1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 64 #include <asm/tlbflush.h> 65 #include <asm/div64.h> 66 #include "internal.h" 67 68 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 69 DEFINE_PER_CPU(int, numa_node); 70 EXPORT_PER_CPU_SYMBOL(numa_node); 71 #endif 72 73 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 74 /* 75 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 76 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 77 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 78 * defined in <linux/topology.h>. 79 */ 80 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 81 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 82 #endif 83 84 /* 85 * Array of node states. 86 */ 87 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 88 [N_POSSIBLE] = NODE_MASK_ALL, 89 [N_ONLINE] = { { [0] = 1UL } }, 90 #ifndef CONFIG_NUMA 91 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 92 #ifdef CONFIG_HIGHMEM 93 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 94 #endif 95 #ifdef CONFIG_MOVABLE_NODE 96 [N_MEMORY] = { { [0] = 1UL } }, 97 #endif 98 [N_CPU] = { { [0] = 1UL } }, 99 #endif /* NUMA */ 100 }; 101 EXPORT_SYMBOL(node_states); 102 103 unsigned long totalram_pages __read_mostly; 104 unsigned long totalreserve_pages __read_mostly; 105 /* 106 * When calculating the number of globally allowed dirty pages, there 107 * is a certain number of per-zone reserves that should not be 108 * considered dirtyable memory. This is the sum of those reserves 109 * over all existing zones that contribute dirtyable memory. 110 */ 111 unsigned long dirty_balance_reserve __read_mostly; 112 113 int percpu_pagelist_fraction; 114 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 115 116 #ifdef CONFIG_PM_SLEEP 117 /* 118 * The following functions are used by the suspend/hibernate code to temporarily 119 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 120 * while devices are suspended. To avoid races with the suspend/hibernate code, 121 * they should always be called with pm_mutex held (gfp_allowed_mask also should 122 * only be modified with pm_mutex held, unless the suspend/hibernate code is 123 * guaranteed not to run in parallel with that modification). 124 */ 125 126 static gfp_t saved_gfp_mask; 127 128 void pm_restore_gfp_mask(void) 129 { 130 WARN_ON(!mutex_is_locked(&pm_mutex)); 131 if (saved_gfp_mask) { 132 gfp_allowed_mask = saved_gfp_mask; 133 saved_gfp_mask = 0; 134 } 135 } 136 137 void pm_restrict_gfp_mask(void) 138 { 139 WARN_ON(!mutex_is_locked(&pm_mutex)); 140 WARN_ON(saved_gfp_mask); 141 saved_gfp_mask = gfp_allowed_mask; 142 gfp_allowed_mask &= ~GFP_IOFS; 143 } 144 145 bool pm_suspended_storage(void) 146 { 147 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 148 return false; 149 return true; 150 } 151 #endif /* CONFIG_PM_SLEEP */ 152 153 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 154 int pageblock_order __read_mostly; 155 #endif 156 157 static void __free_pages_ok(struct page *page, unsigned int order); 158 159 /* 160 * results with 256, 32 in the lowmem_reserve sysctl: 161 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 162 * 1G machine -> (16M dma, 784M normal, 224M high) 163 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 164 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 165 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 166 * 167 * TBD: should special case ZONE_DMA32 machines here - in those we normally 168 * don't need any ZONE_NORMAL reservation 169 */ 170 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 171 #ifdef CONFIG_ZONE_DMA 172 256, 173 #endif 174 #ifdef CONFIG_ZONE_DMA32 175 256, 176 #endif 177 #ifdef CONFIG_HIGHMEM 178 32, 179 #endif 180 32, 181 }; 182 183 EXPORT_SYMBOL(totalram_pages); 184 185 static char * const zone_names[MAX_NR_ZONES] = { 186 #ifdef CONFIG_ZONE_DMA 187 "DMA", 188 #endif 189 #ifdef CONFIG_ZONE_DMA32 190 "DMA32", 191 #endif 192 "Normal", 193 #ifdef CONFIG_HIGHMEM 194 "HighMem", 195 #endif 196 "Movable", 197 }; 198 199 int min_free_kbytes = 1024; 200 201 static unsigned long __meminitdata nr_kernel_pages; 202 static unsigned long __meminitdata nr_all_pages; 203 static unsigned long __meminitdata dma_reserve; 204 205 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 206 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 207 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 208 static unsigned long __initdata required_kernelcore; 209 static unsigned long __initdata required_movablecore; 210 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 211 212 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 213 int movable_zone; 214 EXPORT_SYMBOL(movable_zone); 215 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 216 217 #if MAX_NUMNODES > 1 218 int nr_node_ids __read_mostly = MAX_NUMNODES; 219 int nr_online_nodes __read_mostly = 1; 220 EXPORT_SYMBOL(nr_node_ids); 221 EXPORT_SYMBOL(nr_online_nodes); 222 #endif 223 224 int page_group_by_mobility_disabled __read_mostly; 225 226 void set_pageblock_migratetype(struct page *page, int migratetype) 227 { 228 229 if (unlikely(page_group_by_mobility_disabled)) 230 migratetype = MIGRATE_UNMOVABLE; 231 232 set_pageblock_flags_group(page, (unsigned long)migratetype, 233 PB_migrate, PB_migrate_end); 234 } 235 236 bool oom_killer_disabled __read_mostly; 237 238 #ifdef CONFIG_DEBUG_VM 239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 240 { 241 int ret = 0; 242 unsigned seq; 243 unsigned long pfn = page_to_pfn(page); 244 unsigned long sp, start_pfn; 245 246 do { 247 seq = zone_span_seqbegin(zone); 248 start_pfn = zone->zone_start_pfn; 249 sp = zone->spanned_pages; 250 if (!zone_spans_pfn(zone, pfn)) 251 ret = 1; 252 } while (zone_span_seqretry(zone, seq)); 253 254 if (ret) 255 pr_err("page %lu outside zone [ %lu - %lu ]\n", 256 pfn, start_pfn, start_pfn + sp); 257 258 return ret; 259 } 260 261 static int page_is_consistent(struct zone *zone, struct page *page) 262 { 263 if (!pfn_valid_within(page_to_pfn(page))) 264 return 0; 265 if (zone != page_zone(page)) 266 return 0; 267 268 return 1; 269 } 270 /* 271 * Temporary debugging check for pages not lying within a given zone. 272 */ 273 static int bad_range(struct zone *zone, struct page *page) 274 { 275 if (page_outside_zone_boundaries(zone, page)) 276 return 1; 277 if (!page_is_consistent(zone, page)) 278 return 1; 279 280 return 0; 281 } 282 #else 283 static inline int bad_range(struct zone *zone, struct page *page) 284 { 285 return 0; 286 } 287 #endif 288 289 static void bad_page(struct page *page) 290 { 291 static unsigned long resume; 292 static unsigned long nr_shown; 293 static unsigned long nr_unshown; 294 295 /* Don't complain about poisoned pages */ 296 if (PageHWPoison(page)) { 297 page_mapcount_reset(page); /* remove PageBuddy */ 298 return; 299 } 300 301 /* 302 * Allow a burst of 60 reports, then keep quiet for that minute; 303 * or allow a steady drip of one report per second. 304 */ 305 if (nr_shown == 60) { 306 if (time_before(jiffies, resume)) { 307 nr_unshown++; 308 goto out; 309 } 310 if (nr_unshown) { 311 printk(KERN_ALERT 312 "BUG: Bad page state: %lu messages suppressed\n", 313 nr_unshown); 314 nr_unshown = 0; 315 } 316 nr_shown = 0; 317 } 318 if (nr_shown++ == 0) 319 resume = jiffies + 60 * HZ; 320 321 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 322 current->comm, page_to_pfn(page)); 323 dump_page(page); 324 325 print_modules(); 326 dump_stack(); 327 out: 328 /* Leave bad fields for debug, except PageBuddy could make trouble */ 329 page_mapcount_reset(page); /* remove PageBuddy */ 330 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 331 } 332 333 /* 334 * Higher-order pages are called "compound pages". They are structured thusly: 335 * 336 * The first PAGE_SIZE page is called the "head page". 337 * 338 * The remaining PAGE_SIZE pages are called "tail pages". 339 * 340 * All pages have PG_compound set. All tail pages have their ->first_page 341 * pointing at the head page. 342 * 343 * The first tail page's ->lru.next holds the address of the compound page's 344 * put_page() function. Its ->lru.prev holds the order of allocation. 345 * This usage means that zero-order pages may not be compound. 346 */ 347 348 static void free_compound_page(struct page *page) 349 { 350 __free_pages_ok(page, compound_order(page)); 351 } 352 353 void prep_compound_page(struct page *page, unsigned long order) 354 { 355 int i; 356 int nr_pages = 1 << order; 357 358 set_compound_page_dtor(page, free_compound_page); 359 set_compound_order(page, order); 360 __SetPageHead(page); 361 for (i = 1; i < nr_pages; i++) { 362 struct page *p = page + i; 363 __SetPageTail(p); 364 set_page_count(p, 0); 365 p->first_page = page; 366 } 367 } 368 369 /* update __split_huge_page_refcount if you change this function */ 370 static int destroy_compound_page(struct page *page, unsigned long order) 371 { 372 int i; 373 int nr_pages = 1 << order; 374 int bad = 0; 375 376 if (unlikely(compound_order(page) != order)) { 377 bad_page(page); 378 bad++; 379 } 380 381 __ClearPageHead(page); 382 383 for (i = 1; i < nr_pages; i++) { 384 struct page *p = page + i; 385 386 if (unlikely(!PageTail(p) || (p->first_page != page))) { 387 bad_page(page); 388 bad++; 389 } 390 __ClearPageTail(p); 391 } 392 393 return bad; 394 } 395 396 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 397 { 398 int i; 399 400 /* 401 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 402 * and __GFP_HIGHMEM from hard or soft interrupt context. 403 */ 404 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 405 for (i = 0; i < (1 << order); i++) 406 clear_highpage(page + i); 407 } 408 409 #ifdef CONFIG_DEBUG_PAGEALLOC 410 unsigned int _debug_guardpage_minorder; 411 412 static int __init debug_guardpage_minorder_setup(char *buf) 413 { 414 unsigned long res; 415 416 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 417 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 418 return 0; 419 } 420 _debug_guardpage_minorder = res; 421 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 422 return 0; 423 } 424 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 425 426 static inline void set_page_guard_flag(struct page *page) 427 { 428 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 429 } 430 431 static inline void clear_page_guard_flag(struct page *page) 432 { 433 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 434 } 435 #else 436 static inline void set_page_guard_flag(struct page *page) { } 437 static inline void clear_page_guard_flag(struct page *page) { } 438 #endif 439 440 static inline void set_page_order(struct page *page, int order) 441 { 442 set_page_private(page, order); 443 __SetPageBuddy(page); 444 } 445 446 static inline void rmv_page_order(struct page *page) 447 { 448 __ClearPageBuddy(page); 449 set_page_private(page, 0); 450 } 451 452 /* 453 * Locate the struct page for both the matching buddy in our 454 * pair (buddy1) and the combined O(n+1) page they form (page). 455 * 456 * 1) Any buddy B1 will have an order O twin B2 which satisfies 457 * the following equation: 458 * B2 = B1 ^ (1 << O) 459 * For example, if the starting buddy (buddy2) is #8 its order 460 * 1 buddy is #10: 461 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 462 * 463 * 2) Any buddy B will have an order O+1 parent P which 464 * satisfies the following equation: 465 * P = B & ~(1 << O) 466 * 467 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 468 */ 469 static inline unsigned long 470 __find_buddy_index(unsigned long page_idx, unsigned int order) 471 { 472 return page_idx ^ (1 << order); 473 } 474 475 /* 476 * This function checks whether a page is free && is the buddy 477 * we can do coalesce a page and its buddy if 478 * (a) the buddy is not in a hole && 479 * (b) the buddy is in the buddy system && 480 * (c) a page and its buddy have the same order && 481 * (d) a page and its buddy are in the same zone. 482 * 483 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 484 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 485 * 486 * For recording page's order, we use page_private(page). 487 */ 488 static inline int page_is_buddy(struct page *page, struct page *buddy, 489 int order) 490 { 491 if (!pfn_valid_within(page_to_pfn(buddy))) 492 return 0; 493 494 if (page_zone_id(page) != page_zone_id(buddy)) 495 return 0; 496 497 if (page_is_guard(buddy) && page_order(buddy) == order) { 498 VM_BUG_ON(page_count(buddy) != 0); 499 return 1; 500 } 501 502 if (PageBuddy(buddy) && page_order(buddy) == order) { 503 VM_BUG_ON(page_count(buddy) != 0); 504 return 1; 505 } 506 return 0; 507 } 508 509 /* 510 * Freeing function for a buddy system allocator. 511 * 512 * The concept of a buddy system is to maintain direct-mapped table 513 * (containing bit values) for memory blocks of various "orders". 514 * The bottom level table contains the map for the smallest allocatable 515 * units of memory (here, pages), and each level above it describes 516 * pairs of units from the levels below, hence, "buddies". 517 * At a high level, all that happens here is marking the table entry 518 * at the bottom level available, and propagating the changes upward 519 * as necessary, plus some accounting needed to play nicely with other 520 * parts of the VM system. 521 * At each level, we keep a list of pages, which are heads of continuous 522 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 523 * order is recorded in page_private(page) field. 524 * So when we are allocating or freeing one, we can derive the state of the 525 * other. That is, if we allocate a small block, and both were 526 * free, the remainder of the region must be split into blocks. 527 * If a block is freed, and its buddy is also free, then this 528 * triggers coalescing into a block of larger size. 529 * 530 * -- nyc 531 */ 532 533 static inline void __free_one_page(struct page *page, 534 struct zone *zone, unsigned int order, 535 int migratetype) 536 { 537 unsigned long page_idx; 538 unsigned long combined_idx; 539 unsigned long uninitialized_var(buddy_idx); 540 struct page *buddy; 541 542 VM_BUG_ON(!zone_is_initialized(zone)); 543 544 if (unlikely(PageCompound(page))) 545 if (unlikely(destroy_compound_page(page, order))) 546 return; 547 548 VM_BUG_ON(migratetype == -1); 549 550 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 551 552 VM_BUG_ON(page_idx & ((1 << order) - 1)); 553 VM_BUG_ON(bad_range(zone, page)); 554 555 while (order < MAX_ORDER-1) { 556 buddy_idx = __find_buddy_index(page_idx, order); 557 buddy = page + (buddy_idx - page_idx); 558 if (!page_is_buddy(page, buddy, order)) 559 break; 560 /* 561 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 562 * merge with it and move up one order. 563 */ 564 if (page_is_guard(buddy)) { 565 clear_page_guard_flag(buddy); 566 set_page_private(page, 0); 567 __mod_zone_freepage_state(zone, 1 << order, 568 migratetype); 569 } else { 570 list_del(&buddy->lru); 571 zone->free_area[order].nr_free--; 572 rmv_page_order(buddy); 573 } 574 combined_idx = buddy_idx & page_idx; 575 page = page + (combined_idx - page_idx); 576 page_idx = combined_idx; 577 order++; 578 } 579 set_page_order(page, order); 580 581 /* 582 * If this is not the largest possible page, check if the buddy 583 * of the next-highest order is free. If it is, it's possible 584 * that pages are being freed that will coalesce soon. In case, 585 * that is happening, add the free page to the tail of the list 586 * so it's less likely to be used soon and more likely to be merged 587 * as a higher order page 588 */ 589 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 590 struct page *higher_page, *higher_buddy; 591 combined_idx = buddy_idx & page_idx; 592 higher_page = page + (combined_idx - page_idx); 593 buddy_idx = __find_buddy_index(combined_idx, order + 1); 594 higher_buddy = higher_page + (buddy_idx - combined_idx); 595 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 596 list_add_tail(&page->lru, 597 &zone->free_area[order].free_list[migratetype]); 598 goto out; 599 } 600 } 601 602 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 603 out: 604 zone->free_area[order].nr_free++; 605 } 606 607 static inline int free_pages_check(struct page *page) 608 { 609 if (unlikely(page_mapcount(page) | 610 (page->mapping != NULL) | 611 (atomic_read(&page->_count) != 0) | 612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 613 (mem_cgroup_bad_page_check(page)))) { 614 bad_page(page); 615 return 1; 616 } 617 page_nid_reset_last(page); 618 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 619 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 620 return 0; 621 } 622 623 /* 624 * Frees a number of pages from the PCP lists 625 * Assumes all pages on list are in same zone, and of same order. 626 * count is the number of pages to free. 627 * 628 * If the zone was previously in an "all pages pinned" state then look to 629 * see if this freeing clears that state. 630 * 631 * And clear the zone's pages_scanned counter, to hold off the "all pages are 632 * pinned" detection logic. 633 */ 634 static void free_pcppages_bulk(struct zone *zone, int count, 635 struct per_cpu_pages *pcp) 636 { 637 int migratetype = 0; 638 int batch_free = 0; 639 int to_free = count; 640 641 spin_lock(&zone->lock); 642 zone->all_unreclaimable = 0; 643 zone->pages_scanned = 0; 644 645 while (to_free) { 646 struct page *page; 647 struct list_head *list; 648 649 /* 650 * Remove pages from lists in a round-robin fashion. A 651 * batch_free count is maintained that is incremented when an 652 * empty list is encountered. This is so more pages are freed 653 * off fuller lists instead of spinning excessively around empty 654 * lists 655 */ 656 do { 657 batch_free++; 658 if (++migratetype == MIGRATE_PCPTYPES) 659 migratetype = 0; 660 list = &pcp->lists[migratetype]; 661 } while (list_empty(list)); 662 663 /* This is the only non-empty list. Free them all. */ 664 if (batch_free == MIGRATE_PCPTYPES) 665 batch_free = to_free; 666 667 do { 668 int mt; /* migratetype of the to-be-freed page */ 669 670 page = list_entry(list->prev, struct page, lru); 671 /* must delete as __free_one_page list manipulates */ 672 list_del(&page->lru); 673 mt = get_freepage_migratetype(page); 674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 675 __free_one_page(page, zone, 0, mt); 676 trace_mm_page_pcpu_drain(page, 0, mt); 677 if (likely(!is_migrate_isolate_page(page))) { 678 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 679 if (is_migrate_cma(mt)) 680 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 681 } 682 } while (--to_free && --batch_free && !list_empty(list)); 683 } 684 spin_unlock(&zone->lock); 685 } 686 687 static void free_one_page(struct zone *zone, struct page *page, int order, 688 int migratetype) 689 { 690 spin_lock(&zone->lock); 691 zone->all_unreclaimable = 0; 692 zone->pages_scanned = 0; 693 694 __free_one_page(page, zone, order, migratetype); 695 if (unlikely(!is_migrate_isolate(migratetype))) 696 __mod_zone_freepage_state(zone, 1 << order, migratetype); 697 spin_unlock(&zone->lock); 698 } 699 700 static bool free_pages_prepare(struct page *page, unsigned int order) 701 { 702 int i; 703 int bad = 0; 704 705 trace_mm_page_free(page, order); 706 kmemcheck_free_shadow(page, order); 707 708 if (PageAnon(page)) 709 page->mapping = NULL; 710 for (i = 0; i < (1 << order); i++) 711 bad += free_pages_check(page + i); 712 if (bad) 713 return false; 714 715 if (!PageHighMem(page)) { 716 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 717 debug_check_no_obj_freed(page_address(page), 718 PAGE_SIZE << order); 719 } 720 arch_free_page(page, order); 721 kernel_map_pages(page, 1 << order, 0); 722 723 return true; 724 } 725 726 static void __free_pages_ok(struct page *page, unsigned int order) 727 { 728 unsigned long flags; 729 int migratetype; 730 731 if (!free_pages_prepare(page, order)) 732 return; 733 734 local_irq_save(flags); 735 __count_vm_events(PGFREE, 1 << order); 736 migratetype = get_pageblock_migratetype(page); 737 set_freepage_migratetype(page, migratetype); 738 free_one_page(page_zone(page), page, order, migratetype); 739 local_irq_restore(flags); 740 } 741 742 /* 743 * Read access to zone->managed_pages is safe because it's unsigned long, 744 * but we still need to serialize writers. Currently all callers of 745 * __free_pages_bootmem() except put_page_bootmem() should only be used 746 * at boot time. So for shorter boot time, we shift the burden to 747 * put_page_bootmem() to serialize writers. 748 */ 749 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 750 { 751 unsigned int nr_pages = 1 << order; 752 unsigned int loop; 753 754 prefetchw(page); 755 for (loop = 0; loop < nr_pages; loop++) { 756 struct page *p = &page[loop]; 757 758 if (loop + 1 < nr_pages) 759 prefetchw(p + 1); 760 __ClearPageReserved(p); 761 set_page_count(p, 0); 762 } 763 764 page_zone(page)->managed_pages += 1 << order; 765 set_page_refcounted(page); 766 __free_pages(page, order); 767 } 768 769 #ifdef CONFIG_CMA 770 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 771 void __init init_cma_reserved_pageblock(struct page *page) 772 { 773 unsigned i = pageblock_nr_pages; 774 struct page *p = page; 775 776 do { 777 __ClearPageReserved(p); 778 set_page_count(p, 0); 779 } while (++p, --i); 780 781 set_page_refcounted(page); 782 set_pageblock_migratetype(page, MIGRATE_CMA); 783 __free_pages(page, pageblock_order); 784 totalram_pages += pageblock_nr_pages; 785 #ifdef CONFIG_HIGHMEM 786 if (PageHighMem(page)) 787 totalhigh_pages += pageblock_nr_pages; 788 #endif 789 } 790 #endif 791 792 /* 793 * The order of subdivision here is critical for the IO subsystem. 794 * Please do not alter this order without good reasons and regression 795 * testing. Specifically, as large blocks of memory are subdivided, 796 * the order in which smaller blocks are delivered depends on the order 797 * they're subdivided in this function. This is the primary factor 798 * influencing the order in which pages are delivered to the IO 799 * subsystem according to empirical testing, and this is also justified 800 * by considering the behavior of a buddy system containing a single 801 * large block of memory acted on by a series of small allocations. 802 * This behavior is a critical factor in sglist merging's success. 803 * 804 * -- nyc 805 */ 806 static inline void expand(struct zone *zone, struct page *page, 807 int low, int high, struct free_area *area, 808 int migratetype) 809 { 810 unsigned long size = 1 << high; 811 812 while (high > low) { 813 area--; 814 high--; 815 size >>= 1; 816 VM_BUG_ON(bad_range(zone, &page[size])); 817 818 #ifdef CONFIG_DEBUG_PAGEALLOC 819 if (high < debug_guardpage_minorder()) { 820 /* 821 * Mark as guard pages (or page), that will allow to 822 * merge back to allocator when buddy will be freed. 