check that the zone isn't thought to be full (doesn't have its
1811  *     bit set in the zonelist_cache fullzones BITMAP).
1812  *  2) Check that the zones node (obtained from the zonelist_cache
1813  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1814  * Return true (non-zero) if zone is worth looking at further, or
1815  * else return false (zero) if it is not.
1816  *
1817  * This check -ignores- the distinction between various watermarks,
1818  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1819  * found to be full for any variation of these watermarks, it will
1820  * be considered full for up to one second by all requests, unless
1821  * we are so low on memory on all allowed nodes that we are forced
1822  * into the second scan of the zonelist.
1823  *
1824  * In the second scan we ignore this zonelist cache and exactly
1825  * apply the watermarks to all zones, even it is slower to do so.
1826  * We are low on memory in the second scan, and should leave no stone
1827  * unturned looking for a free page.
1828  */
1829 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1830 						nodemask_t *allowednodes)
1831 {
1832 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1833 	int i;				/* index of *z in zonelist zones */
1834 	int n;				/* node that zone *z is on */
1835 
1836 	zlc = zonelist->zlcache_ptr;
1837 	if (!zlc)
1838 		return 1;
1839 
1840 	i = z - zonelist->_zonerefs;
1841 	n = zlc->z_to_n[i];
1842 
1843 	/* This zone is worth trying if it is allowed but not full */
1844 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1845 }
1846 
1847 /*
1848  * Given 'z' scanning a zonelist, set the corresponding bit in
1849  * zlc->fullzones, so that subsequent attempts to allocate a page
1850  * from that zone don't waste time re-examining it.
1851  */
1852 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1853 {
1854 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1855 	int i;				/* index of *z in zonelist zones */
1856 
1857 	zlc = zonelist->zlcache_ptr;
1858 	if (!zlc)
1859 		return;
1860 
1861 	i = z - zonelist->_zonerefs;
1862 
1863 	set_bit(i, zlc->fullzones);
1864 }
1865 
1866 /*
1867  * clear all zones full, called after direct reclaim makes progress so that
1868  * a zone that was recently full is not skipped over for up to a second
1869  */
1870 static void zlc_clear_zones_full(struct zonelist *zonelist)
1871 {
1872 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1873 
1874 	zlc = zonelist->zlcache_ptr;
1875 	if (!zlc)
1876 		return;
1877 
1878 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1879 }
1880 
1881 static bool zone_local(struct zone *local_zone, struct zone *zone)
1882 {
1883 	return local_zone->node == zone->node;
1884 }
1885 
1886 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1887 {
1888 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1889 				RECLAIM_DISTANCE;
1890 }
1891 
1892 #else	/* CONFIG_NUMA */
1893 
1894 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1895 {
1896 	return NULL;
1897 }
1898 
1899 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1900 				nodemask_t *allowednodes)
1901 {
1902 	return 1;
1903 }
1904 
1905 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1906 {
1907 }
1908 
1909 static void zlc_clear_zones_full(struct zonelist *zonelist)
1910 {
1911 }
1912 
1913 static bool zone_local(struct zone *local_zone, struct zone *zone)
1914 {
1915 	return true;
1916 }
1917 
1918 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1919 {
1920 	return true;
1921 }
1922 
1923 #endif	/* CONFIG_NUMA */
1924 
1925 /*
1926  * get_page_from_freelist goes through the zonelist trying to allocate
1927  * a page.
1928  */
1929 static struct page *
1930 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1931 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1932 		struct zone *preferred_zone, int classzone_idx, int migratetype)
1933 {
1934 	struct zoneref *z;
1935 	struct page *page = NULL;
1936 	struct zone *zone;
1937 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1938 	int zlc_active = 0;		/* set if using zonelist_cache */
1939 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1940 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1941 				(gfp_mask & __GFP_WRITE);
1942 
1943 zonelist_scan:
1944 	/*
1945 	 * Scan zonelist, looking for a zone with enough free.
1946 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1947 	 */
1948 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1949 						high_zoneidx, nodemask) {
1950 		unsigned long mark;
1951 
1952 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1953 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1954 				continue;
1955 		if (cpusets_enabled() &&
1956 			(alloc_flags & ALLOC_CPUSET) &&
1957 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1958 				continue;
1959 		/*
1960 		 * Distribute pages in proportion to the individual
1961 		 * zone size to ensure fair page aging.  The zone a
1962 		 * page was allocated in should have no effect on the
1963 		 * time the page has in memory before being reclaimed.
1964 		 */
1965 		if (alloc_flags & ALLOC_FAIR) {
1966 			if (!zone_local(preferred_zone, zone))
1967 				continue;
1968 			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1969 				continue;
1970 		}
1971 		/*
1972 		 * When allocating a page cache page for writing, we
1973 		 * want to get it from a zone that is within its dirty
1974 		 * limit, such that no single zone holds more than its
1975 		 * proportional share of globally allowed dirty pages.
1976 		 * The dirty limits take into account the zone's
1977 		 * lowmem reserves and high watermark so that kswapd
1978 		 * should be able to balance it without having to
1979 		 * write pages from its LRU list.
1980 		 *
1981 		 * This may look like it could increase pressure on
1982 		 * lower zones by failing allocations in higher zones
1983 		 * before they are full.  But the pages that do spill
1984 		 * over are limited as the lower zones are protected
1985 		 * by this very same mechanism.  It should not become
1986 		 * a practical burden to them.
1987 		 *
1988 		 * XXX: For now, allow allocations to potentially
1989 		 * exceed the per-zone dirty limit in the slowpath
1990 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1991 		 * which is important when on a NUMA setup the allowed
1992 		 * zones are together not big enough to reach the
1993 		 * global limit.  The proper fix for these situations
1994 		 * will require awareness of zones in the
1995 		 * dirty-throttling and the flusher threads.
1996 		 */
1997 		if (consider_zone_dirty && !zone_dirty_ok(zone))
1998 			continue;
1999 
2000 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2001 		if (!zone_watermark_ok(zone, order, mark,
2002 				       classzone_idx, alloc_flags)) {
2003 			int ret;
2004 
2005 			/* Checked here to keep the fast path fast */
2006 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2007 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2008 				goto try_this_zone;
2009 
2010 			if (IS_ENABLED(CONFIG_NUMA) &&
2011 					!did_zlc_setup && nr_online_nodes > 1) {
2012 				/*
2013 				 * we do zlc_setup if there are multiple nodes
2014 				 * and before considering the first zone allowed
2015 				 * by the cpuset.
2016 				 */
2017 				allowednodes = zlc_setup(zonelist, alloc_flags);
2018 				zlc_active = 1;
2019 				did_zlc_setup = 1;
2020 			}
2021 
2022 			if (zone_reclaim_mode == 0 ||
2023 			    !zone_allows_reclaim(preferred_zone, zone))
2024 				goto this_zone_full;
2025 
2026 			/*
2027 			 * As we may have just activated ZLC, check if the first
2028 			 * eligible zone has failed zone_reclaim recently.
2029 			 */
2030 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2031 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2032 				continue;
2033 
2034 			ret = zone_reclaim(zone, gfp_mask, order);
2035 			switch (ret) {
2036 			case ZONE_RECLAIM_NOSCAN:
2037 				/* did not scan */
2038 				continue;
2039 			case ZONE_RECLAIM_FULL:
2040 				/* scanned but unreclaimable */
2041 				continue;
2042 			default:
2043 				/* did we reclaim enough */
2044 				if (zone_watermark_ok(zone, order, mark,
2045 						classzone_idx, alloc_flags))
2046 					goto try_this_zone;
2047 
2048 				/*
2049 				 * Failed to reclaim enough to meet watermark.
2050 				 * Only mark the zone full if checking the min
2051 				 * watermark or if we failed to reclaim just
2052 				 * 1<<order pages or else the page allocator
2053 				 * fastpath will prematurely mark zones full
2054 				 * when the watermark is between the low and
2055 				 * min watermarks.
2056 				 */
2057 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2058 				    ret == ZONE_RECLAIM_SOME)
2059 					goto this_zone_full;
2060 
2061 				continue;
2062 			}
2063 		}
2064 
2065 try_this_zone:
2066 		page = buffered_rmqueue(preferred_zone, zone, order,
2067 						gfp_mask, migratetype);
2068 		if (page)
2069 			break;
2070 this_zone_full:
2071 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2072 			zlc_mark_zone_full(zonelist, z);
2073 	}
2074 
2075 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2076 		/* Disable zlc cache for second zonelist scan */
2077 		zlc_active = 0;
2078 		goto zonelist_scan;
2079 	}
2080 
2081 	if (page)
2082 		/*
2083 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2084 		 * necessary to allocate the page. The expectation is
2085 		 * that the caller is taking steps that will free more
2086 		 * memory. The caller should avoid the page being used
2087 		 * for !PFMEMALLOC purposes.
2088 		 */
2089 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2090 
2091 	return page;
2092 }
2093 
2094 /*
2095  * Large machines with many possible nodes should not always dump per-node
2096  * meminfo in irq context.
2097  */
2098 static inline bool should_suppress_show_mem(void)
2099 {
2100 	bool ret = false;
2101 
2102 #if NODES_SHIFT > 8
2103 	ret = in_interrupt();
2104 #endif
2105 	return ret;
2106 }
2107 
2108 static DEFINE_RATELIMIT_STATE(nopage_rs,
2109 		DEFAULT_RATELIMIT_INTERVAL,
2110 		DEFAULT_RATELIMIT_BURST);
2111 
2112 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2113 {
2114 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2115 
2116 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2117 	    debug_guardpage_minorder() > 0)
2118 		return;
2119 
2120 	/*
2121 	 * This documents exceptions given to allocations in certain
2122 	 * contexts that are allowed to allocate outside current's set
2123 	 * of allowed nodes.
2124 	 */
2125 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2126 		if (test_thread_flag(TIF_MEMDIE) ||
2127 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2128 			filter &= ~SHOW_MEM_FILTER_NODES;
2129 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2130 		filter &= ~SHOW_MEM_FILTER_NODES;
2131 
2132 	if (fmt) {
2133 		struct va_format vaf;
2134 		va_list args;
2135 
2136 		va_start(args, fmt);
2137 
2138 		vaf.fmt = fmt;
2139 		vaf.va = &args;
2140 
2141 		pr_warn("%pV", &vaf);
2142 
2143 		va_end(args);
2144 	}
2145 
2146 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2147 		current->comm, order, gfp_mask);
2148 
2149 	dump_stack();
2150 	if (!should_suppress_show_mem())
2151 		show_mem(filter);
2152 }
2153 
2154 static inline int
2155 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2156 				unsigned long did_some_progress,
2157 				unsigned long pages_reclaimed)
2158 {
2159 	/* Do not loop if specifically requested */
2160 	if (gfp_mask & __GFP_NORETRY)
2161 		return 0;
2162 
2163 	/* Always retry if specifically requested */
2164 	if (gfp_mask & __GFP_NOFAIL)
2165 		return 1;
2166 
2167 	/*
2168 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2169 	 * making forward progress without invoking OOM. Suspend also disables
2170 	 * storage devices so kswapd will not help. Bail if we are suspending.
2171 	 */
2172 	if (!did_some_progress && pm_suspended_storage())
2173 		return 0;
2174 
2175 	/*
2176 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2177 	 * means __GFP_NOFAIL, but that may not be true in other
2178 	 * implementations.
2179 	 */
2180 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2181 		return 1;
2182 
2183 	/*
2184 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2185 	 * specified, then we retry until we no longer reclaim any pages
2186 	 * (above), or we've reclaimed an order of pages at least as
2187 	 * large as the allocation's order. In both cases, if the
2188 	 * allocation still fails, we stop retrying.
2189 	 */
2190 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2191 		return 1;
2192 
2193 	return 0;
2194 }
2195 
2196 static inline struct page *
2197 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2198 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2199 	nodemask_t *nodemask, struct zone *preferred_zone,
2200 	int classzone_idx, int migratetype)
2201 {
2202 	struct page *page;
2203 
2204 	/* Acquire the OOM killer lock for the zones in zonelist */
2205 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2206 		schedule_timeout_uninterruptible(1);
2207 		return NULL;
2208 	}
2209 
2210 	/*
2211 	 * Go through the zonelist yet one more time, keep very high watermark
2212 	 * here, this is only to catch a parallel oom killing, we must fail if
2213 	 * we're still under heavy pressure.
2214 	 */
2215 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2216 		order, zonelist, high_zoneidx,
2217 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2218 		preferred_zone, classzone_idx, migratetype);
2219 	if (page)
2220 		goto out;
2221 
2222 	if (!(gfp_mask & __GFP_NOFAIL)) {
2223 		/* The OOM killer will not help higher order allocs */
2224 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2225 			goto out;
2226 		/* The OOM killer does not needlessly kill tasks for lowmem */
2227 		if (high_zoneidx < ZONE_NORMAL)
2228 			goto out;
2229 		/*
2230 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2231 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2232 		 * The caller should handle page allocation failure by itself if
2233 		 * it specifies __GFP_THISNODE.
2234 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2235 		 */
2236 		if (gfp_mask & __GFP_THISNODE)
2237 			goto out;
2238 	}
2239 	/* Exhausted what can be done so it's blamo time */
2240 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2241 
2242 out:
2243 	clear_zonelist_oom(zonelist, gfp_mask);
2244 	return page;
2245 }
2246 
2247 #ifdef CONFIG_COMPACTION
2248 /* Try memory compaction for high-order allocations before reclaim */
2249 static struct page *
2250 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2251 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2252 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2253 	int classzone_idx, int migratetype, enum migrate_mode mode,
2254 	bool *contended_compaction, bool *deferred_compaction,
2255 	unsigned long *did_some_progress)
2256 {
2257 	if (!order)
2258 		return NULL;
2259 
2260 	if (compaction_deferred(preferred_zone, order)) {
2261 		*deferred_compaction = true;
2262 		return NULL;
2263 	}
2264 
2265 	current->flags |= PF_MEMALLOC;
2266 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2267 						nodemask, mode,
2268 						contended_compaction);
2269 	current->flags &= ~PF_MEMALLOC;
2270 
2271 	if (*did_some_progress != COMPACT_SKIPPED) {
2272 		struct page *page;
2273 
2274 		/* Page migration frees to the PCP lists but we want merging */
2275 		drain_pages(get_cpu());
2276 		put_cpu();
2277 
2278 		page = get_page_from_freelist(gfp_mask, nodemask,
2279 				order, zonelist, high_zoneidx,
2280 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2281 				preferred_zone, classzone_idx, migratetype);
2282 		if (page) {
2283 			preferred_zone->compact_blockskip_flush = false;
2284 			compaction_defer_reset(preferred_zone, order, true);
2285 			count_vm_event(COMPACTSUCCESS);
2286 			return page;
2287 		}
2288 
2289 		/*
2290 		 * It's bad if compaction run occurs and fails.
2291 		 * The most likely reason is that pages exist,
2292 		 * but not enough to satisfy watermarks.
2293 		 */
2294 		count_vm_event(COMPACTFAIL);
2295 
2296 		/*
2297 		 * As async compaction considers a subset of pageblocks, only
2298 		 * defer if the failure was a sync compaction failure.
2299 		 */
2300 		if (mode != MIGRATE_ASYNC)
2301 			defer_compaction(preferred_zone, order);
2302 
2303 		cond_resched();
2304 	}
2305 
2306 	return NULL;
2307 }
2308 #else
2309 static inline struct page *
2310 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2311 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2312 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2313 	int classzone_idx, int migratetype,
2314 	enum migrate_mode mode, bool *contended_compaction,
2315 	bool *deferred_compaction, unsigned long *did_some_progress)
2316 {
2317 	return NULL;
2318 }
2319 #endif /* CONFIG_COMPACTION */
2320 
2321 /* Perform direct synchronous page reclaim */
2322 static int
2323 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2324 		  nodemask_t *nodemask)
2325 {
2326 	struct reclaim_state reclaim_state;
2327 	int progress;
2328 
2329 	cond_resched();
2330 
2331 	/* We now go into synchronous reclaim */
2332 	cpuset_memory_pressure_bump();
2333 	current->flags |= PF_MEMALLOC;
2334 	lockdep_set_current_reclaim_state(gfp_mask);
2335 	reclaim_state.reclaimed_slab = 0;
2336 	current->reclaim_state = &reclaim_state;
2337 
2338 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2339 
2340 	current->reclaim_state = NULL;
2341 	lockdep_clear_current_reclaim_state();
2342 	current->flags &= ~PF_MEMALLOC;
2343 
2344 	cond_resched();
2345 
2346 	return progress;
2347 }
2348 
2349 /* The really slow allocator path where we enter direct reclaim */
2350 static inline struct page *
2351 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2352 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2353 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2354 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2355 {
2356 	struct page *page = NULL;
2357 	bool drained = false;
2358 
2359 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2360 					       nodemask);
2361 	if (unlikely(!(*did_some_progress)))
2362 		return NULL;
2363 
2364 	/* After successful reclaim, reconsider all zones for allocation */
2365 	if (IS_ENABLED(CONFIG_NUMA))
2366 		zlc_clear_zones_full(zonelist);
2367 
2368 retry:
2369 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2370 					zonelist, high_zoneidx,
2371 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2372 					preferred_zone, classzone_idx,
2373 					migratetype);
2374 
2375 	/*
2376 	 * If an allocation failed after direct reclaim, it could be because
2377 	 * pages are pinned on the per-cpu lists. Drain them and try again
2378 	 */
2379 	if (!page && !drained) {
2380 		drain_all_pages();
2381 		drained = true;
2382 		goto retry;
2383 	}
2384 
2385 	return page;
2386 }
2387 
2388 /*
2389  * This is called in the allocator slow-path if the allocation request is of
2390  * sufficient urgency to ignore watermarks and take other desperate measures
2391  */
2392 static inline struct page *
2393 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2394 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2395 	nodemask_t *nodemask, struct zone *preferred_zone,
2396 	int classzone_idx, int migratetype)
2397 {
2398 	struct page *page;
2399 
2400 	do {
2401 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2402 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2403 			preferred_zone, classzone_idx, migratetype);
2404 
2405 		if (!page && gfp_mask & __GFP_NOFAIL)
2406 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2407 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2408 
2409 	return page;
2410 }
2411 
2412 static void reset_alloc_batches(struct zonelist *zonelist,
2413 				enum zone_type high_zoneidx,
2414 				struct zone *preferred_zone)
2415 {
2416 	struct zoneref *z;
2417 	struct zone *zone;
2418 
2419 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2420 		/*
2421 		 * Only reset the batches of zones that were actually
2422 		 * considered in the fairness pass, we don't want to
2423 		 * trash fairness information for zones that are not
2424 		 * actually part of this zonelist's round-robin cycle.
2425 		 */
2426 		if (!zone_local(preferred_zone, zone))
2427 			continue;
2428 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2429 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2430 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2431 	}
2432 }
2433 
2434 static void wake_all_kswapds(unsigned int order,
2435 			     struct zonelist *zonelist,
2436 			     enum zone_type high_zoneidx,
2437 			     struct zone *preferred_zone)
2438 {
2439 	struct zoneref *z;
2440 	struct zone *zone;
2441 
2442 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2443 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2444 }
2445 
2446 static inline int
2447 gfp_to_alloc_flags(gfp_t gfp_mask)
2448 {
2449 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2450 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2451 
2452 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2453 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2454 
2455 	/*
2456 	 * The caller may dip into page reserves a bit more if the caller
2457 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2458 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2459 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2460 	 */
2461 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2462 
2463 	if (!wait) {
2464 		/*
2465 		 * Not worth trying to allocate harder for
2466 		 * __GFP_NOMEMALLOC even if it can't schedule.
