xref: /openbmc/linux/mm/page_alloc.c (revision d0054a470c33902f5ae88835ed8a8ecc3cf8faa4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87 
88 /* No special request */
89 #define FPI_NONE		((__force fpi_t)0)
90 
91 /*
92  * Skip free page reporting notification for the (possibly merged) page.
93  * This does not hinder free page reporting from grabbing the page,
94  * reporting it and marking it "reported" -  it only skips notifying
95  * the free page reporting infrastructure about a newly freed page. For
96  * example, used when temporarily pulling a page from a freelist and
97  * putting it back unmodified.
98  */
99 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
100 
101 /*
102  * Place the (possibly merged) page to the tail of the freelist. Will ignore
103  * page shuffling (relevant code - e.g., memory onlining - is expected to
104  * shuffle the whole zone).
105  *
106  * Note: No code should rely on this flag for correctness - it's purely
107  *       to allow for optimizations when handing back either fresh pages
108  *       (memory onlining) or untouched pages (page isolation, free page
109  *       reporting).
110  */
111 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
112 
113 /*
114  * Don't poison memory with KASAN (only for the tag-based modes).
115  * During boot, all non-reserved memblock memory is exposed to page_alloc.
116  * Poisoning all that memory lengthens boot time, especially on systems with
117  * large amount of RAM. This flag is used to skip that poisoning.
118  * This is only done for the tag-based KASAN modes, as those are able to
119  * detect memory corruptions with the memory tags assigned by default.
120  * All memory allocated normally after boot gets poisoned as usual.
121  */
122 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
123 
124 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125 static DEFINE_MUTEX(pcp_batch_high_lock);
126 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
127 
128 struct pagesets {
129 	local_lock_t lock;
130 };
131 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
132 	.lock = INIT_LOCAL_LOCK(lock),
133 };
134 
135 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136 DEFINE_PER_CPU(int, numa_node);
137 EXPORT_PER_CPU_SYMBOL(numa_node);
138 #endif
139 
140 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
141 
142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
143 /*
144  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147  * defined in <linux/topology.h>.
148  */
149 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
150 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
151 #endif
152 
153 /* work_structs for global per-cpu drains */
154 struct pcpu_drain {
155 	struct zone *zone;
156 	struct work_struct work;
157 };
158 static DEFINE_MUTEX(pcpu_drain_mutex);
159 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
160 
161 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
162 volatile unsigned long latent_entropy __latent_entropy;
163 EXPORT_SYMBOL(latent_entropy);
164 #endif
165 
166 /*
167  * Array of node states.
168  */
169 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 	[N_POSSIBLE] = NODE_MASK_ALL,
171 	[N_ONLINE] = { { [0] = 1UL } },
172 #ifndef CONFIG_NUMA
173 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
174 #ifdef CONFIG_HIGHMEM
175 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
176 #endif
177 	[N_MEMORY] = { { [0] = 1UL } },
178 	[N_CPU] = { { [0] = 1UL } },
179 #endif	/* NUMA */
180 };
181 EXPORT_SYMBOL(node_states);
182 
183 atomic_long_t _totalram_pages __read_mostly;
184 EXPORT_SYMBOL(_totalram_pages);
185 unsigned long totalreserve_pages __read_mostly;
186 unsigned long totalcma_pages __read_mostly;
187 
188 int percpu_pagelist_high_fraction;
189 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
191 EXPORT_SYMBOL(init_on_alloc);
192 
193 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
194 EXPORT_SYMBOL(init_on_free);
195 
196 static bool _init_on_alloc_enabled_early __read_mostly
197 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
198 static int __init early_init_on_alloc(char *buf)
199 {
200 
201 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
202 }
203 early_param("init_on_alloc", early_init_on_alloc);
204 
205 static bool _init_on_free_enabled_early __read_mostly
206 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
207 static int __init early_init_on_free(char *buf)
208 {
209 	return kstrtobool(buf, &_init_on_free_enabled_early);
210 }
211 early_param("init_on_free", early_init_on_free);
212 
213 /*
214  * A cached value of the page's pageblock's migratetype, used when the page is
215  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217  * Also the migratetype set in the page does not necessarily match the pcplist
218  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219  * other index - this ensures that it will be put on the correct CMA freelist.
220  */
221 static inline int get_pcppage_migratetype(struct page *page)
222 {
223 	return page->index;
224 }
225 
226 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
227 {
228 	page->index = migratetype;
229 }
230 
231 #ifdef CONFIG_PM_SLEEP
232 /*
233  * The following functions are used by the suspend/hibernate code to temporarily
234  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235  * while devices are suspended.  To avoid races with the suspend/hibernate code,
236  * they should always be called with system_transition_mutex held
237  * (gfp_allowed_mask also should only be modified with system_transition_mutex
238  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239  * with that modification).
240  */
241 
242 static gfp_t saved_gfp_mask;
243 
244 void pm_restore_gfp_mask(void)
245 {
246 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
247 	if (saved_gfp_mask) {
248 		gfp_allowed_mask = saved_gfp_mask;
249 		saved_gfp_mask = 0;
250 	}
251 }
252 
253 void pm_restrict_gfp_mask(void)
254 {
255 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 	WARN_ON(saved_gfp_mask);
257 	saved_gfp_mask = gfp_allowed_mask;
258 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
259 }
260 
261 bool pm_suspended_storage(void)
262 {
263 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
264 		return false;
265 	return true;
266 }
267 #endif /* CONFIG_PM_SLEEP */
268 
269 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
270 unsigned int pageblock_order __read_mostly;
271 #endif
272 
273 static void __free_pages_ok(struct page *page, unsigned int order,
274 			    fpi_t fpi_flags);
275 
276 /*
277  * results with 256, 32 in the lowmem_reserve sysctl:
278  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279  *	1G machine -> (16M dma, 784M normal, 224M high)
280  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
282  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
283  *
284  * TBD: should special case ZONE_DMA32 machines here - in those we normally
285  * don't need any ZONE_NORMAL reservation
286  */
287 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
288 #ifdef CONFIG_ZONE_DMA
289 	[ZONE_DMA] = 256,
290 #endif
291 #ifdef CONFIG_ZONE_DMA32
292 	[ZONE_DMA32] = 256,
293 #endif
294 	[ZONE_NORMAL] = 32,
295 #ifdef CONFIG_HIGHMEM
296 	[ZONE_HIGHMEM] = 0,
297 #endif
298 	[ZONE_MOVABLE] = 0,
299 };
300 
301 static char * const zone_names[MAX_NR_ZONES] = {
302 #ifdef CONFIG_ZONE_DMA
303 	 "DMA",
304 #endif
305 #ifdef CONFIG_ZONE_DMA32
306 	 "DMA32",
307 #endif
308 	 "Normal",
309 #ifdef CONFIG_HIGHMEM
310 	 "HighMem",
311 #endif
312 	 "Movable",
313 #ifdef CONFIG_ZONE_DEVICE
314 	 "Device",
315 #endif
316 };
317 
318 const char * const migratetype_names[MIGRATE_TYPES] = {
319 	"Unmovable",
320 	"Movable",
321 	"Reclaimable",
322 	"HighAtomic",
323 #ifdef CONFIG_CMA
324 	"CMA",
325 #endif
326 #ifdef CONFIG_MEMORY_ISOLATION
327 	"Isolate",
328 #endif
329 };
330 
331 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 	[NULL_COMPOUND_DTOR] = NULL,
333 	[COMPOUND_PAGE_DTOR] = free_compound_page,
334 #ifdef CONFIG_HUGETLB_PAGE
335 	[HUGETLB_PAGE_DTOR] = free_huge_page,
336 #endif
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
339 #endif
340 };
341 
342 int min_free_kbytes = 1024;
343 int user_min_free_kbytes = -1;
344 int watermark_boost_factor __read_mostly = 15000;
345 int watermark_scale_factor = 10;
346 
347 static unsigned long nr_kernel_pages __initdata;
348 static unsigned long nr_all_pages __initdata;
349 static unsigned long dma_reserve __initdata;
350 
351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long required_kernelcore __initdata;
354 static unsigned long required_kernelcore_percent __initdata;
355 static unsigned long required_movablecore __initdata;
356 static unsigned long required_movablecore_percent __initdata;
357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
358 static bool mirrored_kernelcore __meminitdata;
359 
360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
361 int movable_zone;
362 EXPORT_SYMBOL(movable_zone);
363 
364 #if MAX_NUMNODES > 1
365 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
366 unsigned int nr_online_nodes __read_mostly = 1;
367 EXPORT_SYMBOL(nr_node_ids);
368 EXPORT_SYMBOL(nr_online_nodes);
369 #endif
370 
371 int page_group_by_mobility_disabled __read_mostly;
372 
373 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
374 /*
375  * During boot we initialize deferred pages on-demand, as needed, but once
376  * page_alloc_init_late() has finished, the deferred pages are all initialized,
377  * and we can permanently disable that path.
378  */
379 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
380 
381 /*
382  * Calling kasan_poison_pages() only after deferred memory initialization
383  * has completed. Poisoning pages during deferred memory init will greatly
384  * lengthen the process and cause problem in large memory systems as the
385  * deferred pages initialization is done with interrupt disabled.
386  *
387  * Assuming that there will be no reference to those newly initialized
388  * pages before they are ever allocated, this should have no effect on
389  * KASAN memory tracking as the poison will be properly inserted at page
390  * allocation time. The only corner case is when pages are allocated by
391  * on-demand allocation and then freed again before the deferred pages
392  * initialization is done, but this is not likely to happen.
393  */
394 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
395 {
396 	return static_branch_unlikely(&deferred_pages) ||
397 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
398 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
399 	       PageSkipKASanPoison(page);
400 }
401 
402 /* Returns true if the struct page for the pfn is uninitialised */
403 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
404 {
405 	int nid = early_pfn_to_nid(pfn);
406 
407 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
408 		return true;
409 
410 	return false;
411 }
412 
413 /*
414  * Returns true when the remaining initialisation should be deferred until
415  * later in the boot cycle when it can be parallelised.
416  */
417 static bool __meminit
418 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
419 {
420 	static unsigned long prev_end_pfn, nr_initialised;
421 
422 	/*
423 	 * prev_end_pfn static that contains the end of previous zone
424 	 * No need to protect because called very early in boot before smp_init.
425 	 */
426 	if (prev_end_pfn != end_pfn) {
427 		prev_end_pfn = end_pfn;
428 		nr_initialised = 0;
429 	}
430 
431 	/* Always populate low zones for address-constrained allocations */
432 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
433 		return false;
434 
435 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
436 		return true;
437 	/*
438 	 * We start only with one section of pages, more pages are added as
439 	 * needed until the rest of deferred pages are initialized.
440 	 */
441 	nr_initialised++;
442 	if ((nr_initialised > PAGES_PER_SECTION) &&
443 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
444 		NODE_DATA(nid)->first_deferred_pfn = pfn;
445 		return true;
446 	}
447 	return false;
448 }
449 #else
450 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
451 {
452 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
453 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
454 	       PageSkipKASanPoison(page);
455 }
456 
457 static inline bool early_page_uninitialised(unsigned long pfn)
458 {
459 	return false;
460 }
461 
462 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
463 {
464 	return false;
465 }
466 #endif
467 
468 /* Return a pointer to the bitmap storing bits affecting a block of pages */
469 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
470 							unsigned long pfn)
471 {
472 #ifdef CONFIG_SPARSEMEM
473 	return section_to_usemap(__pfn_to_section(pfn));
474 #else
475 	return page_zone(page)->pageblock_flags;
476 #endif /* CONFIG_SPARSEMEM */
477 }
478 
479 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
480 {
481 #ifdef CONFIG_SPARSEMEM
482 	pfn &= (PAGES_PER_SECTION-1);
483 #else
484 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
485 #endif /* CONFIG_SPARSEMEM */
486 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
487 }
488 
489 static __always_inline
490 unsigned long __get_pfnblock_flags_mask(const struct page *page,
491 					unsigned long pfn,
492 					unsigned long mask)
493 {
494 	unsigned long *bitmap;
495 	unsigned long bitidx, word_bitidx;
496 	unsigned long word;
497 
498 	bitmap = get_pageblock_bitmap(page, pfn);
499 	bitidx = pfn_to_bitidx(page, pfn);
500 	word_bitidx = bitidx / BITS_PER_LONG;
501 	bitidx &= (BITS_PER_LONG-1);
502 
503 	word = bitmap[word_bitidx];
504 	return (word >> bitidx) & mask;
505 }
506 
507 /**
508  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
509  * @page: The page within the block of interest
510  * @pfn: The target page frame number
511  * @mask: mask of bits that the caller is interested in
512  *
513  * Return: pageblock_bits flags
514  */
515 unsigned long get_pfnblock_flags_mask(const struct page *page,
516 					unsigned long pfn, unsigned long mask)
517 {
518 	return __get_pfnblock_flags_mask(page, pfn, mask);
519 }
520 
521 static __always_inline int get_pfnblock_migratetype(const struct page *page,
522 					unsigned long pfn)
523 {
524 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
525 }
526 
527 /**
528  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
529  * @page: The page within the block of interest
530  * @flags: The flags to set
531  * @pfn: The target page frame number
532  * @mask: mask of bits that the caller is interested in
533  */
534 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
535 					unsigned long pfn,
536 					unsigned long mask)
537 {
538 	unsigned long *bitmap;
539 	unsigned long bitidx, word_bitidx;
540 	unsigned long old_word, word;
541 
542 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
543 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
544 
545 	bitmap = get_pageblock_bitmap(page, pfn);
546 	bitidx = pfn_to_bitidx(page, pfn);
547 	word_bitidx = bitidx / BITS_PER_LONG;
548 	bitidx &= (BITS_PER_LONG-1);
549 
550 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
551 
552 	mask <<= bitidx;
553 	flags <<= bitidx;
554 
555 	word = READ_ONCE(bitmap[word_bitidx]);
556 	for (;;) {
557 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
558 		if (word == old_word)
559 			break;
560 		word = old_word;
561 	}
562 }
563 
564 void set_pageblock_migratetype(struct page *page, int migratetype)
565 {
566 	if (unlikely(page_group_by_mobility_disabled &&
567 		     migratetype < MIGRATE_PCPTYPES))
568 		migratetype = MIGRATE_UNMOVABLE;
569 
570 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
571 				page_to_pfn(page), MIGRATETYPE_MASK);
572 }
573 
574 #ifdef CONFIG_DEBUG_VM
575 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
576 {
577 	int ret = 0;
578 	unsigned seq;
579 	unsigned long pfn = page_to_pfn(page);
580 	unsigned long sp, start_pfn;
581 
582 	do {
583 		seq = zone_span_seqbegin(zone);
584 		start_pfn = zone->zone_start_pfn;
585 		sp = zone->spanned_pages;
586 		if (!zone_spans_pfn(zone, pfn))
587 			ret = 1;
588 	} while (zone_span_seqretry(zone, seq));
589 
590 	if (ret)
591 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
592 			pfn, zone_to_nid(zone), zone->name,
593 			start_pfn, start_pfn + sp);
594 
595 	return ret;
596 }
597 
598 static int page_is_consistent(struct zone *zone, struct page *page)
599 {
600 	if (zone != page_zone(page))
601 		return 0;
602 
603 	return 1;
604 }
605 /*
606  * Temporary debugging check for pages not lying within a given zone.
607  */
608 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
609 {
610 	if (page_outside_zone_boundaries(zone, page))
611 		return 1;
612 	if (!page_is_consistent(zone, page))
613 		return 1;
614 
615 	return 0;
616 }
617 #else
618 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
619 {
620 	return 0;
621 }
622 #endif
623 
624 static void bad_page(struct page *page, const char *reason)
625 {
626 	static unsigned long resume;
627 	static unsigned long nr_shown;
628 	static unsigned long nr_unshown;
629 
630 	/*
631 	 * Allow a burst of 60 reports, then keep quiet for that minute;
632 	 * or allow a steady drip of one report per second.
633 	 */
634 	if (nr_shown == 60) {
635 		if (time_before(jiffies, resume)) {
636 			nr_unshown++;
637 			goto out;
638 		}
639 		if (nr_unshown) {
640 			pr_alert(
641 			      "BUG: Bad page state: %lu messages suppressed\n",
642 				nr_unshown);
643 			nr_unshown = 0;
644 		}
645 		nr_shown = 0;
646 	}
647 	if (nr_shown++ == 0)
648 		resume = jiffies + 60 * HZ;
649 
650 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
651 		current->comm, page_to_pfn(page));
652 	dump_page(page, reason);
653 
654 	print_modules();
655 	dump_stack();
656 out:
657 	/* Leave bad fields for debug, except PageBuddy could make trouble */
658 	page_mapcount_reset(page); /* remove PageBuddy */
659 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
660 }
661 
662 static inline unsigned int order_to_pindex(int migratetype, int order)
663 {
664 	int base = order;
665 
666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
667 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
668 		VM_BUG_ON(order != pageblock_order);
669 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
670 	}
671 #else
672 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
673 #endif
674 
675 	return (MIGRATE_PCPTYPES * base) + migratetype;
676 }
677 
678 static inline int pindex_to_order(unsigned int pindex)
679 {
680 	int order = pindex / MIGRATE_PCPTYPES;
681 
682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
683 	if (order > PAGE_ALLOC_COSTLY_ORDER)
684 		order = pageblock_order;
685 #else
686 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
687 #endif
688 
689 	return order;
690 }
691 
692 static inline bool pcp_allowed_order(unsigned int order)
693 {
694 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
695 		return true;
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 	if (order == pageblock_order)
698 		return true;
699 #endif
700 	return false;
701 }
702 
703 static inline void free_the_page(struct page *page, unsigned int order)
704 {
705 	if (pcp_allowed_order(order))		/* Via pcp? */
706 		free_unref_page(page, order);
707 	else
708 		__free_pages_ok(page, order, FPI_NONE);
709 }
710 
711 /*
712  * Higher-order pages are called "compound pages".  They are structured thusly:
713  *
714  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
715  *
716  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
717  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
718  *
719  * The first tail page's ->compound_dtor holds the offset in array of compound
720  * page destructors. See compound_page_dtors.
721  *
722  * The first tail page's ->compound_order holds the order of allocation.
723  * This usage means that zero-order pages may not be compound.
724  */
725 
726 void free_compound_page(struct page *page)
727 {
728 	mem_cgroup_uncharge(page_folio(page));
729 	free_the_page(page, compound_order(page));
730 }
731 
732 static void prep_compound_head(struct page *page, unsigned int order)
733 {
734 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
735 	set_compound_order(page, order);
736 	atomic_set(compound_mapcount_ptr(page), -1);
737 	if (hpage_pincount_available(page))
738 		atomic_set(compound_pincount_ptr(page), 0);
739 }
740 
741 static void prep_compound_tail(struct page *head, int tail_idx)
742 {
743 	struct page *p = head + tail_idx;
744 
745 	p->mapping = TAIL_MAPPING;
746 	set_compound_head(p, head);
747 }
748 
749 void prep_compound_page(struct page *page, unsigned int order)
750 {
751 	int i;
752 	int nr_pages = 1 << order;
753 
754 	__SetPageHead(page);
755 	for (i = 1; i < nr_pages; i++)
756 		prep_compound_tail(page, i);
757 
758 	prep_compound_head(page, order);
759 }
760 
761 #ifdef CONFIG_DEBUG_PAGEALLOC
762 unsigned int _debug_guardpage_minorder;
763 
764 bool _debug_pagealloc_enabled_early __read_mostly
765 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
766 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
767 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
768 EXPORT_SYMBOL(_debug_pagealloc_enabled);
769 
770 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
771 
772 static int __init early_debug_pagealloc(char *buf)
773 {
774 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
775 }
776 early_param("debug_pagealloc", early_debug_pagealloc);
777 
778 static int __init debug_guardpage_minorder_setup(char *buf)
779 {
780 	unsigned long res;
781 
782 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
783 		pr_err("Bad debug_guardpage_minorder value\n");
784 		return 0;
785 	}
786 	_debug_guardpage_minorder = res;
787 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
788 	return 0;
789 }
790 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
791 
792 static inline bool set_page_guard(struct zone *zone, struct page *page,
793 				unsigned int order, int migratetype)
794 {
795 	if (!debug_guardpage_enabled())
796 		return false;
797 
798 	if (order >= debug_guardpage_minorder())
799 		return false;
800 
801 	__SetPageGuard(page);
802 	INIT_LIST_HEAD(&page->lru);
803 	set_page_private(page, order);
804 	/* Guard pages are not available for any usage */
805 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
806 
807 	return true;
808 }
809 
810 static inline void clear_page_guard(struct zone *zone, struct page *page,
811 				unsigned int order, int migratetype)
812 {
813 	if (!debug_guardpage_enabled())
814 		return;
815 
816 	__ClearPageGuard(page);
817 
818 	set_page_private(page, 0);
819 	if (!is_migrate_isolate(migratetype))
820 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
821 }
822 #else
823 static inline bool set_page_guard(struct zone *zone, struct page *page,
824 			unsigned int order, int migratetype) { return false; }
825 static inline void clear_page_guard(struct zone *zone, struct page *page,
826 				unsigned int order, int migratetype) {}
827 #endif
828 
829 /*
830  * Enable static keys related to various memory debugging and hardening options.
831  * Some override others, and depend on early params that are evaluated in the
832  * order of appearance. So we need to first gather the full picture of what was
833  * enabled, and then make decisions.
834  */
835 void init_mem_debugging_and_hardening(void)
836 {
837 	bool page_poisoning_requested = false;
838 
839 #ifdef CONFIG_PAGE_POISONING
840 	/*
841 	 * Page poisoning is debug page alloc for some arches. If
842 	 * either of those options are enabled, enable poisoning.
843 	 */
844 	if (page_poisoning_enabled() ||
845 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
846 	      debug_pagealloc_enabled())) {
847 		static_branch_enable(&_page_poisoning_enabled);
848 		page_poisoning_requested = true;
849 	}
850 #endif
851 
852 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
853 	    page_poisoning_requested) {
854 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
855 			"will take precedence over init_on_alloc and init_on_free\n");
856 		_init_on_alloc_enabled_early = false;
857 		_init_on_free_enabled_early = false;
858 	}
859 
860 	if (_init_on_alloc_enabled_early)
861 		static_branch_enable(&init_on_alloc);
862 	else
863 		static_branch_disable(&init_on_alloc);
864 
865 	if (_init_on_free_enabled_early)
866 		static_branch_enable(&init_on_free);
867 	else
868 		static_branch_disable(&init_on_free);
869 
870 #ifdef CONFIG_DEBUG_PAGEALLOC
871 	if (!debug_pagealloc_enabled())
872 		return;
873 
874 	static_branch_enable(&_debug_pagealloc_enabled);
875 
876 	if (!debug_guardpage_minorder())
877 		return;
878 
879 	static_branch_enable(&_debug_guardpage_enabled);
880 #endif
881 }
882 
883 static inline void set_buddy_order(struct page *page, unsigned int order)
884 {
885 	set_page_private(page, order);
886 	__SetPageBuddy(page);
887 }
888 
889 /*
890  * This function checks whether a page is free && is the buddy
891  * we can coalesce a page and its buddy if
892  * (a) the buddy is not in a hole (check before calling!) &&
893  * (b) the buddy is in the buddy system &&
894  * (c) a page and its buddy have the same order &&
895  * (d) a page and its buddy are in the same zone.
896  *
897  * For recording whether a page is in the buddy system, we set PageBuddy.
898  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
899  *
900  * For recording page's order, we use page_private(page).
901  */
902 static inline bool page_is_buddy(struct page *page, struct page *buddy,
903 							unsigned int order)
904 {
905 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
906 		return false;
907 
908 	if (buddy_order(buddy) != order)
909 		return false;
910 
911 	/*
912 	 * zone check is done late to avoid uselessly calculating
913 	 * zone/node ids for pages that could never merge.
914 	 */
915 	if (page_zone_id(page) != page_zone_id(buddy))
916 		return false;
917 
918 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
919 
920 	return true;
921 }
922 
923 #ifdef CONFIG_COMPACTION
924 static inline struct capture_control *task_capc(struct zone *zone)
925 {
926 	struct capture_control *capc = current->capture_control;
927 
928 	return unlikely(capc) &&
929 		!(current->flags & PF_KTHREAD) &&
930 		!capc->page &&
931 		capc->cc->zone == zone ? capc : NULL;
932 }
933 
934 static inline bool
935 compaction_capture(struct capture_control *capc, struct page *page,
936 		   int order, int migratetype)
937 {
938 	if (!capc || order != capc->cc->order)
939 		return false;
940 
941 	/* Do not accidentally pollute CMA or isolated regions*/
942 	if (is_migrate_cma(migratetype) ||
943 	    is_migrate_isolate(migratetype))
944 		return false;
945 
946 	/*
947 	 * Do not let lower order allocations pollute a movable pageblock.
948 	 * This might let an unmovable request use a reclaimable pageblock
949 	 * and vice-versa but no more than normal fallback logic which can
950 	 * have trouble finding a high-order free page.
951 	 */
952 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
953 		return false;
954 
955 	capc->page = page;
956 	return true;
957 }
958 
959 #else
960 static inline struct capture_control *task_capc(struct zone *zone)
961 {
962 	return NULL;
963 }
964 
965 static inline bool
966 compaction_capture(struct capture_control *capc, struct page *page,
967 		   int order, int migratetype)
968 {
969 	return false;
970 }
971 #endif /* CONFIG_COMPACTION */
972 
973 /* Used for pages not on another list */
974 static inline void add_to_free_list(struct page *page, struct zone *zone,
975 				    unsigned int order, int migratetype)
976 {
977 	struct free_area *area = &zone->free_area[order];
978 
979 	list_add(&page->lru, &area->free_list[migratetype]);
980 	area->nr_free++;
981 }
982 
983 /* Used for pages not on another list */
984 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
985 					 unsigned int order, int migratetype)
986 {
987 	struct free_area *area = &zone->free_area[order];
988 
989 	list_add_tail(&page->lru, &area->free_list[migratetype]);
990 	area->nr_free++;
991 }
992 
993 /*
994  * Used for pages which are on another list. Move the pages to the tail
995  * of the list - so the moved pages won't immediately be considered for
996  * allocation again (e.g., optimization for memory onlining).
997  */
998 static inline void move_to_free_list(struct page *page, struct zone *zone,
999 				     unsigned int order, int migratetype)
1000 {
1001 	struct free_area *area = &zone->free_area[order];
1002 
1003 	list_move_tail(&page->lru, &area->free_list[migratetype]);
1004 }
1005 
1006 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1007 					   unsigned int order)
1008 {
1009 	/* clear reported state and update reported page count */
1010 	if (page_reported(page))
1011 		__ClearPageReported(page);
1012 
1013 	list_del(&page->lru);
1014 	__ClearPageBuddy(page);
1015 	set_page_private(page, 0);
1016 	zone->free_area[order].nr_free--;
1017 }
1018 
1019 /*
1020  * If this is not the largest possible page, check if the buddy
1021  * of the next-highest order is free. If it is, it's possible
1022  * that pages are being freed that will coalesce soon. In case,
1023  * that is happening, add the free page to the tail of the list
1024  * so it's less likely to be used soon and more likely to be merged
1025  * as a higher order page
1026  */
1027 static inline bool
1028 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1029 		   struct page *page, unsigned int order)
1030 {
1031 	struct page *higher_page, *higher_buddy;
1032 	unsigned long combined_pfn;
1033 
1034 	if (order >= MAX_ORDER - 2)
1035 		return false;
1036 
1037 	combined_pfn = buddy_pfn & pfn;
1038 	higher_page = page + (combined_pfn - pfn);
1039 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1040 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1041 
1042 	return page_is_buddy(higher_page, higher_buddy, order + 1);
1043 }
1044 
1045 /*
1046  * Freeing function for a buddy system allocator.
1047  *
1048  * The concept of a buddy system is to maintain direct-mapped table
1049  * (containing bit values) for memory blocks of various "orders".
1050  * The bottom level table contains the map for the smallest allocatable
1051  * units of memory (here, pages), and each level above it describes
1052  * pairs of units from the levels below, hence, "buddies".
1053  * At a high level, all that happens here is marking the table entry
1054  * at the bottom level available, and propagating the changes upward
1055  * as necessary, plus some accounting needed to play nicely with other
1056  * parts of the VM system.
1057  * At each level, we keep a list of pages, which are heads of continuous
1058  * free pages of length of (1 << order) and marked with PageBuddy.
1059  * Page's order is recorded in page_private(page) field.
1060  * So when we are allocating or freeing one, we can derive the state of the
1061  * other.  That is, if we allocate a small block, and both were
1062  * free, the remainder of the region must be split into blocks.
1063  * If a block is freed, and its buddy is also free, then this
1064  * triggers coalescing into a block of larger size.
1065  *
1066  * -- nyc
1067  */
1068 
1069 static inline void __free_one_page(struct page *page,
1070 		unsigned long pfn,
1071 		struct zone *zone, unsigned int order,
1072 		int migratetype, fpi_t fpi_flags)
1073 {
1074 	struct capture_control *capc = task_capc(zone);
1075 	unsigned long buddy_pfn;
1076 	unsigned long combined_pfn;
1077 	unsigned int max_order;
1078 	struct page *buddy;
1079 	bool to_tail;
1080 
1081 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1082 
1083 	VM_BUG_ON(!zone_is_initialized(zone));
1084 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1085 
1086 	VM_BUG_ON(migratetype == -1);
1087 	if (likely(!is_migrate_isolate(migratetype)))
1088 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1089 
1090 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1091 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1092 
1093 continue_merging:
1094 	while (order < max_order) {
1095 		if (compaction_capture(capc, page, order, migratetype)) {
1096 			__mod_zone_freepage_state(zone, -(1 << order),
1097 								migratetype);
1098 			return;
1099 		}
1100 		buddy_pfn = __find_buddy_pfn(pfn, order);
1101 		buddy = page + (buddy_pfn - pfn);
1102 
1103 		if (!page_is_buddy(page, buddy, order))
1104 			goto done_merging;
1105 		/*
1106 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1107 		 * merge with it and move up one order.
1108 		 */
1109 		if (page_is_guard(buddy))
1110 			clear_page_guard(zone, buddy, order, migratetype);
1111 		else
1112 			del_page_from_free_list(buddy, zone, order);
1113 		combined_pfn = buddy_pfn & pfn;
1114 		page = page + (combined_pfn - pfn);
1115 		pfn = combined_pfn;
1116 		order++;
1117 	}
1118 	if (order < MAX_ORDER - 1) {
1119 		/* If we are here, it means order is >= pageblock_order.
1120 		 * We want to prevent merge between freepages on isolate
1121 		 * pageblock and normal pageblock. Without this, pageblock
1122 		 * isolation could cause incorrect freepage or CMA accounting.
1123 		 *
1124 		 * We don't want to hit this code for the more frequent
1125 		 * low-order merging.
1126 		 */
1127 		if (unlikely(has_isolate_pageblock(zone))) {
1128 			int buddy_mt;
1129 
1130 			buddy_pfn = __find_buddy_pfn(pfn, order);
1131 			buddy = page + (buddy_pfn - pfn);
1132 			buddy_mt = get_pageblock_migratetype(buddy);
1133 
1134 			if (migratetype != buddy_mt
1135 					&& (is_migrate_isolate(migratetype) ||
1136 						is_migrate_isolate(buddy_mt)))
1137 				goto done_merging;
1138 		}
1139 		max_order = order + 1;
1140 		goto continue_merging;
1141 	}
1142 
1143 done_merging:
1144 	set_buddy_order(page, order);
1145 
1146 	if (fpi_flags & FPI_TO_TAIL)
1147 		to_tail = true;
1148 	else if (is_shuffle_order(order))
1149 		to_tail = shuffle_pick_tail();
1150 	else
1151 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1152 
1153 	if (to_tail)
1154 		add_to_free_list_tail(page, zone, order, migratetype);
1155 	else
1156 		add_to_free_list(page, zone, order, migratetype);
1157 
1158 	/* Notify page reporting subsystem of freed page */
1159 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1160 		page_reporting_notify_free(order);
1161 }
1162 
1163 /*
1164  * A bad page could be due to a number of fields. Instead of multiple branches,
1165  * try and check multiple fields with one check. The caller must do a detailed
1166  * check if necessary.
1167  */
1168 static inline bool page_expected_state(struct page *page,
1169 					unsigned long check_flags)
1170 {
1171 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1172 		return false;
1173 
1174 	if (unlikely((unsigned long)page->mapping |
1175 			page_ref_count(page) |
1176 #ifdef CONFIG_MEMCG
1177 			page->memcg_data |
1178 #endif
1179 			(page->flags & check_flags)))
1180 		return false;
1181 
1182 	return true;
1183 }
1184 
1185 static const char *page_bad_reason(struct page *page, unsigned long flags)
1186 {
1187 	const char *bad_reason = NULL;
1188 
1189 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1190 		bad_reason = "nonzero mapcount";
1191 	if (unlikely(page->mapping != NULL))
1192 		bad_reason = "non-NULL mapping";
1193 	if (unlikely(page_ref_count(page) != 0))
1194 		bad_reason = "nonzero _refcount";
1195 	if (unlikely(page->flags & flags)) {
1196 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1197 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1198 		else
1199 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1200 	}
1201 #ifdef CONFIG_MEMCG
1202 	if (unlikely(page->memcg_data))
1203 		bad_reason = "page still charged to cgroup";
1204 #endif
1205 	return bad_reason;
1206 }
1207 
1208 static void check_free_page_bad(struct page *page)
1209 {
1210 	bad_page(page,
1211 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1212 }
1213 
1214 static inline int check_free_page(struct page *page)
1215 {
1216 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1217 		return 0;
1218 
1219 	/* Something has gone sideways, find it */
1220 	check_free_page_bad(page);
1221 	return 1;
1222 }
1223 
1224 static int free_tail_pages_check(struct page *head_page, struct page *page)
1225 {
1226 	int ret = 1;
1227 
1228 	/*
1229 	 * We rely page->lru.next never has bit 0 set, unless the page
1230 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1231 	 */
1232 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1233 
1234 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1235 		ret = 0;
1236 		goto out;
1237 	}
1238 	switch (page - head_page) {
1239 	case 1:
1240 		/* the first tail page: ->mapping may be compound_mapcount() */
1241 		if (unlikely(compound_mapcount(page))) {
1242 			bad_page(page, "nonzero compound_mapcount");
1243 			goto out;
1244 		}
1245 		break;
1246 	case 2:
1247 		/*
1248 		 * the second tail page: ->mapping is
1249 		 * deferred_list.next -- ignore value.
1250 		 */
1251 		break;
1252 	default:
1253 		if (page->mapping != TAIL_MAPPING) {
1254 			bad_page(page, "corrupted mapping in tail page");
1255 			goto out;
1256 		}
1257 		break;
1258 	}
1259 	if (unlikely(!PageTail(page))) {
1260 		bad_page(page, "PageTail not set");
1261 		goto out;
1262 	}
1263 	if (unlikely(compound_head(page) != head_page)) {
1264 		bad_page(page, "compound_head not consistent");
1265 		goto out;
1266 	}
1267 	ret = 0;
1268 out:
1269 	page->mapping = NULL;
1270 	clear_compound_head(page);
1271 	return ret;
1272 }
1273 
1274 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1275 {
1276 	int i;
1277 
1278 	if (zero_tags) {
1279 		for (i = 0; i < numpages; i++)
1280 			tag_clear_highpage(page + i);
1281 		return;
1282 	}
1283 
1284 	/* s390's use of memset() could override KASAN redzones. */
1285 	kasan_disable_current();
1286 	for (i = 0; i < numpages; i++) {
1287 		u8 tag = page_kasan_tag(page + i);
1288 		page_kasan_tag_reset(page + i);
1289 		clear_highpage(page + i);
1290 		page_kasan_tag_set(page + i, tag);
1291 	}
1292 	kasan_enable_current();
1293 }
1294 
1295 static __always_inline bool free_pages_prepare(struct page *page,
1296 			unsigned int order, bool check_free, fpi_t fpi_flags)
1297 {
1298 	int bad = 0;
1299 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1300 
1301 	VM_BUG_ON_PAGE(PageTail(page), page);
1302 
1303 	trace_mm_page_free(page, order);
1304 
1305 	if (unlikely(PageHWPoison(page)) && !order) {
1306 		/*
1307 		 * Do not let hwpoison pages hit pcplists/buddy
1308 		 * Untie memcg state and reset page's owner
1309 		 */
1310 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1311 			__memcg_kmem_uncharge_page(page, order);
1312 		reset_page_owner(page, order);
1313 		page_table_check_free(page, order);
1314 		return false;
1315 	}
1316 
1317 	/*
1318 	 * Check tail pages before head page information is cleared to
1319 	 * avoid checking PageCompound for order-0 pages.