823 * Corresponding page table entries will not be touched, 824 * pages will stay not present in virtual address space 825 */ 826 INIT_LIST_HEAD(&page[size].lru); 827 set_page_guard_flag(&page[size]); 828 set_page_private(&page[size], high); 829 /* Guard pages are not available for any usage */ 830 __mod_zone_freepage_state(zone, -(1 << high), 831 migratetype); 832 continue; 833 } 834 #endif 835 list_add(&page[size].lru, &area->free_list[migratetype]); 836 area->nr_free++; 837 set_page_order(&page[size], high); 838 } 839 } 840 841 /* 842 * This page is about to be returned from the page allocator 843 */ 844 static inline int check_new_page(struct page *page) 845 { 846 if (unlikely(page_mapcount(page) | 847 (page->mapping != NULL) | 848 (atomic_read(&page->_count) != 0) | 849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 850 (mem_cgroup_bad_page_check(page)))) { 851 bad_page(page); 852 return 1; 853 } 854 return 0; 855 } 856 857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 858 { 859 int i; 860 861 for (i = 0; i < (1 << order); i++) { 862 struct page *p = page + i; 863 if (unlikely(check_new_page(p))) 864 return 1; 865 } 866 867 set_page_private(page, 0); 868 set_page_refcounted(page); 869 870 arch_alloc_page(page, order); 871 kernel_map_pages(page, 1 << order, 1); 872 873 if (gfp_flags & __GFP_ZERO) 874 prep_zero_page(page, order, gfp_flags); 875 876 if (order && (gfp_flags & __GFP_COMP)) 877 prep_compound_page(page, order); 878 879 return 0; 880 } 881 882 /* 883 * Go through the free lists for the given migratetype and remove 884 * the smallest available page from the freelists 885 */ 886 static inline 887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 888 int migratetype) 889 { 890 unsigned int current_order; 891 struct free_area * area; 892 struct page *page; 893 894 /* Find a page of the appropriate size in the preferred list */ 895 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 896 area = &(zone->free_area[current_order]); 897 if (list_empty(&area->free_list[migratetype])) 898 continue; 899 900 page = list_entry(area->free_list[migratetype].next, 901 struct page, lru); 902 list_del(&page->lru); 903 rmv_page_order(page); 904 area->nr_free--; 905 expand(zone, page, order, current_order, area, migratetype); 906 return page; 907 } 908 909 return NULL; 910 } 911 912 913 /* 914 * This array describes the order lists are fallen back to when 915 * the free lists for the desirable migrate type are depleted 916 */ 917 static int fallbacks[MIGRATE_TYPES][4] = { 918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 920 #ifdef CONFIG_CMA 921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 923 #else 924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 925 #endif 926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 927 #ifdef CONFIG_MEMORY_ISOLATION 928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 929 #endif 930 }; 931 932 /* 933 * Move the free pages in a range to the free lists of the requested type. 934 * Note that start_page and end_pages are not aligned on a pageblock 935 * boundary. If alignment is required, use move_freepages_block() 936 */ 937 int move_freepages(struct zone *zone, 938 struct page *start_page, struct page *end_page, 939 int migratetype) 940 { 941 struct page *page; 942 unsigned long order; 943 int pages_moved = 0; 944 945 #ifndef CONFIG_HOLES_IN_ZONE 946 /* 947 * page_zone is not safe to call in this context when 948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 949 * anyway as we check zone boundaries in move_freepages_block(). 950 * Remove at a later date when no bug reports exist related to 951 * grouping pages by mobility 952 */ 953 BUG_ON(page_zone(start_page) != page_zone(end_page)); 954 #endif 955 956 for (page = start_page; page <= end_page;) { 957 /* Make sure we are not inadvertently changing nodes */ 958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 959 960 if (!pfn_valid_within(page_to_pfn(page))) { 961 page++; 962 continue; 963 } 964 965 if (!PageBuddy(page)) { 966 page++; 967 continue; 968 } 969 970 order = page_order(page); 971 list_move(&page->lru, 972 &zone->free_area[order].free_list[migratetype]); 973 set_freepage_migratetype(page, migratetype); 974 page += 1 << order; 975 pages_moved += 1 << order; 976 } 977 978 return pages_moved; 979 } 980 981 int move_freepages_block(struct zone *zone, struct page *page, 982 int migratetype) 983 { 984 unsigned long start_pfn, end_pfn; 985 struct page *start_page, *end_page; 986 987 start_pfn = page_to_pfn(page); 988 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 989 start_page = pfn_to_page(start_pfn); 990 end_page = start_page + pageblock_nr_pages - 1; 991 end_pfn = start_pfn + pageblock_nr_pages - 1; 992 993 /* Do not cross zone boundaries */ 994 if (!zone_spans_pfn(zone, start_pfn)) 995 start_page = page; 996 if (!zone_spans_pfn(zone, end_pfn)) 997 return 0; 998 999 return move_freepages(zone, start_page, end_page, migratetype); 1000 } 1001 1002 static void change_pageblock_range(struct page *pageblock_page, 1003 int start_order, int migratetype) 1004 { 1005 int nr_pageblocks = 1 << (start_order - pageblock_order); 1006 1007 while (nr_pageblocks--) { 1008 set_pageblock_migratetype(pageblock_page, migratetype); 1009 pageblock_page += pageblock_nr_pages; 1010 } 1011 } 1012 1013 /* Remove an element from the buddy allocator from the fallback list */ 1014 static inline struct page * 1015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1016 { 1017 struct free_area * area; 1018 int current_order; 1019 struct page *page; 1020 int migratetype, i; 1021 1022 /* Find the largest possible block of pages in the other list */ 1023 for (current_order = MAX_ORDER-1; current_order >= order; 1024 --current_order) { 1025 for (i = 0;; i++) { 1026 migratetype = fallbacks[start_migratetype][i]; 1027 1028 /* MIGRATE_RESERVE handled later if necessary */ 1029 if (migratetype == MIGRATE_RESERVE) 1030 break; 1031 1032 area = &(zone->free_area[current_order]); 1033 if (list_empty(&area->free_list[migratetype])) 1034 continue; 1035 1036 page = list_entry(area->free_list[migratetype].next, 1037 struct page, lru); 1038 area->nr_free--; 1039 1040 /* 1041 * If breaking a large block of pages, move all free 1042 * pages to the preferred allocation list. If falling 1043 * back for a reclaimable kernel allocation, be more 1044 * aggressive about taking ownership of free pages 1045 * 1046 * On the other hand, never change migration 1047 * type of MIGRATE_CMA pageblocks nor move CMA 1048 * pages on different free lists. We don't 1049 * want unmovable pages to be allocated from 1050 * MIGRATE_CMA areas. 1051 */ 1052 if (!is_migrate_cma(migratetype) && 1053 (unlikely(current_order >= pageblock_order / 2) || 1054 start_migratetype == MIGRATE_RECLAIMABLE || 1055 page_group_by_mobility_disabled)) { 1056 int pages; 1057 pages = move_freepages_block(zone, page, 1058 start_migratetype); 1059 1060 /* Claim the whole block if over half of it is free */ 1061 if (pages >= (1 << (pageblock_order-1)) || 1062 page_group_by_mobility_disabled) 1063 set_pageblock_migratetype(page, 1064 start_migratetype); 1065 1066 migratetype = start_migratetype; 1067 } 1068 1069 /* Remove the page from the freelists */ 1070 list_del(&page->lru); 1071 rmv_page_order(page); 1072 1073 /* Take ownership for orders >= pageblock_order */ 1074 if (current_order >= pageblock_order && 1075 !is_migrate_cma(migratetype)) 1076 change_pageblock_range(page, current_order, 1077 start_migratetype); 1078 1079 expand(zone, page, order, current_order, area, 1080 is_migrate_cma(migratetype) 1081 ? migratetype : start_migratetype); 1082 1083 trace_mm_page_alloc_extfrag(page, order, current_order, 1084 start_migratetype, migratetype); 1085 1086 return page; 1087 } 1088 } 1089 1090 return NULL; 1091 } 1092 1093 /* 1094 * Do the hard work of removing an element from the buddy allocator. 1095 * Call me with the zone->lock already held. 1096 */ 1097 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1098 int migratetype) 1099 { 1100 struct page *page; 1101 1102 retry_reserve: 1103 page = __rmqueue_smallest(zone, order, migratetype); 1104 1105 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1106 page = __rmqueue_fallback(zone, order, migratetype); 1107 1108 /* 1109 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1110 * is used because __rmqueue_smallest is an inline function 1111 * and we want just one call site 1112 */ 1113 if (!page) { 1114 migratetype = MIGRATE_RESERVE; 1115 goto retry_reserve; 1116 } 1117 } 1118 1119 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1120 return page; 1121 } 1122 1123 /* 1124 * Obtain a specified number of elements from the buddy allocator, all under 1125 * a single hold of the lock, for efficiency. Add them to the supplied list. 1126 * Returns the number of new pages which were placed at *list. 1127 */ 1128 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1129 unsigned long count, struct list_head *list, 1130 int migratetype, int cold) 1131 { 1132 int mt = migratetype, i; 1133 1134 spin_lock(&zone->lock); 1135 for (i = 0; i < count; ++i) { 1136 struct page *page = __rmqueue(zone, order, migratetype); 1137 if (unlikely(page == NULL)) 1138 break; 1139 1140 /* 1141 * Split buddy pages returned by expand() are received here 1142 * in physical page order. The page is added to the callers and 1143 * list and the list head then moves forward. From the callers 1144 * perspective, the linked list is ordered by page number in 1145 * some conditions. This is useful for IO devices that can 1146 * merge IO requests if the physical pages are ordered 1147 * properly. 1148 */ 1149 if (likely(cold == 0)) 1150 list_add(&page->lru, list); 1151 else 1152 list_add_tail(&page->lru, list); 1153 if (IS_ENABLED(CONFIG_CMA)) { 1154 mt = get_pageblock_migratetype(page); 1155 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) 1156 mt = migratetype; 1157 } 1158 set_freepage_migratetype(page, mt); 1159 list = &page->lru; 1160 if (is_migrate_cma(mt)) 1161 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1162 -(1 << order)); 1163 } 1164 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1165 spin_unlock(&zone->lock); 1166 return i; 1167 } 1168 1169 #ifdef CONFIG_NUMA 1170 /* 1171 * Called from the vmstat counter updater to drain pagesets of this 1172 * currently executing processor on remote nodes after they have 1173 * expired. 1174 * 1175 * Note that this function must be called with the thread pinned to 1176 * a single processor. 1177 */ 1178 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1179 { 1180 unsigned long flags; 1181 int to_drain; 1182 1183 local_irq_save(flags); 1184 if (pcp->count >= pcp->batch) 1185 to_drain = pcp->batch; 1186 else 1187 to_drain = pcp->count; 1188 if (to_drain > 0) { 1189 free_pcppages_bulk(zone, to_drain, pcp); 1190 pcp->count -= to_drain; 1191 } 1192 local_irq_restore(flags); 1193 } 1194 #endif 1195 1196 /* 1197 * Drain pages of the indicated processor. 1198 * 1199 * The processor must either be the current processor and the 1200 * thread pinned to the current processor or a processor that 1201 * is not online. 1202 */ 1203 static void drain_pages(unsigned int cpu) 1204 { 1205 unsigned long flags; 1206 struct zone *zone; 1207 1208 for_each_populated_zone(zone) { 1209 struct per_cpu_pageset *pset; 1210 struct per_cpu_pages *pcp; 1211 1212 local_irq_save(flags); 1213 pset = per_cpu_ptr(zone->pageset, cpu); 1214 1215 pcp = &pset->pcp; 1216 if (pcp->count) { 1217 free_pcppages_bulk(zone, pcp->count, pcp); 1218 pcp->count = 0; 1219 } 1220 local_irq_restore(flags); 1221 } 1222 } 1223 1224 /* 1225 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1226 */ 1227 void drain_local_pages(void *arg) 1228 { 1229 drain_pages(smp_processor_id()); 1230 } 1231 1232 /* 1233 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1234 * 1235 * Note that this code is protected against sending an IPI to an offline 1236 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1237 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1238 * nothing keeps CPUs from showing up after we populated the cpumask and 1239 * before the call to on_each_cpu_mask(). 1240 */ 1241 void drain_all_pages(void) 1242 { 1243 int cpu; 1244 struct per_cpu_pageset *pcp; 1245 struct zone *zone; 1246 1247 /* 1248 * Allocate in the BSS so we wont require allocation in 1249 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1250 */ 1251 static cpumask_t cpus_with_pcps; 1252 1253 /* 1254 * We don't care about racing with CPU hotplug event 1255 * as offline notification will cause the notified 1256 * cpu to drain that CPU pcps and on_each_cpu_mask 1257 * disables preemption as part of its processing 1258 */ 1259 for_each_online_cpu(cpu) { 1260 bool has_pcps = false; 1261 for_each_populated_zone(zone) { 1262 pcp = per_cpu_ptr(zone->pageset, cpu); 1263 if (pcp->pcp.count) { 1264 has_pcps = true; 1265 break; 1266 } 1267 } 1268 if (has_pcps) 1269 cpumask_set_cpu(cpu, &cpus_with_pcps); 1270 else 1271 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1272 } 1273 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1274 } 1275 1276 #ifdef CONFIG_HIBERNATION 1277 1278 void mark_free_pages(struct zone *zone) 1279 { 1280 unsigned long pfn, max_zone_pfn; 1281 unsigned long flags; 1282 int order, t; 1283 struct list_head *curr; 1284 1285 if (!zone->spanned_pages) 1286 return; 1287 1288 spin_lock_irqsave(&zone->lock, flags); 1289 1290 max_zone_pfn = zone_end_pfn(zone); 1291 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1292 if (pfn_valid(pfn)) { 1293 struct page *page = pfn_to_page(pfn); 1294 1295 if (!swsusp_page_is_forbidden(page)) 1296 swsusp_unset_page_free(page); 1297 } 1298 1299 for_each_migratetype_order(order, t) { 1300 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1301 unsigned long i; 1302 1303 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1304 for (i = 0; i < (1UL << order); i++) 1305 swsusp_set_page_free(pfn_to_page(pfn + i)); 1306 } 1307 } 1308 spin_unlock_irqrestore(&zone->lock, flags); 1309 } 1310 #endif /* CONFIG_PM */ 1311 1312 /* 1313 * Free a 0-order page 1314 * cold == 1 ? free a cold page : free a hot page 1315 */ 1316 void free_hot_cold_page(struct page *page, int cold) 1317 { 1318 struct zone *zone = page_zone(page); 1319 struct per_cpu_pages *pcp; 1320 unsigned long flags; 1321 int migratetype; 1322 1323 if (!free_pages_prepare(page, 0)) 1324 return; 1325 1326 migratetype = get_pageblock_migratetype(page); 1327 set_freepage_migratetype(page, migratetype); 1328 local_irq_save(flags); 1329 __count_vm_event(PGFREE); 1330 1331 /* 1332 * We only track unmovable, reclaimable and movable on pcp lists. 1333 * Free ISOLATE pages back to the allocator because they are being 1334 * offlined but treat RESERVE as movable pages so we can get those 1335 * areas back if necessary. Otherwise, we may have to free 1336 * excessively into the page allocator 1337 */ 1338 if (migratetype >= MIGRATE_PCPTYPES) { 1339 if (unlikely(is_migrate_isolate(migratetype))) { 1340 free_one_page(zone, page, 0, migratetype); 1341 goto out; 1342 } 1343 migratetype = MIGRATE_MOVABLE; 1344 } 1345 1346 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1347 if (cold) 1348 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1349 else 1350 list_add(&page->lru, &pcp->lists[migratetype]); 1351 pcp->count++; 1352 if (pcp->count >= pcp->high) { 1353 free_pcppages_bulk(zone, pcp->batch, pcp); 1354 pcp->count -= pcp->batch; 1355 } 1356 1357 out: 1358 local_irq_restore(flags); 1359 } 1360 1361 /* 1362 * Free a list of 0-order pages 1363 */ 1364 void free_hot_cold_page_list(struct list_head *list, int cold) 1365 { 1366 struct page *page, *next; 1367 1368 list_for_each_entry_safe(page, next, list, lru) { 1369 trace_mm_page_free_batched(page, cold); 1370 free_hot_cold_page(page, cold); 1371 } 1372 } 1373 1374 /* 1375 * split_page takes a non-compound higher-order page, and splits it into 1376 * n (1<<order) sub-pages: page[0..n] 1377 * Each sub-page must be freed individually. 1378 * 1379 * Note: this is probably too low level an operation for use in drivers. 1380 * Please consult with lkml before using this in your driver. 1381 */ 1382 void split_page(struct page *page, unsigned int order) 1383 { 1384 int i; 1385 1386 VM_BUG_ON(PageCompound(page)); 1387 VM_BUG_ON(!page_count(page)); 1388 1389 #ifdef CONFIG_KMEMCHECK 1390 /* 1391 * Split shadow pages too, because free(page[0]) would 1392 * otherwise free the whole shadow. 1393 */ 1394 if (kmemcheck_page_is_tracked(page)) 1395 split_page(virt_to_page(page[0].shadow), order); 1396 #endif 1397 1398 for (i = 1; i < (1 << order); i++) 1399 set_page_refcounted(page + i); 1400 } 1401 EXPORT_SYMBOL_GPL(split_page); 1402 1403 static int __isolate_free_page(struct page *page, unsigned int order) 1404 { 1405 unsigned long watermark; 1406 struct zone *zone; 1407 int mt; 1408 1409 BUG_ON(!PageBuddy(page)); 1410 1411 zone = page_zone(page); 1412 mt = get_pageblock_migratetype(page); 1413 1414 if (!is_migrate_isolate(mt)) { 1415 /* Obey watermarks as if the page was being allocated */ 1416 watermark = low_wmark_pages(zone) + (1 << order); 1417 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1418 return 0; 1419 1420 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1421 } 1422 1423 /* Remove page from free list */ 1424 list_del(&page->lru); 1425 zone->free_area[order].nr_free--; 1426 rmv_page_order(page); 1427 1428 /* Set the pageblock if the isolated page is at least a pageblock */ 1429 if (order >= pageblock_order - 1) { 1430 struct page *endpage = page + (1 << order) - 1; 1431 for (; page < endpage; page += pageblock_nr_pages) { 1432 int mt = get_pageblock_migratetype(page); 1433 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1434 set_pageblock_migratetype(page, 1435 MIGRATE_MOVABLE); 1436 } 1437 } 1438 1439 return 1UL << order; 1440 } 1441 1442 /* 1443 * Similar to split_page except the page is already free. As this is only 1444 * being used for migration, the migratetype of the block also changes. 1445 * As this is called with interrupts disabled, the caller is responsible 1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1447 * are enabled. 1448 * 1449 * Note: this is probably too low level an operation for use in drivers. 1450 * Please consult with lkml before using this in your driver. 1451 */ 1452 int split_free_page(struct page *page) 1453 { 1454 unsigned int order; 1455 int nr_pages; 1456 1457 order = page_order(page); 1458 1459 nr_pages = __isolate_free_page(page, order); 1460 if (!nr_pages) 1461 return 0; 1462 1463 /* Split into individual pages */ 1464 set_page_refcounted(page); 1465 split_page(page, order); 1466 return nr_pages; 1467 } 1468 1469 /* 1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1472 * or two. 1473 */ 1474 static inline 1475 struct page *buffered_rmqueue(struct zone *preferred_zone, 1476 struct zone *zone, int order, gfp_t gfp_flags, 1477 int migratetype) 1478 { 1479 unsigned long flags; 1480 struct page *page; 1481 int cold = !!(gfp_flags & __GFP_COLD); 1482 1483 again: 1484 if (likely(order == 0)) { 1485 struct per_cpu_pages *pcp; 1486 struct list_head *list; 1487 1488 local_irq_save(flags); 1489 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1490 list = &pcp->lists[migratetype]; 1491 if (list_empty(list)) { 1492 pcp->count += rmqueue_bulk(zone, 0, 1493 pcp->batch, list, 1494 migratetype, cold); 1495 if (unlikely(list_empty(list))) 1496 goto failed; 1497 } 1498 1499 if (cold) 1500 page = list_entry(list->prev, struct page, lru); 1501 else 1502 page = list_entry(list->next, struct page, lru); 1503 1504 list_del(&page->lru); 1505 pcp->count--; 1506 } else { 1507 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1508 /* 1509 * __GFP_NOFAIL is not to be used in new code. 1510 * 1511 * All __GFP_NOFAIL callers should be fixed so that they 1512 * properly detect and handle allocation failures. 1513 * 1514 * We most definitely don't want callers attempting to 1515 * allocate greater than order-1 page units with 1516 * __GFP_NOFAIL. 1517 */ 1518 WARN_ON_ONCE(order > 1); 1519 } 1520 spin_lock_irqsave(&zone->lock, flags); 1521 page = __rmqueue(zone, order, migratetype); 1522 spin_unlock(&zone->lock); 1523 if (!page) 1524 goto failed; 1525 __mod_zone_freepage_state(zone, -(1 << order), 1526 get_pageblock_migratetype(page)); 1527 } 1528 1529 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1530 zone_statistics(preferred_zone, zone, gfp_flags); 1531 local_irq_restore(flags); 1532 1533 VM_BUG_ON(bad_range(zone, page)); 1534 if (prep_new_page(page, order, gfp_flags)) 1535 goto again; 1536 return page; 1537 1538 failed: 1539 local_irq_restore(flags); 1540 return NULL; 1541 } 1542 1543 #ifdef CONFIG_FAIL_PAGE_ALLOC 1544 1545 static struct { 1546 struct fault_attr attr; 1547 1548 u32 ignore_gfp_highmem; 1549 u32 ignore_gfp_wait; 1550 u32 min_order; 1551 } fail_page_alloc = { 1552 .attr = FAULT_ATTR_INITIALIZER, 1553 .ignore_gfp_wait = 1, 1554 .ignore_gfp_highmem = 1, 1555 .min_order = 1, 1556 }; 1557 1558 static int __init setup_fail_page_alloc(char *str) 1559 { 1560 return setup_fault_attr(&fail_page_alloc.attr, str); 1561 } 1562 __setup("fail_page_alloc=", setup_fail_page_alloc); 1563 1564 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1565 { 1566 if (order < fail_page_alloc.min_order) 1567 return false; 1568 if (gfp_mask & __GFP_NOFAIL) 1569 return false; 1570 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1571 return false; 1572 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1573 return false; 1574 1575 return should_fail(&fail_page_alloc.attr, 1 << order); 1576 } 1577 1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1579 1580 static int __init fail_page_alloc_debugfs(void) 1581 { 1582 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1583 struct dentry *dir; 1584 1585 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1586 &fail_page_alloc.attr); 1587 if (IS_ERR(dir)) 1588 return PTR_ERR(dir); 1589 1590 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1591 &fail_page_alloc.ignore_gfp_wait)) 1592 goto fail; 1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1594 &fail_page_alloc.ignore_gfp_highmem)) 1595 goto fail; 1596 if (!debugfs_create_u32("min-order", mode, dir, 1597 &fail_page_alloc.min_order)) 1598 goto fail; 1599 1600 return 0; 1601 fail: 1602 debugfs_remove_recursive(dir); 1603 1604 return -ENOMEM; 1605 } 1606 1607 late_initcall(fail_page_alloc_debugfs); 1608 1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1610 1611 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1612 1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1614 { 1615 return false; 1616 } 1617 1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1619 1620 /* 1621 * Return true if free pages are above 'mark'. This takes into account the order 1622 * of the allocation. 1623 */ 1624 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1625 int classzone_idx, int alloc_flags, long free_pages) 1626 { 1627 /* free_pages my go negative - that's OK */ 1628 long min = mark; 1629 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1630 int o; 1631 1632 free_pages -= (1 << order) - 1; 1633 if (alloc_flags & ALLOC_HIGH) 1634 min -= min / 2; 1635 if (alloc_flags & ALLOC_HARDER) 1636 min -= min / 4; 1637 #ifdef CONFIG_CMA 1638 /* If allocation can't use CMA areas don't use free CMA pages */ 1639 if (!(alloc_flags & ALLOC_CMA)) 1640 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 1641 #endif 1642 if (free_pages <= min + lowmem_reserve) 1643 return false; 1644 for (o = 0; o < order; o++) { 1645 /* At the next order, this order's pages become unavailable */ 1646 free_pages -= z->free_area[o].nr_free << o; 1647 1648 /* Require fewer higher order pages to be free */ 1649 min >>= 1; 1650 1651 if (free_pages <= min) 1652 return false; 1653 } 1654 return true; 1655 } 1656 1657 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1658 int classzone_idx, int alloc_flags) 1659 { 1660 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1661 zone_page_state(z, NR_FREE_PAGES)); 1662 } 1663 1664 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1665 int classzone_idx, int alloc_flags) 1666 { 1667 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1668 1669 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1670 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1671 1672 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1673 free_pages); 1674 } 1675 1676 #ifdef CONFIG_NUMA 1677 /* 1678 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1679 * skip over zones that are not allowed by the cpuset, or that have 1680 * been recently (in last second) found to be nearly full. See further 1681 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1682 * that have to skip over a lot of full or unallowed zones. 