2467 		 */
2468 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2469 			alloc_flags |= ALLOC_HARDER;
2470 		/*
2471 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2472 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2473 		 */
2474 		alloc_flags &= ~ALLOC_CPUSET;
2475 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2476 		alloc_flags |= ALLOC_HARDER;
2477 
2478 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2479 		if (gfp_mask & __GFP_MEMALLOC)
2480 			alloc_flags |= ALLOC_NO_WATERMARKS;
2481 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2482 			alloc_flags |= ALLOC_NO_WATERMARKS;
2483 		else if (!in_interrupt() &&
2484 				((current->flags & PF_MEMALLOC) ||
2485 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2486 			alloc_flags |= ALLOC_NO_WATERMARKS;
2487 	}
2488 #ifdef CONFIG_CMA
2489 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2490 		alloc_flags |= ALLOC_CMA;
2491 #endif
2492 	return alloc_flags;
2493 }
2494 
2495 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2496 {
2497 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2498 }
2499 
2500 static inline struct page *
2501 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2502 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2503 	nodemask_t *nodemask, struct zone *preferred_zone,
2504 	int classzone_idx, int migratetype)
2505 {
2506 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2507 	struct page *page = NULL;
2508 	int alloc_flags;
2509 	unsigned long pages_reclaimed = 0;
2510 	unsigned long did_some_progress;
2511 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2512 	bool deferred_compaction = false;
2513 	bool contended_compaction = false;
2514 
2515 	/*
2516 	 * In the slowpath, we sanity check order to avoid ever trying to
2517 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2518 	 * be using allocators in order of preference for an area that is
2519 	 * too large.
2520 	 */
2521 	if (order >= MAX_ORDER) {
2522 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2523 		return NULL;
2524 	}
2525 
2526 	/*
2527 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2528 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2529 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2530 	 * using a larger set of nodes after it has established that the
2531 	 * allowed per node queues are empty and that nodes are
2532 	 * over allocated.
2533 	 */
2534 	if (IS_ENABLED(CONFIG_NUMA) &&
2535 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2536 		goto nopage;
2537 
2538 restart:
2539 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2540 		wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2541 
2542 	/*
2543 	 * OK, we're below the kswapd watermark and have kicked background
2544 	 * reclaim. Now things get more complex, so set up alloc_flags according
2545 	 * to how we want to proceed.
2546 	 */
2547 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2548 
2549 	/*
2550 	 * Find the true preferred zone if the allocation is unconstrained by
2551 	 * cpusets.
2552 	 */
2553 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2554 		struct zoneref *preferred_zoneref;
2555 		preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2556 				NULL, &preferred_zone);
2557 		classzone_idx = zonelist_zone_idx(preferred_zoneref);
2558 	}
2559 
2560 rebalance:
2561 	/* This is the last chance, in general, before the goto nopage. */
2562 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2563 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2564 			preferred_zone, classzone_idx, migratetype);
2565 	if (page)
2566 		goto got_pg;
2567 
2568 	/* Allocate without watermarks if the context allows */
2569 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2570 		/*
2571 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2572 		 * the allocation is high priority and these type of
2573 		 * allocations are system rather than user orientated
2574 		 */
2575 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2576 
2577 		page = __alloc_pages_high_priority(gfp_mask, order,
2578 				zonelist, high_zoneidx, nodemask,
2579 				preferred_zone, classzone_idx, migratetype);
2580 		if (page) {
2581 			goto got_pg;
2582 		}
2583 	}
2584 
2585 	/* Atomic allocations - we can't balance anything */
2586 	if (!wait) {
2587 		/*
2588 		 * All existing users of the deprecated __GFP_NOFAIL are
2589 		 * blockable, so warn of any new users that actually allow this
2590 		 * type of allocation to fail.
2591 		 */
2592 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2593 		goto nopage;
2594 	}
2595 
2596 	/* Avoid recursion of direct reclaim */
2597 	if (current->flags & PF_MEMALLOC)
2598 		goto nopage;
2599 
2600 	/* Avoid allocations with no watermarks from looping endlessly */
2601 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2602 		goto nopage;
2603 
2604 	/*
2605 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2606 	 * attempts after direct reclaim are synchronous
2607 	 */
2608 	page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2609 					high_zoneidx, nodemask, alloc_flags,
2610 					preferred_zone,
2611 					classzone_idx, migratetype,
2612 					migration_mode, &contended_compaction,
2613 					&deferred_compaction,
2614 					&did_some_progress);
2615 	if (page)
2616 		goto got_pg;
2617 
2618 	/*
2619 	 * It can become very expensive to allocate transparent hugepages at
2620 	 * fault, so use asynchronous memory compaction for THP unless it is
2621 	 * khugepaged trying to collapse.
2622 	 */
2623 	if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2624 		migration_mode = MIGRATE_SYNC_LIGHT;
2625 
2626 	/*
2627 	 * If compaction is deferred for high-order allocations, it is because
2628 	 * sync compaction recently failed. In this is the case and the caller
2629 	 * requested a movable allocation that does not heavily disrupt the
2630 	 * system then fail the allocation instead of entering direct reclaim.
2631 	 */
2632 	if ((deferred_compaction || contended_compaction) &&
2633 						(gfp_mask & __GFP_NO_KSWAPD))
2634 		goto nopage;
2635 
2636 	/* Try direct reclaim and then allocating */
2637 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2638 					zonelist, high_zoneidx,
2639 					nodemask,
2640 					alloc_flags, preferred_zone,
2641 					classzone_idx, migratetype,
2642 					&did_some_progress);
2643 	if (page)
2644 		goto got_pg;
2645 
2646 	/*
2647 	 * If we failed to make any progress reclaiming, then we are
2648 	 * running out of options and have to consider going OOM
2649 	 */
2650 	if (!did_some_progress) {
2651 		if (oom_gfp_allowed(gfp_mask)) {
2652 			if (oom_killer_disabled)
2653 				goto nopage;
2654 			/* Coredumps can quickly deplete all memory reserves */
2655 			if ((current->flags & PF_DUMPCORE) &&
2656 			    !(gfp_mask & __GFP_NOFAIL))
2657 				goto nopage;
2658 			page = __alloc_pages_may_oom(gfp_mask, order,
2659 					zonelist, high_zoneidx,
2660 					nodemask, preferred_zone,
2661 					classzone_idx, migratetype);
2662 			if (page)
2663 				goto got_pg;
2664 
2665 			if (!(gfp_mask & __GFP_NOFAIL)) {
2666 				/*
2667 				 * The oom killer is not called for high-order
2668 				 * allocations that may fail, so if no progress
2669 				 * is being made, there are no other options and
2670 				 * retrying is unlikely to help.
2671 				 */
2672 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2673 					goto nopage;
2674 				/*
2675 				 * The oom killer is not called for lowmem
2676 				 * allocations to prevent needlessly killing
2677 				 * innocent tasks.
2678 				 */
2679 				if (high_zoneidx < ZONE_NORMAL)
2680 					goto nopage;
2681 			}
2682 
2683 			goto restart;
2684 		}
2685 	}
2686 
2687 	/* Check if we should retry the allocation */
2688 	pages_reclaimed += did_some_progress;
2689 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2690 						pages_reclaimed)) {
2691 		/* Wait for some write requests to complete then retry */
2692 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2693 		goto rebalance;
2694 	} else {
2695 		/*
2696 		 * High-order allocations do not necessarily loop after
2697 		 * direct reclaim and reclaim/compaction depends on compaction
2698 		 * being called after reclaim so call directly if necessary
2699 		 */
2700 		page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2701 					high_zoneidx, nodemask, alloc_flags,
2702 					preferred_zone,
2703 					classzone_idx, migratetype,
2704 					migration_mode, &contended_compaction,
2705 					&deferred_compaction,
2706 					&did_some_progress);
2707 		if (page)
2708 			goto got_pg;
2709 	}
2710 
2711 nopage:
2712 	warn_alloc_failed(gfp_mask, order, NULL);
2713 	return page;
2714 got_pg:
2715 	if (kmemcheck_enabled)
2716 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2717 
2718 	return page;
2719 }
2720 
2721 /*
2722  * This is the 'heart' of the zoned buddy allocator.
2723  */
2724 struct page *
2725 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2726 			struct zonelist *zonelist, nodemask_t *nodemask)
2727 {
2728 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2729 	struct zone *preferred_zone;
2730 	struct zoneref *preferred_zoneref;
2731 	struct page *page = NULL;
2732 	int migratetype = allocflags_to_migratetype(gfp_mask);
2733 	unsigned int cpuset_mems_cookie;
2734 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2735 	int classzone_idx;
2736 
2737 	gfp_mask &= gfp_allowed_mask;
2738 
2739 	lockdep_trace_alloc(gfp_mask);
2740 
2741 	might_sleep_if(gfp_mask & __GFP_WAIT);
2742 
2743 	if (should_fail_alloc_page(gfp_mask, order))
2744 		return NULL;
2745 
2746 	/*
2747 	 * Check the zones suitable for the gfp_mask contain at least one
2748 	 * valid zone. It's possible to have an empty zonelist as a result
2749 	 * of GFP_THISNODE and a memoryless node
2750 	 */
2751 	if (unlikely(!zonelist->_zonerefs->zone))
2752 		return NULL;
2753 
2754 retry_cpuset:
2755 	cpuset_mems_cookie = read_mems_allowed_begin();
2756 
2757 	/* The preferred zone is used for statistics later */
2758 	preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2759 				nodemask ? : &cpuset_current_mems_allowed,
2760 				&preferred_zone);
2761 	if (!preferred_zone)
2762 		goto out;
2763 	classzone_idx = zonelist_zone_idx(preferred_zoneref);
2764 
2765 #ifdef CONFIG_CMA
2766 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2767 		alloc_flags |= ALLOC_CMA;
2768 #endif
2769 retry:
2770 	/* First allocation attempt */
2771 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2772 			zonelist, high_zoneidx, alloc_flags,
2773 			preferred_zone, classzone_idx, migratetype);
2774 	if (unlikely(!page)) {
2775 		/*
2776 		 * The first pass makes sure allocations are spread
2777 		 * fairly within the local node.  However, the local
2778 		 * node might have free pages left after the fairness
2779 		 * batches are exhausted, and remote zones haven't
2780 		 * even been considered yet.  Try once more without
2781 		 * fairness, and include remote zones now, before
2782 		 * entering the slowpath and waking kswapd: prefer
2783 		 * spilling to a remote zone over swapping locally.
2784 		 */
2785 		if (alloc_flags & ALLOC_FAIR) {
2786 			reset_alloc_batches(zonelist, high_zoneidx,
2787 					    preferred_zone);
2788 			alloc_flags &= ~ALLOC_FAIR;
2789 			goto retry;
2790 		}
2791 		/*
2792 		 * Runtime PM, block IO and its error handling path
2793 		 * can deadlock because I/O on the device might not
2794 		 * complete.
2795 		 */
2796 		gfp_mask = memalloc_noio_flags(gfp_mask);
2797 		page = __alloc_pages_slowpath(gfp_mask, order,
2798 				zonelist, high_zoneidx, nodemask,
2799 				preferred_zone, classzone_idx, migratetype);
2800 	}
2801 
2802 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2803 
2804 out:
2805 	/*
2806 	 * When updating a task's mems_allowed, it is possible to race with
2807 	 * parallel threads in such a way that an allocation can fail while
2808 	 * the mask is being updated. If a page allocation is about to fail,
2809 	 * check if the cpuset changed during allocation and if so, retry.
2810 	 */
2811 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2812 		goto retry_cpuset;
2813 
2814 	return page;
2815 }
2816 EXPORT_SYMBOL(__alloc_pages_nodemask);
2817 
2818 /*
2819  * Common helper functions.
2820  */
2821 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2822 {
2823 	struct page *page;
2824 
2825 	/*
2826 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2827 	 * a highmem page
2828 	 */
2829 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2830 
2831 	page = alloc_pages(gfp_mask, order);
2832 	if (!page)
2833 		return 0;
2834 	return (unsigned long) page_address(page);
2835 }
2836 EXPORT_SYMBOL(__get_free_pages);
2837 
2838 unsigned long get_zeroed_page(gfp_t gfp_mask)
2839 {
2840 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2841 }
2842 EXPORT_SYMBOL(get_zeroed_page);
2843 
2844 void __free_pages(struct page *page, unsigned int order)
2845 {
2846 	if (put_page_testzero(page)) {
2847 		if (order == 0)
2848 			free_hot_cold_page(page, false);
2849 		else
2850 			__free_pages_ok(page, order);
2851 	}
2852 }
2853 
2854 EXPORT_SYMBOL(__free_pages);
2855 
2856 void free_pages(unsigned long addr, unsigned int order)
2857 {
2858 	if (addr != 0) {
2859 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2860 		__free_pages(virt_to_page((void *)addr), order);
2861 	}
2862 }
2863 
2864 EXPORT_SYMBOL(free_pages);
2865 
2866 /*
2867  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2868  * of the current memory cgroup.
2869  *
2870  * It should be used when the caller would like to use kmalloc, but since the
2871  * allocation is large, it has to fall back to the page allocator.
2872  */
2873 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2874 {
2875 	struct page *page;
2876 	struct mem_cgroup *memcg = NULL;
2877 
2878 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2879 		return NULL;
2880 	page = alloc_pages(gfp_mask, order);
2881 	memcg_kmem_commit_charge(page, memcg, order);
2882 	return page;
2883 }
2884 
2885 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2886 {
2887 	struct page *page;
2888 	struct mem_cgroup *memcg = NULL;
2889 
2890 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2891 		return NULL;
2892 	page = alloc_pages_node(nid, gfp_mask, order);
2893 	memcg_kmem_commit_charge(page, memcg, order);
2894 	return page;
2895 }
2896 
2897 /*
2898  * __free_kmem_pages and free_kmem_pages will free pages allocated with
2899  * alloc_kmem_pages.
2900  */
2901 void __free_kmem_pages(struct page *page, unsigned int order)
2902 {
2903 	memcg_kmem_uncharge_pages(page, order);
2904 	__free_pages(page, order);
2905 }
2906 
2907 void free_kmem_pages(unsigned long addr, unsigned int order)
2908 {
2909 	if (addr != 0) {
2910 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2911 		__free_kmem_pages(virt_to_page((void *)addr), order);
2912 	}
2913 }
2914 
2915 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2916 {
2917 	if (addr) {
2918 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2919 		unsigned long used = addr + PAGE_ALIGN(size);
2920 
2921 		split_page(virt_to_page((void *)addr), order);
2922 		while (used < alloc_end) {
2923 			free_page(used);
2924 			used += PAGE_SIZE;
2925 		}
2926 	}
2927 	return (void *)addr;
2928 }
2929 
2930 /**
2931  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2932  * @size: the number of bytes to allocate
2933  * @gfp_mask: GFP flags for the allocation
2934  *
2935  * This function is similar to alloc_pages(), except that it allocates the
2936  * minimum number of pages to satisfy the request.  alloc_pages() can only
2937  * allocate memory in power-of-two pages.
2938  *
2939  * This function is also limited by MAX_ORDER.
2940  *
2941  * Memory allocated by this function must be released by free_pages_exact().
2942  */
2943 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2944 {
2945 	unsigned int order = get_order(size);
2946 	unsigned long addr;
2947 
2948 	addr = __get_free_pages(gfp_mask, order);
2949 	return make_alloc_exact(addr, order, size);
2950 }
2951 EXPORT_SYMBOL(alloc_pages_exact);
2952 
2953 /**
2954  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2955  *			   pages on a node.
2956  * @nid: the preferred node ID where memory should be allocated
2957  * @size: the number of bytes to allocate
2958  * @gfp_mask: GFP flags for the allocation
2959  *
2960  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2961  * back.
2962  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2963  * but is not exact.
2964  */
2965 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2966 {
2967 	unsigned order = get_order(size);
2968 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2969 	if (!p)
2970 		return NULL;
2971 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2972 }
2973 EXPORT_SYMBOL(alloc_pages_exact_nid);
2974 
2975 /**
2976  * free_pages_exact - release memory allocated via alloc_pages_exact()
2977  * @virt: the value returned by alloc_pages_exact.
2978  * @size: size of allocation, same value as passed to alloc_pages_exact().
2979  *
2980  * Release the memory allocated by a previous call to alloc_pages_exact.
2981  */
2982 void free_pages_exact(void *virt, size_t size)
2983 {
2984 	unsigned long addr = (unsigned long)virt;
2985 	unsigned long end = addr + PAGE_ALIGN(size);
2986 
2987 	while (addr < end) {
2988 		free_page(addr);
2989 		addr += PAGE_SIZE;
2990 	}
2991 }
2992 EXPORT_SYMBOL(free_pages_exact);
2993 
2994 /**
2995  * nr_free_zone_pages - count number of pages beyond high watermark
2996  * @offset: The zone index of the highest zone
2997  *
2998  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2999  * high watermark within all zones at or below a given zone index.  For each
3000  * zone, the number of pages is calculated as:
3001  *     managed_pages - high_pages
3002  */
3003 static unsigned long nr_free_zone_pages(int offset)
3004 {
3005 	struct zoneref *z;
3006 	struct zone *zone;
3007 
3008 	/* Just pick one node, since fallback list is circular */
3009 	unsigned long sum = 0;
3010 
3011 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3012 
3013 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3014 		unsigned long size = zone->managed_pages;
3015 		unsigned long high = high_wmark_pages(zone);
3016 		if (size > high)
3017 			sum += size - high;
3018 	}
3019 
3020 	return sum;
3021 }
3022 
3023 /**
3024  * nr_free_buffer_pages - count number of pages beyond high watermark
3025  *
3026  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3027  * watermark within ZONE_DMA and ZONE_NORMAL.
3028  */
3029 unsigned long nr_free_buffer_pages(void)
3030 {
3031 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3032 }
3033 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3034 
3035 /**
3036  * nr_free_pagecache_pages - count number of pages beyond high watermark
3037  *
3038  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3039  * high watermark within all zones.
