xref: /openbmc/linux/mm/page_alloc.c (revision d21077fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/khugepaged.h>
76 #include <linux/delayacct.h>
77 #include <asm/sections.h>
78 #include <asm/tlbflush.h>
79 #include <asm/div64.h>
80 #include "internal.h"
81 #include "shuffle.h"
82 #include "page_reporting.h"
83 #include "swap.h"
84 
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87 
88 /* No special request */
89 #define FPI_NONE		((__force fpi_t)0)
90 
91 /*
92  * Skip free page reporting notification for the (possibly merged) page.
93  * This does not hinder free page reporting from grabbing the page,
94  * reporting it and marking it "reported" -  it only skips notifying
95  * the free page reporting infrastructure about a newly freed page. For
96  * example, used when temporarily pulling a page from a freelist and
97  * putting it back unmodified.
98  */
99 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
100 
101 /*
102  * Place the (possibly merged) page to the tail of the freelist. Will ignore
103  * page shuffling (relevant code - e.g., memory onlining - is expected to
104  * shuffle the whole zone).
105  *
106  * Note: No code should rely on this flag for correctness - it's purely
107  *       to allow for optimizations when handing back either fresh pages
108  *       (memory onlining) or untouched pages (page isolation, free page
109  *       reporting).
110  */
111 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
112 
113 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
114 static DEFINE_MUTEX(pcp_batch_high_lock);
115 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
116 
117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
118 /*
119  * On SMP, spin_trylock is sufficient protection.
120  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
121  */
122 #define pcp_trylock_prepare(flags)	do { } while (0)
123 #define pcp_trylock_finish(flag)	do { } while (0)
124 #else
125 
126 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
127 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
128 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
129 #endif
130 
131 /*
132  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
133  * a migration causing the wrong PCP to be locked and remote memory being
134  * potentially allocated, pin the task to the CPU for the lookup+lock.
135  * preempt_disable is used on !RT because it is faster than migrate_disable.
136  * migrate_disable is used on RT because otherwise RT spinlock usage is
137  * interfered with and a high priority task cannot preempt the allocator.
138  */
139 #ifndef CONFIG_PREEMPT_RT
140 #define pcpu_task_pin()		preempt_disable()
141 #define pcpu_task_unpin()	preempt_enable()
142 #else
143 #define pcpu_task_pin()		migrate_disable()
144 #define pcpu_task_unpin()	migrate_enable()
145 #endif
146 
147 /*
148  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
149  * Return value should be used with equivalent unlock helper.
150  */
151 #define pcpu_spin_lock(type, member, ptr)				\
152 ({									\
153 	type *_ret;							\
154 	pcpu_task_pin();						\
155 	_ret = this_cpu_ptr(ptr);					\
156 	spin_lock(&_ret->member);					\
157 	_ret;								\
158 })
159 
160 #define pcpu_spin_trylock(type, member, ptr)				\
161 ({									\
162 	type *_ret;							\
163 	pcpu_task_pin();						\
164 	_ret = this_cpu_ptr(ptr);					\
165 	if (!spin_trylock(&_ret->member)) {				\
166 		pcpu_task_unpin();					\
167 		_ret = NULL;						\
168 	}								\
169 	_ret;								\
170 })
171 
172 #define pcpu_spin_unlock(member, ptr)					\
173 ({									\
174 	spin_unlock(&ptr->member);					\
175 	pcpu_task_unpin();						\
176 })
177 
178 /* struct per_cpu_pages specific helpers. */
179 #define pcp_spin_lock(ptr)						\
180 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
181 
182 #define pcp_spin_trylock(ptr)						\
183 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
184 
185 #define pcp_spin_unlock(ptr)						\
186 	pcpu_spin_unlock(lock, ptr)
187 
188 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
189 DEFINE_PER_CPU(int, numa_node);
190 EXPORT_PER_CPU_SYMBOL(numa_node);
191 #endif
192 
193 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
194 
195 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
196 /*
197  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
198  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
199  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
200  * defined in <linux/topology.h>.
201  */
202 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
203 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
204 #endif
205 
206 static DEFINE_MUTEX(pcpu_drain_mutex);
207 
208 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
209 volatile unsigned long latent_entropy __latent_entropy;
210 EXPORT_SYMBOL(latent_entropy);
211 #endif
212 
213 /*
214  * Array of node states.
215  */
216 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
217 	[N_POSSIBLE] = NODE_MASK_ALL,
218 	[N_ONLINE] = { { [0] = 1UL } },
219 #ifndef CONFIG_NUMA
220 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
221 #ifdef CONFIG_HIGHMEM
222 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
223 #endif
224 	[N_MEMORY] = { { [0] = 1UL } },
225 	[N_CPU] = { { [0] = 1UL } },
226 #endif	/* NUMA */
227 };
228 EXPORT_SYMBOL(node_states);
229 
230 atomic_long_t _totalram_pages __read_mostly;
231 EXPORT_SYMBOL(_totalram_pages);
232 unsigned long totalreserve_pages __read_mostly;
233 unsigned long totalcma_pages __read_mostly;
234 
235 int percpu_pagelist_high_fraction;
236 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
237 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
238 EXPORT_SYMBOL(init_on_alloc);
239 
240 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
241 EXPORT_SYMBOL(init_on_free);
242 
243 /*
244  * A cached value of the page's pageblock's migratetype, used when the page is
245  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
246  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
247  * Also the migratetype set in the page does not necessarily match the pcplist
248  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
249  * other index - this ensures that it will be put on the correct CMA freelist.
250  */
251 static inline int get_pcppage_migratetype(struct page *page)
252 {
253 	return page->index;
254 }
255 
256 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
257 {
258 	page->index = migratetype;
259 }
260 
261 #ifdef CONFIG_PM_SLEEP
262 /*
263  * The following functions are used by the suspend/hibernate code to temporarily
264  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
265  * while devices are suspended.  To avoid races with the suspend/hibernate code,
266  * they should always be called with system_transition_mutex held
267  * (gfp_allowed_mask also should only be modified with system_transition_mutex
268  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
269  * with that modification).
270  */
271 
272 static gfp_t saved_gfp_mask;
273 
274 void pm_restore_gfp_mask(void)
275 {
276 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
277 	if (saved_gfp_mask) {
278 		gfp_allowed_mask = saved_gfp_mask;
279 		saved_gfp_mask = 0;
280 	}
281 }
282 
283 void pm_restrict_gfp_mask(void)
284 {
285 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
286 	WARN_ON(saved_gfp_mask);
287 	saved_gfp_mask = gfp_allowed_mask;
288 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
289 }
290 
291 bool pm_suspended_storage(void)
292 {
293 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
294 		return false;
295 	return true;
296 }
297 #endif /* CONFIG_PM_SLEEP */
298 
299 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
300 unsigned int pageblock_order __read_mostly;
301 #endif
302 
303 static void __free_pages_ok(struct page *page, unsigned int order,
304 			    fpi_t fpi_flags);
305 
306 /*
307  * results with 256, 32 in the lowmem_reserve sysctl:
308  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
309  *	1G machine -> (16M dma, 784M normal, 224M high)
310  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
311  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
312  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
313  *
314  * TBD: should special case ZONE_DMA32 machines here - in those we normally
315  * don't need any ZONE_NORMAL reservation
316  */
317 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
318 #ifdef CONFIG_ZONE_DMA
319 	[ZONE_DMA] = 256,
320 #endif
321 #ifdef CONFIG_ZONE_DMA32
322 	[ZONE_DMA32] = 256,
323 #endif
324 	[ZONE_NORMAL] = 32,
325 #ifdef CONFIG_HIGHMEM
326 	[ZONE_HIGHMEM] = 0,
327 #endif
328 	[ZONE_MOVABLE] = 0,
329 };
330 
331 char * const zone_names[MAX_NR_ZONES] = {
332 #ifdef CONFIG_ZONE_DMA
333 	 "DMA",
334 #endif
335 #ifdef CONFIG_ZONE_DMA32
336 	 "DMA32",
337 #endif
338 	 "Normal",
339 #ifdef CONFIG_HIGHMEM
340 	 "HighMem",
341 #endif
342 	 "Movable",
343 #ifdef CONFIG_ZONE_DEVICE
344 	 "Device",
345 #endif
346 };
347 
348 const char * const migratetype_names[MIGRATE_TYPES] = {
349 	"Unmovable",
350 	"Movable",
351 	"Reclaimable",
352 	"HighAtomic",
353 #ifdef CONFIG_CMA
354 	"CMA",
355 #endif
356 #ifdef CONFIG_MEMORY_ISOLATION
357 	"Isolate",
358 #endif
359 };
360 
361 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
362 	[NULL_COMPOUND_DTOR] = NULL,
363 	[COMPOUND_PAGE_DTOR] = free_compound_page,
364 #ifdef CONFIG_HUGETLB_PAGE
365 	[HUGETLB_PAGE_DTOR] = free_huge_page,
366 #endif
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
369 #endif
370 };
371 
372 int min_free_kbytes = 1024;
373 int user_min_free_kbytes = -1;
374 int watermark_boost_factor __read_mostly = 15000;
375 int watermark_scale_factor = 10;
376 
377 bool mirrored_kernelcore __initdata_memblock;
378 
379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380 int movable_zone;
381 EXPORT_SYMBOL(movable_zone);
382 
383 #if MAX_NUMNODES > 1
384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
385 unsigned int nr_online_nodes __read_mostly = 1;
386 EXPORT_SYMBOL(nr_node_ids);
387 EXPORT_SYMBOL(nr_online_nodes);
388 #endif
389 
390 int page_group_by_mobility_disabled __read_mostly;
391 
392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
393 /*
394  * During boot we initialize deferred pages on-demand, as needed, but once
395  * page_alloc_init_late() has finished, the deferred pages are all initialized,
396  * and we can permanently disable that path.
397  */
398 DEFINE_STATIC_KEY_TRUE(deferred_pages);
399 
400 static inline bool deferred_pages_enabled(void)
401 {
402 	return static_branch_unlikely(&deferred_pages);
403 }
404 
405 /*
406  * deferred_grow_zone() is __init, but it is called from
407  * get_page_from_freelist() during early boot until deferred_pages permanently
408  * disables this call. This is why we have refdata wrapper to avoid warning,
409  * and to ensure that the function body gets unloaded.
410  */
411 static bool __ref
412 _deferred_grow_zone(struct zone *zone, unsigned int order)
413 {
414        return deferred_grow_zone(zone, order);
415 }
416 #else
417 static inline bool deferred_pages_enabled(void)
418 {
419 	return false;
420 }
421 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
422 
423 /* Return a pointer to the bitmap storing bits affecting a block of pages */
424 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
425 							unsigned long pfn)
426 {
427 #ifdef CONFIG_SPARSEMEM
428 	return section_to_usemap(__pfn_to_section(pfn));
429 #else
430 	return page_zone(page)->pageblock_flags;
431 #endif /* CONFIG_SPARSEMEM */
432 }
433 
434 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
435 {
436 #ifdef CONFIG_SPARSEMEM
437 	pfn &= (PAGES_PER_SECTION-1);
438 #else
439 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
440 #endif /* CONFIG_SPARSEMEM */
441 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
442 }
443 
444 static __always_inline
445 unsigned long __get_pfnblock_flags_mask(const struct page *page,
446 					unsigned long pfn,
447 					unsigned long mask)
448 {
449 	unsigned long *bitmap;
450 	unsigned long bitidx, word_bitidx;
451 	unsigned long word;
452 
453 	bitmap = get_pageblock_bitmap(page, pfn);
454 	bitidx = pfn_to_bitidx(page, pfn);
455 	word_bitidx = bitidx / BITS_PER_LONG;
456 	bitidx &= (BITS_PER_LONG-1);
457 	/*
458 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
459 	 * a consistent read of the memory array, so that results, even though
460 	 * racy, are not corrupted.
461 	 */
462 	word = READ_ONCE(bitmap[word_bitidx]);
463 	return (word >> bitidx) & mask;
464 }
465 
466 /**
467  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
468  * @page: The page within the block of interest
469  * @pfn: The target page frame number
470  * @mask: mask of bits that the caller is interested in
471  *
472  * Return: pageblock_bits flags
473  */
474 unsigned long get_pfnblock_flags_mask(const struct page *page,
475 					unsigned long pfn, unsigned long mask)
476 {
477 	return __get_pfnblock_flags_mask(page, pfn, mask);
478 }
479 
480 static __always_inline int get_pfnblock_migratetype(const struct page *page,
481 					unsigned long pfn)
482 {
483 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
484 }
485 
486 /**
487  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
488  * @page: The page within the block of interest
489  * @flags: The flags to set
490  * @pfn: The target page frame number
491  * @mask: mask of bits that the caller is interested in
492  */
493 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
494 					unsigned long pfn,
495 					unsigned long mask)
496 {
497 	unsigned long *bitmap;
498 	unsigned long bitidx, word_bitidx;
499 	unsigned long word;
500 
501 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
502 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
503 
504 	bitmap = get_pageblock_bitmap(page, pfn);
505 	bitidx = pfn_to_bitidx(page, pfn);
506 	word_bitidx = bitidx / BITS_PER_LONG;
507 	bitidx &= (BITS_PER_LONG-1);
508 
509 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
510 
511 	mask <<= bitidx;
512 	flags <<= bitidx;
513 
514 	word = READ_ONCE(bitmap[word_bitidx]);
515 	do {
516 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
517 }
518 
519 void set_pageblock_migratetype(struct page *page, int migratetype)
520 {
521 	if (unlikely(page_group_by_mobility_disabled &&
522 		     migratetype < MIGRATE_PCPTYPES))
523 		migratetype = MIGRATE_UNMOVABLE;
524 
525 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
526 				page_to_pfn(page), MIGRATETYPE_MASK);
527 }
528 
529 #ifdef CONFIG_DEBUG_VM
530 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
531 {
532 	int ret = 0;
533 	unsigned seq;
534 	unsigned long pfn = page_to_pfn(page);
535 	unsigned long sp, start_pfn;
536 
537 	do {
538 		seq = zone_span_seqbegin(zone);
539 		start_pfn = zone->zone_start_pfn;
540 		sp = zone->spanned_pages;
541 		if (!zone_spans_pfn(zone, pfn))
542 			ret = 1;
543 	} while (zone_span_seqretry(zone, seq));
544 
545 	if (ret)
546 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
547 			pfn, zone_to_nid(zone), zone->name,
548 			start_pfn, start_pfn + sp);
549 
550 	return ret;
551 }
552 
553 static int page_is_consistent(struct zone *zone, struct page *page)
554 {
555 	if (zone != page_zone(page))
556 		return 0;
557 
558 	return 1;
559 }
560 /*
561  * Temporary debugging check for pages not lying within a given zone.
562  */
563 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
564 {
565 	if (page_outside_zone_boundaries(zone, page))
566 		return 1;
567 	if (!page_is_consistent(zone, page))
568 		return 1;
569 
570 	return 0;
571 }
572 #else
573 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
574 {
575 	return 0;
576 }
577 #endif
578 
579 static void bad_page(struct page *page, const char *reason)
580 {
581 	static unsigned long resume;
582 	static unsigned long nr_shown;
583 	static unsigned long nr_unshown;
584 
585 	/*
586 	 * Allow a burst of 60 reports, then keep quiet for that minute;
587 	 * or allow a steady drip of one report per second.
588 	 */
589 	if (nr_shown == 60) {
590 		if (time_before(jiffies, resume)) {
591 			nr_unshown++;
592 			goto out;
593 		}
594 		if (nr_unshown) {
595 			pr_alert(
596 			      "BUG: Bad page state: %lu messages suppressed\n",
597 				nr_unshown);
598 			nr_unshown = 0;
599 		}
600 		nr_shown = 0;
601 	}
602 	if (nr_shown++ == 0)
603 		resume = jiffies + 60 * HZ;
604 
605 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
606 		current->comm, page_to_pfn(page));
607 	dump_page(page, reason);
608 
609 	print_modules();
610 	dump_stack();
611 out:
612 	/* Leave bad fields for debug, except PageBuddy could make trouble */
613 	page_mapcount_reset(page); /* remove PageBuddy */
614 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 }
616 
617 static inline unsigned int order_to_pindex(int migratetype, int order)
618 {
619 	int base = order;
620 
621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
622 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
623 		VM_BUG_ON(order != pageblock_order);
624 		return NR_LOWORDER_PCP_LISTS;
625 	}
626 #else
627 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
628 #endif
629 
630 	return (MIGRATE_PCPTYPES * base) + migratetype;
631 }
632 
633 static inline int pindex_to_order(unsigned int pindex)
634 {
635 	int order = pindex / MIGRATE_PCPTYPES;
636 
637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
638 	if (pindex == NR_LOWORDER_PCP_LISTS)
639 		order = pageblock_order;
640 #else
641 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
642 #endif
643 
644 	return order;
645 }
646 
647 static inline bool pcp_allowed_order(unsigned int order)
648 {
649 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
650 		return true;
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 	if (order == pageblock_order)
653 		return true;
654 #endif
655 	return false;
656 }
657 
658 static inline void free_the_page(struct page *page, unsigned int order)
659 {
660 	if (pcp_allowed_order(order))		/* Via pcp? */
661 		free_unref_page(page, order);
662 	else
663 		__free_pages_ok(page, order, FPI_NONE);
664 }
665 
666 /*
667  * Higher-order pages are called "compound pages".  They are structured thusly:
668  *
669  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
670  *
671  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
672  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
673  *
674  * The first tail page's ->compound_dtor holds the offset in array of compound
675  * page destructors. See compound_page_dtors.
676  *
677  * The first tail page's ->compound_order holds the order of allocation.
678  * This usage means that zero-order pages may not be compound.
679  */
680 
681 void free_compound_page(struct page *page)
682 {
683 	mem_cgroup_uncharge(page_folio(page));
684 	free_the_page(page, compound_order(page));
685 }
686 
687 void prep_compound_page(struct page *page, unsigned int order)
688 {
689 	int i;
690 	int nr_pages = 1 << order;
691 
692 	__SetPageHead(page);
693 	for (i = 1; i < nr_pages; i++)
694 		prep_compound_tail(page, i);
695 
696 	prep_compound_head(page, order);
697 }
698 
699 void destroy_large_folio(struct folio *folio)
700 {
701 	enum compound_dtor_id dtor = folio->_folio_dtor;
702 
703 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
704 	compound_page_dtors[dtor](&folio->page);
705 }
706 
707 #ifdef CONFIG_DEBUG_PAGEALLOC
708 unsigned int _debug_guardpage_minorder;
709 
710 bool _debug_pagealloc_enabled_early __read_mostly
711 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
712 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
713 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
714 EXPORT_SYMBOL(_debug_pagealloc_enabled);
715 
716 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
717 
718 static int __init early_debug_pagealloc(char *buf)
719 {
720 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
721 }
722 early_param("debug_pagealloc", early_debug_pagealloc);
723 
724 static int __init debug_guardpage_minorder_setup(char *buf)
725 {
726 	unsigned long res;
727 
728 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
729 		pr_err("Bad debug_guardpage_minorder value\n");
730 		return 0;
731 	}
732 	_debug_guardpage_minorder = res;
733 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 	return 0;
735 }
736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
737 
738 static inline bool set_page_guard(struct zone *zone, struct page *page,
739 				unsigned int order, int migratetype)
740 {
741 	if (!debug_guardpage_enabled())
742 		return false;
743 
744 	if (order >= debug_guardpage_minorder())
745 		return false;
746 
747 	__SetPageGuard(page);
748 	INIT_LIST_HEAD(&page->buddy_list);
749 	set_page_private(page, order);
750 	/* Guard pages are not available for any usage */
751 	if (!is_migrate_isolate(migratetype))
752 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
753 
754 	return true;
755 }
756 
757 static inline void clear_page_guard(struct zone *zone, struct page *page,
758 				unsigned int order, int migratetype)
759 {
760 	if (!debug_guardpage_enabled())
761 		return;
762 
763 	__ClearPageGuard(page);
764 
765 	set_page_private(page, 0);
766 	if (!is_migrate_isolate(migratetype))
767 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
768 }
769 #else
770 static inline bool set_page_guard(struct zone *zone, struct page *page,
771 			unsigned int order, int migratetype) { return false; }
772 static inline void clear_page_guard(struct zone *zone, struct page *page,
773 				unsigned int order, int migratetype) {}
774 #endif
775 
776 static inline void set_buddy_order(struct page *page, unsigned int order)
777 {
778 	set_page_private(page, order);
779 	__SetPageBuddy(page);
780 }
781 
782 #ifdef CONFIG_COMPACTION
783 static inline struct capture_control *task_capc(struct zone *zone)
784 {
785 	struct capture_control *capc = current->capture_control;
786 
787 	return unlikely(capc) &&
788 		!(current->flags & PF_KTHREAD) &&
789 		!capc->page &&
790 		capc->cc->zone == zone ? capc : NULL;
791 }
792 
793 static inline bool
794 compaction_capture(struct capture_control *capc, struct page *page,
795 		   int order, int migratetype)
796 {
797 	if (!capc || order != capc->cc->order)
798 		return false;
799 
800 	/* Do not accidentally pollute CMA or isolated regions*/
801 	if (is_migrate_cma(migratetype) ||
802 	    is_migrate_isolate(migratetype))
803 		return false;
804 
805 	/*
806 	 * Do not let lower order allocations pollute a movable pageblock.
807 	 * This might let an unmovable request use a reclaimable pageblock
808 	 * and vice-versa but no more than normal fallback logic which can
809 	 * have trouble finding a high-order free page.
810 	 */
811 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
812 		return false;
813 
814 	capc->page = page;
815 	return true;
816 }
817 
818 #else
819 static inline struct capture_control *task_capc(struct zone *zone)
820 {
821 	return NULL;
822 }
823 
824 static inline bool
825 compaction_capture(struct capture_control *capc, struct page *page,
826 		   int order, int migratetype)
827 {
828 	return false;
829 }
830 #endif /* CONFIG_COMPACTION */
831 
832 /* Used for pages not on another list */
833 static inline void add_to_free_list(struct page *page, struct zone *zone,
834 				    unsigned int order, int migratetype)
835 {
836 	struct free_area *area = &zone->free_area[order];
837 
838 	list_add(&page->buddy_list, &area->free_list[migratetype]);
839 	area->nr_free++;
840 }
841 
842 /* Used for pages not on another list */
843 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
844 					 unsigned int order, int migratetype)
845 {
846 	struct free_area *area = &zone->free_area[order];
847 
848 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
849 	area->nr_free++;
850 }
851 
852 /*
853  * Used for pages which are on another list. Move the pages to the tail
854  * of the list - so the moved pages won't immediately be considered for
855  * allocation again (e.g., optimization for memory onlining).
856  */
857 static inline void move_to_free_list(struct page *page, struct zone *zone,
858 				     unsigned int order, int migratetype)
859 {
860 	struct free_area *area = &zone->free_area[order];
861 
862 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
863 }
864 
865 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
866 					   unsigned int order)
867 {
868 	/* clear reported state and update reported page count */
869 	if (page_reported(page))
870 		__ClearPageReported(page);
871 
872 	list_del(&page->buddy_list);
873 	__ClearPageBuddy(page);
874 	set_page_private(page, 0);
875 	zone->free_area[order].nr_free--;
876 }
877 
878 static inline struct page *get_page_from_free_area(struct free_area *area,
879 					    int migratetype)
880 {
881 	return list_first_entry_or_null(&area->free_list[migratetype],
882 					struct page, lru);
883 }
884 
885 /*
886  * If this is not the largest possible page, check if the buddy
887  * of the next-highest order is free. If it is, it's possible
888  * that pages are being freed that will coalesce soon. In case,
889  * that is happening, add the free page to the tail of the list
890  * so it's less likely to be used soon and more likely to be merged
891  * as a higher order page
892  */
893 static inline bool
894 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
895 		   struct page *page, unsigned int order)
896 {
897 	unsigned long higher_page_pfn;
898 	struct page *higher_page;
899 
900 	if (order >= MAX_ORDER - 1)
901 		return false;
902 
903 	higher_page_pfn = buddy_pfn & pfn;
904 	higher_page = page + (higher_page_pfn - pfn);
905 
906 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
907 			NULL) != NULL;
908 }
909 
910 /*
911  * Freeing function for a buddy system allocator.
912  *
913  * The concept of a buddy system is to maintain direct-mapped table
914  * (containing bit values) for memory blocks of various "orders".
915  * The bottom level table contains the map for the smallest allocatable
916  * units of memory (here, pages), and each level above it describes
917  * pairs of units from the levels below, hence, "buddies".
918  * At a high level, all that happens here is marking the table entry
919  * at the bottom level available, and propagating the changes upward
920  * as necessary, plus some accounting needed to play nicely with other
921  * parts of the VM system.
922  * At each level, we keep a list of pages, which are heads of continuous
923  * free pages of length of (1 << order) and marked with PageBuddy.
924  * Page's order is recorded in page_private(page) field.
925  * So when we are allocating or freeing one, we can derive the state of the
926  * other.  That is, if we allocate a small block, and both were
927  * free, the remainder of the region must be split into blocks.
928  * If a block is freed, and its buddy is also free, then this
929  * triggers coalescing into a block of larger size.
930  *
931  * -- nyc
932  */
933 
934 static inline void __free_one_page(struct page *page,
935 		unsigned long pfn,
936 		struct zone *zone, unsigned int order,
937 		int migratetype, fpi_t fpi_flags)
938 {
939 	struct capture_control *capc = task_capc(zone);
940 	unsigned long buddy_pfn = 0;
941 	unsigned long combined_pfn;
942 	struct page *buddy;
943 	bool to_tail;
944 
945 	VM_BUG_ON(!zone_is_initialized(zone));
946 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
947 
948 	VM_BUG_ON(migratetype == -1);
949 	if (likely(!is_migrate_isolate(migratetype)))
950 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
951 
952 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
953 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
954 
955 	while (order < MAX_ORDER) {
956 		if (compaction_capture(capc, page, order, migratetype)) {
957 			__mod_zone_freepage_state(zone, -(1 << order),
958 								migratetype);
959 			return;
960 		}
961 
962 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
963 		if (!buddy)
964 			goto done_merging;
965 
966 		if (unlikely(order >= pageblock_order)) {
967 			/*
968 			 * We want to prevent merge between freepages on pageblock
969 			 * without fallbacks and normal pageblock. Without this,
970 			 * pageblock isolation could cause incorrect freepage or CMA
971 			 * accounting or HIGHATOMIC accounting.
972 			 */
973 			int buddy_mt = get_pageblock_migratetype(buddy);
974 
975 			if (migratetype != buddy_mt
976 					&& (!migratetype_is_mergeable(migratetype) ||
977 						!migratetype_is_mergeable(buddy_mt)))
978 				goto done_merging;
979 		}
980 
981 		/*
982 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
983 		 * merge with it and move up one order.
984 		 */
985 		if (page_is_guard(buddy))
986 			clear_page_guard(zone, buddy, order, migratetype);
987 		else
988 			del_page_from_free_list(buddy, zone, order);
989 		combined_pfn = buddy_pfn & pfn;
990 		page = page + (combined_pfn - pfn);
991 		pfn = combined_pfn;
992 		order++;
993 	}
994 
995 done_merging:
996 	set_buddy_order(page, order);
997 
998 	if (fpi_flags & FPI_TO_TAIL)
999 		to_tail = true;
1000 	else if (is_shuffle_order(order))
1001 		to_tail = shuffle_pick_tail();
1002 	else
1003 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1004 
1005 	if (to_tail)
1006 		add_to_free_list_tail(page, zone, order, migratetype);
1007 	else
1008 		add_to_free_list(page, zone, order, migratetype);
1009 
1010 	/* Notify page reporting subsystem of freed page */
1011 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1012 		page_reporting_notify_free(order);
1013 }
1014 
1015 /**
1016  * split_free_page() -- split a free page at split_pfn_offset
1017  * @free_page:		the original free page
1018  * @order:		the order of the page
1019  * @split_pfn_offset:	split offset within the page
1020  *
1021  * Return -ENOENT if the free page is changed, otherwise 0
1022  *
1023  * It is used when the free page crosses two pageblocks with different migratetypes
1024  * at split_pfn_offset within the page. The split free page will be put into
1025  * separate migratetype lists afterwards. Otherwise, the function achieves
1026  * nothing.