1683 * 1684 * If the zonelist cache is present in the passed in zonelist, then 1685 * returns a pointer to the allowed node mask (either the current 1686 * tasks mems_allowed, or node_states[N_MEMORY].) 1687 * 1688 * If the zonelist cache is not available for this zonelist, does 1689 * nothing and returns NULL. 1690 * 1691 * If the fullzones BITMAP in the zonelist cache is stale (more than 1692 * a second since last zap'd) then we zap it out (clear its bits.) 1693 * 1694 * We hold off even calling zlc_setup, until after we've checked the 1695 * first zone in the zonelist, on the theory that most allocations will 1696 * be satisfied from that first zone, so best to examine that zone as 1697 * quickly as we can. 1698 */ 1699 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1700 { 1701 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1702 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1703 1704 zlc = zonelist->zlcache_ptr; 1705 if (!zlc) 1706 return NULL; 1707 1708 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1709 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1710 zlc->last_full_zap = jiffies; 1711 } 1712 1713 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1714 &cpuset_current_mems_allowed : 1715 &node_states[N_MEMORY]; 1716 return allowednodes; 1717 } 1718 1719 /* 1720 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1721 * if it is worth looking at further for free memory: 1722 * 1) Check that the zone isn't thought to be full (doesn't have its 1723 * bit set in the zonelist_cache fullzones BITMAP). 1724 * 2) Check that the zones node (obtained from the zonelist_cache 1725 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1726 * Return true (non-zero) if zone is worth looking at further, or 1727 * else return false (zero) if it is not. 1728 * 1729 * This check -ignores- the distinction between various watermarks, 1730 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1731 * found to be full for any variation of these watermarks, it will 1732 * be considered full for up to one second by all requests, unless 1733 * we are so low on memory on all allowed nodes that we are forced 1734 * into the second scan of the zonelist. 1735 * 1736 * In the second scan we ignore this zonelist cache and exactly 1737 * apply the watermarks to all zones, even it is slower to do so. 1738 * We are low on memory in the second scan, and should leave no stone 1739 * unturned looking for a free page. 1740 */ 1741 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1742 nodemask_t *allowednodes) 1743 { 1744 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1745 int i; /* index of *z in zonelist zones */ 1746 int n; /* node that zone *z is on */ 1747 1748 zlc = zonelist->zlcache_ptr; 1749 if (!zlc) 1750 return 1; 1751 1752 i = z - zonelist->_zonerefs; 1753 n = zlc->z_to_n[i]; 1754 1755 /* This zone is worth trying if it is allowed but not full */ 1756 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1757 } 1758 1759 /* 1760 * Given 'z' scanning a zonelist, set the corresponding bit in 1761 * zlc->fullzones, so that subsequent attempts to allocate a page 1762 * from that zone don't waste time re-examining it. 1763 */ 1764 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1765 { 1766 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1767 int i; /* index of *z in zonelist zones */ 1768 1769 zlc = zonelist->zlcache_ptr; 1770 if (!zlc) 1771 return; 1772 1773 i = z - zonelist->_zonerefs; 1774 1775 set_bit(i, zlc->fullzones); 1776 } 1777 1778 /* 1779 * clear all zones full, called after direct reclaim makes progress so that 1780 * a zone that was recently full is not skipped over for up to a second 1781 */ 1782 static void zlc_clear_zones_full(struct zonelist *zonelist) 1783 { 1784 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1785 1786 zlc = zonelist->zlcache_ptr; 1787 if (!zlc) 1788 return; 1789 1790 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1791 } 1792 1793 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1794 { 1795 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1796 } 1797 1798 static void __paginginit init_zone_allows_reclaim(int nid) 1799 { 1800 int i; 1801 1802 for_each_online_node(i) 1803 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1804 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1805 else 1806 zone_reclaim_mode = 1; 1807 } 1808 1809 #else /* CONFIG_NUMA */ 1810 1811 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1812 { 1813 return NULL; 1814 } 1815 1816 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1817 nodemask_t *allowednodes) 1818 { 1819 return 1; 1820 } 1821 1822 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1823 { 1824 } 1825 1826 static void zlc_clear_zones_full(struct zonelist *zonelist) 1827 { 1828 } 1829 1830 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1831 { 1832 return true; 1833 } 1834 1835 static inline void init_zone_allows_reclaim(int nid) 1836 { 1837 } 1838 #endif /* CONFIG_NUMA */ 1839 1840 /* 1841 * get_page_from_freelist goes through the zonelist trying to allocate 1842 * a page. 1843 */ 1844 static struct page * 1845 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1846 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1847 struct zone *preferred_zone, int migratetype) 1848 { 1849 struct zoneref *z; 1850 struct page *page = NULL; 1851 int classzone_idx; 1852 struct zone *zone; 1853 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1854 int zlc_active = 0; /* set if using zonelist_cache */ 1855 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1856 1857 classzone_idx = zone_idx(preferred_zone); 1858 zonelist_scan: 1859 /* 1860 * Scan zonelist, looking for a zone with enough free. 1861 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1862 */ 1863 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1864 high_zoneidx, nodemask) { 1865 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1866 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1867 continue; 1868 if ((alloc_flags & ALLOC_CPUSET) && 1869 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1870 continue; 1871 /* 1872 * When allocating a page cache page for writing, we 1873 * want to get it from a zone that is within its dirty 1874 * limit, such that no single zone holds more than its 1875 * proportional share of globally allowed dirty pages. 1876 * The dirty limits take into account the zone's 1877 * lowmem reserves and high watermark so that kswapd 1878 * should be able to balance it without having to 1879 * write pages from its LRU list. 1880 * 1881 * This may look like it could increase pressure on 1882 * lower zones by failing allocations in higher zones 1883 * before they are full. But the pages that do spill 1884 * over are limited as the lower zones are protected 1885 * by this very same mechanism. It should not become 1886 * a practical burden to them. 1887 * 1888 * XXX: For now, allow allocations to potentially 1889 * exceed the per-zone dirty limit in the slowpath 1890 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1891 * which is important when on a NUMA setup the allowed 1892 * zones are together not big enough to reach the 1893 * global limit. The proper fix for these situations 1894 * will require awareness of zones in the 1895 * dirty-throttling and the flusher threads. 1896 */ 1897 if ((alloc_flags & ALLOC_WMARK_LOW) && 1898 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1899 goto this_zone_full; 1900 1901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1902 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1903 unsigned long mark; 1904 int ret; 1905 1906 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1907 if (zone_watermark_ok(zone, order, mark, 1908 classzone_idx, alloc_flags)) 1909 goto try_this_zone; 1910 1911 if (IS_ENABLED(CONFIG_NUMA) && 1912 !did_zlc_setup && nr_online_nodes > 1) { 1913 /* 1914 * we do zlc_setup if there are multiple nodes 1915 * and before considering the first zone allowed 1916 * by the cpuset. 1917 */ 1918 allowednodes = zlc_setup(zonelist, alloc_flags); 1919 zlc_active = 1; 1920 did_zlc_setup = 1; 1921 } 1922 1923 if (zone_reclaim_mode == 0 || 1924 !zone_allows_reclaim(preferred_zone, zone)) 1925 goto this_zone_full; 1926 1927 /* 1928 * As we may have just activated ZLC, check if the first 1929 * eligible zone has failed zone_reclaim recently. 1930 */ 1931 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1932 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1933 continue; 1934 1935 ret = zone_reclaim(zone, gfp_mask, order); 1936 switch (ret) { 1937 case ZONE_RECLAIM_NOSCAN: 1938 /* did not scan */ 1939 continue; 1940 case ZONE_RECLAIM_FULL: 1941 /* scanned but unreclaimable */ 1942 continue; 1943 default: 1944 /* did we reclaim enough */ 1945 if (zone_watermark_ok(zone, order, mark, 1946 classzone_idx, alloc_flags)) 1947 goto try_this_zone; 1948 1949 /* 1950 * Failed to reclaim enough to meet watermark. 1951 * Only mark the zone full if checking the min 1952 * watermark or if we failed to reclaim just 1953 * 1<<order pages or else the page allocator 1954 * fastpath will prematurely mark zones full 1955 * when the watermark is between the low and 1956 * min watermarks. 1957 */ 1958 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 1959 ret == ZONE_RECLAIM_SOME) 1960 goto this_zone_full; 1961 1962 continue; 1963 } 1964 } 1965 1966 try_this_zone: 1967 page = buffered_rmqueue(preferred_zone, zone, order, 1968 gfp_mask, migratetype); 1969 if (page) 1970 break; 1971 this_zone_full: 1972 if (IS_ENABLED(CONFIG_NUMA)) 1973 zlc_mark_zone_full(zonelist, z); 1974 } 1975 1976 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1977 /* Disable zlc cache for second zonelist scan */ 1978 zlc_active = 0; 1979 goto zonelist_scan; 1980 } 1981 1982 if (page) 1983 /* 1984 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1985 * necessary to allocate the page. The expectation is 1986 * that the caller is taking steps that will free more 1987 * memory. The caller should avoid the page being used 1988 * for !PFMEMALLOC purposes. 1989 */ 1990 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1991 1992 return page; 1993 } 1994 1995 /* 1996 * Large machines with many possible nodes should not always dump per-node 1997 * meminfo in irq context. 1998 */ 1999 static inline bool should_suppress_show_mem(void) 2000 { 2001 bool ret = false; 2002 2003 #if NODES_SHIFT > 8 2004 ret = in_interrupt(); 2005 #endif 2006 return ret; 2007 } 2008 2009 static DEFINE_RATELIMIT_STATE(nopage_rs, 2010 DEFAULT_RATELIMIT_INTERVAL, 2011 DEFAULT_RATELIMIT_BURST); 2012 2013 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2014 { 2015 unsigned int filter = SHOW_MEM_FILTER_NODES; 2016 2017 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2018 debug_guardpage_minorder() > 0) 2019 return; 2020 2021 /* 2022 * Walking all memory to count page types is very expensive and should 2023 * be inhibited in non-blockable contexts. 2024 */ 2025 if (!(gfp_mask & __GFP_WAIT)) 2026 filter |= SHOW_MEM_FILTER_PAGE_COUNT; 2027 2028 /* 2029 * This documents exceptions given to allocations in certain 2030 * contexts that are allowed to allocate outside current's set 2031 * of allowed nodes. 2032 */ 2033 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2034 if (test_thread_flag(TIF_MEMDIE) || 2035 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2036 filter &= ~SHOW_MEM_FILTER_NODES; 2037 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2038 filter &= ~SHOW_MEM_FILTER_NODES; 2039 2040 if (fmt) { 2041 struct va_format vaf; 2042 va_list args; 2043 2044 va_start(args, fmt); 2045 2046 vaf.fmt = fmt; 2047 vaf.va = &args; 2048 2049 pr_warn("%pV", &vaf); 2050 2051 va_end(args); 2052 } 2053 2054 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2055 current->comm, order, gfp_mask); 2056 2057 dump_stack(); 2058 if (!should_suppress_show_mem()) 2059 show_mem(filter); 2060 } 2061 2062 static inline int 2063 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2064 unsigned long did_some_progress, 2065 unsigned long pages_reclaimed) 2066 { 2067 /* Do not loop if specifically requested */ 2068 if (gfp_mask & __GFP_NORETRY) 2069 return 0; 2070 2071 /* Always retry if specifically requested */ 2072 if (gfp_mask & __GFP_NOFAIL) 2073 return 1; 2074 2075 /* 2076 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2077 * making forward progress without invoking OOM. Suspend also disables 2078 * storage devices so kswapd will not help. Bail if we are suspending. 2079 */ 2080 if (!did_some_progress && pm_suspended_storage()) 2081 return 0; 2082 2083 /* 2084 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2085 * means __GFP_NOFAIL, but that may not be true in other 2086 * implementations. 2087 */ 2088 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2089 return 1; 2090 2091 /* 2092 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2093 * specified, then we retry until we no longer reclaim any pages 2094 * (above), or we've reclaimed an order of pages at least as 2095 * large as the allocation's order. In both cases, if the 2096 * allocation still fails, we stop retrying. 2097 */ 2098 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2099 return 1; 2100 2101 return 0; 2102 } 2103 2104 static inline struct page * 2105 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2106 struct zonelist *zonelist, enum zone_type high_zoneidx, 2107 nodemask_t *nodemask, struct zone *preferred_zone, 2108 int migratetype) 2109 { 2110 struct page *page; 2111 2112 /* Acquire the OOM killer lock for the zones in zonelist */ 2113 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2114 schedule_timeout_uninterruptible(1); 2115 return NULL; 2116 } 2117 2118 /* 2119 * Go through the zonelist yet one more time, keep very high watermark 2120 * here, this is only to catch a parallel oom killing, we must fail if 2121 * we're still under heavy pressure. 2122 */ 2123 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2124 order, zonelist, high_zoneidx, 2125 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2126 preferred_zone, migratetype); 2127 if (page) 2128 goto out; 2129 2130 if (!(gfp_mask & __GFP_NOFAIL)) { 2131 /* The OOM killer will not help higher order allocs */ 2132 if (order > PAGE_ALLOC_COSTLY_ORDER) 2133 goto out; 2134 /* The OOM killer does not needlessly kill tasks for lowmem */ 2135 if (high_zoneidx < ZONE_NORMAL) 2136 goto out; 2137 /* 2138 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2139 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2140 * The caller should handle page allocation failure by itself if 2141 * it specifies __GFP_THISNODE. 2142 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2143 */ 2144 if (gfp_mask & __GFP_THISNODE) 2145 goto out; 2146 } 2147 /* Exhausted what can be done so it's blamo time */ 2148 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2149 2150 out: 2151 clear_zonelist_oom(zonelist, gfp_mask); 2152 return page; 2153 } 2154 2155 #ifdef CONFIG_COMPACTION 2156 /* Try memory compaction for high-order allocations before reclaim */ 2157 static struct page * 2158 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2159 struct zonelist *zonelist, enum zone_type high_zoneidx, 2160 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2161 int migratetype, bool sync_migration, 2162 bool *contended_compaction, bool *deferred_compaction, 2163 unsigned long *did_some_progress) 2164 { 2165 if (!order) 2166 return NULL; 2167 2168 if (compaction_deferred(preferred_zone, order)) { 2169 *deferred_compaction = true; 2170 return NULL; 2171 } 2172 2173 current->flags |= PF_MEMALLOC; 2174 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2175 nodemask, sync_migration, 2176 contended_compaction); 2177 current->flags &= ~PF_MEMALLOC; 2178 2179 if (*did_some_progress != COMPACT_SKIPPED) { 2180 struct page *page; 2181 2182 /* Page migration frees to the PCP lists but we want merging */ 2183 drain_pages(get_cpu()); 2184 put_cpu(); 2185 2186 page = get_page_from_freelist(gfp_mask, nodemask, 2187 order, zonelist, high_zoneidx, 2188 alloc_flags & ~ALLOC_NO_WATERMARKS, 2189 preferred_zone, migratetype); 2190 if (page) { 2191 preferred_zone->compact_blockskip_flush = false; 2192 preferred_zone->compact_considered = 0; 2193 preferred_zone->compact_defer_shift = 0; 2194 if (order >= preferred_zone->compact_order_failed) 2195 preferred_zone->compact_order_failed = order + 1; 2196 count_vm_event(COMPACTSUCCESS); 2197 return page; 2198 } 2199 2200 /* 2201 * It's bad if compaction run occurs and fails. 2202 * The most likely reason is that pages exist, 2203 * but not enough to satisfy watermarks. 2204 */ 2205 count_vm_event(COMPACTFAIL); 2206 2207 /* 2208 * As async compaction considers a subset of pageblocks, only 2209 * defer if the failure was a sync compaction failure. 2210 */ 2211 if (sync_migration) 2212 defer_compaction(preferred_zone, order); 2213 2214 cond_resched(); 2215 } 2216 2217 return NULL; 2218 } 2219 #else 2220 static inline struct page * 2221 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2222 struct zonelist *zonelist, enum zone_type high_zoneidx, 2223 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2224 int migratetype, bool sync_migration, 2225 bool *contended_compaction, bool *deferred_compaction, 2226 unsigned long *did_some_progress) 2227 { 2228 return NULL; 2229 } 2230 #endif /* CONFIG_COMPACTION */ 2231 2232 /* Perform direct synchronous page reclaim */ 2233 static int 2234 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2235 nodemask_t *nodemask) 2236 { 2237 struct reclaim_state reclaim_state; 2238 int progress; 2239 2240 cond_resched(); 2241 2242 /* We now go into synchronous reclaim */ 2243 cpuset_memory_pressure_bump(); 2244 current->flags |= PF_MEMALLOC; 2245 lockdep_set_current_reclaim_state(gfp_mask); 2246 reclaim_state.reclaimed_slab = 0; 2247 current->reclaim_state = &reclaim_state; 2248 2249 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2250 2251 current->reclaim_state = NULL; 2252 lockdep_clear_current_reclaim_state(); 2253 current->flags &= ~PF_MEMALLOC; 2254 2255 cond_resched(); 2256 2257 return progress; 2258 } 2259 2260 /* The really slow allocator path where we enter direct reclaim */ 2261 static inline struct page * 2262 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2263 struct zonelist *zonelist, enum zone_type high_zoneidx, 2264 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2265 int migratetype, unsigned long *did_some_progress) 2266 { 2267 struct page *page = NULL; 2268 bool drained = false; 2269 2270 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2271 nodemask); 2272 if (unlikely(!(*did_some_progress))) 2273 return NULL; 2274 2275 /* After successful reclaim, reconsider all zones for allocation */ 2276 if (IS_ENABLED(CONFIG_NUMA)) 2277 zlc_clear_zones_full(zonelist); 2278 2279 retry: 2280 page = get_page_from_freelist(gfp_mask, nodemask, order, 2281 zonelist, high_zoneidx, 2282 alloc_flags & ~ALLOC_NO_WATERMARKS, 2283 preferred_zone, migratetype); 2284 2285 /* 2286 * If an allocation failed after direct reclaim, it could be because 2287 * pages are pinned on the per-cpu lists. Drain them and try again 2288 */ 2289 if (!page && !drained) { 2290 drain_all_pages(); 2291 drained = true; 2292 goto retry; 2293 } 2294 2295 return page; 2296 } 2297 2298 /* 2299 * This is called in the allocator slow-path if the allocation request is of 2300 * sufficient urgency to ignore watermarks and take other desperate measures 2301 */ 2302 static inline struct page * 2303 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2304 struct zonelist *zonelist, enum zone_type high_zoneidx, 2305 nodemask_t *nodemask, struct zone *preferred_zone, 2306 int migratetype) 2307 { 2308 struct page *page; 2309 2310 do { 2311 page = get_page_from_freelist(gfp_mask, nodemask, order, 2312 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2313 preferred_zone, migratetype); 2314 2315 if (!page && gfp_mask & __GFP_NOFAIL) 2316 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2317 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2318 2319 return page; 2320 } 2321 2322 static inline 2323 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2324 enum zone_type high_zoneidx, 2325 enum zone_type classzone_idx) 2326 { 2327 struct zoneref *z; 2328 struct zone *zone; 2329 2330 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2331 wakeup_kswapd(zone, order, classzone_idx); 2332 } 2333 2334 static inline int 2335 gfp_to_alloc_flags(gfp_t gfp_mask) 2336 { 2337 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2338 const gfp_t wait = gfp_mask & __GFP_WAIT; 2339 2340 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2341 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2342 2343 /* 2344 * The caller may dip into page reserves a bit more if the caller 2345 * cannot run direct reclaim, or if the caller has realtime scheduling 2346 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2347 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2348 */ 2349 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2350 2351 if (!wait) { 2352 /* 2353 * Not worth trying to allocate harder for 2354 * __GFP_NOMEMALLOC even if it can't schedule. 2355 */ 2356 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2357 alloc_flags |= ALLOC_HARDER; 2358 /* 2359 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2360 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2361 */ 2362 alloc_flags &= ~ALLOC_CPUSET; 2363 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2364 alloc_flags |= ALLOC_HARDER; 2365 2366 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2367 if (gfp_mask & __GFP_MEMALLOC) 2368 alloc_flags |= ALLOC_NO_WATERMARKS; 2369 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2370 alloc_flags |= ALLOC_NO_WATERMARKS; 2371 else if (!in_interrupt() && 2372 ((current->flags & PF_MEMALLOC) || 2373 unlikely(test_thread_flag(TIF_MEMDIE)))) 2374 alloc_flags |= ALLOC_NO_WATERMARKS; 2375 } 2376 #ifdef CONFIG_CMA 2377 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2378 alloc_flags |= ALLOC_CMA; 2379 #endif 2380 return alloc_flags; 2381 } 2382 2383 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2384 { 2385 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2386 } 2387 2388 static inline struct page * 2389 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2390 struct zonelist *zonelist, enum zone_type high_zoneidx, 2391 nodemask_t *nodemask, struct zone *preferred_zone, 2392 int migratetype) 2393 { 2394 const gfp_t wait = gfp_mask & __GFP_WAIT; 2395 struct page *page = NULL; 2396 int alloc_flags; 2397 unsigned long pages_reclaimed = 0; 2398 unsigned long did_some_progress; 2399 bool sync_migration = false; 2400 bool deferred_compaction = false; 2401 bool contended_compaction = false; 2402 2403 /* 2404 * In the slowpath, we sanity check order to avoid ever trying to 2405 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2406 * be using allocators in order of preference for an area that is 2407 * too large. 2408 */ 2409 if (order >= MAX_ORDER) { 2410 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2411 return NULL; 2412 } 2413 2414 /* 2415 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2416 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2417 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2418 * using a larger set of nodes after it has established that the 2419 * allowed per node queues are empty and that nodes are 2420 * over allocated. 