3040  */
3041 unsigned long nr_free_pagecache_pages(void)
3042 {
3043 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3044 }
3045 
3046 static inline void show_node(struct zone *zone)
3047 {
3048 	if (IS_ENABLED(CONFIG_NUMA))
3049 		printk("Node %d ", zone_to_nid(zone));
3050 }
3051 
3052 void si_meminfo(struct sysinfo *val)
3053 {
3054 	val->totalram = totalram_pages;
3055 	val->sharedram = 0;
3056 	val->freeram = global_page_state(NR_FREE_PAGES);
3057 	val->bufferram = nr_blockdev_pages();
3058 	val->totalhigh = totalhigh_pages;
3059 	val->freehigh = nr_free_highpages();
3060 	val->mem_unit = PAGE_SIZE;
3061 }
3062 
3063 EXPORT_SYMBOL(si_meminfo);
3064 
3065 #ifdef CONFIG_NUMA
3066 void si_meminfo_node(struct sysinfo *val, int nid)
3067 {
3068 	int zone_type;		/* needs to be signed */
3069 	unsigned long managed_pages = 0;
3070 	pg_data_t *pgdat = NODE_DATA(nid);
3071 
3072 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3073 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3074 	val->totalram = managed_pages;
3075 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3076 #ifdef CONFIG_HIGHMEM
3077 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3078 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3079 			NR_FREE_PAGES);
3080 #else
3081 	val->totalhigh = 0;
3082 	val->freehigh = 0;
3083 #endif
3084 	val->mem_unit = PAGE_SIZE;
3085 }
3086 #endif
3087 
3088 /*
3089  * Determine whether the node should be displayed or not, depending on whether
3090  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3091  */
3092 bool skip_free_areas_node(unsigned int flags, int nid)
3093 {
3094 	bool ret = false;
3095 	unsigned int cpuset_mems_cookie;
3096 
3097 	if (!(flags & SHOW_MEM_FILTER_NODES))
3098 		goto out;
3099 
3100 	do {
3101 		cpuset_mems_cookie = read_mems_allowed_begin();
3102 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3103 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3104 out:
3105 	return ret;
3106 }
3107 
3108 #define K(x) ((x) << (PAGE_SHIFT-10))
3109 
3110 static void show_migration_types(unsigned char type)
3111 {
3112 	static const char types[MIGRATE_TYPES] = {
3113 		[MIGRATE_UNMOVABLE]	= 'U',
3114 		[MIGRATE_RECLAIMABLE]	= 'E',
3115 		[MIGRATE_MOVABLE]	= 'M',
3116 		[MIGRATE_RESERVE]	= 'R',
3117 #ifdef CONFIG_CMA
3118 		[MIGRATE_CMA]		= 'C',
3119 #endif
3120 #ifdef CONFIG_MEMORY_ISOLATION
3121 		[MIGRATE_ISOLATE]	= 'I',
3122 #endif
3123 	};
3124 	char tmp[MIGRATE_TYPES + 1];
3125 	char *p = tmp;
3126 	int i;
3127 
3128 	for (i = 0; i < MIGRATE_TYPES; i++) {
3129 		if (type & (1 << i))
3130 			*p++ = types[i];
3131 	}
3132 
3133 	*p = '\0';
3134 	printk("(%s) ", tmp);
3135 }
3136 
3137 /*
3138  * Show free area list (used inside shift_scroll-lock stuff)
3139  * We also calculate the percentage fragmentation. We do this by counting the
3140  * memory on each free list with the exception of the first item on the list.
3141  * Suppresses nodes that are not allowed by current's cpuset if
3142  * SHOW_MEM_FILTER_NODES is passed.
3143  */
3144 void show_free_areas(unsigned int filter)
3145 {
3146 	int cpu;
3147 	struct zone *zone;
3148 
3149 	for_each_populated_zone(zone) {
3150 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3151 			continue;
3152 		show_node(zone);
3153 		printk("%s per-cpu:\n", zone->name);
3154 
3155 		for_each_online_cpu(cpu) {
3156 			struct per_cpu_pageset *pageset;
3157 
3158 			pageset = per_cpu_ptr(zone->pageset, cpu);
3159 
3160 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3161 			       cpu, pageset->pcp.high,
3162 			       pageset->pcp.batch, pageset->pcp.count);
3163 		}
3164 	}
3165 
3166 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3167 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3168 		" unevictable:%lu"
3169 		" dirty:%lu writeback:%lu unstable:%lu\n"
3170 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3171 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3172 		" free_cma:%lu\n",
3173 		global_page_state(NR_ACTIVE_ANON),
3174 		global_page_state(NR_INACTIVE_ANON),
3175 		global_page_state(NR_ISOLATED_ANON),
3176 		global_page_state(NR_ACTIVE_FILE),
3177 		global_page_state(NR_INACTIVE_FILE),
3178 		global_page_state(NR_ISOLATED_FILE),
3179 		global_page_state(NR_UNEVICTABLE),
3180 		global_page_state(NR_FILE_DIRTY),
3181 		global_page_state(NR_WRITEBACK),
3182 		global_page_state(NR_UNSTABLE_NFS),
3183 		global_page_state(NR_FREE_PAGES),
3184 		global_page_state(NR_SLAB_RECLAIMABLE),
3185 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3186 		global_page_state(NR_FILE_MAPPED),
3187 		global_page_state(NR_SHMEM),
3188 		global_page_state(NR_PAGETABLE),
3189 		global_page_state(NR_BOUNCE),
3190 		global_page_state(NR_FREE_CMA_PAGES));
3191 
3192 	for_each_populated_zone(zone) {
3193 		int i;
3194 
3195 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3196 			continue;
3197 		show_node(zone);
3198 		printk("%s"
3199 			" free:%lukB"
3200 			" min:%lukB"
3201 			" low:%lukB"
3202 			" high:%lukB"
3203 			" active_anon:%lukB"
3204 			" inactive_anon:%lukB"
3205 			" active_file:%lukB"
3206 			" inactive_file:%lukB"
3207 			" unevictable:%lukB"
3208 			" isolated(anon):%lukB"
3209 			" isolated(file):%lukB"
3210 			" present:%lukB"
3211 			" managed:%lukB"
3212 			" mlocked:%lukB"
3213 			" dirty:%lukB"
3214 			" writeback:%lukB"
3215 			" mapped:%lukB"
3216 			" shmem:%lukB"
3217 			" slab_reclaimable:%lukB"
3218 			" slab_unreclaimable:%lukB"
3219 			" kernel_stack:%lukB"
3220 			" pagetables:%lukB"
3221 			" unstable:%lukB"
3222 			" bounce:%lukB"
3223 			" free_cma:%lukB"
3224 			" writeback_tmp:%lukB"
3225 			" pages_scanned:%lu"
3226 			" all_unreclaimable? %s"
3227 			"\n",
3228 			zone->name,
3229 			K(zone_page_state(zone, NR_FREE_PAGES)),
3230 			K(min_wmark_pages(zone)),
3231 			K(low_wmark_pages(zone)),
3232 			K(high_wmark_pages(zone)),
3233 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3234 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3235 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3236 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3237 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3238 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3239 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3240 			K(zone->present_pages),
3241 			K(zone->managed_pages),
3242 			K(zone_page_state(zone, NR_MLOCK)),
3243 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3244 			K(zone_page_state(zone, NR_WRITEBACK)),
3245 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3246 			K(zone_page_state(zone, NR_SHMEM)),
3247 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3248 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3249 			zone_page_state(zone, NR_KERNEL_STACK) *
3250 				THREAD_SIZE / 1024,
3251 			K(zone_page_state(zone, NR_PAGETABLE)),
3252 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3253 			K(zone_page_state(zone, NR_BOUNCE)),
3254 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3255 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3256 			zone->pages_scanned,
3257 			(!zone_reclaimable(zone) ? "yes" : "no")
3258 			);
3259 		printk("lowmem_reserve[]:");
3260 		for (i = 0; i < MAX_NR_ZONES; i++)
3261 			printk(" %lu", zone->lowmem_reserve[i]);
3262 		printk("\n");
3263 	}
3264 
3265 	for_each_populated_zone(zone) {
3266 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3267 		unsigned char types[MAX_ORDER];
3268 
3269 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3270 			continue;
3271 		show_node(zone);
3272 		printk("%s: ", zone->name);
3273 
3274 		spin_lock_irqsave(&zone->lock, flags);
3275 		for (order = 0; order < MAX_ORDER; order++) {
3276 			struct free_area *area = &zone->free_area[order];
3277 			int type;
3278 
3279 			nr[order] = area->nr_free;
3280 			total += nr[order] << order;
3281 
3282 			types[order] = 0;
3283 			for (type = 0; type < MIGRATE_TYPES; type++) {
3284 				if (!list_empty(&area->free_list[type]))
3285 					types[order] |= 1 << type;
3286 			}
3287 		}
3288 		spin_unlock_irqrestore(&zone->lock, flags);
3289 		for (order = 0; order < MAX_ORDER; order++) {
3290 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3291 			if (nr[order])
3292 				show_migration_types(types[order]);
3293 		}
3294 		printk("= %lukB\n", K(total));
3295 	}
3296 
3297 	hugetlb_show_meminfo();
3298 
3299 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3300 
3301 	show_swap_cache_info();
3302 }
3303 
3304 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3305 {
3306 	zoneref->zone = zone;
3307 	zoneref->zone_idx = zone_idx(zone);
3308 }
3309 
3310 /*
3311  * Builds allocation fallback zone lists.
3312  *
3313  * Add all populated zones of a node to the zonelist.
3314  */
3315 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3316 				int nr_zones)
3317 {
3318 	struct zone *zone;
3319 	enum zone_type zone_type = MAX_NR_ZONES;
3320 
3321 	do {
3322 		zone_type--;
3323 		zone = pgdat->node_zones + zone_type;
3324 		if (populated_zone(zone)) {
3325 			zoneref_set_zone(zone,
3326 				&zonelist->_zonerefs[nr_zones++]);
3327 			check_highest_zone(zone_type);
3328 		}
3329 	} while (zone_type);
3330 
3331 	return nr_zones;
3332 }
3333 
3334 
3335 /*
3336  *  zonelist_order:
3337  *  0 = automatic detection of better ordering.
3338  *  1 = order by ([node] distance, -zonetype)
3339  *  2 = order by (-zonetype, [node] distance)
3340  *
3341  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3342  *  the same zonelist. So only NUMA can configure this param.
3343  */
3344 #define ZONELIST_ORDER_DEFAULT  0
3345 #define ZONELIST_ORDER_NODE     1
3346 #define ZONELIST_ORDER_ZONE     2
3347 
3348 /* zonelist order in the kernel.
3349  * set_zonelist_order() will set this to NODE or ZONE.
3350  */
3351 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3352 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3353 
3354 
3355 #ifdef CONFIG_NUMA
3356 /* The value user specified ....changed by config */
3357 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3358 /* string for sysctl */
3359 #define NUMA_ZONELIST_ORDER_LEN	16
3360 char numa_zonelist_order[16] = "default";
3361 
3362 /*
3363  * interface for configure zonelist ordering.
3364  * command line option "numa_zonelist_order"
3365  *	= "[dD]efault	- default, automatic configuration.
3366  *	= "[nN]ode 	- order by node locality, then by zone within node
3367  *	= "[zZ]one      - order by zone, then by locality within zone
3368  */
3369 
3370 static int __parse_numa_zonelist_order(char *s)
3371 {
3372 	if (*s == 'd' || *s == 'D') {
3373 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3374 	} else if (*s == 'n' || *s == 'N') {
3375 		user_zonelist_order = ZONELIST_ORDER_NODE;
3376 	} else if (*s == 'z' || *s == 'Z') {
3377 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3378 	} else {
3379 		printk(KERN_WARNING
3380 			"Ignoring invalid numa_zonelist_order value:  "
3381 			"%s\n", s);
3382 		return -EINVAL;
3383 	}
3384 	return 0;
3385 }
3386 
3387 static __init int setup_numa_zonelist_order(char *s)
3388 {
3389 	int ret;
3390 
3391 	if (!s)
3392 		return 0;
3393 
3394 	ret = __parse_numa_zonelist_order(s);
3395 	if (ret == 0)
3396 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3397 
3398 	return ret;
3399 }
3400 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3401 
3402 /*
3403  * sysctl handler for numa_zonelist_order
3404  */
3405 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3406 		void __user *buffer, size_t *length,
3407 		loff_t *ppos)
3408 {
3409 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3410 	int ret;
3411 	static DEFINE_MUTEX(zl_order_mutex);
3412 
3413 	mutex_lock(&zl_order_mutex);
3414 	if (write) {
3415 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3416 			ret = -EINVAL;
3417 			goto out;
3418 		}
3419 		strcpy(saved_string, (char *)table->data);
3420 	}
3421 	ret = proc_dostring(table, write, buffer, length, ppos);
3422 	if (ret)
3423 		goto out;
3424 	if (write) {
3425 		int oldval = user_zonelist_order;
3426 
3427 		ret = __parse_numa_zonelist_order((char *)table->data);
3428 		if (ret) {
3429 			/*
3430 			 * bogus value.  restore saved string
3431 			 */
3432 			strncpy((char *)table->data, saved_string,
3433 				NUMA_ZONELIST_ORDER_LEN);
3434 			user_zonelist_order = oldval;
3435 		} else if (oldval != user_zonelist_order) {
3436 			mutex_lock(&zonelists_mutex);
3437 			build_all_zonelists(NULL, NULL);
3438 			mutex_unlock(&zonelists_mutex);
3439 		}
3440 	}
3441 out:
3442 	mutex_unlock(&zl_order_mutex);
3443 	return ret;
3444 }
3445 
3446 
3447 #define MAX_NODE_LOAD (nr_online_nodes)
3448 static int node_load[MAX_NUMNODES];
3449 
3450 /**
3451  * find_next_best_node - find the next node that should appear in a given node's fallback list
3452  * @node: node whose fallback list we're appending
3453  * @used_node_mask: nodemask_t of already used nodes
3454  *
3455  * We use a number of factors to determine which is the next node that should
3456  * appear on a given node's fallback list.  The node should not have appeared
3457  * already in @node's fallback list, and it should be the next closest node
3458  * according to the distance array (which contains arbitrary distance values
3459  * from each node to each node in the system), and should also prefer nodes
3460  * with no CPUs, since presumably they'll have very little allocation pressure
3461  * on them otherwise.
3462  * It returns -1 if no node is found.
3463  */
3464 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3465 {
3466 	int n, val;
3467 	int min_val = INT_MAX;
3468 	int best_node = NUMA_NO_NODE;
3469 	const struct cpumask *tmp = cpumask_of_node(0);
3470 
3471 	/* Use the local node if we haven't already */
3472 	if (!node_isset(node, *used_node_mask)) {
3473 		node_set(node, *used_node_mask);
3474 		return node;
3475 	}
3476 
3477 	for_each_node_state(n, N_MEMORY) {
3478 
3479 		/* Don't want a node to appear more than once */
3480 		if (node_isset(n, *used_node_mask))
3481 			continue;
3482 
3483 		/* Use the distance array to find the distance */
3484 		val = node_distance(node, n);
3485 
3486 		/* Penalize nodes under us ("prefer the next node") */
3487 		val += (n < node);
3488 
3489 		/* Give preference to headless and unused nodes */
3490 		tmp = cpumask_of_node(n);
3491 		if (!cpumask_empty(tmp))
3492 			val += PENALTY_FOR_NODE_WITH_CPUS;
3493 
3494 		/* Slight preference for less loaded node */
3495 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3496 		val += node_load[n];
3497 
3498 		if (val < min_val) {
3499 			min_val = val;
3500 			best_node = n;
3501 		}
3502 	}
3503 
3504 	if (best_node >= 0)
3505 		node_set(best_node, *used_node_mask);
3506 
3507 	return best_node;
3508 }
3509 
3510 
3511 /*
3512  * Build zonelists ordered by node and zones within node.
3513  * This results in maximum locality--normal zone overflows into local
3514  * DMA zone, if any--but risks exhausting DMA zone.
3515  */
3516 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3517 {
3518 	int j;
3519 	struct zonelist *zonelist;
3520 
3521 	zonelist = &pgdat->node_zonelists[0];
3522 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3523 		;
3524 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3525 	zonelist->_zonerefs[j].zone = NULL;
3526 	zonelist->_zonerefs[j].zone_idx = 0;
3527 }
3528 
3529 /*
3530  * Build gfp_thisnode zonelists
3531  */
3532 static void build_thisnode_zonelists(pg_data_t *pgdat)
3533 {
3534 	int j;
3535 	struct zonelist *zonelist;
3536 
3537 	zonelist = &pgdat->node_zonelists[1];
3538 	j = build_zonelists_node(pgdat, zonelist, 0);
3539 	zonelist->_zonerefs[j].zone = NULL;
3540 	zonelist->_zonerefs[j].zone_idx = 0;
3541 }
3542 
3543 /*
3544  * Build zonelists ordered by zone and nodes within zones.
3545  * This results in conserving DMA zone[s] until all Normal memory is
3546  * exhausted, but results in overflowing to remote node while memory
3547  * may still exist in local DMA zone.
3548  */
3549 static int node_order[MAX_NUMNODES];
3550 
3551 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3552 {
3553 	int pos, j, node;
3554 	int zone_type;		/* needs to be signed */
3555 	struct zone *z;
3556 	struct zonelist *zonelist;
3557 
3558 	zonelist = &pgdat->node_zonelists[0];
3559 	pos = 0;
3560 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3561 		for (j = 0; j < nr_nodes; j++) {
3562 			node = node_order[j];
3563 			z = &NODE_DATA(node)->node_zones[zone_type];
3564 			if (populated_zone(z)) {
3565 				zoneref_set_zone(z,
3566 					&zonelist->_zonerefs[pos++]);
3567 				check_highest_zone(zone_type);
3568 			}
3569 		}
3570 	}
3571 	zonelist->_zonerefs[pos].zone = NULL;
3572 	zonelist->_zonerefs[pos].zone_idx = 0;
3573 }
3574 
3575 static int default_zonelist_order(void)
3576 {
3577 	int nid, zone_type;
3578 	unsigned long low_kmem_size, total_size;
3579 	struct zone *z;
3580 	int average_size;
3581 	/*
3582 	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3583 	 * If they are really small and used heavily, the system can fall
3584 	 * into OOM very easily.
3585 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3586 	 */
3587 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3588 	low_kmem_size = 0;
3589 	total_size = 0;
3590 	for_each_online_node(nid) {
3591 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3592 			z = &NODE_DATA(nid)->node_zones[zone_type];
3593 			if (populated_zone(z)) {
3594 				if (zone_type < ZONE_NORMAL)
3595 					low_kmem_size += z->managed_pages;
3596 				total_size += z->managed_pages;
3597 			} else if (zone_type == ZONE_NORMAL) {
3598 				/*
3599 				 * If any node has only lowmem, then node order
3600 				 * is preferred to allow kernel allocations
3601 				 * locally; otherwise, they can easily infringe
3602 				 * on other nodes when there is an abundance of
3603 				 * lowmem available to allocate from.
3604 				 */
3605 				return ZONELIST_ORDER_NODE;
3606 			}
3607 		}
3608 	}
3609 	if (!low_kmem_size ||  /* there are no DMA area. */
3610 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3611 		return ZONELIST_ORDER_NODE;
3612 	/*
3613 	 * look into each node's config.
3614 	 * If there is a node whose DMA/DMA32 memory is very big area on
3615 	 * local memory, NODE_ORDER may be suitable.
3616 	 */
3617 	average_size = total_size /
3618 				(nodes_weight(node_states[N_MEMORY]) + 1);
3619 	for_each_online_node(nid) {
3620 		low_kmem_size = 0;
3621 		total_size = 0;
3622 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3623 			z = &NODE_DATA(nid)->node_zones[zone_type];
3624 			if (populated_zone(z)) {
3625 				if (zone_type < ZONE_NORMAL)
3626 					low_kmem_size += z->present_pages;
3627 				total_size += z->present_pages;
3628 			}
3629 		}
3630 		if (low_kmem_size &&
3631 		    total_size > average_size && /* ignore small node */
3632 		    low_kmem_size > total_size * 70/100)
3633 			return ZONELIST_ORDER_NODE;
3634 	}
3635 	return ZONELIST_ORDER_ZONE;
3636 }
3637 
3638 static void set_zonelist_order(void)
3639 {
3640 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3641 		current_zonelist_order = default_zonelist_order();
3642 	else
3643 		current_zonelist_order = user_zonelist_order;
3644 }
3645 
3646 static void build_zonelists(pg_data_t *pgdat)
3647 {
3648 	int j, node, load;
3649 	enum zone_type i;
3650 	nodemask_t used_mask;
3651 	int local_node, prev_node;
3652 	struct zonelist *zonelist;
3653 	int order = current_zonelist_order;
3654 
3655 	/* initialize zonelists */
3656 	for (i = 0; i < MAX_ZONELISTS; i++) {
3657 		zonelist = pgdat->node_zonelists + i;
3658 		zonelist->_zonerefs[0].zone = NULL;
3659 		zonelist->_zonerefs[0].zone_idx = 0;
3660 	}
3661 
3662 	/* NUMA-aware ordering of nodes */
3663 	local_node = pgdat->node_id;
3664 	load = nr_online_nodes;
3665 	prev_node = local_node;
3666 	nodes_clear(used_mask);
3667 
3668 	memset(node_order, 0, sizeof(node_order));
3669 	j = 0;
3670 
3671 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3672 		/*
3673 		 * We don't want to pressure a particular node.
