1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/khugepaged.h> 76 #include <linux/delayacct.h> 77 #include <asm/sections.h> 78 #include <asm/tlbflush.h> 79 #include <asm/div64.h> 80 #include "internal.h" 81 #include "shuffle.h" 82 #include "page_reporting.h" 83 #include "swap.h" 84 85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 86 typedef int __bitwise fpi_t; 87 88 /* No special request */ 89 #define FPI_NONE ((__force fpi_t)0) 90 91 /* 92 * Skip free page reporting notification for the (possibly merged) page. 93 * This does not hinder free page reporting from grabbing the page, 94 * reporting it and marking it "reported" - it only skips notifying 95 * the free page reporting infrastructure about a newly freed page. For 96 * example, used when temporarily pulling a page from a freelist and 97 * putting it back unmodified. 98 */ 99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 100 101 /* 102 * Place the (possibly merged) page to the tail of the freelist. Will ignore 103 * page shuffling (relevant code - e.g., memory onlining - is expected to 104 * shuffle the whole zone). 105 * 106 * Note: No code should rely on this flag for correctness - it's purely 107 * to allow for optimizations when handing back either fresh pages 108 * (memory onlining) or untouched pages (page isolation, free page 109 * reporting). 110 */ 111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 112 113 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 114 static DEFINE_MUTEX(pcp_batch_high_lock); 115 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 116 117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 118 /* 119 * On SMP, spin_trylock is sufficient protection. 120 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 121 */ 122 #define pcp_trylock_prepare(flags) do { } while (0) 123 #define pcp_trylock_finish(flag) do { } while (0) 124 #else 125 126 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 127 #define pcp_trylock_prepare(flags) local_irq_save(flags) 128 #define pcp_trylock_finish(flags) local_irq_restore(flags) 129 #endif 130 131 /* 132 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 133 * a migration causing the wrong PCP to be locked and remote memory being 134 * potentially allocated, pin the task to the CPU for the lookup+lock. 135 * preempt_disable is used on !RT because it is faster than migrate_disable. 136 * migrate_disable is used on RT because otherwise RT spinlock usage is 137 * interfered with and a high priority task cannot preempt the allocator. 138 */ 139 #ifndef CONFIG_PREEMPT_RT 140 #define pcpu_task_pin() preempt_disable() 141 #define pcpu_task_unpin() preempt_enable() 142 #else 143 #define pcpu_task_pin() migrate_disable() 144 #define pcpu_task_unpin() migrate_enable() 145 #endif 146 147 /* 148 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 149 * Return value should be used with equivalent unlock helper. 150 */ 151 #define pcpu_spin_lock(type, member, ptr) \ 152 ({ \ 153 type *_ret; \ 154 pcpu_task_pin(); \ 155 _ret = this_cpu_ptr(ptr); \ 156 spin_lock(&_ret->member); \ 157 _ret; \ 158 }) 159 160 #define pcpu_spin_trylock(type, member, ptr) \ 161 ({ \ 162 type *_ret; \ 163 pcpu_task_pin(); \ 164 _ret = this_cpu_ptr(ptr); \ 165 if (!spin_trylock(&_ret->member)) { \ 166 pcpu_task_unpin(); \ 167 _ret = NULL; \ 168 } \ 169 _ret; \ 170 }) 171 172 #define pcpu_spin_unlock(member, ptr) \ 173 ({ \ 174 spin_unlock(&ptr->member); \ 175 pcpu_task_unpin(); \ 176 }) 177 178 /* struct per_cpu_pages specific helpers. */ 179 #define pcp_spin_lock(ptr) \ 180 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 181 182 #define pcp_spin_trylock(ptr) \ 183 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 184 185 #define pcp_spin_unlock(ptr) \ 186 pcpu_spin_unlock(lock, ptr) 187 188 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 189 DEFINE_PER_CPU(int, numa_node); 190 EXPORT_PER_CPU_SYMBOL(numa_node); 191 #endif 192 193 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 194 195 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 196 /* 197 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 198 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 199 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 200 * defined in <linux/topology.h>. 201 */ 202 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 203 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 204 #endif 205 206 static DEFINE_MUTEX(pcpu_drain_mutex); 207 208 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 209 volatile unsigned long latent_entropy __latent_entropy; 210 EXPORT_SYMBOL(latent_entropy); 211 #endif 212 213 /* 214 * Array of node states. 215 */ 216 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 217 [N_POSSIBLE] = NODE_MASK_ALL, 218 [N_ONLINE] = { { [0] = 1UL } }, 219 #ifndef CONFIG_NUMA 220 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 221 #ifdef CONFIG_HIGHMEM 222 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 223 #endif 224 [N_MEMORY] = { { [0] = 1UL } }, 225 [N_CPU] = { { [0] = 1UL } }, 226 #endif /* NUMA */ 227 }; 228 EXPORT_SYMBOL(node_states); 229 230 atomic_long_t _totalram_pages __read_mostly; 231 EXPORT_SYMBOL(_totalram_pages); 232 unsigned long totalreserve_pages __read_mostly; 233 unsigned long totalcma_pages __read_mostly; 234 235 int percpu_pagelist_high_fraction; 236 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 237 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 238 EXPORT_SYMBOL(init_on_alloc); 239 240 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 241 EXPORT_SYMBOL(init_on_free); 242 243 /* 244 * A cached value of the page's pageblock's migratetype, used when the page is 245 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 246 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 247 * Also the migratetype set in the page does not necessarily match the pcplist 248 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 249 * other index - this ensures that it will be put on the correct CMA freelist. 250 */ 251 static inline int get_pcppage_migratetype(struct page *page) 252 { 253 return page->index; 254 } 255 256 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 257 { 258 page->index = migratetype; 259 } 260 261 #ifdef CONFIG_PM_SLEEP 262 /* 263 * The following functions are used by the suspend/hibernate code to temporarily 264 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 265 * while devices are suspended. To avoid races with the suspend/hibernate code, 266 * they should always be called with system_transition_mutex held 267 * (gfp_allowed_mask also should only be modified with system_transition_mutex 268 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 269 * with that modification). 270 */ 271 272 static gfp_t saved_gfp_mask; 273 274 void pm_restore_gfp_mask(void) 275 { 276 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 277 if (saved_gfp_mask) { 278 gfp_allowed_mask = saved_gfp_mask; 279 saved_gfp_mask = 0; 280 } 281 } 282 283 void pm_restrict_gfp_mask(void) 284 { 285 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 286 WARN_ON(saved_gfp_mask); 287 saved_gfp_mask = gfp_allowed_mask; 288 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 289 } 290 291 bool pm_suspended_storage(void) 292 { 293 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 294 return false; 295 return true; 296 } 297 #endif /* CONFIG_PM_SLEEP */ 298 299 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 300 unsigned int pageblock_order __read_mostly; 301 #endif 302 303 static void __free_pages_ok(struct page *page, unsigned int order, 304 fpi_t fpi_flags); 305 306 /* 307 * results with 256, 32 in the lowmem_reserve sysctl: 308 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 309 * 1G machine -> (16M dma, 784M normal, 224M high) 310 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 311 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 312 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 313 * 314 * TBD: should special case ZONE_DMA32 machines here - in those we normally 315 * don't need any ZONE_NORMAL reservation 316 */ 317 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 318 #ifdef CONFIG_ZONE_DMA 319 [ZONE_DMA] = 256, 320 #endif 321 #ifdef CONFIG_ZONE_DMA32 322 [ZONE_DMA32] = 256, 323 #endif 324 [ZONE_NORMAL] = 32, 325 #ifdef CONFIG_HIGHMEM 326 [ZONE_HIGHMEM] = 0, 327 #endif 328 [ZONE_MOVABLE] = 0, 329 }; 330 331 char * const zone_names[MAX_NR_ZONES] = { 332 #ifdef CONFIG_ZONE_DMA 333 "DMA", 334 #endif 335 #ifdef CONFIG_ZONE_DMA32 336 "DMA32", 337 #endif 338 "Normal", 339 #ifdef CONFIG_HIGHMEM 340 "HighMem", 341 #endif 342 "Movable", 343 #ifdef CONFIG_ZONE_DEVICE 344 "Device", 345 #endif 346 }; 347 348 const char * const migratetype_names[MIGRATE_TYPES] = { 349 "Unmovable", 350 "Movable", 351 "Reclaimable", 352 "HighAtomic", 353 #ifdef CONFIG_CMA 354 "CMA", 355 #endif 356 #ifdef CONFIG_MEMORY_ISOLATION 357 "Isolate", 358 #endif 359 }; 360 361 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 362 [NULL_COMPOUND_DTOR] = NULL, 363 [COMPOUND_PAGE_DTOR] = free_compound_page, 364 #ifdef CONFIG_HUGETLB_PAGE 365 [HUGETLB_PAGE_DTOR] = free_huge_page, 366 #endif 367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 368 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 369 #endif 370 }; 371 372 int min_free_kbytes = 1024; 373 int user_min_free_kbytes = -1; 374 int watermark_boost_factor __read_mostly = 15000; 375 int watermark_scale_factor = 10; 376 377 bool mirrored_kernelcore __initdata_memblock; 378 379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 380 int movable_zone; 381 EXPORT_SYMBOL(movable_zone); 382 383 #if MAX_NUMNODES > 1 384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 385 unsigned int nr_online_nodes __read_mostly = 1; 386 EXPORT_SYMBOL(nr_node_ids); 387 EXPORT_SYMBOL(nr_online_nodes); 388 #endif 389 390 int page_group_by_mobility_disabled __read_mostly; 391 392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 393 /* 394 * During boot we initialize deferred pages on-demand, as needed, but once 395 * page_alloc_init_late() has finished, the deferred pages are all initialized, 396 * and we can permanently disable that path. 397 */ 398 DEFINE_STATIC_KEY_TRUE(deferred_pages); 399 400 static inline bool deferred_pages_enabled(void) 401 { 402 return static_branch_unlikely(&deferred_pages); 403 } 404 405 /* 406 * deferred_grow_zone() is __init, but it is called from 407 * get_page_from_freelist() during early boot until deferred_pages permanently 408 * disables this call. This is why we have refdata wrapper to avoid warning, 409 * and to ensure that the function body gets unloaded. 410 */ 411 static bool __ref 412 _deferred_grow_zone(struct zone *zone, unsigned int order) 413 { 414 return deferred_grow_zone(zone, order); 415 } 416 #else 417 static inline bool deferred_pages_enabled(void) 418 { 419 return false; 420 } 421 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 422 423 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 424 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 425 unsigned long pfn) 426 { 427 #ifdef CONFIG_SPARSEMEM 428 return section_to_usemap(__pfn_to_section(pfn)); 429 #else 430 return page_zone(page)->pageblock_flags; 431 #endif /* CONFIG_SPARSEMEM */ 432 } 433 434 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 435 { 436 #ifdef CONFIG_SPARSEMEM 437 pfn &= (PAGES_PER_SECTION-1); 438 #else 439 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 440 #endif /* CONFIG_SPARSEMEM */ 441 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 442 } 443 444 static __always_inline 445 unsigned long __get_pfnblock_flags_mask(const struct page *page, 446 unsigned long pfn, 447 unsigned long mask) 448 { 449 unsigned long *bitmap; 450 unsigned long bitidx, word_bitidx; 451 unsigned long word; 452 453 bitmap = get_pageblock_bitmap(page, pfn); 454 bitidx = pfn_to_bitidx(page, pfn); 455 word_bitidx = bitidx / BITS_PER_LONG; 456 bitidx &= (BITS_PER_LONG-1); 457 /* 458 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 459 * a consistent read of the memory array, so that results, even though 460 * racy, are not corrupted. 461 */ 462 word = READ_ONCE(bitmap[word_bitidx]); 463 return (word >> bitidx) & mask; 464 } 465 466 /** 467 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 468 * @page: The page within the block of interest 469 * @pfn: The target page frame number 470 * @mask: mask of bits that the caller is interested in 471 * 472 * Return: pageblock_bits flags 473 */ 474 unsigned long get_pfnblock_flags_mask(const struct page *page, 475 unsigned long pfn, unsigned long mask) 476 { 477 return __get_pfnblock_flags_mask(page, pfn, mask); 478 } 479 480 static __always_inline int get_pfnblock_migratetype(const struct page *page, 481 unsigned long pfn) 482 { 483 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 484 } 485 486 /** 487 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 488 * @page: The page within the block of interest 489 * @flags: The flags to set 490 * @pfn: The target page frame number 491 * @mask: mask of bits that the caller is interested in 492 */ 493 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 494 unsigned long pfn, 495 unsigned long mask) 496 { 497 unsigned long *bitmap; 498 unsigned long bitidx, word_bitidx; 499 unsigned long word; 500 501 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 502 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 503 504 bitmap = get_pageblock_bitmap(page, pfn); 505 bitidx = pfn_to_bitidx(page, pfn); 506 word_bitidx = bitidx / BITS_PER_LONG; 507 bitidx &= (BITS_PER_LONG-1); 508 509 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 510 511 mask <<= bitidx; 512 flags <<= bitidx; 513 514 word = READ_ONCE(bitmap[word_bitidx]); 515 do { 516 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 517 } 518 519 void set_pageblock_migratetype(struct page *page, int migratetype) 520 { 521 if (unlikely(page_group_by_mobility_disabled && 522 migratetype < MIGRATE_PCPTYPES)) 523 migratetype = MIGRATE_UNMOVABLE; 524 525 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 526 page_to_pfn(page), MIGRATETYPE_MASK); 527 } 528 529 #ifdef CONFIG_DEBUG_VM 530 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 531 { 532 int ret = 0; 533 unsigned seq; 534 unsigned long pfn = page_to_pfn(page); 535 unsigned long sp, start_pfn; 536 537 do { 538 seq = zone_span_seqbegin(zone); 539 start_pfn = zone->zone_start_pfn; 540 sp = zone->spanned_pages; 541 if (!zone_spans_pfn(zone, pfn)) 542 ret = 1; 543 } while (zone_span_seqretry(zone, seq)); 544 545 if (ret) 546 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 547 pfn, zone_to_nid(zone), zone->name, 548 start_pfn, start_pfn + sp); 549 550 return ret; 551 } 552 553 static int page_is_consistent(struct zone *zone, struct page *page) 554 { 555 if (zone != page_zone(page)) 556 return 0; 557 558 return 1; 559 } 560 /* 561 * Temporary debugging check for pages not lying within a given zone. 562 */ 563 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 564 { 565 if (page_outside_zone_boundaries(zone, page)) 566 return 1; 567 if (!page_is_consistent(zone, page)) 568 return 1; 569 570 return 0; 571 } 572 #else 573 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 574 { 575 return 0; 576 } 577 #endif 578 579 static void bad_page(struct page *page, const char *reason) 580 { 581 static unsigned long resume; 582 static unsigned long nr_shown; 583 static unsigned long nr_unshown; 584 585 /* 586 * Allow a burst of 60 reports, then keep quiet for that minute; 587 * or allow a steady drip of one report per second. 588 */ 589 if (nr_shown == 60) { 590 if (time_before(jiffies, resume)) { 591 nr_unshown++; 592 goto out; 593 } 594 if (nr_unshown) { 595 pr_alert( 596 "BUG: Bad page state: %lu messages suppressed\n", 597 nr_unshown); 598 nr_unshown = 0; 599 } 600 nr_shown = 0; 601 } 602 if (nr_shown++ == 0) 603 resume = jiffies + 60 * HZ; 604 605 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 606 current->comm, page_to_pfn(page)); 607 dump_page(page, reason); 608 609 print_modules(); 610 dump_stack(); 611 out: 612 /* Leave bad fields for debug, except PageBuddy could make trouble */ 613 page_mapcount_reset(page); /* remove PageBuddy */ 614 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 615 } 616 617 static inline unsigned int order_to_pindex(int migratetype, int order) 618 { 619 int base = order; 620 621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 622 if (order > PAGE_ALLOC_COSTLY_ORDER) { 623 VM_BUG_ON(order != pageblock_order); 624 return NR_LOWORDER_PCP_LISTS; 625 } 626 #else 627 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 628 #endif 629 630 return (MIGRATE_PCPTYPES * base) + migratetype; 631 } 632 633 static inline int pindex_to_order(unsigned int pindex) 634 { 635 int order = pindex / MIGRATE_PCPTYPES; 636 637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 638 if (pindex == NR_LOWORDER_PCP_LISTS) 639 order = pageblock_order; 640 #else 641 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 642 #endif 643 644 return order; 645 } 646 647 static inline bool pcp_allowed_order(unsigned int order) 648 { 649 if (order <= PAGE_ALLOC_COSTLY_ORDER) 650 return true; 651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 652 if (order == pageblock_order) 653 return true; 654 #endif 655 return false; 656 } 657 658 static inline void free_the_page(struct page *page, unsigned int order) 659 { 660 if (pcp_allowed_order(order)) /* Via pcp? */ 661 free_unref_page(page, order); 662 else 663 __free_pages_ok(page, order, FPI_NONE); 664 } 665 666 /* 667 * Higher-order pages are called "compound pages". They are structured thusly: 668 * 669 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 670 * 671 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 672 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 673 * 674 * The first tail page's ->compound_dtor holds the offset in array of compound 675 * page destructors. See compound_page_dtors. 676 * 677 * The first tail page's ->compound_order holds the order of allocation. 678 * This usage means that zero-order pages may not be compound. 679 */ 680 681 void free_compound_page(struct page *page) 682 { 683 mem_cgroup_uncharge(page_folio(page)); 684 free_the_page(page, compound_order(page)); 685 } 686 687 void prep_compound_page(struct page *page, unsigned int order) 688 { 689 int i; 690 int nr_pages = 1 << order; 691 692 __SetPageHead(page); 693 for (i = 1; i < nr_pages; i++) 694 prep_compound_tail(page, i); 695 696 prep_compound_head(page, order); 697 } 698 699 void destroy_large_folio(struct folio *folio) 700 { 701 enum compound_dtor_id dtor = folio->_folio_dtor; 702 703 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 704 compound_page_dtors[dtor](&folio->page); 705 } 706 707 #ifdef CONFIG_DEBUG_PAGEALLOC 708 unsigned int _debug_guardpage_minorder; 709 710 bool _debug_pagealloc_enabled_early __read_mostly 711 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 712 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 713 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 714 EXPORT_SYMBOL(_debug_pagealloc_enabled); 715 716 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 717 718 static int __init early_debug_pagealloc(char *buf) 719 { 720 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 721 } 722 early_param("debug_pagealloc", early_debug_pagealloc); 723 724 static int __init debug_guardpage_minorder_setup(char *buf) 725 { 726 unsigned long res; 727 728 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 729 pr_err("Bad debug_guardpage_minorder value\n"); 730 return 0; 731 } 732 _debug_guardpage_minorder = res; 733 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 734 return 0; 735 } 736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 737 738 static inline bool set_page_guard(struct zone *zone, struct page *page, 739 unsigned int order, int migratetype) 740 { 741 if (!debug_guardpage_enabled()) 742 return false; 743 744 if (order >= debug_guardpage_minorder()) 745 return false; 746 747 __SetPageGuard(page); 748 INIT_LIST_HEAD(&page->buddy_list); 749 set_page_private(page, order); 750 /* Guard pages are not available for any usage */ 751 if (!is_migrate_isolate(migratetype)) 752 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 753 754 return true; 755 } 756 757 static inline void clear_page_guard(struct zone *zone, struct page *page, 758 unsigned int order, int migratetype) 759 { 760 if (!debug_guardpage_enabled()) 761 return; 762 763 __ClearPageGuard(page); 764 765 set_page_private(page, 0); 766 if (!is_migrate_isolate(migratetype)) 767 __mod_zone_freepage_state(zone, (1 << order), migratetype); 768 } 769 #else 770 static inline bool set_page_guard(struct zone *zone, struct page *page, 771 unsigned int order, int migratetype) { return false; } 772 static inline void clear_page_guard(struct zone *zone, struct page *page, 773 unsigned int order, int migratetype) {} 774 #endif 775 776 static inline void set_buddy_order(struct page *page, unsigned int order) 777 { 778 set_page_private(page, order); 779 __SetPageBuddy(page); 780 } 781 782 #ifdef CONFIG_COMPACTION 783 static inline struct capture_control *task_capc(struct zone *zone) 784 { 785 struct capture_control *capc = current->capture_control; 786 787 return unlikely(capc) && 788 !(current->flags & PF_KTHREAD) && 789 !capc->page && 790 capc->cc->zone == zone ? capc : NULL; 791 } 792 793 static inline bool 794 compaction_capture(struct capture_control *capc, struct page *page, 795 int order, int migratetype) 796 { 797 if (!capc || order != capc->cc->order) 798 return false; 799 800 /* Do not accidentally pollute CMA or isolated regions*/ 801 if (is_migrate_cma(migratetype) || 802 is_migrate_isolate(migratetype)) 803 return false; 804 805 /* 806 * Do not let lower order allocations pollute a movable pageblock. 807 * This might let an unmovable request use a reclaimable pageblock 808 * and vice-versa but no more than normal fallback logic which can 809 * have trouble finding a high-order free page. 810 */ 811 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 812 return false; 813 814 capc->page = page; 815 return true; 816 } 817 818 #else 819 static inline struct capture_control *task_capc(struct zone *zone) 820 { 821 return NULL; 822 } 823 824 static inline bool 825 compaction_capture(struct capture_control *capc, struct page *page, 826 int order, int migratetype) 827 { 828 return false; 829 } 830 #endif /* CONFIG_COMPACTION */ 831 832 /* Used for pages not on another list */ 833 static inline void add_to_free_list(struct page *page, struct zone *zone, 834 unsigned int order, int migratetype) 835 { 836 struct free_area *area = &zone->free_area[order]; 837 838 list_add(&page->buddy_list, &area->free_list[migratetype]); 839 area->nr_free++; 840 } 841 842 /* Used for pages not on another list */ 843 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 844 unsigned int order, int migratetype) 845 { 846 struct free_area *area = &zone->free_area[order]; 847 848 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 849 area->nr_free++; 850 } 851 852 /* 853 * Used for pages which are on another list. Move the pages to the tail 854 * of the list - so the moved pages won't immediately be considered for 855 * allocation again (e.g., optimization for memory onlining). 856 */ 857 static inline void move_to_free_list(struct page *page, struct zone *zone, 858 unsigned int order, int migratetype) 859 { 860 struct free_area *area = &zone->free_area[order]; 861 862 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 863 } 864 865 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 866 unsigned int order) 867 { 868 /* clear reported state and update reported page count */ 869 if (page_reported(page)) 870 __ClearPageReported(page); 871 872 list_del(&page->buddy_list); 873 __ClearPageBuddy(page); 874 set_page_private(page, 0); 875 zone->free_area[order].nr_free--; 876 } 877 878 static inline struct page *get_page_from_free_area(struct free_area *area, 879 int migratetype) 880 { 881 return list_first_entry_or_null(&area->free_list[migratetype], 882 struct page, lru); 883 } 884 885 /* 886 * If this is not the largest possible page, check if the buddy 887 * of the next-highest order is free. If it is, it's possible 888 * that pages are being freed that will coalesce soon. In case, 889 * that is happening, add the free page to the tail of the list 890 * so it's less likely to be used soon and more likely to be merged 891 * as a higher order page 892 */ 893 static inline bool 894 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 895 struct page *page, unsigned int order) 896 { 897 unsigned long higher_page_pfn; 898 struct page *higher_page; 899 900 if (order >= MAX_ORDER - 1) 901 return false; 902 903 higher_page_pfn = buddy_pfn & pfn; 904 higher_page = page + (higher_page_pfn - pfn); 905 906 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 907 NULL) != NULL; 908 } 909 910 /* 911 * Freeing function for a buddy system allocator. 912 * 913 * The concept of a buddy system is to maintain direct-mapped table 914 * (containing bit values) for memory blocks of various "orders". 915 * The bottom level table contains the map for the smallest allocatable 916 * units of memory (here, pages), and each level above it describes 917 * pairs of units from the levels below, hence, "buddies". 918 * At a high level, all that happens here is marking the table entry 919 * at the bottom level available, and propagating the changes upward 920 * as necessary, plus some accounting needed to play nicely with other 921 * parts of the VM system. 922 * At each level, we keep a list of pages, which are heads of continuous 923 * free pages of length of (1 << order) and marked with PageBuddy. 924 * Page's order is recorded in page_private(page) field. 925 * So when we are allocating or freeing one, we can derive the state of the 926 * other. That is, if we allocate a small block, and both were 927 * free, the remainder of the region must be split into blocks. 928 * If a block is freed, and its buddy is also free, then this 929 * triggers coalescing into a block of larger size. 930 * 931 * -- nyc 932 */ 933 934 static inline void __free_one_page(struct page *page, 935 unsigned long pfn, 936 struct zone *zone, unsigned int order, 937 int migratetype, fpi_t fpi_flags) 938 { 939 struct capture_control *capc = task_capc(zone); 940 unsigned long buddy_pfn = 0; 941 unsigned long combined_pfn; 942 struct page *buddy; 943 bool to_tail; 944 945 VM_BUG_ON(!zone_is_initialized(zone)); 946 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 947 948 VM_BUG_ON(migratetype == -1); 949 if (likely(!is_migrate_isolate(migratetype))) 950 __mod_zone_freepage_state(zone, 1 << order, migratetype); 951 952 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 953 VM_BUG_ON_PAGE(bad_range(zone, page), page); 954 955 while (order < MAX_ORDER) { 956 if (compaction_capture(capc, page, order, migratetype)) { 957 __mod_zone_freepage_state(zone, -(1 << order), 958 migratetype); 959 return; 960 } 961 962 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 963 if (!buddy) 964 goto done_merging; 965 966 if (unlikely(order >= pageblock_order)) { 967 /* 968 * We want to prevent merge between freepages on pageblock 969 * without fallbacks and normal pageblock. Without this, 970 * pageblock isolation could cause incorrect freepage or CMA 971 * accounting or HIGHATOMIC accounting. 