1027  */
1028 int split_free_page(struct page *free_page,
1029 			unsigned int order, unsigned long split_pfn_offset)
1030 {
1031 	struct zone *zone = page_zone(free_page);
1032 	unsigned long free_page_pfn = page_to_pfn(free_page);
1033 	unsigned long pfn;
1034 	unsigned long flags;
1035 	int free_page_order;
1036 	int mt;
1037 	int ret = 0;
1038 
1039 	if (split_pfn_offset == 0)
1040 		return ret;
1041 
1042 	spin_lock_irqsave(&zone->lock, flags);
1043 
1044 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1045 		ret = -ENOENT;
1046 		goto out;
1047 	}
1048 
1049 	mt = get_pageblock_migratetype(free_page);
1050 	if (likely(!is_migrate_isolate(mt)))
1051 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1052 
1053 	del_page_from_free_list(free_page, zone, order);
1054 	for (pfn = free_page_pfn;
1055 	     pfn < free_page_pfn + (1UL << order);) {
1056 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1057 
1058 		free_page_order = min_t(unsigned int,
1059 					pfn ? __ffs(pfn) : order,
1060 					__fls(split_pfn_offset));
1061 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1062 				mt, FPI_NONE);
1063 		pfn += 1UL << free_page_order;
1064 		split_pfn_offset -= (1UL << free_page_order);
1065 		/* we have done the first part, now switch to second part */
1066 		if (split_pfn_offset == 0)
1067 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1068 	}
1069 out:
1070 	spin_unlock_irqrestore(&zone->lock, flags);
1071 	return ret;
1072 }
1073 /*
1074  * A bad page could be due to a number of fields. Instead of multiple branches,
1075  * try and check multiple fields with one check. The caller must do a detailed
1076  * check if necessary.
1077  */
1078 static inline bool page_expected_state(struct page *page,
1079 					unsigned long check_flags)
1080 {
1081 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1082 		return false;
1083 
1084 	if (unlikely((unsigned long)page->mapping |
1085 			page_ref_count(page) |
1086 #ifdef CONFIG_MEMCG
1087 			page->memcg_data |
1088 #endif
1089 			(page->flags & check_flags)))
1090 		return false;
1091 
1092 	return true;
1093 }
1094 
1095 static const char *page_bad_reason(struct page *page, unsigned long flags)
1096 {
1097 	const char *bad_reason = NULL;
1098 
1099 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1100 		bad_reason = "nonzero mapcount";
1101 	if (unlikely(page->mapping != NULL))
1102 		bad_reason = "non-NULL mapping";
1103 	if (unlikely(page_ref_count(page) != 0))
1104 		bad_reason = "nonzero _refcount";
1105 	if (unlikely(page->flags & flags)) {
1106 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1107 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1108 		else
1109 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1110 	}
1111 #ifdef CONFIG_MEMCG
1112 	if (unlikely(page->memcg_data))
1113 		bad_reason = "page still charged to cgroup";
1114 #endif
1115 	return bad_reason;
1116 }
1117 
1118 static void free_page_is_bad_report(struct page *page)
1119 {
1120 	bad_page(page,
1121 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1122 }
1123 
1124 static inline bool free_page_is_bad(struct page *page)
1125 {
1126 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1127 		return false;
1128 
1129 	/* Something has gone sideways, find it */
1130 	free_page_is_bad_report(page);
1131 	return true;
1132 }
1133 
1134 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1135 {
1136 	struct folio *folio = (struct folio *)head_page;
1137 	int ret = 1;
1138 
1139 	/*
1140 	 * We rely page->lru.next never has bit 0 set, unless the page
1141 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1142 	 */
1143 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1144 
1145 	if (!static_branch_unlikely(&check_pages_enabled)) {
1146 		ret = 0;
1147 		goto out;
1148 	}
1149 	switch (page - head_page) {
1150 	case 1:
1151 		/* the first tail page: these may be in place of ->mapping */
1152 		if (unlikely(folio_entire_mapcount(folio))) {
1153 			bad_page(page, "nonzero entire_mapcount");
1154 			goto out;
1155 		}
1156 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1157 			bad_page(page, "nonzero nr_pages_mapped");
1158 			goto out;
1159 		}
1160 		if (unlikely(atomic_read(&folio->_pincount))) {
1161 			bad_page(page, "nonzero pincount");
1162 			goto out;
1163 		}
1164 		break;
1165 	case 2:
1166 		/*
1167 		 * the second tail page: ->mapping is
1168 		 * deferred_list.next -- ignore value.
1169 		 */
1170 		break;
1171 	default:
1172 		if (page->mapping != TAIL_MAPPING) {
1173 			bad_page(page, "corrupted mapping in tail page");
1174 			goto out;
1175 		}
1176 		break;
1177 	}
1178 	if (unlikely(!PageTail(page))) {
1179 		bad_page(page, "PageTail not set");
1180 		goto out;
1181 	}
1182 	if (unlikely(compound_head(page) != head_page)) {
1183 		bad_page(page, "compound_head not consistent");
1184 		goto out;
1185 	}
1186 	ret = 0;
1187 out:
1188 	page->mapping = NULL;
1189 	clear_compound_head(page);
1190 	return ret;
1191 }
1192 
1193 /*
1194  * Skip KASAN memory poisoning when either:
1195  *
1196  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1197  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1198  *    using page tags instead (see below).
1199  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1200  *    that error detection is disabled for accesses via the page address.
1201  *
1202  * Pages will have match-all tags in the following circumstances:
1203  *
1204  * 1. Pages are being initialized for the first time, including during deferred
1205  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1206  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1207  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1208  * 3. The allocation was excluded from being checked due to sampling,
1209  *    see the call to kasan_unpoison_pages.
1210  *
1211  * Poisoning pages during deferred memory init will greatly lengthen the
1212  * process and cause problem in large memory systems as the deferred pages
1213  * initialization is done with interrupt disabled.
1214  *
1215  * Assuming that there will be no reference to those newly initialized
1216  * pages before they are ever allocated, this should have no effect on
1217  * KASAN memory tracking as the poison will be properly inserted at page
1218  * allocation time. The only corner case is when pages are allocated by
1219  * on-demand allocation and then freed again before the deferred pages
1220  * initialization is done, but this is not likely to happen.
1221  */
1222 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1223 {
1224 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1225 		return deferred_pages_enabled();
1226 
1227 	return page_kasan_tag(page) == 0xff;
1228 }
1229 
1230 static void kernel_init_pages(struct page *page, int numpages)
1231 {
1232 	int i;
1233 
1234 	/* s390's use of memset() could override KASAN redzones. */
1235 	kasan_disable_current();
1236 	for (i = 0; i < numpages; i++)
1237 		clear_highpage_kasan_tagged(page + i);
1238 	kasan_enable_current();
1239 }
1240 
1241 static __always_inline bool free_pages_prepare(struct page *page,
1242 			unsigned int order, fpi_t fpi_flags)
1243 {
1244 	int bad = 0;
1245 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1246 	bool init = want_init_on_free();
1247 
1248 	VM_BUG_ON_PAGE(PageTail(page), page);
1249 
1250 	trace_mm_page_free(page, order);
1251 	kmsan_free_page(page, order);
1252 
1253 	if (unlikely(PageHWPoison(page)) && !order) {
1254 		/*
1255 		 * Do not let hwpoison pages hit pcplists/buddy
1256 		 * Untie memcg state and reset page's owner
1257 		 */
1258 		if (memcg_kmem_online() && PageMemcgKmem(page))
1259 			__memcg_kmem_uncharge_page(page, order);
1260 		reset_page_owner(page, order);
1261 		page_table_check_free(page, order);
1262 		return false;
1263 	}
1264 
1265 	/*
1266 	 * Check tail pages before head page information is cleared to
1267 	 * avoid checking PageCompound for order-0 pages.
1268 	 */
1269 	if (unlikely(order)) {
1270 		bool compound = PageCompound(page);
1271 		int i;
1272 
1273 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274 
1275 		if (compound)
1276 			ClearPageHasHWPoisoned(page);
1277 		for (i = 1; i < (1 << order); i++) {
1278 			if (compound)
1279 				bad += free_tail_page_prepare(page, page + i);
1280 			if (is_check_pages_enabled()) {
1281 				if (free_page_is_bad(page + i)) {
1282 					bad++;
1283 					continue;
1284 				}
1285 			}
1286 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1287 		}
1288 	}
1289 	if (PageMappingFlags(page))
1290 		page->mapping = NULL;
1291 	if (memcg_kmem_online() && PageMemcgKmem(page))
1292 		__memcg_kmem_uncharge_page(page, order);
1293 	if (is_check_pages_enabled()) {
1294 		if (free_page_is_bad(page))
1295 			bad++;
1296 		if (bad)
1297 			return false;
1298 	}
1299 
1300 	page_cpupid_reset_last(page);
1301 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1302 	reset_page_owner(page, order);
1303 	page_table_check_free(page, order);
1304 
1305 	if (!PageHighMem(page)) {
1306 		debug_check_no_locks_freed(page_address(page),
1307 					   PAGE_SIZE << order);
1308 		debug_check_no_obj_freed(page_address(page),
1309 					   PAGE_SIZE << order);
1310 	}
1311 
1312 	kernel_poison_pages(page, 1 << order);
1313 
1314 	/*
1315 	 * As memory initialization might be integrated into KASAN,
1316 	 * KASAN poisoning and memory initialization code must be
1317 	 * kept together to avoid discrepancies in behavior.
1318 	 *
1319 	 * With hardware tag-based KASAN, memory tags must be set before the
1320 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1321 	 */
1322 	if (!skip_kasan_poison) {
1323 		kasan_poison_pages(page, order, init);
1324 
1325 		/* Memory is already initialized if KASAN did it internally. */
1326 		if (kasan_has_integrated_init())
1327 			init = false;
1328 	}
1329 	if (init)
1330 		kernel_init_pages(page, 1 << order);
1331 
1332 	/*
1333 	 * arch_free_page() can make the page's contents inaccessible.  s390
1334 	 * does this.  So nothing which can access the page's contents should
1335 	 * happen after this.
1336 	 */
1337 	arch_free_page(page, order);
1338 
1339 	debug_pagealloc_unmap_pages(page, 1 << order);
1340 
1341 	return true;
1342 }
1343 
1344 /*
1345  * Frees a number of pages from the PCP lists
1346  * Assumes all pages on list are in same zone.
1347  * count is the number of pages to free.
1348  */
1349 static void free_pcppages_bulk(struct zone *zone, int count,
1350 					struct per_cpu_pages *pcp,
1351 					int pindex)
1352 {
1353 	unsigned long flags;
1354 	int min_pindex = 0;
1355 	int max_pindex = NR_PCP_LISTS - 1;
1356 	unsigned int order;
1357 	bool isolated_pageblocks;
1358 	struct page *page;
1359 
1360 	/*
1361 	 * Ensure proper count is passed which otherwise would stuck in the
1362 	 * below while (list_empty(list)) loop.
1363 	 */
1364 	count = min(pcp->count, count);
1365 
1366 	/* Ensure requested pindex is drained first. */
1367 	pindex = pindex - 1;
1368 
1369 	spin_lock_irqsave(&zone->lock, flags);
1370 	isolated_pageblocks = has_isolate_pageblock(zone);
1371 
1372 	while (count > 0) {
1373 		struct list_head *list;
1374 		int nr_pages;
1375 
1376 		/* Remove pages from lists in a round-robin fashion. */
1377 		do {
1378 			if (++pindex > max_pindex)
1379 				pindex = min_pindex;
1380 			list = &pcp->lists[pindex];
1381 			if (!list_empty(list))
1382 				break;
1383 
1384 			if (pindex == max_pindex)
1385 				max_pindex--;
1386 			if (pindex == min_pindex)
1387 				min_pindex++;
1388 		} while (1);
1389 
1390 		order = pindex_to_order(pindex);
1391 		nr_pages = 1 << order;
1392 		do {
1393 			int mt;
1394 
1395 			page = list_last_entry(list, struct page, pcp_list);
1396 			mt = get_pcppage_migratetype(page);
1397 
1398 			/* must delete to avoid corrupting pcp list */
1399 			list_del(&page->pcp_list);
1400 			count -= nr_pages;
1401 			pcp->count -= nr_pages;
1402 
1403 			/* MIGRATE_ISOLATE page should not go to pcplists */
1404 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1405 			/* Pageblock could have been isolated meanwhile */
1406 			if (unlikely(isolated_pageblocks))
1407 				mt = get_pageblock_migratetype(page);
1408 
1409 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1410 			trace_mm_page_pcpu_drain(page, order, mt);
1411 		} while (count > 0 && !list_empty(list));
1412 	}
1413 
1414 	spin_unlock_irqrestore(&zone->lock, flags);
1415 }
1416 
1417 static void free_one_page(struct zone *zone,
1418 				struct page *page, unsigned long pfn,
1419 				unsigned int order,
1420 				int migratetype, fpi_t fpi_flags)
1421 {
1422 	unsigned long flags;
1423 
1424 	spin_lock_irqsave(&zone->lock, flags);
1425 	if (unlikely(has_isolate_pageblock(zone) ||
1426 		is_migrate_isolate(migratetype))) {
1427 		migratetype = get_pfnblock_migratetype(page, pfn);
1428 	}
1429 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1430 	spin_unlock_irqrestore(&zone->lock, flags);
1431 }
1432 
1433 static void __free_pages_ok(struct page *page, unsigned int order,
1434 			    fpi_t fpi_flags)
1435 {
1436 	unsigned long flags;
1437 	int migratetype;
1438 	unsigned long pfn = page_to_pfn(page);
1439 	struct zone *zone = page_zone(page);
1440 
1441 	if (!free_pages_prepare(page, order, fpi_flags))
1442 		return;
1443 
1444 	/*
1445 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1446 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1447 	 * This will reduce the lock holding time.
1448 	 */
1449 	migratetype = get_pfnblock_migratetype(page, pfn);
1450 
1451 	spin_lock_irqsave(&zone->lock, flags);
1452 	if (unlikely(has_isolate_pageblock(zone) ||
1453 		is_migrate_isolate(migratetype))) {
1454 		migratetype = get_pfnblock_migratetype(page, pfn);
1455 	}
1456 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1457 	spin_unlock_irqrestore(&zone->lock, flags);
1458 
1459 	__count_vm_events(PGFREE, 1 << order);
1460 }
1461 
1462 void __free_pages_core(struct page *page, unsigned int order)
1463 {
1464 	unsigned int nr_pages = 1 << order;
1465 	struct page *p = page;
1466 	unsigned int loop;
1467 
1468 	/*
1469 	 * When initializing the memmap, __init_single_page() sets the refcount
1470 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1471 	 * refcount of all involved pages to 0.
1472 	 */
1473 	prefetchw(p);
1474 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1475 		prefetchw(p + 1);
1476 		__ClearPageReserved(p);
1477 		set_page_count(p, 0);
1478 	}
1479 	__ClearPageReserved(p);
1480 	set_page_count(p, 0);
1481 
1482 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1483 
1484 	/*
1485 	 * Bypass PCP and place fresh pages right to the tail, primarily
1486 	 * relevant for memory onlining.
1487 	 */
1488 	__free_pages_ok(page, order, FPI_TO_TAIL);
1489 }
1490 
1491 /*
1492  * Check that the whole (or subset of) a pageblock given by the interval of
1493  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1494  * with the migration of free compaction scanner.
1495  *
1496  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1497  *
1498  * It's possible on some configurations to have a setup like node0 node1 node0
1499  * i.e. it's possible that all pages within a zones range of pages do not
1500  * belong to a single zone. We assume that a border between node0 and node1
1501  * can occur within a single pageblock, but not a node0 node1 node0
1502  * interleaving within a single pageblock. It is therefore sufficient to check
1503  * the first and last page of a pageblock and avoid checking each individual
1504  * page in a pageblock.
1505  */
1506 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1507 				     unsigned long end_pfn, struct zone *zone)
1508 {
1509 	struct page *start_page;
1510 	struct page *end_page;
1511 
1512 	/* end_pfn is one past the range we are checking */
1513 	end_pfn--;
1514 
1515 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1516 		return NULL;
1517 
1518 	start_page = pfn_to_online_page(start_pfn);
1519 	if (!start_page)
1520 		return NULL;
1521 
1522 	if (page_zone(start_page) != zone)
1523 		return NULL;
1524 
1525 	end_page = pfn_to_page(end_pfn);
1526 
1527 	/* This gives a shorter code than deriving page_zone(end_page) */
1528 	if (page_zone_id(start_page) != page_zone_id(end_page))
1529 		return NULL;
1530 
1531 	return start_page;
1532 }
1533 
1534 void set_zone_contiguous(struct zone *zone)
1535 {
1536 	unsigned long block_start_pfn = zone->zone_start_pfn;
1537 	unsigned long block_end_pfn;
1538 
1539 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1540 	for (; block_start_pfn < zone_end_pfn(zone);
1541 			block_start_pfn = block_end_pfn,
1542 			 block_end_pfn += pageblock_nr_pages) {
1543 
1544 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1545 
1546 		if (!__pageblock_pfn_to_page(block_start_pfn,
1547 					     block_end_pfn, zone))
1548 			return;
1549 		cond_resched();
1550 	}
1551 
1552 	/* We confirm that there is no hole */
1553 	zone->contiguous = true;
1554 }
1555 
1556 void clear_zone_contiguous(struct zone *zone)
1557 {
1558 	zone->contiguous = false;
1559 }
1560 
1561 /*
1562  * The order of subdivision here is critical for the IO subsystem.
1563  * Please do not alter this order without good reasons and regression
1564  * testing. Specifically, as large blocks of memory are subdivided,
1565  * the order in which smaller blocks are delivered depends on the order
1566  * they're subdivided in this function. This is the primary factor
1567  * influencing the order in which pages are delivered to the IO
1568  * subsystem according to empirical testing, and this is also justified
1569  * by considering the behavior of a buddy system containing a single
1570  * large block of memory acted on by a series of small allocations.
1571  * This behavior is a critical factor in sglist merging's success.
1572  *
1573  * -- nyc
1574  */
1575 static inline void expand(struct zone *zone, struct page *page,
1576 	int low, int high, int migratetype)
1577 {
1578 	unsigned long size = 1 << high;
1579 
1580 	while (high > low) {
1581 		high--;
1582 		size >>= 1;
1583 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1584 
1585 		/*
1586 		 * Mark as guard pages (or page), that will allow to
1587 		 * merge back to allocator when buddy will be freed.
1588 		 * Corresponding page table entries will not be touched,
1589 		 * pages will stay not present in virtual address space
1590 		 */
1591 		if (set_page_guard(zone, &page[size], high, migratetype))
1592 			continue;
1593 
1594 		add_to_free_list(&page[size], zone, high, migratetype);
1595 		set_buddy_order(&page[size], high);
1596 	}
1597 }
1598 
1599 static void check_new_page_bad(struct page *page)
1600 {
1601 	if (unlikely(page->flags & __PG_HWPOISON)) {
1602 		/* Don't complain about hwpoisoned pages */
1603 		page_mapcount_reset(page); /* remove PageBuddy */
1604 		return;
1605 	}
1606 
1607 	bad_page(page,
1608 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1609 }
1610 
1611 /*
1612  * This page is about to be returned from the page allocator
1613  */
1614 static int check_new_page(struct page *page)
1615 {
1616 	if (likely(page_expected_state(page,
1617 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1618 		return 0;
1619 
1620 	check_new_page_bad(page);
1621 	return 1;
1622 }
1623 
1624 static inline bool check_new_pages(struct page *page, unsigned int order)
1625 {
1626 	if (is_check_pages_enabled()) {
1627 		for (int i = 0; i < (1 << order); i++) {
1628 			struct page *p = page + i;
1629 
1630 			if (check_new_page(p))
1631 				return true;
1632 		}
1633 	}
1634 
1635 	return false;
1636 }
1637 
1638 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1639 {
1640 	/* Don't skip if a software KASAN mode is enabled. */
1641 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1642 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1643 		return false;
1644 
1645 	/* Skip, if hardware tag-based KASAN is not enabled. */
1646 	if (!kasan_hw_tags_enabled())
1647 		return true;
1648 
1649 	/*
1650 	 * With hardware tag-based KASAN enabled, skip if this has been
1651 	 * requested via __GFP_SKIP_KASAN.
1652 	 */
1653 	return flags & __GFP_SKIP_KASAN;
1654 }
1655 
1656 static inline bool should_skip_init(gfp_t flags)
1657 {
1658 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1659 	if (!kasan_hw_tags_enabled())
1660 		return false;
1661 
1662 	/* For hardware tag-based KASAN, skip if requested. */
1663 	return (flags & __GFP_SKIP_ZERO);
1664 }
1665 
1666 inline void post_alloc_hook(struct page *page, unsigned int order,
1667 				gfp_t gfp_flags)
1668 {
1669 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1670 			!should_skip_init(gfp_flags);
1671 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1672 	int i;
1673 
1674 	set_page_private(page, 0);
1675 	set_page_refcounted(page);
1676 
1677 	arch_alloc_page(page, order);
1678 	debug_pagealloc_map_pages(page, 1 << order);
1679 
1680 	/*
1681 	 * Page unpoisoning must happen before memory initialization.
1682 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1683 	 * allocations and the page unpoisoning code will complain.
1684 	 */
1685 	kernel_unpoison_pages(page, 1 << order);
1686 
1687 	/*
1688 	 * As memory initialization might be integrated into KASAN,
1689 	 * KASAN unpoisoning and memory initializion code must be
1690 	 * kept together to avoid discrepancies in behavior.
1691 	 */
1692 
1693 	/*
1694 	 * If memory tags should be zeroed
1695 	 * (which happens only when memory should be initialized as well).
1696 	 */
1697 	if (zero_tags) {
1698 		/* Initialize both memory and memory tags. */
1699 		for (i = 0; i != 1 << order; ++i)
1700 			tag_clear_highpage(page + i);
1701 
1702 		/* Take note that memory was initialized by the loop above. */
1703 		init = false;
1704 	}
1705 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1706 	    kasan_unpoison_pages(page, order, init)) {
1707 		/* Take note that memory was initialized by KASAN. */
1708 		if (kasan_has_integrated_init())
1709 			init = false;
1710 	} else {
1711 		/*
1712 		 * If memory tags have not been set by KASAN, reset the page
1713 		 * tags to ensure page_address() dereferencing does not fault.
1714 		 */
1715 		for (i = 0; i != 1 << order; ++i)
1716 			page_kasan_tag_reset(page + i);
1717 	}
1718 	/* If memory is still not initialized, initialize it now. */
1719 	if (init)
1720 		kernel_init_pages(page, 1 << order);
1721 
1722 	set_page_owner(page, order, gfp_flags);
1723 	page_table_check_alloc(page, order);
1724 }
1725 
1726 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1727 							unsigned int alloc_flags)
1728 {
1729 	post_alloc_hook(page, order, gfp_flags);
1730 
1731 	if (order && (gfp_flags & __GFP_COMP))
1732 		prep_compound_page(page, order);
1733 
1734 	/*
1735 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1736 	 * allocate the page. The expectation is that the caller is taking
1737 	 * steps that will free more memory. The caller should avoid the page
1738 	 * being used for !PFMEMALLOC purposes.
1739 	 */
1740 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1741 		set_page_pfmemalloc(page);
1742 	else
1743 		clear_page_pfmemalloc(page);
1744 }
1745 
1746 /*
1747  * Go through the free lists for the given migratetype and remove
1748  * the smallest available page from the freelists
1749  */
1750 static __always_inline
1751 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1752 						int migratetype)
1753 {
1754 	unsigned int current_order;
1755 	struct free_area *area;
1756 	struct page *page;
1757 
1758 	/* Find a page of the appropriate size in the preferred list */
1759 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1760 		area = &(zone->free_area[current_order]);
1761 		page = get_page_from_free_area(area, migratetype);
1762 		if (!page)
1763 			continue;
1764 		del_page_from_free_list(page, zone, current_order);
1765 		expand(zone, page, order, current_order, migratetype);
1766 		set_pcppage_migratetype(page, migratetype);
1767 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1768 				pcp_allowed_order(order) &&
1769 				migratetype < MIGRATE_PCPTYPES);
1770 		return page;
1771 	}
1772 
1773 	return NULL;
1774 }
1775 
1776 
1777 /*
1778  * This array describes the order lists are fallen back to when
1779  * the free lists for the desirable migrate type are depleted
1780  *
1781  * The other migratetypes do not have fallbacks.
1782  */
1783 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1784 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1785 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1786 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1787 };
1788 
1789 #ifdef CONFIG_CMA
1790 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1791 					unsigned int order)
1792 {
1793 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1794 }
1795 #else
1796 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1797 					unsigned int order) { return NULL; }
1798 #endif
1799 
1800 /*
1801  * Move the free pages in a range to the freelist tail of the requested type.
1802  * Note that start_page and end_pages are not aligned on a pageblock
1803  * boundary. If alignment is required, use move_freepages_block()
1804  */
1805 static int move_freepages(struct zone *zone,
1806 			  unsigned long start_pfn, unsigned long end_pfn,
1807 			  int migratetype, int *num_movable)
1808 {
1809 	struct page *page;
1810 	unsigned long pfn;
1811 	unsigned int order;
1812 	int pages_moved = 0;
1813 
1814 	for (pfn = start_pfn; pfn <= end_pfn;) {
1815 		page = pfn_to_page(pfn);
1816 		if (!PageBuddy(page)) {
1817 			/*
1818 			 * We assume that pages that could be isolated for
1819 			 * migration are movable. But we don't actually try
1820 			 * isolating, as that would be expensive.
1821 			 */
1822 			if (num_movable &&
1823 					(PageLRU(page) || __PageMovable(page)))
1824 				(*num_movable)++;
1825 			pfn++;
1826 			continue;
1827 		}
1828 
1829 		/* Make sure we are not inadvertently changing nodes */
1830 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1831 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1832 
1833 		order = buddy_order(page);
1834 		move_to_free_list(page, zone, order, migratetype);
1835 		pfn += 1 << order;
1836 		pages_moved += 1 << order;
1837 	}
1838 
1839 	return pages_moved;
1840 }
1841 
1842 int move_freepages_block(struct zone *zone, struct page *page,
1843 				int migratetype, int *num_movable)
1844 {
1845 	unsigned long start_pfn, end_pfn, pfn;
1846 
1847 	if (num_movable)
1848 		*num_movable = 0;
1849 
1850 	pfn = page_to_pfn(page);
1851 	start_pfn = pageblock_start_pfn(pfn);
1852 	end_pfn = pageblock_end_pfn(pfn) - 1;
1853 
1854 	/* Do not cross zone boundaries */
1855 	if (!zone_spans_pfn(zone, start_pfn))
1856 		start_pfn = pfn;
1857 	if (!zone_spans_pfn(zone, end_pfn))
1858 		return 0;
1859 
1860 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1861 								num_movable);
1862 }
1863 
1864 static void change_pageblock_range(struct page *pageblock_page,
1865 					int start_order, int migratetype)
1866 {
1867 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1868 
1869 	while (nr_pageblocks--) {
1870 		set_pageblock_migratetype(pageblock_page, migratetype);
1871 		pageblock_page += pageblock_nr_pages;
1872 	}
1873 }
1874 
1875 /*
1876  * When we are falling back to another migratetype during allocation, try to
1877  * steal extra free pages from the same pageblocks to satisfy further
1878  * allocations, instead of polluting multiple pageblocks.