3674 		 * So adding penalty to the first node in same
3675 		 * distance group to make it round-robin.
3676 		 */
3677 		if (node_distance(local_node, node) !=
3678 		    node_distance(local_node, prev_node))
3679 			node_load[node] = load;
3680 
3681 		prev_node = node;
3682 		load--;
3683 		if (order == ZONELIST_ORDER_NODE)
3684 			build_zonelists_in_node_order(pgdat, node);
3685 		else
3686 			node_order[j++] = node;	/* remember order */
3687 	}
3688 
3689 	if (order == ZONELIST_ORDER_ZONE) {
3690 		/* calculate node order -- i.e., DMA last! */
3691 		build_zonelists_in_zone_order(pgdat, j);
3692 	}
3693 
3694 	build_thisnode_zonelists(pgdat);
3695 }
3696 
3697 /* Construct the zonelist performance cache - see further mmzone.h */
3698 static void build_zonelist_cache(pg_data_t *pgdat)
3699 {
3700 	struct zonelist *zonelist;
3701 	struct zonelist_cache *zlc;
3702 	struct zoneref *z;
3703 
3704 	zonelist = &pgdat->node_zonelists[0];
3705 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3706 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3707 	for (z = zonelist->_zonerefs; z->zone; z++)
3708 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3709 }
3710 
3711 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3712 /*
3713  * Return node id of node used for "local" allocations.
3714  * I.e., first node id of first zone in arg node's generic zonelist.
3715  * Used for initializing percpu 'numa_mem', which is used primarily
3716  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3717  */
3718 int local_memory_node(int node)
3719 {
3720 	struct zone *zone;
3721 
3722 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3723 				   gfp_zone(GFP_KERNEL),
3724 				   NULL,
3725 				   &zone);
3726 	return zone->node;
3727 }
3728 #endif
3729 
3730 #else	/* CONFIG_NUMA */
3731 
3732 static void set_zonelist_order(void)
3733 {
3734 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3735 }
3736 
3737 static void build_zonelists(pg_data_t *pgdat)
3738 {
3739 	int node, local_node;
3740 	enum zone_type j;
3741 	struct zonelist *zonelist;
3742 
3743 	local_node = pgdat->node_id;
3744 
3745 	zonelist = &pgdat->node_zonelists[0];
3746 	j = build_zonelists_node(pgdat, zonelist, 0);
3747 
3748 	/*
3749 	 * Now we build the zonelist so that it contains the zones
3750 	 * of all the other nodes.
3751 	 * We don't want to pressure a particular node, so when
3752 	 * building the zones for node N, we make sure that the
3753 	 * zones coming right after the local ones are those from
3754 	 * node N+1 (modulo N)
3755 	 */
3756 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3757 		if (!node_online(node))
3758 			continue;
3759 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3760 	}
3761 	for (node = 0; node < local_node; node++) {
3762 		if (!node_online(node))
3763 			continue;
3764 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3765 	}
3766 
3767 	zonelist->_zonerefs[j].zone = NULL;
3768 	zonelist->_zonerefs[j].zone_idx = 0;
3769 }
3770 
3771 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3772 static void build_zonelist_cache(pg_data_t *pgdat)
3773 {
3774 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3775 }
3776 
3777 #endif	/* CONFIG_NUMA */
3778 
3779 /*
3780  * Boot pageset table. One per cpu which is going to be used for all
3781  * zones and all nodes. The parameters will be set in such a way
3782  * that an item put on a list will immediately be handed over to
3783  * the buddy list. This is safe since pageset manipulation is done
3784  * with interrupts disabled.
3785  *
3786  * The boot_pagesets must be kept even after bootup is complete for
3787  * unused processors and/or zones. They do play a role for bootstrapping
3788  * hotplugged processors.
3789  *
3790  * zoneinfo_show() and maybe other functions do
3791  * not check if the processor is online before following the pageset pointer.
3792  * Other parts of the kernel may not check if the zone is available.
3793  */
3794 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3795 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3796 static void setup_zone_pageset(struct zone *zone);
3797 
3798 /*
3799  * Global mutex to protect against size modification of zonelists
3800  * as well as to serialize pageset setup for the new populated zone.
3801  */
3802 DEFINE_MUTEX(zonelists_mutex);
3803 
3804 /* return values int ....just for stop_machine() */
3805 static int __build_all_zonelists(void *data)
3806 {
3807 	int nid;
3808 	int cpu;
3809 	pg_data_t *self = data;
3810 
3811 #ifdef CONFIG_NUMA
3812 	memset(node_load, 0, sizeof(node_load));
3813 #endif
3814 
3815 	if (self && !node_online(self->node_id)) {
3816 		build_zonelists(self);
3817 		build_zonelist_cache(self);
3818 	}
3819 
3820 	for_each_online_node(nid) {
3821 		pg_data_t *pgdat = NODE_DATA(nid);
3822 
3823 		build_zonelists(pgdat);
3824 		build_zonelist_cache(pgdat);
3825 	}
3826 
3827 	/*
3828 	 * Initialize the boot_pagesets that are going to be used
3829 	 * for bootstrapping processors. The real pagesets for
3830 	 * each zone will be allocated later when the per cpu
3831 	 * allocator is available.
3832 	 *
3833 	 * boot_pagesets are used also for bootstrapping offline
3834 	 * cpus if the system is already booted because the pagesets
3835 	 * are needed to initialize allocators on a specific cpu too.
3836 	 * F.e. the percpu allocator needs the page allocator which
3837 	 * needs the percpu allocator in order to allocate its pagesets
3838 	 * (a chicken-egg dilemma).
3839 	 */
3840 	for_each_possible_cpu(cpu) {
3841 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3842 
3843 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3844 		/*
3845 		 * We now know the "local memory node" for each node--
3846 		 * i.e., the node of the first zone in the generic zonelist.
3847 		 * Set up numa_mem percpu variable for on-line cpus.  During
3848 		 * boot, only the boot cpu should be on-line;  we'll init the
3849 		 * secondary cpus' numa_mem as they come on-line.  During
3850 		 * node/memory hotplug, we'll fixup all on-line cpus.
3851 		 */
3852 		if (cpu_online(cpu))
3853 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3854 #endif
3855 	}
3856 
3857 	return 0;
3858 }
3859 
3860 /*
3861  * Called with zonelists_mutex held always
3862  * unless system_state == SYSTEM_BOOTING.
3863  */
3864 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3865 {
3866 	set_zonelist_order();
3867 
3868 	if (system_state == SYSTEM_BOOTING) {
3869 		__build_all_zonelists(NULL);
3870 		mminit_verify_zonelist();
3871 		cpuset_init_current_mems_allowed();
3872 	} else {
3873 #ifdef CONFIG_MEMORY_HOTPLUG
3874 		if (zone)
3875 			setup_zone_pageset(zone);
3876 #endif
3877 		/* we have to stop all cpus to guarantee there is no user
3878 		   of zonelist */
3879 		stop_machine(__build_all_zonelists, pgdat, NULL);
3880 		/* cpuset refresh routine should be here */
3881 	}
3882 	vm_total_pages = nr_free_pagecache_pages();
3883 	/*
3884 	 * Disable grouping by mobility if the number of pages in the
3885 	 * system is too low to allow the mechanism to work. It would be
3886 	 * more accurate, but expensive to check per-zone. This check is
3887 	 * made on memory-hotadd so a system can start with mobility
3888 	 * disabled and enable it later
3889 	 */
3890 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3891 		page_group_by_mobility_disabled = 1;
3892 	else
3893 		page_group_by_mobility_disabled = 0;
3894 
3895 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3896 		"Total pages: %ld\n",
3897 			nr_online_nodes,
3898 			zonelist_order_name[current_zonelist_order],
3899 			page_group_by_mobility_disabled ? "off" : "on",
3900 			vm_total_pages);
3901 #ifdef CONFIG_NUMA
3902 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3903 #endif
3904 }
3905 
3906 /*
3907  * Helper functions to size the waitqueue hash table.
3908  * Essentially these want to choose hash table sizes sufficiently
3909  * large so that collisions trying to wait on pages are rare.
3910  * But in fact, the number of active page waitqueues on typical
3911  * systems is ridiculously low, less than 200. So this is even
3912  * conservative, even though it seems large.
3913  *
3914  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3915  * waitqueues, i.e. the size of the waitq table given the number of pages.
3916  */
3917 #define PAGES_PER_WAITQUEUE	256
3918 
3919 #ifndef CONFIG_MEMORY_HOTPLUG
3920 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3921 {
3922 	unsigned long size = 1;
3923 
3924 	pages /= PAGES_PER_WAITQUEUE;
3925 
3926 	while (size < pages)
3927 		size <<= 1;
3928 
3929 	/*
3930 	 * Once we have dozens or even hundreds of threads sleeping
3931 	 * on IO we've got bigger problems than wait queue collision.
3932 	 * Limit the size of the wait table to a reasonable size.
3933 	 */
3934 	size = min(size, 4096UL);
3935 
3936 	return max(size, 4UL);
3937 }
3938 #else
3939 /*
3940  * A zone's size might be changed by hot-add, so it is not possible to determine
3941  * a suitable size for its wait_table.  So we use the maximum size now.
3942  *
3943  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3944  *
3945  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3946  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3947  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3948  *
3949  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3950  * or more by the traditional way. (See above).  It equals:
3951  *
3952  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3953  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3954  *    powerpc (64K page size)             : =  (32G +16M)byte.
3955  */
3956 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3957 {
3958 	return 4096UL;
3959 }
3960 #endif
3961 
3962 /*
3963  * This is an integer logarithm so that shifts can be used later
3964  * to extract the more random high bits from the multiplicative
3965  * hash function before the remainder is taken.
3966  */
3967 static inline unsigned long wait_table_bits(unsigned long size)
3968 {
3969 	return ffz(~size);
3970 }
3971 
3972 /*
3973  * Check if a pageblock contains reserved pages
3974  */
3975 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3976 {
3977 	unsigned long pfn;
3978 
3979 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3980 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3981 			return 1;
3982 	}
3983 	return 0;
3984 }
3985 
3986 /*
3987  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3988  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3989  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3990  * higher will lead to a bigger reserve which will get freed as contiguous
3991  * blocks as reclaim kicks in
3992  */
3993 static void setup_zone_migrate_reserve(struct zone *zone)
3994 {
3995 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3996 	struct page *page;
3997 	unsigned long block_migratetype;
3998 	int reserve;
3999 	int old_reserve;
4000 
4001 	/*
4002 	 * Get the start pfn, end pfn and the number of blocks to reserve
4003 	 * We have to be careful to be aligned to pageblock_nr_pages to
4004 	 * make sure that we always check pfn_valid for the first page in
4005 	 * the block.
4006 	 */
4007 	start_pfn = zone->zone_start_pfn;
4008 	end_pfn = zone_end_pfn(zone);
4009 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4010 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4011 							pageblock_order;
4012 
4013 	/*
4014 	 * Reserve blocks are generally in place to help high-order atomic
4015 	 * allocations that are short-lived. A min_free_kbytes value that
4016 	 * would result in more than 2 reserve blocks for atomic allocations
4017 	 * is assumed to be in place to help anti-fragmentation for the
4018 	 * future allocation of hugepages at runtime.
4019 	 */
4020 	reserve = min(2, reserve);
4021 	old_reserve = zone->nr_migrate_reserve_block;
4022 
4023 	/* When memory hot-add, we almost always need to do nothing */
4024 	if (reserve == old_reserve)
4025 		return;
4026 	zone->nr_migrate_reserve_block = reserve;
4027 
4028 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4029 		if (!pfn_valid(pfn))
4030 			continue;
4031 		page = pfn_to_page(pfn);
4032 
4033 		/* Watch out for overlapping nodes */
4034 		if (page_to_nid(page) != zone_to_nid(zone))
4035 			continue;
4036 
4037 		block_migratetype = get_pageblock_migratetype(page);
4038 
4039 		/* Only test what is necessary when the reserves are not met */
4040 		if (reserve > 0) {
4041 			/*
4042 			 * Blocks with reserved pages will never free, skip
4043 			 * them.
4044 			 */
4045 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4046 			if (pageblock_is_reserved(pfn, block_end_pfn))
4047 				continue;
4048 
4049 			/* If this block is reserved, account for it */
4050 			if (block_migratetype == MIGRATE_RESERVE) {
4051 				reserve--;
4052 				continue;
4053 			}
4054 
4055 			/* Suitable for reserving if this block is movable */
4056 			if (block_migratetype == MIGRATE_MOVABLE) {
4057 				set_pageblock_migratetype(page,
4058 							MIGRATE_RESERVE);
4059 				move_freepages_block(zone, page,
4060 							MIGRATE_RESERVE);
4061 				reserve--;
4062 				continue;
4063 			}
4064 		} else if (!old_reserve) {
4065 			/*
4066 			 * At boot time we don't need to scan the whole zone
4067 			 * for turning off MIGRATE_RESERVE.
4068 			 */
4069 			break;
4070 		}
4071 
4072 		/*
4073 		 * If the reserve is met and this is a previous reserved block,
4074 		 * take it back
4075 		 */
4076 		if (block_migratetype == MIGRATE_RESERVE) {
4077 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4078 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4079 		}
4080 	}
4081 }
4082 
4083 /*
4084  * Initially all pages are reserved - free ones are freed
4085  * up by free_all_bootmem() once the early boot process is
4086  * done. Non-atomic initialization, single-pass.
4087  */
4088 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4089 		unsigned long start_pfn, enum memmap_context context)
4090 {
4091 	struct page *page;
4092 	unsigned long end_pfn = start_pfn + size;
4093 	unsigned long pfn;
4094 	struct zone *z;
4095 
4096 	if (highest_memmap_pfn < end_pfn - 1)
4097 		highest_memmap_pfn = end_pfn - 1;
4098 
4099 	z = &NODE_DATA(nid)->node_zones[zone];
4100 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4101 		/*
4102 		 * There can be holes in boot-time mem_map[]s
4103 		 * handed to this function.  They do not
4104 		 * exist on hotplugged memory.
4105 		 */
4106 		if (context == MEMMAP_EARLY) {
4107 			if (!early_pfn_valid(pfn))
4108 				continue;
4109 			if (!early_pfn_in_nid(pfn, nid))
4110 				continue;
4111 		}
4112 		page = pfn_to_page(pfn);
4113 		set_page_links(page, zone, nid, pfn);
4114 		mminit_verify_page_links(page, zone, nid, pfn);
4115 		init_page_count(page);
4116 		page_mapcount_reset(page);
4117 		page_cpupid_reset_last(page);
4118 		SetPageReserved(page);
4119 		/*
4120 		 * Mark the block movable so that blocks are reserved for
4121 		 * movable at startup. This will force kernel allocations
4122 		 * to reserve their blocks rather than leaking throughout
4123 		 * the address space during boot when many long-lived
4124 		 * kernel allocations are made. Later some blocks near
4125 		 * the start are marked MIGRATE_RESERVE by
4126 		 * setup_zone_migrate_reserve()
4127 		 *
4128 		 * bitmap is created for zone's valid pfn range. but memmap
4129 		 * can be created for invalid pages (for alignment)
4130 		 * check here not to call set_pageblock_migratetype() against
4131 		 * pfn out of zone.
4132 		 */
4133 		if ((z->zone_start_pfn <= pfn)
4134 		    && (pfn < zone_end_pfn(z))
4135 		    && !(pfn & (pageblock_nr_pages - 1)))
4136 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4137 
4138 		INIT_LIST_HEAD(&page->lru);
4139 #ifdef WANT_PAGE_VIRTUAL
4140 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4141 		if (!is_highmem_idx(zone))
4142 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4143 #endif
4144 	}
4145 }
4146 
4147 static void __meminit zone_init_free_lists(struct zone *zone)
4148 {
4149 	unsigned int order, t;
4150 	for_each_migratetype_order(order, t) {
4151 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4152 		zone->free_area[order].nr_free = 0;
4153 	}
4154 }
4155 
4156 #ifndef __HAVE_ARCH_MEMMAP_INIT
4157 #define memmap_init(size, nid, zone, start_pfn) \
4158 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4159 #endif
4160 
4161 static int zone_batchsize(struct zone *zone)
4162 {
4163 #ifdef CONFIG_MMU
4164 	int batch;
4165 
4166 	/*
4167 	 * The per-cpu-pages pools are set to around 1000th of the
4168 	 * size of the zone.  But no more than 1/2 of a meg.
4169 	 *
4170 	 * OK, so we don't know how big the cache is.  So guess.
4171 	 */
4172 	batch = zone->managed_pages / 1024;
4173 	if (batch * PAGE_SIZE > 512 * 1024)
4174 		batch = (512 * 1024) / PAGE_SIZE;
4175 	batch /= 4;		/* We effectively *= 4 below */
4176 	if (batch < 1)
4177 		batch = 1;
4178 
4179 	/*
4180 	 * Clamp the batch to a 2^n - 1 value. Having a power
4181 	 * of 2 value was found to be more likely to have
4182 	 * suboptimal cache aliasing properties in some cases.
4183 	 *
4184 	 * For example if 2 tasks are alternately allocating
4185 	 * batches of pages, one task can end up with a lot
4186 	 * of pages of one half of the possible page colors
4187 	 * and the other with pages of the other colors.
4188 	 */
4189 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4190 
4191 	return batch;
4192 
4193 #else
4194 	/* The deferral and batching of frees should be suppressed under NOMMU
4195 	 * conditions.
4196 	 *
4197 	 * The problem is that NOMMU needs to be able to allocate large chunks
4198 	 * of contiguous memory as there's no hardware page translation to
4199 	 * assemble apparent contiguous memory from discontiguous pages.
4200 	 *
4201 	 * Queueing large contiguous runs of pages for batching, however,
4202 	 * causes the pages to actually be freed in smaller chunks.  As there
4203 	 * can be a significant delay between the individual batches being
4204 	 * recycled, this leads to the once large chunks of space being
4205 	 * fragmented and becoming unavailable for high-order allocations.
4206 	 */
4207 	return 0;
4208 #endif
4209 }
4210 
4211 /*
4212  * pcp->high and pcp->batch values are related and dependent on one another:
4213  * ->batch must never be higher then ->high.
4214  * The following function updates them in a safe manner without read side
4215  * locking.
4216  *
4217  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4218  * those fields changing asynchronously (acording the the above rule).
4219  *
4220  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4221  * outside of boot time (or some other assurance that no concurrent updaters
4222  * exist).