1320 	 */
1321 	if (unlikely(order)) {
1322 		bool compound = PageCompound(page);
1323 		int i;
1324 
1325 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1326 
1327 		if (compound) {
1328 			ClearPageDoubleMap(page);
1329 			ClearPageHasHWPoisoned(page);
1330 		}
1331 		for (i = 1; i < (1 << order); i++) {
1332 			if (compound)
1333 				bad += free_tail_pages_check(page, page + i);
1334 			if (unlikely(check_free_page(page + i))) {
1335 				bad++;
1336 				continue;
1337 			}
1338 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1339 		}
1340 	}
1341 	if (PageMappingFlags(page))
1342 		page->mapping = NULL;
1343 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1344 		__memcg_kmem_uncharge_page(page, order);
1345 	if (check_free)
1346 		bad += check_free_page(page);
1347 	if (bad)
1348 		return false;
1349 
1350 	page_cpupid_reset_last(page);
1351 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1352 	reset_page_owner(page, order);
1353 	page_table_check_free(page, order);
1354 
1355 	if (!PageHighMem(page)) {
1356 		debug_check_no_locks_freed(page_address(page),
1357 					   PAGE_SIZE << order);
1358 		debug_check_no_obj_freed(page_address(page),
1359 					   PAGE_SIZE << order);
1360 	}
1361 
1362 	kernel_poison_pages(page, 1 << order);
1363 
1364 	/*
1365 	 * As memory initialization might be integrated into KASAN,
1366 	 * kasan_free_pages and kernel_init_free_pages must be
1367 	 * kept together to avoid discrepancies in behavior.
1368 	 *
1369 	 * With hardware tag-based KASAN, memory tags must be set before the
1370 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1371 	 */
1372 	if (kasan_has_integrated_init()) {
1373 		if (!skip_kasan_poison)
1374 			kasan_free_pages(page, order);
1375 	} else {
1376 		bool init = want_init_on_free();
1377 
1378 		if (init)
1379 			kernel_init_free_pages(page, 1 << order, false);
1380 		if (!skip_kasan_poison)
1381 			kasan_poison_pages(page, order, init);
1382 	}
1383 
1384 	/*
1385 	 * arch_free_page() can make the page's contents inaccessible.  s390
1386 	 * does this.  So nothing which can access the page's contents should
1387 	 * happen after this.
1388 	 */
1389 	arch_free_page(page, order);
1390 
1391 	debug_pagealloc_unmap_pages(page, 1 << order);
1392 
1393 	return true;
1394 }
1395 
1396 #ifdef CONFIG_DEBUG_VM
1397 /*
1398  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1399  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1400  * moved from pcp lists to free lists.
1401  */
1402 static bool free_pcp_prepare(struct page *page, unsigned int order)
1403 {
1404 	return free_pages_prepare(page, order, true, FPI_NONE);
1405 }
1406 
1407 static bool bulkfree_pcp_prepare(struct page *page)
1408 {
1409 	if (debug_pagealloc_enabled_static())
1410 		return check_free_page(page);
1411 	else
1412 		return false;
1413 }
1414 #else
1415 /*
1416  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1417  * moving from pcp lists to free list in order to reduce overhead. With
1418  * debug_pagealloc enabled, they are checked also immediately when being freed
1419  * to the pcp lists.
1420  */
1421 static bool free_pcp_prepare(struct page *page, unsigned int order)
1422 {
1423 	if (debug_pagealloc_enabled_static())
1424 		return free_pages_prepare(page, order, true, FPI_NONE);
1425 	else
1426 		return free_pages_prepare(page, order, false, FPI_NONE);
1427 }
1428 
1429 static bool bulkfree_pcp_prepare(struct page *page)
1430 {
1431 	return check_free_page(page);
1432 }
1433 #endif /* CONFIG_DEBUG_VM */
1434 
1435 static inline void prefetch_buddy(struct page *page)
1436 {
1437 	unsigned long pfn = page_to_pfn(page);
1438 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1439 	struct page *buddy = page + (buddy_pfn - pfn);
1440 
1441 	prefetch(buddy);
1442 }
1443 
1444 /*
1445  * Frees a number of pages from the PCP lists
1446  * Assumes all pages on list are in same zone.
1447  * count is the number of pages to free.
1448  */
1449 static void free_pcppages_bulk(struct zone *zone, int count,
1450 					struct per_cpu_pages *pcp)
1451 {
1452 	int pindex = 0;
1453 	int batch_free = 0;
1454 	int nr_freed = 0;
1455 	unsigned int order;
1456 	int prefetch_nr = READ_ONCE(pcp->batch);
1457 	bool isolated_pageblocks;
1458 	struct page *page, *tmp;
1459 	LIST_HEAD(head);
1460 
1461 	/*
1462 	 * Ensure proper count is passed which otherwise would stuck in the
1463 	 * below while (list_empty(list)) loop.
1464 	 */
1465 	count = min(pcp->count, count);
1466 	while (count > 0) {
1467 		struct list_head *list;
1468 
1469 		/*
1470 		 * Remove pages from lists in a round-robin fashion. A
1471 		 * batch_free count is maintained that is incremented when an
1472 		 * empty list is encountered.  This is so more pages are freed
1473 		 * off fuller lists instead of spinning excessively around empty
1474 		 * lists
1475 		 */
1476 		do {
1477 			batch_free++;
1478 			if (++pindex == NR_PCP_LISTS)
1479 				pindex = 0;
1480 			list = &pcp->lists[pindex];
1481 		} while (list_empty(list));
1482 
1483 		/* This is the only non-empty list. Free them all. */
1484 		if (batch_free == NR_PCP_LISTS)
1485 			batch_free = count;
1486 
1487 		order = pindex_to_order(pindex);
1488 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1489 		do {
1490 			page = list_last_entry(list, struct page, lru);
1491 			/* must delete to avoid corrupting pcp list */
1492 			list_del(&page->lru);
1493 			nr_freed += 1 << order;
1494 			count -= 1 << order;
1495 
1496 			if (bulkfree_pcp_prepare(page))
1497 				continue;
1498 
1499 			/* Encode order with the migratetype */
1500 			page->index <<= NR_PCP_ORDER_WIDTH;
1501 			page->index |= order;
1502 
1503 			list_add_tail(&page->lru, &head);
1504 
1505 			/*
1506 			 * We are going to put the page back to the global
1507 			 * pool, prefetch its buddy to speed up later access
1508 			 * under zone->lock. It is believed the overhead of
1509 			 * an additional test and calculating buddy_pfn here
1510 			 * can be offset by reduced memory latency later. To
1511 			 * avoid excessive prefetching due to large count, only
1512 			 * prefetch buddy for the first pcp->batch nr of pages.
1513 			 */
1514 			if (prefetch_nr) {
1515 				prefetch_buddy(page);
1516 				prefetch_nr--;
1517 			}
1518 		} while (count > 0 && --batch_free && !list_empty(list));
1519 	}
1520 	pcp->count -= nr_freed;
1521 
1522 	/*
1523 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1524 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1525 	 */
1526 	spin_lock(&zone->lock);
1527 	isolated_pageblocks = has_isolate_pageblock(zone);
1528 
1529 	/*
1530 	 * Use safe version since after __free_one_page(),
1531 	 * page->lru.next will not point to original list.
1532 	 */
1533 	list_for_each_entry_safe(page, tmp, &head, lru) {
1534 		int mt = get_pcppage_migratetype(page);
1535 
1536 		/* mt has been encoded with the order (see above) */
1537 		order = mt & NR_PCP_ORDER_MASK;
1538 		mt >>= NR_PCP_ORDER_WIDTH;
1539 
1540 		/* MIGRATE_ISOLATE page should not go to pcplists */
1541 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1542 		/* Pageblock could have been isolated meanwhile */
1543 		if (unlikely(isolated_pageblocks))
1544 			mt = get_pageblock_migratetype(page);
1545 
1546 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1547 		trace_mm_page_pcpu_drain(page, order, mt);
1548 	}
1549 	spin_unlock(&zone->lock);
1550 }
1551 
1552 static void free_one_page(struct zone *zone,
1553 				struct page *page, unsigned long pfn,
1554 				unsigned int order,
1555 				int migratetype, fpi_t fpi_flags)
1556 {
1557 	unsigned long flags;
1558 
1559 	spin_lock_irqsave(&zone->lock, flags);
1560 	if (unlikely(has_isolate_pageblock(zone) ||
1561 		is_migrate_isolate(migratetype))) {
1562 		migratetype = get_pfnblock_migratetype(page, pfn);
1563 	}
1564 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1565 	spin_unlock_irqrestore(&zone->lock, flags);
1566 }
1567 
1568 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1569 				unsigned long zone, int nid)
1570 {
1571 	mm_zero_struct_page(page);
1572 	set_page_links(page, zone, nid, pfn);
1573 	init_page_count(page);
1574 	page_mapcount_reset(page);
1575 	page_cpupid_reset_last(page);
1576 	page_kasan_tag_reset(page);
1577 
1578 	INIT_LIST_HEAD(&page->lru);
1579 #ifdef WANT_PAGE_VIRTUAL
1580 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1581 	if (!is_highmem_idx(zone))
1582 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1583 #endif
1584 }
1585 
1586 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1587 static void __meminit init_reserved_page(unsigned long pfn)
1588 {
1589 	pg_data_t *pgdat;
1590 	int nid, zid;
1591 
1592 	if (!early_page_uninitialised(pfn))
1593 		return;
1594 
1595 	nid = early_pfn_to_nid(pfn);
1596 	pgdat = NODE_DATA(nid);
1597 
1598 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1599 		struct zone *zone = &pgdat->node_zones[zid];
1600 
1601 		if (zone_spans_pfn(zone, pfn))
1602 			break;
1603 	}
1604 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1605 }
1606 #else
1607 static inline void init_reserved_page(unsigned long pfn)
1608 {
1609 }
1610 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1611 
1612 /*
1613  * Initialised pages do not have PageReserved set. This function is
1614  * called for each range allocated by the bootmem allocator and
1615  * marks the pages PageReserved. The remaining valid pages are later
1616  * sent to the buddy page allocator.
1617  */
1618 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1619 {
1620 	unsigned long start_pfn = PFN_DOWN(start);
1621 	unsigned long end_pfn = PFN_UP(end);
1622 
1623 	for (; start_pfn < end_pfn; start_pfn++) {
1624 		if (pfn_valid(start_pfn)) {
1625 			struct page *page = pfn_to_page(start_pfn);
1626 
1627 			init_reserved_page(start_pfn);
1628 
1629 			/* Avoid false-positive PageTail() */
1630 			INIT_LIST_HEAD(&page->lru);
1631 
1632 			/*
1633 			 * no need for atomic set_bit because the struct
1634 			 * page is not visible yet so nobody should
1635 			 * access it yet.
1636 			 */
1637 			__SetPageReserved(page);
1638 		}
1639 	}
1640 }
1641 
1642 static void __free_pages_ok(struct page *page, unsigned int order,
1643 			    fpi_t fpi_flags)
1644 {
1645 	unsigned long flags;
1646 	int migratetype;
1647 	unsigned long pfn = page_to_pfn(page);
1648 	struct zone *zone = page_zone(page);
1649 
1650 	if (!free_pages_prepare(page, order, true, fpi_flags))
1651 		return;
1652 
1653 	migratetype = get_pfnblock_migratetype(page, pfn);
1654 
1655 	spin_lock_irqsave(&zone->lock, flags);
1656 	if (unlikely(has_isolate_pageblock(zone) ||
1657 		is_migrate_isolate(migratetype))) {
1658 		migratetype = get_pfnblock_migratetype(page, pfn);
1659 	}
1660 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1661 	spin_unlock_irqrestore(&zone->lock, flags);
1662 
1663 	__count_vm_events(PGFREE, 1 << order);
1664 }
1665 
1666 void __free_pages_core(struct page *page, unsigned int order)
1667 {
1668 	unsigned int nr_pages = 1 << order;
1669 	struct page *p = page;
1670 	unsigned int loop;
1671 
1672 	/*
1673 	 * When initializing the memmap, __init_single_page() sets the refcount
1674 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1675 	 * refcount of all involved pages to 0.
1676 	 */
1677 	prefetchw(p);
1678 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1679 		prefetchw(p + 1);
1680 		__ClearPageReserved(p);
1681 		set_page_count(p, 0);
1682 	}
1683 	__ClearPageReserved(p);
1684 	set_page_count(p, 0);
1685 
1686 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1687 
1688 	/*
1689 	 * Bypass PCP and place fresh pages right to the tail, primarily
1690 	 * relevant for memory onlining.
1691 	 */
1692 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1693 }
1694 
1695 #ifdef CONFIG_NUMA
1696 
1697 /*
1698  * During memory init memblocks map pfns to nids. The search is expensive and
1699  * this caches recent lookups. The implementation of __early_pfn_to_nid
1700  * treats start/end as pfns.
1701  */
1702 struct mminit_pfnnid_cache {
1703 	unsigned long last_start;
1704 	unsigned long last_end;
1705 	int last_nid;
1706 };
1707 
1708 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1709 
1710 /*
1711  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1712  */
1713 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1714 					struct mminit_pfnnid_cache *state)
1715 {
1716 	unsigned long start_pfn, end_pfn;
1717 	int nid;
1718 
1719 	if (state->last_start <= pfn && pfn < state->last_end)
1720 		return state->last_nid;
1721 
1722 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1723 	if (nid != NUMA_NO_NODE) {
1724 		state->last_start = start_pfn;
1725 		state->last_end = end_pfn;
1726 		state->last_nid = nid;
1727 	}
1728 
1729 	return nid;
1730 }
1731 
1732 int __meminit early_pfn_to_nid(unsigned long pfn)
1733 {
1734 	static DEFINE_SPINLOCK(early_pfn_lock);
1735 	int nid;
1736 
1737 	spin_lock(&early_pfn_lock);
1738 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1739 	if (nid < 0)
1740 		nid = first_online_node;
1741 	spin_unlock(&early_pfn_lock);
1742 
1743 	return nid;
1744 }
1745 #endif /* CONFIG_NUMA */
1746 
1747 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1748 							unsigned int order)
1749 {
1750 	if (early_page_uninitialised(pfn))
1751 		return;
1752 	__free_pages_core(page, order);
1753 }
1754 
1755 /*
1756  * Check that the whole (or subset of) a pageblock given by the interval of
1757  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1758  * with the migration of free compaction scanner.
1759  *
1760  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1761  *
1762  * It's possible on some configurations to have a setup like node0 node1 node0
1763  * i.e. it's possible that all pages within a zones range of pages do not
1764  * belong to a single zone. We assume that a border between node0 and node1
1765  * can occur within a single pageblock, but not a node0 node1 node0
1766  * interleaving within a single pageblock. It is therefore sufficient to check
1767  * the first and last page of a pageblock and avoid checking each individual
1768  * page in a pageblock.
1769  */
1770 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1771 				     unsigned long end_pfn, struct zone *zone)
1772 {
1773 	struct page *start_page;
1774 	struct page *end_page;
1775 
1776 	/* end_pfn is one past the range we are checking */
1777 	end_pfn--;
1778 
1779 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1780 		return NULL;
1781 
1782 	start_page = pfn_to_online_page(start_pfn);
1783 	if (!start_page)
1784 		return NULL;
1785 
1786 	if (page_zone(start_page) != zone)
1787 		return NULL;
1788 
1789 	end_page = pfn_to_page(end_pfn);
1790 
1791 	/* This gives a shorter code than deriving page_zone(end_page) */
1792 	if (page_zone_id(start_page) != page_zone_id(end_page))
1793 		return NULL;
1794 
1795 	return start_page;
1796 }
1797 
1798 void set_zone_contiguous(struct zone *zone)
1799 {
1800 	unsigned long block_start_pfn = zone->zone_start_pfn;
1801 	unsigned long block_end_pfn;
1802 
1803 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1804 	for (; block_start_pfn < zone_end_pfn(zone);
1805 			block_start_pfn = block_end_pfn,
1806 			 block_end_pfn += pageblock_nr_pages) {
1807 
1808 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1809 
1810 		if (!__pageblock_pfn_to_page(block_start_pfn,
1811 					     block_end_pfn, zone))
1812 			return;
1813 		cond_resched();
1814 	}
1815 
1816 	/* We confirm that there is no hole */
1817 	zone->contiguous = true;
1818 }
1819 
1820 void clear_zone_contiguous(struct zone *zone)
1821 {
1822 	zone->contiguous = false;
1823 }
1824 
1825 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1826 static void __init deferred_free_range(unsigned long pfn,
1827 				       unsigned long nr_pages)
1828 {
1829 	struct page *page;
1830 	unsigned long i;
1831 
1832 	if (!nr_pages)
1833 		return;
1834 
1835 	page = pfn_to_page(pfn);
1836 
1837 	/* Free a large naturally-aligned chunk if possible */
1838 	if (nr_pages == pageblock_nr_pages &&
1839 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1840 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1841 		__free_pages_core(page, pageblock_order);
1842 		return;
1843 	}
1844 
1845 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1846 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1847 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1848 		__free_pages_core(page, 0);
1849 	}
1850 }
1851 
1852 /* Completion tracking for deferred_init_memmap() threads */
1853 static atomic_t pgdat_init_n_undone __initdata;
1854 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1855 
1856 static inline void __init pgdat_init_report_one_done(void)
1857 {
1858 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1859 		complete(&pgdat_init_all_done_comp);
1860 }
1861 
1862 /*
1863  * Returns true if page needs to be initialized or freed to buddy allocator.
1864  *
1865  * First we check if pfn is valid on architectures where it is possible to have
1866  * holes within pageblock_nr_pages. On systems where it is not possible, this
1867  * function is optimized out.
1868  *
1869  * Then, we check if a current large page is valid by only checking the validity
1870  * of the head pfn.
1871  */
1872 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1873 {
1874 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1875 		return false;
1876 	return true;
1877 }
1878 
1879 /*
1880  * Free pages to buddy allocator. Try to free aligned pages in
1881  * pageblock_nr_pages sizes.
1882  */
1883 static void __init deferred_free_pages(unsigned long pfn,
1884 				       unsigned long end_pfn)
1885 {
1886 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1887 	unsigned long nr_free = 0;
1888 
1889 	for (; pfn < end_pfn; pfn++) {
1890 		if (!deferred_pfn_valid(pfn)) {
1891 			deferred_free_range(pfn - nr_free, nr_free);
1892 			nr_free = 0;
1893 		} else if (!(pfn & nr_pgmask)) {
1894 			deferred_free_range(pfn - nr_free, nr_free);
1895 			nr_free = 1;
1896 		} else {
1897 			nr_free++;
1898 		}
1899 	}
1900 	/* Free the last block of pages to allocator */
1901 	deferred_free_range(pfn - nr_free, nr_free);
1902 }
1903 
1904 /*
1905  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1906  * by performing it only once every pageblock_nr_pages.
1907  * Return number of pages initialized.
1908  */
1909 static unsigned long  __init deferred_init_pages(struct zone *zone,
1910 						 unsigned long pfn,
1911 						 unsigned long end_pfn)
1912 {
1913 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1914 	int nid = zone_to_nid(zone);
1915 	unsigned long nr_pages = 0;
1916 	int zid = zone_idx(zone);
1917 	struct page *page = NULL;
1918 
1919 	for (; pfn < end_pfn; pfn++) {
1920 		if (!deferred_pfn_valid(pfn)) {
1921 			page = NULL;
1922 			continue;
1923 		} else if (!page || !(pfn & nr_pgmask)) {
1924 			page = pfn_to_page(pfn);
1925 		} else {
1926 			page++;
1927 		}
1928 		__init_single_page(page, pfn, zid, nid);
1929 		nr_pages++;
1930 	}
1931 	return (nr_pages);
1932 }
1933 
1934 /*
1935  * This function is meant to pre-load the iterator for the zone init.
1936  * Specifically it walks through the ranges until we are caught up to the
1937  * first_init_pfn value and exits there. If we never encounter the value we
1938  * return false indicating there are no valid ranges left.
1939  */
1940 static bool __init
1941 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1942 				    unsigned long *spfn, unsigned long *epfn,
1943 				    unsigned long first_init_pfn)
1944 {
1945 	u64 j;
1946 
1947 	/*
1948 	 * Start out by walking through the ranges in this zone that have
1949 	 * already been initialized. We don't need to do anything with them
1950 	 * so we just need to flush them out of the system.
1951 	 */
1952 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1953 		if (*epfn <= first_init_pfn)
1954 			continue;
1955 		if (*spfn < first_init_pfn)
1956 			*spfn = first_init_pfn;
1957 		*i = j;
1958 		return true;
1959 	}
1960 
1961 	return false;
1962 }
1963 
1964 /*
1965  * Initialize and free pages. We do it in two loops: first we initialize
1966  * struct page, then free to buddy allocator, because while we are
1967  * freeing pages we can access pages that are ahead (computing buddy
1968  * page in __free_one_page()).
1969  *
1970  * In order to try and keep some memory in the cache we have the loop
1971  * broken along max page order boundaries. This way we will not cause
1972  * any issues with the buddy page computation.
1973  */
1974 static unsigned long __init
1975 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1976 		       unsigned long *end_pfn)
1977 {
1978 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1979 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1980 	unsigned long nr_pages = 0;
1981 	u64 j = *i;
1982 
1983 	/* First we loop through and initialize the page values */
1984 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1985 		unsigned long t;
1986 
1987 		if (mo_pfn <= *start_pfn)
1988 			break;
1989 
1990 		t = min(mo_pfn, *end_pfn);
1991 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1992 
1993 		if (mo_pfn < *end_pfn) {
1994 			*start_pfn = mo_pfn;
1995 			break;
1996 		}
1997 	}
1998 
1999 	/* Reset values and now loop through freeing pages as needed */
2000 	swap(j, *i);
2001 
2002 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2003 		unsigned long t;
2004 
2005 		if (mo_pfn <= spfn)
2006 			break;
2007 
2008 		t = min(mo_pfn, epfn);
2009 		deferred_free_pages(spfn, t);
2010 
2011 		if (mo_pfn <= epfn)
2012 			break;
2013 	}
2014 
2015 	return nr_pages;
2016 }
2017 
2018 static void __init
2019 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2020 			   void *arg)
2021 {
2022 	unsigned long spfn, epfn;
2023 	struct zone *zone = arg;
2024 	u64 i;
2025 
2026 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2027 
2028 	/*
2029 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2030 	 * can avoid introducing any issues with the buddy allocator.
2031 	 */
2032 	while (spfn < end_pfn) {
2033 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2034 		cond_resched();
2035 	}
2036 }
2037 
2038 /* An arch may override for more concurrency. */
2039 __weak int __init
2040 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2041 {
2042 	return 1;
2043 }
2044 
2045 /* Initialise remaining memory on a node */
2046 static int __init deferred_init_memmap(void *data)
2047 {
2048 	pg_data_t *pgdat = data;
2049 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2050 	unsigned long spfn = 0, epfn = 0;
2051 	unsigned long first_init_pfn, flags;
2052 	unsigned long start = jiffies;
2053 	struct zone *zone;
2054 	int zid, max_threads;
2055 	u64 i;
2056 
2057 	/* Bind memory initialisation thread to a local node if possible */
2058 	if (!cpumask_empty(cpumask))
2059 		set_cpus_allowed_ptr(current, cpumask);
2060 
2061 	pgdat_resize_lock(pgdat, &flags);
2062 	first_init_pfn = pgdat->first_deferred_pfn;
2063 	if (first_init_pfn == ULONG_MAX) {
2064 		pgdat_resize_unlock(pgdat, &flags);
2065 		pgdat_init_report_one_done();
2066 		return 0;
2067 	}
2068 
2069 	/* Sanity check boundaries */
2070 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2071 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2072 	pgdat->first_deferred_pfn = ULONG_MAX;
2073 
2074 	/*
2075 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2076 	 * interrupt thread must allocate this early in boot, zone must be
2077 	 * pre-grown prior to start of deferred page initialization.
2078 	 */
2079 	pgdat_resize_unlock(pgdat, &flags);
2080 
2081 	/* Only the highest zone is deferred so find it */
2082 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2083 		zone = pgdat->node_zones + zid;
2084 		if (first_init_pfn < zone_end_pfn(zone))
2085 			break;
2086 	}
2087 
2088 	/* If the zone is empty somebody else may have cleared out the zone */
2089 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2090 						 first_init_pfn))
2091 		goto zone_empty;
2092 
2093 	max_threads = deferred_page_init_max_threads(cpumask);
2094 
2095 	while (spfn < epfn) {
2096 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2097 		struct padata_mt_job job = {
2098 			.thread_fn   = deferred_init_memmap_chunk,
2099 			.fn_arg      = zone,
2100 			.start       = spfn,
2101 			.size        = epfn_align - spfn,
2102 			.align       = PAGES_PER_SECTION,
2103 			.min_chunk   = PAGES_PER_SECTION,
2104 			.max_threads = max_threads,
2105 		};
2106 
2107 		padata_do_multithreaded(&job);
2108 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2109 						    epfn_align);
2110 	}
2111 zone_empty:
2112 	/* Sanity check that the next zone really is unpopulated */
2113 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2114 
2115 	pr_info("node %d deferred pages initialised in %ums\n",
2116 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2117 
2118 	pgdat_init_report_one_done();
2119 	return 0;
2120 }
2121 
2122 /*
2123  * If this zone has deferred pages, try to grow it by initializing enough
2124  * deferred pages to satisfy the allocation specified by order, rounded up to
2125  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2126  * of SECTION_SIZE bytes by initializing struct pages in increments of
2127  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2128  *
2129  * Return true when zone was grown, otherwise return false. We return true even
2130  * when we grow less than requested, to let the caller decide if there are
2131  * enough pages to satisfy the allocation.
2132  *
2133  * Note: We use noinline because this function is needed only during boot, and
2134  * it is called from a __ref function _deferred_grow_zone. This way we are
2135  * making sure that it is not inlined into permanent text section.
2136  */
2137 static noinline bool __init
2138 deferred_grow_zone(struct zone *zone, unsigned int order)
2139 {
2140 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2141 	pg_data_t *pgdat = zone->zone_pgdat;
2142 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2143 	unsigned long spfn, epfn, flags;
2144 	unsigned long nr_pages = 0;
2145 	u64 i;
2146 
2147 	/* Only the last zone may have deferred pages */
2148 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2149 		return false;
2150 
2151 	pgdat_resize_lock(pgdat, &flags);
2152 
2153 	/*
2154 	 * If someone grew this zone while we were waiting for spinlock, return
2155 	 * true, as there might be enough pages already.
2156 	 */
2157 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2158 		pgdat_resize_unlock(pgdat, &flags);
2159 		return true;
2160 	}
2161 
2162 	/* If the zone is empty somebody else may have cleared out the zone */
2163 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2164 						 first_deferred_pfn)) {
2165 		pgdat->first_deferred_pfn = ULONG_MAX;
2166 		pgdat_resize_unlock(pgdat, &flags);
2167 		/* Retry only once. */
2168 		return first_deferred_pfn != ULONG_MAX;
2169 	}
2170 
2171 	/*
2172 	 * Initialize and free pages in MAX_ORDER sized increments so
2173 	 * that we can avoid introducing any issues with the buddy
2174 	 * allocator.
2175 	 */
2176 	while (spfn < epfn) {
2177 		/* update our first deferred PFN for this section */
2178 		first_deferred_pfn = spfn;
2179 
2180 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2181 		touch_nmi_watchdog();
2182 
2183 		/* We should only stop along section boundaries */
2184 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2185 			continue;
2186 
2187 		/* If our quota has been met we can stop here */
2188 		if (nr_pages >= nr_pages_needed)
2189 			break;
2190 	}
2191 
2192 	pgdat->first_deferred_pfn = spfn;
2193 	pgdat_resize_unlock(pgdat, &flags);
2194 
2195 	return nr_pages > 0;
2196 }
2197 
2198 /*
2199  * deferred_grow_zone() is __init, but it is called from
2200  * get_page_from_freelist() during early boot until deferred_pages permanently
2201  * disables this call. This is why we have refdata wrapper to avoid warning,
2202  * and to ensure that the function body gets unloaded.
2203  */
2204 static bool __ref
2205 _deferred_grow_zone(struct zone *zone, unsigned int order)
2206 {
2207 	return deferred_grow_zone(zone, order);
2208 }
2209 
2210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2211 
2212 void __init page_alloc_init_late(void)
2213 {
2214 	struct zone *zone;
2215 	int nid;
2216 
2217 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2218 
2219 	/* There will be num_node_state(N_MEMORY) threads */
2220 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2221 	for_each_node_state(nid, N_MEMORY) {
2222 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2223 	}
2224 
2225 	/* Block until all are initialised */
2226 	wait_for_completion(&pgdat_init_all_done_comp);
2227 
2228 	/*
2229 	 * We initialized the rest of the deferred pages.  Permanently disable
2230 	 * on-demand struct page initialization.
2231 	 */
2232 	static_branch_disable(&deferred_pages);
2233 
2234 	/* Reinit limits that are based on free pages after the kernel is up */
2235 	files_maxfiles_init();
2236 #endif
2237 
2238 	buffer_init();
2239 
2240 	/* Discard memblock private memory */
2241 	memblock_discard();
2242 
2243 	for_each_node_state(nid, N_MEMORY)
2244 		shuffle_free_memory(NODE_DATA(nid));
2245 
2246 	for_each_populated_zone(zone)
2247 		set_zone_contiguous(zone);
2248 }
2249 
2250 #ifdef CONFIG_CMA
2251 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2252 void __init init_cma_reserved_pageblock(struct page *page)
2253 {
2254 	unsigned i = pageblock_nr_pages;
2255 	struct page *p = page;
2256 
2257 	do {
2258 		__ClearPageReserved(p);
2259 		set_page_count(p, 0);
2260 	} while (++p, --i);
2261 
2262 	set_pageblock_migratetype(page, MIGRATE_CMA);
2263 
2264 	if (pageblock_order >= MAX_ORDER) {
2265 		i = pageblock_nr_pages;
2266 		p = page;
2267 		do {
2268 			set_page_refcounted(p);
2269 			__free_pages(p, MAX_ORDER - 1);
2270 			p += MAX_ORDER_NR_PAGES;
2271 		} while (i -= MAX_ORDER_NR_PAGES);
2272 	} else {
2273 		set_page_refcounted(page);
2274 		__free_pages(page, pageblock_order);
2275 	}
2276 
2277 	adjust_managed_page_count(page, pageblock_nr_pages);
2278 	page_zone(page)->cma_pages += pageblock_nr_pages;
2279 }
2280 #endif
2281 
2282 /*
2283  * The order of subdivision here is critical for the IO subsystem.
2284  * Please do not alter this order without good reasons and regression
2285  * testing. Specifically, as large blocks of memory are subdivided,
2286  * the order in which smaller blocks are delivered depends on the order
2287  * they're subdivided in this function. This is the primary factor
2288  * influencing the order in which pages are delivered to the IO
2289  * subsystem according to empirical testing, and this is also justified
2290  * by considering the behavior of a buddy system containing a single
2291  * large block of memory acted on by a series of small allocations.
2292  * This behavior is a critical factor in sglist merging's success.
2293  *
2294  * -- nyc
2295  */
2296 static inline void expand(struct zone *zone, struct page *page,
2297 	int low, int high, int migratetype)
2298 {
2299 	unsigned long size = 1 << high;
2300 
2301 	while (high > low) {
2302 		high--;
2303 		size >>= 1;
2304 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2305 
2306 		/*
2307 		 * Mark as guard pages (or page), that will allow to
2308 		 * merge back to allocator when buddy will be freed.
2309 		 * Corresponding page table entries will not be touched,
2310 		 * pages will stay not present in virtual address space
2311 		 */
2312 		if (set_page_guard(zone, &page[size], high, migratetype))
2313 			continue;
2314 
2315 		add_to_free_list(&page[size], zone, high, migratetype);
2316 		set_buddy_order(&page[size], high);
2317 	}
2318 }
2319 
2320 static void check_new_page_bad(struct page *page)
2321 {
2322 	if (unlikely(page->flags & __PG_HWPOISON)) {
2323 		/* Don't complain about hwpoisoned pages */
2324 		page_mapcount_reset(page); /* remove PageBuddy */
2325 		return;
2326 	}
2327 
2328 	bad_page(page,
2329 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2330 }
2331 
2332 /*
2333  * This page is about to be returned from the page allocator
2334  */
2335 static inline int check_new_page(struct page *page)
2336 {
2337 	if (likely(page_expected_state(page,
2338 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2339 		return 0;
2340 
2341 	check_new_page_bad(page);
2342 	return 1;
2343 }
2344 
2345 #ifdef CONFIG_DEBUG_VM
2346 /*
2347  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2348  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2349  * also checked when pcp lists are refilled from the free lists.
2350  */
2351 static inline bool check_pcp_refill(struct page *page)
2352 {
2353 	if (debug_pagealloc_enabled_static())
2354 		return check_new_page(page);
2355 	else
2356 		return false;
2357 }
2358 
2359 static inline bool check_new_pcp(struct page *page)
2360 {
2361 	return check_new_page(page);
2362 }
2363 #else
2364 /*
2365  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2366  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2367  * enabled, they are also checked when being allocated from the pcp lists.
2368  */
2369 static inline bool check_pcp_refill(struct page *page)
2370 {
2371 	return check_new_page(page);
2372 }
2373 static inline bool check_new_pcp(struct page *page)
2374 {
2375 	if (debug_pagealloc_enabled_static())
2376 		return check_new_page(page);
2377 	else
2378 		return false;
2379 }
2380 #endif /* CONFIG_DEBUG_VM */
2381 
2382 static bool check_new_pages(struct page *page, unsigned int order)
2383 {
2384 	int i;
2385 	for (i = 0; i < (1 << order); i++) {
2386 		struct page *p = page + i;
2387 
2388 		if (unlikely(check_new_page(p)))
2389 			return true;
2390 	}
2391 
2392 	return false;
2393 }
2394 
2395 inline void post_alloc_hook(struct page *page, unsigned int order,
2396 				gfp_t gfp_flags)
2397 {
2398 	set_page_private(page, 0);
2399 	set_page_refcounted(page);
2400 
2401 	arch_alloc_page(page, order);
2402 	debug_pagealloc_map_pages(page, 1 << order);
2403 
2404 	/*
2405 	 * Page unpoisoning must happen before memory initialization.
2406 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2407 	 * allocations and the page unpoisoning code will complain.
2408 	 */
2409 	kernel_unpoison_pages(page, 1 << order);
2410 
2411 	/*
2412 	 * As memory initialization might be integrated into KASAN,
2413 	 * kasan_alloc_pages and kernel_init_free_pages must be
2414 	 * kept together to avoid discrepancies in behavior.
2415 	 */
2416 	if (kasan_has_integrated_init()) {
2417 		kasan_alloc_pages(page, order, gfp_flags);
2418 	} else {
2419 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2420 
2421 		kasan_unpoison_pages(page, order, init);
2422 		if (init)
2423 			kernel_init_free_pages(page, 1 << order,
2424 					       gfp_flags & __GFP_ZEROTAGS);
2425 	}
2426 
2427 	set_page_owner(page, order, gfp_flags);
2428 	page_table_check_alloc(page, order);
2429 }
2430 
2431 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2432 							unsigned int alloc_flags)
2433 {
2434 	post_alloc_hook(page, order, gfp_flags);
2435 
2436 	if (order && (gfp_flags & __GFP_COMP))
2437 		prep_compound_page(page, order);
2438 
2439 	/*
2440 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2441 	 * allocate the page. The expectation is that the caller is taking
2442 	 * steps that will free more memory. The caller should avoid the page
2443 	 * being used for !PFMEMALLOC purposes.
2444 	 */
2445 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2446 		set_page_pfmemalloc(page);
2447 	else
2448 		clear_page_pfmemalloc(page);
2449 }
2450 
2451 /*
2452  * Go through the free lists for the given migratetype and remove
2453  * the smallest available page from the freelists
2454  */
2455 static __always_inline
2456 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2457 						int migratetype)
2458 {
2459 	unsigned int current_order;
2460 	struct free_area *area;
2461 	struct page *page;
2462 
2463 	/* Find a page of the appropriate size in the preferred list */
2464 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2465 		area = &(zone->free_area[current_order]);
2466 		page = get_page_from_free_area(area, migratetype);
2467 		if (!page)
2468 			continue;
2469 		del_page_from_free_list(page, zone, current_order);
2470 		expand(zone, page, order, current_order, migratetype);
2471 		set_pcppage_migratetype(page, migratetype);
2472 		return page;
2473 	}
2474 
2475 	return NULL;
2476 }
2477 
2478 
2479 /*
2480  * This array describes the order lists are fallen back to when
2481  * the free lists for the desirable migrate type are depleted
2482  */
2483 static int fallbacks[MIGRATE_TYPES][3] = {
2484 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2485 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2486 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2487 #ifdef CONFIG_CMA
2488 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2489 #endif
2490 #ifdef CONFIG_MEMORY_ISOLATION
2491 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2492 #endif
2493 };
2494 
2495 #ifdef CONFIG_CMA
2496 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2497 					unsigned int order)
2498 {
2499 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2500 }
2501 #else
2502 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2503 					unsigned int order) { return NULL; }
2504 #endif
2505 
2506 /*
2507  * Move the free pages in a range to the freelist tail of the requested type.