2421 */ 2422 if (IS_ENABLED(CONFIG_NUMA) && 2423 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2424 goto nopage; 2425 2426 restart: 2427 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2428 wake_all_kswapd(order, zonelist, high_zoneidx, 2429 zone_idx(preferred_zone)); 2430 2431 /* 2432 * OK, we're below the kswapd watermark and have kicked background 2433 * reclaim. Now things get more complex, so set up alloc_flags according 2434 * to how we want to proceed. 2435 */ 2436 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2437 2438 /* 2439 * Find the true preferred zone if the allocation is unconstrained by 2440 * cpusets. 2441 */ 2442 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2443 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2444 &preferred_zone); 2445 2446 rebalance: 2447 /* This is the last chance, in general, before the goto nopage. */ 2448 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2449 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2450 preferred_zone, migratetype); 2451 if (page) 2452 goto got_pg; 2453 2454 /* Allocate without watermarks if the context allows */ 2455 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2456 /* 2457 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2458 * the allocation is high priority and these type of 2459 * allocations are system rather than user orientated 2460 */ 2461 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2462 2463 page = __alloc_pages_high_priority(gfp_mask, order, 2464 zonelist, high_zoneidx, nodemask, 2465 preferred_zone, migratetype); 2466 if (page) { 2467 goto got_pg; 2468 } 2469 } 2470 2471 /* Atomic allocations - we can't balance anything */ 2472 if (!wait) 2473 goto nopage; 2474 2475 /* Avoid recursion of direct reclaim */ 2476 if (current->flags & PF_MEMALLOC) 2477 goto nopage; 2478 2479 /* Avoid allocations with no watermarks from looping endlessly */ 2480 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2481 goto nopage; 2482 2483 /* 2484 * Try direct compaction. The first pass is asynchronous. Subsequent 2485 * attempts after direct reclaim are synchronous 2486 */ 2487 page = __alloc_pages_direct_compact(gfp_mask, order, 2488 zonelist, high_zoneidx, 2489 nodemask, 2490 alloc_flags, preferred_zone, 2491 migratetype, sync_migration, 2492 &contended_compaction, 2493 &deferred_compaction, 2494 &did_some_progress); 2495 if (page) 2496 goto got_pg; 2497 sync_migration = true; 2498 2499 /* 2500 * If compaction is deferred for high-order allocations, it is because 2501 * sync compaction recently failed. In this is the case and the caller 2502 * requested a movable allocation that does not heavily disrupt the 2503 * system then fail the allocation instead of entering direct reclaim. 2504 */ 2505 if ((deferred_compaction || contended_compaction) && 2506 (gfp_mask & __GFP_NO_KSWAPD)) 2507 goto nopage; 2508 2509 /* Try direct reclaim and then allocating */ 2510 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2511 zonelist, high_zoneidx, 2512 nodemask, 2513 alloc_flags, preferred_zone, 2514 migratetype, &did_some_progress); 2515 if (page) 2516 goto got_pg; 2517 2518 /* 2519 * If we failed to make any progress reclaiming, then we are 2520 * running out of options and have to consider going OOM 2521 */ 2522 if (!did_some_progress) { 2523 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2524 if (oom_killer_disabled) 2525 goto nopage; 2526 /* Coredumps can quickly deplete all memory reserves */ 2527 if ((current->flags & PF_DUMPCORE) && 2528 !(gfp_mask & __GFP_NOFAIL)) 2529 goto nopage; 2530 page = __alloc_pages_may_oom(gfp_mask, order, 2531 zonelist, high_zoneidx, 2532 nodemask, preferred_zone, 2533 migratetype); 2534 if (page) 2535 goto got_pg; 2536 2537 if (!(gfp_mask & __GFP_NOFAIL)) { 2538 /* 2539 * The oom killer is not called for high-order 2540 * allocations that may fail, so if no progress 2541 * is being made, there are no other options and 2542 * retrying is unlikely to help. 2543 */ 2544 if (order > PAGE_ALLOC_COSTLY_ORDER) 2545 goto nopage; 2546 /* 2547 * The oom killer is not called for lowmem 2548 * allocations to prevent needlessly killing 2549 * innocent tasks. 2550 */ 2551 if (high_zoneidx < ZONE_NORMAL) 2552 goto nopage; 2553 } 2554 2555 goto restart; 2556 } 2557 } 2558 2559 /* Check if we should retry the allocation */ 2560 pages_reclaimed += did_some_progress; 2561 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2562 pages_reclaimed)) { 2563 /* Wait for some write requests to complete then retry */ 2564 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2565 goto rebalance; 2566 } else { 2567 /* 2568 * High-order allocations do not necessarily loop after 2569 * direct reclaim and reclaim/compaction depends on compaction 2570 * being called after reclaim so call directly if necessary 2571 */ 2572 page = __alloc_pages_direct_compact(gfp_mask, order, 2573 zonelist, high_zoneidx, 2574 nodemask, 2575 alloc_flags, preferred_zone, 2576 migratetype, sync_migration, 2577 &contended_compaction, 2578 &deferred_compaction, 2579 &did_some_progress); 2580 if (page) 2581 goto got_pg; 2582 } 2583 2584 nopage: 2585 warn_alloc_failed(gfp_mask, order, NULL); 2586 return page; 2587 got_pg: 2588 if (kmemcheck_enabled) 2589 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2590 2591 return page; 2592 } 2593 2594 /* 2595 * This is the 'heart' of the zoned buddy allocator. 2596 */ 2597 struct page * 2598 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2599 struct zonelist *zonelist, nodemask_t *nodemask) 2600 { 2601 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2602 struct zone *preferred_zone; 2603 struct page *page = NULL; 2604 int migratetype = allocflags_to_migratetype(gfp_mask); 2605 unsigned int cpuset_mems_cookie; 2606 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2607 struct mem_cgroup *memcg = NULL; 2608 2609 gfp_mask &= gfp_allowed_mask; 2610 2611 lockdep_trace_alloc(gfp_mask); 2612 2613 might_sleep_if(gfp_mask & __GFP_WAIT); 2614 2615 if (should_fail_alloc_page(gfp_mask, order)) 2616 return NULL; 2617 2618 /* 2619 * Check the zones suitable for the gfp_mask contain at least one 2620 * valid zone. It's possible to have an empty zonelist as a result 2621 * of GFP_THISNODE and a memoryless node 2622 */ 2623 if (unlikely(!zonelist->_zonerefs->zone)) 2624 return NULL; 2625 2626 /* 2627 * Will only have any effect when __GFP_KMEMCG is set. This is 2628 * verified in the (always inline) callee 2629 */ 2630 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2631 return NULL; 2632 2633 retry_cpuset: 2634 cpuset_mems_cookie = get_mems_allowed(); 2635 2636 /* The preferred zone is used for statistics later */ 2637 first_zones_zonelist(zonelist, high_zoneidx, 2638 nodemask ? : &cpuset_current_mems_allowed, 2639 &preferred_zone); 2640 if (!preferred_zone) 2641 goto out; 2642 2643 #ifdef CONFIG_CMA 2644 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2645 alloc_flags |= ALLOC_CMA; 2646 #endif 2647 /* First allocation attempt */ 2648 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2649 zonelist, high_zoneidx, alloc_flags, 2650 preferred_zone, migratetype); 2651 if (unlikely(!page)) { 2652 /* 2653 * Runtime PM, block IO and its error handling path 2654 * can deadlock because I/O on the device might not 2655 * complete. 2656 */ 2657 gfp_mask = memalloc_noio_flags(gfp_mask); 2658 page = __alloc_pages_slowpath(gfp_mask, order, 2659 zonelist, high_zoneidx, nodemask, 2660 preferred_zone, migratetype); 2661 } 2662 2663 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2664 2665 out: 2666 /* 2667 * When updating a task's mems_allowed, it is possible to race with 2668 * parallel threads in such a way that an allocation can fail while 2669 * the mask is being updated. If a page allocation is about to fail, 2670 * check if the cpuset changed during allocation and if so, retry. 2671 */ 2672 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2673 goto retry_cpuset; 2674 2675 memcg_kmem_commit_charge(page, memcg, order); 2676 2677 return page; 2678 } 2679 EXPORT_SYMBOL(__alloc_pages_nodemask); 2680 2681 /* 2682 * Common helper functions. 2683 */ 2684 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2685 { 2686 struct page *page; 2687 2688 /* 2689 * __get_free_pages() returns a 32-bit address, which cannot represent 2690 * a highmem page 2691 */ 2692 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2693 2694 page = alloc_pages(gfp_mask, order); 2695 if (!page) 2696 return 0; 2697 return (unsigned long) page_address(page); 2698 } 2699 EXPORT_SYMBOL(__get_free_pages); 2700 2701 unsigned long get_zeroed_page(gfp_t gfp_mask) 2702 { 2703 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2704 } 2705 EXPORT_SYMBOL(get_zeroed_page); 2706 2707 void __free_pages(struct page *page, unsigned int order) 2708 { 2709 if (put_page_testzero(page)) { 2710 if (order == 0) 2711 free_hot_cold_page(page, 0); 2712 else 2713 __free_pages_ok(page, order); 2714 } 2715 } 2716 2717 EXPORT_SYMBOL(__free_pages); 2718 2719 void free_pages(unsigned long addr, unsigned int order) 2720 { 2721 if (addr != 0) { 2722 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2723 __free_pages(virt_to_page((void *)addr), order); 2724 } 2725 } 2726 2727 EXPORT_SYMBOL(free_pages); 2728 2729 /* 2730 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2731 * pages allocated with __GFP_KMEMCG. 2732 * 2733 * Those pages are accounted to a particular memcg, embedded in the 2734 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2735 * for that information only to find out that it is NULL for users who have no 2736 * interest in that whatsoever, we provide these functions. 2737 * 2738 * The caller knows better which flags it relies on. 2739 */ 2740 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2741 { 2742 memcg_kmem_uncharge_pages(page, order); 2743 __free_pages(page, order); 2744 } 2745 2746 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2747 { 2748 if (addr != 0) { 2749 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2750 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2751 } 2752 } 2753 2754 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2755 { 2756 if (addr) { 2757 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2758 unsigned long used = addr + PAGE_ALIGN(size); 2759 2760 split_page(virt_to_page((void *)addr), order); 2761 while (used < alloc_end) { 2762 free_page(used); 2763 used += PAGE_SIZE; 2764 } 2765 } 2766 return (void *)addr; 2767 } 2768 2769 /** 2770 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2771 * @size: the number of bytes to allocate 2772 * @gfp_mask: GFP flags for the allocation 2773 * 2774 * This function is similar to alloc_pages(), except that it allocates the 2775 * minimum number of pages to satisfy the request. alloc_pages() can only 2776 * allocate memory in power-of-two pages. 2777 * 2778 * This function is also limited by MAX_ORDER. 2779 * 2780 * Memory allocated by this function must be released by free_pages_exact(). 2781 */ 2782 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2783 { 2784 unsigned int order = get_order(size); 2785 unsigned long addr; 2786 2787 addr = __get_free_pages(gfp_mask, order); 2788 return make_alloc_exact(addr, order, size); 2789 } 2790 EXPORT_SYMBOL(alloc_pages_exact); 2791 2792 /** 2793 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2794 * pages on a node. 2795 * @nid: the preferred node ID where memory should be allocated 2796 * @size: the number of bytes to allocate 2797 * @gfp_mask: GFP flags for the allocation 2798 * 2799 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2800 * back. 2801 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2802 * but is not exact. 2803 */ 2804 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2805 { 2806 unsigned order = get_order(size); 2807 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2808 if (!p) 2809 return NULL; 2810 return make_alloc_exact((unsigned long)page_address(p), order, size); 2811 } 2812 EXPORT_SYMBOL(alloc_pages_exact_nid); 2813 2814 /** 2815 * free_pages_exact - release memory allocated via alloc_pages_exact() 2816 * @virt: the value returned by alloc_pages_exact. 2817 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2818 * 2819 * Release the memory allocated by a previous call to alloc_pages_exact. 2820 */ 2821 void free_pages_exact(void *virt, size_t size) 2822 { 2823 unsigned long addr = (unsigned long)virt; 2824 unsigned long end = addr + PAGE_ALIGN(size); 2825 2826 while (addr < end) { 2827 free_page(addr); 2828 addr += PAGE_SIZE; 2829 } 2830 } 2831 EXPORT_SYMBOL(free_pages_exact); 2832 2833 /** 2834 * nr_free_zone_pages - count number of pages beyond high watermark 2835 * @offset: The zone index of the highest zone 2836 * 2837 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2838 * high watermark within all zones at or below a given zone index. For each 2839 * zone, the number of pages is calculated as: 2840 * present_pages - high_pages 2841 */ 2842 static unsigned long nr_free_zone_pages(int offset) 2843 { 2844 struct zoneref *z; 2845 struct zone *zone; 2846 2847 /* Just pick one node, since fallback list is circular */ 2848 unsigned long sum = 0; 2849 2850 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2851 2852 for_each_zone_zonelist(zone, z, zonelist, offset) { 2853 unsigned long size = zone->managed_pages; 2854 unsigned long high = high_wmark_pages(zone); 2855 if (size > high) 2856 sum += size - high; 2857 } 2858 2859 return sum; 2860 } 2861 2862 /** 2863 * nr_free_buffer_pages - count number of pages beyond high watermark 2864 * 2865 * nr_free_buffer_pages() counts the number of pages which are beyond the high 2866 * watermark within ZONE_DMA and ZONE_NORMAL. 2867 */ 2868 unsigned long nr_free_buffer_pages(void) 2869 { 2870 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2871 } 2872 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2873 2874 /** 2875 * nr_free_pagecache_pages - count number of pages beyond high watermark 2876 * 2877 * nr_free_pagecache_pages() counts the number of pages which are beyond the 2878 * high watermark within all zones. 2879 */ 2880 unsigned long nr_free_pagecache_pages(void) 2881 { 2882 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2883 } 2884 2885 static inline void show_node(struct zone *zone) 2886 { 2887 if (IS_ENABLED(CONFIG_NUMA)) 2888 printk("Node %d ", zone_to_nid(zone)); 2889 } 2890 2891 void si_meminfo(struct sysinfo *val) 2892 { 2893 val->totalram = totalram_pages; 2894 val->sharedram = 0; 2895 val->freeram = global_page_state(NR_FREE_PAGES); 2896 val->bufferram = nr_blockdev_pages(); 2897 val->totalhigh = totalhigh_pages; 2898 val->freehigh = nr_free_highpages(); 2899 val->mem_unit = PAGE_SIZE; 2900 } 2901 2902 EXPORT_SYMBOL(si_meminfo); 2903 2904 #ifdef CONFIG_NUMA 2905 void si_meminfo_node(struct sysinfo *val, int nid) 2906 { 2907 pg_data_t *pgdat = NODE_DATA(nid); 2908 2909 val->totalram = pgdat->node_present_pages; 2910 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2911 #ifdef CONFIG_HIGHMEM 2912 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 2913 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2914 NR_FREE_PAGES); 2915 #else 2916 val->totalhigh = 0; 2917 val->freehigh = 0; 2918 #endif 2919 val->mem_unit = PAGE_SIZE; 2920 } 2921 #endif 2922 2923 /* 2924 * Determine whether the node should be displayed or not, depending on whether 2925 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2926 */ 2927 bool skip_free_areas_node(unsigned int flags, int nid) 2928 { 2929 bool ret = false; 2930 unsigned int cpuset_mems_cookie; 2931 2932 if (!(flags & SHOW_MEM_FILTER_NODES)) 2933 goto out; 2934 2935 do { 2936 cpuset_mems_cookie = get_mems_allowed(); 2937 ret = !node_isset(nid, cpuset_current_mems_allowed); 2938 } while (!put_mems_allowed(cpuset_mems_cookie)); 2939 out: 2940 return ret; 2941 } 2942 2943 #define K(x) ((x) << (PAGE_SHIFT-10)) 2944 2945 static void show_migration_types(unsigned char type) 2946 { 2947 static const char types[MIGRATE_TYPES] = { 2948 [MIGRATE_UNMOVABLE] = 'U', 2949 [MIGRATE_RECLAIMABLE] = 'E', 2950 [MIGRATE_MOVABLE] = 'M', 2951 [MIGRATE_RESERVE] = 'R', 2952 #ifdef CONFIG_CMA 2953 [MIGRATE_CMA] = 'C', 2954 #endif 2955 #ifdef CONFIG_MEMORY_ISOLATION 2956 [MIGRATE_ISOLATE] = 'I', 2957 #endif 2958 }; 2959 char tmp[MIGRATE_TYPES + 1]; 2960 char *p = tmp; 2961 int i; 2962 2963 for (i = 0; i < MIGRATE_TYPES; i++) { 2964 if (type & (1 << i)) 2965 *p++ = types[i]; 2966 } 2967 2968 *p = '\0'; 2969 printk("(%s) ", tmp); 2970 } 2971 2972 /* 2973 * Show free area list (used inside shift_scroll-lock stuff) 2974 * We also calculate the percentage fragmentation. We do this by counting the 2975 * memory on each free list with the exception of the first item on the list. 2976 * Suppresses nodes that are not allowed by current's cpuset if 2977 * SHOW_MEM_FILTER_NODES is passed. 2978 */ 2979 void show_free_areas(unsigned int filter) 2980 { 2981 int cpu; 2982 struct zone *zone; 2983 2984 for_each_populated_zone(zone) { 2985 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2986 continue; 2987 show_node(zone); 2988 printk("%s per-cpu:\n", zone->name); 2989 2990 for_each_online_cpu(cpu) { 2991 struct per_cpu_pageset *pageset; 2992 2993 pageset = per_cpu_ptr(zone->pageset, cpu); 2994 2995 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2996 cpu, pageset->pcp.high, 2997 pageset->pcp.batch, pageset->pcp.count); 2998 } 2999 } 3000 3001 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3002 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3003 " unevictable:%lu" 3004 " dirty:%lu writeback:%lu unstable:%lu\n" 3005 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3006 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3007 " free_cma:%lu\n", 3008 global_page_state(NR_ACTIVE_ANON), 3009 global_page_state(NR_INACTIVE_ANON), 3010 global_page_state(NR_ISOLATED_ANON), 3011 global_page_state(NR_ACTIVE_FILE), 3012 global_page_state(NR_INACTIVE_FILE), 3013 global_page_state(NR_ISOLATED_FILE), 3014 global_page_state(NR_UNEVICTABLE), 3015 global_page_state(NR_FILE_DIRTY), 3016 global_page_state(NR_WRITEBACK), 3017 global_page_state(NR_UNSTABLE_NFS), 3018 global_page_state(NR_FREE_PAGES), 3019 global_page_state(NR_SLAB_RECLAIMABLE), 3020 global_page_state(NR_SLAB_UNRECLAIMABLE), 3021 global_page_state(NR_FILE_MAPPED), 3022 global_page_state(NR_SHMEM), 3023 global_page_state(NR_PAGETABLE), 3024 global_page_state(NR_BOUNCE), 3025 global_page_state(NR_FREE_CMA_PAGES)); 3026 3027 for_each_populated_zone(zone) { 3028 int i; 3029 3030 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3031 continue; 3032 show_node(zone); 3033 printk("%s" 3034 " free:%lukB" 3035 " min:%lukB" 3036 " low:%lukB" 3037 " high:%lukB" 3038 " active_anon:%lukB" 3039 " inactive_anon:%lukB" 3040 " active_file:%lukB" 3041 " inactive_file:%lukB" 3042 " unevictable:%lukB" 3043 " isolated(anon):%lukB" 3044 " isolated(file):%lukB" 3045 " present:%lukB" 3046 " managed:%lukB" 3047 " mlocked:%lukB" 3048 " dirty:%lukB" 3049 " writeback:%lukB" 3050 " mapped:%lukB" 3051 " shmem:%lukB" 3052 " slab_reclaimable:%lukB" 3053 " slab_unreclaimable:%lukB" 3054 " kernel_stack:%lukB" 3055 " pagetables:%lukB" 3056 " unstable:%lukB" 3057 " bounce:%lukB" 3058 " free_cma:%lukB" 3059 " writeback_tmp:%lukB" 3060 " pages_scanned:%lu" 3061 " all_unreclaimable? %s" 3062 "\n", 3063 zone->name, 3064 K(zone_page_state(zone, NR_FREE_PAGES)), 3065 K(min_wmark_pages(zone)), 3066 K(low_wmark_pages(zone)), 3067 K(high_wmark_pages(zone)), 3068 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3069 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3070 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3071 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3072 K(zone_page_state(zone, NR_UNEVICTABLE)), 3073 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3074 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3075 K(zone->present_pages), 3076 K(zone->managed_pages), 3077 K(zone_page_state(zone, NR_MLOCK)), 3078 K(zone_page_state(zone, NR_FILE_DIRTY)), 3079 K(zone_page_state(zone, NR_WRITEBACK)), 3080 K(zone_page_state(zone, NR_FILE_MAPPED)), 3081 K(zone_page_state(zone, NR_SHMEM)), 3082 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3083 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3084 zone_page_state(zone, NR_KERNEL_STACK) * 3085 THREAD_SIZE / 1024, 3086 K(zone_page_state(zone, NR_PAGETABLE)), 3087 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3088 K(zone_page_state(zone, NR_BOUNCE)), 3089 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3090 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3091 zone->pages_scanned, 3092 (zone->all_unreclaimable ? "yes" : "no") 3093 ); 3094 printk("lowmem_reserve[]:"); 3095 for (i = 0; i < MAX_NR_ZONES; i++) 3096 printk(" %lu", zone->lowmem_reserve[i]); 3097 printk("\n"); 3098 } 3099 3100 for_each_populated_zone(zone) { 3101 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3102 unsigned char types[MAX_ORDER]; 3103 3104 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3105 continue; 3106 show_node(zone); 3107 printk("%s: ", zone->name); 3108 3109 spin_lock_irqsave(&zone->lock, flags); 3110 for (order = 0; order < MAX_ORDER; order++) { 3111 struct free_area *area = &zone->free_area[order]; 3112 int type; 3113 3114 nr[order] = area->nr_free; 3115 total += nr[order] << order; 3116 3117 types[order] = 0; 3118 for (type = 0; type < MIGRATE_TYPES; type++) { 3119 if (!list_empty(&area->free_list[type])) 3120 types[order] |= 1 << type; 3121 } 3122 } 3123 spin_unlock_irqrestore(&zone->lock, flags); 3124 for (order = 0; order < MAX_ORDER; order++) { 3125 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3126 if (nr[order]) 3127 show_migration_types(types[order]); 3128 } 3129 printk("= %lukB\n", K(total)); 3130 } 3131 3132 hugetlb_show_meminfo(); 3133 3134 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3135 3136 show_swap_cache_info(); 3137 } 3138 3139 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3140 { 3141 zoneref->zone = zone; 3142 zoneref->zone_idx = zone_idx(zone); 3143 } 3144 3145 /* 3146 * Builds allocation fallback zone lists. 3147 * 3148 * Add all populated zones of a node to the zonelist. 3149 */ 3150 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3151 int nr_zones, enum zone_type zone_type) 3152 { 3153 struct zone *zone; 3154 3155 BUG_ON(zone_type >= MAX_NR_ZONES); 3156 zone_type++; 3157 3158 do { 3159 zone_type--; 3160 zone = pgdat->node_zones + zone_type; 3161 if (populated_zone(zone)) { 3162 zoneref_set_zone(zone, 3163 &zonelist->_zonerefs[nr_zones++]); 3164 check_highest_zone(zone_type); 3165 } 3166 3167 } while (zone_type); 3168 return nr_zones; 3169 } 3170 3171 3172 /* 3173 * zonelist_order: 3174 * 0 = automatic detection of better ordering. 3175 * 1 = order by ([node] distance, -zonetype) 3176 * 2 = order by (-zonetype, [node] distance) 3177 * 3178 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3179 * the same zonelist. So only NUMA can configure this param. 3180 */ 3181 #define ZONELIST_ORDER_DEFAULT 0 3182 #define ZONELIST_ORDER_NODE 1 3183 #define ZONELIST_ORDER_ZONE 2 3184 3185 /* zonelist order in the kernel. 3186 * set_zonelist_order() will set this to NODE or ZONE. 3187 */ 3188 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3189 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3190 3191 3192 #ifdef CONFIG_NUMA 3193 /* The value user specified ....changed by config */ 3194 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3195 /* string for sysctl */ 3196 #define NUMA_ZONELIST_ORDER_LEN 16 3197 char numa_zonelist_order[16] = "default"; 3198 3199 /* 3200 * interface for configure zonelist ordering. 3201 * command line option "numa_zonelist_order" 3202 * = "[dD]efault - default, automatic configuration. 