1879  *
1880  * If we are stealing a relatively large buddy page, it is likely there will
1881  * be more free pages in the pageblock, so try to steal them all. For
1882  * reclaimable and unmovable allocations, we steal regardless of page size,
1883  * as fragmentation caused by those allocations polluting movable pageblocks
1884  * is worse than movable allocations stealing from unmovable and reclaimable
1885  * pageblocks.
1886  */
1887 static bool can_steal_fallback(unsigned int order, int start_mt)
1888 {
1889 	/*
1890 	 * Leaving this order check is intended, although there is
1891 	 * relaxed order check in next check. The reason is that
1892 	 * we can actually steal whole pageblock if this condition met,
1893 	 * but, below check doesn't guarantee it and that is just heuristic
1894 	 * so could be changed anytime.
1895 	 */
1896 	if (order >= pageblock_order)
1897 		return true;
1898 
1899 	if (order >= pageblock_order / 2 ||
1900 		start_mt == MIGRATE_RECLAIMABLE ||
1901 		start_mt == MIGRATE_UNMOVABLE ||
1902 		page_group_by_mobility_disabled)
1903 		return true;
1904 
1905 	return false;
1906 }
1907 
1908 static inline bool boost_watermark(struct zone *zone)
1909 {
1910 	unsigned long max_boost;
1911 
1912 	if (!watermark_boost_factor)
1913 		return false;
1914 	/*
1915 	 * Don't bother in zones that are unlikely to produce results.
1916 	 * On small machines, including kdump capture kernels running
1917 	 * in a small area, boosting the watermark can cause an out of
1918 	 * memory situation immediately.
1919 	 */
1920 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1921 		return false;
1922 
1923 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1924 			watermark_boost_factor, 10000);
1925 
1926 	/*
1927 	 * high watermark may be uninitialised if fragmentation occurs
1928 	 * very early in boot so do not boost. We do not fall
1929 	 * through and boost by pageblock_nr_pages as failing
1930 	 * allocations that early means that reclaim is not going
1931 	 * to help and it may even be impossible to reclaim the
1932 	 * boosted watermark resulting in a hang.
1933 	 */
1934 	if (!max_boost)
1935 		return false;
1936 
1937 	max_boost = max(pageblock_nr_pages, max_boost);
1938 
1939 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1940 		max_boost);
1941 
1942 	return true;
1943 }
1944 
1945 /*
1946  * This function implements actual steal behaviour. If order is large enough,
1947  * we can steal whole pageblock. If not, we first move freepages in this
1948  * pageblock to our migratetype and determine how many already-allocated pages
1949  * are there in the pageblock with a compatible migratetype. If at least half
1950  * of pages are free or compatible, we can change migratetype of the pageblock
1951  * itself, so pages freed in the future will be put on the correct free list.
1952  */
1953 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1954 		unsigned int alloc_flags, int start_type, bool whole_block)
1955 {
1956 	unsigned int current_order = buddy_order(page);
1957 	int free_pages, movable_pages, alike_pages;
1958 	int old_block_type;
1959 
1960 	old_block_type = get_pageblock_migratetype(page);
1961 
1962 	/*
1963 	 * This can happen due to races and we want to prevent broken
1964 	 * highatomic accounting.
1965 	 */
1966 	if (is_migrate_highatomic(old_block_type))
1967 		goto single_page;
1968 
1969 	/* Take ownership for orders >= pageblock_order */
1970 	if (current_order >= pageblock_order) {
1971 		change_pageblock_range(page, current_order, start_type);
1972 		goto single_page;
1973 	}
1974 
1975 	/*
1976 	 * Boost watermarks to increase reclaim pressure to reduce the
1977 	 * likelihood of future fallbacks. Wake kswapd now as the node
1978 	 * may be balanced overall and kswapd will not wake naturally.
1979 	 */
1980 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1981 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1982 
1983 	/* We are not allowed to try stealing from the whole block */
1984 	if (!whole_block)
1985 		goto single_page;
1986 
1987 	free_pages = move_freepages_block(zone, page, start_type,
1988 						&movable_pages);
1989 	/*
1990 	 * Determine how many pages are compatible with our allocation.
1991 	 * For movable allocation, it's the number of movable pages which
1992 	 * we just obtained. For other types it's a bit more tricky.
1993 	 */
1994 	if (start_type == MIGRATE_MOVABLE) {
1995 		alike_pages = movable_pages;
1996 	} else {
1997 		/*
1998 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1999 		 * to MOVABLE pageblock, consider all non-movable pages as
2000 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2001 		 * vice versa, be conservative since we can't distinguish the
2002 		 * exact migratetype of non-movable pages.
2003 		 */
2004 		if (old_block_type == MIGRATE_MOVABLE)
2005 			alike_pages = pageblock_nr_pages
2006 						- (free_pages + movable_pages);
2007 		else
2008 			alike_pages = 0;
2009 	}
2010 
2011 	/* moving whole block can fail due to zone boundary conditions */
2012 	if (!free_pages)
2013 		goto single_page;
2014 
2015 	/*
2016 	 * If a sufficient number of pages in the block are either free or of
2017 	 * comparable migratability as our allocation, claim the whole block.
2018 	 */
2019 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2020 			page_group_by_mobility_disabled)
2021 		set_pageblock_migratetype(page, start_type);
2022 
2023 	return;
2024 
2025 single_page:
2026 	move_to_free_list(page, zone, current_order, start_type);
2027 }
2028 
2029 /*
2030  * Check whether there is a suitable fallback freepage with requested order.
2031  * If only_stealable is true, this function returns fallback_mt only if
2032  * we can steal other freepages all together. This would help to reduce
2033  * fragmentation due to mixed migratetype pages in one pageblock.
2034  */
2035 int find_suitable_fallback(struct free_area *area, unsigned int order,
2036 			int migratetype, bool only_stealable, bool *can_steal)
2037 {
2038 	int i;
2039 	int fallback_mt;
2040 
2041 	if (area->nr_free == 0)
2042 		return -1;
2043 
2044 	*can_steal = false;
2045 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2046 		fallback_mt = fallbacks[migratetype][i];
2047 		if (free_area_empty(area, fallback_mt))
2048 			continue;
2049 
2050 		if (can_steal_fallback(order, migratetype))
2051 			*can_steal = true;
2052 
2053 		if (!only_stealable)
2054 			return fallback_mt;
2055 
2056 		if (*can_steal)
2057 			return fallback_mt;
2058 	}
2059 
2060 	return -1;
2061 }
2062 
2063 /*
2064  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2065  * there are no empty page blocks that contain a page with a suitable order
2066  */
2067 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2068 				unsigned int alloc_order)
2069 {
2070 	int mt;
2071 	unsigned long max_managed, flags;
2072 
2073 	/*
2074 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2075 	 * Check is race-prone but harmless.
2076 	 */
2077 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2078 	if (zone->nr_reserved_highatomic >= max_managed)
2079 		return;
2080 
2081 	spin_lock_irqsave(&zone->lock, flags);
2082 
2083 	/* Recheck the nr_reserved_highatomic limit under the lock */
2084 	if (zone->nr_reserved_highatomic >= max_managed)
2085 		goto out_unlock;
2086 
2087 	/* Yoink! */
2088 	mt = get_pageblock_migratetype(page);
2089 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2090 	if (migratetype_is_mergeable(mt)) {
2091 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2092 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2093 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2094 	}
2095 
2096 out_unlock:
2097 	spin_unlock_irqrestore(&zone->lock, flags);
2098 }
2099 
2100 /*
2101  * Used when an allocation is about to fail under memory pressure. This
2102  * potentially hurts the reliability of high-order allocations when under
2103  * intense memory pressure but failed atomic allocations should be easier
2104  * to recover from than an OOM.
2105  *
2106  * If @force is true, try to unreserve a pageblock even though highatomic
2107  * pageblock is exhausted.
2108  */
2109 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2110 						bool force)
2111 {
2112 	struct zonelist *zonelist = ac->zonelist;
2113 	unsigned long flags;
2114 	struct zoneref *z;
2115 	struct zone *zone;
2116 	struct page *page;
2117 	int order;
2118 	bool ret;
2119 
2120 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2121 								ac->nodemask) {
2122 		/*
2123 		 * Preserve at least one pageblock unless memory pressure
2124 		 * is really high.
2125 		 */
2126 		if (!force && zone->nr_reserved_highatomic <=
2127 					pageblock_nr_pages)
2128 			continue;
2129 
2130 		spin_lock_irqsave(&zone->lock, flags);
2131 		for (order = 0; order <= MAX_ORDER; order++) {
2132 			struct free_area *area = &(zone->free_area[order]);
2133 
2134 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2135 			if (!page)
2136 				continue;
2137 
2138 			/*
2139 			 * In page freeing path, migratetype change is racy so
2140 			 * we can counter several free pages in a pageblock
2141 			 * in this loop although we changed the pageblock type
2142 			 * from highatomic to ac->migratetype. So we should
2143 			 * adjust the count once.
2144 			 */
2145 			if (is_migrate_highatomic_page(page)) {
2146 				/*
2147 				 * It should never happen but changes to
2148 				 * locking could inadvertently allow a per-cpu
2149 				 * drain to add pages to MIGRATE_HIGHATOMIC
2150 				 * while unreserving so be safe and watch for
2151 				 * underflows.
2152 				 */
2153 				zone->nr_reserved_highatomic -= min(
2154 						pageblock_nr_pages,
2155 						zone->nr_reserved_highatomic);
2156 			}
2157 
2158 			/*
2159 			 * Convert to ac->migratetype and avoid the normal
2160 			 * pageblock stealing heuristics. Minimally, the caller
2161 			 * is doing the work and needs the pages. More
2162 			 * importantly, if the block was always converted to
2163 			 * MIGRATE_UNMOVABLE or another type then the number
2164 			 * of pageblocks that cannot be completely freed
2165 			 * may increase.
2166 			 */
2167 			set_pageblock_migratetype(page, ac->migratetype);
2168 			ret = move_freepages_block(zone, page, ac->migratetype,
2169 									NULL);
2170 			if (ret) {
2171 				spin_unlock_irqrestore(&zone->lock, flags);
2172 				return ret;
2173 			}
2174 		}
2175 		spin_unlock_irqrestore(&zone->lock, flags);
2176 	}
2177 
2178 	return false;
2179 }
2180 
2181 /*
2182  * Try finding a free buddy page on the fallback list and put it on the free
2183  * list of requested migratetype, possibly along with other pages from the same
2184  * block, depending on fragmentation avoidance heuristics. Returns true if
2185  * fallback was found so that __rmqueue_smallest() can grab it.
2186  *
2187  * The use of signed ints for order and current_order is a deliberate
2188  * deviation from the rest of this file, to make the for loop
2189  * condition simpler.
2190  */
2191 static __always_inline bool
2192 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2193 						unsigned int alloc_flags)
2194 {
2195 	struct free_area *area;
2196 	int current_order;
2197 	int min_order = order;
2198 	struct page *page;
2199 	int fallback_mt;
2200 	bool can_steal;
2201 
2202 	/*
2203 	 * Do not steal pages from freelists belonging to other pageblocks
2204 	 * i.e. orders < pageblock_order. If there are no local zones free,
2205 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2206 	 */
2207 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2208 		min_order = pageblock_order;
2209 
2210 	/*
2211 	 * Find the largest available free page in the other list. This roughly
2212 	 * approximates finding the pageblock with the most free pages, which
2213 	 * would be too costly to do exactly.
2214 	 */
2215 	for (current_order = MAX_ORDER; current_order >= min_order;
2216 				--current_order) {
2217 		area = &(zone->free_area[current_order]);
2218 		fallback_mt = find_suitable_fallback(area, current_order,
2219 				start_migratetype, false, &can_steal);
2220 		if (fallback_mt == -1)
2221 			continue;
2222 
2223 		/*
2224 		 * We cannot steal all free pages from the pageblock and the
2225 		 * requested migratetype is movable. In that case it's better to
2226 		 * steal and split the smallest available page instead of the
2227 		 * largest available page, because even if the next movable
2228 		 * allocation falls back into a different pageblock than this
2229 		 * one, it won't cause permanent fragmentation.
2230 		 */
2231 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2232 					&& current_order > order)
2233 			goto find_smallest;
2234 
2235 		goto do_steal;
2236 	}
2237 
2238 	return false;
2239 
2240 find_smallest:
2241 	for (current_order = order; current_order <= MAX_ORDER;
2242 							current_order++) {
2243 		area = &(zone->free_area[current_order]);
2244 		fallback_mt = find_suitable_fallback(area, current_order,
2245 				start_migratetype, false, &can_steal);
2246 		if (fallback_mt != -1)
2247 			break;
2248 	}
2249 
2250 	/*
2251 	 * This should not happen - we already found a suitable fallback
2252 	 * when looking for the largest page.
2253 	 */
2254 	VM_BUG_ON(current_order > MAX_ORDER);
2255 
2256 do_steal:
2257 	page = get_page_from_free_area(area, fallback_mt);
2258 
2259 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2260 								can_steal);
2261 
2262 	trace_mm_page_alloc_extfrag(page, order, current_order,
2263 		start_migratetype, fallback_mt);
2264 
2265 	return true;
2266 
2267 }
2268 
2269 /*
2270  * Do the hard work of removing an element from the buddy allocator.
2271  * Call me with the zone->lock already held.
2272  */
2273 static __always_inline struct page *
2274 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2275 						unsigned int alloc_flags)
2276 {
2277 	struct page *page;
2278 
2279 	if (IS_ENABLED(CONFIG_CMA)) {
2280 		/*
2281 		 * Balance movable allocations between regular and CMA areas by
2282 		 * allocating from CMA when over half of the zone's free memory
2283 		 * is in the CMA area.
2284 		 */
2285 		if (alloc_flags & ALLOC_CMA &&
2286 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2287 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2288 			page = __rmqueue_cma_fallback(zone, order);
2289 			if (page)
2290 				return page;
2291 		}
2292 	}
2293 retry:
2294 	page = __rmqueue_smallest(zone, order, migratetype);
2295 	if (unlikely(!page)) {
2296 		if (alloc_flags & ALLOC_CMA)
2297 			page = __rmqueue_cma_fallback(zone, order);
2298 
2299 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2300 								alloc_flags))
2301 			goto retry;
2302 	}
2303 	return page;
2304 }
2305 
2306 /*
2307  * Obtain a specified number of elements from the buddy allocator, all under
2308  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2309  * Returns the number of new pages which were placed at *list.
2310  */
2311 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2312 			unsigned long count, struct list_head *list,
2313 			int migratetype, unsigned int alloc_flags)
2314 {
2315 	unsigned long flags;
2316 	int i;
2317 
2318 	spin_lock_irqsave(&zone->lock, flags);
2319 	for (i = 0; i < count; ++i) {
2320 		struct page *page = __rmqueue(zone, order, migratetype,
2321 								alloc_flags);
2322 		if (unlikely(page == NULL))
2323 			break;
2324 
2325 		/*
2326 		 * Split buddy pages returned by expand() are received here in
2327 		 * physical page order. The page is added to the tail of
2328 		 * caller's list. From the callers perspective, the linked list
2329 		 * is ordered by page number under some conditions. This is
2330 		 * useful for IO devices that can forward direction from the
2331 		 * head, thus also in the physical page order. This is useful
2332 		 * for IO devices that can merge IO requests if the physical
2333 		 * pages are ordered properly.
2334 		 */
2335 		list_add_tail(&page->pcp_list, list);
2336 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2337 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2338 					      -(1 << order));
2339 	}
2340 
2341 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2342 	spin_unlock_irqrestore(&zone->lock, flags);
2343 
2344 	return i;
2345 }
2346 
2347 #ifdef CONFIG_NUMA
2348 /*
2349  * Called from the vmstat counter updater to drain pagesets of this
2350  * currently executing processor on remote nodes after they have
2351  * expired.
2352  */
2353 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2354 {
2355 	int to_drain, batch;
2356 
2357 	batch = READ_ONCE(pcp->batch);
2358 	to_drain = min(pcp->count, batch);
2359 	if (to_drain > 0) {
2360 		spin_lock(&pcp->lock);
2361 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2362 		spin_unlock(&pcp->lock);
2363 	}
2364 }
2365 #endif
2366 
2367 /*
2368  * Drain pcplists of the indicated processor and zone.
2369  */
2370 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2371 {
2372 	struct per_cpu_pages *pcp;
2373 
2374 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2375 	if (pcp->count) {
2376 		spin_lock(&pcp->lock);
2377 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2378 		spin_unlock(&pcp->lock);
2379 	}
2380 }
2381 
2382 /*
2383  * Drain pcplists of all zones on the indicated processor.
2384  */
2385 static void drain_pages(unsigned int cpu)
2386 {
2387 	struct zone *zone;
2388 
2389 	for_each_populated_zone(zone) {
2390 		drain_pages_zone(cpu, zone);
2391 	}
2392 }
2393 
2394 /*
2395  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2396  */
2397 void drain_local_pages(struct zone *zone)
2398 {
2399 	int cpu = smp_processor_id();
2400 
2401 	if (zone)
2402 		drain_pages_zone(cpu, zone);
2403 	else
2404 		drain_pages(cpu);
2405 }
2406 
2407 /*
2408  * The implementation of drain_all_pages(), exposing an extra parameter to
2409  * drain on all cpus.
2410  *
2411  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2412  * not empty. The check for non-emptiness can however race with a free to
2413  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2414  * that need the guarantee that every CPU has drained can disable the
2415  * optimizing racy check.
2416  */
2417 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2418 {
2419 	int cpu;
2420 
2421 	/*
2422 	 * Allocate in the BSS so we won't require allocation in
2423 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2424 	 */
2425 	static cpumask_t cpus_with_pcps;
2426 
2427 	/*
2428 	 * Do not drain if one is already in progress unless it's specific to
2429 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2430 	 * the drain to be complete when the call returns.
2431 	 */
2432 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2433 		if (!zone)
2434 			return;
2435 		mutex_lock(&pcpu_drain_mutex);
2436 	}
2437 
2438 	/*
2439 	 * We don't care about racing with CPU hotplug event
2440 	 * as offline notification will cause the notified
2441 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2442 	 * disables preemption as part of its processing
2443 	 */
2444 	for_each_online_cpu(cpu) {
2445 		struct per_cpu_pages *pcp;
2446 		struct zone *z;
2447 		bool has_pcps = false;
2448 
2449 		if (force_all_cpus) {
2450 			/*
2451 			 * The pcp.count check is racy, some callers need a
2452 			 * guarantee that no cpu is missed.
2453 			 */
2454 			has_pcps = true;
2455 		} else if (zone) {
2456 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2457 			if (pcp->count)
2458 				has_pcps = true;
2459 		} else {
2460 			for_each_populated_zone(z) {
2461 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2462 				if (pcp->count) {
2463 					has_pcps = true;
2464 					break;
2465 				}
2466 			}
2467 		}
2468 
2469 		if (has_pcps)
2470 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2471 		else
2472 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2473 	}
2474 
2475 	for_each_cpu(cpu, &cpus_with_pcps) {
2476 		if (zone)
2477 			drain_pages_zone(cpu, zone);
2478 		else
2479 			drain_pages(cpu);
2480 	}
2481 
2482 	mutex_unlock(&pcpu_drain_mutex);
2483 }
2484 
2485 /*
2486  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2487  *
2488  * When zone parameter is non-NULL, spill just the single zone's pages.
2489  */
2490 void drain_all_pages(struct zone *zone)
2491 {
2492 	__drain_all_pages(zone, false);
2493 }
2494 
2495 #ifdef CONFIG_HIBERNATION
2496 
2497 /*
2498  * Touch the watchdog for every WD_PAGE_COUNT pages.
2499  */
2500 #define WD_PAGE_COUNT	(128*1024)
2501 
2502 void mark_free_pages(struct zone *zone)
2503 {
2504 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2505 	unsigned long flags;
2506 	unsigned int order, t;
2507 	struct page *page;
2508 
2509 	if (zone_is_empty(zone))
2510 		return;
2511 
2512 	spin_lock_irqsave(&zone->lock, flags);
2513 
2514 	max_zone_pfn = zone_end_pfn(zone);
2515 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2516 		if (pfn_valid(pfn)) {
2517 			page = pfn_to_page(pfn);
2518 
2519 			if (!--page_count) {
2520 				touch_nmi_watchdog();
2521 				page_count = WD_PAGE_COUNT;
2522 			}
2523 
2524 			if (page_zone(page) != zone)
2525 				continue;
2526 
2527 			if (!swsusp_page_is_forbidden(page))
2528 				swsusp_unset_page_free(page);
2529 		}
2530 
2531 	for_each_migratetype_order(order, t) {
2532 		list_for_each_entry(page,
2533 				&zone->free_area[order].free_list[t], buddy_list) {
2534 			unsigned long i;
2535 
2536 			pfn = page_to_pfn(page);
2537 			for (i = 0; i < (1UL << order); i++) {
2538 				if (!--page_count) {
2539 					touch_nmi_watchdog();
2540 					page_count = WD_PAGE_COUNT;
2541 				}
2542 				swsusp_set_page_free(pfn_to_page(pfn + i));
2543 			}
2544 		}
2545 	}
2546 	spin_unlock_irqrestore(&zone->lock, flags);
2547 }
2548 #endif /* CONFIG_PM */
2549 
2550 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2551 							unsigned int order)
2552 {
2553 	int migratetype;
2554 
2555 	if (!free_pages_prepare(page, order, FPI_NONE))
2556 		return false;
2557 
2558 	migratetype = get_pfnblock_migratetype(page, pfn);
2559 	set_pcppage_migratetype(page, migratetype);
2560 	return true;
2561 }
2562 
2563 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2564 		       bool free_high)
2565 {
2566 	int min_nr_free, max_nr_free;
2567 
2568 	/* Free everything if batch freeing high-order pages. */
2569 	if (unlikely(free_high))
2570 		return pcp->count;
2571 
2572 	/* Check for PCP disabled or boot pageset */
2573 	if (unlikely(high < batch))
2574 		return 1;
2575 
2576 	/* Leave at least pcp->batch pages on the list */
2577 	min_nr_free = batch;
2578 	max_nr_free = high - batch;
2579 
2580 	/*
2581 	 * Double the number of pages freed each time there is subsequent
2582 	 * freeing of pages without any allocation.
2583 	 */
2584 	batch <<= pcp->free_factor;
2585 	if (batch < max_nr_free)
2586 		pcp->free_factor++;
2587 	batch = clamp(batch, min_nr_free, max_nr_free);
2588 
2589 	return batch;
2590 }
2591 
2592 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2593 		       bool free_high)
2594 {
2595 	int high = READ_ONCE(pcp->high);
2596 
2597 	if (unlikely(!high || free_high))
2598 		return 0;
2599 
2600 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2601 		return high;
2602 
2603 	/*
2604 	 * If reclaim is active, limit the number of pages that can be
2605 	 * stored on pcp lists
2606 	 */
2607 	return min(READ_ONCE(pcp->batch) << 2, high);
2608 }
2609 
2610 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2611 				   struct page *page, int migratetype,
2612 				   unsigned int order)
2613 {
2614 	int high;
2615 	int pindex;
2616 	bool free_high;
2617 
2618 	__count_vm_events(PGFREE, 1 << order);
2619 	pindex = order_to_pindex(migratetype, order);
2620 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2621 	pcp->count += 1 << order;
2622 
2623 	/*
2624 	 * As high-order pages other than THP's stored on PCP can contribute
2625 	 * to fragmentation, limit the number stored when PCP is heavily
2626 	 * freeing without allocation. The remainder after bulk freeing
2627 	 * stops will be drained from vmstat refresh context.
2628 	 */
2629 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2630 
2631 	high = nr_pcp_high(pcp, zone, free_high);
2632 	if (pcp->count >= high) {
2633 		int batch = READ_ONCE(pcp->batch);
2634 
2635 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2636 	}
2637 }
2638 
2639 /*
2640  * Free a pcp page
2641  */
2642 void free_unref_page(struct page *page, unsigned int order)
2643 {
2644 	unsigned long __maybe_unused UP_flags;
2645 	struct per_cpu_pages *pcp;
2646 	struct zone *zone;
2647 	unsigned long pfn = page_to_pfn(page);
2648 	int migratetype;
2649 
2650 	if (!free_unref_page_prepare(page, pfn, order))
2651 		return;
2652 
2653 	/*
2654 	 * We only track unmovable, reclaimable and movable on pcp lists.
2655 	 * Place ISOLATE pages on the isolated list because they are being
2656 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2657 	 * areas back if necessary. Otherwise, we may have to free
2658 	 * excessively into the page allocator
2659 	 */
2660 	migratetype = get_pcppage_migratetype(page);
2661 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2662 		if (unlikely(is_migrate_isolate(migratetype))) {
2663 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2664 			return;
2665 		}
2666 		migratetype = MIGRATE_MOVABLE;
2667 	}
2668 
2669 	zone = page_zone(page);
2670 	pcp_trylock_prepare(UP_flags);
2671 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2672 	if (pcp) {
2673 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2674 		pcp_spin_unlock(pcp);
2675 	} else {
2676 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2677 	}
2678 	pcp_trylock_finish(UP_flags);
2679 }
2680 
2681 /*
2682  * Free a list of 0-order pages
2683  */
2684 void free_unref_page_list(struct list_head *list)
2685 {
2686 	unsigned long __maybe_unused UP_flags;
2687 	struct page *page, *next;
2688 	struct per_cpu_pages *pcp = NULL;
2689 	struct zone *locked_zone = NULL;
2690 	int batch_count = 0;
2691 	int migratetype;
2692 
2693 	/* Prepare pages for freeing */
2694 	list_for_each_entry_safe(page, next, list, lru) {
2695 		unsigned long pfn = page_to_pfn(page);
2696 		if (!free_unref_page_prepare(page, pfn, 0)) {
2697 			list_del(&page->lru);
2698 			continue;
2699 		}
2700 
2701 		/*
2702 		 * Free isolated pages directly to the allocator, see
2703 		 * comment in free_unref_page.
2704 		 */
2705 		migratetype = get_pcppage_migratetype(page);
2706 		if (unlikely(is_migrate_isolate(migratetype))) {
2707 			list_del(&page->lru);
2708 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2709 			continue;
2710 		}
2711 	}
2712 
2713 	list_for_each_entry_safe(page, next, list, lru) {
2714 		struct zone *zone = page_zone(page);
2715 
2716 		list_del(&page->lru);
2717 		migratetype = get_pcppage_migratetype(page);
2718 
2719 		/*
2720 		 * Either different zone requiring a different pcp lock or
2721 		 * excessive lock hold times when freeing a large list of
2722 		 * pages.
2723 		 */
2724 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2725 			if (pcp) {
2726 				pcp_spin_unlock(pcp);
2727 				pcp_trylock_finish(UP_flags);
2728 			}
2729 
2730 			batch_count = 0;
2731 
2732 			/*
2733 			 * trylock is necessary as pages may be getting freed
2734 			 * from IRQ or SoftIRQ context after an IO completion.
2735 			 */
2736 			pcp_trylock_prepare(UP_flags);
2737 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2738 			if (unlikely(!pcp)) {
2739 				pcp_trylock_finish(UP_flags);
2740 				free_one_page(zone, page, page_to_pfn(page),
2741 					      0, migratetype, FPI_NONE);
2742 				locked_zone = NULL;
2743 				continue;
2744 			}
2745 			locked_zone = zone;
2746 		}
2747 
2748 		/*
2749 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2750 		 * to the MIGRATE_MOVABLE pcp list.
2751 		 */
2752 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2753 			migratetype = MIGRATE_MOVABLE;
2754 
2755 		trace_mm_page_free_batched(page);
2756 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2757 		batch_count++;
2758 	}
2759 
2760 	if (pcp) {
2761 		pcp_spin_unlock(pcp);
2762 		pcp_trylock_finish(UP_flags);
2763 	}
2764 }
2765 
2766 /*
2767  * split_page takes a non-compound higher-order page, and splits it into
2768  * n (1<<order) sub-pages: page[0..n]
2769  * Each sub-page must be freed individually.