2508  * Note that start_page and end_pages are not aligned on a pageblock
2509  * boundary. If alignment is required, use move_freepages_block()
2510  */
2511 static int move_freepages(struct zone *zone,
2512 			  unsigned long start_pfn, unsigned long end_pfn,
2513 			  int migratetype, int *num_movable)
2514 {
2515 	struct page *page;
2516 	unsigned long pfn;
2517 	unsigned int order;
2518 	int pages_moved = 0;
2519 
2520 	for (pfn = start_pfn; pfn <= end_pfn;) {
2521 		page = pfn_to_page(pfn);
2522 		if (!PageBuddy(page)) {
2523 			/*
2524 			 * We assume that pages that could be isolated for
2525 			 * migration are movable. But we don't actually try
2526 			 * isolating, as that would be expensive.
2527 			 */
2528 			if (num_movable &&
2529 					(PageLRU(page) || __PageMovable(page)))
2530 				(*num_movable)++;
2531 			pfn++;
2532 			continue;
2533 		}
2534 
2535 		/* Make sure we are not inadvertently changing nodes */
2536 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2537 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2538 
2539 		order = buddy_order(page);
2540 		move_to_free_list(page, zone, order, migratetype);
2541 		pfn += 1 << order;
2542 		pages_moved += 1 << order;
2543 	}
2544 
2545 	return pages_moved;
2546 }
2547 
2548 int move_freepages_block(struct zone *zone, struct page *page,
2549 				int migratetype, int *num_movable)
2550 {
2551 	unsigned long start_pfn, end_pfn, pfn;
2552 
2553 	if (num_movable)
2554 		*num_movable = 0;
2555 
2556 	pfn = page_to_pfn(page);
2557 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2558 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2559 
2560 	/* Do not cross zone boundaries */
2561 	if (!zone_spans_pfn(zone, start_pfn))
2562 		start_pfn = pfn;
2563 	if (!zone_spans_pfn(zone, end_pfn))
2564 		return 0;
2565 
2566 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2567 								num_movable);
2568 }
2569 
2570 static void change_pageblock_range(struct page *pageblock_page,
2571 					int start_order, int migratetype)
2572 {
2573 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2574 
2575 	while (nr_pageblocks--) {
2576 		set_pageblock_migratetype(pageblock_page, migratetype);
2577 		pageblock_page += pageblock_nr_pages;
2578 	}
2579 }
2580 
2581 /*
2582  * When we are falling back to another migratetype during allocation, try to
2583  * steal extra free pages from the same pageblocks to satisfy further
2584  * allocations, instead of polluting multiple pageblocks.
2585  *
2586  * If we are stealing a relatively large buddy page, it is likely there will
2587  * be more free pages in the pageblock, so try to steal them all. For
2588  * reclaimable and unmovable allocations, we steal regardless of page size,
2589  * as fragmentation caused by those allocations polluting movable pageblocks
2590  * is worse than movable allocations stealing from unmovable and reclaimable
2591  * pageblocks.
2592  */
2593 static bool can_steal_fallback(unsigned int order, int start_mt)
2594 {
2595 	/*
2596 	 * Leaving this order check is intended, although there is
2597 	 * relaxed order check in next check. The reason is that
2598 	 * we can actually steal whole pageblock if this condition met,
2599 	 * but, below check doesn't guarantee it and that is just heuristic
2600 	 * so could be changed anytime.
2601 	 */
2602 	if (order >= pageblock_order)
2603 		return true;
2604 
2605 	if (order >= pageblock_order / 2 ||
2606 		start_mt == MIGRATE_RECLAIMABLE ||
2607 		start_mt == MIGRATE_UNMOVABLE ||
2608 		page_group_by_mobility_disabled)
2609 		return true;
2610 
2611 	return false;
2612 }
2613 
2614 static inline bool boost_watermark(struct zone *zone)
2615 {
2616 	unsigned long max_boost;
2617 
2618 	if (!watermark_boost_factor)
2619 		return false;
2620 	/*
2621 	 * Don't bother in zones that are unlikely to produce results.
2622 	 * On small machines, including kdump capture kernels running
2623 	 * in a small area, boosting the watermark can cause an out of
2624 	 * memory situation immediately.
2625 	 */
2626 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2627 		return false;
2628 
2629 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2630 			watermark_boost_factor, 10000);
2631 
2632 	/*
2633 	 * high watermark may be uninitialised if fragmentation occurs
2634 	 * very early in boot so do not boost. We do not fall
2635 	 * through and boost by pageblock_nr_pages as failing
2636 	 * allocations that early means that reclaim is not going
2637 	 * to help and it may even be impossible to reclaim the
2638 	 * boosted watermark resulting in a hang.
2639 	 */
2640 	if (!max_boost)
2641 		return false;
2642 
2643 	max_boost = max(pageblock_nr_pages, max_boost);
2644 
2645 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2646 		max_boost);
2647 
2648 	return true;
2649 }
2650 
2651 /*
2652  * This function implements actual steal behaviour. If order is large enough,
2653  * we can steal whole pageblock. If not, we first move freepages in this
2654  * pageblock to our migratetype and determine how many already-allocated pages
2655  * are there in the pageblock with a compatible migratetype. If at least half
2656  * of pages are free or compatible, we can change migratetype of the pageblock
2657  * itself, so pages freed in the future will be put on the correct free list.
2658  */
2659 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2660 		unsigned int alloc_flags, int start_type, bool whole_block)
2661 {
2662 	unsigned int current_order = buddy_order(page);
2663 	int free_pages, movable_pages, alike_pages;
2664 	int old_block_type;
2665 
2666 	old_block_type = get_pageblock_migratetype(page);
2667 
2668 	/*
2669 	 * This can happen due to races and we want to prevent broken
2670 	 * highatomic accounting.
2671 	 */
2672 	if (is_migrate_highatomic(old_block_type))
2673 		goto single_page;
2674 
2675 	/* Take ownership for orders >= pageblock_order */
2676 	if (current_order >= pageblock_order) {
2677 		change_pageblock_range(page, current_order, start_type);
2678 		goto single_page;
2679 	}
2680 
2681 	/*
2682 	 * Boost watermarks to increase reclaim pressure to reduce the
2683 	 * likelihood of future fallbacks. Wake kswapd now as the node
2684 	 * may be balanced overall and kswapd will not wake naturally.
2685 	 */
2686 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2687 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2688 
2689 	/* We are not allowed to try stealing from the whole block */
2690 	if (!whole_block)
2691 		goto single_page;
2692 
2693 	free_pages = move_freepages_block(zone, page, start_type,
2694 						&movable_pages);
2695 	/*
2696 	 * Determine how many pages are compatible with our allocation.
2697 	 * For movable allocation, it's the number of movable pages which
2698 	 * we just obtained. For other types it's a bit more tricky.
2699 	 */
2700 	if (start_type == MIGRATE_MOVABLE) {
2701 		alike_pages = movable_pages;
2702 	} else {
2703 		/*
2704 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2705 		 * to MOVABLE pageblock, consider all non-movable pages as
2706 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2707 		 * vice versa, be conservative since we can't distinguish the
2708 		 * exact migratetype of non-movable pages.
2709 		 */
2710 		if (old_block_type == MIGRATE_MOVABLE)
2711 			alike_pages = pageblock_nr_pages
2712 						- (free_pages + movable_pages);
2713 		else
2714 			alike_pages = 0;
2715 	}
2716 
2717 	/* moving whole block can fail due to zone boundary conditions */
2718 	if (!free_pages)
2719 		goto single_page;
2720 
2721 	/*
2722 	 * If a sufficient number of pages in the block are either free or of
2723 	 * comparable migratability as our allocation, claim the whole block.
2724 	 */
2725 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2726 			page_group_by_mobility_disabled)
2727 		set_pageblock_migratetype(page, start_type);
2728 
2729 	return;
2730 
2731 single_page:
2732 	move_to_free_list(page, zone, current_order, start_type);
2733 }
2734 
2735 /*
2736  * Check whether there is a suitable fallback freepage with requested order.
2737  * If only_stealable is true, this function returns fallback_mt only if
2738  * we can steal other freepages all together. This would help to reduce
2739  * fragmentation due to mixed migratetype pages in one pageblock.
2740  */
2741 int find_suitable_fallback(struct free_area *area, unsigned int order,
2742 			int migratetype, bool only_stealable, bool *can_steal)
2743 {
2744 	int i;
2745 	int fallback_mt;
2746 
2747 	if (area->nr_free == 0)
2748 		return -1;
2749 
2750 	*can_steal = false;
2751 	for (i = 0;; i++) {
2752 		fallback_mt = fallbacks[migratetype][i];
2753 		if (fallback_mt == MIGRATE_TYPES)
2754 			break;
2755 
2756 		if (free_area_empty(area, fallback_mt))
2757 			continue;
2758 
2759 		if (can_steal_fallback(order, migratetype))
2760 			*can_steal = true;
2761 
2762 		if (!only_stealable)
2763 			return fallback_mt;
2764 
2765 		if (*can_steal)
2766 			return fallback_mt;
2767 	}
2768 
2769 	return -1;
2770 }
2771 
2772 /*
2773  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2774  * there are no empty page blocks that contain a page with a suitable order
2775  */
2776 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2777 				unsigned int alloc_order)
2778 {
2779 	int mt;
2780 	unsigned long max_managed, flags;
2781 
2782 	/*
2783 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2784 	 * Check is race-prone but harmless.
2785 	 */
2786 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2787 	if (zone->nr_reserved_highatomic >= max_managed)
2788 		return;
2789 
2790 	spin_lock_irqsave(&zone->lock, flags);
2791 
2792 	/* Recheck the nr_reserved_highatomic limit under the lock */
2793 	if (zone->nr_reserved_highatomic >= max_managed)
2794 		goto out_unlock;
2795 
2796 	/* Yoink! */
2797 	mt = get_pageblock_migratetype(page);
2798 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2799 	    && !is_migrate_cma(mt)) {
2800 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2801 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2802 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2803 	}
2804 
2805 out_unlock:
2806 	spin_unlock_irqrestore(&zone->lock, flags);
2807 }
2808 
2809 /*
2810  * Used when an allocation is about to fail under memory pressure. This
2811  * potentially hurts the reliability of high-order allocations when under
2812  * intense memory pressure but failed atomic allocations should be easier
2813  * to recover from than an OOM.
2814  *
2815  * If @force is true, try to unreserve a pageblock even though highatomic
2816  * pageblock is exhausted.
2817  */
2818 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2819 						bool force)
2820 {
2821 	struct zonelist *zonelist = ac->zonelist;
2822 	unsigned long flags;
2823 	struct zoneref *z;
2824 	struct zone *zone;
2825 	struct page *page;
2826 	int order;
2827 	bool ret;
2828 
2829 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2830 								ac->nodemask) {
2831 		/*
2832 		 * Preserve at least one pageblock unless memory pressure
2833 		 * is really high.
2834 		 */
2835 		if (!force && zone->nr_reserved_highatomic <=
2836 					pageblock_nr_pages)
2837 			continue;
2838 
2839 		spin_lock_irqsave(&zone->lock, flags);
2840 		for (order = 0; order < MAX_ORDER; order++) {
2841 			struct free_area *area = &(zone->free_area[order]);
2842 
2843 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2844 			if (!page)
2845 				continue;
2846 
2847 			/*
2848 			 * In page freeing path, migratetype change is racy so
2849 			 * we can counter several free pages in a pageblock
2850 			 * in this loop although we changed the pageblock type
2851 			 * from highatomic to ac->migratetype. So we should
2852 			 * adjust the count once.
2853 			 */
2854 			if (is_migrate_highatomic_page(page)) {
2855 				/*
2856 				 * It should never happen but changes to
2857 				 * locking could inadvertently allow a per-cpu
2858 				 * drain to add pages to MIGRATE_HIGHATOMIC
2859 				 * while unreserving so be safe and watch for
2860 				 * underflows.
2861 				 */
2862 				zone->nr_reserved_highatomic -= min(
2863 						pageblock_nr_pages,
2864 						zone->nr_reserved_highatomic);
2865 			}
2866 
2867 			/*
2868 			 * Convert to ac->migratetype and avoid the normal
2869 			 * pageblock stealing heuristics. Minimally, the caller
2870 			 * is doing the work and needs the pages. More
2871 			 * importantly, if the block was always converted to
2872 			 * MIGRATE_UNMOVABLE or another type then the number
2873 			 * of pageblocks that cannot be completely freed
2874 			 * may increase.
2875 			 */
2876 			set_pageblock_migratetype(page, ac->migratetype);
2877 			ret = move_freepages_block(zone, page, ac->migratetype,
2878 									NULL);
2879 			if (ret) {
2880 				spin_unlock_irqrestore(&zone->lock, flags);
2881 				return ret;
2882 			}
2883 		}
2884 		spin_unlock_irqrestore(&zone->lock, flags);
2885 	}
2886 
2887 	return false;
2888 }
2889 
2890 /*
2891  * Try finding a free buddy page on the fallback list and put it on the free
2892  * list of requested migratetype, possibly along with other pages from the same
2893  * block, depending on fragmentation avoidance heuristics. Returns true if
2894  * fallback was found so that __rmqueue_smallest() can grab it.
2895  *
2896  * The use of signed ints for order and current_order is a deliberate
2897  * deviation from the rest of this file, to make the for loop
2898  * condition simpler.
2899  */
2900 static __always_inline bool
2901 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2902 						unsigned int alloc_flags)
2903 {
2904 	struct free_area *area;
2905 	int current_order;
2906 	int min_order = order;
2907 	struct page *page;
2908 	int fallback_mt;
2909 	bool can_steal;
2910 
2911 	/*
2912 	 * Do not steal pages from freelists belonging to other pageblocks
2913 	 * i.e. orders < pageblock_order. If there are no local zones free,
2914 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2915 	 */
2916 	if (alloc_flags & ALLOC_NOFRAGMENT)
2917 		min_order = pageblock_order;
2918 
2919 	/*
2920 	 * Find the largest available free page in the other list. This roughly
2921 	 * approximates finding the pageblock with the most free pages, which
2922 	 * would be too costly to do exactly.
2923 	 */
2924 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2925 				--current_order) {
2926 		area = &(zone->free_area[current_order]);
2927 		fallback_mt = find_suitable_fallback(area, current_order,
2928 				start_migratetype, false, &can_steal);
2929 		if (fallback_mt == -1)
2930 			continue;
2931 
2932 		/*
2933 		 * We cannot steal all free pages from the pageblock and the
2934 		 * requested migratetype is movable. In that case it's better to
2935 		 * steal and split the smallest available page instead of the
2936 		 * largest available page, because even if the next movable
2937 		 * allocation falls back into a different pageblock than this
2938 		 * one, it won't cause permanent fragmentation.
2939 		 */
2940 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2941 					&& current_order > order)
2942 			goto find_smallest;
2943 
2944 		goto do_steal;
2945 	}
2946 
2947 	return false;
2948 
2949 find_smallest:
2950 	for (current_order = order; current_order < MAX_ORDER;
2951 							current_order++) {
2952 		area = &(zone->free_area[current_order]);
2953 		fallback_mt = find_suitable_fallback(area, current_order,
2954 				start_migratetype, false, &can_steal);
2955 		if (fallback_mt != -1)
2956 			break;
2957 	}
2958 
2959 	/*
2960 	 * This should not happen - we already found a suitable fallback
2961 	 * when looking for the largest page.
2962 	 */
2963 	VM_BUG_ON(current_order == MAX_ORDER);
2964 
2965 do_steal:
2966 	page = get_page_from_free_area(area, fallback_mt);
2967 
2968 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2969 								can_steal);
2970 
2971 	trace_mm_page_alloc_extfrag(page, order, current_order,
2972 		start_migratetype, fallback_mt);
2973 
2974 	return true;
2975 
2976 }
2977 
2978 /*
2979  * Do the hard work of removing an element from the buddy allocator.
2980  * Call me with the zone->lock already held.
2981  */
2982 static __always_inline struct page *
2983 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2984 						unsigned int alloc_flags)
2985 {
2986 	struct page *page;
2987 
2988 	if (IS_ENABLED(CONFIG_CMA)) {
2989 		/*
2990 		 * Balance movable allocations between regular and CMA areas by
2991 		 * allocating from CMA when over half of the zone's free memory
2992 		 * is in the CMA area.
2993 		 */
2994 		if (alloc_flags & ALLOC_CMA &&
2995 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2996 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2997 			page = __rmqueue_cma_fallback(zone, order);
2998 			if (page)
2999 				goto out;
3000 		}
3001 	}
3002 retry:
3003 	page = __rmqueue_smallest(zone, order, migratetype);
3004 	if (unlikely(!page)) {
3005 		if (alloc_flags & ALLOC_CMA)
3006 			page = __rmqueue_cma_fallback(zone, order);
3007 
3008 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3009 								alloc_flags))
3010 			goto retry;
3011 	}
3012 out:
3013 	if (page)
3014 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3015 	return page;
3016 }
3017 
3018 /*
3019  * Obtain a specified number of elements from the buddy allocator, all under
3020  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3021  * Returns the number of new pages which were placed at *list.
3022  */
3023 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3024 			unsigned long count, struct list_head *list,
3025 			int migratetype, unsigned int alloc_flags)
3026 {
3027 	int i, allocated = 0;
3028 
3029 	/*
3030 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3031 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3032 	 */
3033 	spin_lock(&zone->lock);
3034 	for (i = 0; i < count; ++i) {
3035 		struct page *page = __rmqueue(zone, order, migratetype,
3036 								alloc_flags);
3037 		if (unlikely(page == NULL))
3038 			break;
3039 
3040 		if (unlikely(check_pcp_refill(page)))
3041 			continue;
3042 
3043 		/*
3044 		 * Split buddy pages returned by expand() are received here in
3045 		 * physical page order. The page is added to the tail of
3046 		 * caller's list. From the callers perspective, the linked list
3047 		 * is ordered by page number under some conditions. This is
3048 		 * useful for IO devices that can forward direction from the
3049 		 * head, thus also in the physical page order. This is useful
3050 		 * for IO devices that can merge IO requests if the physical
3051 		 * pages are ordered properly.
3052 		 */
3053 		list_add_tail(&page->lru, list);
3054 		allocated++;
3055 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3056 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3057 					      -(1 << order));
3058 	}
3059 
3060 	/*
3061 	 * i pages were removed from the buddy list even if some leak due
3062 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3063 	 * on i. Do not confuse with 'allocated' which is the number of
3064 	 * pages added to the pcp list.
3065 	 */
3066 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3067 	spin_unlock(&zone->lock);
3068 	return allocated;
3069 }
3070 
3071 #ifdef CONFIG_NUMA
3072 /*
3073  * Called from the vmstat counter updater to drain pagesets of this
3074  * currently executing processor on remote nodes after they have
3075  * expired.
3076  *
3077  * Note that this function must be called with the thread pinned to
3078  * a single processor.
3079  */
3080 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3081 {
3082 	unsigned long flags;
3083 	int to_drain, batch;
3084 
3085 	local_lock_irqsave(&pagesets.lock, flags);
3086 	batch = READ_ONCE(pcp->batch);
3087 	to_drain = min(pcp->count, batch);
3088 	if (to_drain > 0)
3089 		free_pcppages_bulk(zone, to_drain, pcp);
3090 	local_unlock_irqrestore(&pagesets.lock, flags);
3091 }
3092 #endif
3093 
3094 /*
3095  * Drain pcplists of the indicated processor and zone.
3096  *
3097  * The processor must either be the current processor and the
3098  * thread pinned to the current processor or a processor that
3099  * is not online.
3100  */
3101 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3102 {
3103 	unsigned long flags;
3104 	struct per_cpu_pages *pcp;
3105 
3106 	local_lock_irqsave(&pagesets.lock, flags);
3107 
3108 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3109 	if (pcp->count)
3110 		free_pcppages_bulk(zone, pcp->count, pcp);
3111 
3112 	local_unlock_irqrestore(&pagesets.lock, flags);
3113 }
3114 
3115 /*
3116  * Drain pcplists of all zones on the indicated processor.
3117  *
3118  * The processor must either be the current processor and the
3119  * thread pinned to the current processor or a processor that
3120  * is not online.
3121  */
3122 static void drain_pages(unsigned int cpu)
3123 {
3124 	struct zone *zone;
3125 
3126 	for_each_populated_zone(zone) {
3127 		drain_pages_zone(cpu, zone);
3128 	}
3129 }
3130 
3131 /*
3132  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3133  *
3134  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3135  * the single zone's pages.
3136  */
3137 void drain_local_pages(struct zone *zone)
3138 {
3139 	int cpu = smp_processor_id();
3140 
3141 	if (zone)
3142 		drain_pages_zone(cpu, zone);
3143 	else
3144 		drain_pages(cpu);
3145 }
3146 
3147 static void drain_local_pages_wq(struct work_struct *work)
3148 {
3149 	struct pcpu_drain *drain;
3150 
3151 	drain = container_of(work, struct pcpu_drain, work);
3152 
3153 	/*
3154 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3155 	 * we can race with cpu offline when the WQ can move this from
3156 	 * a cpu pinned worker to an unbound one. We can operate on a different
3157 	 * cpu which is alright but we also have to make sure to not move to
3158 	 * a different one.
3159 	 */
3160 	migrate_disable();
3161 	drain_local_pages(drain->zone);
3162 	migrate_enable();
3163 }
3164 
3165 /*
3166  * The implementation of drain_all_pages(), exposing an extra parameter to
3167  * drain on all cpus.
3168  *
3169  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3170  * not empty. The check for non-emptiness can however race with a free to
3171  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3172  * that need the guarantee that every CPU has drained can disable the
3173  * optimizing racy check.
3174  */
3175 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3176 {
3177 	int cpu;
3178 
3179 	/*
3180 	 * Allocate in the BSS so we won't require allocation in
3181 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3182 	 */
3183 	static cpumask_t cpus_with_pcps;
3184 
3185 	/*
3186 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3187 	 * initialized.
3188 	 */
3189 	if (WARN_ON_ONCE(!mm_percpu_wq))
3190 		return;
3191 
3192 	/*
3193 	 * Do not drain if one is already in progress unless it's specific to
3194 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3195 	 * the drain to be complete when the call returns.
3196 	 */
3197 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3198 		if (!zone)
3199 			return;
3200 		mutex_lock(&pcpu_drain_mutex);
3201 	}
3202 
3203 	/*
3204 	 * We don't care about racing with CPU hotplug event
3205 	 * as offline notification will cause the notified
3206 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3207 	 * disables preemption as part of its processing
3208 	 */
3209 	for_each_online_cpu(cpu) {
3210 		struct per_cpu_pages *pcp;
3211 		struct zone *z;
3212 		bool has_pcps = false;
3213 
3214 		if (force_all_cpus) {
3215 			/*
3216 			 * The pcp.count check is racy, some callers need a
3217 			 * guarantee that no cpu is missed.
3218 			 */
3219 			has_pcps = true;
3220 		} else if (zone) {
3221 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3222 			if (pcp->count)
3223 				has_pcps = true;
3224 		} else {
3225 			for_each_populated_zone(z) {
3226 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3227 				if (pcp->count) {
3228 					has_pcps = true;
3229 					break;
3230 				}
3231 			}
3232 		}
3233 
3234 		if (has_pcps)
3235 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3236 		else
3237 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3238 	}
3239 
3240 	for_each_cpu(cpu, &cpus_with_pcps) {
3241 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3242 
3243 		drain->zone = zone;
3244 		INIT_WORK(&drain->work, drain_local_pages_wq);
3245 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3246 	}
3247 	for_each_cpu(cpu, &cpus_with_pcps)
3248 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3249 
3250 	mutex_unlock(&pcpu_drain_mutex);
3251 }
3252 
3253 /*
3254  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3255  *
3256  * When zone parameter is non-NULL, spill just the single zone's pages.
3257  *
3258  * Note that this can be extremely slow as the draining happens in a workqueue.
3259  */
3260 void drain_all_pages(struct zone *zone)
3261 {
3262 	__drain_all_pages(zone, false);
3263 }
3264 
3265 #ifdef CONFIG_HIBERNATION
3266 
3267 /*
3268  * Touch the watchdog for every WD_PAGE_COUNT pages.
3269  */
3270 #define WD_PAGE_COUNT	(128*1024)
3271 
3272 void mark_free_pages(struct zone *zone)
3273 {
3274 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3275 	unsigned long flags;
3276 	unsigned int order, t;
3277 	struct page *page;
3278 
3279 	if (zone_is_empty(zone))
3280 		return;
3281 
3282 	spin_lock_irqsave(&zone->lock, flags);
3283 
3284 	max_zone_pfn = zone_end_pfn(zone);
3285 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3286 		if (pfn_valid(pfn)) {
3287 			page = pfn_to_page(pfn);
3288 
3289 			if (!--page_count) {
3290 				touch_nmi_watchdog();
3291 				page_count = WD_PAGE_COUNT;
3292 			}
3293 
3294 			if (page_zone(page) != zone)
3295 				continue;
3296 
3297 			if (!swsusp_page_is_forbidden(page))
3298 				swsusp_unset_page_free(page);
3299 		}
3300 
3301 	for_each_migratetype_order(order, t) {
3302 		list_for_each_entry(page,
3303 				&zone->free_area[order].free_list[t], lru) {
3304 			unsigned long i;
3305 
3306 			pfn = page_to_pfn(page);
3307 			for (i = 0; i < (1UL << order); i++) {
3308 				if (!--page_count) {
3309 					touch_nmi_watchdog();
3310 					page_count = WD_PAGE_COUNT;
3311 				}
3312 				swsusp_set_page_free(pfn_to_page(pfn + i));
3313 			}
3314 		}
3315 	}
3316 	spin_unlock_irqrestore(&zone->lock, flags);
3317 }
3318 #endif /* CONFIG_PM */
3319 
3320 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3321 							unsigned int order)
3322 {
3323 	int migratetype;
3324 
3325 	if (!free_pcp_prepare(page, order))
3326 		return false;
3327 
3328 	migratetype = get_pfnblock_migratetype(page, pfn);
3329 	set_pcppage_migratetype(page, migratetype);
3330 	return true;
3331 }
3332 
3333 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3334 {
3335 	int min_nr_free, max_nr_free;
3336 
3337 	/* Check for PCP disabled or boot pageset */
3338 	if (unlikely(high < batch))
3339 		return 1;
3340 
3341 	/* Leave at least pcp->batch pages on the list */
3342 	min_nr_free = batch;
3343 	max_nr_free = high - batch;
3344 
3345 	/*
3346 	 * Double the number of pages freed each time there is subsequent
3347 	 * freeing of pages without any allocation.
3348 	 */
3349 	batch <<= pcp->free_factor;
3350 	if (batch < max_nr_free)
3351 		pcp->free_factor++;
3352 	batch = clamp(batch, min_nr_free, max_nr_free);
3353 
3354 	return batch;
3355 }
3356 
3357 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3358 {
3359 	int high = READ_ONCE(pcp->high);
3360 
3361 	if (unlikely(!high))
3362 		return 0;
3363 
3364 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3365 		return high;
3366 
3367 	/*
3368 	 * If reclaim is active, limit the number of pages that can be
3369 	 * stored on pcp lists
3370 	 */
3371 	return min(READ_ONCE(pcp->batch) << 2, high);
3372 }
3373 
3374 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3375 				   int migratetype, unsigned int order)
3376 {
3377 	struct zone *zone = page_zone(page);
3378 	struct per_cpu_pages *pcp;
3379 	int high;
3380 	int pindex;
3381 
3382 	__count_vm_event(PGFREE);
3383 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3384 	pindex = order_to_pindex(migratetype, order);
3385 	list_add(&page->lru, &pcp->lists[pindex]);
3386 	pcp->count += 1 << order;
3387 	high = nr_pcp_high(pcp, zone);
3388 	if (pcp->count >= high) {
3389 		int batch = READ_ONCE(pcp->batch);
3390 
3391 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3392 	}
3393 }
3394 
3395 /*
3396  * Free a pcp page
3397  */
3398 void free_unref_page(struct page *page, unsigned int order)
3399 {
3400 	unsigned long flags;
3401 	unsigned long pfn = page_to_pfn(page);
3402 	int migratetype;
3403 
3404 	if (!free_unref_page_prepare(page, pfn, order))
3405 		return;
3406 
3407 	/*
3408 	 * We only track unmovable, reclaimable and movable on pcp lists.
3409 	 * Place ISOLATE pages on the isolated list because they are being
3410 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3411 	 * areas back if necessary. Otherwise, we may have to free
3412 	 * excessively into the page allocator
3413 	 */
3414 	migratetype = get_pcppage_migratetype(page);
3415 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3416 		if (unlikely(is_migrate_isolate(migratetype))) {
3417 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3418 			return;
3419 		}
3420 		migratetype = MIGRATE_MOVABLE;
3421 	}
3422 
3423 	local_lock_irqsave(&pagesets.lock, flags);
3424 	free_unref_page_commit(page, pfn, migratetype, order);
3425 	local_unlock_irqrestore(&pagesets.lock, flags);
3426 }
3427 
3428 /*
3429  * Free a list of 0-order pages
3430  */
3431 void free_unref_page_list(struct list_head *list)
3432 {
3433 	struct page *page, *next;
3434 	unsigned long flags, pfn;
3435 	int batch_count = 0;
3436 	int migratetype;
3437 
3438 	/* Prepare pages for freeing */
3439 	list_for_each_entry_safe(page, next, list, lru) {
3440 		pfn = page_to_pfn(page);
3441 		if (!free_unref_page_prepare(page, pfn, 0)) {
3442 			list_del(&page->lru);
3443 			continue;
3444 		}
3445 
3446 		/*
3447 		 * Free isolated pages directly to the allocator, see
3448 		 * comment in free_unref_page.
3449 		 */
3450 		migratetype = get_pcppage_migratetype(page);
3451 		if (unlikely(is_migrate_isolate(migratetype))) {
3452 			list_del(&page->lru);
3453 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3454 			continue;
3455 		}
3456 
3457 		set_page_private(page, pfn);
3458 	}
3459 
3460 	local_lock_irqsave(&pagesets.lock, flags);
3461 	list_for_each_entry_safe(page, next, list, lru) {
3462 		pfn = page_private(page);
3463 		set_page_private(page, 0);
3464 
3465 		/*
3466 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3467 		 * to the MIGRATE_MOVABLE pcp list.
3468 		 */
3469 		migratetype = get_pcppage_migratetype(page);
3470 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3471 			migratetype = MIGRATE_MOVABLE;
3472 
3473 		trace_mm_page_free_batched(page);
3474 		free_unref_page_commit(page, pfn, migratetype, 0);
3475 
3476 		/*
3477 		 * Guard against excessive IRQ disabled times when we get
3478 		 * a large list of pages to free.
3479 		 */
3480 		if (++batch_count == SWAP_CLUSTER_MAX) {
3481 			local_unlock_irqrestore(&pagesets.lock, flags);
3482 			batch_count = 0;
3483 			local_lock_irqsave(&pagesets.lock, flags);
3484 		}
3485 	}
3486 	local_unlock_irqrestore(&pagesets.lock, flags);
3487 }
3488 
3489 /*
3490  * split_page takes a non-compound higher-order page, and splits it into
3491  * n (1<<order) sub-pages: page[0..n]
3492  * Each sub-page must be freed individually.
3493  *
3494  * Note: this is probably too low level an operation for use in drivers.
3495  * Please consult with lkml before using this in your driver.
3496  */
3497 void split_page(struct page *page, unsigned int order)
3498 {
3499 	int i;
3500 
3501 	VM_BUG_ON_PAGE(PageCompound(page), page);
3502 	VM_BUG_ON_PAGE(!page_count(page), page);
3503 
3504 	for (i = 1; i < (1 << order); i++)
3505 		set_page_refcounted(page + i);
3506 	split_page_owner(page, 1 << order);
3507 	split_page_memcg(page, 1 << order);
3508 }
3509 EXPORT_SYMBOL_GPL(split_page);
3510 
3511 int __isolate_free_page(struct page *page, unsigned int order)
3512 {
3513 	unsigned long watermark;
3514 	struct zone *zone;
3515 	int mt;
3516 
3517 	BUG_ON(!PageBuddy(page));
3518 
3519 	zone = page_zone(page);
3520 	mt = get_pageblock_migratetype(page);
3521 
3522 	if (!is_migrate_isolate(mt)) {
3523 		/*
3524 		 * Obey watermarks as if the page was being allocated. We can
3525 		 * emulate a high-order watermark check with a raised order-0
3526 		 * watermark, because we already know our high-order page
3527 		 * exists.
3528 		 */
3529 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3530 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3531 			return 0;
3532 
3533 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3534 	}
3535 
3536 	/* Remove page from free list */
3537 
3538 	del_page_from_free_list(page, zone, order);
3539 
3540 	/*
3541 	 * Set the pageblock if the isolated page is at least half of a
3542 	 * pageblock
3543 	 */
3544 	if (order >= pageblock_order - 1) {
3545 		struct page *endpage = page + (1 << order) - 1;
3546 		for (; page < endpage; page += pageblock_nr_pages) {
3547 			int mt = get_pageblock_migratetype(page);
3548 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3549 			    && !is_migrate_highatomic(mt))
3550 				set_pageblock_migratetype(page,
3551 							  MIGRATE_MOVABLE);
3552 		}
3553 	}
3554 
3555 
3556 	return 1UL << order;
3557 }
3558 
3559 /**
3560  * __putback_isolated_page - Return a now-isolated page back where we got it
3561  * @page: Page that was isolated
3562  * @order: Order of the isolated page
3563  * @mt: The page's pageblock's migratetype
3564  *
3565  * This function is meant to return a page pulled from the free lists via
3566  * __isolate_free_page back to the free lists they were pulled from.
3567  */
3568 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3569 {
3570 	struct zone *zone = page_zone(page);
3571 
3572 	/* zone lock should be held when this function is called */
3573 	lockdep_assert_held(&zone->lock);
3574 
3575 	/* Return isolated page to tail of freelist. */
3576 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3577 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3578 }
3579 
3580 /*
3581  * Update NUMA hit/miss statistics
3582  *
3583  * Must be called with interrupts disabled.
3584  */
3585 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3586 				   long nr_account)
3587 {
3588 #ifdef CONFIG_NUMA
3589 	enum numa_stat_item local_stat = NUMA_LOCAL;
3590 
3591 	/* skip numa counters update if numa stats is disabled */
3592 	if (!static_branch_likely(&vm_numa_stat_key))
3593 		return;
3594 
3595 	if (zone_to_nid(z) != numa_node_id())
3596 		local_stat = NUMA_OTHER;
3597 
3598 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3599 		__count_numa_events(z, NUMA_HIT, nr_account);
3600 	else {
3601 		__count_numa_events(z, NUMA_MISS, nr_account);
3602 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3603 	}
3604 	__count_numa_events(z, local_stat, nr_account);
3605 #endif
3606 }
3607 
3608 /* Remove page from the per-cpu list, caller must protect the list */
3609 static inline
3610 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3611 			int migratetype,
3612 			unsigned int alloc_flags,
3613 			struct per_cpu_pages *pcp,
3614 			struct list_head *list)
3615 {
3616 	struct page *page;
3617 
3618 	do {
3619 		if (list_empty(list)) {
3620 			int batch = READ_ONCE(pcp->batch);
3621 			int alloced;
3622 
3623 			/*
3624 			 * Scale batch relative to order if batch implies
3625 			 * free pages can be stored on the PCP. Batch can
3626 			 * be 1 for small zones or for boot pagesets which
3627 			 * should never store free pages as the pages may
3628 			 * belong to arbitrary zones.
3629 			 */
3630 			if (batch > 1)
3631 				batch = max(batch >> order, 2);
3632 			alloced = rmqueue_bulk(zone, order,
3633 					batch, list,
3634 					migratetype, alloc_flags);
3635 
3636 			pcp->count += alloced << order;
3637 			if (unlikely(list_empty(list)))
3638 				return NULL;
3639 		}
3640 
3641 		page = list_first_entry(list, struct page, lru);
3642 		list_del(&page->lru);
3643 		pcp->count -= 1 << order;
3644 	} while (check_new_pcp(page));
3645 
3646 	return page;
3647 }
3648 
3649 /* Lock and remove page from the per-cpu list */
3650 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3651 			struct zone *zone, unsigned int order,
3652 			gfp_t gfp_flags, int migratetype,
3653 			unsigned int alloc_flags)
3654 {
3655 	struct per_cpu_pages *pcp;
3656 	struct list_head *list;
3657 	struct page *page;
3658 	unsigned long flags;
3659 
3660 	local_lock_irqsave(&pagesets.lock, flags);
3661 
3662 	/*
3663 	 * On allocation, reduce the number of pages that are batch freed.
3664 	 * See nr_pcp_free() where free_factor is increased for subsequent
3665 	 * frees.
