1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 #include <linux/padata.h> 72 73 #include <asm/sections.h> 74 #include <asm/tlbflush.h> 75 #include <asm/div64.h> 76 #include "internal.h" 77 #include "shuffle.h" 78 #include "page_reporting.h" 79 80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 81 static DEFINE_MUTEX(pcp_batch_high_lock); 82 #define MIN_PERCPU_PAGELIST_FRACTION (8) 83 84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 85 DEFINE_PER_CPU(int, numa_node); 86 EXPORT_PER_CPU_SYMBOL(numa_node); 87 #endif 88 89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 90 91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 92 /* 93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 96 * defined in <linux/topology.h>. 97 */ 98 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 99 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 100 #endif 101 102 /* work_structs for global per-cpu drains */ 103 struct pcpu_drain { 104 struct zone *zone; 105 struct work_struct work; 106 }; 107 static DEFINE_MUTEX(pcpu_drain_mutex); 108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 109 110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 111 volatile unsigned long latent_entropy __latent_entropy; 112 EXPORT_SYMBOL(latent_entropy); 113 #endif 114 115 /* 116 * Array of node states. 117 */ 118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 119 [N_POSSIBLE] = NODE_MASK_ALL, 120 [N_ONLINE] = { { [0] = 1UL } }, 121 #ifndef CONFIG_NUMA 122 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 123 #ifdef CONFIG_HIGHMEM 124 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 125 #endif 126 [N_MEMORY] = { { [0] = 1UL } }, 127 [N_CPU] = { { [0] = 1UL } }, 128 #endif /* NUMA */ 129 }; 130 EXPORT_SYMBOL(node_states); 131 132 atomic_long_t _totalram_pages __read_mostly; 133 EXPORT_SYMBOL(_totalram_pages); 134 unsigned long totalreserve_pages __read_mostly; 135 unsigned long totalcma_pages __read_mostly; 136 137 int percpu_pagelist_fraction; 138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 140 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 141 #else 142 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 143 #endif 144 EXPORT_SYMBOL(init_on_alloc); 145 146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 147 DEFINE_STATIC_KEY_TRUE(init_on_free); 148 #else 149 DEFINE_STATIC_KEY_FALSE(init_on_free); 150 #endif 151 EXPORT_SYMBOL(init_on_free); 152 153 static int __init early_init_on_alloc(char *buf) 154 { 155 int ret; 156 bool bool_result; 157 158 if (!buf) 159 return -EINVAL; 160 ret = kstrtobool(buf, &bool_result); 161 if (bool_result && page_poisoning_enabled()) 162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 163 if (bool_result) 164 static_branch_enable(&init_on_alloc); 165 else 166 static_branch_disable(&init_on_alloc); 167 return ret; 168 } 169 early_param("init_on_alloc", early_init_on_alloc); 170 171 static int __init early_init_on_free(char *buf) 172 { 173 int ret; 174 bool bool_result; 175 176 if (!buf) 177 return -EINVAL; 178 ret = kstrtobool(buf, &bool_result); 179 if (bool_result && page_poisoning_enabled()) 180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 181 if (bool_result) 182 static_branch_enable(&init_on_free); 183 else 184 static_branch_disable(&init_on_free); 185 return ret; 186 } 187 early_param("init_on_free", early_init_on_free); 188 189 /* 190 * A cached value of the page's pageblock's migratetype, used when the page is 191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 192 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 193 * Also the migratetype set in the page does not necessarily match the pcplist 194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 195 * other index - this ensures that it will be put on the correct CMA freelist. 196 */ 197 static inline int get_pcppage_migratetype(struct page *page) 198 { 199 return page->index; 200 } 201 202 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 203 { 204 page->index = migratetype; 205 } 206 207 #ifdef CONFIG_PM_SLEEP 208 /* 209 * The following functions are used by the suspend/hibernate code to temporarily 210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 211 * while devices are suspended. To avoid races with the suspend/hibernate code, 212 * they should always be called with system_transition_mutex held 213 * (gfp_allowed_mask also should only be modified with system_transition_mutex 214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 215 * with that modification). 216 */ 217 218 static gfp_t saved_gfp_mask; 219 220 void pm_restore_gfp_mask(void) 221 { 222 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 223 if (saved_gfp_mask) { 224 gfp_allowed_mask = saved_gfp_mask; 225 saved_gfp_mask = 0; 226 } 227 } 228 229 void pm_restrict_gfp_mask(void) 230 { 231 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 232 WARN_ON(saved_gfp_mask); 233 saved_gfp_mask = gfp_allowed_mask; 234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 235 } 236 237 bool pm_suspended_storage(void) 238 { 239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 240 return false; 241 return true; 242 } 243 #endif /* CONFIG_PM_SLEEP */ 244 245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 246 unsigned int pageblock_order __read_mostly; 247 #endif 248 249 static void __free_pages_ok(struct page *page, unsigned int order); 250 251 /* 252 * results with 256, 32 in the lowmem_reserve sysctl: 253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 254 * 1G machine -> (16M dma, 784M normal, 224M high) 255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 258 * 259 * TBD: should special case ZONE_DMA32 machines here - in those we normally 260 * don't need any ZONE_NORMAL reservation 261 */ 262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 263 #ifdef CONFIG_ZONE_DMA 264 [ZONE_DMA] = 256, 265 #endif 266 #ifdef CONFIG_ZONE_DMA32 267 [ZONE_DMA32] = 256, 268 #endif 269 [ZONE_NORMAL] = 32, 270 #ifdef CONFIG_HIGHMEM 271 [ZONE_HIGHMEM] = 0, 272 #endif 273 [ZONE_MOVABLE] = 0, 274 }; 275 276 static char * const zone_names[MAX_NR_ZONES] = { 277 #ifdef CONFIG_ZONE_DMA 278 "DMA", 279 #endif 280 #ifdef CONFIG_ZONE_DMA32 281 "DMA32", 282 #endif 283 "Normal", 284 #ifdef CONFIG_HIGHMEM 285 "HighMem", 286 #endif 287 "Movable", 288 #ifdef CONFIG_ZONE_DEVICE 289 "Device", 290 #endif 291 }; 292 293 const char * const migratetype_names[MIGRATE_TYPES] = { 294 "Unmovable", 295 "Movable", 296 "Reclaimable", 297 "HighAtomic", 298 #ifdef CONFIG_CMA 299 "CMA", 300 #endif 301 #ifdef CONFIG_MEMORY_ISOLATION 302 "Isolate", 303 #endif 304 }; 305 306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 307 [NULL_COMPOUND_DTOR] = NULL, 308 [COMPOUND_PAGE_DTOR] = free_compound_page, 309 #ifdef CONFIG_HUGETLB_PAGE 310 [HUGETLB_PAGE_DTOR] = free_huge_page, 311 #endif 312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 314 #endif 315 }; 316 317 int min_free_kbytes = 1024; 318 int user_min_free_kbytes = -1; 319 #ifdef CONFIG_DISCONTIGMEM 320 /* 321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 322 * are not on separate NUMA nodes. Functionally this works but with 323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 324 * quite small. By default, do not boost watermarks on discontigmem as in 325 * many cases very high-order allocations like THP are likely to be 326 * unsupported and the premature reclaim offsets the advantage of long-term 327 * fragmentation avoidance. 328 */ 329 int watermark_boost_factor __read_mostly; 330 #else 331 int watermark_boost_factor __read_mostly = 15000; 332 #endif 333 int watermark_scale_factor = 10; 334 335 static unsigned long nr_kernel_pages __initdata; 336 static unsigned long nr_all_pages __initdata; 337 static unsigned long dma_reserve __initdata; 338 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 352 #if MAX_NUMNODES > 1 353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 354 unsigned int nr_online_nodes __read_mostly = 1; 355 EXPORT_SYMBOL(nr_node_ids); 356 EXPORT_SYMBOL(nr_online_nodes); 357 #endif 358 359 int page_group_by_mobility_disabled __read_mostly; 360 361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 362 /* 363 * During boot we initialize deferred pages on-demand, as needed, but once 364 * page_alloc_init_late() has finished, the deferred pages are all initialized, 365 * and we can permanently disable that path. 366 */ 367 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 368 369 /* 370 * Calling kasan_free_pages() only after deferred memory initialization 371 * has completed. Poisoning pages during deferred memory init will greatly 372 * lengthen the process and cause problem in large memory systems as the 373 * deferred pages initialization is done with interrupt disabled. 374 * 375 * Assuming that there will be no reference to those newly initialized 376 * pages before they are ever allocated, this should have no effect on 377 * KASAN memory tracking as the poison will be properly inserted at page 378 * allocation time. The only corner case is when pages are allocated by 379 * on-demand allocation and then freed again before the deferred pages 380 * initialization is done, but this is not likely to happen. 381 */ 382 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 383 { 384 if (!static_branch_unlikely(&deferred_pages)) 385 kasan_free_pages(page, order); 386 } 387 388 /* Returns true if the struct page for the pfn is uninitialised */ 389 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 390 { 391 int nid = early_pfn_to_nid(pfn); 392 393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 394 return true; 395 396 return false; 397 } 398 399 /* 400 * Returns true when the remaining initialisation should be deferred until 401 * later in the boot cycle when it can be parallelised. 402 */ 403 static bool __meminit 404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 405 { 406 static unsigned long prev_end_pfn, nr_initialised; 407 408 /* 409 * prev_end_pfn static that contains the end of previous zone 410 * No need to protect because called very early in boot before smp_init. 411 */ 412 if (prev_end_pfn != end_pfn) { 413 prev_end_pfn = end_pfn; 414 nr_initialised = 0; 415 } 416 417 /* Always populate low zones for address-constrained allocations */ 418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 419 return false; 420 421 /* 422 * We start only with one section of pages, more pages are added as 423 * needed until the rest of deferred pages are initialized. 424 */ 425 nr_initialised++; 426 if ((nr_initialised > PAGES_PER_SECTION) && 427 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 428 NODE_DATA(nid)->first_deferred_pfn = pfn; 429 return true; 430 } 431 return false; 432 } 433 #else 434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 435 436 static inline bool early_page_uninitialised(unsigned long pfn) 437 { 438 return false; 439 } 440 441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 442 { 443 return false; 444 } 445 #endif 446 447 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 448 static inline unsigned long *get_pageblock_bitmap(struct page *page, 449 unsigned long pfn) 450 { 451 #ifdef CONFIG_SPARSEMEM 452 return section_to_usemap(__pfn_to_section(pfn)); 453 #else 454 return page_zone(page)->pageblock_flags; 455 #endif /* CONFIG_SPARSEMEM */ 456 } 457 458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 459 { 460 #ifdef CONFIG_SPARSEMEM 461 pfn &= (PAGES_PER_SECTION-1); 462 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 463 #else 464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 466 #endif /* CONFIG_SPARSEMEM */ 467 } 468 469 /** 470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 471 * @page: The page within the block of interest 472 * @pfn: The target page frame number 473 * @end_bitidx: The last bit of interest to retrieve 474 * @mask: mask of bits that the caller is interested in 475 * 476 * Return: pageblock_bits flags 477 */ 478 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 479 unsigned long pfn, 480 unsigned long end_bitidx, 481 unsigned long mask) 482 { 483 unsigned long *bitmap; 484 unsigned long bitidx, word_bitidx; 485 unsigned long word; 486 487 bitmap = get_pageblock_bitmap(page, pfn); 488 bitidx = pfn_to_bitidx(page, pfn); 489 word_bitidx = bitidx / BITS_PER_LONG; 490 bitidx &= (BITS_PER_LONG-1); 491 492 word = bitmap[word_bitidx]; 493 bitidx += end_bitidx; 494 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 495 } 496 497 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 498 unsigned long end_bitidx, 499 unsigned long mask) 500 { 501 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 502 } 503 504 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 505 { 506 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 507 } 508 509 /** 510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 511 * @page: The page within the block of interest 512 * @flags: The flags to set 513 * @pfn: The target page frame number 514 * @end_bitidx: The last bit of interest 515 * @mask: mask of bits that the caller is interested in 516 */ 517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 518 unsigned long pfn, 519 unsigned long end_bitidx, 520 unsigned long mask) 521 { 522 unsigned long *bitmap; 523 unsigned long bitidx, word_bitidx; 524 unsigned long old_word, word; 525 526 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 527 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 528 529 bitmap = get_pageblock_bitmap(page, pfn); 530 bitidx = pfn_to_bitidx(page, pfn); 531 word_bitidx = bitidx / BITS_PER_LONG; 532 bitidx &= (BITS_PER_LONG-1); 533 534 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 535 536 bitidx += end_bitidx; 537 mask <<= (BITS_PER_LONG - bitidx - 1); 538 flags <<= (BITS_PER_LONG - bitidx - 1); 539 540 word = READ_ONCE(bitmap[word_bitidx]); 541 for (;;) { 542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 543 if (word == old_word) 544 break; 545 word = old_word; 546 } 547 } 548 549 void set_pageblock_migratetype(struct page *page, int migratetype) 550 { 551 if (unlikely(page_group_by_mobility_disabled && 552 migratetype < MIGRATE_PCPTYPES)) 553 migratetype = MIGRATE_UNMOVABLE; 554 555 set_pageblock_flags_group(page, (unsigned long)migratetype, 556 PB_migrate, PB_migrate_end); 557 } 558 559 #ifdef CONFIG_DEBUG_VM 560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 561 { 562 int ret = 0; 563 unsigned seq; 564 unsigned long pfn = page_to_pfn(page); 565 unsigned long sp, start_pfn; 566 567 do { 568 seq = zone_span_seqbegin(zone); 569 start_pfn = zone->zone_start_pfn; 570 sp = zone->spanned_pages; 571 if (!zone_spans_pfn(zone, pfn)) 572 ret = 1; 573 } while (zone_span_seqretry(zone, seq)); 574 575 if (ret) 576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 577 pfn, zone_to_nid(zone), zone->name, 578 start_pfn, start_pfn + sp); 579 580 return ret; 581 } 582 583 static int page_is_consistent(struct zone *zone, struct page *page) 584 { 585 if (!pfn_valid_within(page_to_pfn(page))) 586 return 0; 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591 } 592 /* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596 { 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603 } 604 #else 605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 return 0; 608 } 609 #endif 610 611 static void bad_page(struct page *page, const char *reason) 612 { 613 static unsigned long resume; 614 static unsigned long nr_shown; 615 static unsigned long nr_unshown; 616 617 /* 618 * Allow a burst of 60 reports, then keep quiet for that minute; 619 * or allow a steady drip of one report per second. 620 */ 621 if (nr_shown == 60) { 622 if (time_before(jiffies, resume)) { 623 nr_unshown++; 624 goto out; 625 } 626 if (nr_unshown) { 627 pr_alert( 628 "BUG: Bad page state: %lu messages suppressed\n", 629 nr_unshown); 630 nr_unshown = 0; 631 } 632 nr_shown = 0; 633 } 634 if (nr_shown++ == 0) 635 resume = jiffies + 60 * HZ; 636 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 638 current->comm, page_to_pfn(page)); 639 __dump_page(page, reason); 640 dump_page_owner(page); 641 642 print_modules(); 643 dump_stack(); 644 out: 645 /* Leave bad fields for debug, except PageBuddy could make trouble */ 646 page_mapcount_reset(page); /* remove PageBuddy */ 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 648 } 649 650 /* 651 * Higher-order pages are called "compound pages". They are structured thusly: 652 * 653 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 654 * 655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 657 * 658 * The first tail page's ->compound_dtor holds the offset in array of compound 659 * page destructors. See compound_page_dtors. 660 * 661 * The first tail page's ->compound_order holds the order of allocation. 662 * This usage means that zero-order pages may not be compound. 663 */ 664 665 void free_compound_page(struct page *page) 666 { 667 mem_cgroup_uncharge(page); 668 __free_pages_ok(page, compound_order(page)); 669 } 670 671 void prep_compound_page(struct page *page, unsigned int order) 672 { 673 int i; 674 int nr_pages = 1 << order; 675 676 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 677 set_compound_order(page, order); 678 __SetPageHead(page); 679 for (i = 1; i < nr_pages; i++) { 680 struct page *p = page + i; 681 set_page_count(p, 0); 682 p->mapping = TAIL_MAPPING; 683 set_compound_head(p, page); 684 } 685 atomic_set(compound_mapcount_ptr(page), -1); 686 if (hpage_pincount_available(page)) 687 atomic_set(compound_pincount_ptr(page), 0); 688 } 689 690 #ifdef CONFIG_DEBUG_PAGEALLOC 691 unsigned int _debug_guardpage_minorder; 692 693 bool _debug_pagealloc_enabled_early __read_mostly 694 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 695 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 696 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 697 EXPORT_SYMBOL(_debug_pagealloc_enabled); 698 699 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 700 701 static int __init early_debug_pagealloc(char *buf) 702 { 703 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 704 } 705 early_param("debug_pagealloc", early_debug_pagealloc); 706 707 void init_debug_pagealloc(void) 708 { 709 if (!debug_pagealloc_enabled()) 710 return; 711 712 static_branch_enable(&_debug_pagealloc_enabled); 713 714 if (!debug_guardpage_minorder()) 715 return; 716 717 static_branch_enable(&_debug_guardpage_enabled); 718 } 719 720 static int __init debug_guardpage_minorder_setup(char *buf) 721 { 722 unsigned long res; 723 724 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 725 pr_err("Bad debug_guardpage_minorder value\n"); 726 return 0; 727 } 728 _debug_guardpage_minorder = res; 729 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 730 return 0; 731 } 732 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 733 734 static inline bool set_page_guard(struct zone *zone, struct page *page, 735 unsigned int order, int migratetype) 736 { 737 if (!debug_guardpage_enabled()) 738 return false; 739 740 if (order >= debug_guardpage_minorder()) 741 return false; 742 743 __SetPageGuard(page); 744 INIT_LIST_HEAD(&page->lru); 745 set_page_private(page, order); 746 /* Guard pages are not available for any usage */ 747 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 748 749 return true; 750 } 751 752 static inline void clear_page_guard(struct zone *zone, struct page *page, 753 unsigned int order, int migratetype) 754 { 755 if (!debug_guardpage_enabled()) 756 return; 757 758 __ClearPageGuard(page); 759 760 set_page_private(page, 0); 761 if (!is_migrate_isolate(migratetype)) 762 __mod_zone_freepage_state(zone, (1 << order), migratetype); 763 } 764 #else 765 static inline bool set_page_guard(struct zone *zone, struct page *page, 766 unsigned int order, int migratetype) { return false; } 767 static inline void clear_page_guard(struct zone *zone, struct page *page, 768 unsigned int order, int migratetype) {} 769 #endif 770 771 static inline void set_page_order(struct page *page, unsigned int order) 772 { 773 set_page_private(page, order); 774 __SetPageBuddy(page); 775 } 776 777 /* 778 * This function checks whether a page is free && is the buddy 779 * we can coalesce a page and its buddy if 780 * (a) the buddy is not in a hole (check before calling!) && 781 * (b) the buddy is in the buddy system && 782 * (c) a page and its buddy have the same order && 783 * (d) a page and its buddy are in the same zone. 784 * 785 * For recording whether a page is in the buddy system, we set PageBuddy. 786 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 787 * 788 * For recording page's order, we use page_private(page). 789 */ 790 static inline bool page_is_buddy(struct page *page, struct page *buddy, 791 unsigned int order) 792 { 793 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 794 return false; 795 796 if (page_order(buddy) != order) 797 return false; 798 799 /* 800 * zone check is done late to avoid uselessly calculating 801 * zone/node ids for pages that could never merge. 802 */ 803 if (page_zone_id(page) != page_zone_id(buddy)) 804 return false; 805 806 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 807 808 return true; 809 } 810 811 #ifdef CONFIG_COMPACTION 812 static inline struct capture_control *task_capc(struct zone *zone) 813 { 814 struct capture_control *capc = current->capture_control; 815 816 return capc && 817 !(current->flags & PF_KTHREAD) && 818 !capc->page && 819 capc->cc->zone == zone && 820 capc->cc->direct_compaction ? capc : NULL; 821 } 822 823 static inline bool 824 compaction_capture(struct capture_control *capc, struct page *page, 825 int order, int migratetype) 826 { 827 if (!capc || order != capc->cc->order) 828 return false; 829 830 /* Do not accidentally pollute CMA or isolated regions*/ 831 if (is_migrate_cma(migratetype) || 832 is_migrate_isolate(migratetype)) 833 return false; 834 835 /* 836 * Do not let lower order allocations polluate a movable pageblock. 837 * This might let an unmovable request use a reclaimable pageblock 838 * and vice-versa but no more than normal fallback logic which can 839 * have trouble finding a high-order free page. 840 */ 841 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 842 return false; 843 844 capc->page = page; 845 return true; 846 } 847 848 #else 849 static inline struct capture_control *task_capc(struct zone *zone) 850 { 851 return NULL; 852 } 853 854 static inline bool 855 compaction_capture(struct capture_control *capc, struct page *page, 856 int order, int migratetype) 857 { 858 return false; 859 } 860 #endif /* CONFIG_COMPACTION */ 861 862 /* Used for pages not on another list */ 863 static inline void add_to_free_list(struct page *page, struct zone *zone, 864 unsigned int order, int migratetype) 865 { 866 struct free_area *area = &zone->free_area[order]; 867 868 list_add(&page->lru, &area->free_list[migratetype]); 869 area->nr_free++; 870 } 871 872 /* Used for pages not on another list */ 873 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 874 unsigned int order, int migratetype) 875 { 876 struct free_area *area = &zone->free_area[order]; 877 878 list_add_tail(&page->lru, &area->free_list[migratetype]); 879 area->nr_free++; 880 } 881 882 /* Used for pages which are on another list */ 883 static inline void move_to_free_list(struct page *page, struct zone *zone, 884 unsigned int order, int migratetype) 885 { 886 struct free_area *area = &zone->free_area[order]; 887 888 list_move(&page->lru, &area->free_list[migratetype]); 889 } 890 891 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 892 unsigned int order) 893 { 894 /* clear reported state and update reported page count */ 895 if (page_reported(page)) 896 __ClearPageReported(page); 897 898 list_del(&page->lru); 899 __ClearPageBuddy(page); 900 set_page_private(page, 0); 901 zone->free_area[order].nr_free--; 902 } 903 904 /* 905 * If this is not the largest possible page, check if the buddy 906 * of the next-highest order is free. If it is, it's possible 907 * that pages are being freed that will coalesce soon. In case, 908 * that is happening, add the free page to the tail of the list 909 * so it's less likely to be used soon and more likely to be merged 910 * as a higher order page 911 */ 912 static inline bool 913 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 914 struct page *page, unsigned int order) 915 { 916 struct page *higher_page, *higher_buddy; 917 unsigned long combined_pfn; 918 919 if (order >= MAX_ORDER - 2) 920 return false; 921 922 if (!pfn_valid_within(buddy_pfn)) 923 return false; 924 925 combined_pfn = buddy_pfn & pfn; 926 higher_page = page + (combined_pfn - pfn); 927 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 928 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 929 930 return pfn_valid_within(buddy_pfn) && 931 page_is_buddy(higher_page, higher_buddy, order + 1); 932 } 933 934 /* 935 * Freeing function for a buddy system allocator. 936 * 937 * The concept of a buddy system is to maintain direct-mapped table 938 * (containing bit values) for memory blocks of various "orders". 939 * The bottom level table contains the map for the smallest allocatable 940 * units of memory (here, pages), and each level above it describes 941 * pairs of units from the levels below, hence, "buddies". 942 * At a high level, all that happens here is marking the table entry 943 * at the bottom level available, and propagating the changes upward 944 * as necessary, plus some accounting needed to play nicely with other 945 * parts of the VM system. 946 * At each level, we keep a list of pages, which are heads of continuous 947 * free pages of length of (1 << order) and marked with PageBuddy. 948 * Page's order is recorded in page_private(page) field. 949 * So when we are allocating or freeing one, we can derive the state of the 950 * other. That is, if we allocate a small block, and both were 951 * free, the remainder of the region must be split into blocks. 952 * If a block is freed, and its buddy is also free, then this 953 * triggers coalescing into a block of larger size. 954 * 955 * -- nyc 956 */ 957 958 static inline void __free_one_page(struct page *page, 959 unsigned long pfn, 960 struct zone *zone, unsigned int order, 961 int migratetype, bool report) 962 { 963 struct capture_control *capc = task_capc(zone); 964 unsigned long uninitialized_var(buddy_pfn); 965 unsigned long combined_pfn; 966 unsigned int max_order; 967 struct page *buddy; 968 bool to_tail; 969 970 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 971 972 VM_BUG_ON(!zone_is_initialized(zone)); 973 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 974 975 VM_BUG_ON(migratetype == -1); 976 if (likely(!is_migrate_isolate(migratetype))) 977 __mod_zone_freepage_state(zone, 1 << order, migratetype); 978 979 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 980 VM_BUG_ON_PAGE(bad_range(zone, page), page); 981 982 continue_merging: 983 while (order < max_order - 1) { 984 if (compaction_capture(capc, page, order, migratetype)) { 985 __mod_zone_freepage_state(zone, -(1 << order), 986 migratetype); 987 return; 988 } 989 buddy_pfn = __find_buddy_pfn(pfn, order); 990 buddy = page + (buddy_pfn - pfn); 991 992 if (!pfn_valid_within(buddy_pfn)) 993 goto done_merging; 994 if (!page_is_buddy(page, buddy, order)) 995 goto done_merging; 996 /* 997 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 998 * merge with it and move up one order. 999 */ 1000 if (page_is_guard(buddy)) 1001 clear_page_guard(zone, buddy, order, migratetype); 1002 else 1003 del_page_from_free_list(buddy, zone, order); 1004 combined_pfn = buddy_pfn & pfn; 1005 page = page + (combined_pfn - pfn); 1006 pfn = combined_pfn; 1007 order++; 1008 } 1009 if (max_order < MAX_ORDER) { 1010 /* If we are here, it means order is >= pageblock_order. 1011 * We want to prevent merge between freepages on isolate 1012 * pageblock and normal pageblock. Without this, pageblock 1013 * isolation could cause incorrect freepage or CMA accounting. 1014 * 1015 * We don't want to hit this code for the more frequent 1016 * low-order merging. 1017 */ 1018 if (unlikely(has_isolate_pageblock(zone))) { 1019 int buddy_mt; 1020 1021 buddy_pfn = __find_buddy_pfn(pfn, order); 1022 buddy = page + (buddy_pfn - pfn); 1023 buddy_mt = get_pageblock_migratetype(buddy); 1024 1025 if (migratetype != buddy_mt 1026 && (is_migrate_isolate(migratetype) || 1027 is_migrate_isolate(buddy_mt))) 1028 goto done_merging; 1029 } 1030 max_order++; 1031 goto continue_merging; 1032 } 1033 1034 done_merging: 1035 set_page_order(page, order); 1036 1037 if (is_shuffle_order(order)) 1038 to_tail = shuffle_pick_tail(); 1039 else 1040 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1041 1042 if (to_tail) 1043 add_to_free_list_tail(page, zone, order, migratetype); 1044 else 1045 add_to_free_list(page, zone, order, migratetype); 1046 1047 /* Notify page reporting subsystem of freed page */ 1048 if (report) 1049 page_reporting_notify_free(order); 1050 } 1051 1052 /* 1053 * A bad page could be due to a number of fields. Instead of multiple branches, 1054 * try and check multiple fields with one check. The caller must do a detailed 1055 * check if necessary. 1056 */ 1057 static inline bool page_expected_state(struct page *page, 1058 unsigned long check_flags) 1059 { 1060 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1061 return false; 1062 1063 if (unlikely((unsigned long)page->mapping | 1064 page_ref_count(page) | 1065 #ifdef CONFIG_MEMCG 1066 (unsigned long)page->mem_cgroup | 1067 #endif 1068 (page->flags & check_flags))) 1069 return false; 1070 1071 return true; 1072 } 1073 1074 static const char *page_bad_reason(struct page *page, unsigned long flags) 1075 { 1076 const char *bad_reason = NULL; 1077 1078 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1079 bad_reason = "nonzero mapcount"; 1080 if (unlikely(page->mapping != NULL)) 1081 bad_reason = "non-NULL mapping"; 1082 if (unlikely(page_ref_count(page) != 0)) 1083 bad_reason = "nonzero _refcount"; 1084 if (unlikely(page->flags & flags)) { 1085 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1086 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1087 else 1088 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1089 } 1090 #ifdef CONFIG_MEMCG 1091 if (unlikely(page->mem_cgroup)) 1092 bad_reason = "page still charged to cgroup"; 1093 #endif 1094 return bad_reason; 1095 } 1096 1097 static void check_free_page_bad(struct page *page) 1098 { 1099 bad_page(page, 1100 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1101 } 1102 1103 static inline int check_free_page(struct page *page) 1104 { 1105 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1106 return 0; 1107 1108 /* Something has gone sideways, find it */ 1109 check_free_page_bad(page); 1110 return 1; 1111 } 1112 1113 static int free_tail_pages_check(struct page *head_page, struct page *page) 1114 { 1115 int ret = 1; 1116 1117 /* 1118 * We rely page->lru.next never has bit 0 set, unless the page 1119 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1120 */ 1121 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1122 1123 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1124 ret = 0; 1125 goto out; 1126 } 1127 switch (page - head_page) { 1128 case 1: 1129 /* the first tail page: ->mapping may be compound_mapcount() */ 1130 if (unlikely(compound_mapcount(page))) { 1131 bad_page(page, "nonzero compound_mapcount"); 1132 goto out; 1133 } 1134 break; 1135 case 2: 1136 /* 1137 * the second tail page: ->mapping is 1138 * deferred_list.next -- ignore value. 1139 */ 1140 break; 1141 default: 1142 if (page->mapping != TAIL_MAPPING) { 1143 bad_page(page, "corrupted mapping in tail page"); 1144 goto out; 1145 } 1146 break; 1147 } 1148 if (unlikely(!PageTail(page))) { 1149 bad_page(page, "PageTail not set"); 1150 goto out; 1151 } 1152 if (unlikely(compound_head(page) != head_page)) { 1153 bad_page(page, "compound_head not consistent"); 1154 goto out; 1155 } 1156 ret = 0; 1157 out: 1158 page->mapping = NULL; 1159 clear_compound_head(page); 1160 return ret; 1161 } 1162 1163 static void kernel_init_free_pages(struct page *page, int numpages) 1164 { 1165 int i; 1166 1167 for (i = 0; i < numpages; i++) 1168 clear_highpage(page + i); 1169 } 1170 1171 static __always_inline bool free_pages_prepare(struct page *page, 1172 unsigned int order, bool check_free) 1173 { 1174 int bad = 0; 1175 1176 VM_BUG_ON_PAGE(PageTail(page), page); 1177 1178 trace_mm_page_free(page, order); 1179 1180 /* 1181 * Check tail pages before head page information is cleared to 1182 * avoid checking PageCompound for order-0 pages. 