2770  *
2771  * Note: this is probably too low level an operation for use in drivers.
2772  * Please consult with lkml before using this in your driver.
2773  */
2774 void split_page(struct page *page, unsigned int order)
2775 {
2776 	int i;
2777 
2778 	VM_BUG_ON_PAGE(PageCompound(page), page);
2779 	VM_BUG_ON_PAGE(!page_count(page), page);
2780 
2781 	for (i = 1; i < (1 << order); i++)
2782 		set_page_refcounted(page + i);
2783 	split_page_owner(page, 1 << order);
2784 	split_page_memcg(page, 1 << order);
2785 }
2786 EXPORT_SYMBOL_GPL(split_page);
2787 
2788 int __isolate_free_page(struct page *page, unsigned int order)
2789 {
2790 	struct zone *zone = page_zone(page);
2791 	int mt = get_pageblock_migratetype(page);
2792 
2793 	if (!is_migrate_isolate(mt)) {
2794 		unsigned long watermark;
2795 		/*
2796 		 * Obey watermarks as if the page was being allocated. We can
2797 		 * emulate a high-order watermark check with a raised order-0
2798 		 * watermark, because we already know our high-order page
2799 		 * exists.
2800 		 */
2801 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2802 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2803 			return 0;
2804 
2805 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2806 	}
2807 
2808 	del_page_from_free_list(page, zone, order);
2809 
2810 	/*
2811 	 * Set the pageblock if the isolated page is at least half of a
2812 	 * pageblock
2813 	 */
2814 	if (order >= pageblock_order - 1) {
2815 		struct page *endpage = page + (1 << order) - 1;
2816 		for (; page < endpage; page += pageblock_nr_pages) {
2817 			int mt = get_pageblock_migratetype(page);
2818 			/*
2819 			 * Only change normal pageblocks (i.e., they can merge
2820 			 * with others)
2821 			 */
2822 			if (migratetype_is_mergeable(mt))
2823 				set_pageblock_migratetype(page,
2824 							  MIGRATE_MOVABLE);
2825 		}
2826 	}
2827 
2828 	return 1UL << order;
2829 }
2830 
2831 /**
2832  * __putback_isolated_page - Return a now-isolated page back where we got it
2833  * @page: Page that was isolated
2834  * @order: Order of the isolated page
2835  * @mt: The page's pageblock's migratetype
2836  *
2837  * This function is meant to return a page pulled from the free lists via
2838  * __isolate_free_page back to the free lists they were pulled from.
2839  */
2840 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2841 {
2842 	struct zone *zone = page_zone(page);
2843 
2844 	/* zone lock should be held when this function is called */
2845 	lockdep_assert_held(&zone->lock);
2846 
2847 	/* Return isolated page to tail of freelist. */
2848 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2849 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2850 }
2851 
2852 /*
2853  * Update NUMA hit/miss statistics
2854  */
2855 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2856 				   long nr_account)
2857 {
2858 #ifdef CONFIG_NUMA
2859 	enum numa_stat_item local_stat = NUMA_LOCAL;
2860 
2861 	/* skip numa counters update if numa stats is disabled */
2862 	if (!static_branch_likely(&vm_numa_stat_key))
2863 		return;
2864 
2865 	if (zone_to_nid(z) != numa_node_id())
2866 		local_stat = NUMA_OTHER;
2867 
2868 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2869 		__count_numa_events(z, NUMA_HIT, nr_account);
2870 	else {
2871 		__count_numa_events(z, NUMA_MISS, nr_account);
2872 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2873 	}
2874 	__count_numa_events(z, local_stat, nr_account);
2875 #endif
2876 }
2877 
2878 static __always_inline
2879 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2880 			   unsigned int order, unsigned int alloc_flags,
2881 			   int migratetype)
2882 {
2883 	struct page *page;
2884 	unsigned long flags;
2885 
2886 	do {
2887 		page = NULL;
2888 		spin_lock_irqsave(&zone->lock, flags);
2889 		/*
2890 		 * order-0 request can reach here when the pcplist is skipped
2891 		 * due to non-CMA allocation context. HIGHATOMIC area is
2892 		 * reserved for high-order atomic allocation, so order-0
2893 		 * request should skip it.
2894 		 */
2895 		if (alloc_flags & ALLOC_HIGHATOMIC)
2896 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2897 		if (!page) {
2898 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2899 
2900 			/*
2901 			 * If the allocation fails, allow OOM handling access
2902 			 * to HIGHATOMIC reserves as failing now is worse than
2903 			 * failing a high-order atomic allocation in the
2904 			 * future.
2905 			 */
2906 			if (!page && (alloc_flags & ALLOC_OOM))
2907 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2908 
2909 			if (!page) {
2910 				spin_unlock_irqrestore(&zone->lock, flags);
2911 				return NULL;
2912 			}
2913 		}
2914 		__mod_zone_freepage_state(zone, -(1 << order),
2915 					  get_pcppage_migratetype(page));
2916 		spin_unlock_irqrestore(&zone->lock, flags);
2917 	} while (check_new_pages(page, order));
2918 
2919 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2920 	zone_statistics(preferred_zone, zone, 1);
2921 
2922 	return page;
2923 }
2924 
2925 /* Remove page from the per-cpu list, caller must protect the list */
2926 static inline
2927 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2928 			int migratetype,
2929 			unsigned int alloc_flags,
2930 			struct per_cpu_pages *pcp,
2931 			struct list_head *list)
2932 {
2933 	struct page *page;
2934 
2935 	do {
2936 		if (list_empty(list)) {
2937 			int batch = READ_ONCE(pcp->batch);
2938 			int alloced;
2939 
2940 			/*
2941 			 * Scale batch relative to order if batch implies
2942 			 * free pages can be stored on the PCP. Batch can
2943 			 * be 1 for small zones or for boot pagesets which
2944 			 * should never store free pages as the pages may
2945 			 * belong to arbitrary zones.
2946 			 */
2947 			if (batch > 1)
2948 				batch = max(batch >> order, 2);
2949 			alloced = rmqueue_bulk(zone, order,
2950 					batch, list,
2951 					migratetype, alloc_flags);
2952 
2953 			pcp->count += alloced << order;
2954 			if (unlikely(list_empty(list)))
2955 				return NULL;
2956 		}
2957 
2958 		page = list_first_entry(list, struct page, pcp_list);
2959 		list_del(&page->pcp_list);
2960 		pcp->count -= 1 << order;
2961 	} while (check_new_pages(page, order));
2962 
2963 	return page;
2964 }
2965 
2966 /* Lock and remove page from the per-cpu list */
2967 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2968 			struct zone *zone, unsigned int order,
2969 			int migratetype, unsigned int alloc_flags)
2970 {
2971 	struct per_cpu_pages *pcp;
2972 	struct list_head *list;
2973 	struct page *page;
2974 	unsigned long __maybe_unused UP_flags;
2975 
2976 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2977 	pcp_trylock_prepare(UP_flags);
2978 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2979 	if (!pcp) {
2980 		pcp_trylock_finish(UP_flags);
2981 		return NULL;
2982 	}
2983 
2984 	/*
2985 	 * On allocation, reduce the number of pages that are batch freed.
2986 	 * See nr_pcp_free() where free_factor is increased for subsequent
2987 	 * frees.
2988 	 */
2989 	pcp->free_factor >>= 1;
2990 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2991 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2992 	pcp_spin_unlock(pcp);
2993 	pcp_trylock_finish(UP_flags);
2994 	if (page) {
2995 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2996 		zone_statistics(preferred_zone, zone, 1);
2997 	}
2998 	return page;
2999 }
3000 
3001 /*
3002  * Allocate a page from the given zone.
3003  * Use pcplists for THP or "cheap" high-order allocations.
3004  */
3005 
3006 /*
3007  * Do not instrument rmqueue() with KMSAN. This function may call
3008  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3009  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3010  * may call rmqueue() again, which will result in a deadlock.
3011  */
3012 __no_sanitize_memory
3013 static inline
3014 struct page *rmqueue(struct zone *preferred_zone,
3015 			struct zone *zone, unsigned int order,
3016 			gfp_t gfp_flags, unsigned int alloc_flags,
3017 			int migratetype)
3018 {
3019 	struct page *page;
3020 
3021 	/*
3022 	 * We most definitely don't want callers attempting to
3023 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3024 	 */
3025 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3026 
3027 	if (likely(pcp_allowed_order(order))) {
3028 		/*
3029 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3030 		 * we need to skip it when CMA area isn't allowed.
3031 		 */
3032 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3033 				migratetype != MIGRATE_MOVABLE) {
3034 			page = rmqueue_pcplist(preferred_zone, zone, order,
3035 					migratetype, alloc_flags);
3036 			if (likely(page))
3037 				goto out;
3038 		}
3039 	}
3040 
3041 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3042 							migratetype);
3043 
3044 out:
3045 	/* Separate test+clear to avoid unnecessary atomics */
3046 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3047 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3048 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3049 	}
3050 
3051 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3052 	return page;
3053 }
3054 
3055 #ifdef CONFIG_FAIL_PAGE_ALLOC
3056 
3057 static struct {
3058 	struct fault_attr attr;
3059 
3060 	bool ignore_gfp_highmem;
3061 	bool ignore_gfp_reclaim;
3062 	u32 min_order;
3063 } fail_page_alloc = {
3064 	.attr = FAULT_ATTR_INITIALIZER,
3065 	.ignore_gfp_reclaim = true,
3066 	.ignore_gfp_highmem = true,
3067 	.min_order = 1,
3068 };
3069 
3070 static int __init setup_fail_page_alloc(char *str)
3071 {
3072 	return setup_fault_attr(&fail_page_alloc.attr, str);
3073 }
3074 __setup("fail_page_alloc=", setup_fail_page_alloc);
3075 
3076 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3077 {
3078 	int flags = 0;
3079 
3080 	if (order < fail_page_alloc.min_order)
3081 		return false;
3082 	if (gfp_mask & __GFP_NOFAIL)
3083 		return false;
3084 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3085 		return false;
3086 	if (fail_page_alloc.ignore_gfp_reclaim &&
3087 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3088 		return false;
3089 
3090 	/* See comment in __should_failslab() */
3091 	if (gfp_mask & __GFP_NOWARN)
3092 		flags |= FAULT_NOWARN;
3093 
3094 	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3095 }
3096 
3097 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3098 
3099 static int __init fail_page_alloc_debugfs(void)
3100 {
3101 	umode_t mode = S_IFREG | 0600;
3102 	struct dentry *dir;
3103 
3104 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3105 					&fail_page_alloc.attr);
3106 
3107 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3108 			    &fail_page_alloc.ignore_gfp_reclaim);
3109 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3110 			    &fail_page_alloc.ignore_gfp_highmem);
3111 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3112 
3113 	return 0;
3114 }
3115 
3116 late_initcall(fail_page_alloc_debugfs);
3117 
3118 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3119 
3120 #else /* CONFIG_FAIL_PAGE_ALLOC */
3121 
3122 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3123 {
3124 	return false;
3125 }
3126 
3127 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3128 
3129 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3130 {
3131 	return __should_fail_alloc_page(gfp_mask, order);
3132 }
3133 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3134 
3135 static inline long __zone_watermark_unusable_free(struct zone *z,
3136 				unsigned int order, unsigned int alloc_flags)
3137 {
3138 	long unusable_free = (1 << order) - 1;
3139 
3140 	/*
3141 	 * If the caller does not have rights to reserves below the min
3142 	 * watermark then subtract the high-atomic reserves. This will
3143 	 * over-estimate the size of the atomic reserve but it avoids a search.
3144 	 */
3145 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3146 		unusable_free += z->nr_reserved_highatomic;
3147 
3148 #ifdef CONFIG_CMA
3149 	/* If allocation can't use CMA areas don't use free CMA pages */
3150 	if (!(alloc_flags & ALLOC_CMA))
3151 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3152 #endif
3153 
3154 	return unusable_free;
3155 }
3156 
3157 /*
3158  * Return true if free base pages are above 'mark'. For high-order checks it
3159  * will return true of the order-0 watermark is reached and there is at least
3160  * one free page of a suitable size. Checking now avoids taking the zone lock
3161  * to check in the allocation paths if no pages are free.
3162  */
3163 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3164 			 int highest_zoneidx, unsigned int alloc_flags,
3165 			 long free_pages)
3166 {
3167 	long min = mark;
3168 	int o;
3169 
3170 	/* free_pages may go negative - that's OK */
3171 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3172 
3173 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3174 		/*
3175 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3176 		 * as OOM.
3177 		 */
3178 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3179 			min -= min / 2;
3180 
3181 			/*
3182 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3183 			 * access more reserves than just __GFP_HIGH. Other
3184 			 * non-blocking allocations requests such as GFP_NOWAIT
3185 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3186 			 * access to the min reserve.
3187 			 */
3188 			if (alloc_flags & ALLOC_NON_BLOCK)
3189 				min -= min / 4;
3190 		}
3191 
3192 		/*
3193 		 * OOM victims can try even harder than the normal reserve
3194 		 * users on the grounds that it's definitely going to be in
3195 		 * the exit path shortly and free memory. Any allocation it
3196 		 * makes during the free path will be small and short-lived.
3197 		 */
3198 		if (alloc_flags & ALLOC_OOM)
3199 			min -= min / 2;
3200 	}
3201 
3202 	/*
3203 	 * Check watermarks for an order-0 allocation request. If these
3204 	 * are not met, then a high-order request also cannot go ahead
3205 	 * even if a suitable page happened to be free.
3206 	 */
3207 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3208 		return false;
3209 
3210 	/* If this is an order-0 request then the watermark is fine */
3211 	if (!order)
3212 		return true;
3213 
3214 	/* For a high-order request, check at least one suitable page is free */
3215 	for (o = order; o <= MAX_ORDER; o++) {
3216 		struct free_area *area = &z->free_area[o];
3217 		int mt;
3218 
3219 		if (!area->nr_free)
3220 			continue;
3221 
3222 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3223 			if (!free_area_empty(area, mt))
3224 				return true;
3225 		}
3226 
3227 #ifdef CONFIG_CMA
3228 		if ((alloc_flags & ALLOC_CMA) &&
3229 		    !free_area_empty(area, MIGRATE_CMA)) {
3230 			return true;
3231 		}
3232 #endif
3233 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3234 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3235 			return true;
3236 		}
3237 	}
3238 	return false;
3239 }
3240 
3241 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3242 		      int highest_zoneidx, unsigned int alloc_flags)
3243 {
3244 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3245 					zone_page_state(z, NR_FREE_PAGES));
3246 }
3247 
3248 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3249 				unsigned long mark, int highest_zoneidx,
3250 				unsigned int alloc_flags, gfp_t gfp_mask)
3251 {
3252 	long free_pages;
3253 
3254 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3255 
3256 	/*
3257 	 * Fast check for order-0 only. If this fails then the reserves
3258 	 * need to be calculated.
3259 	 */
3260 	if (!order) {
3261 		long usable_free;
3262 		long reserved;
3263 
3264 		usable_free = free_pages;
3265 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3266 
3267 		/* reserved may over estimate high-atomic reserves. */
3268 		usable_free -= min(usable_free, reserved);
3269 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3270 			return true;
3271 	}
3272 
3273 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3274 					free_pages))
3275 		return true;
3276 
3277 	/*
3278 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3279 	 * when checking the min watermark. The min watermark is the
3280 	 * point where boosting is ignored so that kswapd is woken up
3281 	 * when below the low watermark.
3282 	 */
3283 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3284 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3285 		mark = z->_watermark[WMARK_MIN];
3286 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3287 					alloc_flags, free_pages);
3288 	}
3289 
3290 	return false;
3291 }
3292 
3293 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3294 			unsigned long mark, int highest_zoneidx)
3295 {
3296 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3297 
3298 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3299 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3300 
3301 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3302 								free_pages);
3303 }
3304 
3305 #ifdef CONFIG_NUMA
3306 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3307 
3308 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3309 {
3310 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3311 				node_reclaim_distance;
3312 }
3313 #else	/* CONFIG_NUMA */
3314 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3315 {
3316 	return true;
3317 }
3318 #endif	/* CONFIG_NUMA */
3319 
3320 /*
3321  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3322  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3323  * premature use of a lower zone may cause lowmem pressure problems that
3324  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3325  * probably too small. It only makes sense to spread allocations to avoid
3326  * fragmentation between the Normal and DMA32 zones.
3327  */
3328 static inline unsigned int
3329 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3330 {
3331 	unsigned int alloc_flags;
3332 
3333 	/*
3334 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3335 	 * to save a branch.
3336 	 */
3337 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3338 
3339 #ifdef CONFIG_ZONE_DMA32
3340 	if (!zone)
3341 		return alloc_flags;
3342 
3343 	if (zone_idx(zone) != ZONE_NORMAL)
3344 		return alloc_flags;
3345 
3346 	/*
3347 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3348 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3349 	 * on UMA that if Normal is populated then so is DMA32.
3350 	 */
3351 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3352 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3353 		return alloc_flags;
3354 
3355 	alloc_flags |= ALLOC_NOFRAGMENT;
3356 #endif /* CONFIG_ZONE_DMA32 */
3357 	return alloc_flags;
3358 }
3359 
3360 /* Must be called after current_gfp_context() which can change gfp_mask */
3361 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3362 						  unsigned int alloc_flags)
3363 {
3364 #ifdef CONFIG_CMA
3365 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3366 		alloc_flags |= ALLOC_CMA;
3367 #endif
3368 	return alloc_flags;
3369 }
3370 
3371 /*
3372  * get_page_from_freelist goes through the zonelist trying to allocate
3373  * a page.
3374  */
3375 static struct page *
3376 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3377 						const struct alloc_context *ac)
3378 {
3379 	struct zoneref *z;
3380 	struct zone *zone;
3381 	struct pglist_data *last_pgdat = NULL;
3382 	bool last_pgdat_dirty_ok = false;
3383 	bool no_fallback;
3384 
3385 retry:
3386 	/*
3387 	 * Scan zonelist, looking for a zone with enough free.
3388 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3389 	 */
3390 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3391 	z = ac->preferred_zoneref;
3392 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3393 					ac->nodemask) {
3394 		struct page *page;
3395 		unsigned long mark;
3396 
3397 		if (cpusets_enabled() &&
3398 			(alloc_flags & ALLOC_CPUSET) &&
3399 			!__cpuset_zone_allowed(zone, gfp_mask))
3400 				continue;
3401 		/*
3402 		 * When allocating a page cache page for writing, we
3403 		 * want to get it from a node that is within its dirty
3404 		 * limit, such that no single node holds more than its
3405 		 * proportional share of globally allowed dirty pages.
3406 		 * The dirty limits take into account the node's
3407 		 * lowmem reserves and high watermark so that kswapd
3408 		 * should be able to balance it without having to
3409 		 * write pages from its LRU list.
3410 		 *
3411 		 * XXX: For now, allow allocations to potentially
3412 		 * exceed the per-node dirty limit in the slowpath
3413 		 * (spread_dirty_pages unset) before going into reclaim,
3414 		 * which is important when on a NUMA setup the allowed
3415 		 * nodes are together not big enough to reach the
3416 		 * global limit.  The proper fix for these situations
3417 		 * will require awareness of nodes in the
3418 		 * dirty-throttling and the flusher threads.
3419 		 */
3420 		if (ac->spread_dirty_pages) {
3421 			if (last_pgdat != zone->zone_pgdat) {
3422 				last_pgdat = zone->zone_pgdat;
3423 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3424 			}
3425 
3426 			if (!last_pgdat_dirty_ok)
3427 				continue;
3428 		}
3429 
3430 		if (no_fallback && nr_online_nodes > 1 &&
3431 		    zone != ac->preferred_zoneref->zone) {
3432 			int local_nid;
3433 
3434 			/*
3435 			 * If moving to a remote node, retry but allow
3436 			 * fragmenting fallbacks. Locality is more important
3437 			 * than fragmentation avoidance.
3438 			 */
3439 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3440 			if (zone_to_nid(zone) != local_nid) {
3441 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3442 				goto retry;
3443 			}
3444 		}
3445 
3446 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3447 		if (!zone_watermark_fast(zone, order, mark,
3448 				       ac->highest_zoneidx, alloc_flags,
3449 				       gfp_mask)) {
3450 			int ret;
3451 
3452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3453 			/*
3454 			 * Watermark failed for this zone, but see if we can
3455 			 * grow this zone if it contains deferred pages.
3456 			 */
3457 			if (deferred_pages_enabled()) {
3458 				if (_deferred_grow_zone(zone, order))
3459 					goto try_this_zone;
3460 			}
3461 #endif
3462 			/* Checked here to keep the fast path fast */
3463 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3464 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3465 				goto try_this_zone;
3466 
3467 			if (!node_reclaim_enabled() ||
3468 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3469 				continue;
3470 
3471 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3472 			switch (ret) {
3473 			case NODE_RECLAIM_NOSCAN:
3474 				/* did not scan */
3475 				continue;
3476 			case NODE_RECLAIM_FULL:
3477 				/* scanned but unreclaimable */
3478 				continue;
3479 			default:
3480 				/* did we reclaim enough */
3481 				if (zone_watermark_ok(zone, order, mark,
3482 					ac->highest_zoneidx, alloc_flags))
3483 					goto try_this_zone;
3484 
3485 				continue;
3486 			}
3487 		}
3488 
3489 try_this_zone:
3490 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3491 				gfp_mask, alloc_flags, ac->migratetype);
3492 		if (page) {
3493 			prep_new_page(page, order, gfp_mask, alloc_flags);
3494 
3495 			/*
3496 			 * If this is a high-order atomic allocation then check
3497 			 * if the pageblock should be reserved for the future
3498 			 */
3499 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3500 				reserve_highatomic_pageblock(page, zone, order);
3501 
3502 			return page;
3503 		} else {
3504 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3505 			/* Try again if zone has deferred pages */
3506 			if (deferred_pages_enabled()) {
3507 				if (_deferred_grow_zone(zone, order))
3508 					goto try_this_zone;
3509 			}
3510 #endif
3511 		}
3512 	}
3513 
3514 	/*
3515 	 * It's possible on a UMA machine to get through all zones that are
3516 	 * fragmented. If avoiding fragmentation, reset and try again.
3517 	 */
3518 	if (no_fallback) {
3519 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3520 		goto retry;
3521 	}
3522 
3523 	return NULL;
3524 }
3525 
3526 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3527 {
3528 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3529 
3530 	/*
3531 	 * This documents exceptions given to allocations in certain
3532 	 * contexts that are allowed to allocate outside current's set
3533 	 * of allowed nodes.
3534 	 */
3535 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3536 		if (tsk_is_oom_victim(current) ||
3537 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3538 			filter &= ~SHOW_MEM_FILTER_NODES;
3539 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3540 		filter &= ~SHOW_MEM_FILTER_NODES;
3541 
3542 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3543 }
3544 
3545 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3546 {
3547 	struct va_format vaf;
3548 	va_list args;
3549 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3550 
3551 	if ((gfp_mask & __GFP_NOWARN) ||
3552 	     !__ratelimit(&nopage_rs) ||
3553 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3554 		return;
3555 
3556 	va_start(args, fmt);
3557 	vaf.fmt = fmt;
3558 	vaf.va = &args;
3559 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3560 			current->comm, &vaf, gfp_mask, &gfp_mask,
3561 			nodemask_pr_args(nodemask));
3562 	va_end(args);
3563 
3564 	cpuset_print_current_mems_allowed();
3565 	pr_cont("\n");
3566 	dump_stack();
3567 	warn_alloc_show_mem(gfp_mask, nodemask);
3568 }
3569 
3570 static inline struct page *
3571 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3572 			      unsigned int alloc_flags,
3573 			      const struct alloc_context *ac)
3574 {
3575 	struct page *page;
3576 
3577 	page = get_page_from_freelist(gfp_mask, order,
3578 			alloc_flags|ALLOC_CPUSET, ac);
3579 	/*
3580 	 * fallback to ignore cpuset restriction if our nodes
3581 	 * are depleted
3582 	 */
3583 	if (!page)
3584 		page = get_page_from_freelist(gfp_mask, order,
3585 				alloc_flags, ac);
3586 
3587 	return page;
3588 }
3589 
3590 static inline struct page *
3591 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3592 	const struct alloc_context *ac, unsigned long *did_some_progress)
3593 {
3594 	struct oom_control oc = {
3595 		.zonelist = ac->zonelist,
3596 		.nodemask = ac->nodemask,
3597 		.memcg = NULL,
3598 		.gfp_mask = gfp_mask,
3599 		.order = order,
3600 	};
3601 	struct page *page;
3602 
3603 	*did_some_progress = 0;
3604 
3605 	/*
3606 	 * Acquire the oom lock.  If that fails, somebody else is
3607 	 * making progress for us.
3608 	 */
3609 	if (!mutex_trylock(&oom_lock)) {
3610 		*did_some_progress = 1;
3611 		schedule_timeout_uninterruptible(1);
3612 		return NULL;
3613 	}
3614 
3615 	/*
3616 	 * Go through the zonelist yet one more time, keep very high watermark
3617 	 * here, this is only to catch a parallel oom killing, we must fail if
3618 	 * we're still under heavy pressure. But make sure that this reclaim
3619 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3620 	 * allocation which will never fail due to oom_lock already held.
3621 	 */
3622 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3623 				      ~__GFP_DIRECT_RECLAIM, order,
3624 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3625 	if (page)
3626 		goto out;
3627 
3628 	/* Coredumps can quickly deplete all memory reserves */
3629 	if (current->flags & PF_DUMPCORE)
3630 		goto out;
3631 	/* The OOM killer will not help higher order allocs */
3632 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3633 		goto out;
3634 	/*
3635 	 * We have already exhausted all our reclaim opportunities without any
3636 	 * success so it is time to admit defeat. We will skip the OOM killer
3637 	 * because it is very likely that the caller has a more reasonable
3638 	 * fallback than shooting a random task.
3639 	 *
3640 	 * The OOM killer may not free memory on a specific node.
3641 	 */
3642 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3643 		goto out;
3644 	/* The OOM killer does not needlessly kill tasks for lowmem */
3645 	if (ac->highest_zoneidx < ZONE_NORMAL)
3646 		goto out;
3647 	if (pm_suspended_storage())
3648 		goto out;
3649 	/*
3650 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3651 	 * other request to make a forward progress.
3652 	 * We are in an unfortunate situation where out_of_memory cannot
3653 	 * do much for this context but let's try it to at least get
3654 	 * access to memory reserved if the current task is killed (see
3655 	 * out_of_memory). Once filesystems are ready to handle allocation
3656 	 * failures more gracefully we should just bail out here.
3657 	 */
3658 
3659 	/* Exhausted what can be done so it's blame time */
3660 	if (out_of_memory(&oc) ||
3661 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3662 		*did_some_progress = 1;
3663 
3664 		/*
3665 		 * Help non-failing allocations by giving them access to memory
3666 		 * reserves
3667 		 */
3668 		if (gfp_mask & __GFP_NOFAIL)
3669 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3670 					ALLOC_NO_WATERMARKS, ac);
3671 	}
3672 out:
3673 	mutex_unlock(&oom_lock);
3674 	return page;
3675 }
3676 
3677 /*
3678  * Maximum number of compaction retries with a progress before OOM
3679  * killer is consider as the only way to move forward.