3666 	 */
3667 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3668 	pcp->free_factor >>= 1;
3669 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3670 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3671 	local_unlock_irqrestore(&pagesets.lock, flags);
3672 	if (page) {
3673 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3674 		zone_statistics(preferred_zone, zone, 1);
3675 	}
3676 	return page;
3677 }
3678 
3679 /*
3680  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3681  */
3682 static inline
3683 struct page *rmqueue(struct zone *preferred_zone,
3684 			struct zone *zone, unsigned int order,
3685 			gfp_t gfp_flags, unsigned int alloc_flags,
3686 			int migratetype)
3687 {
3688 	unsigned long flags;
3689 	struct page *page;
3690 
3691 	if (likely(pcp_allowed_order(order))) {
3692 		/*
3693 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3694 		 * we need to skip it when CMA area isn't allowed.
3695 		 */
3696 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3697 				migratetype != MIGRATE_MOVABLE) {
3698 			page = rmqueue_pcplist(preferred_zone, zone, order,
3699 					gfp_flags, migratetype, alloc_flags);
3700 			goto out;
3701 		}
3702 	}
3703 
3704 	/*
3705 	 * We most definitely don't want callers attempting to
3706 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3707 	 */
3708 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3709 	spin_lock_irqsave(&zone->lock, flags);
3710 
3711 	do {
3712 		page = NULL;
3713 		/*
3714 		 * order-0 request can reach here when the pcplist is skipped
3715 		 * due to non-CMA allocation context. HIGHATOMIC area is
3716 		 * reserved for high-order atomic allocation, so order-0
3717 		 * request should skip it.
3718 		 */
3719 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3720 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3721 			if (page)
3722 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3723 		}
3724 		if (!page)
3725 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3726 	} while (page && check_new_pages(page, order));
3727 	if (!page)
3728 		goto failed;
3729 
3730 	__mod_zone_freepage_state(zone, -(1 << order),
3731 				  get_pcppage_migratetype(page));
3732 	spin_unlock_irqrestore(&zone->lock, flags);
3733 
3734 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3735 	zone_statistics(preferred_zone, zone, 1);
3736 
3737 out:
3738 	/* Separate test+clear to avoid unnecessary atomics */
3739 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3740 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3741 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3742 	}
3743 
3744 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3745 	return page;
3746 
3747 failed:
3748 	spin_unlock_irqrestore(&zone->lock, flags);
3749 	return NULL;
3750 }
3751 
3752 #ifdef CONFIG_FAIL_PAGE_ALLOC
3753 
3754 static struct {
3755 	struct fault_attr attr;
3756 
3757 	bool ignore_gfp_highmem;
3758 	bool ignore_gfp_reclaim;
3759 	u32 min_order;
3760 } fail_page_alloc = {
3761 	.attr = FAULT_ATTR_INITIALIZER,
3762 	.ignore_gfp_reclaim = true,
3763 	.ignore_gfp_highmem = true,
3764 	.min_order = 1,
3765 };
3766 
3767 static int __init setup_fail_page_alloc(char *str)
3768 {
3769 	return setup_fault_attr(&fail_page_alloc.attr, str);
3770 }
3771 __setup("fail_page_alloc=", setup_fail_page_alloc);
3772 
3773 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3774 {
3775 	if (order < fail_page_alloc.min_order)
3776 		return false;
3777 	if (gfp_mask & __GFP_NOFAIL)
3778 		return false;
3779 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3780 		return false;
3781 	if (fail_page_alloc.ignore_gfp_reclaim &&
3782 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3783 		return false;
3784 
3785 	return should_fail(&fail_page_alloc.attr, 1 << order);
3786 }
3787 
3788 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3789 
3790 static int __init fail_page_alloc_debugfs(void)
3791 {
3792 	umode_t mode = S_IFREG | 0600;
3793 	struct dentry *dir;
3794 
3795 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3796 					&fail_page_alloc.attr);
3797 
3798 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3799 			    &fail_page_alloc.ignore_gfp_reclaim);
3800 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3801 			    &fail_page_alloc.ignore_gfp_highmem);
3802 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3803 
3804 	return 0;
3805 }
3806 
3807 late_initcall(fail_page_alloc_debugfs);
3808 
3809 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3810 
3811 #else /* CONFIG_FAIL_PAGE_ALLOC */
3812 
3813 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3814 {
3815 	return false;
3816 }
3817 
3818 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3819 
3820 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3821 {
3822 	return __should_fail_alloc_page(gfp_mask, order);
3823 }
3824 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3825 
3826 static inline long __zone_watermark_unusable_free(struct zone *z,
3827 				unsigned int order, unsigned int alloc_flags)
3828 {
3829 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3830 	long unusable_free = (1 << order) - 1;
3831 
3832 	/*
3833 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3834 	 * the high-atomic reserves. This will over-estimate the size of the
3835 	 * atomic reserve but it avoids a search.
3836 	 */
3837 	if (likely(!alloc_harder))
3838 		unusable_free += z->nr_reserved_highatomic;
3839 
3840 #ifdef CONFIG_CMA
3841 	/* If allocation can't use CMA areas don't use free CMA pages */
3842 	if (!(alloc_flags & ALLOC_CMA))
3843 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3844 #endif
3845 
3846 	return unusable_free;
3847 }
3848 
3849 /*
3850  * Return true if free base pages are above 'mark'. For high-order checks it
3851  * will return true of the order-0 watermark is reached and there is at least
3852  * one free page of a suitable size. Checking now avoids taking the zone lock
3853  * to check in the allocation paths if no pages are free.
3854  */
3855 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3856 			 int highest_zoneidx, unsigned int alloc_flags,
3857 			 long free_pages)
3858 {
3859 	long min = mark;
3860 	int o;
3861 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3862 
3863 	/* free_pages may go negative - that's OK */
3864 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3865 
3866 	if (alloc_flags & ALLOC_HIGH)
3867 		min -= min / 2;
3868 
3869 	if (unlikely(alloc_harder)) {
3870 		/*
3871 		 * OOM victims can try even harder than normal ALLOC_HARDER
3872 		 * users on the grounds that it's definitely going to be in
3873 		 * the exit path shortly and free memory. Any allocation it
3874 		 * makes during the free path will be small and short-lived.
3875 		 */
3876 		if (alloc_flags & ALLOC_OOM)
3877 			min -= min / 2;
3878 		else
3879 			min -= min / 4;
3880 	}
3881 
3882 	/*
3883 	 * Check watermarks for an order-0 allocation request. If these
3884 	 * are not met, then a high-order request also cannot go ahead
3885 	 * even if a suitable page happened to be free.
3886 	 */
3887 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3888 		return false;
3889 
3890 	/* If this is an order-0 request then the watermark is fine */
3891 	if (!order)
3892 		return true;
3893 
3894 	/* For a high-order request, check at least one suitable page is free */
3895 	for (o = order; o < MAX_ORDER; o++) {
3896 		struct free_area *area = &z->free_area[o];
3897 		int mt;
3898 
3899 		if (!area->nr_free)
3900 			continue;
3901 
3902 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3903 			if (!free_area_empty(area, mt))
3904 				return true;
3905 		}
3906 
3907 #ifdef CONFIG_CMA
3908 		if ((alloc_flags & ALLOC_CMA) &&
3909 		    !free_area_empty(area, MIGRATE_CMA)) {
3910 			return true;
3911 		}
3912 #endif
3913 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3914 			return true;
3915 	}
3916 	return false;
3917 }
3918 
3919 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3920 		      int highest_zoneidx, unsigned int alloc_flags)
3921 {
3922 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3923 					zone_page_state(z, NR_FREE_PAGES));
3924 }
3925 
3926 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3927 				unsigned long mark, int highest_zoneidx,
3928 				unsigned int alloc_flags, gfp_t gfp_mask)
3929 {
3930 	long free_pages;
3931 
3932 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3933 
3934 	/*
3935 	 * Fast check for order-0 only. If this fails then the reserves
3936 	 * need to be calculated.
3937 	 */
3938 	if (!order) {
3939 		long fast_free;
3940 
3941 		fast_free = free_pages;
3942 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3943 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3944 			return true;
3945 	}
3946 
3947 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3948 					free_pages))
3949 		return true;
3950 	/*
3951 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3952 	 * when checking the min watermark. The min watermark is the
3953 	 * point where boosting is ignored so that kswapd is woken up
3954 	 * when below the low watermark.
3955 	 */
3956 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3957 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3958 		mark = z->_watermark[WMARK_MIN];
3959 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3960 					alloc_flags, free_pages);
3961 	}
3962 
3963 	return false;
3964 }
3965 
3966 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3967 			unsigned long mark, int highest_zoneidx)
3968 {
3969 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3970 
3971 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3972 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3973 
3974 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3975 								free_pages);
3976 }
3977 
3978 #ifdef CONFIG_NUMA
3979 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3980 
3981 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3982 {
3983 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3984 				node_reclaim_distance;
3985 }
3986 #else	/* CONFIG_NUMA */
3987 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3988 {
3989 	return true;
3990 }
3991 #endif	/* CONFIG_NUMA */
3992 
3993 /*
3994  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3995  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3996  * premature use of a lower zone may cause lowmem pressure problems that
3997  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3998  * probably too small. It only makes sense to spread allocations to avoid
3999  * fragmentation between the Normal and DMA32 zones.
4000  */
4001 static inline unsigned int
4002 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4003 {
4004 	unsigned int alloc_flags;
4005 
4006 	/*
4007 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4008 	 * to save a branch.
4009 	 */
4010 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4011 
4012 #ifdef CONFIG_ZONE_DMA32
4013 	if (!zone)
4014 		return alloc_flags;
4015 
4016 	if (zone_idx(zone) != ZONE_NORMAL)
4017 		return alloc_flags;
4018 
4019 	/*
4020 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4021 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4022 	 * on UMA that if Normal is populated then so is DMA32.
4023 	 */
4024 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4025 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4026 		return alloc_flags;
4027 
4028 	alloc_flags |= ALLOC_NOFRAGMENT;
4029 #endif /* CONFIG_ZONE_DMA32 */
4030 	return alloc_flags;
4031 }
4032 
4033 /* Must be called after current_gfp_context() which can change gfp_mask */
4034 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4035 						  unsigned int alloc_flags)
4036 {
4037 #ifdef CONFIG_CMA
4038 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4039 		alloc_flags |= ALLOC_CMA;
4040 #endif
4041 	return alloc_flags;
4042 }
4043 
4044 /*
4045  * get_page_from_freelist goes through the zonelist trying to allocate
4046  * a page.
4047  */
4048 static struct page *
4049 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4050 						const struct alloc_context *ac)
4051 {
4052 	struct zoneref *z;
4053 	struct zone *zone;
4054 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4055 	bool no_fallback;
4056 
4057 retry:
4058 	/*
4059 	 * Scan zonelist, looking for a zone with enough free.
4060 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4061 	 */
4062 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4063 	z = ac->preferred_zoneref;
4064 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4065 					ac->nodemask) {
4066 		struct page *page;
4067 		unsigned long mark;
4068 
4069 		if (cpusets_enabled() &&
4070 			(alloc_flags & ALLOC_CPUSET) &&
4071 			!__cpuset_zone_allowed(zone, gfp_mask))
4072 				continue;
4073 		/*
4074 		 * When allocating a page cache page for writing, we
4075 		 * want to get it from a node that is within its dirty
4076 		 * limit, such that no single node holds more than its
4077 		 * proportional share of globally allowed dirty pages.
4078 		 * The dirty limits take into account the node's
4079 		 * lowmem reserves and high watermark so that kswapd
4080 		 * should be able to balance it without having to
4081 		 * write pages from its LRU list.
4082 		 *
4083 		 * XXX: For now, allow allocations to potentially
4084 		 * exceed the per-node dirty limit in the slowpath
4085 		 * (spread_dirty_pages unset) before going into reclaim,
4086 		 * which is important when on a NUMA setup the allowed
4087 		 * nodes are together not big enough to reach the
4088 		 * global limit.  The proper fix for these situations
4089 		 * will require awareness of nodes in the
4090 		 * dirty-throttling and the flusher threads.
4091 		 */
4092 		if (ac->spread_dirty_pages) {
4093 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4094 				continue;
4095 
4096 			if (!node_dirty_ok(zone->zone_pgdat)) {
4097 				last_pgdat_dirty_limit = zone->zone_pgdat;
4098 				continue;
4099 			}
4100 		}
4101 
4102 		if (no_fallback && nr_online_nodes > 1 &&
4103 		    zone != ac->preferred_zoneref->zone) {
4104 			int local_nid;
4105 
4106 			/*
4107 			 * If moving to a remote node, retry but allow
4108 			 * fragmenting fallbacks. Locality is more important
4109 			 * than fragmentation avoidance.
4110 			 */
4111 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4112 			if (zone_to_nid(zone) != local_nid) {
4113 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4114 				goto retry;
4115 			}
4116 		}
4117 
4118 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4119 		if (!zone_watermark_fast(zone, order, mark,
4120 				       ac->highest_zoneidx, alloc_flags,
4121 				       gfp_mask)) {
4122 			int ret;
4123 
4124 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4125 			/*
4126 			 * Watermark failed for this zone, but see if we can
4127 			 * grow this zone if it contains deferred pages.
4128 			 */
4129 			if (static_branch_unlikely(&deferred_pages)) {
4130 				if (_deferred_grow_zone(zone, order))
4131 					goto try_this_zone;
4132 			}
4133 #endif
4134 			/* Checked here to keep the fast path fast */
4135 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4136 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4137 				goto try_this_zone;
4138 
4139 			if (!node_reclaim_enabled() ||
4140 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4141 				continue;
4142 
4143 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4144 			switch (ret) {
4145 			case NODE_RECLAIM_NOSCAN:
4146 				/* did not scan */
4147 				continue;
4148 			case NODE_RECLAIM_FULL:
4149 				/* scanned but unreclaimable */
4150 				continue;
4151 			default:
4152 				/* did we reclaim enough */
4153 				if (zone_watermark_ok(zone, order, mark,
4154 					ac->highest_zoneidx, alloc_flags))
4155 					goto try_this_zone;
4156 
4157 				continue;
4158 			}
4159 		}
4160 
4161 try_this_zone:
4162 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4163 				gfp_mask, alloc_flags, ac->migratetype);
4164 		if (page) {
4165 			prep_new_page(page, order, gfp_mask, alloc_flags);
4166 
4167 			/*
4168 			 * If this is a high-order atomic allocation then check
4169 			 * if the pageblock should be reserved for the future
4170 			 */
4171 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4172 				reserve_highatomic_pageblock(page, zone, order);
4173 
4174 			return page;
4175 		} else {
4176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4177 			/* Try again if zone has deferred pages */
4178 			if (static_branch_unlikely(&deferred_pages)) {
4179 				if (_deferred_grow_zone(zone, order))
4180 					goto try_this_zone;
4181 			}
4182 #endif
4183 		}
4184 	}
4185 
4186 	/*
4187 	 * It's possible on a UMA machine to get through all zones that are
4188 	 * fragmented. If avoiding fragmentation, reset and try again.
4189 	 */
4190 	if (no_fallback) {
4191 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4192 		goto retry;
4193 	}
4194 
4195 	return NULL;
4196 }
4197 
4198 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4199 {
4200 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4201 
4202 	/*
4203 	 * This documents exceptions given to allocations in certain
4204 	 * contexts that are allowed to allocate outside current's set
4205 	 * of allowed nodes.
4206 	 */
4207 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4208 		if (tsk_is_oom_victim(current) ||
4209 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4210 			filter &= ~SHOW_MEM_FILTER_NODES;
4211 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4212 		filter &= ~SHOW_MEM_FILTER_NODES;
4213 
4214 	show_mem(filter, nodemask);
4215 }
4216 
4217 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4218 {
4219 	struct va_format vaf;
4220 	va_list args;
4221 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4222 
4223 	if ((gfp_mask & __GFP_NOWARN) ||
4224 	     !__ratelimit(&nopage_rs) ||
4225 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4226 		return;
4227 
4228 	va_start(args, fmt);
4229 	vaf.fmt = fmt;
4230 	vaf.va = &args;
4231 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4232 			current->comm, &vaf, gfp_mask, &gfp_mask,
4233 			nodemask_pr_args(nodemask));
4234 	va_end(args);
4235 
4236 	cpuset_print_current_mems_allowed();
4237 	pr_cont("\n");
4238 	dump_stack();
4239 	warn_alloc_show_mem(gfp_mask, nodemask);
4240 }
4241 
4242 static inline struct page *
4243 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4244 			      unsigned int alloc_flags,
4245 			      const struct alloc_context *ac)
4246 {
4247 	struct page *page;
4248 
4249 	page = get_page_from_freelist(gfp_mask, order,
4250 			alloc_flags|ALLOC_CPUSET, ac);
4251 	/*
4252 	 * fallback to ignore cpuset restriction if our nodes
4253 	 * are depleted
4254 	 */
4255 	if (!page)
4256 		page = get_page_from_freelist(gfp_mask, order,
4257 				alloc_flags, ac);
4258 
4259 	return page;
4260 }
4261 
4262 static inline struct page *
4263 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4264 	const struct alloc_context *ac, unsigned long *did_some_progress)
4265 {
4266 	struct oom_control oc = {
4267 		.zonelist = ac->zonelist,
4268 		.nodemask = ac->nodemask,
4269 		.memcg = NULL,
4270 		.gfp_mask = gfp_mask,
4271 		.order = order,
4272 	};
4273 	struct page *page;
4274 
4275 	*did_some_progress = 0;
4276 
4277 	/*
4278 	 * Acquire the oom lock.  If that fails, somebody else is
4279 	 * making progress for us.
4280 	 */
4281 	if (!mutex_trylock(&oom_lock)) {
4282 		*did_some_progress = 1;
4283 		schedule_timeout_uninterruptible(1);
4284 		return NULL;
4285 	}
4286 
4287 	/*
4288 	 * Go through the zonelist yet one more time, keep very high watermark
4289 	 * here, this is only to catch a parallel oom killing, we must fail if
4290 	 * we're still under heavy pressure. But make sure that this reclaim
4291 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4292 	 * allocation which will never fail due to oom_lock already held.
4293 	 */
4294 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4295 				      ~__GFP_DIRECT_RECLAIM, order,
4296 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4297 	if (page)
4298 		goto out;
4299 
4300 	/* Coredumps can quickly deplete all memory reserves */
4301 	if (current->flags & PF_DUMPCORE)
4302 		goto out;
4303 	/* The OOM killer will not help higher order allocs */
4304 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4305 		goto out;
4306 	/*
4307 	 * We have already exhausted all our reclaim opportunities without any
4308 	 * success so it is time to admit defeat. We will skip the OOM killer
4309 	 * because it is very likely that the caller has a more reasonable
4310 	 * fallback than shooting a random task.
4311 	 *
4312 	 * The OOM killer may not free memory on a specific node.
4313 	 */
4314 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4315 		goto out;
4316 	/* The OOM killer does not needlessly kill tasks for lowmem */
4317 	if (ac->highest_zoneidx < ZONE_NORMAL)
4318 		goto out;
4319 	if (pm_suspended_storage())
4320 		goto out;
4321 	/*
4322 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4323 	 * other request to make a forward progress.
4324 	 * We are in an unfortunate situation where out_of_memory cannot
4325 	 * do much for this context but let's try it to at least get
4326 	 * access to memory reserved if the current task is killed (see
4327 	 * out_of_memory). Once filesystems are ready to handle allocation
4328 	 * failures more gracefully we should just bail out here.
4329 	 */
4330 
4331 	/* Exhausted what can be done so it's blame time */
4332 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4333 		*did_some_progress = 1;
4334 
4335 		/*
4336 		 * Help non-failing allocations by giving them access to memory
4337 		 * reserves
4338 		 */
4339 		if (gfp_mask & __GFP_NOFAIL)
4340 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4341 					ALLOC_NO_WATERMARKS, ac);
4342 	}
4343 out:
4344 	mutex_unlock(&oom_lock);
4345 	return page;
4346 }
4347 
4348 /*
4349  * Maximum number of compaction retries with a progress before OOM
4350  * killer is consider as the only way to move forward.
4351  */
4352 #define MAX_COMPACT_RETRIES 16
4353 
4354 #ifdef CONFIG_COMPACTION
4355 /* Try memory compaction for high-order allocations before reclaim */
4356 static struct page *
4357 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4358 		unsigned int alloc_flags, const struct alloc_context *ac,
4359 		enum compact_priority prio, enum compact_result *compact_result)
4360 {
4361 	struct page *page = NULL;
4362 	unsigned long pflags;
4363 	unsigned int noreclaim_flag;
4364 
4365 	if (!order)
4366 		return NULL;
4367 
4368 	psi_memstall_enter(&pflags);
4369 	delayacct_compact_start();
4370 	noreclaim_flag = memalloc_noreclaim_save();
4371 
4372 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4373 								prio, &page);
4374 
4375 	memalloc_noreclaim_restore(noreclaim_flag);
4376 	psi_memstall_leave(&pflags);
4377 	delayacct_compact_end();
4378 
4379 	if (*compact_result == COMPACT_SKIPPED)
4380 		return NULL;
4381 	/*
4382 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4383 	 * count a compaction stall
4384 	 */
4385 	count_vm_event(COMPACTSTALL);
4386 
4387 	/* Prep a captured page if available */
4388 	if (page)
4389 		prep_new_page(page, order, gfp_mask, alloc_flags);
4390 
4391 	/* Try get a page from the freelist if available */
4392 	if (!page)
4393 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4394 
4395 	if (page) {
4396 		struct zone *zone = page_zone(page);
4397 
4398 		zone->compact_blockskip_flush = false;
4399 		compaction_defer_reset(zone, order, true);
4400 		count_vm_event(COMPACTSUCCESS);
4401 		return page;
4402 	}
4403 
4404 	/*
4405 	 * It's bad if compaction run occurs and fails. The most likely reason
4406 	 * is that pages exist, but not enough to satisfy watermarks.
4407 	 */
4408 	count_vm_event(COMPACTFAIL);
4409 
4410 	cond_resched();
4411 
4412 	return NULL;
4413 }
4414 
4415 static inline bool
4416 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4417 		     enum compact_result compact_result,
4418 		     enum compact_priority *compact_priority,
4419 		     int *compaction_retries)
4420 {
4421 	int max_retries = MAX_COMPACT_RETRIES;
4422 	int min_priority;
4423 	bool ret = false;
4424 	int retries = *compaction_retries;
4425 	enum compact_priority priority = *compact_priority;
4426 
4427 	if (!order)
4428 		return false;
4429 
4430 	if (fatal_signal_pending(current))
4431 		return false;
4432 
4433 	if (compaction_made_progress(compact_result))
4434 		(*compaction_retries)++;
4435 
4436 	/*
4437 	 * compaction considers all the zone as desperately out of memory
4438 	 * so it doesn't really make much sense to retry except when the
4439 	 * failure could be caused by insufficient priority
4440 	 */
4441 	if (compaction_failed(compact_result))
4442 		goto check_priority;
4443 
4444 	/*
4445 	 * compaction was skipped because there are not enough order-0 pages
4446 	 * to work with, so we retry only if it looks like reclaim can help.
4447 	 */
4448 	if (compaction_needs_reclaim(compact_result)) {
4449 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4450 		goto out;
4451 	}
4452 
4453 	/*
4454 	 * make sure the compaction wasn't deferred or didn't bail out early
4455 	 * due to locks contention before we declare that we should give up.
4456 	 * But the next retry should use a higher priority if allowed, so
4457 	 * we don't just keep bailing out endlessly.
4458 	 */
4459 	if (compaction_withdrawn(compact_result)) {
4460 		goto check_priority;
4461 	}
4462 
4463 	/*
4464 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4465 	 * costly ones because they are de facto nofail and invoke OOM
4466 	 * killer to move on while costly can fail and users are ready
4467 	 * to cope with that. 1/4 retries is rather arbitrary but we
4468 	 * would need much more detailed feedback from compaction to
4469 	 * make a better decision.
4470 	 */
4471 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4472 		max_retries /= 4;
4473 	if (*compaction_retries <= max_retries) {
4474 		ret = true;
4475 		goto out;
4476 	}
4477 
4478 	/*
4479 	 * Make sure there are attempts at the highest priority if we exhausted
4480 	 * all retries or failed at the lower priorities.
4481 	 */
4482 check_priority:
4483 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4484 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4485 
4486 	if (*compact_priority > min_priority) {
4487 		(*compact_priority)--;
4488 		*compaction_retries = 0;
4489 		ret = true;
4490 	}
4491 out:
4492 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4493 	return ret;
4494 }
4495 #else
4496 static inline struct page *
4497 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4498 		unsigned int alloc_flags, const struct alloc_context *ac,
4499 		enum compact_priority prio, enum compact_result *compact_result)
4500 {
4501 	*compact_result = COMPACT_SKIPPED;
4502 	return NULL;
4503 }
4504 
4505 static inline bool
4506 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4507 		     enum compact_result compact_result,
4508 		     enum compact_priority *compact_priority,
4509 		     int *compaction_retries)
4510 {
4511 	struct zone *zone;
4512 	struct zoneref *z;
4513 
4514 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4515 		return false;
4516 
4517 	/*
4518 	 * There are setups with compaction disabled which would prefer to loop
4519 	 * inside the allocator rather than hit the oom killer prematurely.
4520 	 * Let's give them a good hope and keep retrying while the order-0
4521 	 * watermarks are OK.
4522 	 */
4523 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4524 				ac->highest_zoneidx, ac->nodemask) {
4525 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4526 					ac->highest_zoneidx, alloc_flags))
4527 			return true;
4528 	}
4529 	return false;
4530 }
4531 #endif /* CONFIG_COMPACTION */
4532 
4533 #ifdef CONFIG_LOCKDEP
4534 static struct lockdep_map __fs_reclaim_map =
4535 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4536 
4537 static bool __need_reclaim(gfp_t gfp_mask)
4538 {
4539 	/* no reclaim without waiting on it */
4540 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4541 		return false;
4542 
4543 	/* this guy won't enter reclaim */
4544 	if (current->flags & PF_MEMALLOC)
4545 		return false;
4546 
4547 	if (gfp_mask & __GFP_NOLOCKDEP)
4548 		return false;
4549 
4550 	return true;
4551 }
4552 
4553 void __fs_reclaim_acquire(unsigned long ip)
4554 {
4555 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4556 }
4557 
4558 void __fs_reclaim_release(unsigned long ip)
4559 {
4560 	lock_release(&__fs_reclaim_map, ip);
4561 }
4562 
4563 void fs_reclaim_acquire(gfp_t gfp_mask)
4564 {
4565 	gfp_mask = current_gfp_context(gfp_mask);
4566 
4567 	if (__need_reclaim(gfp_mask)) {
4568 		if (gfp_mask & __GFP_FS)
4569 			__fs_reclaim_acquire(_RET_IP_);
4570 
4571 #ifdef CONFIG_MMU_NOTIFIER
4572 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4573 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4574 #endif
4575 
4576 	}
4577 }
4578 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4579 
4580 void fs_reclaim_release(gfp_t gfp_mask)
4581 {
4582 	gfp_mask = current_gfp_context(gfp_mask);
4583 
4584 	if (__need_reclaim(gfp_mask)) {
4585 		if (gfp_mask & __GFP_FS)
4586 			__fs_reclaim_release(_RET_IP_);
4587 	}
4588 }
4589 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4590 #endif
4591 
4592 /* Perform direct synchronous page reclaim */
4593 static unsigned long
4594 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4595 					const struct alloc_context *ac)
4596 {
4597 	unsigned int noreclaim_flag;
4598 	unsigned long pflags, progress;
4599 
4600 	cond_resched();
4601 
4602 	/* We now go into synchronous reclaim */
4603 	cpuset_memory_pressure_bump();
4604 	psi_memstall_enter(&pflags);
4605 	fs_reclaim_acquire(gfp_mask);
4606 	noreclaim_flag = memalloc_noreclaim_save();
4607 
4608 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4609 								ac->nodemask);
4610 
4611 	memalloc_noreclaim_restore(noreclaim_flag);
4612 	fs_reclaim_release(gfp_mask);
4613 	psi_memstall_leave(&pflags);
4614 
4615 	cond_resched();
4616 
4617 	return progress;
4618 }
4619 
4620 /* The really slow allocator path where we enter direct reclaim */
4621 static inline struct page *
4622 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4623 		unsigned int alloc_flags, const struct alloc_context *ac,
4624 		unsigned long *did_some_progress)
4625 {
4626 	struct page *page = NULL;
4627 	bool drained = false;
4628 
4629 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4630 	if (unlikely(!(*did_some_progress)))
4631 		return NULL;
4632 
4633 retry:
4634 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4635 
4636 	/*
4637 	 * If an allocation failed after direct reclaim, it could be because
4638 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4639 	 * Shrink them and try again
4640 	 */
4641 	if (!page && !drained) {
4642 		unreserve_highatomic_pageblock(ac, false);
4643 		drain_all_pages(NULL);
4644 		drained = true;
4645 		goto retry;
4646 	}
4647 
4648 	return page;
4649 }
4650 
4651 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4652 			     const struct alloc_context *ac)
4653 {
4654 	struct zoneref *z;
4655 	struct zone *zone;
4656 	pg_data_t *last_pgdat = NULL;
4657 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4658 
4659 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4660 					ac->nodemask) {
4661 		if (last_pgdat != zone->zone_pgdat)
4662 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4663 		last_pgdat = zone->zone_pgdat;
4664 	}
4665 }
4666 
4667 static inline unsigned int
4668 gfp_to_alloc_flags(gfp_t gfp_mask)
4669 {
4670 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4671 
4672 	/*
4673 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4674 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4675 	 * to save two branches.
4676 	 */
4677 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4678 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4679 
4680 	/*
4681 	 * The caller may dip into page reserves a bit more if the caller
4682 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4683 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4684 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4685 	 */
4686 	alloc_flags |= (__force int)
4687 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4688 
4689 	if (gfp_mask & __GFP_ATOMIC) {
4690 		/*
4691 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4692 		 * if it can't schedule.
4693 		 */
4694 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4695 			alloc_flags |= ALLOC_HARDER;
4696 		/*
4697 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4698 		 * comment for __cpuset_node_allowed().
4699 		 */
4700 		alloc_flags &= ~ALLOC_CPUSET;
4701 	} else if (unlikely(rt_task(current)) && in_task())
4702 		alloc_flags |= ALLOC_HARDER;
4703 
4704 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4705 
4706 	return alloc_flags;
4707 }
4708 
4709 static bool oom_reserves_allowed(struct task_struct *tsk)
4710 {
4711 	if (!tsk_is_oom_victim(tsk))
4712 		return false;
4713 
4714 	/*
4715 	 * !MMU doesn't have oom reaper so give access to memory reserves
4716 	 * only to the thread with TIF_MEMDIE set
4717 	 */
4718 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4719 		return false;
4720 
4721 	return true;
4722 }
4723 
4724 /*
4725  * Distinguish requests which really need access to full memory
4726  * reserves from oom victims which can live with a portion of it
4727  */
4728 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4729 {
4730 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4731 		return 0;
4732 	if (gfp_mask & __GFP_MEMALLOC)
4733 		return ALLOC_NO_WATERMARKS;
4734 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4735 		return ALLOC_NO_WATERMARKS;
4736 	if (!in_interrupt()) {
4737 		if (current->flags & PF_MEMALLOC)
4738 			return ALLOC_NO_WATERMARKS;
4739 		else if (oom_reserves_allowed(current))
4740 			return ALLOC_OOM;
4741 	}
4742 
4743 	return 0;
4744 }
4745 
4746 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4747 {
4748 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4749 }
4750 
4751 /*
4752  * Checks whether it makes sense to retry the reclaim to make a forward progress
4753  * for the given allocation request.
4754  *
4755  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4756  * without success, or when we couldn't even meet the watermark if we
4757  * reclaimed all remaining pages on the LRU lists.
4758  *
4759  * Returns true if a retry is viable or false to enter the oom path.
4760  */
4761 static inline bool
4762 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4763 		     struct alloc_context *ac, int alloc_flags,
4764 		     bool did_some_progress, int *no_progress_loops)
4765 {
4766 	struct zone *zone;
4767 	struct zoneref *z;
4768 	bool ret = false;
4769 
4770 	/*
4771 	 * Costly allocations might have made a progress but this doesn't mean
4772 	 * their order will become available due to high fragmentation so
4773 	 * always increment the no progress counter for them
4774 	 */
4775 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4776 		*no_progress_loops = 0;
4777 	else
4778 		(*no_progress_loops)++;
4779 
4780 	/*
4781 	 * Make sure we converge to OOM if we cannot make any progress
4782 	 * several times in the row.
4783 	 */
4784 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4785 		/* Before OOM, exhaust highatomic_reserve */
4786 		return unreserve_highatomic_pageblock(ac, true);
4787 	}
4788 
4789 	/*
4790 	 * Keep reclaiming pages while there is a chance this will lead
4791 	 * somewhere.  If none of the target zones can satisfy our allocation
4792 	 * request even if all reclaimable pages are considered then we are
4793 	 * screwed and have to go OOM.
4794 	 */
4795 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4796 				ac->highest_zoneidx, ac->nodemask) {
4797 		unsigned long available;
4798 		unsigned long reclaimable;
4799 		unsigned long min_wmark = min_wmark_pages(zone);
4800 		bool wmark;
4801 
4802 		available = reclaimable = zone_reclaimable_pages(zone);
4803 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4804 
4805 		/*
4806 		 * Would the allocation succeed if we reclaimed all
4807 		 * reclaimable pages?
4808 		 */
4809 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4810 				ac->highest_zoneidx, alloc_flags, available);
4811 		trace_reclaim_retry_zone(z, order, reclaimable,
4812 				available, min_wmark, *no_progress_loops, wmark);
4813 		if (wmark) {
4814 			ret = true;
4815 			break;
4816 		}
4817 	}
4818 
4819 	/*
4820 	 * Memory allocation/reclaim might be called from a WQ context and the
4821 	 * current implementation of the WQ concurrency control doesn't
4822 	 * recognize that a particular WQ is congested if the worker thread is
4823 	 * looping without ever sleeping. Therefore we have to do a short sleep
4824 	 * here rather than calling cond_resched().
4825 	 */
4826 	if (current->flags & PF_WQ_WORKER)
4827 		schedule_timeout_uninterruptible(1);
4828 	else
4829 		cond_resched();
4830 	return ret;
4831 }
4832 
4833 static inline bool
4834 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4835 {
4836 	/*
4837 	 * It's possible that cpuset's mems_allowed and the nodemask from
4838 	 * mempolicy don't intersect. This should be normally dealt with by
4839 	 * policy_nodemask(), but it's possible to race with cpuset update in
4840 	 * such a way the check therein was true, and then it became false
4841 	 * before we got our cpuset_mems_cookie here.
4842 	 * This assumes that for all allocations, ac->nodemask can come only
4843 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4844 	 * when it does not intersect with the cpuset restrictions) or the
4845 	 * caller can deal with a violated nodemask.
4846 	 */
4847 	if (cpusets_enabled() && ac->nodemask &&
4848 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4849 		ac->nodemask = NULL;
4850 		return true;
4851 	}
4852 
4853 	/*
4854 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4855 	 * possible to race with parallel threads in such a way that our
4856 	 * allocation can fail while the mask is being updated. If we are about
4857 	 * to fail, check if the cpuset changed during allocation and if so,
4858 	 * retry.
4859 	 */
4860 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4861 		return true;
4862 
4863 	return false;
4864 }
4865 
4866 static inline struct page *
4867 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4868 						struct alloc_context *ac)
4869 {
4870 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4871 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4872 	struct page *page = NULL;
4873 	unsigned int alloc_flags;
4874 	unsigned long did_some_progress;
4875 	enum compact_priority compact_priority;
4876 	enum compact_result compact_result;
4877 	int compaction_retries;
4878 	int no_progress_loops;
4879 	unsigned int cpuset_mems_cookie;
4880 	int reserve_flags;
4881 
4882 	/*
4883 	 * We also sanity check to catch abuse of atomic reserves being used by
4884 	 * callers that are not in atomic context.
4885 	 */
4886 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4887 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4888 		gfp_mask &= ~__GFP_ATOMIC;
4889 
4890 retry_cpuset:
4891 	compaction_retries = 0;
4892 	no_progress_loops = 0;
4893 	compact_priority = DEF_COMPACT_PRIORITY;
4894 	cpuset_mems_cookie = read_mems_allowed_begin();
4895 
4896 	/*
4897 	 * The fast path uses conservative alloc_flags to succeed only until
4898 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4899 	 * alloc_flags precisely. So we do that now.
4900 	 */
4901 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4902 
4903 	/*
4904 	 * We need to recalculate the starting point for the zonelist iterator
4905 	 * because we might have used different nodemask in the fast path, or
4906 	 * there was a cpuset modification and we are retrying - otherwise we
4907 	 * could end up iterating over non-eligible zones endlessly.