972 */ 973 int buddy_mt = get_pageblock_migratetype(buddy); 974 975 if (migratetype != buddy_mt 976 && (!migratetype_is_mergeable(migratetype) || 977 !migratetype_is_mergeable(buddy_mt))) 978 goto done_merging; 979 } 980 981 /* 982 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 983 * merge with it and move up one order. 984 */ 985 if (page_is_guard(buddy)) 986 clear_page_guard(zone, buddy, order, migratetype); 987 else 988 del_page_from_free_list(buddy, zone, order); 989 combined_pfn = buddy_pfn & pfn; 990 page = page + (combined_pfn - pfn); 991 pfn = combined_pfn; 992 order++; 993 } 994 995 done_merging: 996 set_buddy_order(page, order); 997 998 if (fpi_flags & FPI_TO_TAIL) 999 to_tail = true; 1000 else if (is_shuffle_order(order)) 1001 to_tail = shuffle_pick_tail(); 1002 else 1003 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1004 1005 if (to_tail) 1006 add_to_free_list_tail(page, zone, order, migratetype); 1007 else 1008 add_to_free_list(page, zone, order, migratetype); 1009 1010 /* Notify page reporting subsystem of freed page */ 1011 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1012 page_reporting_notify_free(order); 1013 } 1014 1015 /** 1016 * split_free_page() -- split a free page at split_pfn_offset 1017 * @free_page: the original free page 1018 * @order: the order of the page 1019 * @split_pfn_offset: split offset within the page 1020 * 1021 * Return -ENOENT if the free page is changed, otherwise 0 1022 * 1023 * It is used when the free page crosses two pageblocks with different migratetypes 1024 * at split_pfn_offset within the page. The split free page will be put into 1025 * separate migratetype lists afterwards. Otherwise, the function achieves 1026 * nothing. 1027 */ 1028 int split_free_page(struct page *free_page, 1029 unsigned int order, unsigned long split_pfn_offset) 1030 { 1031 struct zone *zone = page_zone(free_page); 1032 unsigned long free_page_pfn = page_to_pfn(free_page); 1033 unsigned long pfn; 1034 unsigned long flags; 1035 int free_page_order; 1036 int mt; 1037 int ret = 0; 1038 1039 if (split_pfn_offset == 0) 1040 return ret; 1041 1042 spin_lock_irqsave(&zone->lock, flags); 1043 1044 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1045 ret = -ENOENT; 1046 goto out; 1047 } 1048 1049 mt = get_pageblock_migratetype(free_page); 1050 if (likely(!is_migrate_isolate(mt))) 1051 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1052 1053 del_page_from_free_list(free_page, zone, order); 1054 for (pfn = free_page_pfn; 1055 pfn < free_page_pfn + (1UL << order);) { 1056 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1057 1058 free_page_order = min_t(unsigned int, 1059 pfn ? __ffs(pfn) : order, 1060 __fls(split_pfn_offset)); 1061 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1062 mt, FPI_NONE); 1063 pfn += 1UL << free_page_order; 1064 split_pfn_offset -= (1UL << free_page_order); 1065 /* we have done the first part, now switch to second part */ 1066 if (split_pfn_offset == 0) 1067 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1068 } 1069 out: 1070 spin_unlock_irqrestore(&zone->lock, flags); 1071 return ret; 1072 } 1073 /* 1074 * A bad page could be due to a number of fields. Instead of multiple branches, 1075 * try and check multiple fields with one check. The caller must do a detailed 1076 * check if necessary. 1077 */ 1078 static inline bool page_expected_state(struct page *page, 1079 unsigned long check_flags) 1080 { 1081 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1082 return false; 1083 1084 if (unlikely((unsigned long)page->mapping | 1085 page_ref_count(page) | 1086 #ifdef CONFIG_MEMCG 1087 page->memcg_data | 1088 #endif 1089 (page->flags & check_flags))) 1090 return false; 1091 1092 return true; 1093 } 1094 1095 static const char *page_bad_reason(struct page *page, unsigned long flags) 1096 { 1097 const char *bad_reason = NULL; 1098 1099 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1100 bad_reason = "nonzero mapcount"; 1101 if (unlikely(page->mapping != NULL)) 1102 bad_reason = "non-NULL mapping"; 1103 if (unlikely(page_ref_count(page) != 0)) 1104 bad_reason = "nonzero _refcount"; 1105 if (unlikely(page->flags & flags)) { 1106 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1107 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1108 else 1109 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1110 } 1111 #ifdef CONFIG_MEMCG 1112 if (unlikely(page->memcg_data)) 1113 bad_reason = "page still charged to cgroup"; 1114 #endif 1115 return bad_reason; 1116 } 1117 1118 static void free_page_is_bad_report(struct page *page) 1119 { 1120 bad_page(page, 1121 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1122 } 1123 1124 static inline bool free_page_is_bad(struct page *page) 1125 { 1126 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1127 return false; 1128 1129 /* Something has gone sideways, find it */ 1130 free_page_is_bad_report(page); 1131 return true; 1132 } 1133 1134 static int free_tail_page_prepare(struct page *head_page, struct page *page) 1135 { 1136 struct folio *folio = (struct folio *)head_page; 1137 int ret = 1; 1138 1139 /* 1140 * We rely page->lru.next never has bit 0 set, unless the page 1141 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1142 */ 1143 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1144 1145 if (!static_branch_unlikely(&check_pages_enabled)) { 1146 ret = 0; 1147 goto out; 1148 } 1149 switch (page - head_page) { 1150 case 1: 1151 /* the first tail page: these may be in place of ->mapping */ 1152 if (unlikely(folio_entire_mapcount(folio))) { 1153 bad_page(page, "nonzero entire_mapcount"); 1154 goto out; 1155 } 1156 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1157 bad_page(page, "nonzero nr_pages_mapped"); 1158 goto out; 1159 } 1160 if (unlikely(atomic_read(&folio->_pincount))) { 1161 bad_page(page, "nonzero pincount"); 1162 goto out; 1163 } 1164 break; 1165 case 2: 1166 /* 1167 * the second tail page: ->mapping is 1168 * deferred_list.next -- ignore value. 1169 */ 1170 break; 1171 default: 1172 if (page->mapping != TAIL_MAPPING) { 1173 bad_page(page, "corrupted mapping in tail page"); 1174 goto out; 1175 } 1176 break; 1177 } 1178 if (unlikely(!PageTail(page))) { 1179 bad_page(page, "PageTail not set"); 1180 goto out; 1181 } 1182 if (unlikely(compound_head(page) != head_page)) { 1183 bad_page(page, "compound_head not consistent"); 1184 goto out; 1185 } 1186 ret = 0; 1187 out: 1188 page->mapping = NULL; 1189 clear_compound_head(page); 1190 return ret; 1191 } 1192 1193 /* 1194 * Skip KASAN memory poisoning when either: 1195 * 1196 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1197 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1198 * using page tags instead (see below). 1199 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1200 * that error detection is disabled for accesses via the page address. 1201 * 1202 * Pages will have match-all tags in the following circumstances: 1203 * 1204 * 1. Pages are being initialized for the first time, including during deferred 1205 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1206 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1207 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1208 * 3. The allocation was excluded from being checked due to sampling, 1209 * see the call to kasan_unpoison_pages. 1210 * 1211 * Poisoning pages during deferred memory init will greatly lengthen the 1212 * process and cause problem in large memory systems as the deferred pages 1213 * initialization is done with interrupt disabled. 1214 * 1215 * Assuming that there will be no reference to those newly initialized 1216 * pages before they are ever allocated, this should have no effect on 1217 * KASAN memory tracking as the poison will be properly inserted at page 1218 * allocation time. The only corner case is when pages are allocated by 1219 * on-demand allocation and then freed again before the deferred pages 1220 * initialization is done, but this is not likely to happen. 1221 */ 1222 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1223 { 1224 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1225 return deferred_pages_enabled(); 1226 1227 return page_kasan_tag(page) == 0xff; 1228 } 1229 1230 static void kernel_init_pages(struct page *page, int numpages) 1231 { 1232 int i; 1233 1234 /* s390's use of memset() could override KASAN redzones. */ 1235 kasan_disable_current(); 1236 for (i = 0; i < numpages; i++) 1237 clear_highpage_kasan_tagged(page + i); 1238 kasan_enable_current(); 1239 } 1240 1241 static __always_inline bool free_pages_prepare(struct page *page, 1242 unsigned int order, fpi_t fpi_flags) 1243 { 1244 int bad = 0; 1245 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1246 bool init = want_init_on_free(); 1247 1248 VM_BUG_ON_PAGE(PageTail(page), page); 1249 1250 trace_mm_page_free(page, order); 1251 kmsan_free_page(page, order); 1252 1253 if (unlikely(PageHWPoison(page)) && !order) { 1254 /* 1255 * Do not let hwpoison pages hit pcplists/buddy 1256 * Untie memcg state and reset page's owner 1257 */ 1258 if (memcg_kmem_online() && PageMemcgKmem(page)) 1259 __memcg_kmem_uncharge_page(page, order); 1260 reset_page_owner(page, order); 1261 page_table_check_free(page, order); 1262 return false; 1263 } 1264 1265 /* 1266 * Check tail pages before head page information is cleared to 1267 * avoid checking PageCompound for order-0 pages. 1268 */ 1269 if (unlikely(order)) { 1270 bool compound = PageCompound(page); 1271 int i; 1272 1273 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1274 1275 if (compound) 1276 ClearPageHasHWPoisoned(page); 1277 for (i = 1; i < (1 << order); i++) { 1278 if (compound) 1279 bad += free_tail_page_prepare(page, page + i); 1280 if (is_check_pages_enabled()) { 1281 if (free_page_is_bad(page + i)) { 1282 bad++; 1283 continue; 1284 } 1285 } 1286 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1287 } 1288 } 1289 if (PageMappingFlags(page)) 1290 page->mapping = NULL; 1291 if (memcg_kmem_online() && PageMemcgKmem(page)) 1292 __memcg_kmem_uncharge_page(page, order); 1293 if (is_check_pages_enabled()) { 1294 if (free_page_is_bad(page)) 1295 bad++; 1296 if (bad) 1297 return false; 1298 } 1299 1300 page_cpupid_reset_last(page); 1301 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1302 reset_page_owner(page, order); 1303 page_table_check_free(page, order); 1304 1305 if (!PageHighMem(page)) { 1306 debug_check_no_locks_freed(page_address(page), 1307 PAGE_SIZE << order); 1308 debug_check_no_obj_freed(page_address(page), 1309 PAGE_SIZE << order); 1310 } 1311 1312 kernel_poison_pages(page, 1 << order); 1313 1314 /* 1315 * As memory initialization might be integrated into KASAN, 1316 * KASAN poisoning and memory initialization code must be 1317 * kept together to avoid discrepancies in behavior. 1318 * 1319 * With hardware tag-based KASAN, memory tags must be set before the 1320 * page becomes unavailable via debug_pagealloc or arch_free_page. 1321 */ 1322 if (!skip_kasan_poison) { 1323 kasan_poison_pages(page, order, init); 1324 1325 /* Memory is already initialized if KASAN did it internally. */ 1326 if (kasan_has_integrated_init()) 1327 init = false; 1328 } 1329 if (init) 1330 kernel_init_pages(page, 1 << order); 1331 1332 /* 1333 * arch_free_page() can make the page's contents inaccessible. s390 1334 * does this. So nothing which can access the page's contents should 1335 * happen after this. 1336 */ 1337 arch_free_page(page, order); 1338 1339 debug_pagealloc_unmap_pages(page, 1 << order); 1340 1341 return true; 1342 } 1343 1344 /* 1345 * Frees a number of pages from the PCP lists 1346 * Assumes all pages on list are in same zone. 1347 * count is the number of pages to free. 1348 */ 1349 static void free_pcppages_bulk(struct zone *zone, int count, 1350 struct per_cpu_pages *pcp, 1351 int pindex) 1352 { 1353 unsigned long flags; 1354 int min_pindex = 0; 1355 int max_pindex = NR_PCP_LISTS - 1; 1356 unsigned int order; 1357 bool isolated_pageblocks; 1358 struct page *page; 1359 1360 /* 1361 * Ensure proper count is passed which otherwise would stuck in the 1362 * below while (list_empty(list)) loop. 1363 */ 1364 count = min(pcp->count, count); 1365 1366 /* Ensure requested pindex is drained first. */ 1367 pindex = pindex - 1; 1368 1369 spin_lock_irqsave(&zone->lock, flags); 1370 isolated_pageblocks = has_isolate_pageblock(zone); 1371 1372 while (count > 0) { 1373 struct list_head *list; 1374 int nr_pages; 1375 1376 /* Remove pages from lists in a round-robin fashion. */ 1377 do { 1378 if (++pindex > max_pindex) 1379 pindex = min_pindex; 1380 list = &pcp->lists[pindex]; 1381 if (!list_empty(list)) 1382 break; 1383 1384 if (pindex == max_pindex) 1385 max_pindex--; 1386 if (pindex == min_pindex) 1387 min_pindex++; 1388 } while (1); 1389 1390 order = pindex_to_order(pindex); 1391 nr_pages = 1 << order; 1392 do { 1393 int mt; 1394 1395 page = list_last_entry(list, struct page, pcp_list); 1396 mt = get_pcppage_migratetype(page); 1397 1398 /* must delete to avoid corrupting pcp list */ 1399 list_del(&page->pcp_list); 1400 count -= nr_pages; 1401 pcp->count -= nr_pages; 1402 1403 /* MIGRATE_ISOLATE page should not go to pcplists */ 1404 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1405 /* Pageblock could have been isolated meanwhile */ 1406 if (unlikely(isolated_pageblocks)) 1407 mt = get_pageblock_migratetype(page); 1408 1409 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1410 trace_mm_page_pcpu_drain(page, order, mt); 1411 } while (count > 0 && !list_empty(list)); 1412 } 1413 1414 spin_unlock_irqrestore(&zone->lock, flags); 1415 } 1416 1417 static void free_one_page(struct zone *zone, 1418 struct page *page, unsigned long pfn, 1419 unsigned int order, 1420 int migratetype, fpi_t fpi_flags) 1421 { 1422 unsigned long flags; 1423 1424 spin_lock_irqsave(&zone->lock, flags); 1425 if (unlikely(has_isolate_pageblock(zone) || 1426 is_migrate_isolate(migratetype))) { 1427 migratetype = get_pfnblock_migratetype(page, pfn); 1428 } 1429 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1430 spin_unlock_irqrestore(&zone->lock, flags); 1431 } 1432 1433 static void __free_pages_ok(struct page *page, unsigned int order, 1434 fpi_t fpi_flags) 1435 { 1436 unsigned long flags; 1437 int migratetype; 1438 unsigned long pfn = page_to_pfn(page); 1439 struct zone *zone = page_zone(page); 1440 1441 if (!free_pages_prepare(page, order, fpi_flags)) 1442 return; 1443 1444 /* 1445 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1446 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1447 * This will reduce the lock holding time. 1448 */ 1449 migratetype = get_pfnblock_migratetype(page, pfn); 1450 1451 spin_lock_irqsave(&zone->lock, flags); 1452 if (unlikely(has_isolate_pageblock(zone) || 1453 is_migrate_isolate(migratetype))) { 1454 migratetype = get_pfnblock_migratetype(page, pfn); 1455 } 1456 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1457 spin_unlock_irqrestore(&zone->lock, flags); 1458 1459 __count_vm_events(PGFREE, 1 << order); 1460 } 1461 1462 void __free_pages_core(struct page *page, unsigned int order) 1463 { 1464 unsigned int nr_pages = 1 << order; 1465 struct page *p = page; 1466 unsigned int loop; 1467 1468 /* 1469 * When initializing the memmap, __init_single_page() sets the refcount 1470 * of all pages to 1 ("allocated"/"not free"). We have to set the 1471 * refcount of all involved pages to 0. 1472 */ 1473 prefetchw(p); 1474 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1475 prefetchw(p + 1); 1476 __ClearPageReserved(p); 1477 set_page_count(p, 0); 1478 } 1479 __ClearPageReserved(p); 1480 set_page_count(p, 0); 1481 1482 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1483 1484 /* 1485 * Bypass PCP and place fresh pages right to the tail, primarily 1486 * relevant for memory onlining. 1487 */ 1488 __free_pages_ok(page, order, FPI_TO_TAIL); 1489 } 1490 1491 /* 1492 * Check that the whole (or subset of) a pageblock given by the interval of 1493 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1494 * with the migration of free compaction scanner. 1495 * 1496 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1497 * 1498 * It's possible on some configurations to have a setup like node0 node1 node0 1499 * i.e. it's possible that all pages within a zones range of pages do not 1500 * belong to a single zone. We assume that a border between node0 and node1 1501 * can occur within a single pageblock, but not a node0 node1 node0 1502 * interleaving within a single pageblock. It is therefore sufficient to check 1503 * the first and last page of a pageblock and avoid checking each individual 1504 * page in a pageblock. 1505 */ 1506 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1507 unsigned long end_pfn, struct zone *zone) 1508 { 1509 struct page *start_page; 1510 struct page *end_page; 1511 1512 /* end_pfn is one past the range we are checking */ 1513 end_pfn--; 1514 1515 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1516 return NULL; 1517 1518 start_page = pfn_to_online_page(start_pfn); 1519 if (!start_page) 1520 return NULL; 1521 1522 if (page_zone(start_page) != zone) 1523 return NULL; 1524 1525 end_page = pfn_to_page(end_pfn); 1526 1527 /* This gives a shorter code than deriving page_zone(end_page) */ 1528 if (page_zone_id(start_page) != page_zone_id(end_page)) 1529 return NULL; 1530 1531 return start_page; 1532 } 1533 1534 void set_zone_contiguous(struct zone *zone) 1535 { 1536 unsigned long block_start_pfn = zone->zone_start_pfn; 1537 unsigned long block_end_pfn; 1538 1539 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1540 for (; block_start_pfn < zone_end_pfn(zone); 1541 block_start_pfn = block_end_pfn, 1542 block_end_pfn += pageblock_nr_pages) { 1543 1544 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1545 1546 if (!__pageblock_pfn_to_page(block_start_pfn, 1547 block_end_pfn, zone)) 1548 return; 1549 cond_resched(); 1550 } 1551 1552 /* We confirm that there is no hole */ 1553 zone->contiguous = true; 1554 } 1555 1556 void clear_zone_contiguous(struct zone *zone) 1557 { 1558 zone->contiguous = false; 1559 } 1560 1561 /* 1562 * The order of subdivision here is critical for the IO subsystem. 1563 * Please do not alter this order without good reasons and regression 1564 * testing. Specifically, as large blocks of memory are subdivided, 1565 * the order in which smaller blocks are delivered depends on the order 1566 * they're subdivided in this function. This is the primary factor 1567 * influencing the order in which pages are delivered to the IO 1568 * subsystem according to empirical testing, and this is also justified 1569 * by considering the behavior of a buddy system containing a single 1570 * large block of memory acted on by a series of small allocations. 1571 * This behavior is a critical factor in sglist merging's success. 1572 * 1573 * -- nyc 1574 */ 1575 static inline void expand(struct zone *zone, struct page *page, 1576 int low, int high, int migratetype) 1577 { 1578 unsigned long size = 1 << high; 1579 1580 while (high > low) { 1581 high--; 1582 size >>= 1; 1583 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1584 1585 /* 1586 * Mark as guard pages (or page), that will allow to 1587 * merge back to allocator when buddy will be freed. 1588 * Corresponding page table entries will not be touched, 1589 * pages will stay not present in virtual address space 1590 */ 1591 if (set_page_guard(zone, &page[size], high, migratetype)) 1592 continue; 1593 1594 add_to_free_list(&page[size], zone, high, migratetype); 1595 set_buddy_order(&page[size], high); 1596 } 1597 } 1598 1599 static void check_new_page_bad(struct page *page) 1600 { 1601 if (unlikely(page->flags & __PG_HWPOISON)) { 1602 /* Don't complain about hwpoisoned pages */ 1603 page_mapcount_reset(page); /* remove PageBuddy */ 1604 return; 1605 } 1606 1607 bad_page(page, 1608 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1609 } 1610 1611 /* 1612 * This page is about to be returned from the page allocator 1613 */ 1614 static int check_new_page(struct page *page) 1615 { 1616 if (likely(page_expected_state(page, 1617 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1618 return 0; 1619 1620 check_new_page_bad(page); 1621 return 1; 1622 } 1623 1624 static inline bool check_new_pages(struct page *page, unsigned int order) 1625 { 1626 if (is_check_pages_enabled()) { 1627 for (int i = 0; i < (1 << order); i++) { 1628 struct page *p = page + i; 1629 1630 if (check_new_page(p)) 1631 return true; 1632 } 1633 } 1634 1635 return false; 1636 } 1637 1638 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1639 { 1640 /* Don't skip if a software KASAN mode is enabled. */ 1641 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1642 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1643 return false; 1644 1645 /* Skip, if hardware tag-based KASAN is not enabled. */ 1646 if (!kasan_hw_tags_enabled()) 1647 return true; 1648 1649 /* 1650 * With hardware tag-based KASAN enabled, skip if this has been 1651 * requested via __GFP_SKIP_KASAN. 1652 */ 1653 return flags & __GFP_SKIP_KASAN; 1654 } 1655 1656 static inline bool should_skip_init(gfp_t flags) 1657 { 1658 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1659 if (!kasan_hw_tags_enabled()) 1660 return false; 1661 1662 /* For hardware tag-based KASAN, skip if requested. */ 1663 return (flags & __GFP_SKIP_ZERO); 1664 } 1665 1666 inline void post_alloc_hook(struct page *page, unsigned int order, 1667 gfp_t gfp_flags) 1668 { 1669 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1670 !should_skip_init(gfp_flags); 1671 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1672 int i; 1673 1674 set_page_private(page, 0); 1675 set_page_refcounted(page); 1676 1677 arch_alloc_page(page, order); 1678 debug_pagealloc_map_pages(page, 1 << order); 1679 1680 /* 1681 * Page unpoisoning must happen before memory initialization. 1682 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1683 * allocations and the page unpoisoning code will complain. 1684 */ 1685 kernel_unpoison_pages(page, 1 << order); 1686 1687 /* 1688 * As memory initialization might be integrated into KASAN, 1689 * KASAN unpoisoning and memory initializion code must be 1690 * kept together to avoid discrepancies in behavior. 1691 */ 1692 1693 /* 1694 * If memory tags should be zeroed 1695 * (which happens only when memory should be initialized as well). 1696 */ 1697 if (zero_tags) { 1698 /* Initialize both memory and memory tags. */ 1699 for (i = 0; i != 1 << order; ++i) 1700 tag_clear_highpage(page + i); 1701 1702 /* Take note that memory was initialized by the loop above. */ 1703 init = false; 1704 } 1705 if (!should_skip_kasan_unpoison(gfp_flags) && 1706 kasan_unpoison_pages(page, order, init)) { 1707 /* Take note that memory was initialized by KASAN. */ 1708 if (kasan_has_integrated_init()) 1709 init = false; 1710 } else { 1711 /* 1712 * If memory tags have not been set by KASAN, reset the page 1713 * tags to ensure page_address() dereferencing does not fault. 1714 */ 1715 for (i = 0; i != 1 << order; ++i) 1716 page_kasan_tag_reset(page + i); 1717 } 1718 /* If memory is still not initialized, initialize it now. */ 1719 if (init) 1720 kernel_init_pages(page, 1 << order); 1721 1722 set_page_owner(page, order, gfp_flags); 1723 page_table_check_alloc(page, order); 1724 } 1725 1726 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1727 unsigned int alloc_flags) 1728 { 1729 post_alloc_hook(page, order, gfp_flags); 1730 1731 if (order && (gfp_flags & __GFP_COMP)) 1732 prep_compound_page(page, order); 1733 1734 /* 1735 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1736 * allocate the page. The expectation is that the caller is taking 1737 * steps that will free more memory. The caller should avoid the page 1738 * being used for !PFMEMALLOC purposes. 1739 */ 1740 if (alloc_flags & ALLOC_NO_WATERMARKS) 1741 set_page_pfmemalloc(page); 1742 else 1743 clear_page_pfmemalloc(page); 1744 } 1745 1746 /* 1747 * Go through the free lists for the given migratetype and remove 1748 * the smallest available page from the freelists 1749 */ 1750 static __always_inline 1751 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1752 int migratetype) 1753 { 1754 unsigned int current_order; 1755 struct free_area *area; 1756 struct page *page; 1757 1758 /* Find a page of the appropriate size in the preferred list */ 1759 for (current_order = order; current_order <= MAX_ORDER; ++current_order) { 1760 area = &(zone->free_area[current_order]); 1761 page = get_page_from_free_area(area, migratetype); 1762 if (!page) 1763 continue; 1764 del_page_from_free_list(page, zone, current_order); 1765 expand(zone, page, order, current_order, migratetype); 1766 set_pcppage_migratetype(page, migratetype); 1767 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1768 pcp_allowed_order(order) && 1769 migratetype < MIGRATE_PCPTYPES); 1770 return page; 1771 } 1772 1773 return NULL; 1774 } 1775 1776 1777 /* 1778 * This array describes the order lists are fallen back to when 1779 * the free lists for the desirable migrate type are depleted 1780 * 1781 * The other migratetypes do not have fallbacks. 1782 */ 1783 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1784 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1785 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1786 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1787 }; 1788 1789 #ifdef CONFIG_CMA 1790 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1791 unsigned int order) 1792 { 1793 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1794 } 1795 #else 1796 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1797 unsigned int order) { return NULL; } 1798 #endif 1799 1800 /* 1801 * Move the free pages in a range to the freelist tail of the requested type. 1802 * Note that start_page and end_pages are not aligned on a pageblock 1803 * boundary. If alignment is required, use move_freepages_block() 1804 */ 1805 static int move_freepages(struct zone *zone, 1806 unsigned long start_pfn, unsigned long end_pfn, 1807 int migratetype, int *num_movable) 1808 { 1809 struct page *page; 1810 unsigned long pfn; 1811 unsigned int order; 1812 int pages_moved = 0; 1813 1814 for (pfn = start_pfn; pfn <= end_pfn;) { 1815 page = pfn_to_page(pfn); 1816 if (!PageBuddy(page)) { 1817 /* 1818 * We assume that pages that could be isolated for 1819 * migration are movable. But we don't actually try 1820 * isolating, as that would be expensive. 1821 */ 1822 if (num_movable && 1823 (PageLRU(page) || __PageMovable(page))) 1824 (*num_movable)++; 1825 pfn++; 1826 continue; 1827 } 1828 1829 /* Make sure we are not inadvertently changing nodes */ 1830 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1831 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1832 1833 order = buddy_order(page); 1834 move_to_free_list(page, zone, order, migratetype); 1835 pfn += 1 << order; 1836 pages_moved += 1 << order; 1837 } 1838 1839 return pages_moved; 1840 } 1841 1842 int move_freepages_block(struct zone *zone, struct page *page, 1843 int migratetype, int *num_movable) 1844 { 1845 unsigned long start_pfn, end_pfn, pfn; 1846 1847 if (num_movable) 1848 *num_movable = 0; 1849 1850 pfn = page_to_pfn(page); 1851 start_pfn = pageblock_start_pfn(pfn); 1852 end_pfn = pageblock_end_pfn(pfn) - 1; 1853 1854 /* Do not cross zone boundaries */ 1855 if (!zone_spans_pfn(zone, start_pfn)) 1856 start_pfn = pfn; 1857 if (!zone_spans_pfn(zone, end_pfn)) 1858 return 0; 1859 1860 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1861 num_movable); 1862 } 1863 1864 static void change_pageblock_range(struct page *pageblock_page, 1865 int start_order, int migratetype) 1866 { 1867 int nr_pageblocks = 1 << (start_order - pageblock_order); 1868 1869 while (nr_pageblocks--) { 1870 set_pageblock_migratetype(pageblock_page, migratetype); 1871 pageblock_page += pageblock_nr_pages; 1872 } 1873 } 1874 1875 /* 1876 * When we are falling back to another migratetype during allocation, try to 1877 * steal extra free pages from the same pageblocks to satisfy further 1878 * allocations, instead of polluting multiple pageblocks. 