1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmstat.h> 38 #include <linux/fault-inject.h> 39 #include <linux/compaction.h> 40 #include <trace/events/kmem.h> 41 #include <trace/events/oom.h> 42 #include <linux/prefetch.h> 43 #include <linux/mm_inline.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/migrate.h> 46 #include <linux/sched/mm.h> 47 #include <linux/page_owner.h> 48 #include <linux/page_table_check.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/lockdep.h> 52 #include <linux/psi.h> 53 #include <linux/khugepaged.h> 54 #include <linux/delayacct.h> 55 #include <asm/div64.h> 56 #include "internal.h" 57 #include "shuffle.h" 58 #include "page_reporting.h" 59 60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 61 typedef int __bitwise fpi_t; 62 63 /* No special request */ 64 #define FPI_NONE ((__force fpi_t)0) 65 66 /* 67 * Skip free page reporting notification for the (possibly merged) page. 68 * This does not hinder free page reporting from grabbing the page, 69 * reporting it and marking it "reported" - it only skips notifying 70 * the free page reporting infrastructure about a newly freed page. For 71 * example, used when temporarily pulling a page from a freelist and 72 * putting it back unmodified. 73 */ 74 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 75 76 /* 77 * Place the (possibly merged) page to the tail of the freelist. Will ignore 78 * page shuffling (relevant code - e.g., memory onlining - is expected to 79 * shuffle the whole zone). 80 * 81 * Note: No code should rely on this flag for correctness - it's purely 82 * to allow for optimizations when handing back either fresh pages 83 * (memory onlining) or untouched pages (page isolation, free page 84 * reporting). 85 */ 86 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 87 88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 89 static DEFINE_MUTEX(pcp_batch_high_lock); 90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 91 92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 93 /* 94 * On SMP, spin_trylock is sufficient protection. 95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 96 */ 97 #define pcp_trylock_prepare(flags) do { } while (0) 98 #define pcp_trylock_finish(flag) do { } while (0) 99 #else 100 101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 102 #define pcp_trylock_prepare(flags) local_irq_save(flags) 103 #define pcp_trylock_finish(flags) local_irq_restore(flags) 104 #endif 105 106 /* 107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 108 * a migration causing the wrong PCP to be locked and remote memory being 109 * potentially allocated, pin the task to the CPU for the lookup+lock. 110 * preempt_disable is used on !RT because it is faster than migrate_disable. 111 * migrate_disable is used on RT because otherwise RT spinlock usage is 112 * interfered with and a high priority task cannot preempt the allocator. 113 */ 114 #ifndef CONFIG_PREEMPT_RT 115 #define pcpu_task_pin() preempt_disable() 116 #define pcpu_task_unpin() preempt_enable() 117 #else 118 #define pcpu_task_pin() migrate_disable() 119 #define pcpu_task_unpin() migrate_enable() 120 #endif 121 122 /* 123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 124 * Return value should be used with equivalent unlock helper. 125 */ 126 #define pcpu_spin_lock(type, member, ptr) \ 127 ({ \ 128 type *_ret; \ 129 pcpu_task_pin(); \ 130 _ret = this_cpu_ptr(ptr); \ 131 spin_lock(&_ret->member); \ 132 _ret; \ 133 }) 134 135 #define pcpu_spin_trylock(type, member, ptr) \ 136 ({ \ 137 type *_ret; \ 138 pcpu_task_pin(); \ 139 _ret = this_cpu_ptr(ptr); \ 140 if (!spin_trylock(&_ret->member)) { \ 141 pcpu_task_unpin(); \ 142 _ret = NULL; \ 143 } \ 144 _ret; \ 145 }) 146 147 #define pcpu_spin_unlock(member, ptr) \ 148 ({ \ 149 spin_unlock(&ptr->member); \ 150 pcpu_task_unpin(); \ 151 }) 152 153 /* struct per_cpu_pages specific helpers. */ 154 #define pcp_spin_lock(ptr) \ 155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 156 157 #define pcp_spin_trylock(ptr) \ 158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_unlock(ptr) \ 161 pcpu_spin_unlock(lock, ptr) 162 163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 164 DEFINE_PER_CPU(int, numa_node); 165 EXPORT_PER_CPU_SYMBOL(numa_node); 166 #endif 167 168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 169 170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 171 /* 172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 175 * defined in <linux/topology.h>. 176 */ 177 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 178 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 179 #endif 180 181 static DEFINE_MUTEX(pcpu_drain_mutex); 182 183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 184 volatile unsigned long latent_entropy __latent_entropy; 185 EXPORT_SYMBOL(latent_entropy); 186 #endif 187 188 /* 189 * Array of node states. 190 */ 191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 192 [N_POSSIBLE] = NODE_MASK_ALL, 193 [N_ONLINE] = { { [0] = 1UL } }, 194 #ifndef CONFIG_NUMA 195 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 196 #ifdef CONFIG_HIGHMEM 197 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 198 #endif 199 [N_MEMORY] = { { [0] = 1UL } }, 200 [N_CPU] = { { [0] = 1UL } }, 201 #endif /* NUMA */ 202 }; 203 EXPORT_SYMBOL(node_states); 204 205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 206 207 /* 208 * A cached value of the page's pageblock's migratetype, used when the page is 209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 210 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 211 * Also the migratetype set in the page does not necessarily match the pcplist 212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 213 * other index - this ensures that it will be put on the correct CMA freelist. 214 */ 215 static inline int get_pcppage_migratetype(struct page *page) 216 { 217 return page->index; 218 } 219 220 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 221 { 222 page->index = migratetype; 223 } 224 225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 226 unsigned int pageblock_order __read_mostly; 227 #endif 228 229 static void __free_pages_ok(struct page *page, unsigned int order, 230 fpi_t fpi_flags); 231 232 /* 233 * results with 256, 32 in the lowmem_reserve sysctl: 234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 235 * 1G machine -> (16M dma, 784M normal, 224M high) 236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 239 * 240 * TBD: should special case ZONE_DMA32 machines here - in those we normally 241 * don't need any ZONE_NORMAL reservation 242 */ 243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 244 #ifdef CONFIG_ZONE_DMA 245 [ZONE_DMA] = 256, 246 #endif 247 #ifdef CONFIG_ZONE_DMA32 248 [ZONE_DMA32] = 256, 249 #endif 250 [ZONE_NORMAL] = 32, 251 #ifdef CONFIG_HIGHMEM 252 [ZONE_HIGHMEM] = 0, 253 #endif 254 [ZONE_MOVABLE] = 0, 255 }; 256 257 char * const zone_names[MAX_NR_ZONES] = { 258 #ifdef CONFIG_ZONE_DMA 259 "DMA", 260 #endif 261 #ifdef CONFIG_ZONE_DMA32 262 "DMA32", 263 #endif 264 "Normal", 265 #ifdef CONFIG_HIGHMEM 266 "HighMem", 267 #endif 268 "Movable", 269 #ifdef CONFIG_ZONE_DEVICE 270 "Device", 271 #endif 272 }; 273 274 const char * const migratetype_names[MIGRATE_TYPES] = { 275 "Unmovable", 276 "Movable", 277 "Reclaimable", 278 "HighAtomic", 279 #ifdef CONFIG_CMA 280 "CMA", 281 #endif 282 #ifdef CONFIG_MEMORY_ISOLATION 283 "Isolate", 284 #endif 285 }; 286 287 int min_free_kbytes = 1024; 288 int user_min_free_kbytes = -1; 289 static int watermark_boost_factor __read_mostly = 15000; 290 static int watermark_scale_factor = 10; 291 292 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 293 int movable_zone; 294 EXPORT_SYMBOL(movable_zone); 295 296 #if MAX_NUMNODES > 1 297 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 298 unsigned int nr_online_nodes __read_mostly = 1; 299 EXPORT_SYMBOL(nr_node_ids); 300 EXPORT_SYMBOL(nr_online_nodes); 301 #endif 302 303 static bool page_contains_unaccepted(struct page *page, unsigned int order); 304 static void accept_page(struct page *page, unsigned int order); 305 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 306 static inline bool has_unaccepted_memory(void); 307 static bool __free_unaccepted(struct page *page); 308 309 int page_group_by_mobility_disabled __read_mostly; 310 311 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 312 /* 313 * During boot we initialize deferred pages on-demand, as needed, but once 314 * page_alloc_init_late() has finished, the deferred pages are all initialized, 315 * and we can permanently disable that path. 316 */ 317 DEFINE_STATIC_KEY_TRUE(deferred_pages); 318 319 static inline bool deferred_pages_enabled(void) 320 { 321 return static_branch_unlikely(&deferred_pages); 322 } 323 324 /* 325 * deferred_grow_zone() is __init, but it is called from 326 * get_page_from_freelist() during early boot until deferred_pages permanently 327 * disables this call. This is why we have refdata wrapper to avoid warning, 328 * and to ensure that the function body gets unloaded. 329 */ 330 static bool __ref 331 _deferred_grow_zone(struct zone *zone, unsigned int order) 332 { 333 return deferred_grow_zone(zone, order); 334 } 335 #else 336 static inline bool deferred_pages_enabled(void) 337 { 338 return false; 339 } 340 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 341 342 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 343 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 344 unsigned long pfn) 345 { 346 #ifdef CONFIG_SPARSEMEM 347 return section_to_usemap(__pfn_to_section(pfn)); 348 #else 349 return page_zone(page)->pageblock_flags; 350 #endif /* CONFIG_SPARSEMEM */ 351 } 352 353 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 354 { 355 #ifdef CONFIG_SPARSEMEM 356 pfn &= (PAGES_PER_SECTION-1); 357 #else 358 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 359 #endif /* CONFIG_SPARSEMEM */ 360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 361 } 362 363 /** 364 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 365 * @page: The page within the block of interest 366 * @pfn: The target page frame number 367 * @mask: mask of bits that the caller is interested in 368 * 369 * Return: pageblock_bits flags 370 */ 371 unsigned long get_pfnblock_flags_mask(const struct page *page, 372 unsigned long pfn, unsigned long mask) 373 { 374 unsigned long *bitmap; 375 unsigned long bitidx, word_bitidx; 376 unsigned long word; 377 378 bitmap = get_pageblock_bitmap(page, pfn); 379 bitidx = pfn_to_bitidx(page, pfn); 380 word_bitidx = bitidx / BITS_PER_LONG; 381 bitidx &= (BITS_PER_LONG-1); 382 /* 383 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 384 * a consistent read of the memory array, so that results, even though 385 * racy, are not corrupted. 386 */ 387 word = READ_ONCE(bitmap[word_bitidx]); 388 return (word >> bitidx) & mask; 389 } 390 391 static __always_inline int get_pfnblock_migratetype(const struct page *page, 392 unsigned long pfn) 393 { 394 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 395 } 396 397 /** 398 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 399 * @page: The page within the block of interest 400 * @flags: The flags to set 401 * @pfn: The target page frame number 402 * @mask: mask of bits that the caller is interested in 403 */ 404 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 405 unsigned long pfn, 406 unsigned long mask) 407 { 408 unsigned long *bitmap; 409 unsigned long bitidx, word_bitidx; 410 unsigned long word; 411 412 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 413 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 414 415 bitmap = get_pageblock_bitmap(page, pfn); 416 bitidx = pfn_to_bitidx(page, pfn); 417 word_bitidx = bitidx / BITS_PER_LONG; 418 bitidx &= (BITS_PER_LONG-1); 419 420 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 421 422 mask <<= bitidx; 423 flags <<= bitidx; 424 425 word = READ_ONCE(bitmap[word_bitidx]); 426 do { 427 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 428 } 429 430 void set_pageblock_migratetype(struct page *page, int migratetype) 431 { 432 if (unlikely(page_group_by_mobility_disabled && 433 migratetype < MIGRATE_PCPTYPES)) 434 migratetype = MIGRATE_UNMOVABLE; 435 436 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 437 page_to_pfn(page), MIGRATETYPE_MASK); 438 } 439 440 #ifdef CONFIG_DEBUG_VM 441 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 442 { 443 int ret; 444 unsigned seq; 445 unsigned long pfn = page_to_pfn(page); 446 unsigned long sp, start_pfn; 447 448 do { 449 seq = zone_span_seqbegin(zone); 450 start_pfn = zone->zone_start_pfn; 451 sp = zone->spanned_pages; 452 ret = !zone_spans_pfn(zone, pfn); 453 } while (zone_span_seqretry(zone, seq)); 454 455 if (ret) 456 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 457 pfn, zone_to_nid(zone), zone->name, 458 start_pfn, start_pfn + sp); 459 460 return ret; 461 } 462 463 /* 464 * Temporary debugging check for pages not lying within a given zone. 465 */ 466 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 467 { 468 if (page_outside_zone_boundaries(zone, page)) 469 return 1; 470 if (zone != page_zone(page)) 471 return 1; 472 473 return 0; 474 } 475 #else 476 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 477 { 478 return 0; 479 } 480 #endif 481 482 static void bad_page(struct page *page, const char *reason) 483 { 484 static unsigned long resume; 485 static unsigned long nr_shown; 486 static unsigned long nr_unshown; 487 488 /* 489 * Allow a burst of 60 reports, then keep quiet for that minute; 490 * or allow a steady drip of one report per second. 491 */ 492 if (nr_shown == 60) { 493 if (time_before(jiffies, resume)) { 494 nr_unshown++; 495 goto out; 496 } 497 if (nr_unshown) { 498 pr_alert( 499 "BUG: Bad page state: %lu messages suppressed\n", 500 nr_unshown); 501 nr_unshown = 0; 502 } 503 nr_shown = 0; 504 } 505 if (nr_shown++ == 0) 506 resume = jiffies + 60 * HZ; 507 508 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 509 current->comm, page_to_pfn(page)); 510 dump_page(page, reason); 511 512 print_modules(); 513 dump_stack(); 514 out: 515 /* Leave bad fields for debug, except PageBuddy could make trouble */ 516 page_mapcount_reset(page); /* remove PageBuddy */ 517 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 518 } 519 520 static inline unsigned int order_to_pindex(int migratetype, int order) 521 { 522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 523 if (order > PAGE_ALLOC_COSTLY_ORDER) { 524 VM_BUG_ON(order != pageblock_order); 525 return NR_LOWORDER_PCP_LISTS; 526 } 527 #else 528 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 529 #endif 530 531 return (MIGRATE_PCPTYPES * order) + migratetype; 532 } 533 534 static inline int pindex_to_order(unsigned int pindex) 535 { 536 int order = pindex / MIGRATE_PCPTYPES; 537 538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 539 if (pindex == NR_LOWORDER_PCP_LISTS) 540 order = pageblock_order; 541 #else 542 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 543 #endif 544 545 return order; 546 } 547 548 static inline bool pcp_allowed_order(unsigned int order) 549 { 550 if (order <= PAGE_ALLOC_COSTLY_ORDER) 551 return true; 552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 553 if (order == pageblock_order) 554 return true; 555 #endif 556 return false; 557 } 558 559 static inline void free_the_page(struct page *page, unsigned int order) 560 { 561 if (pcp_allowed_order(order)) /* Via pcp? */ 562 free_unref_page(page, order); 563 else 564 __free_pages_ok(page, order, FPI_NONE); 565 } 566 567 /* 568 * Higher-order pages are called "compound pages". They are structured thusly: 569 * 570 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 571 * 572 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 573 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 574 * 575 * The first tail page's ->compound_order holds the order of allocation. 576 * This usage means that zero-order pages may not be compound. 577 */ 578 579 void prep_compound_page(struct page *page, unsigned int order) 580 { 581 int i; 582 int nr_pages = 1 << order; 583 584 __SetPageHead(page); 585 for (i = 1; i < nr_pages; i++) 586 prep_compound_tail(page, i); 587 588 prep_compound_head(page, order); 589 } 590 591 void destroy_large_folio(struct folio *folio) 592 { 593 if (folio_test_hugetlb(folio)) { 594 free_huge_folio(folio); 595 return; 596 } 597 598 if (folio_test_large_rmappable(folio)) 599 folio_undo_large_rmappable(folio); 600 601 mem_cgroup_uncharge(folio); 602 free_the_page(&folio->page, folio_order(folio)); 603 } 604 605 static inline void set_buddy_order(struct page *page, unsigned int order) 606 { 607 set_page_private(page, order); 608 __SetPageBuddy(page); 609 } 610 611 #ifdef CONFIG_COMPACTION 612 static inline struct capture_control *task_capc(struct zone *zone) 613 { 614 struct capture_control *capc = current->capture_control; 615 616 return unlikely(capc) && 617 !