1183 */ 1184 if (unlikely(order)) { 1185 bool compound = PageCompound(page); 1186 int i; 1187 1188 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1189 1190 if (compound) 1191 ClearPageDoubleMap(page); 1192 for (i = 1; i < (1 << order); i++) { 1193 if (compound) 1194 bad += free_tail_pages_check(page, page + i); 1195 if (unlikely(check_free_page(page + i))) { 1196 bad++; 1197 continue; 1198 } 1199 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1200 } 1201 } 1202 if (PageMappingFlags(page)) 1203 page->mapping = NULL; 1204 if (memcg_kmem_enabled() && PageKmemcg(page)) 1205 __memcg_kmem_uncharge_page(page, order); 1206 if (check_free) 1207 bad += check_free_page(page); 1208 if (bad) 1209 return false; 1210 1211 page_cpupid_reset_last(page); 1212 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1213 reset_page_owner(page, order); 1214 1215 if (!PageHighMem(page)) { 1216 debug_check_no_locks_freed(page_address(page), 1217 PAGE_SIZE << order); 1218 debug_check_no_obj_freed(page_address(page), 1219 PAGE_SIZE << order); 1220 } 1221 if (want_init_on_free()) 1222 kernel_init_free_pages(page, 1 << order); 1223 1224 kernel_poison_pages(page, 1 << order, 0); 1225 /* 1226 * arch_free_page() can make the page's contents inaccessible. s390 1227 * does this. So nothing which can access the page's contents should 1228 * happen after this. 1229 */ 1230 arch_free_page(page, order); 1231 1232 if (debug_pagealloc_enabled_static()) 1233 kernel_map_pages(page, 1 << order, 0); 1234 1235 kasan_free_nondeferred_pages(page, order); 1236 1237 return true; 1238 } 1239 1240 #ifdef CONFIG_DEBUG_VM 1241 /* 1242 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1243 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1244 * moved from pcp lists to free lists. 1245 */ 1246 static bool free_pcp_prepare(struct page *page) 1247 { 1248 return free_pages_prepare(page, 0, true); 1249 } 1250 1251 static bool bulkfree_pcp_prepare(struct page *page) 1252 { 1253 if (debug_pagealloc_enabled_static()) 1254 return check_free_page(page); 1255 else 1256 return false; 1257 } 1258 #else 1259 /* 1260 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1261 * moving from pcp lists to free list in order to reduce overhead. With 1262 * debug_pagealloc enabled, they are checked also immediately when being freed 1263 * to the pcp lists. 1264 */ 1265 static bool free_pcp_prepare(struct page *page) 1266 { 1267 if (debug_pagealloc_enabled_static()) 1268 return free_pages_prepare(page, 0, true); 1269 else 1270 return free_pages_prepare(page, 0, false); 1271 } 1272 1273 static bool bulkfree_pcp_prepare(struct page *page) 1274 { 1275 return check_free_page(page); 1276 } 1277 #endif /* CONFIG_DEBUG_VM */ 1278 1279 static inline void prefetch_buddy(struct page *page) 1280 { 1281 unsigned long pfn = page_to_pfn(page); 1282 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1283 struct page *buddy = page + (buddy_pfn - pfn); 1284 1285 prefetch(buddy); 1286 } 1287 1288 /* 1289 * Frees a number of pages from the PCP lists 1290 * Assumes all pages on list are in same zone, and of same order. 1291 * count is the number of pages to free. 1292 * 1293 * If the zone was previously in an "all pages pinned" state then look to 1294 * see if this freeing clears that state. 1295 * 1296 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1297 * pinned" detection logic. 1298 */ 1299 static void free_pcppages_bulk(struct zone *zone, int count, 1300 struct per_cpu_pages *pcp) 1301 { 1302 int migratetype = 0; 1303 int batch_free = 0; 1304 int prefetch_nr = 0; 1305 bool isolated_pageblocks; 1306 struct page *page, *tmp; 1307 LIST_HEAD(head); 1308 1309 while (count) { 1310 struct list_head *list; 1311 1312 /* 1313 * Remove pages from lists in a round-robin fashion. A 1314 * batch_free count is maintained that is incremented when an 1315 * empty list is encountered. This is so more pages are freed 1316 * off fuller lists instead of spinning excessively around empty 1317 * lists 1318 */ 1319 do { 1320 batch_free++; 1321 if (++migratetype == MIGRATE_PCPTYPES) 1322 migratetype = 0; 1323 list = &pcp->lists[migratetype]; 1324 } while (list_empty(list)); 1325 1326 /* This is the only non-empty list. Free them all. */ 1327 if (batch_free == MIGRATE_PCPTYPES) 1328 batch_free = count; 1329 1330 do { 1331 page = list_last_entry(list, struct page, lru); 1332 /* must delete to avoid corrupting pcp list */ 1333 list_del(&page->lru); 1334 pcp->count--; 1335 1336 if (bulkfree_pcp_prepare(page)) 1337 continue; 1338 1339 list_add_tail(&page->lru, &head); 1340 1341 /* 1342 * We are going to put the page back to the global 1343 * pool, prefetch its buddy to speed up later access 1344 * under zone->lock. It is believed the overhead of 1345 * an additional test and calculating buddy_pfn here 1346 * can be offset by reduced memory latency later. To 1347 * avoid excessive prefetching due to large count, only 1348 * prefetch buddy for the first pcp->batch nr of pages. 1349 */ 1350 if (prefetch_nr++ < pcp->batch) 1351 prefetch_buddy(page); 1352 } while (--count && --batch_free && !list_empty(list)); 1353 } 1354 1355 spin_lock(&zone->lock); 1356 isolated_pageblocks = has_isolate_pageblock(zone); 1357 1358 /* 1359 * Use safe version since after __free_one_page(), 1360 * page->lru.next will not point to original list. 1361 */ 1362 list_for_each_entry_safe(page, tmp, &head, lru) { 1363 int mt = get_pcppage_migratetype(page); 1364 /* MIGRATE_ISOLATE page should not go to pcplists */ 1365 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1366 /* Pageblock could have been isolated meanwhile */ 1367 if (unlikely(isolated_pageblocks)) 1368 mt = get_pageblock_migratetype(page); 1369 1370 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true); 1371 trace_mm_page_pcpu_drain(page, 0, mt); 1372 } 1373 spin_unlock(&zone->lock); 1374 } 1375 1376 static void free_one_page(struct zone *zone, 1377 struct page *page, unsigned long pfn, 1378 unsigned int order, 1379 int migratetype) 1380 { 1381 spin_lock(&zone->lock); 1382 if (unlikely(has_isolate_pageblock(zone) || 1383 is_migrate_isolate(migratetype))) { 1384 migratetype = get_pfnblock_migratetype(page, pfn); 1385 } 1386 __free_one_page(page, pfn, zone, order, migratetype, true); 1387 spin_unlock(&zone->lock); 1388 } 1389 1390 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1391 unsigned long zone, int nid) 1392 { 1393 mm_zero_struct_page(page); 1394 set_page_links(page, zone, nid, pfn); 1395 init_page_count(page); 1396 page_mapcount_reset(page); 1397 page_cpupid_reset_last(page); 1398 page_kasan_tag_reset(page); 1399 1400 INIT_LIST_HEAD(&page->lru); 1401 #ifdef WANT_PAGE_VIRTUAL 1402 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1403 if (!is_highmem_idx(zone)) 1404 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1405 #endif 1406 } 1407 1408 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1409 static void __meminit init_reserved_page(unsigned long pfn) 1410 { 1411 pg_data_t *pgdat; 1412 int nid, zid; 1413 1414 if (!early_page_uninitialised(pfn)) 1415 return; 1416 1417 nid = early_pfn_to_nid(pfn); 1418 pgdat = NODE_DATA(nid); 1419 1420 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1421 struct zone *zone = &pgdat->node_zones[zid]; 1422 1423 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1424 break; 1425 } 1426 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1427 } 1428 #else 1429 static inline void init_reserved_page(unsigned long pfn) 1430 { 1431 } 1432 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1433 1434 /* 1435 * Initialised pages do not have PageReserved set. This function is 1436 * called for each range allocated by the bootmem allocator and 1437 * marks the pages PageReserved. The remaining valid pages are later 1438 * sent to the buddy page allocator. 1439 */ 1440 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1441 { 1442 unsigned long start_pfn = PFN_DOWN(start); 1443 unsigned long end_pfn = PFN_UP(end); 1444 1445 for (; start_pfn < end_pfn; start_pfn++) { 1446 if (pfn_valid(start_pfn)) { 1447 struct page *page = pfn_to_page(start_pfn); 1448 1449 init_reserved_page(start_pfn); 1450 1451 /* Avoid false-positive PageTail() */ 1452 INIT_LIST_HEAD(&page->lru); 1453 1454 /* 1455 * no need for atomic set_bit because the struct 1456 * page is not visible yet so nobody should 1457 * access it yet. 1458 */ 1459 __SetPageReserved(page); 1460 } 1461 } 1462 } 1463 1464 static void __free_pages_ok(struct page *page, unsigned int order) 1465 { 1466 unsigned long flags; 1467 int migratetype; 1468 unsigned long pfn = page_to_pfn(page); 1469 1470 if (!free_pages_prepare(page, order, true)) 1471 return; 1472 1473 migratetype = get_pfnblock_migratetype(page, pfn); 1474 local_irq_save(flags); 1475 __count_vm_events(PGFREE, 1 << order); 1476 free_one_page(page_zone(page), page, pfn, order, migratetype); 1477 local_irq_restore(flags); 1478 } 1479 1480 void __free_pages_core(struct page *page, unsigned int order) 1481 { 1482 unsigned int nr_pages = 1 << order; 1483 struct page *p = page; 1484 unsigned int loop; 1485 1486 prefetchw(p); 1487 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1488 prefetchw(p + 1); 1489 __ClearPageReserved(p); 1490 set_page_count(p, 0); 1491 } 1492 __ClearPageReserved(p); 1493 set_page_count(p, 0); 1494 1495 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1496 set_page_refcounted(page); 1497 __free_pages(page, order); 1498 } 1499 1500 #ifdef CONFIG_NEED_MULTIPLE_NODES 1501 1502 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1503 1504 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1505 1506 /* 1507 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1508 */ 1509 int __meminit __early_pfn_to_nid(unsigned long pfn, 1510 struct mminit_pfnnid_cache *state) 1511 { 1512 unsigned long start_pfn, end_pfn; 1513 int nid; 1514 1515 if (state->last_start <= pfn && pfn < state->last_end) 1516 return state->last_nid; 1517 1518 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1519 if (nid != NUMA_NO_NODE) { 1520 state->last_start = start_pfn; 1521 state->last_end = end_pfn; 1522 state->last_nid = nid; 1523 } 1524 1525 return nid; 1526 } 1527 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1528 1529 int __meminit early_pfn_to_nid(unsigned long pfn) 1530 { 1531 static DEFINE_SPINLOCK(early_pfn_lock); 1532 int nid; 1533 1534 spin_lock(&early_pfn_lock); 1535 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1536 if (nid < 0) 1537 nid = first_online_node; 1538 spin_unlock(&early_pfn_lock); 1539 1540 return nid; 1541 } 1542 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1543 1544 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1545 unsigned int order) 1546 { 1547 if (early_page_uninitialised(pfn)) 1548 return; 1549 __free_pages_core(page, order); 1550 } 1551 1552 /* 1553 * Check that the whole (or subset of) a pageblock given by the interval of 1554 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1555 * with the migration of free compaction scanner. The scanners then need to 1556 * use only pfn_valid_within() check for arches that allow holes within 1557 * pageblocks. 1558 * 1559 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1560 * 1561 * It's possible on some configurations to have a setup like node0 node1 node0 1562 * i.e. it's possible that all pages within a zones range of pages do not 1563 * belong to a single zone. We assume that a border between node0 and node1 1564 * can occur within a single pageblock, but not a node0 node1 node0 1565 * interleaving within a single pageblock. It is therefore sufficient to check 1566 * the first and last page of a pageblock and avoid checking each individual 1567 * page in a pageblock. 1568 */ 1569 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1570 unsigned long end_pfn, struct zone *zone) 1571 { 1572 struct page *start_page; 1573 struct page *end_page; 1574 1575 /* end_pfn is one past the range we are checking */ 1576 end_pfn--; 1577 1578 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1579 return NULL; 1580 1581 start_page = pfn_to_online_page(start_pfn); 1582 if (!start_page) 1583 return NULL; 1584 1585 if (page_zone(start_page) != zone) 1586 return NULL; 1587 1588 end_page = pfn_to_page(end_pfn); 1589 1590 /* This gives a shorter code than deriving page_zone(end_page) */ 1591 if (page_zone_id(start_page) != page_zone_id(end_page)) 1592 return NULL; 1593 1594 return start_page; 1595 } 1596 1597 void set_zone_contiguous(struct zone *zone) 1598 { 1599 unsigned long block_start_pfn = zone->zone_start_pfn; 1600 unsigned long block_end_pfn; 1601 1602 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1603 for (; block_start_pfn < zone_end_pfn(zone); 1604 block_start_pfn = block_end_pfn, 1605 block_end_pfn += pageblock_nr_pages) { 1606 1607 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1608 1609 if (!__pageblock_pfn_to_page(block_start_pfn, 1610 block_end_pfn, zone)) 1611 return; 1612 cond_resched(); 1613 } 1614 1615 /* We confirm that there is no hole */ 1616 zone->contiguous = true; 1617 } 1618 1619 void clear_zone_contiguous(struct zone *zone) 1620 { 1621 zone->contiguous = false; 1622 } 1623 1624 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1625 static void __init deferred_free_range(unsigned long pfn, 1626 unsigned long nr_pages) 1627 { 1628 struct page *page; 1629 unsigned long i; 1630 1631 if (!nr_pages) 1632 return; 1633 1634 page = pfn_to_page(pfn); 1635 1636 /* Free a large naturally-aligned chunk if possible */ 1637 if (nr_pages == pageblock_nr_pages && 1638 (pfn & (pageblock_nr_pages - 1)) == 0) { 1639 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1640 __free_pages_core(page, pageblock_order); 1641 return; 1642 } 1643 1644 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1645 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1646 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1647 __free_pages_core(page, 0); 1648 } 1649 } 1650 1651 /* Completion tracking for deferred_init_memmap() threads */ 1652 static atomic_t pgdat_init_n_undone __initdata; 1653 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1654 1655 static inline void __init pgdat_init_report_one_done(void) 1656 { 1657 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1658 complete(&pgdat_init_all_done_comp); 1659 } 1660 1661 /* 1662 * Returns true if page needs to be initialized or freed to buddy allocator. 1663 * 1664 * First we check if pfn is valid on architectures where it is possible to have 1665 * holes within pageblock_nr_pages. On systems where it is not possible, this 1666 * function is optimized out. 1667 * 1668 * Then, we check if a current large page is valid by only checking the validity 1669 * of the head pfn. 1670 */ 1671 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1672 { 1673 if (!pfn_valid_within(pfn)) 1674 return false; 1675 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1676 return false; 1677 return true; 1678 } 1679 1680 /* 1681 * Free pages to buddy allocator. Try to free aligned pages in 1682 * pageblock_nr_pages sizes. 1683 */ 1684 static void __init deferred_free_pages(unsigned long pfn, 1685 unsigned long end_pfn) 1686 { 1687 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1688 unsigned long nr_free = 0; 1689 1690 for (; pfn < end_pfn; pfn++) { 1691 if (!deferred_pfn_valid(pfn)) { 1692 deferred_free_range(pfn - nr_free, nr_free); 1693 nr_free = 0; 1694 } else if (!(pfn & nr_pgmask)) { 1695 deferred_free_range(pfn - nr_free, nr_free); 1696 nr_free = 1; 1697 } else { 1698 nr_free++; 1699 } 1700 } 1701 /* Free the last block of pages to allocator */ 1702 deferred_free_range(pfn - nr_free, nr_free); 1703 } 1704 1705 /* 1706 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1707 * by performing it only once every pageblock_nr_pages. 1708 * Return number of pages initialized. 1709 */ 1710 static unsigned long __init deferred_init_pages(struct zone *zone, 1711 unsigned long pfn, 1712 unsigned long end_pfn) 1713 { 1714 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1715 int nid = zone_to_nid(zone); 1716 unsigned long nr_pages = 0; 1717 int zid = zone_idx(zone); 1718 struct page *page = NULL; 1719 1720 for (; pfn < end_pfn; pfn++) { 1721 if (!deferred_pfn_valid(pfn)) { 1722 page = NULL; 1723 continue; 1724 } else if (!page || !(pfn & nr_pgmask)) { 1725 page = pfn_to_page(pfn); 1726 } else { 1727 page++; 1728 } 1729 __init_single_page(page, pfn, zid, nid); 1730 nr_pages++; 1731 } 1732 return (nr_pages); 1733 } 1734 1735 /* 1736 * This function is meant to pre-load the iterator for the zone init. 1737 * Specifically it walks through the ranges until we are caught up to the 1738 * first_init_pfn value and exits there. If we never encounter the value we 1739 * return false indicating there are no valid ranges left. 1740 */ 1741 static bool __init 1742 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1743 unsigned long *spfn, unsigned long *epfn, 1744 unsigned long first_init_pfn) 1745 { 1746 u64 j; 1747 1748 /* 1749 * Start out by walking through the ranges in this zone that have 1750 * already been initialized. We don't need to do anything with them 1751 * so we just need to flush them out of the system. 1752 */ 1753 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1754 if (*epfn <= first_init_pfn) 1755 continue; 1756 if (*spfn < first_init_pfn) 1757 *spfn = first_init_pfn; 1758 *i = j; 1759 return true; 1760 } 1761 1762 return false; 1763 } 1764 1765 /* 1766 * Initialize and free pages. We do it in two loops: first we initialize 1767 * struct page, then free to buddy allocator, because while we are 1768 * freeing pages we can access pages that are ahead (computing buddy 1769 * page in __free_one_page()). 1770 * 1771 * In order to try and keep some memory in the cache we have the loop 1772 * broken along max page order boundaries. This way we will not cause 1773 * any issues with the buddy page computation. 1774 */ 1775 static unsigned long __init 1776 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1777 unsigned long *end_pfn) 1778 { 1779 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1780 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1781 unsigned long nr_pages = 0; 1782 u64 j = *i; 1783 1784 /* First we loop through and initialize the page values */ 1785 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1786 unsigned long t; 1787 1788 if (mo_pfn <= *start_pfn) 1789 break; 1790 1791 t = min(mo_pfn, *end_pfn); 1792 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1793 1794 if (mo_pfn < *end_pfn) { 1795 *start_pfn = mo_pfn; 1796 break; 1797 } 1798 } 1799 1800 /* Reset values and now loop through freeing pages as needed */ 1801 swap(j, *i); 1802 1803 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1804 unsigned long t; 1805 1806 if (mo_pfn <= spfn) 1807 break; 1808 1809 t = min(mo_pfn, epfn); 1810 deferred_free_pages(spfn, t); 1811 1812 if (mo_pfn <= epfn) 1813 break; 1814 } 1815 1816 return nr_pages; 1817 } 1818 1819 static void __init 1820 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1821 void *arg) 1822 { 1823 unsigned long spfn, epfn; 1824 struct zone *zone = arg; 1825 u64 i; 1826 1827 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1828 1829 /* 1830 * Initialize and free pages in MAX_ORDER sized increments so that we 1831 * can avoid introducing any issues with the buddy allocator. 1832 */ 1833 while (spfn < end_pfn) { 1834 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1835 cond_resched(); 1836 } 1837 } 1838 1839 /* An arch may override for more concurrency. */ 1840 __weak int __init 1841 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1842 { 1843 return 1; 1844 } 1845 1846 /* Initialise remaining memory on a node */ 1847 static int __init deferred_init_memmap(void *data) 1848 { 1849 pg_data_t *pgdat = data; 1850 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1851 unsigned long spfn = 0, epfn = 0; 1852 unsigned long first_init_pfn, flags; 1853 unsigned long start = jiffies; 1854 struct zone *zone; 1855 int zid, max_threads; 1856 u64 i; 1857 1858 /* Bind memory initialisation thread to a local node if possible */ 1859 if (!cpumask_empty(cpumask)) 1860 set_cpus_allowed_ptr(current, cpumask); 1861 1862 pgdat_resize_lock(pgdat, &flags); 1863 first_init_pfn = pgdat->first_deferred_pfn; 1864 if (first_init_pfn == ULONG_MAX) { 1865 pgdat_resize_unlock(pgdat, &flags); 1866 pgdat_init_report_one_done(); 1867 return 0; 1868 } 1869 1870 /* Sanity check boundaries */ 1871 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1872 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1873 pgdat->first_deferred_pfn = ULONG_MAX; 1874 1875 /* 1876 * Once we unlock here, the zone cannot be grown anymore, thus if an 1877 * interrupt thread must allocate this early in boot, zone must be 1878 * pre-grown prior to start of deferred page initialization. 1879 */ 1880 pgdat_resize_unlock(pgdat, &flags); 1881 1882 /* Only the highest zone is deferred so find it */ 1883 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1884 zone = pgdat->node_zones + zid; 1885 if (first_init_pfn < zone_end_pfn(zone)) 1886 break; 1887 } 1888 1889 /* If the zone is empty somebody else may have cleared out the zone */ 1890 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1891 first_init_pfn)) 1892 goto zone_empty; 1893 1894 max_threads = deferred_page_init_max_threads(cpumask); 1895 1896 while (spfn < epfn) { 1897 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1898 struct padata_mt_job job = { 1899 .thread_fn = deferred_init_memmap_chunk, 1900 .fn_arg = zone, 1901 .start = spfn, 1902 .size = epfn_align - spfn, 1903 .align = PAGES_PER_SECTION, 1904 .min_chunk = PAGES_PER_SECTION, 1905 .max_threads = max_threads, 1906 }; 1907 1908 padata_do_multithreaded(&job); 1909 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1910 epfn_align); 1911 } 1912 zone_empty: 1913 /* Sanity check that the next zone really is unpopulated */ 1914 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1915 1916 pr_info("node %d deferred pages initialised in %ums\n", 1917 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 1918 1919 pgdat_init_report_one_done(); 1920 return 0; 1921 } 1922 1923 /* 1924 * If this zone has deferred pages, try to grow it by initializing enough 1925 * deferred pages to satisfy the allocation specified by order, rounded up to 1926 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1927 * of SECTION_SIZE bytes by initializing struct pages in increments of 1928 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1929 * 1930 * Return true when zone was grown, otherwise return false. We return true even 1931 * when we grow less than requested, to let the caller decide if there are 1932 * enough pages to satisfy the allocation. 1933 * 1934 * Note: We use noinline because this function is needed only during boot, and 1935 * it is called from a __ref function _deferred_grow_zone. This way we are 1936 * making sure that it is not inlined into permanent text section. 1937 */ 1938 static noinline bool __init 1939 deferred_grow_zone(struct zone *zone, unsigned int order) 1940 { 1941 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1942 pg_data_t *pgdat = zone->zone_pgdat; 1943 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1944 unsigned long spfn, epfn, flags; 1945 unsigned long nr_pages = 0; 1946 u64 i; 1947 1948 /* Only the last zone may have deferred pages */ 1949 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1950 return false; 1951 1952 pgdat_resize_lock(pgdat, &flags); 1953 1954 /* 1955 * If someone grew this zone while we were waiting for spinlock, return 1956 * true, as there might be enough pages already. 1957 */ 1958 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1959 pgdat_resize_unlock(pgdat, &flags); 1960 return true; 1961 } 1962 1963 /* If the zone is empty somebody else may have cleared out the zone */ 1964 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1965 first_deferred_pfn)) { 1966 pgdat->first_deferred_pfn = ULONG_MAX; 1967 pgdat_resize_unlock(pgdat, &flags); 1968 /* Retry only once. */ 1969 return first_deferred_pfn != ULONG_MAX; 1970 } 1971 1972 /* 1973 * Initialize and free pages in MAX_ORDER sized increments so 1974 * that we can avoid introducing any issues with the buddy 1975 * allocator. 1976 */ 1977 while (spfn < epfn) { 1978 /* update our first deferred PFN for this section */ 1979 first_deferred_pfn = spfn; 1980 1981 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1982 touch_nmi_watchdog(); 1983 1984 /* We should only stop along section boundaries */ 1985 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1986 continue; 1987 1988 /* If our quota has been met we can stop here */ 1989 if (nr_pages >= nr_pages_needed) 1990 break; 1991 } 1992 1993 pgdat->first_deferred_pfn = spfn; 1994 pgdat_resize_unlock(pgdat, &flags); 1995 1996 return nr_pages > 0; 1997 } 1998 1999 /* 2000 * deferred_grow_zone() is __init, but it is called from 2001 * get_page_from_freelist() during early boot until deferred_pages permanently 2002 * disables this call. This is why we have refdata wrapper to avoid warning, 2003 * and to ensure that the function body gets unloaded. 2004 */ 2005 static bool __ref 2006 _deferred_grow_zone(struct zone *zone, unsigned int order) 2007 { 2008 return deferred_grow_zone(zone, order); 2009 } 2010 2011 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2012 2013 void __init page_alloc_init_late(void) 2014 { 2015 struct zone *zone; 2016 int nid; 2017 2018 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2019 2020 /* There will be num_node_state(N_MEMORY) threads */ 2021 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2022 for_each_node_state(nid, N_MEMORY) { 2023 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2024 } 2025 2026 /* Block until all are initialised */ 2027 wait_for_completion(&pgdat_init_all_done_comp); 2028 2029 /* 2030 * The number of managed pages has changed due to the initialisation 2031 * so the pcpu batch and high limits needs to be updated or the limits 2032 * will be artificially small. 2033 */ 2034 for_each_populated_zone(zone) 2035 zone_pcp_update(zone); 2036 2037 /* 2038 * We initialized the rest of the deferred pages. Permanently disable 2039 * on-demand struct page initialization. 2040 */ 2041 static_branch_disable(&deferred_pages); 2042 2043 /* Reinit limits that are based on free pages after the kernel is up */ 2044 files_maxfiles_init(); 2045 #endif 2046 2047 /* Discard memblock private memory */ 2048 memblock_discard(); 2049 2050 for_each_node_state(nid, N_MEMORY) 2051 shuffle_free_memory(NODE_DATA(nid)); 2052 2053 for_each_populated_zone(zone) 2054 set_zone_contiguous(zone); 2055 } 2056 2057 #ifdef CONFIG_CMA 2058 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2059 void __init init_cma_reserved_pageblock(struct page *page) 2060 { 2061 unsigned i = pageblock_nr_pages; 2062 struct page *p = page; 2063 2064 do { 2065 __ClearPageReserved(p); 2066 set_page_count(p, 0); 2067 } while (++p, --i); 2068 2069 set_pageblock_migratetype(page, MIGRATE_CMA); 2070 2071 if (pageblock_order >= MAX_ORDER) { 2072 i = pageblock_nr_pages; 2073 p = page; 2074 do { 2075 set_page_refcounted(p); 2076 __free_pages(p, MAX_ORDER - 1); 2077 p += MAX_ORDER_NR_PAGES; 2078 } while (i -= MAX_ORDER_NR_PAGES); 2079 } else { 2080 set_page_refcounted(page); 2081 __free_pages(page, pageblock_order); 2082 } 2083 2084 adjust_managed_page_count(page, pageblock_nr_pages); 2085 } 2086 #endif 2087 2088 /* 2089 * The order of subdivision here is critical for the IO subsystem. 2090 * Please do not alter this order without good reasons and regression 2091 * testing. Specifically, as large blocks of memory are subdivided, 2092 * the order in which smaller blocks are delivered depends on the order 2093 * they're subdivided in this function. This is the primary factor 2094 * influencing the order in which pages are delivered to the IO 2095 * subsystem according to empirical testing, and this is also justified 2096 * by considering the behavior of a buddy system containing a single 2097 * large block of memory acted on by a series of small allocations. 2098 * This behavior is a critical factor in sglist merging's success. 2099 * 2100 * -- nyc 2101 */ 2102 static inline void expand(struct zone *zone, struct page *page, 2103 int low, int high, int migratetype) 2104 { 2105 unsigned long size = 1 << high; 2106 2107 while (high > low) { 2108 high--; 2109 size >>= 1; 2110 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2111 2112 /* 2113 * Mark as guard pages (or page), that will allow to 2114 * merge back to allocator when buddy will be freed. 2115 * Corresponding page table entries will not be touched, 2116 * pages will stay not present in virtual address space 2117 */ 2118 if (set_page_guard(zone, &page[size], high, migratetype)) 2119 continue; 2120 2121 add_to_free_list(&page[size], zone, high, migratetype); 2122 set_page_order(&page[size], high); 2123 } 2124 } 2125 2126 static void check_new_page_bad(struct page *page) 2127 { 2128 if (unlikely(page->flags & __PG_HWPOISON)) { 2129 /* Don't complain about hwpoisoned pages */ 2130 page_mapcount_reset(page); /* remove PageBuddy */ 2131 return; 2132 } 2133 2134 bad_page(page, 2135 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2136 } 2137 2138 /* 2139 * This page is about to be returned from the page allocator 2140 */ 2141 static inline int check_new_page(struct page *page) 2142 { 2143 if (likely(page_expected_state(page, 2144 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2145 return 0; 2146 2147 check_new_page_bad(page); 2148 return 1; 2149 } 2150 2151 static inline bool free_pages_prezeroed(void) 2152 { 2153 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2154 page_poisoning_enabled()) || want_init_on_free(); 2155 } 2156 2157 #ifdef CONFIG_DEBUG_VM 2158 /* 2159 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2160 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2161 * also checked when pcp lists are refilled from the free lists. 2162 */ 2163 static inline bool check_pcp_refill(struct page *page) 2164 { 2165 if (debug_pagealloc_enabled_static()) 2166 return check_new_page(page); 2167 else 2168 return false; 2169 } 2170 2171 static inline bool check_new_pcp(struct page *page) 2172 { 2173 return check_new_page(page); 2174 } 2175 #else 2176 /* 2177 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2178 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2179 * enabled, they are also checked when being allocated from the pcp lists. 2180 */ 2181 static inline bool check_pcp_refill(struct page *page) 2182 { 2183 return check_new_page(page); 2184 } 2185 static inline bool check_new_pcp(struct page *page) 2186 { 2187 if (debug_pagealloc_enabled_static()) 2188 return check_new_page(page); 2189 else 2190 return false; 2191 } 2192 #endif /* CONFIG_DEBUG_VM */ 2193 2194 static bool check_new_pages(struct page *page, unsigned int order) 2195 { 2196 int i; 2197 for (i = 0; i < (1 << order); i++) { 2198 struct page *p = page + i; 2199 2200 if (unlikely(check_new_page(p))) 2201 return true; 2202 } 2203 2204 return false; 2205 } 2206 2207 inline void post_alloc_hook(struct page *page, unsigned int order, 2208 gfp_t gfp_flags) 2209 { 2210 set_page_private(page, 0); 2211 set_page_refcounted(page); 2212 2213 arch_alloc_page(page, order); 2214 if (debug_pagealloc_enabled_static()) 2215 kernel_map_pages(page, 1 << order, 1); 2216 kasan_alloc_pages(page, order); 2217 kernel_poison_pages(page, 1 << order, 1); 2218 set_page_owner(page, order, gfp_flags); 2219 } 2220 2221 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2222 unsigned int alloc_flags) 2223 { 2224 post_alloc_hook(page, order, gfp_flags); 2225 2226 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2227 kernel_init_free_pages(page, 1 << order); 2228 2229 if (order && (gfp_flags & __GFP_COMP)) 2230 prep_compound_page(page, order); 2231 2232 /* 2233 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2234 * allocate the page. The expectation is that the caller is taking 2235 * steps that will free more memory. The caller should avoid the page 2236 * being used for !PFMEMALLOC purposes. 2237 */ 2238 if (alloc_flags & ALLOC_NO_WATERMARKS) 2239 set_page_pfmemalloc(page); 2240 else 2241 clear_page_pfmemalloc(page); 2242 } 2243 2244 /* 2245 * Go through the free lists for the given migratetype and remove 2246 * the smallest available page from the freelists 2247 */ 2248 static __always_inline 2249 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2250 int migratetype) 2251 { 2252 unsigned int current_order; 2253 struct free_area *area; 2254 struct page *page; 2255 2256 /* Find a page of the appropriate size in the preferred list */ 2257 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2258 area = &(zone->free_area[current_order]); 2259 page = get_page_from_free_area(area, migratetype); 2260 if (!page) 2261 continue; 2262 del_page_from_free_list(page, zone, current_order); 2263 expand(zone, page, order, current_order, migratetype); 2264 set_pcppage_migratetype(page, migratetype); 2265 return page; 2266 } 2267 2268 return NULL; 2269 } 2270 2271 2272 /* 2273 * This array describes the order lists are fallen back to when 2274 * the free lists for the desirable migrate type are depleted 2275 */ 2276 static int fallbacks[MIGRATE_TYPES][4] = { 2277 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2278 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2279 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2280 #ifdef CONFIG_CMA 2281 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2282 #endif 2283 #ifdef CONFIG_MEMORY_ISOLATION 2284 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2285 #endif 2286 }; 2287 2288 #ifdef CONFIG_CMA 2289 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2290 unsigned int order) 2291 { 2292 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2293 } 2294 #else 2295 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2296 unsigned int order) { return NULL; } 2297 #endif 2298 2299 /* 2300 * Move the free pages in a range to the free lists of the requested type. 2301 * Note that start_page and end_pages are not aligned on a pageblock 2302 * boundary. If alignment is required, use move_freepages_block() 2303 */ 2304 static int move_freepages(struct zone *zone, 2305 struct page *start_page, struct page *end_page, 2306 int migratetype, int *num_movable) 2307 { 2308 struct page *page; 2309 unsigned int order; 2310 int pages_moved = 0; 2311 2312 for (page = start_page; page <= end_page;) { 2313 if (!pfn_valid_within(page_to_pfn(page))) { 2314 page++; 2315 continue; 2316 } 2317 2318 if (!PageBuddy(page)) { 2319 /* 2320 * We assume that pages that could be isolated for 2321 * migration are movable. But we don't actually try 2322 * isolating, as that would be expensive. 