1879 * 1880 * If we are stealing a relatively large buddy page, it is likely there will 1881 * be more free pages in the pageblock, so try to steal them all. For 1882 * reclaimable and unmovable allocations, we steal regardless of page size, 1883 * as fragmentation caused by those allocations polluting movable pageblocks 1884 * is worse than movable allocations stealing from unmovable and reclaimable 1885 * pageblocks. 1886 */ 1887 static bool can_steal_fallback(unsigned int order, int start_mt) 1888 { 1889 /* 1890 * Leaving this order check is intended, although there is 1891 * relaxed order check in next check. The reason is that 1892 * we can actually steal whole pageblock if this condition met, 1893 * but, below check doesn't guarantee it and that is just heuristic 1894 * so could be changed anytime. 1895 */ 1896 if (order >= pageblock_order) 1897 return true; 1898 1899 if (order >= pageblock_order / 2 || 1900 start_mt == MIGRATE_RECLAIMABLE || 1901 start_mt == MIGRATE_UNMOVABLE || 1902 page_group_by_mobility_disabled) 1903 return true; 1904 1905 return false; 1906 } 1907 1908 static inline bool boost_watermark(struct zone *zone) 1909 { 1910 unsigned long max_boost; 1911 1912 if (!watermark_boost_factor) 1913 return false; 1914 /* 1915 * Don't bother in zones that are unlikely to produce results. 1916 * On small machines, including kdump capture kernels running 1917 * in a small area, boosting the watermark can cause an out of 1918 * memory situation immediately. 1919 */ 1920 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1921 return false; 1922 1923 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1924 watermark_boost_factor, 10000); 1925 1926 /* 1927 * high watermark may be uninitialised if fragmentation occurs 1928 * very early in boot so do not boost. We do not fall 1929 * through and boost by pageblock_nr_pages as failing 1930 * allocations that early means that reclaim is not going 1931 * to help and it may even be impossible to reclaim the 1932 * boosted watermark resulting in a hang. 1933 */ 1934 if (!max_boost) 1935 return false; 1936 1937 max_boost = max(pageblock_nr_pages, max_boost); 1938 1939 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1940 max_boost); 1941 1942 return true; 1943 } 1944 1945 /* 1946 * This function implements actual steal behaviour. If order is large enough, 1947 * we can steal whole pageblock. If not, we first move freepages in this 1948 * pageblock to our migratetype and determine how many already-allocated pages 1949 * are there in the pageblock with a compatible migratetype. If at least half 1950 * of pages are free or compatible, we can change migratetype of the pageblock 1951 * itself, so pages freed in the future will be put on the correct free list. 1952 */ 1953 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1954 unsigned int alloc_flags, int start_type, bool whole_block) 1955 { 1956 unsigned int current_order = buddy_order(page); 1957 int free_pages, movable_pages, alike_pages; 1958 int old_block_type; 1959 1960 old_block_type = get_pageblock_migratetype(page); 1961 1962 /* 1963 * This can happen due to races and we want to prevent broken 1964 * highatomic accounting. 1965 */ 1966 if (is_migrate_highatomic(old_block_type)) 1967 goto single_page; 1968 1969 /* Take ownership for orders >= pageblock_order */ 1970 if (current_order >= pageblock_order) { 1971 change_pageblock_range(page, current_order, start_type); 1972 goto single_page; 1973 } 1974 1975 /* 1976 * Boost watermarks to increase reclaim pressure to reduce the 1977 * likelihood of future fallbacks. Wake kswapd now as the node 1978 * may be balanced overall and kswapd will not wake naturally. 1979 */ 1980 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1981 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1982 1983 /* We are not allowed to try stealing from the whole block */ 1984 if (!whole_block) 1985 goto single_page; 1986 1987 free_pages = move_freepages_block(zone, page, start_type, 1988 &movable_pages); 1989 /* 1990 * Determine how many pages are compatible with our allocation. 1991 * For movable allocation, it's the number of movable pages which 1992 * we just obtained. For other types it's a bit more tricky. 1993 */ 1994 if (start_type == MIGRATE_MOVABLE) { 1995 alike_pages = movable_pages; 1996 } else { 1997 /* 1998 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1999 * to MOVABLE pageblock, consider all non-movable pages as 2000 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2001 * vice versa, be conservative since we can't distinguish the 2002 * exact migratetype of non-movable pages. 2003 */ 2004 if (old_block_type == MIGRATE_MOVABLE) 2005 alike_pages = pageblock_nr_pages 2006 - (free_pages + movable_pages); 2007 else 2008 alike_pages = 0; 2009 } 2010 2011 /* moving whole block can fail due to zone boundary conditions */ 2012 if (!free_pages) 2013 goto single_page; 2014 2015 /* 2016 * If a sufficient number of pages in the block are either free or of 2017 * comparable migratability as our allocation, claim the whole block. 2018 */ 2019 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2020 page_group_by_mobility_disabled) 2021 set_pageblock_migratetype(page, start_type); 2022 2023 return; 2024 2025 single_page: 2026 move_to_free_list(page, zone, current_order, start_type); 2027 } 2028 2029 /* 2030 * Check whether there is a suitable fallback freepage with requested order. 2031 * If only_stealable is true, this function returns fallback_mt only if 2032 * we can steal other freepages all together. This would help to reduce 2033 * fragmentation due to mixed migratetype pages in one pageblock. 2034 */ 2035 int find_suitable_fallback(struct free_area *area, unsigned int order, 2036 int migratetype, bool only_stealable, bool *can_steal) 2037 { 2038 int i; 2039 int fallback_mt; 2040 2041 if (area->nr_free == 0) 2042 return -1; 2043 2044 *can_steal = false; 2045 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2046 fallback_mt = fallbacks[migratetype][i]; 2047 if (free_area_empty(area, fallback_mt)) 2048 continue; 2049 2050 if (can_steal_fallback(order, migratetype)) 2051 *can_steal = true; 2052 2053 if (!only_stealable) 2054 return fallback_mt; 2055 2056 if (*can_steal) 2057 return fallback_mt; 2058 } 2059 2060 return -1; 2061 } 2062 2063 /* 2064 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2065 * there are no empty page blocks that contain a page with a suitable order 2066 */ 2067 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2068 unsigned int alloc_order) 2069 { 2070 int mt; 2071 unsigned long max_managed, flags; 2072 2073 /* 2074 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2075 * Check is race-prone but harmless. 2076 */ 2077 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2078 if (zone->nr_reserved_highatomic >= max_managed) 2079 return; 2080 2081 spin_lock_irqsave(&zone->lock, flags); 2082 2083 /* Recheck the nr_reserved_highatomic limit under the lock */ 2084 if (zone->nr_reserved_highatomic >= max_managed) 2085 goto out_unlock; 2086 2087 /* Yoink! */ 2088 mt = get_pageblock_migratetype(page); 2089 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2090 if (migratetype_is_mergeable(mt)) { 2091 zone->nr_reserved_highatomic += pageblock_nr_pages; 2092 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2093 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2094 } 2095 2096 out_unlock: 2097 spin_unlock_irqrestore(&zone->lock, flags); 2098 } 2099 2100 /* 2101 * Used when an allocation is about to fail under memory pressure. This 2102 * potentially hurts the reliability of high-order allocations when under 2103 * intense memory pressure but failed atomic allocations should be easier 2104 * to recover from than an OOM. 2105 * 2106 * If @force is true, try to unreserve a pageblock even though highatomic 2107 * pageblock is exhausted. 2108 */ 2109 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2110 bool force) 2111 { 2112 struct zonelist *zonelist = ac->zonelist; 2113 unsigned long flags; 2114 struct zoneref *z; 2115 struct zone *zone; 2116 struct page *page; 2117 int order; 2118 bool ret; 2119 2120 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2121 ac->nodemask) { 2122 /* 2123 * Preserve at least one pageblock unless memory pressure 2124 * is really high. 2125 */ 2126 if (!force && zone->nr_reserved_highatomic <= 2127 pageblock_nr_pages) 2128 continue; 2129 2130 spin_lock_irqsave(&zone->lock, flags); 2131 for (order = 0; order <= MAX_ORDER; order++) { 2132 struct free_area *area = &(zone->free_area[order]); 2133 2134 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2135 if (!page) 2136 continue; 2137 2138 /* 2139 * In page freeing path, migratetype change is racy so 2140 * we can counter several free pages in a pageblock 2141 * in this loop although we changed the pageblock type 2142 * from highatomic to ac->migratetype. So we should 2143 * adjust the count once. 2144 */ 2145 if (is_migrate_highatomic_page(page)) { 2146 /* 2147 * It should never happen but changes to 2148 * locking could inadvertently allow a per-cpu 2149 * drain to add pages to MIGRATE_HIGHATOMIC 2150 * while unreserving so be safe and watch for 2151 * underflows. 2152 */ 2153 zone->nr_reserved_highatomic -= min( 2154 pageblock_nr_pages, 2155 zone->nr_reserved_highatomic); 2156 } 2157 2158 /* 2159 * Convert to ac->migratetype and avoid the normal 2160 * pageblock stealing heuristics. Minimally, the caller 2161 * is doing the work and needs the pages. More 2162 * importantly, if the block was always converted to 2163 * MIGRATE_UNMOVABLE or another type then the number 2164 * of pageblocks that cannot be completely freed 2165 * may increase. 2166 */ 2167 set_pageblock_migratetype(page, ac->migratetype); 2168 ret = move_freepages_block(zone, page, ac->migratetype, 2169 NULL); 2170 if (ret) { 2171 spin_unlock_irqrestore(&zone->lock, flags); 2172 return ret; 2173 } 2174 } 2175 spin_unlock_irqrestore(&zone->lock, flags); 2176 } 2177 2178 return false; 2179 } 2180 2181 /* 2182 * Try finding a free buddy page on the fallback list and put it on the free 2183 * list of requested migratetype, possibly along with other pages from the same 2184 * block, depending on fragmentation avoidance heuristics. Returns true if 2185 * fallback was found so that __rmqueue_smallest() can grab it. 2186 * 2187 * The use of signed ints for order and current_order is a deliberate 2188 * deviation from the rest of this file, to make the for loop 2189 * condition simpler. 2190 */ 2191 static __always_inline bool 2192 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2193 unsigned int alloc_flags) 2194 { 2195 struct free_area *area; 2196 int current_order; 2197 int min_order = order; 2198 struct page *page; 2199 int fallback_mt; 2200 bool can_steal; 2201 2202 /* 2203 * Do not steal pages from freelists belonging to other pageblocks 2204 * i.e. orders < pageblock_order. If there are no local zones free, 2205 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2206 */ 2207 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2208 min_order = pageblock_order; 2209 2210 /* 2211 * Find the largest available free page in the other list. This roughly 2212 * approximates finding the pageblock with the most free pages, which 2213 * would be too costly to do exactly. 2214 */ 2215 for (current_order = MAX_ORDER; current_order >= min_order; 2216 --current_order) { 2217 area = &(zone->free_area[current_order]); 2218 fallback_mt = find_suitable_fallback(area, current_order, 2219 start_migratetype, false, &can_steal); 2220 if (fallback_mt == -1) 2221 continue; 2222 2223 /* 2224 * We cannot steal all free pages from the pageblock and the 2225 * requested migratetype is movable. In that case it's better to 2226 * steal and split the smallest available page instead of the 2227 * largest available page, because even if the next movable 2228 * allocation falls back into a different pageblock than this 2229 * one, it won't cause permanent fragmentation. 2230 */ 2231 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2232 && current_order > order) 2233 goto find_smallest; 2234 2235 goto do_steal; 2236 } 2237 2238 return false; 2239 2240 find_smallest: 2241 for (current_order = order; current_order <= MAX_ORDER; 2242 current_order++) { 2243 area = &(zone->free_area[current_order]); 2244 fallback_mt = find_suitable_fallback(area, current_order, 2245 start_migratetype, false, &can_steal); 2246 if (fallback_mt != -1) 2247 break; 2248 } 2249 2250 /* 2251 * This should not happen - we already found a suitable fallback 2252 * when looking for the largest page. 2253 */ 2254 VM_BUG_ON(current_order > MAX_ORDER); 2255 2256 do_steal: 2257 page = get_page_from_free_area(area, fallback_mt); 2258 2259 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2260 can_steal); 2261 2262 trace_mm_page_alloc_extfrag(page, order, current_order, 2263 start_migratetype, fallback_mt); 2264 2265 return true; 2266 2267 } 2268 2269 /* 2270 * Do the hard work of removing an element from the buddy allocator. 2271 * Call me with the zone->lock already held. 2272 */ 2273 static __always_inline struct page * 2274 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2275 unsigned int alloc_flags) 2276 { 2277 struct page *page; 2278 2279 if (IS_ENABLED(CONFIG_CMA)) { 2280 /* 2281 * Balance movable allocations between regular and CMA areas by 2282 * allocating from CMA when over half of the zone's free memory 2283 * is in the CMA area. 2284 */ 2285 if (alloc_flags & ALLOC_CMA && 2286 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2287 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2288 page = __rmqueue_cma_fallback(zone, order); 2289 if (page) 2290 return page; 2291 } 2292 } 2293 retry: 2294 page = __rmqueue_smallest(zone, order, migratetype); 2295 if (unlikely(!page)) { 2296 if (alloc_flags & ALLOC_CMA) 2297 page = __rmqueue_cma_fallback(zone, order); 2298 2299 if (!page && __rmqueue_fallback(zone, order, migratetype, 2300 alloc_flags)) 2301 goto retry; 2302 } 2303 return page; 2304 } 2305 2306 /* 2307 * Obtain a specified number of elements from the buddy allocator, all under 2308 * a single hold of the lock, for efficiency. Add them to the supplied list. 2309 * Returns the number of new pages which were placed at *list. 2310 */ 2311 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2312 unsigned long count, struct list_head *list, 2313 int migratetype, unsigned int alloc_flags) 2314 { 2315 unsigned long flags; 2316 int i; 2317 2318 spin_lock_irqsave(&zone->lock, flags); 2319 for (i = 0; i < count; ++i) { 2320 struct page *page = __rmqueue(zone, order, migratetype, 2321 alloc_flags); 2322 if (unlikely(page == NULL)) 2323 break; 2324 2325 /* 2326 * Split buddy pages returned by expand() are received here in 2327 * physical page order. The page is added to the tail of 2328 * caller's list. From the callers perspective, the linked list 2329 * is ordered by page number under some conditions. This is 2330 * useful for IO devices that can forward direction from the 2331 * head, thus also in the physical page order. This is useful 2332 * for IO devices that can merge IO requests if the physical 2333 * pages are ordered properly. 2334 */ 2335 list_add_tail(&page->pcp_list, list); 2336 if (is_migrate_cma(get_pcppage_migratetype(page))) 2337 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2338 -(1 << order)); 2339 } 2340 2341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2342 spin_unlock_irqrestore(&zone->lock, flags); 2343 2344 return i; 2345 } 2346 2347 #ifdef CONFIG_NUMA 2348 /* 2349 * Called from the vmstat counter updater to drain pagesets of this 2350 * currently executing processor on remote nodes after they have 2351 * expired. 2352 */ 2353 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2354 { 2355 int to_drain, batch; 2356 2357 batch = READ_ONCE(pcp->batch); 2358 to_drain = min(pcp->count, batch); 2359 if (to_drain > 0) { 2360 spin_lock(&pcp->lock); 2361 free_pcppages_bulk(zone, to_drain, pcp, 0); 2362 spin_unlock(&pcp->lock); 2363 } 2364 } 2365 #endif 2366 2367 /* 2368 * Drain pcplists of the indicated processor and zone. 2369 */ 2370 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2371 { 2372 struct per_cpu_pages *pcp; 2373 2374 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2375 if (pcp->count) { 2376 spin_lock(&pcp->lock); 2377 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2378 spin_unlock(&pcp->lock); 2379 } 2380 } 2381 2382 /* 2383 * Drain pcplists of all zones on the indicated processor. 2384 */ 2385 static void drain_pages(unsigned int cpu) 2386 { 2387 struct zone *zone; 2388 2389 for_each_populated_zone(zone) { 2390 drain_pages_zone(cpu, zone); 2391 } 2392 } 2393 2394 /* 2395 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2396 */ 2397 void drain_local_pages(struct zone *zone) 2398 { 2399 int cpu = smp_processor_id(); 2400 2401 if (zone) 2402 drain_pages_zone(cpu, zone); 2403 else 2404 drain_pages(cpu); 2405 } 2406 2407 /* 2408 * The implementation of drain_all_pages(), exposing an extra parameter to 2409 * drain on all cpus. 2410 * 2411 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2412 * not empty. The check for non-emptiness can however race with a free to 2413 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2414 * that need the guarantee that every CPU has drained can disable the 2415 * optimizing racy check. 2416 */ 2417 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2418 { 2419 int cpu; 2420 2421 /* 2422 * Allocate in the BSS so we won't require allocation in 2423 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2424 */ 2425 static cpumask_t cpus_with_pcps; 2426 2427 /* 2428 * Do not drain if one is already in progress unless it's specific to 2429 * a zone. Such callers are primarily CMA and memory hotplug and need 2430 * the drain to be complete when the call returns. 2431 */ 2432 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2433 if (!zone) 2434 return; 2435 mutex_lock(&pcpu_drain_mutex); 2436 } 2437 2438 /* 2439 * We don't care about racing with CPU hotplug event 2440 * as offline notification will cause the notified 2441 * cpu to drain that CPU pcps and on_each_cpu_mask 2442 * disables preemption as part of its processing 2443 */ 2444 for_each_online_cpu(cpu) { 2445 struct per_cpu_pages *pcp; 2446 struct zone *z; 2447 bool has_pcps = false; 2448 2449 if (force_all_cpus) { 2450 /* 2451 * The pcp.count check is racy, some callers need a 2452 * guarantee that no cpu is missed. 2453 */ 2454 has_pcps = true; 2455 } else if (zone) { 2456 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2457 if (pcp->count) 2458 has_pcps = true; 2459 } else { 2460 for_each_populated_zone(z) { 2461 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2462 if (pcp->count) { 2463 has_pcps = true; 2464 break; 2465 } 2466 } 2467 } 2468 2469 if (has_pcps) 2470 cpumask_set_cpu(cpu, &cpus_with_pcps); 2471 else 2472 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2473 } 2474 2475 for_each_cpu(cpu, &cpus_with_pcps) { 2476 if (zone) 2477 drain_pages_zone(cpu, zone); 2478 else 2479 drain_pages(cpu); 2480 } 2481 2482 mutex_unlock(&pcpu_drain_mutex); 2483 } 2484 2485 /* 2486 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2487 * 2488 * When zone parameter is non-NULL, spill just the single zone's pages. 2489 */ 2490 void drain_all_pages(struct zone *zone) 2491 { 2492 __drain_all_pages(zone, false); 2493 } 2494 2495 #ifdef CONFIG_HIBERNATION 2496 2497 /* 2498 * Touch the watchdog for every WD_PAGE_COUNT pages. 2499 */ 2500 #define WD_PAGE_COUNT (128*1024) 2501 2502 void mark_free_pages(struct zone *zone) 2503 { 2504 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2505 unsigned long flags; 2506 unsigned int order, t; 2507 struct page *page; 2508 2509 if (zone_is_empty(zone)) 2510 return; 2511 2512 spin_lock_irqsave(&zone->lock, flags); 2513 2514 max_zone_pfn = zone_end_pfn(zone); 2515 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2516 if (pfn_valid(pfn)) { 2517 page = pfn_to_page(pfn); 2518 2519 if (!--page_count) { 2520 touch_nmi_watchdog(); 2521 page_count = WD_PAGE_COUNT; 2522 } 2523 2524 if (page_zone(page) != zone) 2525 continue; 2526 2527 if (!swsusp_page_is_forbidden(page)) 2528 swsusp_unset_page_free(page); 2529 } 2530 2531 for_each_migratetype_order(order, t) { 2532 list_for_each_entry(page, 2533 &zone->free_area[order].free_list[t], buddy_list) { 2534 unsigned long i; 2535 2536 pfn = page_to_pfn(page); 2537 for (i = 0; i < (1UL << order); i++) { 2538 if (!--page_count) { 2539 touch_nmi_watchdog(); 2540 page_count = WD_PAGE_COUNT; 2541 } 2542 swsusp_set_page_free(pfn_to_page(pfn + i)); 2543 } 2544 } 2545 } 2546 spin_unlock_irqrestore(&zone->lock, flags); 2547 } 2548 #endif /* CONFIG_PM */ 2549 2550 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2551 unsigned int order) 2552 { 2553 int migratetype; 2554 2555 if (!free_pages_prepare(page, order, FPI_NONE)) 2556 return false; 2557 2558 migratetype = get_pfnblock_migratetype(page, pfn); 2559 set_pcppage_migratetype(page, migratetype); 2560 return true; 2561 } 2562 2563 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 2564 bool free_high) 2565 { 2566 int min_nr_free, max_nr_free; 2567 2568 /* Free everything if batch freeing high-order pages. */ 2569 if (unlikely(free_high)) 2570 return pcp->count; 2571 2572 /* Check for PCP disabled or boot pageset */ 2573 if (unlikely(high < batch)) 2574 return 1; 2575 2576 /* Leave at least pcp->batch pages on the list */ 2577 min_nr_free = batch; 2578 max_nr_free = high - batch; 2579 2580 /* 2581 * Double the number of pages freed each time there is subsequent 2582 * freeing of pages without any allocation. 2583 */ 2584 batch <<= pcp->free_factor; 2585 if (batch < max_nr_free) 2586 pcp->free_factor++; 2587 batch = clamp(batch, min_nr_free, max_nr_free); 2588 2589 return batch; 2590 } 2591 2592 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2593 bool free_high) 2594 { 2595 int high = READ_ONCE(pcp->high); 2596 2597 if (unlikely(!high || free_high)) 2598 return 0; 2599 2600 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 2601 return high; 2602 2603 /* 2604 * If reclaim is active, limit the number of pages that can be 2605 * stored on pcp lists 2606 */ 2607 return min(READ_ONCE(pcp->batch) << 2, high); 2608 } 2609 2610 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2611 struct page *page, int migratetype, 2612 unsigned int order) 2613 { 2614 int high; 2615 int pindex; 2616 bool free_high; 2617 2618 __count_vm_events(PGFREE, 1 << order); 2619 pindex = order_to_pindex(migratetype, order); 2620 list_add(&page->pcp_list, &pcp->lists[pindex]); 2621 pcp->count += 1 << order; 2622 2623 /* 2624 * As high-order pages other than THP's stored on PCP can contribute 2625 * to fragmentation, limit the number stored when PCP is heavily 2626 * freeing without allocation. The remainder after bulk freeing 2627 * stops will be drained from vmstat refresh context. 2628 */ 2629 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 2630 2631 high = nr_pcp_high(pcp, zone, free_high); 2632 if (pcp->count >= high) { 2633 int batch = READ_ONCE(pcp->batch); 2634 2635 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 2636 } 2637 } 2638 2639 /* 2640 * Free a pcp page 2641 */ 2642 void free_unref_page(struct page *page, unsigned int order) 2643 { 2644 unsigned long __maybe_unused UP_flags; 2645 struct per_cpu_pages *pcp; 2646 struct zone *zone; 2647 unsigned long pfn = page_to_pfn(page); 2648 int migratetype; 2649 2650 if (!free_unref_page_prepare(page, pfn, order)) 2651 return; 2652 2653 /* 2654 * We only track unmovable, reclaimable and movable on pcp lists. 2655 * Place ISOLATE pages on the isolated list because they are being 2656 * offlined but treat HIGHATOMIC as movable pages so we can get those 2657 * areas back if necessary. Otherwise, we may have to free 2658 * excessively into the page allocator 2659 */ 2660 migratetype = get_pcppage_migratetype(page); 2661 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2662 if (unlikely(is_migrate_isolate(migratetype))) { 2663 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2664 return; 2665 } 2666 migratetype = MIGRATE_MOVABLE; 2667 } 2668 2669 zone = page_zone(page); 2670 pcp_trylock_prepare(UP_flags); 2671 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2672 if (pcp) { 2673 free_unref_page_commit(zone, pcp, page, migratetype, order); 2674 pcp_spin_unlock(pcp); 2675 } else { 2676 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2677 } 2678 pcp_trylock_finish(UP_flags); 2679 } 2680 2681 /* 2682 * Free a list of 0-order pages 2683 */ 2684 void free_unref_page_list(struct list_head *list) 2685 { 2686 unsigned long __maybe_unused UP_flags; 2687 struct page *page, *next; 2688 struct per_cpu_pages *pcp = NULL; 2689 struct zone *locked_zone = NULL; 2690 int batch_count = 0; 2691 int migratetype; 2692 2693 /* Prepare pages for freeing */ 2694 list_for_each_entry_safe(page, next, list, lru) { 2695 unsigned long pfn = page_to_pfn(page); 2696 if (!free_unref_page_prepare(page, pfn, 0)) { 2697 list_del(&page->lru); 2698 continue; 2699 } 2700 2701 /* 2702 * Free isolated pages directly to the allocator, see 2703 * comment in free_unref_page. 2704 */ 2705 migratetype = get_pcppage_migratetype(page); 2706 if (unlikely(is_migrate_isolate(migratetype))) { 2707 list_del(&page->lru); 2708 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2709 continue; 2710 } 2711 } 2712 2713 list_for_each_entry_safe(page, next, list, lru) { 2714 struct zone *zone = page_zone(page); 2715 2716 list_del(&page->lru); 2717 migratetype = get_pcppage_migratetype(page); 2718 2719 /* 2720 * Either different zone requiring a different pcp lock or 2721 * excessive lock hold times when freeing a large list of 2722 * pages. 2723 */ 2724 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2725 if (pcp) { 2726 pcp_spin_unlock(pcp); 2727 pcp_trylock_finish(UP_flags); 2728 } 2729 2730 batch_count = 0; 2731 2732 /* 2733 * trylock is necessary as pages may be getting freed 2734 * from IRQ or SoftIRQ context after an IO completion. 2735 */ 2736 pcp_trylock_prepare(UP_flags); 2737 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2738 if (unlikely(!pcp)) { 2739 pcp_trylock_finish(UP_flags); 2740 free_one_page(zone, page, page_to_pfn(page), 2741 0, migratetype, FPI_NONE); 2742 locked_zone = NULL; 2743 continue; 2744 } 2745 locked_zone = zone; 2746 } 2747 2748 /* 2749 * Non-isolated types over MIGRATE_PCPTYPES get added 2750 * to the MIGRATE_MOVABLE pcp list. 2751 */ 2752 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2753 migratetype = MIGRATE_MOVABLE; 2754 2755 trace_mm_page_free_batched(page); 2756 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2757 batch_count++; 2758 } 2759 2760 if (pcp) { 2761 pcp_spin_unlock(pcp); 2762 pcp_trylock_finish(UP_flags); 2763 } 2764 } 2765 2766 /* 2767 * split_page takes a non-compound higher-order page, and splits it into 2768 * n (1<<order) sub-pages: page[0..n] 2769 * Each sub-page must be freed individually. 