xref: /openbmc/linux/mm/page_alloc.c (revision d0b73b48)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 #ifdef CONFIG_MOVABLE_NODE
94 	[N_MEMORY] = { { [0] = 1UL } },
95 #endif
96 	[N_CPU] = { { [0] = 1UL } },
97 #endif	/* NUMA */
98 };
99 EXPORT_SYMBOL(node_states);
100 
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
103 /*
104  * When calculating the number of globally allowed dirty pages, there
105  * is a certain number of per-zone reserves that should not be
106  * considered dirtyable memory.  This is the sum of those reserves
107  * over all existing zones that contribute dirtyable memory.
108  */
109 unsigned long dirty_balance_reserve __read_mostly;
110 
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
113 
114 #ifdef CONFIG_PM_SLEEP
115 /*
116  * The following functions are used by the suspend/hibernate code to temporarily
117  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118  * while devices are suspended.  To avoid races with the suspend/hibernate code,
119  * they should always be called with pm_mutex held (gfp_allowed_mask also should
120  * only be modified with pm_mutex held, unless the suspend/hibernate code is
121  * guaranteed not to run in parallel with that modification).
122  */
123 
124 static gfp_t saved_gfp_mask;
125 
126 void pm_restore_gfp_mask(void)
127 {
128 	WARN_ON(!mutex_is_locked(&pm_mutex));
129 	if (saved_gfp_mask) {
130 		gfp_allowed_mask = saved_gfp_mask;
131 		saved_gfp_mask = 0;
132 	}
133 }
134 
135 void pm_restrict_gfp_mask(void)
136 {
137 	WARN_ON(!mutex_is_locked(&pm_mutex));
138 	WARN_ON(saved_gfp_mask);
139 	saved_gfp_mask = gfp_allowed_mask;
140 	gfp_allowed_mask &= ~GFP_IOFS;
141 }
142 
143 bool pm_suspended_storage(void)
144 {
145 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 		return false;
147 	return true;
148 }
149 #endif /* CONFIG_PM_SLEEP */
150 
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
153 #endif
154 
155 static void __free_pages_ok(struct page *page, unsigned int order);
156 
157 /*
158  * results with 256, 32 in the lowmem_reserve sysctl:
159  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160  *	1G machine -> (16M dma, 784M normal, 224M high)
161  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
164  *
165  * TBD: should special case ZONE_DMA32 machines here - in those we normally
166  * don't need any ZONE_NORMAL reservation
167  */
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
170 	 256,
171 #endif
172 #ifdef CONFIG_ZONE_DMA32
173 	 256,
174 #endif
175 #ifdef CONFIG_HIGHMEM
176 	 32,
177 #endif
178 	 32,
179 };
180 
181 EXPORT_SYMBOL(totalram_pages);
182 
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
185 	 "DMA",
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 	 "DMA32",
189 #endif
190 	 "Normal",
191 #ifdef CONFIG_HIGHMEM
192 	 "HighMem",
193 #endif
194 	 "Movable",
195 };
196 
197 int min_free_kbytes = 1024;
198 
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
202 
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 int movable_zone;
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
214 
215 #if MAX_NUMNODES > 1
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
220 #endif
221 
222 int page_group_by_mobility_disabled __read_mostly;
223 
224 void set_pageblock_migratetype(struct page *page, int migratetype)
225 {
226 
227 	if (unlikely(page_group_by_mobility_disabled))
228 		migratetype = MIGRATE_UNMOVABLE;
229 
230 	set_pageblock_flags_group(page, (unsigned long)migratetype,
231 					PB_migrate, PB_migrate_end);
232 }
233 
234 bool oom_killer_disabled __read_mostly;
235 
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 {
239 	int ret = 0;
240 	unsigned seq;
241 	unsigned long pfn = page_to_pfn(page);
242 
243 	do {
244 		seq = zone_span_seqbegin(zone);
245 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
246 			ret = 1;
247 		else if (pfn < zone->zone_start_pfn)
248 			ret = 1;
249 	} while (zone_span_seqretry(zone, seq));
250 
251 	return ret;
252 }
253 
254 static int page_is_consistent(struct zone *zone, struct page *page)
255 {
256 	if (!pfn_valid_within(page_to_pfn(page)))
257 		return 0;
258 	if (zone != page_zone(page))
259 		return 0;
260 
261 	return 1;
262 }
263 /*
264  * Temporary debugging check for pages not lying within a given zone.
265  */
266 static int bad_range(struct zone *zone, struct page *page)
267 {
268 	if (page_outside_zone_boundaries(zone, page))
269 		return 1;
270 	if (!page_is_consistent(zone, page))
271 		return 1;
272 
273 	return 0;
274 }
275 #else
276 static inline int bad_range(struct zone *zone, struct page *page)
277 {
278 	return 0;
279 }
280 #endif
281 
282 static void bad_page(struct page *page)
283 {
284 	static unsigned long resume;
285 	static unsigned long nr_shown;
286 	static unsigned long nr_unshown;
287 
288 	/* Don't complain about poisoned pages */
289 	if (PageHWPoison(page)) {
290 		reset_page_mapcount(page); /* remove PageBuddy */
291 		return;
292 	}
293 
294 	/*
295 	 * Allow a burst of 60 reports, then keep quiet for that minute;
296 	 * or allow a steady drip of one report per second.
297 	 */
298 	if (nr_shown == 60) {
299 		if (time_before(jiffies, resume)) {
300 			nr_unshown++;
301 			goto out;
302 		}
303 		if (nr_unshown) {
304 			printk(KERN_ALERT
305 			      "BUG: Bad page state: %lu messages suppressed\n",
306 				nr_unshown);
307 			nr_unshown = 0;
308 		}
309 		nr_shown = 0;
310 	}
311 	if (nr_shown++ == 0)
312 		resume = jiffies + 60 * HZ;
313 
314 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
315 		current->comm, page_to_pfn(page));
316 	dump_page(page);
317 
318 	print_modules();
319 	dump_stack();
320 out:
321 	/* Leave bad fields for debug, except PageBuddy could make trouble */
322 	reset_page_mapcount(page); /* remove PageBuddy */
323 	add_taint(TAINT_BAD_PAGE);
324 }
325 
326 /*
327  * Higher-order pages are called "compound pages".  They are structured thusly:
328  *
329  * The first PAGE_SIZE page is called the "head page".
330  *
331  * The remaining PAGE_SIZE pages are called "tail pages".
332  *
333  * All pages have PG_compound set.  All tail pages have their ->first_page
334  * pointing at the head page.
335  *
336  * The first tail page's ->lru.next holds the address of the compound page's
337  * put_page() function.  Its ->lru.prev holds the order of allocation.
338  * This usage means that zero-order pages may not be compound.
339  */
340 
341 static void free_compound_page(struct page *page)
342 {
343 	__free_pages_ok(page, compound_order(page));
344 }
345 
346 void prep_compound_page(struct page *page, unsigned long order)
347 {
348 	int i;
349 	int nr_pages = 1 << order;
350 
351 	set_compound_page_dtor(page, free_compound_page);
352 	set_compound_order(page, order);
353 	__SetPageHead(page);
354 	for (i = 1; i < nr_pages; i++) {
355 		struct page *p = page + i;
356 		__SetPageTail(p);
357 		set_page_count(p, 0);
358 		p->first_page = page;
359 	}
360 }
361 
362 /* update __split_huge_page_refcount if you change this function */
363 static int destroy_compound_page(struct page *page, unsigned long order)
364 {
365 	int i;
366 	int nr_pages = 1 << order;
367 	int bad = 0;
368 
369 	if (unlikely(compound_order(page) != order)) {
370 		bad_page(page);
371 		bad++;
372 	}
373 
374 	__ClearPageHead(page);
375 
376 	for (i = 1; i < nr_pages; i++) {
377 		struct page *p = page + i;
378 
379 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
380 			bad_page(page);
381 			bad++;
382 		}
383 		__ClearPageTail(p);
384 	}
385 
386 	return bad;
387 }
388 
389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390 {
391 	int i;
392 
393 	/*
394 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 	 */
397 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
398 	for (i = 0; i < (1 << order); i++)
399 		clear_highpage(page + i);
400 }
401 
402 #ifdef CONFIG_DEBUG_PAGEALLOC
403 unsigned int _debug_guardpage_minorder;
404 
405 static int __init debug_guardpage_minorder_setup(char *buf)
406 {
407 	unsigned long res;
408 
409 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
410 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
411 		return 0;
412 	}
413 	_debug_guardpage_minorder = res;
414 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
415 	return 0;
416 }
417 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
418 
419 static inline void set_page_guard_flag(struct page *page)
420 {
421 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
422 }
423 
424 static inline void clear_page_guard_flag(struct page *page)
425 {
426 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 }
428 #else
429 static inline void set_page_guard_flag(struct page *page) { }
430 static inline void clear_page_guard_flag(struct page *page) { }
431 #endif
432 
433 static inline void set_page_order(struct page *page, int order)
434 {
435 	set_page_private(page, order);
436 	__SetPageBuddy(page);
437 }
438 
439 static inline void rmv_page_order(struct page *page)
440 {
441 	__ClearPageBuddy(page);
442 	set_page_private(page, 0);
443 }
444 
445 /*
446  * Locate the struct page for both the matching buddy in our
447  * pair (buddy1) and the combined O(n+1) page they form (page).
448  *
449  * 1) Any buddy B1 will have an order O twin B2 which satisfies
450  * the following equation:
451  *     B2 = B1 ^ (1 << O)
452  * For example, if the starting buddy (buddy2) is #8 its order
453  * 1 buddy is #10:
454  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
455  *
456  * 2) Any buddy B will have an order O+1 parent P which
457  * satisfies the following equation:
458  *     P = B & ~(1 << O)
459  *
460  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
461  */
462 static inline unsigned long
463 __find_buddy_index(unsigned long page_idx, unsigned int order)
464 {
465 	return page_idx ^ (1 << order);
466 }
467 
468 /*
469  * This function checks whether a page is free && is the buddy
470  * we can do coalesce a page and its buddy if
471  * (a) the buddy is not in a hole &&
472  * (b) the buddy is in the buddy system &&
473  * (c) a page and its buddy have the same order &&
474  * (d) a page and its buddy are in the same zone.
475  *
476  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
477  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
478  *
479  * For recording page's order, we use page_private(page).
480  */
481 static inline int page_is_buddy(struct page *page, struct page *buddy,
482 								int order)
483 {
484 	if (!pfn_valid_within(page_to_pfn(buddy)))
485 		return 0;
486 
487 	if (page_zone_id(page) != page_zone_id(buddy))
488 		return 0;
489 
490 	if (page_is_guard(buddy) && page_order(buddy) == order) {
491 		VM_BUG_ON(page_count(buddy) != 0);
492 		return 1;
493 	}
494 
495 	if (PageBuddy(buddy) && page_order(buddy) == order) {
496 		VM_BUG_ON(page_count(buddy) != 0);
497 		return 1;
498 	}
499 	return 0;
500 }
501 
502 /*
503  * Freeing function for a buddy system allocator.
504  *
505  * The concept of a buddy system is to maintain direct-mapped table
506  * (containing bit values) for memory blocks of various "orders".
507  * The bottom level table contains the map for the smallest allocatable
508  * units of memory (here, pages), and each level above it describes
509  * pairs of units from the levels below, hence, "buddies".
510  * At a high level, all that happens here is marking the table entry
511  * at the bottom level available, and propagating the changes upward
512  * as necessary, plus some accounting needed to play nicely with other
513  * parts of the VM system.
514  * At each level, we keep a list of pages, which are heads of continuous
515  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
516  * order is recorded in page_private(page) field.
517  * So when we are allocating or freeing one, we can derive the state of the
518  * other.  That is, if we allocate a small block, and both were
519  * free, the remainder of the region must be split into blocks.
520  * If a block is freed, and its buddy is also free, then this
521  * triggers coalescing into a block of larger size.
522  *
523  * -- nyc
524  */
525 
526 static inline void __free_one_page(struct page *page,
527 		struct zone *zone, unsigned int order,
528 		int migratetype)
529 {
530 	unsigned long page_idx;
531 	unsigned long combined_idx;
532 	unsigned long uninitialized_var(buddy_idx);
533 	struct page *buddy;
534 
535 	if (unlikely(PageCompound(page)))
536 		if (unlikely(destroy_compound_page(page, order)))
537 			return;
538 
539 	VM_BUG_ON(migratetype == -1);
540 
541 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
542 
543 	VM_BUG_ON(page_idx & ((1 << order) - 1));
544 	VM_BUG_ON(bad_range(zone, page));
545 
546 	while (order < MAX_ORDER-1) {
547 		buddy_idx = __find_buddy_index(page_idx, order);
548 		buddy = page + (buddy_idx - page_idx);
549 		if (!page_is_buddy(page, buddy, order))
550 			break;
551 		/*
552 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
553 		 * merge with it and move up one order.
554 		 */
555 		if (page_is_guard(buddy)) {
556 			clear_page_guard_flag(buddy);
557 			set_page_private(page, 0);
558 			__mod_zone_freepage_state(zone, 1 << order,
559 						  migratetype);
560 		} else {
561 			list_del(&buddy->lru);
562 			zone->free_area[order].nr_free--;
563 			rmv_page_order(buddy);
564 		}
565 		combined_idx = buddy_idx & page_idx;
566 		page = page + (combined_idx - page_idx);
567 		page_idx = combined_idx;
568 		order++;
569 	}
570 	set_page_order(page, order);
571 
572 	/*
573 	 * If this is not the largest possible page, check if the buddy
574 	 * of the next-highest order is free. If it is, it's possible
575 	 * that pages are being freed that will coalesce soon. In case,
576 	 * that is happening, add the free page to the tail of the list
577 	 * so it's less likely to be used soon and more likely to be merged
578 	 * as a higher order page
579 	 */
580 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
581 		struct page *higher_page, *higher_buddy;
582 		combined_idx = buddy_idx & page_idx;
583 		higher_page = page + (combined_idx - page_idx);
584 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
585 		higher_buddy = higher_page + (buddy_idx - combined_idx);
586 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
587 			list_add_tail(&page->lru,
588 				&zone->free_area[order].free_list[migratetype]);
589 			goto out;
590 		}
591 	}
592 
593 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
594 out:
595 	zone->free_area[order].nr_free++;
596 }
597 
598 static inline int free_pages_check(struct page *page)
599 {
600 	if (unlikely(page_mapcount(page) |
601 		(page->mapping != NULL)  |
602 		(atomic_read(&page->_count) != 0) |
603 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
604 		(mem_cgroup_bad_page_check(page)))) {
605 		bad_page(page);
606 		return 1;
607 	}
608 	reset_page_last_nid(page);
609 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
610 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
611 	return 0;
612 }
613 
614 /*
615  * Frees a number of pages from the PCP lists
616  * Assumes all pages on list are in same zone, and of same order.
617  * count is the number of pages to free.
618  *
619  * If the zone was previously in an "all pages pinned" state then look to
620  * see if this freeing clears that state.
621  *
622  * And clear the zone's pages_scanned counter, to hold off the "all pages are
623  * pinned" detection logic.
624  */
625 static void free_pcppages_bulk(struct zone *zone, int count,
626 					struct per_cpu_pages *pcp)
627 {
628 	int migratetype = 0;
629 	int batch_free = 0;
630 	int to_free = count;
631 
632 	spin_lock(&zone->lock);
633 	zone->all_unreclaimable = 0;
634 	zone->pages_scanned = 0;
635 
636 	while (to_free) {
637 		struct page *page;
638 		struct list_head *list;
639 
640 		/*
641 		 * Remove pages from lists in a round-robin fashion. A
642 		 * batch_free count is maintained that is incremented when an
643 		 * empty list is encountered.  This is so more pages are freed
644 		 * off fuller lists instead of spinning excessively around empty
645 		 * lists
646 		 */
647 		do {
648 			batch_free++;
649 			if (++migratetype == MIGRATE_PCPTYPES)
650 				migratetype = 0;
651 			list = &pcp->lists[migratetype];
652 		} while (list_empty(list));
653 
654 		/* This is the only non-empty list. Free them all. */
655 		if (batch_free == MIGRATE_PCPTYPES)
656 			batch_free = to_free;
657 
658 		do {
659 			int mt;	/* migratetype of the to-be-freed page */
660 
661 			page = list_entry(list->prev, struct page, lru);
662 			/* must delete as __free_one_page list manipulates */
663 			list_del(&page->lru);
664 			mt = get_freepage_migratetype(page);
665 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
666 			__free_one_page(page, zone, 0, mt);
667 			trace_mm_page_pcpu_drain(page, 0, mt);
668 			if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
669 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
670 				if (is_migrate_cma(mt))
671 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 			}
673 		} while (--to_free && --batch_free && !list_empty(list));
674 	}
675 	spin_unlock(&zone->lock);
676 }
677 
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 				int migratetype)
680 {
681 	spin_lock(&zone->lock);
682 	zone->all_unreclaimable = 0;
683 	zone->pages_scanned = 0;
684 
685 	__free_one_page(page, zone, order, migratetype);
686 	if (unlikely(migratetype != MIGRATE_ISOLATE))
687 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
688 	spin_unlock(&zone->lock);
689 }
690 
691 static bool free_pages_prepare(struct page *page, unsigned int order)
692 {
693 	int i;
694 	int bad = 0;
695 
696 	trace_mm_page_free(page, order);
697 	kmemcheck_free_shadow(page, order);
698 
699 	if (PageAnon(page))
700 		page->mapping = NULL;
701 	for (i = 0; i < (1 << order); i++)
702 		bad += free_pages_check(page + i);
703 	if (bad)
704 		return false;
705 
706 	if (!PageHighMem(page)) {
707 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 		debug_check_no_obj_freed(page_address(page),
709 					   PAGE_SIZE << order);
710 	}
711 	arch_free_page(page, order);
712 	kernel_map_pages(page, 1 << order, 0);
713 
714 	return true;
715 }
716 
717 static void __free_pages_ok(struct page *page, unsigned int order)
718 {
719 	unsigned long flags;
720 	int migratetype;
721 
722 	if (!free_pages_prepare(page, order))
723 		return;
724 
725 	local_irq_save(flags);
726 	__count_vm_events(PGFREE, 1 << order);
727 	migratetype = get_pageblock_migratetype(page);
728 	set_freepage_migratetype(page, migratetype);
729 	free_one_page(page_zone(page), page, order, migratetype);
730 	local_irq_restore(flags);
731 }
732 
733 /*
734  * Read access to zone->managed_pages is safe because it's unsigned long,
735  * but we still need to serialize writers. Currently all callers of
736  * __free_pages_bootmem() except put_page_bootmem() should only be used
737  * at boot time. So for shorter boot time, we shift the burden to
738  * put_page_bootmem() to serialize writers.
739  */
740 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
741 {
742 	unsigned int nr_pages = 1 << order;
743 	unsigned int loop;
744 
745 	prefetchw(page);
746 	for (loop = 0; loop < nr_pages; loop++) {
747 		struct page *p = &page[loop];
748 
749 		if (loop + 1 < nr_pages)
750 			prefetchw(p + 1);
751 		__ClearPageReserved(p);
752 		set_page_count(p, 0);
753 	}
754 
755 	page_zone(page)->managed_pages += 1 << order;
756 	set_page_refcounted(page);
757 	__free_pages(page, order);
758 }
759 
760 #ifdef CONFIG_CMA
761 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
762 void __init init_cma_reserved_pageblock(struct page *page)
763 {
764 	unsigned i = pageblock_nr_pages;
765 	struct page *p = page;
766 
767 	do {
768 		__ClearPageReserved(p);
769 		set_page_count(p, 0);
770 	} while (++p, --i);
771 
772 	set_page_refcounted(page);
773 	set_pageblock_migratetype(page, MIGRATE_CMA);
774 	__free_pages(page, pageblock_order);
775 	totalram_pages += pageblock_nr_pages;
776 #ifdef CONFIG_HIGHMEM
777 	if (PageHighMem(page))
778 		totalhigh_pages += pageblock_nr_pages;
779 #endif
780 }
781 #endif
782 
783 /*
784  * The order of subdivision here is critical for the IO subsystem.
785  * Please do not alter this order without good reasons and regression
786  * testing. Specifically, as large blocks of memory are subdivided,
787  * the order in which smaller blocks are delivered depends on the order
788  * they're subdivided in this function. This is the primary factor
789  * influencing the order in which pages are delivered to the IO
790  * subsystem according to empirical testing, and this is also justified
791  * by considering the behavior of a buddy system containing a single
792  * large block of memory acted on by a series of small allocations.
793  * This behavior is a critical factor in sglist merging's success.
794  *
795  * -- nyc
796  */
797 static inline void expand(struct zone *zone, struct page *page,
798 	int low, int high, struct free_area *area,
799 	int migratetype)
800 {
801 	unsigned long size = 1 << high;
802 
803 	while (high > low) {
804 		area--;
805 		high--;
806 		size >>= 1;
807 		VM_BUG_ON(bad_range(zone, &page[size]));
808 
809 #ifdef CONFIG_DEBUG_PAGEALLOC
810 		if (high < debug_guardpage_minorder()) {
811 			/*
812 			 * Mark as guard pages (or page), that will allow to
813 			 * merge back to allocator when buddy will be freed.
814 			 * Corresponding page table entries will not be touched,
815 			 * pages will stay not present in virtual address space
816 			 */
817 			INIT_LIST_HEAD(&page[size].lru);
818 			set_page_guard_flag(&page[size]);
819 			set_page_private(&page[size], high);
820 			/* Guard pages are not available for any usage */
821 			__mod_zone_freepage_state(zone, -(1 << high),
822 						  migratetype);
823 			continue;
824 		}
825 #endif
826 		list_add(&page[size].lru, &area->free_list[migratetype]);
827 		area->nr_free++;
828 		set_page_order(&page[size], high);
829 	}
830 }
831 
832 /*
833  * This page is about to be returned from the page allocator
834  */
835 static inline int check_new_page(struct page *page)
836 {
837 	if (unlikely(page_mapcount(page) |
838 		(page->mapping != NULL)  |
839 		(atomic_read(&page->_count) != 0)  |
840 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
841 		(mem_cgroup_bad_page_check(page)))) {
842 		bad_page(page);
843 		return 1;
844 	}
845 	return 0;
846 }
847 
848 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
849 {
850 	int i;
851 
852 	for (i = 0; i < (1 << order); i++) {
853 		struct page *p = page + i;
854 		if (unlikely(check_new_page(p)))
855 			return 1;
856 	}
857 
858 	set_page_private(page, 0);
859 	set_page_refcounted(page);
860 
861 	arch_alloc_page(page, order);
862 	kernel_map_pages(page, 1 << order, 1);
863 
864 	if (gfp_flags & __GFP_ZERO)
865 		prep_zero_page(page, order, gfp_flags);
866 
867 	if (order && (gfp_flags & __GFP_COMP))
868 		prep_compound_page(page, order);
869 
870 	return 0;
871 }
872 
873 /*
874  * Go through the free lists for the given migratetype and remove
875  * the smallest available page from the freelists
876  */
877 static inline
878 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
879 						int migratetype)
880 {
881 	unsigned int current_order;
882 	struct free_area * area;
883 	struct page *page;
884 
885 	/* Find a page of the appropriate size in the preferred list */
886 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
887 		area = &(zone->free_area[current_order]);
888 		if (list_empty(&area->free_list[migratetype]))
889 			continue;
890 
891 		page = list_entry(area->free_list[migratetype].next,
892 							struct page, lru);
893 		list_del(&page->lru);
894 		rmv_page_order(page);
895 		area->nr_free--;
896 		expand(zone, page, order, current_order, area, migratetype);
897 		return page;
898 	}
899 
900 	return NULL;
901 }
902 
903 
904 /*
905  * This array describes the order lists are fallen back to when
906  * the free lists for the desirable migrate type are depleted
907  */
908 static int fallbacks[MIGRATE_TYPES][4] = {
909 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
910 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
911 #ifdef CONFIG_CMA
912 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
914 #else
915 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
916 #endif
917 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
918 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
919 };
920 
921 /*
922  * Move the free pages in a range to the free lists of the requested type.