4908 	 */
4909 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4910 					ac->highest_zoneidx, ac->nodemask);
4911 	if (!ac->preferred_zoneref->zone)
4912 		goto nopage;
4913 
4914 	/*
4915 	 * Check for insane configurations where the cpuset doesn't contain
4916 	 * any suitable zone to satisfy the request - e.g. non-movable
4917 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4918 	 */
4919 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4920 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4921 					ac->highest_zoneidx,
4922 					&cpuset_current_mems_allowed);
4923 		if (!z->zone)
4924 			goto nopage;
4925 	}
4926 
4927 	if (alloc_flags & ALLOC_KSWAPD)
4928 		wake_all_kswapds(order, gfp_mask, ac);
4929 
4930 	/*
4931 	 * The adjusted alloc_flags might result in immediate success, so try
4932 	 * that first
4933 	 */
4934 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4935 	if (page)
4936 		goto got_pg;
4937 
4938 	/*
4939 	 * For costly allocations, try direct compaction first, as it's likely
4940 	 * that we have enough base pages and don't need to reclaim. For non-
4941 	 * movable high-order allocations, do that as well, as compaction will
4942 	 * try prevent permanent fragmentation by migrating from blocks of the
4943 	 * same migratetype.
4944 	 * Don't try this for allocations that are allowed to ignore
4945 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4946 	 */
4947 	if (can_direct_reclaim &&
4948 			(costly_order ||
4949 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4950 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4951 		page = __alloc_pages_direct_compact(gfp_mask, order,
4952 						alloc_flags, ac,
4953 						INIT_COMPACT_PRIORITY,
4954 						&compact_result);
4955 		if (page)
4956 			goto got_pg;
4957 
4958 		/*
4959 		 * Checks for costly allocations with __GFP_NORETRY, which
4960 		 * includes some THP page fault allocations
4961 		 */
4962 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4963 			/*
4964 			 * If allocating entire pageblock(s) and compaction
4965 			 * failed because all zones are below low watermarks
4966 			 * or is prohibited because it recently failed at this
4967 			 * order, fail immediately unless the allocator has
4968 			 * requested compaction and reclaim retry.
4969 			 *
4970 			 * Reclaim is
4971 			 *  - potentially very expensive because zones are far
4972 			 *    below their low watermarks or this is part of very
4973 			 *    bursty high order allocations,
4974 			 *  - not guaranteed to help because isolate_freepages()
4975 			 *    may not iterate over freed pages as part of its
4976 			 *    linear scan, and
4977 			 *  - unlikely to make entire pageblocks free on its
4978 			 *    own.
4979 			 */
4980 			if (compact_result == COMPACT_SKIPPED ||
4981 			    compact_result == COMPACT_DEFERRED)
4982 				goto nopage;
4983 
4984 			/*
4985 			 * Looks like reclaim/compaction is worth trying, but
4986 			 * sync compaction could be very expensive, so keep
4987 			 * using async compaction.
4988 			 */
4989 			compact_priority = INIT_COMPACT_PRIORITY;
4990 		}
4991 	}
4992 
4993 retry:
4994 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4995 	if (alloc_flags & ALLOC_KSWAPD)
4996 		wake_all_kswapds(order, gfp_mask, ac);
4997 
4998 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4999 	if (reserve_flags)
5000 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5001 
5002 	/*
5003 	 * Reset the nodemask and zonelist iterators if memory policies can be
5004 	 * ignored. These allocations are high priority and system rather than
5005 	 * user oriented.
5006 	 */
5007 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5008 		ac->nodemask = NULL;
5009 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5010 					ac->highest_zoneidx, ac->nodemask);
5011 	}
5012 
5013 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5014 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5015 	if (page)
5016 		goto got_pg;
5017 
5018 	/* Caller is not willing to reclaim, we can't balance anything */
5019 	if (!can_direct_reclaim)
5020 		goto nopage;
5021 
5022 	/* Avoid recursion of direct reclaim */
5023 	if (current->flags & PF_MEMALLOC)
5024 		goto nopage;
5025 
5026 	/* Try direct reclaim and then allocating */
5027 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5028 							&did_some_progress);
5029 	if (page)
5030 		goto got_pg;
5031 
5032 	/* Try direct compaction and then allocating */
5033 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5034 					compact_priority, &compact_result);
5035 	if (page)
5036 		goto got_pg;
5037 
5038 	/* Do not loop if specifically requested */
5039 	if (gfp_mask & __GFP_NORETRY)
5040 		goto nopage;
5041 
5042 	/*
5043 	 * Do not retry costly high order allocations unless they are
5044 	 * __GFP_RETRY_MAYFAIL
5045 	 */
5046 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5047 		goto nopage;
5048 
5049 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5050 				 did_some_progress > 0, &no_progress_loops))
5051 		goto retry;
5052 
5053 	/*
5054 	 * It doesn't make any sense to retry for the compaction if the order-0
5055 	 * reclaim is not able to make any progress because the current
5056 	 * implementation of the compaction depends on the sufficient amount
5057 	 * of free memory (see __compaction_suitable)
5058 	 */
5059 	if (did_some_progress > 0 &&
5060 			should_compact_retry(ac, order, alloc_flags,
5061 				compact_result, &compact_priority,
5062 				&compaction_retries))
5063 		goto retry;
5064 
5065 
5066 	/* Deal with possible cpuset update races before we start OOM killing */
5067 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5068 		goto retry_cpuset;
5069 
5070 	/* Reclaim has failed us, start killing things */
5071 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5072 	if (page)
5073 		goto got_pg;
5074 
5075 	/* Avoid allocations with no watermarks from looping endlessly */
5076 	if (tsk_is_oom_victim(current) &&
5077 	    (alloc_flags & ALLOC_OOM ||
5078 	     (gfp_mask & __GFP_NOMEMALLOC)))
5079 		goto nopage;
5080 
5081 	/* Retry as long as the OOM killer is making progress */
5082 	if (did_some_progress) {
5083 		no_progress_loops = 0;
5084 		goto retry;
5085 	}
5086 
5087 nopage:
5088 	/* Deal with possible cpuset update races before we fail */
5089 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5090 		goto retry_cpuset;
5091 
5092 	/*
5093 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5094 	 * we always retry
5095 	 */
5096 	if (gfp_mask & __GFP_NOFAIL) {
5097 		/*
5098 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5099 		 * of any new users that actually require GFP_NOWAIT
5100 		 */
5101 		if (WARN_ON_ONCE(!can_direct_reclaim))
5102 			goto fail;
5103 
5104 		/*
5105 		 * PF_MEMALLOC request from this context is rather bizarre
5106 		 * because we cannot reclaim anything and only can loop waiting
5107 		 * for somebody to do a work for us
5108 		 */
5109 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5110 
5111 		/*
5112 		 * non failing costly orders are a hard requirement which we
5113 		 * are not prepared for much so let's warn about these users
5114 		 * so that we can identify them and convert them to something
5115 		 * else.
5116 		 */
5117 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5118 
5119 		/*
5120 		 * Help non-failing allocations by giving them access to memory
5121 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5122 		 * could deplete whole memory reserves which would just make
5123 		 * the situation worse
5124 		 */
5125 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5126 		if (page)
5127 			goto got_pg;
5128 
5129 		cond_resched();
5130 		goto retry;
5131 	}
5132 fail:
5133 	warn_alloc(gfp_mask, ac->nodemask,
5134 			"page allocation failure: order:%u", order);
5135 got_pg:
5136 	return page;
5137 }
5138 
5139 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5140 		int preferred_nid, nodemask_t *nodemask,
5141 		struct alloc_context *ac, gfp_t *alloc_gfp,
5142 		unsigned int *alloc_flags)
5143 {
5144 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5145 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5146 	ac->nodemask = nodemask;
5147 	ac->migratetype = gfp_migratetype(gfp_mask);
5148 
5149 	if (cpusets_enabled()) {
5150 		*alloc_gfp |= __GFP_HARDWALL;
5151 		/*
5152 		 * When we are in the interrupt context, it is irrelevant
5153 		 * to the current task context. It means that any node ok.
5154 		 */
5155 		if (in_task() && !ac->nodemask)
5156 			ac->nodemask = &cpuset_current_mems_allowed;
5157 		else
5158 			*alloc_flags |= ALLOC_CPUSET;
5159 	}
5160 
5161 	fs_reclaim_acquire(gfp_mask);
5162 	fs_reclaim_release(gfp_mask);
5163 
5164 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5165 
5166 	if (should_fail_alloc_page(gfp_mask, order))
5167 		return false;
5168 
5169 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5170 
5171 	/* Dirty zone balancing only done in the fast path */
5172 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5173 
5174 	/*
5175 	 * The preferred zone is used for statistics but crucially it is
5176 	 * also used as the starting point for the zonelist iterator. It
5177 	 * may get reset for allocations that ignore memory policies.
5178 	 */
5179 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5180 					ac->highest_zoneidx, ac->nodemask);
5181 
5182 	return true;
5183 }
5184 
5185 /*
5186  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5187  * @gfp: GFP flags for the allocation
5188  * @preferred_nid: The preferred NUMA node ID to allocate from
5189  * @nodemask: Set of nodes to allocate from, may be NULL
5190  * @nr_pages: The number of pages desired on the list or array
5191  * @page_list: Optional list to store the allocated pages
5192  * @page_array: Optional array to store the pages
5193  *
5194  * This is a batched version of the page allocator that attempts to
5195  * allocate nr_pages quickly. Pages are added to page_list if page_list
5196  * is not NULL, otherwise it is assumed that the page_array is valid.
5197  *
5198  * For lists, nr_pages is the number of pages that should be allocated.
5199  *
5200  * For arrays, only NULL elements are populated with pages and nr_pages
5201  * is the maximum number of pages that will be stored in the array.
5202  *
5203  * Returns the number of pages on the list or array.
5204  */
5205 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5206 			nodemask_t *nodemask, int nr_pages,
5207 			struct list_head *page_list,
5208 			struct page **page_array)
5209 {
5210 	struct page *page;
5211 	unsigned long flags;
5212 	struct zone *zone;
5213 	struct zoneref *z;
5214 	struct per_cpu_pages *pcp;
5215 	struct list_head *pcp_list;
5216 	struct alloc_context ac;
5217 	gfp_t alloc_gfp;
5218 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5219 	int nr_populated = 0, nr_account = 0;
5220 
5221 	/*
5222 	 * Skip populated array elements to determine if any pages need
5223 	 * to be allocated before disabling IRQs.
5224 	 */
5225 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5226 		nr_populated++;
5227 
5228 	/* No pages requested? */
5229 	if (unlikely(nr_pages <= 0))
5230 		goto out;
5231 
5232 	/* Already populated array? */
5233 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5234 		goto out;
5235 
5236 	/* Bulk allocator does not support memcg accounting. */
5237 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5238 		goto failed;
5239 
5240 	/* Use the single page allocator for one page. */
5241 	if (nr_pages - nr_populated == 1)
5242 		goto failed;
5243 
5244 #ifdef CONFIG_PAGE_OWNER
5245 	/*
5246 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5247 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5248 	 * removes much of the performance benefit of bulk allocation so
5249 	 * force the caller to allocate one page at a time as it'll have
5250 	 * similar performance to added complexity to the bulk allocator.
5251 	 */
5252 	if (static_branch_unlikely(&page_owner_inited))
5253 		goto failed;
5254 #endif
5255 
5256 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5257 	gfp &= gfp_allowed_mask;
5258 	alloc_gfp = gfp;
5259 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5260 		goto out;
5261 	gfp = alloc_gfp;
5262 
5263 	/* Find an allowed local zone that meets the low watermark. */
5264 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5265 		unsigned long mark;
5266 
5267 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5268 		    !__cpuset_zone_allowed(zone, gfp)) {
5269 			continue;
5270 		}
5271 
5272 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5273 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5274 			goto failed;
5275 		}
5276 
5277 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5278 		if (zone_watermark_fast(zone, 0,  mark,
5279 				zonelist_zone_idx(ac.preferred_zoneref),
5280 				alloc_flags, gfp)) {
5281 			break;
5282 		}
5283 	}
5284 
5285 	/*
5286 	 * If there are no allowed local zones that meets the watermarks then
5287 	 * try to allocate a single page and reclaim if necessary.
5288 	 */
5289 	if (unlikely(!zone))
5290 		goto failed;
5291 
5292 	/* Attempt the batch allocation */
5293 	local_lock_irqsave(&pagesets.lock, flags);
5294 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5295 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5296 
5297 	while (nr_populated < nr_pages) {
5298 
5299 		/* Skip existing pages */
5300 		if (page_array && page_array[nr_populated]) {
5301 			nr_populated++;
5302 			continue;
5303 		}
5304 
5305 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5306 								pcp, pcp_list);
5307 		if (unlikely(!page)) {
5308 			/* Try and get at least one page */
5309 			if (!nr_populated)
5310 				goto failed_irq;
5311 			break;
5312 		}
5313 		nr_account++;
5314 
5315 		prep_new_page(page, 0, gfp, 0);
5316 		if (page_list)
5317 			list_add(&page->lru, page_list);
5318 		else
5319 			page_array[nr_populated] = page;
5320 		nr_populated++;
5321 	}
5322 
5323 	local_unlock_irqrestore(&pagesets.lock, flags);
5324 
5325 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5326 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5327 
5328 out:
5329 	return nr_populated;
5330 
5331 failed_irq:
5332 	local_unlock_irqrestore(&pagesets.lock, flags);
5333 
5334 failed:
5335 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5336 	if (page) {
5337 		if (page_list)
5338 			list_add(&page->lru, page_list);
5339 		else
5340 			page_array[nr_populated] = page;
5341 		nr_populated++;
5342 	}
5343 
5344 	goto out;
5345 }
5346 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5347 
5348 /*
5349  * This is the 'heart' of the zoned buddy allocator.
5350  */
5351 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5352 							nodemask_t *nodemask)
5353 {
5354 	struct page *page;
5355 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5356 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5357 	struct alloc_context ac = { };
5358 
5359 	/*
5360 	 * There are several places where we assume that the order value is sane
5361 	 * so bail out early if the request is out of bound.
5362 	 */
5363 	if (unlikely(order >= MAX_ORDER)) {
5364 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5365 		return NULL;
5366 	}
5367 
5368 	gfp &= gfp_allowed_mask;
5369 	/*
5370 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5371 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5372 	 * from a particular context which has been marked by
5373 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5374 	 * movable zones are not used during allocation.
5375 	 */
5376 	gfp = current_gfp_context(gfp);
5377 	alloc_gfp = gfp;
5378 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5379 			&alloc_gfp, &alloc_flags))
5380 		return NULL;
5381 
5382 	/*
5383 	 * Forbid the first pass from falling back to types that fragment
5384 	 * memory until all local zones are considered.
5385 	 */
5386 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5387 
5388 	/* First allocation attempt */
5389 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5390 	if (likely(page))
5391 		goto out;
5392 
5393 	alloc_gfp = gfp;
5394 	ac.spread_dirty_pages = false;
5395 
5396 	/*
5397 	 * Restore the original nodemask if it was potentially replaced with
5398 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5399 	 */
5400 	ac.nodemask = nodemask;
5401 
5402 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5403 
5404 out:
5405 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5406 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5407 		__free_pages(page, order);
5408 		page = NULL;
5409 	}
5410 
5411 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5412 
5413 	return page;
5414 }
5415 EXPORT_SYMBOL(__alloc_pages);
5416 
5417 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5418 		nodemask_t *nodemask)
5419 {
5420 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5421 			preferred_nid, nodemask);
5422 
5423 	if (page && order > 1)
5424 		prep_transhuge_page(page);
5425 	return (struct folio *)page;
5426 }
5427 EXPORT_SYMBOL(__folio_alloc);
5428 
5429 /*
5430  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5431  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5432  * you need to access high mem.
5433  */
5434 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5435 {
5436 	struct page *page;
5437 
5438 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5439 	if (!page)
5440 		return 0;
5441 	return (unsigned long) page_address(page);
5442 }
5443 EXPORT_SYMBOL(__get_free_pages);
5444 
5445 unsigned long get_zeroed_page(gfp_t gfp_mask)
5446 {
5447 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5448 }
5449 EXPORT_SYMBOL(get_zeroed_page);
5450 
5451 /**
5452  * __free_pages - Free pages allocated with alloc_pages().
5453  * @page: The page pointer returned from alloc_pages().
5454  * @order: The order of the allocation.
5455  *
5456  * This function can free multi-page allocations that are not compound
5457  * pages.  It does not check that the @order passed in matches that of
5458  * the allocation, so it is easy to leak memory.  Freeing more memory
5459  * than was allocated will probably emit a warning.
5460  *
5461  * If the last reference to this page is speculative, it will be released
5462  * by put_page() which only frees the first page of a non-compound
5463  * allocation.  To prevent the remaining pages from being leaked, we free
5464  * the subsequent pages here.  If you want to use the page's reference
5465  * count to decide when to free the allocation, you should allocate a
5466  * compound page, and use put_page() instead of __free_pages().
5467  *
5468  * Context: May be called in interrupt context or while holding a normal
5469  * spinlock, but not in NMI context or while holding a raw spinlock.
5470  */
5471 void __free_pages(struct page *page, unsigned int order)
5472 {
5473 	if (put_page_testzero(page))
5474 		free_the_page(page, order);
5475 	else if (!PageHead(page))
5476 		while (order-- > 0)
5477 			free_the_page(page + (1 << order), order);
5478 }
5479 EXPORT_SYMBOL(__free_pages);
5480 
5481 void free_pages(unsigned long addr, unsigned int order)
5482 {
5483 	if (addr != 0) {
5484 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5485 		__free_pages(virt_to_page((void *)addr), order);
5486 	}
5487 }
5488 
5489 EXPORT_SYMBOL(free_pages);
5490 
5491 /*
5492  * Page Fragment:
5493  *  An arbitrary-length arbitrary-offset area of memory which resides
5494  *  within a 0 or higher order page.  Multiple fragments within that page
5495  *  are individually refcounted, in the page's reference counter.
5496  *
5497  * The page_frag functions below provide a simple allocation framework for
5498  * page fragments.  This is used by the network stack and network device
5499  * drivers to provide a backing region of memory for use as either an
5500  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5501  */
5502 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5503 					     gfp_t gfp_mask)
5504 {
5505 	struct page *page = NULL;
5506 	gfp_t gfp = gfp_mask;
5507 
5508 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5509 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5510 		    __GFP_NOMEMALLOC;
5511 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5512 				PAGE_FRAG_CACHE_MAX_ORDER);
5513 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5514 #endif
5515 	if (unlikely(!page))
5516 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5517 
5518 	nc->va = page ? page_address(page) : NULL;
5519 
5520 	return page;
5521 }
5522 
5523 void __page_frag_cache_drain(struct page *page, unsigned int count)
5524 {
5525 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5526 
5527 	if (page_ref_sub_and_test(page, count))
5528 		free_the_page(page, compound_order(page));
5529 }
5530 EXPORT_SYMBOL(__page_frag_cache_drain);
5531 
5532 void *page_frag_alloc_align(struct page_frag_cache *nc,
5533 		      unsigned int fragsz, gfp_t gfp_mask,
5534 		      unsigned int align_mask)
5535 {
5536 	unsigned int size = PAGE_SIZE;
5537 	struct page *page;
5538 	int offset;
5539 
5540 	if (unlikely(!nc->va)) {
5541 refill:
5542 		page = __page_frag_cache_refill(nc, gfp_mask);
5543 		if (!page)
5544 			return NULL;
5545 
5546 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5547 		/* if size can vary use size else just use PAGE_SIZE */
5548 		size = nc->size;
5549 #endif
5550 		/* Even if we own the page, we do not use atomic_set().
5551 		 * This would break get_page_unless_zero() users.
5552 		 */
5553 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5554 
5555 		/* reset page count bias and offset to start of new frag */
5556 		nc->pfmemalloc = page_is_pfmemalloc(page);
5557 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5558 		nc->offset = size;
5559 	}
5560 
5561 	offset = nc->offset - fragsz;
5562 	if (unlikely(offset < 0)) {
5563 		page = virt_to_page(nc->va);
5564 
5565 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5566 			goto refill;
5567 
5568 		if (unlikely(nc->pfmemalloc)) {
5569 			free_the_page(page, compound_order(page));
5570 			goto refill;
5571 		}
5572 
5573 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5574 		/* if size can vary use size else just use PAGE_SIZE */
5575 		size = nc->size;
5576 #endif
5577 		/* OK, page count is 0, we can safely set it */
5578 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5579 
5580 		/* reset page count bias and offset to start of new frag */
5581 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5582 		offset = size - fragsz;
5583 	}
5584 
5585 	nc->pagecnt_bias--;
5586 	offset &= align_mask;
5587 	nc->offset = offset;
5588 
5589 	return nc->va + offset;
5590 }
5591 EXPORT_SYMBOL(page_frag_alloc_align);
5592 
5593 /*
5594  * Frees a page fragment allocated out of either a compound or order 0 page.
5595  */
5596 void page_frag_free(void *addr)
5597 {
5598 	struct page *page = virt_to_head_page(addr);
5599 
5600 	if (unlikely(put_page_testzero(page)))
5601 		free_the_page(page, compound_order(page));
5602 }
5603 EXPORT_SYMBOL(page_frag_free);
5604 
5605 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5606 		size_t size)
5607 {
5608 	if (addr) {
5609 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5610 		unsigned long used = addr + PAGE_ALIGN(size);
5611 
5612 		split_page(virt_to_page((void *)addr), order);
5613 		while (used < alloc_end) {
5614 			free_page(used);
5615 			used += PAGE_SIZE;
5616 		}
5617 	}
5618 	return (void *)addr;
5619 }
5620 
5621 /**
5622  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5623  * @size: the number of bytes to allocate
5624  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5625  *
5626  * This function is similar to alloc_pages(), except that it allocates the
5627  * minimum number of pages to satisfy the request.  alloc_pages() can only
5628  * allocate memory in power-of-two pages.
5629  *
5630  * This function is also limited by MAX_ORDER.
5631  *
5632  * Memory allocated by this function must be released by free_pages_exact().
5633  *
5634  * Return: pointer to the allocated area or %NULL in case of error.
5635  */
5636 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5637 {
5638 	unsigned int order = get_order(size);
5639 	unsigned long addr;
5640 
5641 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5642 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5643 
5644 	addr = __get_free_pages(gfp_mask, order);
5645 	return make_alloc_exact(addr, order, size);
5646 }
5647 EXPORT_SYMBOL(alloc_pages_exact);
5648 
5649 /**
5650  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5651  *			   pages on a node.
5652  * @nid: the preferred node ID where memory should be allocated
5653  * @size: the number of bytes to allocate
5654  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5655  *
5656  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5657  * back.
5658  *
5659  * Return: pointer to the allocated area or %NULL in case of error.
5660  */
5661 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5662 {
5663 	unsigned int order = get_order(size);
5664 	struct page *p;
5665 
5666 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5667 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5668 
5669 	p = alloc_pages_node(nid, gfp_mask, order);
5670 	if (!p)
5671 		return NULL;
5672 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5673 }
5674 
5675 /**
5676  * free_pages_exact - release memory allocated via alloc_pages_exact()
5677  * @virt: the value returned by alloc_pages_exact.
5678  * @size: size of allocation, same value as passed to alloc_pages_exact().
5679  *
5680  * Release the memory allocated by a previous call to alloc_pages_exact.
5681  */
5682 void free_pages_exact(void *virt, size_t size)
5683 {
5684 	unsigned long addr = (unsigned long)virt;
5685 	unsigned long end = addr + PAGE_ALIGN(size);
5686 
5687 	while (addr < end) {
5688 		free_page(addr);
5689 		addr += PAGE_SIZE;
5690 	}
5691 }
5692 EXPORT_SYMBOL(free_pages_exact);
5693 
5694 /**
5695  * nr_free_zone_pages - count number of pages beyond high watermark
5696  * @offset: The zone index of the highest zone
5697  *
5698  * nr_free_zone_pages() counts the number of pages which are beyond the
5699  * high watermark within all zones at or below a given zone index.  For each
5700  * zone, the number of pages is calculated as:
5701  *
5702  *     nr_free_zone_pages = managed_pages - high_pages
5703  *
5704  * Return: number of pages beyond high watermark.
5705  */
5706 static unsigned long nr_free_zone_pages(int offset)
5707 {
5708 	struct zoneref *z;
5709 	struct zone *zone;
5710 
5711 	/* Just pick one node, since fallback list is circular */
5712 	unsigned long sum = 0;
5713 
5714 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5715 
5716 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5717 		unsigned long size = zone_managed_pages(zone);
5718 		unsigned long high = high_wmark_pages(zone);
5719 		if (size > high)
5720 			sum += size - high;
5721 	}
5722 
5723 	return sum;
5724 }
5725 
5726 /**
5727  * nr_free_buffer_pages - count number of pages beyond high watermark
5728  *
5729  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5730  * watermark within ZONE_DMA and ZONE_NORMAL.
5731  *
5732  * Return: number of pages beyond high watermark within ZONE_DMA and
5733  * ZONE_NORMAL.
5734  */
5735 unsigned long nr_free_buffer_pages(void)
5736 {
5737 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5738 }
5739 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5740 
5741 static inline void show_node(struct zone *zone)
5742 {
5743 	if (IS_ENABLED(CONFIG_NUMA))
5744 		printk("Node %d ", zone_to_nid(zone));
5745 }
5746 
5747 long si_mem_available(void)
5748 {
5749 	long available;
5750 	unsigned long pagecache;
5751 	unsigned long wmark_low = 0;
5752 	unsigned long pages[NR_LRU_LISTS];
5753 	unsigned long reclaimable;
5754 	struct zone *zone;
5755 	int lru;
5756 
5757 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5758 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5759 
5760 	for_each_zone(zone)
5761 		wmark_low += low_wmark_pages(zone);
5762 
5763 	/*
5764 	 * Estimate the amount of memory available for userspace allocations,
5765 	 * without causing swapping.
5766 	 */
5767 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5768 
5769 	/*
5770 	 * Not all the page cache can be freed, otherwise the system will
5771 	 * start swapping. Assume at least half of the page cache, or the
5772 	 * low watermark worth of cache, needs to stay.
5773 	 */
5774 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5775 	pagecache -= min(pagecache / 2, wmark_low);
5776 	available += pagecache;
5777 
5778 	/*
5779 	 * Part of the reclaimable slab and other kernel memory consists of
5780 	 * items that are in use, and cannot be freed. Cap this estimate at the
5781 	 * low watermark.
5782 	 */
5783 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5784 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5785 	available += reclaimable - min(reclaimable / 2, wmark_low);
5786 
5787 	if (available < 0)
5788 		available = 0;
5789 	return available;
5790 }
5791 EXPORT_SYMBOL_GPL(si_mem_available);
5792 
5793 void si_meminfo(struct sysinfo *val)
5794 {
5795 	val->totalram = totalram_pages();
5796 	val->sharedram = global_node_page_state(NR_SHMEM);
5797 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5798 	val->bufferram = nr_blockdev_pages();
5799 	val->totalhigh = totalhigh_pages();
5800 	val->freehigh = nr_free_highpages();
5801 	val->mem_unit = PAGE_SIZE;
5802 }
5803 
5804 EXPORT_SYMBOL(si_meminfo);
5805 
5806 #ifdef CONFIG_NUMA
5807 void si_meminfo_node(struct sysinfo *val, int nid)
5808 {
5809 	int zone_type;		/* needs to be signed */
5810 	unsigned long managed_pages = 0;
5811 	unsigned long managed_highpages = 0;
5812 	unsigned long free_highpages = 0;
5813 	pg_data_t *pgdat = NODE_DATA(nid);
5814 
5815 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5816 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5817 	val->totalram = managed_pages;
5818 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5819 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5820 #ifdef CONFIG_HIGHMEM
5821 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5822 		struct zone *zone = &pgdat->node_zones[zone_type];
5823 
5824 		if (is_highmem(zone)) {
5825 			managed_highpages += zone_managed_pages(zone);
5826 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5827 		}
5828 	}
5829 	val->totalhigh = managed_highpages;
5830 	val->freehigh = free_highpages;
5831 #else
5832 	val->totalhigh = managed_highpages;
5833 	val->freehigh = free_highpages;
5834 #endif
5835 	val->mem_unit = PAGE_SIZE;
5836 }
5837 #endif
5838 
5839 /*
5840  * Determine whether the node should be displayed or not, depending on whether
5841  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5842  */
5843 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5844 {
5845 	if (!(flags & SHOW_MEM_FILTER_NODES))
5846 		return false;
5847 
5848 	/*
5849 	 * no node mask - aka implicit memory numa policy. Do not bother with
5850 	 * the synchronization - read_mems_allowed_begin - because we do not
5851 	 * have to be precise here.
5852 	 */
5853 	if (!nodemask)
5854 		nodemask = &cpuset_current_mems_allowed;
5855 
5856 	return !node_isset(nid, *nodemask);
5857 }
5858 
5859 #define K(x) ((x) << (PAGE_SHIFT-10))
5860 
5861 static void show_migration_types(unsigned char type)
5862 {
5863 	static const char types[MIGRATE_TYPES] = {
5864 		[MIGRATE_UNMOVABLE]	= 'U',
5865 		[MIGRATE_MOVABLE]	= 'M',
5866 		[MIGRATE_RECLAIMABLE]	= 'E',
5867 		[MIGRATE_HIGHATOMIC]	= 'H',
5868 #ifdef CONFIG_CMA
5869 		[MIGRATE_CMA]		= 'C',
5870 #endif
5871 #ifdef CONFIG_MEMORY_ISOLATION
5872 		[MIGRATE_ISOLATE]	= 'I',
5873 #endif
5874 	};
5875 	char tmp[MIGRATE_TYPES + 1];
5876 	char *p = tmp;
5877 	int i;
5878 
5879 	for (i = 0; i < MIGRATE_TYPES; i++) {
5880 		if (type & (1 << i))
5881 			*p++ = types[i];
5882 	}
5883 
5884 	*p = '\0';
5885 	printk(KERN_CONT "(%s) ", tmp);
5886 }
5887 
5888 /*
5889  * Show free area list (used inside shift_scroll-lock stuff)
5890  * We also calculate the percentage fragmentation. We do this by counting the
5891  * memory on each free list with the exception of the first item on the list.
5892  *
5893  * Bits in @filter:
5894  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5895  *   cpuset.
5896  */
5897 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5898 {
5899 	unsigned long free_pcp = 0;
5900 	int cpu;
5901 	struct zone *zone;
5902 	pg_data_t *pgdat;
5903 
5904 	for_each_populated_zone(zone) {
5905 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5906 			continue;
5907 
5908 		for_each_online_cpu(cpu)
5909 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5910 	}
5911 
5912 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5913 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5914 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5915 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5916 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5917 		" kernel_misc_reclaimable:%lu\n"
5918 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5919 		global_node_page_state(NR_ACTIVE_ANON),
5920 		global_node_page_state(NR_INACTIVE_ANON),
5921 		global_node_page_state(NR_ISOLATED_ANON),
5922 		global_node_page_state(NR_ACTIVE_FILE),
5923 		global_node_page_state(NR_INACTIVE_FILE),
5924 		global_node_page_state(NR_ISOLATED_FILE),
5925 		global_node_page_state(NR_UNEVICTABLE),
5926 		global_node_page_state(NR_FILE_DIRTY),
5927 		global_node_page_state(NR_WRITEBACK),
5928 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5929 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5930 		global_node_page_state(NR_FILE_MAPPED),
5931 		global_node_page_state(NR_SHMEM),
5932 		global_node_page_state(NR_PAGETABLE),
5933 		global_zone_page_state(NR_BOUNCE),
5934 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5935 		global_zone_page_state(NR_FREE_PAGES),
5936 		free_pcp,
5937 		global_zone_page_state(NR_FREE_CMA_PAGES));
5938 
5939 	for_each_online_pgdat(pgdat) {
5940 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5941 			continue;
5942 
5943 		printk("Node %d"
5944 			" active_anon:%lukB"
5945 			" inactive_anon:%lukB"
5946 			" active_file:%lukB"
5947 			" inactive_file:%lukB"
5948 			" unevictable:%lukB"
5949 			" isolated(anon):%lukB"
5950 			" isolated(file):%lukB"
5951 			" mapped:%lukB"
5952 			" dirty:%lukB"
5953 			" writeback:%lukB"
5954 			" shmem:%lukB"
5955 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5956 			" shmem_thp: %lukB"
5957 			" shmem_pmdmapped: %lukB"
5958 			" anon_thp: %lukB"
5959 #endif
5960 			" writeback_tmp:%lukB"
5961 			" kernel_stack:%lukB"
5962 #ifdef CONFIG_SHADOW_CALL_STACK
5963 			" shadow_call_stack:%lukB"
5964 #endif
5965 			" pagetables:%lukB"
5966 			" all_unreclaimable? %s"
5967 			"\n",
5968 			pgdat->node_id,
5969 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5970 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5971 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5972 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5973 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5974 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5975 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5976 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5977 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5978 			K(node_page_state(pgdat, NR_WRITEBACK)),
5979 			K(node_page_state(pgdat, NR_SHMEM)),
5980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5981 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5982 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5983 			K(node_page_state(pgdat, NR_ANON_THPS)),
5984 #endif
5985 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5986 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5987 #ifdef CONFIG_SHADOW_CALL_STACK
5988 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5989 #endif
5990 			K(node_page_state(pgdat, NR_PAGETABLE)),
5991 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5992 				"yes" : "no");
5993 	}
5994 
5995 	for_each_populated_zone(zone) {
5996 		int i;
5997 
5998 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5999 			continue;
6000 
6001 		free_pcp = 0;
6002 		for_each_online_cpu(cpu)
6003 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6004 
6005 		show_node(zone);
6006 		printk(KERN_CONT
6007 			"%s"
6008 			" free:%lukB"
6009 			" boost:%lukB"
6010 			" min:%lukB"
6011 			" low:%lukB"
6012 			" high:%lukB"
6013 			" reserved_highatomic:%luKB"
6014 			" active_anon:%lukB"
6015 			" inactive_anon:%lukB"
6016 			" active_file:%lukB"
6017 			" inactive_file:%lukB"
6018 			" unevictable:%lukB"
6019 			" writepending:%lukB"
6020 			" present:%lukB"
6021 			" managed:%lukB"
6022 			" mlocked:%lukB"
6023 			" bounce:%lukB"
6024 			" free_pcp:%lukB"
6025 			" local_pcp:%ukB"
6026 			" free_cma:%lukB"
6027 			"\n",
6028 			zone->name,
6029 			K(zone_page_state(zone, NR_FREE_PAGES)),
6030 			K(zone->watermark_boost),
6031 			K(min_wmark_pages(zone)),
6032 			K(low_wmark_pages(zone)),
6033 			K(high_wmark_pages(zone)),
6034 			K(zone->nr_reserved_highatomic),
6035 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6036 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6037 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6038 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6039 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6040 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6041 			K(zone->present_pages),
6042 			K(zone_managed_pages(zone)),
6043 			K(zone_page_state(zone, NR_MLOCK)),
6044 			K(zone_page_state(zone, NR_BOUNCE)),
6045 			K(free_pcp),
6046 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6047 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6048 		printk("lowmem_reserve[]:");
6049 		for (i = 0; i < MAX_NR_ZONES; i++)
6050 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6051 		printk(KERN_CONT "\n");
6052 	}
6053 
6054 	for_each_populated_zone(zone) {
6055 		unsigned int order;
6056 		unsigned long nr[MAX_ORDER], flags, total = 0;
6057 		unsigned char types[MAX_ORDER];
6058 
6059 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6060 			continue;
6061 		show_node(zone);
6062 		printk(KERN_CONT "%s: ", zone->name);
6063 
6064 		spin_lock_irqsave(&zone->lock, flags);
6065 		for (order = 0; order < MAX_ORDER; order++) {
6066 			struct free_area *area = &zone->free_area[order];
6067 			int type;
6068 
6069 			nr[order] = area->nr_free;
6070 			total += nr[order] << order;
6071 
6072 			types[order] = 0;
6073 			for (type = 0; type < MIGRATE_TYPES; type++) {
6074 				if (!free_area_empty(area, type))
6075 					types[order] |= 1 << type;
6076 			}
6077 		}
6078 		spin_unlock_irqrestore(&zone->lock, flags);
6079 		for (order = 0; order < MAX_ORDER; order++) {
6080 			printk(KERN_CONT "%lu*%lukB ",
6081 			       nr[order], K(1UL) << order);
6082 			if (nr[order])
6083 				show_migration_types(types[order]);
6084 		}
6085 		printk(KERN_CONT "= %lukB\n", K(total));
6086 	}
6087 
6088 	hugetlb_show_meminfo();
6089 
6090 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6091 
6092 	show_swap_cache_info();
6093 }
6094 
6095 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6096 {
6097 	zoneref->zone = zone;
6098 	zoneref->zone_idx = zone_idx(zone);
6099 }
6100 
6101 /*
6102  * Builds allocation fallback zone lists.
6103  *
6104  * Add all populated zones of a node to the zonelist.