2770 * 2771 * Note: this is probably too low level an operation for use in drivers. 2772 * Please consult with lkml before using this in your driver. 2773 */ 2774 void split_page(struct page *page, unsigned int order) 2775 { 2776 int i; 2777 2778 VM_BUG_ON_PAGE(PageCompound(page), page); 2779 VM_BUG_ON_PAGE(!page_count(page), page); 2780 2781 for (i = 1; i < (1 << order); i++) 2782 set_page_refcounted(page + i); 2783 split_page_owner(page, 1 << order); 2784 split_page_memcg(page, 1 << order); 2785 } 2786 EXPORT_SYMBOL_GPL(split_page); 2787 2788 int __isolate_free_page(struct page *page, unsigned int order) 2789 { 2790 struct zone *zone = page_zone(page); 2791 int mt = get_pageblock_migratetype(page); 2792 2793 if (!is_migrate_isolate(mt)) { 2794 unsigned long watermark; 2795 /* 2796 * Obey watermarks as if the page was being allocated. We can 2797 * emulate a high-order watermark check with a raised order-0 2798 * watermark, because we already know our high-order page 2799 * exists. 2800 */ 2801 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2802 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2803 return 0; 2804 2805 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2806 } 2807 2808 del_page_from_free_list(page, zone, order); 2809 2810 /* 2811 * Set the pageblock if the isolated page is at least half of a 2812 * pageblock 2813 */ 2814 if (order >= pageblock_order - 1) { 2815 struct page *endpage = page + (1 << order) - 1; 2816 for (; page < endpage; page += pageblock_nr_pages) { 2817 int mt = get_pageblock_migratetype(page); 2818 /* 2819 * Only change normal pageblocks (i.e., they can merge 2820 * with others) 2821 */ 2822 if (migratetype_is_mergeable(mt)) 2823 set_pageblock_migratetype(page, 2824 MIGRATE_MOVABLE); 2825 } 2826 } 2827 2828 return 1UL << order; 2829 } 2830 2831 /** 2832 * __putback_isolated_page - Return a now-isolated page back where we got it 2833 * @page: Page that was isolated 2834 * @order: Order of the isolated page 2835 * @mt: The page's pageblock's migratetype 2836 * 2837 * This function is meant to return a page pulled from the free lists via 2838 * __isolate_free_page back to the free lists they were pulled from. 2839 */ 2840 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2841 { 2842 struct zone *zone = page_zone(page); 2843 2844 /* zone lock should be held when this function is called */ 2845 lockdep_assert_held(&zone->lock); 2846 2847 /* Return isolated page to tail of freelist. */ 2848 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2849 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2850 } 2851 2852 /* 2853 * Update NUMA hit/miss statistics 2854 */ 2855 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2856 long nr_account) 2857 { 2858 #ifdef CONFIG_NUMA 2859 enum numa_stat_item local_stat = NUMA_LOCAL; 2860 2861 /* skip numa counters update if numa stats is disabled */ 2862 if (!static_branch_likely(&vm_numa_stat_key)) 2863 return; 2864 2865 if (zone_to_nid(z) != numa_node_id()) 2866 local_stat = NUMA_OTHER; 2867 2868 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2869 __count_numa_events(z, NUMA_HIT, nr_account); 2870 else { 2871 __count_numa_events(z, NUMA_MISS, nr_account); 2872 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2873 } 2874 __count_numa_events(z, local_stat, nr_account); 2875 #endif 2876 } 2877 2878 static __always_inline 2879 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2880 unsigned int order, unsigned int alloc_flags, 2881 int migratetype) 2882 { 2883 struct page *page; 2884 unsigned long flags; 2885 2886 do { 2887 page = NULL; 2888 spin_lock_irqsave(&zone->lock, flags); 2889 /* 2890 * order-0 request can reach here when the pcplist is skipped 2891 * due to non-CMA allocation context. HIGHATOMIC area is 2892 * reserved for high-order atomic allocation, so order-0 2893 * request should skip it. 2894 */ 2895 if (alloc_flags & ALLOC_HIGHATOMIC) 2896 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2897 if (!page) { 2898 page = __rmqueue(zone, order, migratetype, alloc_flags); 2899 2900 /* 2901 * If the allocation fails, allow OOM handling access 2902 * to HIGHATOMIC reserves as failing now is worse than 2903 * failing a high-order atomic allocation in the 2904 * future. 2905 */ 2906 if (!page && (alloc_flags & ALLOC_OOM)) 2907 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2908 2909 if (!page) { 2910 spin_unlock_irqrestore(&zone->lock, flags); 2911 return NULL; 2912 } 2913 } 2914 __mod_zone_freepage_state(zone, -(1 << order), 2915 get_pcppage_migratetype(page)); 2916 spin_unlock_irqrestore(&zone->lock, flags); 2917 } while (check_new_pages(page, order)); 2918 2919 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2920 zone_statistics(preferred_zone, zone, 1); 2921 2922 return page; 2923 } 2924 2925 /* Remove page from the per-cpu list, caller must protect the list */ 2926 static inline 2927 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2928 int migratetype, 2929 unsigned int alloc_flags, 2930 struct per_cpu_pages *pcp, 2931 struct list_head *list) 2932 { 2933 struct page *page; 2934 2935 do { 2936 if (list_empty(list)) { 2937 int batch = READ_ONCE(pcp->batch); 2938 int alloced; 2939 2940 /* 2941 * Scale batch relative to order if batch implies 2942 * free pages can be stored on the PCP. Batch can 2943 * be 1 for small zones or for boot pagesets which 2944 * should never store free pages as the pages may 2945 * belong to arbitrary zones. 2946 */ 2947 if (batch > 1) 2948 batch = max(batch >> order, 2); 2949 alloced = rmqueue_bulk(zone, order, 2950 batch, list, 2951 migratetype, alloc_flags); 2952 2953 pcp->count += alloced << order; 2954 if (unlikely(list_empty(list))) 2955 return NULL; 2956 } 2957 2958 page = list_first_entry(list, struct page, pcp_list); 2959 list_del(&page->pcp_list); 2960 pcp->count -= 1 << order; 2961 } while (check_new_pages(page, order)); 2962 2963 return page; 2964 } 2965 2966 /* Lock and remove page from the per-cpu list */ 2967 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2968 struct zone *zone, unsigned int order, 2969 int migratetype, unsigned int alloc_flags) 2970 { 2971 struct per_cpu_pages *pcp; 2972 struct list_head *list; 2973 struct page *page; 2974 unsigned long __maybe_unused UP_flags; 2975 2976 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2977 pcp_trylock_prepare(UP_flags); 2978 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2979 if (!pcp) { 2980 pcp_trylock_finish(UP_flags); 2981 return NULL; 2982 } 2983 2984 /* 2985 * On allocation, reduce the number of pages that are batch freed. 2986 * See nr_pcp_free() where free_factor is increased for subsequent 2987 * frees. 2988 */ 2989 pcp->free_factor >>= 1; 2990 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2991 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2992 pcp_spin_unlock(pcp); 2993 pcp_trylock_finish(UP_flags); 2994 if (page) { 2995 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2996 zone_statistics(preferred_zone, zone, 1); 2997 } 2998 return page; 2999 } 3000 3001 /* 3002 * Allocate a page from the given zone. 3003 * Use pcplists for THP or "cheap" high-order allocations. 3004 */ 3005 3006 /* 3007 * Do not instrument rmqueue() with KMSAN. This function may call 3008 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3009 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3010 * may call rmqueue() again, which will result in a deadlock. 3011 */ 3012 __no_sanitize_memory 3013 static inline 3014 struct page *rmqueue(struct zone *preferred_zone, 3015 struct zone *zone, unsigned int order, 3016 gfp_t gfp_flags, unsigned int alloc_flags, 3017 int migratetype) 3018 { 3019 struct page *page; 3020 3021 /* 3022 * We most definitely don't want callers attempting to 3023 * allocate greater than order-1 page units with __GFP_NOFAIL. 3024 */ 3025 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3026 3027 if (likely(pcp_allowed_order(order))) { 3028 /* 3029 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3030 * we need to skip it when CMA area isn't allowed. 3031 */ 3032 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3033 migratetype != MIGRATE_MOVABLE) { 3034 page = rmqueue_pcplist(preferred_zone, zone, order, 3035 migratetype, alloc_flags); 3036 if (likely(page)) 3037 goto out; 3038 } 3039 } 3040 3041 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3042 migratetype); 3043 3044 out: 3045 /* Separate test+clear to avoid unnecessary atomics */ 3046 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3047 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3048 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3049 } 3050 3051 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3052 return page; 3053 } 3054 3055 #ifdef CONFIG_FAIL_PAGE_ALLOC 3056 3057 static struct { 3058 struct fault_attr attr; 3059 3060 bool ignore_gfp_highmem; 3061 bool ignore_gfp_reclaim; 3062 u32 min_order; 3063 } fail_page_alloc = { 3064 .attr = FAULT_ATTR_INITIALIZER, 3065 .ignore_gfp_reclaim = true, 3066 .ignore_gfp_highmem = true, 3067 .min_order = 1, 3068 }; 3069 3070 static int __init setup_fail_page_alloc(char *str) 3071 { 3072 return setup_fault_attr(&fail_page_alloc.attr, str); 3073 } 3074 __setup("fail_page_alloc=", setup_fail_page_alloc); 3075 3076 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3077 { 3078 int flags = 0; 3079 3080 if (order < fail_page_alloc.min_order) 3081 return false; 3082 if (gfp_mask & __GFP_NOFAIL) 3083 return false; 3084 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3085 return false; 3086 if (fail_page_alloc.ignore_gfp_reclaim && 3087 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3088 return false; 3089 3090 /* See comment in __should_failslab() */ 3091 if (gfp_mask & __GFP_NOWARN) 3092 flags |= FAULT_NOWARN; 3093 3094 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags); 3095 } 3096 3097 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3098 3099 static int __init fail_page_alloc_debugfs(void) 3100 { 3101 umode_t mode = S_IFREG | 0600; 3102 struct dentry *dir; 3103 3104 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3105 &fail_page_alloc.attr); 3106 3107 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3108 &fail_page_alloc.ignore_gfp_reclaim); 3109 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3110 &fail_page_alloc.ignore_gfp_highmem); 3111 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3112 3113 return 0; 3114 } 3115 3116 late_initcall(fail_page_alloc_debugfs); 3117 3118 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3119 3120 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3121 3122 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3123 { 3124 return false; 3125 } 3126 3127 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3128 3129 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3130 { 3131 return __should_fail_alloc_page(gfp_mask, order); 3132 } 3133 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3134 3135 static inline long __zone_watermark_unusable_free(struct zone *z, 3136 unsigned int order, unsigned int alloc_flags) 3137 { 3138 long unusable_free = (1 << order) - 1; 3139 3140 /* 3141 * If the caller does not have rights to reserves below the min 3142 * watermark then subtract the high-atomic reserves. This will 3143 * over-estimate the size of the atomic reserve but it avoids a search. 3144 */ 3145 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3146 unusable_free += z->nr_reserved_highatomic; 3147 3148 #ifdef CONFIG_CMA 3149 /* If allocation can't use CMA areas don't use free CMA pages */ 3150 if (!(alloc_flags & ALLOC_CMA)) 3151 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3152 #endif 3153 3154 return unusable_free; 3155 } 3156 3157 /* 3158 * Return true if free base pages are above 'mark'. For high-order checks it 3159 * will return true of the order-0 watermark is reached and there is at least 3160 * one free page of a suitable size. Checking now avoids taking the zone lock 3161 * to check in the allocation paths if no pages are free. 3162 */ 3163 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3164 int highest_zoneidx, unsigned int alloc_flags, 3165 long free_pages) 3166 { 3167 long min = mark; 3168 int o; 3169 3170 /* free_pages may go negative - that's OK */ 3171 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3172 3173 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3174 /* 3175 * __GFP_HIGH allows access to 50% of the min reserve as well 3176 * as OOM. 3177 */ 3178 if (alloc_flags & ALLOC_MIN_RESERVE) { 3179 min -= min / 2; 3180 3181 /* 3182 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3183 * access more reserves than just __GFP_HIGH. Other 3184 * non-blocking allocations requests such as GFP_NOWAIT 3185 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3186 * access to the min reserve. 3187 */ 3188 if (alloc_flags & ALLOC_NON_BLOCK) 3189 min -= min / 4; 3190 } 3191 3192 /* 3193 * OOM victims can try even harder than the normal reserve 3194 * users on the grounds that it's definitely going to be in 3195 * the exit path shortly and free memory. Any allocation it 3196 * makes during the free path will be small and short-lived. 3197 */ 3198 if (alloc_flags & ALLOC_OOM) 3199 min -= min / 2; 3200 } 3201 3202 /* 3203 * Check watermarks for an order-0 allocation request. If these 3204 * are not met, then a high-order request also cannot go ahead 3205 * even if a suitable page happened to be free. 3206 */ 3207 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3208 return false; 3209 3210 /* If this is an order-0 request then the watermark is fine */ 3211 if (!order) 3212 return true; 3213 3214 /* For a high-order request, check at least one suitable page is free */ 3215 for (o = order; o <= MAX_ORDER; o++) { 3216 struct free_area *area = &z->free_area[o]; 3217 int mt; 3218 3219 if (!area->nr_free) 3220 continue; 3221 3222 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3223 if (!free_area_empty(area, mt)) 3224 return true; 3225 } 3226 3227 #ifdef CONFIG_CMA 3228 if ((alloc_flags & ALLOC_CMA) && 3229 !free_area_empty(area, MIGRATE_CMA)) { 3230 return true; 3231 } 3232 #endif 3233 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3234 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3235 return true; 3236 } 3237 } 3238 return false; 3239 } 3240 3241 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3242 int highest_zoneidx, unsigned int alloc_flags) 3243 { 3244 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3245 zone_page_state(z, NR_FREE_PAGES)); 3246 } 3247 3248 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3249 unsigned long mark, int highest_zoneidx, 3250 unsigned int alloc_flags, gfp_t gfp_mask) 3251 { 3252 long free_pages; 3253 3254 free_pages = zone_page_state(z, NR_FREE_PAGES); 3255 3256 /* 3257 * Fast check for order-0 only. If this fails then the reserves 3258 * need to be calculated. 3259 */ 3260 if (!order) { 3261 long usable_free; 3262 long reserved; 3263 3264 usable_free = free_pages; 3265 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3266 3267 /* reserved may over estimate high-atomic reserves. */ 3268 usable_free -= min(usable_free, reserved); 3269 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3270 return true; 3271 } 3272 3273 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3274 free_pages)) 3275 return true; 3276 3277 /* 3278 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3279 * when checking the min watermark. The min watermark is the 3280 * point where boosting is ignored so that kswapd is woken up 3281 * when below the low watermark. 3282 */ 3283 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3284 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3285 mark = z->_watermark[WMARK_MIN]; 3286 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3287 alloc_flags, free_pages); 3288 } 3289 3290 return false; 3291 } 3292 3293 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3294 unsigned long mark, int highest_zoneidx) 3295 { 3296 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3297 3298 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3299 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3300 3301 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3302 free_pages); 3303 } 3304 3305 #ifdef CONFIG_NUMA 3306 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3307 3308 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3309 { 3310 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3311 node_reclaim_distance; 3312 } 3313 #else /* CONFIG_NUMA */ 3314 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3315 { 3316 return true; 3317 } 3318 #endif /* CONFIG_NUMA */ 3319 3320 /* 3321 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3322 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3323 * premature use of a lower zone may cause lowmem pressure problems that 3324 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3325 * probably too small. It only makes sense to spread allocations to avoid 3326 * fragmentation between the Normal and DMA32 zones. 3327 */ 3328 static inline unsigned int 3329 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3330 { 3331 unsigned int alloc_flags; 3332 3333 /* 3334 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3335 * to save a branch. 3336 */ 3337 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3338 3339 #ifdef CONFIG_ZONE_DMA32 3340 if (!zone) 3341 return alloc_flags; 3342 3343 if (zone_idx(zone) != ZONE_NORMAL) 3344 return alloc_flags; 3345 3346 /* 3347 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3348 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3349 * on UMA that if Normal is populated then so is DMA32. 3350 */ 3351 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3352 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3353 return alloc_flags; 3354 3355 alloc_flags |= ALLOC_NOFRAGMENT; 3356 #endif /* CONFIG_ZONE_DMA32 */ 3357 return alloc_flags; 3358 } 3359 3360 /* Must be called after current_gfp_context() which can change gfp_mask */ 3361 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3362 unsigned int alloc_flags) 3363 { 3364 #ifdef CONFIG_CMA 3365 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3366 alloc_flags |= ALLOC_CMA; 3367 #endif 3368 return alloc_flags; 3369 } 3370 3371 /* 3372 * get_page_from_freelist goes through the zonelist trying to allocate 3373 * a page. 3374 */ 3375 static struct page * 3376 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3377 const struct alloc_context *ac) 3378 { 3379 struct zoneref *z; 3380 struct zone *zone; 3381 struct pglist_data *last_pgdat = NULL; 3382 bool last_pgdat_dirty_ok = false; 3383 bool no_fallback; 3384 3385 retry: 3386 /* 3387 * Scan zonelist, looking for a zone with enough free. 3388 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3389 */ 3390 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3391 z = ac->preferred_zoneref; 3392 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3393 ac->nodemask) { 3394 struct page *page; 3395 unsigned long mark; 3396 3397 if (cpusets_enabled() && 3398 (alloc_flags & ALLOC_CPUSET) && 3399 !__cpuset_zone_allowed(zone, gfp_mask)) 3400 continue; 3401 /* 3402 * When allocating a page cache page for writing, we 3403 * want to get it from a node that is within its dirty 3404 * limit, such that no single node holds more than its 3405 * proportional share of globally allowed dirty pages. 3406 * The dirty limits take into account the node's 3407 * lowmem reserves and high watermark so that kswapd 3408 * should be able to balance it without having to 3409 * write pages from its LRU list. 3410 * 3411 * XXX: For now, allow allocations to potentially 3412 * exceed the per-node dirty limit in the slowpath 3413 * (spread_dirty_pages unset) before going into reclaim, 3414 * which is important when on a NUMA setup the allowed 3415 * nodes are together not big enough to reach the 3416 * global limit. The proper fix for these situations 3417 * will require awareness of nodes in the 3418 * dirty-throttling and the flusher threads. 3419 */ 3420 if (ac->spread_dirty_pages) { 3421 if (last_pgdat != zone->zone_pgdat) { 3422 last_pgdat = zone->zone_pgdat; 3423 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3424 } 3425 3426 if (!last_pgdat_dirty_ok) 3427 continue; 3428 } 3429 3430 if (no_fallback && nr_online_nodes > 1 && 3431 zone != ac->preferred_zoneref->zone) { 3432 int local_nid; 3433 3434 /* 3435 * If moving to a remote node, retry but allow 3436 * fragmenting fallbacks. Locality is more important 3437 * than fragmentation avoidance. 3438 */ 3439 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3440 if (zone_to_nid(zone) != local_nid) { 3441 alloc_flags &= ~ALLOC_NOFRAGMENT; 3442 goto retry; 3443 } 3444 } 3445 3446 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3447 if (!zone_watermark_fast(zone, order, mark, 3448 ac->highest_zoneidx, alloc_flags, 3449 gfp_mask)) { 3450 int ret; 3451 3452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3453 /* 3454 * Watermark failed for this zone, but see if we can 3455 * grow this zone if it contains deferred pages. 3456 */ 3457 if (deferred_pages_enabled()) { 3458 if (_deferred_grow_zone(zone, order)) 3459 goto try_this_zone; 3460 } 3461 #endif 3462 /* Checked here to keep the fast path fast */ 3463 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3464 if (alloc_flags & ALLOC_NO_WATERMARKS) 3465 goto try_this_zone; 3466 3467 if (!node_reclaim_enabled() || 3468 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3469 continue; 3470 3471 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3472 switch (ret) { 3473 case NODE_RECLAIM_NOSCAN: 3474 /* did not scan */ 3475 continue; 3476 case NODE_RECLAIM_FULL: 3477 /* scanned but unreclaimable */ 3478 continue; 3479 default: 3480 /* did we reclaim enough */ 3481 if (zone_watermark_ok(zone, order, mark, 3482 ac->highest_zoneidx, alloc_flags)) 3483 goto try_this_zone; 3484 3485 continue; 3486 } 3487 } 3488 3489 try_this_zone: 3490 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3491 gfp_mask, alloc_flags, ac->migratetype); 3492 if (page) { 3493 prep_new_page(page, order, gfp_mask, alloc_flags); 3494 3495 /* 3496 * If this is a high-order atomic allocation then check 3497 * if the pageblock should be reserved for the future 3498 */ 3499 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3500 reserve_highatomic_pageblock(page, zone, order); 3501 3502 return page; 3503 } else { 3504 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3505 /* Try again if zone has deferred pages */ 3506 if (deferred_pages_enabled()) { 3507 if (_deferred_grow_zone(zone, order)) 3508 goto try_this_zone; 3509 } 3510 #endif 3511 } 3512 } 3513 3514 /* 3515 * It's possible on a UMA machine to get through all zones that are 3516 * fragmented. If avoiding fragmentation, reset and try again. 3517 */ 3518 if (no_fallback) { 3519 alloc_flags &= ~ALLOC_NOFRAGMENT; 3520 goto retry; 3521 } 3522 3523 return NULL; 3524 } 3525 3526 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3527 { 3528 unsigned int filter = SHOW_MEM_FILTER_NODES; 3529 3530 /* 3531 * This documents exceptions given to allocations in certain 3532 * contexts that are allowed to allocate outside current's set 3533 * of allowed nodes. 3534 */ 3535 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3536 if (tsk_is_oom_victim(current) || 3537 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3538 filter &= ~SHOW_MEM_FILTER_NODES; 3539 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3540 filter &= ~SHOW_MEM_FILTER_NODES; 3541 3542 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3543 } 3544 3545 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3546 { 3547 struct va_format vaf; 3548 va_list args; 3549 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3550 3551 if ((gfp_mask & __GFP_NOWARN) || 3552 !__ratelimit(&nopage_rs) || 3553 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3554 return; 3555 3556 va_start(args, fmt); 3557 vaf.fmt = fmt; 3558 vaf.va = &args; 3559 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3560 current->comm, &vaf, gfp_mask, &gfp_mask, 3561 nodemask_pr_args(nodemask)); 3562 va_end(args); 3563 3564 cpuset_print_current_mems_allowed(); 3565 pr_cont("\n"); 3566 dump_stack(); 3567 warn_alloc_show_mem(gfp_mask, nodemask); 3568 } 3569 3570 static inline struct page * 3571 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3572 unsigned int alloc_flags, 3573 const struct alloc_context *ac) 3574 { 3575 struct page *page; 3576 3577 page = get_page_from_freelist(gfp_mask, order, 3578 alloc_flags|ALLOC_CPUSET, ac); 3579 /* 3580 * fallback to ignore cpuset restriction if our nodes 3581 * are depleted 3582 */ 3583 if (!page) 3584 page = get_page_from_freelist(gfp_mask, order, 3585 alloc_flags, ac); 3586 3587 return page; 3588 } 3589 3590 static inline struct page * 3591 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3592 const struct alloc_context *ac, unsigned long *did_some_progress) 3593 { 3594 struct oom_control oc = { 3595 .zonelist = ac->zonelist, 3596 .nodemask = ac->nodemask, 3597 .memcg = NULL, 3598 .gfp_mask = gfp_mask, 3599 .order = order, 3600 }; 3601 struct page *page; 3602 3603 *did_some_progress = 0; 3604 3605 /* 3606 * Acquire the oom lock. If that fails, somebody else is 3607 * making progress for us. 3608 */ 3609 if (!mutex_trylock(&oom_lock)) { 3610 *did_some_progress = 1; 3611 schedule_timeout_uninterruptible(1); 3612 return NULL; 3613 } 3614 3615 /* 3616 * Go through the zonelist yet one more time, keep very high watermark 3617 * here, this is only to catch a parallel oom killing, we must fail if 3618 * we're still under heavy pressure. But make sure that this reclaim 3619 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3620 * allocation which will never fail due to oom_lock already held. 3621 */ 3622 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3623 ~__GFP_DIRECT_RECLAIM, order, 3624 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3625 if (page) 3626 goto out; 3627 3628 /* Coredumps can quickly deplete all memory reserves */ 3629 if (current->flags & PF_DUMPCORE) 3630 goto out; 3631 /* The OOM killer will not help higher order allocs */ 3632 if (order > PAGE_ALLOC_COSTLY_ORDER) 3633 goto out; 3634 /* 3635 * We have already exhausted all our reclaim opportunities without any 3636 * success so it is time to admit defeat. We will skip the OOM killer 3637 * because it is very likely that the caller has a more reasonable 3638 * fallback than shooting a random task. 3639 * 3640 * The OOM killer may not free memory on a specific node. 3641 */ 3642 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3643 goto out; 3644 /* The OOM killer does not needlessly kill tasks for lowmem */ 3645 if (ac->highest_zoneidx < ZONE_NORMAL) 3646 goto out; 3647 if (pm_suspended_storage()) 3648 goto out; 3649 /* 3650 * XXX: GFP_NOFS allocations should rather fail than rely on 3651 * other request to make a forward progress. 