4223  */
4224 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4225 		unsigned long batch)
4226 {
4227        /* start with a fail safe value for batch */
4228 	pcp->batch = 1;
4229 	smp_wmb();
4230 
4231        /* Update high, then batch, in order */
4232 	pcp->high = high;
4233 	smp_wmb();
4234 
4235 	pcp->batch = batch;
4236 }
4237 
4238 /* a companion to pageset_set_high() */
4239 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4240 {
4241 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4242 }
4243 
4244 static void pageset_init(struct per_cpu_pageset *p)
4245 {
4246 	struct per_cpu_pages *pcp;
4247 	int migratetype;
4248 
4249 	memset(p, 0, sizeof(*p));
4250 
4251 	pcp = &p->pcp;
4252 	pcp->count = 0;
4253 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4254 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4255 }
4256 
4257 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4258 {
4259 	pageset_init(p);
4260 	pageset_set_batch(p, batch);
4261 }
4262 
4263 /*
4264  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4265  * to the value high for the pageset p.
4266  */
4267 static void pageset_set_high(struct per_cpu_pageset *p,
4268 				unsigned long high)
4269 {
4270 	unsigned long batch = max(1UL, high / 4);
4271 	if ((high / 4) > (PAGE_SHIFT * 8))
4272 		batch = PAGE_SHIFT * 8;
4273 
4274 	pageset_update(&p->pcp, high, batch);
4275 }
4276 
4277 static void pageset_set_high_and_batch(struct zone *zone,
4278 				       struct per_cpu_pageset *pcp)
4279 {
4280 	if (percpu_pagelist_fraction)
4281 		pageset_set_high(pcp,
4282 			(zone->managed_pages /
4283 				percpu_pagelist_fraction));
4284 	else
4285 		pageset_set_batch(pcp, zone_batchsize(zone));
4286 }
4287 
4288 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4289 {
4290 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4291 
4292 	pageset_init(pcp);
4293 	pageset_set_high_and_batch(zone, pcp);
4294 }
4295 
4296 static void __meminit setup_zone_pageset(struct zone *zone)
4297 {
4298 	int cpu;
4299 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4300 	for_each_possible_cpu(cpu)
4301 		zone_pageset_init(zone, cpu);
4302 }
4303 
4304 /*
4305  * Allocate per cpu pagesets and initialize them.
4306  * Before this call only boot pagesets were available.
4307  */
4308 void __init setup_per_cpu_pageset(void)
4309 {
4310 	struct zone *zone;
4311 
4312 	for_each_populated_zone(zone)
4313 		setup_zone_pageset(zone);
4314 }
4315 
4316 static noinline __init_refok
4317 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4318 {
4319 	int i;
4320 	size_t alloc_size;
4321 
4322 	/*
4323 	 * The per-page waitqueue mechanism uses hashed waitqueues
4324 	 * per zone.
4325 	 */
4326 	zone->wait_table_hash_nr_entries =
4327 		 wait_table_hash_nr_entries(zone_size_pages);
4328 	zone->wait_table_bits =
4329 		wait_table_bits(zone->wait_table_hash_nr_entries);
4330 	alloc_size = zone->wait_table_hash_nr_entries
4331 					* sizeof(wait_queue_head_t);
4332 
4333 	if (!slab_is_available()) {
4334 		zone->wait_table = (wait_queue_head_t *)
4335 			memblock_virt_alloc_node_nopanic(
4336 				alloc_size, zone->zone_pgdat->node_id);
4337 	} else {
4338 		/*
4339 		 * This case means that a zone whose size was 0 gets new memory
4340 		 * via memory hot-add.
4341 		 * But it may be the case that a new node was hot-added.  In
4342 		 * this case vmalloc() will not be able to use this new node's
4343 		 * memory - this wait_table must be initialized to use this new
4344 		 * node itself as well.
4345 		 * To use this new node's memory, further consideration will be
4346 		 * necessary.
4347 		 */
4348 		zone->wait_table = vmalloc(alloc_size);
4349 	}
4350 	if (!zone->wait_table)
4351 		return -ENOMEM;
4352 
4353 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4354 		init_waitqueue_head(zone->wait_table + i);
4355 
4356 	return 0;
4357 }
4358 
4359 static __meminit void zone_pcp_init(struct zone *zone)
4360 {
4361 	/*
4362 	 * per cpu subsystem is not up at this point. The following code
4363 	 * relies on the ability of the linker to provide the
4364 	 * offset of a (static) per cpu variable into the per cpu area.
4365 	 */
4366 	zone->pageset = &boot_pageset;
4367 
4368 	if (populated_zone(zone))
4369 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4370 			zone->name, zone->present_pages,
4371 					 zone_batchsize(zone));
4372 }
4373 
4374 int __meminit init_currently_empty_zone(struct zone *zone,
4375 					unsigned long zone_start_pfn,
4376 					unsigned long size,
4377 					enum memmap_context context)
4378 {
4379 	struct pglist_data *pgdat = zone->zone_pgdat;
4380 	int ret;
4381 	ret = zone_wait_table_init(zone, size);
4382 	if (ret)
4383 		return ret;
4384 	pgdat->nr_zones = zone_idx(zone) + 1;
4385 
4386 	zone->zone_start_pfn = zone_start_pfn;
4387 
4388 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4389 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4390 			pgdat->node_id,
4391 			(unsigned long)zone_idx(zone),
4392 			zone_start_pfn, (zone_start_pfn + size));
4393 
4394 	zone_init_free_lists(zone);
4395 
4396 	return 0;
4397 }
4398 
4399 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4400 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4401 /*
4402  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4403  */
4404 int __meminit __early_pfn_to_nid(unsigned long pfn)
4405 {
4406 	unsigned long start_pfn, end_pfn;
4407 	int nid;
4408 	/*
4409 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4410 	 * when the kernel is running single-threaded.
4411 	 */
4412 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4413 	static int __meminitdata last_nid;
4414 
4415 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4416 		return last_nid;
4417 
4418 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4419 	if (nid != -1) {
4420 		last_start_pfn = start_pfn;
4421 		last_end_pfn = end_pfn;
4422 		last_nid = nid;
4423 	}
4424 
4425 	return nid;
4426 }
4427 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4428 
4429 int __meminit early_pfn_to_nid(unsigned long pfn)
4430 {
4431 	int nid;
4432 
4433 	nid = __early_pfn_to_nid(pfn);
4434 	if (nid >= 0)
4435 		return nid;
4436 	/* just returns 0 */
4437 	return 0;
4438 }
4439 
4440 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4441 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4442 {
4443 	int nid;
4444 
4445 	nid = __early_pfn_to_nid(pfn);
4446 	if (nid >= 0 && nid != node)
4447 		return false;
4448 	return true;
4449 }
4450 #endif
4451 
4452 /**
4453  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4454  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4455  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4456  *
4457  * If an architecture guarantees that all ranges registered contain no holes
4458  * and may be freed, this this function may be used instead of calling
4459  * memblock_free_early_nid() manually.
4460  */
4461 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4462 {
4463 	unsigned long start_pfn, end_pfn;
4464 	int i, this_nid;
4465 
4466 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4467 		start_pfn = min(start_pfn, max_low_pfn);
4468 		end_pfn = min(end_pfn, max_low_pfn);
4469 
4470 		if (start_pfn < end_pfn)
4471 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4472 					(end_pfn - start_pfn) << PAGE_SHIFT,
4473 					this_nid);
4474 	}
4475 }
4476 
4477 /**
4478  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4479  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4480  *
4481  * If an architecture guarantees that all ranges registered contain no holes and may
4482  * be freed, this function may be used instead of calling memory_present() manually.
4483  */
4484 void __init sparse_memory_present_with_active_regions(int nid)
4485 {
4486 	unsigned long start_pfn, end_pfn;
4487 	int i, this_nid;
4488 
4489 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4490 		memory_present(this_nid, start_pfn, end_pfn);
4491 }
4492 
4493 /**
4494  * get_pfn_range_for_nid - Return the start and end page frames for a node
4495  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4496  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4497  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4498  *
4499  * It returns the start and end page frame of a node based on information
4500  * provided by memblock_set_node(). If called for a node
4501  * with no available memory, a warning is printed and the start and end
4502  * PFNs will be 0.
4503  */
4504 void __meminit get_pfn_range_for_nid(unsigned int nid,
4505 			unsigned long *start_pfn, unsigned long *end_pfn)
4506 {
4507 	unsigned long this_start_pfn, this_end_pfn;
4508 	int i;
4509 
4510 	*start_pfn = -1UL;
4511 	*end_pfn = 0;
4512 
4513 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4514 		*start_pfn = min(*start_pfn, this_start_pfn);
4515 		*end_pfn = max(*end_pfn, this_end_pfn);
4516 	}
4517 
4518 	if (*start_pfn == -1UL)
4519 		*start_pfn = 0;
4520 }
4521 
4522 /*
4523  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4524  * assumption is made that zones within a node are ordered in monotonic
4525  * increasing memory addresses so that the "highest" populated zone is used
4526  */
4527 static void __init find_usable_zone_for_movable(void)
4528 {
4529 	int zone_index;
4530 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4531 		if (zone_index == ZONE_MOVABLE)
4532 			continue;
4533 
4534 		if (arch_zone_highest_possible_pfn[zone_index] >
4535 				arch_zone_lowest_possible_pfn[zone_index])
4536 			break;
4537 	}
4538 
4539 	VM_BUG_ON(zone_index == -1);
4540 	movable_zone = zone_index;
4541 }
4542 
4543 /*
4544  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4545  * because it is sized independent of architecture. Unlike the other zones,
4546  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4547  * in each node depending on the size of each node and how evenly kernelcore
4548  * is distributed. This helper function adjusts the zone ranges
4549  * provided by the architecture for a given node by using the end of the
4550  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4551  * zones within a node are in order of monotonic increases memory addresses
4552  */
4553 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4554 					unsigned long zone_type,
4555 					unsigned long node_start_pfn,
4556 					unsigned long node_end_pfn,
4557 					unsigned long *zone_start_pfn,
4558 					unsigned long *zone_end_pfn)
4559 {
4560 	/* Only adjust if ZONE_MOVABLE is on this node */
4561 	if (zone_movable_pfn[nid]) {
4562 		/* Size ZONE_MOVABLE */
4563 		if (zone_type == ZONE_MOVABLE) {
4564 			*zone_start_pfn = zone_movable_pfn[nid];
4565 			*zone_end_pfn = min(node_end_pfn,
4566 				arch_zone_highest_possible_pfn[movable_zone]);
4567 
4568 		/* Adjust for ZONE_MOVABLE starting within this range */
4569 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4570 				*zone_end_pfn > zone_movable_pfn[nid]) {
4571 			*zone_end_pfn = zone_movable_pfn[nid];
4572 
4573 		/* Check if this whole range is within ZONE_MOVABLE */
4574 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4575 			*zone_start_pfn = *zone_end_pfn;
4576 	}
4577 }
4578 
4579 /*
4580  * Return the number of pages a zone spans in a node, including holes
4581  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4582  */
4583 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4584 					unsigned long zone_type,
4585 					unsigned long node_start_pfn,
4586 					unsigned long node_end_pfn,
4587 					unsigned long *ignored)
4588 {
4589 	unsigned long zone_start_pfn, zone_end_pfn;
4590 
4591 	/* Get the start and end of the zone */
4592 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4593 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4594 	adjust_zone_range_for_zone_movable(nid, zone_type,
4595 				node_start_pfn, node_end_pfn,
4596 				&zone_start_pfn, &zone_end_pfn);
4597 
4598 	/* Check that this node has pages within the zone's required range */
4599 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4600 		return 0;
4601 
4602 	/* Move the zone boundaries inside the node if necessary */
4603 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4604 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4605 
4606 	/* Return the spanned pages */
4607 	return zone_end_pfn - zone_start_pfn;
4608 }
4609 
4610 /*
4611  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4612  * then all holes in the requested range will be accounted for.
4613  */
4614 unsigned long __meminit __absent_pages_in_range(int nid,
4615 				unsigned long range_start_pfn,
4616 				unsigned long range_end_pfn)
4617 {
4618 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4619 	unsigned long start_pfn, end_pfn;
4620 	int i;
4621 
4622 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4623 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4624 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4625 		nr_absent -= end_pfn - start_pfn;
4626 	}
4627 	return nr_absent;
4628 }
4629 
4630 /**
4631  * absent_pages_in_range - Return number of page frames in holes within a range
4632  * @start_pfn: The start PFN to start searching for holes
4633  * @end_pfn: The end PFN to stop searching for holes
4634  *
4635  * It returns the number of pages frames in memory holes within a range.
4636  */
4637 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4638 							unsigned long end_pfn)
4639 {
4640 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4641 }
4642 
4643 /* Return the number of page frames in holes in a zone on a node */
4644 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4645 					unsigned long zone_type,
4646 					unsigned long node_start_pfn,
4647 					unsigned long node_end_pfn,
4648 					unsigned long *ignored)
4649 {
4650 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4651 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4652 	unsigned long zone_start_pfn, zone_end_pfn;
4653 
4654 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4655 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4656 
4657 	adjust_zone_range_for_zone_movable(nid, zone_type,
4658 			node_start_pfn, node_end_pfn,
4659 			&zone_start_pfn, &zone_end_pfn);
4660 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4661 }
4662 
4663 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4664 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4665 					unsigned long zone_type,
4666 					unsigned long node_start_pfn,
4667 					unsigned long node_end_pfn,
4668 					unsigned long *zones_size)
4669 {
4670 	return zones_size[zone_type];
4671 }
4672 
4673 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4674 						unsigned long zone_type,
4675 						unsigned long node_start_pfn,
4676 						unsigned long node_end_pfn,
4677 						unsigned long *zholes_size)
4678 {
4679 	if (!zholes_size)
4680 		return 0;
4681 
4682 	return zholes_size[zone_type];
4683 }
4684 
4685 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4686 
4687 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4688 						unsigned long node_start_pfn,
4689 						unsigned long node_end_pfn,
4690 						unsigned long *zones_size,
4691 						unsigned long *zholes_size)
4692 {
4693 	unsigned long realtotalpages, totalpages = 0;
4694 	enum zone_type i;
4695 
4696 	for (i = 0; i < MAX_NR_ZONES; i++)
4697 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4698 							 node_start_pfn,
4699 							 node_end_pfn,
4700 							 zones_size);
4701 	pgdat->node_spanned_pages = totalpages;
4702 
4703 	realtotalpages = totalpages;
4704 	for (i = 0; i < MAX_NR_ZONES; i++)
4705 		realtotalpages -=
4706 			zone_absent_pages_in_node(pgdat->node_id, i,
4707 						  node_start_pfn, node_end_pfn,
4708 						  zholes_size);
4709 	pgdat->node_present_pages = realtotalpages;
4710 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4711 							realtotalpages);
4712 }
4713 
4714 #ifndef CONFIG_SPARSEMEM
4715 /*
4716  * Calculate the size of the zone->blockflags rounded to an unsigned long
4717  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4718  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4719  * round what is now in bits to nearest long in bits, then return it in
4720  * bytes.
4721  */
4722 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4723 {
4724 	unsigned long usemapsize;
4725 
4726 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4727 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4728 	usemapsize = usemapsize >> pageblock_order;
4729 	usemapsize *= NR_PAGEBLOCK_BITS;
4730 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4731 
4732 	return usemapsize / 8;
4733 }
4734 
4735 static void __init setup_usemap(struct pglist_data *pgdat,
4736 				struct zone *zone,
4737 				unsigned long zone_start_pfn,
4738 				unsigned long zonesize)
4739 {
4740 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4741 	zone->pageblock_flags = NULL;
4742 	if (usemapsize)
4743 		zone->pageblock_flags =
4744 			memblock_virt_alloc_node_nopanic(usemapsize,
4745 							 pgdat->node_id);
4746 }
4747 #else
4748 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4749 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4750 #endif /* CONFIG_SPARSEMEM */
4751 
4752 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4753 
4754 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4755 void __paginginit set_pageblock_order(void)
4756 {
4757 	unsigned int order;
4758 
4759 	/* Check that pageblock_nr_pages has not already been setup */
4760 	if (pageblock_order)
4761 		return;
4762 
4763 	if (HPAGE_SHIFT > PAGE_SHIFT)
4764 		order = HUGETLB_PAGE_ORDER;
4765 	else
4766 		order = MAX_ORDER - 1;
4767 
4768 	/*
4769 	 * Assume the largest contiguous order of interest is a huge page.
4770 	 * This value may be variable depending on boot parameters on IA64 and
4771 	 * powerpc.
4772 	 */
4773 	pageblock_order = order;
4774 }
4775 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4776 
4777 /*
4778  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4779  * is unused as pageblock_order is set at compile-time. See
4780  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4781  * the kernel config
4782  */
4783 void __paginginit set_pageblock_order(void)
4784 {
4785 }
4786 
4787 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4788 
4789 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4790 						   unsigned long present_pages)
4791 {
4792 	unsigned long pages = spanned_pages;
4793 
4794 	/*
4795 	 * Provide a more accurate estimation if there are holes within
4796 	 * the zone and SPARSEMEM is in use. If there are holes within the
4797 	 * zone, each populated memory region may cost us one or two extra
4798 	 * memmap pages due to alignment because memmap pages for each
4799 	 * populated regions may not naturally algined on page boundary.
4800 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4801 	 */
4802 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4803 	    IS_ENABLED(CONFIG_SPARSEMEM))
4804 		pages = present_pages;
4805 
4806 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4807 }
4808 
4809 /*
4810  * Set up the zone data structures:
4811  *   - mark all pages reserved
4812  *   - mark all memory queues empty
4813  *   - clear the memory bitmaps
4814  *
4815  * NOTE: pgdat should get zeroed by caller.
4816  */
4817 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4818 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4819 		unsigned long *zones_size, unsigned long *zholes_size)
4820 {
4821 	enum zone_type j;
4822 	int nid = pgdat->node_id;
4823 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4824 	int ret;
4825 
4826 	pgdat_resize_init(pgdat);
4827 #ifdef CONFIG_NUMA_BALANCING
4828 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4829 	pgdat->numabalancing_migrate_nr_pages = 0;
4830 	pgdat->numabalancing_migrate_next_window = jiffies;
4831 #endif
4832 	init_waitqueue_head(&pgdat->kswapd_wait);
4833 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4834 	pgdat_page_cgroup_init(pgdat);
4835 
4836 	for (j = 0; j < MAX_NR_ZONES; j++) {
4837 		struct zone *zone = pgdat->node_zones + j;
4838 		unsigned long size, realsize, freesize, memmap_pages;
4839 
4840 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4841 						  node_end_pfn, zones_size);
4842 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4843 								node_start_pfn,
4844 								node_end_pfn,
4845 								zholes_size);
4846 
4847 		/*
4848 		 * Adjust freesize so that it accounts for how much memory
4849 		 * is used by this zone for memmap. This affects the watermark
4850 		 * and per-cpu initialisations
4851 		 */
4852 		memmap_pages = calc_memmap_size(size, realsize);
4853 		if (freesize >= memmap_pages) {
4854 			freesize -= memmap_pages;
4855 			if (memmap_pages)
4856 				printk(KERN_DEBUG
4857 				       "  %s zone: %lu pages used for memmap\n",
4858 				       zone_names[j], memmap_pages);
4859 		} else
4860 			printk(KERN_WARNING
4861 				"  %s zone: %lu pages exceeds freesize %lu\n",
4862 				zone_names[j], memmap_pages, freesize);
4863 
4864 		/* Account for reserved pages */
4865 		if (j == 0 && freesize > dma_reserve) {
4866 			freesize -= dma_reserve;
4867 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4868 					zone_names[0], dma_reserve);
4869 		}
4870 
4871 		if (!is_highmem_idx(j))
4872 			nr_kernel_pages += freesize;
4873 		/* Charge for highmem memmap if there are enough kernel pages */
4874 		else if (nr_kernel_pages > memmap_pages * 2)
4875 			nr_kernel_pages -= memmap_pages;
4876 		nr_all_pages += freesize;
4877 
4878 		zone->spanned_pages = size;
4879 		zone->present_pages = realsize;
4880 		/*
4881 		 * Set an approximate value for lowmem here, it will be adjusted
4882 		 * when the bootmem allocator frees pages into the buddy system.