(current->flags & PF_KTHREAD) && 618 !capc->page && 619 capc->cc->zone == zone ? capc : NULL; 620 } 621 622 static inline bool 623 compaction_capture(struct capture_control *capc, struct page *page, 624 int order, int migratetype) 625 { 626 if (!capc || order != capc->cc->order) 627 return false; 628 629 /* Do not accidentally pollute CMA or isolated regions*/ 630 if (is_migrate_cma(migratetype) || 631 is_migrate_isolate(migratetype)) 632 return false; 633 634 /* 635 * Do not let lower order allocations pollute a movable pageblock. 636 * This might let an unmovable request use a reclaimable pageblock 637 * and vice-versa but no more than normal fallback logic which can 638 * have trouble finding a high-order free page. 639 */ 640 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 641 return false; 642 643 capc->page = page; 644 return true; 645 } 646 647 #else 648 static inline struct capture_control *task_capc(struct zone *zone) 649 { 650 return NULL; 651 } 652 653 static inline bool 654 compaction_capture(struct capture_control *capc, struct page *page, 655 int order, int migratetype) 656 { 657 return false; 658 } 659 #endif /* CONFIG_COMPACTION */ 660 661 /* Used for pages not on another list */ 662 static inline void add_to_free_list(struct page *page, struct zone *zone, 663 unsigned int order, int migratetype) 664 { 665 struct free_area *area = &zone->free_area[order]; 666 667 list_add(&page->buddy_list, &area->free_list[migratetype]); 668 area->nr_free++; 669 } 670 671 /* Used for pages not on another list */ 672 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 673 unsigned int order, int migratetype) 674 { 675 struct free_area *area = &zone->free_area[order]; 676 677 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 678 area->nr_free++; 679 } 680 681 /* 682 * Used for pages which are on another list. Move the pages to the tail 683 * of the list - so the moved pages won't immediately be considered for 684 * allocation again (e.g., optimization for memory onlining). 685 */ 686 static inline void move_to_free_list(struct page *page, struct zone *zone, 687 unsigned int order, int migratetype) 688 { 689 struct free_area *area = &zone->free_area[order]; 690 691 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 692 } 693 694 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 695 unsigned int order) 696 { 697 /* clear reported state and update reported page count */ 698 if (page_reported(page)) 699 __ClearPageReported(page); 700 701 list_del(&page->buddy_list); 702 __ClearPageBuddy(page); 703 set_page_private(page, 0); 704 zone->free_area[order].nr_free--; 705 } 706 707 static inline struct page *get_page_from_free_area(struct free_area *area, 708 int migratetype) 709 { 710 return list_first_entry_or_null(&area->free_list[migratetype], 711 struct page, buddy_list); 712 } 713 714 /* 715 * If this is not the largest possible page, check if the buddy 716 * of the next-highest order is free. If it is, it's possible 717 * that pages are being freed that will coalesce soon. In case, 718 * that is happening, add the free page to the tail of the list 719 * so it's less likely to be used soon and more likely to be merged 720 * as a higher order page 721 */ 722 static inline bool 723 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 724 struct page *page, unsigned int order) 725 { 726 unsigned long higher_page_pfn; 727 struct page *higher_page; 728 729 if (order >= MAX_ORDER - 1) 730 return false; 731 732 higher_page_pfn = buddy_pfn & pfn; 733 higher_page = page + (higher_page_pfn - pfn); 734 735 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 736 NULL) != NULL; 737 } 738 739 /* 740 * Freeing function for a buddy system allocator. 741 * 742 * The concept of a buddy system is to maintain direct-mapped table 743 * (containing bit values) for memory blocks of various "orders". 744 * The bottom level table contains the map for the smallest allocatable 745 * units of memory (here, pages), and each level above it describes 746 * pairs of units from the levels below, hence, "buddies". 747 * At a high level, all that happens here is marking the table entry 748 * at the bottom level available, and propagating the changes upward 749 * as necessary, plus some accounting needed to play nicely with other 750 * parts of the VM system. 751 * At each level, we keep a list of pages, which are heads of continuous 752 * free pages of length of (1 << order) and marked with PageBuddy. 753 * Page's order is recorded in page_private(page) field. 754 * So when we are allocating or freeing one, we can derive the state of the 755 * other. That is, if we allocate a small block, and both were 756 * free, the remainder of the region must be split into blocks. 757 * If a block is freed, and its buddy is also free, then this 758 * triggers coalescing into a block of larger size. 759 * 760 * -- nyc 761 */ 762 763 static inline void __free_one_page(struct page *page, 764 unsigned long pfn, 765 struct zone *zone, unsigned int order, 766 int migratetype, fpi_t fpi_flags) 767 { 768 struct capture_control *capc = task_capc(zone); 769 unsigned long buddy_pfn = 0; 770 unsigned long combined_pfn; 771 struct page *buddy; 772 bool to_tail; 773 774 VM_BUG_ON(!zone_is_initialized(zone)); 775 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 776 777 VM_BUG_ON(migratetype == -1); 778 if (likely(!is_migrate_isolate(migratetype))) 779 __mod_zone_freepage_state(zone, 1 << order, migratetype); 780 781 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 782 VM_BUG_ON_PAGE(bad_range(zone, page), page); 783 784 while (order < MAX_ORDER) { 785 if (compaction_capture(capc, page, order, migratetype)) { 786 __mod_zone_freepage_state(zone, -(1 << order), 787 migratetype); 788 return; 789 } 790 791 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 792 if (!buddy) 793 goto done_merging; 794 795 if (unlikely(order >= pageblock_order)) { 796 /* 797 * We want to prevent merge between freepages on pageblock 798 * without fallbacks and normal pageblock. Without this, 799 * pageblock isolation could cause incorrect freepage or CMA 800 * accounting or HIGHATOMIC accounting. 801 */ 802 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 803 804 if (migratetype != buddy_mt 805 && (!migratetype_is_mergeable(migratetype) || 806 !migratetype_is_mergeable(buddy_mt))) 807 goto done_merging; 808 } 809 810 /* 811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 812 * merge with it and move up one order. 813 */ 814 if (page_is_guard(buddy)) 815 clear_page_guard(zone, buddy, order, migratetype); 816 else 817 del_page_from_free_list(buddy, zone, order); 818 combined_pfn = buddy_pfn & pfn; 819 page = page + (combined_pfn - pfn); 820 pfn = combined_pfn; 821 order++; 822 } 823 824 done_merging: 825 set_buddy_order(page, order); 826 827 if (fpi_flags & FPI_TO_TAIL) 828 to_tail = true; 829 else if (is_shuffle_order(order)) 830 to_tail = shuffle_pick_tail(); 831 else 832 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 833 834 if (to_tail) 835 add_to_free_list_tail(page, zone, order, migratetype); 836 else 837 add_to_free_list(page, zone, order, migratetype); 838 839 /* Notify page reporting subsystem of freed page */ 840 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 841 page_reporting_notify_free(order); 842 } 843 844 /** 845 * split_free_page() -- split a free page at split_pfn_offset 846 * @free_page: the original free page 847 * @order: the order of the page 848 * @split_pfn_offset: split offset within the page 849 * 850 * Return -ENOENT if the free page is changed, otherwise 0 851 * 852 * It is used when the free page crosses two pageblocks with different migratetypes 853 * at split_pfn_offset within the page. The split free page will be put into 854 * separate migratetype lists afterwards. Otherwise, the function achieves 855 * nothing. 856 */ 857 int split_free_page(struct page *free_page, 858 unsigned int order, unsigned long split_pfn_offset) 859 { 860 struct zone *zone = page_zone(free_page); 861 unsigned long free_page_pfn = page_to_pfn(free_page); 862 unsigned long pfn; 863 unsigned long flags; 864 int free_page_order; 865 int mt; 866 int ret = 0; 867 868 if (split_pfn_offset == 0) 869 return ret; 870 871 spin_lock_irqsave(&zone->lock, flags); 872 873 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 874 ret = -ENOENT; 875 goto out; 876 } 877 878 mt = get_pfnblock_migratetype(free_page, free_page_pfn); 879 if (likely(!is_migrate_isolate(mt))) 880 __mod_zone_freepage_state(zone, -(1UL << order), mt); 881 882 del_page_from_free_list(free_page, zone, order); 883 for (pfn = free_page_pfn; 884 pfn < free_page_pfn + (1UL << order);) { 885 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 886 887 free_page_order = min_t(unsigned int, 888 pfn ? __ffs(pfn) : order, 889 __fls(split_pfn_offset)); 890 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 891 mt, FPI_NONE); 892 pfn += 1UL << free_page_order; 893 split_pfn_offset -= (1UL << free_page_order); 894 /* we have done the first part, now switch to second part */ 895 if (split_pfn_offset == 0) 896 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 897 } 898 out: 899 spin_unlock_irqrestore(&zone->lock, flags); 900 return ret; 901 } 902 /* 903 * A bad page could be due to a number of fields. Instead of multiple branches, 904 * try and check multiple fields with one check. The caller must do a detailed 905 * check if necessary. 906 */ 907 static inline bool page_expected_state(struct page *page, 908 unsigned long check_flags) 909 { 910 if (unlikely(atomic_read(&page->_mapcount) != -1)) 911 return false; 912 913 if (unlikely((unsigned long)page->mapping | 914 page_ref_count(page) | 915 #ifdef CONFIG_MEMCG 916 page->memcg_data | 917 #endif 918 (page->flags & check_flags))) 919 return false; 920 921 return true; 922 } 923 924 static const char *page_bad_reason(struct page *page, unsigned long flags) 925 { 926 const char *bad_reason = NULL; 927 928 if (unlikely(atomic_read(&page->_mapcount) != -1)) 929 bad_reason = "nonzero mapcount"; 930 if (unlikely(page->mapping != NULL)) 931 bad_reason = "non-NULL mapping"; 932 if (unlikely(page_ref_count(page) != 0)) 933 bad_reason = "nonzero _refcount"; 934 if (unlikely(page->flags & flags)) { 935 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 936 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 937 else 938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 939 } 940 #ifdef CONFIG_MEMCG 941 if (unlikely(page->memcg_data)) 942 bad_reason = "page still charged to cgroup"; 943 #endif 944 return bad_reason; 945 } 946 947 static void free_page_is_bad_report(struct page *page) 948 { 949 bad_page(page, 950 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 951 } 952 953 static inline bool free_page_is_bad(struct page *page) 954 { 955 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 956 return false; 957 958 /* Something has gone sideways, find it */ 959 free_page_is_bad_report(page); 960 return true; 961 } 962 963 static inline bool is_check_pages_enabled(void) 964 { 965 return static_branch_unlikely(&check_pages_enabled); 966 } 967 968 static int free_tail_page_prepare(struct page *head_page, struct page *page) 969 { 970 struct folio *folio = (struct folio *)head_page; 971 int ret = 1; 972 973 /* 974 * We rely page->lru.next never has bit 0 set, unless the page 975 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 976 */ 977 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 978 979 if (!is_check_pages_enabled()) { 980 ret = 0; 981 goto out; 982 } 983 switch (page - head_page) { 984 case 1: 985 /* the first tail page: these may be in place of ->mapping */ 986 if (unlikely(folio_entire_mapcount(folio))) { 987 bad_page(page, "nonzero entire_mapcount"); 988 goto out; 989 } 990 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 991 bad_page(page, "nonzero nr_pages_mapped"); 992 goto out; 993 } 994 if (unlikely(atomic_read(&folio->_pincount))) { 995 bad_page(page, "nonzero pincount"); 996 goto out; 997 } 998 break; 999 case 2: 1000 /* 1001 * the second tail page: ->mapping is 1002 * deferred_list.next -- ignore value. 1003 */ 1004 break; 1005 default: 1006 if (page->mapping != TAIL_MAPPING) { 1007 bad_page(page, "corrupted mapping in tail page"); 1008 goto out; 1009 } 1010 break; 1011 } 1012 if (unlikely(!PageTail(page))) { 1013 bad_page(page, "PageTail not set"); 1014 goto out; 1015 } 1016 if (unlikely(compound_head(page) != head_page)) { 1017 bad_page(page, "compound_head not consistent"); 1018 goto out; 1019 } 1020 ret = 0; 1021 out: 1022 page->mapping = NULL; 1023 clear_compound_head(page); 1024 return ret; 1025 } 1026 1027 /* 1028 * Skip KASAN memory poisoning when either: 1029 * 1030 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1031 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1032 * using page tags instead (see below). 1033 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1034 * that error detection is disabled for accesses via the page address. 1035 * 1036 * Pages will have match-all tags in the following circumstances: 1037 * 1038 * 1. Pages are being initialized for the first time, including during deferred 1039 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1040 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1041 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1042 * 3. The allocation was excluded from being checked due to sampling, 1043 * see the call to kasan_unpoison_pages. 1044 * 1045 * Poisoning pages during deferred memory init will greatly lengthen the 1046 * process and cause problem in large memory systems as the deferred pages 1047 * initialization is done with interrupt disabled. 1048 * 1049 * Assuming that there will be no reference to those newly initialized 1050 * pages before they are ever allocated, this should have no effect on 1051 * KASAN memory tracking as the poison will be properly inserted at page 1052 * allocation time. The only corner case is when pages are allocated by 1053 * on-demand allocation and then freed again before the deferred pages 1054 * initialization is done, but this is not likely to happen. 1055 */ 1056 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1057 { 1058 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1059 return deferred_pages_enabled(); 1060 1061 return page_kasan_tag(page) == 0xff; 1062 } 1063 1064 static void kernel_init_pages(struct page *page, int numpages) 1065 { 1066 int i; 1067 1068 /* s390's use of memset() could override KASAN redzones. */ 1069 kasan_disable_current(); 1070 for (i = 0; i < numpages; i++) 1071 clear_highpage_kasan_tagged(page + i); 1072 kasan_enable_current(); 1073 } 1074 1075 static __always_inline bool free_pages_prepare(struct page *page, 1076 unsigned int order, fpi_t fpi_flags) 1077 { 1078 int bad = 0; 1079 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1080 bool init = want_init_on_free(); 1081 1082 VM_BUG_ON_PAGE(PageTail(page), page); 1083 1084 trace_mm_page_free(page, order); 1085 kmsan_free_page(page, order); 1086 1087 if (unlikely(PageHWPoison(page)) && !order) { 1088 /* 1089 * Do not let hwpoison pages hit pcplists/buddy 1090 * Untie memcg state and reset page's owner 1091 */ 1092 if (memcg_kmem_online() && PageMemcgKmem(page)) 1093 __memcg_kmem_uncharge_page(page, order); 1094 reset_page_owner(page, order); 1095 page_table_check_free(page, order); 1096 return false; 1097 } 1098 1099 /* 1100 * Check tail pages before head page information is cleared to 1101 * avoid checking PageCompound for order-0 pages. 1102 */ 1103 if (unlikely(order)) { 1104 bool compound = PageCompound(page); 1105 int i; 1106 1107 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1108 1109 if (compound) 1110 page[1].flags &= ~PAGE_FLAGS_SECOND; 1111 for (i = 1; i < (1 << order); i++) { 1112 if (compound) 1113 bad += free_tail_page_prepare(page, page + i); 1114 if (is_check_pages_enabled()) { 1115 if (free_page_is_bad(page + i)) { 1116 bad++; 1117 continue; 1118 } 1119 } 1120 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1121 } 1122 } 1123 if (PageMappingFlags(page)) 1124 page->mapping = NULL; 1125 if (memcg_kmem_online() && PageMemcgKmem(page)) 1126 __memcg_kmem_uncharge_page(page, order); 1127 if (is_check_pages_enabled()) { 1128 if (free_page_is_bad(page)) 1129 bad++; 1130 if (bad) 1131 return false; 1132 } 1133 1134 page_cpupid_reset_last(page); 1135 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1136 reset_page_owner(page, order); 1137 page_table_check_free(page, order); 1138 1139 if (!PageHighMem(page)) { 1140 debug_check_no_locks_freed(page_address(page), 1141 PAGE_SIZE << order); 1142 debug_check_no_obj_freed(page_address(page), 1143 PAGE_SIZE << order); 1144 } 1145 1146 kernel_poison_pages(page, 1 << order); 1147 1148 /* 1149 * As memory initialization might be integrated into KASAN, 1150 * KASAN poisoning and memory initialization code must be 1151 * kept together to avoid discrepancies in behavior. 