923  * Note that start_page and end_pages are not aligned on a pageblock
924  * boundary. If alignment is required, use move_freepages_block()
925  */
926 int move_freepages(struct zone *zone,
927 			  struct page *start_page, struct page *end_page,
928 			  int migratetype)
929 {
930 	struct page *page;
931 	unsigned long order;
932 	int pages_moved = 0;
933 
934 #ifndef CONFIG_HOLES_IN_ZONE
935 	/*
936 	 * page_zone is not safe to call in this context when
937 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
938 	 * anyway as we check zone boundaries in move_freepages_block().
939 	 * Remove at a later date when no bug reports exist related to
940 	 * grouping pages by mobility
941 	 */
942 	BUG_ON(page_zone(start_page) != page_zone(end_page));
943 #endif
944 
945 	for (page = start_page; page <= end_page;) {
946 		/* Make sure we are not inadvertently changing nodes */
947 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
948 
949 		if (!pfn_valid_within(page_to_pfn(page))) {
950 			page++;
951 			continue;
952 		}
953 
954 		if (!PageBuddy(page)) {
955 			page++;
956 			continue;
957 		}
958 
959 		order = page_order(page);
960 		list_move(&page->lru,
961 			  &zone->free_area[order].free_list[migratetype]);
962 		set_freepage_migratetype(page, migratetype);
963 		page += 1 << order;
964 		pages_moved += 1 << order;
965 	}
966 
967 	return pages_moved;
968 }
969 
970 int move_freepages_block(struct zone *zone, struct page *page,
971 				int migratetype)
972 {
973 	unsigned long start_pfn, end_pfn;
974 	struct page *start_page, *end_page;
975 
976 	start_pfn = page_to_pfn(page);
977 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
978 	start_page = pfn_to_page(start_pfn);
979 	end_page = start_page + pageblock_nr_pages - 1;
980 	end_pfn = start_pfn + pageblock_nr_pages - 1;
981 
982 	/* Do not cross zone boundaries */
983 	if (start_pfn < zone->zone_start_pfn)
984 		start_page = page;
985 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
986 		return 0;
987 
988 	return move_freepages(zone, start_page, end_page, migratetype);
989 }
990 
991 static void change_pageblock_range(struct page *pageblock_page,
992 					int start_order, int migratetype)
993 {
994 	int nr_pageblocks = 1 << (start_order - pageblock_order);
995 
996 	while (nr_pageblocks--) {
997 		set_pageblock_migratetype(pageblock_page, migratetype);
998 		pageblock_page += pageblock_nr_pages;
999 	}
1000 }
1001 
1002 /* Remove an element from the buddy allocator from the fallback list */
1003 static inline struct page *
1004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1005 {
1006 	struct free_area * area;
1007 	int current_order;
1008 	struct page *page;
1009 	int migratetype, i;
1010 
1011 	/* Find the largest possible block of pages in the other list */
1012 	for (current_order = MAX_ORDER-1; current_order >= order;
1013 						--current_order) {
1014 		for (i = 0;; i++) {
1015 			migratetype = fallbacks[start_migratetype][i];
1016 
1017 			/* MIGRATE_RESERVE handled later if necessary */
1018 			if (migratetype == MIGRATE_RESERVE)
1019 				break;
1020 
1021 			area = &(zone->free_area[current_order]);
1022 			if (list_empty(&area->free_list[migratetype]))
1023 				continue;
1024 
1025 			page = list_entry(area->free_list[migratetype].next,
1026 					struct page, lru);
1027 			area->nr_free--;
1028 
1029 			/*
1030 			 * If breaking a large block of pages, move all free
1031 			 * pages to the preferred allocation list. If falling
1032 			 * back for a reclaimable kernel allocation, be more
1033 			 * aggressive about taking ownership of free pages
1034 			 *
1035 			 * On the other hand, never change migration
1036 			 * type of MIGRATE_CMA pageblocks nor move CMA
1037 			 * pages on different free lists. We don't
1038 			 * want unmovable pages to be allocated from
1039 			 * MIGRATE_CMA areas.
1040 			 */
1041 			if (!is_migrate_cma(migratetype) &&
1042 			    (unlikely(current_order >= pageblock_order / 2) ||
1043 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1044 			     page_group_by_mobility_disabled)) {
1045 				int pages;
1046 				pages = move_freepages_block(zone, page,
1047 								start_migratetype);
1048 
1049 				/* Claim the whole block if over half of it is free */
1050 				if (pages >= (1 << (pageblock_order-1)) ||
1051 						page_group_by_mobility_disabled)
1052 					set_pageblock_migratetype(page,
1053 								start_migratetype);
1054 
1055 				migratetype = start_migratetype;
1056 			}
1057 
1058 			/* Remove the page from the freelists */
1059 			list_del(&page->lru);
1060 			rmv_page_order(page);
1061 
1062 			/* Take ownership for orders >= pageblock_order */
1063 			if (current_order >= pageblock_order &&
1064 			    !is_migrate_cma(migratetype))
1065 				change_pageblock_range(page, current_order,
1066 							start_migratetype);
1067 
1068 			expand(zone, page, order, current_order, area,
1069 			       is_migrate_cma(migratetype)
1070 			     ? migratetype : start_migratetype);
1071 
1072 			trace_mm_page_alloc_extfrag(page, order, current_order,
1073 				start_migratetype, migratetype);
1074 
1075 			return page;
1076 		}
1077 	}
1078 
1079 	return NULL;
1080 }
1081 
1082 /*
1083  * Do the hard work of removing an element from the buddy allocator.
1084  * Call me with the zone->lock already held.
1085  */
1086 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1087 						int migratetype)
1088 {
1089 	struct page *page;
1090 
1091 retry_reserve:
1092 	page = __rmqueue_smallest(zone, order, migratetype);
1093 
1094 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1095 		page = __rmqueue_fallback(zone, order, migratetype);
1096 
1097 		/*
1098 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1099 		 * is used because __rmqueue_smallest is an inline function
1100 		 * and we want just one call site
1101 		 */
1102 		if (!page) {
1103 			migratetype = MIGRATE_RESERVE;
1104 			goto retry_reserve;
1105 		}
1106 	}
1107 
1108 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1109 	return page;
1110 }
1111 
1112 /*
1113  * Obtain a specified number of elements from the buddy allocator, all under
1114  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1115  * Returns the number of new pages which were placed at *list.
1116  */
1117 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1118 			unsigned long count, struct list_head *list,
1119 			int migratetype, int cold)
1120 {
1121 	int mt = migratetype, i;
1122 
1123 	spin_lock(&zone->lock);
1124 	for (i = 0; i < count; ++i) {
1125 		struct page *page = __rmqueue(zone, order, migratetype);
1126 		if (unlikely(page == NULL))
1127 			break;
1128 
1129 		/*
1130 		 * Split buddy pages returned by expand() are received here
1131 		 * in physical page order. The page is added to the callers and
1132 		 * list and the list head then moves forward. From the callers
1133 		 * perspective, the linked list is ordered by page number in
1134 		 * some conditions. This is useful for IO devices that can
1135 		 * merge IO requests if the physical pages are ordered
1136 		 * properly.
1137 		 */
1138 		if (likely(cold == 0))
1139 			list_add(&page->lru, list);
1140 		else
1141 			list_add_tail(&page->lru, list);
1142 		if (IS_ENABLED(CONFIG_CMA)) {
1143 			mt = get_pageblock_migratetype(page);
1144 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1145 				mt = migratetype;
1146 		}
1147 		set_freepage_migratetype(page, mt);
1148 		list = &page->lru;
1149 		if (is_migrate_cma(mt))
1150 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1151 					      -(1 << order));
1152 	}
1153 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1154 	spin_unlock(&zone->lock);
1155 	return i;
1156 }
1157 
1158 #ifdef CONFIG_NUMA
1159 /*
1160  * Called from the vmstat counter updater to drain pagesets of this
1161  * currently executing processor on remote nodes after they have
1162  * expired.
1163  *
1164  * Note that this function must be called with the thread pinned to
1165  * a single processor.
1166  */
1167 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1168 {
1169 	unsigned long flags;
1170 	int to_drain;
1171 
1172 	local_irq_save(flags);
1173 	if (pcp->count >= pcp->batch)
1174 		to_drain = pcp->batch;
1175 	else
1176 		to_drain = pcp->count;
1177 	if (to_drain > 0) {
1178 		free_pcppages_bulk(zone, to_drain, pcp);
1179 		pcp->count -= to_drain;
1180 	}
1181 	local_irq_restore(flags);
1182 }
1183 #endif
1184 
1185 /*
1186  * Drain pages of the indicated processor.
1187  *
1188  * The processor must either be the current processor and the
1189  * thread pinned to the current processor or a processor that
1190  * is not online.
1191  */
1192 static void drain_pages(unsigned int cpu)
1193 {
1194 	unsigned long flags;
1195 	struct zone *zone;
1196 
1197 	for_each_populated_zone(zone) {
1198 		struct per_cpu_pageset *pset;
1199 		struct per_cpu_pages *pcp;
1200 
1201 		local_irq_save(flags);
1202 		pset = per_cpu_ptr(zone->pageset, cpu);
1203 
1204 		pcp = &pset->pcp;
1205 		if (pcp->count) {
1206 			free_pcppages_bulk(zone, pcp->count, pcp);
1207 			pcp->count = 0;
1208 		}
1209 		local_irq_restore(flags);
1210 	}
1211 }
1212 
1213 /*
1214  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1215  */
1216 void drain_local_pages(void *arg)
1217 {
1218 	drain_pages(smp_processor_id());
1219 }
1220 
1221 /*
1222  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1223  *
1224  * Note that this code is protected against sending an IPI to an offline
1225  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1226  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1227  * nothing keeps CPUs from showing up after we populated the cpumask and
1228  * before the call to on_each_cpu_mask().
1229  */
1230 void drain_all_pages(void)
1231 {
1232 	int cpu;
1233 	struct per_cpu_pageset *pcp;
1234 	struct zone *zone;
1235 
1236 	/*
1237 	 * Allocate in the BSS so we wont require allocation in
1238 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1239 	 */
1240 	static cpumask_t cpus_with_pcps;
1241 
1242 	/*
1243 	 * We don't care about racing with CPU hotplug event
1244 	 * as offline notification will cause the notified
1245 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1246 	 * disables preemption as part of its processing
1247 	 */
1248 	for_each_online_cpu(cpu) {
1249 		bool has_pcps = false;
1250 		for_each_populated_zone(zone) {
1251 			pcp = per_cpu_ptr(zone->pageset, cpu);
1252 			if (pcp->pcp.count) {
1253 				has_pcps = true;
1254 				break;
1255 			}
1256 		}
1257 		if (has_pcps)
1258 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1259 		else
1260 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1261 	}
1262 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1263 }
1264 
1265 #ifdef CONFIG_HIBERNATION
1266 
1267 void mark_free_pages(struct zone *zone)
1268 {
1269 	unsigned long pfn, max_zone_pfn;
1270 	unsigned long flags;
1271 	int order, t;
1272 	struct list_head *curr;
1273 
1274 	if (!zone->spanned_pages)
1275 		return;
1276 
1277 	spin_lock_irqsave(&zone->lock, flags);
1278 
1279 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1280 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1281 		if (pfn_valid(pfn)) {
1282 			struct page *page = pfn_to_page(pfn);
1283 
1284 			if (!swsusp_page_is_forbidden(page))
1285 				swsusp_unset_page_free(page);
1286 		}
1287 
1288 	for_each_migratetype_order(order, t) {
1289 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1290 			unsigned long i;
1291 
1292 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1293 			for (i = 0; i < (1UL << order); i++)
1294 				swsusp_set_page_free(pfn_to_page(pfn + i));
1295 		}
1296 	}
1297 	spin_unlock_irqrestore(&zone->lock, flags);
1298 }
1299 #endif /* CONFIG_PM */
1300 
1301 /*
1302  * Free a 0-order page
1303  * cold == 1 ? free a cold page : free a hot page
1304  */
1305 void free_hot_cold_page(struct page *page, int cold)
1306 {
1307 	struct zone *zone = page_zone(page);
1308 	struct per_cpu_pages *pcp;
1309 	unsigned long flags;
1310 	int migratetype;
1311 
1312 	if (!free_pages_prepare(page, 0))
1313 		return;
1314 
1315 	migratetype = get_pageblock_migratetype(page);
1316 	set_freepage_migratetype(page, migratetype);
1317 	local_irq_save(flags);
1318 	__count_vm_event(PGFREE);
1319 
1320 	/*
1321 	 * We only track unmovable, reclaimable and movable on pcp lists.
1322 	 * Free ISOLATE pages back to the allocator because they are being
1323 	 * offlined but treat RESERVE as movable pages so we can get those
1324 	 * areas back if necessary. Otherwise, we may have to free
1325 	 * excessively into the page allocator
1326 	 */
1327 	if (migratetype >= MIGRATE_PCPTYPES) {
1328 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1329 			free_one_page(zone, page, 0, migratetype);
1330 			goto out;
1331 		}
1332 		migratetype = MIGRATE_MOVABLE;
1333 	}
1334 
1335 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1336 	if (cold)
1337 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1338 	else
1339 		list_add(&page->lru, &pcp->lists[migratetype]);
1340 	pcp->count++;
1341 	if (pcp->count >= pcp->high) {
1342 		free_pcppages_bulk(zone, pcp->batch, pcp);
1343 		pcp->count -= pcp->batch;
1344 	}
1345 
1346 out:
1347 	local_irq_restore(flags);
1348 }
1349 
1350 /*
1351  * Free a list of 0-order pages
1352  */
1353 void free_hot_cold_page_list(struct list_head *list, int cold)
1354 {
1355 	struct page *page, *next;
1356 
1357 	list_for_each_entry_safe(page, next, list, lru) {
1358 		trace_mm_page_free_batched(page, cold);
1359 		free_hot_cold_page(page, cold);
1360 	}
1361 }
1362 
1363 /*
1364  * split_page takes a non-compound higher-order page, and splits it into
1365  * n (1<<order) sub-pages: page[0..n]
1366  * Each sub-page must be freed individually.
1367  *
1368  * Note: this is probably too low level an operation for use in drivers.
1369  * Please consult with lkml before using this in your driver.
1370  */
1371 void split_page(struct page *page, unsigned int order)
1372 {
1373 	int i;
1374 
1375 	VM_BUG_ON(PageCompound(page));
1376 	VM_BUG_ON(!page_count(page));
1377 
1378 #ifdef CONFIG_KMEMCHECK
1379 	/*
1380 	 * Split shadow pages too, because free(page[0]) would
1381 	 * otherwise free the whole shadow.
1382 	 */
1383 	if (kmemcheck_page_is_tracked(page))
1384 		split_page(virt_to_page(page[0].shadow), order);
1385 #endif
1386 
1387 	for (i = 1; i < (1 << order); i++)
1388 		set_page_refcounted(page + i);
1389 }
1390 
1391 static int __isolate_free_page(struct page *page, unsigned int order)
1392 {
1393 	unsigned long watermark;
1394 	struct zone *zone;
1395 	int mt;
1396 
1397 	BUG_ON(!PageBuddy(page));
1398 
1399 	zone = page_zone(page);
1400 	mt = get_pageblock_migratetype(page);
1401 
1402 	if (mt != MIGRATE_ISOLATE) {
1403 		/* Obey watermarks as if the page was being allocated */
1404 		watermark = low_wmark_pages(zone) + (1 << order);
1405 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 			return 0;
1407 
1408 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1409 	}
1410 
1411 	/* Remove page from free list */
1412 	list_del(&page->lru);
1413 	zone->free_area[order].nr_free--;
1414 	rmv_page_order(page);
1415 
1416 	/* Set the pageblock if the isolated page is at least a pageblock */
1417 	if (order >= pageblock_order - 1) {
1418 		struct page *endpage = page + (1 << order) - 1;
1419 		for (; page < endpage; page += pageblock_nr_pages) {
1420 			int mt = get_pageblock_migratetype(page);
1421 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1422 				set_pageblock_migratetype(page,
1423 							  MIGRATE_MOVABLE);
1424 		}
1425 	}
1426 
1427 	return 1UL << order;
1428 }
1429 
1430 /*
1431  * Similar to split_page except the page is already free. As this is only
1432  * being used for migration, the migratetype of the block also changes.
1433  * As this is called with interrupts disabled, the caller is responsible
1434  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1435  * are enabled.
1436  *
1437  * Note: this is probably too low level an operation for use in drivers.
1438  * Please consult with lkml before using this in your driver.
1439  */
1440 int split_free_page(struct page *page)
1441 {
1442 	unsigned int order;
1443 	int nr_pages;
1444 
1445 	order = page_order(page);
1446 
1447 	nr_pages = __isolate_free_page(page, order);
1448 	if (!nr_pages)
1449 		return 0;
1450 
1451 	/* Split into individual pages */
1452 	set_page_refcounted(page);
1453 	split_page(page, order);
1454 	return nr_pages;
1455 }
1456 
1457 /*
1458  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1459  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1460  * or two.
1461  */
1462 static inline
1463 struct page *buffered_rmqueue(struct zone *preferred_zone,
1464 			struct zone *zone, int order, gfp_t gfp_flags,
1465 			int migratetype)
1466 {
1467 	unsigned long flags;
1468 	struct page *page;
1469 	int cold = !!(gfp_flags & __GFP_COLD);
1470 
1471 again:
1472 	if (likely(order == 0)) {
1473 		struct per_cpu_pages *pcp;
1474 		struct list_head *list;
1475 
1476 		local_irq_save(flags);
1477 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1478 		list = &pcp->lists[migratetype];
1479 		if (list_empty(list)) {
1480 			pcp->count += rmqueue_bulk(zone, 0,
1481 					pcp->batch, list,
1482 					migratetype, cold);
1483 			if (unlikely(list_empty(list)))
1484 				goto failed;
1485 		}
1486 
1487 		if (cold)
1488 			page = list_entry(list->prev, struct page, lru);
1489 		else
1490 			page = list_entry(list->next, struct page, lru);
1491 
1492 		list_del(&page->lru);
1493 		pcp->count--;
1494 	} else {
1495 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1496 			/*
1497 			 * __GFP_NOFAIL is not to be used in new code.
1498 			 *
1499 			 * All __GFP_NOFAIL callers should be fixed so that they
1500 			 * properly detect and handle allocation failures.
1501 			 *
1502 			 * We most definitely don't want callers attempting to
1503 			 * allocate greater than order-1 page units with
1504 			 * __GFP_NOFAIL.
1505 			 */
1506 			WARN_ON_ONCE(order > 1);
1507 		}
1508 		spin_lock_irqsave(&zone->lock, flags);
1509 		page = __rmqueue(zone, order, migratetype);
1510 		spin_unlock(&zone->lock);
1511 		if (!page)
1512 			goto failed;
1513 		__mod_zone_freepage_state(zone, -(1 << order),
1514 					  get_pageblock_migratetype(page));
1515 	}
1516 
1517 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1518 	zone_statistics(preferred_zone, zone, gfp_flags);
1519 	local_irq_restore(flags);
1520 
1521 	VM_BUG_ON(bad_range(zone, page));
1522 	if (prep_new_page(page, order, gfp_flags))
1523 		goto again;
1524 	return page;
1525 
1526 failed:
1527 	local_irq_restore(flags);
1528 	return NULL;
1529 }
1530 
1531 #ifdef CONFIG_FAIL_PAGE_ALLOC
1532 
1533 static struct {
1534 	struct fault_attr attr;
1535 
1536 	u32 ignore_gfp_highmem;
1537 	u32 ignore_gfp_wait;
1538 	u32 min_order;
1539 } fail_page_alloc = {
1540 	.attr = FAULT_ATTR_INITIALIZER,
1541 	.ignore_gfp_wait = 1,
1542 	.ignore_gfp_highmem = 1,
1543 	.min_order = 1,
1544 };
1545 
1546 static int __init setup_fail_page_alloc(char *str)
1547 {
1548 	return setup_fault_attr(&fail_page_alloc.attr, str);
1549 }
1550 __setup("fail_page_alloc=", setup_fail_page_alloc);
1551 
1552 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1553 {
1554 	if (order < fail_page_alloc.min_order)
1555 		return false;
1556 	if (gfp_mask & __GFP_NOFAIL)
1557 		return false;
1558 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1559 		return false;
1560 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1561 		return false;
1562 
1563 	return should_fail(&fail_page_alloc.attr, 1 << order);
1564 }
1565 
1566 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1567 
1568 static int __init fail_page_alloc_debugfs(void)
1569 {
1570 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1571 	struct dentry *dir;
1572 
1573 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1574 					&fail_page_alloc.attr);
1575 	if (IS_ERR(dir))
1576 		return PTR_ERR(dir);
1577 
1578 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1579 				&fail_page_alloc.ignore_gfp_wait))
1580 		goto fail;
1581 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1582 				&fail_page_alloc.ignore_gfp_highmem))
1583 		goto fail;
1584 	if (!debugfs_create_u32("min-order", mode, dir,
1585 				&fail_page_alloc.min_order))
1586 		goto fail;
1587 
1588 	return 0;
1589 fail:
1590 	debugfs_remove_recursive(dir);
1591 
1592 	return -ENOMEM;
1593 }
1594 
1595 late_initcall(fail_page_alloc_debugfs);
1596 
1597 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1598 
1599 #else /* CONFIG_FAIL_PAGE_ALLOC */
1600 
1601 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1602 {
1603 	return false;
1604 }
1605 
1606 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1607 
1608 /*
1609  * Return true if free pages are above 'mark'. This takes into account the order
1610  * of the allocation.
1611  */
1612 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1613 		      int classzone_idx, int alloc_flags, long free_pages)
1614 {
1615 	/* free_pages my go negative - that's OK */
1616 	long min = mark;
1617 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1618 	int o;
1619 
1620 	free_pages -= (1 << order) - 1;
1621 	if (alloc_flags & ALLOC_HIGH)
1622 		min -= min / 2;
1623 	if (alloc_flags & ALLOC_HARDER)
1624 		min -= min / 4;
1625 #ifdef CONFIG_CMA
1626 	/* If allocation can't use CMA areas don't use free CMA pages */
1627 	if (!(alloc_flags & ALLOC_CMA))
1628 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1629 #endif
1630 	if (free_pages <= min + lowmem_reserve)
1631 		return false;
1632 	for (o = 0; o < order; o++) {
1633 		/* At the next order, this order's pages become unavailable */
1634 		free_pages -= z->free_area[o].nr_free << o;
1635 
1636 		/* Require fewer higher order pages to be free */
1637 		min >>= 1;
1638 
1639 		if (free_pages <= min)
1640 			return false;
1641 	}
1642 	return true;
1643 }
1644 
1645 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1646 		      int classzone_idx, int alloc_flags)
1647 {
1648 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1649 					zone_page_state(z, NR_FREE_PAGES));
1650 }
1651 
1652 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1653 		      int classzone_idx, int alloc_flags)
1654 {
1655 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1656 
1657 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1658 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1659 
1660 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1661 								free_pages);
1662 }
1663 
1664 #ifdef CONFIG_NUMA
1665 /*
1666  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1667  * skip over zones that are not allowed by the cpuset, or that have
1668  * been recently (in last second) found to be nearly full.  See further
1669  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1670  * that have to skip over a lot of full or unallowed zones.
1671  *
1672  * If the zonelist cache is present in the passed in zonelist, then
1673  * returns a pointer to the allowed node mask (either the current
1674  * tasks mems_allowed, or node_states[N_MEMORY].)
1675  *
1676  * If the zonelist cache is not available for this zonelist, does
1677  * nothing and returns NULL.