2323 */ 2324 if (num_movable && 2325 (PageLRU(page) || __PageMovable(page))) 2326 (*num_movable)++; 2327 2328 page++; 2329 continue; 2330 } 2331 2332 /* Make sure we are not inadvertently changing nodes */ 2333 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2334 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2335 2336 order = page_order(page); 2337 move_to_free_list(page, zone, order, migratetype); 2338 page += 1 << order; 2339 pages_moved += 1 << order; 2340 } 2341 2342 return pages_moved; 2343 } 2344 2345 int move_freepages_block(struct zone *zone, struct page *page, 2346 int migratetype, int *num_movable) 2347 { 2348 unsigned long start_pfn, end_pfn; 2349 struct page *start_page, *end_page; 2350 2351 if (num_movable) 2352 *num_movable = 0; 2353 2354 start_pfn = page_to_pfn(page); 2355 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2356 start_page = pfn_to_page(start_pfn); 2357 end_page = start_page + pageblock_nr_pages - 1; 2358 end_pfn = start_pfn + pageblock_nr_pages - 1; 2359 2360 /* Do not cross zone boundaries */ 2361 if (!zone_spans_pfn(zone, start_pfn)) 2362 start_page = page; 2363 if (!zone_spans_pfn(zone, end_pfn)) 2364 return 0; 2365 2366 return move_freepages(zone, start_page, end_page, migratetype, 2367 num_movable); 2368 } 2369 2370 static void change_pageblock_range(struct page *pageblock_page, 2371 int start_order, int migratetype) 2372 { 2373 int nr_pageblocks = 1 << (start_order - pageblock_order); 2374 2375 while (nr_pageblocks--) { 2376 set_pageblock_migratetype(pageblock_page, migratetype); 2377 pageblock_page += pageblock_nr_pages; 2378 } 2379 } 2380 2381 /* 2382 * When we are falling back to another migratetype during allocation, try to 2383 * steal extra free pages from the same pageblocks to satisfy further 2384 * allocations, instead of polluting multiple pageblocks. 2385 * 2386 * If we are stealing a relatively large buddy page, it is likely there will 2387 * be more free pages in the pageblock, so try to steal them all. For 2388 * reclaimable and unmovable allocations, we steal regardless of page size, 2389 * as fragmentation caused by those allocations polluting movable pageblocks 2390 * is worse than movable allocations stealing from unmovable and reclaimable 2391 * pageblocks. 2392 */ 2393 static bool can_steal_fallback(unsigned int order, int start_mt) 2394 { 2395 /* 2396 * Leaving this order check is intended, although there is 2397 * relaxed order check in next check. The reason is that 2398 * we can actually steal whole pageblock if this condition met, 2399 * but, below check doesn't guarantee it and that is just heuristic 2400 * so could be changed anytime. 2401 */ 2402 if (order >= pageblock_order) 2403 return true; 2404 2405 if (order >= pageblock_order / 2 || 2406 start_mt == MIGRATE_RECLAIMABLE || 2407 start_mt == MIGRATE_UNMOVABLE || 2408 page_group_by_mobility_disabled) 2409 return true; 2410 2411 return false; 2412 } 2413 2414 static inline void boost_watermark(struct zone *zone) 2415 { 2416 unsigned long max_boost; 2417 2418 if (!watermark_boost_factor) 2419 return; 2420 /* 2421 * Don't bother in zones that are unlikely to produce results. 2422 * On small machines, including kdump capture kernels running 2423 * in a small area, boosting the watermark can cause an out of 2424 * memory situation immediately. 2425 */ 2426 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2427 return; 2428 2429 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2430 watermark_boost_factor, 10000); 2431 2432 /* 2433 * high watermark may be uninitialised if fragmentation occurs 2434 * very early in boot so do not boost. We do not fall 2435 * through and boost by pageblock_nr_pages as failing 2436 * allocations that early means that reclaim is not going 2437 * to help and it may even be impossible to reclaim the 2438 * boosted watermark resulting in a hang. 2439 */ 2440 if (!max_boost) 2441 return; 2442 2443 max_boost = max(pageblock_nr_pages, max_boost); 2444 2445 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2446 max_boost); 2447 } 2448 2449 /* 2450 * This function implements actual steal behaviour. If order is large enough, 2451 * we can steal whole pageblock. If not, we first move freepages in this 2452 * pageblock to our migratetype and determine how many already-allocated pages 2453 * are there in the pageblock with a compatible migratetype. If at least half 2454 * of pages are free or compatible, we can change migratetype of the pageblock 2455 * itself, so pages freed in the future will be put on the correct free list. 2456 */ 2457 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2458 unsigned int alloc_flags, int start_type, bool whole_block) 2459 { 2460 unsigned int current_order = page_order(page); 2461 int free_pages, movable_pages, alike_pages; 2462 int old_block_type; 2463 2464 old_block_type = get_pageblock_migratetype(page); 2465 2466 /* 2467 * This can happen due to races and we want to prevent broken 2468 * highatomic accounting. 2469 */ 2470 if (is_migrate_highatomic(old_block_type)) 2471 goto single_page; 2472 2473 /* Take ownership for orders >= pageblock_order */ 2474 if (current_order >= pageblock_order) { 2475 change_pageblock_range(page, current_order, start_type); 2476 goto single_page; 2477 } 2478 2479 /* 2480 * Boost watermarks to increase reclaim pressure to reduce the 2481 * likelihood of future fallbacks. Wake kswapd now as the node 2482 * may be balanced overall and kswapd will not wake naturally. 2483 */ 2484 boost_watermark(zone); 2485 if (alloc_flags & ALLOC_KSWAPD) 2486 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2487 2488 /* We are not allowed to try stealing from the whole block */ 2489 if (!whole_block) 2490 goto single_page; 2491 2492 free_pages = move_freepages_block(zone, page, start_type, 2493 &movable_pages); 2494 /* 2495 * Determine how many pages are compatible with our allocation. 2496 * For movable allocation, it's the number of movable pages which 2497 * we just obtained. For other types it's a bit more tricky. 2498 */ 2499 if (start_type == MIGRATE_MOVABLE) { 2500 alike_pages = movable_pages; 2501 } else { 2502 /* 2503 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2504 * to MOVABLE pageblock, consider all non-movable pages as 2505 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2506 * vice versa, be conservative since we can't distinguish the 2507 * exact migratetype of non-movable pages. 2508 */ 2509 if (old_block_type == MIGRATE_MOVABLE) 2510 alike_pages = pageblock_nr_pages 2511 - (free_pages + movable_pages); 2512 else 2513 alike_pages = 0; 2514 } 2515 2516 /* moving whole block can fail due to zone boundary conditions */ 2517 if (!free_pages) 2518 goto single_page; 2519 2520 /* 2521 * If a sufficient number of pages in the block are either free or of 2522 * comparable migratability as our allocation, claim the whole block. 2523 */ 2524 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2525 page_group_by_mobility_disabled) 2526 set_pageblock_migratetype(page, start_type); 2527 2528 return; 2529 2530 single_page: 2531 move_to_free_list(page, zone, current_order, start_type); 2532 } 2533 2534 /* 2535 * Check whether there is a suitable fallback freepage with requested order. 2536 * If only_stealable is true, this function returns fallback_mt only if 2537 * we can steal other freepages all together. This would help to reduce 2538 * fragmentation due to mixed migratetype pages in one pageblock. 2539 */ 2540 int find_suitable_fallback(struct free_area *area, unsigned int order, 2541 int migratetype, bool only_stealable, bool *can_steal) 2542 { 2543 int i; 2544 int fallback_mt; 2545 2546 if (area->nr_free == 0) 2547 return -1; 2548 2549 *can_steal = false; 2550 for (i = 0;; i++) { 2551 fallback_mt = fallbacks[migratetype][i]; 2552 if (fallback_mt == MIGRATE_TYPES) 2553 break; 2554 2555 if (free_area_empty(area, fallback_mt)) 2556 continue; 2557 2558 if (can_steal_fallback(order, migratetype)) 2559 *can_steal = true; 2560 2561 if (!only_stealable) 2562 return fallback_mt; 2563 2564 if (*can_steal) 2565 return fallback_mt; 2566 } 2567 2568 return -1; 2569 } 2570 2571 /* 2572 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2573 * there are no empty page blocks that contain a page with a suitable order 2574 */ 2575 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2576 unsigned int alloc_order) 2577 { 2578 int mt; 2579 unsigned long max_managed, flags; 2580 2581 /* 2582 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2583 * Check is race-prone but harmless. 2584 */ 2585 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2586 if (zone->nr_reserved_highatomic >= max_managed) 2587 return; 2588 2589 spin_lock_irqsave(&zone->lock, flags); 2590 2591 /* Recheck the nr_reserved_highatomic limit under the lock */ 2592 if (zone->nr_reserved_highatomic >= max_managed) 2593 goto out_unlock; 2594 2595 /* Yoink! */ 2596 mt = get_pageblock_migratetype(page); 2597 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2598 && !is_migrate_cma(mt)) { 2599 zone->nr_reserved_highatomic += pageblock_nr_pages; 2600 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2601 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2602 } 2603 2604 out_unlock: 2605 spin_unlock_irqrestore(&zone->lock, flags); 2606 } 2607 2608 /* 2609 * Used when an allocation is about to fail under memory pressure. This 2610 * potentially hurts the reliability of high-order allocations when under 2611 * intense memory pressure but failed atomic allocations should be easier 2612 * to recover from than an OOM. 2613 * 2614 * If @force is true, try to unreserve a pageblock even though highatomic 2615 * pageblock is exhausted. 2616 */ 2617 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2618 bool force) 2619 { 2620 struct zonelist *zonelist = ac->zonelist; 2621 unsigned long flags; 2622 struct zoneref *z; 2623 struct zone *zone; 2624 struct page *page; 2625 int order; 2626 bool ret; 2627 2628 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2629 ac->nodemask) { 2630 /* 2631 * Preserve at least one pageblock unless memory pressure 2632 * is really high. 2633 */ 2634 if (!force && zone->nr_reserved_highatomic <= 2635 pageblock_nr_pages) 2636 continue; 2637 2638 spin_lock_irqsave(&zone->lock, flags); 2639 for (order = 0; order < MAX_ORDER; order++) { 2640 struct free_area *area = &(zone->free_area[order]); 2641 2642 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2643 if (!page) 2644 continue; 2645 2646 /* 2647 * In page freeing path, migratetype change is racy so 2648 * we can counter several free pages in a pageblock 2649 * in this loop althoug we changed the pageblock type 2650 * from highatomic to ac->migratetype. So we should 2651 * adjust the count once. 2652 */ 2653 if (is_migrate_highatomic_page(page)) { 2654 /* 2655 * It should never happen but changes to 2656 * locking could inadvertently allow a per-cpu 2657 * drain to add pages to MIGRATE_HIGHATOMIC 2658 * while unreserving so be safe and watch for 2659 * underflows. 2660 */ 2661 zone->nr_reserved_highatomic -= min( 2662 pageblock_nr_pages, 2663 zone->nr_reserved_highatomic); 2664 } 2665 2666 /* 2667 * Convert to ac->migratetype and avoid the normal 2668 * pageblock stealing heuristics. Minimally, the caller 2669 * is doing the work and needs the pages. More 2670 * importantly, if the block was always converted to 2671 * MIGRATE_UNMOVABLE or another type then the number 2672 * of pageblocks that cannot be completely freed 2673 * may increase. 2674 */ 2675 set_pageblock_migratetype(page, ac->migratetype); 2676 ret = move_freepages_block(zone, page, ac->migratetype, 2677 NULL); 2678 if (ret) { 2679 spin_unlock_irqrestore(&zone->lock, flags); 2680 return ret; 2681 } 2682 } 2683 spin_unlock_irqrestore(&zone->lock, flags); 2684 } 2685 2686 return false; 2687 } 2688 2689 /* 2690 * Try finding a free buddy page on the fallback list and put it on the free 2691 * list of requested migratetype, possibly along with other pages from the same 2692 * block, depending on fragmentation avoidance heuristics. Returns true if 2693 * fallback was found so that __rmqueue_smallest() can grab it. 2694 * 2695 * The use of signed ints for order and current_order is a deliberate 2696 * deviation from the rest of this file, to make the for loop 2697 * condition simpler. 2698 */ 2699 static __always_inline bool 2700 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2701 unsigned int alloc_flags) 2702 { 2703 struct free_area *area; 2704 int current_order; 2705 int min_order = order; 2706 struct page *page; 2707 int fallback_mt; 2708 bool can_steal; 2709 2710 /* 2711 * Do not steal pages from freelists belonging to other pageblocks 2712 * i.e. orders < pageblock_order. If there are no local zones free, 2713 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2714 */ 2715 if (alloc_flags & ALLOC_NOFRAGMENT) 2716 min_order = pageblock_order; 2717 2718 /* 2719 * Find the largest available free page in the other list. This roughly 2720 * approximates finding the pageblock with the most free pages, which 2721 * would be too costly to do exactly. 2722 */ 2723 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2724 --current_order) { 2725 area = &(zone->free_area[current_order]); 2726 fallback_mt = find_suitable_fallback(area, current_order, 2727 start_migratetype, false, &can_steal); 2728 if (fallback_mt == -1) 2729 continue; 2730 2731 /* 2732 * We cannot steal all free pages from the pageblock and the 2733 * requested migratetype is movable. In that case it's better to 2734 * steal and split the smallest available page instead of the 2735 * largest available page, because even if the next movable 2736 * allocation falls back into a different pageblock than this 2737 * one, it won't cause permanent fragmentation. 2738 */ 2739 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2740 && current_order > order) 2741 goto find_smallest; 2742 2743 goto do_steal; 2744 } 2745 2746 return false; 2747 2748 find_smallest: 2749 for (current_order = order; current_order < MAX_ORDER; 2750 current_order++) { 2751 area = &(zone->free_area[current_order]); 2752 fallback_mt = find_suitable_fallback(area, current_order, 2753 start_migratetype, false, &can_steal); 2754 if (fallback_mt != -1) 2755 break; 2756 } 2757 2758 /* 2759 * This should not happen - we already found a suitable fallback 2760 * when looking for the largest page. 2761 */ 2762 VM_BUG_ON(current_order == MAX_ORDER); 2763 2764 do_steal: 2765 page = get_page_from_free_area(area, fallback_mt); 2766 2767 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2768 can_steal); 2769 2770 trace_mm_page_alloc_extfrag(page, order, current_order, 2771 start_migratetype, fallback_mt); 2772 2773 return true; 2774 2775 } 2776 2777 /* 2778 * Do the hard work of removing an element from the buddy allocator. 2779 * Call me with the zone->lock already held. 2780 */ 2781 static __always_inline struct page * 2782 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2783 unsigned int alloc_flags) 2784 { 2785 struct page *page; 2786 2787 #ifdef CONFIG_CMA 2788 /* 2789 * Balance movable allocations between regular and CMA areas by 2790 * allocating from CMA when over half of the zone's free memory 2791 * is in the CMA area. 2792 */ 2793 if (migratetype == MIGRATE_MOVABLE && 2794 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2795 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2796 page = __rmqueue_cma_fallback(zone, order); 2797 if (page) 2798 return page; 2799 } 2800 #endif 2801 retry: 2802 page = __rmqueue_smallest(zone, order, migratetype); 2803 if (unlikely(!page)) { 2804 if (migratetype == MIGRATE_MOVABLE) 2805 page = __rmqueue_cma_fallback(zone, order); 2806 2807 if (!page && __rmqueue_fallback(zone, order, migratetype, 2808 alloc_flags)) 2809 goto retry; 2810 } 2811 2812 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2813 return page; 2814 } 2815 2816 /* 2817 * Obtain a specified number of elements from the buddy allocator, all under 2818 * a single hold of the lock, for efficiency. Add them to the supplied list. 2819 * Returns the number of new pages which were placed at *list. 2820 */ 2821 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2822 unsigned long count, struct list_head *list, 2823 int migratetype, unsigned int alloc_flags) 2824 { 2825 int i, alloced = 0; 2826 2827 spin_lock(&zone->lock); 2828 for (i = 0; i < count; ++i) { 2829 struct page *page = __rmqueue(zone, order, migratetype, 2830 alloc_flags); 2831 if (unlikely(page == NULL)) 2832 break; 2833 2834 if (unlikely(check_pcp_refill(page))) 2835 continue; 2836 2837 /* 2838 * Split buddy pages returned by expand() are received here in 2839 * physical page order. The page is added to the tail of 2840 * caller's list. From the callers perspective, the linked list 2841 * is ordered by page number under some conditions. This is 2842 * useful for IO devices that can forward direction from the 2843 * head, thus also in the physical page order. This is useful 2844 * for IO devices that can merge IO requests if the physical 2845 * pages are ordered properly. 2846 */ 2847 list_add_tail(&page->lru, list); 2848 alloced++; 2849 if (is_migrate_cma(get_pcppage_migratetype(page))) 2850 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2851 -(1 << order)); 2852 } 2853 2854 /* 2855 * i pages were removed from the buddy list even if some leak due 2856 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2857 * on i. Do not confuse with 'alloced' which is the number of 2858 * pages added to the pcp list. 2859 */ 2860 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2861 spin_unlock(&zone->lock); 2862 return alloced; 2863 } 2864 2865 #ifdef CONFIG_NUMA 2866 /* 2867 * Called from the vmstat counter updater to drain pagesets of this 2868 * currently executing processor on remote nodes after they have 2869 * expired. 2870 * 2871 * Note that this function must be called with the thread pinned to 2872 * a single processor. 2873 */ 2874 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2875 { 2876 unsigned long flags; 2877 int to_drain, batch; 2878 2879 local_irq_save(flags); 2880 batch = READ_ONCE(pcp->batch); 2881 to_drain = min(pcp->count, batch); 2882 if (to_drain > 0) 2883 free_pcppages_bulk(zone, to_drain, pcp); 2884 local_irq_restore(flags); 2885 } 2886 #endif 2887 2888 /* 2889 * Drain pcplists of the indicated processor and zone. 2890 * 2891 * The processor must either be the current processor and the 2892 * thread pinned to the current processor or a processor that 2893 * is not online. 2894 */ 2895 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2896 { 2897 unsigned long flags; 2898 struct per_cpu_pageset *pset; 2899 struct per_cpu_pages *pcp; 2900 2901 local_irq_save(flags); 2902 pset = per_cpu_ptr(zone->pageset, cpu); 2903 2904 pcp = &pset->pcp; 2905 if (pcp->count) 2906 free_pcppages_bulk(zone, pcp->count, pcp); 2907 local_irq_restore(flags); 2908 } 2909 2910 /* 2911 * Drain pcplists of all zones on the indicated processor. 2912 * 2913 * The processor must either be the current processor and the 2914 * thread pinned to the current processor or a processor that 2915 * is not online. 2916 */ 2917 static void drain_pages(unsigned int cpu) 2918 { 2919 struct zone *zone; 2920 2921 for_each_populated_zone(zone) { 2922 drain_pages_zone(cpu, zone); 2923 } 2924 } 2925 2926 /* 2927 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2928 * 2929 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2930 * the single zone's pages. 2931 */ 2932 void drain_local_pages(struct zone *zone) 2933 { 2934 int cpu = smp_processor_id(); 2935 2936 if (zone) 2937 drain_pages_zone(cpu, zone); 2938 else 2939 drain_pages(cpu); 2940 } 2941 2942 static void drain_local_pages_wq(struct work_struct *work) 2943 { 2944 struct pcpu_drain *drain; 2945 2946 drain = container_of(work, struct pcpu_drain, work); 2947 2948 /* 2949 * drain_all_pages doesn't use proper cpu hotplug protection so 2950 * we can race with cpu offline when the WQ can move this from 2951 * a cpu pinned worker to an unbound one. We can operate on a different 2952 * cpu which is allright but we also have to make sure to not move to 2953 * a different one. 2954 */ 2955 preempt_disable(); 2956 drain_local_pages(drain->zone); 2957 preempt_enable(); 2958 } 2959 2960 /* 2961 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2962 * 2963 * When zone parameter is non-NULL, spill just the single zone's pages. 2964 * 2965 * Note that this can be extremely slow as the draining happens in a workqueue. 2966 */ 2967 void drain_all_pages(struct zone *zone) 2968 { 2969 int cpu; 2970 2971 /* 2972 * Allocate in the BSS so we wont require allocation in 2973 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2974 */ 2975 static cpumask_t cpus_with_pcps; 2976 2977 /* 2978 * Make sure nobody triggers this path before mm_percpu_wq is fully 2979 * initialized. 2980 */ 2981 if (WARN_ON_ONCE(!mm_percpu_wq)) 2982 return; 2983 2984 /* 2985 * Do not drain if one is already in progress unless it's specific to 2986 * a zone. Such callers are primarily CMA and memory hotplug and need 2987 * the drain to be complete when the call returns. 2988 */ 2989 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2990 if (!zone) 2991 return; 2992 mutex_lock(&pcpu_drain_mutex); 2993 } 2994 2995 /* 2996 * We don't care about racing with CPU hotplug event 2997 * as offline notification will cause the notified 2998 * cpu to drain that CPU pcps and on_each_cpu_mask 2999 * disables preemption as part of its processing 3000 */ 3001 for_each_online_cpu(cpu) { 3002 struct per_cpu_pageset *pcp; 3003 struct zone *z; 3004 bool has_pcps = false; 3005 3006 if (zone) { 3007 pcp = per_cpu_ptr(zone->pageset, cpu); 3008 if (pcp->pcp.count) 3009 has_pcps = true; 3010 } else { 3011 for_each_populated_zone(z) { 3012 pcp = per_cpu_ptr(z->pageset, cpu); 3013 if (pcp->pcp.count) { 3014 has_pcps = true; 3015 break; 3016 } 3017 } 3018 } 3019 3020 if (has_pcps) 3021 cpumask_set_cpu(cpu, &cpus_with_pcps); 3022 else 3023 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3024 } 3025 3026 for_each_cpu(cpu, &cpus_with_pcps) { 3027 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3028 3029 drain->zone = zone; 3030 INIT_WORK(&drain->work, drain_local_pages_wq); 3031 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3032 } 3033 for_each_cpu(cpu, &cpus_with_pcps) 3034 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3035 3036 mutex_unlock(&pcpu_drain_mutex); 3037 } 3038 3039 #ifdef CONFIG_HIBERNATION 3040 3041 /* 3042 * Touch the watchdog for every WD_PAGE_COUNT pages. 3043 */ 3044 #define WD_PAGE_COUNT (128*1024) 3045 3046 void mark_free_pages(struct zone *zone) 3047 { 3048 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3049 unsigned long flags; 3050 unsigned int order, t; 3051 struct page *page; 3052 3053 if (zone_is_empty(zone)) 3054 return; 3055 3056 spin_lock_irqsave(&zone->lock, flags); 3057 3058 max_zone_pfn = zone_end_pfn(zone); 3059 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3060 if (pfn_valid(pfn)) { 3061 page = pfn_to_page(pfn); 3062 3063 if (!--page_count) { 3064 touch_nmi_watchdog(); 3065 page_count = WD_PAGE_COUNT; 3066 } 3067 3068 if (page_zone(page) != zone) 3069 continue; 3070 3071 if (!swsusp_page_is_forbidden(page)) 3072 swsusp_unset_page_free(page); 3073 } 3074 3075 for_each_migratetype_order(order, t) { 3076 list_for_each_entry(page, 3077 &zone->free_area[order].free_list[t], lru) { 3078 unsigned long i; 3079 3080 pfn = page_to_pfn(page); 3081 for (i = 0; i < (1UL << order); i++) { 3082 if (!--page_count) { 3083 touch_nmi_watchdog(); 3084 page_count = WD_PAGE_COUNT; 3085 } 3086 swsusp_set_page_free(pfn_to_page(pfn + i)); 3087 } 3088 } 3089 } 3090 spin_unlock_irqrestore(&zone->lock, flags); 3091 } 3092 #endif /* CONFIG_PM */ 3093 3094 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3095 { 3096 int migratetype; 3097 3098 if (!free_pcp_prepare(page)) 3099 return false; 3100 3101 migratetype = get_pfnblock_migratetype(page, pfn); 3102 set_pcppage_migratetype(page, migratetype); 3103 return true; 3104 } 3105 3106 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3107 { 3108 struct zone *zone = page_zone(page); 3109 struct per_cpu_pages *pcp; 3110 int migratetype; 3111 3112 migratetype = get_pcppage_migratetype(page); 3113 __count_vm_event(PGFREE); 3114 3115 /* 3116 * We only track unmovable, reclaimable and movable on pcp lists. 3117 * Free ISOLATE pages back to the allocator because they are being 3118 * offlined but treat HIGHATOMIC as movable pages so we can get those 3119 * areas back if necessary. Otherwise, we may have to free 3120 * excessively into the page allocator 3121 */ 3122 if (migratetype >= MIGRATE_PCPTYPES) { 3123 if (unlikely(is_migrate_isolate(migratetype))) { 3124 free_one_page(zone, page, pfn, 0, migratetype); 3125 return; 3126 } 3127 migratetype = MIGRATE_MOVABLE; 3128 } 3129 3130 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3131 list_add(&page->lru, &pcp->lists[migratetype]); 3132 pcp->count++; 3133 if (pcp->count >= pcp->high) { 3134 unsigned long batch = READ_ONCE(pcp->batch); 3135 free_pcppages_bulk(zone, batch, pcp); 3136 } 3137 } 3138 3139 /* 3140 * Free a 0-order page 3141 */ 3142 void free_unref_page(struct page *page) 3143 { 3144 unsigned long flags; 3145 unsigned long pfn = page_to_pfn(page); 3146 3147 if (!free_unref_page_prepare(page, pfn)) 3148 return; 3149 3150 local_irq_save(flags); 3151 free_unref_page_commit(page, pfn); 3152 local_irq_restore(flags); 3153 } 3154 3155 /* 3156 * Free a list of 0-order pages 3157 */ 3158 void free_unref_page_list(struct list_head *list) 3159 { 3160 struct page *page, *next; 3161 unsigned long flags, pfn; 3162 int batch_count = 0; 3163 3164 /* Prepare pages for freeing */ 3165 list_for_each_entry_safe(page, next, list, lru) { 3166 pfn = page_to_pfn(page); 3167 if (!free_unref_page_prepare(page, pfn)) 3168 list_del(&page->lru); 3169 set_page_private(page, pfn); 3170 } 3171 3172 local_irq_save(flags); 3173 list_for_each_entry_safe(page, next, list, lru) { 3174 unsigned long pfn = page_private(page); 3175 3176 set_page_private(page, 0); 3177 trace_mm_page_free_batched(page); 3178 free_unref_page_commit(page, pfn); 3179 3180 /* 3181 * Guard against excessive IRQ disabled times when we get 3182 * a large list of pages to free. 3183 */ 3184 if (++batch_count == SWAP_CLUSTER_MAX) { 3185 local_irq_restore(flags); 3186 batch_count = 0; 3187 local_irq_save(flags); 3188 } 3189 } 3190 local_irq_restore(flags); 3191 } 3192 3193 /* 3194 * split_page takes a non-compound higher-order page, and splits it into 3195 * n (1<<order) sub-pages: page[0..n] 3196 * Each sub-page must be freed individually. 3197 * 3198 * Note: this is probably too low level an operation for use in drivers. 3199 * Please consult with lkml before using this in your driver. 3200 */ 3201 void split_page(struct page *page, unsigned int order) 3202 { 3203 int i; 3204 3205 VM_BUG_ON_PAGE(PageCompound(page), page); 3206 VM_BUG_ON_PAGE(!page_count(page), page); 3207 3208 for (i = 1; i < (1 << order); i++) 3209 set_page_refcounted(page + i); 3210 split_page_owner(page, order); 3211 } 3212 EXPORT_SYMBOL_GPL(split_page); 3213 3214 int __isolate_free_page(struct page *page, unsigned int order) 3215 { 3216 unsigned long watermark; 3217 struct zone *zone; 3218 int mt; 3219 3220 BUG_ON(!PageBuddy(page)); 3221 3222 zone = page_zone(page); 3223 mt = get_pageblock_migratetype(page); 3224 3225 if (!is_migrate_isolate(mt)) { 3226 /* 3227 * Obey watermarks as if the page was being allocated. We can 3228 * emulate a high-order watermark check with a raised order-0 3229 * watermark, because we already know our high-order page 3230 * exists. 3231 */ 3232 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3233 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3234 return 0; 3235 3236 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3237 } 3238 3239 /* Remove page from free list */ 3240 3241 del_page_from_free_list(page, zone, order); 3242 3243 /* 3244 * Set the pageblock if the isolated page is at least half of a 3245 * pageblock 3246 */ 3247 if (order >= pageblock_order - 1) { 3248 struct page *endpage = page + (1 << order) - 1; 3249 for (; page < endpage; page += pageblock_nr_pages) { 3250 int mt = get_pageblock_migratetype(page); 3251 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3252 && !is_migrate_highatomic(mt)) 3253 set_pageblock_migratetype(page, 3254 MIGRATE_MOVABLE); 3255 } 3256 } 3257 3258 3259 return 1UL << order; 3260 } 3261 3262 /** 3263 * __putback_isolated_page - Return a now-isolated page back where we got it 3264 * @page: Page that was isolated 3265 * @order: Order of the isolated page 3266 * @mt: The page's pageblock's migratetype 3267 * 3268 * This function is meant to return a page pulled from the free lists via 3269 * __isolate_free_page back to the free lists they were pulled from. 3270 */ 3271 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3272 { 3273 struct zone *zone = page_zone(page); 3274 3275 /* zone lock should be held when this function is called */ 3276 lockdep_assert_held(&zone->lock); 3277 3278 /* Return isolated page to tail of freelist. */ 3279 __free_one_page(page, page_to_pfn(page), zone, order, mt, false); 3280 } 3281 3282 /* 3283 * Update NUMA hit/miss statistics 3284 * 3285 * Must be called with interrupts disabled. 3286 */ 3287 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3288 { 3289 #ifdef CONFIG_NUMA 3290 enum numa_stat_item local_stat = NUMA_LOCAL; 3291 3292 /* skip numa counters update if numa stats is disabled */ 3293 if (!static_branch_likely(&vm_numa_stat_key)) 3294 return; 3295 3296 if (zone_to_nid(z) != numa_node_id()) 3297 local_stat = NUMA_OTHER; 3298 3299 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3300 __inc_numa_state(z, NUMA_HIT); 3301 else { 3302 __inc_numa_state(z, NUMA_MISS); 3303 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3304 } 3305 __inc_numa_state(z, local_stat); 3306 #endif 3307 } 3308 3309 /* Remove page from the per-cpu list, caller must protect the list */ 3310 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3311 unsigned int alloc_flags, 3312 struct per_cpu_pages *pcp, 3313 struct list_head *list) 3314 { 3315 struct page *page; 3316 3317 do { 3318 if (list_empty(list)) { 3319 pcp->count += rmqueue_bulk(zone, 0, 3320 pcp->batch, list, 3321 migratetype, alloc_flags); 3322 if (unlikely(list_empty(list))) 3323 return NULL; 3324 } 3325 3326 page = list_first_entry(list, struct page, lru); 3327 list_del(&page->lru); 3328 pcp->count--; 3329 } while (check_new_pcp(page)); 3330 3331 return page; 3332 } 3333 3334 /* Lock and remove page from the per-cpu list */ 3335 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3336 struct zone *zone, gfp_t gfp_flags, 3337 int migratetype, unsigned int alloc_flags) 3338 { 3339 struct per_cpu_pages *pcp; 3340 struct list_head *list; 3341 struct page *page; 3342 unsigned long flags; 3343 3344 local_irq_save(flags); 3345 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3346 list = &pcp->lists[migratetype]; 3347 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3348 if (page) { 3349 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3350 zone_statistics(preferred_zone, zone); 3351 } 3352 local_irq_restore(flags); 3353 return page; 3354 } 3355 3356 /* 3357 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3358 */ 3359 static inline 3360 struct page *rmqueue(struct zone *preferred_zone, 3361 struct zone *zone, unsigned int order, 3362 gfp_t gfp_flags, unsigned int alloc_flags, 3363 int migratetype) 3364 { 3365 unsigned long flags; 3366 struct page *page; 3367 3368 if (likely(order == 0)) { 3369 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3370 migratetype, alloc_flags); 3371 goto out; 3372 } 3373 3374 /* 3375 * We most definitely don't want callers attempting to 3376 * allocate greater than order-1 page units with __GFP_NOFAIL. 