1152 * 1153 * With hardware tag-based KASAN, memory tags must be set before the 1154 * page becomes unavailable via debug_pagealloc or arch_free_page. 1155 */ 1156 if (!skip_kasan_poison) { 1157 kasan_poison_pages(page, order, init); 1158 1159 /* Memory is already initialized if KASAN did it internally. */ 1160 if (kasan_has_integrated_init()) 1161 init = false; 1162 } 1163 if (init) 1164 kernel_init_pages(page, 1 << order); 1165 1166 /* 1167 * arch_free_page() can make the page's contents inaccessible. s390 1168 * does this. So nothing which can access the page's contents should 1169 * happen after this. 1170 */ 1171 arch_free_page(page, order); 1172 1173 debug_pagealloc_unmap_pages(page, 1 << order); 1174 1175 return true; 1176 } 1177 1178 /* 1179 * Frees a number of pages from the PCP lists 1180 * Assumes all pages on list are in same zone. 1181 * count is the number of pages to free. 1182 */ 1183 static void free_pcppages_bulk(struct zone *zone, int count, 1184 struct per_cpu_pages *pcp, 1185 int pindex) 1186 { 1187 unsigned long flags; 1188 unsigned int order; 1189 bool isolated_pageblocks; 1190 struct page *page; 1191 1192 /* 1193 * Ensure proper count is passed which otherwise would stuck in the 1194 * below while (list_empty(list)) loop. 1195 */ 1196 count = min(pcp->count, count); 1197 1198 /* Ensure requested pindex is drained first. */ 1199 pindex = pindex - 1; 1200 1201 spin_lock_irqsave(&zone->lock, flags); 1202 isolated_pageblocks = has_isolate_pageblock(zone); 1203 1204 while (count > 0) { 1205 struct list_head *list; 1206 int nr_pages; 1207 1208 /* Remove pages from lists in a round-robin fashion. */ 1209 do { 1210 if (++pindex > NR_PCP_LISTS - 1) 1211 pindex = 0; 1212 list = &pcp->lists[pindex]; 1213 } while (list_empty(list)); 1214 1215 order = pindex_to_order(pindex); 1216 nr_pages = 1 << order; 1217 do { 1218 int mt; 1219 1220 page = list_last_entry(list, struct page, pcp_list); 1221 mt = get_pcppage_migratetype(page); 1222 1223 /* must delete to avoid corrupting pcp list */ 1224 list_del(&page->pcp_list); 1225 count -= nr_pages; 1226 pcp->count -= nr_pages; 1227 1228 /* MIGRATE_ISOLATE page should not go to pcplists */ 1229 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1230 /* Pageblock could have been isolated meanwhile */ 1231 if (unlikely(isolated_pageblocks)) 1232 mt = get_pageblock_migratetype(page); 1233 1234 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1235 trace_mm_page_pcpu_drain(page, order, mt); 1236 } while (count > 0 && !list_empty(list)); 1237 } 1238 1239 spin_unlock_irqrestore(&zone->lock, flags); 1240 } 1241 1242 static void free_one_page(struct zone *zone, 1243 struct page *page, unsigned long pfn, 1244 unsigned int order, 1245 int migratetype, fpi_t fpi_flags) 1246 { 1247 unsigned long flags; 1248 1249 spin_lock_irqsave(&zone->lock, flags); 1250 if (unlikely(has_isolate_pageblock(zone) || 1251 is_migrate_isolate(migratetype))) { 1252 migratetype = get_pfnblock_migratetype(page, pfn); 1253 } 1254 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1255 spin_unlock_irqrestore(&zone->lock, flags); 1256 } 1257 1258 static void __free_pages_ok(struct page *page, unsigned int order, 1259 fpi_t fpi_flags) 1260 { 1261 unsigned long flags; 1262 int migratetype; 1263 unsigned long pfn = page_to_pfn(page); 1264 struct zone *zone = page_zone(page); 1265 1266 if (!free_pages_prepare(page, order, fpi_flags)) 1267 return; 1268 1269 /* 1270 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1271 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1272 * This will reduce the lock holding time. 1273 */ 1274 migratetype = get_pfnblock_migratetype(page, pfn); 1275 1276 spin_lock_irqsave(&zone->lock, flags); 1277 if (unlikely(has_isolate_pageblock(zone) || 1278 is_migrate_isolate(migratetype))) { 1279 migratetype = get_pfnblock_migratetype(page, pfn); 1280 } 1281 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1282 spin_unlock_irqrestore(&zone->lock, flags); 1283 1284 __count_vm_events(PGFREE, 1 << order); 1285 } 1286 1287 void __free_pages_core(struct page *page, unsigned int order) 1288 { 1289 unsigned int nr_pages = 1 << order; 1290 struct page *p = page; 1291 unsigned int loop; 1292 1293 /* 1294 * When initializing the memmap, __init_single_page() sets the refcount 1295 * of all pages to 1 ("allocated"/"not free"). We have to set the 1296 * refcount of all involved pages to 0. 1297 */ 1298 prefetchw(p); 1299 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1300 prefetchw(p + 1); 1301 __ClearPageReserved(p); 1302 set_page_count(p, 0); 1303 } 1304 __ClearPageReserved(p); 1305 set_page_count(p, 0); 1306 1307 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1308 1309 if (page_contains_unaccepted(page, order)) { 1310 if (order == MAX_ORDER && __free_unaccepted(page)) 1311 return; 1312 1313 accept_page(page, order); 1314 } 1315 1316 /* 1317 * Bypass PCP and place fresh pages right to the tail, primarily 1318 * relevant for memory onlining. 1319 */ 1320 __free_pages_ok(page, order, FPI_TO_TAIL); 1321 } 1322 1323 /* 1324 * Check that the whole (or subset of) a pageblock given by the interval of 1325 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1326 * with the migration of free compaction scanner. 1327 * 1328 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1329 * 1330 * It's possible on some configurations to have a setup like node0 node1 node0 1331 * i.e. it's possible that all pages within a zones range of pages do not 1332 * belong to a single zone. We assume that a border between node0 and node1 1333 * can occur within a single pageblock, but not a node0 node1 node0 1334 * interleaving within a single pageblock. It is therefore sufficient to check 1335 * the first and last page of a pageblock and avoid checking each individual 1336 * page in a pageblock. 1337 * 1338 * Note: the function may return non-NULL struct page even for a page block 1339 * which contains a memory hole (i.e. there is no physical memory for a subset 1340 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which 1341 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1342 * even though the start pfn is online and valid. This should be safe most of 1343 * the time because struct pages are still initialized via init_unavailable_range() 1344 * and pfn walkers shouldn't touch any physical memory range for which they do 1345 * not recognize any specific metadata in struct pages. 1346 */ 1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1348 unsigned long end_pfn, struct zone *zone) 1349 { 1350 struct page *start_page; 1351 struct page *end_page; 1352 1353 /* end_pfn is one past the range we are checking */ 1354 end_pfn--; 1355 1356 if (!pfn_valid(end_pfn)) 1357 return NULL; 1358 1359 start_page = pfn_to_online_page(start_pfn); 1360 if (!start_page) 1361 return NULL; 1362 1363 if (page_zone(start_page) != zone) 1364 return NULL; 1365 1366 end_page = pfn_to_page(end_pfn); 1367 1368 /* This gives a shorter code than deriving page_zone(end_page) */ 1369 if (page_zone_id(start_page) != page_zone_id(end_page)) 1370 return NULL; 1371 1372 return start_page; 1373 } 1374 1375 /* 1376 * The order of subdivision here is critical for the IO subsystem. 1377 * Please do not alter this order without good reasons and regression 1378 * testing. Specifically, as large blocks of memory are subdivided, 1379 * the order in which smaller blocks are delivered depends on the order 1380 * they're subdivided in this function. This is the primary factor 1381 * influencing the order in which pages are delivered to the IO 1382 * subsystem according to empirical testing, and this is also justified 1383 * by considering the behavior of a buddy system containing a single 1384 * large block of memory acted on by a series of small allocations. 1385 * This behavior is a critical factor in sglist merging's success. 1386 * 1387 * -- nyc 1388 */ 1389 static inline void expand(struct zone *zone, struct page *page, 1390 int low, int high, int migratetype) 1391 { 1392 unsigned long size = 1 << high; 1393 1394 while (high > low) { 1395 high--; 1396 size >>= 1; 1397 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1398 1399 /* 1400 * Mark as guard pages (or page), that will allow to 1401 * merge back to allocator when buddy will be freed. 1402 * Corresponding page table entries will not be touched, 1403 * pages will stay not present in virtual address space 1404 */ 1405 if (set_page_guard(zone, &page[size], high, migratetype)) 1406 continue; 1407 1408 add_to_free_list(&page[size], zone, high, migratetype); 1409 set_buddy_order(&page[size], high); 1410 } 1411 } 1412 1413 static void check_new_page_bad(struct page *page) 1414 { 1415 if (unlikely(page->flags & __PG_HWPOISON)) { 1416 /* Don't complain about hwpoisoned pages */ 1417 page_mapcount_reset(page); /* remove PageBuddy */ 1418 return; 1419 } 1420 1421 bad_page(page, 1422 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1423 } 1424 1425 /* 1426 * This page is about to be returned from the page allocator 1427 */ 1428 static int check_new_page(struct page *page) 1429 { 1430 if (likely(page_expected_state(page, 1431 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1432 return 0; 1433 1434 check_new_page_bad(page); 1435 return 1; 1436 } 1437 1438 static inline bool check_new_pages(struct page *page, unsigned int order) 1439 { 1440 if (is_check_pages_enabled()) { 1441 for (int i = 0; i < (1 << order); i++) { 1442 struct page *p = page + i; 1443 1444 if (check_new_page(p)) 1445 return true; 1446 } 1447 } 1448 1449 return false; 1450 } 1451 1452 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1453 { 1454 /* Don't skip if a software KASAN mode is enabled. */ 1455 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1456 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1457 return false; 1458 1459 /* Skip, if hardware tag-based KASAN is not enabled. */ 1460 if (!kasan_hw_tags_enabled()) 1461 return true; 1462 1463 /* 1464 * With hardware tag-based KASAN enabled, skip if this has been 1465 * requested via __GFP_SKIP_KASAN. 1466 */ 1467 return flags & __GFP_SKIP_KASAN; 1468 } 1469 1470 static inline bool should_skip_init(gfp_t flags) 1471 { 1472 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1473 if (!kasan_hw_tags_enabled()) 1474 return false; 1475 1476 /* For hardware tag-based KASAN, skip if requested. */ 1477 return (flags & __GFP_SKIP_ZERO); 1478 } 1479 1480 inline void post_alloc_hook(struct page *page, unsigned int order, 1481 gfp_t gfp_flags) 1482 { 1483 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1484 !should_skip_init(gfp_flags); 1485 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1486 int i; 1487 1488 set_page_private(page, 0); 1489 set_page_refcounted(page); 1490 1491 arch_alloc_page(page, order); 1492 debug_pagealloc_map_pages(page, 1 << order); 1493 1494 /* 1495 * Page unpoisoning must happen before memory initialization. 1496 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1497 * allocations and the page unpoisoning code will complain. 1498 */ 1499 kernel_unpoison_pages(page, 1 << order); 1500 1501 /* 1502 * As memory initialization might be integrated into KASAN, 1503 * KASAN unpoisoning and memory initializion code must be 1504 * kept together to avoid discrepancies in behavior. 1505 */ 1506 1507 /* 1508 * If memory tags should be zeroed 1509 * (which happens only when memory should be initialized as well). 1510 */ 1511 if (zero_tags) { 1512 /* Initialize both memory and memory tags. */ 1513 for (i = 0; i != 1 << order; ++i) 1514 tag_clear_highpage(page + i); 1515 1516 /* Take note that memory was initialized by the loop above. */ 1517 init = false; 1518 } 1519 if (!should_skip_kasan_unpoison(gfp_flags) && 1520 kasan_unpoison_pages(page, order, init)) { 1521 /* Take note that memory was initialized by KASAN. */ 1522 if (kasan_has_integrated_init()) 1523 init = false; 1524 } else { 1525 /* 1526 * If memory tags have not been set by KASAN, reset the page 1527 * tags to ensure page_address() dereferencing does not fault. 1528 */ 1529 for (i = 0; i != 1 << order; ++i) 1530 page_kasan_tag_reset(page + i); 1531 } 1532 /* If memory is still not initialized, initialize it now. */ 1533 if (init) 1534 kernel_init_pages(page, 1 << order); 1535 1536 set_page_owner(page, order, gfp_flags); 1537 page_table_check_alloc(page, order); 1538 } 1539 1540 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1541 unsigned int alloc_flags) 1542 { 1543 post_alloc_hook(page, order, gfp_flags); 1544 1545 if (order && (gfp_flags & __GFP_COMP)) 1546 prep_compound_page(page, order); 1547 1548 /* 1549 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1550 * allocate the page. The expectation is that the caller is taking 1551 * steps that will free more memory. The caller should avoid the page 1552 * being used for !PFMEMALLOC purposes. 1553 */ 1554 if (alloc_flags & ALLOC_NO_WATERMARKS) 1555 set_page_pfmemalloc(page); 1556 else 1557 clear_page_pfmemalloc(page); 1558 } 1559 1560 /* 1561 * Go through the free lists for the given migratetype and remove 1562 * the smallest available page from the freelists 1563 */ 1564 static __always_inline 1565 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1566 int migratetype) 1567 { 1568 unsigned int current_order; 1569 struct free_area *area; 1570 struct page *page; 1571 1572 /* Find a page of the appropriate size in the preferred list */ 1573 for (current_order = order; current_order <= MAX_ORDER; ++current_order) { 1574 area = &(zone->free_area[current_order]); 1575 page = get_page_from_free_area(area, migratetype); 1576 if (!page) 1577 continue; 1578 del_page_from_free_list(page, zone, current_order); 1579 expand(zone, page, order, current_order, migratetype); 1580 set_pcppage_migratetype(page, migratetype); 1581 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1582 pcp_allowed_order(order) && 1583 migratetype < MIGRATE_PCPTYPES); 1584 return page; 1585 } 1586 1587 return NULL; 1588 } 1589 1590 1591 /* 1592 * This array describes the order lists are fallen back to when 1593 * the free lists for the desirable migrate type are depleted 1594 * 1595 * The other migratetypes do not have fallbacks. 1596 */ 1597 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1598 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1599 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1600 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1601 }; 1602 1603 #ifdef CONFIG_CMA 1604 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1605 unsigned int order) 1606 { 1607 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1608 } 1609 #else 1610 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1611 unsigned int order) { return NULL; } 1612 #endif 1613 1614 /* 1615 * Move the free pages in a range to the freelist tail of the requested type. 1616 * Note that start_page and end_pages are not aligned on a pageblock 1617 * boundary. If alignment is required, use move_freepages_block() 1618 */ 1619 static int move_freepages(struct zone *zone, 1620 unsigned long start_pfn, unsigned long end_pfn, 1621 int migratetype, int *num_movable) 1622 { 1623 struct page *page; 1624 unsigned long pfn; 1625 unsigned int order; 1626 int pages_moved = 0; 1627 1628 for (pfn = start_pfn; pfn <= end_pfn;) { 1629 page = pfn_to_page(pfn); 1630 if (!PageBuddy(page)) { 1631 /* 1632 * We assume that pages that could be isolated for 1633 * migration are movable. But we don't actually try 1634 * isolating, as that would be expensive. 1635 */ 1636 if (num_movable && 1637 (PageLRU(page) || __PageMovable(page))) 1638 (*num_movable)++; 1639 pfn++; 1640 continue; 1641 } 1642 1643 /* Make sure we are not inadvertently changing nodes */ 1644 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1645 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1646 1647 order = buddy_order(page); 1648 move_to_free_list(page, zone, order, migratetype); 1649 pfn += 1 << order; 1650 pages_moved += 1 << order; 1651 } 1652 1653 return pages_moved; 1654 } 1655 1656 int move_freepages_block(struct zone *zone, struct page *page, 1657 int migratetype, int *num_movable) 1658 { 1659 unsigned long start_pfn, end_pfn, pfn; 1660 1661 if (num_movable) 1662 *num_movable = 0; 1663 1664 pfn = page_to_pfn(page); 1665 start_pfn = pageblock_start_pfn(pfn); 1666 end_pfn = pageblock_end_pfn(pfn) - 1; 1667 1668 /* Do not cross zone boundaries */ 1669 if (!zone_spans_pfn(zone, start_pfn)) 1670 start_pfn = pfn; 1671 if (!zone_spans_pfn(zone, end_pfn)) 1672 return 0; 1673 1674 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1675 num_movable); 1676 } 1677 1678 static void change_pageblock_range(struct page *pageblock_page, 1679 int start_order, int migratetype) 1680 { 1681 int nr_pageblocks = 1 << (start_order - pageblock_order); 1682 1683 while (nr_pageblocks--) { 1684 set_pageblock_migratetype(pageblock_page, migratetype); 1685 pageblock_page += pageblock_nr_pages; 1686 } 1687 } 1688 1689 /* 1690 * When we are falling back to another migratetype during allocation, try to 1691 * steal extra free pages from the same pageblocks to satisfy further 1692 * allocations, instead of polluting multiple pageblocks. 