4883 		 * And all highmem pages will be managed by the buddy system.
4884 		 */
4885 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4886 #ifdef CONFIG_NUMA
4887 		zone->node = nid;
4888 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4889 						/ 100;
4890 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4891 #endif
4892 		zone->name = zone_names[j];
4893 		spin_lock_init(&zone->lock);
4894 		spin_lock_init(&zone->lru_lock);
4895 		zone_seqlock_init(zone);
4896 		zone->zone_pgdat = pgdat;
4897 		zone_pcp_init(zone);
4898 
4899 		/* For bootup, initialized properly in watermark setup */
4900 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4901 
4902 		lruvec_init(&zone->lruvec);
4903 		if (!size)
4904 			continue;
4905 
4906 		set_pageblock_order();
4907 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4908 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4909 						size, MEMMAP_EARLY);
4910 		BUG_ON(ret);
4911 		memmap_init(size, nid, j, zone_start_pfn);
4912 		zone_start_pfn += size;
4913 	}
4914 }
4915 
4916 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4917 {
4918 	/* Skip empty nodes */
4919 	if (!pgdat->node_spanned_pages)
4920 		return;
4921 
4922 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4923 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4924 	if (!pgdat->node_mem_map) {
4925 		unsigned long size, start, end;
4926 		struct page *map;
4927 
4928 		/*
4929 		 * The zone's endpoints aren't required to be MAX_ORDER
4930 		 * aligned but the node_mem_map endpoints must be in order
4931 		 * for the buddy allocator to function correctly.
4932 		 */
4933 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4934 		end = pgdat_end_pfn(pgdat);
4935 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4936 		size =  (end - start) * sizeof(struct page);
4937 		map = alloc_remap(pgdat->node_id, size);
4938 		if (!map)
4939 			map = memblock_virt_alloc_node_nopanic(size,
4940 							       pgdat->node_id);
4941 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4942 	}
4943 #ifndef CONFIG_NEED_MULTIPLE_NODES
4944 	/*
4945 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4946 	 */
4947 	if (pgdat == NODE_DATA(0)) {
4948 		mem_map = NODE_DATA(0)->node_mem_map;
4949 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4950 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4951 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4952 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4953 	}
4954 #endif
4955 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4956 }
4957 
4958 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4959 		unsigned long node_start_pfn, unsigned long *zholes_size)
4960 {
4961 	pg_data_t *pgdat = NODE_DATA(nid);
4962 	unsigned long start_pfn = 0;
4963 	unsigned long end_pfn = 0;
4964 
4965 	/* pg_data_t should be reset to zero when it's allocated */
4966 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4967 
4968 	pgdat->node_id = nid;
4969 	pgdat->node_start_pfn = node_start_pfn;
4970 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4971 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4972 #endif
4973 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4974 				  zones_size, zholes_size);
4975 
4976 	alloc_node_mem_map(pgdat);
4977 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4978 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4979 		nid, (unsigned long)pgdat,
4980 		(unsigned long)pgdat->node_mem_map);
4981 #endif
4982 
4983 	free_area_init_core(pgdat, start_pfn, end_pfn,
4984 			    zones_size, zholes_size);
4985 }
4986 
4987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4988 
4989 #if MAX_NUMNODES > 1
4990 /*
4991  * Figure out the number of possible node ids.
4992  */
4993 void __init setup_nr_node_ids(void)
4994 {
4995 	unsigned int node;
4996 	unsigned int highest = 0;
4997 
4998 	for_each_node_mask(node, node_possible_map)
4999 		highest = node;
5000 	nr_node_ids = highest + 1;
5001 }
5002 #endif
5003 
5004 /**
5005  * node_map_pfn_alignment - determine the maximum internode alignment
5006  *
5007  * This function should be called after node map is populated and sorted.
5008  * It calculates the maximum power of two alignment which can distinguish
5009  * all the nodes.
5010  *
5011  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5012  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5013  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5014  * shifted, 1GiB is enough and this function will indicate so.
5015  *
5016  * This is used to test whether pfn -> nid mapping of the chosen memory
5017  * model has fine enough granularity to avoid incorrect mapping for the
5018  * populated node map.
5019  *
5020  * Returns the determined alignment in pfn's.  0 if there is no alignment
5021  * requirement (single node).
5022  */
5023 unsigned long __init node_map_pfn_alignment(void)
5024 {
5025 	unsigned long accl_mask = 0, last_end = 0;
5026 	unsigned long start, end, mask;
5027 	int last_nid = -1;
5028 	int i, nid;
5029 
5030 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5031 		if (!start || last_nid < 0 || last_nid == nid) {
5032 			last_nid = nid;
5033 			last_end = end;
5034 			continue;
5035 		}
5036 
5037 		/*
5038 		 * Start with a mask granular enough to pin-point to the
5039 		 * start pfn and tick off bits one-by-one until it becomes
5040 		 * too coarse to separate the current node from the last.
5041 		 */
5042 		mask = ~((1 << __ffs(start)) - 1);
5043 		while (mask && last_end <= (start & (mask << 1)))
5044 			mask <<= 1;
5045 
5046 		/* accumulate all internode masks */
5047 		accl_mask |= mask;
5048 	}
5049 
5050 	/* convert mask to number of pages */
5051 	return ~accl_mask + 1;
5052 }
5053 
5054 /* Find the lowest pfn for a node */
5055 static unsigned long __init find_min_pfn_for_node(int nid)
5056 {
5057 	unsigned long min_pfn = ULONG_MAX;
5058 	unsigned long start_pfn;
5059 	int i;
5060 
5061 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5062 		min_pfn = min(min_pfn, start_pfn);
5063 
5064 	if (min_pfn == ULONG_MAX) {
5065 		printk(KERN_WARNING
5066 			"Could not find start_pfn for node %d\n", nid);
5067 		return 0;
5068 	}
5069 
5070 	return min_pfn;
5071 }
5072 
5073 /**
5074  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5075  *
5076  * It returns the minimum PFN based on information provided via
5077  * memblock_set_node().
5078  */
5079 unsigned long __init find_min_pfn_with_active_regions(void)
5080 {
5081 	return find_min_pfn_for_node(MAX_NUMNODES);
5082 }
5083 
5084 /*
5085  * early_calculate_totalpages()
5086  * Sum pages in active regions for movable zone.
5087  * Populate N_MEMORY for calculating usable_nodes.
5088  */
5089 static unsigned long __init early_calculate_totalpages(void)
5090 {
5091 	unsigned long totalpages = 0;
5092 	unsigned long start_pfn, end_pfn;
5093 	int i, nid;
5094 
5095 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5096 		unsigned long pages = end_pfn - start_pfn;
5097 
5098 		totalpages += pages;
5099 		if (pages)
5100 			node_set_state(nid, N_MEMORY);
5101 	}
5102 	return totalpages;
5103 }
5104 
5105 /*
5106  * Find the PFN the Movable zone begins in each node. Kernel memory
5107  * is spread evenly between nodes as long as the nodes have enough
5108  * memory. When they don't, some nodes will have more kernelcore than
5109  * others
5110  */
5111 static void __init find_zone_movable_pfns_for_nodes(void)
5112 {
5113 	int i, nid;
5114 	unsigned long usable_startpfn;
5115 	unsigned long kernelcore_node, kernelcore_remaining;
5116 	/* save the state before borrow the nodemask */
5117 	nodemask_t saved_node_state = node_states[N_MEMORY];
5118 	unsigned long totalpages = early_calculate_totalpages();
5119 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5120 	struct memblock_region *r;
5121 
5122 	/* Need to find movable_zone earlier when movable_node is specified. */
5123 	find_usable_zone_for_movable();
5124 
5125 	/*
5126 	 * If movable_node is specified, ignore kernelcore and movablecore
5127 	 * options.
5128 	 */
5129 	if (movable_node_is_enabled()) {
5130 		for_each_memblock(memory, r) {
5131 			if (!memblock_is_hotpluggable(r))
5132 				continue;
5133 
5134 			nid = r->nid;
5135 
5136 			usable_startpfn = PFN_DOWN(r->base);
5137 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5138 				min(usable_startpfn, zone_movable_pfn[nid]) :
5139 				usable_startpfn;
5140 		}
5141 
5142 		goto out2;
5143 	}
5144 
5145 	/*
5146 	 * If movablecore=nn[KMG] was specified, calculate what size of
5147 	 * kernelcore that corresponds so that memory usable for
5148 	 * any allocation type is evenly spread. If both kernelcore
5149 	 * and movablecore are specified, then the value of kernelcore
5150 	 * will be used for required_kernelcore if it's greater than
5151 	 * what movablecore would have allowed.
5152 	 */
5153 	if (required_movablecore) {
5154 		unsigned long corepages;
5155 
5156 		/*
5157 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5158 		 * was requested by the user
5159 		 */
5160 		required_movablecore =
5161 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5162 		corepages = totalpages - required_movablecore;
5163 
5164 		required_kernelcore = max(required_kernelcore, corepages);
5165 	}
5166 
5167 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5168 	if (!required_kernelcore)
5169 		goto out;
5170 
5171 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5172 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5173 
5174 restart:
5175 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5176 	kernelcore_node = required_kernelcore / usable_nodes;
5177 	for_each_node_state(nid, N_MEMORY) {
5178 		unsigned long start_pfn, end_pfn;
5179 
5180 		/*
5181 		 * Recalculate kernelcore_node if the division per node
5182 		 * now exceeds what is necessary to satisfy the requested
5183 		 * amount of memory for the kernel
5184 		 */
5185 		if (required_kernelcore < kernelcore_node)
5186 			kernelcore_node = required_kernelcore / usable_nodes;
5187 
5188 		/*
5189 		 * As the map is walked, we track how much memory is usable
5190 		 * by the kernel using kernelcore_remaining. When it is
5191 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5192 		 */
5193 		kernelcore_remaining = kernelcore_node;
5194 
5195 		/* Go through each range of PFNs within this node */
5196 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5197 			unsigned long size_pages;
5198 
5199 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5200 			if (start_pfn >= end_pfn)
5201 				continue;
5202 
5203 			/* Account for what is only usable for kernelcore */
5204 			if (start_pfn < usable_startpfn) {
5205 				unsigned long kernel_pages;
5206 				kernel_pages = min(end_pfn, usable_startpfn)
5207 								- start_pfn;
5208 
5209 				kernelcore_remaining -= min(kernel_pages,
5210 							kernelcore_remaining);
5211 				required_kernelcore -= min(kernel_pages,
5212 							required_kernelcore);
5213 
5214 				/* Continue if range is now fully accounted */
5215 				if (end_pfn <= usable_startpfn) {
5216 
5217 					/*
5218 					 * Push zone_movable_pfn to the end so
5219 					 * that if we have to rebalance
5220 					 * kernelcore across nodes, we will
5221 					 * not double account here
5222 					 */
5223 					zone_movable_pfn[nid] = end_pfn;
5224 					continue;
5225 				}
5226 				start_pfn = usable_startpfn;
5227 			}
5228 
5229 			/*
5230 			 * The usable PFN range for ZONE_MOVABLE is from
5231 			 * start_pfn->end_pfn. Calculate size_pages as the
5232 			 * number of pages used as kernelcore
5233 			 */
5234 			size_pages = end_pfn - start_pfn;
5235 			if (size_pages > kernelcore_remaining)
5236 				size_pages = kernelcore_remaining;
5237 			zone_movable_pfn[nid] = start_pfn + size_pages;
5238 
5239 			/*
5240 			 * Some kernelcore has been met, update counts and
5241 			 * break if the kernelcore for this node has been
5242 			 * satisfied
5243 			 */
5244 			required_kernelcore -= min(required_kernelcore,
5245 								size_pages);
5246 			kernelcore_remaining -= size_pages;
5247 			if (!kernelcore_remaining)
5248 				break;
5249 		}
5250 	}
5251 
5252 	/*
5253 	 * If there is still required_kernelcore, we do another pass with one
5254 	 * less node in the count. This will push zone_movable_pfn[nid] further
5255 	 * along on the nodes that still have memory until kernelcore is
5256 	 * satisfied
5257 	 */
5258 	usable_nodes--;
5259 	if (usable_nodes && required_kernelcore > usable_nodes)
5260 		goto restart;
5261 
5262 out2:
5263 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5264 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5265 		zone_movable_pfn[nid] =
5266 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5267 
5268 out:
5269 	/* restore the node_state */
5270 	node_states[N_MEMORY] = saved_node_state;
5271 }
5272 
5273 /* Any regular or high memory on that node ? */
5274 static void check_for_memory(pg_data_t *pgdat, int nid)
5275 {
5276 	enum zone_type zone_type;
5277 
5278 	if (N_MEMORY == N_NORMAL_MEMORY)
5279 		return;
5280 
5281 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5282 		struct zone *zone = &pgdat->node_zones[zone_type];
5283 		if (populated_zone(zone)) {
5284 			node_set_state(nid, N_HIGH_MEMORY);
5285 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5286 			    zone_type <= ZONE_NORMAL)
5287 				node_set_state(nid, N_NORMAL_MEMORY);
5288 			break;
5289 		}
5290 	}
5291 }
5292 
5293 /**
5294  * free_area_init_nodes - Initialise all pg_data_t and zone data
5295  * @max_zone_pfn: an array of max PFNs for each zone
5296  *
5297  * This will call free_area_init_node() for each active node in the system.
5298  * Using the page ranges provided by memblock_set_node(), the size of each
5299  * zone in each node and their holes is calculated. If the maximum PFN
5300  * between two adjacent zones match, it is assumed that the zone is empty.
5301  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5302  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5303  * starts where the previous one ended. For example, ZONE_DMA32 starts
5304  * at arch_max_dma_pfn.
5305  */
5306 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5307 {
5308 	unsigned long start_pfn, end_pfn;
5309 	int i, nid;
5310 
5311 	/* Record where the zone boundaries are */
5312 	memset(arch_zone_lowest_possible_pfn, 0,
5313 				sizeof(arch_zone_lowest_possible_pfn));
5314 	memset(arch_zone_highest_possible_pfn, 0,
5315 				sizeof(arch_zone_highest_possible_pfn));
5316 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5317 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5318 	for (i = 1; i < MAX_NR_ZONES; i++) {
5319 		if (i == ZONE_MOVABLE)
5320 			continue;
5321 		arch_zone_lowest_possible_pfn[i] =
5322 			arch_zone_highest_possible_pfn[i-1];
5323 		arch_zone_highest_possible_pfn[i] =
5324 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5325 	}
5326 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5327 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5328 
5329 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5330 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5331 	find_zone_movable_pfns_for_nodes();
5332 
5333 	/* Print out the zone ranges */
5334 	printk("Zone ranges:\n");
5335 	for (i = 0; i < MAX_NR_ZONES; i++) {
5336 		if (i == ZONE_MOVABLE)
5337 			continue;
5338 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5339 		if (arch_zone_lowest_possible_pfn[i] ==
5340 				arch_zone_highest_possible_pfn[i])
5341 			printk(KERN_CONT "empty\n");
5342 		else
5343 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5344 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5345 				(arch_zone_highest_possible_pfn[i]
5346 					<< PAGE_SHIFT) - 1);
5347 	}
5348 
5349 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5350 	printk("Movable zone start for each node\n");
5351 	for (i = 0; i < MAX_NUMNODES; i++) {
5352 		if (zone_movable_pfn[i])
5353 			printk("  Node %d: %#010lx\n", i,
5354 			       zone_movable_pfn[i] << PAGE_SHIFT);
5355 	}
5356 
5357 	/* Print out the early node map */
5358 	printk("Early memory node ranges\n");
5359 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5360 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5361 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5362 
5363 	/* Initialise every node */
5364 	mminit_verify_pageflags_layout();
5365 	setup_nr_node_ids();
5366 	for_each_online_node(nid) {
5367 		pg_data_t *pgdat = NODE_DATA(nid);
5368 		free_area_init_node(nid, NULL,
5369 				find_min_pfn_for_node(nid), NULL);
5370 
5371 		/* Any memory on that node */
5372 		if (pgdat->node_present_pages)
5373 			node_set_state(nid, N_MEMORY);
5374 		check_for_memory(pgdat, nid);
5375 	}
5376 }
5377 
5378 static int __init cmdline_parse_core(char *p, unsigned long *core)
5379 {
5380 	unsigned long long coremem;
5381 	if (!p)
5382 		return -EINVAL;
5383 
5384 	coremem = memparse(p, &p);
5385 	*core = coremem >> PAGE_SHIFT;
5386 
5387 	/* Paranoid check that UL is enough for the coremem value */
5388 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5389 
5390 	return 0;
5391 }
5392 
5393 /*
5394  * kernelcore=size sets the amount of memory for use for allocations that
5395  * cannot be reclaimed or migrated.
5396  */
5397 static int __init cmdline_parse_kernelcore(char *p)
5398 {
5399 	return cmdline_parse_core(p, &required_kernelcore);
5400 }
5401 
5402 /*
5403  * movablecore=size sets the amount of memory for use for allocations that
5404  * can be reclaimed or migrated.
5405  */
5406 static int __init cmdline_parse_movablecore(char *p)
5407 {
5408 	return cmdline_parse_core(p, &required_movablecore);
5409 }
5410 
5411 early_param("kernelcore", cmdline_parse_kernelcore);
5412 early_param("movablecore", cmdline_parse_movablecore);
5413 
5414 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5415 
5416 void adjust_managed_page_count(struct page *page, long count)
5417 {
5418 	spin_lock(&managed_page_count_lock);
5419 	page_zone(page)->managed_pages += count;
5420 	totalram_pages += count;
5421 #ifdef CONFIG_HIGHMEM
5422 	if (PageHighMem(page))
5423 		totalhigh_pages += count;
5424 #endif
5425 	spin_unlock(&managed_page_count_lock);
5426 }
5427 EXPORT_SYMBOL(adjust_managed_page_count);
5428 
5429 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5430 {
5431 	void *pos;
5432 	unsigned long pages = 0;
5433 
5434 	start = (void *)PAGE_ALIGN((unsigned long)start);
5435 	end = (void *)((unsigned long)end & PAGE_MASK);
5436 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5437 		if ((unsigned int)poison <= 0xFF)
5438 			memset(pos, poison, PAGE_SIZE);
5439 		free_reserved_page(virt_to_page(pos));
5440 	}
5441 
5442 	if (pages && s)
5443 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5444 			s, pages << (PAGE_SHIFT - 10), start, end);
5445 
5446 	return pages;
5447 }
5448 EXPORT_SYMBOL(free_reserved_area);
5449 
5450 #ifdef	CONFIG_HIGHMEM
5451 void free_highmem_page(struct page *page)
5452 {
5453 	__free_reserved_page(page);
5454 	totalram_pages++;
5455 	page_zone(page)->managed_pages++;
5456 	totalhigh_pages++;
5457 }
5458 #endif
5459 
5460 
5461 void __init mem_init_print_info(const char *str)
5462 {
5463 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5464 	unsigned long init_code_size, init_data_size;
5465 
5466 	physpages = get_num_physpages();
5467 	codesize = _etext - _stext;
5468 	datasize = _edata - _sdata;
5469 	rosize = __end_rodata - __start_rodata;
5470 	bss_size = __bss_stop - __bss_start;
5471 	init_data_size = __init_end - __init_begin;
5472 	init_code_size = _einittext - _sinittext;
5473 
5474 	/*
5475 	 * Detect special cases and adjust section sizes accordingly:
5476 	 * 1) .init.* may be embedded into .data sections
5477 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5478 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5479 	 * 3) .rodata.* may be embedded into .text or .data sections.