3203 * = "[nN]ode - order by node locality, then by zone within node 3204 * = "[zZ]one - order by zone, then by locality within zone 3205 */ 3206 3207 static int __parse_numa_zonelist_order(char *s) 3208 { 3209 if (*s == 'd' || *s == 'D') { 3210 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3211 } else if (*s == 'n' || *s == 'N') { 3212 user_zonelist_order = ZONELIST_ORDER_NODE; 3213 } else if (*s == 'z' || *s == 'Z') { 3214 user_zonelist_order = ZONELIST_ORDER_ZONE; 3215 } else { 3216 printk(KERN_WARNING 3217 "Ignoring invalid numa_zonelist_order value: " 3218 "%s\n", s); 3219 return -EINVAL; 3220 } 3221 return 0; 3222 } 3223 3224 static __init int setup_numa_zonelist_order(char *s) 3225 { 3226 int ret; 3227 3228 if (!s) 3229 return 0; 3230 3231 ret = __parse_numa_zonelist_order(s); 3232 if (ret == 0) 3233 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3234 3235 return ret; 3236 } 3237 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3238 3239 /* 3240 * sysctl handler for numa_zonelist_order 3241 */ 3242 int numa_zonelist_order_handler(ctl_table *table, int write, 3243 void __user *buffer, size_t *length, 3244 loff_t *ppos) 3245 { 3246 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3247 int ret; 3248 static DEFINE_MUTEX(zl_order_mutex); 3249 3250 mutex_lock(&zl_order_mutex); 3251 if (write) 3252 strcpy(saved_string, (char*)table->data); 3253 ret = proc_dostring(table, write, buffer, length, ppos); 3254 if (ret) 3255 goto out; 3256 if (write) { 3257 int oldval = user_zonelist_order; 3258 if (__parse_numa_zonelist_order((char*)table->data)) { 3259 /* 3260 * bogus value. restore saved string 3261 */ 3262 strncpy((char*)table->data, saved_string, 3263 NUMA_ZONELIST_ORDER_LEN); 3264 user_zonelist_order = oldval; 3265 } else if (oldval != user_zonelist_order) { 3266 mutex_lock(&zonelists_mutex); 3267 build_all_zonelists(NULL, NULL); 3268 mutex_unlock(&zonelists_mutex); 3269 } 3270 } 3271 out: 3272 mutex_unlock(&zl_order_mutex); 3273 return ret; 3274 } 3275 3276 3277 #define MAX_NODE_LOAD (nr_online_nodes) 3278 static int node_load[MAX_NUMNODES]; 3279 3280 /** 3281 * find_next_best_node - find the next node that should appear in a given node's fallback list 3282 * @node: node whose fallback list we're appending 3283 * @used_node_mask: nodemask_t of already used nodes 3284 * 3285 * We use a number of factors to determine which is the next node that should 3286 * appear on a given node's fallback list. The node should not have appeared 3287 * already in @node's fallback list, and it should be the next closest node 3288 * according to the distance array (which contains arbitrary distance values 3289 * from each node to each node in the system), and should also prefer nodes 3290 * with no CPUs, since presumably they'll have very little allocation pressure 3291 * on them otherwise. 3292 * It returns -1 if no node is found. 3293 */ 3294 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3295 { 3296 int n, val; 3297 int min_val = INT_MAX; 3298 int best_node = NUMA_NO_NODE; 3299 const struct cpumask *tmp = cpumask_of_node(0); 3300 3301 /* Use the local node if we haven't already */ 3302 if (!node_isset(node, *used_node_mask)) { 3303 node_set(node, *used_node_mask); 3304 return node; 3305 } 3306 3307 for_each_node_state(n, N_MEMORY) { 3308 3309 /* Don't want a node to appear more than once */ 3310 if (node_isset(n, *used_node_mask)) 3311 continue; 3312 3313 /* Use the distance array to find the distance */ 3314 val = node_distance(node, n); 3315 3316 /* Penalize nodes under us ("prefer the next node") */ 3317 val += (n < node); 3318 3319 /* Give preference to headless and unused nodes */ 3320 tmp = cpumask_of_node(n); 3321 if (!cpumask_empty(tmp)) 3322 val += PENALTY_FOR_NODE_WITH_CPUS; 3323 3324 /* Slight preference for less loaded node */ 3325 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3326 val += node_load[n]; 3327 3328 if (val < min_val) { 3329 min_val = val; 3330 best_node = n; 3331 } 3332 } 3333 3334 if (best_node >= 0) 3335 node_set(best_node, *used_node_mask); 3336 3337 return best_node; 3338 } 3339 3340 3341 /* 3342 * Build zonelists ordered by node and zones within node. 3343 * This results in maximum locality--normal zone overflows into local 3344 * DMA zone, if any--but risks exhausting DMA zone. 3345 */ 3346 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3347 { 3348 int j; 3349 struct zonelist *zonelist; 3350 3351 zonelist = &pgdat->node_zonelists[0]; 3352 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3353 ; 3354 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3355 MAX_NR_ZONES - 1); 3356 zonelist->_zonerefs[j].zone = NULL; 3357 zonelist->_zonerefs[j].zone_idx = 0; 3358 } 3359 3360 /* 3361 * Build gfp_thisnode zonelists 3362 */ 3363 static void build_thisnode_zonelists(pg_data_t *pgdat) 3364 { 3365 int j; 3366 struct zonelist *zonelist; 3367 3368 zonelist = &pgdat->node_zonelists[1]; 3369 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3370 zonelist->_zonerefs[j].zone = NULL; 3371 zonelist->_zonerefs[j].zone_idx = 0; 3372 } 3373 3374 /* 3375 * Build zonelists ordered by zone and nodes within zones. 3376 * This results in conserving DMA zone[s] until all Normal memory is 3377 * exhausted, but results in overflowing to remote node while memory 3378 * may still exist in local DMA zone. 3379 */ 3380 static int node_order[MAX_NUMNODES]; 3381 3382 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3383 { 3384 int pos, j, node; 3385 int zone_type; /* needs to be signed */ 3386 struct zone *z; 3387 struct zonelist *zonelist; 3388 3389 zonelist = &pgdat->node_zonelists[0]; 3390 pos = 0; 3391 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3392 for (j = 0; j < nr_nodes; j++) { 3393 node = node_order[j]; 3394 z = &NODE_DATA(node)->node_zones[zone_type]; 3395 if (populated_zone(z)) { 3396 zoneref_set_zone(z, 3397 &zonelist->_zonerefs[pos++]); 3398 check_highest_zone(zone_type); 3399 } 3400 } 3401 } 3402 zonelist->_zonerefs[pos].zone = NULL; 3403 zonelist->_zonerefs[pos].zone_idx = 0; 3404 } 3405 3406 static int default_zonelist_order(void) 3407 { 3408 int nid, zone_type; 3409 unsigned long low_kmem_size,total_size; 3410 struct zone *z; 3411 int average_size; 3412 /* 3413 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3414 * If they are really small and used heavily, the system can fall 3415 * into OOM very easily. 3416 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3417 */ 3418 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3419 low_kmem_size = 0; 3420 total_size = 0; 3421 for_each_online_node(nid) { 3422 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3423 z = &NODE_DATA(nid)->node_zones[zone_type]; 3424 if (populated_zone(z)) { 3425 if (zone_type < ZONE_NORMAL) 3426 low_kmem_size += z->present_pages; 3427 total_size += z->present_pages; 3428 } else if (zone_type == ZONE_NORMAL) { 3429 /* 3430 * If any node has only lowmem, then node order 3431 * is preferred to allow kernel allocations 3432 * locally; otherwise, they can easily infringe 3433 * on other nodes when there is an abundance of 3434 * lowmem available to allocate from. 3435 */ 3436 return ZONELIST_ORDER_NODE; 3437 } 3438 } 3439 } 3440 if (!low_kmem_size || /* there are no DMA area. */ 3441 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3442 return ZONELIST_ORDER_NODE; 3443 /* 3444 * look into each node's config. 3445 * If there is a node whose DMA/DMA32 memory is very big area on 3446 * local memory, NODE_ORDER may be suitable. 3447 */ 3448 average_size = total_size / 3449 (nodes_weight(node_states[N_MEMORY]) + 1); 3450 for_each_online_node(nid) { 3451 low_kmem_size = 0; 3452 total_size = 0; 3453 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3454 z = &NODE_DATA(nid)->node_zones[zone_type]; 3455 if (populated_zone(z)) { 3456 if (zone_type < ZONE_NORMAL) 3457 low_kmem_size += z->present_pages; 3458 total_size += z->present_pages; 3459 } 3460 } 3461 if (low_kmem_size && 3462 total_size > average_size && /* ignore small node */ 3463 low_kmem_size > total_size * 70/100) 3464 return ZONELIST_ORDER_NODE; 3465 } 3466 return ZONELIST_ORDER_ZONE; 3467 } 3468 3469 static void set_zonelist_order(void) 3470 { 3471 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3472 current_zonelist_order = default_zonelist_order(); 3473 else 3474 current_zonelist_order = user_zonelist_order; 3475 } 3476 3477 static void build_zonelists(pg_data_t *pgdat) 3478 { 3479 int j, node, load; 3480 enum zone_type i; 3481 nodemask_t used_mask; 3482 int local_node, prev_node; 3483 struct zonelist *zonelist; 3484 int order = current_zonelist_order; 3485 3486 /* initialize zonelists */ 3487 for (i = 0; i < MAX_ZONELISTS; i++) { 3488 zonelist = pgdat->node_zonelists + i; 3489 zonelist->_zonerefs[0].zone = NULL; 3490 zonelist->_zonerefs[0].zone_idx = 0; 3491 } 3492 3493 /* NUMA-aware ordering of nodes */ 3494 local_node = pgdat->node_id; 3495 load = nr_online_nodes; 3496 prev_node = local_node; 3497 nodes_clear(used_mask); 3498 3499 memset(node_order, 0, sizeof(node_order)); 3500 j = 0; 3501 3502 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3503 /* 3504 * We don't want to pressure a particular node. 3505 * So adding penalty to the first node in same 3506 * distance group to make it round-robin. 3507 */ 3508 if (node_distance(local_node, node) != 3509 node_distance(local_node, prev_node)) 3510 node_load[node] = load; 3511 3512 prev_node = node; 3513 load--; 3514 if (order == ZONELIST_ORDER_NODE) 3515 build_zonelists_in_node_order(pgdat, node); 3516 else 3517 node_order[j++] = node; /* remember order */ 3518 } 3519 3520 if (order == ZONELIST_ORDER_ZONE) { 3521 /* calculate node order -- i.e., DMA last! */ 3522 build_zonelists_in_zone_order(pgdat, j); 3523 } 3524 3525 build_thisnode_zonelists(pgdat); 3526 } 3527 3528 /* Construct the zonelist performance cache - see further mmzone.h */ 3529 static void build_zonelist_cache(pg_data_t *pgdat) 3530 { 3531 struct zonelist *zonelist; 3532 struct zonelist_cache *zlc; 3533 struct zoneref *z; 3534 3535 zonelist = &pgdat->node_zonelists[0]; 3536 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3537 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3538 for (z = zonelist->_zonerefs; z->zone; z++) 3539 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3540 } 3541 3542 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3543 /* 3544 * Return node id of node used for "local" allocations. 3545 * I.e., first node id of first zone in arg node's generic zonelist. 3546 * Used for initializing percpu 'numa_mem', which is used primarily 3547 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3548 */ 3549 int local_memory_node(int node) 3550 { 3551 struct zone *zone; 3552 3553 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3554 gfp_zone(GFP_KERNEL), 3555 NULL, 3556 &zone); 3557 return zone->node; 3558 } 3559 #endif 3560 3561 #else /* CONFIG_NUMA */ 3562 3563 static void set_zonelist_order(void) 3564 { 3565 current_zonelist_order = ZONELIST_ORDER_ZONE; 3566 } 3567 3568 static void build_zonelists(pg_data_t *pgdat) 3569 { 3570 int node, local_node; 3571 enum zone_type j; 3572 struct zonelist *zonelist; 3573 3574 local_node = pgdat->node_id; 3575 3576 zonelist = &pgdat->node_zonelists[0]; 3577 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3578 3579 /* 3580 * Now we build the zonelist so that it contains the zones 3581 * of all the other nodes. 3582 * We don't want to pressure a particular node, so when 3583 * building the zones for node N, we make sure that the 3584 * zones coming right after the local ones are those from 3585 * node N+1 (modulo N) 3586 */ 3587 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3588 if (!node_online(node)) 3589 continue; 3590 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3591 MAX_NR_ZONES - 1); 3592 } 3593 for (node = 0; node < local_node; node++) { 3594 if (!node_online(node)) 3595 continue; 3596 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3597 MAX_NR_ZONES - 1); 3598 } 3599 3600 zonelist->_zonerefs[j].zone = NULL; 3601 zonelist->_zonerefs[j].zone_idx = 0; 3602 } 3603 3604 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3605 static void build_zonelist_cache(pg_data_t *pgdat) 3606 { 3607 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3608 } 3609 3610 #endif /* CONFIG_NUMA */ 3611 3612 /* 3613 * Boot pageset table. One per cpu which is going to be used for all 3614 * zones and all nodes. The parameters will be set in such a way 3615 * that an item put on a list will immediately be handed over to 3616 * the buddy list. This is safe since pageset manipulation is done 3617 * with interrupts disabled. 3618 * 3619 * The boot_pagesets must be kept even after bootup is complete for 3620 * unused processors and/or zones. They do play a role for bootstrapping 3621 * hotplugged processors. 3622 * 3623 * zoneinfo_show() and maybe other functions do 3624 * not check if the processor is online before following the pageset pointer. 3625 * Other parts of the kernel may not check if the zone is available. 3626 */ 3627 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3628 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3629 static void setup_zone_pageset(struct zone *zone); 3630 3631 /* 3632 * Global mutex to protect against size modification of zonelists 3633 * as well as to serialize pageset setup for the new populated zone. 3634 */ 3635 DEFINE_MUTEX(zonelists_mutex); 3636 3637 /* return values int ....just for stop_machine() */ 3638 static int __build_all_zonelists(void *data) 3639 { 3640 int nid; 3641 int cpu; 3642 pg_data_t *self = data; 3643 3644 #ifdef CONFIG_NUMA 3645 memset(node_load, 0, sizeof(node_load)); 3646 #endif 3647 3648 if (self && !node_online(self->node_id)) { 3649 build_zonelists(self); 3650 build_zonelist_cache(self); 3651 } 3652 3653 for_each_online_node(nid) { 3654 pg_data_t *pgdat = NODE_DATA(nid); 3655 3656 build_zonelists(pgdat); 3657 build_zonelist_cache(pgdat); 3658 } 3659 3660 /* 3661 * Initialize the boot_pagesets that are going to be used 3662 * for bootstrapping processors. The real pagesets for 3663 * each zone will be allocated later when the per cpu 3664 * allocator is available. 3665 * 3666 * boot_pagesets are used also for bootstrapping offline 3667 * cpus if the system is already booted because the pagesets 3668 * are needed to initialize allocators on a specific cpu too. 3669 * F.e. the percpu allocator needs the page allocator which 3670 * needs the percpu allocator in order to allocate its pagesets 3671 * (a chicken-egg dilemma). 3672 */ 3673 for_each_possible_cpu(cpu) { 3674 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3675 3676 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3677 /* 3678 * We now know the "local memory node" for each node-- 3679 * i.e., the node of the first zone in the generic zonelist. 3680 * Set up numa_mem percpu variable for on-line cpus. During 3681 * boot, only the boot cpu should be on-line; we'll init the 3682 * secondary cpus' numa_mem as they come on-line. During 3683 * node/memory hotplug, we'll fixup all on-line cpus. 3684 */ 3685 if (cpu_online(cpu)) 3686 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3687 #endif 3688 } 3689 3690 return 0; 3691 } 3692 3693 /* 3694 * Called with zonelists_mutex held always 3695 * unless system_state == SYSTEM_BOOTING. 3696 */ 3697 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3698 { 3699 set_zonelist_order(); 3700 3701 if (system_state == SYSTEM_BOOTING) { 3702 __build_all_zonelists(NULL); 3703 mminit_verify_zonelist(); 3704 cpuset_init_current_mems_allowed(); 3705 } else { 3706 /* we have to stop all cpus to guarantee there is no user 3707 of zonelist */ 3708 #ifdef CONFIG_MEMORY_HOTPLUG 3709 if (zone) 3710 setup_zone_pageset(zone); 3711 #endif 3712 stop_machine(__build_all_zonelists, pgdat, NULL); 3713 /* cpuset refresh routine should be here */ 3714 } 3715 vm_total_pages = nr_free_pagecache_pages(); 3716 /* 3717 * Disable grouping by mobility if the number of pages in the 3718 * system is too low to allow the mechanism to work. It would be 3719 * more accurate, but expensive to check per-zone. This check is 3720 * made on memory-hotadd so a system can start with mobility 3721 * disabled and enable it later 3722 */ 3723 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3724 page_group_by_mobility_disabled = 1; 3725 else 3726 page_group_by_mobility_disabled = 0; 3727 3728 printk("Built %i zonelists in %s order, mobility grouping %s. " 3729 "Total pages: %ld\n", 3730 nr_online_nodes, 3731 zonelist_order_name[current_zonelist_order], 3732 page_group_by_mobility_disabled ? "off" : "on", 3733 vm_total_pages); 3734 #ifdef CONFIG_NUMA 3735 printk("Policy zone: %s\n", zone_names[policy_zone]); 3736 #endif 3737 } 3738 3739 /* 3740 * Helper functions to size the waitqueue hash table. 3741 * Essentially these want to choose hash table sizes sufficiently 3742 * large so that collisions trying to wait on pages are rare. 3743 * But in fact, the number of active page waitqueues on typical 3744 * systems is ridiculously low, less than 200. So this is even 3745 * conservative, even though it seems large. 3746 * 3747 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3748 * waitqueues, i.e. the size of the waitq table given the number of pages. 3749 */ 3750 #define PAGES_PER_WAITQUEUE 256 3751 3752 #ifndef CONFIG_MEMORY_HOTPLUG 3753 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3754 { 3755 unsigned long size = 1; 3756 3757 pages /= PAGES_PER_WAITQUEUE; 3758 3759 while (size < pages) 3760 size <<= 1; 3761 3762 /* 3763 * Once we have dozens or even hundreds of threads sleeping 3764 * on IO we've got bigger problems than wait queue collision. 3765 * Limit the size of the wait table to a reasonable size. 3766 */ 3767 size = min(size, 4096UL); 3768 3769 return max(size, 4UL); 3770 } 3771 #else 3772 /* 3773 * A zone's size might be changed by hot-add, so it is not possible to determine 3774 * a suitable size for its wait_table. So we use the maximum size now. 3775 * 3776 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3777 * 3778 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3779 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3780 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3781 * 3782 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3783 * or more by the traditional way. (See above). It equals: 3784 * 3785 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3786 * ia64(16K page size) : = ( 8G + 4M)byte. 3787 * powerpc (64K page size) : = (32G +16M)byte. 3788 */ 3789 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3790 { 3791 return 4096UL; 3792 } 3793 #endif 3794 3795 /* 3796 * This is an integer logarithm so that shifts can be used later 3797 * to extract the more random high bits from the multiplicative 3798 * hash function before the remainder is taken. 3799 */ 3800 static inline unsigned long wait_table_bits(unsigned long size) 3801 { 3802 return ffz(~size); 3803 } 3804 3805 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3806 3807 /* 3808 * Check if a pageblock contains reserved pages 3809 */ 3810 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3811 { 3812 unsigned long pfn; 3813 3814 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3815 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3816 return 1; 3817 } 3818 return 0; 3819 } 3820 3821 /* 3822 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3823 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3824 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3825 * higher will lead to a bigger reserve which will get freed as contiguous 3826 * blocks as reclaim kicks in 3827 */ 3828 static void setup_zone_migrate_reserve(struct zone *zone) 3829 { 3830 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3831 struct page *page; 3832 unsigned long block_migratetype; 3833 int reserve; 3834 3835 /* 3836 * Get the start pfn, end pfn and the number of blocks to reserve 3837 * We have to be careful to be aligned to pageblock_nr_pages to 3838 * make sure that we always check pfn_valid for the first page in 3839 * the block. 3840 */ 3841 start_pfn = zone->zone_start_pfn; 3842 end_pfn = zone_end_pfn(zone); 3843 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3844 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3845 pageblock_order; 3846 3847 /* 3848 * Reserve blocks are generally in place to help high-order atomic 3849 * allocations that are short-lived. A min_free_kbytes value that 3850 * would result in more than 2 reserve blocks for atomic allocations 3851 * is assumed to be in place to help anti-fragmentation for the 3852 * future allocation of hugepages at runtime. 3853 */ 3854 reserve = min(2, reserve); 3855 3856 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3857 if (!pfn_valid(pfn)) 3858 continue; 3859 page = pfn_to_page(pfn); 3860 3861 /* Watch out for overlapping nodes */ 3862 if (page_to_nid(page) != zone_to_nid(zone)) 3863 continue; 3864 3865 block_migratetype = get_pageblock_migratetype(page); 3866 3867 /* Only test what is necessary when the reserves are not met */ 3868 if (reserve > 0) { 3869 /* 3870 * Blocks with reserved pages will never free, skip 3871 * them. 3872 */ 3873 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3874 if (pageblock_is_reserved(pfn, block_end_pfn)) 3875 continue; 3876 3877 /* If this block is reserved, account for it */ 3878 if (block_migratetype == MIGRATE_RESERVE) { 3879 reserve--; 3880 continue; 3881 } 3882 3883 /* Suitable for reserving if this block is movable */ 3884 if (block_migratetype == MIGRATE_MOVABLE) { 3885 set_pageblock_migratetype(page, 3886 MIGRATE_RESERVE); 3887 move_freepages_block(zone, page, 3888 MIGRATE_RESERVE); 3889 reserve--; 3890 continue; 3891 } 3892 } 3893 3894 /* 3895 * If the reserve is met and this is a previous reserved block, 3896 * take it back 3897 */ 3898 if (block_migratetype == MIGRATE_RESERVE) { 3899 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3900 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3901 } 3902 } 3903 } 3904 3905 /* 3906 * Initially all pages are reserved - free ones are freed 3907 * up by free_all_bootmem() once the early boot process is 3908 * done. Non-atomic initialization, single-pass. 3909 */ 3910 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3911 unsigned long start_pfn, enum memmap_context context) 3912 { 3913 struct page *page; 3914 unsigned long end_pfn = start_pfn + size; 3915 unsigned long pfn; 3916 struct zone *z; 3917 3918 if (highest_memmap_pfn < end_pfn - 1) 3919 highest_memmap_pfn = end_pfn - 1; 3920 3921 z = &NODE_DATA(nid)->node_zones[zone]; 3922 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3923 /* 3924 * There can be holes in boot-time mem_map[]s 3925 * handed to this function. They do not 3926 * exist on hotplugged memory. 3927 */ 3928 if (context == MEMMAP_EARLY) { 3929 if (!early_pfn_valid(pfn)) 3930 continue; 3931 if (!early_pfn_in_nid(pfn, nid)) 3932 continue; 3933 } 3934 page = pfn_to_page(pfn); 3935 set_page_links(page, zone, nid, pfn); 3936 mminit_verify_page_links(page, zone, nid, pfn); 3937 init_page_count(page); 3938 page_mapcount_reset(page); 3939 page_nid_reset_last(page); 3940 SetPageReserved(page); 3941 /* 3942 * Mark the block movable so that blocks are reserved for 3943 * movable at startup. This will force kernel allocations 3944 * to reserve their blocks rather than leaking throughout 3945 * the address space during boot when many long-lived 3946 * kernel allocations are made. Later some blocks near 3947 * the start are marked MIGRATE_RESERVE by 3948 * setup_zone_migrate_reserve() 3949 * 3950 * bitmap is created for zone's valid pfn range. but memmap 3951 * can be created for invalid pages (for alignment) 3952 * check here not to call set_pageblock_migratetype() against 3953 * pfn out of zone. 3954 */ 3955 if ((z->zone_start_pfn <= pfn) 3956 && (pfn < zone_end_pfn(z)) 3957 && !