1693 * 1694 * If we are stealing a relatively large buddy page, it is likely there will 1695 * be more free pages in the pageblock, so try to steal them all. For 1696 * reclaimable and unmovable allocations, we steal regardless of page size, 1697 * as fragmentation caused by those allocations polluting movable pageblocks 1698 * is worse than movable allocations stealing from unmovable and reclaimable 1699 * pageblocks. 1700 */ 1701 static bool can_steal_fallback(unsigned int order, int start_mt) 1702 { 1703 /* 1704 * Leaving this order check is intended, although there is 1705 * relaxed order check in next check. The reason is that 1706 * we can actually steal whole pageblock if this condition met, 1707 * but, below check doesn't guarantee it and that is just heuristic 1708 * so could be changed anytime. 1709 */ 1710 if (order >= pageblock_order) 1711 return true; 1712 1713 if (order >= pageblock_order / 2 || 1714 start_mt == MIGRATE_RECLAIMABLE || 1715 start_mt == MIGRATE_UNMOVABLE || 1716 page_group_by_mobility_disabled) 1717 return true; 1718 1719 return false; 1720 } 1721 1722 static inline bool boost_watermark(struct zone *zone) 1723 { 1724 unsigned long max_boost; 1725 1726 if (!watermark_boost_factor) 1727 return false; 1728 /* 1729 * Don't bother in zones that are unlikely to produce results. 1730 * On small machines, including kdump capture kernels running 1731 * in a small area, boosting the watermark can cause an out of 1732 * memory situation immediately. 1733 */ 1734 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1735 return false; 1736 1737 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1738 watermark_boost_factor, 10000); 1739 1740 /* 1741 * high watermark may be uninitialised if fragmentation occurs 1742 * very early in boot so do not boost. We do not fall 1743 * through and boost by pageblock_nr_pages as failing 1744 * allocations that early means that reclaim is not going 1745 * to help and it may even be impossible to reclaim the 1746 * boosted watermark resulting in a hang. 1747 */ 1748 if (!max_boost) 1749 return false; 1750 1751 max_boost = max(pageblock_nr_pages, max_boost); 1752 1753 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1754 max_boost); 1755 1756 return true; 1757 } 1758 1759 /* 1760 * This function implements actual steal behaviour. If order is large enough, 1761 * we can steal whole pageblock. If not, we first move freepages in this 1762 * pageblock to our migratetype and determine how many already-allocated pages 1763 * are there in the pageblock with a compatible migratetype. If at least half 1764 * of pages are free or compatible, we can change migratetype of the pageblock 1765 * itself, so pages freed in the future will be put on the correct free list. 1766 */ 1767 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1768 unsigned int alloc_flags, int start_type, bool whole_block) 1769 { 1770 unsigned int current_order = buddy_order(page); 1771 int free_pages, movable_pages, alike_pages; 1772 int old_block_type; 1773 1774 old_block_type = get_pageblock_migratetype(page); 1775 1776 /* 1777 * This can happen due to races and we want to prevent broken 1778 * highatomic accounting. 1779 */ 1780 if (is_migrate_highatomic(old_block_type)) 1781 goto single_page; 1782 1783 /* Take ownership for orders >= pageblock_order */ 1784 if (current_order >= pageblock_order) { 1785 change_pageblock_range(page, current_order, start_type); 1786 goto single_page; 1787 } 1788 1789 /* 1790 * Boost watermarks to increase reclaim pressure to reduce the 1791 * likelihood of future fallbacks. Wake kswapd now as the node 1792 * may be balanced overall and kswapd will not wake naturally. 1793 */ 1794 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1795 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1796 1797 /* We are not allowed to try stealing from the whole block */ 1798 if (!whole_block) 1799 goto single_page; 1800 1801 free_pages = move_freepages_block(zone, page, start_type, 1802 &movable_pages); 1803 /* moving whole block can fail due to zone boundary conditions */ 1804 if (!free_pages) 1805 goto single_page; 1806 1807 /* 1808 * Determine how many pages are compatible with our allocation. 1809 * For movable allocation, it's the number of movable pages which 1810 * we just obtained. For other types it's a bit more tricky. 1811 */ 1812 if (start_type == MIGRATE_MOVABLE) { 1813 alike_pages = movable_pages; 1814 } else { 1815 /* 1816 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1817 * to MOVABLE pageblock, consider all non-movable pages as 1818 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1819 * vice versa, be conservative since we can't distinguish the 1820 * exact migratetype of non-movable pages. 1821 */ 1822 if (old_block_type == MIGRATE_MOVABLE) 1823 alike_pages = pageblock_nr_pages 1824 - (free_pages + movable_pages); 1825 else 1826 alike_pages = 0; 1827 } 1828 /* 1829 * If a sufficient number of pages in the block are either free or of 1830 * compatible migratability as our allocation, claim the whole block. 1831 */ 1832 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1833 page_group_by_mobility_disabled) 1834 set_pageblock_migratetype(page, start_type); 1835 1836 return; 1837 1838 single_page: 1839 move_to_free_list(page, zone, current_order, start_type); 1840 } 1841 1842 /* 1843 * Check whether there is a suitable fallback freepage with requested order. 1844 * If only_stealable is true, this function returns fallback_mt only if 1845 * we can steal other freepages all together. This would help to reduce 1846 * fragmentation due to mixed migratetype pages in one pageblock. 1847 */ 1848 int find_suitable_fallback(struct free_area *area, unsigned int order, 1849 int migratetype, bool only_stealable, bool *can_steal) 1850 { 1851 int i; 1852 int fallback_mt; 1853 1854 if (area->nr_free == 0) 1855 return -1; 1856 1857 *can_steal = false; 1858 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1859 fallback_mt = fallbacks[migratetype][i]; 1860 if (free_area_empty(area, fallback_mt)) 1861 continue; 1862 1863 if (can_steal_fallback(order, migratetype)) 1864 *can_steal = true; 1865 1866 if (!only_stealable) 1867 return fallback_mt; 1868 1869 if (*can_steal) 1870 return fallback_mt; 1871 } 1872 1873 return -1; 1874 } 1875 1876 /* 1877 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1878 * there are no empty page blocks that contain a page with a suitable order 1879 */ 1880 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1881 { 1882 int mt; 1883 unsigned long max_managed, flags; 1884 1885 /* 1886 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1887 * Check is race-prone but harmless. 1888 */ 1889 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 1890 if (zone->nr_reserved_highatomic >= max_managed) 1891 return; 1892 1893 spin_lock_irqsave(&zone->lock, flags); 1894 1895 /* Recheck the nr_reserved_highatomic limit under the lock */ 1896 if (zone->nr_reserved_highatomic >= max_managed) 1897 goto out_unlock; 1898 1899 /* Yoink! */ 1900 mt = get_pageblock_migratetype(page); 1901 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1902 if (migratetype_is_mergeable(mt)) { 1903 zone->nr_reserved_highatomic += pageblock_nr_pages; 1904 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1905 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1906 } 1907 1908 out_unlock: 1909 spin_unlock_irqrestore(&zone->lock, flags); 1910 } 1911 1912 /* 1913 * Used when an allocation is about to fail under memory pressure. This 1914 * potentially hurts the reliability of high-order allocations when under 1915 * intense memory pressure but failed atomic allocations should be easier 1916 * to recover from than an OOM. 1917 * 1918 * If @force is true, try to unreserve a pageblock even though highatomic 1919 * pageblock is exhausted. 1920 */ 1921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1922 bool force) 1923 { 1924 struct zonelist *zonelist = ac->zonelist; 1925 unsigned long flags; 1926 struct zoneref *z; 1927 struct zone *zone; 1928 struct page *page; 1929 int order; 1930 bool ret; 1931 1932 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1933 ac->nodemask) { 1934 /* 1935 * Preserve at least one pageblock unless memory pressure 1936 * is really high. 1937 */ 1938 if (!force && zone->nr_reserved_highatomic <= 1939 pageblock_nr_pages) 1940 continue; 1941 1942 spin_lock_irqsave(&zone->lock, flags); 1943 for (order = 0; order <= MAX_ORDER; order++) { 1944 struct free_area *area = &(zone->free_area[order]); 1945 1946 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1947 if (!page) 1948 continue; 1949 1950 /* 1951 * In page freeing path, migratetype change is racy so 1952 * we can counter several free pages in a pageblock 1953 * in this loop although we changed the pageblock type 1954 * from highatomic to ac->migratetype. So we should 1955 * adjust the count once. 1956 */ 1957 if (is_migrate_highatomic_page(page)) { 1958 /* 1959 * It should never happen but changes to 1960 * locking could inadvertently allow a per-cpu 1961 * drain to add pages to MIGRATE_HIGHATOMIC 1962 * while unreserving so be safe and watch for 1963 * underflows. 1964 */ 1965 zone->nr_reserved_highatomic -= min( 1966 pageblock_nr_pages, 1967 zone->nr_reserved_highatomic); 1968 } 1969 1970 /* 1971 * Convert to ac->migratetype and avoid the normal 1972 * pageblock stealing heuristics. Minimally, the caller 1973 * is doing the work and needs the pages. More 1974 * importantly, if the block was always converted to 1975 * MIGRATE_UNMOVABLE or another type then the number 1976 * of pageblocks that cannot be completely freed 1977 * may increase. 1978 */ 1979 set_pageblock_migratetype(page, ac->migratetype); 1980 ret = move_freepages_block(zone, page, ac->migratetype, 1981 NULL); 1982 if (ret) { 1983 spin_unlock_irqrestore(&zone->lock, flags); 1984 return ret; 1985 } 1986 } 1987 spin_unlock_irqrestore(&zone->lock, flags); 1988 } 1989 1990 return false; 1991 } 1992 1993 /* 1994 * Try finding a free buddy page on the fallback list and put it on the free 1995 * list of requested migratetype, possibly along with other pages from the same 1996 * block, depending on fragmentation avoidance heuristics. Returns true if 1997 * fallback was found so that __rmqueue_smallest() can grab it. 1998 * 1999 * The use of signed ints for order and current_order is a deliberate 2000 * deviation from the rest of this file, to make the for loop 2001 * condition simpler. 2002 */ 2003 static __always_inline bool 2004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2005 unsigned int alloc_flags) 2006 { 2007 struct free_area *area; 2008 int current_order; 2009 int min_order = order; 2010 struct page *page; 2011 int fallback_mt; 2012 bool can_steal; 2013 2014 /* 2015 * Do not steal pages from freelists belonging to other pageblocks 2016 * i.e. orders < pageblock_order. If there are no local zones free, 2017 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2018 */ 2019 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2020 min_order = pageblock_order; 2021 2022 /* 2023 * Find the largest available free page in the other list. This roughly 2024 * approximates finding the pageblock with the most free pages, which 2025 * would be too costly to do exactly. 2026 */ 2027 for (current_order = MAX_ORDER; current_order >= min_order; 2028 --current_order) { 2029 area = &(zone->free_area[current_order]); 2030 fallback_mt = find_suitable_fallback(area, current_order, 2031 start_migratetype, false, &can_steal); 2032 if (fallback_mt == -1) 2033 continue; 2034 2035 /* 2036 * We cannot steal all free pages from the pageblock and the 2037 * requested migratetype is movable. In that case it's better to 2038 * steal and split the smallest available page instead of the 2039 * largest available page, because even if the next movable 2040 * allocation falls back into a different pageblock than this 2041 * one, it won't cause permanent fragmentation. 2042 */ 2043 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2044 && current_order > order) 2045 goto find_smallest; 2046 2047 goto do_steal; 2048 } 2049 2050 return false; 2051 2052 find_smallest: 2053 for (current_order = order; current_order <= MAX_ORDER; 2054 current_order++) { 2055 area = &(zone->free_area[current_order]); 2056 fallback_mt = find_suitable_fallback(area, current_order, 2057 start_migratetype, false, &can_steal); 2058 if (fallback_mt != -1) 2059 break; 2060 } 2061 2062 /* 2063 * This should not happen - we already found a suitable fallback 2064 * when looking for the largest page. 2065 */ 2066 VM_BUG_ON(current_order > MAX_ORDER); 2067 2068 do_steal: 2069 page = get_page_from_free_area(area, fallback_mt); 2070 2071 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2072 can_steal); 2073 2074 trace_mm_page_alloc_extfrag(page, order, current_order, 2075 start_migratetype, fallback_mt); 2076 2077 return true; 2078 2079 } 2080 2081 /* 2082 * Do the hard work of removing an element from the buddy allocator. 2083 * Call me with the zone->lock already held. 2084 */ 2085 static __always_inline struct page * 2086 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2087 unsigned int alloc_flags) 2088 { 2089 struct page *page; 2090 2091 if (IS_ENABLED(CONFIG_CMA)) { 2092 /* 2093 * Balance movable allocations between regular and CMA areas by 2094 * allocating from CMA when over half of the zone's free memory 2095 * is in the CMA area. 2096 */ 2097 if (alloc_flags & ALLOC_CMA && 2098 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2099 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2100 page = __rmqueue_cma_fallback(zone, order); 2101 if (page) 2102 return page; 2103 } 2104 } 2105 retry: 2106 page = __rmqueue_smallest(zone, order, migratetype); 2107 if (unlikely(!page)) { 2108 if (alloc_flags & ALLOC_CMA) 2109 page = __rmqueue_cma_fallback(zone, order); 2110 2111 if (!page && __rmqueue_fallback(zone, order, migratetype, 2112 alloc_flags)) 2113 goto retry; 2114 } 2115 return page; 2116 } 2117 2118 /* 2119 * Obtain a specified number of elements from the buddy allocator, all under 2120 * a single hold of the lock, for efficiency. Add them to the supplied list. 2121 * Returns the number of new pages which were placed at *list. 2122 */ 2123 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2124 unsigned long count, struct list_head *list, 2125 int migratetype, unsigned int alloc_flags) 2126 { 2127 unsigned long flags; 2128 int i; 2129 2130 spin_lock_irqsave(&zone->lock, flags); 2131 for (i = 0; i < count; ++i) { 2132 struct page *page = __rmqueue(zone, order, migratetype, 2133 alloc_flags); 2134 if (unlikely(page == NULL)) 2135 break; 2136 2137 /* 2138 * Split buddy pages returned by expand() are received here in 2139 * physical page order. The page is added to the tail of 2140 * caller's list. From the callers perspective, the linked list 2141 * is ordered by page number under some conditions. This is 2142 * useful for IO devices that can forward direction from the 2143 * head, thus also in the physical page order. This is useful 2144 * for IO devices that can merge IO requests if the physical 2145 * pages are ordered properly. 2146 */ 2147 list_add_tail(&page->pcp_list, list); 2148 if (is_migrate_cma(get_pcppage_migratetype(page))) 2149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2150 -(1 << order)); 2151 } 2152 2153 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2154 spin_unlock_irqrestore(&zone->lock, flags); 2155 2156 return i; 2157 } 2158 2159 #ifdef CONFIG_NUMA 2160 /* 2161 * Called from the vmstat counter updater to drain pagesets of this 2162 * currently executing processor on remote nodes after they have 2163 * expired. 