5480 	 */
5481 #define adj_init_size(start, end, size, pos, adj) \
5482 	do { \
5483 		if (start <= pos && pos < end && size > adj) \
5484 			size -= adj; \
5485 	} while (0)
5486 
5487 	adj_init_size(__init_begin, __init_end, init_data_size,
5488 		     _sinittext, init_code_size);
5489 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5490 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5491 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5492 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5493 
5494 #undef	adj_init_size
5495 
5496 	printk("Memory: %luK/%luK available "
5497 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5498 	       "%luK init, %luK bss, %luK reserved"
5499 #ifdef	CONFIG_HIGHMEM
5500 	       ", %luK highmem"
5501 #endif
5502 	       "%s%s)\n",
5503 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5504 	       codesize >> 10, datasize >> 10, rosize >> 10,
5505 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5506 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5507 #ifdef	CONFIG_HIGHMEM
5508 	       totalhigh_pages << (PAGE_SHIFT-10),
5509 #endif
5510 	       str ? ", " : "", str ? str : "");
5511 }
5512 
5513 /**
5514  * set_dma_reserve - set the specified number of pages reserved in the first zone
5515  * @new_dma_reserve: The number of pages to mark reserved
5516  *
5517  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5518  * In the DMA zone, a significant percentage may be consumed by kernel image
5519  * and other unfreeable allocations which can skew the watermarks badly. This
5520  * function may optionally be used to account for unfreeable pages in the
5521  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5522  * smaller per-cpu batchsize.
5523  */
5524 void __init set_dma_reserve(unsigned long new_dma_reserve)
5525 {
5526 	dma_reserve = new_dma_reserve;
5527 }
5528 
5529 void __init free_area_init(unsigned long *zones_size)
5530 {
5531 	free_area_init_node(0, zones_size,
5532 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5533 }
5534 
5535 static int page_alloc_cpu_notify(struct notifier_block *self,
5536 				 unsigned long action, void *hcpu)
5537 {
5538 	int cpu = (unsigned long)hcpu;
5539 
5540 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5541 		lru_add_drain_cpu(cpu);
5542 		drain_pages(cpu);
5543 
5544 		/*
5545 		 * Spill the event counters of the dead processor
5546 		 * into the current processors event counters.
5547 		 * This artificially elevates the count of the current
5548 		 * processor.
5549 		 */
5550 		vm_events_fold_cpu(cpu);
5551 
5552 		/*
5553 		 * Zero the differential counters of the dead processor
5554 		 * so that the vm statistics are consistent.
5555 		 *
5556 		 * This is only okay since the processor is dead and cannot
5557 		 * race with what we are doing.
5558 		 */
5559 		cpu_vm_stats_fold(cpu);
5560 	}
5561 	return NOTIFY_OK;
5562 }
5563 
5564 void __init page_alloc_init(void)
5565 {
5566 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5567 }
5568 
5569 /*
5570  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5571  *	or min_free_kbytes changes.
5572  */
5573 static void calculate_totalreserve_pages(void)
5574 {
5575 	struct pglist_data *pgdat;
5576 	unsigned long reserve_pages = 0;
5577 	enum zone_type i, j;
5578 
5579 	for_each_online_pgdat(pgdat) {
5580 		for (i = 0; i < MAX_NR_ZONES; i++) {
5581 			struct zone *zone = pgdat->node_zones + i;
5582 			unsigned long max = 0;
5583 
5584 			/* Find valid and maximum lowmem_reserve in the zone */
5585 			for (j = i; j < MAX_NR_ZONES; j++) {
5586 				if (zone->lowmem_reserve[j] > max)
5587 					max = zone->lowmem_reserve[j];
5588 			}
5589 
5590 			/* we treat the high watermark as reserved pages. */
5591 			max += high_wmark_pages(zone);
5592 
5593 			if (max > zone->managed_pages)
5594 				max = zone->managed_pages;
5595 			reserve_pages += max;
5596 			/*
5597 			 * Lowmem reserves are not available to
5598 			 * GFP_HIGHUSER page cache allocations and
5599 			 * kswapd tries to balance zones to their high
5600 			 * watermark.  As a result, neither should be
5601 			 * regarded as dirtyable memory, to prevent a
5602 			 * situation where reclaim has to clean pages
5603 			 * in order to balance the zones.
5604 			 */
5605 			zone->dirty_balance_reserve = max;
5606 		}
5607 	}
5608 	dirty_balance_reserve = reserve_pages;
5609 	totalreserve_pages = reserve_pages;
5610 }
5611 
5612 /*
5613  * setup_per_zone_lowmem_reserve - called whenever
5614  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5615  *	has a correct pages reserved value, so an adequate number of
5616  *	pages are left in the zone after a successful __alloc_pages().
5617  */
5618 static void setup_per_zone_lowmem_reserve(void)
5619 {
5620 	struct pglist_data *pgdat;
5621 	enum zone_type j, idx;
5622 
5623 	for_each_online_pgdat(pgdat) {
5624 		for (j = 0; j < MAX_NR_ZONES; j++) {
5625 			struct zone *zone = pgdat->node_zones + j;
5626 			unsigned long managed_pages = zone->managed_pages;
5627 
5628 			zone->lowmem_reserve[j] = 0;
5629 
5630 			idx = j;
5631 			while (idx) {
5632 				struct zone *lower_zone;
5633 
5634 				idx--;
5635 
5636 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5637 					sysctl_lowmem_reserve_ratio[idx] = 1;
5638 
5639 				lower_zone = pgdat->node_zones + idx;
5640 				lower_zone->lowmem_reserve[j] = managed_pages /
5641 					sysctl_lowmem_reserve_ratio[idx];
5642 				managed_pages += lower_zone->managed_pages;
5643 			}
5644 		}
5645 	}
5646 
5647 	/* update totalreserve_pages */
5648 	calculate_totalreserve_pages();
5649 }
5650 
5651 static void __setup_per_zone_wmarks(void)
5652 {
5653 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5654 	unsigned long lowmem_pages = 0;
5655 	struct zone *zone;
5656 	unsigned long flags;
5657 
5658 	/* Calculate total number of !ZONE_HIGHMEM pages */
5659 	for_each_zone(zone) {
5660 		if (!is_highmem(zone))
5661 			lowmem_pages += zone->managed_pages;
5662 	}
5663 
5664 	for_each_zone(zone) {
5665 		u64 tmp;
5666 
5667 		spin_lock_irqsave(&zone->lock, flags);
5668 		tmp = (u64)pages_min * zone->managed_pages;
5669 		do_div(tmp, lowmem_pages);
5670 		if (is_highmem(zone)) {
5671 			/*
5672 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5673 			 * need highmem pages, so cap pages_min to a small
5674 			 * value here.
5675 			 *
5676 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5677 			 * deltas controls asynch page reclaim, and so should
5678 			 * not be capped for highmem.
5679 			 */
5680 			unsigned long min_pages;
5681 
5682 			min_pages = zone->managed_pages / 1024;
5683 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5684 			zone->watermark[WMARK_MIN] = min_pages;
5685 		} else {
5686 			/*
5687 			 * If it's a lowmem zone, reserve a number of pages
5688 			 * proportionate to the zone's size.
5689 			 */
5690 			zone->watermark[WMARK_MIN] = tmp;
5691 		}
5692 
5693 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5694 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5695 
5696 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5697 				      high_wmark_pages(zone) -
5698 				      low_wmark_pages(zone) -
5699 				      zone_page_state(zone, NR_ALLOC_BATCH));
5700 
5701 		setup_zone_migrate_reserve(zone);
5702 		spin_unlock_irqrestore(&zone->lock, flags);
5703 	}
5704 
5705 	/* update totalreserve_pages */
5706 	calculate_totalreserve_pages();
5707 }
5708 
5709 /**
5710  * setup_per_zone_wmarks - called when min_free_kbytes changes
5711  * or when memory is hot-{added|removed}
5712  *
5713  * Ensures that the watermark[min,low,high] values for each zone are set
5714  * correctly with respect to min_free_kbytes.
5715  */
5716 void setup_per_zone_wmarks(void)
5717 {
5718 	mutex_lock(&zonelists_mutex);
5719 	__setup_per_zone_wmarks();
5720 	mutex_unlock(&zonelists_mutex);
5721 }
5722 
5723 /*
5724  * The inactive anon list should be small enough that the VM never has to
5725  * do too much work, but large enough that each inactive page has a chance
5726  * to be referenced again before it is swapped out.
5727  *
5728  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5729  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5730  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5731  * the anonymous pages are kept on the inactive list.
5732  *
5733  * total     target    max
5734  * memory    ratio     inactive anon
5735  * -------------------------------------
5736  *   10MB       1         5MB
5737  *  100MB       1        50MB
5738  *    1GB       3       250MB
5739  *   10GB      10       0.9GB
5740  *  100GB      31         3GB
5741  *    1TB     101        10GB
5742  *   10TB     320        32GB
5743  */
5744 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5745 {
5746 	unsigned int gb, ratio;
5747 
5748 	/* Zone size in gigabytes */
5749 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5750 	if (gb)
5751 		ratio = int_sqrt(10 * gb);
5752 	else
5753 		ratio = 1;
5754 
5755 	zone->inactive_ratio = ratio;
5756 }
5757 
5758 static void __meminit setup_per_zone_inactive_ratio(void)
5759 {
5760 	struct zone *zone;
5761 
5762 	for_each_zone(zone)
5763 		calculate_zone_inactive_ratio(zone);
5764 }
5765 
5766 /*
5767  * Initialise min_free_kbytes.
5768  *
5769  * For small machines we want it small (128k min).  For large machines
5770  * we want it large (64MB max).  But it is not linear, because network
5771  * bandwidth does not increase linearly with machine size.  We use
5772  *
5773  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5774  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5775  *
5776  * which yields
5777  *
5778  * 16MB:	512k
5779  * 32MB:	724k
5780  * 64MB:	1024k
5781  * 128MB:	1448k
5782  * 256MB:	2048k
5783  * 512MB:	2896k
5784  * 1024MB:	4096k
5785  * 2048MB:	5792k
5786  * 4096MB:	8192k
5787  * 8192MB:	11584k
5788  * 16384MB:	16384k
5789  */
5790 int __meminit init_per_zone_wmark_min(void)
5791 {
5792 	unsigned long lowmem_kbytes;
5793 	int new_min_free_kbytes;
5794 
5795 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5796 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5797 
5798 	if (new_min_free_kbytes > user_min_free_kbytes) {
5799 		min_free_kbytes = new_min_free_kbytes;
5800 		if (min_free_kbytes < 128)
5801 			min_free_kbytes = 128;
5802 		if (min_free_kbytes > 65536)
5803 			min_free_kbytes = 65536;
5804 	} else {
5805 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5806 				new_min_free_kbytes, user_min_free_kbytes);
5807 	}
5808 	setup_per_zone_wmarks();
5809 	refresh_zone_stat_thresholds();
5810 	setup_per_zone_lowmem_reserve();
5811 	setup_per_zone_inactive_ratio();
5812 	return 0;
5813 }
5814 module_init(init_per_zone_wmark_min)
5815 
5816 /*
5817  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5818  *	that we can call two helper functions whenever min_free_kbytes
5819  *	changes.
5820  */
5821 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5822 	void __user *buffer, size_t *length, loff_t *ppos)
5823 {
5824 	int rc;
5825 
5826 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5827 	if (rc)
5828 		return rc;
5829 
5830 	if (write) {
5831 		user_min_free_kbytes = min_free_kbytes;
5832 		setup_per_zone_wmarks();
5833 	}
5834 	return 0;
5835 }
5836 
5837 #ifdef CONFIG_NUMA
5838 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5839 	void __user *buffer, size_t *length, loff_t *ppos)
5840 {
5841 	struct zone *zone;
5842 	int rc;
5843 
5844 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5845 	if (rc)
5846 		return rc;
5847 
5848 	for_each_zone(zone)
5849 		zone->min_unmapped_pages = (zone->managed_pages *
5850 				sysctl_min_unmapped_ratio) / 100;
5851 	return 0;
5852 }
5853 
5854 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5855 	void __user *buffer, size_t *length, loff_t *ppos)
5856 {
5857 	struct zone *zone;
5858 	int rc;
5859 
5860 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5861 	if (rc)
5862 		return rc;
5863 
5864 	for_each_zone(zone)
5865 		zone->min_slab_pages = (zone->managed_pages *
5866 				sysctl_min_slab_ratio) / 100;
5867 	return 0;
5868 }
5869 #endif
5870 
5871 /*
5872  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5873  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5874  *	whenever sysctl_lowmem_reserve_ratio changes.
5875  *
5876  * The reserve ratio obviously has absolutely no relation with the
5877  * minimum watermarks. The lowmem reserve ratio can only make sense
5878  * if in function of the boot time zone sizes.
5879  */
5880 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5881 	void __user *buffer, size_t *length, loff_t *ppos)
5882 {
5883 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5884 	setup_per_zone_lowmem_reserve();
5885 	return 0;
5886 }
5887 
5888 /*
5889  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5890  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5891  * pagelist can have before it gets flushed back to buddy allocator.
5892  */
5893 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5894 	void __user *buffer, size_t *length, loff_t *ppos)
5895 {
5896 	struct zone *zone;
5897 	int old_percpu_pagelist_fraction;
5898 	int ret;
5899 
5900 	mutex_lock(&pcp_batch_high_lock);
5901 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5902 
5903 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5904 	if (!write || ret < 0)
5905 		goto out;
5906 
5907 	/* Sanity checking to avoid pcp imbalance */
5908 	if (percpu_pagelist_fraction &&
5909 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5910 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5911 		ret = -EINVAL;
5912 		goto out;
5913 	}
5914 
5915 	/* No change? */
5916 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5917 		goto out;
5918 
5919 	for_each_populated_zone(zone) {
5920 		unsigned int cpu;
5921 
5922 		for_each_possible_cpu(cpu)
5923 			pageset_set_high_and_batch(zone,
5924 					per_cpu_ptr(zone->pageset, cpu));
5925 	}
5926 out:
5927 	mutex_unlock(&pcp_batch_high_lock);
5928 	return ret;
5929 }
5930 
5931 int hashdist = HASHDIST_DEFAULT;
5932 
5933 #ifdef CONFIG_NUMA
5934 static int __init set_hashdist(char *str)
5935 {
5936 	if (!str)
5937 		return 0;
5938 	hashdist = simple_strtoul(str, &str, 0);
5939 	return 1;
5940 }
5941 __setup("hashdist=", set_hashdist);
5942 #endif
5943 
5944 /*
5945  * allocate a large system hash table from bootmem
5946  * - it is assumed that the hash table must contain an exact power-of-2
5947  *   quantity of entries
5948  * - limit is the number of hash buckets, not the total allocation size
5949  */
5950 void *__init alloc_large_system_hash(const char *tablename,
5951 				     unsigned long bucketsize,
5952 				     unsigned long numentries,
5953 				     int scale,
5954 				     int flags,
5955 				     unsigned int *_hash_shift,
5956 				     unsigned int *_hash_mask,
5957 				     unsigned long low_limit,
5958 				     unsigned long high_limit)
5959 {
5960 	unsigned long long max = high_limit;
5961 	unsigned long log2qty, size;
5962 	void *table = NULL;
5963 
5964 	/* allow the kernel cmdline to have a say */
5965 	if (!numentries) {
5966 		/* round applicable memory size up to nearest megabyte */
5967 		numentries = nr_kernel_pages;
5968 
5969 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5970 		if (PAGE_SHIFT < 20)
5971 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5972 
5973 		/* limit to 1 bucket per 2^scale bytes of low memory */
5974 		if (scale > PAGE_SHIFT)
5975 			numentries >>= (scale - PAGE_SHIFT);
5976 		else
5977 			numentries <<= (PAGE_SHIFT - scale);
5978 
5979 		/* Make sure we've got at least a 0-order allocation.. */
5980 		if (unlikely(flags & HASH_SMALL)) {
5981 			/* Makes no sense without HASH_EARLY */
5982 			WARN_ON(!(flags & HASH_EARLY));
5983 			if (!(numentries >> *_hash_shift)) {
5984 				numentries = 1UL << *_hash_shift;
5985 				BUG_ON(!numentries);
5986 			}
5987 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5988 			numentries = PAGE_SIZE / bucketsize;
5989 	}
5990 	numentries = roundup_pow_of_two(numentries);
5991 
5992 	/* limit allocation size to 1/16 total memory by default */
5993 	if (max == 0) {
5994 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5995 		do_div(max, bucketsize);
5996 	}
5997 	max = min(max, 0x80000000ULL);
5998 
5999 	if (numentries < low_limit)
6000 		numentries = low_limit;
6001 	if (numentries > max)
6002 		numentries = max;
6003 
6004 	log2qty = ilog2(numentries);
6005 
6006 	do {
6007 		size = bucketsize << log2qty;
6008 		if (flags & HASH_EARLY)
6009 			table = memblock_virt_alloc_nopanic(size, 0);
6010 		else if (hashdist)
6011 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6012 		else {
6013 			/*
6014 			 * If bucketsize is not a power-of-two, we may free
6015 			 * some pages at the end of hash table which
6016 			 * alloc_pages_exact() automatically does
6017 			 */
6018 			if (get_order(size) < MAX_ORDER) {
6019 				table = alloc_pages_exact(size, GFP_ATOMIC);
6020 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6021 			}
6022 		}
6023 	} while (!table && size > PAGE_SIZE && --log2qty);
6024 
6025 	if (!table)
6026 		panic("Failed to allocate %s hash table\n", tablename);
6027 
6028 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6029 	       tablename,
6030 	       (1UL << log2qty),
6031 	       ilog2(size) - PAGE_SHIFT,
6032 	       size);
6033 
6034 	if (_hash_shift)
6035 		*_hash_shift = log2qty;
6036 	if (_hash_mask)
6037 		*_hash_mask = (1 << log2qty) - 1;
6038 
6039 	return table;
6040 }
6041 
6042 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6043 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6044 							unsigned long pfn)
6045 {
6046 #ifdef CONFIG_SPARSEMEM
6047 	return __pfn_to_section(pfn)->pageblock_flags;
6048 #else
6049 	return zone->pageblock_flags;
6050 #endif /* CONFIG_SPARSEMEM */
6051 }
6052 
6053 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6054 {
6055 #ifdef CONFIG_SPARSEMEM
6056 	pfn &= (PAGES_PER_SECTION-1);
6057 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6058 #else
6059 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6060 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6061 #endif /* CONFIG_SPARSEMEM */
6062 }
6063 
6064 /**
6065  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6066  * @page: The page within the block of interest
6067  * @start_bitidx: The first bit of interest to retrieve
6068  * @end_bitidx: The last bit of interest
6069  * returns pageblock_bits flags
6070  */
6071 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6072 					unsigned long end_bitidx,
6073 					unsigned long mask)
6074 {
6075 	struct zone *zone;
6076 	unsigned long *bitmap;
6077 	unsigned long bitidx, word_bitidx;
6078 	unsigned long word;
6079 
6080 	zone = page_zone(page);
6081 	bitmap = get_pageblock_bitmap(zone, pfn);
6082 	bitidx = pfn_to_bitidx(zone, pfn);
6083 	word_bitidx = bitidx / BITS_PER_LONG;
6084 	bitidx &= (BITS_PER_LONG-1);
6085 
6086 	word = bitmap[word_bitidx];
6087 	bitidx += end_bitidx;
6088 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6089 }
6090 
6091 /**
6092  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6093  * @page: The page within the block of interest
6094  * @start_bitidx: The first bit of interest
6095  * @end_bitidx: The last bit of interest
6096  * @flags: The flags to set
6097  */
6098 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6099 					unsigned long pfn,
6100 					unsigned long end_bitidx,
6101 					unsigned long mask)
6102 {
6103 	struct zone *zone;
6104 	unsigned long *bitmap;
6105 	unsigned long bitidx, word_bitidx;
6106 	unsigned long old_word, word;
6107 
6108 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6109 
6110 	zone = page_zone(page);
6111 	bitmap = get_pageblock_bitmap(zone, pfn);
6112 	bitidx = pfn_to_bitidx(zone, pfn);
6113 	word_bitidx = bitidx / BITS_PER_LONG;
6114 	bitidx &= (BITS_PER_LONG-1);
6115 
6116 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6117 
6118 	bitidx += end_bitidx;
6119 	mask <<= (BITS_PER_LONG - bitidx - 1);
6120 	flags <<= (BITS_PER_LONG - bitidx - 1);
6121 
6122 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6123 	for (;;) {
6124 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6125 		if (word == old_word)
6126 			break;
6127 		word = old_word;
6128 	}
6129 }
6130 
6131 /*
6132  * This function checks whether pageblock includes unmovable pages or not.