(pfn & (pageblock_nr_pages - 1))) 3958 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3959 3960 INIT_LIST_HEAD(&page->lru); 3961 #ifdef WANT_PAGE_VIRTUAL 3962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3963 if (!is_highmem_idx(zone)) 3964 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3965 #endif 3966 } 3967 } 3968 3969 static void __meminit zone_init_free_lists(struct zone *zone) 3970 { 3971 int order, t; 3972 for_each_migratetype_order(order, t) { 3973 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3974 zone->free_area[order].nr_free = 0; 3975 } 3976 } 3977 3978 #ifndef __HAVE_ARCH_MEMMAP_INIT 3979 #define memmap_init(size, nid, zone, start_pfn) \ 3980 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3981 #endif 3982 3983 static int __meminit zone_batchsize(struct zone *zone) 3984 { 3985 #ifdef CONFIG_MMU 3986 int batch; 3987 3988 /* 3989 * The per-cpu-pages pools are set to around 1000th of the 3990 * size of the zone. But no more than 1/2 of a meg. 3991 * 3992 * OK, so we don't know how big the cache is. So guess. 3993 */ 3994 batch = zone->managed_pages / 1024; 3995 if (batch * PAGE_SIZE > 512 * 1024) 3996 batch = (512 * 1024) / PAGE_SIZE; 3997 batch /= 4; /* We effectively *= 4 below */ 3998 if (batch < 1) 3999 batch = 1; 4000 4001 /* 4002 * Clamp the batch to a 2^n - 1 value. Having a power 4003 * of 2 value was found to be more likely to have 4004 * suboptimal cache aliasing properties in some cases. 4005 * 4006 * For example if 2 tasks are alternately allocating 4007 * batches of pages, one task can end up with a lot 4008 * of pages of one half of the possible page colors 4009 * and the other with pages of the other colors. 4010 */ 4011 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4012 4013 return batch; 4014 4015 #else 4016 /* The deferral and batching of frees should be suppressed under NOMMU 4017 * conditions. 4018 * 4019 * The problem is that NOMMU needs to be able to allocate large chunks 4020 * of contiguous memory as there's no hardware page translation to 4021 * assemble apparent contiguous memory from discontiguous pages. 4022 * 4023 * Queueing large contiguous runs of pages for batching, however, 4024 * causes the pages to actually be freed in smaller chunks. As there 4025 * can be a significant delay between the individual batches being 4026 * recycled, this leads to the once large chunks of space being 4027 * fragmented and becoming unavailable for high-order allocations. 4028 */ 4029 return 0; 4030 #endif 4031 } 4032 4033 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4034 { 4035 struct per_cpu_pages *pcp; 4036 int migratetype; 4037 4038 memset(p, 0, sizeof(*p)); 4039 4040 pcp = &p->pcp; 4041 pcp->count = 0; 4042 pcp->high = 6 * batch; 4043 pcp->batch = max(1UL, 1 * batch); 4044 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4045 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4046 } 4047 4048 /* 4049 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 4050 * to the value high for the pageset p. 4051 */ 4052 4053 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 4054 unsigned long high) 4055 { 4056 struct per_cpu_pages *pcp; 4057 4058 pcp = &p->pcp; 4059 pcp->high = high; 4060 pcp->batch = max(1UL, high/4); 4061 if ((high/4) > (PAGE_SHIFT * 8)) 4062 pcp->batch = PAGE_SHIFT * 8; 4063 } 4064 4065 static void __meminit setup_zone_pageset(struct zone *zone) 4066 { 4067 int cpu; 4068 4069 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4070 4071 for_each_possible_cpu(cpu) { 4072 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4073 4074 setup_pageset(pcp, zone_batchsize(zone)); 4075 4076 if (percpu_pagelist_fraction) 4077 setup_pagelist_highmark(pcp, 4078 (zone->managed_pages / 4079 percpu_pagelist_fraction)); 4080 } 4081 } 4082 4083 /* 4084 * Allocate per cpu pagesets and initialize them. 4085 * Before this call only boot pagesets were available. 4086 */ 4087 void __init setup_per_cpu_pageset(void) 4088 { 4089 struct zone *zone; 4090 4091 for_each_populated_zone(zone) 4092 setup_zone_pageset(zone); 4093 } 4094 4095 static noinline __init_refok 4096 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4097 { 4098 int i; 4099 struct pglist_data *pgdat = zone->zone_pgdat; 4100 size_t alloc_size; 4101 4102 /* 4103 * The per-page waitqueue mechanism uses hashed waitqueues 4104 * per zone. 4105 */ 4106 zone->wait_table_hash_nr_entries = 4107 wait_table_hash_nr_entries(zone_size_pages); 4108 zone->wait_table_bits = 4109 wait_table_bits(zone->wait_table_hash_nr_entries); 4110 alloc_size = zone->wait_table_hash_nr_entries 4111 * sizeof(wait_queue_head_t); 4112 4113 if (!slab_is_available()) { 4114 zone->wait_table = (wait_queue_head_t *) 4115 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4116 } else { 4117 /* 4118 * This case means that a zone whose size was 0 gets new memory 4119 * via memory hot-add. 4120 * But it may be the case that a new node was hot-added. In 4121 * this case vmalloc() will not be able to use this new node's 4122 * memory - this wait_table must be initialized to use this new 4123 * node itself as well. 4124 * To use this new node's memory, further consideration will be 4125 * necessary. 4126 */ 4127 zone->wait_table = vmalloc(alloc_size); 4128 } 4129 if (!zone->wait_table) 4130 return -ENOMEM; 4131 4132 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4133 init_waitqueue_head(zone->wait_table + i); 4134 4135 return 0; 4136 } 4137 4138 static __meminit void zone_pcp_init(struct zone *zone) 4139 { 4140 /* 4141 * per cpu subsystem is not up at this point. The following code 4142 * relies on the ability of the linker to provide the 4143 * offset of a (static) per cpu variable into the per cpu area. 4144 */ 4145 zone->pageset = &boot_pageset; 4146 4147 if (zone->present_pages) 4148 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4149 zone->name, zone->present_pages, 4150 zone_batchsize(zone)); 4151 } 4152 4153 int __meminit init_currently_empty_zone(struct zone *zone, 4154 unsigned long zone_start_pfn, 4155 unsigned long size, 4156 enum memmap_context context) 4157 { 4158 struct pglist_data *pgdat = zone->zone_pgdat; 4159 int ret; 4160 ret = zone_wait_table_init(zone, size); 4161 if (ret) 4162 return ret; 4163 pgdat->nr_zones = zone_idx(zone) + 1; 4164 4165 zone->zone_start_pfn = zone_start_pfn; 4166 4167 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4168 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4169 pgdat->node_id, 4170 (unsigned long)zone_idx(zone), 4171 zone_start_pfn, (zone_start_pfn + size)); 4172 4173 zone_init_free_lists(zone); 4174 4175 return 0; 4176 } 4177 4178 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4179 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4180 /* 4181 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4182 * Architectures may implement their own version but if add_active_range() 4183 * was used and there are no special requirements, this is a convenient 4184 * alternative 4185 */ 4186 int __meminit __early_pfn_to_nid(unsigned long pfn) 4187 { 4188 unsigned long start_pfn, end_pfn; 4189 int i, nid; 4190 /* 4191 * NOTE: The following SMP-unsafe globals are only used early in boot 4192 * when the kernel is running single-threaded. 4193 */ 4194 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4195 static int __meminitdata last_nid; 4196 4197 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4198 return last_nid; 4199 4200 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4201 if (start_pfn <= pfn && pfn < end_pfn) { 4202 last_start_pfn = start_pfn; 4203 last_end_pfn = end_pfn; 4204 last_nid = nid; 4205 return nid; 4206 } 4207 /* This is a memory hole */ 4208 return -1; 4209 } 4210 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4211 4212 int __meminit early_pfn_to_nid(unsigned long pfn) 4213 { 4214 int nid; 4215 4216 nid = __early_pfn_to_nid(pfn); 4217 if (nid >= 0) 4218 return nid; 4219 /* just returns 0 */ 4220 return 0; 4221 } 4222 4223 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4224 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4225 { 4226 int nid; 4227 4228 nid = __early_pfn_to_nid(pfn); 4229 if (nid >= 0 && nid != node) 4230 return false; 4231 return true; 4232 } 4233 #endif 4234 4235 /** 4236 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4237 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4238 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4239 * 4240 * If an architecture guarantees that all ranges registered with 4241 * add_active_ranges() contain no holes and may be freed, this 4242 * this function may be used instead of calling free_bootmem() manually. 4243 */ 4244 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4245 { 4246 unsigned long start_pfn, end_pfn; 4247 int i, this_nid; 4248 4249 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4250 start_pfn = min(start_pfn, max_low_pfn); 4251 end_pfn = min(end_pfn, max_low_pfn); 4252 4253 if (start_pfn < end_pfn) 4254 free_bootmem_node(NODE_DATA(this_nid), 4255 PFN_PHYS(start_pfn), 4256 (end_pfn - start_pfn) << PAGE_SHIFT); 4257 } 4258 } 4259 4260 /** 4261 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4262 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4263 * 4264 * If an architecture guarantees that all ranges registered with 4265 * add_active_ranges() contain no holes and may be freed, this 4266 * function may be used instead of calling memory_present() manually. 4267 */ 4268 void __init sparse_memory_present_with_active_regions(int nid) 4269 { 4270 unsigned long start_pfn, end_pfn; 4271 int i, this_nid; 4272 4273 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4274 memory_present(this_nid, start_pfn, end_pfn); 4275 } 4276 4277 /** 4278 * get_pfn_range_for_nid - Return the start and end page frames for a node 4279 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4280 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4281 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4282 * 4283 * It returns the start and end page frame of a node based on information 4284 * provided by an arch calling add_active_range(). If called for a node 4285 * with no available memory, a warning is printed and the start and end 4286 * PFNs will be 0. 4287 */ 4288 void __meminit get_pfn_range_for_nid(unsigned int nid, 4289 unsigned long *start_pfn, unsigned long *end_pfn) 4290 { 4291 unsigned long this_start_pfn, this_end_pfn; 4292 int i; 4293 4294 *start_pfn = -1UL; 4295 *end_pfn = 0; 4296 4297 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4298 *start_pfn = min(*start_pfn, this_start_pfn); 4299 *end_pfn = max(*end_pfn, this_end_pfn); 4300 } 4301 4302 if (*start_pfn == -1UL) 4303 *start_pfn = 0; 4304 } 4305 4306 /* 4307 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4308 * assumption is made that zones within a node are ordered in monotonic 4309 * increasing memory addresses so that the "highest" populated zone is used 4310 */ 4311 static void __init find_usable_zone_for_movable(void) 4312 { 4313 int zone_index; 4314 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4315 if (zone_index == ZONE_MOVABLE) 4316 continue; 4317 4318 if (arch_zone_highest_possible_pfn[zone_index] > 4319 arch_zone_lowest_possible_pfn[zone_index]) 4320 break; 4321 } 4322 4323 VM_BUG_ON(zone_index == -1); 4324 movable_zone = zone_index; 4325 } 4326 4327 /* 4328 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4329 * because it is sized independent of architecture. Unlike the other zones, 4330 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4331 * in each node depending on the size of each node and how evenly kernelcore 4332 * is distributed. This helper function adjusts the zone ranges 4333 * provided by the architecture for a given node by using the end of the 4334 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4335 * zones within a node are in order of monotonic increases memory addresses 4336 */ 4337 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4338 unsigned long zone_type, 4339 unsigned long node_start_pfn, 4340 unsigned long node_end_pfn, 4341 unsigned long *zone_start_pfn, 4342 unsigned long *zone_end_pfn) 4343 { 4344 /* Only adjust if ZONE_MOVABLE is on this node */ 4345 if (zone_movable_pfn[nid]) { 4346 /* Size ZONE_MOVABLE */ 4347 if (zone_type == ZONE_MOVABLE) { 4348 *zone_start_pfn = zone_movable_pfn[nid]; 4349 *zone_end_pfn = min(node_end_pfn, 4350 arch_zone_highest_possible_pfn[movable_zone]); 4351 4352 /* Adjust for ZONE_MOVABLE starting within this range */ 4353 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4354 *zone_end_pfn > zone_movable_pfn[nid]) { 4355 *zone_end_pfn = zone_movable_pfn[nid]; 4356 4357 /* Check if this whole range is within ZONE_MOVABLE */ 4358 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4359 *zone_start_pfn = *zone_end_pfn; 4360 } 4361 } 4362 4363 /* 4364 * Return the number of pages a zone spans in a node, including holes 4365 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4366 */ 4367 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4368 unsigned long zone_type, 4369 unsigned long *ignored) 4370 { 4371 unsigned long node_start_pfn, node_end_pfn; 4372 unsigned long zone_start_pfn, zone_end_pfn; 4373 4374 /* Get the start and end of the node and zone */ 4375 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4376 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4377 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4378 adjust_zone_range_for_zone_movable(nid, zone_type, 4379 node_start_pfn, node_end_pfn, 4380 &zone_start_pfn, &zone_end_pfn); 4381 4382 /* Check that this node has pages within the zone's required range */ 4383 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4384 return 0; 4385 4386 /* Move the zone boundaries inside the node if necessary */ 4387 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4388 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4389 4390 /* Return the spanned pages */ 4391 return zone_end_pfn - zone_start_pfn; 4392 } 4393 4394 /* 4395 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4396 * then all holes in the requested range will be accounted for. 4397 */ 4398 unsigned long __meminit __absent_pages_in_range(int nid, 4399 unsigned long range_start_pfn, 4400 unsigned long range_end_pfn) 4401 { 4402 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4403 unsigned long start_pfn, end_pfn; 4404 int i; 4405 4406 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4407 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4408 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4409 nr_absent -= end_pfn - start_pfn; 4410 } 4411 return nr_absent; 4412 } 4413 4414 /** 4415 * absent_pages_in_range - Return number of page frames in holes within a range 4416 * @start_pfn: The start PFN to start searching for holes 4417 * @end_pfn: The end PFN to stop searching for holes 4418 * 4419 * It returns the number of pages frames in memory holes within a range. 4420 */ 4421 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4422 unsigned long end_pfn) 4423 { 4424 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4425 } 4426 4427 /* Return the number of page frames in holes in a zone on a node */ 4428 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4429 unsigned long zone_type, 4430 unsigned long *ignored) 4431 { 4432 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4433 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4434 unsigned long node_start_pfn, node_end_pfn; 4435 unsigned long zone_start_pfn, zone_end_pfn; 4436 4437 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4438 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4439 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4440 4441 adjust_zone_range_for_zone_movable(nid, zone_type, 4442 node_start_pfn, node_end_pfn, 4443 &zone_start_pfn, &zone_end_pfn); 4444 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4445 } 4446 4447 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4448 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4449 unsigned long zone_type, 4450 unsigned long *zones_size) 4451 { 4452 return zones_size[zone_type]; 4453 } 4454 4455 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4456 unsigned long zone_type, 4457 unsigned long *zholes_size) 4458 { 4459 if (!zholes_size) 4460 return 0; 4461 4462 return zholes_size[zone_type]; 4463 } 4464 4465 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4466 4467 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4468 unsigned long *zones_size, unsigned long *zholes_size) 4469 { 4470 unsigned long realtotalpages, totalpages = 0; 4471 enum zone_type i; 4472 4473 for (i = 0; i < MAX_NR_ZONES; i++) 4474 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4475 zones_size); 4476 pgdat->node_spanned_pages = totalpages; 4477 4478 realtotalpages = totalpages; 4479 for (i = 0; i < MAX_NR_ZONES; i++) 4480 realtotalpages -= 4481 zone_absent_pages_in_node(pgdat->node_id, i, 4482 zholes_size); 4483 pgdat->node_present_pages = realtotalpages; 4484 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4485 realtotalpages); 4486 } 4487 4488 #ifndef CONFIG_SPARSEMEM 4489 /* 4490 * Calculate the size of the zone->blockflags rounded to an unsigned long 4491 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4492 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4493 * round what is now in bits to nearest long in bits, then return it in 4494 * bytes. 4495 */ 4496 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4497 { 4498 unsigned long usemapsize; 4499 4500 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4501 usemapsize = roundup(zonesize, pageblock_nr_pages); 4502 usemapsize = usemapsize >> pageblock_order; 4503 usemapsize *= NR_PAGEBLOCK_BITS; 4504 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4505 4506 return usemapsize / 8; 4507 } 4508 4509 static void __init setup_usemap(struct pglist_data *pgdat, 4510 struct zone *zone, 4511 unsigned long zone_start_pfn, 4512 unsigned long zonesize) 4513 { 4514 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4515 zone->pageblock_flags = NULL; 4516 if (usemapsize) 4517 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4518 usemapsize); 4519 } 4520 #else 4521 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4522 unsigned long zone_start_pfn, unsigned long zonesize) {} 4523 #endif /* CONFIG_SPARSEMEM */ 4524 4525 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4526 4527 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4528 void __init set_pageblock_order(void) 4529 { 4530 unsigned int order; 4531 4532 /* Check that pageblock_nr_pages has not already been setup */ 4533 if (pageblock_order) 4534 return; 4535 4536 if (HPAGE_SHIFT > PAGE_SHIFT) 4537 order = HUGETLB_PAGE_ORDER; 4538 else 4539 order = MAX_ORDER - 1; 4540 4541 /* 4542 * Assume the largest contiguous order of interest is a huge page. 4543 * This value may be variable depending on boot parameters on IA64 and 4544 * powerpc. 4545 */ 4546 pageblock_order = order; 4547 } 4548 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4549 4550 /* 4551 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4552 * is unused as pageblock_order is set at compile-time. See 4553 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4554 * the kernel config 4555 */ 4556 void __init set_pageblock_order(void) 4557 { 4558 } 4559 4560 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4561 4562 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4563 unsigned long present_pages) 4564 { 4565 unsigned long pages = spanned_pages; 4566 4567 /* 4568 * Provide a more accurate estimation if there are holes within 4569 * the zone and SPARSEMEM is in use. If there are holes within the 4570 * zone, each populated memory region may cost us one or two extra 4571 * memmap pages due to alignment because memmap pages for each 4572 * populated regions may not naturally algined on page boundary. 4573 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4574 */ 4575 if (spanned_pages > present_pages + (present_pages >> 4) && 4576 IS_ENABLED(CONFIG_SPARSEMEM)) 4577 pages = present_pages; 4578 4579 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4580 } 4581 4582 /* 4583 * Set up the zone data structures: 4584 * - mark all pages reserved 4585 * - mark all memory queues empty 4586 * - clear the memory bitmaps 4587 * 4588 * NOTE: pgdat should get zeroed by caller. 4589 */ 4590 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4591 unsigned long *zones_size, unsigned long *zholes_size) 4592 { 4593 enum zone_type j; 4594 int nid = pgdat->node_id; 4595 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4596 int ret; 4597 4598 pgdat_resize_init(pgdat); 4599 #ifdef CONFIG_NUMA_BALANCING 4600 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4601 pgdat->numabalancing_migrate_nr_pages = 0; 4602 pgdat->numabalancing_migrate_next_window = jiffies; 4603 #endif 4604 init_waitqueue_head(&pgdat->kswapd_wait); 4605 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4606 pgdat_page_cgroup_init(pgdat); 4607 4608 for (j = 0; j < MAX_NR_ZONES; j++) { 4609 struct zone *zone = pgdat->node_zones + j; 4610 unsigned long size, realsize, freesize, memmap_pages; 4611 4612 size = zone_spanned_pages_in_node(nid, j, zones_size); 4613 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4614 zholes_size); 4615 4616 /* 4617 * Adjust freesize so that it accounts for how much memory 4618 * is used by this zone for memmap. This affects the watermark 4619 * and per-cpu initialisations 4620 */ 4621 memmap_pages = calc_memmap_size(size, realsize); 4622 if (freesize >= memmap_pages) { 4623 freesize -= memmap_pages; 4624 if (memmap_pages) 4625 printk(KERN_DEBUG 4626 " %s zone: %lu pages used for memmap\n", 4627 zone_names[j], memmap_pages); 4628 } else 4629 printk(KERN_WARNING 4630 " %s zone: %lu pages exceeds freesize %lu\n", 4631 zone_names[j], memmap_pages, freesize); 4632 4633 /* Account for reserved pages */ 4634 if (j == 0 && freesize > dma_reserve) { 4635 freesize -= dma_reserve; 4636 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4637 zone_names[0], dma_reserve); 4638 } 4639 4640 if (!is_highmem_idx(j)) 4641 nr_kernel_pages += freesize; 4642 /* Charge for highmem memmap if there are enough kernel pages */ 4643 else if (nr_kernel_pages > memmap_pages * 2) 4644 nr_kernel_pages -= memmap_pages; 4645 nr_all_pages += freesize; 4646 4647 zone->spanned_pages = size; 4648 zone->present_pages = realsize; 4649 /* 4650 * Set an approximate value for lowmem here, it will be adjusted 4651 * when the bootmem allocator frees pages into the buddy system. 4652 * And all highmem pages will be managed by the buddy system. 4653 */ 4654 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4655 #ifdef CONFIG_NUMA 4656 zone->node = nid; 4657 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4658 / 100; 4659 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4660 #endif 4661 zone->name = zone_names[j]; 4662 spin_lock_init(&zone->lock); 4663 spin_lock_init(&zone->lru_lock); 4664 zone_seqlock_init(zone); 4665 zone->zone_pgdat = pgdat; 4666 4667 zone_pcp_init(zone); 4668 lruvec_init(&zone->lruvec); 4669 if (!size) 4670 continue; 4671 4672 set_pageblock_order(); 4673 setup_usemap(pgdat, zone, zone_start_pfn, size); 4674 ret = init_currently_empty_zone(zone, zone_start_pfn, 4675 size, MEMMAP_EARLY); 4676 BUG_ON(ret); 4677 memmap_init(size, nid, j, zone_start_pfn); 4678 zone_start_pfn += size; 4679 } 4680 } 4681 4682 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4683 { 4684 /* Skip empty nodes */ 4685 if (!pgdat->node_spanned_pages) 4686 return; 4687 4688 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4689 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4690 if (!pgdat->node_mem_map) { 4691 unsigned long size, start, end; 4692 struct page *map; 4693 4694 /* 4695 * The zone's endpoints aren't required to be MAX_ORDER 4696 * aligned but the node_mem_map endpoints must be in order 4697 * for the buddy allocator to function correctly. 