2164 */ 2165 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2166 { 2167 int to_drain, batch; 2168 2169 batch = READ_ONCE(pcp->batch); 2170 to_drain = min(pcp->count, batch); 2171 if (to_drain > 0) { 2172 spin_lock(&pcp->lock); 2173 free_pcppages_bulk(zone, to_drain, pcp, 0); 2174 spin_unlock(&pcp->lock); 2175 } 2176 } 2177 #endif 2178 2179 /* 2180 * Drain pcplists of the indicated processor and zone. 2181 */ 2182 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2183 { 2184 struct per_cpu_pages *pcp; 2185 2186 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2187 if (pcp->count) { 2188 spin_lock(&pcp->lock); 2189 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2190 spin_unlock(&pcp->lock); 2191 } 2192 } 2193 2194 /* 2195 * Drain pcplists of all zones on the indicated processor. 2196 */ 2197 static void drain_pages(unsigned int cpu) 2198 { 2199 struct zone *zone; 2200 2201 for_each_populated_zone(zone) { 2202 drain_pages_zone(cpu, zone); 2203 } 2204 } 2205 2206 /* 2207 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2208 */ 2209 void drain_local_pages(struct zone *zone) 2210 { 2211 int cpu = smp_processor_id(); 2212 2213 if (zone) 2214 drain_pages_zone(cpu, zone); 2215 else 2216 drain_pages(cpu); 2217 } 2218 2219 /* 2220 * The implementation of drain_all_pages(), exposing an extra parameter to 2221 * drain on all cpus. 2222 * 2223 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2224 * not empty. The check for non-emptiness can however race with a free to 2225 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2226 * that need the guarantee that every CPU has drained can disable the 2227 * optimizing racy check. 2228 */ 2229 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2230 { 2231 int cpu; 2232 2233 /* 2234 * Allocate in the BSS so we won't require allocation in 2235 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2236 */ 2237 static cpumask_t cpus_with_pcps; 2238 2239 /* 2240 * Do not drain if one is already in progress unless it's specific to 2241 * a zone. Such callers are primarily CMA and memory hotplug and need 2242 * the drain to be complete when the call returns. 2243 */ 2244 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2245 if (!zone) 2246 return; 2247 mutex_lock(&pcpu_drain_mutex); 2248 } 2249 2250 /* 2251 * We don't care about racing with CPU hotplug event 2252 * as offline notification will cause the notified 2253 * cpu to drain that CPU pcps and on_each_cpu_mask 2254 * disables preemption as part of its processing 2255 */ 2256 for_each_online_cpu(cpu) { 2257 struct per_cpu_pages *pcp; 2258 struct zone *z; 2259 bool has_pcps = false; 2260 2261 if (force_all_cpus) { 2262 /* 2263 * The pcp.count check is racy, some callers need a 2264 * guarantee that no cpu is missed. 2265 */ 2266 has_pcps = true; 2267 } else if (zone) { 2268 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2269 if (pcp->count) 2270 has_pcps = true; 2271 } else { 2272 for_each_populated_zone(z) { 2273 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2274 if (pcp->count) { 2275 has_pcps = true; 2276 break; 2277 } 2278 } 2279 } 2280 2281 if (has_pcps) 2282 cpumask_set_cpu(cpu, &cpus_with_pcps); 2283 else 2284 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2285 } 2286 2287 for_each_cpu(cpu, &cpus_with_pcps) { 2288 if (zone) 2289 drain_pages_zone(cpu, zone); 2290 else 2291 drain_pages(cpu); 2292 } 2293 2294 mutex_unlock(&pcpu_drain_mutex); 2295 } 2296 2297 /* 2298 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2299 * 2300 * When zone parameter is non-NULL, spill just the single zone's pages. 2301 */ 2302 void drain_all_pages(struct zone *zone) 2303 { 2304 __drain_all_pages(zone, false); 2305 } 2306 2307 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2308 unsigned int order) 2309 { 2310 int migratetype; 2311 2312 if (!free_pages_prepare(page, order, FPI_NONE)) 2313 return false; 2314 2315 migratetype = get_pfnblock_migratetype(page, pfn); 2316 set_pcppage_migratetype(page, migratetype); 2317 return true; 2318 } 2319 2320 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high) 2321 { 2322 int min_nr_free, max_nr_free; 2323 int batch = READ_ONCE(pcp->batch); 2324 2325 /* Free everything if batch freeing high-order pages. */ 2326 if (unlikely(free_high)) 2327 return pcp->count; 2328 2329 /* Check for PCP disabled or boot pageset */ 2330 if (unlikely(high < batch)) 2331 return 1; 2332 2333 /* Leave at least pcp->batch pages on the list */ 2334 min_nr_free = batch; 2335 max_nr_free = high - batch; 2336 2337 /* 2338 * Double the number of pages freed each time there is subsequent 2339 * freeing of pages without any allocation. 2340 */ 2341 batch <<= pcp->free_factor; 2342 if (batch < max_nr_free) 2343 pcp->free_factor++; 2344 batch = clamp(batch, min_nr_free, max_nr_free); 2345 2346 return batch; 2347 } 2348 2349 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2350 bool free_high) 2351 { 2352 int high = READ_ONCE(pcp->high); 2353 2354 if (unlikely(!high || free_high)) 2355 return 0; 2356 2357 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 2358 return high; 2359 2360 /* 2361 * If reclaim is active, limit the number of pages that can be 2362 * stored on pcp lists 2363 */ 2364 return min(READ_ONCE(pcp->batch) << 2, high); 2365 } 2366 2367 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2368 struct page *page, int migratetype, 2369 unsigned int order) 2370 { 2371 int high; 2372 int pindex; 2373 bool free_high; 2374 2375 __count_vm_events(PGFREE, 1 << order); 2376 pindex = order_to_pindex(migratetype, order); 2377 list_add(&page->pcp_list, &pcp->lists[pindex]); 2378 pcp->count += 1 << order; 2379 2380 /* 2381 * As high-order pages other than THP's stored on PCP can contribute 2382 * to fragmentation, limit the number stored when PCP is heavily 2383 * freeing without allocation. The remainder after bulk freeing 2384 * stops will be drained from vmstat refresh context. 2385 */ 2386 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 2387 2388 high = nr_pcp_high(pcp, zone, free_high); 2389 if (pcp->count >= high) { 2390 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex); 2391 } 2392 } 2393 2394 /* 2395 * Free a pcp page 2396 */ 2397 void free_unref_page(struct page *page, unsigned int order) 2398 { 2399 unsigned long __maybe_unused UP_flags; 2400 struct per_cpu_pages *pcp; 2401 struct zone *zone; 2402 unsigned long pfn = page_to_pfn(page); 2403 int migratetype; 2404 2405 if (!free_unref_page_prepare(page, pfn, order)) 2406 return; 2407 2408 /* 2409 * We only track unmovable, reclaimable and movable on pcp lists. 2410 * Place ISOLATE pages on the isolated list because they are being 2411 * offlined but treat HIGHATOMIC as movable pages so we can get those 2412 * areas back if necessary. Otherwise, we may have to free 2413 * excessively into the page allocator 2414 */ 2415 migratetype = get_pcppage_migratetype(page); 2416 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2417 if (unlikely(is_migrate_isolate(migratetype))) { 2418 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2419 return; 2420 } 2421 migratetype = MIGRATE_MOVABLE; 2422 } 2423 2424 zone = page_zone(page); 2425 pcp_trylock_prepare(UP_flags); 2426 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2427 if (pcp) { 2428 free_unref_page_commit(zone, pcp, page, migratetype, order); 2429 pcp_spin_unlock(pcp); 2430 } else { 2431 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2432 } 2433 pcp_trylock_finish(UP_flags); 2434 } 2435 2436 /* 2437 * Free a list of 0-order pages 2438 */ 2439 void free_unref_page_list(struct list_head *list) 2440 { 2441 unsigned long __maybe_unused UP_flags; 2442 struct page *page, *next; 2443 struct per_cpu_pages *pcp = NULL; 2444 struct zone *locked_zone = NULL; 2445 int batch_count = 0; 2446 int migratetype; 2447 2448 /* Prepare pages for freeing */ 2449 list_for_each_entry_safe(page, next, list, lru) { 2450 unsigned long pfn = page_to_pfn(page); 2451 if (!free_unref_page_prepare(page, pfn, 0)) { 2452 list_del(&page->lru); 2453 continue; 2454 } 2455 2456 /* 2457 * Free isolated pages directly to the allocator, see 2458 * comment in free_unref_page. 2459 */ 2460 migratetype = get_pcppage_migratetype(page); 2461 if (unlikely(is_migrate_isolate(migratetype))) { 2462 list_del(&page->lru); 2463 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2464 continue; 2465 } 2466 } 2467 2468 list_for_each_entry_safe(page, next, list, lru) { 2469 struct zone *zone = page_zone(page); 2470 2471 list_del(&page->lru); 2472 migratetype = get_pcppage_migratetype(page); 2473 2474 /* 2475 * Either different zone requiring a different pcp lock or 2476 * excessive lock hold times when freeing a large list of 2477 * pages. 2478 */ 2479 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2480 if (pcp) { 2481 pcp_spin_unlock(pcp); 2482 pcp_trylock_finish(UP_flags); 2483 } 2484 2485 batch_count = 0; 2486 2487 /* 2488 * trylock is necessary as pages may be getting freed 2489 * from IRQ or SoftIRQ context after an IO completion. 2490 */ 2491 pcp_trylock_prepare(UP_flags); 2492 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2493 if (unlikely(!pcp)) { 2494 pcp_trylock_finish(UP_flags); 2495 free_one_page(zone, page, page_to_pfn(page), 2496 0, migratetype, FPI_NONE); 2497 locked_zone = NULL; 2498 continue; 2499 } 2500 locked_zone = zone; 2501 } 2502 2503 /* 2504 * Non-isolated types over MIGRATE_PCPTYPES get added 2505 * to the MIGRATE_MOVABLE pcp list. 2506 */ 2507 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2508 migratetype = MIGRATE_MOVABLE; 2509 2510 trace_mm_page_free_batched(page); 2511 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2512 batch_count++; 2513 } 2514 2515 if (pcp) { 2516 pcp_spin_unlock(pcp); 2517 pcp_trylock_finish(UP_flags); 2518 } 2519 } 2520 2521 /* 2522 * split_page takes a non-compound higher-order page, and splits it into 2523 * n (1<<order) sub-pages: page[0..n] 2524 * Each sub-page must be freed individually. 2525 * 2526 * Note: this is probably too low level an operation for use in drivers. 2527 * Please consult with lkml before using this in your driver. 2528 */ 2529 void split_page(struct page *page, unsigned int order) 2530 { 2531 int i; 2532 2533 VM_BUG_ON_PAGE(PageCompound(page), page); 2534 VM_BUG_ON_PAGE(!page_count(page), page); 2535 2536 for (i = 1; i < (1 << order); i++) 2537 set_page_refcounted(page + i); 2538 split_page_owner(page, 1 << order); 2539 split_page_memcg(page, 1 << order); 2540 } 2541 EXPORT_SYMBOL_GPL(split_page); 2542 2543 int __isolate_free_page(struct page *page, unsigned int order) 2544 { 2545 struct zone *zone = page_zone(page); 2546 int mt = get_pageblock_migratetype(page); 2547 2548 if (!is_migrate_isolate(mt)) { 2549 unsigned long watermark; 2550 /* 2551 * Obey watermarks as if the page was being allocated. We can 2552 * emulate a high-order watermark check with a raised order-0 2553 * watermark, because we already know our high-order page 2554 * exists. 2555 */ 2556 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2557 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2558 return 0; 2559 2560 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2561 } 2562 2563 del_page_from_free_list(page, zone, order); 2564 2565 /* 2566 * Set the pageblock if the isolated page is at least half of a 2567 * pageblock 2568 */ 2569 if (order >= pageblock_order - 1) { 2570 struct page *endpage = page + (1 << order) - 1; 2571 for (; page < endpage; page += pageblock_nr_pages) { 2572 int mt = get_pageblock_migratetype(page); 2573 /* 2574 * Only change normal pageblocks (i.e., they can merge 2575 * with others) 2576 */ 2577 if (migratetype_is_mergeable(mt)) 2578 set_pageblock_migratetype(page, 2579 MIGRATE_MOVABLE); 2580 } 2581 } 2582 2583 return 1UL << order; 2584 } 2585 2586 /** 2587 * __putback_isolated_page - Return a now-isolated page back where we got it 2588 * @page: Page that was isolated 2589 * @order: Order of the isolated page 2590 * @mt: The page's pageblock's migratetype 2591 * 2592 * This function is meant to return a page pulled from the free lists via 2593 * __isolate_free_page back to the free lists they were pulled from. 2594 */ 2595 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2596 { 2597 struct zone *zone = page_zone(page); 2598 2599 /* zone lock should be held when this function is called */ 2600 lockdep_assert_held(&zone->lock); 2601 2602 /* Return isolated page to tail of freelist. */ 2603 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2604 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2605 } 2606 2607 /* 2608 * Update NUMA hit/miss statistics 2609 */ 2610 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2611 long nr_account) 2612 { 2613 #ifdef CONFIG_NUMA 2614 enum numa_stat_item local_stat = NUMA_LOCAL; 2615 2616 /* skip numa counters update if numa stats is disabled */ 2617 if (!static_branch_likely(&vm_numa_stat_key)) 2618 return; 2619 2620 if (zone_to_nid(z) != numa_node_id()) 2621 local_stat = NUMA_OTHER; 2622 2623 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2624 __count_numa_events(z, NUMA_HIT, nr_account); 2625 else { 2626 __count_numa_events(z, NUMA_MISS, nr_account); 2627 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2628 } 2629 __count_numa_events(z, local_stat, nr_account); 2630 #endif 2631 } 2632 2633 static __always_inline 2634 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2635 unsigned int order, unsigned int alloc_flags, 2636 int migratetype) 2637 { 2638 struct page *page; 2639 unsigned long flags; 2640 2641 do { 2642 page = NULL; 2643 spin_lock_irqsave(&zone->lock, flags); 2644 /* 2645 * order-0 request can reach here when the pcplist is skipped 2646 * due to non-CMA allocation context. HIGHATOMIC area is 2647 * reserved for high-order atomic allocation, so order-0 2648 * request should skip it. 2649 */ 2650 if (alloc_flags & ALLOC_HIGHATOMIC) 2651 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2652 if (!page) { 2653 page = __rmqueue(zone, order, migratetype, alloc_flags); 2654 2655 /* 2656 * If the allocation fails, allow OOM handling access 2657 * to HIGHATOMIC reserves as failing now is worse than 2658 * failing a high-order atomic allocation in the 2659 * future. 2660 */ 2661 if (!page && (alloc_flags & ALLOC_OOM)) 2662 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2663 2664 if (!page) { 2665 spin_unlock_irqrestore(&zone->lock, flags); 2666 return NULL; 2667 } 2668 } 2669 __mod_zone_freepage_state(zone, -(1 << order), 2670 get_pcppage_migratetype(page)); 2671 spin_unlock_irqrestore(&zone->lock, flags); 2672 } while (check_new_pages(page, order)); 2673 2674 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2675 zone_statistics(preferred_zone, zone, 1); 2676 2677 return page; 2678 } 2679 2680 /* Remove page from the per-cpu list, caller must protect the list */ 2681 static inline 2682 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2683 int migratetype, 2684 unsigned int alloc_flags, 2685 struct per_cpu_pages *pcp, 2686 struct list_head *list) 2687 { 2688 struct page *page; 2689 2690 do { 2691 if (list_empty(list)) { 2692 int batch = READ_ONCE(pcp->batch); 2693 int alloced; 2694 2695 /* 2696 * Scale batch relative to order if batch implies 2697 * free pages can be stored on the PCP. Batch can 2698 * be 1 for small zones or for boot pagesets which 2699 * should never store free pages as the pages may 2700 * belong to arbitrary zones. 2701 */ 2702 if (batch > 1) 2703 batch = max(batch >> order, 2); 2704 alloced = rmqueue_bulk(zone, order, 2705 batch, list, 2706 migratetype, alloc_flags); 2707 2708 pcp->count += alloced << order; 2709 if (unlikely(list_empty(list))) 2710 return NULL; 2711 } 2712 2713 page = list_first_entry(list, struct page, pcp_list); 2714 list_del(&page->pcp_list); 2715 pcp->count -= 1 << order; 2716 } while (check_new_pages(page, order)); 2717 2718 return page; 2719 } 2720 2721 /* Lock and remove page from the per-cpu list */ 2722 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2723 struct zone *zone, unsigned int order, 2724 int migratetype, unsigned int alloc_flags) 2725 { 2726 struct per_cpu_pages *pcp; 2727 struct list_head *list; 2728 struct page *page; 2729 unsigned long __maybe_unused UP_flags; 2730 2731 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2732 pcp_trylock_prepare(UP_flags); 2733 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2734 if (!pcp) { 2735 pcp_trylock_finish(UP_flags); 2736 return NULL; 2737 } 2738 2739 /* 2740 * On allocation, reduce the number of pages that are batch freed. 2741 * See nr_pcp_free() where free_factor is increased for subsequent 2742 * frees. 2743 */ 2744 pcp->free_factor >>= 1; 2745 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2746 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2747 pcp_spin_unlock(pcp); 2748 pcp_trylock_finish(UP_flags); 2749 if (page) { 2750 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2751 zone_statistics(preferred_zone, zone, 1); 2752 } 2753 return page; 2754 } 2755 2756 /* 2757 * Allocate a page from the given zone. 2758 * Use pcplists for THP or "cheap" high-order allocations. 