3377 */ 3378 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3379 spin_lock_irqsave(&zone->lock, flags); 3380 3381 do { 3382 page = NULL; 3383 if (alloc_flags & ALLOC_HARDER) { 3384 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3385 if (page) 3386 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3387 } 3388 if (!page) 3389 page = __rmqueue(zone, order, migratetype, alloc_flags); 3390 } while (page && check_new_pages(page, order)); 3391 spin_unlock(&zone->lock); 3392 if (!page) 3393 goto failed; 3394 __mod_zone_freepage_state(zone, -(1 << order), 3395 get_pcppage_migratetype(page)); 3396 3397 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3398 zone_statistics(preferred_zone, zone); 3399 local_irq_restore(flags); 3400 3401 out: 3402 /* Separate test+clear to avoid unnecessary atomics */ 3403 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3404 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3405 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3406 } 3407 3408 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3409 return page; 3410 3411 failed: 3412 local_irq_restore(flags); 3413 return NULL; 3414 } 3415 3416 #ifdef CONFIG_FAIL_PAGE_ALLOC 3417 3418 static struct { 3419 struct fault_attr attr; 3420 3421 bool ignore_gfp_highmem; 3422 bool ignore_gfp_reclaim; 3423 u32 min_order; 3424 } fail_page_alloc = { 3425 .attr = FAULT_ATTR_INITIALIZER, 3426 .ignore_gfp_reclaim = true, 3427 .ignore_gfp_highmem = true, 3428 .min_order = 1, 3429 }; 3430 3431 static int __init setup_fail_page_alloc(char *str) 3432 { 3433 return setup_fault_attr(&fail_page_alloc.attr, str); 3434 } 3435 __setup("fail_page_alloc=", setup_fail_page_alloc); 3436 3437 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3438 { 3439 if (order < fail_page_alloc.min_order) 3440 return false; 3441 if (gfp_mask & __GFP_NOFAIL) 3442 return false; 3443 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3444 return false; 3445 if (fail_page_alloc.ignore_gfp_reclaim && 3446 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3447 return false; 3448 3449 return should_fail(&fail_page_alloc.attr, 1 << order); 3450 } 3451 3452 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3453 3454 static int __init fail_page_alloc_debugfs(void) 3455 { 3456 umode_t mode = S_IFREG | 0600; 3457 struct dentry *dir; 3458 3459 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3460 &fail_page_alloc.attr); 3461 3462 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3463 &fail_page_alloc.ignore_gfp_reclaim); 3464 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3465 &fail_page_alloc.ignore_gfp_highmem); 3466 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3467 3468 return 0; 3469 } 3470 3471 late_initcall(fail_page_alloc_debugfs); 3472 3473 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3474 3475 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3476 3477 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3478 { 3479 return false; 3480 } 3481 3482 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3483 3484 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3485 { 3486 return __should_fail_alloc_page(gfp_mask, order); 3487 } 3488 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3489 3490 /* 3491 * Return true if free base pages are above 'mark'. For high-order checks it 3492 * will return true of the order-0 watermark is reached and there is at least 3493 * one free page of a suitable size. Checking now avoids taking the zone lock 3494 * to check in the allocation paths if no pages are free. 3495 */ 3496 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3497 int highest_zoneidx, unsigned int alloc_flags, 3498 long free_pages) 3499 { 3500 long min = mark; 3501 int o; 3502 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3503 3504 /* free_pages may go negative - that's OK */ 3505 free_pages -= (1 << order) - 1; 3506 3507 if (alloc_flags & ALLOC_HIGH) 3508 min -= min / 2; 3509 3510 /* 3511 * If the caller does not have rights to ALLOC_HARDER then subtract 3512 * the high-atomic reserves. This will over-estimate the size of the 3513 * atomic reserve but it avoids a search. 3514 */ 3515 if (likely(!alloc_harder)) { 3516 free_pages -= z->nr_reserved_highatomic; 3517 } else { 3518 /* 3519 * OOM victims can try even harder than normal ALLOC_HARDER 3520 * users on the grounds that it's definitely going to be in 3521 * the exit path shortly and free memory. Any allocation it 3522 * makes during the free path will be small and short-lived. 3523 */ 3524 if (alloc_flags & ALLOC_OOM) 3525 min -= min / 2; 3526 else 3527 min -= min / 4; 3528 } 3529 3530 3531 #ifdef CONFIG_CMA 3532 /* If allocation can't use CMA areas don't use free CMA pages */ 3533 if (!(alloc_flags & ALLOC_CMA)) 3534 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3535 #endif 3536 3537 /* 3538 * Check watermarks for an order-0 allocation request. If these 3539 * are not met, then a high-order request also cannot go ahead 3540 * even if a suitable page happened to be free. 3541 */ 3542 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3543 return false; 3544 3545 /* If this is an order-0 request then the watermark is fine */ 3546 if (!order) 3547 return true; 3548 3549 /* For a high-order request, check at least one suitable page is free */ 3550 for (o = order; o < MAX_ORDER; o++) { 3551 struct free_area *area = &z->free_area[o]; 3552 int mt; 3553 3554 if (!area->nr_free) 3555 continue; 3556 3557 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3558 if (!free_area_empty(area, mt)) 3559 return true; 3560 } 3561 3562 #ifdef CONFIG_CMA 3563 if ((alloc_flags & ALLOC_CMA) && 3564 !free_area_empty(area, MIGRATE_CMA)) { 3565 return true; 3566 } 3567 #endif 3568 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3569 return true; 3570 } 3571 return false; 3572 } 3573 3574 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3575 int highest_zoneidx, unsigned int alloc_flags) 3576 { 3577 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3578 zone_page_state(z, NR_FREE_PAGES)); 3579 } 3580 3581 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3582 unsigned long mark, int highest_zoneidx, 3583 unsigned int alloc_flags) 3584 { 3585 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3586 long cma_pages = 0; 3587 3588 #ifdef CONFIG_CMA 3589 /* If allocation can't use CMA areas don't use free CMA pages */ 3590 if (!(alloc_flags & ALLOC_CMA)) 3591 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3592 #endif 3593 3594 /* 3595 * Fast check for order-0 only. If this fails then the reserves 3596 * need to be calculated. There is a corner case where the check 3597 * passes but only the high-order atomic reserve are free. If 3598 * the caller is !atomic then it'll uselessly search the free 3599 * list. That corner case is then slower but it is harmless. 3600 */ 3601 if (!order && (free_pages - cma_pages) > 3602 mark + z->lowmem_reserve[highest_zoneidx]) 3603 return true; 3604 3605 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3606 free_pages); 3607 } 3608 3609 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3610 unsigned long mark, int highest_zoneidx) 3611 { 3612 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3613 3614 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3615 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3616 3617 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3618 free_pages); 3619 } 3620 3621 #ifdef CONFIG_NUMA 3622 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3623 { 3624 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3625 node_reclaim_distance; 3626 } 3627 #else /* CONFIG_NUMA */ 3628 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3629 { 3630 return true; 3631 } 3632 #endif /* CONFIG_NUMA */ 3633 3634 /* 3635 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3636 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3637 * premature use of a lower zone may cause lowmem pressure problems that 3638 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3639 * probably too small. It only makes sense to spread allocations to avoid 3640 * fragmentation between the Normal and DMA32 zones. 3641 */ 3642 static inline unsigned int 3643 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3644 { 3645 unsigned int alloc_flags; 3646 3647 /* 3648 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3649 * to save a branch. 3650 */ 3651 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3652 3653 #ifdef CONFIG_ZONE_DMA32 3654 if (!zone) 3655 return alloc_flags; 3656 3657 if (zone_idx(zone) != ZONE_NORMAL) 3658 return alloc_flags; 3659 3660 /* 3661 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3662 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3663 * on UMA that if Normal is populated then so is DMA32. 3664 */ 3665 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3666 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3667 return alloc_flags; 3668 3669 alloc_flags |= ALLOC_NOFRAGMENT; 3670 #endif /* CONFIG_ZONE_DMA32 */ 3671 return alloc_flags; 3672 } 3673 3674 /* 3675 * get_page_from_freelist goes through the zonelist trying to allocate 3676 * a page. 3677 */ 3678 static struct page * 3679 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3680 const struct alloc_context *ac) 3681 { 3682 struct zoneref *z; 3683 struct zone *zone; 3684 struct pglist_data *last_pgdat_dirty_limit = NULL; 3685 bool no_fallback; 3686 3687 retry: 3688 /* 3689 * Scan zonelist, looking for a zone with enough free. 3690 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3691 */ 3692 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3693 z = ac->preferred_zoneref; 3694 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, 3695 ac->highest_zoneidx, ac->nodemask) { 3696 struct page *page; 3697 unsigned long mark; 3698 3699 if (cpusets_enabled() && 3700 (alloc_flags & ALLOC_CPUSET) && 3701 !__cpuset_zone_allowed(zone, gfp_mask)) 3702 continue; 3703 /* 3704 * When allocating a page cache page for writing, we 3705 * want to get it from a node that is within its dirty 3706 * limit, such that no single node holds more than its 3707 * proportional share of globally allowed dirty pages. 3708 * The dirty limits take into account the node's 3709 * lowmem reserves and high watermark so that kswapd 3710 * should be able to balance it without having to 3711 * write pages from its LRU list. 3712 * 3713 * XXX: For now, allow allocations to potentially 3714 * exceed the per-node dirty limit in the slowpath 3715 * (spread_dirty_pages unset) before going into reclaim, 3716 * which is important when on a NUMA setup the allowed 3717 * nodes are together not big enough to reach the 3718 * global limit. The proper fix for these situations 3719 * will require awareness of nodes in the 3720 * dirty-throttling and the flusher threads. 3721 */ 3722 if (ac->spread_dirty_pages) { 3723 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3724 continue; 3725 3726 if (!node_dirty_ok(zone->zone_pgdat)) { 3727 last_pgdat_dirty_limit = zone->zone_pgdat; 3728 continue; 3729 } 3730 } 3731 3732 if (no_fallback && nr_online_nodes > 1 && 3733 zone != ac->preferred_zoneref->zone) { 3734 int local_nid; 3735 3736 /* 3737 * If moving to a remote node, retry but allow 3738 * fragmenting fallbacks. Locality is more important 3739 * than fragmentation avoidance. 3740 */ 3741 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3742 if (zone_to_nid(zone) != local_nid) { 3743 alloc_flags &= ~ALLOC_NOFRAGMENT; 3744 goto retry; 3745 } 3746 } 3747 3748 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3749 if (!zone_watermark_fast(zone, order, mark, 3750 ac->highest_zoneidx, alloc_flags)) { 3751 int ret; 3752 3753 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3754 /* 3755 * Watermark failed for this zone, but see if we can 3756 * grow this zone if it contains deferred pages. 3757 */ 3758 if (static_branch_unlikely(&deferred_pages)) { 3759 if (_deferred_grow_zone(zone, order)) 3760 goto try_this_zone; 3761 } 3762 #endif 3763 /* Checked here to keep the fast path fast */ 3764 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3765 if (alloc_flags & ALLOC_NO_WATERMARKS) 3766 goto try_this_zone; 3767 3768 if (node_reclaim_mode == 0 || 3769 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3770 continue; 3771 3772 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3773 switch (ret) { 3774 case NODE_RECLAIM_NOSCAN: 3775 /* did not scan */ 3776 continue; 3777 case NODE_RECLAIM_FULL: 3778 /* scanned but unreclaimable */ 3779 continue; 3780 default: 3781 /* did we reclaim enough */ 3782 if (zone_watermark_ok(zone, order, mark, 3783 ac->highest_zoneidx, alloc_flags)) 3784 goto try_this_zone; 3785 3786 continue; 3787 } 3788 } 3789 3790 try_this_zone: 3791 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3792 gfp_mask, alloc_flags, ac->migratetype); 3793 if (page) { 3794 prep_new_page(page, order, gfp_mask, alloc_flags); 3795 3796 /* 3797 * If this is a high-order atomic allocation then check 3798 * if the pageblock should be reserved for the future 3799 */ 3800 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3801 reserve_highatomic_pageblock(page, zone, order); 3802 3803 return page; 3804 } else { 3805 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3806 /* Try again if zone has deferred pages */ 3807 if (static_branch_unlikely(&deferred_pages)) { 3808 if (_deferred_grow_zone(zone, order)) 3809 goto try_this_zone; 3810 } 3811 #endif 3812 } 3813 } 3814 3815 /* 3816 * It's possible on a UMA machine to get through all zones that are 3817 * fragmented. If avoiding fragmentation, reset and try again. 3818 */ 3819 if (no_fallback) { 3820 alloc_flags &= ~ALLOC_NOFRAGMENT; 3821 goto retry; 3822 } 3823 3824 return NULL; 3825 } 3826 3827 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3828 { 3829 unsigned int filter = SHOW_MEM_FILTER_NODES; 3830 3831 /* 3832 * This documents exceptions given to allocations in certain 3833 * contexts that are allowed to allocate outside current's set 3834 * of allowed nodes. 3835 */ 3836 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3837 if (tsk_is_oom_victim(current) || 3838 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3839 filter &= ~SHOW_MEM_FILTER_NODES; 3840 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3841 filter &= ~SHOW_MEM_FILTER_NODES; 3842 3843 show_mem(filter, nodemask); 3844 } 3845 3846 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3847 { 3848 struct va_format vaf; 3849 va_list args; 3850 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3851 3852 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3853 return; 3854 3855 va_start(args, fmt); 3856 vaf.fmt = fmt; 3857 vaf.va = &args; 3858 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3859 current->comm, &vaf, gfp_mask, &gfp_mask, 3860 nodemask_pr_args(nodemask)); 3861 va_end(args); 3862 3863 cpuset_print_current_mems_allowed(); 3864 pr_cont("\n"); 3865 dump_stack(); 3866 warn_alloc_show_mem(gfp_mask, nodemask); 3867 } 3868 3869 static inline struct page * 3870 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3871 unsigned int alloc_flags, 3872 const struct alloc_context *ac) 3873 { 3874 struct page *page; 3875 3876 page = get_page_from_freelist(gfp_mask, order, 3877 alloc_flags|ALLOC_CPUSET, ac); 3878 /* 3879 * fallback to ignore cpuset restriction if our nodes 3880 * are depleted 3881 */ 3882 if (!page) 3883 page = get_page_from_freelist(gfp_mask, order, 3884 alloc_flags, ac); 3885 3886 return page; 3887 } 3888 3889 static inline struct page * 3890 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3891 const struct alloc_context *ac, unsigned long *did_some_progress) 3892 { 3893 struct oom_control oc = { 3894 .zonelist = ac->zonelist, 3895 .nodemask = ac->nodemask, 3896 .memcg = NULL, 3897 .gfp_mask = gfp_mask, 3898 .order = order, 3899 }; 3900 struct page *page; 3901 3902 *did_some_progress = 0; 3903 3904 /* 3905 * Acquire the oom lock. If that fails, somebody else is 3906 * making progress for us. 3907 */ 3908 if (!mutex_trylock(&oom_lock)) { 3909 *did_some_progress = 1; 3910 schedule_timeout_uninterruptible(1); 3911 return NULL; 3912 } 3913 3914 /* 3915 * Go through the zonelist yet one more time, keep very high watermark 3916 * here, this is only to catch a parallel oom killing, we must fail if 3917 * we're still under heavy pressure. But make sure that this reclaim 3918 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3919 * allocation which will never fail due to oom_lock already held. 3920 */ 3921 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3922 ~__GFP_DIRECT_RECLAIM, order, 3923 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3924 if (page) 3925 goto out; 3926 3927 /* Coredumps can quickly deplete all memory reserves */ 3928 if (current->flags & PF_DUMPCORE) 3929 goto out; 3930 /* The OOM killer will not help higher order allocs */ 3931 if (order > PAGE_ALLOC_COSTLY_ORDER) 3932 goto out; 3933 /* 3934 * We have already exhausted all our reclaim opportunities without any 3935 * success so it is time to admit defeat. We will skip the OOM killer 3936 * because it is very likely that the caller has a more reasonable 3937 * fallback than shooting a random task. 3938 */ 3939 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3940 goto out; 3941 /* The OOM killer does not needlessly kill tasks for lowmem */ 3942 if (ac->highest_zoneidx < ZONE_NORMAL) 3943 goto out; 3944 if (pm_suspended_storage()) 3945 goto out; 3946 /* 3947 * XXX: GFP_NOFS allocations should rather fail than rely on 3948 * other request to make a forward progress. 3949 * We are in an unfortunate situation where out_of_memory cannot 3950 * do much for this context but let's try it to at least get 3951 * access to memory reserved if the current task is killed (see 3952 * out_of_memory). Once filesystems are ready to handle allocation 3953 * failures more gracefully we should just bail out here. 3954 */ 3955 3956 /* The OOM killer may not free memory on a specific node */ 3957 if (gfp_mask & __GFP_THISNODE) 3958 goto out; 3959 3960 /* Exhausted what can be done so it's blame time */ 3961 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3962 *did_some_progress = 1; 3963 3964 /* 3965 * Help non-failing allocations by giving them access to memory 3966 * reserves 3967 */ 3968 if (gfp_mask & __GFP_NOFAIL) 3969 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3970 ALLOC_NO_WATERMARKS, ac); 3971 } 3972 out: 3973 mutex_unlock(&oom_lock); 3974 return page; 3975 } 3976 3977 /* 3978 * Maximum number of compaction retries wit a progress before OOM 3979 * killer is consider as the only way to move forward. 3980 */ 3981 #define MAX_COMPACT_RETRIES 16 3982 3983 #ifdef CONFIG_COMPACTION 3984 /* Try memory compaction for high-order allocations before reclaim */ 3985 static struct page * 3986 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3987 unsigned int alloc_flags, const struct alloc_context *ac, 3988 enum compact_priority prio, enum compact_result *compact_result) 3989 { 3990 struct page *page = NULL; 3991 unsigned long pflags; 3992 unsigned int noreclaim_flag; 3993 3994 if (!order) 3995 return NULL; 3996 3997 psi_memstall_enter(&pflags); 3998 noreclaim_flag = memalloc_noreclaim_save(); 3999 4000 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4001 prio, &page); 4002 4003 memalloc_noreclaim_restore(noreclaim_flag); 4004 psi_memstall_leave(&pflags); 4005 4006 /* 4007 * At least in one zone compaction wasn't deferred or skipped, so let's 4008 * count a compaction stall 4009 */ 4010 count_vm_event(COMPACTSTALL); 4011 4012 /* Prep a captured page if available */ 4013 if (page) 4014 prep_new_page(page, order, gfp_mask, alloc_flags); 4015 4016 /* Try get a page from the freelist if available */ 4017 if (!page) 4018 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4019 4020 if (page) { 4021 struct zone *zone = page_zone(page); 4022 4023 zone->compact_blockskip_flush = false; 4024 compaction_defer_reset(zone, order, true); 4025 count_vm_event(COMPACTSUCCESS); 4026 return page; 4027 } 4028 4029 /* 4030 * It's bad if compaction run occurs and fails. The most likely reason 4031 * is that pages exist, but not enough to satisfy watermarks. 4032 */ 4033 count_vm_event(COMPACTFAIL); 4034 4035 cond_resched(); 4036 4037 return NULL; 4038 } 4039 4040 static inline bool 4041 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4042 enum compact_result compact_result, 4043 enum compact_priority *compact_priority, 4044 int *compaction_retries) 4045 { 4046 int max_retries = MAX_COMPACT_RETRIES; 4047 int min_priority; 4048 bool ret = false; 4049 int retries = *compaction_retries; 4050 enum compact_priority priority = *compact_priority; 4051 4052 if (!order) 4053 return false; 4054 4055 if (compaction_made_progress(compact_result)) 4056 (*compaction_retries)++; 4057 4058 /* 4059 * compaction considers all the zone as desperately out of memory 4060 * so it doesn't really make much sense to retry except when the 4061 * failure could be caused by insufficient priority 4062 */ 4063 if (compaction_failed(compact_result)) 4064 goto check_priority; 4065 4066 /* 4067 * compaction was skipped because there are not enough order-0 pages 4068 * to work with, so we retry only if it looks like reclaim can help. 4069 */ 4070 if (compaction_needs_reclaim(compact_result)) { 4071 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4072 goto out; 4073 } 4074 4075 /* 4076 * make sure the compaction wasn't deferred or didn't bail out early 4077 * due to locks contention before we declare that we should give up. 4078 * But the next retry should use a higher priority if allowed, so 4079 * we don't just keep bailing out endlessly. 4080 */ 4081 if (compaction_withdrawn(compact_result)) { 4082 goto check_priority; 4083 } 4084 4085 /* 4086 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4087 * costly ones because they are de facto nofail and invoke OOM 4088 * killer to move on while costly can fail and users are ready 4089 * to cope with that. 1/4 retries is rather arbitrary but we 4090 * would need much more detailed feedback from compaction to 4091 * make a better decision. 4092 */ 4093 if (order > PAGE_ALLOC_COSTLY_ORDER) 4094 max_retries /= 4; 4095 if (*compaction_retries <= max_retries) { 4096 ret = true; 4097 goto out; 4098 } 4099 4100 /* 4101 * Make sure there are attempts at the highest priority if we exhausted 4102 * all retries or failed at the lower priorities. 4103 */ 4104 check_priority: 4105 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4106 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4107 4108 if (*compact_priority > min_priority) { 4109 (*compact_priority)--; 4110 *compaction_retries = 0; 4111 ret = true; 4112 } 4113 out: 4114 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4115 return ret; 4116 } 4117 #else 4118 static inline struct page * 4119 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4120 unsigned int alloc_flags, const struct alloc_context *ac, 4121 enum compact_priority prio, enum compact_result *compact_result) 4122 { 4123 *compact_result = COMPACT_SKIPPED; 4124 return NULL; 4125 } 4126 4127 static inline bool 4128 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4129 enum compact_result compact_result, 4130 enum compact_priority *compact_priority, 4131 int *compaction_retries) 4132 { 4133 struct zone *zone; 4134 struct zoneref *z; 4135 4136 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4137 return false; 4138 4139 /* 4140 * There are setups with compaction disabled which would prefer to loop 4141 * inside the allocator rather than hit the oom killer prematurely. 4142 * Let's give them a good hope and keep retrying while the order-0 4143 * watermarks are OK. 4144 */ 4145 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4146 ac->highest_zoneidx, ac->nodemask) { 4147 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4148 ac->highest_zoneidx, alloc_flags)) 4149 return true; 4150 } 4151 return false; 4152 } 4153 #endif /* CONFIG_COMPACTION */ 4154 4155 #ifdef CONFIG_LOCKDEP 4156 static struct lockdep_map __fs_reclaim_map = 4157 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4158 4159 static bool __need_fs_reclaim(gfp_t gfp_mask) 4160 { 4161 gfp_mask = current_gfp_context(gfp_mask); 4162 4163 /* no reclaim without waiting on it */ 4164 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4165 return false; 4166 4167 /* this guy won't enter reclaim */ 4168 if (current->flags & PF_MEMALLOC) 4169 return false; 4170 4171 /* We're only interested __GFP_FS allocations for now */ 4172 if (!(gfp_mask & __GFP_FS)) 4173 return false; 4174 4175 if (gfp_mask & __GFP_NOLOCKDEP) 4176 return false; 4177 4178 return true; 4179 } 4180 4181 void __fs_reclaim_acquire(void) 4182 { 4183 lock_map_acquire(&__fs_reclaim_map); 4184 } 4185 4186 void __fs_reclaim_release(void) 4187 { 4188 lock_map_release(&__fs_reclaim_map); 4189 } 4190 4191 void fs_reclaim_acquire(gfp_t gfp_mask) 4192 { 4193 if (__need_fs_reclaim(gfp_mask)) 4194 __fs_reclaim_acquire(); 4195 } 4196 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4197 4198 void fs_reclaim_release(gfp_t gfp_mask) 4199 { 4200 if (__need_fs_reclaim(gfp_mask)) 4201 __fs_reclaim_release(); 4202 } 4203 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4204 #endif 4205 4206 /* Perform direct synchronous page reclaim */ 4207 static int 4208 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4209 const struct alloc_context *ac) 4210 { 4211 int progress; 4212 unsigned int noreclaim_flag; 4213 unsigned long pflags; 4214 4215 cond_resched(); 4216 4217 /* We now go into synchronous reclaim */ 4218 cpuset_memory_pressure_bump(); 4219 psi_memstall_enter(&pflags); 4220 fs_reclaim_acquire(gfp_mask); 4221 noreclaim_flag = memalloc_noreclaim_save(); 4222 4223 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4224 ac->nodemask); 4225 4226 memalloc_noreclaim_restore(noreclaim_flag); 4227 fs_reclaim_release(gfp_mask); 4228 psi_memstall_leave(&pflags); 4229 4230 cond_resched(); 4231 4232 return progress; 4233 } 4234 4235 /* The really slow allocator path where we enter direct reclaim */ 4236 static inline struct page * 4237 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4238 unsigned int alloc_flags, const struct alloc_context *ac, 4239 unsigned long *did_some_progress) 4240 { 4241 struct page *page = NULL; 4242 bool drained = false; 4243 4244 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4245 if (unlikely(!(*did_some_progress))) 4246 return NULL; 4247 4248 retry: 4249 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4250 4251 /* 4252 * If an allocation failed after direct reclaim, it could be because 4253 * pages are pinned on the per-cpu lists or in high alloc reserves. 4254 * Shrink them them and try again 4255 */ 4256 if (!page && !drained) { 4257 unreserve_highatomic_pageblock(ac, false); 4258 drain_all_pages(NULL); 4259 drained = true; 4260 goto retry; 4261 } 4262 4263 return page; 4264 } 4265 4266 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4267 const struct alloc_context *ac) 4268 { 4269 struct zoneref *z; 4270 struct zone *zone; 4271 pg_data_t *last_pgdat = NULL; 4272 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4273 4274 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4275 ac->nodemask) { 4276 if (last_pgdat != zone->zone_pgdat) 4277 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4278 last_pgdat = zone->zone_pgdat; 4279 } 4280 } 4281 4282 static inline unsigned int 4283 gfp_to_alloc_flags(gfp_t gfp_mask) 4284 { 4285 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4286 4287 /* 4288 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4289 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4290 * to save two branches. 4291 */ 4292 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4293 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4294 4295 /* 4296 * The caller may dip into page reserves a bit more if the caller 4297 * cannot run direct reclaim, or if the caller has realtime scheduling 4298 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4299 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4300 */ 4301 alloc_flags |= (__force int) 4302 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4303 4304 if (gfp_mask & __GFP_ATOMIC) { 4305 /* 4306 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4307 * if it can't schedule. 4308 */ 4309 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4310 alloc_flags |= ALLOC_HARDER; 4311 /* 4312 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4313 * comment for __cpuset_node_allowed(). 4314 */ 4315 alloc_flags &= ~ALLOC_CPUSET; 4316 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4317 alloc_flags |= ALLOC_HARDER; 4318 4319 #ifdef CONFIG_CMA 4320 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4321 alloc_flags |= ALLOC_CMA; 4322 #endif 4323 return alloc_flags; 4324 } 4325 4326 static bool oom_reserves_allowed(struct task_struct *tsk) 4327 { 4328 if (!tsk_is_oom_victim(tsk)) 4329 return false; 4330 4331 /* 4332 * !MMU doesn't have oom reaper so give access to memory reserves 4333 * only to the thread with TIF_MEMDIE set 4334 */ 4335 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4336 return false; 4337 4338 return true; 4339 } 4340 4341 /* 4342 * Distinguish requests which really need access to full memory 4343 * reserves from oom victims which can live with a portion of it 4344 */ 4345 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4346 { 4347 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4348 return 0; 4349 if (gfp_mask & __GFP_MEMALLOC) 4350 return ALLOC_NO_WATERMARKS; 4351 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4352 return ALLOC_NO_WATERMARKS; 4353 if (!in_interrupt()) { 4354 if (current->flags & PF_MEMALLOC) 4355 return ALLOC_NO_WATERMARKS; 4356 else if (oom_reserves_allowed(current)) 4357 return ALLOC_OOM; 4358 } 4359 4360 return 0; 4361 } 4362 4363 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4364 { 4365 return !!__gfp_pfmemalloc_flags(gfp_mask); 4366 } 4367 4368 /* 4369 * Checks whether it makes sense to retry the reclaim to make a forward progress 4370 * for the given allocation request. 4371 * 4372 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4373 * without success, or when we couldn't even meet the watermark if we 4374 * reclaimed all remaining pages on the LRU lists. 4375 * 4376 * Returns true if a retry is viable or false to enter the oom path. 4377 */ 4378 static inline bool 4379 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4380 struct alloc_context *ac, int alloc_flags, 4381 bool did_some_progress, int *no_progress_loops) 4382 { 4383 struct zone *zone; 4384 struct zoneref *z; 4385 bool ret = false; 4386 4387 /* 4388 * Costly allocations might have made a progress but this doesn't mean 4389 * their order will become available due to high fragmentation so 4390 * always increment the no progress counter for them 4391 */ 4392 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4393 *no_progress_loops = 0; 4394 else 4395 (*no_progress_loops)++; 4396 4397 /* 4398 * Make sure we converge to OOM if we cannot make any progress 4399 * several times in the row. 4400 */ 4401 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4402 /* Before OOM, exhaust highatomic_reserve */ 4403 return unreserve_highatomic_pageblock(ac, true); 4404 } 4405 4406 /* 4407 * Keep reclaiming pages while there is a chance this will lead 4408 * somewhere. If none of the target zones can satisfy our allocation 4409 * request even if all reclaimable pages are considered then we are 4410 * screwed and have to go OOM. 4411 */ 4412 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4413 ac->highest_zoneidx, ac->nodemask) { 4414 unsigned long available; 4415 unsigned long reclaimable; 4416 unsigned long min_wmark = min_wmark_pages(zone); 4417 bool wmark; 4418 4419 available = reclaimable = zone_reclaimable_pages(zone); 4420 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4421 4422 /* 4423 * Would the allocation succeed if we reclaimed all 4424 * reclaimable pages? 4425 */ 4426 wmark = __zone_watermark_ok(zone, order, min_wmark, 4427 ac->highest_zoneidx, alloc_flags, available); 4428 trace_reclaim_retry_zone(z, order, reclaimable, 4429 available, min_wmark, *no_progress_loops, wmark); 4430 if (wmark) { 4431 /* 4432 * If we didn't make any progress and have a lot of 4433 * dirty + writeback pages then we should wait for 4434 * an IO to complete to slow down the reclaim and 4435 * prevent from pre mature OOM 4436 */ 4437 if (!did_some_progress) { 4438 unsigned long write_pending; 4439 4440 write_pending = zone_page_state_snapshot(zone, 4441 NR_ZONE_WRITE_PENDING); 4442 4443 if (2 * write_pending > reclaimable) { 4444 congestion_wait(BLK_RW_ASYNC, HZ/10); 4445 return true; 4446 } 4447 } 4448 4449 ret = true; 4450 goto out; 4451 } 4452 } 4453 4454 out: 4455 /* 4456 * Memory allocation/reclaim might be called from a WQ context and the 4457 * current implementation of the WQ concurrency control doesn't 4458 * recognize that a particular WQ is congested if the worker thread is 4459 * looping without ever sleeping. Therefore we have to do a short sleep 4460 * here rather than calling cond_resched(). 4461 */ 4462 if (current->flags & PF_WQ_WORKER) 4463 schedule_timeout_uninterruptible(1); 4464 else 4465 cond_resched(); 4466 return ret; 4467 } 4468 4469 static inline bool 4470 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4471 { 4472 /* 4473 * It's possible that cpuset's mems_allowed and the nodemask from 4474 * mempolicy don't intersect. This should be normally dealt with by 4475 * policy_nodemask(), but it's possible to race with cpuset update in 4476 * such a way the check therein was true, and then it became false 4477 * before we got our cpuset_mems_cookie here. 4478 * This assumes that for all allocations, ac->nodemask can come only 4479 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4480 * when it does not intersect with the cpuset restrictions) or the 4481 * caller can deal with a violated nodemask. 