1678  *
1679  * If the fullzones BITMAP in the zonelist cache is stale (more than
1680  * a second since last zap'd) then we zap it out (clear its bits.)
1681  *
1682  * We hold off even calling zlc_setup, until after we've checked the
1683  * first zone in the zonelist, on the theory that most allocations will
1684  * be satisfied from that first zone, so best to examine that zone as
1685  * quickly as we can.
1686  */
1687 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1688 {
1689 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1690 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1691 
1692 	zlc = zonelist->zlcache_ptr;
1693 	if (!zlc)
1694 		return NULL;
1695 
1696 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1697 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1698 		zlc->last_full_zap = jiffies;
1699 	}
1700 
1701 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1702 					&cpuset_current_mems_allowed :
1703 					&node_states[N_MEMORY];
1704 	return allowednodes;
1705 }
1706 
1707 /*
1708  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1709  * if it is worth looking at further for free memory:
1710  *  1) Check that the zone isn't thought to be full (doesn't have its
1711  *     bit set in the zonelist_cache fullzones BITMAP).
1712  *  2) Check that the zones node (obtained from the zonelist_cache
1713  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1714  * Return true (non-zero) if zone is worth looking at further, or
1715  * else return false (zero) if it is not.
1716  *
1717  * This check -ignores- the distinction between various watermarks,
1718  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1719  * found to be full for any variation of these watermarks, it will
1720  * be considered full for up to one second by all requests, unless
1721  * we are so low on memory on all allowed nodes that we are forced
1722  * into the second scan of the zonelist.
1723  *
1724  * In the second scan we ignore this zonelist cache and exactly
1725  * apply the watermarks to all zones, even it is slower to do so.
1726  * We are low on memory in the second scan, and should leave no stone
1727  * unturned looking for a free page.
1728  */
1729 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1730 						nodemask_t *allowednodes)
1731 {
1732 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1733 	int i;				/* index of *z in zonelist zones */
1734 	int n;				/* node that zone *z is on */
1735 
1736 	zlc = zonelist->zlcache_ptr;
1737 	if (!zlc)
1738 		return 1;
1739 
1740 	i = z - zonelist->_zonerefs;
1741 	n = zlc->z_to_n[i];
1742 
1743 	/* This zone is worth trying if it is allowed but not full */
1744 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1745 }
1746 
1747 /*
1748  * Given 'z' scanning a zonelist, set the corresponding bit in
1749  * zlc->fullzones, so that subsequent attempts to allocate a page
1750  * from that zone don't waste time re-examining it.
1751  */
1752 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1753 {
1754 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1755 	int i;				/* index of *z in zonelist zones */
1756 
1757 	zlc = zonelist->zlcache_ptr;
1758 	if (!zlc)
1759 		return;
1760 
1761 	i = z - zonelist->_zonerefs;
1762 
1763 	set_bit(i, zlc->fullzones);
1764 }
1765 
1766 /*
1767  * clear all zones full, called after direct reclaim makes progress so that
1768  * a zone that was recently full is not skipped over for up to a second
1769  */
1770 static void zlc_clear_zones_full(struct zonelist *zonelist)
1771 {
1772 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1773 
1774 	zlc = zonelist->zlcache_ptr;
1775 	if (!zlc)
1776 		return;
1777 
1778 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1779 }
1780 
1781 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1782 {
1783 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1784 }
1785 
1786 static void __paginginit init_zone_allows_reclaim(int nid)
1787 {
1788 	int i;
1789 
1790 	for_each_online_node(i)
1791 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1792 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1793 		else
1794 			zone_reclaim_mode = 1;
1795 }
1796 
1797 #else	/* CONFIG_NUMA */
1798 
1799 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1800 {
1801 	return NULL;
1802 }
1803 
1804 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1805 				nodemask_t *allowednodes)
1806 {
1807 	return 1;
1808 }
1809 
1810 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1811 {
1812 }
1813 
1814 static void zlc_clear_zones_full(struct zonelist *zonelist)
1815 {
1816 }
1817 
1818 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1819 {
1820 	return true;
1821 }
1822 
1823 static inline void init_zone_allows_reclaim(int nid)
1824 {
1825 }
1826 #endif	/* CONFIG_NUMA */
1827 
1828 /*
1829  * get_page_from_freelist goes through the zonelist trying to allocate
1830  * a page.
1831  */
1832 static struct page *
1833 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1834 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1835 		struct zone *preferred_zone, int migratetype)
1836 {
1837 	struct zoneref *z;
1838 	struct page *page = NULL;
1839 	int classzone_idx;
1840 	struct zone *zone;
1841 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1842 	int zlc_active = 0;		/* set if using zonelist_cache */
1843 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1844 
1845 	classzone_idx = zone_idx(preferred_zone);
1846 zonelist_scan:
1847 	/*
1848 	 * Scan zonelist, looking for a zone with enough free.
1849 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1850 	 */
1851 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1852 						high_zoneidx, nodemask) {
1853 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1854 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1855 				continue;
1856 		if ((alloc_flags & ALLOC_CPUSET) &&
1857 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1858 				continue;
1859 		/*
1860 		 * When allocating a page cache page for writing, we
1861 		 * want to get it from a zone that is within its dirty
1862 		 * limit, such that no single zone holds more than its
1863 		 * proportional share of globally allowed dirty pages.
1864 		 * The dirty limits take into account the zone's
1865 		 * lowmem reserves and high watermark so that kswapd
1866 		 * should be able to balance it without having to
1867 		 * write pages from its LRU list.
1868 		 *
1869 		 * This may look like it could increase pressure on
1870 		 * lower zones by failing allocations in higher zones
1871 		 * before they are full.  But the pages that do spill
1872 		 * over are limited as the lower zones are protected
1873 		 * by this very same mechanism.  It should not become
1874 		 * a practical burden to them.
1875 		 *
1876 		 * XXX: For now, allow allocations to potentially
1877 		 * exceed the per-zone dirty limit in the slowpath
1878 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1879 		 * which is important when on a NUMA setup the allowed
1880 		 * zones are together not big enough to reach the
1881 		 * global limit.  The proper fix for these situations
1882 		 * will require awareness of zones in the
1883 		 * dirty-throttling and the flusher threads.
1884 		 */
1885 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1886 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1887 			goto this_zone_full;
1888 
1889 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1890 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1891 			unsigned long mark;
1892 			int ret;
1893 
1894 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1895 			if (zone_watermark_ok(zone, order, mark,
1896 				    classzone_idx, alloc_flags))
1897 				goto try_this_zone;
1898 
1899 			if (IS_ENABLED(CONFIG_NUMA) &&
1900 					!did_zlc_setup && nr_online_nodes > 1) {
1901 				/*
1902 				 * we do zlc_setup if there are multiple nodes
1903 				 * and before considering the first zone allowed
1904 				 * by the cpuset.
1905 				 */
1906 				allowednodes = zlc_setup(zonelist, alloc_flags);
1907 				zlc_active = 1;
1908 				did_zlc_setup = 1;
1909 			}
1910 
1911 			if (zone_reclaim_mode == 0 ||
1912 			    !zone_allows_reclaim(preferred_zone, zone))
1913 				goto this_zone_full;
1914 
1915 			/*
1916 			 * As we may have just activated ZLC, check if the first
1917 			 * eligible zone has failed zone_reclaim recently.
1918 			 */
1919 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1920 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1921 				continue;
1922 
1923 			ret = zone_reclaim(zone, gfp_mask, order);
1924 			switch (ret) {
1925 			case ZONE_RECLAIM_NOSCAN:
1926 				/* did not scan */
1927 				continue;
1928 			case ZONE_RECLAIM_FULL:
1929 				/* scanned but unreclaimable */
1930 				continue;
1931 			default:
1932 				/* did we reclaim enough */
1933 				if (!zone_watermark_ok(zone, order, mark,
1934 						classzone_idx, alloc_flags))
1935 					goto this_zone_full;
1936 			}
1937 		}
1938 
1939 try_this_zone:
1940 		page = buffered_rmqueue(preferred_zone, zone, order,
1941 						gfp_mask, migratetype);
1942 		if (page)
1943 			break;
1944 this_zone_full:
1945 		if (IS_ENABLED(CONFIG_NUMA))
1946 			zlc_mark_zone_full(zonelist, z);
1947 	}
1948 
1949 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1950 		/* Disable zlc cache for second zonelist scan */
1951 		zlc_active = 0;
1952 		goto zonelist_scan;
1953 	}
1954 
1955 	if (page)
1956 		/*
1957 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1958 		 * necessary to allocate the page. The expectation is
1959 		 * that the caller is taking steps that will free more
1960 		 * memory. The caller should avoid the page being used
1961 		 * for !PFMEMALLOC purposes.
1962 		 */
1963 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1964 
1965 	return page;
1966 }
1967 
1968 /*
1969  * Large machines with many possible nodes should not always dump per-node
1970  * meminfo in irq context.
1971  */
1972 static inline bool should_suppress_show_mem(void)
1973 {
1974 	bool ret = false;
1975 
1976 #if NODES_SHIFT > 8
1977 	ret = in_interrupt();
1978 #endif
1979 	return ret;
1980 }
1981 
1982 static DEFINE_RATELIMIT_STATE(nopage_rs,
1983 		DEFAULT_RATELIMIT_INTERVAL,
1984 		DEFAULT_RATELIMIT_BURST);
1985 
1986 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1987 {
1988 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1989 
1990 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1991 	    debug_guardpage_minorder() > 0)
1992 		return;
1993 
1994 	/*
1995 	 * This documents exceptions given to allocations in certain
1996 	 * contexts that are allowed to allocate outside current's set
1997 	 * of allowed nodes.
1998 	 */
1999 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2000 		if (test_thread_flag(TIF_MEMDIE) ||
2001 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2002 			filter &= ~SHOW_MEM_FILTER_NODES;
2003 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2004 		filter &= ~SHOW_MEM_FILTER_NODES;
2005 
2006 	if (fmt) {
2007 		struct va_format vaf;
2008 		va_list args;
2009 
2010 		va_start(args, fmt);
2011 
2012 		vaf.fmt = fmt;
2013 		vaf.va = &args;
2014 
2015 		pr_warn("%pV", &vaf);
2016 
2017 		va_end(args);
2018 	}
2019 
2020 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2021 		current->comm, order, gfp_mask);
2022 
2023 	dump_stack();
2024 	if (!should_suppress_show_mem())
2025 		show_mem(filter);
2026 }
2027 
2028 static inline int
2029 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2030 				unsigned long did_some_progress,
2031 				unsigned long pages_reclaimed)
2032 {
2033 	/* Do not loop if specifically requested */
2034 	if (gfp_mask & __GFP_NORETRY)
2035 		return 0;
2036 
2037 	/* Always retry if specifically requested */
2038 	if (gfp_mask & __GFP_NOFAIL)
2039 		return 1;
2040 
2041 	/*
2042 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2043 	 * making forward progress without invoking OOM. Suspend also disables
2044 	 * storage devices so kswapd will not help. Bail if we are suspending.
2045 	 */
2046 	if (!did_some_progress && pm_suspended_storage())
2047 		return 0;
2048 
2049 	/*
2050 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2051 	 * means __GFP_NOFAIL, but that may not be true in other
2052 	 * implementations.
2053 	 */
2054 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2055 		return 1;
2056 
2057 	/*
2058 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2059 	 * specified, then we retry until we no longer reclaim any pages
2060 	 * (above), or we've reclaimed an order of pages at least as
2061 	 * large as the allocation's order. In both cases, if the
2062 	 * allocation still fails, we stop retrying.
2063 	 */
2064 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2065 		return 1;
2066 
2067 	return 0;
2068 }
2069 
2070 static inline struct page *
2071 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2072 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2073 	nodemask_t *nodemask, struct zone *preferred_zone,
2074 	int migratetype)
2075 {
2076 	struct page *page;
2077 
2078 	/* Acquire the OOM killer lock for the zones in zonelist */
2079 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2080 		schedule_timeout_uninterruptible(1);
2081 		return NULL;
2082 	}
2083 
2084 	/*
2085 	 * Go through the zonelist yet one more time, keep very high watermark
2086 	 * here, this is only to catch a parallel oom killing, we must fail if
2087 	 * we're still under heavy pressure.
2088 	 */
2089 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2090 		order, zonelist, high_zoneidx,
2091 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2092 		preferred_zone, migratetype);
2093 	if (page)
2094 		goto out;
2095 
2096 	if (!(gfp_mask & __GFP_NOFAIL)) {
2097 		/* The OOM killer will not help higher order allocs */
2098 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2099 			goto out;
2100 		/* The OOM killer does not needlessly kill tasks for lowmem */
2101 		if (high_zoneidx < ZONE_NORMAL)
2102 			goto out;
2103 		/*
2104 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2105 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2106 		 * The caller should handle page allocation failure by itself if
2107 		 * it specifies __GFP_THISNODE.
2108 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2109 		 */
2110 		if (gfp_mask & __GFP_THISNODE)
2111 			goto out;
2112 	}
2113 	/* Exhausted what can be done so it's blamo time */
2114 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2115 
2116 out:
2117 	clear_zonelist_oom(zonelist, gfp_mask);
2118 	return page;
2119 }
2120 
2121 #ifdef CONFIG_COMPACTION
2122 /* Try memory compaction for high-order allocations before reclaim */
2123 static struct page *
2124 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2125 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2126 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2127 	int migratetype, bool sync_migration,
2128 	bool *contended_compaction, bool *deferred_compaction,
2129 	unsigned long *did_some_progress)
2130 {
2131 	if (!order)
2132 		return NULL;
2133 
2134 	if (compaction_deferred(preferred_zone, order)) {
2135 		*deferred_compaction = true;
2136 		return NULL;
2137 	}
2138 
2139 	current->flags |= PF_MEMALLOC;
2140 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2141 						nodemask, sync_migration,
2142 						contended_compaction);
2143 	current->flags &= ~PF_MEMALLOC;
2144 
2145 	if (*did_some_progress != COMPACT_SKIPPED) {
2146 		struct page *page;
2147 
2148 		/* Page migration frees to the PCP lists but we want merging */
2149 		drain_pages(get_cpu());
2150 		put_cpu();
2151 
2152 		page = get_page_from_freelist(gfp_mask, nodemask,
2153 				order, zonelist, high_zoneidx,
2154 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2155 				preferred_zone, migratetype);
2156 		if (page) {
2157 			preferred_zone->compact_blockskip_flush = false;
2158 			preferred_zone->compact_considered = 0;
2159 			preferred_zone->compact_defer_shift = 0;
2160 			if (order >= preferred_zone->compact_order_failed)
2161 				preferred_zone->compact_order_failed = order + 1;
2162 			count_vm_event(COMPACTSUCCESS);
2163 			return page;
2164 		}
2165 
2166 		/*
2167 		 * It's bad if compaction run occurs and fails.
2168 		 * The most likely reason is that pages exist,
2169 		 * but not enough to satisfy watermarks.
2170 		 */
2171 		count_vm_event(COMPACTFAIL);
2172 
2173 		/*
2174 		 * As async compaction considers a subset of pageblocks, only
2175 		 * defer if the failure was a sync compaction failure.
2176 		 */
2177 		if (sync_migration)
2178 			defer_compaction(preferred_zone, order);
2179 
2180 		cond_resched();
2181 	}
2182 
2183 	return NULL;
2184 }
2185 #else
2186 static inline struct page *
2187 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2188 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2189 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2190 	int migratetype, bool sync_migration,
2191 	bool *contended_compaction, bool *deferred_compaction,
2192 	unsigned long *did_some_progress)
2193 {
2194 	return NULL;
2195 }
2196 #endif /* CONFIG_COMPACTION */
2197 
2198 /* Perform direct synchronous page reclaim */
2199 static int
2200 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2201 		  nodemask_t *nodemask)
2202 {
2203 	struct reclaim_state reclaim_state;
2204 	int progress;
2205 
2206 	cond_resched();
2207 
2208 	/* We now go into synchronous reclaim */
2209 	cpuset_memory_pressure_bump();
2210 	current->flags |= PF_MEMALLOC;
2211 	lockdep_set_current_reclaim_state(gfp_mask);
2212 	reclaim_state.reclaimed_slab = 0;
2213 	current->reclaim_state = &reclaim_state;
2214 
2215 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2216 
2217 	current->reclaim_state = NULL;
2218 	lockdep_clear_current_reclaim_state();
2219 	current->flags &= ~PF_MEMALLOC;
2220 
2221 	cond_resched();
2222 
2223 	return progress;
2224 }
2225 
2226 /* The really slow allocator path where we enter direct reclaim */
2227 static inline struct page *
2228 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2229 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2230 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2231 	int migratetype, unsigned long *did_some_progress)
2232 {
2233 	struct page *page = NULL;
2234 	bool drained = false;
2235 
2236 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2237 					       nodemask);
2238 	if (unlikely(!(*did_some_progress)))
2239 		return NULL;
2240 
2241 	/* After successful reclaim, reconsider all zones for allocation */
2242 	if (IS_ENABLED(CONFIG_NUMA))
2243 		zlc_clear_zones_full(zonelist);
2244 
2245 retry:
2246 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2247 					zonelist, high_zoneidx,
2248 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2249 					preferred_zone, migratetype);
2250 
2251 	/*
2252 	 * If an allocation failed after direct reclaim, it could be because
2253 	 * pages are pinned on the per-cpu lists. Drain them and try again
2254 	 */
2255 	if (!page && !drained) {
2256 		drain_all_pages();
2257 		drained = true;
2258 		goto retry;
2259 	}
2260 
2261 	return page;
2262 }
2263 
2264 /*
2265  * This is called in the allocator slow-path if the allocation request is of
2266  * sufficient urgency to ignore watermarks and take other desperate measures
2267  */
2268 static inline struct page *
2269 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2270 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2271 	nodemask_t *nodemask, struct zone *preferred_zone,
2272 	int migratetype)
2273 {
2274 	struct page *page;
2275 
2276 	do {
2277 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2278 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2279 			preferred_zone, migratetype);
2280 
2281 		if (!page && gfp_mask & __GFP_NOFAIL)
2282 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2283 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2284 
2285 	return page;
2286 }
2287 
2288 static inline
2289 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2290 						enum zone_type high_zoneidx,
2291 						enum zone_type classzone_idx)
2292 {
2293 	struct zoneref *z;
2294 	struct zone *zone;
2295 
2296 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2297 		wakeup_kswapd(zone, order, classzone_idx);
2298 }
2299 
2300 static inline int
2301 gfp_to_alloc_flags(gfp_t gfp_mask)
2302 {
2303 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2304 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2305 
2306 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2307 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2308 
2309 	/*
2310 	 * The caller may dip into page reserves a bit more if the caller
2311 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2312 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2313 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2314 	 */
2315 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2316 
2317 	if (!wait) {
2318 		/*
2319 		 * Not worth trying to allocate harder for
2320 		 * __GFP_NOMEMALLOC even if it can't schedule.
2321 		 */
2322 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2323 			alloc_flags |= ALLOC_HARDER;
2324 		/*
2325 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2326 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2327 		 */
2328 		alloc_flags &= ~ALLOC_CPUSET;
2329 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2330 		alloc_flags |= ALLOC_HARDER;
2331 
2332 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2333 		if (gfp_mask & __GFP_MEMALLOC)
2334 			alloc_flags |= ALLOC_NO_WATERMARKS;
2335 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2336 			alloc_flags |= ALLOC_NO_WATERMARKS;
2337 		else if (!in_interrupt() &&
2338 				((current->flags & PF_MEMALLOC) ||
2339 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2340 			alloc_flags |= ALLOC_NO_WATERMARKS;
2341 	}
2342 #ifdef CONFIG_CMA
2343 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2344 		alloc_flags |= ALLOC_CMA;
2345 #endif
2346 	return alloc_flags;
2347 }
2348 
2349 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2350 {
2351 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2352 }
2353 
2354 static inline struct page *
2355 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2356 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2357 	nodemask_t *nodemask, struct zone *preferred_zone,
2358 	int migratetype)
2359 {
2360 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2361 	struct page *page = NULL;
2362 	int alloc_flags;
2363 	unsigned long pages_reclaimed = 0;
2364 	unsigned long did_some_progress;
2365 	bool sync_migration = false;
2366 	bool deferred_compaction = false;
2367 	bool contended_compaction = false;
2368 
2369 	/*
2370 	 * In the slowpath, we sanity check order to avoid ever trying to
2371 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2372 	 * be using allocators in order of preference for an area that is
2373 	 * too large.
2374 	 */
2375 	if (order >= MAX_ORDER) {
2376 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2377 		return NULL;
2378 	}
2379 
2380 	/*
2381 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2382 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2383 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2384 	 * using a larger set of nodes after it has established that the
2385 	 * allowed per node queues are empty and that nodes are
2386 	 * over allocated.
2387 	 */
2388 	if (IS_ENABLED(CONFIG_NUMA) &&
2389 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2390 		goto nopage;
2391 
2392 restart:
2393 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2394 		wake_all_kswapd(order, zonelist, high_zoneidx,
2395 						zone_idx(preferred_zone));
2396 
2397 	/*
2398 	 * OK, we're below the kswapd watermark and have kicked background
2399 	 * reclaim. Now things get more complex, so set up alloc_flags according
2400 	 * to how we want to proceed.
2401 	 */
2402 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2403 
2404 	/*
2405 	 * Find the true preferred zone if the allocation is unconstrained by
2406 	 * cpusets.
2407 	 */
2408 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2409 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2410 					&preferred_zone);
2411 
2412 rebalance:
2413 	/* This is the last chance, in general, before the goto nopage. */
2414 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2415 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2416 			preferred_zone, migratetype);
2417 	if (page)
2418 		goto got_pg;
2419 
2420 	/* Allocate without watermarks if the context allows */
2421 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2422 		/*
2423 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2424 		 * the allocation is high priority and these type of
2425 		 * allocations are system rather than user orientated
2426 		 */
2427 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2428 
2429 		page = __alloc_pages_high_priority(gfp_mask, order,
2430 				zonelist, high_zoneidx, nodemask,
2431 				preferred_zone, migratetype);
2432 		if (page) {
2433 			goto got_pg;
2434 		}
2435 	}
2436 
2437 	/* Atomic allocations - we can't balance anything */
2438 	if (!wait)
2439 		goto nopage;
2440 
2441 	/* Avoid recursion of direct reclaim */
2442 	if (current->flags & PF_MEMALLOC)
2443 		goto nopage;
2444 
2445 	/* Avoid allocations with no watermarks from looping endlessly */
2446 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2447 		goto nopage;
2448 
2449 	/*
2450 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2451 	 * attempts after direct reclaim are synchronous
2452 	 */
2453 	page = __alloc_pages_direct_compact(gfp_mask, order,
2454 					zonelist, high_zoneidx,
2455 					nodemask,
2456 					alloc_flags, preferred_zone,
2457 					migratetype, sync_migration,
2458 					&contended_compaction,
2459 					&deferred_compaction,
2460 					&did_some_progress);
2461 	if (page)
2462 		goto got_pg;
2463 	sync_migration = true;
2464 
2465 	/*
2466 	 * If compaction is deferred for high-order allocations, it is because
2467 	 * sync compaction recently failed. In this is the case and the caller
2468 	 * requested a movable allocation that does not heavily disrupt the
2469 	 * system then fail the allocation instead of entering direct reclaim.