3652 * We are in an unfortunate situation where out_of_memory cannot 3653 * do much for this context but let's try it to at least get 3654 * access to memory reserved if the current task is killed (see 3655 * out_of_memory). Once filesystems are ready to handle allocation 3656 * failures more gracefully we should just bail out here. 3657 */ 3658 3659 /* Exhausted what can be done so it's blame time */ 3660 if (out_of_memory(&oc) || 3661 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3662 *did_some_progress = 1; 3663 3664 /* 3665 * Help non-failing allocations by giving them access to memory 3666 * reserves 3667 */ 3668 if (gfp_mask & __GFP_NOFAIL) 3669 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3670 ALLOC_NO_WATERMARKS, ac); 3671 } 3672 out: 3673 mutex_unlock(&oom_lock); 3674 return page; 3675 } 3676 3677 /* 3678 * Maximum number of compaction retries with a progress before OOM 3679 * killer is consider as the only way to move forward. 3680 */ 3681 #define MAX_COMPACT_RETRIES 16 3682 3683 #ifdef CONFIG_COMPACTION 3684 /* Try memory compaction for high-order allocations before reclaim */ 3685 static struct page * 3686 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3687 unsigned int alloc_flags, const struct alloc_context *ac, 3688 enum compact_priority prio, enum compact_result *compact_result) 3689 { 3690 struct page *page = NULL; 3691 unsigned long pflags; 3692 unsigned int noreclaim_flag; 3693 3694 if (!order) 3695 return NULL; 3696 3697 psi_memstall_enter(&pflags); 3698 delayacct_compact_start(); 3699 noreclaim_flag = memalloc_noreclaim_save(); 3700 3701 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3702 prio, &page); 3703 3704 memalloc_noreclaim_restore(noreclaim_flag); 3705 psi_memstall_leave(&pflags); 3706 delayacct_compact_end(); 3707 3708 if (*compact_result == COMPACT_SKIPPED) 3709 return NULL; 3710 /* 3711 * At least in one zone compaction wasn't deferred or skipped, so let's 3712 * count a compaction stall 3713 */ 3714 count_vm_event(COMPACTSTALL); 3715 3716 /* Prep a captured page if available */ 3717 if (page) 3718 prep_new_page(page, order, gfp_mask, alloc_flags); 3719 3720 /* Try get a page from the freelist if available */ 3721 if (!page) 3722 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3723 3724 if (page) { 3725 struct zone *zone = page_zone(page); 3726 3727 zone->compact_blockskip_flush = false; 3728 compaction_defer_reset(zone, order, true); 3729 count_vm_event(COMPACTSUCCESS); 3730 return page; 3731 } 3732 3733 /* 3734 * It's bad if compaction run occurs and fails. The most likely reason 3735 * is that pages exist, but not enough to satisfy watermarks. 3736 */ 3737 count_vm_event(COMPACTFAIL); 3738 3739 cond_resched(); 3740 3741 return NULL; 3742 } 3743 3744 static inline bool 3745 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3746 enum compact_result compact_result, 3747 enum compact_priority *compact_priority, 3748 int *compaction_retries) 3749 { 3750 int max_retries = MAX_COMPACT_RETRIES; 3751 int min_priority; 3752 bool ret = false; 3753 int retries = *compaction_retries; 3754 enum compact_priority priority = *compact_priority; 3755 3756 if (!order) 3757 return false; 3758 3759 if (fatal_signal_pending(current)) 3760 return false; 3761 3762 if (compaction_made_progress(compact_result)) 3763 (*compaction_retries)++; 3764 3765 /* 3766 * compaction considers all the zone as desperately out of memory 3767 * so it doesn't really make much sense to retry except when the 3768 * failure could be caused by insufficient priority 3769 */ 3770 if (compaction_failed(compact_result)) 3771 goto check_priority; 3772 3773 /* 3774 * compaction was skipped because there are not enough order-0 pages 3775 * to work with, so we retry only if it looks like reclaim can help. 3776 */ 3777 if (compaction_needs_reclaim(compact_result)) { 3778 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3779 goto out; 3780 } 3781 3782 /* 3783 * make sure the compaction wasn't deferred or didn't bail out early 3784 * due to locks contention before we declare that we should give up. 3785 * But the next retry should use a higher priority if allowed, so 3786 * we don't just keep bailing out endlessly. 3787 */ 3788 if (compaction_withdrawn(compact_result)) { 3789 goto check_priority; 3790 } 3791 3792 /* 3793 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3794 * costly ones because they are de facto nofail and invoke OOM 3795 * killer to move on while costly can fail and users are ready 3796 * to cope with that. 1/4 retries is rather arbitrary but we 3797 * would need much more detailed feedback from compaction to 3798 * make a better decision. 3799 */ 3800 if (order > PAGE_ALLOC_COSTLY_ORDER) 3801 max_retries /= 4; 3802 if (*compaction_retries <= max_retries) { 3803 ret = true; 3804 goto out; 3805 } 3806 3807 /* 3808 * Make sure there are attempts at the highest priority if we exhausted 3809 * all retries or failed at the lower priorities. 3810 */ 3811 check_priority: 3812 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3813 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3814 3815 if (*compact_priority > min_priority) { 3816 (*compact_priority)--; 3817 *compaction_retries = 0; 3818 ret = true; 3819 } 3820 out: 3821 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3822 return ret; 3823 } 3824 #else 3825 static inline struct page * 3826 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3827 unsigned int alloc_flags, const struct alloc_context *ac, 3828 enum compact_priority prio, enum compact_result *compact_result) 3829 { 3830 *compact_result = COMPACT_SKIPPED; 3831 return NULL; 3832 } 3833 3834 static inline bool 3835 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3836 enum compact_result compact_result, 3837 enum compact_priority *compact_priority, 3838 int *compaction_retries) 3839 { 3840 struct zone *zone; 3841 struct zoneref *z; 3842 3843 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3844 return false; 3845 3846 /* 3847 * There are setups with compaction disabled which would prefer to loop 3848 * inside the allocator rather than hit the oom killer prematurely. 3849 * Let's give them a good hope and keep retrying while the order-0 3850 * watermarks are OK. 3851 */ 3852 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3853 ac->highest_zoneidx, ac->nodemask) { 3854 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3855 ac->highest_zoneidx, alloc_flags)) 3856 return true; 3857 } 3858 return false; 3859 } 3860 #endif /* CONFIG_COMPACTION */ 3861 3862 #ifdef CONFIG_LOCKDEP 3863 static struct lockdep_map __fs_reclaim_map = 3864 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3865 3866 static bool __need_reclaim(gfp_t gfp_mask) 3867 { 3868 /* no reclaim without waiting on it */ 3869 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3870 return false; 3871 3872 /* this guy won't enter reclaim */ 3873 if (current->flags & PF_MEMALLOC) 3874 return false; 3875 3876 if (gfp_mask & __GFP_NOLOCKDEP) 3877 return false; 3878 3879 return true; 3880 } 3881 3882 void __fs_reclaim_acquire(unsigned long ip) 3883 { 3884 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3885 } 3886 3887 void __fs_reclaim_release(unsigned long ip) 3888 { 3889 lock_release(&__fs_reclaim_map, ip); 3890 } 3891 3892 void fs_reclaim_acquire(gfp_t gfp_mask) 3893 { 3894 gfp_mask = current_gfp_context(gfp_mask); 3895 3896 if (__need_reclaim(gfp_mask)) { 3897 if (gfp_mask & __GFP_FS) 3898 __fs_reclaim_acquire(_RET_IP_); 3899 3900 #ifdef CONFIG_MMU_NOTIFIER 3901 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3902 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3903 #endif 3904 3905 } 3906 } 3907 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3908 3909 void fs_reclaim_release(gfp_t gfp_mask) 3910 { 3911 gfp_mask = current_gfp_context(gfp_mask); 3912 3913 if (__need_reclaim(gfp_mask)) { 3914 if (gfp_mask & __GFP_FS) 3915 __fs_reclaim_release(_RET_IP_); 3916 } 3917 } 3918 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3919 #endif 3920 3921 /* 3922 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3923 * have been rebuilt so allocation retries. Reader side does not lock and 3924 * retries the allocation if zonelist changes. Writer side is protected by the 3925 * embedded spin_lock. 3926 */ 3927 static DEFINE_SEQLOCK(zonelist_update_seq); 3928 3929 static unsigned int zonelist_iter_begin(void) 3930 { 3931 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3932 return read_seqbegin(&zonelist_update_seq); 3933 3934 return 0; 3935 } 3936 3937 static unsigned int check_retry_zonelist(unsigned int seq) 3938 { 3939 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3940 return read_seqretry(&zonelist_update_seq, seq); 3941 3942 return seq; 3943 } 3944 3945 /* Perform direct synchronous page reclaim */ 3946 static unsigned long 3947 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3948 const struct alloc_context *ac) 3949 { 3950 unsigned int noreclaim_flag; 3951 unsigned long progress; 3952 3953 cond_resched(); 3954 3955 /* We now go into synchronous reclaim */ 3956 cpuset_memory_pressure_bump(); 3957 fs_reclaim_acquire(gfp_mask); 3958 noreclaim_flag = memalloc_noreclaim_save(); 3959 3960 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3961 ac->nodemask); 3962 3963 memalloc_noreclaim_restore(noreclaim_flag); 3964 fs_reclaim_release(gfp_mask); 3965 3966 cond_resched(); 3967 3968 return progress; 3969 } 3970 3971 /* The really slow allocator path where we enter direct reclaim */ 3972 static inline struct page * 3973 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3974 unsigned int alloc_flags, const struct alloc_context *ac, 3975 unsigned long *did_some_progress) 3976 { 3977 struct page *page = NULL; 3978 unsigned long pflags; 3979 bool drained = false; 3980 3981 psi_memstall_enter(&pflags); 3982 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3983 if (unlikely(!(*did_some_progress))) 3984 goto out; 3985 3986 retry: 3987 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3988 3989 /* 3990 * If an allocation failed after direct reclaim, it could be because 3991 * pages are pinned on the per-cpu lists or in high alloc reserves. 3992 * Shrink them and try again 3993 */ 3994 if (!page && !drained) { 3995 unreserve_highatomic_pageblock(ac, false); 3996 drain_all_pages(NULL); 3997 drained = true; 3998 goto retry; 3999 } 4000 out: 4001 psi_memstall_leave(&pflags); 4002 4003 return page; 4004 } 4005 4006 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4007 const struct alloc_context *ac) 4008 { 4009 struct zoneref *z; 4010 struct zone *zone; 4011 pg_data_t *last_pgdat = NULL; 4012 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4013 4014 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4015 ac->nodemask) { 4016 if (!managed_zone(zone)) 4017 continue; 4018 if (last_pgdat != zone->zone_pgdat) { 4019 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4020 last_pgdat = zone->zone_pgdat; 4021 } 4022 } 4023 } 4024 4025 static inline unsigned int 4026 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4027 { 4028 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4029 4030 /* 4031 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4032 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4033 * to save two branches. 4034 */ 4035 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4036 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4037 4038 /* 4039 * The caller may dip into page reserves a bit more if the caller 4040 * cannot run direct reclaim, or if the caller has realtime scheduling 4041 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4042 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4043 */ 4044 alloc_flags |= (__force int) 4045 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4046 4047 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4048 /* 4049 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4050 * if it can't schedule. 4051 */ 4052 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4053 alloc_flags |= ALLOC_NON_BLOCK; 4054 4055 if (order > 0) 4056 alloc_flags |= ALLOC_HIGHATOMIC; 4057 } 4058 4059 /* 4060 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4061 * GFP_ATOMIC) rather than fail, see the comment for 4062 * __cpuset_node_allowed(). 4063 */ 4064 if (alloc_flags & ALLOC_MIN_RESERVE) 4065 alloc_flags &= ~ALLOC_CPUSET; 4066 } else if (unlikely(rt_task(current)) && in_task()) 4067 alloc_flags |= ALLOC_MIN_RESERVE; 4068 4069 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4070 4071 return alloc_flags; 4072 } 4073 4074 static bool oom_reserves_allowed(struct task_struct *tsk) 4075 { 4076 if (!tsk_is_oom_victim(tsk)) 4077 return false; 4078 4079 /* 4080 * !MMU doesn't have oom reaper so give access to memory reserves 4081 * only to the thread with TIF_MEMDIE set 4082 */ 4083 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4084 return false; 4085 4086 return true; 4087 } 4088 4089 /* 4090 * Distinguish requests which really need access to full memory 4091 * reserves from oom victims which can live with a portion of it 4092 */ 4093 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4094 { 4095 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4096 return 0; 4097 if (gfp_mask & __GFP_MEMALLOC) 4098 return ALLOC_NO_WATERMARKS; 4099 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4100 return ALLOC_NO_WATERMARKS; 4101 if (!in_interrupt()) { 4102 if (current->flags & PF_MEMALLOC) 4103 return ALLOC_NO_WATERMARKS; 4104 else if (oom_reserves_allowed(current)) 4105 return ALLOC_OOM; 4106 } 4107 4108 return 0; 4109 } 4110 4111 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4112 { 4113 return !!__gfp_pfmemalloc_flags(gfp_mask); 4114 } 4115 4116 /* 4117 * Checks whether it makes sense to retry the reclaim to make a forward progress 4118 * for the given allocation request. 4119 * 4120 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4121 * without success, or when we couldn't even meet the watermark if we 4122 * reclaimed all remaining pages on the LRU lists. 4123 * 4124 * Returns true if a retry is viable or false to enter the oom path. 4125 */ 4126 static inline bool 4127 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4128 struct alloc_context *ac, int alloc_flags, 4129 bool did_some_progress, int *no_progress_loops) 4130 { 4131 struct zone *zone; 4132 struct zoneref *z; 4133 bool ret = false; 4134 4135 /* 4136 * Costly allocations might have made a progress but this doesn't mean 4137 * their order will become available due to high fragmentation so 4138 * always increment the no progress counter for them 4139 */ 4140 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4141 *no_progress_loops = 0; 4142 else 4143 (*no_progress_loops)++; 4144 4145 /* 4146 * Make sure we converge to OOM if we cannot make any progress 4147 * several times in the row. 4148 */ 4149 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4150 /* Before OOM, exhaust highatomic_reserve */ 4151 return unreserve_highatomic_pageblock(ac, true); 4152 } 4153 4154 /* 4155 * Keep reclaiming pages while there is a chance this will lead 4156 * somewhere. If none of the target zones can satisfy our allocation 4157 * request even if all reclaimable pages are considered then we are 4158 * screwed and have to go OOM. 4159 */ 4160 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4161 ac->highest_zoneidx, ac->nodemask) { 4162 unsigned long available; 4163 unsigned long reclaimable; 4164 unsigned long min_wmark = min_wmark_pages(zone); 4165 bool wmark; 4166 4167 available = reclaimable = zone_reclaimable_pages(zone); 4168 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4169 4170 /* 4171 * Would the allocation succeed if we reclaimed all 4172 * reclaimable pages? 4173 */ 4174 wmark = __zone_watermark_ok(zone, order, min_wmark, 4175 ac->highest_zoneidx, alloc_flags, available); 4176 trace_reclaim_retry_zone(z, order, reclaimable, 4177 available, min_wmark, *no_progress_loops, wmark); 4178 if (wmark) { 4179 ret = true; 4180 break; 4181 } 4182 } 4183 4184 /* 4185 * Memory allocation/reclaim might be called from a WQ context and the 4186 * current implementation of the WQ concurrency control doesn't 4187 * recognize that a particular WQ is congested if the worker thread is 4188 * looping without ever sleeping. Therefore we have to do a short sleep 4189 * here rather than calling cond_resched(). 4190 */ 4191 if (current->flags & PF_WQ_WORKER) 4192 schedule_timeout_uninterruptible(1); 4193 else 4194 cond_resched(); 4195 return ret; 4196 } 4197 4198 static inline bool 4199 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4200 { 4201 /* 4202 * It's possible that cpuset's mems_allowed and the nodemask from 4203 * mempolicy don't intersect. This should be normally dealt with by 4204 * policy_nodemask(), but it's possible to race with cpuset update in 4205 * such a way the check therein was true, and then it became false 4206 * before we got our cpuset_mems_cookie here. 4207 * This assumes that for all allocations, ac->nodemask can come only 4208 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4209 * when it does not intersect with the cpuset restrictions) or the 4210 * caller can deal with a violated nodemask. 4211 */ 4212 if (cpusets_enabled() && ac->nodemask && 4213 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4214 ac->nodemask = NULL; 4215 return true; 4216 } 4217 4218 /* 4219 * When updating a task's mems_allowed or mempolicy nodemask, it is 4220 * possible to race with parallel threads in such a way that our 4221 * allocation can fail while the mask is being updated. If we are about 4222 * to fail, check if the cpuset changed during allocation and if so, 4223 * retry. 4224 */ 4225 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4226 return true; 4227 4228 return false; 4229 } 4230 4231 static inline struct page * 4232 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4233 struct alloc_context *ac) 4234 { 4235 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4236 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4237 struct page *page = NULL; 4238 unsigned int alloc_flags; 4239 unsigned long did_some_progress; 4240 enum compact_priority compact_priority; 4241 enum compact_result compact_result; 4242 int compaction_retries; 4243 int no_progress_loops; 4244 unsigned int cpuset_mems_cookie; 4245 unsigned int zonelist_iter_cookie; 4246 int reserve_flags; 4247 4248 restart: 4249 compaction_retries = 0; 4250 no_progress_loops = 0; 4251 compact_priority = DEF_COMPACT_PRIORITY; 4252 cpuset_mems_cookie = read_mems_allowed_begin(); 4253 zonelist_iter_cookie = zonelist_iter_begin(); 4254 4255 /* 4256 * The fast path uses conservative alloc_flags to succeed only until 4257 * kswapd needs to be woken up, and to avoid the cost of setting up 4258 * alloc_flags precisely. So we do that now. 4259 */ 4260 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4261 4262 /* 4263 * We need to recalculate the starting point for the zonelist iterator 4264 * because we might have used different nodemask in the fast path, or 4265 * there was a cpuset modification and we are retrying - otherwise we 4266 * could end up iterating over non-eligible zones endlessly. 4267 */ 4268 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4269 ac->highest_zoneidx, ac->nodemask); 4270 if (!ac->preferred_zoneref->zone) 4271 goto nopage; 4272 4273 /* 4274 * Check for insane configurations where the cpuset doesn't contain 4275 * any suitable zone to satisfy the request - e.g. non-movable 4276 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4277 */ 4278 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4279 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4280 ac->highest_zoneidx, 4281 &cpuset_current_mems_allowed); 4282 if (!z->zone) 4283 goto nopage; 4284 } 4285 4286 if (alloc_flags & ALLOC_KSWAPD) 4287 wake_all_kswapds(order, gfp_mask, ac); 4288 4289 /* 4290 * The adjusted alloc_flags might result in immediate success, so try 4291 * that first 4292 */ 4293 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4294 if (page) 4295 goto got_pg; 4296 4297 /* 4298 * For costly allocations, try direct compaction first, as it's likely 4299 * that we have enough base pages and don't need to reclaim. For non- 4300 * movable high-order allocations, do that as well, as compaction will 4301 * try prevent permanent fragmentation by migrating from blocks of the 4302 * same migratetype. 4303 * Don't try this for allocations that are allowed to ignore 4304 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4305 */ 4306 if (can_direct_reclaim && 4307 (costly_order || 4308 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4309 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4310 page = __alloc_pages_direct_compact(gfp_mask, order, 4311 alloc_flags, ac, 4312 INIT_COMPACT_PRIORITY, 4313 &compact_result); 4314 if (page) 4315 goto got_pg; 4316 4317 /* 4318 * Checks for costly allocations with __GFP_NORETRY, which 4319 * includes some THP page fault allocations 4320 */ 4321 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4322 /* 4323 * If allocating entire pageblock(s) and compaction 4324 * failed because all zones are below low watermarks 4325 * or is prohibited because it recently failed at this 4326 * order, fail immediately unless the allocator has 4327 * requested compaction and reclaim retry. 4328 * 4329 * Reclaim is 4330 * - potentially very expensive because zones are far 4331 * below their low watermarks or this is part of very 4332 * bursty high order allocations, 4333 * - not guaranteed to help because isolate_freepages() 4334 * may not iterate over freed pages as part of its 4335 * linear scan, and 4336 * - unlikely to make entire pageblocks free on its 4337 * own. 4338 */ 4339 if (compact_result == COMPACT_SKIPPED || 4340 compact_result == COMPACT_DEFERRED) 4341 goto nopage; 4342 4343 /* 4344 * Looks like reclaim/compaction is worth trying, but 4345 * sync compaction could be very expensive, so keep 4346 * using async compaction. 4347 */ 4348 compact_priority = INIT_COMPACT_PRIORITY; 4349 } 4350 } 4351 4352 retry: 4353 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4354 if (alloc_flags & ALLOC_KSWAPD) 4355 wake_all_kswapds(order, gfp_mask, ac); 4356 4357 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4358 if (reserve_flags) 4359 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4360 (alloc_flags & ALLOC_KSWAPD); 4361 4362 /* 4363 * Reset the nodemask and zonelist iterators if memory policies can be 4364 * ignored. These allocations are high priority and system rather than 4365 * user oriented. 4366 */ 4367 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4368 ac->nodemask = NULL; 4369 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4370 ac->highest_zoneidx, ac->nodemask); 4371 } 4372 4373 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4374 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4375 if (page) 4376 goto got_pg; 4377 4378 /* Caller is not willing to reclaim, we can't balance anything */ 4379 if (!can_direct_reclaim) 4380 goto nopage; 4381 4382 /* Avoid recursion of direct reclaim */ 4383 if (current->flags & PF_MEMALLOC) 4384 goto nopage; 4385 4386 /* Try direct reclaim and then allocating */ 4387 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4388 &did_some_progress); 4389 if (page) 4390 goto got_pg; 4391 4392 /* Try direct compaction and then allocating */ 4393 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4394 compact_priority, &compact_result); 4395 if (page) 4396 goto got_pg; 4397 4398 /* Do not loop if specifically requested */ 4399 if (gfp_mask & __GFP_NORETRY) 4400 goto nopage; 4401 4402 /* 4403 * Do not retry costly high order allocations unless they are 4404 * __GFP_RETRY_MAYFAIL 4405 */ 4406 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4407 goto nopage; 4408 4409 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4410 did_some_progress > 0, &no_progress_loops)) 4411 goto retry; 4412 4413 /* 4414 * It doesn't make any sense to retry for the compaction if the order-0 4415 * reclaim is not able to make any progress because the current 4416 * implementation of the compaction depends on the sufficient amount 4417 * of free memory (see __compaction_suitable) 4418 */ 4419 if (did_some_progress > 0 && 4420 should_compact_retry(ac, order, alloc_flags, 4421 compact_result, &compact_priority, 4422 &compaction_retries)) 4423 goto retry; 4424 4425 4426 /* 4427 * Deal with possible cpuset update races or zonelist updates to avoid 4428 * a unnecessary OOM kill. 4429 */ 4430 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4431 check_retry_zonelist(zonelist_iter_cookie)) 4432 goto restart; 4433 4434 /* Reclaim has failed us, start killing things */ 4435 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4436 if (page) 4437 goto got_pg; 4438 4439 /* Avoid allocations with no watermarks from looping endlessly */ 4440 if (tsk_is_oom_victim(current) && 4441 (alloc_flags & ALLOC_OOM || 4442 (gfp_mask & __GFP_NOMEMALLOC))) 4443 goto nopage; 4444 4445 /* Retry as long as the OOM killer is making progress */ 4446 if (did_some_progress) { 4447 no_progress_loops = 0; 4448 goto retry; 4449 } 4450 4451 nopage: 4452 /* 4453 * Deal with possible cpuset update races or zonelist updates to avoid 4454 * a unnecessary OOM kill. 4455 */ 4456 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4457 check_retry_zonelist(zonelist_iter_cookie)) 4458 goto restart; 4459 4460 /* 4461 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4462 * we always retry 4463 */ 4464 if (gfp_mask & __GFP_NOFAIL) { 4465 /* 4466 * All existing users of the __GFP_NOFAIL are blockable, so warn 4467 * of any new users that actually require GFP_NOWAIT 4468 */ 4469 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4470 goto fail; 4471 4472 /* 4473 * PF_MEMALLOC request from this context is rather bizarre 4474 * because we cannot reclaim anything and only can loop waiting 4475 * for somebody to do a work for us 4476 */ 4477 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4478 4479 /* 4480 * non failing costly orders are a hard requirement which we 4481 * are not prepared for much so let's warn about these users 4482 * so that we can identify them and convert them to something 4483 * else. 4484 */ 4485 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4486 4487 /* 4488 * Help non-failing allocations by giving some access to memory 4489 * reserves normally used for high priority non-blocking 4490 * allocations but do not use ALLOC_NO_WATERMARKS because this 4491 * could deplete whole memory reserves which would just make 4492 * the situation worse. 4493 */ 4494 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4495 if (page) 4496 goto got_pg; 4497 4498 cond_resched(); 4499 goto retry; 4500 } 4501 fail: 4502 warn_alloc(gfp_mask, ac->nodemask, 4503 "page allocation failure: order:%u", order); 4504 got_pg: 4505 return page; 4506 } 4507 4508 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4509 int preferred_nid, nodemask_t *nodemask, 4510 struct alloc_context *ac, gfp_t *alloc_gfp, 4511 unsigned int *alloc_flags) 4512 { 4513 ac->highest_zoneidx = gfp_zone(gfp_mask); 4514 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4515 ac->nodemask = nodemask; 4516 ac->migratetype = gfp_migratetype(gfp_mask); 4517 4518 if (cpusets_enabled()) { 4519 *alloc_gfp |= __GFP_HARDWALL; 4520 /* 4521 * When we are in the interrupt context, it is irrelevant 4522 * to the current task context. It means that any node ok. 4523 */ 4524 if (in_task() && !ac->nodemask) 4525 ac->nodemask = &cpuset_current_mems_allowed; 4526 else 4527 *alloc_flags |= ALLOC_CPUSET; 4528 } 4529 4530 might_alloc(gfp_mask); 4531 4532 if (should_fail_alloc_page(gfp_mask, order)) 4533 return false; 4534 4535 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4536 4537 /* Dirty zone balancing only done in the fast path */ 4538 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4539 4540 /* 4541 * The preferred zone is used for statistics but crucially it is 4542 * also used as the starting point for the zonelist iterator. It 4543 * may get reset for allocations that ignore memory policies. 