2759 */ 2760 2761 /* 2762 * Do not instrument rmqueue() with KMSAN. This function may call 2763 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2764 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2765 * may call rmqueue() again, which will result in a deadlock. 2766 */ 2767 __no_sanitize_memory 2768 static inline 2769 struct page *rmqueue(struct zone *preferred_zone, 2770 struct zone *zone, unsigned int order, 2771 gfp_t gfp_flags, unsigned int alloc_flags, 2772 int migratetype) 2773 { 2774 struct page *page; 2775 2776 /* 2777 * We most definitely don't want callers attempting to 2778 * allocate greater than order-1 page units with __GFP_NOFAIL. 2779 */ 2780 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2781 2782 if (likely(pcp_allowed_order(order))) { 2783 /* 2784 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 2785 * we need to skip it when CMA area isn't allowed. 2786 */ 2787 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 2788 migratetype != MIGRATE_MOVABLE) { 2789 page = rmqueue_pcplist(preferred_zone, zone, order, 2790 migratetype, alloc_flags); 2791 if (likely(page)) 2792 goto out; 2793 } 2794 } 2795 2796 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2797 migratetype); 2798 2799 out: 2800 /* Separate test+clear to avoid unnecessary atomics */ 2801 if ((alloc_flags & ALLOC_KSWAPD) && 2802 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2803 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2804 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2805 } 2806 2807 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2808 return page; 2809 } 2810 2811 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2812 { 2813 return __should_fail_alloc_page(gfp_mask, order); 2814 } 2815 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2816 2817 static inline long __zone_watermark_unusable_free(struct zone *z, 2818 unsigned int order, unsigned int alloc_flags) 2819 { 2820 long unusable_free = (1 << order) - 1; 2821 2822 /* 2823 * If the caller does not have rights to reserves below the min 2824 * watermark then subtract the high-atomic reserves. This will 2825 * over-estimate the size of the atomic reserve but it avoids a search. 2826 */ 2827 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2828 unusable_free += z->nr_reserved_highatomic; 2829 2830 #ifdef CONFIG_CMA 2831 /* If allocation can't use CMA areas don't use free CMA pages */ 2832 if (!(alloc_flags & ALLOC_CMA)) 2833 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2834 #endif 2835 #ifdef CONFIG_UNACCEPTED_MEMORY 2836 unusable_free += zone_page_state(z, NR_UNACCEPTED); 2837 #endif 2838 2839 return unusable_free; 2840 } 2841 2842 /* 2843 * Return true if free base pages are above 'mark'. For high-order checks it 2844 * will return true of the order-0 watermark is reached and there is at least 2845 * one free page of a suitable size. Checking now avoids taking the zone lock 2846 * to check in the allocation paths if no pages are free. 2847 */ 2848 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2849 int highest_zoneidx, unsigned int alloc_flags, 2850 long free_pages) 2851 { 2852 long min = mark; 2853 int o; 2854 2855 /* free_pages may go negative - that's OK */ 2856 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2857 2858 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2859 /* 2860 * __GFP_HIGH allows access to 50% of the min reserve as well 2861 * as OOM. 2862 */ 2863 if (alloc_flags & ALLOC_MIN_RESERVE) { 2864 min -= min / 2; 2865 2866 /* 2867 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2868 * access more reserves than just __GFP_HIGH. Other 2869 * non-blocking allocations requests such as GFP_NOWAIT 2870 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2871 * access to the min reserve. 2872 */ 2873 if (alloc_flags & ALLOC_NON_BLOCK) 2874 min -= min / 4; 2875 } 2876 2877 /* 2878 * OOM victims can try even harder than the normal reserve 2879 * users on the grounds that it's definitely going to be in 2880 * the exit path shortly and free memory. Any allocation it 2881 * makes during the free path will be small and short-lived. 2882 */ 2883 if (alloc_flags & ALLOC_OOM) 2884 min -= min / 2; 2885 } 2886 2887 /* 2888 * Check watermarks for an order-0 allocation request. If these 2889 * are not met, then a high-order request also cannot go ahead 2890 * even if a suitable page happened to be free. 2891 */ 2892 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 2893 return false; 2894 2895 /* If this is an order-0 request then the watermark is fine */ 2896 if (!order) 2897 return true; 2898 2899 /* For a high-order request, check at least one suitable page is free */ 2900 for (o = order; o <= MAX_ORDER; o++) { 2901 struct free_area *area = &z->free_area[o]; 2902 int mt; 2903 2904 if (!area->nr_free) 2905 continue; 2906 2907 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2908 if (!free_area_empty(area, mt)) 2909 return true; 2910 } 2911 2912 #ifdef CONFIG_CMA 2913 if ((alloc_flags & ALLOC_CMA) && 2914 !free_area_empty(area, MIGRATE_CMA)) { 2915 return true; 2916 } 2917 #endif 2918 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 2919 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 2920 return true; 2921 } 2922 } 2923 return false; 2924 } 2925 2926 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2927 int highest_zoneidx, unsigned int alloc_flags) 2928 { 2929 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 2930 zone_page_state(z, NR_FREE_PAGES)); 2931 } 2932 2933 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2934 unsigned long mark, int highest_zoneidx, 2935 unsigned int alloc_flags, gfp_t gfp_mask) 2936 { 2937 long free_pages; 2938 2939 free_pages = zone_page_state(z, NR_FREE_PAGES); 2940 2941 /* 2942 * Fast check for order-0 only. If this fails then the reserves 2943 * need to be calculated. 2944 */ 2945 if (!order) { 2946 long usable_free; 2947 long reserved; 2948 2949 usable_free = free_pages; 2950 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 2951 2952 /* reserved may over estimate high-atomic reserves. */ 2953 usable_free -= min(usable_free, reserved); 2954 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 2955 return true; 2956 } 2957 2958 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 2959 free_pages)) 2960 return true; 2961 2962 /* 2963 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 2964 * when checking the min watermark. The min watermark is the 2965 * point where boosting is ignored so that kswapd is woken up 2966 * when below the low watermark. 2967 */ 2968 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 2969 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 2970 mark = z->_watermark[WMARK_MIN]; 2971 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 2972 alloc_flags, free_pages); 2973 } 2974 2975 return false; 2976 } 2977 2978 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2979 unsigned long mark, int highest_zoneidx) 2980 { 2981 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2982 2983 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2984 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2985 2986 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 2987 free_pages); 2988 } 2989 2990 #ifdef CONFIG_NUMA 2991 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 2992 2993 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2994 { 2995 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 2996 node_reclaim_distance; 2997 } 2998 #else /* CONFIG_NUMA */ 2999 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3000 { 3001 return true; 3002 } 3003 #endif /* CONFIG_NUMA */ 3004 3005 /* 3006 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3007 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3008 * premature use of a lower zone may cause lowmem pressure problems that 3009 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3010 * probably too small. It only makes sense to spread allocations to avoid 3011 * fragmentation between the Normal and DMA32 zones. 3012 */ 3013 static inline unsigned int 3014 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3015 { 3016 unsigned int alloc_flags; 3017 3018 /* 3019 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3020 * to save a branch. 3021 */ 3022 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3023 3024 #ifdef CONFIG_ZONE_DMA32 3025 if (!zone) 3026 return alloc_flags; 3027 3028 if (zone_idx(zone) != ZONE_NORMAL) 3029 return alloc_flags; 3030 3031 /* 3032 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3033 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3034 * on UMA that if Normal is populated then so is DMA32. 3035 */ 3036 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3037 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3038 return alloc_flags; 3039 3040 alloc_flags |= ALLOC_NOFRAGMENT; 3041 #endif /* CONFIG_ZONE_DMA32 */ 3042 return alloc_flags; 3043 } 3044 3045 /* Must be called after current_gfp_context() which can change gfp_mask */ 3046 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3047 unsigned int alloc_flags) 3048 { 3049 #ifdef CONFIG_CMA 3050 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3051 alloc_flags |= ALLOC_CMA; 3052 #endif 3053 return alloc_flags; 3054 } 3055 3056 /* 3057 * get_page_from_freelist goes through the zonelist trying to allocate 3058 * a page. 3059 */ 3060 static struct page * 3061 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3062 const struct alloc_context *ac) 3063 { 3064 struct zoneref *z; 3065 struct zone *zone; 3066 struct pglist_data *last_pgdat = NULL; 3067 bool last_pgdat_dirty_ok = false; 3068 bool no_fallback; 3069 3070 retry: 3071 /* 3072 * Scan zonelist, looking for a zone with enough free. 3073 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3074 */ 3075 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3076 z = ac->preferred_zoneref; 3077 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3078 ac->nodemask) { 3079 struct page *page; 3080 unsigned long mark; 3081 3082 if (cpusets_enabled() && 3083 (alloc_flags & ALLOC_CPUSET) && 3084 !__cpuset_zone_allowed(zone, gfp_mask)) 3085 continue; 3086 /* 3087 * When allocating a page cache page for writing, we 3088 * want to get it from a node that is within its dirty 3089 * limit, such that no single node holds more than its 3090 * proportional share of globally allowed dirty pages. 3091 * The dirty limits take into account the node's 3092 * lowmem reserves and high watermark so that kswapd 3093 * should be able to balance it without having to 3094 * write pages from its LRU list. 3095 * 3096 * XXX: For now, allow allocations to potentially 3097 * exceed the per-node dirty limit in the slowpath 3098 * (spread_dirty_pages unset) before going into reclaim, 3099 * which is important when on a NUMA setup the allowed 3100 * nodes are together not big enough to reach the 3101 * global limit. The proper fix for these situations 3102 * will require awareness of nodes in the 3103 * dirty-throttling and the flusher threads. 3104 */ 3105 if (ac->spread_dirty_pages) { 3106 if (last_pgdat != zone->zone_pgdat) { 3107 last_pgdat = zone->zone_pgdat; 3108 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3109 } 3110 3111 if (!last_pgdat_dirty_ok) 3112 continue; 3113 } 3114 3115 if (no_fallback && nr_online_nodes > 1 && 3116 zone != ac->preferred_zoneref->zone) { 3117 int local_nid; 3118 3119 /* 3120 * If moving to a remote node, retry but allow 3121 * fragmenting fallbacks. Locality is more important 3122 * than fragmentation avoidance. 3123 */ 3124 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3125 if (zone_to_nid(zone) != local_nid) { 3126 alloc_flags &= ~ALLOC_NOFRAGMENT; 3127 goto retry; 3128 } 3129 } 3130 3131 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3132 if (!zone_watermark_fast(zone, order, mark, 3133 ac->highest_zoneidx, alloc_flags, 3134 gfp_mask)) { 3135 int ret; 3136 3137 if (has_unaccepted_memory()) { 3138 if (try_to_accept_memory(zone, order)) 3139 goto try_this_zone; 3140 } 3141 3142 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3143 /* 3144 * Watermark failed for this zone, but see if we can 3145 * grow this zone if it contains deferred pages. 3146 */ 3147 if (deferred_pages_enabled()) { 3148 if (_deferred_grow_zone(zone, order)) 3149 goto try_this_zone; 3150 } 3151 #endif 3152 /* Checked here to keep the fast path fast */ 3153 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3154 if (alloc_flags & ALLOC_NO_WATERMARKS) 3155 goto try_this_zone; 3156 3157 if (!node_reclaim_enabled() || 3158 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3159 continue; 3160 3161 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3162 switch (ret) { 3163 case NODE_RECLAIM_NOSCAN: 3164 /* did not scan */ 3165 continue; 3166 case NODE_RECLAIM_FULL: 3167 /* scanned but unreclaimable */ 3168 continue; 3169 default: 3170 /* did we reclaim enough */ 3171 if (zone_watermark_ok(zone, order, mark, 3172 ac->highest_zoneidx, alloc_flags)) 3173 goto try_this_zone; 3174 3175 continue; 3176 } 3177 } 3178 3179 try_this_zone: 3180 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3181 gfp_mask, alloc_flags, ac->migratetype); 3182 if (page) { 3183 prep_new_page(page, order, gfp_mask, alloc_flags); 3184 3185 /* 3186 * If this is a high-order atomic allocation then check 3187 * if the pageblock should be reserved for the future 3188 */ 3189 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3190 reserve_highatomic_pageblock(page, zone); 3191 3192 return page; 3193 } else { 3194 if (has_unaccepted_memory()) { 3195 if (try_to_accept_memory(zone, order)) 3196 goto try_this_zone; 3197 } 3198 3199 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3200 /* Try again if zone has deferred pages */ 3201 if (deferred_pages_enabled()) { 3202 if (_deferred_grow_zone(zone, order)) 3203 goto try_this_zone; 3204 } 3205 #endif 3206 } 3207 } 3208 3209 /* 3210 * It's possible on a UMA machine to get through all zones that are 3211 * fragmented. If avoiding fragmentation, reset and try again. 3212 */ 3213 if (no_fallback) { 3214 alloc_flags &= ~ALLOC_NOFRAGMENT; 3215 goto retry; 3216 } 3217 3218 return NULL; 3219 } 3220 3221 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3222 { 3223 unsigned int filter = SHOW_MEM_FILTER_NODES; 3224 3225 /* 3226 * This documents exceptions given to allocations in certain 3227 * contexts that are allowed to allocate outside current's set 3228 * of allowed nodes. 3229 */ 3230 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3231 if (tsk_is_oom_victim(current) || 3232 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3233 filter &= ~SHOW_MEM_FILTER_NODES; 3234 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3235 filter &= ~SHOW_MEM_FILTER_NODES; 3236 3237 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3238 } 3239 3240 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3241 { 3242 struct va_format vaf; 3243 va_list args; 3244 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3245 3246 if ((gfp_mask & __GFP_NOWARN) || 3247 !__ratelimit(&nopage_rs) || 3248 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3249 return; 3250 3251 va_start(args, fmt); 3252 vaf.fmt = fmt; 3253 vaf.va = &args; 3254 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3255 current->comm, &vaf, gfp_mask, &gfp_mask, 3256 nodemask_pr_args(nodemask)); 3257 va_end(args); 3258 3259 cpuset_print_current_mems_allowed(); 3260 pr_cont("\n"); 3261 dump_stack(); 3262 warn_alloc_show_mem(gfp_mask, nodemask); 3263 } 3264 3265 static inline struct page * 3266 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3267 unsigned int alloc_flags, 3268 const struct alloc_context *ac) 3269 { 3270 struct page *page; 3271 3272 page = get_page_from_freelist(gfp_mask, order, 3273 alloc_flags|ALLOC_CPUSET, ac); 3274 /* 3275 * fallback to ignore cpuset restriction if our nodes 3276 * are depleted 3277 */ 3278 if (!page) 3279 page = get_page_from_freelist(gfp_mask, order, 3280 alloc_flags, ac); 3281 3282 return page; 3283 } 3284 3285 static inline struct page * 3286 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3287 const struct alloc_context *ac, unsigned long *did_some_progress) 3288 { 3289 struct oom_control oc = { 3290 .zonelist = ac->zonelist, 3291 .nodemask = ac->nodemask, 3292 .memcg = NULL, 3293 .gfp_mask = gfp_mask, 3294 .order = order, 3295 }; 3296 struct page *page; 3297 3298 *did_some_progress = 0; 3299 3300 /* 3301 * Acquire the oom lock. If that fails, somebody else is 3302 * making progress for us. 3303 */ 3304 if (!mutex_trylock(&oom_lock)) { 3305 *did_some_progress = 1; 3306 schedule_timeout_uninterruptible(1); 3307 return NULL; 3308 } 3309 3310 /* 3311 * Go through the zonelist yet one more time, keep very high watermark 3312 * here, this is only to catch a parallel oom killing, we must fail if 3313 * we're still under heavy pressure. But make sure that this reclaim 3314 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3315 * allocation which will never fail due to oom_lock already held. 3316 */ 3317 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3318 ~__GFP_DIRECT_RECLAIM, order, 3319 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3320 if (page) 3321 goto out; 3322 3323 /* Coredumps can quickly deplete all memory reserves */ 3324 if (current->flags & PF_DUMPCORE) 3325 goto out; 3326 /* The OOM killer will not help higher order allocs */ 3327 if (order > PAGE_ALLOC_COSTLY_ORDER) 3328 goto out; 3329 /* 3330 * We have already exhausted all our reclaim opportunities without any 3331 * success so it is time to admit defeat. We will skip the OOM killer 3332 * because it is very likely that the caller has a more reasonable 3333 * fallback than shooting a random task. 3334 * 3335 * The OOM killer may not free memory on a specific node. 3336 */ 3337 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3338 goto out; 3339 /* The OOM killer does not needlessly kill tasks for lowmem */ 3340 if (ac->highest_zoneidx < ZONE_NORMAL) 3341 goto out; 3342 if (pm_suspended_storage()) 3343 goto out; 3344 /* 3345 * XXX: GFP_NOFS allocations should rather fail than rely on 3346 * other request to make a forward progress. 