2470 	 */
2471 	if ((deferred_compaction || contended_compaction) &&
2472 						(gfp_mask & __GFP_NO_KSWAPD))
2473 		goto nopage;
2474 
2475 	/* Try direct reclaim and then allocating */
2476 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2477 					zonelist, high_zoneidx,
2478 					nodemask,
2479 					alloc_flags, preferred_zone,
2480 					migratetype, &did_some_progress);
2481 	if (page)
2482 		goto got_pg;
2483 
2484 	/*
2485 	 * If we failed to make any progress reclaiming, then we are
2486 	 * running out of options and have to consider going OOM
2487 	 */
2488 	if (!did_some_progress) {
2489 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2490 			if (oom_killer_disabled)
2491 				goto nopage;
2492 			/* Coredumps can quickly deplete all memory reserves */
2493 			if ((current->flags & PF_DUMPCORE) &&
2494 			    !(gfp_mask & __GFP_NOFAIL))
2495 				goto nopage;
2496 			page = __alloc_pages_may_oom(gfp_mask, order,
2497 					zonelist, high_zoneidx,
2498 					nodemask, preferred_zone,
2499 					migratetype);
2500 			if (page)
2501 				goto got_pg;
2502 
2503 			if (!(gfp_mask & __GFP_NOFAIL)) {
2504 				/*
2505 				 * The oom killer is not called for high-order
2506 				 * allocations that may fail, so if no progress
2507 				 * is being made, there are no other options and
2508 				 * retrying is unlikely to help.
2509 				 */
2510 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2511 					goto nopage;
2512 				/*
2513 				 * The oom killer is not called for lowmem
2514 				 * allocations to prevent needlessly killing
2515 				 * innocent tasks.
2516 				 */
2517 				if (high_zoneidx < ZONE_NORMAL)
2518 					goto nopage;
2519 			}
2520 
2521 			goto restart;
2522 		}
2523 	}
2524 
2525 	/* Check if we should retry the allocation */
2526 	pages_reclaimed += did_some_progress;
2527 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2528 						pages_reclaimed)) {
2529 		/* Wait for some write requests to complete then retry */
2530 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2531 		goto rebalance;
2532 	} else {
2533 		/*
2534 		 * High-order allocations do not necessarily loop after
2535 		 * direct reclaim and reclaim/compaction depends on compaction
2536 		 * being called after reclaim so call directly if necessary
2537 		 */
2538 		page = __alloc_pages_direct_compact(gfp_mask, order,
2539 					zonelist, high_zoneidx,
2540 					nodemask,
2541 					alloc_flags, preferred_zone,
2542 					migratetype, sync_migration,
2543 					&contended_compaction,
2544 					&deferred_compaction,
2545 					&did_some_progress);
2546 		if (page)
2547 			goto got_pg;
2548 	}
2549 
2550 nopage:
2551 	warn_alloc_failed(gfp_mask, order, NULL);
2552 	return page;
2553 got_pg:
2554 	if (kmemcheck_enabled)
2555 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2556 
2557 	return page;
2558 }
2559 
2560 /*
2561  * This is the 'heart' of the zoned buddy allocator.
2562  */
2563 struct page *
2564 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2565 			struct zonelist *zonelist, nodemask_t *nodemask)
2566 {
2567 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2568 	struct zone *preferred_zone;
2569 	struct page *page = NULL;
2570 	int migratetype = allocflags_to_migratetype(gfp_mask);
2571 	unsigned int cpuset_mems_cookie;
2572 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2573 	struct mem_cgroup *memcg = NULL;
2574 
2575 	gfp_mask &= gfp_allowed_mask;
2576 
2577 	lockdep_trace_alloc(gfp_mask);
2578 
2579 	might_sleep_if(gfp_mask & __GFP_WAIT);
2580 
2581 	if (should_fail_alloc_page(gfp_mask, order))
2582 		return NULL;
2583 
2584 	/*
2585 	 * Check the zones suitable for the gfp_mask contain at least one
2586 	 * valid zone. It's possible to have an empty zonelist as a result
2587 	 * of GFP_THISNODE and a memoryless node
2588 	 */
2589 	if (unlikely(!zonelist->_zonerefs->zone))
2590 		return NULL;
2591 
2592 	/*
2593 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2594 	 * verified in the (always inline) callee
2595 	 */
2596 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2597 		return NULL;
2598 
2599 retry_cpuset:
2600 	cpuset_mems_cookie = get_mems_allowed();
2601 
2602 	/* The preferred zone is used for statistics later */
2603 	first_zones_zonelist(zonelist, high_zoneidx,
2604 				nodemask ? : &cpuset_current_mems_allowed,
2605 				&preferred_zone);
2606 	if (!preferred_zone)
2607 		goto out;
2608 
2609 #ifdef CONFIG_CMA
2610 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2611 		alloc_flags |= ALLOC_CMA;
2612 #endif
2613 	/* First allocation attempt */
2614 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2615 			zonelist, high_zoneidx, alloc_flags,
2616 			preferred_zone, migratetype);
2617 	if (unlikely(!page))
2618 		page = __alloc_pages_slowpath(gfp_mask, order,
2619 				zonelist, high_zoneidx, nodemask,
2620 				preferred_zone, migratetype);
2621 
2622 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2623 
2624 out:
2625 	/*
2626 	 * When updating a task's mems_allowed, it is possible to race with
2627 	 * parallel threads in such a way that an allocation can fail while
2628 	 * the mask is being updated. If a page allocation is about to fail,
2629 	 * check if the cpuset changed during allocation and if so, retry.
2630 	 */
2631 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2632 		goto retry_cpuset;
2633 
2634 	memcg_kmem_commit_charge(page, memcg, order);
2635 
2636 	return page;
2637 }
2638 EXPORT_SYMBOL(__alloc_pages_nodemask);
2639 
2640 /*
2641  * Common helper functions.
2642  */
2643 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2644 {
2645 	struct page *page;
2646 
2647 	/*
2648 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2649 	 * a highmem page
2650 	 */
2651 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2652 
2653 	page = alloc_pages(gfp_mask, order);
2654 	if (!page)
2655 		return 0;
2656 	return (unsigned long) page_address(page);
2657 }
2658 EXPORT_SYMBOL(__get_free_pages);
2659 
2660 unsigned long get_zeroed_page(gfp_t gfp_mask)
2661 {
2662 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2663 }
2664 EXPORT_SYMBOL(get_zeroed_page);
2665 
2666 void __free_pages(struct page *page, unsigned int order)
2667 {
2668 	if (put_page_testzero(page)) {
2669 		if (order == 0)
2670 			free_hot_cold_page(page, 0);
2671 		else
2672 			__free_pages_ok(page, order);
2673 	}
2674 }
2675 
2676 EXPORT_SYMBOL(__free_pages);
2677 
2678 void free_pages(unsigned long addr, unsigned int order)
2679 {
2680 	if (addr != 0) {
2681 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2682 		__free_pages(virt_to_page((void *)addr), order);
2683 	}
2684 }
2685 
2686 EXPORT_SYMBOL(free_pages);
2687 
2688 /*
2689  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2690  * pages allocated with __GFP_KMEMCG.
2691  *
2692  * Those pages are accounted to a particular memcg, embedded in the
2693  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2694  * for that information only to find out that it is NULL for users who have no
2695  * interest in that whatsoever, we provide these functions.
2696  *
2697  * The caller knows better which flags it relies on.
2698  */
2699 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2700 {
2701 	memcg_kmem_uncharge_pages(page, order);
2702 	__free_pages(page, order);
2703 }
2704 
2705 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2706 {
2707 	if (addr != 0) {
2708 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2709 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2710 	}
2711 }
2712 
2713 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2714 {
2715 	if (addr) {
2716 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2717 		unsigned long used = addr + PAGE_ALIGN(size);
2718 
2719 		split_page(virt_to_page((void *)addr), order);
2720 		while (used < alloc_end) {
2721 			free_page(used);
2722 			used += PAGE_SIZE;
2723 		}
2724 	}
2725 	return (void *)addr;
2726 }
2727 
2728 /**
2729  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2730  * @size: the number of bytes to allocate
2731  * @gfp_mask: GFP flags for the allocation
2732  *
2733  * This function is similar to alloc_pages(), except that it allocates the
2734  * minimum number of pages to satisfy the request.  alloc_pages() can only
2735  * allocate memory in power-of-two pages.
2736  *
2737  * This function is also limited by MAX_ORDER.
2738  *
2739  * Memory allocated by this function must be released by free_pages_exact().
2740  */
2741 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2742 {
2743 	unsigned int order = get_order(size);
2744 	unsigned long addr;
2745 
2746 	addr = __get_free_pages(gfp_mask, order);
2747 	return make_alloc_exact(addr, order, size);
2748 }
2749 EXPORT_SYMBOL(alloc_pages_exact);
2750 
2751 /**
2752  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2753  *			   pages on a node.
2754  * @nid: the preferred node ID where memory should be allocated
2755  * @size: the number of bytes to allocate
2756  * @gfp_mask: GFP flags for the allocation
2757  *
2758  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2759  * back.
2760  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2761  * but is not exact.
2762  */
2763 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2764 {
2765 	unsigned order = get_order(size);
2766 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2767 	if (!p)
2768 		return NULL;
2769 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2770 }
2771 EXPORT_SYMBOL(alloc_pages_exact_nid);
2772 
2773 /**
2774  * free_pages_exact - release memory allocated via alloc_pages_exact()
2775  * @virt: the value returned by alloc_pages_exact.
2776  * @size: size of allocation, same value as passed to alloc_pages_exact().
2777  *
2778  * Release the memory allocated by a previous call to alloc_pages_exact.
2779  */
2780 void free_pages_exact(void *virt, size_t size)
2781 {
2782 	unsigned long addr = (unsigned long)virt;
2783 	unsigned long end = addr + PAGE_ALIGN(size);
2784 
2785 	while (addr < end) {
2786 		free_page(addr);
2787 		addr += PAGE_SIZE;
2788 	}
2789 }
2790 EXPORT_SYMBOL(free_pages_exact);
2791 
2792 static unsigned int nr_free_zone_pages(int offset)
2793 {
2794 	struct zoneref *z;
2795 	struct zone *zone;
2796 
2797 	/* Just pick one node, since fallback list is circular */
2798 	unsigned int sum = 0;
2799 
2800 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2801 
2802 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2803 		unsigned long size = zone->present_pages;
2804 		unsigned long high = high_wmark_pages(zone);
2805 		if (size > high)
2806 			sum += size - high;
2807 	}
2808 
2809 	return sum;
2810 }
2811 
2812 /*
2813  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2814  */
2815 unsigned int nr_free_buffer_pages(void)
2816 {
2817 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2818 }
2819 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2820 
2821 /*
2822  * Amount of free RAM allocatable within all zones
2823  */
2824 unsigned int nr_free_pagecache_pages(void)
2825 {
2826 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2827 }
2828 
2829 static inline void show_node(struct zone *zone)
2830 {
2831 	if (IS_ENABLED(CONFIG_NUMA))
2832 		printk("Node %d ", zone_to_nid(zone));
2833 }
2834 
2835 void si_meminfo(struct sysinfo *val)
2836 {
2837 	val->totalram = totalram_pages;
2838 	val->sharedram = 0;
2839 	val->freeram = global_page_state(NR_FREE_PAGES);
2840 	val->bufferram = nr_blockdev_pages();
2841 	val->totalhigh = totalhigh_pages;
2842 	val->freehigh = nr_free_highpages();
2843 	val->mem_unit = PAGE_SIZE;
2844 }
2845 
2846 EXPORT_SYMBOL(si_meminfo);
2847 
2848 #ifdef CONFIG_NUMA
2849 void si_meminfo_node(struct sysinfo *val, int nid)
2850 {
2851 	pg_data_t *pgdat = NODE_DATA(nid);
2852 
2853 	val->totalram = pgdat->node_present_pages;
2854 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2855 #ifdef CONFIG_HIGHMEM
2856 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2857 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2858 			NR_FREE_PAGES);
2859 #else
2860 	val->totalhigh = 0;
2861 	val->freehigh = 0;
2862 #endif
2863 	val->mem_unit = PAGE_SIZE;
2864 }
2865 #endif
2866 
2867 /*
2868  * Determine whether the node should be displayed or not, depending on whether
2869  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2870  */
2871 bool skip_free_areas_node(unsigned int flags, int nid)
2872 {
2873 	bool ret = false;
2874 	unsigned int cpuset_mems_cookie;
2875 
2876 	if (!(flags & SHOW_MEM_FILTER_NODES))
2877 		goto out;
2878 
2879 	do {
2880 		cpuset_mems_cookie = get_mems_allowed();
2881 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2882 	} while (!put_mems_allowed(cpuset_mems_cookie));
2883 out:
2884 	return ret;
2885 }
2886 
2887 #define K(x) ((x) << (PAGE_SHIFT-10))
2888 
2889 static void show_migration_types(unsigned char type)
2890 {
2891 	static const char types[MIGRATE_TYPES] = {
2892 		[MIGRATE_UNMOVABLE]	= 'U',
2893 		[MIGRATE_RECLAIMABLE]	= 'E',
2894 		[MIGRATE_MOVABLE]	= 'M',
2895 		[MIGRATE_RESERVE]	= 'R',
2896 #ifdef CONFIG_CMA
2897 		[MIGRATE_CMA]		= 'C',
2898 #endif
2899 		[MIGRATE_ISOLATE]	= 'I',
2900 	};
2901 	char tmp[MIGRATE_TYPES + 1];
2902 	char *p = tmp;
2903 	int i;
2904 
2905 	for (i = 0; i < MIGRATE_TYPES; i++) {
2906 		if (type & (1 << i))
2907 			*p++ = types[i];
2908 	}
2909 
2910 	*p = '\0';
2911 	printk("(%s) ", tmp);
2912 }
2913 
2914 /*
2915  * Show free area list (used inside shift_scroll-lock stuff)
2916  * We also calculate the percentage fragmentation. We do this by counting the
2917  * memory on each free list with the exception of the first item on the list.
2918  * Suppresses nodes that are not allowed by current's cpuset if
2919  * SHOW_MEM_FILTER_NODES is passed.
2920  */
2921 void show_free_areas(unsigned int filter)
2922 {
2923 	int cpu;
2924 	struct zone *zone;
2925 
2926 	for_each_populated_zone(zone) {
2927 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2928 			continue;
2929 		show_node(zone);
2930 		printk("%s per-cpu:\n", zone->name);
2931 
2932 		for_each_online_cpu(cpu) {
2933 			struct per_cpu_pageset *pageset;
2934 
2935 			pageset = per_cpu_ptr(zone->pageset, cpu);
2936 
2937 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2938 			       cpu, pageset->pcp.high,
2939 			       pageset->pcp.batch, pageset->pcp.count);
2940 		}
2941 	}
2942 
2943 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2944 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2945 		" unevictable:%lu"
2946 		" dirty:%lu writeback:%lu unstable:%lu\n"
2947 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2948 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2949 		" free_cma:%lu\n",
2950 		global_page_state(NR_ACTIVE_ANON),
2951 		global_page_state(NR_INACTIVE_ANON),
2952 		global_page_state(NR_ISOLATED_ANON),
2953 		global_page_state(NR_ACTIVE_FILE),
2954 		global_page_state(NR_INACTIVE_FILE),
2955 		global_page_state(NR_ISOLATED_FILE),
2956 		global_page_state(NR_UNEVICTABLE),
2957 		global_page_state(NR_FILE_DIRTY),
2958 		global_page_state(NR_WRITEBACK),
2959 		global_page_state(NR_UNSTABLE_NFS),
2960 		global_page_state(NR_FREE_PAGES),
2961 		global_page_state(NR_SLAB_RECLAIMABLE),
2962 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2963 		global_page_state(NR_FILE_MAPPED),
2964 		global_page_state(NR_SHMEM),
2965 		global_page_state(NR_PAGETABLE),
2966 		global_page_state(NR_BOUNCE),
2967 		global_page_state(NR_FREE_CMA_PAGES));
2968 
2969 	for_each_populated_zone(zone) {
2970 		int i;
2971 
2972 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2973 			continue;
2974 		show_node(zone);
2975 		printk("%s"
2976 			" free:%lukB"
2977 			" min:%lukB"
2978 			" low:%lukB"
2979 			" high:%lukB"
2980 			" active_anon:%lukB"
2981 			" inactive_anon:%lukB"
2982 			" active_file:%lukB"
2983 			" inactive_file:%lukB"
2984 			" unevictable:%lukB"
2985 			" isolated(anon):%lukB"
2986 			" isolated(file):%lukB"
2987 			" present:%lukB"
2988 			" managed:%lukB"
2989 			" mlocked:%lukB"
2990 			" dirty:%lukB"
2991 			" writeback:%lukB"
2992 			" mapped:%lukB"
2993 			" shmem:%lukB"
2994 			" slab_reclaimable:%lukB"
2995 			" slab_unreclaimable:%lukB"
2996 			" kernel_stack:%lukB"
2997 			" pagetables:%lukB"
2998 			" unstable:%lukB"
2999 			" bounce:%lukB"
3000 			" free_cma:%lukB"
3001 			" writeback_tmp:%lukB"
3002 			" pages_scanned:%lu"
3003 			" all_unreclaimable? %s"
3004 			"\n",
3005 			zone->name,
3006 			K(zone_page_state(zone, NR_FREE_PAGES)),
3007 			K(min_wmark_pages(zone)),
3008 			K(low_wmark_pages(zone)),
3009 			K(high_wmark_pages(zone)),
3010 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3011 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3012 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3013 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3014 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3015 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3016 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3017 			K(zone->present_pages),
3018 			K(zone->managed_pages),
3019 			K(zone_page_state(zone, NR_MLOCK)),
3020 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3021 			K(zone_page_state(zone, NR_WRITEBACK)),
3022 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3023 			K(zone_page_state(zone, NR_SHMEM)),
3024 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3025 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3026 			zone_page_state(zone, NR_KERNEL_STACK) *
3027 				THREAD_SIZE / 1024,
3028 			K(zone_page_state(zone, NR_PAGETABLE)),
3029 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3030 			K(zone_page_state(zone, NR_BOUNCE)),
3031 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3032 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3033 			zone->pages_scanned,
3034 			(zone->all_unreclaimable ? "yes" : "no")
3035 			);
3036 		printk("lowmem_reserve[]:");
3037 		for (i = 0; i < MAX_NR_ZONES; i++)
3038 			printk(" %lu", zone->lowmem_reserve[i]);
3039 		printk("\n");
3040 	}
3041 
3042 	for_each_populated_zone(zone) {
3043  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3044 		unsigned char types[MAX_ORDER];
3045 
3046 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3047 			continue;
3048 		show_node(zone);
3049 		printk("%s: ", zone->name);
3050 
3051 		spin_lock_irqsave(&zone->lock, flags);
3052 		for (order = 0; order < MAX_ORDER; order++) {
3053 			struct free_area *area = &zone->free_area[order];
3054 			int type;
3055 
3056 			nr[order] = area->nr_free;
3057 			total += nr[order] << order;
3058 
3059 			types[order] = 0;
3060 			for (type = 0; type < MIGRATE_TYPES; type++) {
3061 				if (!list_empty(&area->free_list[type]))
3062 					types[order] |= 1 << type;
3063 			}
3064 		}
3065 		spin_unlock_irqrestore(&zone->lock, flags);
3066 		for (order = 0; order < MAX_ORDER; order++) {
3067 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3068 			if (nr[order])
3069 				show_migration_types(types[order]);
3070 		}
3071 		printk("= %lukB\n", K(total));
3072 	}
3073 
3074 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3075 
3076 	show_swap_cache_info();
3077 }
3078 
3079 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3080 {
3081 	zoneref->zone = zone;
3082 	zoneref->zone_idx = zone_idx(zone);
3083 }
3084 
3085 /*
3086  * Builds allocation fallback zone lists.
3087  *
3088  * Add all populated zones of a node to the zonelist.
3089  */
3090 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3091 				int nr_zones, enum zone_type zone_type)
3092 {
3093 	struct zone *zone;
3094 
3095 	BUG_ON(zone_type >= MAX_NR_ZONES);
3096 	zone_type++;
3097 
3098 	do {
3099 		zone_type--;
3100 		zone = pgdat->node_zones + zone_type;
3101 		if (populated_zone(zone)) {
3102 			zoneref_set_zone(zone,
3103 				&zonelist->_zonerefs[nr_zones++]);
3104 			check_highest_zone(zone_type);
3105 		}
3106 
3107 	} while (zone_type);
3108 	return nr_zones;
3109 }
3110 
3111 
3112 /*
3113  *  zonelist_order:
3114  *  0 = automatic detection of better ordering.
3115  *  1 = order by ([node] distance, -zonetype)
3116  *  2 = order by (-zonetype, [node] distance)
3117  *
3118  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3119  *  the same zonelist. So only NUMA can configure this param.
3120  */
3121 #define ZONELIST_ORDER_DEFAULT  0
3122 #define ZONELIST_ORDER_NODE     1
3123 #define ZONELIST_ORDER_ZONE     2
3124 
3125 /* zonelist order in the kernel.
3126  * set_zonelist_order() will set this to NODE or ZONE.
3127  */
3128 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3129 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3130 
3131 
3132 #ifdef CONFIG_NUMA
3133 /* The value user specified ....changed by config */
3134 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3135 /* string for sysctl */
3136 #define NUMA_ZONELIST_ORDER_LEN	16
3137 char numa_zonelist_order[16] = "default";
3138 
3139 /*
3140  * interface for configure zonelist ordering.
3141  * command line option "numa_zonelist_order"
3142  *	= "[dD]efault	- default, automatic configuration.
3143  *	= "[nN]ode 	- order by node locality, then by zone within node
3144  *	= "[zZ]one      - order by zone, then by locality within zone
3145  */
3146 
3147 static int __parse_numa_zonelist_order(char *s)
3148 {
3149 	if (*s == 'd' || *s == 'D') {
3150 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3151 	} else if (*s == 'n' || *s == 'N') {
3152 		user_zonelist_order = ZONELIST_ORDER_NODE;
3153 	} else if (*s == 'z' || *s == 'Z') {
3154 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3155 	} else {
3156 		printk(KERN_WARNING
3157 			"Ignoring invalid numa_zonelist_order value:  "
3158 			"%s\n", s);
3159 		return -EINVAL;
3160 	}
3161 	return 0;
3162 }
3163 
3164 static __init int setup_numa_zonelist_order(char *s)
3165 {
3166 	int ret;
3167 
3168 	if (!s)
3169 		return 0;
3170 
3171 	ret = __parse_numa_zonelist_order(s);
3172 	if (ret == 0)
3173 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3174 
3175 	return ret;
3176 }
3177 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3178 
3179 /*
3180  * sysctl handler for numa_zonelist_order
3181  */
3182 int numa_zonelist_order_handler(ctl_table *table, int write,
3183 		void __user *buffer, size_t *length,
3184 		loff_t *ppos)
3185 {
3186 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3187 	int ret;
3188 	static DEFINE_MUTEX(zl_order_mutex);
3189 
3190 	mutex_lock(&zl_order_mutex);
3191 	if (write)
3192 		strcpy(saved_string, (char*)table->data);
3193 	ret = proc_dostring(table, write, buffer, length, ppos);
3194 	if (ret)
3195 		goto out;
3196 	if (write) {
3197 		int oldval = user_zonelist_order;
3198 		if (__parse_numa_zonelist_order((char*)table->data)) {
3199 			/*
3200 			 * bogus value.  restore saved string
3201 			 */
3202 			strncpy((char*)table->data, saved_string,
3203 				NUMA_ZONELIST_ORDER_LEN);
3204 			user_zonelist_order = oldval;
3205 		} else if (oldval != user_zonelist_order) {
3206 			mutex_lock(&zonelists_mutex);
3207 			build_all_zonelists(NULL, NULL);
3208 			mutex_unlock(&zonelists_mutex);
3209 		}
3210 	}
3211 out:
3212 	mutex_unlock(&zl_order_mutex);
3213 	return ret;
3214 }
3215 
3216 
3217 #define MAX_NODE_LOAD (nr_online_nodes)
3218 static int node_load[MAX_NUMNODES];
3219 
3220 /**
3221  * find_next_best_node - find the next node that should appear in a given node's fallback list
3222  * @node: node whose fallback list we're appending
3223  * @used_node_mask: nodemask_t of already used nodes
3224  *
3225  * We use a number of factors to determine which is the next node that should
3226  * appear on a given node's fallback list.  The node should not have appeared
3227  * already in @node's fallback list, and it should be the next closest node
3228  * according to the distance array (which contains arbitrary distance values
3229  * from each node to each node in the system), and should also prefer nodes
3230  * with no CPUs, since presumably they'll have very little allocation pressure
3231  * on them otherwise.