4698 */ 4699 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4700 end = pgdat_end_pfn(pgdat); 4701 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4702 size = (end - start) * sizeof(struct page); 4703 map = alloc_remap(pgdat->node_id, size); 4704 if (!map) 4705 map = alloc_bootmem_node_nopanic(pgdat, size); 4706 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4707 } 4708 #ifndef CONFIG_NEED_MULTIPLE_NODES 4709 /* 4710 * With no DISCONTIG, the global mem_map is just set as node 0's 4711 */ 4712 if (pgdat == NODE_DATA(0)) { 4713 mem_map = NODE_DATA(0)->node_mem_map; 4714 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4715 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4716 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4717 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4718 } 4719 #endif 4720 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4721 } 4722 4723 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4724 unsigned long node_start_pfn, unsigned long *zholes_size) 4725 { 4726 pg_data_t *pgdat = NODE_DATA(nid); 4727 4728 /* pg_data_t should be reset to zero when it's allocated */ 4729 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4730 4731 pgdat->node_id = nid; 4732 pgdat->node_start_pfn = node_start_pfn; 4733 init_zone_allows_reclaim(nid); 4734 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4735 4736 alloc_node_mem_map(pgdat); 4737 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4738 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4739 nid, (unsigned long)pgdat, 4740 (unsigned long)pgdat->node_mem_map); 4741 #endif 4742 4743 free_area_init_core(pgdat, zones_size, zholes_size); 4744 } 4745 4746 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4747 4748 #if MAX_NUMNODES > 1 4749 /* 4750 * Figure out the number of possible node ids. 4751 */ 4752 void __init setup_nr_node_ids(void) 4753 { 4754 unsigned int node; 4755 unsigned int highest = 0; 4756 4757 for_each_node_mask(node, node_possible_map) 4758 highest = node; 4759 nr_node_ids = highest + 1; 4760 } 4761 #endif 4762 4763 /** 4764 * node_map_pfn_alignment - determine the maximum internode alignment 4765 * 4766 * This function should be called after node map is populated and sorted. 4767 * It calculates the maximum power of two alignment which can distinguish 4768 * all the nodes. 4769 * 4770 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4771 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4772 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4773 * shifted, 1GiB is enough and this function will indicate so. 4774 * 4775 * This is used to test whether pfn -> nid mapping of the chosen memory 4776 * model has fine enough granularity to avoid incorrect mapping for the 4777 * populated node map. 4778 * 4779 * Returns the determined alignment in pfn's. 0 if there is no alignment 4780 * requirement (single node). 4781 */ 4782 unsigned long __init node_map_pfn_alignment(void) 4783 { 4784 unsigned long accl_mask = 0, last_end = 0; 4785 unsigned long start, end, mask; 4786 int last_nid = -1; 4787 int i, nid; 4788 4789 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4790 if (!start || last_nid < 0 || last_nid == nid) { 4791 last_nid = nid; 4792 last_end = end; 4793 continue; 4794 } 4795 4796 /* 4797 * Start with a mask granular enough to pin-point to the 4798 * start pfn and tick off bits one-by-one until it becomes 4799 * too coarse to separate the current node from the last. 4800 */ 4801 mask = ~((1 << __ffs(start)) - 1); 4802 while (mask && last_end <= (start & (mask << 1))) 4803 mask <<= 1; 4804 4805 /* accumulate all internode masks */ 4806 accl_mask |= mask; 4807 } 4808 4809 /* convert mask to number of pages */ 4810 return ~accl_mask + 1; 4811 } 4812 4813 /* Find the lowest pfn for a node */ 4814 static unsigned long __init find_min_pfn_for_node(int nid) 4815 { 4816 unsigned long min_pfn = ULONG_MAX; 4817 unsigned long start_pfn; 4818 int i; 4819 4820 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4821 min_pfn = min(min_pfn, start_pfn); 4822 4823 if (min_pfn == ULONG_MAX) { 4824 printk(KERN_WARNING 4825 "Could not find start_pfn for node %d\n", nid); 4826 return 0; 4827 } 4828 4829 return min_pfn; 4830 } 4831 4832 /** 4833 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4834 * 4835 * It returns the minimum PFN based on information provided via 4836 * add_active_range(). 4837 */ 4838 unsigned long __init find_min_pfn_with_active_regions(void) 4839 { 4840 return find_min_pfn_for_node(MAX_NUMNODES); 4841 } 4842 4843 /* 4844 * early_calculate_totalpages() 4845 * Sum pages in active regions for movable zone. 4846 * Populate N_MEMORY for calculating usable_nodes. 4847 */ 4848 static unsigned long __init early_calculate_totalpages(void) 4849 { 4850 unsigned long totalpages = 0; 4851 unsigned long start_pfn, end_pfn; 4852 int i, nid; 4853 4854 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4855 unsigned long pages = end_pfn - start_pfn; 4856 4857 totalpages += pages; 4858 if (pages) 4859 node_set_state(nid, N_MEMORY); 4860 } 4861 return totalpages; 4862 } 4863 4864 /* 4865 * Find the PFN the Movable zone begins in each node. Kernel memory 4866 * is spread evenly between nodes as long as the nodes have enough 4867 * memory. When they don't, some nodes will have more kernelcore than 4868 * others 4869 */ 4870 static void __init find_zone_movable_pfns_for_nodes(void) 4871 { 4872 int i, nid; 4873 unsigned long usable_startpfn; 4874 unsigned long kernelcore_node, kernelcore_remaining; 4875 /* save the state before borrow the nodemask */ 4876 nodemask_t saved_node_state = node_states[N_MEMORY]; 4877 unsigned long totalpages = early_calculate_totalpages(); 4878 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4879 4880 /* 4881 * If movablecore was specified, calculate what size of 4882 * kernelcore that corresponds so that memory usable for 4883 * any allocation type is evenly spread. If both kernelcore 4884 * and movablecore are specified, then the value of kernelcore 4885 * will be used for required_kernelcore if it's greater than 4886 * what movablecore would have allowed. 4887 */ 4888 if (required_movablecore) { 4889 unsigned long corepages; 4890 4891 /* 4892 * Round-up so that ZONE_MOVABLE is at least as large as what 4893 * was requested by the user 4894 */ 4895 required_movablecore = 4896 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4897 corepages = totalpages - required_movablecore; 4898 4899 required_kernelcore = max(required_kernelcore, corepages); 4900 } 4901 4902 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4903 if (!required_kernelcore) 4904 goto out; 4905 4906 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4907 find_usable_zone_for_movable(); 4908 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4909 4910 restart: 4911 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4912 kernelcore_node = required_kernelcore / usable_nodes; 4913 for_each_node_state(nid, N_MEMORY) { 4914 unsigned long start_pfn, end_pfn; 4915 4916 /* 4917 * Recalculate kernelcore_node if the division per node 4918 * now exceeds what is necessary to satisfy the requested 4919 * amount of memory for the kernel 4920 */ 4921 if (required_kernelcore < kernelcore_node) 4922 kernelcore_node = required_kernelcore / usable_nodes; 4923 4924 /* 4925 * As the map is walked, we track how much memory is usable 4926 * by the kernel using kernelcore_remaining. When it is 4927 * 0, the rest of the node is usable by ZONE_MOVABLE 4928 */ 4929 kernelcore_remaining = kernelcore_node; 4930 4931 /* Go through each range of PFNs within this node */ 4932 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4933 unsigned long size_pages; 4934 4935 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4936 if (start_pfn >= end_pfn) 4937 continue; 4938 4939 /* Account for what is only usable for kernelcore */ 4940 if (start_pfn < usable_startpfn) { 4941 unsigned long kernel_pages; 4942 kernel_pages = min(end_pfn, usable_startpfn) 4943 - start_pfn; 4944 4945 kernelcore_remaining -= min(kernel_pages, 4946 kernelcore_remaining); 4947 required_kernelcore -= min(kernel_pages, 4948 required_kernelcore); 4949 4950 /* Continue if range is now fully accounted */ 4951 if (end_pfn <= usable_startpfn) { 4952 4953 /* 4954 * Push zone_movable_pfn to the end so 4955 * that if we have to rebalance 4956 * kernelcore across nodes, we will 4957 * not double account here 4958 */ 4959 zone_movable_pfn[nid] = end_pfn; 4960 continue; 4961 } 4962 start_pfn = usable_startpfn; 4963 } 4964 4965 /* 4966 * The usable PFN range for ZONE_MOVABLE is from 4967 * start_pfn->end_pfn. Calculate size_pages as the 4968 * number of pages used as kernelcore 4969 */ 4970 size_pages = end_pfn - start_pfn; 4971 if (size_pages > kernelcore_remaining) 4972 size_pages = kernelcore_remaining; 4973 zone_movable_pfn[nid] = start_pfn + size_pages; 4974 4975 /* 4976 * Some kernelcore has been met, update counts and 4977 * break if the kernelcore for this node has been 4978 * satisified 4979 */ 4980 required_kernelcore -= min(required_kernelcore, 4981 size_pages); 4982 kernelcore_remaining -= size_pages; 4983 if (!kernelcore_remaining) 4984 break; 4985 } 4986 } 4987 4988 /* 4989 * If there is still required_kernelcore, we do another pass with one 4990 * less node in the count. This will push zone_movable_pfn[nid] further 4991 * along on the nodes that still have memory until kernelcore is 4992 * satisified 4993 */ 4994 usable_nodes--; 4995 if (usable_nodes && required_kernelcore > usable_nodes) 4996 goto restart; 4997 4998 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4999 for (nid = 0; nid < MAX_NUMNODES; nid++) 5000 zone_movable_pfn[nid] = 5001 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5002 5003 out: 5004 /* restore the node_state */ 5005 node_states[N_MEMORY] = saved_node_state; 5006 } 5007 5008 /* Any regular or high memory on that node ? */ 5009 static void check_for_memory(pg_data_t *pgdat, int nid) 5010 { 5011 enum zone_type zone_type; 5012 5013 if (N_MEMORY == N_NORMAL_MEMORY) 5014 return; 5015 5016 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5017 struct zone *zone = &pgdat->node_zones[zone_type]; 5018 if (zone->present_pages) { 5019 node_set_state(nid, N_HIGH_MEMORY); 5020 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5021 zone_type <= ZONE_NORMAL) 5022 node_set_state(nid, N_NORMAL_MEMORY); 5023 break; 5024 } 5025 } 5026 } 5027 5028 /** 5029 * free_area_init_nodes - Initialise all pg_data_t and zone data 5030 * @max_zone_pfn: an array of max PFNs for each zone 5031 * 5032 * This will call free_area_init_node() for each active node in the system. 5033 * Using the page ranges provided by add_active_range(), the size of each 5034 * zone in each node and their holes is calculated. If the maximum PFN 5035 * between two adjacent zones match, it is assumed that the zone is empty. 5036 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5037 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5038 * starts where the previous one ended. For example, ZONE_DMA32 starts 5039 * at arch_max_dma_pfn. 5040 */ 5041 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5042 { 5043 unsigned long start_pfn, end_pfn; 5044 int i, nid; 5045 5046 /* Record where the zone boundaries are */ 5047 memset(arch_zone_lowest_possible_pfn, 0, 5048 sizeof(arch_zone_lowest_possible_pfn)); 5049 memset(arch_zone_highest_possible_pfn, 0, 5050 sizeof(arch_zone_highest_possible_pfn)); 5051 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5052 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5053 for (i = 1; i < MAX_NR_ZONES; i++) { 5054 if (i == ZONE_MOVABLE) 5055 continue; 5056 arch_zone_lowest_possible_pfn[i] = 5057 arch_zone_highest_possible_pfn[i-1]; 5058 arch_zone_highest_possible_pfn[i] = 5059 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5060 } 5061 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5062 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5063 5064 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5065 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5066 find_zone_movable_pfns_for_nodes(); 5067 5068 /* Print out the zone ranges */ 5069 printk("Zone ranges:\n"); 5070 for (i = 0; i < MAX_NR_ZONES; i++) { 5071 if (i == ZONE_MOVABLE) 5072 continue; 5073 printk(KERN_CONT " %-8s ", zone_names[i]); 5074 if (arch_zone_lowest_possible_pfn[i] == 5075 arch_zone_highest_possible_pfn[i]) 5076 printk(KERN_CONT "empty\n"); 5077 else 5078 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5079 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5080 (arch_zone_highest_possible_pfn[i] 5081 << PAGE_SHIFT) - 1); 5082 } 5083 5084 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5085 printk("Movable zone start for each node\n"); 5086 for (i = 0; i < MAX_NUMNODES; i++) { 5087 if (zone_movable_pfn[i]) 5088 printk(" Node %d: %#010lx\n", i, 5089 zone_movable_pfn[i] << PAGE_SHIFT); 5090 } 5091 5092 /* Print out the early node map */ 5093 printk("Early memory node ranges\n"); 5094 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5095 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5096 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5097 5098 /* Initialise every node */ 5099 mminit_verify_pageflags_layout(); 5100 setup_nr_node_ids(); 5101 for_each_online_node(nid) { 5102 pg_data_t *pgdat = NODE_DATA(nid); 5103 free_area_init_node(nid, NULL, 5104 find_min_pfn_for_node(nid), NULL); 5105 5106 /* Any memory on that node */ 5107 if (pgdat->node_present_pages) 5108 node_set_state(nid, N_MEMORY); 5109 check_for_memory(pgdat, nid); 5110 } 5111 } 5112 5113 static int __init cmdline_parse_core(char *p, unsigned long *core) 5114 { 5115 unsigned long long coremem; 5116 if (!p) 5117 return -EINVAL; 5118 5119 coremem = memparse(p, &p); 5120 *core = coremem >> PAGE_SHIFT; 5121 5122 /* Paranoid check that UL is enough for the coremem value */ 5123 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5124 5125 return 0; 5126 } 5127 5128 /* 5129 * kernelcore=size sets the amount of memory for use for allocations that 5130 * cannot be reclaimed or migrated. 5131 */ 5132 static int __init cmdline_parse_kernelcore(char *p) 5133 { 5134 return cmdline_parse_core(p, &required_kernelcore); 5135 } 5136 5137 /* 5138 * movablecore=size sets the amount of memory for use for allocations that 5139 * can be reclaimed or migrated. 5140 */ 5141 static int __init cmdline_parse_movablecore(char *p) 5142 { 5143 return cmdline_parse_core(p, &required_movablecore); 5144 } 5145 5146 early_param("kernelcore", cmdline_parse_kernelcore); 5147 early_param("movablecore", cmdline_parse_movablecore); 5148 5149 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5150 5151 unsigned long free_reserved_area(unsigned long start, unsigned long end, 5152 int poison, char *s) 5153 { 5154 unsigned long pages, pos; 5155 5156 pos = start = PAGE_ALIGN(start); 5157 end &= PAGE_MASK; 5158 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) { 5159 if (poison) 5160 memset((void *)pos, poison, PAGE_SIZE); 5161 free_reserved_page(virt_to_page((void *)pos)); 5162 } 5163 5164 if (pages && s) 5165 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n", 5166 s, pages << (PAGE_SHIFT - 10), start, end); 5167 5168 return pages; 5169 } 5170 5171 #ifdef CONFIG_HIGHMEM 5172 void free_highmem_page(struct page *page) 5173 { 5174 __free_reserved_page(page); 5175 totalram_pages++; 5176 totalhigh_pages++; 5177 } 5178 #endif 5179 5180 /** 5181 * set_dma_reserve - set the specified number of pages reserved in the first zone 5182 * @new_dma_reserve: The number of pages to mark reserved 5183 * 5184 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5185 * In the DMA zone, a significant percentage may be consumed by kernel image 5186 * and other unfreeable allocations which can skew the watermarks badly. This 5187 * function may optionally be used to account for unfreeable pages in the 5188 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5189 * smaller per-cpu batchsize. 5190 */ 5191 void __init set_dma_reserve(unsigned long new_dma_reserve) 5192 { 5193 dma_reserve = new_dma_reserve; 5194 } 5195 5196 void __init free_area_init(unsigned long *zones_size) 5197 { 5198 free_area_init_node(0, zones_size, 5199 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5200 } 5201 5202 static int page_alloc_cpu_notify(struct notifier_block *self, 5203 unsigned long action, void *hcpu) 5204 { 5205 int cpu = (unsigned long)hcpu; 5206 5207 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5208 lru_add_drain_cpu(cpu); 5209 drain_pages(cpu); 5210 5211 /* 5212 * Spill the event counters of the dead processor 5213 * into the current processors event counters. 5214 * This artificially elevates the count of the current 5215 * processor. 5216 */ 5217 vm_events_fold_cpu(cpu); 5218 5219 /* 5220 * Zero the differential counters of the dead processor 5221 * so that the vm statistics are consistent. 5222 * 5223 * This is only okay since the processor is dead and cannot 5224 * race with what we are doing. 5225 */ 5226 refresh_cpu_vm_stats(cpu); 5227 } 5228 return NOTIFY_OK; 5229 } 5230 5231 void __init page_alloc_init(void) 5232 { 5233 hotcpu_notifier(page_alloc_cpu_notify, 0); 5234 } 5235 5236 /* 5237 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5238 * or min_free_kbytes changes. 5239 */ 5240 static void calculate_totalreserve_pages(void) 5241 { 5242 struct pglist_data *pgdat; 5243 unsigned long reserve_pages = 0; 5244 enum zone_type i, j; 5245 5246 for_each_online_pgdat(pgdat) { 5247 for (i = 0; i < MAX_NR_ZONES; i++) { 5248 struct zone *zone = pgdat->node_zones + i; 5249 unsigned long max = 0; 5250 5251 /* Find valid and maximum lowmem_reserve in the zone */ 5252 for (j = i; j < MAX_NR_ZONES; j++) { 5253 if (zone->lowmem_reserve[j] > max) 5254 max = zone->lowmem_reserve[j]; 5255 } 5256 5257 /* we treat the high watermark as reserved pages. */ 5258 max += high_wmark_pages(zone); 5259 5260 if (max > zone->managed_pages) 5261 max = zone->managed_pages; 5262 reserve_pages += max; 5263 /* 5264 * Lowmem reserves are not available to 5265 * GFP_HIGHUSER page cache allocations and 5266 * kswapd tries to balance zones to their high 5267 * watermark. As a result, neither should be 5268 * regarded as dirtyable memory, to prevent a 5269 * situation where reclaim has to clean pages 5270 * in order to balance the zones. 5271 */ 5272 zone->dirty_balance_reserve = max; 5273 } 5274 } 5275 dirty_balance_reserve = reserve_pages; 5276 totalreserve_pages = reserve_pages; 5277 } 5278 5279 /* 5280 * setup_per_zone_lowmem_reserve - called whenever 5281 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5282 * has a correct pages reserved value, so an adequate number of 5283 * pages are left in the zone after a successful __alloc_pages(). 5284 */ 5285 static void setup_per_zone_lowmem_reserve(void) 5286 { 5287 struct pglist_data *pgdat; 5288 enum zone_type j, idx; 5289 5290 for_each_online_pgdat(pgdat) { 5291 for (j = 0; j < MAX_NR_ZONES; j++) { 5292 struct zone *zone = pgdat->node_zones + j; 5293 unsigned long managed_pages = zone->managed_pages; 5294 5295 zone->lowmem_reserve[j] = 0; 5296 5297 idx = j; 5298 while (idx) { 5299 struct zone *lower_zone; 5300 5301 idx--; 5302 5303 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5304 sysctl_lowmem_reserve_ratio[idx] = 1; 5305 5306 lower_zone = pgdat->node_zones + idx; 5307 lower_zone->lowmem_reserve[j] = managed_pages / 5308 sysctl_lowmem_reserve_ratio[idx]; 5309 managed_pages += lower_zone->managed_pages; 5310 } 5311 } 5312 } 5313 5314 /* update totalreserve_pages */ 5315 calculate_totalreserve_pages(); 5316 } 5317 5318 static void __setup_per_zone_wmarks(void) 5319 { 5320 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5321 unsigned long lowmem_pages = 0; 5322 struct zone *zone; 5323 unsigned long flags; 5324 5325 /* Calculate total number of !ZONE_HIGHMEM pages */ 5326 for_each_zone(zone) { 5327 if (!is_highmem(zone)) 5328 lowmem_pages += zone->managed_pages; 5329 } 5330 5331 for_each_zone(zone) { 5332 u64 tmp; 5333 5334 spin_lock_irqsave(&zone->lock, flags); 5335 tmp = (u64)pages_min * zone->managed_pages; 5336 do_div(tmp, lowmem_pages); 5337 if (is_highmem(zone)) { 5338 /* 5339 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5340 * need highmem pages, so cap pages_min to a small 5341 * value here. 5342 * 5343 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5344 * deltas controls asynch page reclaim, and so should 5345 * not be capped for highmem. 5346 */ 5347 unsigned long min_pages; 5348 5349 min_pages = zone->managed_pages / 1024; 5350 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5351 zone->watermark[WMARK_MIN] = min_pages; 5352 } else { 5353 /* 5354 * If it's a lowmem zone, reserve a number of pages 5355 * proportionate to the zone's size. 5356 */ 5357 zone->watermark[WMARK_MIN] = tmp; 5358 } 5359 5360 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5361 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5362 5363 setup_zone_migrate_reserve(zone); 5364 spin_unlock_irqrestore(&zone->lock, flags); 5365 } 5366 5367 /* update totalreserve_pages */ 5368 calculate_totalreserve_pages(); 5369 } 5370 5371 /** 5372 * setup_per_zone_wmarks - called when min_free_kbytes changes 5373 * or when memory is hot-{added|removed} 5374 * 5375 * Ensures that the watermark[min,low,high] values for each zone are set 5376 * correctly with respect to min_free_kbytes. 5377 */ 5378 void setup_per_zone_wmarks(void) 5379 { 5380 mutex_lock(&zonelists_mutex); 5381 __setup_per_zone_wmarks(); 5382 mutex_unlock(&zonelists_mutex); 5383 } 5384 5385 /* 5386 * The inactive anon list should be small enough that the VM never has to 5387 * do too much work, but large enough that each inactive page has a chance 5388 * to be referenced again before it is swapped out. 5389 * 5390 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5391 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5392 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5393 * the anonymous pages are kept on the inactive list. 5394 * 5395 * total target max 5396 * memory ratio inactive anon 5397 * ------------------------------------- 5398 * 10MB 1 5MB 5399 * 100MB 1 50MB 5400 * 1GB 3 250MB 5401 * 10GB 10 0.9GB 5402 * 100GB 31 3GB 5403 * 1TB 101 10GB 5404 * 10TB 320 32GB 5405 */ 5406 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5407 { 5408 unsigned int gb, ratio; 5409 5410 /* Zone size in gigabytes */ 5411 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5412 if (gb) 5413 ratio = int_sqrt(10 * gb); 5414 else 5415 ratio = 1; 5416 5417 zone->inactive_ratio = ratio; 5418 } 5419 5420 static void __meminit setup_per_zone_inactive_ratio(void) 5421 { 5422 struct zone *zone; 5423 5424 for_each_zone(zone) 5425 calculate_zone_inactive_ratio(zone); 5426 } 5427 5428 /* 5429 * Initialise min_free_kbytes. 