6133  * If @count is not zero, it is okay to include less @count unmovable pages
6134  *
6135  * PageLRU check without isolation or lru_lock could race so that
6136  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6137  * expect this function should be exact.
6138  */
6139 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6140 			 bool skip_hwpoisoned_pages)
6141 {
6142 	unsigned long pfn, iter, found;
6143 	int mt;
6144 
6145 	/*
6146 	 * For avoiding noise data, lru_add_drain_all() should be called
6147 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6148 	 */
6149 	if (zone_idx(zone) == ZONE_MOVABLE)
6150 		return false;
6151 	mt = get_pageblock_migratetype(page);
6152 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6153 		return false;
6154 
6155 	pfn = page_to_pfn(page);
6156 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6157 		unsigned long check = pfn + iter;
6158 
6159 		if (!pfn_valid_within(check))
6160 			continue;
6161 
6162 		page = pfn_to_page(check);
6163 
6164 		/*
6165 		 * Hugepages are not in LRU lists, but they're movable.
6166 		 * We need not scan over tail pages bacause we don't
6167 		 * handle each tail page individually in migration.
6168 		 */
6169 		if (PageHuge(page)) {
6170 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6171 			continue;
6172 		}
6173 
6174 		/*
6175 		 * We can't use page_count without pin a page
6176 		 * because another CPU can free compound page.
6177 		 * This check already skips compound tails of THP
6178 		 * because their page->_count is zero at all time.
6179 		 */
6180 		if (!atomic_read(&page->_count)) {
6181 			if (PageBuddy(page))
6182 				iter += (1 << page_order(page)) - 1;
6183 			continue;
6184 		}
6185 
6186 		/*
6187 		 * The HWPoisoned page may be not in buddy system, and
6188 		 * page_count() is not 0.
6189 		 */
6190 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6191 			continue;
6192 
6193 		if (!PageLRU(page))
6194 			found++;
6195 		/*
6196 		 * If there are RECLAIMABLE pages, we need to check it.
6197 		 * But now, memory offline itself doesn't call shrink_slab()
6198 		 * and it still to be fixed.
6199 		 */
6200 		/*
6201 		 * If the page is not RAM, page_count()should be 0.
6202 		 * we don't need more check. This is an _used_ not-movable page.
6203 		 *
6204 		 * The problematic thing here is PG_reserved pages. PG_reserved
6205 		 * is set to both of a memory hole page and a _used_ kernel
6206 		 * page at boot.
6207 		 */
6208 		if (found > count)
6209 			return true;
6210 	}
6211 	return false;
6212 }
6213 
6214 bool is_pageblock_removable_nolock(struct page *page)
6215 {
6216 	struct zone *zone;
6217 	unsigned long pfn;
6218 
6219 	/*
6220 	 * We have to be careful here because we are iterating over memory
6221 	 * sections which are not zone aware so we might end up outside of
6222 	 * the zone but still within the section.
6223 	 * We have to take care about the node as well. If the node is offline
6224 	 * its NODE_DATA will be NULL - see page_zone.
6225 	 */
6226 	if (!node_online(page_to_nid(page)))
6227 		return false;
6228 
6229 	zone = page_zone(page);
6230 	pfn = page_to_pfn(page);
6231 	if (!zone_spans_pfn(zone, pfn))
6232 		return false;
6233 
6234 	return !has_unmovable_pages(zone, page, 0, true);
6235 }
6236 
6237 #ifdef CONFIG_CMA
6238 
6239 static unsigned long pfn_max_align_down(unsigned long pfn)
6240 {
6241 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6242 			     pageblock_nr_pages) - 1);
6243 }
6244 
6245 static unsigned long pfn_max_align_up(unsigned long pfn)
6246 {
6247 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6248 				pageblock_nr_pages));
6249 }
6250 
6251 /* [start, end) must belong to a single zone. */
6252 static int __alloc_contig_migrate_range(struct compact_control *cc,
6253 					unsigned long start, unsigned long end)
6254 {
6255 	/* This function is based on compact_zone() from compaction.c. */
6256 	unsigned long nr_reclaimed;
6257 	unsigned long pfn = start;
6258 	unsigned int tries = 0;
6259 	int ret = 0;
6260 
6261 	migrate_prep();
6262 
6263 	while (pfn < end || !list_empty(&cc->migratepages)) {
6264 		if (fatal_signal_pending(current)) {
6265 			ret = -EINTR;
6266 			break;
6267 		}
6268 
6269 		if (list_empty(&cc->migratepages)) {
6270 			cc->nr_migratepages = 0;
6271 			pfn = isolate_migratepages_range(cc->zone, cc,
6272 							 pfn, end, true);
6273 			if (!pfn) {
6274 				ret = -EINTR;
6275 				break;
6276 			}
6277 			tries = 0;
6278 		} else if (++tries == 5) {
6279 			ret = ret < 0 ? ret : -EBUSY;
6280 			break;
6281 		}
6282 
6283 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6284 							&cc->migratepages);
6285 		cc->nr_migratepages -= nr_reclaimed;
6286 
6287 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6288 				    NULL, 0, cc->mode, MR_CMA);
6289 	}
6290 	if (ret < 0) {
6291 		putback_movable_pages(&cc->migratepages);
6292 		return ret;
6293 	}
6294 	return 0;
6295 }
6296 
6297 /**
6298  * alloc_contig_range() -- tries to allocate given range of pages
6299  * @start:	start PFN to allocate
6300  * @end:	one-past-the-last PFN to allocate
6301  * @migratetype:	migratetype of the underlaying pageblocks (either
6302  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6303  *			in range must have the same migratetype and it must
6304  *			be either of the two.
6305  *
6306  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6307  * aligned, however it's the caller's responsibility to guarantee that
6308  * we are the only thread that changes migrate type of pageblocks the
6309  * pages fall in.
6310  *
6311  * The PFN range must belong to a single zone.
6312  *
6313  * Returns zero on success or negative error code.  On success all
6314  * pages which PFN is in [start, end) are allocated for the caller and
6315  * need to be freed with free_contig_range().
6316  */
6317 int alloc_contig_range(unsigned long start, unsigned long end,
6318 		       unsigned migratetype)
6319 {
6320 	unsigned long outer_start, outer_end;
6321 	int ret = 0, order;
6322 
6323 	struct compact_control cc = {
6324 		.nr_migratepages = 0,
6325 		.order = -1,
6326 		.zone = page_zone(pfn_to_page(start)),
6327 		.mode = MIGRATE_SYNC,
6328 		.ignore_skip_hint = true,
6329 	};
6330 	INIT_LIST_HEAD(&cc.migratepages);
6331 
6332 	/*
6333 	 * What we do here is we mark all pageblocks in range as
6334 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6335 	 * have different sizes, and due to the way page allocator
6336 	 * work, we align the range to biggest of the two pages so
6337 	 * that page allocator won't try to merge buddies from
6338 	 * different pageblocks and change MIGRATE_ISOLATE to some
6339 	 * other migration type.
6340 	 *
6341 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6342 	 * migrate the pages from an unaligned range (ie. pages that
6343 	 * we are interested in).  This will put all the pages in
6344 	 * range back to page allocator as MIGRATE_ISOLATE.
6345 	 *
6346 	 * When this is done, we take the pages in range from page
6347 	 * allocator removing them from the buddy system.  This way
6348 	 * page allocator will never consider using them.
6349 	 *
6350 	 * This lets us mark the pageblocks back as
6351 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6352 	 * aligned range but not in the unaligned, original range are
6353 	 * put back to page allocator so that buddy can use them.
6354 	 */
6355 
6356 	ret = start_isolate_page_range(pfn_max_align_down(start),
6357 				       pfn_max_align_up(end), migratetype,
6358 				       false);
6359 	if (ret)
6360 		return ret;
6361 
6362 	ret = __alloc_contig_migrate_range(&cc, start, end);
6363 	if (ret)
6364 		goto done;
6365 
6366 	/*
6367 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6368 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6369 	 * more, all pages in [start, end) are free in page allocator.
6370 	 * What we are going to do is to allocate all pages from
6371 	 * [start, end) (that is remove them from page allocator).
6372 	 *
6373 	 * The only problem is that pages at the beginning and at the
6374 	 * end of interesting range may be not aligned with pages that
6375 	 * page allocator holds, ie. they can be part of higher order
6376 	 * pages.  Because of this, we reserve the bigger range and
6377 	 * once this is done free the pages we are not interested in.
6378 	 *
6379 	 * We don't have to hold zone->lock here because the pages are
6380 	 * isolated thus they won't get removed from buddy.
6381 	 */
6382 
6383 	lru_add_drain_all();
6384 	drain_all_pages();
6385 
6386 	order = 0;
6387 	outer_start = start;
6388 	while (!PageBuddy(pfn_to_page(outer_start))) {
6389 		if (++order >= MAX_ORDER) {
6390 			ret = -EBUSY;
6391 			goto done;
6392 		}
6393 		outer_start &= ~0UL << order;
6394 	}
6395 
6396 	/* Make sure the range is really isolated. */
6397 	if (test_pages_isolated(outer_start, end, false)) {
6398 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6399 		       outer_start, end);
6400 		ret = -EBUSY;
6401 		goto done;
6402 	}
6403 
6404 
6405 	/* Grab isolated pages from freelists. */
6406 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6407 	if (!outer_end) {
6408 		ret = -EBUSY;
6409 		goto done;
6410 	}
6411 
6412 	/* Free head and tail (if any) */
6413 	if (start != outer_start)
6414 		free_contig_range(outer_start, start - outer_start);
6415 	if (end != outer_end)
6416 		free_contig_range(end, outer_end - end);
6417 
6418 done:
6419 	undo_isolate_page_range(pfn_max_align_down(start),
6420 				pfn_max_align_up(end), migratetype);
6421 	return ret;
6422 }
6423 
6424 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6425 {
6426 	unsigned int count = 0;
6427 
6428 	for (; nr_pages--; pfn++) {
6429 		struct page *page = pfn_to_page(pfn);
6430 
6431 		count += page_count(page) != 1;
6432 		__free_page(page);
6433 	}
6434 	WARN(count != 0, "%d pages are still in use!\n", count);
6435 }
6436 #endif
6437 
6438 #ifdef CONFIG_MEMORY_HOTPLUG
6439 /*
6440  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6441  * page high values need to be recalulated.
6442  */
6443 void __meminit zone_pcp_update(struct zone *zone)
6444 {
6445 	unsigned cpu;
6446 	mutex_lock(&pcp_batch_high_lock);
6447 	for_each_possible_cpu(cpu)
6448 		pageset_set_high_and_batch(zone,
6449 				per_cpu_ptr(zone->pageset, cpu));
6450 	mutex_unlock(&pcp_batch_high_lock);
6451 }
6452 #endif
6453 
6454 void zone_pcp_reset(struct zone *zone)
6455 {
6456 	unsigned long flags;
6457 	int cpu;
6458 	struct per_cpu_pageset *pset;
6459 
6460 	/* avoid races with drain_pages()  */
6461 	local_irq_save(flags);
6462 	if (zone->pageset != &boot_pageset) {
6463 		for_each_online_cpu(cpu) {
6464 			pset = per_cpu_ptr(zone->pageset, cpu);
6465 			drain_zonestat(zone, pset);
6466 		}
6467 		free_percpu(zone->pageset);
6468 		zone->pageset = &boot_pageset;
6469 	}
6470 	local_irq_restore(flags);
6471 }
6472 
6473 #ifdef CONFIG_MEMORY_HOTREMOVE
6474 /*
6475  * All pages in the range must be isolated before calling this.
6476  */
6477 void
6478 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6479 {
6480 	struct page *page;
6481 	struct zone *zone;
6482 	unsigned int order, i;
6483 	unsigned long pfn;
6484 	unsigned long flags;
6485 	/* find the first valid pfn */
6486 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6487 		if (pfn_valid(pfn))
6488 			break;
6489 	if (pfn == end_pfn)
6490 		return;
6491 	zone = page_zone(pfn_to_page(pfn));
6492 	spin_lock_irqsave(&zone->lock, flags);
6493 	pfn = start_pfn;
6494 	while (pfn < end_pfn) {
6495 		if (!pfn_valid(pfn)) {
6496 			pfn++;
6497 			continue;
6498 		}
6499 		page = pfn_to_page(pfn);
6500 		/*
6501 		 * The HWPoisoned page may be not in buddy system, and
6502 		 * page_count() is not 0.
6503 		 */
6504 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6505 			pfn++;
6506 			SetPageReserved(page);
6507 			continue;
6508 		}
6509 
6510 		BUG_ON(page_count(page));
6511 		BUG_ON(!PageBuddy(page));
6512 		order = page_order(page);
6513 #ifdef CONFIG_DEBUG_VM
6514 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6515 		       pfn, 1 << order, end_pfn);
6516 #endif
6517 		list_del(&page->lru);
6518 		rmv_page_order(page);
6519 		zone->free_area[order].nr_free--;
6520 		for (i = 0; i < (1 << order); i++)
6521 			SetPageReserved((page+i));
6522 		pfn += (1 << order);
6523 	}
6524 	spin_unlock_irqrestore(&zone->lock, flags);
6525 }
6526 #endif
6527 
6528 #ifdef CONFIG_MEMORY_FAILURE
6529 bool is_free_buddy_page(struct page *page)
6530 {
6531 	struct zone *zone = page_zone(page);
6532 	unsigned long pfn = page_to_pfn(page);
6533 	unsigned long flags;
6534 	unsigned int order;
6535 
6536 	spin_lock_irqsave(&zone->lock, flags);
6537 	for (order = 0; order < MAX_ORDER; order++) {
6538 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6539 
6540 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6541 			break;
6542 	}
6543 	spin_unlock_irqrestore(&zone->lock, flags);
6544 
6545 	return order < MAX_ORDER;
6546 }
6547 #endif
6548 
6549 static const struct trace_print_flags pageflag_names[] = {
6550 	{1UL << PG_locked,		"locked"	},
6551 	{1UL << PG_error,		"error"		},
6552 	{1UL << PG_referenced,		"referenced"	},
6553 	{1UL << PG_uptodate,		"uptodate"	},
6554 	{1UL << PG_dirty,		"dirty"		},
6555 	{1UL << PG_lru,			"lru"		},
6556 	{1UL << PG_active,		"active"	},
6557 	{1UL << PG_slab,		"slab"		},
6558 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6559 	{1UL << PG_arch_1,		"arch_1"	},
6560 	{1UL << PG_reserved,		"reserved"	},
6561 	{1UL << PG_private,		"private"	},
6562 	{1UL << PG_private_2,		"private_2"	},
6563 	{1UL << PG_writeback,		"writeback"	},
6564 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6565 	{1UL << PG_head,		"head"		},
6566 	{1UL << PG_tail,		"tail"		},
6567 #else
6568 	{1UL << PG_compound,		"compound"	},
6569 #endif
6570 	{1UL << PG_swapcache,		"swapcache"	},
6571 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6572 	{1UL << PG_reclaim,		"reclaim"	},
6573 	{1UL << PG_swapbacked,		"swapbacked"	},
6574 	{1UL << PG_unevictable,		"unevictable"	},
6575 #ifdef CONFIG_MMU
6576 	{1UL << PG_mlocked,		"mlocked"	},
6577 #endif
6578 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6579 	{1UL << PG_uncached,		"uncached"	},
6580 #endif
6581 #ifdef CONFIG_MEMORY_FAILURE
6582 	{1UL << PG_hwpoison,		"hwpoison"	},
6583 #endif
6584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6585 	{1UL << PG_compound_lock,	"compound_lock"	},
6586 #endif
6587 };
6588 
6589 static void dump_page_flags(unsigned long flags)
6590 {
6591 	const char *delim = "";
6592 	unsigned long mask;
6593 	int i;
6594 
6595 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6596 
6597 	printk(KERN_ALERT "page flags: %#lx(", flags);
6598 
6599 	/* remove zone id */
6600 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6601 
6602 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6603 
6604 		mask = pageflag_names[i].mask;
6605 		if ((flags & mask) != mask)
6606 			continue;
6607 
6608 		flags &= ~mask;
6609 		printk("%s%s", delim, pageflag_names[i].name);
6610 		delim = "|";
6611 	}
6612 
6613 	/* check for left over flags */
6614 	if (flags)
6615 		printk("%s%#lx", delim, flags);
6616 
6617 	printk(")\n");
6618 }
6619 
6620 void dump_page_badflags(struct page *page, const char *reason,
6621 		unsigned long badflags)
6622 {
6623 	printk(KERN_ALERT
6624 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6625 		page, atomic_read(&page->_count), page_mapcount(page),
6626 		page->mapping, page->index);
6627 	dump_page_flags(page->flags);
6628 	if (reason)
6629 		pr_alert("page dumped because: %s\n", reason);
6630 	if (page->flags & badflags) {
6631 		pr_alert("bad because of flags:\n");
6632 		dump_page_flags(page->flags & badflags);
6633 	}
6634 	mem_cgroup_print_bad_page(page);
6635 }
6636 
6637 void dump_page(struct page *page, const char *reason)
6638 {
6639 	dump_page_badflags(page, reason, 0);
6640 }
6641 EXPORT_SYMBOL(dump_page);
6642