4544 */ 4545 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4546 ac->highest_zoneidx, ac->nodemask); 4547 4548 return true; 4549 } 4550 4551 /* 4552 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4553 * @gfp: GFP flags for the allocation 4554 * @preferred_nid: The preferred NUMA node ID to allocate from 4555 * @nodemask: Set of nodes to allocate from, may be NULL 4556 * @nr_pages: The number of pages desired on the list or array 4557 * @page_list: Optional list to store the allocated pages 4558 * @page_array: Optional array to store the pages 4559 * 4560 * This is a batched version of the page allocator that attempts to 4561 * allocate nr_pages quickly. Pages are added to page_list if page_list 4562 * is not NULL, otherwise it is assumed that the page_array is valid. 4563 * 4564 * For lists, nr_pages is the number of pages that should be allocated. 4565 * 4566 * For arrays, only NULL elements are populated with pages and nr_pages 4567 * is the maximum number of pages that will be stored in the array. 4568 * 4569 * Returns the number of pages on the list or array. 4570 */ 4571 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4572 nodemask_t *nodemask, int nr_pages, 4573 struct list_head *page_list, 4574 struct page **page_array) 4575 { 4576 struct page *page; 4577 unsigned long __maybe_unused UP_flags; 4578 struct zone *zone; 4579 struct zoneref *z; 4580 struct per_cpu_pages *pcp; 4581 struct list_head *pcp_list; 4582 struct alloc_context ac; 4583 gfp_t alloc_gfp; 4584 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4585 int nr_populated = 0, nr_account = 0; 4586 4587 /* 4588 * Skip populated array elements to determine if any pages need 4589 * to be allocated before disabling IRQs. 4590 */ 4591 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4592 nr_populated++; 4593 4594 /* No pages requested? */ 4595 if (unlikely(nr_pages <= 0)) 4596 goto out; 4597 4598 /* Already populated array? */ 4599 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4600 goto out; 4601 4602 /* Bulk allocator does not support memcg accounting. */ 4603 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4604 goto failed; 4605 4606 /* Use the single page allocator for one page. */ 4607 if (nr_pages - nr_populated == 1) 4608 goto failed; 4609 4610 #ifdef CONFIG_PAGE_OWNER 4611 /* 4612 * PAGE_OWNER may recurse into the allocator to allocate space to 4613 * save the stack with pagesets.lock held. Releasing/reacquiring 4614 * removes much of the performance benefit of bulk allocation so 4615 * force the caller to allocate one page at a time as it'll have 4616 * similar performance to added complexity to the bulk allocator. 4617 */ 4618 if (static_branch_unlikely(&page_owner_inited)) 4619 goto failed; 4620 #endif 4621 4622 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4623 gfp &= gfp_allowed_mask; 4624 alloc_gfp = gfp; 4625 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4626 goto out; 4627 gfp = alloc_gfp; 4628 4629 /* Find an allowed local zone that meets the low watermark. */ 4630 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4631 unsigned long mark; 4632 4633 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4634 !__cpuset_zone_allowed(zone, gfp)) { 4635 continue; 4636 } 4637 4638 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4639 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4640 goto failed; 4641 } 4642 4643 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4644 if (zone_watermark_fast(zone, 0, mark, 4645 zonelist_zone_idx(ac.preferred_zoneref), 4646 alloc_flags, gfp)) { 4647 break; 4648 } 4649 } 4650 4651 /* 4652 * If there are no allowed local zones that meets the watermarks then 4653 * try to allocate a single page and reclaim if necessary. 4654 */ 4655 if (unlikely(!zone)) 4656 goto failed; 4657 4658 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4659 pcp_trylock_prepare(UP_flags); 4660 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4661 if (!pcp) 4662 goto failed_irq; 4663 4664 /* Attempt the batch allocation */ 4665 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4666 while (nr_populated < nr_pages) { 4667 4668 /* Skip existing pages */ 4669 if (page_array && page_array[nr_populated]) { 4670 nr_populated++; 4671 continue; 4672 } 4673 4674 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4675 pcp, pcp_list); 4676 if (unlikely(!page)) { 4677 /* Try and allocate at least one page */ 4678 if (!nr_account) { 4679 pcp_spin_unlock(pcp); 4680 goto failed_irq; 4681 } 4682 break; 4683 } 4684 nr_account++; 4685 4686 prep_new_page(page, 0, gfp, 0); 4687 if (page_list) 4688 list_add(&page->lru, page_list); 4689 else 4690 page_array[nr_populated] = page; 4691 nr_populated++; 4692 } 4693 4694 pcp_spin_unlock(pcp); 4695 pcp_trylock_finish(UP_flags); 4696 4697 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4698 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4699 4700 out: 4701 return nr_populated; 4702 4703 failed_irq: 4704 pcp_trylock_finish(UP_flags); 4705 4706 failed: 4707 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4708 if (page) { 4709 if (page_list) 4710 list_add(&page->lru, page_list); 4711 else 4712 page_array[nr_populated] = page; 4713 nr_populated++; 4714 } 4715 4716 goto out; 4717 } 4718 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4719 4720 /* 4721 * This is the 'heart' of the zoned buddy allocator. 4722 */ 4723 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4724 nodemask_t *nodemask) 4725 { 4726 struct page *page; 4727 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4728 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4729 struct alloc_context ac = { }; 4730 4731 /* 4732 * There are several places where we assume that the order value is sane 4733 * so bail out early if the request is out of bound. 4734 */ 4735 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) 4736 return NULL; 4737 4738 gfp &= gfp_allowed_mask; 4739 /* 4740 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4741 * resp. GFP_NOIO which has to be inherited for all allocation requests 4742 * from a particular context which has been marked by 4743 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4744 * movable zones are not used during allocation. 4745 */ 4746 gfp = current_gfp_context(gfp); 4747 alloc_gfp = gfp; 4748 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4749 &alloc_gfp, &alloc_flags)) 4750 return NULL; 4751 4752 /* 4753 * Forbid the first pass from falling back to types that fragment 4754 * memory until all local zones are considered. 4755 */ 4756 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4757 4758 /* First allocation attempt */ 4759 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4760 if (likely(page)) 4761 goto out; 4762 4763 alloc_gfp = gfp; 4764 ac.spread_dirty_pages = false; 4765 4766 /* 4767 * Restore the original nodemask if it was potentially replaced with 4768 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4769 */ 4770 ac.nodemask = nodemask; 4771 4772 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4773 4774 out: 4775 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4776 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4777 __free_pages(page, order); 4778 page = NULL; 4779 } 4780 4781 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4782 kmsan_alloc_page(page, order, alloc_gfp); 4783 4784 return page; 4785 } 4786 EXPORT_SYMBOL(__alloc_pages); 4787 4788 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4789 nodemask_t *nodemask) 4790 { 4791 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4792 preferred_nid, nodemask); 4793 4794 if (page && order > 1) 4795 prep_transhuge_page(page); 4796 return (struct folio *)page; 4797 } 4798 EXPORT_SYMBOL(__folio_alloc); 4799 4800 /* 4801 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4802 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4803 * you need to access high mem. 4804 */ 4805 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4806 { 4807 struct page *page; 4808 4809 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4810 if (!page) 4811 return 0; 4812 return (unsigned long) page_address(page); 4813 } 4814 EXPORT_SYMBOL(__get_free_pages); 4815 4816 unsigned long get_zeroed_page(gfp_t gfp_mask) 4817 { 4818 return __get_free_page(gfp_mask | __GFP_ZERO); 4819 } 4820 EXPORT_SYMBOL(get_zeroed_page); 4821 4822 /** 4823 * __free_pages - Free pages allocated with alloc_pages(). 4824 * @page: The page pointer returned from alloc_pages(). 4825 * @order: The order of the allocation. 4826 * 4827 * This function can free multi-page allocations that are not compound 4828 * pages. It does not check that the @order passed in matches that of 4829 * the allocation, so it is easy to leak memory. Freeing more memory 4830 * than was allocated will probably emit a warning. 4831 * 4832 * If the last reference to this page is speculative, it will be released 4833 * by put_page() which only frees the first page of a non-compound 4834 * allocation. To prevent the remaining pages from being leaked, we free 4835 * the subsequent pages here. If you want to use the page's reference 4836 * count to decide when to free the allocation, you should allocate a 4837 * compound page, and use put_page() instead of __free_pages(). 4838 * 4839 * Context: May be called in interrupt context or while holding a normal 4840 * spinlock, but not in NMI context or while holding a raw spinlock. 4841 */ 4842 void __free_pages(struct page *page, unsigned int order) 4843 { 4844 /* get PageHead before we drop reference */ 4845 int head = PageHead(page); 4846 4847 if (put_page_testzero(page)) 4848 free_the_page(page, order); 4849 else if (!head) 4850 while (order-- > 0) 4851 free_the_page(page + (1 << order), order); 4852 } 4853 EXPORT_SYMBOL(__free_pages); 4854 4855 void free_pages(unsigned long addr, unsigned int order) 4856 { 4857 if (addr != 0) { 4858 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4859 __free_pages(virt_to_page((void *)addr), order); 4860 } 4861 } 4862 4863 EXPORT_SYMBOL(free_pages); 4864 4865 /* 4866 * Page Fragment: 4867 * An arbitrary-length arbitrary-offset area of memory which resides 4868 * within a 0 or higher order page. Multiple fragments within that page 4869 * are individually refcounted, in the page's reference counter. 4870 * 4871 * The page_frag functions below provide a simple allocation framework for 4872 * page fragments. This is used by the network stack and network device 4873 * drivers to provide a backing region of memory for use as either an 4874 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4875 */ 4876 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4877 gfp_t gfp_mask) 4878 { 4879 struct page *page = NULL; 4880 gfp_t gfp = gfp_mask; 4881 4882 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4883 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4884 __GFP_NOMEMALLOC; 4885 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4886 PAGE_FRAG_CACHE_MAX_ORDER); 4887 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4888 #endif 4889 if (unlikely(!page)) 4890 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4891 4892 nc->va = page ? page_address(page) : NULL; 4893 4894 return page; 4895 } 4896 4897 void __page_frag_cache_drain(struct page *page, unsigned int count) 4898 { 4899 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4900 4901 if (page_ref_sub_and_test(page, count)) 4902 free_the_page(page, compound_order(page)); 4903 } 4904 EXPORT_SYMBOL(__page_frag_cache_drain); 4905 4906 void *page_frag_alloc_align(struct page_frag_cache *nc, 4907 unsigned int fragsz, gfp_t gfp_mask, 4908 unsigned int align_mask) 4909 { 4910 unsigned int size = PAGE_SIZE; 4911 struct page *page; 4912 int offset; 4913 4914 if (unlikely(!nc->va)) { 4915 refill: 4916 page = __page_frag_cache_refill(nc, gfp_mask); 4917 if (!page) 4918 return NULL; 4919 4920 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4921 /* if size can vary use size else just use PAGE_SIZE */ 4922 size = nc->size; 4923 #endif 4924 /* Even if we own the page, we do not use atomic_set(). 4925 * This would break get_page_unless_zero() users. 4926 */ 4927 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4928 4929 /* reset page count bias and offset to start of new frag */ 4930 nc->pfmemalloc = page_is_pfmemalloc(page); 4931 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4932 nc->offset = size; 4933 } 4934 4935 offset = nc->offset - fragsz; 4936 if (unlikely(offset < 0)) { 4937 page = virt_to_page(nc->va); 4938 4939 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4940 goto refill; 4941 4942 if (unlikely(nc->pfmemalloc)) { 4943 free_the_page(page, compound_order(page)); 4944 goto refill; 4945 } 4946 4947 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4948 /* if size can vary use size else just use PAGE_SIZE */ 4949 size = nc->size; 4950 #endif 4951 /* OK, page count is 0, we can safely set it */ 4952 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4953 4954 /* reset page count bias and offset to start of new frag */ 4955 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4956 offset = size - fragsz; 4957 if (unlikely(offset < 0)) { 4958 /* 4959 * The caller is trying to allocate a fragment 4960 * with fragsz > PAGE_SIZE but the cache isn't big 4961 * enough to satisfy the request, this may 4962 * happen in low memory conditions. 4963 * We don't release the cache page because 4964 * it could make memory pressure worse 4965 * so we simply return NULL here. 4966 */ 4967 return NULL; 4968 } 4969 } 4970 4971 nc->pagecnt_bias--; 4972 offset &= align_mask; 4973 nc->offset = offset; 4974 4975 return nc->va + offset; 4976 } 4977 EXPORT_SYMBOL(page_frag_alloc_align); 4978 4979 /* 4980 * Frees a page fragment allocated out of either a compound or order 0 page. 4981 */ 4982 void page_frag_free(void *addr) 4983 { 4984 struct page *page = virt_to_head_page(addr); 4985 4986 if (unlikely(put_page_testzero(page))) 4987 free_the_page(page, compound_order(page)); 4988 } 4989 EXPORT_SYMBOL(page_frag_free); 4990 4991 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4992 size_t size) 4993 { 4994 if (addr) { 4995 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4996 struct page *page = virt_to_page((void *)addr); 4997 struct page *last = page + nr; 4998 4999 split_page_owner(page, 1 << order); 5000 split_page_memcg(page, 1 << order); 5001 while (page < --last) 5002 set_page_refcounted(last); 5003 5004 last = page + (1UL << order); 5005 for (page += nr; page < last; page++) 5006 __free_pages_ok(page, 0, FPI_TO_TAIL); 5007 } 5008 return (void *)addr; 5009 } 5010 5011 /** 5012 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5013 * @size: the number of bytes to allocate 5014 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5015 * 5016 * This function is similar to alloc_pages(), except that it allocates the 5017 * minimum number of pages to satisfy the request. alloc_pages() can only 5018 * allocate memory in power-of-two pages. 5019 * 5020 * This function is also limited by MAX_ORDER. 5021 * 5022 * Memory allocated by this function must be released by free_pages_exact(). 5023 * 5024 * Return: pointer to the allocated area or %NULL in case of error. 5025 */ 5026 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5027 { 5028 unsigned int order = get_order(size); 5029 unsigned long addr; 5030 5031 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5032 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5033 5034 addr = __get_free_pages(gfp_mask, order); 5035 return make_alloc_exact(addr, order, size); 5036 } 5037 EXPORT_SYMBOL(alloc_pages_exact); 5038 5039 /** 5040 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5041 * pages on a node. 5042 * @nid: the preferred node ID where memory should be allocated 5043 * @size: the number of bytes to allocate 5044 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5045 * 5046 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5047 * back. 5048 * 5049 * Return: pointer to the allocated area or %NULL in case of error. 5050 */ 5051 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5052 { 5053 unsigned int order = get_order(size); 5054 struct page *p; 5055 5056 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5057 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5058 5059 p = alloc_pages_node(nid, gfp_mask, order); 5060 if (!p) 5061 return NULL; 5062 return make_alloc_exact((unsigned long)page_address(p), order, size); 5063 } 5064 5065 /** 5066 * free_pages_exact - release memory allocated via alloc_pages_exact() 5067 * @virt: the value returned by alloc_pages_exact. 5068 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5069 * 5070 * Release the memory allocated by a previous call to alloc_pages_exact. 5071 */ 5072 void free_pages_exact(void *virt, size_t size) 5073 { 5074 unsigned long addr = (unsigned long)virt; 5075 unsigned long end = addr + PAGE_ALIGN(size); 5076 5077 while (addr < end) { 5078 free_page(addr); 5079 addr += PAGE_SIZE; 5080 } 5081 } 5082 EXPORT_SYMBOL(free_pages_exact); 5083 5084 /** 5085 * nr_free_zone_pages - count number of pages beyond high watermark 5086 * @offset: The zone index of the highest zone 5087 * 5088 * nr_free_zone_pages() counts the number of pages which are beyond the 5089 * high watermark within all zones at or below a given zone index. For each 5090 * zone, the number of pages is calculated as: 5091 * 5092 * nr_free_zone_pages = managed_pages - high_pages 5093 * 5094 * Return: number of pages beyond high watermark. 5095 */ 5096 static unsigned long nr_free_zone_pages(int offset) 5097 { 5098 struct zoneref *z; 5099 struct zone *zone; 5100 5101 /* Just pick one node, since fallback list is circular */ 5102 unsigned long sum = 0; 5103 5104 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5105 5106 for_each_zone_zonelist(zone, z, zonelist, offset) { 5107 unsigned long size = zone_managed_pages(zone); 5108 unsigned long high = high_wmark_pages(zone); 5109 if (size > high) 5110 sum += size - high; 5111 } 5112 5113 return sum; 5114 } 5115 5116 /** 5117 * nr_free_buffer_pages - count number of pages beyond high watermark 5118 * 5119 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5120 * watermark within ZONE_DMA and ZONE_NORMAL. 5121 * 5122 * Return: number of pages beyond high watermark within ZONE_DMA and 5123 * ZONE_NORMAL. 5124 */ 5125 unsigned long nr_free_buffer_pages(void) 5126 { 5127 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5128 } 5129 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5130 5131 static inline void show_node(struct zone *zone) 5132 { 5133 if (IS_ENABLED(CONFIG_NUMA)) 5134 printk("Node %d ", zone_to_nid(zone)); 5135 } 5136 5137 long si_mem_available(void) 5138 { 5139 long available; 5140 unsigned long pagecache; 5141 unsigned long wmark_low = 0; 5142 unsigned long pages[NR_LRU_LISTS]; 5143 unsigned long reclaimable; 5144 struct zone *zone; 5145 int lru; 5146 5147 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5148 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5149 5150 for_each_zone(zone) 5151 wmark_low += low_wmark_pages(zone); 5152 5153 /* 5154 * Estimate the amount of memory available for userspace allocations, 5155 * without causing swapping or OOM. 5156 */ 5157 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5158 5159 /* 5160 * Not all the page cache can be freed, otherwise the system will 5161 * start swapping or thrashing. Assume at least half of the page 5162 * cache, or the low watermark worth of cache, needs to stay. 5163 */ 5164 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5165 pagecache -= min(pagecache / 2, wmark_low); 5166 available += pagecache; 5167 5168 /* 5169 * Part of the reclaimable slab and other kernel memory consists of 5170 * items that are in use, and cannot be freed. Cap this estimate at the 5171 * low watermark. 5172 */ 5173 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5174 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5175 available += reclaimable - min(reclaimable / 2, wmark_low); 5176 5177 if (available < 0) 5178 available = 0; 5179 return available; 5180 } 5181 EXPORT_SYMBOL_GPL(si_mem_available); 5182 5183 void si_meminfo(struct sysinfo *val) 5184 { 5185 val->totalram = totalram_pages(); 5186 val->sharedram = global_node_page_state(NR_SHMEM); 5187 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5188 val->bufferram = nr_blockdev_pages(); 5189 val->totalhigh = totalhigh_pages(); 5190 val->freehigh = nr_free_highpages(); 5191 val->mem_unit = PAGE_SIZE; 5192 } 5193 5194 EXPORT_SYMBOL(si_meminfo); 5195 5196 #ifdef CONFIG_NUMA 5197 void si_meminfo_node(struct sysinfo *val, int nid) 5198 { 5199 int zone_type; /* needs to be signed */ 5200 unsigned long managed_pages = 0; 5201 unsigned long managed_highpages = 0; 5202 unsigned long free_highpages = 0; 5203 pg_data_t *pgdat = NODE_DATA(nid); 5204 5205 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5206 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5207 val->totalram = managed_pages; 5208 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5209 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5210 #ifdef CONFIG_HIGHMEM 5211 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5212 struct zone *zone = &pgdat->node_zones[zone_type]; 5213 5214 if (is_highmem(zone)) { 5215 managed_highpages += zone_managed_pages(zone); 5216 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5217 } 5218 } 5219 val->totalhigh = managed_highpages; 5220 val->freehigh = free_highpages; 5221 #else 5222 val->totalhigh = managed_highpages; 5223 val->freehigh = free_highpages; 5224 #endif 5225 val->mem_unit = PAGE_SIZE; 5226 } 5227 #endif 5228 5229 /* 5230 * Determine whether the node should be displayed or not, depending on whether 5231 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5232 */ 5233 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5234 { 5235 if (!(flags & SHOW_MEM_FILTER_NODES)) 5236 return false; 5237 5238 /* 5239 * no node mask - aka implicit memory numa policy. Do not bother with 5240 * the synchronization - read_mems_allowed_begin - because we do not 5241 * have to be precise here. 5242 */ 5243 if (!nodemask) 5244 nodemask = &cpuset_current_mems_allowed; 5245 5246 return !node_isset(nid, *nodemask); 5247 } 5248 5249 static void show_migration_types(unsigned char type) 5250 { 5251 static const char types[MIGRATE_TYPES] = { 5252 [MIGRATE_UNMOVABLE] = 'U', 5253 [MIGRATE_MOVABLE] = 'M', 5254 [MIGRATE_RECLAIMABLE] = 'E', 5255 [MIGRATE_HIGHATOMIC] = 'H', 5256 #ifdef CONFIG_CMA 5257 [MIGRATE_CMA] = 'C', 5258 #endif 5259 #ifdef CONFIG_MEMORY_ISOLATION 5260 [MIGRATE_ISOLATE] = 'I', 5261 #endif 5262 }; 5263 char tmp[MIGRATE_TYPES + 1]; 5264 char *p = tmp; 5265 int i; 5266 5267 for (i = 0; i < MIGRATE_TYPES; i++) { 5268 if (type & (1 << i)) 5269 *p++ = types[i]; 5270 } 5271 5272 *p = '\0'; 5273 printk(KERN_CONT "(%s) ", tmp); 5274 } 5275 5276 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 5277 { 5278 int zone_idx; 5279 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 5280 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 5281 return true; 5282 return false; 5283 } 5284 5285 /* 5286 * Show free area list (used inside shift_scroll-lock stuff) 5287 * We also calculate the percentage fragmentation. We do this by counting the 5288 * memory on each free list with the exception of the first item on the list. 5289 * 5290 * Bits in @filter: 5291 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5292 * cpuset. 