5430 * 5431 * For small machines we want it small (128k min). For large machines 5432 * we want it large (64MB max). But it is not linear, because network 5433 * bandwidth does not increase linearly with machine size. We use 5434 * 5435 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5436 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5437 * 5438 * which yields 5439 * 5440 * 16MB: 512k 5441 * 32MB: 724k 5442 * 64MB: 1024k 5443 * 128MB: 1448k 5444 * 256MB: 2048k 5445 * 512MB: 2896k 5446 * 1024MB: 4096k 5447 * 2048MB: 5792k 5448 * 4096MB: 8192k 5449 * 8192MB: 11584k 5450 * 16384MB: 16384k 5451 */ 5452 int __meminit init_per_zone_wmark_min(void) 5453 { 5454 unsigned long lowmem_kbytes; 5455 5456 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5457 5458 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5459 if (min_free_kbytes < 128) 5460 min_free_kbytes = 128; 5461 if (min_free_kbytes > 65536) 5462 min_free_kbytes = 65536; 5463 setup_per_zone_wmarks(); 5464 refresh_zone_stat_thresholds(); 5465 setup_per_zone_lowmem_reserve(); 5466 setup_per_zone_inactive_ratio(); 5467 return 0; 5468 } 5469 module_init(init_per_zone_wmark_min) 5470 5471 /* 5472 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5473 * that we can call two helper functions whenever min_free_kbytes 5474 * changes. 5475 */ 5476 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5477 void __user *buffer, size_t *length, loff_t *ppos) 5478 { 5479 proc_dointvec(table, write, buffer, length, ppos); 5480 if (write) 5481 setup_per_zone_wmarks(); 5482 return 0; 5483 } 5484 5485 #ifdef CONFIG_NUMA 5486 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5487 void __user *buffer, size_t *length, loff_t *ppos) 5488 { 5489 struct zone *zone; 5490 int rc; 5491 5492 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5493 if (rc) 5494 return rc; 5495 5496 for_each_zone(zone) 5497 zone->min_unmapped_pages = (zone->managed_pages * 5498 sysctl_min_unmapped_ratio) / 100; 5499 return 0; 5500 } 5501 5502 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5503 void __user *buffer, size_t *length, loff_t *ppos) 5504 { 5505 struct zone *zone; 5506 int rc; 5507 5508 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5509 if (rc) 5510 return rc; 5511 5512 for_each_zone(zone) 5513 zone->min_slab_pages = (zone->managed_pages * 5514 sysctl_min_slab_ratio) / 100; 5515 return 0; 5516 } 5517 #endif 5518 5519 /* 5520 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5521 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5522 * whenever sysctl_lowmem_reserve_ratio changes. 5523 * 5524 * The reserve ratio obviously has absolutely no relation with the 5525 * minimum watermarks. The lowmem reserve ratio can only make sense 5526 * if in function of the boot time zone sizes. 5527 */ 5528 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5529 void __user *buffer, size_t *length, loff_t *ppos) 5530 { 5531 proc_dointvec_minmax(table, write, buffer, length, ppos); 5532 setup_per_zone_lowmem_reserve(); 5533 return 0; 5534 } 5535 5536 /* 5537 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5538 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5539 * can have before it gets flushed back to buddy allocator. 5540 */ 5541 5542 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5543 void __user *buffer, size_t *length, loff_t *ppos) 5544 { 5545 struct zone *zone; 5546 unsigned int cpu; 5547 int ret; 5548 5549 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5550 if (!write || (ret < 0)) 5551 return ret; 5552 for_each_populated_zone(zone) { 5553 for_each_possible_cpu(cpu) { 5554 unsigned long high; 5555 high = zone->managed_pages / percpu_pagelist_fraction; 5556 setup_pagelist_highmark( 5557 per_cpu_ptr(zone->pageset, cpu), high); 5558 } 5559 } 5560 return 0; 5561 } 5562 5563 int hashdist = HASHDIST_DEFAULT; 5564 5565 #ifdef CONFIG_NUMA 5566 static int __init set_hashdist(char *str) 5567 { 5568 if (!str) 5569 return 0; 5570 hashdist = simple_strtoul(str, &str, 0); 5571 return 1; 5572 } 5573 __setup("hashdist=", set_hashdist); 5574 #endif 5575 5576 /* 5577 * allocate a large system hash table from bootmem 5578 * - it is assumed that the hash table must contain an exact power-of-2 5579 * quantity of entries 5580 * - limit is the number of hash buckets, not the total allocation size 5581 */ 5582 void *__init alloc_large_system_hash(const char *tablename, 5583 unsigned long bucketsize, 5584 unsigned long numentries, 5585 int scale, 5586 int flags, 5587 unsigned int *_hash_shift, 5588 unsigned int *_hash_mask, 5589 unsigned long low_limit, 5590 unsigned long high_limit) 5591 { 5592 unsigned long long max = high_limit; 5593 unsigned long log2qty, size; 5594 void *table = NULL; 5595 5596 /* allow the kernel cmdline to have a say */ 5597 if (!numentries) { 5598 /* round applicable memory size up to nearest megabyte */ 5599 numentries = nr_kernel_pages; 5600 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5601 numentries >>= 20 - PAGE_SHIFT; 5602 numentries <<= 20 - PAGE_SHIFT; 5603 5604 /* limit to 1 bucket per 2^scale bytes of low memory */ 5605 if (scale > PAGE_SHIFT) 5606 numentries >>= (scale - PAGE_SHIFT); 5607 else 5608 numentries <<= (PAGE_SHIFT - scale); 5609 5610 /* Make sure we've got at least a 0-order allocation.. */ 5611 if (unlikely(flags & HASH_SMALL)) { 5612 /* Makes no sense without HASH_EARLY */ 5613 WARN_ON(!(flags & HASH_EARLY)); 5614 if (!(numentries >> *_hash_shift)) { 5615 numentries = 1UL << *_hash_shift; 5616 BUG_ON(!numentries); 5617 } 5618 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5619 numentries = PAGE_SIZE / bucketsize; 5620 } 5621 numentries = roundup_pow_of_two(numentries); 5622 5623 /* limit allocation size to 1/16 total memory by default */ 5624 if (max == 0) { 5625 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5626 do_div(max, bucketsize); 5627 } 5628 max = min(max, 0x80000000ULL); 5629 5630 if (numentries < low_limit) 5631 numentries = low_limit; 5632 if (numentries > max) 5633 numentries = max; 5634 5635 log2qty = ilog2(numentries); 5636 5637 do { 5638 size = bucketsize << log2qty; 5639 if (flags & HASH_EARLY) 5640 table = alloc_bootmem_nopanic(size); 5641 else if (hashdist) 5642 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5643 else { 5644 /* 5645 * If bucketsize is not a power-of-two, we may free 5646 * some pages at the end of hash table which 5647 * alloc_pages_exact() automatically does 5648 */ 5649 if (get_order(size) < MAX_ORDER) { 5650 table = alloc_pages_exact(size, GFP_ATOMIC); 5651 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5652 } 5653 } 5654 } while (!table && size > PAGE_SIZE && --log2qty); 5655 5656 if (!table) 5657 panic("Failed to allocate %s hash table\n", tablename); 5658 5659 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5660 tablename, 5661 (1UL << log2qty), 5662 ilog2(size) - PAGE_SHIFT, 5663 size); 5664 5665 if (_hash_shift) 5666 *_hash_shift = log2qty; 5667 if (_hash_mask) 5668 *_hash_mask = (1 << log2qty) - 1; 5669 5670 return table; 5671 } 5672 5673 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5674 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5675 unsigned long pfn) 5676 { 5677 #ifdef CONFIG_SPARSEMEM 5678 return __pfn_to_section(pfn)->pageblock_flags; 5679 #else 5680 return zone->pageblock_flags; 5681 #endif /* CONFIG_SPARSEMEM */ 5682 } 5683 5684 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5685 { 5686 #ifdef CONFIG_SPARSEMEM 5687 pfn &= (PAGES_PER_SECTION-1); 5688 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5689 #else 5690 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5691 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5692 #endif /* CONFIG_SPARSEMEM */ 5693 } 5694 5695 /** 5696 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5697 * @page: The page within the block of interest 5698 * @start_bitidx: The first bit of interest to retrieve 5699 * @end_bitidx: The last bit of interest 5700 * returns pageblock_bits flags 5701 */ 5702 unsigned long get_pageblock_flags_group(struct page *page, 5703 int start_bitidx, int end_bitidx) 5704 { 5705 struct zone *zone; 5706 unsigned long *bitmap; 5707 unsigned long pfn, bitidx; 5708 unsigned long flags = 0; 5709 unsigned long value = 1; 5710 5711 zone = page_zone(page); 5712 pfn = page_to_pfn(page); 5713 bitmap = get_pageblock_bitmap(zone, pfn); 5714 bitidx = pfn_to_bitidx(zone, pfn); 5715 5716 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5717 if (test_bit(bitidx + start_bitidx, bitmap)) 5718 flags |= value; 5719 5720 return flags; 5721 } 5722 5723 /** 5724 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5725 * @page: The page within the block of interest 5726 * @start_bitidx: The first bit of interest 5727 * @end_bitidx: The last bit of interest 5728 * @flags: The flags to set 5729 */ 5730 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5731 int start_bitidx, int end_bitidx) 5732 { 5733 struct zone *zone; 5734 unsigned long *bitmap; 5735 unsigned long pfn, bitidx; 5736 unsigned long value = 1; 5737 5738 zone = page_zone(page); 5739 pfn = page_to_pfn(page); 5740 bitmap = get_pageblock_bitmap(zone, pfn); 5741 bitidx = pfn_to_bitidx(zone, pfn); 5742 VM_BUG_ON(!zone_spans_pfn(zone, pfn)); 5743 5744 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5745 if (flags & value) 5746 __set_bit(bitidx + start_bitidx, bitmap); 5747 else 5748 __clear_bit(bitidx + start_bitidx, bitmap); 5749 } 5750 5751 /* 5752 * This function checks whether pageblock includes unmovable pages or not. 5753 * If @count is not zero, it is okay to include less @count unmovable pages 5754 * 5755 * PageLRU check wihtout isolation or lru_lock could race so that 5756 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5757 * expect this function should be exact. 5758 */ 5759 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5760 bool skip_hwpoisoned_pages) 5761 { 5762 unsigned long pfn, iter, found; 5763 int mt; 5764 5765 /* 5766 * For avoiding noise data, lru_add_drain_all() should be called 5767 * If ZONE_MOVABLE, the zone never contains unmovable pages 5768 */ 5769 if (zone_idx(zone) == ZONE_MOVABLE) 5770 return false; 5771 mt = get_pageblock_migratetype(page); 5772 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5773 return false; 5774 5775 pfn = page_to_pfn(page); 5776 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5777 unsigned long check = pfn + iter; 5778 5779 if (!pfn_valid_within(check)) 5780 continue; 5781 5782 page = pfn_to_page(check); 5783 /* 5784 * We can't use page_count without pin a page 5785 * because another CPU can free compound page. 5786 * This check already skips compound tails of THP 5787 * because their page->_count is zero at all time. 5788 */ 5789 if (!atomic_read(&page->_count)) { 5790 if (PageBuddy(page)) 5791 iter += (1 << page_order(page)) - 1; 5792 continue; 5793 } 5794 5795 /* 5796 * The HWPoisoned page may be not in buddy system, and 5797 * page_count() is not 0. 5798 */ 5799 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5800 continue; 5801 5802 if (!PageLRU(page)) 5803 found++; 5804 /* 5805 * If there are RECLAIMABLE pages, we need to check it. 5806 * But now, memory offline itself doesn't call shrink_slab() 5807 * and it still to be fixed. 5808 */ 5809 /* 5810 * If the page is not RAM, page_count()should be 0. 5811 * we don't need more check. This is an _used_ not-movable page. 5812 * 5813 * The problematic thing here is PG_reserved pages. PG_reserved 5814 * is set to both of a memory hole page and a _used_ kernel 5815 * page at boot. 5816 */ 5817 if (found > count) 5818 return true; 5819 } 5820 return false; 5821 } 5822 5823 bool is_pageblock_removable_nolock(struct page *page) 5824 { 5825 struct zone *zone; 5826 unsigned long pfn; 5827 5828 /* 5829 * We have to be careful here because we are iterating over memory 5830 * sections which are not zone aware so we might end up outside of 5831 * the zone but still within the section. 5832 * We have to take care about the node as well. If the node is offline 5833 * its NODE_DATA will be NULL - see page_zone. 5834 */ 5835 if (!node_online(page_to_nid(page))) 5836 return false; 5837 5838 zone = page_zone(page); 5839 pfn = page_to_pfn(page); 5840 if (!zone_spans_pfn(zone, pfn)) 5841 return false; 5842 5843 return !has_unmovable_pages(zone, page, 0, true); 5844 } 5845 5846 #ifdef CONFIG_CMA 5847 5848 static unsigned long pfn_max_align_down(unsigned long pfn) 5849 { 5850 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5851 pageblock_nr_pages) - 1); 5852 } 5853 5854 static unsigned long pfn_max_align_up(unsigned long pfn) 5855 { 5856 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5857 pageblock_nr_pages)); 5858 } 5859 5860 /* [start, end) must belong to a single zone. */ 5861 static int __alloc_contig_migrate_range(struct compact_control *cc, 5862 unsigned long start, unsigned long end) 5863 { 5864 /* This function is based on compact_zone() from compaction.c. */ 5865 unsigned long nr_reclaimed; 5866 unsigned long pfn = start; 5867 unsigned int tries = 0; 5868 int ret = 0; 5869 5870 migrate_prep(); 5871 5872 while (pfn < end || !list_empty(&cc->migratepages)) { 5873 if (fatal_signal_pending(current)) { 5874 ret = -EINTR; 5875 break; 5876 } 5877 5878 if (list_empty(&cc->migratepages)) { 5879 cc->nr_migratepages = 0; 5880 pfn = isolate_migratepages_range(cc->zone, cc, 5881 pfn, end, true); 5882 if (!pfn) { 5883 ret = -EINTR; 5884 break; 5885 } 5886 tries = 0; 5887 } else if (++tries == 5) { 5888 ret = ret < 0 ? ret : -EBUSY; 5889 break; 5890 } 5891 5892 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5893 &cc->migratepages); 5894 cc->nr_migratepages -= nr_reclaimed; 5895 5896 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 5897 0, MIGRATE_SYNC, MR_CMA); 5898 } 5899 if (ret < 0) { 5900 putback_movable_pages(&cc->migratepages); 5901 return ret; 5902 } 5903 return 0; 5904 } 5905 5906 /** 5907 * alloc_contig_range() -- tries to allocate given range of pages 5908 * @start: start PFN to allocate 5909 * @end: one-past-the-last PFN to allocate 5910 * @migratetype: migratetype of the underlaying pageblocks (either 5911 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5912 * in range must have the same migratetype and it must 5913 * be either of the two. 5914 * 5915 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5916 * aligned, however it's the caller's responsibility to guarantee that 5917 * we are the only thread that changes migrate type of pageblocks the 5918 * pages fall in. 5919 * 5920 * The PFN range must belong to a single zone. 5921 * 5922 * Returns zero on success or negative error code. On success all 5923 * pages which PFN is in [start, end) are allocated for the caller and 5924 * need to be freed with free_contig_range(). 5925 */ 5926 int alloc_contig_range(unsigned long start, unsigned long end, 5927 unsigned migratetype) 5928 { 5929 unsigned long outer_start, outer_end; 5930 int ret = 0, order; 5931 5932 struct compact_control cc = { 5933 .nr_migratepages = 0, 5934 .order = -1, 5935 .zone = page_zone(pfn_to_page(start)), 5936 .sync = true, 5937 .ignore_skip_hint = true, 5938 }; 5939 INIT_LIST_HEAD(&cc.migratepages); 5940 5941 /* 5942 * What we do here is we mark all pageblocks in range as 5943 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5944 * have different sizes, and due to the way page allocator 5945 * work, we align the range to biggest of the two pages so 5946 * that page allocator won't try to merge buddies from 5947 * different pageblocks and change MIGRATE_ISOLATE to some 5948 * other migration type. 5949 * 5950 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5951 * migrate the pages from an unaligned range (ie. pages that 5952 * we are interested in). This will put all the pages in 5953 * range back to page allocator as MIGRATE_ISOLATE. 5954 * 5955 * When this is done, we take the pages in range from page 5956 * allocator removing them from the buddy system. This way 5957 * page allocator will never consider using them. 5958 * 5959 * This lets us mark the pageblocks back as 5960 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5961 * aligned range but not in the unaligned, original range are 5962 * put back to page allocator so that buddy can use them. 5963 */ 5964 5965 ret = start_isolate_page_range(pfn_max_align_down(start), 5966 pfn_max_align_up(end), migratetype, 5967 false); 5968 if (ret) 5969 return ret; 5970 5971 ret = __alloc_contig_migrate_range(&cc, start, end); 5972 if (ret) 5973 goto done; 5974 5975 /* 5976 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5977 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5978 * more, all pages in [start, end) are free in page allocator. 5979 * What we are going to do is to allocate all pages from 5980 * [start, end) (that is remove them from page allocator). 5981 * 5982 * The only problem is that pages at the beginning and at the 5983 * end of interesting range may be not aligned with pages that 5984 * page allocator holds, ie. they can be part of higher order 5985 * pages. Because of this, we reserve the bigger range and 5986 * once this is done free the pages we are not interested in. 5987 * 5988 * We don't have to hold zone->lock here because the pages are 5989 * isolated thus they won't get removed from buddy. 5990 */ 5991 5992 lru_add_drain_all(); 5993 drain_all_pages(); 5994 5995 order = 0; 5996 outer_start = start; 5997 while (!PageBuddy(pfn_to_page(outer_start))) { 5998 if (++order >= MAX_ORDER) { 5999 ret = -EBUSY; 6000 goto done; 6001 } 6002 outer_start &= ~0UL << order; 6003 } 6004 6005 /* Make sure the range is really isolated. */ 6006 if (test_pages_isolated(outer_start, end, false)) { 6007 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6008 outer_start, end); 6009 ret = -EBUSY; 6010 goto done; 6011 } 6012 6013 6014 /* Grab isolated pages from freelists. */ 6015 outer_end = isolate_freepages_range(&cc, outer_start, end); 6016 if (!outer_end) { 6017 ret = -EBUSY; 6018 goto done; 6019 } 6020 6021 /* Free head and tail (if any) */ 6022 if (start != outer_start) 6023 free_contig_range(outer_start, start - outer_start); 6024 if (end != outer_end) 6025 free_contig_range(end, outer_end - end); 6026 6027 done: 6028 undo_isolate_page_range(pfn_max_align_down(start), 6029 pfn_max_align_up(end), migratetype); 6030 return ret; 6031 } 6032 6033 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6034 { 6035 unsigned int count = 0; 6036 6037 for (; nr_pages--; pfn++) { 6038 struct page *page = pfn_to_page(pfn); 6039 6040 count += page_count(page) != 1; 6041 __free_page(page); 6042 } 6043 WARN(count != 0, "%d pages are still in use!\n", count); 6044 } 6045 #endif 6046 6047 #ifdef CONFIG_MEMORY_HOTPLUG 6048 static int __meminit __zone_pcp_update(void *data) 6049 { 6050 struct zone *zone = data; 6051 int cpu; 6052 unsigned long batch = zone_batchsize(zone), flags; 6053 6054 for_each_possible_cpu(cpu) { 6055 struct per_cpu_pageset *pset; 6056 struct per_cpu_pages *pcp; 6057 6058 pset = per_cpu_ptr(zone->pageset, cpu); 6059 pcp = &pset->pcp; 6060 6061 local_irq_save(flags); 6062 if (pcp->count > 0) 6063 free_pcppages_bulk(zone, pcp->count, pcp); 6064 drain_zonestat(zone, pset); 6065 setup_pageset(pset, batch); 6066 local_irq_restore(flags); 6067 } 6068 return 0; 6069 } 6070 6071 void __meminit zone_pcp_update(struct zone *zone) 6072 { 6073 stop_machine(__zone_pcp_update, zone, NULL); 6074 } 6075 #endif 6076 6077 void zone_pcp_reset(struct zone *zone) 6078 { 6079 unsigned long flags; 6080 int cpu; 6081 struct per_cpu_pageset *pset; 6082 6083 /* avoid races with drain_pages() */ 6084 local_irq_save(flags); 6085 if (zone->pageset != &boot_pageset) { 6086 for_each_online_cpu(cpu) { 6087 pset = per_cpu_ptr(zone->pageset, cpu); 6088 drain_zonestat(zone, pset); 6089 } 6090 free_percpu(zone->pageset); 6091 zone->pageset = &boot_pageset; 6092 } 6093 local_irq_restore(flags); 6094 } 6095 6096 #ifdef CONFIG_MEMORY_HOTREMOVE 6097 /* 6098 * All pages in the range must be isolated before calling this. 6099 */ 6100 void 6101 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6102 { 6103 struct page *page; 6104 struct zone *zone; 6105 int order, i; 6106 unsigned long pfn; 6107 unsigned long flags; 6108 /* find the first valid pfn */ 6109 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6110 if (pfn_valid(pfn)) 6111 break; 6112 if (pfn == end_pfn) 6113 return; 6114 zone = page_zone(pfn_to_page(pfn)); 6115 spin_lock_irqsave(&zone->lock, flags); 6116 pfn = start_pfn; 6117 while (pfn < end_pfn) { 6118 if (!pfn_valid(pfn)) { 6119 pfn++; 6120 continue; 6121 } 6122 page = pfn_to_page(pfn); 6123 /* 6124 * The HWPoisoned page may be not in buddy system, and 6125 * page_count() is not 0. 6126 */ 6127 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6128 pfn++; 6129 SetPageReserved(page); 6130 continue; 6131 } 6132 6133 BUG_ON(page_count(page)); 6134 BUG_ON(!PageBuddy(page)); 6135 order = page_order(page); 6136 #ifdef CONFIG_DEBUG_VM 6137 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6138 pfn, 1 << order, end_pfn); 6139 #endif 6140 list_del(&page->lru); 6141 rmv_page_order(page); 6142 zone->free_area[order].nr_free--; 6143 for (i = 0; i < (1 << order); i++) 6144 SetPageReserved((page+i)); 6145 pfn += (1 << order); 6146 } 6147 spin_unlock_irqrestore(&zone->lock, flags); 6148 } 6149 #endif 6150 6151 #ifdef CONFIG_MEMORY_FAILURE 6152 bool is_free_buddy_page(struct page *page) 6153 { 6154 struct zone *zone = page_zone(page); 6155 unsigned long pfn = page_to_pfn(page); 6156 unsigned long flags; 6157 int order; 6158 6159 spin_lock_irqsave(&zone->lock, flags); 6160 for (order = 0; order < MAX_ORDER; order++) { 6161 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6162 6163 if (PageBuddy(page_head) && page_order(page_head) >= order) 6164 break; 6165 } 6166 spin_unlock_irqrestore(&zone->lock, flags); 6167 6168 return order < MAX_ORDER; 6169 } 6170 #endif 6171 6172 static const struct trace_print_flags pageflag_names[] = { 6173 {1UL << PG_locked, "locked" }, 6174 {1UL << PG_error, "error" }, 6175 {1UL << PG_referenced, "referenced" }, 6176 {1UL << PG_uptodate, "uptodate" }, 6177 {1UL << PG_dirty, "dirty" }, 6178 {1UL << PG_lru, "lru" }, 6179 {1UL << PG_active, "active" }, 6180 {1UL << PG_slab, "slab" }, 6181 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6182 {1UL << PG_arch_1, "arch_1" }, 6183 {1UL << PG_reserved, "reserved" }, 6184 {1UL << PG_private, "private" }, 6185 {1UL << PG_private_2, "private_2" }, 6186 {1UL << PG_writeback, "writeback" }, 6187 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6188 {1UL << PG_head, "head" }, 6189 {1UL << PG_tail, "tail" }, 6190 #else 6191 {1UL << PG_compound, "compound" }, 6192 #endif 6193 {1UL << PG_swapcache, "swapcache" }, 6194 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6195 {1UL << PG_reclaim, "reclaim" }, 6196 {1UL << PG_swapbacked, "swapbacked" }, 6197 {1UL << PG_unevictable, "unevictable" }, 6198 #ifdef CONFIG_MMU 6199 {1UL << PG_mlocked, "mlocked" }, 6200 #endif 6201 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6202 {1UL << PG_uncached, "uncached" }, 6203 #endif 6204 #ifdef CONFIG_MEMORY_FAILURE 6205 {1UL << PG_hwpoison, "hwpoison" }, 6206 #endif 6207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6208 {1UL << PG_compound_lock, "compound_lock" }, 6209 #endif 6210 }; 6211 6212 static void dump_page_flags(unsigned long flags) 6213 { 6214 const char *delim = ""; 6215 unsigned long mask; 6216 int i; 6217 6218 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6219 6220 printk(KERN_ALERT "page flags: %#lx(", flags); 6221 6222 /* remove zone id */ 6223 flags &= (1UL << NR_PAGEFLAGS) - 1; 6224 6225 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6226 6227 mask = pageflag_names[i].mask; 6228 if ((flags & mask) != mask) 6229 continue; 6230 6231 flags &= ~mask; 6232 printk("%s%s", delim, pageflag_names[i].name); 6233 delim = "|"; 6234 } 6235 6236 /* check for left over flags */ 6237 if (flags) 6238 printk("%s%#lx", delim, flags); 6239 6240 printk(")\n"); 6241 } 6242 6243 void dump_page(struct page *page) 6244 { 6245 printk(KERN_ALERT 6246 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6247 page, atomic_read(&page->_count), page_mapcount(page), 6248 page->mapping, page->index); 6249 dump_page_flags(page->flags); 6250 mem_cgroup_print_bad_page(page); 6251 } 6252