3680  */
3681 #define MAX_COMPACT_RETRIES 16
3682 
3683 #ifdef CONFIG_COMPACTION
3684 /* Try memory compaction for high-order allocations before reclaim */
3685 static struct page *
3686 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3687 		unsigned int alloc_flags, const struct alloc_context *ac,
3688 		enum compact_priority prio, enum compact_result *compact_result)
3689 {
3690 	struct page *page = NULL;
3691 	unsigned long pflags;
3692 	unsigned int noreclaim_flag;
3693 
3694 	if (!order)
3695 		return NULL;
3696 
3697 	psi_memstall_enter(&pflags);
3698 	delayacct_compact_start();
3699 	noreclaim_flag = memalloc_noreclaim_save();
3700 
3701 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3702 								prio, &page);
3703 
3704 	memalloc_noreclaim_restore(noreclaim_flag);
3705 	psi_memstall_leave(&pflags);
3706 	delayacct_compact_end();
3707 
3708 	if (*compact_result == COMPACT_SKIPPED)
3709 		return NULL;
3710 	/*
3711 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3712 	 * count a compaction stall
3713 	 */
3714 	count_vm_event(COMPACTSTALL);
3715 
3716 	/* Prep a captured page if available */
3717 	if (page)
3718 		prep_new_page(page, order, gfp_mask, alloc_flags);
3719 
3720 	/* Try get a page from the freelist if available */
3721 	if (!page)
3722 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3723 
3724 	if (page) {
3725 		struct zone *zone = page_zone(page);
3726 
3727 		zone->compact_blockskip_flush = false;
3728 		compaction_defer_reset(zone, order, true);
3729 		count_vm_event(COMPACTSUCCESS);
3730 		return page;
3731 	}
3732 
3733 	/*
3734 	 * It's bad if compaction run occurs and fails. The most likely reason
3735 	 * is that pages exist, but not enough to satisfy watermarks.
3736 	 */
3737 	count_vm_event(COMPACTFAIL);
3738 
3739 	cond_resched();
3740 
3741 	return NULL;
3742 }
3743 
3744 static inline bool
3745 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3746 		     enum compact_result compact_result,
3747 		     enum compact_priority *compact_priority,
3748 		     int *compaction_retries)
3749 {
3750 	int max_retries = MAX_COMPACT_RETRIES;
3751 	int min_priority;
3752 	bool ret = false;
3753 	int retries = *compaction_retries;
3754 	enum compact_priority priority = *compact_priority;
3755 
3756 	if (!order)
3757 		return false;
3758 
3759 	if (fatal_signal_pending(current))
3760 		return false;
3761 
3762 	if (compaction_made_progress(compact_result))
3763 		(*compaction_retries)++;
3764 
3765 	/*
3766 	 * compaction considers all the zone as desperately out of memory
3767 	 * so it doesn't really make much sense to retry except when the
3768 	 * failure could be caused by insufficient priority
3769 	 */
3770 	if (compaction_failed(compact_result))
3771 		goto check_priority;
3772 
3773 	/*
3774 	 * compaction was skipped because there are not enough order-0 pages
3775 	 * to work with, so we retry only if it looks like reclaim can help.
3776 	 */
3777 	if (compaction_needs_reclaim(compact_result)) {
3778 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3779 		goto out;
3780 	}
3781 
3782 	/*
3783 	 * make sure the compaction wasn't deferred or didn't bail out early
3784 	 * due to locks contention before we declare that we should give up.
3785 	 * But the next retry should use a higher priority if allowed, so
3786 	 * we don't just keep bailing out endlessly.
3787 	 */
3788 	if (compaction_withdrawn(compact_result)) {
3789 		goto check_priority;
3790 	}
3791 
3792 	/*
3793 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3794 	 * costly ones because they are de facto nofail and invoke OOM
3795 	 * killer to move on while costly can fail and users are ready
3796 	 * to cope with that. 1/4 retries is rather arbitrary but we
3797 	 * would need much more detailed feedback from compaction to
3798 	 * make a better decision.
3799 	 */
3800 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3801 		max_retries /= 4;
3802 	if (*compaction_retries <= max_retries) {
3803 		ret = true;
3804 		goto out;
3805 	}
3806 
3807 	/*
3808 	 * Make sure there are attempts at the highest priority if we exhausted
3809 	 * all retries or failed at the lower priorities.
3810 	 */
3811 check_priority:
3812 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3813 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3814 
3815 	if (*compact_priority > min_priority) {
3816 		(*compact_priority)--;
3817 		*compaction_retries = 0;
3818 		ret = true;
3819 	}
3820 out:
3821 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3822 	return ret;
3823 }
3824 #else
3825 static inline struct page *
3826 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3827 		unsigned int alloc_flags, const struct alloc_context *ac,
3828 		enum compact_priority prio, enum compact_result *compact_result)
3829 {
3830 	*compact_result = COMPACT_SKIPPED;
3831 	return NULL;
3832 }
3833 
3834 static inline bool
3835 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3836 		     enum compact_result compact_result,
3837 		     enum compact_priority *compact_priority,
3838 		     int *compaction_retries)
3839 {
3840 	struct zone *zone;
3841 	struct zoneref *z;
3842 
3843 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3844 		return false;
3845 
3846 	/*
3847 	 * There are setups with compaction disabled which would prefer to loop
3848 	 * inside the allocator rather than hit the oom killer prematurely.
3849 	 * Let's give them a good hope and keep retrying while the order-0
3850 	 * watermarks are OK.
3851 	 */
3852 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3853 				ac->highest_zoneidx, ac->nodemask) {
3854 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3855 					ac->highest_zoneidx, alloc_flags))
3856 			return true;
3857 	}
3858 	return false;
3859 }
3860 #endif /* CONFIG_COMPACTION */
3861 
3862 #ifdef CONFIG_LOCKDEP
3863 static struct lockdep_map __fs_reclaim_map =
3864 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3865 
3866 static bool __need_reclaim(gfp_t gfp_mask)
3867 {
3868 	/* no reclaim without waiting on it */
3869 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3870 		return false;
3871 
3872 	/* this guy won't enter reclaim */
3873 	if (current->flags & PF_MEMALLOC)
3874 		return false;
3875 
3876 	if (gfp_mask & __GFP_NOLOCKDEP)
3877 		return false;
3878 
3879 	return true;
3880 }
3881 
3882 void __fs_reclaim_acquire(unsigned long ip)
3883 {
3884 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3885 }
3886 
3887 void __fs_reclaim_release(unsigned long ip)
3888 {
3889 	lock_release(&__fs_reclaim_map, ip);
3890 }
3891 
3892 void fs_reclaim_acquire(gfp_t gfp_mask)
3893 {
3894 	gfp_mask = current_gfp_context(gfp_mask);
3895 
3896 	if (__need_reclaim(gfp_mask)) {
3897 		if (gfp_mask & __GFP_FS)
3898 			__fs_reclaim_acquire(_RET_IP_);
3899 
3900 #ifdef CONFIG_MMU_NOTIFIER
3901 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3902 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3903 #endif
3904 
3905 	}
3906 }
3907 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3908 
3909 void fs_reclaim_release(gfp_t gfp_mask)
3910 {
3911 	gfp_mask = current_gfp_context(gfp_mask);
3912 
3913 	if (__need_reclaim(gfp_mask)) {
3914 		if (gfp_mask & __GFP_FS)
3915 			__fs_reclaim_release(_RET_IP_);
3916 	}
3917 }
3918 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3919 #endif
3920 
3921 /*
3922  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3923  * have been rebuilt so allocation retries. Reader side does not lock and
3924  * retries the allocation if zonelist changes. Writer side is protected by the
3925  * embedded spin_lock.
3926  */
3927 static DEFINE_SEQLOCK(zonelist_update_seq);
3928 
3929 static unsigned int zonelist_iter_begin(void)
3930 {
3931 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3932 		return read_seqbegin(&zonelist_update_seq);
3933 
3934 	return 0;
3935 }
3936 
3937 static unsigned int check_retry_zonelist(unsigned int seq)
3938 {
3939 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3940 		return read_seqretry(&zonelist_update_seq, seq);
3941 
3942 	return seq;
3943 }
3944 
3945 /* Perform direct synchronous page reclaim */
3946 static unsigned long
3947 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3948 					const struct alloc_context *ac)
3949 {
3950 	unsigned int noreclaim_flag;
3951 	unsigned long progress;
3952 
3953 	cond_resched();
3954 
3955 	/* We now go into synchronous reclaim */
3956 	cpuset_memory_pressure_bump();
3957 	fs_reclaim_acquire(gfp_mask);
3958 	noreclaim_flag = memalloc_noreclaim_save();
3959 
3960 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3961 								ac->nodemask);
3962 
3963 	memalloc_noreclaim_restore(noreclaim_flag);
3964 	fs_reclaim_release(gfp_mask);
3965 
3966 	cond_resched();
3967 
3968 	return progress;
3969 }
3970 
3971 /* The really slow allocator path where we enter direct reclaim */
3972 static inline struct page *
3973 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3974 		unsigned int alloc_flags, const struct alloc_context *ac,
3975 		unsigned long *did_some_progress)
3976 {
3977 	struct page *page = NULL;
3978 	unsigned long pflags;
3979 	bool drained = false;
3980 
3981 	psi_memstall_enter(&pflags);
3982 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3983 	if (unlikely(!(*did_some_progress)))
3984 		goto out;
3985 
3986 retry:
3987 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3988 
3989 	/*
3990 	 * If an allocation failed after direct reclaim, it could be because
3991 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3992 	 * Shrink them and try again
3993 	 */
3994 	if (!page && !drained) {
3995 		unreserve_highatomic_pageblock(ac, false);
3996 		drain_all_pages(NULL);
3997 		drained = true;
3998 		goto retry;
3999 	}
4000 out:
4001 	psi_memstall_leave(&pflags);
4002 
4003 	return page;
4004 }
4005 
4006 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4007 			     const struct alloc_context *ac)
4008 {
4009 	struct zoneref *z;
4010 	struct zone *zone;
4011 	pg_data_t *last_pgdat = NULL;
4012 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4013 
4014 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4015 					ac->nodemask) {
4016 		if (!managed_zone(zone))
4017 			continue;
4018 		if (last_pgdat != zone->zone_pgdat) {
4019 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4020 			last_pgdat = zone->zone_pgdat;
4021 		}
4022 	}
4023 }
4024 
4025 static inline unsigned int
4026 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4027 {
4028 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4029 
4030 	/*
4031 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4032 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4033 	 * to save two branches.
4034 	 */
4035 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4036 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4037 
4038 	/*
4039 	 * The caller may dip into page reserves a bit more if the caller
4040 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4041 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4042 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4043 	 */
4044 	alloc_flags |= (__force int)
4045 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4046 
4047 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4048 		/*
4049 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4050 		 * if it can't schedule.
4051 		 */
4052 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4053 			alloc_flags |= ALLOC_NON_BLOCK;
4054 
4055 			if (order > 0)
4056 				alloc_flags |= ALLOC_HIGHATOMIC;
4057 		}
4058 
4059 		/*
4060 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4061 		 * GFP_ATOMIC) rather than fail, see the comment for
4062 		 * __cpuset_node_allowed().
4063 		 */
4064 		if (alloc_flags & ALLOC_MIN_RESERVE)
4065 			alloc_flags &= ~ALLOC_CPUSET;
4066 	} else if (unlikely(rt_task(current)) && in_task())
4067 		alloc_flags |= ALLOC_MIN_RESERVE;
4068 
4069 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4070 
4071 	return alloc_flags;
4072 }
4073 
4074 static bool oom_reserves_allowed(struct task_struct *tsk)
4075 {
4076 	if (!tsk_is_oom_victim(tsk))
4077 		return false;
4078 
4079 	/*
4080 	 * !MMU doesn't have oom reaper so give access to memory reserves
4081 	 * only to the thread with TIF_MEMDIE set
4082 	 */
4083 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4084 		return false;
4085 
4086 	return true;
4087 }
4088 
4089 /*
4090  * Distinguish requests which really need access to full memory
4091  * reserves from oom victims which can live with a portion of it
4092  */
4093 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4094 {
4095 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4096 		return 0;
4097 	if (gfp_mask & __GFP_MEMALLOC)
4098 		return ALLOC_NO_WATERMARKS;
4099 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4100 		return ALLOC_NO_WATERMARKS;
4101 	if (!in_interrupt()) {
4102 		if (current->flags & PF_MEMALLOC)
4103 			return ALLOC_NO_WATERMARKS;
4104 		else if (oom_reserves_allowed(current))
4105 			return ALLOC_OOM;
4106 	}
4107 
4108 	return 0;
4109 }
4110 
4111 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4112 {
4113 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4114 }
4115 
4116 /*
4117  * Checks whether it makes sense to retry the reclaim to make a forward progress
4118  * for the given allocation request.
4119  *
4120  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4121  * without success, or when we couldn't even meet the watermark if we
4122  * reclaimed all remaining pages on the LRU lists.
4123  *
4124  * Returns true if a retry is viable or false to enter the oom path.
4125  */
4126 static inline bool
4127 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4128 		     struct alloc_context *ac, int alloc_flags,
4129 		     bool did_some_progress, int *no_progress_loops)
4130 {
4131 	struct zone *zone;
4132 	struct zoneref *z;
4133 	bool ret = false;
4134 
4135 	/*
4136 	 * Costly allocations might have made a progress but this doesn't mean
4137 	 * their order will become available due to high fragmentation so
4138 	 * always increment the no progress counter for them
4139 	 */
4140 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4141 		*no_progress_loops = 0;
4142 	else
4143 		(*no_progress_loops)++;
4144 
4145 	/*
4146 	 * Make sure we converge to OOM if we cannot make any progress
4147 	 * several times in the row.
4148 	 */
4149 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4150 		/* Before OOM, exhaust highatomic_reserve */
4151 		return unreserve_highatomic_pageblock(ac, true);
4152 	}
4153 
4154 	/*
4155 	 * Keep reclaiming pages while there is a chance this will lead
4156 	 * somewhere.  If none of the target zones can satisfy our allocation
4157 	 * request even if all reclaimable pages are considered then we are
4158 	 * screwed and have to go OOM.
4159 	 */
4160 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4161 				ac->highest_zoneidx, ac->nodemask) {
4162 		unsigned long available;
4163 		unsigned long reclaimable;
4164 		unsigned long min_wmark = min_wmark_pages(zone);
4165 		bool wmark;
4166 
4167 		available = reclaimable = zone_reclaimable_pages(zone);
4168 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4169 
4170 		/*
4171 		 * Would the allocation succeed if we reclaimed all
4172 		 * reclaimable pages?
4173 		 */
4174 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4175 				ac->highest_zoneidx, alloc_flags, available);
4176 		trace_reclaim_retry_zone(z, order, reclaimable,
4177 				available, min_wmark, *no_progress_loops, wmark);
4178 		if (wmark) {
4179 			ret = true;
4180 			break;
4181 		}
4182 	}
4183 
4184 	/*
4185 	 * Memory allocation/reclaim might be called from a WQ context and the
4186 	 * current implementation of the WQ concurrency control doesn't
4187 	 * recognize that a particular WQ is congested if the worker thread is
4188 	 * looping without ever sleeping. Therefore we have to do a short sleep
4189 	 * here rather than calling cond_resched().
4190 	 */
4191 	if (current->flags & PF_WQ_WORKER)
4192 		schedule_timeout_uninterruptible(1);
4193 	else
4194 		cond_resched();
4195 	return ret;
4196 }
4197 
4198 static inline bool
4199 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4200 {
4201 	/*
4202 	 * It's possible that cpuset's mems_allowed and the nodemask from
4203 	 * mempolicy don't intersect. This should be normally dealt with by
4204 	 * policy_nodemask(), but it's possible to race with cpuset update in
4205 	 * such a way the check therein was true, and then it became false
4206 	 * before we got our cpuset_mems_cookie here.
4207 	 * This assumes that for all allocations, ac->nodemask can come only
4208 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4209 	 * when it does not intersect with the cpuset restrictions) or the
4210 	 * caller can deal with a violated nodemask.
4211 	 */
4212 	if (cpusets_enabled() && ac->nodemask &&
4213 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4214 		ac->nodemask = NULL;
4215 		return true;
4216 	}
4217 
4218 	/*
4219 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4220 	 * possible to race with parallel threads in such a way that our
4221 	 * allocation can fail while the mask is being updated. If we are about
4222 	 * to fail, check if the cpuset changed during allocation and if so,
4223 	 * retry.
4224 	 */
4225 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4226 		return true;
4227 
4228 	return false;
4229 }
4230 
4231 static inline struct page *
4232 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4233 						struct alloc_context *ac)
4234 {
4235 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4236 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4237 	struct page *page = NULL;
4238 	unsigned int alloc_flags;
4239 	unsigned long did_some_progress;
4240 	enum compact_priority compact_priority;
4241 	enum compact_result compact_result;
4242 	int compaction_retries;
4243 	int no_progress_loops;
4244 	unsigned int cpuset_mems_cookie;
4245 	unsigned int zonelist_iter_cookie;
4246 	int reserve_flags;
4247 
4248 restart:
4249 	compaction_retries = 0;
4250 	no_progress_loops = 0;
4251 	compact_priority = DEF_COMPACT_PRIORITY;
4252 	cpuset_mems_cookie = read_mems_allowed_begin();
4253 	zonelist_iter_cookie = zonelist_iter_begin();
4254 
4255 	/*
4256 	 * The fast path uses conservative alloc_flags to succeed only until
4257 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4258 	 * alloc_flags precisely. So we do that now.
4259 	 */
4260 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4261 
4262 	/*
4263 	 * We need to recalculate the starting point for the zonelist iterator
4264 	 * because we might have used different nodemask in the fast path, or
4265 	 * there was a cpuset modification and we are retrying - otherwise we
4266 	 * could end up iterating over non-eligible zones endlessly.
4267 	 */
4268 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4269 					ac->highest_zoneidx, ac->nodemask);
4270 	if (!ac->preferred_zoneref->zone)
4271 		goto nopage;
4272 
4273 	/*
4274 	 * Check for insane configurations where the cpuset doesn't contain
4275 	 * any suitable zone to satisfy the request - e.g. non-movable
4276 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4277 	 */
4278 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4279 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4280 					ac->highest_zoneidx,
4281 					&cpuset_current_mems_allowed);
4282 		if (!z->zone)
4283 			goto nopage;
4284 	}
4285 
4286 	if (alloc_flags & ALLOC_KSWAPD)
4287 		wake_all_kswapds(order, gfp_mask, ac);
4288 
4289 	/*
4290 	 * The adjusted alloc_flags might result in immediate success, so try
4291 	 * that first
4292 	 */
4293 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4294 	if (page)
4295 		goto got_pg;
4296 
4297 	/*
4298 	 * For costly allocations, try direct compaction first, as it's likely
4299 	 * that we have enough base pages and don't need to reclaim. For non-
4300 	 * movable high-order allocations, do that as well, as compaction will
4301 	 * try prevent permanent fragmentation by migrating from blocks of the
4302 	 * same migratetype.
4303 	 * Don't try this for allocations that are allowed to ignore
4304 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4305 	 */
4306 	if (can_direct_reclaim &&
4307 			(costly_order ||
4308 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4309 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4310 		page = __alloc_pages_direct_compact(gfp_mask, order,
4311 						alloc_flags, ac,
4312 						INIT_COMPACT_PRIORITY,
4313 						&compact_result);
4314 		if (page)
4315 			goto got_pg;
4316 
4317 		/*
4318 		 * Checks for costly allocations with __GFP_NORETRY, which
4319 		 * includes some THP page fault allocations
4320 		 */
4321 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4322 			/*
4323 			 * If allocating entire pageblock(s) and compaction
4324 			 * failed because all zones are below low watermarks
4325 			 * or is prohibited because it recently failed at this
4326 			 * order, fail immediately unless the allocator has
4327 			 * requested compaction and reclaim retry.
4328 			 *
4329 			 * Reclaim is
4330 			 *  - potentially very expensive because zones are far
4331 			 *    below their low watermarks or this is part of very
4332 			 *    bursty high order allocations,
4333 			 *  - not guaranteed to help because isolate_freepages()
4334 			 *    may not iterate over freed pages as part of its
4335 			 *    linear scan, and
4336 			 *  - unlikely to make entire pageblocks free on its
4337 			 *    own.
4338 			 */
4339 			if (compact_result == COMPACT_SKIPPED ||
4340 			    compact_result == COMPACT_DEFERRED)
4341 				goto nopage;
4342 
4343 			/*
4344 			 * Looks like reclaim/compaction is worth trying, but
4345 			 * sync compaction could be very expensive, so keep
4346 			 * using async compaction.
4347 			 */
4348 			compact_priority = INIT_COMPACT_PRIORITY;
4349 		}
4350 	}
4351 
4352 retry:
4353 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4354 	if (alloc_flags & ALLOC_KSWAPD)
4355 		wake_all_kswapds(order, gfp_mask, ac);
4356 
4357 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4358 	if (reserve_flags)
4359 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4360 					  (alloc_flags & ALLOC_KSWAPD);
4361 
4362 	/*
4363 	 * Reset the nodemask and zonelist iterators if memory policies can be
4364 	 * ignored. These allocations are high priority and system rather than
4365 	 * user oriented.
4366 	 */
4367 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4368 		ac->nodemask = NULL;
4369 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4370 					ac->highest_zoneidx, ac->nodemask);
4371 	}
4372 
4373 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4374 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4375 	if (page)
4376 		goto got_pg;
4377 
4378 	/* Caller is not willing to reclaim, we can't balance anything */
4379 	if (!can_direct_reclaim)
4380 		goto nopage;
4381 
4382 	/* Avoid recursion of direct reclaim */
4383 	if (current->flags & PF_MEMALLOC)
4384 		goto nopage;
4385 
4386 	/* Try direct reclaim and then allocating */
4387 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4388 							&did_some_progress);
4389 	if (page)
4390 		goto got_pg;
4391 
4392 	/* Try direct compaction and then allocating */
4393 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4394 					compact_priority, &compact_result);
4395 	if (page)
4396 		goto got_pg;
4397 
4398 	/* Do not loop if specifically requested */
4399 	if (gfp_mask & __GFP_NORETRY)
4400 		goto nopage;
4401 
4402 	/*
4403 	 * Do not retry costly high order allocations unless they are
4404 	 * __GFP_RETRY_MAYFAIL
4405 	 */
4406 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4407 		goto nopage;
4408 
4409 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4410 				 did_some_progress > 0, &no_progress_loops))
4411 		goto retry;
4412 
4413 	/*
4414 	 * It doesn't make any sense to retry for the compaction if the order-0
4415 	 * reclaim is not able to make any progress because the current
4416 	 * implementation of the compaction depends on the sufficient amount
4417 	 * of free memory (see __compaction_suitable)
4418 	 */
4419 	if (did_some_progress > 0 &&
4420 			should_compact_retry(ac, order, alloc_flags,
4421 				compact_result, &compact_priority,
4422 				&compaction_retries))
4423 		goto retry;
4424 
4425 
4426 	/*
4427 	 * Deal with possible cpuset update races or zonelist updates to avoid
4428 	 * a unnecessary OOM kill.
4429 	 */
4430 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4431 	    check_retry_zonelist(zonelist_iter_cookie))
4432 		goto restart;
4433 
4434 	/* Reclaim has failed us, start killing things */
4435 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4436 	if (page)
4437 		goto got_pg;
4438 
4439 	/* Avoid allocations with no watermarks from looping endlessly */
4440 	if (tsk_is_oom_victim(current) &&
4441 	    (alloc_flags & ALLOC_OOM ||
4442 	     (gfp_mask & __GFP_NOMEMALLOC)))
4443 		goto nopage;
4444 
4445 	/* Retry as long as the OOM killer is making progress */
4446 	if (did_some_progress) {
4447 		no_progress_loops = 0;
4448 		goto retry;
4449 	}
4450 
4451 nopage:
4452 	/*
4453 	 * Deal with possible cpuset update races or zonelist updates to avoid
4454 	 * a unnecessary OOM kill.
4455 	 */
4456 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4457 	    check_retry_zonelist(zonelist_iter_cookie))
4458 		goto restart;
4459 
4460 	/*
4461 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4462 	 * we always retry
4463 	 */
4464 	if (gfp_mask & __GFP_NOFAIL) {
4465 		/*
4466 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4467 		 * of any new users that actually require GFP_NOWAIT
4468 		 */
4469 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4470 			goto fail;
4471 
4472 		/*
4473 		 * PF_MEMALLOC request from this context is rather bizarre
4474 		 * because we cannot reclaim anything and only can loop waiting
4475 		 * for somebody to do a work for us
4476 		 */
4477 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4478 
4479 		/*
4480 		 * non failing costly orders are a hard requirement which we
4481 		 * are not prepared for much so let's warn about these users
4482 		 * so that we can identify them and convert them to something
4483 		 * else.
4484 		 */
4485 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4486 
4487 		/*
4488 		 * Help non-failing allocations by giving some access to memory
4489 		 * reserves normally used for high priority non-blocking
4490 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4491 		 * could deplete whole memory reserves which would just make
4492 		 * the situation worse.
4493 		 */
4494 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4495 		if (page)
4496 			goto got_pg;
4497 
4498 		cond_resched();
4499 		goto retry;
4500 	}
4501 fail:
4502 	warn_alloc(gfp_mask, ac->nodemask,
4503 			"page allocation failure: order:%u", order);
4504 got_pg:
4505 	return page;
4506 }
4507 
4508 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4509 		int preferred_nid, nodemask_t *nodemask,
4510 		struct alloc_context *ac, gfp_t *alloc_gfp,
4511 		unsigned int *alloc_flags)
4512 {
4513 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4514 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4515 	ac->nodemask = nodemask;
4516 	ac->migratetype = gfp_migratetype(gfp_mask);
4517 
4518 	if (cpusets_enabled()) {
4519 		*alloc_gfp |= __GFP_HARDWALL;
4520 		/*
4521 		 * When we are in the interrupt context, it is irrelevant
4522 		 * to the current task context. It means that any node ok.
4523 		 */
4524 		if (in_task() && !ac->nodemask)
4525 			ac->nodemask = &cpuset_current_mems_allowed;
4526 		else
4527 			*alloc_flags |= ALLOC_CPUSET;
4528 	}
4529 
4530 	might_alloc(gfp_mask);
4531 
4532 	if (should_fail_alloc_page(gfp_mask, order))
4533 		return false;
4534 
4535 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4536 
4537 	/* Dirty zone balancing only done in the fast path */
4538 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4539 
4540 	/*
4541 	 * The preferred zone is used for statistics but crucially it is
4542 	 * also used as the starting point for the zonelist iterator. It
4543 	 * may get reset for allocations that ignore memory policies.
4544 	 */
4545 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4546 					ac->highest_zoneidx, ac->nodemask);
4547 
4548 	return true;
4549 }
4550 
4551 /*
4552  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4553  * @gfp: GFP flags for the allocation
4554  * @preferred_nid: The preferred NUMA node ID to allocate from
4555  * @nodemask: Set of nodes to allocate from, may be NULL
4556  * @nr_pages: The number of pages desired on the list or array
4557  * @page_list: Optional list to store the allocated pages
4558  * @page_array: Optional array to store the pages
4559  *
4560  * This is a batched version of the page allocator that attempts to
4561  * allocate nr_pages quickly. Pages are added to page_list if page_list
4562  * is not NULL, otherwise it is assumed that the page_array is valid.
4563  *
4564  * For lists, nr_pages is the number of pages that should be allocated.
4565  *
4566  * For arrays, only NULL elements are populated with pages and nr_pages
4567  * is the maximum number of pages that will be stored in the array.
4568  *
4569  * Returns the number of pages on the list or array.
4570  */
4571 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4572 			nodemask_t *nodemask, int nr_pages,
4573 			struct list_head *page_list,
4574 			struct page **page_array)
4575 {
4576 	struct page *page;
4577 	unsigned long __maybe_unused UP_flags;
4578 	struct zone *zone;
4579 	struct zoneref *z;
4580 	struct per_cpu_pages *pcp;
4581 	struct list_head *pcp_list;
4582 	struct alloc_context ac;
4583 	gfp_t alloc_gfp;
4584 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4585 	int nr_populated = 0, nr_account = 0;
4586 
4587 	/*
4588 	 * Skip populated array elements to determine if any pages need
4589 	 * to be allocated before disabling IRQs.