6105  */
6106 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6107 {
6108 	struct zone *zone;
6109 	enum zone_type zone_type = MAX_NR_ZONES;
6110 	int nr_zones = 0;
6111 
6112 	do {
6113 		zone_type--;
6114 		zone = pgdat->node_zones + zone_type;
6115 		if (managed_zone(zone)) {
6116 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6117 			check_highest_zone(zone_type);
6118 		}
6119 	} while (zone_type);
6120 
6121 	return nr_zones;
6122 }
6123 
6124 #ifdef CONFIG_NUMA
6125 
6126 static int __parse_numa_zonelist_order(char *s)
6127 {
6128 	/*
6129 	 * We used to support different zonelists modes but they turned
6130 	 * out to be just not useful. Let's keep the warning in place
6131 	 * if somebody still use the cmd line parameter so that we do
6132 	 * not fail it silently
6133 	 */
6134 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6135 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6136 		return -EINVAL;
6137 	}
6138 	return 0;
6139 }
6140 
6141 char numa_zonelist_order[] = "Node";
6142 
6143 /*
6144  * sysctl handler for numa_zonelist_order
6145  */
6146 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6147 		void *buffer, size_t *length, loff_t *ppos)
6148 {
6149 	if (write)
6150 		return __parse_numa_zonelist_order(buffer);
6151 	return proc_dostring(table, write, buffer, length, ppos);
6152 }
6153 
6154 
6155 #define MAX_NODE_LOAD (nr_online_nodes)
6156 static int node_load[MAX_NUMNODES];
6157 
6158 /**
6159  * find_next_best_node - find the next node that should appear in a given node's fallback list
6160  * @node: node whose fallback list we're appending
6161  * @used_node_mask: nodemask_t of already used nodes
6162  *
6163  * We use a number of factors to determine which is the next node that should
6164  * appear on a given node's fallback list.  The node should not have appeared
6165  * already in @node's fallback list, and it should be the next closest node
6166  * according to the distance array (which contains arbitrary distance values
6167  * from each node to each node in the system), and should also prefer nodes
6168  * with no CPUs, since presumably they'll have very little allocation pressure
6169  * on them otherwise.
6170  *
6171  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6172  */
6173 int find_next_best_node(int node, nodemask_t *used_node_mask)
6174 {
6175 	int n, val;
6176 	int min_val = INT_MAX;
6177 	int best_node = NUMA_NO_NODE;
6178 
6179 	/* Use the local node if we haven't already */
6180 	if (!node_isset(node, *used_node_mask)) {
6181 		node_set(node, *used_node_mask);
6182 		return node;
6183 	}
6184 
6185 	for_each_node_state(n, N_MEMORY) {
6186 
6187 		/* Don't want a node to appear more than once */
6188 		if (node_isset(n, *used_node_mask))
6189 			continue;
6190 
6191 		/* Use the distance array to find the distance */
6192 		val = node_distance(node, n);
6193 
6194 		/* Penalize nodes under us ("prefer the next node") */
6195 		val += (n < node);
6196 
6197 		/* Give preference to headless and unused nodes */
6198 		if (!cpumask_empty(cpumask_of_node(n)))
6199 			val += PENALTY_FOR_NODE_WITH_CPUS;
6200 
6201 		/* Slight preference for less loaded node */
6202 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6203 		val += node_load[n];
6204 
6205 		if (val < min_val) {
6206 			min_val = val;
6207 			best_node = n;
6208 		}
6209 	}
6210 
6211 	if (best_node >= 0)
6212 		node_set(best_node, *used_node_mask);
6213 
6214 	return best_node;
6215 }
6216 
6217 
6218 /*
6219  * Build zonelists ordered by node and zones within node.
6220  * This results in maximum locality--normal zone overflows into local
6221  * DMA zone, if any--but risks exhausting DMA zone.
6222  */
6223 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6224 		unsigned nr_nodes)
6225 {
6226 	struct zoneref *zonerefs;
6227 	int i;
6228 
6229 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6230 
6231 	for (i = 0; i < nr_nodes; i++) {
6232 		int nr_zones;
6233 
6234 		pg_data_t *node = NODE_DATA(node_order[i]);
6235 
6236 		nr_zones = build_zonerefs_node(node, zonerefs);
6237 		zonerefs += nr_zones;
6238 	}
6239 	zonerefs->zone = NULL;
6240 	zonerefs->zone_idx = 0;
6241 }
6242 
6243 /*
6244  * Build gfp_thisnode zonelists
6245  */
6246 static void build_thisnode_zonelists(pg_data_t *pgdat)
6247 {
6248 	struct zoneref *zonerefs;
6249 	int nr_zones;
6250 
6251 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6252 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6253 	zonerefs += nr_zones;
6254 	zonerefs->zone = NULL;
6255 	zonerefs->zone_idx = 0;
6256 }
6257 
6258 /*
6259  * Build zonelists ordered by zone and nodes within zones.
6260  * This results in conserving DMA zone[s] until all Normal memory is
6261  * exhausted, but results in overflowing to remote node while memory
6262  * may still exist in local DMA zone.
6263  */
6264 
6265 static void build_zonelists(pg_data_t *pgdat)
6266 {
6267 	static int node_order[MAX_NUMNODES];
6268 	int node, load, nr_nodes = 0;
6269 	nodemask_t used_mask = NODE_MASK_NONE;
6270 	int local_node, prev_node;
6271 
6272 	/* NUMA-aware ordering of nodes */
6273 	local_node = pgdat->node_id;
6274 	load = nr_online_nodes;
6275 	prev_node = local_node;
6276 
6277 	memset(node_order, 0, sizeof(node_order));
6278 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6279 		/*
6280 		 * We don't want to pressure a particular node.
6281 		 * So adding penalty to the first node in same
6282 		 * distance group to make it round-robin.
6283 		 */
6284 		if (node_distance(local_node, node) !=
6285 		    node_distance(local_node, prev_node))
6286 			node_load[node] += load;
6287 
6288 		node_order[nr_nodes++] = node;
6289 		prev_node = node;
6290 		load--;
6291 	}
6292 
6293 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6294 	build_thisnode_zonelists(pgdat);
6295 	pr_info("Fallback order for Node %d: ", local_node);
6296 	for (node = 0; node < nr_nodes; node++)
6297 		pr_cont("%d ", node_order[node]);
6298 	pr_cont("\n");
6299 }
6300 
6301 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6302 /*
6303  * Return node id of node used for "local" allocations.
6304  * I.e., first node id of first zone in arg node's generic zonelist.
6305  * Used for initializing percpu 'numa_mem', which is used primarily
6306  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6307  */
6308 int local_memory_node(int node)
6309 {
6310 	struct zoneref *z;
6311 
6312 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6313 				   gfp_zone(GFP_KERNEL),
6314 				   NULL);
6315 	return zone_to_nid(z->zone);
6316 }
6317 #endif
6318 
6319 static void setup_min_unmapped_ratio(void);
6320 static void setup_min_slab_ratio(void);
6321 #else	/* CONFIG_NUMA */
6322 
6323 static void build_zonelists(pg_data_t *pgdat)
6324 {
6325 	int node, local_node;
6326 	struct zoneref *zonerefs;
6327 	int nr_zones;
6328 
6329 	local_node = pgdat->node_id;
6330 
6331 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6332 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6333 	zonerefs += nr_zones;
6334 
6335 	/*
6336 	 * Now we build the zonelist so that it contains the zones
6337 	 * of all the other nodes.
6338 	 * We don't want to pressure a particular node, so when
6339 	 * building the zones for node N, we make sure that the
6340 	 * zones coming right after the local ones are those from
6341 	 * node N+1 (modulo N)
6342 	 */
6343 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6344 		if (!node_online(node))
6345 			continue;
6346 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6347 		zonerefs += nr_zones;
6348 	}
6349 	for (node = 0; node < local_node; node++) {
6350 		if (!node_online(node))
6351 			continue;
6352 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6353 		zonerefs += nr_zones;
6354 	}
6355 
6356 	zonerefs->zone = NULL;
6357 	zonerefs->zone_idx = 0;
6358 }
6359 
6360 #endif	/* CONFIG_NUMA */
6361 
6362 /*
6363  * Boot pageset table. One per cpu which is going to be used for all
6364  * zones and all nodes. The parameters will be set in such a way
6365  * that an item put on a list will immediately be handed over to
6366  * the buddy list. This is safe since pageset manipulation is done
6367  * with interrupts disabled.
6368  *
6369  * The boot_pagesets must be kept even after bootup is complete for
6370  * unused processors and/or zones. They do play a role for bootstrapping
6371  * hotplugged processors.
6372  *
6373  * zoneinfo_show() and maybe other functions do
6374  * not check if the processor is online before following the pageset pointer.
6375  * Other parts of the kernel may not check if the zone is available.
6376  */
6377 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6378 /* These effectively disable the pcplists in the boot pageset completely */
6379 #define BOOT_PAGESET_HIGH	0
6380 #define BOOT_PAGESET_BATCH	1
6381 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6382 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6383 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6384 
6385 static void __build_all_zonelists(void *data)
6386 {
6387 	int nid;
6388 	int __maybe_unused cpu;
6389 	pg_data_t *self = data;
6390 	static DEFINE_SPINLOCK(lock);
6391 
6392 	spin_lock(&lock);
6393 
6394 #ifdef CONFIG_NUMA
6395 	memset(node_load, 0, sizeof(node_load));
6396 #endif
6397 
6398 	/*
6399 	 * This node is hotadded and no memory is yet present.   So just
6400 	 * building zonelists is fine - no need to touch other nodes.
6401 	 */
6402 	if (self && !node_online(self->node_id)) {
6403 		build_zonelists(self);
6404 	} else {
6405 		for_each_online_node(nid) {
6406 			pg_data_t *pgdat = NODE_DATA(nid);
6407 
6408 			build_zonelists(pgdat);
6409 		}
6410 
6411 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6412 		/*
6413 		 * We now know the "local memory node" for each node--
6414 		 * i.e., the node of the first zone in the generic zonelist.
6415 		 * Set up numa_mem percpu variable for on-line cpus.  During
6416 		 * boot, only the boot cpu should be on-line;  we'll init the
6417 		 * secondary cpus' numa_mem as they come on-line.  During
6418 		 * node/memory hotplug, we'll fixup all on-line cpus.
6419 		 */
6420 		for_each_online_cpu(cpu)
6421 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6422 #endif
6423 	}
6424 
6425 	spin_unlock(&lock);
6426 }
6427 
6428 static noinline void __init
6429 build_all_zonelists_init(void)
6430 {
6431 	int cpu;
6432 
6433 	__build_all_zonelists(NULL);
6434 
6435 	/*
6436 	 * Initialize the boot_pagesets that are going to be used
6437 	 * for bootstrapping processors. The real pagesets for
6438 	 * each zone will be allocated later when the per cpu
6439 	 * allocator is available.
6440 	 *
6441 	 * boot_pagesets are used also for bootstrapping offline
6442 	 * cpus if the system is already booted because the pagesets
6443 	 * are needed to initialize allocators on a specific cpu too.
6444 	 * F.e. the percpu allocator needs the page allocator which
6445 	 * needs the percpu allocator in order to allocate its pagesets
6446 	 * (a chicken-egg dilemma).
6447 	 */
6448 	for_each_possible_cpu(cpu)
6449 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6450 
6451 	mminit_verify_zonelist();
6452 	cpuset_init_current_mems_allowed();
6453 }
6454 
6455 /*
6456  * unless system_state == SYSTEM_BOOTING.
6457  *
6458  * __ref due to call of __init annotated helper build_all_zonelists_init
6459  * [protected by SYSTEM_BOOTING].
6460  */
6461 void __ref build_all_zonelists(pg_data_t *pgdat)
6462 {
6463 	unsigned long vm_total_pages;
6464 
6465 	if (system_state == SYSTEM_BOOTING) {
6466 		build_all_zonelists_init();
6467 	} else {
6468 		__build_all_zonelists(pgdat);
6469 		/* cpuset refresh routine should be here */
6470 	}
6471 	/* Get the number of free pages beyond high watermark in all zones. */
6472 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6473 	/*
6474 	 * Disable grouping by mobility if the number of pages in the
6475 	 * system is too low to allow the mechanism to work. It would be
6476 	 * more accurate, but expensive to check per-zone. This check is
6477 	 * made on memory-hotadd so a system can start with mobility
6478 	 * disabled and enable it later
6479 	 */
6480 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6481 		page_group_by_mobility_disabled = 1;
6482 	else
6483 		page_group_by_mobility_disabled = 0;
6484 
6485 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6486 		nr_online_nodes,
6487 		page_group_by_mobility_disabled ? "off" : "on",
6488 		vm_total_pages);
6489 #ifdef CONFIG_NUMA
6490 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6491 #endif
6492 }
6493 
6494 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6495 static bool __meminit
6496 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6497 {
6498 	static struct memblock_region *r;
6499 
6500 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6501 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6502 			for_each_mem_region(r) {
6503 				if (*pfn < memblock_region_memory_end_pfn(r))
6504 					break;
6505 			}
6506 		}
6507 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6508 		    memblock_is_mirror(r)) {
6509 			*pfn = memblock_region_memory_end_pfn(r);
6510 			return true;
6511 		}
6512 	}
6513 	return false;
6514 }
6515 
6516 /*
6517  * Initially all pages are reserved - free ones are freed
6518  * up by memblock_free_all() once the early boot process is
6519  * done. Non-atomic initialization, single-pass.
6520  *
6521  * All aligned pageblocks are initialized to the specified migratetype
6522  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6523  * zone stats (e.g., nr_isolate_pageblock) are touched.
6524  */
6525 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6526 		unsigned long start_pfn, unsigned long zone_end_pfn,
6527 		enum meminit_context context,
6528 		struct vmem_altmap *altmap, int migratetype)
6529 {
6530 	unsigned long pfn, end_pfn = start_pfn + size;
6531 	struct page *page;
6532 
6533 	if (highest_memmap_pfn < end_pfn - 1)
6534 		highest_memmap_pfn = end_pfn - 1;
6535 
6536 #ifdef CONFIG_ZONE_DEVICE
6537 	/*
6538 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6539 	 * memory. We limit the total number of pages to initialize to just
6540 	 * those that might contain the memory mapping. We will defer the
6541 	 * ZONE_DEVICE page initialization until after we have released
6542 	 * the hotplug lock.
6543 	 */
6544 	if (zone == ZONE_DEVICE) {
6545 		if (!altmap)
6546 			return;
6547 
6548 		if (start_pfn == altmap->base_pfn)
6549 			start_pfn += altmap->reserve;
6550 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6551 	}
6552 #endif
6553 
6554 	for (pfn = start_pfn; pfn < end_pfn; ) {
6555 		/*
6556 		 * There can be holes in boot-time mem_map[]s handed to this
6557 		 * function.  They do not exist on hotplugged memory.
6558 		 */
6559 		if (context == MEMINIT_EARLY) {
6560 			if (overlap_memmap_init(zone, &pfn))
6561 				continue;
6562 			if (defer_init(nid, pfn, zone_end_pfn))
6563 				break;
6564 		}
6565 
6566 		page = pfn_to_page(pfn);
6567 		__init_single_page(page, pfn, zone, nid);
6568 		if (context == MEMINIT_HOTPLUG)
6569 			__SetPageReserved(page);
6570 
6571 		/*
6572 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6573 		 * such that unmovable allocations won't be scattered all
6574 		 * over the place during system boot.
6575 		 */
6576 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6577 			set_pageblock_migratetype(page, migratetype);
6578 			cond_resched();
6579 		}
6580 		pfn++;
6581 	}
6582 }
6583 
6584 #ifdef CONFIG_ZONE_DEVICE
6585 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6586 					  unsigned long zone_idx, int nid,
6587 					  struct dev_pagemap *pgmap)
6588 {
6589 
6590 	__init_single_page(page, pfn, zone_idx, nid);
6591 
6592 	/*
6593 	 * Mark page reserved as it will need to wait for onlining
6594 	 * phase for it to be fully associated with a zone.
6595 	 *
6596 	 * We can use the non-atomic __set_bit operation for setting
6597 	 * the flag as we are still initializing the pages.
6598 	 */
6599 	__SetPageReserved(page);
6600 
6601 	/*
6602 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6603 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6604 	 * ever freed or placed on a driver-private list.
6605 	 */
6606 	page->pgmap = pgmap;
6607 	page->zone_device_data = NULL;
6608 
6609 	/*
6610 	 * Mark the block movable so that blocks are reserved for
6611 	 * movable at startup. This will force kernel allocations
6612 	 * to reserve their blocks rather than leaking throughout
6613 	 * the address space during boot when many long-lived
6614 	 * kernel allocations are made.
6615 	 *
6616 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6617 	 * because this is done early in section_activate()
6618 	 */
6619 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6620 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6621 		cond_resched();
6622 	}
6623 }
6624 
6625 static void __ref memmap_init_compound(struct page *head,
6626 				       unsigned long head_pfn,
6627 				       unsigned long zone_idx, int nid,
6628 				       struct dev_pagemap *pgmap,
6629 				       unsigned long nr_pages)
6630 {
6631 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6632 	unsigned int order = pgmap->vmemmap_shift;
6633 
6634 	__SetPageHead(head);
6635 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6636 		struct page *page = pfn_to_page(pfn);
6637 
6638 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6639 		prep_compound_tail(head, pfn - head_pfn);
6640 		set_page_count(page, 0);
6641 
6642 		/*
6643 		 * The first tail page stores compound_mapcount_ptr() and
6644 		 * compound_order() and the second tail page stores
6645 		 * compound_pincount_ptr(). Call prep_compound_head() after
6646 		 * the first and second tail pages have been initialized to
6647 		 * not have the data overwritten.
6648 		 */
6649 		if (pfn == head_pfn + 2)
6650 			prep_compound_head(head, order);
6651 	}
6652 }
6653 
6654 void __ref memmap_init_zone_device(struct zone *zone,
6655 				   unsigned long start_pfn,
6656 				   unsigned long nr_pages,
6657 				   struct dev_pagemap *pgmap)
6658 {
6659 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6660 	struct pglist_data *pgdat = zone->zone_pgdat;
6661 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6662 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6663 	unsigned long zone_idx = zone_idx(zone);
6664 	unsigned long start = jiffies;
6665 	int nid = pgdat->node_id;
6666 
6667 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6668 		return;
6669 
6670 	/*
6671 	 * The call to memmap_init should have already taken care
6672 	 * of the pages reserved for the memmap, so we can just jump to
6673 	 * the end of that region and start processing the device pages.
6674 	 */
6675 	if (altmap) {
6676 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6677 		nr_pages = end_pfn - start_pfn;
6678 	}
6679 
6680 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6681 		struct page *page = pfn_to_page(pfn);
6682 
6683 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6684 
6685 		if (pfns_per_compound == 1)
6686 			continue;
6687 
6688 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6689 				     pfns_per_compound);
6690 	}
6691 
6692 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6693 		nr_pages, jiffies_to_msecs(jiffies - start));
6694 }
6695 
6696 #endif
6697 static void __meminit zone_init_free_lists(struct zone *zone)
6698 {
6699 	unsigned int order, t;
6700 	for_each_migratetype_order(order, t) {
6701 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6702 		zone->free_area[order].nr_free = 0;
6703 	}
6704 }
6705 
6706 /*
6707  * Only struct pages that correspond to ranges defined by memblock.memory
6708  * are zeroed and initialized by going through __init_single_page() during
6709  * memmap_init_zone_range().
6710  *
6711  * But, there could be struct pages that correspond to holes in
6712  * memblock.memory. This can happen because of the following reasons:
6713  * - physical memory bank size is not necessarily the exact multiple of the
6714  *   arbitrary section size
6715  * - early reserved memory may not be listed in memblock.memory
6716  * - memory layouts defined with memmap= kernel parameter may not align
6717  *   nicely with memmap sections
6718  *
6719  * Explicitly initialize those struct pages so that:
6720  * - PG_Reserved is set
6721  * - zone and node links point to zone and node that span the page if the
6722  *   hole is in the middle of a zone
6723  * - zone and node links point to adjacent zone/node if the hole falls on
6724  *   the zone boundary; the pages in such holes will be prepended to the
6725  *   zone/node above the hole except for the trailing pages in the last
6726  *   section that will be appended to the zone/node below.
6727  */
6728 static void __init init_unavailable_range(unsigned long spfn,
6729 					  unsigned long epfn,
6730 					  int zone, int node)
6731 {
6732 	unsigned long pfn;
6733 	u64 pgcnt = 0;
6734 
6735 	for (pfn = spfn; pfn < epfn; pfn++) {
6736 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6737 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6738 				+ pageblock_nr_pages - 1;
6739 			continue;
6740 		}
6741 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6742 		__SetPageReserved(pfn_to_page(pfn));
6743 		pgcnt++;
6744 	}
6745 
6746 	if (pgcnt)
6747 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6748 			node, zone_names[zone], pgcnt);
6749 }
6750 
6751 static void __init memmap_init_zone_range(struct zone *zone,
6752 					  unsigned long start_pfn,
6753 					  unsigned long end_pfn,
6754 					  unsigned long *hole_pfn)
6755 {
6756 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6757 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6758 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6759 
6760 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6761 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6762 
6763 	if (start_pfn >= end_pfn)
6764 		return;
6765 
6766 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6767 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6768 
6769 	if (*hole_pfn < start_pfn)
6770 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6771 
6772 	*hole_pfn = end_pfn;
6773 }
6774 
6775 static void __init memmap_init(void)
6776 {
6777 	unsigned long start_pfn, end_pfn;
6778 	unsigned long hole_pfn = 0;
6779 	int i, j, zone_id = 0, nid;
6780 
6781 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6782 		struct pglist_data *node = NODE_DATA(nid);
6783 
6784 		for (j = 0; j < MAX_NR_ZONES; j++) {
6785 			struct zone *zone = node->node_zones + j;
6786 
6787 			if (!populated_zone(zone))
6788 				continue;
6789 
6790 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6791 					       &hole_pfn);
6792 			zone_id = j;
6793 		}
6794 	}
6795 
6796 #ifdef CONFIG_SPARSEMEM
6797 	/*
6798 	 * Initialize the memory map for hole in the range [memory_end,
6799 	 * section_end].
6800 	 * Append the pages in this hole to the highest zone in the last
6801 	 * node.
6802 	 * The call to init_unavailable_range() is outside the ifdef to
6803 	 * silence the compiler warining about zone_id set but not used;
6804 	 * for FLATMEM it is a nop anyway
6805 	 */
6806 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6807 	if (hole_pfn < end_pfn)
6808 #endif
6809 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6810 }
6811 
6812 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6813 			  phys_addr_t min_addr, int nid, bool exact_nid)
6814 {
6815 	void *ptr;
6816 
6817 	if (exact_nid)
6818 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6819 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6820 						   nid);
6821 	else
6822 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6823 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6824 						 nid);
6825 
6826 	if (ptr && size > 0)
6827 		page_init_poison(ptr, size);
6828 
6829 	return ptr;
6830 }
6831 
6832 static int zone_batchsize(struct zone *zone)
6833 {
6834 #ifdef CONFIG_MMU
6835 	int batch;
6836 
6837 	/*
6838 	 * The number of pages to batch allocate is either ~0.1%
6839 	 * of the zone or 1MB, whichever is smaller. The batch
6840 	 * size is striking a balance between allocation latency
6841 	 * and zone lock contention.
6842 	 */
6843 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6844 	batch /= 4;		/* We effectively *= 4 below */
6845 	if (batch < 1)
6846 		batch = 1;
6847 
6848 	/*
6849 	 * Clamp the batch to a 2^n - 1 value. Having a power
6850 	 * of 2 value was found to be more likely to have
6851 	 * suboptimal cache aliasing properties in some cases.
6852 	 *
6853 	 * For example if 2 tasks are alternately allocating
6854 	 * batches of pages, one task can end up with a lot
6855 	 * of pages of one half of the possible page colors
6856 	 * and the other with pages of the other colors.
6857 	 */
6858 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6859 
6860 	return batch;
6861 
6862 #else
6863 	/* The deferral and batching of frees should be suppressed under NOMMU
6864 	 * conditions.
6865 	 *
6866 	 * The problem is that NOMMU needs to be able to allocate large chunks
6867 	 * of contiguous memory as there's no hardware page translation to
6868 	 * assemble apparent contiguous memory from discontiguous pages.
6869 	 *
6870 	 * Queueing large contiguous runs of pages for batching, however,
6871 	 * causes the pages to actually be freed in smaller chunks.  As there
6872 	 * can be a significant delay between the individual batches being
6873 	 * recycled, this leads to the once large chunks of space being
6874 	 * fragmented and becoming unavailable for high-order allocations.
6875 	 */
6876 	return 0;
6877 #endif
6878 }
6879 
6880 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6881 {
6882 #ifdef CONFIG_MMU
6883 	int high;
6884 	int nr_split_cpus;
6885 	unsigned long total_pages;
6886 
6887 	if (!percpu_pagelist_high_fraction) {
6888 		/*
6889 		 * By default, the high value of the pcp is based on the zone
6890 		 * low watermark so that if they are full then background
6891 		 * reclaim will not be started prematurely.
6892 		 */
6893 		total_pages = low_wmark_pages(zone);
6894 	} else {
6895 		/*
6896 		 * If percpu_pagelist_high_fraction is configured, the high
6897 		 * value is based on a fraction of the managed pages in the
6898 		 * zone.
6899 		 */
6900 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6901 	}
6902 
6903 	/*
6904 	 * Split the high value across all online CPUs local to the zone. Note
6905 	 * that early in boot that CPUs may not be online yet and that during
6906 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6907 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6908 	 * all online CPUs to mitigate the risk that reclaim is triggered
6909 	 * prematurely due to pages stored on pcp lists.
6910 	 */
6911 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6912 	if (!nr_split_cpus)
6913 		nr_split_cpus = num_online_cpus();
6914 	high = total_pages / nr_split_cpus;
6915 
6916 	/*
6917 	 * Ensure high is at least batch*4. The multiple is based on the
6918 	 * historical relationship between high and batch.
6919 	 */
6920 	high = max(high, batch << 2);
6921 
6922 	return high;
6923 #else
6924 	return 0;
6925 #endif
6926 }
6927 
6928 /*
6929  * pcp->high and pcp->batch values are related and generally batch is lower
6930  * than high. They are also related to pcp->count such that count is lower
6931  * than high, and as soon as it reaches high, the pcplist is flushed.
6932  *
6933  * However, guaranteeing these relations at all times would require e.g. write
6934  * barriers here but also careful usage of read barriers at the read side, and
6935  * thus be prone to error and bad for performance. Thus the update only prevents
6936  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6937  * can cope with those fields changing asynchronously, and fully trust only the
6938  * pcp->count field on the local CPU with interrupts disabled.
6939  *
6940  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6941  * outside of boot time (or some other assurance that no concurrent updaters
6942  * exist).
6943  */
6944 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6945 		unsigned long batch)
6946 {
6947 	WRITE_ONCE(pcp->batch, batch);
6948 	WRITE_ONCE(pcp->high, high);
6949 }
6950 
6951 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6952 {
6953 	int pindex;
6954 
6955 	memset(pcp, 0, sizeof(*pcp));
6956 	memset(pzstats, 0, sizeof(*pzstats));
6957 
6958 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6959 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6960 
6961 	/*
6962 	 * Set batch and high values safe for a boot pageset. A true percpu
6963 	 * pageset's initialization will update them subsequently. Here we don't
6964 	 * need to be as careful as pageset_update() as nobody can access the
6965 	 * pageset yet.
6966 	 */
6967 	pcp->high = BOOT_PAGESET_HIGH;
6968 	pcp->batch = BOOT_PAGESET_BATCH;
6969 	pcp->free_factor = 0;
6970 }
6971 
6972 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6973 		unsigned long batch)
6974 {
6975 	struct per_cpu_pages *pcp;
6976 	int cpu;
6977 
6978 	for_each_possible_cpu(cpu) {
6979 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6980 		pageset_update(pcp, high, batch);
6981 	}
6982 }
6983 
6984 /*
6985  * Calculate and set new high and batch values for all per-cpu pagesets of a
6986  * zone based on the zone's size.
6987  */
6988 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6989 {
6990 	int new_high, new_batch;
6991 
6992 	new_batch = max(1, zone_batchsize(zone));
6993 	new_high = zone_highsize(zone, new_batch, cpu_online);
6994 
6995 	if (zone->pageset_high == new_high &&
6996 	    zone->pageset_batch == new_batch)
6997 		return;
6998 
6999 	zone->pageset_high = new_high;
7000 	zone->pageset_batch = new_batch;
7001 
7002 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7003 }
7004 
7005 void __meminit setup_zone_pageset(struct zone *zone)
7006 {
7007 	int cpu;
7008 
7009 	/* Size may be 0 on !SMP && !NUMA */
7010 	if (sizeof(struct per_cpu_zonestat) > 0)
7011 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7012 
7013 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7014 	for_each_possible_cpu(cpu) {
7015 		struct per_cpu_pages *pcp;
7016 		struct per_cpu_zonestat *pzstats;
7017 
7018 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7019 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7020 		per_cpu_pages_init(pcp, pzstats);
7021 	}
7022 
7023 	zone_set_pageset_high_and_batch(zone, 0);
7024 }
7025 
7026 /*
7027  * Allocate per cpu pagesets and initialize them.
7028  * Before this call only boot pagesets were available.
7029  */
7030 void __init setup_per_cpu_pageset(void)
7031 {
7032 	struct pglist_data *pgdat;
7033 	struct zone *zone;
7034 	int __maybe_unused cpu;
7035 
7036 	for_each_populated_zone(zone)
7037 		setup_zone_pageset(zone);
7038 
7039 #ifdef CONFIG_NUMA
7040 	/*
7041 	 * Unpopulated zones continue using the boot pagesets.
7042 	 * The numa stats for these pagesets need to be reset.
7043 	 * Otherwise, they will end up skewing the stats of
7044 	 * the nodes these zones are associated with.
7045 	 */
7046 	for_each_possible_cpu(cpu) {
7047 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7048 		memset(pzstats->vm_numa_event, 0,
7049 		       sizeof(pzstats->vm_numa_event));
7050 	}
7051 #endif
7052 
7053 	for_each_online_pgdat(pgdat)
7054 		pgdat->per_cpu_nodestats =
7055 			alloc_percpu(struct per_cpu_nodestat);
7056 }
7057 
7058 static __meminit void zone_pcp_init(struct zone *zone)
7059 {
7060 	/*
7061 	 * per cpu subsystem is not up at this point. The following code
7062 	 * relies on the ability of the linker to provide the
7063 	 * offset of a (static) per cpu variable into the per cpu area.
7064 	 */
7065 	zone->per_cpu_pageset = &boot_pageset;
7066 	zone->per_cpu_zonestats = &boot_zonestats;
7067 	zone->pageset_high = BOOT_PAGESET_HIGH;
7068 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7069 
7070 	if (populated_zone(zone))
7071 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7072 			 zone->present_pages, zone_batchsize(zone));
7073 }
7074 
7075 void __meminit init_currently_empty_zone(struct zone *zone,
7076 					unsigned long zone_start_pfn,
7077 					unsigned long size)
7078 {
7079 	struct pglist_data *pgdat = zone->zone_pgdat;
7080 	int zone_idx = zone_idx(zone) + 1;
7081 
7082 	if (zone_idx > pgdat->nr_zones)
7083 		pgdat->nr_zones = zone_idx;
7084 
7085 	zone->zone_start_pfn = zone_start_pfn;
7086 
7087 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7088 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7089 			pgdat->node_id,
7090 			(unsigned long)zone_idx(zone),
7091 			zone_start_pfn, (zone_start_pfn + size));
7092 
7093 	zone_init_free_lists(zone);
7094 	zone->initialized = 1;
7095 }
7096 
7097 /**
7098  * get_pfn_range_for_nid - Return the start and end page frames for a node
7099  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7100  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7101  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7102  *
7103  * It returns the start and end page frame of a node based on information
7104  * provided by memblock_set_node(). If called for a node
7105  * with no available memory, a warning is printed and the start and end
7106  * PFNs will be 0.
7107  */
7108 void __init get_pfn_range_for_nid(unsigned int nid,
7109 			unsigned long *start_pfn, unsigned long *end_pfn)
7110 {
7111 	unsigned long this_start_pfn, this_end_pfn;
7112 	int i;
7113 
7114 	*start_pfn = -1UL;
7115 	*end_pfn = 0;
7116 
7117 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7118 		*start_pfn = min(*start_pfn, this_start_pfn);
7119 		*end_pfn = max(*end_pfn, this_end_pfn);
7120 	}
7121 
7122 	if (*start_pfn == -1UL)
7123 		*start_pfn = 0;
7124 }
7125 
7126 /*
7127  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7128  * assumption is made that zones within a node are ordered in monotonic
7129  * increasing memory addresses so that the "highest" populated zone is used
7130  */
7131 static void __init find_usable_zone_for_movable(void)
7132 {
7133 	int zone_index;
7134 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7135 		if (zone_index == ZONE_MOVABLE)
7136 			continue;
7137 
7138 		if (arch_zone_highest_possible_pfn[zone_index] >
7139 				arch_zone_lowest_possible_pfn[zone_index])
7140 			break;
7141 	}
7142 
7143 	VM_BUG_ON(zone_index == -1);
7144 	movable_zone = zone_index;
7145 }
7146 
7147 /*
7148  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7149  * because it is sized independent of architecture. Unlike the other zones,
7150  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7151  * in each node depending on the size of each node and how evenly kernelcore
7152  * is distributed. This helper function adjusts the zone ranges
7153  * provided by the architecture for a given node by using the end of the
7154  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7155  * zones within a node are in order of monotonic increases memory addresses
7156  */
7157 static void __init adjust_zone_range_for_zone_movable(int nid,
7158 					unsigned long zone_type,
7159 					unsigned long node_start_pfn,
7160 					unsigned long node_end_pfn,
7161 					unsigned long *zone_start_pfn,
7162 					unsigned long *zone_end_pfn)
7163 {
7164 	/* Only adjust if ZONE_MOVABLE is on this node */
7165 	if (zone_movable_pfn[nid]) {
7166 		/* Size ZONE_MOVABLE */
7167 		if (zone_type == ZONE_MOVABLE) {
7168 			*zone_start_pfn = zone_movable_pfn[nid];
7169 			*zone_end_pfn = min(node_end_pfn,
7170 				arch_zone_highest_possible_pfn[movable_zone]);
7171 
7172 		/* Adjust for ZONE_MOVABLE starting within this range */
7173 		} else if (!mirrored_kernelcore &&
7174 			*zone_start_pfn < zone_movable_pfn[nid] &&
7175 			*zone_end_pfn > zone_movable_pfn[nid]) {
7176 			*zone_end_pfn = zone_movable_pfn[nid];
7177 
7178 		/* Check if this whole range is within ZONE_MOVABLE */
7179 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7180 			*zone_start_pfn = *zone_end_pfn;
7181 	}
7182 }
7183 
7184 /*
7185  * Return the number of pages a zone spans in a node, including holes
7186  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7187  */
7188 static unsigned long __init zone_spanned_pages_in_node(int nid,
7189 					unsigned long zone_type,
7190 					unsigned long node_start_pfn,
7191 					unsigned long node_end_pfn,
7192 					unsigned long *zone_start_pfn,
7193 					unsigned long *zone_end_pfn)
7194 {
7195 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7196 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7197 	/* When hotadd a new node from cpu_up(), the node should be empty */
7198 	if (!node_start_pfn && !node_end_pfn)
7199 		return 0;
7200 
7201 	/* Get the start and end of the zone */
7202 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7203 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7204 	adjust_zone_range_for_zone_movable(nid, zone_type,
7205 				node_start_pfn, node_end_pfn,
7206 				zone_start_pfn, zone_end_pfn);
7207 
7208 	/* Check that this node has pages within the zone's required range */
7209 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7210 		return 0;
7211 
7212 	/* Move the zone boundaries inside the node if necessary */
7213 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7214 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7215 
7216 	/* Return the spanned pages */
7217 	return *zone_end_pfn - *zone_start_pfn;
7218 }
7219 
7220 /*
7221  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7222  * then all holes in the requested range will be accounted for.
7223  */
7224 unsigned long __init __absent_pages_in_range(int nid,
7225 				unsigned long range_start_pfn,
7226 				unsigned long range_end_pfn)
7227 {
7228 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7229 	unsigned long start_pfn, end_pfn;
7230 	int i;
7231 
7232 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7233 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7234 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7235 		nr_absent -= end_pfn - start_pfn;
7236 	}
7237 	return nr_absent;
7238 }
7239 
7240 /**
7241  * absent_pages_in_range - Return number of page frames in holes within a range
7242  * @start_pfn: The start PFN to start searching for holes
7243  * @end_pfn: The end PFN to stop searching for holes
7244  *
7245  * Return: the number of pages frames in memory holes within a range.