5293 */ 5294 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 5295 { 5296 unsigned long free_pcp = 0; 5297 int cpu, nid; 5298 struct zone *zone; 5299 pg_data_t *pgdat; 5300 5301 for_each_populated_zone(zone) { 5302 if (zone_idx(zone) > max_zone_idx) 5303 continue; 5304 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5305 continue; 5306 5307 for_each_online_cpu(cpu) 5308 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5309 } 5310 5311 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5312 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5313 " unevictable:%lu dirty:%lu writeback:%lu\n" 5314 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5315 " mapped:%lu shmem:%lu pagetables:%lu\n" 5316 " sec_pagetables:%lu bounce:%lu\n" 5317 " kernel_misc_reclaimable:%lu\n" 5318 " free:%lu free_pcp:%lu free_cma:%lu\n", 5319 global_node_page_state(NR_ACTIVE_ANON), 5320 global_node_page_state(NR_INACTIVE_ANON), 5321 global_node_page_state(NR_ISOLATED_ANON), 5322 global_node_page_state(NR_ACTIVE_FILE), 5323 global_node_page_state(NR_INACTIVE_FILE), 5324 global_node_page_state(NR_ISOLATED_FILE), 5325 global_node_page_state(NR_UNEVICTABLE), 5326 global_node_page_state(NR_FILE_DIRTY), 5327 global_node_page_state(NR_WRITEBACK), 5328 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5329 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5330 global_node_page_state(NR_FILE_MAPPED), 5331 global_node_page_state(NR_SHMEM), 5332 global_node_page_state(NR_PAGETABLE), 5333 global_node_page_state(NR_SECONDARY_PAGETABLE), 5334 global_zone_page_state(NR_BOUNCE), 5335 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5336 global_zone_page_state(NR_FREE_PAGES), 5337 free_pcp, 5338 global_zone_page_state(NR_FREE_CMA_PAGES)); 5339 5340 for_each_online_pgdat(pgdat) { 5341 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5342 continue; 5343 if (!node_has_managed_zones(pgdat, max_zone_idx)) 5344 continue; 5345 5346 printk("Node %d" 5347 " active_anon:%lukB" 5348 " inactive_anon:%lukB" 5349 " active_file:%lukB" 5350 " inactive_file:%lukB" 5351 " unevictable:%lukB" 5352 " isolated(anon):%lukB" 5353 " isolated(file):%lukB" 5354 " mapped:%lukB" 5355 " dirty:%lukB" 5356 " writeback:%lukB" 5357 " shmem:%lukB" 5358 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5359 " shmem_thp: %lukB" 5360 " shmem_pmdmapped: %lukB" 5361 " anon_thp: %lukB" 5362 #endif 5363 " writeback_tmp:%lukB" 5364 " kernel_stack:%lukB" 5365 #ifdef CONFIG_SHADOW_CALL_STACK 5366 " shadow_call_stack:%lukB" 5367 #endif 5368 " pagetables:%lukB" 5369 " sec_pagetables:%lukB" 5370 " all_unreclaimable? %s" 5371 "\n", 5372 pgdat->node_id, 5373 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5374 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5375 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5376 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5377 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5378 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5379 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5380 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5381 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5382 K(node_page_state(pgdat, NR_WRITEBACK)), 5383 K(node_page_state(pgdat, NR_SHMEM)), 5384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5385 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5386 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5387 K(node_page_state(pgdat, NR_ANON_THPS)), 5388 #endif 5389 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5390 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5391 #ifdef CONFIG_SHADOW_CALL_STACK 5392 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5393 #endif 5394 K(node_page_state(pgdat, NR_PAGETABLE)), 5395 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 5396 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5397 "yes" : "no"); 5398 } 5399 5400 for_each_populated_zone(zone) { 5401 int i; 5402 5403 if (zone_idx(zone) > max_zone_idx) 5404 continue; 5405 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5406 continue; 5407 5408 free_pcp = 0; 5409 for_each_online_cpu(cpu) 5410 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5411 5412 show_node(zone); 5413 printk(KERN_CONT 5414 "%s" 5415 " free:%lukB" 5416 " boost:%lukB" 5417 " min:%lukB" 5418 " low:%lukB" 5419 " high:%lukB" 5420 " reserved_highatomic:%luKB" 5421 " active_anon:%lukB" 5422 " inactive_anon:%lukB" 5423 " active_file:%lukB" 5424 " inactive_file:%lukB" 5425 " unevictable:%lukB" 5426 " writepending:%lukB" 5427 " present:%lukB" 5428 " managed:%lukB" 5429 " mlocked:%lukB" 5430 " bounce:%lukB" 5431 " free_pcp:%lukB" 5432 " local_pcp:%ukB" 5433 " free_cma:%lukB" 5434 "\n", 5435 zone->name, 5436 K(zone_page_state(zone, NR_FREE_PAGES)), 5437 K(zone->watermark_boost), 5438 K(min_wmark_pages(zone)), 5439 K(low_wmark_pages(zone)), 5440 K(high_wmark_pages(zone)), 5441 K(zone->nr_reserved_highatomic), 5442 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5443 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5444 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5445 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5446 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5447 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5448 K(zone->present_pages), 5449 K(zone_managed_pages(zone)), 5450 K(zone_page_state(zone, NR_MLOCK)), 5451 K(zone_page_state(zone, NR_BOUNCE)), 5452 K(free_pcp), 5453 K(this_cpu_read(zone->per_cpu_pageset->count)), 5454 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5455 printk("lowmem_reserve[]:"); 5456 for (i = 0; i < MAX_NR_ZONES; i++) 5457 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5458 printk(KERN_CONT "\n"); 5459 } 5460 5461 for_each_populated_zone(zone) { 5462 unsigned int order; 5463 unsigned long nr[MAX_ORDER + 1], flags, total = 0; 5464 unsigned char types[MAX_ORDER + 1]; 5465 5466 if (zone_idx(zone) > max_zone_idx) 5467 continue; 5468 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5469 continue; 5470 show_node(zone); 5471 printk(KERN_CONT "%s: ", zone->name); 5472 5473 spin_lock_irqsave(&zone->lock, flags); 5474 for (order = 0; order <= MAX_ORDER; order++) { 5475 struct free_area *area = &zone->free_area[order]; 5476 int type; 5477 5478 nr[order] = area->nr_free; 5479 total += nr[order] << order; 5480 5481 types[order] = 0; 5482 for (type = 0; type < MIGRATE_TYPES; type++) { 5483 if (!free_area_empty(area, type)) 5484 types[order] |= 1 << type; 5485 } 5486 } 5487 spin_unlock_irqrestore(&zone->lock, flags); 5488 for (order = 0; order <= MAX_ORDER; order++) { 5489 printk(KERN_CONT "%lu*%lukB ", 5490 nr[order], K(1UL) << order); 5491 if (nr[order]) 5492 show_migration_types(types[order]); 5493 } 5494 printk(KERN_CONT "= %lukB\n", K(total)); 5495 } 5496 5497 for_each_online_node(nid) { 5498 if (show_mem_node_skip(filter, nid, nodemask)) 5499 continue; 5500 hugetlb_show_meminfo_node(nid); 5501 } 5502 5503 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5504 5505 show_swap_cache_info(); 5506 } 5507 5508 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5509 { 5510 zoneref->zone = zone; 5511 zoneref->zone_idx = zone_idx(zone); 5512 } 5513 5514 /* 5515 * Builds allocation fallback zone lists. 5516 * 5517 * Add all populated zones of a node to the zonelist. 5518 */ 5519 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5520 { 5521 struct zone *zone; 5522 enum zone_type zone_type = MAX_NR_ZONES; 5523 int nr_zones = 0; 5524 5525 do { 5526 zone_type--; 5527 zone = pgdat->node_zones + zone_type; 5528 if (populated_zone(zone)) { 5529 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5530 check_highest_zone(zone_type); 5531 } 5532 } while (zone_type); 5533 5534 return nr_zones; 5535 } 5536 5537 #ifdef CONFIG_NUMA 5538 5539 static int __parse_numa_zonelist_order(char *s) 5540 { 5541 /* 5542 * We used to support different zonelists modes but they turned 5543 * out to be just not useful. Let's keep the warning in place 5544 * if somebody still use the cmd line parameter so that we do 5545 * not fail it silently 5546 */ 5547 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5548 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5549 return -EINVAL; 5550 } 5551 return 0; 5552 } 5553 5554 char numa_zonelist_order[] = "Node"; 5555 5556 /* 5557 * sysctl handler for numa_zonelist_order 5558 */ 5559 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5560 void *buffer, size_t *length, loff_t *ppos) 5561 { 5562 if (write) 5563 return __parse_numa_zonelist_order(buffer); 5564 return proc_dostring(table, write, buffer, length, ppos); 5565 } 5566 5567 5568 static int node_load[MAX_NUMNODES]; 5569 5570 /** 5571 * find_next_best_node - find the next node that should appear in a given node's fallback list 5572 * @node: node whose fallback list we're appending 5573 * @used_node_mask: nodemask_t of already used nodes 5574 * 5575 * We use a number of factors to determine which is the next node that should 5576 * appear on a given node's fallback list. The node should not have appeared 5577 * already in @node's fallback list, and it should be the next closest node 5578 * according to the distance array (which contains arbitrary distance values 5579 * from each node to each node in the system), and should also prefer nodes 5580 * with no CPUs, since presumably they'll have very little allocation pressure 5581 * on them otherwise. 5582 * 5583 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5584 */ 5585 int find_next_best_node(int node, nodemask_t *used_node_mask) 5586 { 5587 int n, val; 5588 int min_val = INT_MAX; 5589 int best_node = NUMA_NO_NODE; 5590 5591 /* Use the local node if we haven't already */ 5592 if (!node_isset(node, *used_node_mask)) { 5593 node_set(node, *used_node_mask); 5594 return node; 5595 } 5596 5597 for_each_node_state(n, N_MEMORY) { 5598 5599 /* Don't want a node to appear more than once */ 5600 if (node_isset(n, *used_node_mask)) 5601 continue; 5602 5603 /* Use the distance array to find the distance */ 5604 val = node_distance(node, n); 5605 5606 /* Penalize nodes under us ("prefer the next node") */ 5607 val += (n < node); 5608 5609 /* Give preference to headless and unused nodes */ 5610 if (!cpumask_empty(cpumask_of_node(n))) 5611 val += PENALTY_FOR_NODE_WITH_CPUS; 5612 5613 /* Slight preference for less loaded node */ 5614 val *= MAX_NUMNODES; 5615 val += node_load[n]; 5616 5617 if (val < min_val) { 5618 min_val = val; 5619 best_node = n; 5620 } 5621 } 5622 5623 if (best_node >= 0) 5624 node_set(best_node, *used_node_mask); 5625 5626 return best_node; 5627 } 5628 5629 5630 /* 5631 * Build zonelists ordered by node and zones within node. 5632 * This results in maximum locality--normal zone overflows into local 5633 * DMA zone, if any--but risks exhausting DMA zone. 5634 */ 5635 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5636 unsigned nr_nodes) 5637 { 5638 struct zoneref *zonerefs; 5639 int i; 5640 5641 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5642 5643 for (i = 0; i < nr_nodes; i++) { 5644 int nr_zones; 5645 5646 pg_data_t *node = NODE_DATA(node_order[i]); 5647 5648 nr_zones = build_zonerefs_node(node, zonerefs); 5649 zonerefs += nr_zones; 5650 } 5651 zonerefs->zone = NULL; 5652 zonerefs->zone_idx = 0; 5653 } 5654 5655 /* 5656 * Build gfp_thisnode zonelists 5657 */ 5658 static void build_thisnode_zonelists(pg_data_t *pgdat) 5659 { 5660 struct zoneref *zonerefs; 5661 int nr_zones; 5662 5663 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5664 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5665 zonerefs += nr_zones; 5666 zonerefs->zone = NULL; 5667 zonerefs->zone_idx = 0; 5668 } 5669 5670 /* 5671 * Build zonelists ordered by zone and nodes within zones. 5672 * This results in conserving DMA zone[s] until all Normal memory is 5673 * exhausted, but results in overflowing to remote node while memory 5674 * may still exist in local DMA zone. 5675 */ 5676 5677 static void build_zonelists(pg_data_t *pgdat) 5678 { 5679 static int node_order[MAX_NUMNODES]; 5680 int node, nr_nodes = 0; 5681 nodemask_t used_mask = NODE_MASK_NONE; 5682 int local_node, prev_node; 5683 5684 /* NUMA-aware ordering of nodes */ 5685 local_node = pgdat->node_id; 5686 prev_node = local_node; 5687 5688 memset(node_order, 0, sizeof(node_order)); 5689 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5690 /* 5691 * We don't want to pressure a particular node. 5692 * So adding penalty to the first node in same 5693 * distance group to make it round-robin. 5694 */ 5695 if (node_distance(local_node, node) != 5696 node_distance(local_node, prev_node)) 5697 node_load[node] += 1; 5698 5699 node_order[nr_nodes++] = node; 5700 prev_node = node; 5701 } 5702 5703 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5704 build_thisnode_zonelists(pgdat); 5705 pr_info("Fallback order for Node %d: ", local_node); 5706 for (node = 0; node < nr_nodes; node++) 5707 pr_cont("%d ", node_order[node]); 5708 pr_cont("\n"); 5709 } 5710 5711 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5712 /* 5713 * Return node id of node used for "local" allocations. 5714 * I.e., first node id of first zone in arg node's generic zonelist. 5715 * Used for initializing percpu 'numa_mem', which is used primarily 5716 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5717 */ 5718 int local_memory_node(int node) 5719 { 5720 struct zoneref *z; 5721 5722 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5723 gfp_zone(GFP_KERNEL), 5724 NULL); 5725 return zone_to_nid(z->zone); 5726 } 5727 #endif 5728 5729 static void setup_min_unmapped_ratio(void); 5730 static void setup_min_slab_ratio(void); 5731 #else /* CONFIG_NUMA */ 5732 5733 static void build_zonelists(pg_data_t *pgdat) 5734 { 5735 int node, local_node; 5736 struct zoneref *zonerefs; 5737 int nr_zones; 5738 5739 local_node = pgdat->node_id; 5740 5741 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5742 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5743 zonerefs += nr_zones; 5744 5745 /* 5746 * Now we build the zonelist so that it contains the zones 5747 * of all the other nodes. 5748 * We don't want to pressure a particular node, so when 5749 * building the zones for node N, we make sure that the 5750 * zones coming right after the local ones are those from 5751 * node N+1 (modulo N) 5752 */ 5753 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5754 if (!node_online(node)) 5755 continue; 5756 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5757 zonerefs += nr_zones; 5758 } 5759 for (node = 0; node < local_node; node++) { 5760 if (!node_online(node)) 5761 continue; 5762 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5763 zonerefs += nr_zones; 5764 } 5765 5766 zonerefs->zone = NULL; 5767 zonerefs->zone_idx = 0; 5768 } 5769 5770 #endif /* CONFIG_NUMA */ 5771 5772 /* 5773 * Boot pageset table. One per cpu which is going to be used for all 5774 * zones and all nodes. The parameters will be set in such a way 5775 * that an item put on a list will immediately be handed over to 5776 * the buddy list. This is safe since pageset manipulation is done 5777 * with interrupts disabled. 5778 * 5779 * The boot_pagesets must be kept even after bootup is complete for 5780 * unused processors and/or zones. They do play a role for bootstrapping 5781 * hotplugged processors. 5782 * 5783 * zoneinfo_show() and maybe other functions do 5784 * not check if the processor is online before following the pageset pointer. 5785 * Other parts of the kernel may not check if the zone is available. 5786 */ 5787 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5788 /* These effectively disable the pcplists in the boot pageset completely */ 5789 #define BOOT_PAGESET_HIGH 0 5790 #define BOOT_PAGESET_BATCH 1 5791 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5792 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5793 5794 static void __build_all_zonelists(void *data) 5795 { 5796 int nid; 5797 int __maybe_unused cpu; 5798 pg_data_t *self = data; 5799 unsigned long flags; 5800 5801 /* 5802 * Explicitly disable this CPU's interrupts before taking seqlock 5803 * to prevent any IRQ handler from calling into the page allocator 5804 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock. 5805 */ 5806 local_irq_save(flags); 5807 /* 5808 * Explicitly disable this CPU's synchronous printk() before taking 5809 * seqlock to prevent any printk() from trying to hold port->lock, for 5810 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5811 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5812 */ 5813 printk_deferred_enter(); 5814 write_seqlock(&zonelist_update_seq); 5815 5816 #ifdef CONFIG_NUMA 5817 memset(node_load, 0, sizeof(node_load)); 5818 #endif 5819 5820 /* 5821 * This node is hotadded and no memory is yet present. So just 5822 * building zonelists is fine - no need to touch other nodes. 5823 */ 5824 if (self && !node_online(self->node_id)) { 5825 build_zonelists(self); 5826 } else { 5827 /* 5828 * All possible nodes have pgdat preallocated 5829 * in free_area_init 5830 */ 5831 for_each_node(nid) { 5832 pg_data_t *pgdat = NODE_DATA(nid); 5833 5834 build_zonelists(pgdat); 5835 } 5836 5837 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5838 /* 5839 * We now know the "local memory node" for each node-- 5840 * i.e., the node of the first zone in the generic zonelist. 5841 * Set up numa_mem percpu variable for on-line cpus. During 5842 * boot, only the boot cpu should be on-line; we'll init the 5843 * secondary cpus' numa_mem as they come on-line. During 5844 * node/memory hotplug, we'll fixup all on-line cpus. 5845 */ 5846 for_each_online_cpu(cpu) 5847 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5848 #endif 5849 } 5850 5851 write_sequnlock(&zonelist_update_seq); 5852 printk_deferred_exit(); 5853 local_irq_restore(flags); 5854 } 5855 5856 static noinline void __init 5857 build_all_zonelists_init(void) 5858 { 5859 int cpu; 5860 5861 __build_all_zonelists(NULL); 5862 5863 /* 5864 * Initialize the boot_pagesets that are going to be used 5865 * for bootstrapping processors. The real pagesets for 5866 * each zone will be allocated later when the per cpu 5867 * allocator is available. 5868 * 5869 * boot_pagesets are used also for bootstrapping offline 5870 * cpus if the system is already booted because the pagesets 5871 * are needed to initialize allocators on a specific cpu too. 5872 * F.e. the percpu allocator needs the page allocator which 5873 * needs the percpu allocator in order to allocate its pagesets 5874 * (a chicken-egg dilemma). 5875 */ 5876 for_each_possible_cpu(cpu) 5877 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5878 5879 mminit_verify_zonelist(); 5880 cpuset_init_current_mems_allowed(); 5881 } 5882 5883 /* 5884 * unless system_state == SYSTEM_BOOTING. 5885 * 5886 * __ref due to call of __init annotated helper build_all_zonelists_init 5887 * [protected by SYSTEM_BOOTING]. 5888 */ 5889 void __ref build_all_zonelists(pg_data_t *pgdat) 5890 { 5891 unsigned long vm_total_pages; 5892 5893 if (system_state == SYSTEM_BOOTING) { 5894 build_all_zonelists_init(); 5895 } else { 5896 __build_all_zonelists(pgdat); 5897 /* cpuset refresh routine should be here */ 5898 } 5899 /* Get the number of free pages beyond high watermark in all zones. */ 5900 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5901 /* 5902 * Disable grouping by mobility if the number of pages in the 5903 * system is too low to allow the mechanism to work. It would be 5904 * more accurate, but expensive to check per-zone. This check is 5905 * made on memory-hotadd so a system can start with mobility 5906 * disabled and enable it later 5907 */ 5908 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5909 page_group_by_mobility_disabled = 1; 5910 else 5911 page_group_by_mobility_disabled = 0; 5912 5913 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5914 nr_online_nodes, 5915 page_group_by_mobility_disabled ? "off" : "on", 5916 vm_total_pages); 5917 #ifdef CONFIG_NUMA 5918 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5919 #endif 5920 } 5921 5922 static int zone_batchsize(struct zone *zone) 5923 { 5924 #ifdef CONFIG_MMU 5925 int batch; 5926 5927 /* 5928 * The number of pages to batch allocate is either ~0.1% 5929 * of the zone or 1MB, whichever is smaller. The batch 5930 * size is striking a balance between allocation latency 5931 * and zone lock contention. 5932 */ 5933 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5934 batch /= 4; /* We effectively *= 4 below */ 5935 if (batch < 1) 5936 batch = 1; 5937 5938 /* 5939 * Clamp the batch to a 2^n - 1 value. Having a power 5940 * of 2 value was found to be more likely to have 5941 * suboptimal cache aliasing properties in some cases. 5942 * 5943 * For example if 2 tasks are alternately allocating 5944 * batches of pages, one task can end up with a lot 5945 * of pages of one half of the possible page colors 5946 * and the other with pages of the other colors. 5947 */ 5948 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5949 5950 return batch; 5951 5952 #else 5953 /* The deferral and batching of frees should be suppressed under NOMMU 5954 * conditions. 5955 * 5956 * The problem is that NOMMU needs to be able to allocate large chunks 5957 * of contiguous memory as there's no hardware page translation to 5958 * assemble apparent contiguous memory from discontiguous pages. 5959 * 5960 * Queueing large contiguous runs of pages for batching, however, 5961 * causes the pages to actually be freed in smaller chunks. As there 5962 * can be a significant delay between the individual batches being 5963 * recycled, this leads to the once large chunks of space being 5964 * fragmented and becoming unavailable for high-order allocations. 5965 */ 5966 return 0; 5967 #endif 5968 } 5969 5970 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 5971 { 5972 #ifdef CONFIG_MMU 5973 int high; 5974 int nr_split_cpus; 5975 unsigned long total_pages; 5976 5977 if (!percpu_pagelist_high_fraction) { 5978 /* 5979 * By default, the high value of the pcp is based on the zone 5980 * low watermark so that if they are full then background 5981 * reclaim will not be started prematurely. 5982 */ 5983 total_pages = low_wmark_pages(zone); 5984 } else { 5985 /* 5986 * If percpu_pagelist_high_fraction is configured, the high 5987 * value is based on a fraction of the managed pages in the 5988 * zone. 5989 */ 5990 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 5991 } 5992 5993 /* 5994 * Split the high value across all online CPUs local to the zone. Note 5995 * that early in boot that CPUs may not be online yet and that during 5996 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5997 * onlined. For memory nodes that have no CPUs, split pcp->high across 5998 * all online CPUs to mitigate the risk that reclaim is triggered 5999 * prematurely due to pages stored on pcp lists. 6000 */ 6001 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6002 if (!nr_split_cpus) 6003 nr_split_cpus = num_online_cpus(); 6004 high = total_pages / nr_split_cpus; 6005 6006 /* 6007 * Ensure high is at least batch*4. The multiple is based on the 6008 * historical relationship between high and batch. 6009 */ 6010 high = max(high, batch << 2); 6011 6012 return high; 6013 #else 6014 return 0; 6015 #endif 6016 } 6017 6018 /* 6019 * pcp->high and pcp->batch values are related and generally batch is lower 6020 * than high. They are also related to pcp->count such that count is lower 6021 * than high, and as soon as it reaches high, the pcplist is flushed. 6022 * 6023 * However, guaranteeing these relations at all times would require e.g. write 6024 * barriers here but also careful usage of read barriers at the read side, and 6025 * thus be prone to error and bad for performance. Thus the update only prevents 6026 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6027 * can cope with those fields changing asynchronously, and fully trust only the 6028 * pcp->count field on the local CPU with interrupts disabled. 6029 * 6030 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6031 * outside of boot time (or some other assurance that no concurrent updaters 6032 * exist). 6033 */ 6034 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6035 unsigned long batch) 6036 { 6037 WRITE_ONCE(pcp->batch, batch); 6038 WRITE_ONCE(pcp->high, high); 6039 } 6040 6041 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6042 { 6043 int pindex; 6044 6045 memset(pcp, 0, sizeof(*pcp)); 6046 memset(pzstats, 0, sizeof(*pzstats)); 6047 6048 spin_lock_init(&pcp->lock); 6049 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6050 INIT_LIST_HEAD(&pcp->lists[pindex]); 6051 6052 /* 6053 * Set batch and high values safe for a boot pageset. A true percpu 6054 * pageset's initialization will update them subsequently. Here we don't 6055 * need to be as careful as pageset_update() as nobody can access the 6056 * pageset yet. 6057 */ 6058 pcp->high = BOOT_PAGESET_HIGH; 6059 pcp->batch = BOOT_PAGESET_BATCH; 6060 pcp->free_factor = 0; 6061 } 6062 6063 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6064 unsigned long batch) 6065 { 6066 struct per_cpu_pages *pcp; 6067 int cpu; 6068 6069 for_each_possible_cpu(cpu) { 6070 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6071 pageset_update(pcp, high, batch); 6072 } 6073 } 6074 6075 /* 6076 * Calculate and set new high and batch values for all per-cpu pagesets of a 6077 * zone based on the zone's size. 6078 */ 6079 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6080 { 6081 int new_high, new_batch; 6082 6083 new_batch = max(1, zone_batchsize(zone)); 6084 new_high = zone_highsize(zone, new_batch, cpu_online); 6085 6086 if (zone->pageset_high == new_high && 6087 zone->pageset_batch == new_batch) 6088 return; 6089 6090 zone->pageset_high = new_high; 6091 zone->pageset_batch = new_batch; 6092 6093 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6094 } 6095 6096 void __meminit setup_zone_pageset(struct zone *zone) 6097 { 6098 int cpu; 6099 6100 /* Size may be 0 on !SMP && !NUMA */ 6101 if (sizeof(struct per_cpu_zonestat) > 0) 6102 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6103 6104 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6105 for_each_possible_cpu(cpu) { 6106 struct per_cpu_pages *pcp; 6107 struct per_cpu_zonestat *pzstats; 6108 6109 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6110 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6111 per_cpu_pages_init(pcp, pzstats); 6112 } 6113 6114 zone_set_pageset_high_and_batch(zone, 0); 6115 } 6116 6117 /* 6118 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6119 * page high values need to be recalculated. 6120 */ 6121 static void zone_pcp_update(struct zone *zone, int cpu_online) 6122 { 6123 mutex_lock(&pcp_batch_high_lock); 6124 zone_set_pageset_high_and_batch(zone, cpu_online); 6125 mutex_unlock(&pcp_batch_high_lock); 6126 } 6127 6128 /* 6129 * Allocate per cpu pagesets and initialize them. 6130 * Before this call only boot pagesets were available. 6131 */ 6132 void __init setup_per_cpu_pageset(void) 6133 { 6134 struct pglist_data *pgdat; 6135 struct zone *zone; 6136 int __maybe_unused cpu; 6137 6138 for_each_populated_zone(zone) 6139 setup_zone_pageset(zone); 6140 6141 #ifdef CONFIG_NUMA 6142 /* 6143 * Unpopulated zones continue using the boot pagesets. 6144 * The numa stats for these pagesets need to be reset. 6145 * Otherwise, they will end up skewing the stats of 6146 * the nodes these zones are associated with. 6147 */ 6148 for_each_possible_cpu(cpu) { 6149 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6150 memset(pzstats->vm_numa_event, 0, 6151 sizeof(pzstats->vm_numa_event)); 6152 } 6153 #endif 6154 6155 for_each_online_pgdat(pgdat) 6156 pgdat->per_cpu_nodestats = 6157 alloc_percpu(struct per_cpu_nodestat); 6158 } 6159 6160 __meminit void zone_pcp_init(struct zone *zone) 6161 { 6162 /* 6163 * per cpu subsystem is not up at this point. The following code 6164 * relies on the ability of the linker to provide the 6165 * offset of a (static) per cpu variable into the per cpu area. 6166 */ 6167 zone->per_cpu_pageset = &boot_pageset; 6168 zone->per_cpu_zonestats = &boot_zonestats; 6169 zone->pageset_high = BOOT_PAGESET_HIGH; 6170 zone->pageset_batch = BOOT_PAGESET_BATCH; 6171 6172 if (populated_zone(zone)) 6173 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6174 zone->present_pages, zone_batchsize(zone)); 6175 } 6176 6177 void adjust_managed_page_count(struct page *page, long count) 6178 { 6179 atomic_long_add(count, &page_zone(page)->managed_pages); 6180 totalram_pages_add(count); 6181 #ifdef CONFIG_HIGHMEM 6182 if (PageHighMem(page)) 6183 totalhigh_pages_add(count); 6184 #endif 6185 } 6186 EXPORT_SYMBOL(adjust_managed_page_count); 6187 6188 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 6189 { 6190 void *pos; 6191 unsigned long pages = 0; 6192 6193 start = (void *)PAGE_ALIGN((unsigned long)start); 6194 end = (void *)((unsigned long)end & PAGE_MASK); 6195 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6196 struct page *page = virt_to_page(pos); 6197 void *direct_map_addr; 6198 6199 /* 6200 * 'direct_map_addr' might be different from 'pos' 6201 * because some architectures' virt_to_page() 6202 * work with aliases. Getting the direct map 6203 * address ensures that we get a _writeable_ 6204 * alias for the memset(). 6205 */ 6206 direct_map_addr = page_address(page); 6207 /* 6208 * Perform a kasan-unchecked memset() since this memory 6209 * has not been initialized. 6210 */ 6211 direct_map_addr = kasan_reset_tag(direct_map_addr); 6212 if ((unsigned int)poison <= 0xFF) 6213 memset(direct_map_addr, poison, PAGE_SIZE); 6214 6215 free_reserved_page(page); 6216 } 6217 6218 if (pages && s) 6219 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 6220 6221 return pages; 6222 } 6223 6224 static int page_alloc_cpu_dead(unsigned int cpu) 6225 { 6226 struct zone *zone; 6227 6228 lru_add_drain_cpu(cpu); 6229 mlock_drain_remote(cpu); 6230 drain_pages(cpu); 6231 6232 /* 6233 * Spill the event counters of the dead processor 6234 * into the current processors event counters. 6235 * This artificially elevates the count of the current 6236 * processor. 6237 */ 6238 vm_events_fold_cpu(cpu); 6239 6240 /* 6241 * Zero the differential counters of the dead processor 6242 * so that the vm statistics are consistent. 6243 * 6244 * This is only okay since the processor is dead and cannot 6245 * race with what we are doing. 6246 */ 6247 cpu_vm_stats_fold(cpu); 6248 6249 for_each_populated_zone(zone) 6250 zone_pcp_update(zone, 0); 6251 6252 return 0; 6253 } 6254 6255 static int page_alloc_cpu_online(unsigned int cpu) 6256 { 6257 struct zone *zone; 6258 6259 for_each_populated_zone(zone) 6260 zone_pcp_update(zone, 1); 6261 return 0; 6262 } 6263 6264 void __init page_alloc_init_cpuhp(void) 6265 { 6266 int ret; 6267 6268 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6269 "mm/page_alloc:pcp", 6270 page_alloc_cpu_online, 6271 page_alloc_cpu_dead); 6272 WARN_ON(ret < 0); 6273 } 6274 6275 /* 6276 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6277 * or min_free_kbytes changes. 