4590 	 */
4591 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4592 		nr_populated++;
4593 
4594 	/* No pages requested? */
4595 	if (unlikely(nr_pages <= 0))
4596 		goto out;
4597 
4598 	/* Already populated array? */
4599 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4600 		goto out;
4601 
4602 	/* Bulk allocator does not support memcg accounting. */
4603 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4604 		goto failed;
4605 
4606 	/* Use the single page allocator for one page. */
4607 	if (nr_pages - nr_populated == 1)
4608 		goto failed;
4609 
4610 #ifdef CONFIG_PAGE_OWNER
4611 	/*
4612 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4613 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4614 	 * removes much of the performance benefit of bulk allocation so
4615 	 * force the caller to allocate one page at a time as it'll have
4616 	 * similar performance to added complexity to the bulk allocator.
4617 	 */
4618 	if (static_branch_unlikely(&page_owner_inited))
4619 		goto failed;
4620 #endif
4621 
4622 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4623 	gfp &= gfp_allowed_mask;
4624 	alloc_gfp = gfp;
4625 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4626 		goto out;
4627 	gfp = alloc_gfp;
4628 
4629 	/* Find an allowed local zone that meets the low watermark. */
4630 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4631 		unsigned long mark;
4632 
4633 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4634 		    !__cpuset_zone_allowed(zone, gfp)) {
4635 			continue;
4636 		}
4637 
4638 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4639 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4640 			goto failed;
4641 		}
4642 
4643 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4644 		if (zone_watermark_fast(zone, 0,  mark,
4645 				zonelist_zone_idx(ac.preferred_zoneref),
4646 				alloc_flags, gfp)) {
4647 			break;
4648 		}
4649 	}
4650 
4651 	/*
4652 	 * If there are no allowed local zones that meets the watermarks then
4653 	 * try to allocate a single page and reclaim if necessary.
4654 	 */
4655 	if (unlikely(!zone))
4656 		goto failed;
4657 
4658 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4659 	pcp_trylock_prepare(UP_flags);
4660 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4661 	if (!pcp)
4662 		goto failed_irq;
4663 
4664 	/* Attempt the batch allocation */
4665 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4666 	while (nr_populated < nr_pages) {
4667 
4668 		/* Skip existing pages */
4669 		if (page_array && page_array[nr_populated]) {
4670 			nr_populated++;
4671 			continue;
4672 		}
4673 
4674 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4675 								pcp, pcp_list);
4676 		if (unlikely(!page)) {
4677 			/* Try and allocate at least one page */
4678 			if (!nr_account) {
4679 				pcp_spin_unlock(pcp);
4680 				goto failed_irq;
4681 			}
4682 			break;
4683 		}
4684 		nr_account++;
4685 
4686 		prep_new_page(page, 0, gfp, 0);
4687 		if (page_list)
4688 			list_add(&page->lru, page_list);
4689 		else
4690 			page_array[nr_populated] = page;
4691 		nr_populated++;
4692 	}
4693 
4694 	pcp_spin_unlock(pcp);
4695 	pcp_trylock_finish(UP_flags);
4696 
4697 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4698 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4699 
4700 out:
4701 	return nr_populated;
4702 
4703 failed_irq:
4704 	pcp_trylock_finish(UP_flags);
4705 
4706 failed:
4707 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4708 	if (page) {
4709 		if (page_list)
4710 			list_add(&page->lru, page_list);
4711 		else
4712 			page_array[nr_populated] = page;
4713 		nr_populated++;
4714 	}
4715 
4716 	goto out;
4717 }
4718 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4719 
4720 /*
4721  * This is the 'heart' of the zoned buddy allocator.
4722  */
4723 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4724 							nodemask_t *nodemask)
4725 {
4726 	struct page *page;
4727 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4728 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4729 	struct alloc_context ac = { };
4730 
4731 	/*
4732 	 * There are several places where we assume that the order value is sane
4733 	 * so bail out early if the request is out of bound.
4734 	 */
4735 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4736 		return NULL;
4737 
4738 	gfp &= gfp_allowed_mask;
4739 	/*
4740 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4741 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4742 	 * from a particular context which has been marked by
4743 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4744 	 * movable zones are not used during allocation.
4745 	 */
4746 	gfp = current_gfp_context(gfp);
4747 	alloc_gfp = gfp;
4748 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4749 			&alloc_gfp, &alloc_flags))
4750 		return NULL;
4751 
4752 	/*
4753 	 * Forbid the first pass from falling back to types that fragment
4754 	 * memory until all local zones are considered.
4755 	 */
4756 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4757 
4758 	/* First allocation attempt */
4759 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4760 	if (likely(page))
4761 		goto out;
4762 
4763 	alloc_gfp = gfp;
4764 	ac.spread_dirty_pages = false;
4765 
4766 	/*
4767 	 * Restore the original nodemask if it was potentially replaced with
4768 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4769 	 */
4770 	ac.nodemask = nodemask;
4771 
4772 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4773 
4774 out:
4775 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4776 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4777 		__free_pages(page, order);
4778 		page = NULL;
4779 	}
4780 
4781 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4782 	kmsan_alloc_page(page, order, alloc_gfp);
4783 
4784 	return page;
4785 }
4786 EXPORT_SYMBOL(__alloc_pages);
4787 
4788 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4789 		nodemask_t *nodemask)
4790 {
4791 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4792 			preferred_nid, nodemask);
4793 
4794 	if (page && order > 1)
4795 		prep_transhuge_page(page);
4796 	return (struct folio *)page;
4797 }
4798 EXPORT_SYMBOL(__folio_alloc);
4799 
4800 /*
4801  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4802  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4803  * you need to access high mem.
4804  */
4805 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4806 {
4807 	struct page *page;
4808 
4809 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4810 	if (!page)
4811 		return 0;
4812 	return (unsigned long) page_address(page);
4813 }
4814 EXPORT_SYMBOL(__get_free_pages);
4815 
4816 unsigned long get_zeroed_page(gfp_t gfp_mask)
4817 {
4818 	return __get_free_page(gfp_mask | __GFP_ZERO);
4819 }
4820 EXPORT_SYMBOL(get_zeroed_page);
4821 
4822 /**
4823  * __free_pages - Free pages allocated with alloc_pages().
4824  * @page: The page pointer returned from alloc_pages().
4825  * @order: The order of the allocation.
4826  *
4827  * This function can free multi-page allocations that are not compound
4828  * pages.  It does not check that the @order passed in matches that of
4829  * the allocation, so it is easy to leak memory.  Freeing more memory
4830  * than was allocated will probably emit a warning.
4831  *
4832  * If the last reference to this page is speculative, it will be released
4833  * by put_page() which only frees the first page of a non-compound
4834  * allocation.  To prevent the remaining pages from being leaked, we free
4835  * the subsequent pages here.  If you want to use the page's reference
4836  * count to decide when to free the allocation, you should allocate a
4837  * compound page, and use put_page() instead of __free_pages().
4838  *
4839  * Context: May be called in interrupt context or while holding a normal
4840  * spinlock, but not in NMI context or while holding a raw spinlock.
4841  */
4842 void __free_pages(struct page *page, unsigned int order)
4843 {
4844 	/* get PageHead before we drop reference */
4845 	int head = PageHead(page);
4846 
4847 	if (put_page_testzero(page))
4848 		free_the_page(page, order);
4849 	else if (!head)
4850 		while (order-- > 0)
4851 			free_the_page(page + (1 << order), order);
4852 }
4853 EXPORT_SYMBOL(__free_pages);
4854 
4855 void free_pages(unsigned long addr, unsigned int order)
4856 {
4857 	if (addr != 0) {
4858 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4859 		__free_pages(virt_to_page((void *)addr), order);
4860 	}
4861 }
4862 
4863 EXPORT_SYMBOL(free_pages);
4864 
4865 /*
4866  * Page Fragment:
4867  *  An arbitrary-length arbitrary-offset area of memory which resides
4868  *  within a 0 or higher order page.  Multiple fragments within that page
4869  *  are individually refcounted, in the page's reference counter.
4870  *
4871  * The page_frag functions below provide a simple allocation framework for
4872  * page fragments.  This is used by the network stack and network device
4873  * drivers to provide a backing region of memory for use as either an
4874  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4875  */
4876 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4877 					     gfp_t gfp_mask)
4878 {
4879 	struct page *page = NULL;
4880 	gfp_t gfp = gfp_mask;
4881 
4882 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4883 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4884 		    __GFP_NOMEMALLOC;
4885 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4886 				PAGE_FRAG_CACHE_MAX_ORDER);
4887 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4888 #endif
4889 	if (unlikely(!page))
4890 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4891 
4892 	nc->va = page ? page_address(page) : NULL;
4893 
4894 	return page;
4895 }
4896 
4897 void __page_frag_cache_drain(struct page *page, unsigned int count)
4898 {
4899 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4900 
4901 	if (page_ref_sub_and_test(page, count))
4902 		free_the_page(page, compound_order(page));
4903 }
4904 EXPORT_SYMBOL(__page_frag_cache_drain);
4905 
4906 void *page_frag_alloc_align(struct page_frag_cache *nc,
4907 		      unsigned int fragsz, gfp_t gfp_mask,
4908 		      unsigned int align_mask)
4909 {
4910 	unsigned int size = PAGE_SIZE;
4911 	struct page *page;
4912 	int offset;
4913 
4914 	if (unlikely(!nc->va)) {
4915 refill:
4916 		page = __page_frag_cache_refill(nc, gfp_mask);
4917 		if (!page)
4918 			return NULL;
4919 
4920 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4921 		/* if size can vary use size else just use PAGE_SIZE */
4922 		size = nc->size;
4923 #endif
4924 		/* Even if we own the page, we do not use atomic_set().
4925 		 * This would break get_page_unless_zero() users.
4926 		 */
4927 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4928 
4929 		/* reset page count bias and offset to start of new frag */
4930 		nc->pfmemalloc = page_is_pfmemalloc(page);
4931 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4932 		nc->offset = size;
4933 	}
4934 
4935 	offset = nc->offset - fragsz;
4936 	if (unlikely(offset < 0)) {
4937 		page = virt_to_page(nc->va);
4938 
4939 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4940 			goto refill;
4941 
4942 		if (unlikely(nc->pfmemalloc)) {
4943 			free_the_page(page, compound_order(page));
4944 			goto refill;
4945 		}
4946 
4947 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4948 		/* if size can vary use size else just use PAGE_SIZE */
4949 		size = nc->size;
4950 #endif
4951 		/* OK, page count is 0, we can safely set it */
4952 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4953 
4954 		/* reset page count bias and offset to start of new frag */
4955 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4956 		offset = size - fragsz;
4957 		if (unlikely(offset < 0)) {
4958 			/*
4959 			 * The caller is trying to allocate a fragment
4960 			 * with fragsz > PAGE_SIZE but the cache isn't big
4961 			 * enough to satisfy the request, this may
4962 			 * happen in low memory conditions.
4963 			 * We don't release the cache page because
4964 			 * it could make memory pressure worse
4965 			 * so we simply return NULL here.
4966 			 */
4967 			return NULL;
4968 		}
4969 	}
4970 
4971 	nc->pagecnt_bias--;
4972 	offset &= align_mask;
4973 	nc->offset = offset;
4974 
4975 	return nc->va + offset;
4976 }
4977 EXPORT_SYMBOL(page_frag_alloc_align);
4978 
4979 /*
4980  * Frees a page fragment allocated out of either a compound or order 0 page.
4981  */
4982 void page_frag_free(void *addr)
4983 {
4984 	struct page *page = virt_to_head_page(addr);
4985 
4986 	if (unlikely(put_page_testzero(page)))
4987 		free_the_page(page, compound_order(page));
4988 }
4989 EXPORT_SYMBOL(page_frag_free);
4990 
4991 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4992 		size_t size)
4993 {
4994 	if (addr) {
4995 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4996 		struct page *page = virt_to_page((void *)addr);
4997 		struct page *last = page + nr;
4998 
4999 		split_page_owner(page, 1 << order);
5000 		split_page_memcg(page, 1 << order);
5001 		while (page < --last)
5002 			set_page_refcounted(last);
5003 
5004 		last = page + (1UL << order);
5005 		for (page += nr; page < last; page++)
5006 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5007 	}
5008 	return (void *)addr;
5009 }
5010 
5011 /**
5012  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5013  * @size: the number of bytes to allocate
5014  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5015  *
5016  * This function is similar to alloc_pages(), except that it allocates the
5017  * minimum number of pages to satisfy the request.  alloc_pages() can only
5018  * allocate memory in power-of-two pages.
5019  *
5020  * This function is also limited by MAX_ORDER.
5021  *
5022  * Memory allocated by this function must be released by free_pages_exact().
5023  *
5024  * Return: pointer to the allocated area or %NULL in case of error.
5025  */
5026 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5027 {
5028 	unsigned int order = get_order(size);
5029 	unsigned long addr;
5030 
5031 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5032 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5033 
5034 	addr = __get_free_pages(gfp_mask, order);
5035 	return make_alloc_exact(addr, order, size);
5036 }
5037 EXPORT_SYMBOL(alloc_pages_exact);
5038 
5039 /**
5040  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5041  *			   pages on a node.
5042  * @nid: the preferred node ID where memory should be allocated
5043  * @size: the number of bytes to allocate
5044  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5045  *
5046  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5047  * back.
5048  *
5049  * Return: pointer to the allocated area or %NULL in case of error.
5050  */
5051 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5052 {
5053 	unsigned int order = get_order(size);
5054 	struct page *p;
5055 
5056 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5057 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5058 
5059 	p = alloc_pages_node(nid, gfp_mask, order);
5060 	if (!p)
5061 		return NULL;
5062 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5063 }
5064 
5065 /**
5066  * free_pages_exact - release memory allocated via alloc_pages_exact()
5067  * @virt: the value returned by alloc_pages_exact.
5068  * @size: size of allocation, same value as passed to alloc_pages_exact().
5069  *
5070  * Release the memory allocated by a previous call to alloc_pages_exact.
5071  */
5072 void free_pages_exact(void *virt, size_t size)
5073 {
5074 	unsigned long addr = (unsigned long)virt;
5075 	unsigned long end = addr + PAGE_ALIGN(size);
5076 
5077 	while (addr < end) {
5078 		free_page(addr);
5079 		addr += PAGE_SIZE;
5080 	}
5081 }
5082 EXPORT_SYMBOL(free_pages_exact);
5083 
5084 /**
5085  * nr_free_zone_pages - count number of pages beyond high watermark
5086  * @offset: The zone index of the highest zone
5087  *
5088  * nr_free_zone_pages() counts the number of pages which are beyond the
5089  * high watermark within all zones at or below a given zone index.  For each
5090  * zone, the number of pages is calculated as:
5091  *
5092  *     nr_free_zone_pages = managed_pages - high_pages
5093  *
5094  * Return: number of pages beyond high watermark.
5095  */
5096 static unsigned long nr_free_zone_pages(int offset)
5097 {
5098 	struct zoneref *z;
5099 	struct zone *zone;
5100 
5101 	/* Just pick one node, since fallback list is circular */
5102 	unsigned long sum = 0;
5103 
5104 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5105 
5106 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5107 		unsigned long size = zone_managed_pages(zone);
5108 		unsigned long high = high_wmark_pages(zone);
5109 		if (size > high)
5110 			sum += size - high;
5111 	}
5112 
5113 	return sum;
5114 }
5115 
5116 /**
5117  * nr_free_buffer_pages - count number of pages beyond high watermark
5118  *
5119  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5120  * watermark within ZONE_DMA and ZONE_NORMAL.
5121  *
5122  * Return: number of pages beyond high watermark within ZONE_DMA and
5123  * ZONE_NORMAL.
5124  */
5125 unsigned long nr_free_buffer_pages(void)
5126 {
5127 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5128 }
5129 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5130 
5131 static inline void show_node(struct zone *zone)
5132 {
5133 	if (IS_ENABLED(CONFIG_NUMA))
5134 		printk("Node %d ", zone_to_nid(zone));
5135 }
5136 
5137 long si_mem_available(void)
5138 {
5139 	long available;
5140 	unsigned long pagecache;
5141 	unsigned long wmark_low = 0;
5142 	unsigned long pages[NR_LRU_LISTS];
5143 	unsigned long reclaimable;
5144 	struct zone *zone;
5145 	int lru;
5146 
5147 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5148 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5149 
5150 	for_each_zone(zone)
5151 		wmark_low += low_wmark_pages(zone);
5152 
5153 	/*
5154 	 * Estimate the amount of memory available for userspace allocations,
5155 	 * without causing swapping or OOM.
5156 	 */
5157 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5158 
5159 	/*
5160 	 * Not all the page cache can be freed, otherwise the system will
5161 	 * start swapping or thrashing. Assume at least half of the page
5162 	 * cache, or the low watermark worth of cache, needs to stay.
5163 	 */
5164 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5165 	pagecache -= min(pagecache / 2, wmark_low);
5166 	available += pagecache;
5167 
5168 	/*
5169 	 * Part of the reclaimable slab and other kernel memory consists of
5170 	 * items that are in use, and cannot be freed. Cap this estimate at the
5171 	 * low watermark.
5172 	 */
5173 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5174 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5175 	available += reclaimable - min(reclaimable / 2, wmark_low);
5176 
5177 	if (available < 0)
5178 		available = 0;
5179 	return available;
5180 }
5181 EXPORT_SYMBOL_GPL(si_mem_available);
5182 
5183 void si_meminfo(struct sysinfo *val)
5184 {
5185 	val->totalram = totalram_pages();
5186 	val->sharedram = global_node_page_state(NR_SHMEM);
5187 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5188 	val->bufferram = nr_blockdev_pages();
5189 	val->totalhigh = totalhigh_pages();
5190 	val->freehigh = nr_free_highpages();
5191 	val->mem_unit = PAGE_SIZE;
5192 }
5193 
5194 EXPORT_SYMBOL(si_meminfo);
5195 
5196 #ifdef CONFIG_NUMA
5197 void si_meminfo_node(struct sysinfo *val, int nid)
5198 {
5199 	int zone_type;		/* needs to be signed */
5200 	unsigned long managed_pages = 0;
5201 	unsigned long managed_highpages = 0;
5202 	unsigned long free_highpages = 0;
5203 	pg_data_t *pgdat = NODE_DATA(nid);
5204 
5205 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5206 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5207 	val->totalram = managed_pages;
5208 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5209 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5210 #ifdef CONFIG_HIGHMEM
5211 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5212 		struct zone *zone = &pgdat->node_zones[zone_type];
5213 
5214 		if (is_highmem(zone)) {
5215 			managed_highpages += zone_managed_pages(zone);
5216 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5217 		}
5218 	}
5219 	val->totalhigh = managed_highpages;
5220 	val->freehigh = free_highpages;
5221 #else
5222 	val->totalhigh = managed_highpages;
5223 	val->freehigh = free_highpages;
5224 #endif
5225 	val->mem_unit = PAGE_SIZE;
5226 }
5227 #endif
5228 
5229 /*
5230  * Determine whether the node should be displayed or not, depending on whether
5231  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5232  */
5233 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5234 {
5235 	if (!(flags & SHOW_MEM_FILTER_NODES))
5236 		return false;
5237 
5238 	/*
5239 	 * no node mask - aka implicit memory numa policy. Do not bother with
5240 	 * the synchronization - read_mems_allowed_begin - because we do not
5241 	 * have to be precise here.
5242 	 */
5243 	if (!nodemask)
5244 		nodemask = &cpuset_current_mems_allowed;
5245 
5246 	return !node_isset(nid, *nodemask);
5247 }
5248 
5249 static void show_migration_types(unsigned char type)
5250 {
5251 	static const char types[MIGRATE_TYPES] = {
5252 		[MIGRATE_UNMOVABLE]	= 'U',
5253 		[MIGRATE_MOVABLE]	= 'M',
5254 		[MIGRATE_RECLAIMABLE]	= 'E',
5255 		[MIGRATE_HIGHATOMIC]	= 'H',
5256 #ifdef CONFIG_CMA
5257 		[MIGRATE_CMA]		= 'C',
5258 #endif
5259 #ifdef CONFIG_MEMORY_ISOLATION
5260 		[MIGRATE_ISOLATE]	= 'I',
5261 #endif
5262 	};
5263 	char tmp[MIGRATE_TYPES + 1];
5264 	char *p = tmp;
5265 	int i;
5266 
5267 	for (i = 0; i < MIGRATE_TYPES; i++) {
5268 		if (type & (1 << i))
5269 			*p++ = types[i];
5270 	}
5271 
5272 	*p = '\0';
5273 	printk(KERN_CONT "(%s) ", tmp);
5274 }
5275 
5276 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
5277 {
5278 	int zone_idx;
5279 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
5280 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
5281 			return true;
5282 	return false;
5283 }
5284 
5285 /*
5286  * Show free area list (used inside shift_scroll-lock stuff)
5287  * We also calculate the percentage fragmentation. We do this by counting the
5288  * memory on each free list with the exception of the first item on the list.
5289  *
5290  * Bits in @filter:
5291  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5292  *   cpuset.
5293  */
5294 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
5295 {
5296 	unsigned long free_pcp = 0;
5297 	int cpu, nid;
5298 	struct zone *zone;
5299 	pg_data_t *pgdat;
5300 
5301 	for_each_populated_zone(zone) {
5302 		if (zone_idx(zone) > max_zone_idx)
5303 			continue;
5304 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5305 			continue;
5306 
5307 		for_each_online_cpu(cpu)
5308 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5309 	}
5310 
5311 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5312 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5313 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5314 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5315 		" mapped:%lu shmem:%lu pagetables:%lu\n"
5316 		" sec_pagetables:%lu bounce:%lu\n"
5317 		" kernel_misc_reclaimable:%lu\n"
5318 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5319 		global_node_page_state(NR_ACTIVE_ANON),
5320 		global_node_page_state(NR_INACTIVE_ANON),
5321 		global_node_page_state(NR_ISOLATED_ANON),
5322 		global_node_page_state(NR_ACTIVE_FILE),
5323 		global_node_page_state(NR_INACTIVE_FILE),
5324 		global_node_page_state(NR_ISOLATED_FILE),
5325 		global_node_page_state(NR_UNEVICTABLE),
5326 		global_node_page_state(NR_FILE_DIRTY),
5327 		global_node_page_state(NR_WRITEBACK),
5328 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5329 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5330 		global_node_page_state(NR_FILE_MAPPED),
5331 		global_node_page_state(NR_SHMEM),
5332 		global_node_page_state(NR_PAGETABLE),
5333 		global_node_page_state(NR_SECONDARY_PAGETABLE),
5334 		global_zone_page_state(NR_BOUNCE),
5335 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5336 		global_zone_page_state(NR_FREE_PAGES),
5337 		free_pcp,
5338 		global_zone_page_state(NR_FREE_CMA_PAGES));
5339 
5340 	for_each_online_pgdat(pgdat) {
5341 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5342 			continue;
5343 		if (!node_has_managed_zones(pgdat, max_zone_idx))
5344 			continue;
5345 
5346 		printk("Node %d"
5347 			" active_anon:%lukB"
5348 			" inactive_anon:%lukB"
5349 			" active_file:%lukB"
5350 			" inactive_file:%lukB"
5351 			" unevictable:%lukB"
5352 			" isolated(anon):%lukB"
5353 			" isolated(file):%lukB"
5354 			" mapped:%lukB"
5355 			" dirty:%lukB"
5356 			" writeback:%lukB"
5357 			" shmem:%lukB"
5358 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5359 			" shmem_thp: %lukB"
5360 			" shmem_pmdmapped: %lukB"
5361 			" anon_thp: %lukB"
5362 #endif
5363 			" writeback_tmp:%lukB"
5364 			" kernel_stack:%lukB"
5365 #ifdef CONFIG_SHADOW_CALL_STACK
5366 			" shadow_call_stack:%lukB"
5367 #endif
5368 			" pagetables:%lukB"
5369 			" sec_pagetables:%lukB"
5370 			" all_unreclaimable? %s"
5371 			"\n",
5372 			pgdat->node_id,
5373 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5374 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5375 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5376 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5377 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5378 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5379 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5380 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5381 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5382 			K(node_page_state(pgdat, NR_WRITEBACK)),
5383 			K(node_page_state(pgdat, NR_SHMEM)),
5384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5385 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5386 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5387 			K(node_page_state(pgdat, NR_ANON_THPS)),
5388 #endif
5389 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5390 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5391 #ifdef CONFIG_SHADOW_CALL_STACK
5392 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5393 #endif
5394 			K(node_page_state(pgdat, NR_PAGETABLE)),
5395 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
5396 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5397 				"yes" : "no");
5398 	}
5399 
5400 	for_each_populated_zone(zone) {
5401 		int i;
5402 
5403 		if (zone_idx(zone) > max_zone_idx)
5404 			continue;
5405 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5406 			continue;
5407 
5408 		free_pcp = 0;
5409 		for_each_online_cpu(cpu)
5410 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5411 
5412 		show_node(zone);
5413 		printk(KERN_CONT
5414 			"%s"
5415 			" free:%lukB"
5416 			" boost:%lukB"
5417 			" min:%lukB"
5418 			" low:%lukB"
5419 			" high:%lukB"
5420 			" reserved_highatomic:%luKB"
5421 			" active_anon:%lukB"
5422 			" inactive_anon:%lukB"
5423 			" active_file:%lukB"
5424 			" inactive_file:%lukB"
5425 			" unevictable:%lukB"
5426 			" writepending:%lukB"
5427 			" present:%lukB"
5428 			" managed:%lukB"
5429 			" mlocked:%lukB"
5430 			" bounce:%lukB"
5431 			" free_pcp:%lukB"
5432 			" local_pcp:%ukB"
5433 			" free_cma:%lukB"
5434 			"\n",
5435 			zone->name,
5436 			K(zone_page_state(zone, NR_FREE_PAGES)),
5437 			K(zone->watermark_boost),
5438 			K(min_wmark_pages(zone)),
5439 			K(low_wmark_pages(zone)),
5440 			K(high_wmark_pages(zone)),
5441 			K(zone->nr_reserved_highatomic),
5442 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5443 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5444 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5445 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5446 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5447 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5448 			K(zone->present_pages),
5449 			K(zone_managed_pages(zone)),
5450 			K(zone_page_state(zone, NR_MLOCK)),
5451 			K(zone_page_state(zone, NR_BOUNCE)),
5452 			K(free_pcp),
5453 			K(this_cpu_read(zone->per_cpu_pageset->count)),
5454 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5455 		printk("lowmem_reserve[]:");
5456 		for (i = 0; i < MAX_NR_ZONES; i++)
5457 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5458 		printk(KERN_CONT "\n");
5459 	}
5460 
5461 	for_each_populated_zone(zone) {
5462 		unsigned int order;
5463 		unsigned long nr[MAX_ORDER + 1], flags, total = 0;
5464 		unsigned char types[MAX_ORDER + 1];
5465 
5466 		if (zone_idx(zone) > max_zone_idx)
5467 			continue;
5468 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5469 			continue;
5470 		show_node(zone);
5471 		printk(KERN_CONT "%s: ", zone->name);
5472 
5473 		spin_lock_irqsave(&zone->lock, flags);
5474 		for (order = 0; order <= MAX_ORDER; order++) {
5475 			struct free_area *area = &zone->free_area[order];
5476 			int type;
5477 
5478 			nr[order] = area->nr_free;
5479 			total += nr[order] << order;
5480 
5481 			types[order] = 0;
5482 			for (type = 0; type < MIGRATE_TYPES; type++) {
5483 				if (!free_area_empty(area, type))
5484 					types[order] |= 1 << type;
5485 			}
5486 		}
5487 		spin_unlock_irqrestore(&zone->lock, flags);
5488 		for (order = 0; order <= MAX_ORDER; order++) {
5489 			printk(KERN_CONT "%lu*%lukB ",
5490 			       nr[order], K(1UL) << order);
5491 			if (nr[order])
5492 				show_migration_types(types[order]);
5493 		}
5494 		printk(KERN_CONT "= %lukB\n", K(total));
5495 	}
5496 
5497 	for_each_online_node(nid) {
5498 		if (show_mem_node_skip(filter, nid, nodemask))
5499 			continue;
5500 		hugetlb_show_meminfo_node(nid);
5501 	}
5502 
5503 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5504 
5505 	show_swap_cache_info();
5506 }
5507 
5508 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5509 {
5510 	zoneref->zone = zone;
5511 	zoneref->zone_idx = zone_idx(zone);
5512 }
5513 
5514 /*
5515  * Builds allocation fallback zone lists.