7246  */
7247 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7248 							unsigned long end_pfn)
7249 {
7250 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7251 }
7252 
7253 /* Return the number of page frames in holes in a zone on a node */
7254 static unsigned long __init zone_absent_pages_in_node(int nid,
7255 					unsigned long zone_type,
7256 					unsigned long node_start_pfn,
7257 					unsigned long node_end_pfn)
7258 {
7259 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7260 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7261 	unsigned long zone_start_pfn, zone_end_pfn;
7262 	unsigned long nr_absent;
7263 
7264 	/* When hotadd a new node from cpu_up(), the node should be empty */
7265 	if (!node_start_pfn && !node_end_pfn)
7266 		return 0;
7267 
7268 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7269 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7270 
7271 	adjust_zone_range_for_zone_movable(nid, zone_type,
7272 			node_start_pfn, node_end_pfn,
7273 			&zone_start_pfn, &zone_end_pfn);
7274 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7275 
7276 	/*
7277 	 * ZONE_MOVABLE handling.
7278 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7279 	 * and vice versa.
7280 	 */
7281 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7282 		unsigned long start_pfn, end_pfn;
7283 		struct memblock_region *r;
7284 
7285 		for_each_mem_region(r) {
7286 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7287 					  zone_start_pfn, zone_end_pfn);
7288 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7289 					zone_start_pfn, zone_end_pfn);
7290 
7291 			if (zone_type == ZONE_MOVABLE &&
7292 			    memblock_is_mirror(r))
7293 				nr_absent += end_pfn - start_pfn;
7294 
7295 			if (zone_type == ZONE_NORMAL &&
7296 			    !memblock_is_mirror(r))
7297 				nr_absent += end_pfn - start_pfn;
7298 		}
7299 	}
7300 
7301 	return nr_absent;
7302 }
7303 
7304 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7305 						unsigned long node_start_pfn,
7306 						unsigned long node_end_pfn)
7307 {
7308 	unsigned long realtotalpages = 0, totalpages = 0;
7309 	enum zone_type i;
7310 
7311 	for (i = 0; i < MAX_NR_ZONES; i++) {
7312 		struct zone *zone = pgdat->node_zones + i;
7313 		unsigned long zone_start_pfn, zone_end_pfn;
7314 		unsigned long spanned, absent;
7315 		unsigned long size, real_size;
7316 
7317 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7318 						     node_start_pfn,
7319 						     node_end_pfn,
7320 						     &zone_start_pfn,
7321 						     &zone_end_pfn);
7322 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7323 						   node_start_pfn,
7324 						   node_end_pfn);
7325 
7326 		size = spanned;
7327 		real_size = size - absent;
7328 
7329 		if (size)
7330 			zone->zone_start_pfn = zone_start_pfn;
7331 		else
7332 			zone->zone_start_pfn = 0;
7333 		zone->spanned_pages = size;
7334 		zone->present_pages = real_size;
7335 #if defined(CONFIG_MEMORY_HOTPLUG)
7336 		zone->present_early_pages = real_size;
7337 #endif
7338 
7339 		totalpages += size;
7340 		realtotalpages += real_size;
7341 	}
7342 
7343 	pgdat->node_spanned_pages = totalpages;
7344 	pgdat->node_present_pages = realtotalpages;
7345 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7346 }
7347 
7348 #ifndef CONFIG_SPARSEMEM
7349 /*
7350  * Calculate the size of the zone->blockflags rounded to an unsigned long
7351  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7352  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7353  * round what is now in bits to nearest long in bits, then return it in
7354  * bytes.
7355  */
7356 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7357 {
7358 	unsigned long usemapsize;
7359 
7360 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7361 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7362 	usemapsize = usemapsize >> pageblock_order;
7363 	usemapsize *= NR_PAGEBLOCK_BITS;
7364 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7365 
7366 	return usemapsize / 8;
7367 }
7368 
7369 static void __ref setup_usemap(struct zone *zone)
7370 {
7371 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7372 					       zone->spanned_pages);
7373 	zone->pageblock_flags = NULL;
7374 	if (usemapsize) {
7375 		zone->pageblock_flags =
7376 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7377 					    zone_to_nid(zone));
7378 		if (!zone->pageblock_flags)
7379 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7380 			      usemapsize, zone->name, zone_to_nid(zone));
7381 	}
7382 }
7383 #else
7384 static inline void setup_usemap(struct zone *zone) {}
7385 #endif /* CONFIG_SPARSEMEM */
7386 
7387 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7388 
7389 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7390 void __init set_pageblock_order(void)
7391 {
7392 	unsigned int order;
7393 
7394 	/* Check that pageblock_nr_pages has not already been setup */
7395 	if (pageblock_order)
7396 		return;
7397 
7398 	if (HPAGE_SHIFT > PAGE_SHIFT)
7399 		order = HUGETLB_PAGE_ORDER;
7400 	else
7401 		order = MAX_ORDER - 1;
7402 
7403 	/*
7404 	 * Assume the largest contiguous order of interest is a huge page.
7405 	 * This value may be variable depending on boot parameters on IA64 and
7406 	 * powerpc.
7407 	 */
7408 	pageblock_order = order;
7409 }
7410 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7411 
7412 /*
7413  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7414  * is unused as pageblock_order is set at compile-time. See
7415  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7416  * the kernel config
7417  */
7418 void __init set_pageblock_order(void)
7419 {
7420 }
7421 
7422 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7423 
7424 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7425 						unsigned long present_pages)
7426 {
7427 	unsigned long pages = spanned_pages;
7428 
7429 	/*
7430 	 * Provide a more accurate estimation if there are holes within
7431 	 * the zone and SPARSEMEM is in use. If there are holes within the
7432 	 * zone, each populated memory region may cost us one or two extra
7433 	 * memmap pages due to alignment because memmap pages for each
7434 	 * populated regions may not be naturally aligned on page boundary.
7435 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7436 	 */
7437 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7438 	    IS_ENABLED(CONFIG_SPARSEMEM))
7439 		pages = present_pages;
7440 
7441 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7442 }
7443 
7444 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7445 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7446 {
7447 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7448 
7449 	spin_lock_init(&ds_queue->split_queue_lock);
7450 	INIT_LIST_HEAD(&ds_queue->split_queue);
7451 	ds_queue->split_queue_len = 0;
7452 }
7453 #else
7454 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7455 #endif
7456 
7457 #ifdef CONFIG_COMPACTION
7458 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7459 {
7460 	init_waitqueue_head(&pgdat->kcompactd_wait);
7461 }
7462 #else
7463 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7464 #endif
7465 
7466 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7467 {
7468 	int i;
7469 
7470 	pgdat_resize_init(pgdat);
7471 
7472 	pgdat_init_split_queue(pgdat);
7473 	pgdat_init_kcompactd(pgdat);
7474 
7475 	init_waitqueue_head(&pgdat->kswapd_wait);
7476 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7477 
7478 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7479 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7480 
7481 	pgdat_page_ext_init(pgdat);
7482 	lruvec_init(&pgdat->__lruvec);
7483 }
7484 
7485 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7486 							unsigned long remaining_pages)
7487 {
7488 	atomic_long_set(&zone->managed_pages, remaining_pages);
7489 	zone_set_nid(zone, nid);
7490 	zone->name = zone_names[idx];
7491 	zone->zone_pgdat = NODE_DATA(nid);
7492 	spin_lock_init(&zone->lock);
7493 	zone_seqlock_init(zone);
7494 	zone_pcp_init(zone);
7495 }
7496 
7497 /*
7498  * Set up the zone data structures
7499  * - init pgdat internals
7500  * - init all zones belonging to this node
7501  *
7502  * NOTE: this function is only called during memory hotplug
7503  */
7504 #ifdef CONFIG_MEMORY_HOTPLUG
7505 void __ref free_area_init_core_hotplug(int nid)
7506 {
7507 	enum zone_type z;
7508 	pg_data_t *pgdat = NODE_DATA(nid);
7509 
7510 	pgdat_init_internals(pgdat);
7511 	for (z = 0; z < MAX_NR_ZONES; z++)
7512 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7513 }
7514 #endif
7515 
7516 /*
7517  * Set up the zone data structures:
7518  *   - mark all pages reserved
7519  *   - mark all memory queues empty
7520  *   - clear the memory bitmaps
7521  *
7522  * NOTE: pgdat should get zeroed by caller.
7523  * NOTE: this function is only called during early init.
7524  */
7525 static void __init free_area_init_core(struct pglist_data *pgdat)
7526 {
7527 	enum zone_type j;
7528 	int nid = pgdat->node_id;
7529 
7530 	pgdat_init_internals(pgdat);
7531 	pgdat->per_cpu_nodestats = &boot_nodestats;
7532 
7533 	for (j = 0; j < MAX_NR_ZONES; j++) {
7534 		struct zone *zone = pgdat->node_zones + j;
7535 		unsigned long size, freesize, memmap_pages;
7536 
7537 		size = zone->spanned_pages;
7538 		freesize = zone->present_pages;
7539 
7540 		/*
7541 		 * Adjust freesize so that it accounts for how much memory
7542 		 * is used by this zone for memmap. This affects the watermark
7543 		 * and per-cpu initialisations
7544 		 */
7545 		memmap_pages = calc_memmap_size(size, freesize);
7546 		if (!is_highmem_idx(j)) {
7547 			if (freesize >= memmap_pages) {
7548 				freesize -= memmap_pages;
7549 				if (memmap_pages)
7550 					pr_debug("  %s zone: %lu pages used for memmap\n",
7551 						 zone_names[j], memmap_pages);
7552 			} else
7553 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7554 					zone_names[j], memmap_pages, freesize);
7555 		}
7556 
7557 		/* Account for reserved pages */
7558 		if (j == 0 && freesize > dma_reserve) {
7559 			freesize -= dma_reserve;
7560 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7561 		}
7562 
7563 		if (!is_highmem_idx(j))
7564 			nr_kernel_pages += freesize;
7565 		/* Charge for highmem memmap if there are enough kernel pages */
7566 		else if (nr_kernel_pages > memmap_pages * 2)
7567 			nr_kernel_pages -= memmap_pages;
7568 		nr_all_pages += freesize;
7569 
7570 		/*
7571 		 * Set an approximate value for lowmem here, it will be adjusted
7572 		 * when the bootmem allocator frees pages into the buddy system.
7573 		 * And all highmem pages will be managed by the buddy system.
7574 		 */
7575 		zone_init_internals(zone, j, nid, freesize);
7576 
7577 		if (!size)
7578 			continue;
7579 
7580 		set_pageblock_order();
7581 		setup_usemap(zone);
7582 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7583 	}
7584 }
7585 
7586 #ifdef CONFIG_FLATMEM
7587 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7588 {
7589 	unsigned long __maybe_unused start = 0;
7590 	unsigned long __maybe_unused offset = 0;
7591 
7592 	/* Skip empty nodes */
7593 	if (!pgdat->node_spanned_pages)
7594 		return;
7595 
7596 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7597 	offset = pgdat->node_start_pfn - start;
7598 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7599 	if (!pgdat->node_mem_map) {
7600 		unsigned long size, end;
7601 		struct page *map;
7602 
7603 		/*
7604 		 * The zone's endpoints aren't required to be MAX_ORDER
7605 		 * aligned but the node_mem_map endpoints must be in order
7606 		 * for the buddy allocator to function correctly.
7607 		 */
7608 		end = pgdat_end_pfn(pgdat);
7609 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7610 		size =  (end - start) * sizeof(struct page);
7611 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7612 				   pgdat->node_id, false);
7613 		if (!map)
7614 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7615 			      size, pgdat->node_id);
7616 		pgdat->node_mem_map = map + offset;
7617 	}
7618 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7619 				__func__, pgdat->node_id, (unsigned long)pgdat,
7620 				(unsigned long)pgdat->node_mem_map);
7621 #ifndef CONFIG_NUMA
7622 	/*
7623 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7624 	 */
7625 	if (pgdat == NODE_DATA(0)) {
7626 		mem_map = NODE_DATA(0)->node_mem_map;
7627 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7628 			mem_map -= offset;
7629 	}
7630 #endif
7631 }
7632 #else
7633 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7634 #endif /* CONFIG_FLATMEM */
7635 
7636 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7637 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7638 {
7639 	pgdat->first_deferred_pfn = ULONG_MAX;
7640 }
7641 #else
7642 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7643 #endif
7644 
7645 static void __init free_area_init_node(int nid)
7646 {
7647 	pg_data_t *pgdat = NODE_DATA(nid);
7648 	unsigned long start_pfn = 0;
7649 	unsigned long end_pfn = 0;
7650 
7651 	/* pg_data_t should be reset to zero when it's allocated */
7652 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7653 
7654 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7655 
7656 	pgdat->node_id = nid;
7657 	pgdat->node_start_pfn = start_pfn;
7658 	pgdat->per_cpu_nodestats = NULL;
7659 
7660 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7661 		(u64)start_pfn << PAGE_SHIFT,
7662 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7663 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7664 
7665 	alloc_node_mem_map(pgdat);
7666 	pgdat_set_deferred_range(pgdat);
7667 
7668 	free_area_init_core(pgdat);
7669 }
7670 
7671 void __init free_area_init_memoryless_node(int nid)
7672 {
7673 	free_area_init_node(nid);
7674 }
7675 
7676 #if MAX_NUMNODES > 1
7677 /*
7678  * Figure out the number of possible node ids.
7679  */
7680 void __init setup_nr_node_ids(void)
7681 {
7682 	unsigned int highest;
7683 
7684 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7685 	nr_node_ids = highest + 1;
7686 }
7687 #endif
7688 
7689 /**
7690  * node_map_pfn_alignment - determine the maximum internode alignment
7691  *
7692  * This function should be called after node map is populated and sorted.
7693  * It calculates the maximum power of two alignment which can distinguish
7694  * all the nodes.
7695  *
7696  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7697  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7698  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7699  * shifted, 1GiB is enough and this function will indicate so.
7700  *
7701  * This is used to test whether pfn -> nid mapping of the chosen memory
7702  * model has fine enough granularity to avoid incorrect mapping for the
7703  * populated node map.
7704  *
7705  * Return: the determined alignment in pfn's.  0 if there is no alignment
7706  * requirement (single node).
7707  */
7708 unsigned long __init node_map_pfn_alignment(void)
7709 {
7710 	unsigned long accl_mask = 0, last_end = 0;
7711 	unsigned long start, end, mask;
7712 	int last_nid = NUMA_NO_NODE;
7713 	int i, nid;
7714 
7715 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7716 		if (!start || last_nid < 0 || last_nid == nid) {
7717 			last_nid = nid;
7718 			last_end = end;
7719 			continue;
7720 		}
7721 
7722 		/*
7723 		 * Start with a mask granular enough to pin-point to the
7724 		 * start pfn and tick off bits one-by-one until it becomes
7725 		 * too coarse to separate the current node from the last.
7726 		 */
7727 		mask = ~((1 << __ffs(start)) - 1);
7728 		while (mask && last_end <= (start & (mask << 1)))
7729 			mask <<= 1;
7730 
7731 		/* accumulate all internode masks */
7732 		accl_mask |= mask;
7733 	}
7734 
7735 	/* convert mask to number of pages */
7736 	return ~accl_mask + 1;
7737 }
7738 
7739 /**
7740  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7741  *
7742  * Return: the minimum PFN based on information provided via
7743  * memblock_set_node().
7744  */
7745 unsigned long __init find_min_pfn_with_active_regions(void)
7746 {
7747 	return PHYS_PFN(memblock_start_of_DRAM());
7748 }
7749 
7750 /*
7751  * early_calculate_totalpages()
7752  * Sum pages in active regions for movable zone.
7753  * Populate N_MEMORY for calculating usable_nodes.
7754  */
7755 static unsigned long __init early_calculate_totalpages(void)
7756 {
7757 	unsigned long totalpages = 0;
7758 	unsigned long start_pfn, end_pfn;
7759 	int i, nid;
7760 
7761 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7762 		unsigned long pages = end_pfn - start_pfn;
7763 
7764 		totalpages += pages;
7765 		if (pages)
7766 			node_set_state(nid, N_MEMORY);
7767 	}
7768 	return totalpages;
7769 }
7770 
7771 /*
7772  * Find the PFN the Movable zone begins in each node. Kernel memory
7773  * is spread evenly between nodes as long as the nodes have enough
7774  * memory. When they don't, some nodes will have more kernelcore than
7775  * others
7776  */
7777 static void __init find_zone_movable_pfns_for_nodes(void)
7778 {
7779 	int i, nid;
7780 	unsigned long usable_startpfn;
7781 	unsigned long kernelcore_node, kernelcore_remaining;
7782 	/* save the state before borrow the nodemask */
7783 	nodemask_t saved_node_state = node_states[N_MEMORY];
7784 	unsigned long totalpages = early_calculate_totalpages();
7785 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7786 	struct memblock_region *r;
7787 
7788 	/* Need to find movable_zone earlier when movable_node is specified. */
7789 	find_usable_zone_for_movable();
7790 
7791 	/*
7792 	 * If movable_node is specified, ignore kernelcore and movablecore
7793 	 * options.
7794 	 */
7795 	if (movable_node_is_enabled()) {
7796 		for_each_mem_region(r) {
7797 			if (!memblock_is_hotpluggable(r))
7798 				continue;
7799 
7800 			nid = memblock_get_region_node(r);
7801 
7802 			usable_startpfn = PFN_DOWN(r->base);
7803 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7804 				min(usable_startpfn, zone_movable_pfn[nid]) :
7805 				usable_startpfn;
7806 		}
7807 
7808 		goto out2;
7809 	}
7810 
7811 	/*
7812 	 * If kernelcore=mirror is specified, ignore movablecore option
7813 	 */
7814 	if (mirrored_kernelcore) {
7815 		bool mem_below_4gb_not_mirrored = false;
7816 
7817 		for_each_mem_region(r) {
7818 			if (memblock_is_mirror(r))
7819 				continue;
7820 
7821 			nid = memblock_get_region_node(r);
7822 
7823 			usable_startpfn = memblock_region_memory_base_pfn(r);
7824 
7825 			if (usable_startpfn < 0x100000) {
7826 				mem_below_4gb_not_mirrored = true;
7827 				continue;
7828 			}
7829 
7830 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7831 				min(usable_startpfn, zone_movable_pfn[nid]) :
7832 				usable_startpfn;
7833 		}
7834 
7835 		if (mem_below_4gb_not_mirrored)
7836 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7837 
7838 		goto out2;
7839 	}
7840 
7841 	/*
7842 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7843 	 * amount of necessary memory.
7844 	 */
7845 	if (required_kernelcore_percent)
7846 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7847 				       10000UL;
7848 	if (required_movablecore_percent)
7849 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7850 					10000UL;
7851 
7852 	/*
7853 	 * If movablecore= was specified, calculate what size of
7854 	 * kernelcore that corresponds so that memory usable for
7855 	 * any allocation type is evenly spread. If both kernelcore
7856 	 * and movablecore are specified, then the value of kernelcore
7857 	 * will be used for required_kernelcore if it's greater than
7858 	 * what movablecore would have allowed.
7859 	 */
7860 	if (required_movablecore) {
7861 		unsigned long corepages;
7862 
7863 		/*
7864 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7865 		 * was requested by the user
7866 		 */
7867 		required_movablecore =
7868 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7869 		required_movablecore = min(totalpages, required_movablecore);
7870 		corepages = totalpages - required_movablecore;
7871 
7872 		required_kernelcore = max(required_kernelcore, corepages);
7873 	}
7874 
7875 	/*
7876 	 * If kernelcore was not specified or kernelcore size is larger
7877 	 * than totalpages, there is no ZONE_MOVABLE.
7878 	 */
7879 	if (!required_kernelcore || required_kernelcore >= totalpages)
7880 		goto out;
7881 
7882 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7883 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7884 
7885 restart:
7886 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7887 	kernelcore_node = required_kernelcore / usable_nodes;
7888 	for_each_node_state(nid, N_MEMORY) {
7889 		unsigned long start_pfn, end_pfn;
7890 
7891 		/*
7892 		 * Recalculate kernelcore_node if the division per node
7893 		 * now exceeds what is necessary to satisfy the requested
7894 		 * amount of memory for the kernel
7895 		 */
7896 		if (required_kernelcore < kernelcore_node)
7897 			kernelcore_node = required_kernelcore / usable_nodes;
7898 
7899 		/*
7900 		 * As the map is walked, we track how much memory is usable
7901 		 * by the kernel using kernelcore_remaining. When it is
7902 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7903 		 */
7904 		kernelcore_remaining = kernelcore_node;
7905 
7906 		/* Go through each range of PFNs within this node */
7907 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7908 			unsigned long size_pages;
7909 
7910 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7911 			if (start_pfn >= end_pfn)
7912 				continue;
7913 
7914 			/* Account for what is only usable for kernelcore */
7915 			if (start_pfn < usable_startpfn) {
7916 				unsigned long kernel_pages;
7917 				kernel_pages = min(end_pfn, usable_startpfn)
7918 								- start_pfn;
7919 
7920 				kernelcore_remaining -= min(kernel_pages,
7921 							kernelcore_remaining);
7922 				required_kernelcore -= min(kernel_pages,
7923 							required_kernelcore);
7924 
7925 				/* Continue if range is now fully accounted */
7926 				if (end_pfn <= usable_startpfn) {
7927 
7928 					/*
7929 					 * Push zone_movable_pfn to the end so
7930 					 * that if we have to rebalance
7931 					 * kernelcore across nodes, we will
7932 					 * not double account here
7933 					 */
7934 					zone_movable_pfn[nid] = end_pfn;
7935 					continue;
7936 				}
7937 				start_pfn = usable_startpfn;
7938 			}
7939 
7940 			/*
7941 			 * The usable PFN range for ZONE_MOVABLE is from
7942 			 * start_pfn->end_pfn. Calculate size_pages as the
7943 			 * number of pages used as kernelcore
7944 			 */
7945 			size_pages = end_pfn - start_pfn;
7946 			if (size_pages > kernelcore_remaining)
7947 				size_pages = kernelcore_remaining;
7948 			zone_movable_pfn[nid] = start_pfn + size_pages;
7949 
7950 			/*
7951 			 * Some kernelcore has been met, update counts and
7952 			 * break if the kernelcore for this node has been
7953 			 * satisfied
7954 			 */
7955 			required_kernelcore -= min(required_kernelcore,
7956 								size_pages);
7957 			kernelcore_remaining -= size_pages;
7958 			if (!kernelcore_remaining)
7959 				break;
7960 		}
7961 	}
7962 
7963 	/*
7964 	 * If there is still required_kernelcore, we do another pass with one
7965 	 * less node in the count. This will push zone_movable_pfn[nid] further
7966 	 * along on the nodes that still have memory until kernelcore is
7967 	 * satisfied
7968 	 */
7969 	usable_nodes--;
7970 	if (usable_nodes && required_kernelcore > usable_nodes)
7971 		goto restart;
7972 
7973 out2:
7974 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7975 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7976 		zone_movable_pfn[nid] =
7977 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7978 
7979 out:
7980 	/* restore the node_state */
7981 	node_states[N_MEMORY] = saved_node_state;
7982 }
7983 
7984 /* Any regular or high memory on that node ? */
7985 static void check_for_memory(pg_data_t *pgdat, int nid)
7986 {
7987 	enum zone_type zone_type;
7988 
7989 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7990 		struct zone *zone = &pgdat->node_zones[zone_type];
7991 		if (populated_zone(zone)) {
7992 			if (IS_ENABLED(CONFIG_HIGHMEM))
7993 				node_set_state(nid, N_HIGH_MEMORY);
7994 			if (zone_type <= ZONE_NORMAL)
7995 				node_set_state(nid, N_NORMAL_MEMORY);
7996 			break;
7997 		}
7998 	}
7999 }
8000 
8001 /*
8002  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8003  * such cases we allow max_zone_pfn sorted in the descending order
8004  */
8005 bool __weak arch_has_descending_max_zone_pfns(void)
8006 {
8007 	return false;
8008 }
8009 
8010 /**
8011  * free_area_init - Initialise all pg_data_t and zone data
8012  * @max_zone_pfn: an array of max PFNs for each zone
8013  *
8014  * This will call free_area_init_node() for each active node in the system.
8015  * Using the page ranges provided by memblock_set_node(), the size of each
8016  * zone in each node and their holes is calculated. If the maximum PFN
8017  * between two adjacent zones match, it is assumed that the zone is empty.
8018  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8019  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8020  * starts where the previous one ended. For example, ZONE_DMA32 starts
8021  * at arch_max_dma_pfn.
8022  */
8023 void __init free_area_init(unsigned long *max_zone_pfn)
8024 {
8025 	unsigned long start_pfn, end_pfn;
8026 	int i, nid, zone;
8027 	bool descending;
8028 
8029 	/* Record where the zone boundaries are */
8030 	memset(arch_zone_lowest_possible_pfn, 0,
8031 				sizeof(arch_zone_lowest_possible_pfn));
8032 	memset(arch_zone_highest_possible_pfn, 0,
8033 				sizeof(arch_zone_highest_possible_pfn));
8034 
8035 	start_pfn = find_min_pfn_with_active_regions();
8036 	descending = arch_has_descending_max_zone_pfns();
8037 
8038 	for (i = 0; i < MAX_NR_ZONES; i++) {
8039 		if (descending)
8040 			zone = MAX_NR_ZONES - i - 1;
8041 		else
8042 			zone = i;
8043 
8044 		if (zone == ZONE_MOVABLE)
8045 			continue;
8046 
8047 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8048 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8049 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8050 
8051 		start_pfn = end_pfn;
8052 	}
8053 
8054 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8055 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8056 	find_zone_movable_pfns_for_nodes();
8057 
8058 	/* Print out the zone ranges */
8059 	pr_info("Zone ranges:\n");
8060 	for (i = 0; i < MAX_NR_ZONES; i++) {
8061 		if (i == ZONE_MOVABLE)
8062 			continue;
8063 		pr_info("  %-8s ", zone_names[i]);
8064 		if (arch_zone_lowest_possible_pfn[i] ==
8065 				arch_zone_highest_possible_pfn[i])
8066 			pr_cont("empty\n");
8067 		else
8068 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8069 				(u64)arch_zone_lowest_possible_pfn[i]
8070 					<< PAGE_SHIFT,
8071 				((u64)arch_zone_highest_possible_pfn[i]
8072 					<< PAGE_SHIFT) - 1);
8073 	}
8074 
8075 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8076 	pr_info("Movable zone start for each node\n");
8077 	for (i = 0; i < MAX_NUMNODES; i++) {
8078 		if (zone_movable_pfn[i])
8079 			pr_info("  Node %d: %#018Lx\n", i,
8080 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8081 	}
8082 
8083 	/*
8084 	 * Print out the early node map, and initialize the
8085 	 * subsection-map relative to active online memory ranges to
8086 	 * enable future "sub-section" extensions of the memory map.
8087 	 */
8088 	pr_info("Early memory node ranges\n");
8089 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8090 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8091 			(u64)start_pfn << PAGE_SHIFT,
8092 			((u64)end_pfn << PAGE_SHIFT) - 1);
8093 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8094 	}
8095 
8096 	/* Initialise every node */
8097 	mminit_verify_pageflags_layout();
8098 	setup_nr_node_ids();
8099 	for_each_online_node(nid) {
8100 		pg_data_t *pgdat = NODE_DATA(nid);
8101 		free_area_init_node(nid);
8102 
8103 		/* Any memory on that node */
8104 		if (pgdat->node_present_pages)
8105 			node_set_state(nid, N_MEMORY);
8106 		check_for_memory(pgdat, nid);
8107 	}
8108 
8109 	memmap_init();
8110 }
8111 
8112 static int __init cmdline_parse_core(char *p, unsigned long *core,
8113 				     unsigned long *percent)
8114 {
8115 	unsigned long long coremem;
8116 	char *endptr;
8117 
8118 	if (!p)
8119 		return -EINVAL;
8120 
8121 	/* Value may be a percentage of total memory, otherwise bytes */
8122 	coremem = simple_strtoull(p, &endptr, 0);
8123 	if (*endptr == '%') {
8124 		/* Paranoid check for percent values greater than 100 */
8125 		WARN_ON(coremem > 100);
8126 
8127 		*percent = coremem;
8128 	} else {
8129 		coremem = memparse(p, &p);
8130 		/* Paranoid check that UL is enough for the coremem value */
8131 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8132 
8133 		*core = coremem >> PAGE_SHIFT;
8134 		*percent = 0UL;
8135 	}
8136 	return 0;
8137 }
8138 
8139 /*
8140  * kernelcore=size sets the amount of memory for use for allocations that
8141  * cannot be reclaimed or migrated.
8142  */
8143 static int __init cmdline_parse_kernelcore(char *p)
8144 {
8145 	/* parse kernelcore=mirror */
8146 	if (parse_option_str(p, "mirror")) {
8147 		mirrored_kernelcore = true;
8148 		return 0;
8149 	}
8150 
8151 	return cmdline_parse_core(p, &required_kernelcore,
8152 				  &required_kernelcore_percent);
8153 }
8154 
8155 /*
8156  * movablecore=size sets the amount of memory for use for allocations that
8157  * can be reclaimed or migrated.
8158  */
8159 static int __init cmdline_parse_movablecore(char *p)
8160 {
8161 	return cmdline_parse_core(p, &required_movablecore,
8162 				  &required_movablecore_percent);
8163 }
8164 
8165 early_param("kernelcore", cmdline_parse_kernelcore);
8166 early_param("movablecore", cmdline_parse_movablecore);
8167 
8168 void adjust_managed_page_count(struct page *page, long count)
8169 {
8170 	atomic_long_add(count, &page_zone(page)->managed_pages);
8171 	totalram_pages_add(count);
8172 #ifdef CONFIG_HIGHMEM
8173 	if (PageHighMem(page))
8174 		totalhigh_pages_add(count);
8175 #endif
8176 }
8177 EXPORT_SYMBOL(adjust_managed_page_count);
8178 
8179 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8180 {
8181 	void *pos;
8182 	unsigned long pages = 0;
8183 
8184 	start = (void *)PAGE_ALIGN((unsigned long)start);
8185 	end = (void *)((unsigned long)end & PAGE_MASK);
8186 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8187 		struct page *page = virt_to_page(pos);
8188 		void *direct_map_addr;
8189 
8190 		/*
8191 		 * 'direct_map_addr' might be different from 'pos'
8192 		 * because some architectures' virt_to_page()
8193 		 * work with aliases.  Getting the direct map
8194 		 * address ensures that we get a _writeable_
8195 		 * alias for the memset().
8196 		 */
8197 		direct_map_addr = page_address(page);
8198 		/*
8199 		 * Perform a kasan-unchecked memset() since this memory
8200 		 * has not been initialized.
8201 		 */
8202 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8203 		if ((unsigned int)poison <= 0xFF)
8204 			memset(direct_map_addr, poison, PAGE_SIZE);
8205 
8206 		free_reserved_page(page);
8207 	}
8208 
8209 	if (pages && s)
8210 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8211 
8212 	return pages;
8213 }
8214 
8215 void __init mem_init_print_info(void)
8216 {
8217 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8218 	unsigned long init_code_size, init_data_size;
8219 
8220 	physpages = get_num_physpages();
8221 	codesize = _etext - _stext;
8222 	datasize = _edata - _sdata;
8223 	rosize = __end_rodata - __start_rodata;
8224 	bss_size = __bss_stop - __bss_start;
8225 	init_data_size = __init_end - __init_begin;
8226 	init_code_size = _einittext - _sinittext;
8227 
8228 	/*
8229 	 * Detect special cases and adjust section sizes accordingly:
8230 	 * 1) .init.* may be embedded into .data sections
8231 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8232 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8233 	 * 3) .rodata.* may be embedded into .text or .data sections.
8234 	 */
8235 #define adj_init_size(start, end, size, pos, adj) \
8236 	do { \
8237 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8238 			size -= adj; \
8239 	} while (0)
8240 
8241 	adj_init_size(__init_begin, __init_end, init_data_size,
8242 		     _sinittext, init_code_size);
8243 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8244 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8245 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8246 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8247 
8248 #undef	adj_init_size
8249 
8250 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8251 #ifdef	CONFIG_HIGHMEM
8252 		", %luK highmem"
8253 #endif
8254 		")\n",
8255 		K(nr_free_pages()), K(physpages),
8256 		codesize >> 10, datasize >> 10, rosize >> 10,
8257 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8258 		K(physpages - totalram_pages() - totalcma_pages),
8259 		K(totalcma_pages)
8260 #ifdef	CONFIG_HIGHMEM
8261 		, K(totalhigh_pages())
8262 #endif
8263 		);
8264 }
8265 
8266 /**
8267  * set_dma_reserve - set the specified number of pages reserved in the first zone
8268  * @new_dma_reserve: The number of pages to mark reserved
8269  *
8270  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8271  * In the DMA zone, a significant percentage may be consumed by kernel image
8272  * and other unfreeable allocations which can skew the watermarks badly. This
8273  * function may optionally be used to account for unfreeable pages in the
8274  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8275  * smaller per-cpu batchsize.
8276  */
8277 void __init set_dma_reserve(unsigned long new_dma_reserve)
8278 {
8279 	dma_reserve = new_dma_reserve;
8280 }
8281 
8282 static int page_alloc_cpu_dead(unsigned int cpu)
8283 {
8284 	struct zone *zone;
8285 
8286 	lru_add_drain_cpu(cpu);
8287 	drain_pages(cpu);
8288 
8289 	/*
8290 	 * Spill the event counters of the dead processor
8291 	 * into the current processors event counters.
8292 	 * This artificially elevates the count of the current
8293 	 * processor.
8294 	 */
8295 	vm_events_fold_cpu(cpu);
8296 
8297 	/*
8298 	 * Zero the differential counters of the dead processor
8299 	 * so that the vm statistics are consistent.
8300 	 *
8301 	 * This is only okay since the processor is dead and cannot
8302 	 * race with what we are doing.
8303 	 */
8304 	cpu_vm_stats_fold(cpu);
8305 
8306 	for_each_populated_zone(zone)
8307 		zone_pcp_update(zone, 0);
8308 
8309 	return 0;
8310 }
8311 
8312 static int page_alloc_cpu_online(unsigned int cpu)
8313 {
8314 	struct zone *zone;
8315 
8316 	for_each_populated_zone(zone)
8317 		zone_pcp_update(zone, 1);
8318 	return 0;
8319 }
8320 
8321 #ifdef CONFIG_NUMA
8322 int hashdist = HASHDIST_DEFAULT;
8323 
8324 static int __init set_hashdist(char *str)
8325 {
8326 	if (!str)
8327 		return 0;
8328 	hashdist = simple_strtoul(str, &str, 0);
8329 	return 1;
8330 }
8331 __setup("hashdist=", set_hashdist);
8332 #endif
8333 
8334 void __init page_alloc_init(void)
8335 {
8336 	int ret;
8337 
8338 #ifdef CONFIG_NUMA
8339 	if (num_node_state(N_MEMORY) == 1)
8340 		hashdist = 0;
8341 #endif
8342 
8343 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8344 					"mm/page_alloc:pcp",
8345 					page_alloc_cpu_online,
8346 					page_alloc_cpu_dead);
8347 	WARN_ON(ret < 0);
8348 }
8349 
8350 /*
8351  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8352  *	or min_free_kbytes changes.
8353  */
8354 static void calculate_totalreserve_pages(void)
8355 {
8356 	struct pglist_data *pgdat;
8357 	unsigned long reserve_pages = 0;
8358 	enum zone_type i, j;
8359 
8360 	for_each_online_pgdat(pgdat) {
8361 
8362 		pgdat->totalreserve_pages = 0;
8363 
8364 		for (i = 0; i < MAX_NR_ZONES; i++) {
8365 			struct zone *zone = pgdat->node_zones + i;
8366 			long max = 0;
8367 			unsigned long managed_pages = zone_managed_pages(zone);
8368 
8369 			/* Find valid and maximum lowmem_reserve in the zone */
8370 			for (j = i; j < MAX_NR_ZONES; j++) {
8371 				if (zone->lowmem_reserve[j] > max)
8372 					max = zone->lowmem_reserve[j];
8373 			}
8374 
8375 			/* we treat the high watermark as reserved pages. */
8376 			max += high_wmark_pages(zone);
8377 
8378 			if (max > managed_pages)
8379 				max = managed_pages;
8380 
8381 			pgdat->totalreserve_pages += max;
8382 
8383 			reserve_pages += max;
8384 		}
8385 	}
8386 	totalreserve_pages = reserve_pages;
8387 }
8388 
8389 /*
8390  * setup_per_zone_lowmem_reserve - called whenever
8391  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8392  *	has a correct pages reserved value, so an adequate number of
8393  *	pages are left in the zone after a successful __alloc_pages().