3347 * We are in an unfortunate situation where out_of_memory cannot 3348 * do much for this context but let's try it to at least get 3349 * access to memory reserved if the current task is killed (see 3350 * out_of_memory). Once filesystems are ready to handle allocation 3351 * failures more gracefully we should just bail out here. 3352 */ 3353 3354 /* Exhausted what can be done so it's blame time */ 3355 if (out_of_memory(&oc) || 3356 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3357 *did_some_progress = 1; 3358 3359 /* 3360 * Help non-failing allocations by giving them access to memory 3361 * reserves 3362 */ 3363 if (gfp_mask & __GFP_NOFAIL) 3364 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3365 ALLOC_NO_WATERMARKS, ac); 3366 } 3367 out: 3368 mutex_unlock(&oom_lock); 3369 return page; 3370 } 3371 3372 /* 3373 * Maximum number of compaction retries with a progress before OOM 3374 * killer is consider as the only way to move forward. 3375 */ 3376 #define MAX_COMPACT_RETRIES 16 3377 3378 #ifdef CONFIG_COMPACTION 3379 /* Try memory compaction for high-order allocations before reclaim */ 3380 static struct page * 3381 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3382 unsigned int alloc_flags, const struct alloc_context *ac, 3383 enum compact_priority prio, enum compact_result *compact_result) 3384 { 3385 struct page *page = NULL; 3386 unsigned long pflags; 3387 unsigned int noreclaim_flag; 3388 3389 if (!order) 3390 return NULL; 3391 3392 psi_memstall_enter(&pflags); 3393 delayacct_compact_start(); 3394 noreclaim_flag = memalloc_noreclaim_save(); 3395 3396 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3397 prio, &page); 3398 3399 memalloc_noreclaim_restore(noreclaim_flag); 3400 psi_memstall_leave(&pflags); 3401 delayacct_compact_end(); 3402 3403 if (*compact_result == COMPACT_SKIPPED) 3404 return NULL; 3405 /* 3406 * At least in one zone compaction wasn't deferred or skipped, so let's 3407 * count a compaction stall 3408 */ 3409 count_vm_event(COMPACTSTALL); 3410 3411 /* Prep a captured page if available */ 3412 if (page) 3413 prep_new_page(page, order, gfp_mask, alloc_flags); 3414 3415 /* Try get a page from the freelist if available */ 3416 if (!page) 3417 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3418 3419 if (page) { 3420 struct zone *zone = page_zone(page); 3421 3422 zone->compact_blockskip_flush = false; 3423 compaction_defer_reset(zone, order, true); 3424 count_vm_event(COMPACTSUCCESS); 3425 return page; 3426 } 3427 3428 /* 3429 * It's bad if compaction run occurs and fails. The most likely reason 3430 * is that pages exist, but not enough to satisfy watermarks. 3431 */ 3432 count_vm_event(COMPACTFAIL); 3433 3434 cond_resched(); 3435 3436 return NULL; 3437 } 3438 3439 static inline bool 3440 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3441 enum compact_result compact_result, 3442 enum compact_priority *compact_priority, 3443 int *compaction_retries) 3444 { 3445 int max_retries = MAX_COMPACT_RETRIES; 3446 int min_priority; 3447 bool ret = false; 3448 int retries = *compaction_retries; 3449 enum compact_priority priority = *compact_priority; 3450 3451 if (!order) 3452 return false; 3453 3454 if (fatal_signal_pending(current)) 3455 return false; 3456 3457 /* 3458 * Compaction was skipped due to a lack of free order-0 3459 * migration targets. Continue if reclaim can help. 3460 */ 3461 if (compact_result == COMPACT_SKIPPED) { 3462 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3463 goto out; 3464 } 3465 3466 /* 3467 * Compaction managed to coalesce some page blocks, but the 3468 * allocation failed presumably due to a race. Retry some. 3469 */ 3470 if (compact_result == COMPACT_SUCCESS) { 3471 /* 3472 * !costly requests are much more important than 3473 * __GFP_RETRY_MAYFAIL costly ones because they are de 3474 * facto nofail and invoke OOM killer to move on while 3475 * costly can fail and users are ready to cope with 3476 * that. 1/4 retries is rather arbitrary but we would 3477 * need much more detailed feedback from compaction to 3478 * make a better decision. 3479 */ 3480 if (order > PAGE_ALLOC_COSTLY_ORDER) 3481 max_retries /= 4; 3482 3483 if (++(*compaction_retries) <= max_retries) { 3484 ret = true; 3485 goto out; 3486 } 3487 } 3488 3489 /* 3490 * Compaction failed. Retry with increasing priority. 3491 */ 3492 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3493 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3494 3495 if (*compact_priority > min_priority) { 3496 (*compact_priority)--; 3497 *compaction_retries = 0; 3498 ret = true; 3499 } 3500 out: 3501 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3502 return ret; 3503 } 3504 #else 3505 static inline struct page * 3506 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3507 unsigned int alloc_flags, const struct alloc_context *ac, 3508 enum compact_priority prio, enum compact_result *compact_result) 3509 { 3510 *compact_result = COMPACT_SKIPPED; 3511 return NULL; 3512 } 3513 3514 static inline bool 3515 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3516 enum compact_result compact_result, 3517 enum compact_priority *compact_priority, 3518 int *compaction_retries) 3519 { 3520 struct zone *zone; 3521 struct zoneref *z; 3522 3523 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3524 return false; 3525 3526 /* 3527 * There are setups with compaction disabled which would prefer to loop 3528 * inside the allocator rather than hit the oom killer prematurely. 3529 * Let's give them a good hope and keep retrying while the order-0 3530 * watermarks are OK. 3531 */ 3532 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3533 ac->highest_zoneidx, ac->nodemask) { 3534 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3535 ac->highest_zoneidx, alloc_flags)) 3536 return true; 3537 } 3538 return false; 3539 } 3540 #endif /* CONFIG_COMPACTION */ 3541 3542 #ifdef CONFIG_LOCKDEP 3543 static struct lockdep_map __fs_reclaim_map = 3544 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3545 3546 static bool __need_reclaim(gfp_t gfp_mask) 3547 { 3548 /* no reclaim without waiting on it */ 3549 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3550 return false; 3551 3552 /* this guy won't enter reclaim */ 3553 if (current->flags & PF_MEMALLOC) 3554 return false; 3555 3556 if (gfp_mask & __GFP_NOLOCKDEP) 3557 return false; 3558 3559 return true; 3560 } 3561 3562 void __fs_reclaim_acquire(unsigned long ip) 3563 { 3564 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3565 } 3566 3567 void __fs_reclaim_release(unsigned long ip) 3568 { 3569 lock_release(&__fs_reclaim_map, ip); 3570 } 3571 3572 void fs_reclaim_acquire(gfp_t gfp_mask) 3573 { 3574 gfp_mask = current_gfp_context(gfp_mask); 3575 3576 if (__need_reclaim(gfp_mask)) { 3577 if (gfp_mask & __GFP_FS) 3578 __fs_reclaim_acquire(_RET_IP_); 3579 3580 #ifdef CONFIG_MMU_NOTIFIER 3581 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3582 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3583 #endif 3584 3585 } 3586 } 3587 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3588 3589 void fs_reclaim_release(gfp_t gfp_mask) 3590 { 3591 gfp_mask = current_gfp_context(gfp_mask); 3592 3593 if (__need_reclaim(gfp_mask)) { 3594 if (gfp_mask & __GFP_FS) 3595 __fs_reclaim_release(_RET_IP_); 3596 } 3597 } 3598 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3599 #endif 3600 3601 /* 3602 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3603 * have been rebuilt so allocation retries. Reader side does not lock and 3604 * retries the allocation if zonelist changes. Writer side is protected by the 3605 * embedded spin_lock. 3606 */ 3607 static DEFINE_SEQLOCK(zonelist_update_seq); 3608 3609 static unsigned int zonelist_iter_begin(void) 3610 { 3611 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3612 return read_seqbegin(&zonelist_update_seq); 3613 3614 return 0; 3615 } 3616 3617 static unsigned int check_retry_zonelist(unsigned int seq) 3618 { 3619 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3620 return read_seqretry(&zonelist_update_seq, seq); 3621 3622 return seq; 3623 } 3624 3625 /* Perform direct synchronous page reclaim */ 3626 static unsigned long 3627 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3628 const struct alloc_context *ac) 3629 { 3630 unsigned int noreclaim_flag; 3631 unsigned long progress; 3632 3633 cond_resched(); 3634 3635 /* We now go into synchronous reclaim */ 3636 cpuset_memory_pressure_bump(); 3637 fs_reclaim_acquire(gfp_mask); 3638 noreclaim_flag = memalloc_noreclaim_save(); 3639 3640 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3641 ac->nodemask); 3642 3643 memalloc_noreclaim_restore(noreclaim_flag); 3644 fs_reclaim_release(gfp_mask); 3645 3646 cond_resched(); 3647 3648 return progress; 3649 } 3650 3651 /* The really slow allocator path where we enter direct reclaim */ 3652 static inline struct page * 3653 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3654 unsigned int alloc_flags, const struct alloc_context *ac, 3655 unsigned long *did_some_progress) 3656 { 3657 struct page *page = NULL; 3658 unsigned long pflags; 3659 bool drained = false; 3660 3661 psi_memstall_enter(&pflags); 3662 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3663 if (unlikely(!(*did_some_progress))) 3664 goto out; 3665 3666 retry: 3667 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3668 3669 /* 3670 * If an allocation failed after direct reclaim, it could be because 3671 * pages are pinned on the per-cpu lists or in high alloc reserves. 3672 * Shrink them and try again 3673 */ 3674 if (!page && !drained) { 3675 unreserve_highatomic_pageblock(ac, false); 3676 drain_all_pages(NULL); 3677 drained = true; 3678 goto retry; 3679 } 3680 out: 3681 psi_memstall_leave(&pflags); 3682 3683 return page; 3684 } 3685 3686 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3687 const struct alloc_context *ac) 3688 { 3689 struct zoneref *z; 3690 struct zone *zone; 3691 pg_data_t *last_pgdat = NULL; 3692 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3693 3694 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3695 ac->nodemask) { 3696 if (!managed_zone(zone)) 3697 continue; 3698 if (last_pgdat != zone->zone_pgdat) { 3699 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3700 last_pgdat = zone->zone_pgdat; 3701 } 3702 } 3703 } 3704 3705 static inline unsigned int 3706 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3707 { 3708 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3709 3710 /* 3711 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3712 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3713 * to save two branches. 3714 */ 3715 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3716 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3717 3718 /* 3719 * The caller may dip into page reserves a bit more if the caller 3720 * cannot run direct reclaim, or if the caller has realtime scheduling 3721 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3722 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3723 */ 3724 alloc_flags |= (__force int) 3725 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3726 3727 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3728 /* 3729 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3730 * if it can't schedule. 3731 */ 3732 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3733 alloc_flags |= ALLOC_NON_BLOCK; 3734 3735 if (order > 0) 3736 alloc_flags |= ALLOC_HIGHATOMIC; 3737 } 3738 3739 /* 3740 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3741 * GFP_ATOMIC) rather than fail, see the comment for 3742 * cpuset_node_allowed(). 3743 */ 3744 if (alloc_flags & ALLOC_MIN_RESERVE) 3745 alloc_flags &= ~ALLOC_CPUSET; 3746 } else if (unlikely(rt_task(current)) && in_task()) 3747 alloc_flags |= ALLOC_MIN_RESERVE; 3748 3749 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3750 3751 return alloc_flags; 3752 } 3753 3754 static bool oom_reserves_allowed(struct task_struct *tsk) 3755 { 3756 if (!tsk_is_oom_victim(tsk)) 3757 return false; 3758 3759 /* 3760 * !MMU doesn't have oom reaper so give access to memory reserves 3761 * only to the thread with TIF_MEMDIE set 3762 */ 3763 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3764 return false; 3765 3766 return true; 3767 } 3768 3769 /* 3770 * Distinguish requests which really need access to full memory 3771 * reserves from oom victims which can live with a portion of it 3772 */ 3773 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3774 { 3775 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3776 return 0; 3777 if (gfp_mask & __GFP_MEMALLOC) 3778 return ALLOC_NO_WATERMARKS; 3779 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3780 return ALLOC_NO_WATERMARKS; 3781 if (!in_interrupt()) { 3782 if (current->flags & PF_MEMALLOC) 3783 return ALLOC_NO_WATERMARKS; 3784 else if (oom_reserves_allowed(current)) 3785 return ALLOC_OOM; 3786 } 3787 3788 return 0; 3789 } 3790 3791 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3792 { 3793 return !!__gfp_pfmemalloc_flags(gfp_mask); 3794 } 3795 3796 /* 3797 * Checks whether it makes sense to retry the reclaim to make a forward progress 3798 * for the given allocation request. 3799 * 3800 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3801 * without success, or when we couldn't even meet the watermark if we 3802 * reclaimed all remaining pages on the LRU lists. 3803 * 3804 * Returns true if a retry is viable or false to enter the oom path. 3805 */ 3806 static inline bool 3807 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3808 struct alloc_context *ac, int alloc_flags, 3809 bool did_some_progress, int *no_progress_loops) 3810 { 3811 struct zone *zone; 3812 struct zoneref *z; 3813 bool ret = false; 3814 3815 /* 3816 * Costly allocations might have made a progress but this doesn't mean 3817 * their order will become available due to high fragmentation so 3818 * always increment the no progress counter for them 3819 */ 3820 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3821 *no_progress_loops = 0; 3822 else 3823 (*no_progress_loops)++; 3824 3825 /* 3826 * Make sure we converge to OOM if we cannot make any progress 3827 * several times in the row. 3828 */ 3829 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3830 /* Before OOM, exhaust highatomic_reserve */ 3831 return unreserve_highatomic_pageblock(ac, true); 3832 } 3833 3834 /* 3835 * Keep reclaiming pages while there is a chance this will lead 3836 * somewhere. If none of the target zones can satisfy our allocation 3837 * request even if all reclaimable pages are considered then we are 3838 * screwed and have to go OOM. 3839 */ 3840 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3841 ac->highest_zoneidx, ac->nodemask) { 3842 unsigned long available; 3843 unsigned long reclaimable; 3844 unsigned long min_wmark = min_wmark_pages(zone); 3845 bool wmark; 3846 3847 available = reclaimable = zone_reclaimable_pages(zone); 3848 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3849 3850 /* 3851 * Would the allocation succeed if we reclaimed all 3852 * reclaimable pages? 