6278 */ 6279 static void calculate_totalreserve_pages(void) 6280 { 6281 struct pglist_data *pgdat; 6282 unsigned long reserve_pages = 0; 6283 enum zone_type i, j; 6284 6285 for_each_online_pgdat(pgdat) { 6286 6287 pgdat->totalreserve_pages = 0; 6288 6289 for (i = 0; i < MAX_NR_ZONES; i++) { 6290 struct zone *zone = pgdat->node_zones + i; 6291 long max = 0; 6292 unsigned long managed_pages = zone_managed_pages(zone); 6293 6294 /* Find valid and maximum lowmem_reserve in the zone */ 6295 for (j = i; j < MAX_NR_ZONES; j++) { 6296 if (zone->lowmem_reserve[j] > max) 6297 max = zone->lowmem_reserve[j]; 6298 } 6299 6300 /* we treat the high watermark as reserved pages. */ 6301 max += high_wmark_pages(zone); 6302 6303 if (max > managed_pages) 6304 max = managed_pages; 6305 6306 pgdat->totalreserve_pages += max; 6307 6308 reserve_pages += max; 6309 } 6310 } 6311 totalreserve_pages = reserve_pages; 6312 } 6313 6314 /* 6315 * setup_per_zone_lowmem_reserve - called whenever 6316 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6317 * has a correct pages reserved value, so an adequate number of 6318 * pages are left in the zone after a successful __alloc_pages(). 6319 */ 6320 static void setup_per_zone_lowmem_reserve(void) 6321 { 6322 struct pglist_data *pgdat; 6323 enum zone_type i, j; 6324 6325 for_each_online_pgdat(pgdat) { 6326 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6327 struct zone *zone = &pgdat->node_zones[i]; 6328 int ratio = sysctl_lowmem_reserve_ratio[i]; 6329 bool clear = !ratio || !zone_managed_pages(zone); 6330 unsigned long managed_pages = 0; 6331 6332 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6333 struct zone *upper_zone = &pgdat->node_zones[j]; 6334 6335 managed_pages += zone_managed_pages(upper_zone); 6336 6337 if (clear) 6338 zone->lowmem_reserve[j] = 0; 6339 else 6340 zone->lowmem_reserve[j] = managed_pages / ratio; 6341 } 6342 } 6343 } 6344 6345 /* update totalreserve_pages */ 6346 calculate_totalreserve_pages(); 6347 } 6348 6349 static void __setup_per_zone_wmarks(void) 6350 { 6351 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6352 unsigned long lowmem_pages = 0; 6353 struct zone *zone; 6354 unsigned long flags; 6355 6356 /* Calculate total number of !ZONE_HIGHMEM pages */ 6357 for_each_zone(zone) { 6358 if (!is_highmem(zone)) 6359 lowmem_pages += zone_managed_pages(zone); 6360 } 6361 6362 for_each_zone(zone) { 6363 u64 tmp; 6364 6365 spin_lock_irqsave(&zone->lock, flags); 6366 tmp = (u64)pages_min * zone_managed_pages(zone); 6367 do_div(tmp, lowmem_pages); 6368 if (is_highmem(zone)) { 6369 /* 6370 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6371 * need highmem pages, so cap pages_min to a small 6372 * value here. 6373 * 6374 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6375 * deltas control async page reclaim, and so should 6376 * not be capped for highmem. 6377 */ 6378 unsigned long min_pages; 6379 6380 min_pages = zone_managed_pages(zone) / 1024; 6381 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6382 zone->_watermark[WMARK_MIN] = min_pages; 6383 } else { 6384 /* 6385 * If it's a lowmem zone, reserve a number of pages 6386 * proportionate to the zone's size. 6387 */ 6388 zone->_watermark[WMARK_MIN] = tmp; 6389 } 6390 6391 /* 6392 * Set the kswapd watermarks distance according to the 6393 * scale factor in proportion to available memory, but 6394 * ensure a minimum size on small systems. 6395 */ 6396 tmp = max_t(u64, tmp >> 2, 6397 mult_frac(zone_managed_pages(zone), 6398 watermark_scale_factor, 10000)); 6399 6400 zone->watermark_boost = 0; 6401 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6402 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6403 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6404 6405 spin_unlock_irqrestore(&zone->lock, flags); 6406 } 6407 6408 /* update totalreserve_pages */ 6409 calculate_totalreserve_pages(); 6410 } 6411 6412 /** 6413 * setup_per_zone_wmarks - called when min_free_kbytes changes 6414 * or when memory is hot-{added|removed} 6415 * 6416 * Ensures that the watermark[min,low,high] values for each zone are set 6417 * correctly with respect to min_free_kbytes. 6418 */ 6419 void setup_per_zone_wmarks(void) 6420 { 6421 struct zone *zone; 6422 static DEFINE_SPINLOCK(lock); 6423 6424 spin_lock(&lock); 6425 __setup_per_zone_wmarks(); 6426 spin_unlock(&lock); 6427 6428 /* 6429 * The watermark size have changed so update the pcpu batch 6430 * and high limits or the limits may be inappropriate. 6431 */ 6432 for_each_zone(zone) 6433 zone_pcp_update(zone, 0); 6434 } 6435 6436 /* 6437 * Initialise min_free_kbytes. 6438 * 6439 * For small machines we want it small (128k min). For large machines 6440 * we want it large (256MB max). But it is not linear, because network 6441 * bandwidth does not increase linearly with machine size. We use 6442 * 6443 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6444 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6445 * 6446 * which yields 6447 * 6448 * 16MB: 512k 6449 * 32MB: 724k 6450 * 64MB: 1024k 6451 * 128MB: 1448k 6452 * 256MB: 2048k 6453 * 512MB: 2896k 6454 * 1024MB: 4096k 6455 * 2048MB: 5792k 6456 * 4096MB: 8192k 6457 * 8192MB: 11584k 6458 * 16384MB: 16384k 6459 */ 6460 void calculate_min_free_kbytes(void) 6461 { 6462 unsigned long lowmem_kbytes; 6463 int new_min_free_kbytes; 6464 6465 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6466 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6467 6468 if (new_min_free_kbytes > user_min_free_kbytes) 6469 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6470 else 6471 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6472 new_min_free_kbytes, user_min_free_kbytes); 6473 6474 } 6475 6476 int __meminit init_per_zone_wmark_min(void) 6477 { 6478 calculate_min_free_kbytes(); 6479 setup_per_zone_wmarks(); 6480 refresh_zone_stat_thresholds(); 6481 setup_per_zone_lowmem_reserve(); 6482 6483 #ifdef CONFIG_NUMA 6484 setup_min_unmapped_ratio(); 6485 setup_min_slab_ratio(); 6486 #endif 6487 6488 khugepaged_min_free_kbytes_update(); 6489 6490 return 0; 6491 } 6492 postcore_initcall(init_per_zone_wmark_min) 6493 6494 /* 6495 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6496 * that we can call two helper functions whenever min_free_kbytes 6497 * changes. 6498 */ 6499 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6500 void *buffer, size_t *length, loff_t *ppos) 6501 { 6502 int rc; 6503 6504 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6505 if (rc) 6506 return rc; 6507 6508 if (write) { 6509 user_min_free_kbytes = min_free_kbytes; 6510 setup_per_zone_wmarks(); 6511 } 6512 return 0; 6513 } 6514 6515 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6516 void *buffer, size_t *length, loff_t *ppos) 6517 { 6518 int rc; 6519 6520 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6521 if (rc) 6522 return rc; 6523 6524 if (write) 6525 setup_per_zone_wmarks(); 6526 6527 return 0; 6528 } 6529 6530 #ifdef CONFIG_NUMA 6531 static void setup_min_unmapped_ratio(void) 6532 { 6533 pg_data_t *pgdat; 6534 struct zone *zone; 6535 6536 for_each_online_pgdat(pgdat) 6537 pgdat->min_unmapped_pages = 0; 6538 6539 for_each_zone(zone) 6540 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6541 sysctl_min_unmapped_ratio) / 100; 6542 } 6543 6544 6545 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6546 void *buffer, size_t *length, loff_t *ppos) 6547 { 6548 int rc; 6549 6550 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6551 if (rc) 6552 return rc; 6553 6554 setup_min_unmapped_ratio(); 6555 6556 return 0; 6557 } 6558 6559 static void setup_min_slab_ratio(void) 6560 { 6561 pg_data_t *pgdat; 6562 struct zone *zone; 6563 6564 for_each_online_pgdat(pgdat) 6565 pgdat->min_slab_pages = 0; 6566 6567 for_each_zone(zone) 6568 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6569 sysctl_min_slab_ratio) / 100; 6570 } 6571 6572 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6573 void *buffer, size_t *length, loff_t *ppos) 6574 { 6575 int rc; 6576 6577 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6578 if (rc) 6579 return rc; 6580 6581 setup_min_slab_ratio(); 6582 6583 return 0; 6584 } 6585 #endif 6586 6587 /* 6588 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6589 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6590 * whenever sysctl_lowmem_reserve_ratio changes. 6591 * 6592 * The reserve ratio obviously has absolutely no relation with the 6593 * minimum watermarks. The lowmem reserve ratio can only make sense 6594 * if in function of the boot time zone sizes. 6595 */ 6596 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6597 void *buffer, size_t *length, loff_t *ppos) 6598 { 6599 int i; 6600 6601 proc_dointvec_minmax(table, write, buffer, length, ppos); 6602 6603 for (i = 0; i < MAX_NR_ZONES; i++) { 6604 if (sysctl_lowmem_reserve_ratio[i] < 1) 6605 sysctl_lowmem_reserve_ratio[i] = 0; 6606 } 6607 6608 setup_per_zone_lowmem_reserve(); 6609 return 0; 6610 } 6611 6612 /* 6613 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6614 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6615 * pagelist can have before it gets flushed back to buddy allocator. 6616 */ 6617 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6618 int write, void *buffer, size_t *length, loff_t *ppos) 6619 { 6620 struct zone *zone; 6621 int old_percpu_pagelist_high_fraction; 6622 int ret; 6623 6624 mutex_lock(&pcp_batch_high_lock); 6625 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6626 6627 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6628 if (!write || ret < 0) 6629 goto out; 6630 6631 /* Sanity checking to avoid pcp imbalance */ 6632 if (percpu_pagelist_high_fraction && 6633 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6634 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6635 ret = -EINVAL; 6636 goto out; 6637 } 6638 6639 /* No change? */ 6640 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6641 goto out; 6642 6643 for_each_populated_zone(zone) 6644 zone_set_pageset_high_and_batch(zone, 0); 6645 out: 6646 mutex_unlock(&pcp_batch_high_lock); 6647 return ret; 6648 } 6649 6650 #ifdef CONFIG_CONTIG_ALLOC 6651 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 6652 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 6653 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6654 static void alloc_contig_dump_pages(struct list_head *page_list) 6655 { 6656 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6657 6658 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6659 struct page *page; 6660 6661 dump_stack(); 6662 list_for_each_entry(page, page_list, lru) 6663 dump_page(page, "migration failure"); 6664 } 6665 } 6666 #else 6667 static inline void alloc_contig_dump_pages(struct list_head *page_list) 6668 { 6669 } 6670 #endif 6671 6672 /* [start, end) must belong to a single zone. */ 6673 int __alloc_contig_migrate_range(struct compact_control *cc, 6674 unsigned long start, unsigned long end) 6675 { 6676 /* This function is based on compact_zone() from compaction.c. */ 6677 unsigned int nr_reclaimed; 6678 unsigned long pfn = start; 6679 unsigned int tries = 0; 6680 int ret = 0; 6681 struct migration_target_control mtc = { 6682 .nid = zone_to_nid(cc->zone), 6683 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6684 }; 6685 6686 lru_cache_disable(); 6687 6688 while (pfn < end || !list_empty(&cc->migratepages)) { 6689 if (fatal_signal_pending(current)) { 6690 ret = -EINTR; 6691 break; 6692 } 6693 6694 if (list_empty(&cc->migratepages)) { 6695 cc->nr_migratepages = 0; 6696 ret = isolate_migratepages_range(cc, pfn, end); 6697 if (ret && ret != -EAGAIN) 6698 break; 6699 pfn = cc->migrate_pfn; 6700 tries = 0; 6701 } else if (++tries == 5) { 6702 ret = -EBUSY; 6703 break; 6704 } 6705 6706 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6707 &cc->migratepages); 6708 cc->nr_migratepages -= nr_reclaimed; 6709 6710 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6711 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6712 6713 /* 6714 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6715 * to retry again over this error, so do the same here. 6716 */ 6717 if (ret == -ENOMEM) 6718 break; 6719 } 6720 6721 lru_cache_enable(); 6722 if (ret < 0) { 6723 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6724 alloc_contig_dump_pages(&cc->migratepages); 6725 putback_movable_pages(&cc->migratepages); 6726 return ret; 6727 } 6728 return 0; 6729 } 6730 6731 /** 6732 * alloc_contig_range() -- tries to allocate given range of pages 6733 * @start: start PFN to allocate 6734 * @end: one-past-the-last PFN to allocate 6735 * @migratetype: migratetype of the underlying pageblocks (either 6736 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6737 * in range must have the same migratetype and it must 6738 * be either of the two. 6739 * @gfp_mask: GFP mask to use during compaction 6740 * 6741 * The PFN range does not have to be pageblock aligned. The PFN range must 6742 * belong to a single zone. 6743 * 6744 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6745 * pageblocks in the range. Once isolated, the pageblocks should not 6746 * be modified by others. 6747 * 6748 * Return: zero on success or negative error code. On success all 6749 * pages which PFN is in [start, end) are allocated for the caller and 6750 * need to be freed with free_contig_range(). 6751 */ 6752 int alloc_contig_range(unsigned long start, unsigned long end, 6753 unsigned migratetype, gfp_t gfp_mask) 6754 { 6755 unsigned long outer_start, outer_end; 6756 int order; 6757 int ret = 0; 6758 6759 struct compact_control cc = { 6760 .nr_migratepages = 0, 6761 .order = -1, 6762 .zone = page_zone(pfn_to_page(start)), 6763 .mode = MIGRATE_SYNC, 6764 .ignore_skip_hint = true, 6765 .no_set_skip_hint = true, 6766 .gfp_mask = current_gfp_context(gfp_mask), 6767 .alloc_contig = true, 6768 }; 6769 INIT_LIST_HEAD(&cc.migratepages); 6770 6771 /* 6772 * What we do here is we mark all pageblocks in range as 6773 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6774 * have different sizes, and due to the way page allocator 6775 * work, start_isolate_page_range() has special handlings for this. 6776 * 6777 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6778 * migrate the pages from an unaligned range (ie. pages that 6779 * we are interested in). This will put all the pages in 6780 * range back to page allocator as MIGRATE_ISOLATE. 6781 * 6782 * When this is done, we take the pages in range from page 6783 * allocator removing them from the buddy system. This way 6784 * page allocator will never consider using them. 6785 * 6786 * This lets us mark the pageblocks back as 6787 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6788 * aligned range but not in the unaligned, original range are 6789 * put back to page allocator so that buddy can use them. 6790 */ 6791 6792 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6793 if (ret) 6794 goto done; 6795 6796 drain_all_pages(cc.zone); 6797 6798 /* 6799 * In case of -EBUSY, we'd like to know which page causes problem. 6800 * So, just fall through. test_pages_isolated() has a tracepoint 6801 * which will report the busy page. 6802 * 6803 * It is possible that busy pages could become available before 6804 * the call to test_pages_isolated, and the range will actually be 6805 * allocated. So, if we fall through be sure to clear ret so that 6806 * -EBUSY is not accidentally used or returned to caller. 6807 */ 6808 ret = __alloc_contig_migrate_range(&cc, start, end); 6809 if (ret && ret != -EBUSY) 6810 goto done; 6811 ret = 0; 6812 6813 /* 6814 * Pages from [start, end) are within a pageblock_nr_pages 6815 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6816 * more, all pages in [start, end) are free in page allocator. 6817 * What we are going to do is to allocate all pages from 6818 * [start, end) (that is remove them from page allocator). 6819 * 6820 * The only problem is that pages at the beginning and at the 6821 * end of interesting range may be not aligned with pages that 6822 * page allocator holds, ie. they can be part of higher order 6823 * pages. Because of this, we reserve the bigger range and 6824 * once this is done free the pages we are not interested in. 6825 * 6826 * We don't have to hold zone->lock here because the pages are 6827 * isolated thus they won't get removed from buddy. 6828 */ 6829 6830 order = 0; 6831 outer_start = start; 6832 while (!PageBuddy(pfn_to_page(outer_start))) { 6833 if (++order > MAX_ORDER) { 6834 outer_start = start; 6835 break; 6836 } 6837 outer_start &= ~0UL << order; 6838 } 6839 6840 if (outer_start != start) { 6841 order = buddy_order(pfn_to_page(outer_start)); 6842 6843 /* 6844 * outer_start page could be small order buddy page and 6845 * it doesn't include start page. Adjust outer_start 6846 * in this case to report failed page properly 6847 * on tracepoint in test_pages_isolated() 6848 */ 6849 if (outer_start + (1UL << order) <= start) 6850 outer_start = start; 6851 } 6852 6853 /* Make sure the range is really isolated. */ 6854 if (test_pages_isolated(outer_start, end, 0)) { 6855 ret = -EBUSY; 6856 goto done; 6857 } 6858 6859 /* Grab isolated pages from freelists. */ 6860 outer_end = isolate_freepages_range(&cc, outer_start, end); 6861 if (!outer_end) { 6862 ret = -EBUSY; 6863 goto done; 6864 } 6865 6866 /* Free head and tail (if any) */ 6867 if (start != outer_start) 6868 free_contig_range(outer_start, start - outer_start); 6869 if (end != outer_end) 6870 free_contig_range(end, outer_end - end); 6871 6872 done: 6873 undo_isolate_page_range(start, end, migratetype); 6874 return ret; 6875 } 6876 EXPORT_SYMBOL(alloc_contig_range); 6877 6878 static int __alloc_contig_pages(unsigned long start_pfn, 6879 unsigned long nr_pages, gfp_t gfp_mask) 6880 { 6881 unsigned long end_pfn = start_pfn + nr_pages; 6882 6883 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6884 gfp_mask); 6885 } 6886 6887 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6888 unsigned long nr_pages) 6889 { 6890 unsigned long i, end_pfn = start_pfn + nr_pages; 6891 struct page *page; 6892 6893 for (i = start_pfn; i < end_pfn; i++) { 6894 page = pfn_to_online_page(i); 6895 if (!page) 6896 return false; 6897 6898 if (page_zone(page) != z) 6899 return false; 6900 6901 if (PageReserved(page)) 6902 return false; 6903 6904 if (PageHuge(page)) 6905 return false; 6906 } 6907 return true; 6908 } 6909 6910 static bool zone_spans_last_pfn(const struct zone *zone, 6911 unsigned long start_pfn, unsigned long nr_pages) 6912 { 6913 unsigned long last_pfn = start_pfn + nr_pages - 1; 6914 6915 return zone_spans_pfn(zone, last_pfn); 6916 } 6917 6918 /** 6919 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6920 * @nr_pages: Number of contiguous pages to allocate 6921 * @gfp_mask: GFP mask to limit search and used during compaction 6922 * @nid: Target node 6923 * @nodemask: Mask for other possible nodes 6924 * 6925 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6926 * on an applicable zonelist to find a contiguous pfn range which can then be 6927 * tried for allocation with alloc_contig_range(). This routine is intended 6928 * for allocation requests which can not be fulfilled with the buddy allocator. 6929 * 6930 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6931 * power of two, then allocated range is also guaranteed to be aligned to same 6932 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6933 * 6934 * Allocated pages can be freed with free_contig_range() or by manually calling 6935 * __free_page() on each allocated page. 6936 * 6937 * Return: pointer to contiguous pages on success, or NULL if not successful. 6938 */ 6939 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6940 int nid, nodemask_t *nodemask) 6941 { 6942 unsigned long ret, pfn, flags; 6943 struct zonelist *zonelist; 6944 struct zone *zone; 6945 struct zoneref *z; 6946 6947 zonelist = node_zonelist(nid, gfp_mask); 6948 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6949 gfp_zone(gfp_mask), nodemask) { 6950 spin_lock_irqsave(&zone->lock, flags); 6951 6952 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6953 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6954 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6955 /* 6956 * We release the zone lock here because 6957 * alloc_contig_range() will also lock the zone 6958 * at some point. If there's an allocation 6959 * spinning on this lock, it may win the race 6960 * and cause alloc_contig_range() to fail... 6961 */ 6962 spin_unlock_irqrestore(&zone->lock, flags); 6963 ret = __alloc_contig_pages(pfn, nr_pages, 6964 gfp_mask); 6965 if (!ret) 6966 return pfn_to_page(pfn); 6967 spin_lock_irqsave(&zone->lock, flags); 6968 } 6969 pfn += nr_pages; 6970 } 6971 spin_unlock_irqrestore(&zone->lock, flags); 6972 } 6973 return NULL; 6974 } 6975 #endif /* CONFIG_CONTIG_ALLOC */ 6976 6977 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6978 { 6979 unsigned long count = 0; 6980 6981 for (; nr_pages--; pfn++) { 6982 struct page *page = pfn_to_page(pfn); 6983 6984 count += page_count(page) != 1; 6985 __free_page(page); 6986 } 6987 WARN(count != 0, "%lu pages are still in use!\n", count); 6988 } 6989 EXPORT_SYMBOL(free_contig_range); 6990 6991 /* 6992 * Effectively disable pcplists for the zone by setting the high limit to 0 6993 * and draining all cpus. A concurrent page freeing on another CPU that's about 6994 * to put the page on pcplist will either finish before the drain and the page 6995 * will be drained, or observe the new high limit and skip the pcplist. 6996 * 6997 * Must be paired with a call to zone_pcp_enable(). 6998 */ 6999 void zone_pcp_disable(struct zone *zone) 7000 { 7001 mutex_lock(&pcp_batch_high_lock); 7002 __zone_set_pageset_high_and_batch(zone, 0, 1); 7003 __drain_all_pages(zone, true); 7004 } 7005 7006 void zone_pcp_enable(struct zone *zone) 7007 { 7008 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 7009 mutex_unlock(&pcp_batch_high_lock); 7010 } 7011 7012 void zone_pcp_reset(struct zone *zone) 7013 { 7014 int cpu; 7015 struct per_cpu_zonestat *pzstats; 7016 7017 if (zone->per_cpu_pageset != &boot_pageset) { 7018 for_each_online_cpu(cpu) { 7019 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7020 drain_zonestat(zone, pzstats); 7021 } 7022 free_percpu(zone->per_cpu_pageset); 7023 zone->per_cpu_pageset = &boot_pageset; 7024 if (zone->per_cpu_zonestats != &boot_zonestats) { 7025 free_percpu(zone->per_cpu_zonestats); 7026 zone->per_cpu_zonestats = &boot_zonestats; 7027 } 7028 } 7029 } 7030 7031 #ifdef CONFIG_MEMORY_HOTREMOVE 7032 /* 7033 * All pages in the range must be in a single zone, must not contain holes, 7034 * must span full sections, and must be isolated before calling this function. 7035 */ 7036 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7037 { 7038 unsigned long pfn = start_pfn; 7039 struct page *page; 7040 struct zone *zone; 7041 unsigned int order; 7042 unsigned long flags; 7043 7044 offline_mem_sections(pfn, end_pfn); 7045 zone = page_zone(pfn_to_page(pfn)); 7046 spin_lock_irqsave(&zone->lock, flags); 7047 while (pfn < end_pfn) { 7048 page = pfn_to_page(pfn); 7049 /* 7050 * The HWPoisoned page may be not in buddy system, and 7051 * page_count() is not 0. 7052 */ 7053 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7054 pfn++; 7055 continue; 7056 } 7057 /* 7058 * At this point all remaining PageOffline() pages have a 7059 * reference count of 0 and can simply be skipped. 7060 */ 7061 if (PageOffline(page)) { 7062 BUG_ON(page_count(page)); 7063 BUG_ON(PageBuddy(page)); 7064 pfn++; 7065 continue; 7066 } 7067 7068 BUG_ON(page_count(page)); 7069 BUG_ON(!PageBuddy(page)); 7070 order = buddy_order(page); 7071 del_page_from_free_list(page, zone, order); 7072 pfn += (1 << order); 7073 } 7074 spin_unlock_irqrestore(&zone->lock, flags); 7075 } 7076 #endif 7077 7078 /* 7079 * This function returns a stable result only if called under zone lock. 7080 */ 7081 bool is_free_buddy_page(struct page *page) 7082 { 7083 unsigned long pfn = page_to_pfn(page); 7084 unsigned int order; 7085 7086 for (order = 0; order <= MAX_ORDER; order++) { 7087 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7088 7089 if (PageBuddy(page_head) && 7090 buddy_order_unsafe(page_head) >= order) 7091 break; 7092 } 7093 7094 return order <= MAX_ORDER; 7095 } 7096 EXPORT_SYMBOL(is_free_buddy_page); 7097 7098 #ifdef CONFIG_MEMORY_FAILURE 7099 /* 7100 * Break down a higher-order page in sub-pages, and keep our target out of 7101 * buddy allocator. 7102 */ 7103 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7104 struct page *target, int low, int high, 7105 int migratetype) 7106 { 7107 unsigned long size = 1 << high; 7108 struct page *current_buddy, *next_page; 7109 7110 while (high > low) { 7111 high--; 7112 size >>= 1; 7113 7114 if (target >= &page[size]) { 7115 next_page = page + size; 7116 current_buddy = page; 7117 } else { 7118 next_page = page; 7119 current_buddy = page + size; 7120 } 7121 7122 if (set_page_guard(zone, current_buddy, high, migratetype)) 7123 continue; 7124 7125 if (current_buddy != target) { 7126 add_to_free_list(current_buddy, zone, high, migratetype); 7127 set_buddy_order(current_buddy, high); 7128 page = next_page; 7129 } 7130 } 7131 } 7132 7133 /* 7134 * Take a page that will be marked as poisoned off the buddy allocator. 7135 */ 7136 bool take_page_off_buddy(struct page *page) 7137 { 7138 struct zone *zone = page_zone(page); 7139 unsigned long pfn = page_to_pfn(page); 7140 unsigned long flags; 7141 unsigned int order; 7142 bool ret = false; 7143 7144 spin_lock_irqsave(&zone->lock, flags); 7145 for (order = 0; order <= MAX_ORDER; order++) { 7146 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7147 int page_order = buddy_order(page_head); 7148 7149 if (PageBuddy(page_head) && page_order >= order) { 7150 unsigned long pfn_head = page_to_pfn(page_head); 7151 int migratetype = get_pfnblock_migratetype(page_head, 7152 pfn_head); 7153 7154 del_page_from_free_list(page_head, zone, page_order); 7155 break_down_buddy_pages(zone, page_head, page, 0, 7156 page_order, migratetype); 7157 SetPageHWPoisonTakenOff(page); 7158 if (!is_migrate_isolate(migratetype)) 7159 __mod_zone_freepage_state(zone, -1, migratetype); 7160 ret = true; 7161 break; 7162 } 7163 if (page_count(page_head) > 0) 7164 break; 7165 } 7166 spin_unlock_irqrestore(&zone->lock, flags); 7167 return ret; 7168 } 7169 7170 /* 7171 * Cancel takeoff done by take_page_off_buddy(). 7172 */ 7173 bool put_page_back_buddy(struct page *page) 7174 { 7175 struct zone *zone = page_zone(page); 7176 unsigned long pfn = page_to_pfn(page); 7177 unsigned long flags; 7178 int migratetype = get_pfnblock_migratetype(page, pfn); 7179 bool ret = false; 7180 7181 spin_lock_irqsave(&zone->lock, flags); 7182 if (put_page_testzero(page)) { 7183 ClearPageHWPoisonTakenOff(page); 7184 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7185 if (TestClearPageHWPoison(page)) { 7186 ret = true; 7187 } 7188 } 7189 spin_unlock_irqrestore(&zone->lock, flags); 7190 7191 return ret; 7192 } 7193 #endif 7194 7195 #ifdef CONFIG_ZONE_DMA 7196 bool has_managed_dma(void) 7197 { 7198 struct pglist_data *pgdat; 7199 7200 for_each_online_pgdat(pgdat) { 7201 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7202 7203 if (managed_zone(zone)) 7204 return true; 7205 } 7206 return false; 7207 } 7208 #endif /* CONFIG_ZONE_DMA */ 7209