4482 */ 4483 if (cpusets_enabled() && ac->nodemask && 4484 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4485 ac->nodemask = NULL; 4486 return true; 4487 } 4488 4489 /* 4490 * When updating a task's mems_allowed or mempolicy nodemask, it is 4491 * possible to race with parallel threads in such a way that our 4492 * allocation can fail while the mask is being updated. If we are about 4493 * to fail, check if the cpuset changed during allocation and if so, 4494 * retry. 4495 */ 4496 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4497 return true; 4498 4499 return false; 4500 } 4501 4502 static inline struct page * 4503 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4504 struct alloc_context *ac) 4505 { 4506 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4507 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4508 struct page *page = NULL; 4509 unsigned int alloc_flags; 4510 unsigned long did_some_progress; 4511 enum compact_priority compact_priority; 4512 enum compact_result compact_result; 4513 int compaction_retries; 4514 int no_progress_loops; 4515 unsigned int cpuset_mems_cookie; 4516 int reserve_flags; 4517 4518 /* 4519 * We also sanity check to catch abuse of atomic reserves being used by 4520 * callers that are not in atomic context. 4521 */ 4522 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4523 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4524 gfp_mask &= ~__GFP_ATOMIC; 4525 4526 retry_cpuset: 4527 compaction_retries = 0; 4528 no_progress_loops = 0; 4529 compact_priority = DEF_COMPACT_PRIORITY; 4530 cpuset_mems_cookie = read_mems_allowed_begin(); 4531 4532 /* 4533 * The fast path uses conservative alloc_flags to succeed only until 4534 * kswapd needs to be woken up, and to avoid the cost of setting up 4535 * alloc_flags precisely. So we do that now. 4536 */ 4537 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4538 4539 /* 4540 * We need to recalculate the starting point for the zonelist iterator 4541 * because we might have used different nodemask in the fast path, or 4542 * there was a cpuset modification and we are retrying - otherwise we 4543 * could end up iterating over non-eligible zones endlessly. 4544 */ 4545 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4546 ac->highest_zoneidx, ac->nodemask); 4547 if (!ac->preferred_zoneref->zone) 4548 goto nopage; 4549 4550 if (alloc_flags & ALLOC_KSWAPD) 4551 wake_all_kswapds(order, gfp_mask, ac); 4552 4553 /* 4554 * The adjusted alloc_flags might result in immediate success, so try 4555 * that first 4556 */ 4557 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4558 if (page) 4559 goto got_pg; 4560 4561 /* 4562 * For costly allocations, try direct compaction first, as it's likely 4563 * that we have enough base pages and don't need to reclaim. For non- 4564 * movable high-order allocations, do that as well, as compaction will 4565 * try prevent permanent fragmentation by migrating from blocks of the 4566 * same migratetype. 4567 * Don't try this for allocations that are allowed to ignore 4568 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4569 */ 4570 if (can_direct_reclaim && 4571 (costly_order || 4572 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4573 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4574 page = __alloc_pages_direct_compact(gfp_mask, order, 4575 alloc_flags, ac, 4576 INIT_COMPACT_PRIORITY, 4577 &compact_result); 4578 if (page) 4579 goto got_pg; 4580 4581 /* 4582 * Checks for costly allocations with __GFP_NORETRY, which 4583 * includes some THP page fault allocations 4584 */ 4585 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4586 /* 4587 * If allocating entire pageblock(s) and compaction 4588 * failed because all zones are below low watermarks 4589 * or is prohibited because it recently failed at this 4590 * order, fail immediately unless the allocator has 4591 * requested compaction and reclaim retry. 4592 * 4593 * Reclaim is 4594 * - potentially very expensive because zones are far 4595 * below their low watermarks or this is part of very 4596 * bursty high order allocations, 4597 * - not guaranteed to help because isolate_freepages() 4598 * may not iterate over freed pages as part of its 4599 * linear scan, and 4600 * - unlikely to make entire pageblocks free on its 4601 * own. 4602 */ 4603 if (compact_result == COMPACT_SKIPPED || 4604 compact_result == COMPACT_DEFERRED) 4605 goto nopage; 4606 4607 /* 4608 * Looks like reclaim/compaction is worth trying, but 4609 * sync compaction could be very expensive, so keep 4610 * using async compaction. 4611 */ 4612 compact_priority = INIT_COMPACT_PRIORITY; 4613 } 4614 } 4615 4616 retry: 4617 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4618 if (alloc_flags & ALLOC_KSWAPD) 4619 wake_all_kswapds(order, gfp_mask, ac); 4620 4621 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4622 if (reserve_flags) 4623 alloc_flags = reserve_flags; 4624 4625 /* 4626 * Reset the nodemask and zonelist iterators if memory policies can be 4627 * ignored. These allocations are high priority and system rather than 4628 * user oriented. 4629 */ 4630 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4631 ac->nodemask = NULL; 4632 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4633 ac->highest_zoneidx, ac->nodemask); 4634 } 4635 4636 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4637 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4638 if (page) 4639 goto got_pg; 4640 4641 /* Caller is not willing to reclaim, we can't balance anything */ 4642 if (!can_direct_reclaim) 4643 goto nopage; 4644 4645 /* Avoid recursion of direct reclaim */ 4646 if (current->flags & PF_MEMALLOC) 4647 goto nopage; 4648 4649 /* Try direct reclaim and then allocating */ 4650 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4651 &did_some_progress); 4652 if (page) 4653 goto got_pg; 4654 4655 /* Try direct compaction and then allocating */ 4656 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4657 compact_priority, &compact_result); 4658 if (page) 4659 goto got_pg; 4660 4661 /* Do not loop if specifically requested */ 4662 if (gfp_mask & __GFP_NORETRY) 4663 goto nopage; 4664 4665 /* 4666 * Do not retry costly high order allocations unless they are 4667 * __GFP_RETRY_MAYFAIL 4668 */ 4669 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4670 goto nopage; 4671 4672 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4673 did_some_progress > 0, &no_progress_loops)) 4674 goto retry; 4675 4676 /* 4677 * It doesn't make any sense to retry for the compaction if the order-0 4678 * reclaim is not able to make any progress because the current 4679 * implementation of the compaction depends on the sufficient amount 4680 * of free memory (see __compaction_suitable) 4681 */ 4682 if (did_some_progress > 0 && 4683 should_compact_retry(ac, order, alloc_flags, 4684 compact_result, &compact_priority, 4685 &compaction_retries)) 4686 goto retry; 4687 4688 4689 /* Deal with possible cpuset update races before we start OOM killing */ 4690 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4691 goto retry_cpuset; 4692 4693 /* Reclaim has failed us, start killing things */ 4694 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4695 if (page) 4696 goto got_pg; 4697 4698 /* Avoid allocations with no watermarks from looping endlessly */ 4699 if (tsk_is_oom_victim(current) && 4700 (alloc_flags == ALLOC_OOM || 4701 (gfp_mask & __GFP_NOMEMALLOC))) 4702 goto nopage; 4703 4704 /* Retry as long as the OOM killer is making progress */ 4705 if (did_some_progress) { 4706 no_progress_loops = 0; 4707 goto retry; 4708 } 4709 4710 nopage: 4711 /* Deal with possible cpuset update races before we fail */ 4712 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4713 goto retry_cpuset; 4714 4715 /* 4716 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4717 * we always retry 4718 */ 4719 if (gfp_mask & __GFP_NOFAIL) { 4720 /* 4721 * All existing users of the __GFP_NOFAIL are blockable, so warn 4722 * of any new users that actually require GFP_NOWAIT 4723 */ 4724 if (WARN_ON_ONCE(!can_direct_reclaim)) 4725 goto fail; 4726 4727 /* 4728 * PF_MEMALLOC request from this context is rather bizarre 4729 * because we cannot reclaim anything and only can loop waiting 4730 * for somebody to do a work for us 4731 */ 4732 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4733 4734 /* 4735 * non failing costly orders are a hard requirement which we 4736 * are not prepared for much so let's warn about these users 4737 * so that we can identify them and convert them to something 4738 * else. 4739 */ 4740 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4741 4742 /* 4743 * Help non-failing allocations by giving them access to memory 4744 * reserves but do not use ALLOC_NO_WATERMARKS because this 4745 * could deplete whole memory reserves which would just make 4746 * the situation worse 4747 */ 4748 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4749 if (page) 4750 goto got_pg; 4751 4752 cond_resched(); 4753 goto retry; 4754 } 4755 fail: 4756 warn_alloc(gfp_mask, ac->nodemask, 4757 "page allocation failure: order:%u", order); 4758 got_pg: 4759 return page; 4760 } 4761 4762 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4763 int preferred_nid, nodemask_t *nodemask, 4764 struct alloc_context *ac, gfp_t *alloc_mask, 4765 unsigned int *alloc_flags) 4766 { 4767 ac->highest_zoneidx = gfp_zone(gfp_mask); 4768 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4769 ac->nodemask = nodemask; 4770 ac->migratetype = gfp_migratetype(gfp_mask); 4771 4772 if (cpusets_enabled()) { 4773 *alloc_mask |= __GFP_HARDWALL; 4774 if (!ac->nodemask) 4775 ac->nodemask = &cpuset_current_mems_allowed; 4776 else 4777 *alloc_flags |= ALLOC_CPUSET; 4778 } 4779 4780 fs_reclaim_acquire(gfp_mask); 4781 fs_reclaim_release(gfp_mask); 4782 4783 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4784 4785 if (should_fail_alloc_page(gfp_mask, order)) 4786 return false; 4787 4788 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4789 *alloc_flags |= ALLOC_CMA; 4790 4791 return true; 4792 } 4793 4794 /* Determine whether to spread dirty pages and what the first usable zone */ 4795 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4796 { 4797 /* Dirty zone balancing only done in the fast path */ 4798 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4799 4800 /* 4801 * The preferred zone is used for statistics but crucially it is 4802 * also used as the starting point for the zonelist iterator. It 4803 * may get reset for allocations that ignore memory policies. 4804 */ 4805 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4806 ac->highest_zoneidx, ac->nodemask); 4807 } 4808 4809 /* 4810 * This is the 'heart' of the zoned buddy allocator. 4811 */ 4812 struct page * 4813 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4814 nodemask_t *nodemask) 4815 { 4816 struct page *page; 4817 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4818 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4819 struct alloc_context ac = { }; 4820 4821 /* 4822 * There are several places where we assume that the order value is sane 4823 * so bail out early if the request is out of bound. 4824 */ 4825 if (unlikely(order >= MAX_ORDER)) { 4826 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4827 return NULL; 4828 } 4829 4830 gfp_mask &= gfp_allowed_mask; 4831 alloc_mask = gfp_mask; 4832 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4833 return NULL; 4834 4835 finalise_ac(gfp_mask, &ac); 4836 4837 /* 4838 * Forbid the first pass from falling back to types that fragment 4839 * memory until all local zones are considered. 4840 */ 4841 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4842 4843 /* First allocation attempt */ 4844 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4845 if (likely(page)) 4846 goto out; 4847 4848 /* 4849 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4850 * resp. GFP_NOIO which has to be inherited for all allocation requests 4851 * from a particular context which has been marked by 4852 * memalloc_no{fs,io}_{save,restore}. 4853 */ 4854 alloc_mask = current_gfp_context(gfp_mask); 4855 ac.spread_dirty_pages = false; 4856 4857 /* 4858 * Restore the original nodemask if it was potentially replaced with 4859 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4860 */ 4861 ac.nodemask = nodemask; 4862 4863 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4864 4865 out: 4866 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4867 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 4868 __free_pages(page, order); 4869 page = NULL; 4870 } 4871 4872 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4873 4874 return page; 4875 } 4876 EXPORT_SYMBOL(__alloc_pages_nodemask); 4877 4878 /* 4879 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4880 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4881 * you need to access high mem. 4882 */ 4883 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4884 { 4885 struct page *page; 4886 4887 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4888 if (!page) 4889 return 0; 4890 return (unsigned long) page_address(page); 4891 } 4892 EXPORT_SYMBOL(__get_free_pages); 4893 4894 unsigned long get_zeroed_page(gfp_t gfp_mask) 4895 { 4896 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4897 } 4898 EXPORT_SYMBOL(get_zeroed_page); 4899 4900 static inline void free_the_page(struct page *page, unsigned int order) 4901 { 4902 if (order == 0) /* Via pcp? */ 4903 free_unref_page(page); 4904 else 4905 __free_pages_ok(page, order); 4906 } 4907 4908 void __free_pages(struct page *page, unsigned int order) 4909 { 4910 if (put_page_testzero(page)) 4911 free_the_page(page, order); 4912 } 4913 EXPORT_SYMBOL(__free_pages); 4914 4915 void free_pages(unsigned long addr, unsigned int order) 4916 { 4917 if (addr != 0) { 4918 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4919 __free_pages(virt_to_page((void *)addr), order); 4920 } 4921 } 4922 4923 EXPORT_SYMBOL(free_pages); 4924 4925 /* 4926 * Page Fragment: 4927 * An arbitrary-length arbitrary-offset area of memory which resides 4928 * within a 0 or higher order page. Multiple fragments within that page 4929 * are individually refcounted, in the page's reference counter. 4930 * 4931 * The page_frag functions below provide a simple allocation framework for 4932 * page fragments. This is used by the network stack and network device 4933 * drivers to provide a backing region of memory for use as either an 4934 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4935 */ 4936 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4937 gfp_t gfp_mask) 4938 { 4939 struct page *page = NULL; 4940 gfp_t gfp = gfp_mask; 4941 4942 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4943 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4944 __GFP_NOMEMALLOC; 4945 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4946 PAGE_FRAG_CACHE_MAX_ORDER); 4947 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4948 #endif 4949 if (unlikely(!page)) 4950 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4951 4952 nc->va = page ? page_address(page) : NULL; 4953 4954 return page; 4955 } 4956 4957 void __page_frag_cache_drain(struct page *page, unsigned int count) 4958 { 4959 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4960 4961 if (page_ref_sub_and_test(page, count)) 4962 free_the_page(page, compound_order(page)); 4963 } 4964 EXPORT_SYMBOL(__page_frag_cache_drain); 4965 4966 void *page_frag_alloc(struct page_frag_cache *nc, 4967 unsigned int fragsz, gfp_t gfp_mask) 4968 { 4969 unsigned int size = PAGE_SIZE; 4970 struct page *page; 4971 int offset; 4972 4973 if (unlikely(!nc->va)) { 4974 refill: 4975 page = __page_frag_cache_refill(nc, gfp_mask); 4976 if (!page) 4977 return NULL; 4978 4979 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4980 /* if size can vary use size else just use PAGE_SIZE */ 4981 size = nc->size; 4982 #endif 4983 /* Even if we own the page, we do not use atomic_set(). 4984 * This would break get_page_unless_zero() users. 4985 */ 4986 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4987 4988 /* reset page count bias and offset to start of new frag */ 4989 nc->pfmemalloc = page_is_pfmemalloc(page); 4990 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4991 nc->offset = size; 4992 } 4993 4994 offset = nc->offset - fragsz; 4995 if (unlikely(offset < 0)) { 4996 page = virt_to_page(nc->va); 4997 4998 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4999 goto refill; 5000 5001 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5002 /* if size can vary use size else just use PAGE_SIZE */ 5003 size = nc->size; 5004 #endif 5005 /* OK, page count is 0, we can safely set it */ 5006 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5007 5008 /* reset page count bias and offset to start of new frag */ 5009 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5010 offset = size - fragsz; 5011 } 5012 5013 nc->pagecnt_bias--; 5014 nc->offset = offset; 5015 5016 return nc->va + offset; 5017 } 5018 EXPORT_SYMBOL(page_frag_alloc); 5019 5020 /* 5021 * Frees a page fragment allocated out of either a compound or order 0 page. 5022 */ 5023 void page_frag_free(void *addr) 5024 { 5025 struct page *page = virt_to_head_page(addr); 5026 5027 if (unlikely(put_page_testzero(page))) 5028 free_the_page(page, compound_order(page)); 5029 } 5030 EXPORT_SYMBOL(page_frag_free); 5031 5032 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5033 size_t size) 5034 { 5035 if (addr) { 5036 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5037 unsigned long used = addr + PAGE_ALIGN(size); 5038 5039 split_page(virt_to_page((void *)addr), order); 5040 while (used < alloc_end) { 5041 free_page(used); 5042 used += PAGE_SIZE; 5043 } 5044 } 5045 return (void *)addr; 5046 } 5047 5048 /** 5049 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5050 * @size: the number of bytes to allocate 5051 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5052 * 5053 * This function is similar to alloc_pages(), except that it allocates the 5054 * minimum number of pages to satisfy the request. alloc_pages() can only 5055 * allocate memory in power-of-two pages. 5056 * 5057 * This function is also limited by MAX_ORDER. 5058 * 5059 * Memory allocated by this function must be released by free_pages_exact(). 5060 * 5061 * Return: pointer to the allocated area or %NULL in case of error. 5062 */ 5063 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5064 { 5065 unsigned int order = get_order(size); 5066 unsigned long addr; 5067 5068 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5069 gfp_mask &= ~__GFP_COMP; 5070 5071 addr = __get_free_pages(gfp_mask, order); 5072 return make_alloc_exact(addr, order, size); 5073 } 5074 EXPORT_SYMBOL(alloc_pages_exact); 5075 5076 /** 5077 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5078 * pages on a node. 5079 * @nid: the preferred node ID where memory should be allocated 5080 * @size: the number of bytes to allocate 5081 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5082 * 5083 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5084 * back. 5085 * 5086 * Return: pointer to the allocated area or %NULL in case of error. 5087 */ 5088 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5089 { 5090 unsigned int order = get_order(size); 5091 struct page *p; 5092 5093 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5094 gfp_mask &= ~__GFP_COMP; 5095 5096 p = alloc_pages_node(nid, gfp_mask, order); 5097 if (!p) 5098 return NULL; 5099 return make_alloc_exact((unsigned long)page_address(p), order, size); 5100 } 5101 5102 /** 5103 * free_pages_exact - release memory allocated via alloc_pages_exact() 5104 * @virt: the value returned by alloc_pages_exact. 5105 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5106 * 5107 * Release the memory allocated by a previous call to alloc_pages_exact. 5108 */ 5109 void free_pages_exact(void *virt, size_t size) 5110 { 5111 unsigned long addr = (unsigned long)virt; 5112 unsigned long end = addr + PAGE_ALIGN(size); 5113 5114 while (addr < end) { 5115 free_page(addr); 5116 addr += PAGE_SIZE; 5117 } 5118 } 5119 EXPORT_SYMBOL(free_pages_exact); 5120 5121 /** 5122 * nr_free_zone_pages - count number of pages beyond high watermark 5123 * @offset: The zone index of the highest zone 5124 * 5125 * nr_free_zone_pages() counts the number of pages which are beyond the 5126 * high watermark within all zones at or below a given zone index. For each 5127 * zone, the number of pages is calculated as: 5128 * 5129 * nr_free_zone_pages = managed_pages - high_pages 5130 * 5131 * Return: number of pages beyond high watermark. 5132 */ 5133 static unsigned long nr_free_zone_pages(int offset) 5134 { 5135 struct zoneref *z; 5136 struct zone *zone; 5137 5138 /* Just pick one node, since fallback list is circular */ 5139 unsigned long sum = 0; 5140 5141 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5142 5143 for_each_zone_zonelist(zone, z, zonelist, offset) { 5144 unsigned long size = zone_managed_pages(zone); 5145 unsigned long high = high_wmark_pages(zone); 5146 if (size > high) 5147 sum += size - high; 5148 } 5149 5150 return sum; 5151 } 5152 5153 /** 5154 * nr_free_buffer_pages - count number of pages beyond high watermark 5155 * 5156 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5157 * watermark within ZONE_DMA and ZONE_NORMAL. 5158 * 5159 * Return: number of pages beyond high watermark within ZONE_DMA and 5160 * ZONE_NORMAL. 5161 */ 5162 unsigned long nr_free_buffer_pages(void) 5163 { 5164 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5165 } 5166 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5167 5168 /** 5169 * nr_free_pagecache_pages - count number of pages beyond high watermark 5170 * 5171 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5172 * high watermark within all zones. 5173 * 5174 * Return: number of pages beyond high watermark within all zones. 5175 */ 5176 unsigned long nr_free_pagecache_pages(void) 5177 { 5178 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5179 } 5180 5181 static inline void show_node(struct zone *zone) 5182 { 5183 if (IS_ENABLED(CONFIG_NUMA)) 5184 printk("Node %d ", zone_to_nid(zone)); 5185 } 5186 5187 long si_mem_available(void) 5188 { 5189 long available; 5190 unsigned long pagecache; 5191 unsigned long wmark_low = 0; 5192 unsigned long pages[NR_LRU_LISTS]; 5193 unsigned long reclaimable; 5194 struct zone *zone; 5195 int lru; 5196 5197 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5198 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5199 5200 for_each_zone(zone) 5201 wmark_low += low_wmark_pages(zone); 5202 5203 /* 5204 * Estimate the amount of memory available for userspace allocations, 5205 * without causing swapping. 5206 */ 5207 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5208 5209 /* 5210 * Not all the page cache can be freed, otherwise the system will 5211 * start swapping. Assume at least half of the page cache, or the 5212 * low watermark worth of cache, needs to stay. 5213 */ 5214 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5215 pagecache -= min(pagecache / 2, wmark_low); 5216 available += pagecache; 5217 5218 /* 5219 * Part of the reclaimable slab and other kernel memory consists of 5220 * items that are in use, and cannot be freed. Cap this estimate at the 5221 * low watermark. 5222 */ 5223 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5224 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5225 available += reclaimable - min(reclaimable / 2, wmark_low); 5226 5227 if (available < 0) 5228 available = 0; 5229 return available; 5230 } 5231 EXPORT_SYMBOL_GPL(si_mem_available); 5232 5233 void si_meminfo(struct sysinfo *val) 5234 { 5235 val->totalram = totalram_pages(); 5236 val->sharedram = global_node_page_state(NR_SHMEM); 5237 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5238 val->bufferram = nr_blockdev_pages(); 5239 val->totalhigh = totalhigh_pages(); 5240 val->freehigh = nr_free_highpages(); 5241 val->mem_unit = PAGE_SIZE; 5242 } 5243 5244 EXPORT_SYMBOL(si_meminfo); 5245 5246 #ifdef CONFIG_NUMA 5247 void si_meminfo_node(struct sysinfo *val, int nid) 5248 { 5249 int zone_type; /* needs to be signed */ 5250 unsigned long managed_pages = 0; 5251 unsigned long managed_highpages = 0; 5252 unsigned long free_highpages = 0; 5253 pg_data_t *pgdat = NODE_DATA(nid); 5254 5255 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5256 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5257 val->totalram = managed_pages; 5258 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5259 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5260 #ifdef CONFIG_HIGHMEM 5261 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5262 struct zone *zone = &pgdat->node_zones[zone_type]; 5263 5264 if (is_highmem(zone)) { 5265 managed_highpages += zone_managed_pages(zone); 5266 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5267 } 5268 } 5269 val->totalhigh = managed_highpages; 5270 val->freehigh = free_highpages; 5271 #else 5272 val->totalhigh = managed_highpages; 5273 val->freehigh = free_highpages; 5274 #endif 5275 val->mem_unit = PAGE_SIZE; 5276 } 5277 #endif 5278 5279 /* 5280 * Determine whether the node should be displayed or not, depending on whether 5281 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5282 */ 5283 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5284 { 5285 if (!(flags & SHOW_MEM_FILTER_NODES)) 5286 return false; 5287 5288 /* 5289 * no node mask - aka implicit memory numa policy. Do not bother with 5290 * the synchronization - read_mems_allowed_begin - because we do not 5291 * have to be precise here. 5292 */ 5293 if (!nodemask) 5294 nodemask = &cpuset_current_mems_allowed; 5295 5296 return !node_isset(nid, *nodemask); 5297 } 5298 5299 #define K(x) ((x) << (PAGE_SHIFT-10)) 5300 5301 static void show_migration_types(unsigned char type) 5302 { 5303 static const char types[MIGRATE_TYPES] = { 5304 [MIGRATE_UNMOVABLE] = 'U', 5305 [MIGRATE_MOVABLE] = 'M', 5306 [MIGRATE_RECLAIMABLE] = 'E', 5307 [MIGRATE_HIGHATOMIC] = 'H', 5308 #ifdef CONFIG_CMA 5309 [MIGRATE_CMA] = 'C', 5310 #endif 5311 #ifdef CONFIG_MEMORY_ISOLATION 5312 [MIGRATE_ISOLATE] = 'I', 5313 #endif 5314 }; 5315 char tmp[MIGRATE_TYPES + 1]; 5316 char *p = tmp; 5317 int i; 5318 5319 for (i = 0; i < MIGRATE_TYPES; i++) { 5320 if (type & (1 << i)) 5321 *p++ = types[i]; 5322 } 5323 5324 *p = '\0'; 5325 printk(KERN_CONT "(%s) ", tmp); 5326 } 5327 5328 /* 5329 * Show free area list (used inside shift_scroll-lock stuff) 5330 * We also calculate the percentage fragmentation. We do this by counting the 5331 * memory on each free list with the exception of the first item on the list. 5332 * 5333 * Bits in @filter: 5334 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5335 * cpuset. 5336 */ 5337 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5338 { 5339 unsigned long free_pcp = 0; 5340 int cpu; 5341 struct zone *zone; 5342 pg_data_t *pgdat; 5343 5344 for_each_populated_zone(zone) { 5345 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5346 continue; 5347 5348 for_each_online_cpu(cpu) 5349 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5350 } 5351 5352 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5353 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5354 " unevictable:%lu dirty:%lu writeback:%lu\n" 5355 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5356 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5357 " free:%lu free_pcp:%lu free_cma:%lu\n", 5358 global_node_page_state(NR_ACTIVE_ANON), 5359 global_node_page_state(NR_INACTIVE_ANON), 5360 global_node_page_state(NR_ISOLATED_ANON), 5361 global_node_page_state(NR_ACTIVE_FILE), 5362 global_node_page_state(NR_INACTIVE_FILE), 5363 global_node_page_state(NR_ISOLATED_FILE), 5364 global_node_page_state(NR_UNEVICTABLE), 5365 global_node_page_state(NR_FILE_DIRTY), 5366 global_node_page_state(NR_WRITEBACK), 5367 global_node_page_state(NR_SLAB_RECLAIMABLE), 5368 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5369 global_node_page_state(NR_FILE_MAPPED), 5370 global_node_page_state(NR_SHMEM), 5371 global_zone_page_state(NR_PAGETABLE), 5372 global_zone_page_state(NR_BOUNCE), 5373 global_zone_page_state(NR_FREE_PAGES), 5374 free_pcp, 5375 global_zone_page_state(NR_FREE_CMA_PAGES)); 5376 5377 for_each_online_pgdat(pgdat) { 5378 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5379 continue; 5380 5381 printk("Node %d" 5382 " active_anon:%lukB" 5383 " inactive_anon:%lukB" 5384 " active_file:%lukB" 5385 " inactive_file:%lukB" 5386 " unevictable:%lukB" 5387 " isolated(anon):%lukB" 5388 " isolated(file):%lukB" 5389 " mapped:%lukB" 5390 " dirty:%lukB" 5391 " writeback:%lukB" 5392 " shmem:%lukB" 5393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5394 " shmem_thp: %lukB" 5395 " shmem_pmdmapped: %lukB" 5396 " anon_thp: %lukB" 5397 #endif 5398 " writeback_tmp:%lukB" 5399 " all_unreclaimable? %s" 5400 "\n", 5401 pgdat->node_id, 5402 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5403 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5404 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5405 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5406 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5407 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5408 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5409 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5410 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5411 K(node_page_state(pgdat, NR_WRITEBACK)), 5412 K(node_page_state(pgdat, NR_SHMEM)), 5413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5414 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5415 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5416 * HPAGE_PMD_NR), 5417 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5418 #endif 5419 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5420 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5421 "yes" : "no"); 5422 } 5423 5424 for_each_populated_zone(zone) { 5425 int i; 5426 5427 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5428 continue; 5429 5430 free_pcp = 0; 5431 for_each_online_cpu(cpu) 5432 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5433 5434 show_node(zone); 5435 printk(KERN_CONT 5436 "%s" 5437 " free:%lukB" 5438 " min:%lukB" 5439 " low:%lukB" 5440 " high:%lukB" 5441 " reserved_highatomic:%luKB" 5442 " active_anon:%lukB" 5443 " inactive_anon:%lukB" 5444 " active_file:%lukB" 5445 " inactive_file:%lukB" 5446 " unevictable:%lukB" 5447 " writepending:%lukB" 5448 " present:%lukB" 5449 " managed:%lukB" 5450 " mlocked:%lukB" 5451 " kernel_stack:%lukB" 5452 #ifdef CONFIG_SHADOW_CALL_STACK 5453 " shadow_call_stack:%lukB" 5454 #endif 5455 " pagetables:%lukB" 5456 " bounce:%lukB" 5457 " free_pcp:%lukB" 5458 " local_pcp:%ukB" 5459 " free_cma:%lukB" 5460 "\n", 5461 zone->name, 5462 K(zone_page_state(zone, NR_FREE_PAGES)), 5463 K(min_wmark_pages(zone)), 5464 K(low_wmark_pages(zone)), 5465 K(high_wmark_pages(zone)), 5466 K(zone->nr_reserved_highatomic), 5467 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5468 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5469 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5470 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5471 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5472 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5473 K(zone->present_pages), 5474 K(zone_managed_pages(zone)), 5475 K(zone_page_state(zone, NR_MLOCK)), 5476 zone_page_state(zone, NR_KERNEL_STACK_KB), 5477 #ifdef CONFIG_SHADOW_CALL_STACK 5478 zone_page_state(zone, NR_KERNEL_SCS_KB), 5479 #endif 5480 K(zone_page_state(zone, NR_PAGETABLE)), 5481 K(zone_page_state(zone, NR_BOUNCE)), 5482 K(free_pcp), 5483 K(this_cpu_read(zone->pageset->pcp.count)), 5484 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5485 printk("lowmem_reserve[]:"); 5486 for (i = 0; i < MAX_NR_ZONES; i++) 5487 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5488 printk(KERN_CONT "\n"); 5489 } 5490 5491 for_each_populated_zone(zone) { 5492 unsigned int order; 5493 unsigned long nr[MAX_ORDER], flags, total = 0; 5494 unsigned char types[MAX_ORDER]; 5495 5496 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5497 continue; 5498 show_node(zone); 5499 printk(KERN_CONT "%s: ", zone->name); 5500 5501 spin_lock_irqsave(&zone->lock, flags); 5502 for (order = 0; order < MAX_ORDER; order++) { 5503 struct free_area *area = &zone->free_area[order]; 5504 int type; 5505 5506 nr[order] = area->nr_free; 5507 total += nr[order] << order; 5508 5509 types[order] = 0; 5510 for (type = 0; type < MIGRATE_TYPES; type++) { 5511 if (!free_area_empty(area, type)) 5512 types[order] |= 1 << type; 5513 } 5514 } 5515 spin_unlock_irqrestore(&zone->lock, flags); 5516 for (order = 0; order < MAX_ORDER; order++) { 5517 printk(KERN_CONT "%lu*%lukB ", 5518 nr[order], K(1UL) << order); 5519 if (nr[order]) 5520 show_migration_types(types[order]); 5521 } 5522 printk(KERN_CONT "= %lukB\n", K(total)); 5523 } 5524 5525 hugetlb_show_meminfo(); 5526 5527 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5528 5529 show_swap_cache_info(); 5530 } 5531 5532 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5533 { 5534 zoneref->zone = zone; 5535 zoneref->zone_idx = zone_idx(zone); 5536 } 5537 5538 /* 5539 * Builds allocation fallback zone lists. 5540 * 5541 * Add all populated zones of a node to the zonelist. 