3232  * It returns -1 if no node is found.
3233  */
3234 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3235 {
3236 	int n, val;
3237 	int min_val = INT_MAX;
3238 	int best_node = -1;
3239 	const struct cpumask *tmp = cpumask_of_node(0);
3240 
3241 	/* Use the local node if we haven't already */
3242 	if (!node_isset(node, *used_node_mask)) {
3243 		node_set(node, *used_node_mask);
3244 		return node;
3245 	}
3246 
3247 	for_each_node_state(n, N_MEMORY) {
3248 
3249 		/* Don't want a node to appear more than once */
3250 		if (node_isset(n, *used_node_mask))
3251 			continue;
3252 
3253 		/* Use the distance array to find the distance */
3254 		val = node_distance(node, n);
3255 
3256 		/* Penalize nodes under us ("prefer the next node") */
3257 		val += (n < node);
3258 
3259 		/* Give preference to headless and unused nodes */
3260 		tmp = cpumask_of_node(n);
3261 		if (!cpumask_empty(tmp))
3262 			val += PENALTY_FOR_NODE_WITH_CPUS;
3263 
3264 		/* Slight preference for less loaded node */
3265 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3266 		val += node_load[n];
3267 
3268 		if (val < min_val) {
3269 			min_val = val;
3270 			best_node = n;
3271 		}
3272 	}
3273 
3274 	if (best_node >= 0)
3275 		node_set(best_node, *used_node_mask);
3276 
3277 	return best_node;
3278 }
3279 
3280 
3281 /*
3282  * Build zonelists ordered by node and zones within node.
3283  * This results in maximum locality--normal zone overflows into local
3284  * DMA zone, if any--but risks exhausting DMA zone.
3285  */
3286 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3287 {
3288 	int j;
3289 	struct zonelist *zonelist;
3290 
3291 	zonelist = &pgdat->node_zonelists[0];
3292 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3293 		;
3294 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3295 							MAX_NR_ZONES - 1);
3296 	zonelist->_zonerefs[j].zone = NULL;
3297 	zonelist->_zonerefs[j].zone_idx = 0;
3298 }
3299 
3300 /*
3301  * Build gfp_thisnode zonelists
3302  */
3303 static void build_thisnode_zonelists(pg_data_t *pgdat)
3304 {
3305 	int j;
3306 	struct zonelist *zonelist;
3307 
3308 	zonelist = &pgdat->node_zonelists[1];
3309 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3310 	zonelist->_zonerefs[j].zone = NULL;
3311 	zonelist->_zonerefs[j].zone_idx = 0;
3312 }
3313 
3314 /*
3315  * Build zonelists ordered by zone and nodes within zones.
3316  * This results in conserving DMA zone[s] until all Normal memory is
3317  * exhausted, but results in overflowing to remote node while memory
3318  * may still exist in local DMA zone.
3319  */
3320 static int node_order[MAX_NUMNODES];
3321 
3322 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3323 {
3324 	int pos, j, node;
3325 	int zone_type;		/* needs to be signed */
3326 	struct zone *z;
3327 	struct zonelist *zonelist;
3328 
3329 	zonelist = &pgdat->node_zonelists[0];
3330 	pos = 0;
3331 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3332 		for (j = 0; j < nr_nodes; j++) {
3333 			node = node_order[j];
3334 			z = &NODE_DATA(node)->node_zones[zone_type];
3335 			if (populated_zone(z)) {
3336 				zoneref_set_zone(z,
3337 					&zonelist->_zonerefs[pos++]);
3338 				check_highest_zone(zone_type);
3339 			}
3340 		}
3341 	}
3342 	zonelist->_zonerefs[pos].zone = NULL;
3343 	zonelist->_zonerefs[pos].zone_idx = 0;
3344 }
3345 
3346 static int default_zonelist_order(void)
3347 {
3348 	int nid, zone_type;
3349 	unsigned long low_kmem_size,total_size;
3350 	struct zone *z;
3351 	int average_size;
3352 	/*
3353          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3354 	 * If they are really small and used heavily, the system can fall
3355 	 * into OOM very easily.
3356 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3357 	 */
3358 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3359 	low_kmem_size = 0;
3360 	total_size = 0;
3361 	for_each_online_node(nid) {
3362 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3363 			z = &NODE_DATA(nid)->node_zones[zone_type];
3364 			if (populated_zone(z)) {
3365 				if (zone_type < ZONE_NORMAL)
3366 					low_kmem_size += z->present_pages;
3367 				total_size += z->present_pages;
3368 			} else if (zone_type == ZONE_NORMAL) {
3369 				/*
3370 				 * If any node has only lowmem, then node order
3371 				 * is preferred to allow kernel allocations
3372 				 * locally; otherwise, they can easily infringe
3373 				 * on other nodes when there is an abundance of
3374 				 * lowmem available to allocate from.
3375 				 */
3376 				return ZONELIST_ORDER_NODE;
3377 			}
3378 		}
3379 	}
3380 	if (!low_kmem_size ||  /* there are no DMA area. */
3381 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3382 		return ZONELIST_ORDER_NODE;
3383 	/*
3384 	 * look into each node's config.
3385   	 * If there is a node whose DMA/DMA32 memory is very big area on
3386  	 * local memory, NODE_ORDER may be suitable.
3387          */
3388 	average_size = total_size /
3389 				(nodes_weight(node_states[N_MEMORY]) + 1);
3390 	for_each_online_node(nid) {
3391 		low_kmem_size = 0;
3392 		total_size = 0;
3393 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3394 			z = &NODE_DATA(nid)->node_zones[zone_type];
3395 			if (populated_zone(z)) {
3396 				if (zone_type < ZONE_NORMAL)
3397 					low_kmem_size += z->present_pages;
3398 				total_size += z->present_pages;
3399 			}
3400 		}
3401 		if (low_kmem_size &&
3402 		    total_size > average_size && /* ignore small node */
3403 		    low_kmem_size > total_size * 70/100)
3404 			return ZONELIST_ORDER_NODE;
3405 	}
3406 	return ZONELIST_ORDER_ZONE;
3407 }
3408 
3409 static void set_zonelist_order(void)
3410 {
3411 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3412 		current_zonelist_order = default_zonelist_order();
3413 	else
3414 		current_zonelist_order = user_zonelist_order;
3415 }
3416 
3417 static void build_zonelists(pg_data_t *pgdat)
3418 {
3419 	int j, node, load;
3420 	enum zone_type i;
3421 	nodemask_t used_mask;
3422 	int local_node, prev_node;
3423 	struct zonelist *zonelist;
3424 	int order = current_zonelist_order;
3425 
3426 	/* initialize zonelists */
3427 	for (i = 0; i < MAX_ZONELISTS; i++) {
3428 		zonelist = pgdat->node_zonelists + i;
3429 		zonelist->_zonerefs[0].zone = NULL;
3430 		zonelist->_zonerefs[0].zone_idx = 0;
3431 	}
3432 
3433 	/* NUMA-aware ordering of nodes */
3434 	local_node = pgdat->node_id;
3435 	load = nr_online_nodes;
3436 	prev_node = local_node;
3437 	nodes_clear(used_mask);
3438 
3439 	memset(node_order, 0, sizeof(node_order));
3440 	j = 0;
3441 
3442 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3443 		/*
3444 		 * We don't want to pressure a particular node.
3445 		 * So adding penalty to the first node in same
3446 		 * distance group to make it round-robin.
3447 		 */
3448 		if (node_distance(local_node, node) !=
3449 		    node_distance(local_node, prev_node))
3450 			node_load[node] = load;
3451 
3452 		prev_node = node;
3453 		load--;
3454 		if (order == ZONELIST_ORDER_NODE)
3455 			build_zonelists_in_node_order(pgdat, node);
3456 		else
3457 			node_order[j++] = node;	/* remember order */
3458 	}
3459 
3460 	if (order == ZONELIST_ORDER_ZONE) {
3461 		/* calculate node order -- i.e., DMA last! */
3462 		build_zonelists_in_zone_order(pgdat, j);
3463 	}
3464 
3465 	build_thisnode_zonelists(pgdat);
3466 }
3467 
3468 /* Construct the zonelist performance cache - see further mmzone.h */
3469 static void build_zonelist_cache(pg_data_t *pgdat)
3470 {
3471 	struct zonelist *zonelist;
3472 	struct zonelist_cache *zlc;
3473 	struct zoneref *z;
3474 
3475 	zonelist = &pgdat->node_zonelists[0];
3476 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3477 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3478 	for (z = zonelist->_zonerefs; z->zone; z++)
3479 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3480 }
3481 
3482 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3483 /*
3484  * Return node id of node used for "local" allocations.
3485  * I.e., first node id of first zone in arg node's generic zonelist.
3486  * Used for initializing percpu 'numa_mem', which is used primarily
3487  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3488  */
3489 int local_memory_node(int node)
3490 {
3491 	struct zone *zone;
3492 
3493 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3494 				   gfp_zone(GFP_KERNEL),
3495 				   NULL,
3496 				   &zone);
3497 	return zone->node;
3498 }
3499 #endif
3500 
3501 #else	/* CONFIG_NUMA */
3502 
3503 static void set_zonelist_order(void)
3504 {
3505 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3506 }
3507 
3508 static void build_zonelists(pg_data_t *pgdat)
3509 {
3510 	int node, local_node;
3511 	enum zone_type j;
3512 	struct zonelist *zonelist;
3513 
3514 	local_node = pgdat->node_id;
3515 
3516 	zonelist = &pgdat->node_zonelists[0];
3517 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3518 
3519 	/*
3520 	 * Now we build the zonelist so that it contains the zones
3521 	 * of all the other nodes.
3522 	 * We don't want to pressure a particular node, so when
3523 	 * building the zones for node N, we make sure that the
3524 	 * zones coming right after the local ones are those from
3525 	 * node N+1 (modulo N)
3526 	 */
3527 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3528 		if (!node_online(node))
3529 			continue;
3530 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3531 							MAX_NR_ZONES - 1);
3532 	}
3533 	for (node = 0; node < local_node; node++) {
3534 		if (!node_online(node))
3535 			continue;
3536 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3537 							MAX_NR_ZONES - 1);
3538 	}
3539 
3540 	zonelist->_zonerefs[j].zone = NULL;
3541 	zonelist->_zonerefs[j].zone_idx = 0;
3542 }
3543 
3544 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3545 static void build_zonelist_cache(pg_data_t *pgdat)
3546 {
3547 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3548 }
3549 
3550 #endif	/* CONFIG_NUMA */
3551 
3552 /*
3553  * Boot pageset table. One per cpu which is going to be used for all
3554  * zones and all nodes. The parameters will be set in such a way
3555  * that an item put on a list will immediately be handed over to
3556  * the buddy list. This is safe since pageset manipulation is done
3557  * with interrupts disabled.
3558  *
3559  * The boot_pagesets must be kept even after bootup is complete for
3560  * unused processors and/or zones. They do play a role for bootstrapping
3561  * hotplugged processors.
3562  *
3563  * zoneinfo_show() and maybe other functions do
3564  * not check if the processor is online before following the pageset pointer.
3565  * Other parts of the kernel may not check if the zone is available.
3566  */
3567 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3568 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3569 static void setup_zone_pageset(struct zone *zone);
3570 
3571 /*
3572  * Global mutex to protect against size modification of zonelists
3573  * as well as to serialize pageset setup for the new populated zone.
3574  */
3575 DEFINE_MUTEX(zonelists_mutex);
3576 
3577 /* return values int ....just for stop_machine() */
3578 static int __build_all_zonelists(void *data)
3579 {
3580 	int nid;
3581 	int cpu;
3582 	pg_data_t *self = data;
3583 
3584 #ifdef CONFIG_NUMA
3585 	memset(node_load, 0, sizeof(node_load));
3586 #endif
3587 
3588 	if (self && !node_online(self->node_id)) {
3589 		build_zonelists(self);
3590 		build_zonelist_cache(self);
3591 	}
3592 
3593 	for_each_online_node(nid) {
3594 		pg_data_t *pgdat = NODE_DATA(nid);
3595 
3596 		build_zonelists(pgdat);
3597 		build_zonelist_cache(pgdat);
3598 	}
3599 
3600 	/*
3601 	 * Initialize the boot_pagesets that are going to be used
3602 	 * for bootstrapping processors. The real pagesets for
3603 	 * each zone will be allocated later when the per cpu
3604 	 * allocator is available.
3605 	 *
3606 	 * boot_pagesets are used also for bootstrapping offline
3607 	 * cpus if the system is already booted because the pagesets
3608 	 * are needed to initialize allocators on a specific cpu too.
3609 	 * F.e. the percpu allocator needs the page allocator which
3610 	 * needs the percpu allocator in order to allocate its pagesets
3611 	 * (a chicken-egg dilemma).
3612 	 */
3613 	for_each_possible_cpu(cpu) {
3614 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3615 
3616 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3617 		/*
3618 		 * We now know the "local memory node" for each node--
3619 		 * i.e., the node of the first zone in the generic zonelist.
3620 		 * Set up numa_mem percpu variable for on-line cpus.  During
3621 		 * boot, only the boot cpu should be on-line;  we'll init the
3622 		 * secondary cpus' numa_mem as they come on-line.  During
3623 		 * node/memory hotplug, we'll fixup all on-line cpus.
3624 		 */
3625 		if (cpu_online(cpu))
3626 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3627 #endif
3628 	}
3629 
3630 	return 0;
3631 }
3632 
3633 /*
3634  * Called with zonelists_mutex held always
3635  * unless system_state == SYSTEM_BOOTING.
3636  */
3637 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3638 {
3639 	set_zonelist_order();
3640 
3641 	if (system_state == SYSTEM_BOOTING) {
3642 		__build_all_zonelists(NULL);
3643 		mminit_verify_zonelist();
3644 		cpuset_init_current_mems_allowed();
3645 	} else {
3646 		/* we have to stop all cpus to guarantee there is no user
3647 		   of zonelist */
3648 #ifdef CONFIG_MEMORY_HOTPLUG
3649 		if (zone)
3650 			setup_zone_pageset(zone);
3651 #endif
3652 		stop_machine(__build_all_zonelists, pgdat, NULL);
3653 		/* cpuset refresh routine should be here */
3654 	}
3655 	vm_total_pages = nr_free_pagecache_pages();
3656 	/*
3657 	 * Disable grouping by mobility if the number of pages in the
3658 	 * system is too low to allow the mechanism to work. It would be
3659 	 * more accurate, but expensive to check per-zone. This check is
3660 	 * made on memory-hotadd so a system can start with mobility
3661 	 * disabled and enable it later
3662 	 */
3663 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3664 		page_group_by_mobility_disabled = 1;
3665 	else
3666 		page_group_by_mobility_disabled = 0;
3667 
3668 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3669 		"Total pages: %ld\n",
3670 			nr_online_nodes,
3671 			zonelist_order_name[current_zonelist_order],
3672 			page_group_by_mobility_disabled ? "off" : "on",
3673 			vm_total_pages);
3674 #ifdef CONFIG_NUMA
3675 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3676 #endif
3677 }
3678 
3679 /*
3680  * Helper functions to size the waitqueue hash table.
3681  * Essentially these want to choose hash table sizes sufficiently
3682  * large so that collisions trying to wait on pages are rare.
3683  * But in fact, the number of active page waitqueues on typical
3684  * systems is ridiculously low, less than 200. So this is even
3685  * conservative, even though it seems large.
3686  *
3687  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3688  * waitqueues, i.e. the size of the waitq table given the number of pages.
3689  */
3690 #define PAGES_PER_WAITQUEUE	256
3691 
3692 #ifndef CONFIG_MEMORY_HOTPLUG
3693 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3694 {
3695 	unsigned long size = 1;
3696 
3697 	pages /= PAGES_PER_WAITQUEUE;
3698 
3699 	while (size < pages)
3700 		size <<= 1;
3701 
3702 	/*
3703 	 * Once we have dozens or even hundreds of threads sleeping
3704 	 * on IO we've got bigger problems than wait queue collision.
3705 	 * Limit the size of the wait table to a reasonable size.
3706 	 */
3707 	size = min(size, 4096UL);
3708 
3709 	return max(size, 4UL);
3710 }
3711 #else
3712 /*
3713  * A zone's size might be changed by hot-add, so it is not possible to determine
3714  * a suitable size for its wait_table.  So we use the maximum size now.
3715  *
3716  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3717  *
3718  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3719  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3720  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3721  *
3722  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3723  * or more by the traditional way. (See above).  It equals:
3724  *
3725  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3726  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3727  *    powerpc (64K page size)             : =  (32G +16M)byte.
3728  */
3729 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3730 {
3731 	return 4096UL;
3732 }
3733 #endif
3734 
3735 /*
3736  * This is an integer logarithm so that shifts can be used later
3737  * to extract the more random high bits from the multiplicative
3738  * hash function before the remainder is taken.
3739  */
3740 static inline unsigned long wait_table_bits(unsigned long size)
3741 {
3742 	return ffz(~size);
3743 }
3744 
3745 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3746 
3747 /*
3748  * Check if a pageblock contains reserved pages
3749  */
3750 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3751 {
3752 	unsigned long pfn;
3753 
3754 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3755 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3756 			return 1;
3757 	}
3758 	return 0;
3759 }
3760 
3761 /*
3762  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3763  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3764  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3765  * higher will lead to a bigger reserve which will get freed as contiguous
3766  * blocks as reclaim kicks in
3767  */
3768 static void setup_zone_migrate_reserve(struct zone *zone)
3769 {
3770 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3771 	struct page *page;
3772 	unsigned long block_migratetype;
3773 	int reserve;
3774 
3775 	/*
3776 	 * Get the start pfn, end pfn and the number of blocks to reserve
3777 	 * We have to be careful to be aligned to pageblock_nr_pages to
3778 	 * make sure that we always check pfn_valid for the first page in
3779 	 * the block.
3780 	 */
3781 	start_pfn = zone->zone_start_pfn;
3782 	end_pfn = start_pfn + zone->spanned_pages;
3783 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3784 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3785 							pageblock_order;
3786 
3787 	/*
3788 	 * Reserve blocks are generally in place to help high-order atomic
3789 	 * allocations that are short-lived. A min_free_kbytes value that
3790 	 * would result in more than 2 reserve blocks for atomic allocations
3791 	 * is assumed to be in place to help anti-fragmentation for the
3792 	 * future allocation of hugepages at runtime.
3793 	 */
3794 	reserve = min(2, reserve);
3795 
3796 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3797 		if (!pfn_valid(pfn))
3798 			continue;
3799 		page = pfn_to_page(pfn);
3800 
3801 		/* Watch out for overlapping nodes */
3802 		if (page_to_nid(page) != zone_to_nid(zone))
3803 			continue;
3804 
3805 		block_migratetype = get_pageblock_migratetype(page);
3806 
3807 		/* Only test what is necessary when the reserves are not met */
3808 		if (reserve > 0) {
3809 			/*
3810 			 * Blocks with reserved pages will never free, skip
3811 			 * them.
3812 			 */
3813 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3814 			if (pageblock_is_reserved(pfn, block_end_pfn))
3815 				continue;
3816 
3817 			/* If this block is reserved, account for it */
3818 			if (block_migratetype == MIGRATE_RESERVE) {
3819 				reserve--;
3820 				continue;
3821 			}
3822 
3823 			/* Suitable for reserving if this block is movable */
3824 			if (block_migratetype == MIGRATE_MOVABLE) {
3825 				set_pageblock_migratetype(page,
3826 							MIGRATE_RESERVE);
3827 				move_freepages_block(zone, page,
3828 							MIGRATE_RESERVE);
3829 				reserve--;
3830 				continue;
3831 			}
3832 		}
3833 
3834 		/*
3835 		 * If the reserve is met and this is a previous reserved block,
3836 		 * take it back
3837 		 */
3838 		if (block_migratetype == MIGRATE_RESERVE) {
3839 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3840 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3841 		}
3842 	}
3843 }
3844 
3845 /*
3846  * Initially all pages are reserved - free ones are freed
3847  * up by free_all_bootmem() once the early boot process is
3848  * done. Non-atomic initialization, single-pass.
3849  */
3850 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3851 		unsigned long start_pfn, enum memmap_context context)
3852 {
3853 	struct page *page;
3854 	unsigned long end_pfn = start_pfn + size;
3855 	unsigned long pfn;
3856 	struct zone *z;
3857 
3858 	if (highest_memmap_pfn < end_pfn - 1)
3859 		highest_memmap_pfn = end_pfn - 1;
3860 
3861 	z = &NODE_DATA(nid)->node_zones[zone];
3862 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3863 		/*
3864 		 * There can be holes in boot-time mem_map[]s
3865 		 * handed to this function.  They do not
3866 		 * exist on hotplugged memory.
3867 		 */
3868 		if (context == MEMMAP_EARLY) {
3869 			if (!early_pfn_valid(pfn))
3870 				continue;
3871 			if (!early_pfn_in_nid(pfn, nid))
3872 				continue;
3873 		}
3874 		page = pfn_to_page(pfn);
3875 		set_page_links(page, zone, nid, pfn);
3876 		mminit_verify_page_links(page, zone, nid, pfn);
3877 		init_page_count(page);
3878 		reset_page_mapcount(page);
3879 		reset_page_last_nid(page);
3880 		SetPageReserved(page);
3881 		/*
3882 		 * Mark the block movable so that blocks are reserved for
3883 		 * movable at startup. This will force kernel allocations
3884 		 * to reserve their blocks rather than leaking throughout
3885 		 * the address space during boot when many long-lived
3886 		 * kernel allocations are made. Later some blocks near
3887 		 * the start are marked MIGRATE_RESERVE by
3888 		 * setup_zone_migrate_reserve()
3889 		 *
3890 		 * bitmap is created for zone's valid pfn range. but memmap
3891 		 * can be created for invalid pages (for alignment)
3892 		 * check here not to call set_pageblock_migratetype() against
3893 		 * pfn out of zone.
3894 		 */
3895 		if ((z->zone_start_pfn <= pfn)
3896 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3897 		    && !(pfn & (pageblock_nr_pages - 1)))
3898 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3899 
3900 		INIT_LIST_HEAD(&page->lru);
3901 #ifdef WANT_PAGE_VIRTUAL
3902 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3903 		if (!is_highmem_idx(zone))
3904 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3905 #endif
3906 	}
3907 }
3908 
3909 static void __meminit zone_init_free_lists(struct zone *zone)
3910 {
3911 	int order, t;
3912 	for_each_migratetype_order(order, t) {
3913 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3914 		zone->free_area[order].nr_free = 0;
3915 	}
3916 }
3917 
3918 #ifndef __HAVE_ARCH_MEMMAP_INIT
3919 #define memmap_init(size, nid, zone, start_pfn) \
3920 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3921 #endif
3922 
3923 static int __meminit zone_batchsize(struct zone *zone)
3924 {
3925 #ifdef CONFIG_MMU
3926 	int batch;
3927 
3928 	/*
3929 	 * The per-cpu-pages pools are set to around 1000th of the
3930 	 * size of the zone.  But no more than 1/2 of a meg.
3931 	 *
3932 	 * OK, so we don't know how big the cache is.  So guess.
3933 	 */
3934 	batch = zone->present_pages / 1024;
3935 	if (batch * PAGE_SIZE > 512 * 1024)
3936 		batch = (512 * 1024) / PAGE_SIZE;
3937 	batch /= 4;		/* We effectively *= 4 below */
3938 	if (batch < 1)
3939 		batch = 1;
3940 
3941 	/*
3942 	 * Clamp the batch to a 2^n - 1 value. Having a power
3943 	 * of 2 value was found to be more likely to have
3944 	 * suboptimal cache aliasing properties in some cases.