8394  */
8395 static void setup_per_zone_lowmem_reserve(void)
8396 {
8397 	struct pglist_data *pgdat;
8398 	enum zone_type i, j;
8399 
8400 	for_each_online_pgdat(pgdat) {
8401 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8402 			struct zone *zone = &pgdat->node_zones[i];
8403 			int ratio = sysctl_lowmem_reserve_ratio[i];
8404 			bool clear = !ratio || !zone_managed_pages(zone);
8405 			unsigned long managed_pages = 0;
8406 
8407 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8408 				struct zone *upper_zone = &pgdat->node_zones[j];
8409 
8410 				managed_pages += zone_managed_pages(upper_zone);
8411 
8412 				if (clear)
8413 					zone->lowmem_reserve[j] = 0;
8414 				else
8415 					zone->lowmem_reserve[j] = managed_pages / ratio;
8416 			}
8417 		}
8418 	}
8419 
8420 	/* update totalreserve_pages */
8421 	calculate_totalreserve_pages();
8422 }
8423 
8424 static void __setup_per_zone_wmarks(void)
8425 {
8426 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8427 	unsigned long lowmem_pages = 0;
8428 	struct zone *zone;
8429 	unsigned long flags;
8430 
8431 	/* Calculate total number of !ZONE_HIGHMEM pages */
8432 	for_each_zone(zone) {
8433 		if (!is_highmem(zone))
8434 			lowmem_pages += zone_managed_pages(zone);
8435 	}
8436 
8437 	for_each_zone(zone) {
8438 		u64 tmp;
8439 
8440 		spin_lock_irqsave(&zone->lock, flags);
8441 		tmp = (u64)pages_min * zone_managed_pages(zone);
8442 		do_div(tmp, lowmem_pages);
8443 		if (is_highmem(zone)) {
8444 			/*
8445 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8446 			 * need highmem pages, so cap pages_min to a small
8447 			 * value here.
8448 			 *
8449 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8450 			 * deltas control async page reclaim, and so should
8451 			 * not be capped for highmem.
8452 			 */
8453 			unsigned long min_pages;
8454 
8455 			min_pages = zone_managed_pages(zone) / 1024;
8456 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8457 			zone->_watermark[WMARK_MIN] = min_pages;
8458 		} else {
8459 			/*
8460 			 * If it's a lowmem zone, reserve a number of pages
8461 			 * proportionate to the zone's size.
8462 			 */
8463 			zone->_watermark[WMARK_MIN] = tmp;
8464 		}
8465 
8466 		/*
8467 		 * Set the kswapd watermarks distance according to the
8468 		 * scale factor in proportion to available memory, but
8469 		 * ensure a minimum size on small systems.
8470 		 */
8471 		tmp = max_t(u64, tmp >> 2,
8472 			    mult_frac(zone_managed_pages(zone),
8473 				      watermark_scale_factor, 10000));
8474 
8475 		zone->watermark_boost = 0;
8476 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8477 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8478 
8479 		spin_unlock_irqrestore(&zone->lock, flags);
8480 	}
8481 
8482 	/* update totalreserve_pages */
8483 	calculate_totalreserve_pages();
8484 }
8485 
8486 /**
8487  * setup_per_zone_wmarks - called when min_free_kbytes changes
8488  * or when memory is hot-{added|removed}
8489  *
8490  * Ensures that the watermark[min,low,high] values for each zone are set
8491  * correctly with respect to min_free_kbytes.
8492  */
8493 void setup_per_zone_wmarks(void)
8494 {
8495 	struct zone *zone;
8496 	static DEFINE_SPINLOCK(lock);
8497 
8498 	spin_lock(&lock);
8499 	__setup_per_zone_wmarks();
8500 	spin_unlock(&lock);
8501 
8502 	/*
8503 	 * The watermark size have changed so update the pcpu batch
8504 	 * and high limits or the limits may be inappropriate.
8505 	 */
8506 	for_each_zone(zone)
8507 		zone_pcp_update(zone, 0);
8508 }
8509 
8510 /*
8511  * Initialise min_free_kbytes.
8512  *
8513  * For small machines we want it small (128k min).  For large machines
8514  * we want it large (256MB max).  But it is not linear, because network
8515  * bandwidth does not increase linearly with machine size.  We use
8516  *
8517  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8518  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8519  *
8520  * which yields
8521  *
8522  * 16MB:	512k
8523  * 32MB:	724k
8524  * 64MB:	1024k
8525  * 128MB:	1448k
8526  * 256MB:	2048k
8527  * 512MB:	2896k
8528  * 1024MB:	4096k
8529  * 2048MB:	5792k
8530  * 4096MB:	8192k
8531  * 8192MB:	11584k
8532  * 16384MB:	16384k
8533  */
8534 void calculate_min_free_kbytes(void)
8535 {
8536 	unsigned long lowmem_kbytes;
8537 	int new_min_free_kbytes;
8538 
8539 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8540 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8541 
8542 	if (new_min_free_kbytes > user_min_free_kbytes)
8543 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8544 	else
8545 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8546 				new_min_free_kbytes, user_min_free_kbytes);
8547 
8548 }
8549 
8550 int __meminit init_per_zone_wmark_min(void)
8551 {
8552 	calculate_min_free_kbytes();
8553 	setup_per_zone_wmarks();
8554 	refresh_zone_stat_thresholds();
8555 	setup_per_zone_lowmem_reserve();
8556 
8557 #ifdef CONFIG_NUMA
8558 	setup_min_unmapped_ratio();
8559 	setup_min_slab_ratio();
8560 #endif
8561 
8562 	khugepaged_min_free_kbytes_update();
8563 
8564 	return 0;
8565 }
8566 postcore_initcall(init_per_zone_wmark_min)
8567 
8568 /*
8569  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8570  *	that we can call two helper functions whenever min_free_kbytes
8571  *	changes.
8572  */
8573 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8574 		void *buffer, size_t *length, loff_t *ppos)
8575 {
8576 	int rc;
8577 
8578 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8579 	if (rc)
8580 		return rc;
8581 
8582 	if (write) {
8583 		user_min_free_kbytes = min_free_kbytes;
8584 		setup_per_zone_wmarks();
8585 	}
8586 	return 0;
8587 }
8588 
8589 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8590 		void *buffer, size_t *length, loff_t *ppos)
8591 {
8592 	int rc;
8593 
8594 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8595 	if (rc)
8596 		return rc;
8597 
8598 	if (write)
8599 		setup_per_zone_wmarks();
8600 
8601 	return 0;
8602 }
8603 
8604 #ifdef CONFIG_NUMA
8605 static void setup_min_unmapped_ratio(void)
8606 {
8607 	pg_data_t *pgdat;
8608 	struct zone *zone;
8609 
8610 	for_each_online_pgdat(pgdat)
8611 		pgdat->min_unmapped_pages = 0;
8612 
8613 	for_each_zone(zone)
8614 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8615 						         sysctl_min_unmapped_ratio) / 100;
8616 }
8617 
8618 
8619 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8620 		void *buffer, size_t *length, loff_t *ppos)
8621 {
8622 	int rc;
8623 
8624 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8625 	if (rc)
8626 		return rc;
8627 
8628 	setup_min_unmapped_ratio();
8629 
8630 	return 0;
8631 }
8632 
8633 static void setup_min_slab_ratio(void)
8634 {
8635 	pg_data_t *pgdat;
8636 	struct zone *zone;
8637 
8638 	for_each_online_pgdat(pgdat)
8639 		pgdat->min_slab_pages = 0;
8640 
8641 	for_each_zone(zone)
8642 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8643 						     sysctl_min_slab_ratio) / 100;
8644 }
8645 
8646 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8647 		void *buffer, size_t *length, loff_t *ppos)
8648 {
8649 	int rc;
8650 
8651 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8652 	if (rc)
8653 		return rc;
8654 
8655 	setup_min_slab_ratio();
8656 
8657 	return 0;
8658 }
8659 #endif
8660 
8661 /*
8662  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8663  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8664  *	whenever sysctl_lowmem_reserve_ratio changes.
8665  *
8666  * The reserve ratio obviously has absolutely no relation with the
8667  * minimum watermarks. The lowmem reserve ratio can only make sense
8668  * if in function of the boot time zone sizes.
8669  */
8670 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8671 		void *buffer, size_t *length, loff_t *ppos)
8672 {
8673 	int i;
8674 
8675 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8676 
8677 	for (i = 0; i < MAX_NR_ZONES; i++) {
8678 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8679 			sysctl_lowmem_reserve_ratio[i] = 0;
8680 	}
8681 
8682 	setup_per_zone_lowmem_reserve();
8683 	return 0;
8684 }
8685 
8686 /*
8687  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8688  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8689  * pagelist can have before it gets flushed back to buddy allocator.
8690  */
8691 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8692 		int write, void *buffer, size_t *length, loff_t *ppos)
8693 {
8694 	struct zone *zone;
8695 	int old_percpu_pagelist_high_fraction;
8696 	int ret;
8697 
8698 	mutex_lock(&pcp_batch_high_lock);
8699 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8700 
8701 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8702 	if (!write || ret < 0)
8703 		goto out;
8704 
8705 	/* Sanity checking to avoid pcp imbalance */
8706 	if (percpu_pagelist_high_fraction &&
8707 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8708 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8709 		ret = -EINVAL;
8710 		goto out;
8711 	}
8712 
8713 	/* No change? */
8714 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8715 		goto out;
8716 
8717 	for_each_populated_zone(zone)
8718 		zone_set_pageset_high_and_batch(zone, 0);
8719 out:
8720 	mutex_unlock(&pcp_batch_high_lock);
8721 	return ret;
8722 }
8723 
8724 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8725 /*
8726  * Returns the number of pages that arch has reserved but
8727  * is not known to alloc_large_system_hash().
8728  */
8729 static unsigned long __init arch_reserved_kernel_pages(void)
8730 {
8731 	return 0;
8732 }
8733 #endif
8734 
8735 /*
8736  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8737  * machines. As memory size is increased the scale is also increased but at
8738  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8739  * quadruples the scale is increased by one, which means the size of hash table
8740  * only doubles, instead of quadrupling as well.
8741  * Because 32-bit systems cannot have large physical memory, where this scaling
8742  * makes sense, it is disabled on such platforms.
8743  */
8744 #if __BITS_PER_LONG > 32
8745 #define ADAPT_SCALE_BASE	(64ul << 30)
8746 #define ADAPT_SCALE_SHIFT	2
8747 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8748 #endif
8749 
8750 /*
8751  * allocate a large system hash table from bootmem
8752  * - it is assumed that the hash table must contain an exact power-of-2
8753  *   quantity of entries
8754  * - limit is the number of hash buckets, not the total allocation size
8755  */
8756 void *__init alloc_large_system_hash(const char *tablename,
8757 				     unsigned long bucketsize,
8758 				     unsigned long numentries,
8759 				     int scale,
8760 				     int flags,
8761 				     unsigned int *_hash_shift,
8762 				     unsigned int *_hash_mask,
8763 				     unsigned long low_limit,
8764 				     unsigned long high_limit)
8765 {
8766 	unsigned long long max = high_limit;
8767 	unsigned long log2qty, size;
8768 	void *table = NULL;
8769 	gfp_t gfp_flags;
8770 	bool virt;
8771 	bool huge;
8772 
8773 	/* allow the kernel cmdline to have a say */
8774 	if (!numentries) {
8775 		/* round applicable memory size up to nearest megabyte */
8776 		numentries = nr_kernel_pages;
8777 		numentries -= arch_reserved_kernel_pages();
8778 
8779 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8780 		if (PAGE_SHIFT < 20)
8781 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8782 
8783 #if __BITS_PER_LONG > 32
8784 		if (!high_limit) {
8785 			unsigned long adapt;
8786 
8787 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8788 			     adapt <<= ADAPT_SCALE_SHIFT)
8789 				scale++;
8790 		}
8791 #endif
8792 
8793 		/* limit to 1 bucket per 2^scale bytes of low memory */
8794 		if (scale > PAGE_SHIFT)
8795 			numentries >>= (scale - PAGE_SHIFT);
8796 		else
8797 			numentries <<= (PAGE_SHIFT - scale);
8798 
8799 		/* Make sure we've got at least a 0-order allocation.. */
8800 		if (unlikely(flags & HASH_SMALL)) {
8801 			/* Makes no sense without HASH_EARLY */
8802 			WARN_ON(!(flags & HASH_EARLY));
8803 			if (!(numentries >> *_hash_shift)) {
8804 				numentries = 1UL << *_hash_shift;
8805 				BUG_ON(!numentries);
8806 			}
8807 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8808 			numentries = PAGE_SIZE / bucketsize;
8809 	}
8810 	numentries = roundup_pow_of_two(numentries);
8811 
8812 	/* limit allocation size to 1/16 total memory by default */
8813 	if (max == 0) {
8814 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8815 		do_div(max, bucketsize);
8816 	}
8817 	max = min(max, 0x80000000ULL);
8818 
8819 	if (numentries < low_limit)
8820 		numentries = low_limit;
8821 	if (numentries > max)
8822 		numentries = max;
8823 
8824 	log2qty = ilog2(numentries);
8825 
8826 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8827 	do {
8828 		virt = false;
8829 		size = bucketsize << log2qty;
8830 		if (flags & HASH_EARLY) {
8831 			if (flags & HASH_ZERO)
8832 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8833 			else
8834 				table = memblock_alloc_raw(size,
8835 							   SMP_CACHE_BYTES);
8836 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8837 			table = __vmalloc(size, gfp_flags);
8838 			virt = true;
8839 			if (table)
8840 				huge = is_vm_area_hugepages(table);
8841 		} else {
8842 			/*
8843 			 * If bucketsize is not a power-of-two, we may free
8844 			 * some pages at the end of hash table which
8845 			 * alloc_pages_exact() automatically does
8846 			 */
8847 			table = alloc_pages_exact(size, gfp_flags);
8848 			kmemleak_alloc(table, size, 1, gfp_flags);
8849 		}
8850 	} while (!table && size > PAGE_SIZE && --log2qty);
8851 
8852 	if (!table)
8853 		panic("Failed to allocate %s hash table\n", tablename);
8854 
8855 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8856 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8857 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8858 
8859 	if (_hash_shift)
8860 		*_hash_shift = log2qty;
8861 	if (_hash_mask)
8862 		*_hash_mask = (1 << log2qty) - 1;
8863 
8864 	return table;
8865 }
8866 
8867 /*
8868  * This function checks whether pageblock includes unmovable pages or not.
8869  *
8870  * PageLRU check without isolation or lru_lock could race so that
8871  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8872  * check without lock_page also may miss some movable non-lru pages at
8873  * race condition. So you can't expect this function should be exact.
8874  *
8875  * Returns a page without holding a reference. If the caller wants to
8876  * dereference that page (e.g., dumping), it has to make sure that it
8877  * cannot get removed (e.g., via memory unplug) concurrently.
8878  *
8879  */
8880 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8881 				 int migratetype, int flags)
8882 {
8883 	unsigned long iter = 0;
8884 	unsigned long pfn = page_to_pfn(page);
8885 	unsigned long offset = pfn % pageblock_nr_pages;
8886 
8887 	if (is_migrate_cma_page(page)) {
8888 		/*
8889 		 * CMA allocations (alloc_contig_range) really need to mark
8890 		 * isolate CMA pageblocks even when they are not movable in fact
8891 		 * so consider them movable here.
8892 		 */
8893 		if (is_migrate_cma(migratetype))
8894 			return NULL;
8895 
8896 		return page;
8897 	}
8898 
8899 	for (; iter < pageblock_nr_pages - offset; iter++) {
8900 		page = pfn_to_page(pfn + iter);
8901 
8902 		/*
8903 		 * Both, bootmem allocations and memory holes are marked
8904 		 * PG_reserved and are unmovable. We can even have unmovable
8905 		 * allocations inside ZONE_MOVABLE, for example when
8906 		 * specifying "movablecore".
8907 		 */
8908 		if (PageReserved(page))
8909 			return page;
8910 
8911 		/*
8912 		 * If the zone is movable and we have ruled out all reserved
8913 		 * pages then it should be reasonably safe to assume the rest
8914 		 * is movable.
8915 		 */
8916 		if (zone_idx(zone) == ZONE_MOVABLE)
8917 			continue;
8918 
8919 		/*
8920 		 * Hugepages are not in LRU lists, but they're movable.
8921 		 * THPs are on the LRU, but need to be counted as #small pages.
8922 		 * We need not scan over tail pages because we don't
8923 		 * handle each tail page individually in migration.
8924 		 */
8925 		if (PageHuge(page) || PageTransCompound(page)) {
8926 			struct page *head = compound_head(page);
8927 			unsigned int skip_pages;
8928 
8929 			if (PageHuge(page)) {
8930 				if (!hugepage_migration_supported(page_hstate(head)))
8931 					return page;
8932 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8933 				return page;
8934 			}
8935 
8936 			skip_pages = compound_nr(head) - (page - head);
8937 			iter += skip_pages - 1;
8938 			continue;
8939 		}
8940 
8941 		/*
8942 		 * We can't use page_count without pin a page
8943 		 * because another CPU can free compound page.
8944 		 * This check already skips compound tails of THP
8945 		 * because their page->_refcount is zero at all time.
8946 		 */
8947 		if (!page_ref_count(page)) {
8948 			if (PageBuddy(page))
8949 				iter += (1 << buddy_order(page)) - 1;
8950 			continue;
8951 		}
8952 
8953 		/*
8954 		 * The HWPoisoned page may be not in buddy system, and
8955 		 * page_count() is not 0.
8956 		 */
8957 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8958 			continue;
8959 
8960 		/*
8961 		 * We treat all PageOffline() pages as movable when offlining
8962 		 * to give drivers a chance to decrement their reference count
8963 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8964 		 * can be offlined as there are no direct references anymore.
8965 		 * For actually unmovable PageOffline() where the driver does
8966 		 * not support this, we will fail later when trying to actually
8967 		 * move these pages that still have a reference count > 0.
8968 		 * (false negatives in this function only)
8969 		 */
8970 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8971 			continue;
8972 
8973 		if (__PageMovable(page) || PageLRU(page))
8974 			continue;
8975 
8976 		/*
8977 		 * If there are RECLAIMABLE pages, we need to check
8978 		 * it.  But now, memory offline itself doesn't call
8979 		 * shrink_node_slabs() and it still to be fixed.
8980 		 */
8981 		return page;
8982 	}
8983 	return NULL;
8984 }
8985 
8986 #ifdef CONFIG_CONTIG_ALLOC
8987 static unsigned long pfn_max_align_down(unsigned long pfn)
8988 {
8989 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8990 			     pageblock_nr_pages) - 1);
8991 }
8992 
8993 static unsigned long pfn_max_align_up(unsigned long pfn)
8994 {
8995 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8996 				pageblock_nr_pages));
8997 }
8998 
8999 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9000 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9001 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9002 static void alloc_contig_dump_pages(struct list_head *page_list)
9003 {
9004 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9005 
9006 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9007 		struct page *page;
9008 
9009 		dump_stack();
9010 		list_for_each_entry(page, page_list, lru)
9011 			dump_page(page, "migration failure");
9012 	}
9013 }
9014 #else
9015 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9016 {
9017 }
9018 #endif
9019 
9020 /* [start, end) must belong to a single zone. */
9021 static int __alloc_contig_migrate_range(struct compact_control *cc,
9022 					unsigned long start, unsigned long end)
9023 {
9024 	/* This function is based on compact_zone() from compaction.c. */
9025 	unsigned int nr_reclaimed;
9026 	unsigned long pfn = start;
9027 	unsigned int tries = 0;
9028 	int ret = 0;
9029 	struct migration_target_control mtc = {
9030 		.nid = zone_to_nid(cc->zone),
9031 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9032 	};
9033 
9034 	lru_cache_disable();
9035 
9036 	while (pfn < end || !list_empty(&cc->migratepages)) {
9037 		if (fatal_signal_pending(current)) {
9038 			ret = -EINTR;
9039 			break;
9040 		}
9041 
9042 		if (list_empty(&cc->migratepages)) {
9043 			cc->nr_migratepages = 0;
9044 			ret = isolate_migratepages_range(cc, pfn, end);
9045 			if (ret && ret != -EAGAIN)
9046 				break;
9047 			pfn = cc->migrate_pfn;
9048 			tries = 0;
9049 		} else if (++tries == 5) {
9050 			ret = -EBUSY;
9051 			break;
9052 		}
9053 
9054 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9055 							&cc->migratepages);
9056 		cc->nr_migratepages -= nr_reclaimed;
9057 
9058 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9059 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9060 
9061 		/*
9062 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9063 		 * to retry again over this error, so do the same here.
9064 		 */
9065 		if (ret == -ENOMEM)
9066 			break;
9067 	}
9068 
9069 	lru_cache_enable();
9070 	if (ret < 0) {
9071 		if (ret == -EBUSY)
9072 			alloc_contig_dump_pages(&cc->migratepages);
9073 		putback_movable_pages(&cc->migratepages);
9074 		return ret;
9075 	}
9076 	return 0;
9077 }
9078 
9079 /**
9080  * alloc_contig_range() -- tries to allocate given range of pages
9081  * @start:	start PFN to allocate
9082  * @end:	one-past-the-last PFN to allocate
9083  * @migratetype:	migratetype of the underlying pageblocks (either
9084  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9085  *			in range must have the same migratetype and it must
9086  *			be either of the two.
9087  * @gfp_mask:	GFP mask to use during compaction
9088  *
9089  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9090  * aligned.  The PFN range must belong to a single zone.
9091  *
9092  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9093  * pageblocks in the range.  Once isolated, the pageblocks should not
9094  * be modified by others.
9095  *
9096  * Return: zero on success or negative error code.  On success all
9097  * pages which PFN is in [start, end) are allocated for the caller and
9098  * need to be freed with free_contig_range().
9099  */
9100 int alloc_contig_range(unsigned long start, unsigned long end,
9101 		       unsigned migratetype, gfp_t gfp_mask)
9102 {
9103 	unsigned long outer_start, outer_end;
9104 	unsigned int order;
9105 	int ret = 0;
9106 
9107 	struct compact_control cc = {
9108 		.nr_migratepages = 0,
9109 		.order = -1,
9110 		.zone = page_zone(pfn_to_page(start)),
9111 		.mode = MIGRATE_SYNC,
9112 		.ignore_skip_hint = true,
9113 		.no_set_skip_hint = true,
9114 		.gfp_mask = current_gfp_context(gfp_mask),
9115 		.alloc_contig = true,
9116 	};
9117 	INIT_LIST_HEAD(&cc.migratepages);
9118 
9119 	/*
9120 	 * What we do here is we mark all pageblocks in range as
9121 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9122 	 * have different sizes, and due to the way page allocator
9123 	 * work, we align the range to biggest of the two pages so
9124 	 * that page allocator won't try to merge buddies from
9125 	 * different pageblocks and change MIGRATE_ISOLATE to some
9126 	 * other migration type.
9127 	 *
9128 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9129 	 * migrate the pages from an unaligned range (ie. pages that
9130 	 * we are interested in).  This will put all the pages in
9131 	 * range back to page allocator as MIGRATE_ISOLATE.
9132 	 *
9133 	 * When this is done, we take the pages in range from page
9134 	 * allocator removing them from the buddy system.  This way
9135 	 * page allocator will never consider using them.
9136 	 *
9137 	 * This lets us mark the pageblocks back as
9138 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9139 	 * aligned range but not in the unaligned, original range are
9140 	 * put back to page allocator so that buddy can use them.
9141 	 */
9142 
9143 	ret = start_isolate_page_range(pfn_max_align_down(start),
9144 				       pfn_max_align_up(end), migratetype, 0);
9145 	if (ret)
9146 		return ret;
9147 
9148 	drain_all_pages(cc.zone);
9149 
9150 	/*
9151 	 * In case of -EBUSY, we'd like to know which page causes problem.
9152 	 * So, just fall through. test_pages_isolated() has a tracepoint
9153 	 * which will report the busy page.
9154 	 *
9155 	 * It is possible that busy pages could become available before
9156 	 * the call to test_pages_isolated, and the range will actually be
9157 	 * allocated.  So, if we fall through be sure to clear ret so that
9158 	 * -EBUSY is not accidentally used or returned to caller.
9159 	 */
9160 	ret = __alloc_contig_migrate_range(&cc, start, end);
9161 	if (ret && ret != -EBUSY)
9162 		goto done;
9163 	ret = 0;
9164 
9165 	/*
9166 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9167 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9168 	 * more, all pages in [start, end) are free in page allocator.
9169 	 * What we are going to do is to allocate all pages from
9170 	 * [start, end) (that is remove them from page allocator).
9171 	 *
9172 	 * The only problem is that pages at the beginning and at the
9173 	 * end of interesting range may be not aligned with pages that
9174 	 * page allocator holds, ie. they can be part of higher order
9175 	 * pages.  Because of this, we reserve the bigger range and
9176 	 * once this is done free the pages we are not interested in.
9177 	 *
9178 	 * We don't have to hold zone->lock here because the pages are
9179 	 * isolated thus they won't get removed from buddy.
9180 	 */
9181 
9182 	order = 0;
9183 	outer_start = start;
9184 	while (!PageBuddy(pfn_to_page(outer_start))) {
9185 		if (++order >= MAX_ORDER) {
9186 			outer_start = start;
9187 			break;
9188 		}
9189 		outer_start &= ~0UL << order;
9190 	}
9191 
9192 	if (outer_start != start) {
9193 		order = buddy_order(pfn_to_page(outer_start));
9194 
9195 		/*
9196 		 * outer_start page could be small order buddy page and
9197 		 * it doesn't include start page. Adjust outer_start
9198 		 * in this case to report failed page properly
9199 		 * on tracepoint in test_pages_isolated()
9200 		 */
9201 		if (outer_start + (1UL << order) <= start)
9202 			outer_start = start;
9203 	}
9204 
9205 	/* Make sure the range is really isolated. */
9206 	if (test_pages_isolated(outer_start, end, 0)) {
9207 		ret = -EBUSY;
9208 		goto done;
9209 	}
9210 
9211 	/* Grab isolated pages from freelists. */
9212 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9213 	if (!outer_end) {
9214 		ret = -EBUSY;
9215 		goto done;
9216 	}
9217 
9218 	/* Free head and tail (if any) */
9219 	if (start != outer_start)
9220 		free_contig_range(outer_start, start - outer_start);
9221 	if (end != outer_end)
9222 		free_contig_range(end, outer_end - end);
9223 
9224 done:
9225 	undo_isolate_page_range(pfn_max_align_down(start),
9226 				pfn_max_align_up(end), migratetype);
9227 	return ret;
9228 }
9229 EXPORT_SYMBOL(alloc_contig_range);
9230 
9231 static int __alloc_contig_pages(unsigned long start_pfn,
9232 				unsigned long nr_pages, gfp_t gfp_mask)
9233 {
9234 	unsigned long end_pfn = start_pfn + nr_pages;
9235 
9236 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9237 				  gfp_mask);
9238 }
9239 
9240 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9241 				   unsigned long nr_pages)
9242 {
9243 	unsigned long i, end_pfn = start_pfn + nr_pages;
9244 	struct page *page;
9245 
9246 	for (i = start_pfn; i < end_pfn; i++) {
9247 		page = pfn_to_online_page(i);
9248 		if (!page)
9249 			return false;
9250 
9251 		if (page_zone(page) != z)
9252 			return false;
9253 
9254 		if (PageReserved(page))
9255 			return false;
9256 	}
9257 	return true;
9258 }
9259 
9260 static bool zone_spans_last_pfn(const struct zone *zone,
9261 				unsigned long start_pfn, unsigned long nr_pages)
9262 {
9263 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9264 
9265 	return zone_spans_pfn(zone, last_pfn);
9266 }
9267 
9268 /**
9269  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9270  * @nr_pages:	Number of contiguous pages to allocate
9271  * @gfp_mask:	GFP mask to limit search and used during compaction
9272  * @nid:	Target node
9273  * @nodemask:	Mask for other possible nodes
9274  *
9275  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9276  * on an applicable zonelist to find a contiguous pfn range which can then be
9277  * tried for allocation with alloc_contig_range(). This routine is intended
9278  * for allocation requests which can not be fulfilled with the buddy allocator.
9279  *
9280  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9281  * power of two, then allocated range is also guaranteed to be aligned to same
9282  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9283  *
9284  * Allocated pages can be freed with free_contig_range() or by manually calling
9285  * __free_page() on each allocated page.
9286  *
9287  * Return: pointer to contiguous pages on success, or NULL if not successful.
9288  */
9289 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9290 				int nid, nodemask_t *nodemask)
9291 {
9292 	unsigned long ret, pfn, flags;
9293 	struct zonelist *zonelist;
9294 	struct zone *zone;
9295 	struct zoneref *z;
9296 
9297 	zonelist = node_zonelist(nid, gfp_mask);
9298 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9299 					gfp_zone(gfp_mask), nodemask) {
9300 		spin_lock_irqsave(&zone->lock, flags);
9301 
9302 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9303 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9304 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9305 				/*
9306 				 * We release the zone lock here because
9307 				 * alloc_contig_range() will also lock the zone
9308 				 * at some point. If there's an allocation
9309 				 * spinning on this lock, it may win the race
9310 				 * and cause alloc_contig_range() to fail...
9311 				 */
9312 				spin_unlock_irqrestore(&zone->lock, flags);
9313 				ret = __alloc_contig_pages(pfn, nr_pages,
9314 							gfp_mask);
9315 				if (!ret)
9316 					return pfn_to_page(pfn);
9317 				spin_lock_irqsave(&zone->lock, flags);
9318 			}
9319 			pfn += nr_pages;
9320 		}
9321 		spin_unlock_irqrestore(&zone->lock, flags);
9322 	}
9323 	return NULL;
9324 }
9325 #endif /* CONFIG_CONTIG_ALLOC */
9326 
9327 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9328 {
9329 	unsigned long count = 0;
9330 
9331 	for (; nr_pages--; pfn++) {
9332 		struct page *page = pfn_to_page(pfn);
9333 
9334 		count += page_count(page) != 1;
9335 		__free_page(page);
9336 	}
9337 	WARN(count != 0, "%lu pages are still in use!\n", count);
9338 }
9339 EXPORT_SYMBOL(free_contig_range);
9340 
9341 /*
9342  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9343  * page high values need to be recalculated.
9344  */
9345 void zone_pcp_update(struct zone *zone, int cpu_online)
9346 {
9347 	mutex_lock(&pcp_batch_high_lock);
9348 	zone_set_pageset_high_and_batch(zone, cpu_online);
9349 	mutex_unlock(&pcp_batch_high_lock);
9350 }
9351 
9352 /*
9353  * Effectively disable pcplists for the zone by setting the high limit to 0
9354  * and draining all cpus. A concurrent page freeing on another CPU that's about
9355  * to put the page on pcplist will either finish before the drain and the page
9356  * will be drained, or observe the new high limit and skip the pcplist.
9357  *
9358  * Must be paired with a call to zone_pcp_enable().
9359  */
9360 void zone_pcp_disable(struct zone *zone)
9361 {
9362 	mutex_lock(&pcp_batch_high_lock);
9363 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9364 	__drain_all_pages(zone, true);
9365 }
9366 
9367 void zone_pcp_enable(struct zone *zone)
9368 {
9369 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9370 	mutex_unlock(&pcp_batch_high_lock);
9371 }
9372 
9373 void zone_pcp_reset(struct zone *zone)
9374 {
9375 	int cpu;
9376 	struct per_cpu_zonestat *pzstats;
9377 
9378 	if (zone->per_cpu_pageset != &boot_pageset) {
9379 		for_each_online_cpu(cpu) {
9380 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9381 			drain_zonestat(zone, pzstats);
9382 		}
9383 		free_percpu(zone->per_cpu_pageset);
9384 		free_percpu(zone->per_cpu_zonestats);
9385 		zone->per_cpu_pageset = &boot_pageset;
9386 		zone->per_cpu_zonestats = &boot_zonestats;
9387 	}
9388 }
9389 
9390 #ifdef CONFIG_MEMORY_HOTREMOVE
9391 /*
9392  * All pages in the range must be in a single zone, must not contain holes,
9393  * must span full sections, and must be isolated before calling this function.
9394  */
9395 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9396 {
9397 	unsigned long pfn = start_pfn;
9398 	struct page *page;
9399 	struct zone *zone;
9400 	unsigned int order;
9401 	unsigned long flags;
9402 
9403 	offline_mem_sections(pfn, end_pfn);
9404 	zone = page_zone(pfn_to_page(pfn));
9405 	spin_lock_irqsave(&zone->lock, flags);
9406 	while (pfn < end_pfn) {
9407 		page = pfn_to_page(pfn);
9408 		/*
9409 		 * The HWPoisoned page may be not in buddy system, and
9410 		 * page_count() is not 0.
9411 		 */
9412 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9413 			pfn++;
9414 			continue;
9415 		}
9416 		/*
9417 		 * At this point all remaining PageOffline() pages have a
9418 		 * reference count of 0 and can simply be skipped.
9419 		 */
9420 		if (PageOffline(page)) {
9421 			BUG_ON(page_count(page));
9422 			BUG_ON(PageBuddy(page));
9423 			pfn++;
9424 			continue;
9425 		}
9426 
9427 		BUG_ON(page_count(page));
9428 		BUG_ON(!PageBuddy(page));
9429 		order = buddy_order(page);
9430 		del_page_from_free_list(page, zone, order);
9431 		pfn += (1 << order);
9432 	}
9433 	spin_unlock_irqrestore(&zone->lock, flags);
9434 }
9435 #endif
9436 
9437 /*
9438  * This function returns a stable result only if called under zone lock.
9439  */
9440 bool is_free_buddy_page(struct page *page)
9441 {
9442 	unsigned long pfn = page_to_pfn(page);
9443 	unsigned int order;
9444 
9445 	for (order = 0; order < MAX_ORDER; order++) {
9446 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9447 
9448 		if (PageBuddy(page_head) &&
9449 		    buddy_order_unsafe(page_head) >= order)
9450 			break;
9451 	}
9452 
9453 	return order < MAX_ORDER;
9454 }
9455 
9456 #ifdef CONFIG_MEMORY_FAILURE
9457 /*
9458  * Break down a higher-order page in sub-pages, and keep our target out of
9459  * buddy allocator.
9460  */
9461 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9462 				   struct page *target, int low, int high,
9463 				   int migratetype)
9464 {
9465 	unsigned long size = 1 << high;
9466 	struct page *current_buddy, *next_page;
9467 
9468 	while (high > low) {
9469 		high--;
9470 		size >>= 1;
9471 
9472 		if (target >= &page[size]) {
9473 			next_page = page + size;
9474 			current_buddy = page;
9475 		} else {
9476 			next_page = page;
9477 			current_buddy = page + size;
9478 		}
9479 
9480 		if (set_page_guard(zone, current_buddy, high, migratetype))
9481 			continue;
9482 
9483 		if (current_buddy != target) {
9484 			add_to_free_list(current_buddy, zone, high, migratetype);
9485 			set_buddy_order(current_buddy, high);
9486 			page = next_page;
9487 		}
9488 	}
9489 }
9490 
9491 /*
9492  * Take a page that will be marked as poisoned off the buddy allocator.
9493  */
9494 bool take_page_off_buddy(struct page *page)
9495 {
9496 	struct zone *zone = page_zone(page);
9497 	unsigned long pfn = page_to_pfn(page);
9498 	unsigned long flags;
9499 	unsigned int order;
9500 	bool ret = false;
9501 
9502 	spin_lock_irqsave(&zone->lock, flags);
9503 	for (order = 0; order < MAX_ORDER; order++) {
9504 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9505 		int page_order = buddy_order(page_head);
9506 
9507 		if (PageBuddy(page_head) && page_order >= order) {
9508 			unsigned long pfn_head = page_to_pfn(page_head);
9509 			int migratetype = get_pfnblock_migratetype(page_head,
9510 								   pfn_head);
9511 
9512 			del_page_from_free_list(page_head, zone, page_order);
9513 			break_down_buddy_pages(zone, page_head, page, 0,
9514 						page_order, migratetype);
9515 			SetPageHWPoisonTakenOff(page);
9516 			if (!is_migrate_isolate(migratetype))
9517 				__mod_zone_freepage_state(zone, -1, migratetype);
9518 			ret = true;
9519 			break;
9520 		}
9521 		if (page_count(page_head) > 0)
9522 			break;
9523 	}
9524 	spin_unlock_irqrestore(&zone->lock, flags);
9525 	return ret;
9526 }
9527 
9528 /*
9529  * Cancel takeoff done by take_page_off_buddy().
9530  */
9531 bool put_page_back_buddy(struct page *page)
9532 {
9533 	struct zone *zone = page_zone(page);
9534 	unsigned long pfn = page_to_pfn(page);
9535 	unsigned long flags;
9536 	int migratetype = get_pfnblock_migratetype(page, pfn);
9537 	bool ret = false;
9538 
9539 	spin_lock_irqsave(&zone->lock, flags);
9540 	if (put_page_testzero(page)) {
9541 		ClearPageHWPoisonTakenOff(page);
9542 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9543 		if (TestClearPageHWPoison(page)) {
9544 			num_poisoned_pages_dec();
9545 			ret = true;
9546 		}
9547 	}
9548 	spin_unlock_irqrestore(&zone->lock, flags);
9549 
9550 	return ret;
9551 }
9552 #endif
9553 
9554 #ifdef CONFIG_ZONE_DMA
9555 bool has_managed_dma(void)
9556 {
9557 	struct pglist_data *pgdat;
9558 
9559 	for_each_online_pgdat(pgdat) {
9560 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9561 
9562 		if (managed_zone(zone))
9563 			return true;
9564 	}
9565 	return false;
9566 }
9567 #endif /* CONFIG_ZONE_DMA */
9568