5542 */ 5543 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5544 { 5545 struct zone *zone; 5546 enum zone_type zone_type = MAX_NR_ZONES; 5547 int nr_zones = 0; 5548 5549 do { 5550 zone_type--; 5551 zone = pgdat->node_zones + zone_type; 5552 if (managed_zone(zone)) { 5553 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5554 check_highest_zone(zone_type); 5555 } 5556 } while (zone_type); 5557 5558 return nr_zones; 5559 } 5560 5561 #ifdef CONFIG_NUMA 5562 5563 static int __parse_numa_zonelist_order(char *s) 5564 { 5565 /* 5566 * We used to support different zonlists modes but they turned 5567 * out to be just not useful. Let's keep the warning in place 5568 * if somebody still use the cmd line parameter so that we do 5569 * not fail it silently 5570 */ 5571 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5572 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5573 return -EINVAL; 5574 } 5575 return 0; 5576 } 5577 5578 static __init int setup_numa_zonelist_order(char *s) 5579 { 5580 if (!s) 5581 return 0; 5582 5583 return __parse_numa_zonelist_order(s); 5584 } 5585 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5586 5587 char numa_zonelist_order[] = "Node"; 5588 5589 /* 5590 * sysctl handler for numa_zonelist_order 5591 */ 5592 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5593 void *buffer, size_t *length, loff_t *ppos) 5594 { 5595 if (write) 5596 return __parse_numa_zonelist_order(buffer); 5597 return proc_dostring(table, write, buffer, length, ppos); 5598 } 5599 5600 5601 #define MAX_NODE_LOAD (nr_online_nodes) 5602 static int node_load[MAX_NUMNODES]; 5603 5604 /** 5605 * find_next_best_node - find the next node that should appear in a given node's fallback list 5606 * @node: node whose fallback list we're appending 5607 * @used_node_mask: nodemask_t of already used nodes 5608 * 5609 * We use a number of factors to determine which is the next node that should 5610 * appear on a given node's fallback list. The node should not have appeared 5611 * already in @node's fallback list, and it should be the next closest node 5612 * according to the distance array (which contains arbitrary distance values 5613 * from each node to each node in the system), and should also prefer nodes 5614 * with no CPUs, since presumably they'll have very little allocation pressure 5615 * on them otherwise. 5616 * 5617 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5618 */ 5619 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5620 { 5621 int n, val; 5622 int min_val = INT_MAX; 5623 int best_node = NUMA_NO_NODE; 5624 const struct cpumask *tmp = cpumask_of_node(0); 5625 5626 /* Use the local node if we haven't already */ 5627 if (!node_isset(node, *used_node_mask)) { 5628 node_set(node, *used_node_mask); 5629 return node; 5630 } 5631 5632 for_each_node_state(n, N_MEMORY) { 5633 5634 /* Don't want a node to appear more than once */ 5635 if (node_isset(n, *used_node_mask)) 5636 continue; 5637 5638 /* Use the distance array to find the distance */ 5639 val = node_distance(node, n); 5640 5641 /* Penalize nodes under us ("prefer the next node") */ 5642 val += (n < node); 5643 5644 /* Give preference to headless and unused nodes */ 5645 tmp = cpumask_of_node(n); 5646 if (!cpumask_empty(tmp)) 5647 val += PENALTY_FOR_NODE_WITH_CPUS; 5648 5649 /* Slight preference for less loaded node */ 5650 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5651 val += node_load[n]; 5652 5653 if (val < min_val) { 5654 min_val = val; 5655 best_node = n; 5656 } 5657 } 5658 5659 if (best_node >= 0) 5660 node_set(best_node, *used_node_mask); 5661 5662 return best_node; 5663 } 5664 5665 5666 /* 5667 * Build zonelists ordered by node and zones within node. 5668 * This results in maximum locality--normal zone overflows into local 5669 * DMA zone, if any--but risks exhausting DMA zone. 5670 */ 5671 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5672 unsigned nr_nodes) 5673 { 5674 struct zoneref *zonerefs; 5675 int i; 5676 5677 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5678 5679 for (i = 0; i < nr_nodes; i++) { 5680 int nr_zones; 5681 5682 pg_data_t *node = NODE_DATA(node_order[i]); 5683 5684 nr_zones = build_zonerefs_node(node, zonerefs); 5685 zonerefs += nr_zones; 5686 } 5687 zonerefs->zone = NULL; 5688 zonerefs->zone_idx = 0; 5689 } 5690 5691 /* 5692 * Build gfp_thisnode zonelists 5693 */ 5694 static void build_thisnode_zonelists(pg_data_t *pgdat) 5695 { 5696 struct zoneref *zonerefs; 5697 int nr_zones; 5698 5699 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5700 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5701 zonerefs += nr_zones; 5702 zonerefs->zone = NULL; 5703 zonerefs->zone_idx = 0; 5704 } 5705 5706 /* 5707 * Build zonelists ordered by zone and nodes within zones. 5708 * This results in conserving DMA zone[s] until all Normal memory is 5709 * exhausted, but results in overflowing to remote node while memory 5710 * may still exist in local DMA zone. 5711 */ 5712 5713 static void build_zonelists(pg_data_t *pgdat) 5714 { 5715 static int node_order[MAX_NUMNODES]; 5716 int node, load, nr_nodes = 0; 5717 nodemask_t used_mask = NODE_MASK_NONE; 5718 int local_node, prev_node; 5719 5720 /* NUMA-aware ordering of nodes */ 5721 local_node = pgdat->node_id; 5722 load = nr_online_nodes; 5723 prev_node = local_node; 5724 5725 memset(node_order, 0, sizeof(node_order)); 5726 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5727 /* 5728 * We don't want to pressure a particular node. 5729 * So adding penalty to the first node in same 5730 * distance group to make it round-robin. 5731 */ 5732 if (node_distance(local_node, node) != 5733 node_distance(local_node, prev_node)) 5734 node_load[node] = load; 5735 5736 node_order[nr_nodes++] = node; 5737 prev_node = node; 5738 load--; 5739 } 5740 5741 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5742 build_thisnode_zonelists(pgdat); 5743 } 5744 5745 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5746 /* 5747 * Return node id of node used for "local" allocations. 5748 * I.e., first node id of first zone in arg node's generic zonelist. 5749 * Used for initializing percpu 'numa_mem', which is used primarily 5750 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5751 */ 5752 int local_memory_node(int node) 5753 { 5754 struct zoneref *z; 5755 5756 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5757 gfp_zone(GFP_KERNEL), 5758 NULL); 5759 return zone_to_nid(z->zone); 5760 } 5761 #endif 5762 5763 static void setup_min_unmapped_ratio(void); 5764 static void setup_min_slab_ratio(void); 5765 #else /* CONFIG_NUMA */ 5766 5767 static void build_zonelists(pg_data_t *pgdat) 5768 { 5769 int node, local_node; 5770 struct zoneref *zonerefs; 5771 int nr_zones; 5772 5773 local_node = pgdat->node_id; 5774 5775 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5776 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5777 zonerefs += nr_zones; 5778 5779 /* 5780 * Now we build the zonelist so that it contains the zones 5781 * of all the other nodes. 5782 * We don't want to pressure a particular node, so when 5783 * building the zones for node N, we make sure that the 5784 * zones coming right after the local ones are those from 5785 * node N+1 (modulo N) 5786 */ 5787 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5788 if (!node_online(node)) 5789 continue; 5790 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5791 zonerefs += nr_zones; 5792 } 5793 for (node = 0; node < local_node; node++) { 5794 if (!node_online(node)) 5795 continue; 5796 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5797 zonerefs += nr_zones; 5798 } 5799 5800 zonerefs->zone = NULL; 5801 zonerefs->zone_idx = 0; 5802 } 5803 5804 #endif /* CONFIG_NUMA */ 5805 5806 /* 5807 * Boot pageset table. One per cpu which is going to be used for all 5808 * zones and all nodes. The parameters will be set in such a way 5809 * that an item put on a list will immediately be handed over to 5810 * the buddy list. This is safe since pageset manipulation is done 5811 * with interrupts disabled. 5812 * 5813 * The boot_pagesets must be kept even after bootup is complete for 5814 * unused processors and/or zones. They do play a role for bootstrapping 5815 * hotplugged processors. 5816 * 5817 * zoneinfo_show() and maybe other functions do 5818 * not check if the processor is online before following the pageset pointer. 5819 * Other parts of the kernel may not check if the zone is available. 5820 */ 5821 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5822 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5823 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5824 5825 static void __build_all_zonelists(void *data) 5826 { 5827 int nid; 5828 int __maybe_unused cpu; 5829 pg_data_t *self = data; 5830 static DEFINE_SPINLOCK(lock); 5831 5832 spin_lock(&lock); 5833 5834 #ifdef CONFIG_NUMA 5835 memset(node_load, 0, sizeof(node_load)); 5836 #endif 5837 5838 /* 5839 * This node is hotadded and no memory is yet present. So just 5840 * building zonelists is fine - no need to touch other nodes. 5841 */ 5842 if (self && !node_online(self->node_id)) { 5843 build_zonelists(self); 5844 } else { 5845 for_each_online_node(nid) { 5846 pg_data_t *pgdat = NODE_DATA(nid); 5847 5848 build_zonelists(pgdat); 5849 } 5850 5851 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5852 /* 5853 * We now know the "local memory node" for each node-- 5854 * i.e., the node of the first zone in the generic zonelist. 5855 * Set up numa_mem percpu variable for on-line cpus. During 5856 * boot, only the boot cpu should be on-line; we'll init the 5857 * secondary cpus' numa_mem as they come on-line. During 5858 * node/memory hotplug, we'll fixup all on-line cpus. 5859 */ 5860 for_each_online_cpu(cpu) 5861 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5862 #endif 5863 } 5864 5865 spin_unlock(&lock); 5866 } 5867 5868 static noinline void __init 5869 build_all_zonelists_init(void) 5870 { 5871 int cpu; 5872 5873 __build_all_zonelists(NULL); 5874 5875 /* 5876 * Initialize the boot_pagesets that are going to be used 5877 * for bootstrapping processors. The real pagesets for 5878 * each zone will be allocated later when the per cpu 5879 * allocator is available. 5880 * 5881 * boot_pagesets are used also for bootstrapping offline 5882 * cpus if the system is already booted because the pagesets 5883 * are needed to initialize allocators on a specific cpu too. 5884 * F.e. the percpu allocator needs the page allocator which 5885 * needs the percpu allocator in order to allocate its pagesets 5886 * (a chicken-egg dilemma). 5887 */ 5888 for_each_possible_cpu(cpu) 5889 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5890 5891 mminit_verify_zonelist(); 5892 cpuset_init_current_mems_allowed(); 5893 } 5894 5895 /* 5896 * unless system_state == SYSTEM_BOOTING. 5897 * 5898 * __ref due to call of __init annotated helper build_all_zonelists_init 5899 * [protected by SYSTEM_BOOTING]. 5900 */ 5901 void __ref build_all_zonelists(pg_data_t *pgdat) 5902 { 5903 if (system_state == SYSTEM_BOOTING) { 5904 build_all_zonelists_init(); 5905 } else { 5906 __build_all_zonelists(pgdat); 5907 /* cpuset refresh routine should be here */ 5908 } 5909 vm_total_pages = nr_free_pagecache_pages(); 5910 /* 5911 * Disable grouping by mobility if the number of pages in the 5912 * system is too low to allow the mechanism to work. It would be 5913 * more accurate, but expensive to check per-zone. This check is 5914 * made on memory-hotadd so a system can start with mobility 5915 * disabled and enable it later 5916 */ 5917 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5918 page_group_by_mobility_disabled = 1; 5919 else 5920 page_group_by_mobility_disabled = 0; 5921 5922 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5923 nr_online_nodes, 5924 page_group_by_mobility_disabled ? "off" : "on", 5925 vm_total_pages); 5926 #ifdef CONFIG_NUMA 5927 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5928 #endif 5929 } 5930 5931 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5932 static bool __meminit 5933 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5934 { 5935 static struct memblock_region *r; 5936 5937 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5938 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5939 for_each_memblock(memory, r) { 5940 if (*pfn < memblock_region_memory_end_pfn(r)) 5941 break; 5942 } 5943 } 5944 if (*pfn >= memblock_region_memory_base_pfn(r) && 5945 memblock_is_mirror(r)) { 5946 *pfn = memblock_region_memory_end_pfn(r); 5947 return true; 5948 } 5949 } 5950 return false; 5951 } 5952 5953 /* 5954 * Initially all pages are reserved - free ones are freed 5955 * up by memblock_free_all() once the early boot process is 5956 * done. Non-atomic initialization, single-pass. 5957 */ 5958 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5959 unsigned long start_pfn, enum memmap_context context, 5960 struct vmem_altmap *altmap) 5961 { 5962 unsigned long pfn, end_pfn = start_pfn + size; 5963 struct page *page; 5964 5965 if (highest_memmap_pfn < end_pfn - 1) 5966 highest_memmap_pfn = end_pfn - 1; 5967 5968 #ifdef CONFIG_ZONE_DEVICE 5969 /* 5970 * Honor reservation requested by the driver for this ZONE_DEVICE 5971 * memory. We limit the total number of pages to initialize to just 5972 * those that might contain the memory mapping. We will defer the 5973 * ZONE_DEVICE page initialization until after we have released 5974 * the hotplug lock. 5975 */ 5976 if (zone == ZONE_DEVICE) { 5977 if (!altmap) 5978 return; 5979 5980 if (start_pfn == altmap->base_pfn) 5981 start_pfn += altmap->reserve; 5982 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5983 } 5984 #endif 5985 5986 for (pfn = start_pfn; pfn < end_pfn; ) { 5987 /* 5988 * There can be holes in boot-time mem_map[]s handed to this 5989 * function. They do not exist on hotplugged memory. 5990 */ 5991 if (context == MEMMAP_EARLY) { 5992 if (overlap_memmap_init(zone, &pfn)) 5993 continue; 5994 if (defer_init(nid, pfn, end_pfn)) 5995 break; 5996 } 5997 5998 page = pfn_to_page(pfn); 5999 __init_single_page(page, pfn, zone, nid); 6000 if (context == MEMMAP_HOTPLUG) 6001 __SetPageReserved(page); 6002 6003 /* 6004 * Mark the block movable so that blocks are reserved for 6005 * movable at startup. This will force kernel allocations 6006 * to reserve their blocks rather than leaking throughout 6007 * the address space during boot when many long-lived 6008 * kernel allocations are made. 6009 * 6010 * bitmap is created for zone's valid pfn range. but memmap 6011 * can be created for invalid pages (for alignment) 6012 * check here not to call set_pageblock_migratetype() against 6013 * pfn out of zone. 6014 */ 6015 if (!(pfn & (pageblock_nr_pages - 1))) { 6016 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6017 cond_resched(); 6018 } 6019 pfn++; 6020 } 6021 } 6022 6023 #ifdef CONFIG_ZONE_DEVICE 6024 void __ref memmap_init_zone_device(struct zone *zone, 6025 unsigned long start_pfn, 6026 unsigned long nr_pages, 6027 struct dev_pagemap *pgmap) 6028 { 6029 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6030 struct pglist_data *pgdat = zone->zone_pgdat; 6031 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6032 unsigned long zone_idx = zone_idx(zone); 6033 unsigned long start = jiffies; 6034 int nid = pgdat->node_id; 6035 6036 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6037 return; 6038 6039 /* 6040 * The call to memmap_init_zone should have already taken care 6041 * of the pages reserved for the memmap, so we can just jump to 6042 * the end of that region and start processing the device pages. 6043 */ 6044 if (altmap) { 6045 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6046 nr_pages = end_pfn - start_pfn; 6047 } 6048 6049 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6050 struct page *page = pfn_to_page(pfn); 6051 6052 __init_single_page(page, pfn, zone_idx, nid); 6053 6054 /* 6055 * Mark page reserved as it will need to wait for onlining 6056 * phase for it to be fully associated with a zone. 6057 * 6058 * We can use the non-atomic __set_bit operation for setting 6059 * the flag as we are still initializing the pages. 6060 */ 6061 __SetPageReserved(page); 6062 6063 /* 6064 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6065 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6066 * ever freed or placed on a driver-private list. 6067 */ 6068 page->pgmap = pgmap; 6069 page->zone_device_data = NULL; 6070 6071 /* 6072 * Mark the block movable so that blocks are reserved for 6073 * movable at startup. This will force kernel allocations 6074 * to reserve their blocks rather than leaking throughout 6075 * the address space during boot when many long-lived 6076 * kernel allocations are made. 6077 * 6078 * bitmap is created for zone's valid pfn range. but memmap 6079 * can be created for invalid pages (for alignment) 6080 * check here not to call set_pageblock_migratetype() against 6081 * pfn out of zone. 6082 * 6083 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 6084 * because this is done early in section_activate() 6085 */ 6086 if (!(pfn & (pageblock_nr_pages - 1))) { 6087 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6088 cond_resched(); 6089 } 6090 } 6091 6092 pr_info("%s initialised %lu pages in %ums\n", __func__, 6093 nr_pages, jiffies_to_msecs(jiffies - start)); 6094 } 6095 6096 #endif 6097 static void __meminit zone_init_free_lists(struct zone *zone) 6098 { 6099 unsigned int order, t; 6100 for_each_migratetype_order(order, t) { 6101 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6102 zone->free_area[order].nr_free = 0; 6103 } 6104 } 6105 6106 void __meminit __weak memmap_init(unsigned long size, int nid, 6107 unsigned long zone, 6108 unsigned long range_start_pfn) 6109 { 6110 unsigned long start_pfn, end_pfn; 6111 unsigned long range_end_pfn = range_start_pfn + size; 6112 int i; 6113 6114 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6115 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6116 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6117 6118 if (end_pfn > start_pfn) { 6119 size = end_pfn - start_pfn; 6120 memmap_init_zone(size, nid, zone, start_pfn, 6121 MEMMAP_EARLY, NULL); 6122 } 6123 } 6124 } 6125 6126 static int zone_batchsize(struct zone *zone) 6127 { 6128 #ifdef CONFIG_MMU 6129 int batch; 6130 6131 /* 6132 * The per-cpu-pages pools are set to around 1000th of the 6133 * size of the zone. 6134 */ 6135 batch = zone_managed_pages(zone) / 1024; 6136 /* But no more than a meg. */ 6137 if (batch * PAGE_SIZE > 1024 * 1024) 6138 batch = (1024 * 1024) / PAGE_SIZE; 6139 batch /= 4; /* We effectively *= 4 below */ 6140 if (batch < 1) 6141 batch = 1; 6142 6143 /* 6144 * Clamp the batch to a 2^n - 1 value. Having a power 6145 * of 2 value was found to be more likely to have 6146 * suboptimal cache aliasing properties in some cases. 6147 * 6148 * For example if 2 tasks are alternately allocating 6149 * batches of pages, one task can end up with a lot 6150 * of pages of one half of the possible page colors 6151 * and the other with pages of the other colors. 6152 */ 6153 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6154 6155 return batch; 6156 6157 #else 6158 /* The deferral and batching of frees should be suppressed under NOMMU 6159 * conditions. 6160 * 6161 * The problem is that NOMMU needs to be able to allocate large chunks 6162 * of contiguous memory as there's no hardware page translation to 6163 * assemble apparent contiguous memory from discontiguous pages. 6164 * 6165 * Queueing large contiguous runs of pages for batching, however, 6166 * causes the pages to actually be freed in smaller chunks. As there 6167 * can be a significant delay between the individual batches being 6168 * recycled, this leads to the once large chunks of space being 6169 * fragmented and becoming unavailable for high-order allocations. 6170 */ 6171 return 0; 6172 #endif 6173 } 6174 6175 /* 6176 * pcp->high and pcp->batch values are related and dependent on one another: 6177 * ->batch must never be higher then ->high. 6178 * The following function updates them in a safe manner without read side 6179 * locking. 6180 * 6181 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6182 * those fields changing asynchronously (acording the the above rule). 6183 * 6184 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6185 * outside of boot time (or some other assurance that no concurrent updaters 6186 * exist). 6187 */ 6188 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6189 unsigned long batch) 6190 { 6191 /* start with a fail safe value for batch */ 6192 pcp->batch = 1; 6193 smp_wmb(); 6194 6195 /* Update high, then batch, in order */ 6196 pcp->high = high; 6197 smp_wmb(); 6198 6199 pcp->batch = batch; 6200 } 6201 6202 /* a companion to pageset_set_high() */ 6203 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6204 { 6205 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6206 } 6207 6208 static void pageset_init(struct per_cpu_pageset *p) 6209 { 6210 struct per_cpu_pages *pcp; 6211 int migratetype; 6212 6213 memset(p, 0, sizeof(*p)); 6214 6215 pcp = &p->pcp; 6216 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6217 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6218 } 6219 6220 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6221 { 6222 pageset_init(p); 6223 pageset_set_batch(p, batch); 6224 } 6225 6226 /* 6227 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6228 * to the value high for the pageset p. 6229 */ 6230 static void pageset_set_high(struct per_cpu_pageset *p, 6231 unsigned long high) 6232 { 6233 unsigned long batch = max(1UL, high / 4); 6234 if ((high / 4) > (PAGE_SHIFT * 8)) 6235 batch = PAGE_SHIFT * 8; 6236 6237 pageset_update(&p->pcp, high, batch); 6238 } 6239 6240 static void pageset_set_high_and_batch(struct zone *zone, 6241 struct per_cpu_pageset *pcp) 6242 { 6243 if (percpu_pagelist_fraction) 6244 pageset_set_high(pcp, 6245 (zone_managed_pages(zone) / 6246 percpu_pagelist_fraction)); 6247 else 6248 pageset_set_batch(pcp, zone_batchsize(zone)); 6249 } 6250 6251 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6252 { 6253 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6254 6255 pageset_init(pcp); 6256 pageset_set_high_and_batch(zone, pcp); 6257 } 6258 6259 void __meminit setup_zone_pageset(struct zone *zone) 6260 { 6261 int cpu; 6262 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6263 for_each_possible_cpu(cpu) 6264 zone_pageset_init(zone, cpu); 6265 } 6266 6267 /* 6268 * Allocate per cpu pagesets and initialize them. 6269 * Before this call only boot pagesets were available. 6270 */ 6271 void __init setup_per_cpu_pageset(void) 6272 { 6273 struct pglist_data *pgdat; 6274 struct zone *zone; 6275 int __maybe_unused cpu; 6276 6277 for_each_populated_zone(zone) 6278 setup_zone_pageset(zone); 6279 6280 #ifdef CONFIG_NUMA 6281 /* 6282 * Unpopulated zones continue using the boot pagesets. 6283 * The numa stats for these pagesets need to be reset. 6284 * Otherwise, they will end up skewing the stats of 6285 * the nodes these zones are associated with. 6286 */ 6287 for_each_possible_cpu(cpu) { 6288 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6289 memset(pcp->vm_numa_stat_diff, 0, 6290 sizeof(pcp->vm_numa_stat_diff)); 6291 } 6292 #endif 6293 6294 for_each_online_pgdat(pgdat) 6295 pgdat->per_cpu_nodestats = 6296 alloc_percpu(struct per_cpu_nodestat); 6297 } 6298 6299 static __meminit void zone_pcp_init(struct zone *zone) 6300 { 6301 /* 6302 * per cpu subsystem is not up at this point. The following code 6303 * relies on the ability of the linker to provide the 6304 * offset of a (static) per cpu variable into the per cpu area. 6305 */ 6306 zone->pageset = &boot_pageset; 6307 6308 if (populated_zone(zone)) 6309 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6310 zone->name, zone->present_pages, 6311 zone_batchsize(zone)); 6312 } 6313 6314 void __meminit init_currently_empty_zone(struct zone *zone, 6315 unsigned long zone_start_pfn, 6316 unsigned long size) 6317 { 6318 struct pglist_data *pgdat = zone->zone_pgdat; 6319 int zone_idx = zone_idx(zone) + 1; 6320 6321 if (zone_idx > pgdat->nr_zones) 6322 pgdat->nr_zones = zone_idx; 6323 6324 zone->zone_start_pfn = zone_start_pfn; 6325 6326 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6327 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6328 pgdat->node_id, 6329 (unsigned long)zone_idx(zone), 6330 zone_start_pfn, (zone_start_pfn + size)); 6331 6332 zone_init_free_lists(zone); 6333 zone->initialized = 1; 6334 } 6335 6336 /** 6337 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6338 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6339 * 6340 * If an architecture guarantees that all ranges registered contain no holes and may 6341 * be freed, this function may be used instead of calling memory_present() manually. 6342 */ 6343 void __init sparse_memory_present_with_active_regions(int nid) 6344 { 6345 unsigned long start_pfn, end_pfn; 6346 int i, this_nid; 6347 6348 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6349 memory_present(this_nid, start_pfn, end_pfn); 6350 } 6351 6352 /** 6353 * get_pfn_range_for_nid - Return the start and end page frames for a node 6354 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6355 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6356 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6357 * 6358 * It returns the start and end page frame of a node based on information 6359 * provided by memblock_set_node(). If called for a node 6360 * with no available memory, a warning is printed and the start and end 6361 * PFNs will be 0. 6362 */ 6363 void __init get_pfn_range_for_nid(unsigned int nid, 6364 unsigned long *start_pfn, unsigned long *end_pfn) 6365 { 6366 unsigned long this_start_pfn, this_end_pfn; 6367 int i; 6368 6369 *start_pfn = -1UL; 6370 *end_pfn = 0; 6371 6372 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6373 *start_pfn = min(*start_pfn, this_start_pfn); 6374 *end_pfn = max(*end_pfn, this_end_pfn); 6375 } 6376 6377 if (*start_pfn == -1UL) 6378 *start_pfn = 0; 6379 } 6380 6381 /* 6382 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6383 * assumption is made that zones within a node are ordered in monotonic 6384 * increasing memory addresses so that the "highest" populated zone is used 6385 */ 6386 static void __init find_usable_zone_for_movable(void) 6387 { 6388 int zone_index; 6389 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6390 if (zone_index == ZONE_MOVABLE) 6391 continue; 6392 6393 if (arch_zone_highest_possible_pfn[zone_index] > 6394 arch_zone_lowest_possible_pfn[zone_index]) 6395 break; 6396 } 6397 6398 VM_BUG_ON(zone_index == -1); 6399 movable_zone = zone_index; 6400 } 6401 6402 /* 6403 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6404 * because it is sized independent of architecture. Unlike the other zones, 6405 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6406 * in each node depending on the size of each node and how evenly kernelcore 6407 * is distributed. This helper function adjusts the zone ranges 6408 * provided by the architecture for a given node by using the end of the 6409 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6410 * zones within a node are in order of monotonic increases memory addresses 6411 */ 6412 static void __init adjust_zone_range_for_zone_movable(int nid, 6413 unsigned long zone_type, 6414 unsigned long node_start_pfn, 6415 unsigned long node_end_pfn, 6416 unsigned long *zone_start_pfn, 6417 unsigned long *zone_end_pfn) 6418 { 6419 /* Only adjust if ZONE_MOVABLE is on this node */ 6420 if (zone_movable_pfn[nid]) { 6421 /* Size ZONE_MOVABLE */ 6422 if (zone_type == ZONE_MOVABLE) { 6423 *zone_start_pfn = zone_movable_pfn[nid]; 6424 *zone_end_pfn = min(node_end_pfn, 6425 arch_zone_highest_possible_pfn[movable_zone]); 6426 6427 /* Adjust for ZONE_MOVABLE starting within this range */ 6428 } else if (!mirrored_kernelcore && 6429 *zone_start_pfn < zone_movable_pfn[nid] && 6430 *zone_end_pfn > zone_movable_pfn[nid]) { 6431 *zone_end_pfn = zone_movable_pfn[nid]; 6432 6433 /* Check if this whole range is within ZONE_MOVABLE */ 6434 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6435 *zone_start_pfn = *zone_end_pfn; 6436 } 6437 } 6438 6439 /* 6440 * Return the number of pages a zone spans in a node, including holes 6441 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6442 */ 6443 static unsigned long __init zone_spanned_pages_in_node(int nid, 6444 unsigned long zone_type, 6445 unsigned long node_start_pfn, 6446 unsigned long node_end_pfn, 6447 unsigned long *zone_start_pfn, 6448 unsigned long *zone_end_pfn) 6449 { 6450 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6451 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6452 /* When hotadd a new node from cpu_up(), the node should be empty */ 6453 if (!node_start_pfn && !node_end_pfn) 6454 return 0; 6455 6456 /* Get the start and end of the zone */ 6457 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6458 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6459 adjust_zone_range_for_zone_movable(nid, zone_type, 6460 node_start_pfn, node_end_pfn, 6461 zone_start_pfn, zone_end_pfn); 6462 6463 /* Check that this node has pages within the zone's required range */ 6464 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6465 return 0; 6466 6467 /* Move the zone boundaries inside the node if necessary */ 6468 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6469 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6470 6471 /* Return the spanned pages */ 6472 return *zone_end_pfn - *zone_start_pfn; 6473 } 6474 6475 /* 6476 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6477 * then all holes in the requested range will be accounted for. 6478 */ 6479 unsigned long __init __absent_pages_in_range(int nid, 6480 unsigned long range_start_pfn, 6481 unsigned long range_end_pfn) 6482 { 6483 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6484 unsigned long start_pfn, end_pfn; 6485 int i; 6486 6487 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6488 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6489 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6490 nr_absent -= end_pfn - start_pfn; 6491 } 6492 return nr_absent; 6493 } 6494 6495 /** 6496 * absent_pages_in_range - Return number of page frames in holes within a range 6497 * @start_pfn: The start PFN to start searching for holes 6498 * @end_pfn: The end PFN to stop searching for holes 6499 * 6500 * Return: the number of pages frames in memory holes within a range. 6501 */ 6502 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6503 unsigned long end_pfn) 6504 { 6505 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6506 } 6507 6508 /* Return the number of page frames in holes in a zone on a node */ 6509 static unsigned long __init zone_absent_pages_in_node(int nid, 6510 unsigned long zone_type, 6511 unsigned long node_start_pfn, 6512 unsigned long node_end_pfn) 6513 { 6514 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6515 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6516 unsigned long zone_start_pfn, zone_end_pfn; 6517 unsigned long nr_absent; 6518 6519 /* When hotadd a new node from cpu_up(), the node should be empty */ 6520 if (!node_start_pfn && !node_end_pfn) 6521 return 0; 6522 6523 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6524 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6525 6526 adjust_zone_range_for_zone_movable(nid, zone_type, 6527 node_start_pfn, node_end_pfn, 6528 &zone_start_pfn, &zone_end_pfn); 6529 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6530 6531 /* 6532 * ZONE_MOVABLE handling. 6533 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6534 * and vice versa. 6535 */ 6536 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6537 unsigned long start_pfn, end_pfn; 6538 struct memblock_region *r; 6539 6540 for_each_memblock(memory, r) { 6541 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6542 zone_start_pfn, zone_end_pfn); 6543 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6544 zone_start_pfn, zone_end_pfn); 6545 6546 if (zone_type == ZONE_MOVABLE && 6547 memblock_is_mirror(r)) 6548 nr_absent += end_pfn - start_pfn; 6549 6550 if (zone_type == ZONE_NORMAL && 6551 !memblock_is_mirror(r)) 6552 nr_absent += end_pfn - start_pfn; 6553 } 6554 } 6555 6556 return nr_absent; 6557 } 6558 6559 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6560 unsigned long node_start_pfn, 6561 unsigned long node_end_pfn) 6562 { 6563 unsigned long realtotalpages = 0, totalpages = 0; 6564 enum zone_type i; 6565 6566 for (i = 0; i < MAX_NR_ZONES; i++) { 6567 struct zone *zone = pgdat->node_zones + i; 6568 unsigned long zone_start_pfn, zone_end_pfn; 6569 unsigned long spanned, absent; 6570 unsigned long size, real_size; 6571 6572 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6573 node_start_pfn, 6574 node_end_pfn, 6575 &zone_start_pfn, 6576 &zone_end_pfn); 6577 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6578 node_start_pfn, 6579 node_end_pfn); 6580 6581 size = spanned; 6582 real_size = size - absent; 6583 6584 if (size) 6585 zone->zone_start_pfn = zone_start_pfn; 6586 else 6587 zone->zone_start_pfn = 0; 6588 zone->spanned_pages = size; 6589 zone->present_pages = real_size; 6590 6591 totalpages += size; 6592 realtotalpages += real_size; 6593 } 6594 6595 pgdat->node_spanned_pages = totalpages; 6596 pgdat->node_present_pages = realtotalpages; 6597 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6598 realtotalpages); 6599 } 6600 6601 #ifndef CONFIG_SPARSEMEM 6602 /* 6603 * Calculate the size of the zone->blockflags rounded to an unsigned long 6604 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6605 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6606 * round what is now in bits to nearest long in bits, then return it in 6607 * bytes. 