5516  *
5517  * Add all populated zones of a node to the zonelist.
5518  */
5519 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5520 {
5521 	struct zone *zone;
5522 	enum zone_type zone_type = MAX_NR_ZONES;
5523 	int nr_zones = 0;
5524 
5525 	do {
5526 		zone_type--;
5527 		zone = pgdat->node_zones + zone_type;
5528 		if (populated_zone(zone)) {
5529 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5530 			check_highest_zone(zone_type);
5531 		}
5532 	} while (zone_type);
5533 
5534 	return nr_zones;
5535 }
5536 
5537 #ifdef CONFIG_NUMA
5538 
5539 static int __parse_numa_zonelist_order(char *s)
5540 {
5541 	/*
5542 	 * We used to support different zonelists modes but they turned
5543 	 * out to be just not useful. Let's keep the warning in place
5544 	 * if somebody still use the cmd line parameter so that we do
5545 	 * not fail it silently
5546 	 */
5547 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5548 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5549 		return -EINVAL;
5550 	}
5551 	return 0;
5552 }
5553 
5554 char numa_zonelist_order[] = "Node";
5555 
5556 /*
5557  * sysctl handler for numa_zonelist_order
5558  */
5559 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5560 		void *buffer, size_t *length, loff_t *ppos)
5561 {
5562 	if (write)
5563 		return __parse_numa_zonelist_order(buffer);
5564 	return proc_dostring(table, write, buffer, length, ppos);
5565 }
5566 
5567 
5568 static int node_load[MAX_NUMNODES];
5569 
5570 /**
5571  * find_next_best_node - find the next node that should appear in a given node's fallback list
5572  * @node: node whose fallback list we're appending
5573  * @used_node_mask: nodemask_t of already used nodes
5574  *
5575  * We use a number of factors to determine which is the next node that should
5576  * appear on a given node's fallback list.  The node should not have appeared
5577  * already in @node's fallback list, and it should be the next closest node
5578  * according to the distance array (which contains arbitrary distance values
5579  * from each node to each node in the system), and should also prefer nodes
5580  * with no CPUs, since presumably they'll have very little allocation pressure
5581  * on them otherwise.
5582  *
5583  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5584  */
5585 int find_next_best_node(int node, nodemask_t *used_node_mask)
5586 {
5587 	int n, val;
5588 	int min_val = INT_MAX;
5589 	int best_node = NUMA_NO_NODE;
5590 
5591 	/* Use the local node if we haven't already */
5592 	if (!node_isset(node, *used_node_mask)) {
5593 		node_set(node, *used_node_mask);
5594 		return node;
5595 	}
5596 
5597 	for_each_node_state(n, N_MEMORY) {
5598 
5599 		/* Don't want a node to appear more than once */
5600 		if (node_isset(n, *used_node_mask))
5601 			continue;
5602 
5603 		/* Use the distance array to find the distance */
5604 		val = node_distance(node, n);
5605 
5606 		/* Penalize nodes under us ("prefer the next node") */
5607 		val += (n < node);
5608 
5609 		/* Give preference to headless and unused nodes */
5610 		if (!cpumask_empty(cpumask_of_node(n)))
5611 			val += PENALTY_FOR_NODE_WITH_CPUS;
5612 
5613 		/* Slight preference for less loaded node */
5614 		val *= MAX_NUMNODES;
5615 		val += node_load[n];
5616 
5617 		if (val < min_val) {
5618 			min_val = val;
5619 			best_node = n;
5620 		}
5621 	}
5622 
5623 	if (best_node >= 0)
5624 		node_set(best_node, *used_node_mask);
5625 
5626 	return best_node;
5627 }
5628 
5629 
5630 /*
5631  * Build zonelists ordered by node and zones within node.
5632  * This results in maximum locality--normal zone overflows into local
5633  * DMA zone, if any--but risks exhausting DMA zone.
5634  */
5635 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5636 		unsigned nr_nodes)
5637 {
5638 	struct zoneref *zonerefs;
5639 	int i;
5640 
5641 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5642 
5643 	for (i = 0; i < nr_nodes; i++) {
5644 		int nr_zones;
5645 
5646 		pg_data_t *node = NODE_DATA(node_order[i]);
5647 
5648 		nr_zones = build_zonerefs_node(node, zonerefs);
5649 		zonerefs += nr_zones;
5650 	}
5651 	zonerefs->zone = NULL;
5652 	zonerefs->zone_idx = 0;
5653 }
5654 
5655 /*
5656  * Build gfp_thisnode zonelists
5657  */
5658 static void build_thisnode_zonelists(pg_data_t *pgdat)
5659 {
5660 	struct zoneref *zonerefs;
5661 	int nr_zones;
5662 
5663 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5664 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5665 	zonerefs += nr_zones;
5666 	zonerefs->zone = NULL;
5667 	zonerefs->zone_idx = 0;
5668 }
5669 
5670 /*
5671  * Build zonelists ordered by zone and nodes within zones.
5672  * This results in conserving DMA zone[s] until all Normal memory is
5673  * exhausted, but results in overflowing to remote node while memory
5674  * may still exist in local DMA zone.
5675  */
5676 
5677 static void build_zonelists(pg_data_t *pgdat)
5678 {
5679 	static int node_order[MAX_NUMNODES];
5680 	int node, nr_nodes = 0;
5681 	nodemask_t used_mask = NODE_MASK_NONE;
5682 	int local_node, prev_node;
5683 
5684 	/* NUMA-aware ordering of nodes */
5685 	local_node = pgdat->node_id;
5686 	prev_node = local_node;
5687 
5688 	memset(node_order, 0, sizeof(node_order));
5689 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5690 		/*
5691 		 * We don't want to pressure a particular node.
5692 		 * So adding penalty to the first node in same
5693 		 * distance group to make it round-robin.
5694 		 */
5695 		if (node_distance(local_node, node) !=
5696 		    node_distance(local_node, prev_node))
5697 			node_load[node] += 1;
5698 
5699 		node_order[nr_nodes++] = node;
5700 		prev_node = node;
5701 	}
5702 
5703 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5704 	build_thisnode_zonelists(pgdat);
5705 	pr_info("Fallback order for Node %d: ", local_node);
5706 	for (node = 0; node < nr_nodes; node++)
5707 		pr_cont("%d ", node_order[node]);
5708 	pr_cont("\n");
5709 }
5710 
5711 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5712 /*
5713  * Return node id of node used for "local" allocations.
5714  * I.e., first node id of first zone in arg node's generic zonelist.
5715  * Used for initializing percpu 'numa_mem', which is used primarily
5716  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5717  */
5718 int local_memory_node(int node)
5719 {
5720 	struct zoneref *z;
5721 
5722 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5723 				   gfp_zone(GFP_KERNEL),
5724 				   NULL);
5725 	return zone_to_nid(z->zone);
5726 }
5727 #endif
5728 
5729 static void setup_min_unmapped_ratio(void);
5730 static void setup_min_slab_ratio(void);
5731 #else	/* CONFIG_NUMA */
5732 
5733 static void build_zonelists(pg_data_t *pgdat)
5734 {
5735 	int node, local_node;
5736 	struct zoneref *zonerefs;
5737 	int nr_zones;
5738 
5739 	local_node = pgdat->node_id;
5740 
5741 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5742 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5743 	zonerefs += nr_zones;
5744 
5745 	/*
5746 	 * Now we build the zonelist so that it contains the zones
5747 	 * of all the other nodes.
5748 	 * We don't want to pressure a particular node, so when
5749 	 * building the zones for node N, we make sure that the
5750 	 * zones coming right after the local ones are those from
5751 	 * node N+1 (modulo N)
5752 	 */
5753 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5754 		if (!node_online(node))
5755 			continue;
5756 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5757 		zonerefs += nr_zones;
5758 	}
5759 	for (node = 0; node < local_node; node++) {
5760 		if (!node_online(node))
5761 			continue;
5762 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5763 		zonerefs += nr_zones;
5764 	}
5765 
5766 	zonerefs->zone = NULL;
5767 	zonerefs->zone_idx = 0;
5768 }
5769 
5770 #endif	/* CONFIG_NUMA */
5771 
5772 /*
5773  * Boot pageset table. One per cpu which is going to be used for all
5774  * zones and all nodes. The parameters will be set in such a way
5775  * that an item put on a list will immediately be handed over to
5776  * the buddy list. This is safe since pageset manipulation is done
5777  * with interrupts disabled.
5778  *
5779  * The boot_pagesets must be kept even after bootup is complete for
5780  * unused processors and/or zones. They do play a role for bootstrapping
5781  * hotplugged processors.
5782  *
5783  * zoneinfo_show() and maybe other functions do
5784  * not check if the processor is online before following the pageset pointer.
5785  * Other parts of the kernel may not check if the zone is available.
5786  */
5787 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5788 /* These effectively disable the pcplists in the boot pageset completely */
5789 #define BOOT_PAGESET_HIGH	0
5790 #define BOOT_PAGESET_BATCH	1
5791 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5792 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5793 
5794 static void __build_all_zonelists(void *data)
5795 {
5796 	int nid;
5797 	int __maybe_unused cpu;
5798 	pg_data_t *self = data;
5799 	unsigned long flags;
5800 
5801 	/*
5802 	 * Explicitly disable this CPU's interrupts before taking seqlock
5803 	 * to prevent any IRQ handler from calling into the page allocator
5804 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
5805 	 */
5806 	local_irq_save(flags);
5807 	/*
5808 	 * Explicitly disable this CPU's synchronous printk() before taking
5809 	 * seqlock to prevent any printk() from trying to hold port->lock, for
5810 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5811 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5812 	 */
5813 	printk_deferred_enter();
5814 	write_seqlock(&zonelist_update_seq);
5815 
5816 #ifdef CONFIG_NUMA
5817 	memset(node_load, 0, sizeof(node_load));
5818 #endif
5819 
5820 	/*
5821 	 * This node is hotadded and no memory is yet present.   So just
5822 	 * building zonelists is fine - no need to touch other nodes.
5823 	 */
5824 	if (self && !node_online(self->node_id)) {
5825 		build_zonelists(self);
5826 	} else {
5827 		/*
5828 		 * All possible nodes have pgdat preallocated
5829 		 * in free_area_init
5830 		 */
5831 		for_each_node(nid) {
5832 			pg_data_t *pgdat = NODE_DATA(nid);
5833 
5834 			build_zonelists(pgdat);
5835 		}
5836 
5837 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5838 		/*
5839 		 * We now know the "local memory node" for each node--
5840 		 * i.e., the node of the first zone in the generic zonelist.
5841 		 * Set up numa_mem percpu variable for on-line cpus.  During
5842 		 * boot, only the boot cpu should be on-line;  we'll init the
5843 		 * secondary cpus' numa_mem as they come on-line.  During
5844 		 * node/memory hotplug, we'll fixup all on-line cpus.
5845 		 */
5846 		for_each_online_cpu(cpu)
5847 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5848 #endif
5849 	}
5850 
5851 	write_sequnlock(&zonelist_update_seq);
5852 	printk_deferred_exit();
5853 	local_irq_restore(flags);
5854 }
5855 
5856 static noinline void __init
5857 build_all_zonelists_init(void)
5858 {
5859 	int cpu;
5860 
5861 	__build_all_zonelists(NULL);
5862 
5863 	/*
5864 	 * Initialize the boot_pagesets that are going to be used
5865 	 * for bootstrapping processors. The real pagesets for
5866 	 * each zone will be allocated later when the per cpu
5867 	 * allocator is available.
5868 	 *
5869 	 * boot_pagesets are used also for bootstrapping offline
5870 	 * cpus if the system is already booted because the pagesets
5871 	 * are needed to initialize allocators on a specific cpu too.
5872 	 * F.e. the percpu allocator needs the page allocator which
5873 	 * needs the percpu allocator in order to allocate its pagesets
5874 	 * (a chicken-egg dilemma).
5875 	 */
5876 	for_each_possible_cpu(cpu)
5877 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5878 
5879 	mminit_verify_zonelist();
5880 	cpuset_init_current_mems_allowed();
5881 }
5882 
5883 /*
5884  * unless system_state == SYSTEM_BOOTING.
5885  *
5886  * __ref due to call of __init annotated helper build_all_zonelists_init
5887  * [protected by SYSTEM_BOOTING].
5888  */
5889 void __ref build_all_zonelists(pg_data_t *pgdat)
5890 {
5891 	unsigned long vm_total_pages;
5892 
5893 	if (system_state == SYSTEM_BOOTING) {
5894 		build_all_zonelists_init();
5895 	} else {
5896 		__build_all_zonelists(pgdat);
5897 		/* cpuset refresh routine should be here */
5898 	}
5899 	/* Get the number of free pages beyond high watermark in all zones. */
5900 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5901 	/*
5902 	 * Disable grouping by mobility if the number of pages in the
5903 	 * system is too low to allow the mechanism to work. It would be
5904 	 * more accurate, but expensive to check per-zone. This check is
5905 	 * made on memory-hotadd so a system can start with mobility
5906 	 * disabled and enable it later
5907 	 */
5908 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5909 		page_group_by_mobility_disabled = 1;
5910 	else
5911 		page_group_by_mobility_disabled = 0;
5912 
5913 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5914 		nr_online_nodes,
5915 		page_group_by_mobility_disabled ? "off" : "on",
5916 		vm_total_pages);
5917 #ifdef CONFIG_NUMA
5918 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5919 #endif
5920 }
5921 
5922 static int zone_batchsize(struct zone *zone)
5923 {
5924 #ifdef CONFIG_MMU
5925 	int batch;
5926 
5927 	/*
5928 	 * The number of pages to batch allocate is either ~0.1%
5929 	 * of the zone or 1MB, whichever is smaller. The batch
5930 	 * size is striking a balance between allocation latency
5931 	 * and zone lock contention.
5932 	 */
5933 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5934 	batch /= 4;		/* We effectively *= 4 below */
5935 	if (batch < 1)
5936 		batch = 1;
5937 
5938 	/*
5939 	 * Clamp the batch to a 2^n - 1 value. Having a power
5940 	 * of 2 value was found to be more likely to have
5941 	 * suboptimal cache aliasing properties in some cases.
5942 	 *
5943 	 * For example if 2 tasks are alternately allocating
5944 	 * batches of pages, one task can end up with a lot
5945 	 * of pages of one half of the possible page colors
5946 	 * and the other with pages of the other colors.
5947 	 */
5948 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5949 
5950 	return batch;
5951 
5952 #else
5953 	/* The deferral and batching of frees should be suppressed under NOMMU
5954 	 * conditions.
5955 	 *
5956 	 * The problem is that NOMMU needs to be able to allocate large chunks
5957 	 * of contiguous memory as there's no hardware page translation to
5958 	 * assemble apparent contiguous memory from discontiguous pages.
5959 	 *
5960 	 * Queueing large contiguous runs of pages for batching, however,
5961 	 * causes the pages to actually be freed in smaller chunks.  As there
5962 	 * can be a significant delay between the individual batches being
5963 	 * recycled, this leads to the once large chunks of space being
5964 	 * fragmented and becoming unavailable for high-order allocations.
5965 	 */
5966 	return 0;
5967 #endif
5968 }
5969 
5970 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5971 {
5972 #ifdef CONFIG_MMU
5973 	int high;
5974 	int nr_split_cpus;
5975 	unsigned long total_pages;
5976 
5977 	if (!percpu_pagelist_high_fraction) {
5978 		/*
5979 		 * By default, the high value of the pcp is based on the zone
5980 		 * low watermark so that if they are full then background
5981 		 * reclaim will not be started prematurely.
5982 		 */
5983 		total_pages = low_wmark_pages(zone);
5984 	} else {
5985 		/*
5986 		 * If percpu_pagelist_high_fraction is configured, the high
5987 		 * value is based on a fraction of the managed pages in the
5988 		 * zone.
5989 		 */
5990 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5991 	}
5992 
5993 	/*
5994 	 * Split the high value across all online CPUs local to the zone. Note
5995 	 * that early in boot that CPUs may not be online yet and that during
5996 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5997 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5998 	 * all online CPUs to mitigate the risk that reclaim is triggered
5999 	 * prematurely due to pages stored on pcp lists.
6000 	 */
6001 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6002 	if (!nr_split_cpus)
6003 		nr_split_cpus = num_online_cpus();
6004 	high = total_pages / nr_split_cpus;
6005 
6006 	/*
6007 	 * Ensure high is at least batch*4. The multiple is based on the
6008 	 * historical relationship between high and batch.
6009 	 */
6010 	high = max(high, batch << 2);
6011 
6012 	return high;
6013 #else
6014 	return 0;
6015 #endif
6016 }
6017 
6018 /*
6019  * pcp->high and pcp->batch values are related and generally batch is lower
6020  * than high. They are also related to pcp->count such that count is lower
6021  * than high, and as soon as it reaches high, the pcplist is flushed.
6022  *
6023  * However, guaranteeing these relations at all times would require e.g. write
6024  * barriers here but also careful usage of read barriers at the read side, and
6025  * thus be prone to error and bad for performance. Thus the update only prevents
6026  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6027  * can cope with those fields changing asynchronously, and fully trust only the
6028  * pcp->count field on the local CPU with interrupts disabled.
6029  *
6030  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6031  * outside of boot time (or some other assurance that no concurrent updaters
6032  * exist).
6033  */
6034 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6035 		unsigned long batch)
6036 {
6037 	WRITE_ONCE(pcp->batch, batch);
6038 	WRITE_ONCE(pcp->high, high);
6039 }
6040 
6041 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6042 {
6043 	int pindex;
6044 
6045 	memset(pcp, 0, sizeof(*pcp));
6046 	memset(pzstats, 0, sizeof(*pzstats));
6047 
6048 	spin_lock_init(&pcp->lock);
6049 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6050 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6051 
6052 	/*
6053 	 * Set batch and high values safe for a boot pageset. A true percpu
6054 	 * pageset's initialization will update them subsequently. Here we don't
6055 	 * need to be as careful as pageset_update() as nobody can access the
6056 	 * pageset yet.
6057 	 */
6058 	pcp->high = BOOT_PAGESET_HIGH;
6059 	pcp->batch = BOOT_PAGESET_BATCH;
6060 	pcp->free_factor = 0;
6061 }
6062 
6063 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6064 		unsigned long batch)
6065 {
6066 	struct per_cpu_pages *pcp;
6067 	int cpu;
6068 
6069 	for_each_possible_cpu(cpu) {
6070 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6071 		pageset_update(pcp, high, batch);
6072 	}
6073 }
6074 
6075 /*
6076  * Calculate and set new high and batch values for all per-cpu pagesets of a
6077  * zone based on the zone's size.
6078  */
6079 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6080 {
6081 	int new_high, new_batch;
6082 
6083 	new_batch = max(1, zone_batchsize(zone));
6084 	new_high = zone_highsize(zone, new_batch, cpu_online);
6085 
6086 	if (zone->pageset_high == new_high &&
6087 	    zone->pageset_batch == new_batch)
6088 		return;
6089 
6090 	zone->pageset_high = new_high;
6091 	zone->pageset_batch = new_batch;
6092 
6093 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6094 }
6095 
6096 void __meminit setup_zone_pageset(struct zone *zone)
6097 {
6098 	int cpu;
6099 
6100 	/* Size may be 0 on !SMP && !NUMA */
6101 	if (sizeof(struct per_cpu_zonestat) > 0)
6102 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6103 
6104 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6105 	for_each_possible_cpu(cpu) {
6106 		struct per_cpu_pages *pcp;
6107 		struct per_cpu_zonestat *pzstats;
6108 
6109 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6110 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6111 		per_cpu_pages_init(pcp, pzstats);
6112 	}
6113 
6114 	zone_set_pageset_high_and_batch(zone, 0);
6115 }
6116 
6117 /*
6118  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6119  * page high values need to be recalculated.
6120  */
6121 static void zone_pcp_update(struct zone *zone, int cpu_online)
6122 {
6123 	mutex_lock(&pcp_batch_high_lock);
6124 	zone_set_pageset_high_and_batch(zone, cpu_online);
6125 	mutex_unlock(&pcp_batch_high_lock);
6126 }
6127 
6128 /*
6129  * Allocate per cpu pagesets and initialize them.
6130  * Before this call only boot pagesets were available.
6131  */
6132 void __init setup_per_cpu_pageset(void)
6133 {
6134 	struct pglist_data *pgdat;
6135 	struct zone *zone;
6136 	int __maybe_unused cpu;
6137 
6138 	for_each_populated_zone(zone)
6139 		setup_zone_pageset(zone);
6140 
6141 #ifdef CONFIG_NUMA
6142 	/*
6143 	 * Unpopulated zones continue using the boot pagesets.
6144 	 * The numa stats for these pagesets need to be reset.
6145 	 * Otherwise, they will end up skewing the stats of
6146 	 * the nodes these zones are associated with.
6147 	 */
6148 	for_each_possible_cpu(cpu) {
6149 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6150 		memset(pzstats->vm_numa_event, 0,
6151 		       sizeof(pzstats->vm_numa_event));
6152 	}
6153 #endif
6154 
6155 	for_each_online_pgdat(pgdat)
6156 		pgdat->per_cpu_nodestats =
6157 			alloc_percpu(struct per_cpu_nodestat);
6158 }
6159 
6160 __meminit void zone_pcp_init(struct zone *zone)
6161 {
6162 	/*
6163 	 * per cpu subsystem is not up at this point. The following code
6164 	 * relies on the ability of the linker to provide the
6165 	 * offset of a (static) per cpu variable into the per cpu area.
6166 	 */
6167 	zone->per_cpu_pageset = &boot_pageset;
6168 	zone->per_cpu_zonestats = &boot_zonestats;
6169 	zone->pageset_high = BOOT_PAGESET_HIGH;
6170 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6171 
6172 	if (populated_zone(zone))
6173 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6174 			 zone->present_pages, zone_batchsize(zone));
6175 }
6176 
6177 void adjust_managed_page_count(struct page *page, long count)
6178 {
6179 	atomic_long_add(count, &page_zone(page)->managed_pages);
6180 	totalram_pages_add(count);
6181 #ifdef CONFIG_HIGHMEM
6182 	if (PageHighMem(page))
6183 		totalhigh_pages_add(count);
6184 #endif
6185 }
6186 EXPORT_SYMBOL(adjust_managed_page_count);
6187 
6188 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6189 {
6190 	void *pos;
6191 	unsigned long pages = 0;
6192 
6193 	start = (void *)PAGE_ALIGN((unsigned long)start);
6194 	end = (void *)((unsigned long)end & PAGE_MASK);
6195 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6196 		struct page *page = virt_to_page(pos);
6197 		void *direct_map_addr;
6198 
6199 		/*
6200 		 * 'direct_map_addr' might be different from 'pos'
6201 		 * because some architectures' virt_to_page()
6202 		 * work with aliases.  Getting the direct map
6203 		 * address ensures that we get a _writeable_
6204 		 * alias for the memset().
6205 		 */
6206 		direct_map_addr = page_address(page);
6207 		/*
6208 		 * Perform a kasan-unchecked memset() since this memory
6209 		 * has not been initialized.
6210 		 */
6211 		direct_map_addr = kasan_reset_tag(direct_map_addr);
6212 		if ((unsigned int)poison <= 0xFF)
6213 			memset(direct_map_addr, poison, PAGE_SIZE);
6214 
6215 		free_reserved_page(page);
6216 	}
6217 
6218 	if (pages && s)
6219 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6220 
6221 	return pages;
6222 }
6223 
6224 static int page_alloc_cpu_dead(unsigned int cpu)
6225 {
6226 	struct zone *zone;
6227 
6228 	lru_add_drain_cpu(cpu);
6229 	mlock_drain_remote(cpu);
6230 	drain_pages(cpu);
6231 
6232 	/*
6233 	 * Spill the event counters of the dead processor
6234 	 * into the current processors event counters.
6235 	 * This artificially elevates the count of the current
6236 	 * processor.
6237 	 */
6238 	vm_events_fold_cpu(cpu);
6239 
6240 	/*
6241 	 * Zero the differential counters of the dead processor
6242 	 * so that the vm statistics are consistent.
6243 	 *
6244 	 * This is only okay since the processor is dead and cannot
6245 	 * race with what we are doing.
6246 	 */
6247 	cpu_vm_stats_fold(cpu);
6248 
6249 	for_each_populated_zone(zone)
6250 		zone_pcp_update(zone, 0);
6251 
6252 	return 0;
6253 }
6254 
6255 static int page_alloc_cpu_online(unsigned int cpu)
6256 {
6257 	struct zone *zone;
6258 
6259 	for_each_populated_zone(zone)
6260 		zone_pcp_update(zone, 1);
6261 	return 0;
6262 }
6263 
6264 void __init page_alloc_init_cpuhp(void)
6265 {
6266 	int ret;
6267 
6268 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6269 					"mm/page_alloc:pcp",
6270 					page_alloc_cpu_online,
6271 					page_alloc_cpu_dead);
6272 	WARN_ON(ret < 0);
6273 }
6274 
6275 /*
6276  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6277  *	or min_free_kbytes changes.
6278  */
6279 static void calculate_totalreserve_pages(void)
6280 {
6281 	struct pglist_data *pgdat;
6282 	unsigned long reserve_pages = 0;
6283 	enum zone_type i, j;
6284 
6285 	for_each_online_pgdat(pgdat) {
6286 
6287 		pgdat->totalreserve_pages = 0;
6288 
6289 		for (i = 0; i < MAX_NR_ZONES; i++) {
6290 			struct zone *zone = pgdat->node_zones + i;
6291 			long max = 0;
6292 			unsigned long managed_pages = zone_managed_pages(zone);
6293 
6294 			/* Find valid and maximum lowmem_reserve in the zone */
6295 			for (j = i; j < MAX_NR_ZONES; j++) {
6296 				if (zone->lowmem_reserve[j] > max)
6297 					max = zone->lowmem_reserve[j];
6298 			}
6299 
6300 			/* we treat the high watermark as reserved pages. */
6301 			max += high_wmark_pages(zone);
6302 
6303 			if (max > managed_pages)
6304 				max = managed_pages;
6305 
6306 			pgdat->totalreserve_pages += max;
6307 
6308 			reserve_pages += max;
6309 		}
6310 	}
6311 	totalreserve_pages = reserve_pages;
6312 }
6313 
6314 /*
6315  * setup_per_zone_lowmem_reserve - called whenever
6316  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6317  *	has a correct pages reserved value, so an adequate number of
6318  *	pages are left in the zone after a successful __alloc_pages().