3945 	 *
3946 	 * For example if 2 tasks are alternately allocating
3947 	 * batches of pages, one task can end up with a lot
3948 	 * of pages of one half of the possible page colors
3949 	 * and the other with pages of the other colors.
3950 	 */
3951 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3952 
3953 	return batch;
3954 
3955 #else
3956 	/* The deferral and batching of frees should be suppressed under NOMMU
3957 	 * conditions.
3958 	 *
3959 	 * The problem is that NOMMU needs to be able to allocate large chunks
3960 	 * of contiguous memory as there's no hardware page translation to
3961 	 * assemble apparent contiguous memory from discontiguous pages.
3962 	 *
3963 	 * Queueing large contiguous runs of pages for batching, however,
3964 	 * causes the pages to actually be freed in smaller chunks.  As there
3965 	 * can be a significant delay between the individual batches being
3966 	 * recycled, this leads to the once large chunks of space being
3967 	 * fragmented and becoming unavailable for high-order allocations.
3968 	 */
3969 	return 0;
3970 #endif
3971 }
3972 
3973 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3974 {
3975 	struct per_cpu_pages *pcp;
3976 	int migratetype;
3977 
3978 	memset(p, 0, sizeof(*p));
3979 
3980 	pcp = &p->pcp;
3981 	pcp->count = 0;
3982 	pcp->high = 6 * batch;
3983 	pcp->batch = max(1UL, 1 * batch);
3984 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3985 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3986 }
3987 
3988 /*
3989  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3990  * to the value high for the pageset p.
3991  */
3992 
3993 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3994 				unsigned long high)
3995 {
3996 	struct per_cpu_pages *pcp;
3997 
3998 	pcp = &p->pcp;
3999 	pcp->high = high;
4000 	pcp->batch = max(1UL, high/4);
4001 	if ((high/4) > (PAGE_SHIFT * 8))
4002 		pcp->batch = PAGE_SHIFT * 8;
4003 }
4004 
4005 static void __meminit setup_zone_pageset(struct zone *zone)
4006 {
4007 	int cpu;
4008 
4009 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4010 
4011 	for_each_possible_cpu(cpu) {
4012 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4013 
4014 		setup_pageset(pcp, zone_batchsize(zone));
4015 
4016 		if (percpu_pagelist_fraction)
4017 			setup_pagelist_highmark(pcp,
4018 				(zone->present_pages /
4019 					percpu_pagelist_fraction));
4020 	}
4021 }
4022 
4023 /*
4024  * Allocate per cpu pagesets and initialize them.
4025  * Before this call only boot pagesets were available.
4026  */
4027 void __init setup_per_cpu_pageset(void)
4028 {
4029 	struct zone *zone;
4030 
4031 	for_each_populated_zone(zone)
4032 		setup_zone_pageset(zone);
4033 }
4034 
4035 static noinline __init_refok
4036 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4037 {
4038 	int i;
4039 	struct pglist_data *pgdat = zone->zone_pgdat;
4040 	size_t alloc_size;
4041 
4042 	/*
4043 	 * The per-page waitqueue mechanism uses hashed waitqueues
4044 	 * per zone.
4045 	 */
4046 	zone->wait_table_hash_nr_entries =
4047 		 wait_table_hash_nr_entries(zone_size_pages);
4048 	zone->wait_table_bits =
4049 		wait_table_bits(zone->wait_table_hash_nr_entries);
4050 	alloc_size = zone->wait_table_hash_nr_entries
4051 					* sizeof(wait_queue_head_t);
4052 
4053 	if (!slab_is_available()) {
4054 		zone->wait_table = (wait_queue_head_t *)
4055 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4056 	} else {
4057 		/*
4058 		 * This case means that a zone whose size was 0 gets new memory
4059 		 * via memory hot-add.
4060 		 * But it may be the case that a new node was hot-added.  In
4061 		 * this case vmalloc() will not be able to use this new node's
4062 		 * memory - this wait_table must be initialized to use this new
4063 		 * node itself as well.
4064 		 * To use this new node's memory, further consideration will be
4065 		 * necessary.
4066 		 */
4067 		zone->wait_table = vmalloc(alloc_size);
4068 	}
4069 	if (!zone->wait_table)
4070 		return -ENOMEM;
4071 
4072 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4073 		init_waitqueue_head(zone->wait_table + i);
4074 
4075 	return 0;
4076 }
4077 
4078 static __meminit void zone_pcp_init(struct zone *zone)
4079 {
4080 	/*
4081 	 * per cpu subsystem is not up at this point. The following code
4082 	 * relies on the ability of the linker to provide the
4083 	 * offset of a (static) per cpu variable into the per cpu area.
4084 	 */
4085 	zone->pageset = &boot_pageset;
4086 
4087 	if (zone->present_pages)
4088 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4089 			zone->name, zone->present_pages,
4090 					 zone_batchsize(zone));
4091 }
4092 
4093 int __meminit init_currently_empty_zone(struct zone *zone,
4094 					unsigned long zone_start_pfn,
4095 					unsigned long size,
4096 					enum memmap_context context)
4097 {
4098 	struct pglist_data *pgdat = zone->zone_pgdat;
4099 	int ret;
4100 	ret = zone_wait_table_init(zone, size);
4101 	if (ret)
4102 		return ret;
4103 	pgdat->nr_zones = zone_idx(zone) + 1;
4104 
4105 	zone->zone_start_pfn = zone_start_pfn;
4106 
4107 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4108 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4109 			pgdat->node_id,
4110 			(unsigned long)zone_idx(zone),
4111 			zone_start_pfn, (zone_start_pfn + size));
4112 
4113 	zone_init_free_lists(zone);
4114 
4115 	return 0;
4116 }
4117 
4118 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4119 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4120 /*
4121  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4122  * Architectures may implement their own version but if add_active_range()
4123  * was used and there are no special requirements, this is a convenient
4124  * alternative
4125  */
4126 int __meminit __early_pfn_to_nid(unsigned long pfn)
4127 {
4128 	unsigned long start_pfn, end_pfn;
4129 	int i, nid;
4130 
4131 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4132 		if (start_pfn <= pfn && pfn < end_pfn)
4133 			return nid;
4134 	/* This is a memory hole */
4135 	return -1;
4136 }
4137 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4138 
4139 int __meminit early_pfn_to_nid(unsigned long pfn)
4140 {
4141 	int nid;
4142 
4143 	nid = __early_pfn_to_nid(pfn);
4144 	if (nid >= 0)
4145 		return nid;
4146 	/* just returns 0 */
4147 	return 0;
4148 }
4149 
4150 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4151 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4152 {
4153 	int nid;
4154 
4155 	nid = __early_pfn_to_nid(pfn);
4156 	if (nid >= 0 && nid != node)
4157 		return false;
4158 	return true;
4159 }
4160 #endif
4161 
4162 /**
4163  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4164  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4165  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4166  *
4167  * If an architecture guarantees that all ranges registered with
4168  * add_active_ranges() contain no holes and may be freed, this
4169  * this function may be used instead of calling free_bootmem() manually.
4170  */
4171 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4172 {
4173 	unsigned long start_pfn, end_pfn;
4174 	int i, this_nid;
4175 
4176 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4177 		start_pfn = min(start_pfn, max_low_pfn);
4178 		end_pfn = min(end_pfn, max_low_pfn);
4179 
4180 		if (start_pfn < end_pfn)
4181 			free_bootmem_node(NODE_DATA(this_nid),
4182 					  PFN_PHYS(start_pfn),
4183 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4184 	}
4185 }
4186 
4187 /**
4188  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4189  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4190  *
4191  * If an architecture guarantees that all ranges registered with
4192  * add_active_ranges() contain no holes and may be freed, this
4193  * function may be used instead of calling memory_present() manually.
4194  */
4195 void __init sparse_memory_present_with_active_regions(int nid)
4196 {
4197 	unsigned long start_pfn, end_pfn;
4198 	int i, this_nid;
4199 
4200 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4201 		memory_present(this_nid, start_pfn, end_pfn);
4202 }
4203 
4204 /**
4205  * get_pfn_range_for_nid - Return the start and end page frames for a node
4206  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4207  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4208  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4209  *
4210  * It returns the start and end page frame of a node based on information
4211  * provided by an arch calling add_active_range(). If called for a node
4212  * with no available memory, a warning is printed and the start and end
4213  * PFNs will be 0.
4214  */
4215 void __meminit get_pfn_range_for_nid(unsigned int nid,
4216 			unsigned long *start_pfn, unsigned long *end_pfn)
4217 {
4218 	unsigned long this_start_pfn, this_end_pfn;
4219 	int i;
4220 
4221 	*start_pfn = -1UL;
4222 	*end_pfn = 0;
4223 
4224 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4225 		*start_pfn = min(*start_pfn, this_start_pfn);
4226 		*end_pfn = max(*end_pfn, this_end_pfn);
4227 	}
4228 
4229 	if (*start_pfn == -1UL)
4230 		*start_pfn = 0;
4231 }
4232 
4233 /*
4234  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4235  * assumption is made that zones within a node are ordered in monotonic
4236  * increasing memory addresses so that the "highest" populated zone is used
4237  */
4238 static void __init find_usable_zone_for_movable(void)
4239 {
4240 	int zone_index;
4241 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4242 		if (zone_index == ZONE_MOVABLE)
4243 			continue;
4244 
4245 		if (arch_zone_highest_possible_pfn[zone_index] >
4246 				arch_zone_lowest_possible_pfn[zone_index])
4247 			break;
4248 	}
4249 
4250 	VM_BUG_ON(zone_index == -1);
4251 	movable_zone = zone_index;
4252 }
4253 
4254 /*
4255  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4256  * because it is sized independent of architecture. Unlike the other zones,
4257  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4258  * in each node depending on the size of each node and how evenly kernelcore
4259  * is distributed. This helper function adjusts the zone ranges
4260  * provided by the architecture for a given node by using the end of the
4261  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4262  * zones within a node are in order of monotonic increases memory addresses
4263  */
4264 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4265 					unsigned long zone_type,
4266 					unsigned long node_start_pfn,
4267 					unsigned long node_end_pfn,
4268 					unsigned long *zone_start_pfn,
4269 					unsigned long *zone_end_pfn)
4270 {
4271 	/* Only adjust if ZONE_MOVABLE is on this node */
4272 	if (zone_movable_pfn[nid]) {
4273 		/* Size ZONE_MOVABLE */
4274 		if (zone_type == ZONE_MOVABLE) {
4275 			*zone_start_pfn = zone_movable_pfn[nid];
4276 			*zone_end_pfn = min(node_end_pfn,
4277 				arch_zone_highest_possible_pfn[movable_zone]);
4278 
4279 		/* Adjust for ZONE_MOVABLE starting within this range */
4280 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4281 				*zone_end_pfn > zone_movable_pfn[nid]) {
4282 			*zone_end_pfn = zone_movable_pfn[nid];
4283 
4284 		/* Check if this whole range is within ZONE_MOVABLE */
4285 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4286 			*zone_start_pfn = *zone_end_pfn;
4287 	}
4288 }
4289 
4290 /*
4291  * Return the number of pages a zone spans in a node, including holes
4292  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4293  */
4294 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4295 					unsigned long zone_type,
4296 					unsigned long *ignored)
4297 {
4298 	unsigned long node_start_pfn, node_end_pfn;
4299 	unsigned long zone_start_pfn, zone_end_pfn;
4300 
4301 	/* Get the start and end of the node and zone */
4302 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4303 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4304 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4305 	adjust_zone_range_for_zone_movable(nid, zone_type,
4306 				node_start_pfn, node_end_pfn,
4307 				&zone_start_pfn, &zone_end_pfn);
4308 
4309 	/* Check that this node has pages within the zone's required range */
4310 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4311 		return 0;
4312 
4313 	/* Move the zone boundaries inside the node if necessary */
4314 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4315 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4316 
4317 	/* Return the spanned pages */
4318 	return zone_end_pfn - zone_start_pfn;
4319 }
4320 
4321 /*
4322  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4323  * then all holes in the requested range will be accounted for.
4324  */
4325 unsigned long __meminit __absent_pages_in_range(int nid,
4326 				unsigned long range_start_pfn,
4327 				unsigned long range_end_pfn)
4328 {
4329 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4330 	unsigned long start_pfn, end_pfn;
4331 	int i;
4332 
4333 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4334 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4335 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4336 		nr_absent -= end_pfn - start_pfn;
4337 	}
4338 	return nr_absent;
4339 }
4340 
4341 /**
4342  * absent_pages_in_range - Return number of page frames in holes within a range
4343  * @start_pfn: The start PFN to start searching for holes
4344  * @end_pfn: The end PFN to stop searching for holes
4345  *
4346  * It returns the number of pages frames in memory holes within a range.
4347  */
4348 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4349 							unsigned long end_pfn)
4350 {
4351 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4352 }
4353 
4354 /* Return the number of page frames in holes in a zone on a node */
4355 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4356 					unsigned long zone_type,
4357 					unsigned long *ignored)
4358 {
4359 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4360 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4361 	unsigned long node_start_pfn, node_end_pfn;
4362 	unsigned long zone_start_pfn, zone_end_pfn;
4363 
4364 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4365 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4366 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4367 
4368 	adjust_zone_range_for_zone_movable(nid, zone_type,
4369 			node_start_pfn, node_end_pfn,
4370 			&zone_start_pfn, &zone_end_pfn);
4371 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4372 }
4373 
4374 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4375 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4376 					unsigned long zone_type,
4377 					unsigned long *zones_size)
4378 {
4379 	return zones_size[zone_type];
4380 }
4381 
4382 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4383 						unsigned long zone_type,
4384 						unsigned long *zholes_size)
4385 {
4386 	if (!zholes_size)
4387 		return 0;
4388 
4389 	return zholes_size[zone_type];
4390 }
4391 
4392 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4393 
4394 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4395 		unsigned long *zones_size, unsigned long *zholes_size)
4396 {
4397 	unsigned long realtotalpages, totalpages = 0;
4398 	enum zone_type i;
4399 
4400 	for (i = 0; i < MAX_NR_ZONES; i++)
4401 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4402 								zones_size);
4403 	pgdat->node_spanned_pages = totalpages;
4404 
4405 	realtotalpages = totalpages;
4406 	for (i = 0; i < MAX_NR_ZONES; i++)
4407 		realtotalpages -=
4408 			zone_absent_pages_in_node(pgdat->node_id, i,
4409 								zholes_size);
4410 	pgdat->node_present_pages = realtotalpages;
4411 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4412 							realtotalpages);
4413 }
4414 
4415 #ifndef CONFIG_SPARSEMEM
4416 /*
4417  * Calculate the size of the zone->blockflags rounded to an unsigned long
4418  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4419  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4420  * round what is now in bits to nearest long in bits, then return it in
4421  * bytes.
4422  */
4423 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4424 {
4425 	unsigned long usemapsize;
4426 
4427 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4428 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4429 	usemapsize = usemapsize >> pageblock_order;
4430 	usemapsize *= NR_PAGEBLOCK_BITS;
4431 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4432 
4433 	return usemapsize / 8;
4434 }
4435 
4436 static void __init setup_usemap(struct pglist_data *pgdat,
4437 				struct zone *zone,
4438 				unsigned long zone_start_pfn,
4439 				unsigned long zonesize)
4440 {
4441 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4442 	zone->pageblock_flags = NULL;
4443 	if (usemapsize)
4444 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4445 								   usemapsize);
4446 }
4447 #else
4448 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4449 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4450 #endif /* CONFIG_SPARSEMEM */
4451 
4452 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4453 
4454 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4455 void __init set_pageblock_order(void)
4456 {
4457 	unsigned int order;
4458 
4459 	/* Check that pageblock_nr_pages has not already been setup */
4460 	if (pageblock_order)
4461 		return;
4462 
4463 	if (HPAGE_SHIFT > PAGE_SHIFT)
4464 		order = HUGETLB_PAGE_ORDER;
4465 	else
4466 		order = MAX_ORDER - 1;
4467 
4468 	/*
4469 	 * Assume the largest contiguous order of interest is a huge page.
4470 	 * This value may be variable depending on boot parameters on IA64 and
4471 	 * powerpc.
4472 	 */
4473 	pageblock_order = order;
4474 }
4475 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4476 
4477 /*
4478  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4479  * is unused as pageblock_order is set at compile-time. See
4480  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4481  * the kernel config
4482  */
4483 void __init set_pageblock_order(void)
4484 {
4485 }
4486 
4487 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4488 
4489 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4490 						   unsigned long present_pages)
4491 {
4492 	unsigned long pages = spanned_pages;
4493 
4494 	/*
4495 	 * Provide a more accurate estimation if there are holes within
4496 	 * the zone and SPARSEMEM is in use. If there are holes within the
4497 	 * zone, each populated memory region may cost us one or two extra
4498 	 * memmap pages due to alignment because memmap pages for each
4499 	 * populated regions may not naturally algined on page boundary.
4500 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4501 	 */
4502 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4503 	    IS_ENABLED(CONFIG_SPARSEMEM))
4504 		pages = present_pages;
4505 
4506 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4507 }
4508 
4509 /*
4510  * Set up the zone data structures:
4511  *   - mark all pages reserved
4512  *   - mark all memory queues empty
4513  *   - clear the memory bitmaps
4514  *
4515  * NOTE: pgdat should get zeroed by caller.
4516  */
4517 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4518 		unsigned long *zones_size, unsigned long *zholes_size)
4519 {
4520 	enum zone_type j;
4521 	int nid = pgdat->node_id;
4522 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4523 	int ret;
4524 
4525 	pgdat_resize_init(pgdat);
4526 #ifdef CONFIG_NUMA_BALANCING
4527 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4528 	pgdat->numabalancing_migrate_nr_pages = 0;
4529 	pgdat->numabalancing_migrate_next_window = jiffies;
4530 #endif
4531 	init_waitqueue_head(&pgdat->kswapd_wait);
4532 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4533 	pgdat_page_cgroup_init(pgdat);
4534 
4535 	for (j = 0; j < MAX_NR_ZONES; j++) {
4536 		struct zone *zone = pgdat->node_zones + j;
4537 		unsigned long size, realsize, freesize, memmap_pages;
4538 
4539 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4540 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4541 								zholes_size);
4542 
4543 		/*
4544 		 * Adjust freesize so that it accounts for how much memory
4545 		 * is used by this zone for memmap. This affects the watermark
4546 		 * and per-cpu initialisations
4547 		 */
4548 		memmap_pages = calc_memmap_size(size, realsize);
4549 		if (freesize >= memmap_pages) {
4550 			freesize -= memmap_pages;
4551 			if (memmap_pages)
4552 				printk(KERN_DEBUG
4553 				       "  %s zone: %lu pages used for memmap\n",
4554 				       zone_names[j], memmap_pages);
4555 		} else
4556 			printk(KERN_WARNING
4557 				"  %s zone: %lu pages exceeds freesize %lu\n",
4558 				zone_names[j], memmap_pages, freesize);
4559 
4560 		/* Account for reserved pages */
4561 		if (j == 0 && freesize > dma_reserve) {
4562 			freesize -= dma_reserve;
4563 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4564 					zone_names[0], dma_reserve);
4565 		}
4566 
4567 		if (!is_highmem_idx(j))
4568 			nr_kernel_pages += freesize;
4569 		/* Charge for highmem memmap if there are enough kernel pages */
4570 		else if (nr_kernel_pages > memmap_pages * 2)
4571 			nr_kernel_pages -= memmap_pages;
4572 		nr_all_pages += freesize;
4573 
4574 		zone->spanned_pages = size;
4575 		zone->present_pages = freesize;
4576 		/*
4577 		 * Set an approximate value for lowmem here, it will be adjusted
4578 		 * when the bootmem allocator frees pages into the buddy system.
4579 		 * And all highmem pages will be managed by the buddy system.
4580 		 */
4581 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4582 #ifdef CONFIG_NUMA
4583 		zone->node = nid;
4584 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4585 						/ 100;
4586 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4587 #endif
4588 		zone->name = zone_names[j];
4589 		spin_lock_init(&zone->lock);
4590 		spin_lock_init(&zone->lru_lock);
4591 		zone_seqlock_init(zone);
4592 		zone->zone_pgdat = pgdat;
4593 
4594 		zone_pcp_init(zone);
4595 		lruvec_init(&zone->lruvec);
4596 		if (!size)
4597 			continue;
4598 
4599 		set_pageblock_order();
4600 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4601 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4602 						size, MEMMAP_EARLY);
4603 		BUG_ON(ret);
4604 		memmap_init(size, nid, j, zone_start_pfn);
4605 		zone_start_pfn += size;
4606 	}
4607 }
4608 
4609 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4610 {
4611 	/* Skip empty nodes */
4612 	if (!pgdat->node_spanned_pages)
4613 		return;
4614 
4615 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4616 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4617 	if (!pgdat->node_mem_map) {
4618 		unsigned long size, start, end;
4619 		struct page *map;
4620 
4621 		/*
4622 		 * The zone's endpoints aren't required to be MAX_ORDER
4623 		 * aligned but the node_mem_map endpoints must be in order
4624 		 * for the buddy allocator to function correctly.
4625 		 */
4626 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4627 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4628 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4629 		size =  (end - start) * sizeof(struct page);
4630 		map = alloc_remap(pgdat->node_id, size);
4631 		if (!map)
4632 			map = alloc_bootmem_node_nopanic(pgdat, size);
4633 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4634 	}
4635 #ifndef CONFIG_NEED_MULTIPLE_NODES
4636 	/*
4637 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4638 	 */
4639 	if (pgdat == NODE_DATA(0)) {
4640 		mem_map = NODE_DATA(0)->node_mem_map;
4641 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4642 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4643 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4644 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4645 	}
4646 #endif
4647 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4648 }
4649 
4650 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4651 		unsigned long node_start_pfn, unsigned long *zholes_size)
4652 {
4653 	pg_data_t *pgdat = NODE_DATA(nid);
4654 
4655 	/* pg_data_t should be reset to zero when it's allocated */
4656 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4657 
4658 	pgdat->node_id = nid;
4659 	pgdat->node_start_pfn = node_start_pfn;
4660 	init_zone_allows_reclaim(nid);
4661 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4662 
4663 	alloc_node_mem_map(pgdat);
4664 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4665 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4666 		nid, (unsigned long)pgdat,
4667 		(unsigned long)pgdat->node_mem_map);
4668 #endif
4669 
4670 	free_area_init_core(pgdat, zones_size, zholes_size);
4671 }
4672 
4673 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4674 
4675 #if MAX_NUMNODES > 1
4676 /*
4677  * Figure out the number of possible node ids.
4678  */
4679 static void __init setup_nr_node_ids(void)
4680 {
4681 	unsigned int node;
4682 	unsigned int highest = 0;
4683 
4684 	for_each_node_mask(node, node_possible_map)
4685 		highest = node;
4686 	nr_node_ids = highest + 1;
4687 }
4688 #else
4689 static inline void setup_nr_node_ids(void)
4690 {
4691 }
4692 #endif
4693 
4694 /**
4695  * node_map_pfn_alignment - determine the maximum internode alignment
4696  *
4697  * This function should be called after node map is populated and sorted.
4698  * It calculates the maximum power of two alignment which can distinguish
4699  * all the nodes.
4700  *
4701  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4702  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4703  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4704  * shifted, 1GiB is enough and this function will indicate so.
4705  *
4706  * This is used to test whether pfn -> nid mapping of the chosen memory
4707  * model has fine enough granularity to avoid incorrect mapping for the
4708  * populated node map.
4709  *
4710  * Returns the determined alignment in pfn's.  0 if there is no alignment
4711  * requirement (single node).