6608 */ 6609 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6610 { 6611 unsigned long usemapsize; 6612 6613 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6614 usemapsize = roundup(zonesize, pageblock_nr_pages); 6615 usemapsize = usemapsize >> pageblock_order; 6616 usemapsize *= NR_PAGEBLOCK_BITS; 6617 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6618 6619 return usemapsize / 8; 6620 } 6621 6622 static void __ref setup_usemap(struct pglist_data *pgdat, 6623 struct zone *zone, 6624 unsigned long zone_start_pfn, 6625 unsigned long zonesize) 6626 { 6627 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6628 zone->pageblock_flags = NULL; 6629 if (usemapsize) { 6630 zone->pageblock_flags = 6631 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6632 pgdat->node_id); 6633 if (!zone->pageblock_flags) 6634 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6635 usemapsize, zone->name, pgdat->node_id); 6636 } 6637 } 6638 #else 6639 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6640 unsigned long zone_start_pfn, unsigned long zonesize) {} 6641 #endif /* CONFIG_SPARSEMEM */ 6642 6643 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6644 6645 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6646 void __init set_pageblock_order(void) 6647 { 6648 unsigned int order; 6649 6650 /* Check that pageblock_nr_pages has not already been setup */ 6651 if (pageblock_order) 6652 return; 6653 6654 if (HPAGE_SHIFT > PAGE_SHIFT) 6655 order = HUGETLB_PAGE_ORDER; 6656 else 6657 order = MAX_ORDER - 1; 6658 6659 /* 6660 * Assume the largest contiguous order of interest is a huge page. 6661 * This value may be variable depending on boot parameters on IA64 and 6662 * powerpc. 6663 */ 6664 pageblock_order = order; 6665 } 6666 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6667 6668 /* 6669 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6670 * is unused as pageblock_order is set at compile-time. See 6671 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6672 * the kernel config 6673 */ 6674 void __init set_pageblock_order(void) 6675 { 6676 } 6677 6678 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6679 6680 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6681 unsigned long present_pages) 6682 { 6683 unsigned long pages = spanned_pages; 6684 6685 /* 6686 * Provide a more accurate estimation if there are holes within 6687 * the zone and SPARSEMEM is in use. If there are holes within the 6688 * zone, each populated memory region may cost us one or two extra 6689 * memmap pages due to alignment because memmap pages for each 6690 * populated regions may not be naturally aligned on page boundary. 6691 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6692 */ 6693 if (spanned_pages > present_pages + (present_pages >> 4) && 6694 IS_ENABLED(CONFIG_SPARSEMEM)) 6695 pages = present_pages; 6696 6697 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6698 } 6699 6700 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6701 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6702 { 6703 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6704 6705 spin_lock_init(&ds_queue->split_queue_lock); 6706 INIT_LIST_HEAD(&ds_queue->split_queue); 6707 ds_queue->split_queue_len = 0; 6708 } 6709 #else 6710 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6711 #endif 6712 6713 #ifdef CONFIG_COMPACTION 6714 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6715 { 6716 init_waitqueue_head(&pgdat->kcompactd_wait); 6717 } 6718 #else 6719 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6720 #endif 6721 6722 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6723 { 6724 pgdat_resize_init(pgdat); 6725 6726 pgdat_init_split_queue(pgdat); 6727 pgdat_init_kcompactd(pgdat); 6728 6729 init_waitqueue_head(&pgdat->kswapd_wait); 6730 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6731 6732 pgdat_page_ext_init(pgdat); 6733 spin_lock_init(&pgdat->lru_lock); 6734 lruvec_init(&pgdat->__lruvec); 6735 } 6736 6737 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6738 unsigned long remaining_pages) 6739 { 6740 atomic_long_set(&zone->managed_pages, remaining_pages); 6741 zone_set_nid(zone, nid); 6742 zone->name = zone_names[idx]; 6743 zone->zone_pgdat = NODE_DATA(nid); 6744 spin_lock_init(&zone->lock); 6745 zone_seqlock_init(zone); 6746 zone_pcp_init(zone); 6747 } 6748 6749 /* 6750 * Set up the zone data structures 6751 * - init pgdat internals 6752 * - init all zones belonging to this node 6753 * 6754 * NOTE: this function is only called during memory hotplug 6755 */ 6756 #ifdef CONFIG_MEMORY_HOTPLUG 6757 void __ref free_area_init_core_hotplug(int nid) 6758 { 6759 enum zone_type z; 6760 pg_data_t *pgdat = NODE_DATA(nid); 6761 6762 pgdat_init_internals(pgdat); 6763 for (z = 0; z < MAX_NR_ZONES; z++) 6764 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6765 } 6766 #endif 6767 6768 /* 6769 * Set up the zone data structures: 6770 * - mark all pages reserved 6771 * - mark all memory queues empty 6772 * - clear the memory bitmaps 6773 * 6774 * NOTE: pgdat should get zeroed by caller. 6775 * NOTE: this function is only called during early init. 6776 */ 6777 static void __init free_area_init_core(struct pglist_data *pgdat) 6778 { 6779 enum zone_type j; 6780 int nid = pgdat->node_id; 6781 6782 pgdat_init_internals(pgdat); 6783 pgdat->per_cpu_nodestats = &boot_nodestats; 6784 6785 for (j = 0; j < MAX_NR_ZONES; j++) { 6786 struct zone *zone = pgdat->node_zones + j; 6787 unsigned long size, freesize, memmap_pages; 6788 unsigned long zone_start_pfn = zone->zone_start_pfn; 6789 6790 size = zone->spanned_pages; 6791 freesize = zone->present_pages; 6792 6793 /* 6794 * Adjust freesize so that it accounts for how much memory 6795 * is used by this zone for memmap. This affects the watermark 6796 * and per-cpu initialisations 6797 */ 6798 memmap_pages = calc_memmap_size(size, freesize); 6799 if (!is_highmem_idx(j)) { 6800 if (freesize >= memmap_pages) { 6801 freesize -= memmap_pages; 6802 if (memmap_pages) 6803 printk(KERN_DEBUG 6804 " %s zone: %lu pages used for memmap\n", 6805 zone_names[j], memmap_pages); 6806 } else 6807 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6808 zone_names[j], memmap_pages, freesize); 6809 } 6810 6811 /* Account for reserved pages */ 6812 if (j == 0 && freesize > dma_reserve) { 6813 freesize -= dma_reserve; 6814 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6815 zone_names[0], dma_reserve); 6816 } 6817 6818 if (!is_highmem_idx(j)) 6819 nr_kernel_pages += freesize; 6820 /* Charge for highmem memmap if there are enough kernel pages */ 6821 else if (nr_kernel_pages > memmap_pages * 2) 6822 nr_kernel_pages -= memmap_pages; 6823 nr_all_pages += freesize; 6824 6825 /* 6826 * Set an approximate value for lowmem here, it will be adjusted 6827 * when the bootmem allocator frees pages into the buddy system. 6828 * And all highmem pages will be managed by the buddy system. 6829 */ 6830 zone_init_internals(zone, j, nid, freesize); 6831 6832 if (!size) 6833 continue; 6834 6835 set_pageblock_order(); 6836 setup_usemap(pgdat, zone, zone_start_pfn, size); 6837 init_currently_empty_zone(zone, zone_start_pfn, size); 6838 memmap_init(size, nid, j, zone_start_pfn); 6839 } 6840 } 6841 6842 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6843 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6844 { 6845 unsigned long __maybe_unused start = 0; 6846 unsigned long __maybe_unused offset = 0; 6847 6848 /* Skip empty nodes */ 6849 if (!pgdat->node_spanned_pages) 6850 return; 6851 6852 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6853 offset = pgdat->node_start_pfn - start; 6854 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6855 if (!pgdat->node_mem_map) { 6856 unsigned long size, end; 6857 struct page *map; 6858 6859 /* 6860 * The zone's endpoints aren't required to be MAX_ORDER 6861 * aligned but the node_mem_map endpoints must be in order 6862 * for the buddy allocator to function correctly. 6863 */ 6864 end = pgdat_end_pfn(pgdat); 6865 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6866 size = (end - start) * sizeof(struct page); 6867 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6868 pgdat->node_id); 6869 if (!map) 6870 panic("Failed to allocate %ld bytes for node %d memory map\n", 6871 size, pgdat->node_id); 6872 pgdat->node_mem_map = map + offset; 6873 } 6874 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6875 __func__, pgdat->node_id, (unsigned long)pgdat, 6876 (unsigned long)pgdat->node_mem_map); 6877 #ifndef CONFIG_NEED_MULTIPLE_NODES 6878 /* 6879 * With no DISCONTIG, the global mem_map is just set as node 0's 6880 */ 6881 if (pgdat == NODE_DATA(0)) { 6882 mem_map = NODE_DATA(0)->node_mem_map; 6883 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6884 mem_map -= offset; 6885 } 6886 #endif 6887 } 6888 #else 6889 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6890 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6891 6892 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6893 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6894 { 6895 pgdat->first_deferred_pfn = ULONG_MAX; 6896 } 6897 #else 6898 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6899 #endif 6900 6901 static void __init free_area_init_node(int nid) 6902 { 6903 pg_data_t *pgdat = NODE_DATA(nid); 6904 unsigned long start_pfn = 0; 6905 unsigned long end_pfn = 0; 6906 6907 /* pg_data_t should be reset to zero when it's allocated */ 6908 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 6909 6910 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6911 6912 pgdat->node_id = nid; 6913 pgdat->node_start_pfn = start_pfn; 6914 pgdat->per_cpu_nodestats = NULL; 6915 6916 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6917 (u64)start_pfn << PAGE_SHIFT, 6918 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6919 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 6920 6921 alloc_node_mem_map(pgdat); 6922 pgdat_set_deferred_range(pgdat); 6923 6924 free_area_init_core(pgdat); 6925 } 6926 6927 void __init free_area_init_memoryless_node(int nid) 6928 { 6929 free_area_init_node(nid); 6930 } 6931 6932 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6933 /* 6934 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 6935 * PageReserved(). Return the number of struct pages that were initialized. 6936 */ 6937 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 6938 { 6939 unsigned long pfn; 6940 u64 pgcnt = 0; 6941 6942 for (pfn = spfn; pfn < epfn; pfn++) { 6943 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6944 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6945 + pageblock_nr_pages - 1; 6946 continue; 6947 } 6948 /* 6949 * Use a fake node/zone (0) for now. Some of these pages 6950 * (in memblock.reserved but not in memblock.memory) will 6951 * get re-initialized via reserve_bootmem_region() later. 6952 */ 6953 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 6954 __SetPageReserved(pfn_to_page(pfn)); 6955 pgcnt++; 6956 } 6957 6958 return pgcnt; 6959 } 6960 6961 /* 6962 * Only struct pages that are backed by physical memory are zeroed and 6963 * initialized by going through __init_single_page(). But, there are some 6964 * struct pages which are reserved in memblock allocator and their fields 6965 * may be accessed (for example page_to_pfn() on some configuration accesses 6966 * flags). We must explicitly initialize those struct pages. 6967 * 6968 * This function also addresses a similar issue where struct pages are left 6969 * uninitialized because the physical address range is not covered by 6970 * memblock.memory or memblock.reserved. That could happen when memblock 6971 * layout is manually configured via memmap=, or when the highest physical 6972 * address (max_pfn) does not end on a section boundary. 6973 */ 6974 static void __init init_unavailable_mem(void) 6975 { 6976 phys_addr_t start, end; 6977 u64 i, pgcnt; 6978 phys_addr_t next = 0; 6979 6980 /* 6981 * Loop through unavailable ranges not covered by memblock.memory. 6982 */ 6983 pgcnt = 0; 6984 for_each_mem_range(i, &memblock.memory, NULL, 6985 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6986 if (next < start) 6987 pgcnt += init_unavailable_range(PFN_DOWN(next), 6988 PFN_UP(start)); 6989 next = end; 6990 } 6991 6992 /* 6993 * Early sections always have a fully populated memmap for the whole 6994 * section - see pfn_valid(). If the last section has holes at the 6995 * end and that section is marked "online", the memmap will be 6996 * considered initialized. Make sure that memmap has a well defined 6997 * state. 6998 */ 6999 pgcnt += init_unavailable_range(PFN_DOWN(next), 7000 round_up(max_pfn, PAGES_PER_SECTION)); 7001 7002 /* 7003 * Struct pages that do not have backing memory. This could be because 7004 * firmware is using some of this memory, or for some other reasons. 7005 */ 7006 if (pgcnt) 7007 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7008 } 7009 #else 7010 static inline void __init init_unavailable_mem(void) 7011 { 7012 } 7013 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7014 7015 #if MAX_NUMNODES > 1 7016 /* 7017 * Figure out the number of possible node ids. 7018 */ 7019 void __init setup_nr_node_ids(void) 7020 { 7021 unsigned int highest; 7022 7023 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7024 nr_node_ids = highest + 1; 7025 } 7026 #endif 7027 7028 /** 7029 * node_map_pfn_alignment - determine the maximum internode alignment 7030 * 7031 * This function should be called after node map is populated and sorted. 7032 * It calculates the maximum power of two alignment which can distinguish 7033 * all the nodes. 7034 * 7035 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7036 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7037 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7038 * shifted, 1GiB is enough and this function will indicate so. 7039 * 7040 * This is used to test whether pfn -> nid mapping of the chosen memory 7041 * model has fine enough granularity to avoid incorrect mapping for the 7042 * populated node map. 7043 * 7044 * Return: the determined alignment in pfn's. 0 if there is no alignment 7045 * requirement (single node). 7046 */ 7047 unsigned long __init node_map_pfn_alignment(void) 7048 { 7049 unsigned long accl_mask = 0, last_end = 0; 7050 unsigned long start, end, mask; 7051 int last_nid = NUMA_NO_NODE; 7052 int i, nid; 7053 7054 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7055 if (!start || last_nid < 0 || last_nid == nid) { 7056 last_nid = nid; 7057 last_end = end; 7058 continue; 7059 } 7060 7061 /* 7062 * Start with a mask granular enough to pin-point to the 7063 * start pfn and tick off bits one-by-one until it becomes 7064 * too coarse to separate the current node from the last. 7065 */ 7066 mask = ~((1 << __ffs(start)) - 1); 7067 while (mask && last_end <= (start & (mask << 1))) 7068 mask <<= 1; 7069 7070 /* accumulate all internode masks */ 7071 accl_mask |= mask; 7072 } 7073 7074 /* convert mask to number of pages */ 7075 return ~accl_mask + 1; 7076 } 7077 7078 /** 7079 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7080 * 7081 * Return: the minimum PFN based on information provided via 7082 * memblock_set_node(). 7083 */ 7084 unsigned long __init find_min_pfn_with_active_regions(void) 7085 { 7086 return PHYS_PFN(memblock_start_of_DRAM()); 7087 } 7088 7089 /* 7090 * early_calculate_totalpages() 7091 * Sum pages in active regions for movable zone. 7092 * Populate N_MEMORY for calculating usable_nodes. 7093 */ 7094 static unsigned long __init early_calculate_totalpages(void) 7095 { 7096 unsigned long totalpages = 0; 7097 unsigned long start_pfn, end_pfn; 7098 int i, nid; 7099 7100 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7101 unsigned long pages = end_pfn - start_pfn; 7102 7103 totalpages += pages; 7104 if (pages) 7105 node_set_state(nid, N_MEMORY); 7106 } 7107 return totalpages; 7108 } 7109 7110 /* 7111 * Find the PFN the Movable zone begins in each node. Kernel memory 7112 * is spread evenly between nodes as long as the nodes have enough 7113 * memory. When they don't, some nodes will have more kernelcore than 7114 * others 7115 */ 7116 static void __init find_zone_movable_pfns_for_nodes(void) 7117 { 7118 int i, nid; 7119 unsigned long usable_startpfn; 7120 unsigned long kernelcore_node, kernelcore_remaining; 7121 /* save the state before borrow the nodemask */ 7122 nodemask_t saved_node_state = node_states[N_MEMORY]; 7123 unsigned long totalpages = early_calculate_totalpages(); 7124 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7125 struct memblock_region *r; 7126 7127 /* Need to find movable_zone earlier when movable_node is specified. */ 7128 find_usable_zone_for_movable(); 7129 7130 /* 7131 * If movable_node is specified, ignore kernelcore and movablecore 7132 * options. 7133 */ 7134 if (movable_node_is_enabled()) { 7135 for_each_memblock(memory, r) { 7136 if (!memblock_is_hotpluggable(r)) 7137 continue; 7138 7139 nid = memblock_get_region_node(r); 7140 7141 usable_startpfn = PFN_DOWN(r->base); 7142 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7143 min(usable_startpfn, zone_movable_pfn[nid]) : 7144 usable_startpfn; 7145 } 7146 7147 goto out2; 7148 } 7149 7150 /* 7151 * If kernelcore=mirror is specified, ignore movablecore option 7152 */ 7153 if (mirrored_kernelcore) { 7154 bool mem_below_4gb_not_mirrored = false; 7155 7156 for_each_memblock(memory, r) { 7157 if (memblock_is_mirror(r)) 7158 continue; 7159 7160 nid = memblock_get_region_node(r); 7161 7162 usable_startpfn = memblock_region_memory_base_pfn(r); 7163 7164 if (usable_startpfn < 0x100000) { 7165 mem_below_4gb_not_mirrored = true; 7166 continue; 7167 } 7168 7169 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7170 min(usable_startpfn, zone_movable_pfn[nid]) : 7171 usable_startpfn; 7172 } 7173 7174 if (mem_below_4gb_not_mirrored) 7175 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7176 7177 goto out2; 7178 } 7179 7180 /* 7181 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7182 * amount of necessary memory. 7183 */ 7184 if (required_kernelcore_percent) 7185 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7186 10000UL; 7187 if (required_movablecore_percent) 7188 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7189 10000UL; 7190 7191 /* 7192 * If movablecore= was specified, calculate what size of 7193 * kernelcore that corresponds so that memory usable for 7194 * any allocation type is evenly spread. If both kernelcore 7195 * and movablecore are specified, then the value of kernelcore 7196 * will be used for required_kernelcore if it's greater than 7197 * what movablecore would have allowed. 7198 */ 7199 if (required_movablecore) { 7200 unsigned long corepages; 7201 7202 /* 7203 * Round-up so that ZONE_MOVABLE is at least as large as what 7204 * was requested by the user 7205 */ 7206 required_movablecore = 7207 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7208 required_movablecore = min(totalpages, required_movablecore); 7209 corepages = totalpages - required_movablecore; 7210 7211 required_kernelcore = max(required_kernelcore, corepages); 7212 } 7213 7214 /* 7215 * If kernelcore was not specified or kernelcore size is larger 7216 * than totalpages, there is no ZONE_MOVABLE. 7217 */ 7218 if (!required_kernelcore || required_kernelcore >= totalpages) 7219 goto out; 7220 7221 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7222 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7223 7224 restart: 7225 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7226 kernelcore_node = required_kernelcore / usable_nodes; 7227 for_each_node_state(nid, N_MEMORY) { 7228 unsigned long start_pfn, end_pfn; 7229 7230 /* 7231 * Recalculate kernelcore_node if the division per node 7232 * now exceeds what is necessary to satisfy the requested 7233 * amount of memory for the kernel 7234 */ 7235 if (required_kernelcore < kernelcore_node) 7236 kernelcore_node = required_kernelcore / usable_nodes; 7237 7238 /* 7239 * As the map is walked, we track how much memory is usable 7240 * by the kernel using kernelcore_remaining. When it is 7241 * 0, the rest of the node is usable by ZONE_MOVABLE 7242 */ 7243 kernelcore_remaining = kernelcore_node; 7244 7245 /* Go through each range of PFNs within this node */ 7246 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7247 unsigned long size_pages; 7248 7249 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7250 if (start_pfn >= end_pfn) 7251 continue; 7252 7253 /* Account for what is only usable for kernelcore */ 7254 if (start_pfn < usable_startpfn) { 7255 unsigned long kernel_pages; 7256 kernel_pages = min(end_pfn, usable_startpfn) 7257 - start_pfn; 7258 7259 kernelcore_remaining -= min(kernel_pages, 7260 kernelcore_remaining); 7261 required_kernelcore -= min(kernel_pages, 7262 required_kernelcore); 7263 7264 /* Continue if range is now fully accounted */ 7265 if (end_pfn <= usable_startpfn) { 7266 7267 /* 7268 * Push zone_movable_pfn to the end so 7269 * that if we have to rebalance 7270 * kernelcore across nodes, we will 7271 * not double account here 7272 */ 7273 zone_movable_pfn[nid] = end_pfn; 7274 continue; 7275 } 7276 start_pfn = usable_startpfn; 7277 } 7278 7279 /* 7280 * The usable PFN range for ZONE_MOVABLE is from 7281 * start_pfn->end_pfn. Calculate size_pages as the 7282 * number of pages used as kernelcore 7283 */ 7284 size_pages = end_pfn - start_pfn; 7285 if (size_pages > kernelcore_remaining) 7286 size_pages = kernelcore_remaining; 7287 zone_movable_pfn[nid] = start_pfn + size_pages; 7288 7289 /* 7290 * Some kernelcore has been met, update counts and 7291 * break if the kernelcore for this node has been 7292 * satisfied 7293 */ 7294 required_kernelcore -= min(required_kernelcore, 7295 size_pages); 7296 kernelcore_remaining -= size_pages; 7297 if (!kernelcore_remaining) 7298 break; 7299 } 7300 } 7301 7302 /* 7303 * If there is still required_kernelcore, we do another pass with one 7304 * less node in the count. This will push zone_movable_pfn[nid] further 7305 * along on the nodes that still have memory until kernelcore is 7306 * satisfied 7307 */ 7308 usable_nodes--; 7309 if (usable_nodes && required_kernelcore > usable_nodes) 7310 goto restart; 7311 7312 out2: 7313 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7314 for (nid = 0; nid < MAX_NUMNODES; nid++) 7315 zone_movable_pfn[nid] = 7316 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7317 7318 out: 7319 /* restore the node_state */ 7320 node_states[N_MEMORY] = saved_node_state; 7321 } 7322 7323 /* Any regular or high memory on that node ? */ 7324 static void check_for_memory(pg_data_t *pgdat, int nid) 7325 { 7326 enum zone_type zone_type; 7327 7328 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7329 struct zone *zone = &pgdat->node_zones[zone_type]; 7330 if (populated_zone(zone)) { 7331 if (IS_ENABLED(CONFIG_HIGHMEM)) 7332 node_set_state(nid, N_HIGH_MEMORY); 7333 if (zone_type <= ZONE_NORMAL) 7334 node_set_state(nid, N_NORMAL_MEMORY); 7335 break; 7336 } 7337 } 7338 } 7339 7340 /* 7341 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7342 * such cases we allow max_zone_pfn sorted in the descending order 7343 */ 7344 bool __weak arch_has_descending_max_zone_pfns(void) 7345 { 7346 return false; 7347 } 7348 7349 /** 7350 * free_area_init - Initialise all pg_data_t and zone data 7351 * @max_zone_pfn: an array of max PFNs for each zone 7352 * 7353 * This will call free_area_init_node() for each active node in the system. 7354 * Using the page ranges provided by memblock_set_node(), the size of each 7355 * zone in each node and their holes is calculated. If the maximum PFN 7356 * between two adjacent zones match, it is assumed that the zone is empty. 7357 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7358 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7359 * starts where the previous one ended. For example, ZONE_DMA32 starts 7360 * at arch_max_dma_pfn. 7361 */ 7362 void __init free_area_init(unsigned long *max_zone_pfn) 7363 { 7364 unsigned long start_pfn, end_pfn; 7365 int i, nid, zone; 7366 bool descending; 7367 7368 /* Record where the zone boundaries are */ 7369 memset(arch_zone_lowest_possible_pfn, 0, 7370 sizeof(arch_zone_lowest_possible_pfn)); 7371 memset(arch_zone_highest_possible_pfn, 0, 7372 sizeof(arch_zone_highest_possible_pfn)); 7373 7374 start_pfn = find_min_pfn_with_active_regions(); 7375 descending = arch_has_descending_max_zone_pfns(); 7376 7377 for (i = 0; i < MAX_NR_ZONES; i++) { 7378 if (descending) 7379 zone = MAX_NR_ZONES - i - 1; 7380 else 7381 zone = i; 7382 7383 if (zone == ZONE_MOVABLE) 7384 continue; 7385 7386 end_pfn = max(max_zone_pfn[zone], start_pfn); 7387 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7388 arch_zone_highest_possible_pfn[zone] = end_pfn; 7389 7390 start_pfn = end_pfn; 7391 } 7392 7393 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7394 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7395 find_zone_movable_pfns_for_nodes(); 7396 7397 /* Print out the zone ranges */ 7398 pr_info("Zone ranges:\n"); 7399 for (i = 0; i < MAX_NR_ZONES; i++) { 7400 if (i == ZONE_MOVABLE) 7401 continue; 7402 pr_info(" %-8s ", zone_names[i]); 7403 if (arch_zone_lowest_possible_pfn[i] == 7404 arch_zone_highest_possible_pfn[i]) 7405 pr_cont("empty\n"); 7406 else 7407 pr_cont("[mem %#018Lx-%#018Lx]\n", 7408 (u64)arch_zone_lowest_possible_pfn[i] 7409 << PAGE_SHIFT, 7410 ((u64)arch_zone_highest_possible_pfn[i] 7411 << PAGE_SHIFT) - 1); 7412 } 7413 7414 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7415 pr_info("Movable zone start for each node\n"); 7416 for (i = 0; i < MAX_NUMNODES; i++) { 7417 if (zone_movable_pfn[i]) 7418 pr_info(" Node %d: %#018Lx\n", i, 7419 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7420 } 7421 7422 /* 7423 * Print out the early node map, and initialize the 7424 * subsection-map relative to active online memory ranges to 7425 * enable future "sub-section" extensions of the memory map. 7426 */ 7427 pr_info("Early memory node ranges\n"); 7428 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7429 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7430 (u64)start_pfn << PAGE_SHIFT, 7431 ((u64)end_pfn << PAGE_SHIFT) - 1); 7432 subsection_map_init(start_pfn, end_pfn - start_pfn); 7433 } 7434 7435 /* Initialise every node */ 7436 mminit_verify_pageflags_layout(); 7437 setup_nr_node_ids(); 7438 init_unavailable_mem(); 7439 for_each_online_node(nid) { 7440 pg_data_t *pgdat = NODE_DATA(nid); 7441 free_area_init_node(nid); 7442 7443 /* Any memory on that node */ 7444 if (pgdat->node_present_pages) 7445 node_set_state(nid, N_MEMORY); 7446 check_for_memory(pgdat, nid); 7447 } 7448 } 7449 7450 static int __init cmdline_parse_core(char *p, unsigned long *core, 7451 unsigned long *percent) 7452 { 7453 unsigned long long coremem; 7454 char *endptr; 7455 7456 if (!p) 7457 return -EINVAL; 7458 7459 /* Value may be a percentage of total memory, otherwise bytes */ 7460 coremem = simple_strtoull(p, &endptr, 0); 7461 if (*endptr == '%') { 7462 /* Paranoid check for percent values greater than 100 */ 7463 WARN_ON(coremem > 100); 7464 7465 *percent = coremem; 7466 } else { 7467 coremem = memparse(p, &p); 7468 /* Paranoid check that UL is enough for the coremem value */ 7469 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7470 7471 *core = coremem >> PAGE_SHIFT; 7472 *percent = 0UL; 7473 } 7474 return 0; 7475 } 7476 7477 /* 7478 * kernelcore=size sets the amount of memory for use for allocations that 7479 * cannot be reclaimed or migrated. 7480 */ 7481 static int __init cmdline_parse_kernelcore(char *p) 7482 { 7483 /* parse kernelcore=mirror */ 7484 if (parse_option_str(p, "mirror")) { 7485 mirrored_kernelcore = true; 7486 return 0; 7487 } 7488 7489 return cmdline_parse_core(p, &required_kernelcore, 7490 &required_kernelcore_percent); 7491 } 7492 7493 /* 7494 * movablecore=size sets the amount of memory for use for allocations that 7495 * can be reclaimed or migrated. 7496 */ 7497 static int __init cmdline_parse_movablecore(char *p) 7498 { 7499 return cmdline_parse_core(p, &required_movablecore, 7500 &required_movablecore_percent); 7501 } 7502 7503 early_param("kernelcore", cmdline_parse_kernelcore); 7504 early_param("movablecore", cmdline_parse_movablecore); 7505 7506 void adjust_managed_page_count(struct page *page, long count) 7507 { 7508 atomic_long_add(count, &page_zone(page)->managed_pages); 7509 totalram_pages_add(count); 7510 #ifdef CONFIG_HIGHMEM 7511 if (PageHighMem(page)) 7512 totalhigh_pages_add(count); 7513 #endif 7514 } 7515 EXPORT_SYMBOL(adjust_managed_page_count); 7516 7517 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7518 { 7519 void *pos; 7520 unsigned long pages = 0; 7521 7522 start = (void *)PAGE_ALIGN((unsigned long)start); 7523 end = (void *)((unsigned long)end & PAGE_MASK); 7524 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7525 struct page *page = virt_to_page(pos); 7526 void *direct_map_addr; 7527 7528 /* 7529 * 'direct_map_addr' might be different from 'pos' 7530 * because some architectures' virt_to_page() 7531 * work with aliases. Getting the direct map 7532 * address ensures that we get a _writeable_ 7533 * alias for the memset(). 7534 */ 7535 direct_map_addr = page_address(page); 7536 if ((unsigned int)poison <= 0xFF) 7537 memset(direct_map_addr, poison, PAGE_SIZE); 7538 7539 free_reserved_page(page); 7540 } 7541 7542 if (pages && s) 7543 pr_info("Freeing %s memory: %ldK\n", 7544 s, pages << (PAGE_SHIFT - 10)); 7545 7546 return pages; 7547 } 7548 7549 #ifdef CONFIG_HIGHMEM 7550 void free_highmem_page(struct page *page) 7551 { 7552 __free_reserved_page(page); 7553 totalram_pages_inc(); 7554 atomic_long_inc(&page_zone(page)->managed_pages); 7555 totalhigh_pages_inc(); 7556 } 7557 #endif 7558 7559 7560 void __init mem_init_print_info(const char *str) 7561 { 7562 unsigned long physpages, codesize, datasize, rosize, bss_size; 7563 unsigned long init_code_size, init_data_size; 7564 7565 physpages = get_num_physpages(); 7566 codesize = _etext - _stext; 7567 datasize = _edata - _sdata; 7568 rosize = __end_rodata - __start_rodata; 7569 bss_size = __bss_stop - __bss_start; 7570 init_data_size = __init_end - __init_begin; 7571 init_code_size = _einittext - _sinittext; 7572 7573 /* 7574 * Detect special cases and adjust section sizes accordingly: 7575 * 1) .init.* may be embedded into .data sections 7576 * 2) .init.text.* may be out of [__init_begin, __init_end], 7577 * please refer to arch/tile/kernel/vmlinux.lds.S. 7578 * 3) .rodata.* may be embedded into .text or .data sections. 7579 */ 7580 #define adj_init_size(start, end, size, pos, adj) \ 7581 do { \ 7582 if (start <= pos && pos < end && size > adj) \ 7583 size -= adj; \ 7584 } while (0) 7585 7586 adj_init_size(__init_begin, __init_end, init_data_size, 7587 _sinittext, init_code_size); 7588 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7589 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7590 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7591 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7592 7593 #undef adj_init_size 7594 7595 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7596 #ifdef CONFIG_HIGHMEM 7597 ", %luK highmem" 7598 #endif 7599 "%s%s)\n", 7600 nr_free_pages() << (PAGE_SHIFT - 10), 7601 physpages << (PAGE_SHIFT - 10), 7602 codesize >> 10, datasize >> 10, rosize >> 10, 7603 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7604 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7605 totalcma_pages << (PAGE_SHIFT - 10), 7606 #ifdef CONFIG_HIGHMEM 7607 totalhigh_pages() << (PAGE_SHIFT - 10), 7608 #endif 7609 str ? ", " : "", str ? str : ""); 7610 } 7611 7612 /** 7613 * set_dma_reserve - set the specified number of pages reserved in the first zone 7614 * @new_dma_reserve: The number of pages to mark reserved 7615 * 7616 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7617 * In the DMA zone, a significant percentage may be consumed by kernel image 7618 * and other unfreeable allocations which can skew the watermarks badly. This 7619 * function may optionally be used to account for unfreeable pages in the 7620 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7621 * smaller per-cpu batchsize. 7622 */ 7623 void __init set_dma_reserve(unsigned long new_dma_reserve) 7624 { 7625 dma_reserve = new_dma_reserve; 7626 } 7627 7628 static int page_alloc_cpu_dead(unsigned int cpu) 7629 { 7630 7631 lru_add_drain_cpu(cpu); 7632 drain_pages(cpu); 7633 7634 /* 7635 * Spill the event counters of the dead processor 7636 * into the current processors event counters. 7637 * This artificially elevates the count of the current 7638 * processor. 7639 */ 7640 vm_events_fold_cpu(cpu); 7641 7642 /* 7643 * Zero the differential counters of the dead processor 7644 * so that the vm statistics are consistent. 