6319  */
6320 static void setup_per_zone_lowmem_reserve(void)
6321 {
6322 	struct pglist_data *pgdat;
6323 	enum zone_type i, j;
6324 
6325 	for_each_online_pgdat(pgdat) {
6326 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6327 			struct zone *zone = &pgdat->node_zones[i];
6328 			int ratio = sysctl_lowmem_reserve_ratio[i];
6329 			bool clear = !ratio || !zone_managed_pages(zone);
6330 			unsigned long managed_pages = 0;
6331 
6332 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6333 				struct zone *upper_zone = &pgdat->node_zones[j];
6334 
6335 				managed_pages += zone_managed_pages(upper_zone);
6336 
6337 				if (clear)
6338 					zone->lowmem_reserve[j] = 0;
6339 				else
6340 					zone->lowmem_reserve[j] = managed_pages / ratio;
6341 			}
6342 		}
6343 	}
6344 
6345 	/* update totalreserve_pages */
6346 	calculate_totalreserve_pages();
6347 }
6348 
6349 static void __setup_per_zone_wmarks(void)
6350 {
6351 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6352 	unsigned long lowmem_pages = 0;
6353 	struct zone *zone;
6354 	unsigned long flags;
6355 
6356 	/* Calculate total number of !ZONE_HIGHMEM pages */
6357 	for_each_zone(zone) {
6358 		if (!is_highmem(zone))
6359 			lowmem_pages += zone_managed_pages(zone);
6360 	}
6361 
6362 	for_each_zone(zone) {
6363 		u64 tmp;
6364 
6365 		spin_lock_irqsave(&zone->lock, flags);
6366 		tmp = (u64)pages_min * zone_managed_pages(zone);
6367 		do_div(tmp, lowmem_pages);
6368 		if (is_highmem(zone)) {
6369 			/*
6370 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6371 			 * need highmem pages, so cap pages_min to a small
6372 			 * value here.
6373 			 *
6374 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6375 			 * deltas control async page reclaim, and so should
6376 			 * not be capped for highmem.
6377 			 */
6378 			unsigned long min_pages;
6379 
6380 			min_pages = zone_managed_pages(zone) / 1024;
6381 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6382 			zone->_watermark[WMARK_MIN] = min_pages;
6383 		} else {
6384 			/*
6385 			 * If it's a lowmem zone, reserve a number of pages
6386 			 * proportionate to the zone's size.
6387 			 */
6388 			zone->_watermark[WMARK_MIN] = tmp;
6389 		}
6390 
6391 		/*
6392 		 * Set the kswapd watermarks distance according to the
6393 		 * scale factor in proportion to available memory, but
6394 		 * ensure a minimum size on small systems.
6395 		 */
6396 		tmp = max_t(u64, tmp >> 2,
6397 			    mult_frac(zone_managed_pages(zone),
6398 				      watermark_scale_factor, 10000));
6399 
6400 		zone->watermark_boost = 0;
6401 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6402 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6403 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6404 
6405 		spin_unlock_irqrestore(&zone->lock, flags);
6406 	}
6407 
6408 	/* update totalreserve_pages */
6409 	calculate_totalreserve_pages();
6410 }
6411 
6412 /**
6413  * setup_per_zone_wmarks - called when min_free_kbytes changes
6414  * or when memory is hot-{added|removed}
6415  *
6416  * Ensures that the watermark[min,low,high] values for each zone are set
6417  * correctly with respect to min_free_kbytes.
6418  */
6419 void setup_per_zone_wmarks(void)
6420 {
6421 	struct zone *zone;
6422 	static DEFINE_SPINLOCK(lock);
6423 
6424 	spin_lock(&lock);
6425 	__setup_per_zone_wmarks();
6426 	spin_unlock(&lock);
6427 
6428 	/*
6429 	 * The watermark size have changed so update the pcpu batch
6430 	 * and high limits or the limits may be inappropriate.
6431 	 */
6432 	for_each_zone(zone)
6433 		zone_pcp_update(zone, 0);
6434 }
6435 
6436 /*
6437  * Initialise min_free_kbytes.
6438  *
6439  * For small machines we want it small (128k min).  For large machines
6440  * we want it large (256MB max).  But it is not linear, because network
6441  * bandwidth does not increase linearly with machine size.  We use
6442  *
6443  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6444  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6445  *
6446  * which yields
6447  *
6448  * 16MB:	512k
6449  * 32MB:	724k
6450  * 64MB:	1024k
6451  * 128MB:	1448k
6452  * 256MB:	2048k
6453  * 512MB:	2896k
6454  * 1024MB:	4096k
6455  * 2048MB:	5792k
6456  * 4096MB:	8192k
6457  * 8192MB:	11584k
6458  * 16384MB:	16384k
6459  */
6460 void calculate_min_free_kbytes(void)
6461 {
6462 	unsigned long lowmem_kbytes;
6463 	int new_min_free_kbytes;
6464 
6465 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6466 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6467 
6468 	if (new_min_free_kbytes > user_min_free_kbytes)
6469 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6470 	else
6471 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6472 				new_min_free_kbytes, user_min_free_kbytes);
6473 
6474 }
6475 
6476 int __meminit init_per_zone_wmark_min(void)
6477 {
6478 	calculate_min_free_kbytes();
6479 	setup_per_zone_wmarks();
6480 	refresh_zone_stat_thresholds();
6481 	setup_per_zone_lowmem_reserve();
6482 
6483 #ifdef CONFIG_NUMA
6484 	setup_min_unmapped_ratio();
6485 	setup_min_slab_ratio();
6486 #endif
6487 
6488 	khugepaged_min_free_kbytes_update();
6489 
6490 	return 0;
6491 }
6492 postcore_initcall(init_per_zone_wmark_min)
6493 
6494 /*
6495  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6496  *	that we can call two helper functions whenever min_free_kbytes
6497  *	changes.
6498  */
6499 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6500 		void *buffer, size_t *length, loff_t *ppos)
6501 {
6502 	int rc;
6503 
6504 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6505 	if (rc)
6506 		return rc;
6507 
6508 	if (write) {
6509 		user_min_free_kbytes = min_free_kbytes;
6510 		setup_per_zone_wmarks();
6511 	}
6512 	return 0;
6513 }
6514 
6515 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6516 		void *buffer, size_t *length, loff_t *ppos)
6517 {
6518 	int rc;
6519 
6520 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6521 	if (rc)
6522 		return rc;
6523 
6524 	if (write)
6525 		setup_per_zone_wmarks();
6526 
6527 	return 0;
6528 }
6529 
6530 #ifdef CONFIG_NUMA
6531 static void setup_min_unmapped_ratio(void)
6532 {
6533 	pg_data_t *pgdat;
6534 	struct zone *zone;
6535 
6536 	for_each_online_pgdat(pgdat)
6537 		pgdat->min_unmapped_pages = 0;
6538 
6539 	for_each_zone(zone)
6540 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6541 						         sysctl_min_unmapped_ratio) / 100;
6542 }
6543 
6544 
6545 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6546 		void *buffer, size_t *length, loff_t *ppos)
6547 {
6548 	int rc;
6549 
6550 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6551 	if (rc)
6552 		return rc;
6553 
6554 	setup_min_unmapped_ratio();
6555 
6556 	return 0;
6557 }
6558 
6559 static void setup_min_slab_ratio(void)
6560 {
6561 	pg_data_t *pgdat;
6562 	struct zone *zone;
6563 
6564 	for_each_online_pgdat(pgdat)
6565 		pgdat->min_slab_pages = 0;
6566 
6567 	for_each_zone(zone)
6568 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6569 						     sysctl_min_slab_ratio) / 100;
6570 }
6571 
6572 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6573 		void *buffer, size_t *length, loff_t *ppos)
6574 {
6575 	int rc;
6576 
6577 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6578 	if (rc)
6579 		return rc;
6580 
6581 	setup_min_slab_ratio();
6582 
6583 	return 0;
6584 }
6585 #endif
6586 
6587 /*
6588  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6589  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6590  *	whenever sysctl_lowmem_reserve_ratio changes.
6591  *
6592  * The reserve ratio obviously has absolutely no relation with the
6593  * minimum watermarks. The lowmem reserve ratio can only make sense
6594  * if in function of the boot time zone sizes.
6595  */
6596 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6597 		void *buffer, size_t *length, loff_t *ppos)
6598 {
6599 	int i;
6600 
6601 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6602 
6603 	for (i = 0; i < MAX_NR_ZONES; i++) {
6604 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6605 			sysctl_lowmem_reserve_ratio[i] = 0;
6606 	}
6607 
6608 	setup_per_zone_lowmem_reserve();
6609 	return 0;
6610 }
6611 
6612 /*
6613  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6614  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6615  * pagelist can have before it gets flushed back to buddy allocator.
6616  */
6617 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6618 		int write, void *buffer, size_t *length, loff_t *ppos)
6619 {
6620 	struct zone *zone;
6621 	int old_percpu_pagelist_high_fraction;
6622 	int ret;
6623 
6624 	mutex_lock(&pcp_batch_high_lock);
6625 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6626 
6627 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6628 	if (!write || ret < 0)
6629 		goto out;
6630 
6631 	/* Sanity checking to avoid pcp imbalance */
6632 	if (percpu_pagelist_high_fraction &&
6633 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6634 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6635 		ret = -EINVAL;
6636 		goto out;
6637 	}
6638 
6639 	/* No change? */
6640 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6641 		goto out;
6642 
6643 	for_each_populated_zone(zone)
6644 		zone_set_pageset_high_and_batch(zone, 0);
6645 out:
6646 	mutex_unlock(&pcp_batch_high_lock);
6647 	return ret;
6648 }
6649 
6650 #ifdef CONFIG_CONTIG_ALLOC
6651 #if defined(CONFIG_DYNAMIC_DEBUG) || \
6652 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
6653 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6654 static void alloc_contig_dump_pages(struct list_head *page_list)
6655 {
6656 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6657 
6658 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6659 		struct page *page;
6660 
6661 		dump_stack();
6662 		list_for_each_entry(page, page_list, lru)
6663 			dump_page(page, "migration failure");
6664 	}
6665 }
6666 #else
6667 static inline void alloc_contig_dump_pages(struct list_head *page_list)
6668 {
6669 }
6670 #endif
6671 
6672 /* [start, end) must belong to a single zone. */
6673 int __alloc_contig_migrate_range(struct compact_control *cc,
6674 					unsigned long start, unsigned long end)
6675 {
6676 	/* This function is based on compact_zone() from compaction.c. */
6677 	unsigned int nr_reclaimed;
6678 	unsigned long pfn = start;
6679 	unsigned int tries = 0;
6680 	int ret = 0;
6681 	struct migration_target_control mtc = {
6682 		.nid = zone_to_nid(cc->zone),
6683 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6684 	};
6685 
6686 	lru_cache_disable();
6687 
6688 	while (pfn < end || !list_empty(&cc->migratepages)) {
6689 		if (fatal_signal_pending(current)) {
6690 			ret = -EINTR;
6691 			break;
6692 		}
6693 
6694 		if (list_empty(&cc->migratepages)) {
6695 			cc->nr_migratepages = 0;
6696 			ret = isolate_migratepages_range(cc, pfn, end);
6697 			if (ret && ret != -EAGAIN)
6698 				break;
6699 			pfn = cc->migrate_pfn;
6700 			tries = 0;
6701 		} else if (++tries == 5) {
6702 			ret = -EBUSY;
6703 			break;
6704 		}
6705 
6706 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6707 							&cc->migratepages);
6708 		cc->nr_migratepages -= nr_reclaimed;
6709 
6710 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6711 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6712 
6713 		/*
6714 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6715 		 * to retry again over this error, so do the same here.
6716 		 */
6717 		if (ret == -ENOMEM)
6718 			break;
6719 	}
6720 
6721 	lru_cache_enable();
6722 	if (ret < 0) {
6723 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6724 			alloc_contig_dump_pages(&cc->migratepages);
6725 		putback_movable_pages(&cc->migratepages);
6726 		return ret;
6727 	}
6728 	return 0;
6729 }
6730 
6731 /**
6732  * alloc_contig_range() -- tries to allocate given range of pages
6733  * @start:	start PFN to allocate
6734  * @end:	one-past-the-last PFN to allocate
6735  * @migratetype:	migratetype of the underlying pageblocks (either
6736  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6737  *			in range must have the same migratetype and it must
6738  *			be either of the two.
6739  * @gfp_mask:	GFP mask to use during compaction
6740  *
6741  * The PFN range does not have to be pageblock aligned. The PFN range must
6742  * belong to a single zone.
6743  *
6744  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6745  * pageblocks in the range.  Once isolated, the pageblocks should not
6746  * be modified by others.
6747  *
6748  * Return: zero on success or negative error code.  On success all
6749  * pages which PFN is in [start, end) are allocated for the caller and
6750  * need to be freed with free_contig_range().
6751  */
6752 int alloc_contig_range(unsigned long start, unsigned long end,
6753 		       unsigned migratetype, gfp_t gfp_mask)
6754 {
6755 	unsigned long outer_start, outer_end;
6756 	int order;
6757 	int ret = 0;
6758 
6759 	struct compact_control cc = {
6760 		.nr_migratepages = 0,
6761 		.order = -1,
6762 		.zone = page_zone(pfn_to_page(start)),
6763 		.mode = MIGRATE_SYNC,
6764 		.ignore_skip_hint = true,
6765 		.no_set_skip_hint = true,
6766 		.gfp_mask = current_gfp_context(gfp_mask),
6767 		.alloc_contig = true,
6768 	};
6769 	INIT_LIST_HEAD(&cc.migratepages);
6770 
6771 	/*
6772 	 * What we do here is we mark all pageblocks in range as
6773 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6774 	 * have different sizes, and due to the way page allocator
6775 	 * work, start_isolate_page_range() has special handlings for this.
6776 	 *
6777 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6778 	 * migrate the pages from an unaligned range (ie. pages that
6779 	 * we are interested in). This will put all the pages in
6780 	 * range back to page allocator as MIGRATE_ISOLATE.
6781 	 *
6782 	 * When this is done, we take the pages in range from page
6783 	 * allocator removing them from the buddy system.  This way
6784 	 * page allocator will never consider using them.
6785 	 *
6786 	 * This lets us mark the pageblocks back as
6787 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6788 	 * aligned range but not in the unaligned, original range are
6789 	 * put back to page allocator so that buddy can use them.
6790 	 */
6791 
6792 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6793 	if (ret)
6794 		goto done;
6795 
6796 	drain_all_pages(cc.zone);
6797 
6798 	/*
6799 	 * In case of -EBUSY, we'd like to know which page causes problem.
6800 	 * So, just fall through. test_pages_isolated() has a tracepoint
6801 	 * which will report the busy page.
6802 	 *
6803 	 * It is possible that busy pages could become available before
6804 	 * the call to test_pages_isolated, and the range will actually be
6805 	 * allocated.  So, if we fall through be sure to clear ret so that
6806 	 * -EBUSY is not accidentally used or returned to caller.
6807 	 */
6808 	ret = __alloc_contig_migrate_range(&cc, start, end);
6809 	if (ret && ret != -EBUSY)
6810 		goto done;
6811 	ret = 0;
6812 
6813 	/*
6814 	 * Pages from [start, end) are within a pageblock_nr_pages
6815 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6816 	 * more, all pages in [start, end) are free in page allocator.
6817 	 * What we are going to do is to allocate all pages from
6818 	 * [start, end) (that is remove them from page allocator).
6819 	 *
6820 	 * The only problem is that pages at the beginning and at the
6821 	 * end of interesting range may be not aligned with pages that
6822 	 * page allocator holds, ie. they can be part of higher order
6823 	 * pages.  Because of this, we reserve the bigger range and
6824 	 * once this is done free the pages we are not interested in.
6825 	 *
6826 	 * We don't have to hold zone->lock here because the pages are
6827 	 * isolated thus they won't get removed from buddy.
6828 	 */
6829 
6830 	order = 0;
6831 	outer_start = start;
6832 	while (!PageBuddy(pfn_to_page(outer_start))) {
6833 		if (++order > MAX_ORDER) {
6834 			outer_start = start;
6835 			break;
6836 		}
6837 		outer_start &= ~0UL << order;
6838 	}
6839 
6840 	if (outer_start != start) {
6841 		order = buddy_order(pfn_to_page(outer_start));
6842 
6843 		/*
6844 		 * outer_start page could be small order buddy page and
6845 		 * it doesn't include start page. Adjust outer_start
6846 		 * in this case to report failed page properly
6847 		 * on tracepoint in test_pages_isolated()
6848 		 */
6849 		if (outer_start + (1UL << order) <= start)
6850 			outer_start = start;
6851 	}
6852 
6853 	/* Make sure the range is really isolated. */
6854 	if (test_pages_isolated(outer_start, end, 0)) {
6855 		ret = -EBUSY;
6856 		goto done;
6857 	}
6858 
6859 	/* Grab isolated pages from freelists. */
6860 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6861 	if (!outer_end) {
6862 		ret = -EBUSY;
6863 		goto done;
6864 	}
6865 
6866 	/* Free head and tail (if any) */
6867 	if (start != outer_start)
6868 		free_contig_range(outer_start, start - outer_start);
6869 	if (end != outer_end)
6870 		free_contig_range(end, outer_end - end);
6871 
6872 done:
6873 	undo_isolate_page_range(start, end, migratetype);
6874 	return ret;
6875 }
6876 EXPORT_SYMBOL(alloc_contig_range);
6877 
6878 static int __alloc_contig_pages(unsigned long start_pfn,
6879 				unsigned long nr_pages, gfp_t gfp_mask)
6880 {
6881 	unsigned long end_pfn = start_pfn + nr_pages;
6882 
6883 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6884 				  gfp_mask);
6885 }
6886 
6887 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6888 				   unsigned long nr_pages)
6889 {
6890 	unsigned long i, end_pfn = start_pfn + nr_pages;
6891 	struct page *page;
6892 
6893 	for (i = start_pfn; i < end_pfn; i++) {
6894 		page = pfn_to_online_page(i);
6895 		if (!page)
6896 			return false;
6897 
6898 		if (page_zone(page) != z)
6899 			return false;
6900 
6901 		if (PageReserved(page))
6902 			return false;
6903 
6904 		if (PageHuge(page))
6905 			return false;
6906 	}
6907 	return true;
6908 }
6909 
6910 static bool zone_spans_last_pfn(const struct zone *zone,
6911 				unsigned long start_pfn, unsigned long nr_pages)
6912 {
6913 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6914 
6915 	return zone_spans_pfn(zone, last_pfn);
6916 }
6917 
6918 /**
6919  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6920  * @nr_pages:	Number of contiguous pages to allocate
6921  * @gfp_mask:	GFP mask to limit search and used during compaction
6922  * @nid:	Target node
6923  * @nodemask:	Mask for other possible nodes
6924  *
6925  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6926  * on an applicable zonelist to find a contiguous pfn range which can then be
6927  * tried for allocation with alloc_contig_range(). This routine is intended
6928  * for allocation requests which can not be fulfilled with the buddy allocator.
6929  *
6930  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6931  * power of two, then allocated range is also guaranteed to be aligned to same
6932  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6933  *
6934  * Allocated pages can be freed with free_contig_range() or by manually calling
6935  * __free_page() on each allocated page.
6936  *
6937  * Return: pointer to contiguous pages on success, or NULL if not successful.
6938  */
6939 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6940 				int nid, nodemask_t *nodemask)
6941 {
6942 	unsigned long ret, pfn, flags;
6943 	struct zonelist *zonelist;
6944 	struct zone *zone;
6945 	struct zoneref *z;
6946 
6947 	zonelist = node_zonelist(nid, gfp_mask);
6948 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6949 					gfp_zone(gfp_mask), nodemask) {
6950 		spin_lock_irqsave(&zone->lock, flags);
6951 
6952 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6953 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6954 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6955 				/*
6956 				 * We release the zone lock here because
6957 				 * alloc_contig_range() will also lock the zone
6958 				 * at some point. If there's an allocation
6959 				 * spinning on this lock, it may win the race
6960 				 * and cause alloc_contig_range() to fail...
6961 				 */
6962 				spin_unlock_irqrestore(&zone->lock, flags);
6963 				ret = __alloc_contig_pages(pfn, nr_pages,
6964 							gfp_mask);
6965 				if (!ret)
6966 					return pfn_to_page(pfn);
6967 				spin_lock_irqsave(&zone->lock, flags);
6968 			}
6969 			pfn += nr_pages;
6970 		}
6971 		spin_unlock_irqrestore(&zone->lock, flags);
6972 	}
6973 	return NULL;
6974 }
6975 #endif /* CONFIG_CONTIG_ALLOC */
6976 
6977 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6978 {
6979 	unsigned long count = 0;
6980 
6981 	for (; nr_pages--; pfn++) {
6982 		struct page *page = pfn_to_page(pfn);
6983 
6984 		count += page_count(page) != 1;
6985 		__free_page(page);
6986 	}
6987 	WARN(count != 0, "%lu pages are still in use!\n", count);
6988 }
6989 EXPORT_SYMBOL(free_contig_range);
6990 
6991 /*
6992  * Effectively disable pcplists for the zone by setting the high limit to 0
6993  * and draining all cpus. A concurrent page freeing on another CPU that's about
6994  * to put the page on pcplist will either finish before the drain and the page
6995  * will be drained, or observe the new high limit and skip the pcplist.
6996  *
6997  * Must be paired with a call to zone_pcp_enable().
6998  */
6999 void zone_pcp_disable(struct zone *zone)
7000 {
7001 	mutex_lock(&pcp_batch_high_lock);
7002 	__zone_set_pageset_high_and_batch(zone, 0, 1);
7003 	__drain_all_pages(zone, true);
7004 }
7005 
7006 void zone_pcp_enable(struct zone *zone)
7007 {
7008 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
7009 	mutex_unlock(&pcp_batch_high_lock);
7010 }
7011 
7012 void zone_pcp_reset(struct zone *zone)
7013 {
7014 	int cpu;
7015 	struct per_cpu_zonestat *pzstats;
7016 
7017 	if (zone->per_cpu_pageset != &boot_pageset) {
7018 		for_each_online_cpu(cpu) {
7019 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7020 			drain_zonestat(zone, pzstats);
7021 		}
7022 		free_percpu(zone->per_cpu_pageset);
7023 		zone->per_cpu_pageset = &boot_pageset;
7024 		if (zone->per_cpu_zonestats != &boot_zonestats) {
7025 			free_percpu(zone->per_cpu_zonestats);
7026 			zone->per_cpu_zonestats = &boot_zonestats;
7027 		}
7028 	}
7029 }
7030 
7031 #ifdef CONFIG_MEMORY_HOTREMOVE
7032 /*
7033  * All pages in the range must be in a single zone, must not contain holes,
7034  * must span full sections, and must be isolated before calling this function.
7035  */
7036 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7037 {
7038 	unsigned long pfn = start_pfn;
7039 	struct page *page;
7040 	struct zone *zone;
7041 	unsigned int order;
7042 	unsigned long flags;
7043 
7044 	offline_mem_sections(pfn, end_pfn);
7045 	zone = page_zone(pfn_to_page(pfn));
7046 	spin_lock_irqsave(&zone->lock, flags);
7047 	while (pfn < end_pfn) {
7048 		page = pfn_to_page(pfn);
7049 		/*
7050 		 * The HWPoisoned page may be not in buddy system, and
7051 		 * page_count() is not 0.
7052 		 */
7053 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7054 			pfn++;
7055 			continue;
7056 		}
7057 		/*
7058 		 * At this point all remaining PageOffline() pages have a
7059 		 * reference count of 0 and can simply be skipped.
7060 		 */
7061 		if (PageOffline(page)) {
7062 			BUG_ON(page_count(page));
7063 			BUG_ON(PageBuddy(page));
7064 			pfn++;
7065 			continue;
7066 		}
7067 
7068 		BUG_ON(page_count(page));
7069 		BUG_ON(!PageBuddy(page));
7070 		order = buddy_order(page);
7071 		del_page_from_free_list(page, zone, order);
7072 		pfn += (1 << order);
7073 	}
7074 	spin_unlock_irqrestore(&zone->lock, flags);
7075 }
7076 #endif
7077 
7078 /*
7079  * This function returns a stable result only if called under zone lock.
7080  */
7081 bool is_free_buddy_page(struct page *page)
7082 {
7083 	unsigned long pfn = page_to_pfn(page);
7084 	unsigned int order;
7085 
7086 	for (order = 0; order <= MAX_ORDER; order++) {
7087 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7088 
7089 		if (PageBuddy(page_head) &&
7090 		    buddy_order_unsafe(page_head) >= order)
7091 			break;
7092 	}
7093 
7094 	return order <= MAX_ORDER;
7095 }
7096 EXPORT_SYMBOL(is_free_buddy_page);
7097 
7098 #ifdef CONFIG_MEMORY_FAILURE
7099 /*
7100  * Break down a higher-order page in sub-pages, and keep our target out of
7101  * buddy allocator.
7102  */
7103 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7104 				   struct page *target, int low, int high,
7105 				   int migratetype)
7106 {
7107 	unsigned long size = 1 << high;
7108 	struct page *current_buddy, *next_page;
7109 
7110 	while (high > low) {
7111 		high--;
7112 		size >>= 1;
7113 
7114 		if (target >= &page[size]) {
7115 			next_page = page + size;
7116 			current_buddy = page;
7117 		} else {
7118 			next_page = page;
7119 			current_buddy = page + size;
7120 		}
7121 
7122 		if (set_page_guard(zone, current_buddy, high, migratetype))
7123 			continue;
7124 
7125 		if (current_buddy != target) {
7126 			add_to_free_list(current_buddy, zone, high, migratetype);
7127 			set_buddy_order(current_buddy, high);
7128 			page = next_page;
7129 		}
7130 	}
7131 }
7132 
7133 /*
7134  * Take a page that will be marked as poisoned off the buddy allocator.
7135  */
7136 bool take_page_off_buddy(struct page *page)
7137 {
7138 	struct zone *zone = page_zone(page);
7139 	unsigned long pfn = page_to_pfn(page);
7140 	unsigned long flags;
7141 	unsigned int order;
7142 	bool ret = false;
7143 
7144 	spin_lock_irqsave(&zone->lock, flags);
7145 	for (order = 0; order <= MAX_ORDER; order++) {
7146 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7147 		int page_order = buddy_order(page_head);
7148 
7149 		if (PageBuddy(page_head) && page_order >= order) {
7150 			unsigned long pfn_head = page_to_pfn(page_head);
7151 			int migratetype = get_pfnblock_migratetype(page_head,
7152 								   pfn_head);
7153 
7154 			del_page_from_free_list(page_head, zone, page_order);
7155 			break_down_buddy_pages(zone, page_head, page, 0,
7156 						page_order, migratetype);
7157 			SetPageHWPoisonTakenOff(page);
7158 			if (!is_migrate_isolate(migratetype))
7159 				__mod_zone_freepage_state(zone, -1, migratetype);
7160 			ret = true;
7161 			break;
7162 		}
7163 		if (page_count(page_head) > 0)
7164 			break;
7165 	}
7166 	spin_unlock_irqrestore(&zone->lock, flags);
7167 	return ret;
7168 }
7169 
7170 /*
7171  * Cancel takeoff done by take_page_off_buddy().
7172  */
7173 bool put_page_back_buddy(struct page *page)
7174 {
7175 	struct zone *zone = page_zone(page);
7176 	unsigned long pfn = page_to_pfn(page);
7177 	unsigned long flags;
7178 	int migratetype = get_pfnblock_migratetype(page, pfn);
7179 	bool ret = false;
7180 
7181 	spin_lock_irqsave(&zone->lock, flags);
7182 	if (put_page_testzero(page)) {
7183 		ClearPageHWPoisonTakenOff(page);
7184 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7185 		if (TestClearPageHWPoison(page)) {
7186 			ret = true;
7187 		}
7188 	}
7189 	spin_unlock_irqrestore(&zone->lock, flags);
7190 
7191 	return ret;
7192 }
7193 #endif
7194 
7195 #ifdef CONFIG_ZONE_DMA
7196 bool has_managed_dma(void)
7197 {
7198 	struct pglist_data *pgdat;
7199 
7200 	for_each_online_pgdat(pgdat) {
7201 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7202 
7203 		if (managed_zone(zone))
7204 			return true;
7205 	}
7206 	return false;
7207 }
7208 #endif /* CONFIG_ZONE_DMA */
7209