4712  */
4713 unsigned long __init node_map_pfn_alignment(void)
4714 {
4715 	unsigned long accl_mask = 0, last_end = 0;
4716 	unsigned long start, end, mask;
4717 	int last_nid = -1;
4718 	int i, nid;
4719 
4720 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4721 		if (!start || last_nid < 0 || last_nid == nid) {
4722 			last_nid = nid;
4723 			last_end = end;
4724 			continue;
4725 		}
4726 
4727 		/*
4728 		 * Start with a mask granular enough to pin-point to the
4729 		 * start pfn and tick off bits one-by-one until it becomes
4730 		 * too coarse to separate the current node from the last.
4731 		 */
4732 		mask = ~((1 << __ffs(start)) - 1);
4733 		while (mask && last_end <= (start & (mask << 1)))
4734 			mask <<= 1;
4735 
4736 		/* accumulate all internode masks */
4737 		accl_mask |= mask;
4738 	}
4739 
4740 	/* convert mask to number of pages */
4741 	return ~accl_mask + 1;
4742 }
4743 
4744 /* Find the lowest pfn for a node */
4745 static unsigned long __init find_min_pfn_for_node(int nid)
4746 {
4747 	unsigned long min_pfn = ULONG_MAX;
4748 	unsigned long start_pfn;
4749 	int i;
4750 
4751 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4752 		min_pfn = min(min_pfn, start_pfn);
4753 
4754 	if (min_pfn == ULONG_MAX) {
4755 		printk(KERN_WARNING
4756 			"Could not find start_pfn for node %d\n", nid);
4757 		return 0;
4758 	}
4759 
4760 	return min_pfn;
4761 }
4762 
4763 /**
4764  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4765  *
4766  * It returns the minimum PFN based on information provided via
4767  * add_active_range().
4768  */
4769 unsigned long __init find_min_pfn_with_active_regions(void)
4770 {
4771 	return find_min_pfn_for_node(MAX_NUMNODES);
4772 }
4773 
4774 /*
4775  * early_calculate_totalpages()
4776  * Sum pages in active regions for movable zone.
4777  * Populate N_MEMORY for calculating usable_nodes.
4778  */
4779 static unsigned long __init early_calculate_totalpages(void)
4780 {
4781 	unsigned long totalpages = 0;
4782 	unsigned long start_pfn, end_pfn;
4783 	int i, nid;
4784 
4785 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4786 		unsigned long pages = end_pfn - start_pfn;
4787 
4788 		totalpages += pages;
4789 		if (pages)
4790 			node_set_state(nid, N_MEMORY);
4791 	}
4792   	return totalpages;
4793 }
4794 
4795 /*
4796  * Find the PFN the Movable zone begins in each node. Kernel memory
4797  * is spread evenly between nodes as long as the nodes have enough
4798  * memory. When they don't, some nodes will have more kernelcore than
4799  * others
4800  */
4801 static void __init find_zone_movable_pfns_for_nodes(void)
4802 {
4803 	int i, nid;
4804 	unsigned long usable_startpfn;
4805 	unsigned long kernelcore_node, kernelcore_remaining;
4806 	/* save the state before borrow the nodemask */
4807 	nodemask_t saved_node_state = node_states[N_MEMORY];
4808 	unsigned long totalpages = early_calculate_totalpages();
4809 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4810 
4811 	/*
4812 	 * If movablecore was specified, calculate what size of
4813 	 * kernelcore that corresponds so that memory usable for
4814 	 * any allocation type is evenly spread. If both kernelcore
4815 	 * and movablecore are specified, then the value of kernelcore
4816 	 * will be used for required_kernelcore if it's greater than
4817 	 * what movablecore would have allowed.
4818 	 */
4819 	if (required_movablecore) {
4820 		unsigned long corepages;
4821 
4822 		/*
4823 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4824 		 * was requested by the user
4825 		 */
4826 		required_movablecore =
4827 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4828 		corepages = totalpages - required_movablecore;
4829 
4830 		required_kernelcore = max(required_kernelcore, corepages);
4831 	}
4832 
4833 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4834 	if (!required_kernelcore)
4835 		goto out;
4836 
4837 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4838 	find_usable_zone_for_movable();
4839 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4840 
4841 restart:
4842 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4843 	kernelcore_node = required_kernelcore / usable_nodes;
4844 	for_each_node_state(nid, N_MEMORY) {
4845 		unsigned long start_pfn, end_pfn;
4846 
4847 		/*
4848 		 * Recalculate kernelcore_node if the division per node
4849 		 * now exceeds what is necessary to satisfy the requested
4850 		 * amount of memory for the kernel
4851 		 */
4852 		if (required_kernelcore < kernelcore_node)
4853 			kernelcore_node = required_kernelcore / usable_nodes;
4854 
4855 		/*
4856 		 * As the map is walked, we track how much memory is usable
4857 		 * by the kernel using kernelcore_remaining. When it is
4858 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4859 		 */
4860 		kernelcore_remaining = kernelcore_node;
4861 
4862 		/* Go through each range of PFNs within this node */
4863 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4864 			unsigned long size_pages;
4865 
4866 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4867 			if (start_pfn >= end_pfn)
4868 				continue;
4869 
4870 			/* Account for what is only usable for kernelcore */
4871 			if (start_pfn < usable_startpfn) {
4872 				unsigned long kernel_pages;
4873 				kernel_pages = min(end_pfn, usable_startpfn)
4874 								- start_pfn;
4875 
4876 				kernelcore_remaining -= min(kernel_pages,
4877 							kernelcore_remaining);
4878 				required_kernelcore -= min(kernel_pages,
4879 							required_kernelcore);
4880 
4881 				/* Continue if range is now fully accounted */
4882 				if (end_pfn <= usable_startpfn) {
4883 
4884 					/*
4885 					 * Push zone_movable_pfn to the end so
4886 					 * that if we have to rebalance
4887 					 * kernelcore across nodes, we will
4888 					 * not double account here
4889 					 */
4890 					zone_movable_pfn[nid] = end_pfn;
4891 					continue;
4892 				}
4893 				start_pfn = usable_startpfn;
4894 			}
4895 
4896 			/*
4897 			 * The usable PFN range for ZONE_MOVABLE is from
4898 			 * start_pfn->end_pfn. Calculate size_pages as the
4899 			 * number of pages used as kernelcore
4900 			 */
4901 			size_pages = end_pfn - start_pfn;
4902 			if (size_pages > kernelcore_remaining)
4903 				size_pages = kernelcore_remaining;
4904 			zone_movable_pfn[nid] = start_pfn + size_pages;
4905 
4906 			/*
4907 			 * Some kernelcore has been met, update counts and
4908 			 * break if the kernelcore for this node has been
4909 			 * satisified
4910 			 */
4911 			required_kernelcore -= min(required_kernelcore,
4912 								size_pages);
4913 			kernelcore_remaining -= size_pages;
4914 			if (!kernelcore_remaining)
4915 				break;
4916 		}
4917 	}
4918 
4919 	/*
4920 	 * If there is still required_kernelcore, we do another pass with one
4921 	 * less node in the count. This will push zone_movable_pfn[nid] further
4922 	 * along on the nodes that still have memory until kernelcore is
4923 	 * satisified
4924 	 */
4925 	usable_nodes--;
4926 	if (usable_nodes && required_kernelcore > usable_nodes)
4927 		goto restart;
4928 
4929 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4930 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4931 		zone_movable_pfn[nid] =
4932 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4933 
4934 out:
4935 	/* restore the node_state */
4936 	node_states[N_MEMORY] = saved_node_state;
4937 }
4938 
4939 /* Any regular or high memory on that node ? */
4940 static void check_for_memory(pg_data_t *pgdat, int nid)
4941 {
4942 	enum zone_type zone_type;
4943 
4944 	if (N_MEMORY == N_NORMAL_MEMORY)
4945 		return;
4946 
4947 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4948 		struct zone *zone = &pgdat->node_zones[zone_type];
4949 		if (zone->present_pages) {
4950 			node_set_state(nid, N_HIGH_MEMORY);
4951 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4952 			    zone_type <= ZONE_NORMAL)
4953 				node_set_state(nid, N_NORMAL_MEMORY);
4954 			break;
4955 		}
4956 	}
4957 }
4958 
4959 /**
4960  * free_area_init_nodes - Initialise all pg_data_t and zone data
4961  * @max_zone_pfn: an array of max PFNs for each zone
4962  *
4963  * This will call free_area_init_node() for each active node in the system.
4964  * Using the page ranges provided by add_active_range(), the size of each
4965  * zone in each node and their holes is calculated. If the maximum PFN
4966  * between two adjacent zones match, it is assumed that the zone is empty.
4967  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4968  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4969  * starts where the previous one ended. For example, ZONE_DMA32 starts
4970  * at arch_max_dma_pfn.
4971  */
4972 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4973 {
4974 	unsigned long start_pfn, end_pfn;
4975 	int i, nid;
4976 
4977 	/* Record where the zone boundaries are */
4978 	memset(arch_zone_lowest_possible_pfn, 0,
4979 				sizeof(arch_zone_lowest_possible_pfn));
4980 	memset(arch_zone_highest_possible_pfn, 0,
4981 				sizeof(arch_zone_highest_possible_pfn));
4982 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4983 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4984 	for (i = 1; i < MAX_NR_ZONES; i++) {
4985 		if (i == ZONE_MOVABLE)
4986 			continue;
4987 		arch_zone_lowest_possible_pfn[i] =
4988 			arch_zone_highest_possible_pfn[i-1];
4989 		arch_zone_highest_possible_pfn[i] =
4990 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4991 	}
4992 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4993 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4994 
4995 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4996 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4997 	find_zone_movable_pfns_for_nodes();
4998 
4999 	/* Print out the zone ranges */
5000 	printk("Zone ranges:\n");
5001 	for (i = 0; i < MAX_NR_ZONES; i++) {
5002 		if (i == ZONE_MOVABLE)
5003 			continue;
5004 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5005 		if (arch_zone_lowest_possible_pfn[i] ==
5006 				arch_zone_highest_possible_pfn[i])
5007 			printk(KERN_CONT "empty\n");
5008 		else
5009 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5010 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5011 				(arch_zone_highest_possible_pfn[i]
5012 					<< PAGE_SHIFT) - 1);
5013 	}
5014 
5015 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5016 	printk("Movable zone start for each node\n");
5017 	for (i = 0; i < MAX_NUMNODES; i++) {
5018 		if (zone_movable_pfn[i])
5019 			printk("  Node %d: %#010lx\n", i,
5020 			       zone_movable_pfn[i] << PAGE_SHIFT);
5021 	}
5022 
5023 	/* Print out the early node map */
5024 	printk("Early memory node ranges\n");
5025 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5026 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5027 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5028 
5029 	/* Initialise every node */
5030 	mminit_verify_pageflags_layout();
5031 	setup_nr_node_ids();
5032 	for_each_online_node(nid) {
5033 		pg_data_t *pgdat = NODE_DATA(nid);
5034 		free_area_init_node(nid, NULL,
5035 				find_min_pfn_for_node(nid), NULL);
5036 
5037 		/* Any memory on that node */
5038 		if (pgdat->node_present_pages)
5039 			node_set_state(nid, N_MEMORY);
5040 		check_for_memory(pgdat, nid);
5041 	}
5042 }
5043 
5044 static int __init cmdline_parse_core(char *p, unsigned long *core)
5045 {
5046 	unsigned long long coremem;
5047 	if (!p)
5048 		return -EINVAL;
5049 
5050 	coremem = memparse(p, &p);
5051 	*core = coremem >> PAGE_SHIFT;
5052 
5053 	/* Paranoid check that UL is enough for the coremem value */
5054 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5055 
5056 	return 0;
5057 }
5058 
5059 /*
5060  * kernelcore=size sets the amount of memory for use for allocations that
5061  * cannot be reclaimed or migrated.
5062  */
5063 static int __init cmdline_parse_kernelcore(char *p)
5064 {
5065 	return cmdline_parse_core(p, &required_kernelcore);
5066 }
5067 
5068 /*
5069  * movablecore=size sets the amount of memory for use for allocations that
5070  * can be reclaimed or migrated.
5071  */
5072 static int __init cmdline_parse_movablecore(char *p)
5073 {
5074 	return cmdline_parse_core(p, &required_movablecore);
5075 }
5076 
5077 early_param("kernelcore", cmdline_parse_kernelcore);
5078 early_param("movablecore", cmdline_parse_movablecore);
5079 
5080 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5081 
5082 /**
5083  * set_dma_reserve - set the specified number of pages reserved in the first zone
5084  * @new_dma_reserve: The number of pages to mark reserved
5085  *
5086  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5087  * In the DMA zone, a significant percentage may be consumed by kernel image
5088  * and other unfreeable allocations which can skew the watermarks badly. This
5089  * function may optionally be used to account for unfreeable pages in the
5090  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5091  * smaller per-cpu batchsize.
5092  */
5093 void __init set_dma_reserve(unsigned long new_dma_reserve)
5094 {
5095 	dma_reserve = new_dma_reserve;
5096 }
5097 
5098 void __init free_area_init(unsigned long *zones_size)
5099 {
5100 	free_area_init_node(0, zones_size,
5101 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5102 }
5103 
5104 static int page_alloc_cpu_notify(struct notifier_block *self,
5105 				 unsigned long action, void *hcpu)
5106 {
5107 	int cpu = (unsigned long)hcpu;
5108 
5109 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5110 		lru_add_drain_cpu(cpu);
5111 		drain_pages(cpu);
5112 
5113 		/*
5114 		 * Spill the event counters of the dead processor
5115 		 * into the current processors event counters.
5116 		 * This artificially elevates the count of the current
5117 		 * processor.
5118 		 */
5119 		vm_events_fold_cpu(cpu);
5120 
5121 		/*
5122 		 * Zero the differential counters of the dead processor
5123 		 * so that the vm statistics are consistent.
5124 		 *
5125 		 * This is only okay since the processor is dead and cannot
5126 		 * race with what we are doing.
5127 		 */
5128 		refresh_cpu_vm_stats(cpu);
5129 	}
5130 	return NOTIFY_OK;
5131 }
5132 
5133 void __init page_alloc_init(void)
5134 {
5135 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5136 }
5137 
5138 /*
5139  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5140  *	or min_free_kbytes changes.
5141  */
5142 static void calculate_totalreserve_pages(void)
5143 {
5144 	struct pglist_data *pgdat;
5145 	unsigned long reserve_pages = 0;
5146 	enum zone_type i, j;
5147 
5148 	for_each_online_pgdat(pgdat) {
5149 		for (i = 0; i < MAX_NR_ZONES; i++) {
5150 			struct zone *zone = pgdat->node_zones + i;
5151 			unsigned long max = 0;
5152 
5153 			/* Find valid and maximum lowmem_reserve in the zone */
5154 			for (j = i; j < MAX_NR_ZONES; j++) {
5155 				if (zone->lowmem_reserve[j] > max)
5156 					max = zone->lowmem_reserve[j];
5157 			}
5158 
5159 			/* we treat the high watermark as reserved pages. */
5160 			max += high_wmark_pages(zone);
5161 
5162 			if (max > zone->present_pages)
5163 				max = zone->present_pages;
5164 			reserve_pages += max;
5165 			/*
5166 			 * Lowmem reserves are not available to
5167 			 * GFP_HIGHUSER page cache allocations and
5168 			 * kswapd tries to balance zones to their high
5169 			 * watermark.  As a result, neither should be
5170 			 * regarded as dirtyable memory, to prevent a
5171 			 * situation where reclaim has to clean pages
5172 			 * in order to balance the zones.
5173 			 */
5174 			zone->dirty_balance_reserve = max;
5175 		}
5176 	}
5177 	dirty_balance_reserve = reserve_pages;
5178 	totalreserve_pages = reserve_pages;
5179 }
5180 
5181 /*
5182  * setup_per_zone_lowmem_reserve - called whenever
5183  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5184  *	has a correct pages reserved value, so an adequate number of
5185  *	pages are left in the zone after a successful __alloc_pages().
5186  */
5187 static void setup_per_zone_lowmem_reserve(void)
5188 {
5189 	struct pglist_data *pgdat;
5190 	enum zone_type j, idx;
5191 
5192 	for_each_online_pgdat(pgdat) {
5193 		for (j = 0; j < MAX_NR_ZONES; j++) {
5194 			struct zone *zone = pgdat->node_zones + j;
5195 			unsigned long present_pages = zone->present_pages;
5196 
5197 			zone->lowmem_reserve[j] = 0;
5198 
5199 			idx = j;
5200 			while (idx) {
5201 				struct zone *lower_zone;
5202 
5203 				idx--;
5204 
5205 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5206 					sysctl_lowmem_reserve_ratio[idx] = 1;
5207 
5208 				lower_zone = pgdat->node_zones + idx;
5209 				lower_zone->lowmem_reserve[j] = present_pages /
5210 					sysctl_lowmem_reserve_ratio[idx];
5211 				present_pages += lower_zone->present_pages;
5212 			}
5213 		}
5214 	}
5215 
5216 	/* update totalreserve_pages */
5217 	calculate_totalreserve_pages();
5218 }
5219 
5220 static void __setup_per_zone_wmarks(void)
5221 {
5222 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5223 	unsigned long lowmem_pages = 0;
5224 	struct zone *zone;
5225 	unsigned long flags;
5226 
5227 	/* Calculate total number of !ZONE_HIGHMEM pages */
5228 	for_each_zone(zone) {
5229 		if (!is_highmem(zone))
5230 			lowmem_pages += zone->present_pages;
5231 	}
5232 
5233 	for_each_zone(zone) {
5234 		u64 tmp;
5235 
5236 		spin_lock_irqsave(&zone->lock, flags);
5237 		tmp = (u64)pages_min * zone->present_pages;
5238 		do_div(tmp, lowmem_pages);
5239 		if (is_highmem(zone)) {
5240 			/*
5241 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5242 			 * need highmem pages, so cap pages_min to a small
5243 			 * value here.
5244 			 *
5245 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5246 			 * deltas controls asynch page reclaim, and so should
5247 			 * not be capped for highmem.
5248 			 */
5249 			int min_pages;
5250 
5251 			min_pages = zone->present_pages / 1024;
5252 			if (min_pages < SWAP_CLUSTER_MAX)
5253 				min_pages = SWAP_CLUSTER_MAX;
5254 			if (min_pages > 128)
5255 				min_pages = 128;
5256 			zone->watermark[WMARK_MIN] = min_pages;
5257 		} else {
5258 			/*
5259 			 * If it's a lowmem zone, reserve a number of pages
5260 			 * proportionate to the zone's size.
5261 			 */
5262 			zone->watermark[WMARK_MIN] = tmp;
5263 		}
5264 
5265 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5266 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5267 
5268 		setup_zone_migrate_reserve(zone);
5269 		spin_unlock_irqrestore(&zone->lock, flags);
5270 	}
5271 
5272 	/* update totalreserve_pages */
5273 	calculate_totalreserve_pages();
5274 }
5275 
5276 /**
5277  * setup_per_zone_wmarks - called when min_free_kbytes changes
5278  * or when memory is hot-{added|removed}
5279  *
5280  * Ensures that the watermark[min,low,high] values for each zone are set
5281  * correctly with respect to min_free_kbytes.
5282  */
5283 void setup_per_zone_wmarks(void)
5284 {
5285 	mutex_lock(&zonelists_mutex);
5286 	__setup_per_zone_wmarks();
5287 	mutex_unlock(&zonelists_mutex);
5288 }
5289 
5290 /*
5291  * The inactive anon list should be small enough that the VM never has to
5292  * do too much work, but large enough that each inactive page has a chance
5293  * to be referenced again before it is swapped out.
5294  *
5295  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5296  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5297  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5298  * the anonymous pages are kept on the inactive list.
5299  *
5300  * total     target    max
5301  * memory    ratio     inactive anon
5302  * -------------------------------------
5303  *   10MB       1         5MB
5304  *  100MB       1        50MB
5305  *    1GB       3       250MB
5306  *   10GB      10       0.9GB
5307  *  100GB      31         3GB
5308  *    1TB     101        10GB
5309  *   10TB     320        32GB
5310  */
5311 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5312 {
5313 	unsigned int gb, ratio;
5314 
5315 	/* Zone size in gigabytes */
5316 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5317 	if (gb)
5318 		ratio = int_sqrt(10 * gb);
5319 	else
5320 		ratio = 1;
5321 
5322 	zone->inactive_ratio = ratio;
5323 }
5324 
5325 static void __meminit setup_per_zone_inactive_ratio(void)
5326 {
5327 	struct zone *zone;
5328 
5329 	for_each_zone(zone)
5330 		calculate_zone_inactive_ratio(zone);
5331 }
5332 
5333 /*
5334  * Initialise min_free_kbytes.
5335  *
5336  * For small machines we want it small (128k min).  For large machines
5337  * we want it large (64MB max).  But it is not linear, because network
5338  * bandwidth does not increase linearly with machine size.  We use
5339  *
5340  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5341  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5342  *
5343  * which yields
5344  *
5345  * 16MB:	512k
5346  * 32MB:	724k
5347  * 64MB:	1024k
5348  * 128MB:	1448k
5349  * 256MB:	2048k
5350  * 512MB:	2896k
5351  * 1024MB:	4096k
5352  * 2048MB:	5792k
5353  * 4096MB:	8192k
5354  * 8192MB:	11584k
5355  * 16384MB:	16384k
5356  */
5357 int __meminit init_per_zone_wmark_min(void)
5358 {
5359 	unsigned long lowmem_kbytes;
5360 
5361 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5362 
5363 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5364 	if (min_free_kbytes < 128)
5365 		min_free_kbytes = 128;
5366 	if (min_free_kbytes > 65536)
5367 		min_free_kbytes = 65536;
5368 	setup_per_zone_wmarks();
5369 	refresh_zone_stat_thresholds();
5370 	setup_per_zone_lowmem_reserve();
5371 	setup_per_zone_inactive_ratio();
5372 	return 0;
5373 }
5374 module_init(init_per_zone_wmark_min)
5375 
5376 /*
5377  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5378  *	that we can call two helper functions whenever min_free_kbytes
5379  *	changes.
5380  */
5381 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5382 	void __user *buffer, size_t *length, loff_t *ppos)
5383 {
5384 	proc_dointvec(table, write, buffer, length, ppos);
5385 	if (write)
5386 		setup_per_zone_wmarks();
5387 	return 0;
5388 }
5389 
5390 #ifdef CONFIG_NUMA
5391 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5392 	void __user *buffer, size_t *length, loff_t *ppos)
5393 {
5394 	struct zone *zone;
5395 	int rc;
5396 
5397 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5398 	if (rc)
5399 		return rc;
5400 
5401 	for_each_zone(zone)
5402 		zone->min_unmapped_pages = (zone->present_pages *
5403 				sysctl_min_unmapped_ratio) / 100;
5404 	return 0;
5405 }
5406 
5407 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5408 	void __user *buffer, size_t *length, loff_t *ppos)
5409 {
5410 	struct zone *zone;
5411 	int rc;
5412 
5413 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5414 	if (rc)
5415 		return rc;
5416 
5417 	for_each_zone(zone)
5418 		zone->min_slab_pages = (zone->present_pages *
5419 				sysctl_min_slab_ratio) / 100;
5420 	return 0;
5421 }
5422 #endif
5423 
5424 /*
5425  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5426  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5427  *	whenever sysctl_lowmem_reserve_ratio changes.
5428  *
5429  * The reserve ratio obviously has absolutely no relation with the
5430  * minimum watermarks. The lowmem reserve ratio can only make sense
5431  * if in function of the boot time zone sizes.
5432  */
5433 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5434 	void __user *buffer, size_t *length, loff_t *ppos)
5435 {
5436 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5437 	setup_per_zone_lowmem_reserve();
5438 	return 0;
5439 }
5440 
5441 /*
5442  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5443  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5444  * can have before it gets flushed back to buddy allocator.