7645 * 7646 * This is only okay since the processor is dead and cannot 7647 * race with what we are doing. 7648 */ 7649 cpu_vm_stats_fold(cpu); 7650 return 0; 7651 } 7652 7653 #ifdef CONFIG_NUMA 7654 int hashdist = HASHDIST_DEFAULT; 7655 7656 static int __init set_hashdist(char *str) 7657 { 7658 if (!str) 7659 return 0; 7660 hashdist = simple_strtoul(str, &str, 0); 7661 return 1; 7662 } 7663 __setup("hashdist=", set_hashdist); 7664 #endif 7665 7666 void __init page_alloc_init(void) 7667 { 7668 int ret; 7669 7670 #ifdef CONFIG_NUMA 7671 if (num_node_state(N_MEMORY) == 1) 7672 hashdist = 0; 7673 #endif 7674 7675 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7676 "mm/page_alloc:dead", NULL, 7677 page_alloc_cpu_dead); 7678 WARN_ON(ret < 0); 7679 } 7680 7681 /* 7682 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7683 * or min_free_kbytes changes. 7684 */ 7685 static void calculate_totalreserve_pages(void) 7686 { 7687 struct pglist_data *pgdat; 7688 unsigned long reserve_pages = 0; 7689 enum zone_type i, j; 7690 7691 for_each_online_pgdat(pgdat) { 7692 7693 pgdat->totalreserve_pages = 0; 7694 7695 for (i = 0; i < MAX_NR_ZONES; i++) { 7696 struct zone *zone = pgdat->node_zones + i; 7697 long max = 0; 7698 unsigned long managed_pages = zone_managed_pages(zone); 7699 7700 /* Find valid and maximum lowmem_reserve in the zone */ 7701 for (j = i; j < MAX_NR_ZONES; j++) { 7702 if (zone->lowmem_reserve[j] > max) 7703 max = zone->lowmem_reserve[j]; 7704 } 7705 7706 /* we treat the high watermark as reserved pages. */ 7707 max += high_wmark_pages(zone); 7708 7709 if (max > managed_pages) 7710 max = managed_pages; 7711 7712 pgdat->totalreserve_pages += max; 7713 7714 reserve_pages += max; 7715 } 7716 } 7717 totalreserve_pages = reserve_pages; 7718 } 7719 7720 /* 7721 * setup_per_zone_lowmem_reserve - called whenever 7722 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7723 * has a correct pages reserved value, so an adequate number of 7724 * pages are left in the zone after a successful __alloc_pages(). 7725 */ 7726 static void setup_per_zone_lowmem_reserve(void) 7727 { 7728 struct pglist_data *pgdat; 7729 enum zone_type j, idx; 7730 7731 for_each_online_pgdat(pgdat) { 7732 for (j = 0; j < MAX_NR_ZONES; j++) { 7733 struct zone *zone = pgdat->node_zones + j; 7734 unsigned long managed_pages = zone_managed_pages(zone); 7735 7736 zone->lowmem_reserve[j] = 0; 7737 7738 idx = j; 7739 while (idx) { 7740 struct zone *lower_zone; 7741 7742 idx--; 7743 lower_zone = pgdat->node_zones + idx; 7744 7745 if (!sysctl_lowmem_reserve_ratio[idx] || 7746 !zone_managed_pages(lower_zone)) { 7747 lower_zone->lowmem_reserve[j] = 0; 7748 continue; 7749 } else { 7750 lower_zone->lowmem_reserve[j] = 7751 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7752 } 7753 managed_pages += zone_managed_pages(lower_zone); 7754 } 7755 } 7756 } 7757 7758 /* update totalreserve_pages */ 7759 calculate_totalreserve_pages(); 7760 } 7761 7762 static void __setup_per_zone_wmarks(void) 7763 { 7764 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7765 unsigned long lowmem_pages = 0; 7766 struct zone *zone; 7767 unsigned long flags; 7768 7769 /* Calculate total number of !ZONE_HIGHMEM pages */ 7770 for_each_zone(zone) { 7771 if (!is_highmem(zone)) 7772 lowmem_pages += zone_managed_pages(zone); 7773 } 7774 7775 for_each_zone(zone) { 7776 u64 tmp; 7777 7778 spin_lock_irqsave(&zone->lock, flags); 7779 tmp = (u64)pages_min * zone_managed_pages(zone); 7780 do_div(tmp, lowmem_pages); 7781 if (is_highmem(zone)) { 7782 /* 7783 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7784 * need highmem pages, so cap pages_min to a small 7785 * value here. 7786 * 7787 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7788 * deltas control async page reclaim, and so should 7789 * not be capped for highmem. 7790 */ 7791 unsigned long min_pages; 7792 7793 min_pages = zone_managed_pages(zone) / 1024; 7794 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7795 zone->_watermark[WMARK_MIN] = min_pages; 7796 } else { 7797 /* 7798 * If it's a lowmem zone, reserve a number of pages 7799 * proportionate to the zone's size. 7800 */ 7801 zone->_watermark[WMARK_MIN] = tmp; 7802 } 7803 7804 /* 7805 * Set the kswapd watermarks distance according to the 7806 * scale factor in proportion to available memory, but 7807 * ensure a minimum size on small systems. 7808 */ 7809 tmp = max_t(u64, tmp >> 2, 7810 mult_frac(zone_managed_pages(zone), 7811 watermark_scale_factor, 10000)); 7812 7813 zone->watermark_boost = 0; 7814 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7815 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7816 7817 spin_unlock_irqrestore(&zone->lock, flags); 7818 } 7819 7820 /* update totalreserve_pages */ 7821 calculate_totalreserve_pages(); 7822 } 7823 7824 /** 7825 * setup_per_zone_wmarks - called when min_free_kbytes changes 7826 * or when memory is hot-{added|removed} 7827 * 7828 * Ensures that the watermark[min,low,high] values for each zone are set 7829 * correctly with respect to min_free_kbytes. 7830 */ 7831 void setup_per_zone_wmarks(void) 7832 { 7833 static DEFINE_SPINLOCK(lock); 7834 7835 spin_lock(&lock); 7836 __setup_per_zone_wmarks(); 7837 spin_unlock(&lock); 7838 } 7839 7840 /* 7841 * Initialise min_free_kbytes. 7842 * 7843 * For small machines we want it small (128k min). For large machines 7844 * we want it large (64MB max). But it is not linear, because network 7845 * bandwidth does not increase linearly with machine size. We use 7846 * 7847 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7848 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7849 * 7850 * which yields 7851 * 7852 * 16MB: 512k 7853 * 32MB: 724k 7854 * 64MB: 1024k 7855 * 128MB: 1448k 7856 * 256MB: 2048k 7857 * 512MB: 2896k 7858 * 1024MB: 4096k 7859 * 2048MB: 5792k 7860 * 4096MB: 8192k 7861 * 8192MB: 11584k 7862 * 16384MB: 16384k 7863 */ 7864 int __meminit init_per_zone_wmark_min(void) 7865 { 7866 unsigned long lowmem_kbytes; 7867 int new_min_free_kbytes; 7868 7869 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7870 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7871 7872 if (new_min_free_kbytes > user_min_free_kbytes) { 7873 min_free_kbytes = new_min_free_kbytes; 7874 if (min_free_kbytes < 128) 7875 min_free_kbytes = 128; 7876 if (min_free_kbytes > 262144) 7877 min_free_kbytes = 262144; 7878 } else { 7879 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7880 new_min_free_kbytes, user_min_free_kbytes); 7881 } 7882 setup_per_zone_wmarks(); 7883 refresh_zone_stat_thresholds(); 7884 setup_per_zone_lowmem_reserve(); 7885 7886 #ifdef CONFIG_NUMA 7887 setup_min_unmapped_ratio(); 7888 setup_min_slab_ratio(); 7889 #endif 7890 7891 return 0; 7892 } 7893 core_initcall(init_per_zone_wmark_min) 7894 7895 /* 7896 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7897 * that we can call two helper functions whenever min_free_kbytes 7898 * changes. 7899 */ 7900 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7901 void *buffer, size_t *length, loff_t *ppos) 7902 { 7903 int rc; 7904 7905 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7906 if (rc) 7907 return rc; 7908 7909 if (write) { 7910 user_min_free_kbytes = min_free_kbytes; 7911 setup_per_zone_wmarks(); 7912 } 7913 return 0; 7914 } 7915 7916 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7917 void *buffer, size_t *length, loff_t *ppos) 7918 { 7919 int rc; 7920 7921 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7922 if (rc) 7923 return rc; 7924 7925 if (write) 7926 setup_per_zone_wmarks(); 7927 7928 return 0; 7929 } 7930 7931 #ifdef CONFIG_NUMA 7932 static void setup_min_unmapped_ratio(void) 7933 { 7934 pg_data_t *pgdat; 7935 struct zone *zone; 7936 7937 for_each_online_pgdat(pgdat) 7938 pgdat->min_unmapped_pages = 0; 7939 7940 for_each_zone(zone) 7941 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7942 sysctl_min_unmapped_ratio) / 100; 7943 } 7944 7945 7946 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7947 void *buffer, size_t *length, loff_t *ppos) 7948 { 7949 int rc; 7950 7951 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7952 if (rc) 7953 return rc; 7954 7955 setup_min_unmapped_ratio(); 7956 7957 return 0; 7958 } 7959 7960 static void setup_min_slab_ratio(void) 7961 { 7962 pg_data_t *pgdat; 7963 struct zone *zone; 7964 7965 for_each_online_pgdat(pgdat) 7966 pgdat->min_slab_pages = 0; 7967 7968 for_each_zone(zone) 7969 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7970 sysctl_min_slab_ratio) / 100; 7971 } 7972 7973 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7974 void *buffer, size_t *length, loff_t *ppos) 7975 { 7976 int rc; 7977 7978 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7979 if (rc) 7980 return rc; 7981 7982 setup_min_slab_ratio(); 7983 7984 return 0; 7985 } 7986 #endif 7987 7988 /* 7989 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7990 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7991 * whenever sysctl_lowmem_reserve_ratio changes. 7992 * 7993 * The reserve ratio obviously has absolutely no relation with the 7994 * minimum watermarks. The lowmem reserve ratio can only make sense 7995 * if in function of the boot time zone sizes. 7996 */ 7997 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7998 void *buffer, size_t *length, loff_t *ppos) 7999 { 8000 int i; 8001 8002 proc_dointvec_minmax(table, write, buffer, length, ppos); 8003 8004 for (i = 0; i < MAX_NR_ZONES; i++) { 8005 if (sysctl_lowmem_reserve_ratio[i] < 1) 8006 sysctl_lowmem_reserve_ratio[i] = 0; 8007 } 8008 8009 setup_per_zone_lowmem_reserve(); 8010 return 0; 8011 } 8012 8013 static void __zone_pcp_update(struct zone *zone) 8014 { 8015 unsigned int cpu; 8016 8017 for_each_possible_cpu(cpu) 8018 pageset_set_high_and_batch(zone, 8019 per_cpu_ptr(zone->pageset, cpu)); 8020 } 8021 8022 /* 8023 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8024 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8025 * pagelist can have before it gets flushed back to buddy allocator. 8026 */ 8027 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8028 void *buffer, size_t *length, loff_t *ppos) 8029 { 8030 struct zone *zone; 8031 int old_percpu_pagelist_fraction; 8032 int ret; 8033 8034 mutex_lock(&pcp_batch_high_lock); 8035 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8036 8037 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8038 if (!write || ret < 0) 8039 goto out; 8040 8041 /* Sanity checking to avoid pcp imbalance */ 8042 if (percpu_pagelist_fraction && 8043 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8044 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8045 ret = -EINVAL; 8046 goto out; 8047 } 8048 8049 /* No change? */ 8050 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8051 goto out; 8052 8053 for_each_populated_zone(zone) 8054 __zone_pcp_update(zone); 8055 out: 8056 mutex_unlock(&pcp_batch_high_lock); 8057 return ret; 8058 } 8059 8060 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8061 /* 8062 * Returns the number of pages that arch has reserved but 8063 * is not known to alloc_large_system_hash(). 8064 */ 8065 static unsigned long __init arch_reserved_kernel_pages(void) 8066 { 8067 return 0; 8068 } 8069 #endif 8070 8071 /* 8072 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8073 * machines. As memory size is increased the scale is also increased but at 8074 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8075 * quadruples the scale is increased by one, which means the size of hash table 8076 * only doubles, instead of quadrupling as well. 8077 * Because 32-bit systems cannot have large physical memory, where this scaling 8078 * makes sense, it is disabled on such platforms. 8079 */ 8080 #if __BITS_PER_LONG > 32 8081 #define ADAPT_SCALE_BASE (64ul << 30) 8082 #define ADAPT_SCALE_SHIFT 2 8083 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8084 #endif 8085 8086 /* 8087 * allocate a large system hash table from bootmem 8088 * - it is assumed that the hash table must contain an exact power-of-2 8089 * quantity of entries 8090 * - limit is the number of hash buckets, not the total allocation size 8091 */ 8092 void *__init alloc_large_system_hash(const char *tablename, 8093 unsigned long bucketsize, 8094 unsigned long numentries, 8095 int scale, 8096 int flags, 8097 unsigned int *_hash_shift, 8098 unsigned int *_hash_mask, 8099 unsigned long low_limit, 8100 unsigned long high_limit) 8101 { 8102 unsigned long long max = high_limit; 8103 unsigned long log2qty, size; 8104 void *table = NULL; 8105 gfp_t gfp_flags; 8106 bool virt; 8107 8108 /* allow the kernel cmdline to have a say */ 8109 if (!numentries) { 8110 /* round applicable memory size up to nearest megabyte */ 8111 numentries = nr_kernel_pages; 8112 numentries -= arch_reserved_kernel_pages(); 8113 8114 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8115 if (PAGE_SHIFT < 20) 8116 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8117 8118 #if __BITS_PER_LONG > 32 8119 if (!high_limit) { 8120 unsigned long adapt; 8121 8122 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8123 adapt <<= ADAPT_SCALE_SHIFT) 8124 scale++; 8125 } 8126 #endif 8127 8128 /* limit to 1 bucket per 2^scale bytes of low memory */ 8129 if (scale > PAGE_SHIFT) 8130 numentries >>= (scale - PAGE_SHIFT); 8131 else 8132 numentries <<= (PAGE_SHIFT - scale); 8133 8134 /* Make sure we've got at least a 0-order allocation.. */ 8135 if (unlikely(flags & HASH_SMALL)) { 8136 /* Makes no sense without HASH_EARLY */ 8137 WARN_ON(!(flags & HASH_EARLY)); 8138 if (!(numentries >> *_hash_shift)) { 8139 numentries = 1UL << *_hash_shift; 8140 BUG_ON(!numentries); 8141 } 8142 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8143 numentries = PAGE_SIZE / bucketsize; 8144 } 8145 numentries = roundup_pow_of_two(numentries); 8146 8147 /* limit allocation size to 1/16 total memory by default */ 8148 if (max == 0) { 8149 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8150 do_div(max, bucketsize); 8151 } 8152 max = min(max, 0x80000000ULL); 8153 8154 if (numentries < low_limit) 8155 numentries = low_limit; 8156 if (numentries > max) 8157 numentries = max; 8158 8159 log2qty = ilog2(numentries); 8160 8161 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8162 do { 8163 virt = false; 8164 size = bucketsize << log2qty; 8165 if (flags & HASH_EARLY) { 8166 if (flags & HASH_ZERO) 8167 table = memblock_alloc(size, SMP_CACHE_BYTES); 8168 else 8169 table = memblock_alloc_raw(size, 8170 SMP_CACHE_BYTES); 8171 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8172 table = __vmalloc(size, gfp_flags); 8173 virt = true; 8174 } else { 8175 /* 8176 * If bucketsize is not a power-of-two, we may free 8177 * some pages at the end of hash table which 8178 * alloc_pages_exact() automatically does 8179 */ 8180 table = alloc_pages_exact(size, gfp_flags); 8181 kmemleak_alloc(table, size, 1, gfp_flags); 8182 } 8183 } while (!table && size > PAGE_SIZE && --log2qty); 8184 8185 if (!table) 8186 panic("Failed to allocate %s hash table\n", tablename); 8187 8188 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8189 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8190 virt ? "vmalloc" : "linear"); 8191 8192 if (_hash_shift) 8193 *_hash_shift = log2qty; 8194 if (_hash_mask) 8195 *_hash_mask = (1 << log2qty) - 1; 8196 8197 return table; 8198 } 8199 8200 /* 8201 * This function checks whether pageblock includes unmovable pages or not. 8202 * 8203 * PageLRU check without isolation or lru_lock could race so that 8204 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8205 * check without lock_page also may miss some movable non-lru pages at 8206 * race condition. So you can't expect this function should be exact. 8207 * 8208 * Returns a page without holding a reference. If the caller wants to 8209 * dereference that page (e.g., dumping), it has to make sure that that it 8210 * cannot get removed (e.g., via memory unplug) concurrently. 8211 * 8212 */ 8213 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8214 int migratetype, int flags) 8215 { 8216 unsigned long iter = 0; 8217 unsigned long pfn = page_to_pfn(page); 8218 8219 /* 8220 * TODO we could make this much more efficient by not checking every 8221 * page in the range if we know all of them are in MOVABLE_ZONE and 8222 * that the movable zone guarantees that pages are migratable but 8223 * the later is not the case right now unfortunatelly. E.g. movablecore 8224 * can still lead to having bootmem allocations in zone_movable. 8225 */ 8226 8227 if (is_migrate_cma_page(page)) { 8228 /* 8229 * CMA allocations (alloc_contig_range) really need to mark 8230 * isolate CMA pageblocks even when they are not movable in fact 8231 * so consider them movable here. 8232 */ 8233 if (is_migrate_cma(migratetype)) 8234 return NULL; 8235 8236 return page; 8237 } 8238 8239 for (; iter < pageblock_nr_pages; iter++) { 8240 if (!pfn_valid_within(pfn + iter)) 8241 continue; 8242 8243 page = pfn_to_page(pfn + iter); 8244 8245 if (PageReserved(page)) 8246 return page; 8247 8248 /* 8249 * If the zone is movable and we have ruled out all reserved 8250 * pages then it should be reasonably safe to assume the rest 8251 * is movable. 8252 */ 8253 if (zone_idx(zone) == ZONE_MOVABLE) 8254 continue; 8255 8256 /* 8257 * Hugepages are not in LRU lists, but they're movable. 8258 * THPs are on the LRU, but need to be counted as #small pages. 8259 * We need not scan over tail pages because we don't 8260 * handle each tail page individually in migration. 8261 */ 8262 if (PageHuge(page) || PageTransCompound(page)) { 8263 struct page *head = compound_head(page); 8264 unsigned int skip_pages; 8265 8266 if (PageHuge(page)) { 8267 if (!hugepage_migration_supported(page_hstate(head))) 8268 return page; 8269 } else if (!PageLRU(head) && !__PageMovable(head)) { 8270 return page; 8271 } 8272 8273 skip_pages = compound_nr(head) - (page - head); 8274 iter += skip_pages - 1; 8275 continue; 8276 } 8277 8278 /* 8279 * We can't use page_count without pin a page 8280 * because another CPU can free compound page. 8281 * This check already skips compound tails of THP 8282 * because their page->_refcount is zero at all time. 8283 */ 8284 if (!page_ref_count(page)) { 8285 if (PageBuddy(page)) 8286 iter += (1 << page_order(page)) - 1; 8287 continue; 8288 } 8289 8290 /* 8291 * The HWPoisoned page may be not in buddy system, and 8292 * page_count() is not 0. 8293 */ 8294 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8295 continue; 8296 8297 if (__PageMovable(page) || PageLRU(page)) 8298 continue; 8299 8300 /* 8301 * If there are RECLAIMABLE pages, we need to check 8302 * it. But now, memory offline itself doesn't call 8303 * shrink_node_slabs() and it still to be fixed. 8304 */ 8305 /* 8306 * If the page is not RAM, page_count()should be 0. 8307 * we don't need more check. This is an _used_ not-movable page. 8308 * 8309 * The problematic thing here is PG_reserved pages. PG_reserved 8310 * is set to both of a memory hole page and a _used_ kernel 8311 * page at boot. 8312 */ 8313 return page; 8314 } 8315 return NULL; 8316 } 8317 8318 #ifdef CONFIG_CONTIG_ALLOC 8319 static unsigned long pfn_max_align_down(unsigned long pfn) 8320 { 8321 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8322 pageblock_nr_pages) - 1); 8323 } 8324 8325 static unsigned long pfn_max_align_up(unsigned long pfn) 8326 { 8327 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8328 pageblock_nr_pages)); 8329 } 8330 8331 /* [start, end) must belong to a single zone. */ 8332 static int __alloc_contig_migrate_range(struct compact_control *cc, 8333 unsigned long start, unsigned long end) 8334 { 8335 /* This function is based on compact_zone() from compaction.c. */ 8336 unsigned int nr_reclaimed; 8337 unsigned long pfn = start; 8338 unsigned int tries = 0; 8339 int ret = 0; 8340 8341 migrate_prep(); 8342 8343 while (pfn < end || !list_empty(&cc->migratepages)) { 8344 if (fatal_signal_pending(current)) { 8345 ret = -EINTR; 8346 break; 8347 } 8348 8349 if (list_empty(&cc->migratepages)) { 8350 cc->nr_migratepages = 0; 8351 pfn = isolate_migratepages_range(cc, pfn, end); 8352 if (!pfn) { 8353 ret = -EINTR; 8354 break; 8355 } 8356 tries = 0; 8357 } else if (++tries == 5) { 8358 ret = ret < 0 ? ret : -EBUSY; 8359 break; 8360 } 8361 8362 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8363 &cc->migratepages); 8364 cc->nr_migratepages -= nr_reclaimed; 8365 8366 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8367 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8368 } 8369 if (ret < 0) { 8370 putback_movable_pages(&cc->migratepages); 8371 return ret; 8372 } 8373 return 0; 8374 } 8375 8376 /** 8377 * alloc_contig_range() -- tries to allocate given range of pages 8378 * @start: start PFN to allocate 8379 * @end: one-past-the-last PFN to allocate 8380 * @migratetype: migratetype of the underlaying pageblocks (either 8381 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8382 * in range must have the same migratetype and it must 8383 * be either of the two. 8384 * @gfp_mask: GFP mask to use during compaction 8385 * 8386 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8387 * aligned. The PFN range must belong to a single zone. 8388 * 8389 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8390 * pageblocks in the range. Once isolated, the pageblocks should not 8391 * be modified by others. 8392 * 8393 * Return: zero on success or negative error code. On success all 8394 * pages which PFN is in [start, end) are allocated for the caller and 8395 * need to be freed with free_contig_range(). 8396 */ 8397 int alloc_contig_range(unsigned long start, unsigned long end, 8398 unsigned migratetype, gfp_t gfp_mask) 8399 { 8400 unsigned long outer_start, outer_end; 8401 unsigned int order; 8402 int ret = 0; 8403 8404 struct compact_control cc = { 8405 .nr_migratepages = 0, 8406 .order = -1, 8407 .zone = page_zone(pfn_to_page(start)), 8408 .mode = MIGRATE_SYNC, 8409 .ignore_skip_hint = true, 8410 .no_set_skip_hint = true, 8411 .gfp_mask = current_gfp_context(gfp_mask), 8412 .alloc_contig = true, 8413 }; 8414 INIT_LIST_HEAD(&cc.migratepages); 8415 8416 /* 8417 * What we do here is we mark all pageblocks in range as 8418 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8419 * have different sizes, and due to the way page allocator 8420 * work, we align the range to biggest of the two pages so 8421 * that page allocator won't try to merge buddies from 8422 * different pageblocks and change MIGRATE_ISOLATE to some 8423 * other migration type. 8424 * 8425 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8426 * migrate the pages from an unaligned range (ie. pages that 8427 * we are interested in). This will put all the pages in 8428 * range back to page allocator as MIGRATE_ISOLATE. 8429 * 8430 * When this is done, we take the pages in range from page 8431 * allocator removing them from the buddy system. This way 8432 * page allocator will never consider using them. 8433 * 8434 * This lets us mark the pageblocks back as 8435 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8436 * aligned range but not in the unaligned, original range are 8437 * put back to page allocator so that buddy can use them. 8438 */ 8439 8440 ret = start_isolate_page_range(pfn_max_align_down(start), 8441 pfn_max_align_up(end), migratetype, 0); 8442 if (ret < 0) 8443 return ret; 8444 8445 /* 8446 * In case of -EBUSY, we'd like to know which page causes problem. 8447 * So, just fall through. test_pages_isolated() has a tracepoint 8448 * which will report the busy page. 8449 * 8450 * It is possible that busy pages could become available before 8451 * the call to test_pages_isolated, and the range will actually be 8452 * allocated. So, if we fall through be sure to clear ret so that 8453 * -EBUSY is not accidentally used or returned to caller. 8454 */ 8455 ret = __alloc_contig_migrate_range(&cc, start, end); 8456 if (ret && ret != -EBUSY) 8457 goto done; 8458 ret =0; 8459 8460 /* 8461 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8462 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8463 * more, all pages in [start, end) are free in page allocator. 8464 * What we are going to do is to allocate all pages from 8465 * [start, end) (that is remove them from page allocator). 8466 * 8467 * The only problem is that pages at the beginning and at the 8468 * end of interesting range may be not aligned with pages that 8469 * page allocator holds, ie. they can be part of higher order 8470 * pages. Because of this, we reserve the bigger range and 8471 * once this is done free the pages we are not interested in. 8472 * 8473 * We don't have to hold zone->lock here because the pages are 8474 * isolated thus they won't get removed from buddy. 8475 */ 8476 8477 lru_add_drain_all(); 8478 8479 order = 0; 8480 outer_start = start; 8481 while (!PageBuddy(pfn_to_page(outer_start))) { 8482 if (++order >= MAX_ORDER) { 8483 outer_start = start; 8484 break; 8485 } 8486 outer_start &= ~0UL << order; 8487 } 8488 8489 if (outer_start != start) { 8490 order = page_order(pfn_to_page(outer_start)); 8491 8492 /* 8493 * outer_start page could be small order buddy page and 8494 * it doesn't include start page. Adjust outer_start 8495 * in this case to report failed page properly 8496 * on tracepoint in test_pages_isolated() 8497 */ 8498 if (outer_start + (1UL << order) <= start) 8499 outer_start = start; 8500 } 8501 8502 /* Make sure the range is really isolated. */ 8503 if (test_pages_isolated(outer_start, end, 0)) { 8504 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8505 __func__, outer_start, end); 8506 ret = -EBUSY; 8507 goto done; 8508 } 8509 8510 /* Grab isolated pages from freelists. */ 8511 outer_end = isolate_freepages_range(&cc, outer_start, end); 8512 if (!outer_end) { 8513 ret = -EBUSY; 8514 goto done; 8515 } 8516 8517 /* Free head and tail (if any) */ 8518 if (start != outer_start) 8519 free_contig_range(outer_start, start - outer_start); 8520 if (end != outer_end) 8521 free_contig_range(end, outer_end - end); 8522 8523 done: 8524 undo_isolate_page_range(pfn_max_align_down(start), 8525 pfn_max_align_up(end), migratetype); 8526 return ret; 8527 } 8528 8529 static int __alloc_contig_pages(unsigned long start_pfn, 8530 unsigned long nr_pages, gfp_t gfp_mask) 8531 { 8532 unsigned long end_pfn = start_pfn + nr_pages; 8533 8534 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8535 gfp_mask); 8536 } 8537 8538 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8539 unsigned long nr_pages) 8540 { 8541 unsigned long i, end_pfn = start_pfn + nr_pages; 8542 struct page *page; 8543 8544 for (i = start_pfn; i < end_pfn; i++) { 8545 page = pfn_to_online_page(i); 8546 if (!page) 8547 return false; 8548 8549 if (page_zone(page) != z) 8550 return false; 8551 8552 if (PageReserved(page)) 8553 return false; 8554 8555 if (page_count(page) > 0) 8556 return false; 8557 8558 if (PageHuge(page)) 8559 return false; 8560 } 8561 return true; 8562 } 8563 8564 static bool zone_spans_last_pfn(const struct zone *zone, 8565 unsigned long start_pfn, unsigned long nr_pages) 8566 { 8567 unsigned long last_pfn = start_pfn + nr_pages - 1; 8568 8569 return zone_spans_pfn(zone, last_pfn); 8570 } 8571 8572 /** 8573 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8574 * @nr_pages: Number of contiguous pages to allocate 8575 * @gfp_mask: GFP mask to limit search and used during compaction 8576 * @nid: Target node 8577 * @nodemask: Mask for other possible nodes 8578 * 8579 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8580 * on an applicable zonelist to find a contiguous pfn range which can then be 8581 * tried for allocation with alloc_contig_range(). This routine is intended 8582 * for allocation requests which can not be fulfilled with the buddy allocator. 8583 * 8584 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8585 * power of two then the alignment is guaranteed to be to the given nr_pages 8586 * (e.g. 1GB request would be aligned to 1GB). 8587 * 8588 * Allocated pages can be freed with free_contig_range() or by manually calling 8589 * __free_page() on each allocated page. 8590 * 8591 * Return: pointer to contiguous pages on success, or NULL if not successful. 8592 */ 8593 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8594 int nid, nodemask_t *nodemask) 8595 { 8596 unsigned long ret, pfn, flags; 8597 struct zonelist *zonelist; 8598 struct zone *zone; 8599 struct zoneref *z; 8600 8601 zonelist = node_zonelist(nid, gfp_mask); 8602 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8603 gfp_zone(gfp_mask), nodemask) { 8604 spin_lock_irqsave(&zone->lock, flags); 8605 8606 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8607 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8608 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8609 /* 8610 * We release the zone lock here because 8611 * alloc_contig_range() will also lock the zone 8612 * at some point. If there's an allocation 8613 * spinning on this lock, it may win the race 8614 * and cause alloc_contig_range() to fail... 8615 */ 8616 spin_unlock_irqrestore(&zone->lock, flags); 8617 ret = __alloc_contig_pages(pfn, nr_pages, 8618 gfp_mask); 8619 if (!ret) 8620 return pfn_to_page(pfn); 8621 spin_lock_irqsave(&zone->lock, flags); 8622 } 8623 pfn += nr_pages; 8624 } 8625 spin_unlock_irqrestore(&zone->lock, flags); 8626 } 8627 return NULL; 8628 } 8629 #endif /* CONFIG_CONTIG_ALLOC */ 8630 8631 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8632 { 8633 unsigned int count = 0; 8634 8635 for (; nr_pages--; pfn++) { 8636 struct page *page = pfn_to_page(pfn); 8637 8638 count += page_count(page) != 1; 8639 __free_page(page); 8640 } 8641 WARN(count != 0, "%d pages are still in use!\n", count); 8642 } 8643 8644 /* 8645 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8646 * page high values need to be recalulated. 8647 */ 8648 void __meminit zone_pcp_update(struct zone *zone) 8649 { 8650 mutex_lock(&pcp_batch_high_lock); 8651 __zone_pcp_update(zone); 8652 mutex_unlock(&pcp_batch_high_lock); 8653 } 8654 8655 void zone_pcp_reset(struct zone *zone) 8656 { 8657 unsigned long flags; 8658 int cpu; 8659 struct per_cpu_pageset *pset; 8660 8661 /* avoid races with drain_pages() */ 8662 local_irq_save(flags); 8663 if (zone->pageset != &boot_pageset) { 8664 for_each_online_cpu(cpu) { 8665 pset = per_cpu_ptr(zone->pageset, cpu); 8666 drain_zonestat(zone, pset); 8667 } 8668 free_percpu(zone->pageset); 8669 zone->pageset = &boot_pageset; 8670 } 8671 local_irq_restore(flags); 8672 } 8673 8674 #ifdef CONFIG_MEMORY_HOTREMOVE 8675 /* 8676 * All pages in the range must be in a single zone and isolated 8677 * before calling this. 8678 */ 8679 unsigned long 8680 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8681 { 8682 struct page *page; 8683 struct zone *zone; 8684 unsigned int order; 8685 unsigned long pfn; 8686 unsigned long flags; 8687 unsigned long offlined_pages = 0; 8688 8689 /* find the first valid pfn */ 8690 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8691 if (pfn_valid(pfn)) 8692 break; 8693 if (pfn == end_pfn) 8694 return offlined_pages; 8695 8696 offline_mem_sections(pfn, end_pfn); 8697 zone = page_zone(pfn_to_page(pfn)); 8698 spin_lock_irqsave(&zone->lock, flags); 8699 pfn = start_pfn; 8700 while (pfn < end_pfn) { 8701 if (!pfn_valid(pfn)) { 8702 pfn++; 8703 continue; 8704 } 8705 page = pfn_to_page(pfn); 8706 /* 8707 * The HWPoisoned page may be not in buddy system, and 8708 * page_count() is not 0. 8709 */ 8710 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8711 pfn++; 8712 offlined_pages++; 8713 continue; 8714 } 8715 8716 BUG_ON(page_count(page)); 8717 BUG_ON(!PageBuddy(page)); 8718 order = page_order(page); 8719 offlined_pages += 1 << order; 8720 del_page_from_free_list(page, zone, order); 8721 pfn += (1 << order); 8722 } 8723 spin_unlock_irqrestore(&zone->lock, flags); 8724 8725 return offlined_pages; 8726 } 8727 #endif 8728 8729 bool is_free_buddy_page(struct page *page) 8730 { 8731 struct zone *zone = page_zone(page); 8732 unsigned long pfn = page_to_pfn(page); 8733 unsigned long flags; 8734 unsigned int order; 8735 8736 spin_lock_irqsave(&zone->lock, flags); 8737 for (order = 0; order < MAX_ORDER; order++) { 8738 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8739 8740 if (PageBuddy(page_head) && page_order(page_head) >= order) 8741 break; 8742 } 8743 spin_unlock_irqrestore(&zone->lock, flags); 8744 8745 return order < MAX_ORDER; 8746 } 8747 8748 #ifdef CONFIG_MEMORY_FAILURE 8749 /* 8750 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8751 * test is performed under the zone lock to prevent a race against page 8752 * allocation. 8753 */ 8754 bool set_hwpoison_free_buddy_page(struct page *page) 8755 { 8756 struct zone *zone = page_zone(page); 8757 unsigned long pfn = page_to_pfn(page); 8758 unsigned long flags; 8759 unsigned int order; 8760 bool hwpoisoned = false; 8761 8762 spin_lock_irqsave(&zone->lock, flags); 8763 for (order = 0; order < MAX_ORDER; order++) { 8764 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8765 8766 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8767 if (!TestSetPageHWPoison(page)) 8768 hwpoisoned = true; 8769 break; 8770 } 8771 } 8772 spin_unlock_irqrestore(&zone->lock, flags); 8773 8774 return hwpoisoned; 8775 } 8776 #endif 8777