5445  */
5446 
5447 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5448 	void __user *buffer, size_t *length, loff_t *ppos)
5449 {
5450 	struct zone *zone;
5451 	unsigned int cpu;
5452 	int ret;
5453 
5454 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5455 	if (!write || (ret < 0))
5456 		return ret;
5457 	for_each_populated_zone(zone) {
5458 		for_each_possible_cpu(cpu) {
5459 			unsigned long  high;
5460 			high = zone->present_pages / percpu_pagelist_fraction;
5461 			setup_pagelist_highmark(
5462 				per_cpu_ptr(zone->pageset, cpu), high);
5463 		}
5464 	}
5465 	return 0;
5466 }
5467 
5468 int hashdist = HASHDIST_DEFAULT;
5469 
5470 #ifdef CONFIG_NUMA
5471 static int __init set_hashdist(char *str)
5472 {
5473 	if (!str)
5474 		return 0;
5475 	hashdist = simple_strtoul(str, &str, 0);
5476 	return 1;
5477 }
5478 __setup("hashdist=", set_hashdist);
5479 #endif
5480 
5481 /*
5482  * allocate a large system hash table from bootmem
5483  * - it is assumed that the hash table must contain an exact power-of-2
5484  *   quantity of entries
5485  * - limit is the number of hash buckets, not the total allocation size
5486  */
5487 void *__init alloc_large_system_hash(const char *tablename,
5488 				     unsigned long bucketsize,
5489 				     unsigned long numentries,
5490 				     int scale,
5491 				     int flags,
5492 				     unsigned int *_hash_shift,
5493 				     unsigned int *_hash_mask,
5494 				     unsigned long low_limit,
5495 				     unsigned long high_limit)
5496 {
5497 	unsigned long long max = high_limit;
5498 	unsigned long log2qty, size;
5499 	void *table = NULL;
5500 
5501 	/* allow the kernel cmdline to have a say */
5502 	if (!numentries) {
5503 		/* round applicable memory size up to nearest megabyte */
5504 		numentries = nr_kernel_pages;
5505 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5506 		numentries >>= 20 - PAGE_SHIFT;
5507 		numentries <<= 20 - PAGE_SHIFT;
5508 
5509 		/* limit to 1 bucket per 2^scale bytes of low memory */
5510 		if (scale > PAGE_SHIFT)
5511 			numentries >>= (scale - PAGE_SHIFT);
5512 		else
5513 			numentries <<= (PAGE_SHIFT - scale);
5514 
5515 		/* Make sure we've got at least a 0-order allocation.. */
5516 		if (unlikely(flags & HASH_SMALL)) {
5517 			/* Makes no sense without HASH_EARLY */
5518 			WARN_ON(!(flags & HASH_EARLY));
5519 			if (!(numentries >> *_hash_shift)) {
5520 				numentries = 1UL << *_hash_shift;
5521 				BUG_ON(!numentries);
5522 			}
5523 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5524 			numentries = PAGE_SIZE / bucketsize;
5525 	}
5526 	numentries = roundup_pow_of_two(numentries);
5527 
5528 	/* limit allocation size to 1/16 total memory by default */
5529 	if (max == 0) {
5530 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5531 		do_div(max, bucketsize);
5532 	}
5533 	max = min(max, 0x80000000ULL);
5534 
5535 	if (numentries < low_limit)
5536 		numentries = low_limit;
5537 	if (numentries > max)
5538 		numentries = max;
5539 
5540 	log2qty = ilog2(numentries);
5541 
5542 	do {
5543 		size = bucketsize << log2qty;
5544 		if (flags & HASH_EARLY)
5545 			table = alloc_bootmem_nopanic(size);
5546 		else if (hashdist)
5547 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5548 		else {
5549 			/*
5550 			 * If bucketsize is not a power-of-two, we may free
5551 			 * some pages at the end of hash table which
5552 			 * alloc_pages_exact() automatically does
5553 			 */
5554 			if (get_order(size) < MAX_ORDER) {
5555 				table = alloc_pages_exact(size, GFP_ATOMIC);
5556 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5557 			}
5558 		}
5559 	} while (!table && size > PAGE_SIZE && --log2qty);
5560 
5561 	if (!table)
5562 		panic("Failed to allocate %s hash table\n", tablename);
5563 
5564 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5565 	       tablename,
5566 	       (1UL << log2qty),
5567 	       ilog2(size) - PAGE_SHIFT,
5568 	       size);
5569 
5570 	if (_hash_shift)
5571 		*_hash_shift = log2qty;
5572 	if (_hash_mask)
5573 		*_hash_mask = (1 << log2qty) - 1;
5574 
5575 	return table;
5576 }
5577 
5578 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5579 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5580 							unsigned long pfn)
5581 {
5582 #ifdef CONFIG_SPARSEMEM
5583 	return __pfn_to_section(pfn)->pageblock_flags;
5584 #else
5585 	return zone->pageblock_flags;
5586 #endif /* CONFIG_SPARSEMEM */
5587 }
5588 
5589 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5590 {
5591 #ifdef CONFIG_SPARSEMEM
5592 	pfn &= (PAGES_PER_SECTION-1);
5593 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5594 #else
5595 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5596 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5597 #endif /* CONFIG_SPARSEMEM */
5598 }
5599 
5600 /**
5601  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5602  * @page: The page within the block of interest
5603  * @start_bitidx: The first bit of interest to retrieve
5604  * @end_bitidx: The last bit of interest
5605  * returns pageblock_bits flags
5606  */
5607 unsigned long get_pageblock_flags_group(struct page *page,
5608 					int start_bitidx, int end_bitidx)
5609 {
5610 	struct zone *zone;
5611 	unsigned long *bitmap;
5612 	unsigned long pfn, bitidx;
5613 	unsigned long flags = 0;
5614 	unsigned long value = 1;
5615 
5616 	zone = page_zone(page);
5617 	pfn = page_to_pfn(page);
5618 	bitmap = get_pageblock_bitmap(zone, pfn);
5619 	bitidx = pfn_to_bitidx(zone, pfn);
5620 
5621 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5622 		if (test_bit(bitidx + start_bitidx, bitmap))
5623 			flags |= value;
5624 
5625 	return flags;
5626 }
5627 
5628 /**
5629  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5630  * @page: The page within the block of interest
5631  * @start_bitidx: The first bit of interest
5632  * @end_bitidx: The last bit of interest
5633  * @flags: The flags to set
5634  */
5635 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5636 					int start_bitidx, int end_bitidx)
5637 {
5638 	struct zone *zone;
5639 	unsigned long *bitmap;
5640 	unsigned long pfn, bitidx;
5641 	unsigned long value = 1;
5642 
5643 	zone = page_zone(page);
5644 	pfn = page_to_pfn(page);
5645 	bitmap = get_pageblock_bitmap(zone, pfn);
5646 	bitidx = pfn_to_bitidx(zone, pfn);
5647 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5648 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5649 
5650 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5651 		if (flags & value)
5652 			__set_bit(bitidx + start_bitidx, bitmap);
5653 		else
5654 			__clear_bit(bitidx + start_bitidx, bitmap);
5655 }
5656 
5657 /*
5658  * This function checks whether pageblock includes unmovable pages or not.
5659  * If @count is not zero, it is okay to include less @count unmovable pages
5660  *
5661  * PageLRU check wihtout isolation or lru_lock could race so that
5662  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5663  * expect this function should be exact.
5664  */
5665 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5666 			 bool skip_hwpoisoned_pages)
5667 {
5668 	unsigned long pfn, iter, found;
5669 	int mt;
5670 
5671 	/*
5672 	 * For avoiding noise data, lru_add_drain_all() should be called
5673 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5674 	 */
5675 	if (zone_idx(zone) == ZONE_MOVABLE)
5676 		return false;
5677 	mt = get_pageblock_migratetype(page);
5678 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5679 		return false;
5680 
5681 	pfn = page_to_pfn(page);
5682 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5683 		unsigned long check = pfn + iter;
5684 
5685 		if (!pfn_valid_within(check))
5686 			continue;
5687 
5688 		page = pfn_to_page(check);
5689 		/*
5690 		 * We can't use page_count without pin a page
5691 		 * because another CPU can free compound page.
5692 		 * This check already skips compound tails of THP
5693 		 * because their page->_count is zero at all time.
5694 		 */
5695 		if (!atomic_read(&page->_count)) {
5696 			if (PageBuddy(page))
5697 				iter += (1 << page_order(page)) - 1;
5698 			continue;
5699 		}
5700 
5701 		/*
5702 		 * The HWPoisoned page may be not in buddy system, and
5703 		 * page_count() is not 0.
5704 		 */
5705 		if (skip_hwpoisoned_pages && PageHWPoison(page))
5706 			continue;
5707 
5708 		if (!PageLRU(page))
5709 			found++;
5710 		/*
5711 		 * If there are RECLAIMABLE pages, we need to check it.
5712 		 * But now, memory offline itself doesn't call shrink_slab()
5713 		 * and it still to be fixed.
5714 		 */
5715 		/*
5716 		 * If the page is not RAM, page_count()should be 0.
5717 		 * we don't need more check. This is an _used_ not-movable page.
5718 		 *
5719 		 * The problematic thing here is PG_reserved pages. PG_reserved
5720 		 * is set to both of a memory hole page and a _used_ kernel
5721 		 * page at boot.
5722 		 */
5723 		if (found > count)
5724 			return true;
5725 	}
5726 	return false;
5727 }
5728 
5729 bool is_pageblock_removable_nolock(struct page *page)
5730 {
5731 	struct zone *zone;
5732 	unsigned long pfn;
5733 
5734 	/*
5735 	 * We have to be careful here because we are iterating over memory
5736 	 * sections which are not zone aware so we might end up outside of
5737 	 * the zone but still within the section.
5738 	 * We have to take care about the node as well. If the node is offline
5739 	 * its NODE_DATA will be NULL - see page_zone.
5740 	 */
5741 	if (!node_online(page_to_nid(page)))
5742 		return false;
5743 
5744 	zone = page_zone(page);
5745 	pfn = page_to_pfn(page);
5746 	if (zone->zone_start_pfn > pfn ||
5747 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5748 		return false;
5749 
5750 	return !has_unmovable_pages(zone, page, 0, true);
5751 }
5752 
5753 #ifdef CONFIG_CMA
5754 
5755 static unsigned long pfn_max_align_down(unsigned long pfn)
5756 {
5757 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5758 			     pageblock_nr_pages) - 1);
5759 }
5760 
5761 static unsigned long pfn_max_align_up(unsigned long pfn)
5762 {
5763 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5764 				pageblock_nr_pages));
5765 }
5766 
5767 /* [start, end) must belong to a single zone. */
5768 static int __alloc_contig_migrate_range(struct compact_control *cc,
5769 					unsigned long start, unsigned long end)
5770 {
5771 	/* This function is based on compact_zone() from compaction.c. */
5772 	unsigned long nr_reclaimed;
5773 	unsigned long pfn = start;
5774 	unsigned int tries = 0;
5775 	int ret = 0;
5776 
5777 	migrate_prep();
5778 
5779 	while (pfn < end || !list_empty(&cc->migratepages)) {
5780 		if (fatal_signal_pending(current)) {
5781 			ret = -EINTR;
5782 			break;
5783 		}
5784 
5785 		if (list_empty(&cc->migratepages)) {
5786 			cc->nr_migratepages = 0;
5787 			pfn = isolate_migratepages_range(cc->zone, cc,
5788 							 pfn, end, true);
5789 			if (!pfn) {
5790 				ret = -EINTR;
5791 				break;
5792 			}
5793 			tries = 0;
5794 		} else if (++tries == 5) {
5795 			ret = ret < 0 ? ret : -EBUSY;
5796 			break;
5797 		}
5798 
5799 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5800 							&cc->migratepages);
5801 		cc->nr_migratepages -= nr_reclaimed;
5802 
5803 		ret = migrate_pages(&cc->migratepages,
5804 				    alloc_migrate_target,
5805 				    0, false, MIGRATE_SYNC,
5806 				    MR_CMA);
5807 	}
5808 
5809 	putback_movable_pages(&cc->migratepages);
5810 	return ret > 0 ? 0 : ret;
5811 }
5812 
5813 /**
5814  * alloc_contig_range() -- tries to allocate given range of pages
5815  * @start:	start PFN to allocate
5816  * @end:	one-past-the-last PFN to allocate
5817  * @migratetype:	migratetype of the underlaying pageblocks (either
5818  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5819  *			in range must have the same migratetype and it must
5820  *			be either of the two.
5821  *
5822  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5823  * aligned, however it's the caller's responsibility to guarantee that
5824  * we are the only thread that changes migrate type of pageblocks the
5825  * pages fall in.
5826  *
5827  * The PFN range must belong to a single zone.
5828  *
5829  * Returns zero on success or negative error code.  On success all
5830  * pages which PFN is in [start, end) are allocated for the caller and
5831  * need to be freed with free_contig_range().
5832  */
5833 int alloc_contig_range(unsigned long start, unsigned long end,
5834 		       unsigned migratetype)
5835 {
5836 	unsigned long outer_start, outer_end;
5837 	int ret = 0, order;
5838 
5839 	struct compact_control cc = {
5840 		.nr_migratepages = 0,
5841 		.order = -1,
5842 		.zone = page_zone(pfn_to_page(start)),
5843 		.sync = true,
5844 		.ignore_skip_hint = true,
5845 	};
5846 	INIT_LIST_HEAD(&cc.migratepages);
5847 
5848 	/*
5849 	 * What we do here is we mark all pageblocks in range as
5850 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5851 	 * have different sizes, and due to the way page allocator
5852 	 * work, we align the range to biggest of the two pages so
5853 	 * that page allocator won't try to merge buddies from
5854 	 * different pageblocks and change MIGRATE_ISOLATE to some
5855 	 * other migration type.
5856 	 *
5857 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5858 	 * migrate the pages from an unaligned range (ie. pages that
5859 	 * we are interested in).  This will put all the pages in
5860 	 * range back to page allocator as MIGRATE_ISOLATE.
5861 	 *
5862 	 * When this is done, we take the pages in range from page
5863 	 * allocator removing them from the buddy system.  This way
5864 	 * page allocator will never consider using them.
5865 	 *
5866 	 * This lets us mark the pageblocks back as
5867 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5868 	 * aligned range but not in the unaligned, original range are
5869 	 * put back to page allocator so that buddy can use them.
5870 	 */
5871 
5872 	ret = start_isolate_page_range(pfn_max_align_down(start),
5873 				       pfn_max_align_up(end), migratetype,
5874 				       false);
5875 	if (ret)
5876 		return ret;
5877 
5878 	ret = __alloc_contig_migrate_range(&cc, start, end);
5879 	if (ret)
5880 		goto done;
5881 
5882 	/*
5883 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5884 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5885 	 * more, all pages in [start, end) are free in page allocator.
5886 	 * What we are going to do is to allocate all pages from
5887 	 * [start, end) (that is remove them from page allocator).
5888 	 *
5889 	 * The only problem is that pages at the beginning and at the
5890 	 * end of interesting range may be not aligned with pages that
5891 	 * page allocator holds, ie. they can be part of higher order
5892 	 * pages.  Because of this, we reserve the bigger range and
5893 	 * once this is done free the pages we are not interested in.
5894 	 *
5895 	 * We don't have to hold zone->lock here because the pages are
5896 	 * isolated thus they won't get removed from buddy.
5897 	 */
5898 
5899 	lru_add_drain_all();
5900 	drain_all_pages();
5901 
5902 	order = 0;
5903 	outer_start = start;
5904 	while (!PageBuddy(pfn_to_page(outer_start))) {
5905 		if (++order >= MAX_ORDER) {
5906 			ret = -EBUSY;
5907 			goto done;
5908 		}
5909 		outer_start &= ~0UL << order;
5910 	}
5911 
5912 	/* Make sure the range is really isolated. */
5913 	if (test_pages_isolated(outer_start, end, false)) {
5914 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5915 		       outer_start, end);
5916 		ret = -EBUSY;
5917 		goto done;
5918 	}
5919 
5920 
5921 	/* Grab isolated pages from freelists. */
5922 	outer_end = isolate_freepages_range(&cc, outer_start, end);
5923 	if (!outer_end) {
5924 		ret = -EBUSY;
5925 		goto done;
5926 	}
5927 
5928 	/* Free head and tail (if any) */
5929 	if (start != outer_start)
5930 		free_contig_range(outer_start, start - outer_start);
5931 	if (end != outer_end)
5932 		free_contig_range(end, outer_end - end);
5933 
5934 done:
5935 	undo_isolate_page_range(pfn_max_align_down(start),
5936 				pfn_max_align_up(end), migratetype);
5937 	return ret;
5938 }
5939 
5940 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5941 {
5942 	unsigned int count = 0;
5943 
5944 	for (; nr_pages--; pfn++) {
5945 		struct page *page = pfn_to_page(pfn);
5946 
5947 		count += page_count(page) != 1;
5948 		__free_page(page);
5949 	}
5950 	WARN(count != 0, "%d pages are still in use!\n", count);
5951 }
5952 #endif
5953 
5954 #ifdef CONFIG_MEMORY_HOTPLUG
5955 static int __meminit __zone_pcp_update(void *data)
5956 {
5957 	struct zone *zone = data;
5958 	int cpu;
5959 	unsigned long batch = zone_batchsize(zone), flags;
5960 
5961 	for_each_possible_cpu(cpu) {
5962 		struct per_cpu_pageset *pset;
5963 		struct per_cpu_pages *pcp;
5964 
5965 		pset = per_cpu_ptr(zone->pageset, cpu);
5966 		pcp = &pset->pcp;
5967 
5968 		local_irq_save(flags);
5969 		if (pcp->count > 0)
5970 			free_pcppages_bulk(zone, pcp->count, pcp);
5971 		drain_zonestat(zone, pset);
5972 		setup_pageset(pset, batch);
5973 		local_irq_restore(flags);
5974 	}
5975 	return 0;
5976 }
5977 
5978 void __meminit zone_pcp_update(struct zone *zone)
5979 {
5980 	stop_machine(__zone_pcp_update, zone, NULL);
5981 }
5982 #endif
5983 
5984 void zone_pcp_reset(struct zone *zone)
5985 {
5986 	unsigned long flags;
5987 	int cpu;
5988 	struct per_cpu_pageset *pset;
5989 
5990 	/* avoid races with drain_pages()  */
5991 	local_irq_save(flags);
5992 	if (zone->pageset != &boot_pageset) {
5993 		for_each_online_cpu(cpu) {
5994 			pset = per_cpu_ptr(zone->pageset, cpu);
5995 			drain_zonestat(zone, pset);
5996 		}
5997 		free_percpu(zone->pageset);
5998 		zone->pageset = &boot_pageset;
5999 	}
6000 	local_irq_restore(flags);
6001 }
6002 
6003 #ifdef CONFIG_MEMORY_HOTREMOVE
6004 /*
6005  * All pages in the range must be isolated before calling this.
6006  */
6007 void
6008 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6009 {
6010 	struct page *page;
6011 	struct zone *zone;
6012 	int order, i;
6013 	unsigned long pfn;
6014 	unsigned long flags;
6015 	/* find the first valid pfn */
6016 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6017 		if (pfn_valid(pfn))
6018 			break;
6019 	if (pfn == end_pfn)
6020 		return;
6021 	zone = page_zone(pfn_to_page(pfn));
6022 	spin_lock_irqsave(&zone->lock, flags);
6023 	pfn = start_pfn;
6024 	while (pfn < end_pfn) {
6025 		if (!pfn_valid(pfn)) {
6026 			pfn++;
6027 			continue;
6028 		}
6029 		page = pfn_to_page(pfn);
6030 		/*
6031 		 * The HWPoisoned page may be not in buddy system, and
6032 		 * page_count() is not 0.
6033 		 */
6034 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6035 			pfn++;
6036 			SetPageReserved(page);
6037 			continue;
6038 		}
6039 
6040 		BUG_ON(page_count(page));
6041 		BUG_ON(!PageBuddy(page));
6042 		order = page_order(page);
6043 #ifdef CONFIG_DEBUG_VM
6044 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6045 		       pfn, 1 << order, end_pfn);
6046 #endif
6047 		list_del(&page->lru);
6048 		rmv_page_order(page);
6049 		zone->free_area[order].nr_free--;
6050 		for (i = 0; i < (1 << order); i++)
6051 			SetPageReserved((page+i));
6052 		pfn += (1 << order);
6053 	}
6054 	spin_unlock_irqrestore(&zone->lock, flags);
6055 }
6056 #endif
6057 
6058 #ifdef CONFIG_MEMORY_FAILURE
6059 bool is_free_buddy_page(struct page *page)
6060 {
6061 	struct zone *zone = page_zone(page);
6062 	unsigned long pfn = page_to_pfn(page);
6063 	unsigned long flags;
6064 	int order;
6065 
6066 	spin_lock_irqsave(&zone->lock, flags);
6067 	for (order = 0; order < MAX_ORDER; order++) {
6068 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6069 
6070 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6071 			break;
6072 	}
6073 	spin_unlock_irqrestore(&zone->lock, flags);
6074 
6075 	return order < MAX_ORDER;
6076 }
6077 #endif
6078 
6079 static const struct trace_print_flags pageflag_names[] = {
6080 	{1UL << PG_locked,		"locked"	},
6081 	{1UL << PG_error,		"error"		},
6082 	{1UL << PG_referenced,		"referenced"	},
6083 	{1UL << PG_uptodate,		"uptodate"	},
6084 	{1UL << PG_dirty,		"dirty"		},
6085 	{1UL << PG_lru,			"lru"		},
6086 	{1UL << PG_active,		"active"	},
6087 	{1UL << PG_slab,		"slab"		},
6088 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6089 	{1UL << PG_arch_1,		"arch_1"	},
6090 	{1UL << PG_reserved,		"reserved"	},
6091 	{1UL << PG_private,		"private"	},
6092 	{1UL << PG_private_2,		"private_2"	},
6093 	{1UL << PG_writeback,		"writeback"	},
6094 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6095 	{1UL << PG_head,		"head"		},
6096 	{1UL << PG_tail,		"tail"		},
6097 #else
6098 	{1UL << PG_compound,		"compound"	},
6099 #endif
6100 	{1UL << PG_swapcache,		"swapcache"	},
6101 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6102 	{1UL << PG_reclaim,		"reclaim"	},
6103 	{1UL << PG_swapbacked,		"swapbacked"	},
6104 	{1UL << PG_unevictable,		"unevictable"	},
6105 #ifdef CONFIG_MMU
6106 	{1UL << PG_mlocked,		"mlocked"	},
6107 #endif
6108 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6109 	{1UL << PG_uncached,		"uncached"	},
6110 #endif
6111 #ifdef CONFIG_MEMORY_FAILURE
6112 	{1UL << PG_hwpoison,		"hwpoison"	},
6113 #endif
6114 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6115 	{1UL << PG_compound_lock,	"compound_lock"	},
6116 #endif
6117 };
6118 
6119 static void dump_page_flags(unsigned long flags)
6120 {
6121 	const char *delim = "";
6122 	unsigned long mask;
6123 	int i;
6124 
6125 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6126 
6127 	printk(KERN_ALERT "page flags: %#lx(", flags);
6128 
6129 	/* remove zone id */
6130 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6131 
6132 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6133 
6134 		mask = pageflag_names[i].mask;
6135 		if ((flags & mask) != mask)
6136 			continue;
6137 
6138 		flags &= ~mask;
6139 		printk("%s%s", delim, pageflag_names[i].name);
6140 		delim = "|";
6141 	}
6142 
6143 	/* check for left over flags */
6144 	if (flags)
6145 		printk("%s%#lx", delim, flags);
6146 
6147 	printk(")\n");
6148 }
6149 
6150 void dump_page(struct page *page)
6151 {
6152 	printk(KERN_ALERT
6153 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6154 		page, atomic_read(&page->_count), page_mapcount(page),
6155 		page->mapping, page->index);
6156 	dump_page_flags(page->flags);
6157 	mem_cgroup_print_bad_page(page);
6158 }
6159