3853 */ 3854 wmark = __zone_watermark_ok(zone, order, min_wmark, 3855 ac->highest_zoneidx, alloc_flags, available); 3856 trace_reclaim_retry_zone(z, order, reclaimable, 3857 available, min_wmark, *no_progress_loops, wmark); 3858 if (wmark) { 3859 ret = true; 3860 break; 3861 } 3862 } 3863 3864 /* 3865 * Memory allocation/reclaim might be called from a WQ context and the 3866 * current implementation of the WQ concurrency control doesn't 3867 * recognize that a particular WQ is congested if the worker thread is 3868 * looping without ever sleeping. Therefore we have to do a short sleep 3869 * here rather than calling cond_resched(). 3870 */ 3871 if (current->flags & PF_WQ_WORKER) 3872 schedule_timeout_uninterruptible(1); 3873 else 3874 cond_resched(); 3875 return ret; 3876 } 3877 3878 static inline bool 3879 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3880 { 3881 /* 3882 * It's possible that cpuset's mems_allowed and the nodemask from 3883 * mempolicy don't intersect. This should be normally dealt with by 3884 * policy_nodemask(), but it's possible to race with cpuset update in 3885 * such a way the check therein was true, and then it became false 3886 * before we got our cpuset_mems_cookie here. 3887 * This assumes that for all allocations, ac->nodemask can come only 3888 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3889 * when it does not intersect with the cpuset restrictions) or the 3890 * caller can deal with a violated nodemask. 3891 */ 3892 if (cpusets_enabled() && ac->nodemask && 3893 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3894 ac->nodemask = NULL; 3895 return true; 3896 } 3897 3898 /* 3899 * When updating a task's mems_allowed or mempolicy nodemask, it is 3900 * possible to race with parallel threads in such a way that our 3901 * allocation can fail while the mask is being updated. If we are about 3902 * to fail, check if the cpuset changed during allocation and if so, 3903 * retry. 3904 */ 3905 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3906 return true; 3907 3908 return false; 3909 } 3910 3911 static inline struct page * 3912 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3913 struct alloc_context *ac) 3914 { 3915 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3916 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3917 struct page *page = NULL; 3918 unsigned int alloc_flags; 3919 unsigned long did_some_progress; 3920 enum compact_priority compact_priority; 3921 enum compact_result compact_result; 3922 int compaction_retries; 3923 int no_progress_loops; 3924 unsigned int cpuset_mems_cookie; 3925 unsigned int zonelist_iter_cookie; 3926 int reserve_flags; 3927 3928 restart: 3929 compaction_retries = 0; 3930 no_progress_loops = 0; 3931 compact_priority = DEF_COMPACT_PRIORITY; 3932 cpuset_mems_cookie = read_mems_allowed_begin(); 3933 zonelist_iter_cookie = zonelist_iter_begin(); 3934 3935 /* 3936 * The fast path uses conservative alloc_flags to succeed only until 3937 * kswapd needs to be woken up, and to avoid the cost of setting up 3938 * alloc_flags precisely. So we do that now. 3939 */ 3940 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 3941 3942 /* 3943 * We need to recalculate the starting point for the zonelist iterator 3944 * because we might have used different nodemask in the fast path, or 3945 * there was a cpuset modification and we are retrying - otherwise we 3946 * could end up iterating over non-eligible zones endlessly. 3947 */ 3948 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3949 ac->highest_zoneidx, ac->nodemask); 3950 if (!ac->preferred_zoneref->zone) 3951 goto nopage; 3952 3953 /* 3954 * Check for insane configurations where the cpuset doesn't contain 3955 * any suitable zone to satisfy the request - e.g. non-movable 3956 * GFP_HIGHUSER allocations from MOVABLE nodes only. 3957 */ 3958 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 3959 struct zoneref *z = first_zones_zonelist(ac->zonelist, 3960 ac->highest_zoneidx, 3961 &cpuset_current_mems_allowed); 3962 if (!z->zone) 3963 goto nopage; 3964 } 3965 3966 if (alloc_flags & ALLOC_KSWAPD) 3967 wake_all_kswapds(order, gfp_mask, ac); 3968 3969 /* 3970 * The adjusted alloc_flags might result in immediate success, so try 3971 * that first 3972 */ 3973 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3974 if (page) 3975 goto got_pg; 3976 3977 /* 3978 * For costly allocations, try direct compaction first, as it's likely 3979 * that we have enough base pages and don't need to reclaim. For non- 3980 * movable high-order allocations, do that as well, as compaction will 3981 * try prevent permanent fragmentation by migrating from blocks of the 3982 * same migratetype. 3983 * Don't try this for allocations that are allowed to ignore 3984 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3985 */ 3986 if (can_direct_reclaim && 3987 (costly_order || 3988 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3989 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3990 page = __alloc_pages_direct_compact(gfp_mask, order, 3991 alloc_flags, ac, 3992 INIT_COMPACT_PRIORITY, 3993 &compact_result); 3994 if (page) 3995 goto got_pg; 3996 3997 /* 3998 * Checks for costly allocations with __GFP_NORETRY, which 3999 * includes some THP page fault allocations 4000 */ 4001 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4002 /* 4003 * If allocating entire pageblock(s) and compaction 4004 * failed because all zones are below low watermarks 4005 * or is prohibited because it recently failed at this 4006 * order, fail immediately unless the allocator has 4007 * requested compaction and reclaim retry. 4008 * 4009 * Reclaim is 4010 * - potentially very expensive because zones are far 4011 * below their low watermarks or this is part of very 4012 * bursty high order allocations, 4013 * - not guaranteed to help because isolate_freepages() 4014 * may not iterate over freed pages as part of its 4015 * linear scan, and 4016 * - unlikely to make entire pageblocks free on its 4017 * own. 4018 */ 4019 if (compact_result == COMPACT_SKIPPED || 4020 compact_result == COMPACT_DEFERRED) 4021 goto nopage; 4022 4023 /* 4024 * Looks like reclaim/compaction is worth trying, but 4025 * sync compaction could be very expensive, so keep 4026 * using async compaction. 4027 */ 4028 compact_priority = INIT_COMPACT_PRIORITY; 4029 } 4030 } 4031 4032 retry: 4033 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4034 if (alloc_flags & ALLOC_KSWAPD) 4035 wake_all_kswapds(order, gfp_mask, ac); 4036 4037 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4038 if (reserve_flags) 4039 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4040 (alloc_flags & ALLOC_KSWAPD); 4041 4042 /* 4043 * Reset the nodemask and zonelist iterators if memory policies can be 4044 * ignored. These allocations are high priority and system rather than 4045 * user oriented. 4046 */ 4047 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4048 ac->nodemask = NULL; 4049 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4050 ac->highest_zoneidx, ac->nodemask); 4051 } 4052 4053 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4054 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4055 if (page) 4056 goto got_pg; 4057 4058 /* Caller is not willing to reclaim, we can't balance anything */ 4059 if (!can_direct_reclaim) 4060 goto nopage; 4061 4062 /* Avoid recursion of direct reclaim */ 4063 if (current->flags & PF_MEMALLOC) 4064 goto nopage; 4065 4066 /* Try direct reclaim and then allocating */ 4067 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4068 &did_some_progress); 4069 if (page) 4070 goto got_pg; 4071 4072 /* Try direct compaction and then allocating */ 4073 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4074 compact_priority, &compact_result); 4075 if (page) 4076 goto got_pg; 4077 4078 /* Do not loop if specifically requested */ 4079 if (gfp_mask & __GFP_NORETRY) 4080 goto nopage; 4081 4082 /* 4083 * Do not retry costly high order allocations unless they are 4084 * __GFP_RETRY_MAYFAIL 4085 */ 4086 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4087 goto nopage; 4088 4089 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4090 did_some_progress > 0, &no_progress_loops)) 4091 goto retry; 4092 4093 /* 4094 * It doesn't make any sense to retry for the compaction if the order-0 4095 * reclaim is not able to make any progress because the current 4096 * implementation of the compaction depends on the sufficient amount 4097 * of free memory (see __compaction_suitable) 4098 */ 4099 if (did_some_progress > 0 && 4100 should_compact_retry(ac, order, alloc_flags, 4101 compact_result, &compact_priority, 4102 &compaction_retries)) 4103 goto retry; 4104 4105 4106 /* 4107 * Deal with possible cpuset update races or zonelist updates to avoid 4108 * a unnecessary OOM kill. 4109 */ 4110 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4111 check_retry_zonelist(zonelist_iter_cookie)) 4112 goto restart; 4113 4114 /* Reclaim has failed us, start killing things */ 4115 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4116 if (page) 4117 goto got_pg; 4118 4119 /* Avoid allocations with no watermarks from looping endlessly */ 4120 if (tsk_is_oom_victim(current) && 4121 (alloc_flags & ALLOC_OOM || 4122 (gfp_mask & __GFP_NOMEMALLOC))) 4123 goto nopage; 4124 4125 /* Retry as long as the OOM killer is making progress */ 4126 if (did_some_progress) { 4127 no_progress_loops = 0; 4128 goto retry; 4129 } 4130 4131 nopage: 4132 /* 4133 * Deal with possible cpuset update races or zonelist updates to avoid 4134 * a unnecessary OOM kill. 4135 */ 4136 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4137 check_retry_zonelist(zonelist_iter_cookie)) 4138 goto restart; 4139 4140 /* 4141 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4142 * we always retry 4143 */ 4144 if (gfp_mask & __GFP_NOFAIL) { 4145 /* 4146 * All existing users of the __GFP_NOFAIL are blockable, so warn 4147 * of any new users that actually require GFP_NOWAIT 4148 */ 4149 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4150 goto fail; 4151 4152 /* 4153 * PF_MEMALLOC request from this context is rather bizarre 4154 * because we cannot reclaim anything and only can loop waiting 4155 * for somebody to do a work for us 4156 */ 4157 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4158 4159 /* 4160 * non failing costly orders are a hard requirement which we 4161 * are not prepared for much so let's warn about these users 4162 * so that we can identify them and convert them to something 4163 * else. 4164 */ 4165 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4166 4167 /* 4168 * Help non-failing allocations by giving some access to memory 4169 * reserves normally used for high priority non-blocking 4170 * allocations but do not use ALLOC_NO_WATERMARKS because this 4171 * could deplete whole memory reserves which would just make 4172 * the situation worse. 4173 */ 4174 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4175 if (page) 4176 goto got_pg; 4177 4178 cond_resched(); 4179 goto retry; 4180 } 4181 fail: 4182 warn_alloc(gfp_mask, ac->nodemask, 4183 "page allocation failure: order:%u", order); 4184 got_pg: 4185 return page; 4186 } 4187 4188 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4189 int preferred_nid, nodemask_t *nodemask, 4190 struct alloc_context *ac, gfp_t *alloc_gfp, 4191 unsigned int *alloc_flags) 4192 { 4193 ac->highest_zoneidx = gfp_zone(gfp_mask); 4194 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4195 ac->nodemask = nodemask; 4196 ac->migratetype = gfp_migratetype(gfp_mask); 4197 4198 if (cpusets_enabled()) { 4199 *alloc_gfp |= __GFP_HARDWALL; 4200 /* 4201 * When we are in the interrupt context, it is irrelevant 4202 * to the current task context. It means that any node ok. 4203 */ 4204 if (in_task() && !ac->nodemask) 4205 ac->nodemask = &cpuset_current_mems_allowed; 4206 else 4207 *alloc_flags |= ALLOC_CPUSET; 4208 } 4209 4210 might_alloc(gfp_mask); 4211 4212 if (should_fail_alloc_page(gfp_mask, order)) 4213 return false; 4214 4215 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4216 4217 /* Dirty zone balancing only done in the fast path */ 4218 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4219 4220 /* 4221 * The preferred zone is used for statistics but crucially it is 4222 * also used as the starting point for the zonelist iterator. It 4223 * may get reset for allocations that ignore memory policies. 4224 */ 4225 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4226 ac->highest_zoneidx, ac->nodemask); 4227 4228 return true; 4229 } 4230 4231 /* 4232 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4233 * @gfp: GFP flags for the allocation 4234 * @preferred_nid: The preferred NUMA node ID to allocate from 4235 * @nodemask: Set of nodes to allocate from, may be NULL 4236 * @nr_pages: The number of pages desired on the list or array 4237 * @page_list: Optional list to store the allocated pages 4238 * @page_array: Optional array to store the pages 4239 * 4240 * This is a batched version of the page allocator that attempts to 4241 * allocate nr_pages quickly. Pages are added to page_list if page_list 4242 * is not NULL, otherwise it is assumed that the page_array is valid. 4243 * 4244 * For lists, nr_pages is the number of pages that should be allocated. 4245 * 4246 * For arrays, only NULL elements are populated with pages and nr_pages 4247 * is the maximum number of pages that will be stored in the array. 4248 * 4249 * Returns the number of pages on the list or array. 4250 */ 4251 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4252 nodemask_t *nodemask, int nr_pages, 4253 struct list_head *page_list, 4254 struct page **page_array) 4255 { 4256 struct page *page; 4257 unsigned long __maybe_unused UP_flags; 4258 struct zone *zone; 4259 struct zoneref *z; 4260 struct per_cpu_pages *pcp; 4261 struct list_head *pcp_list; 4262 struct alloc_context ac; 4263 gfp_t alloc_gfp; 4264 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4265 int nr_populated = 0, nr_account = 0; 4266 4267 /* 4268 * Skip populated array elements to determine if any pages need 4269 * to be allocated before disabling IRQs. 4270 */ 4271 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4272 nr_populated++; 4273 4274 /* No pages requested? */ 4275 if (unlikely(nr_pages <= 0)) 4276 goto out; 4277 4278 /* Already populated array? */ 4279 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4280 goto out; 4281 4282 /* Bulk allocator does not support memcg accounting. */ 4283 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4284 goto failed; 4285 4286 /* Use the single page allocator for one page. */ 4287 if (nr_pages - nr_populated == 1) 4288 goto failed; 4289 4290 #ifdef CONFIG_PAGE_OWNER 4291 /* 4292 * PAGE_OWNER may recurse into the allocator to allocate space to 4293 * save the stack with pagesets.lock held. Releasing/reacquiring 4294 * removes much of the performance benefit of bulk allocation so 4295 * force the caller to allocate one page at a time as it'll have 4296 * similar performance to added complexity to the bulk allocator. 4297 */ 4298 if (static_branch_unlikely(&page_owner_inited)) 4299 goto failed; 4300 #endif 4301 4302 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4303 gfp &= gfp_allowed_mask; 4304 alloc_gfp = gfp; 4305 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4306 goto out; 4307 gfp = alloc_gfp; 4308 4309 /* Find an allowed local zone that meets the low watermark. */ 4310 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4311 unsigned long mark; 4312 4313 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4314 !__cpuset_zone_allowed(zone, gfp)) { 4315 continue; 4316 } 4317 4318 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4319 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4320 goto failed; 4321 } 4322 4323 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4324 if (zone_watermark_fast(zone, 0, mark, 4325 zonelist_zone_idx(ac.preferred_zoneref), 4326 alloc_flags, gfp)) { 4327 break; 4328 } 4329 } 4330 4331 /* 4332 * If there are no allowed local zones that meets the watermarks then 4333 * try to allocate a single page and reclaim if necessary. 4334 */ 4335 if (unlikely(!zone)) 4336 goto failed; 4337 4338 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4339 pcp_trylock_prepare(UP_flags); 4340 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4341 if (!pcp) 4342 goto failed_irq; 4343 4344 /* Attempt the batch allocation */ 4345 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4346 while (nr_populated < nr_pages) { 4347 4348 /* Skip existing pages */ 4349 if (page_array && page_array[nr_populated]) { 4350 nr_populated++; 4351 continue; 4352 } 4353 4354 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4355 pcp, pcp_list); 4356 if (unlikely(!page)) { 4357 /* Try and allocate at least one page */ 4358 if (!nr_account) { 4359 pcp_spin_unlock(pcp); 4360 goto failed_irq; 4361 } 4362 break; 4363 } 4364 nr_account++; 4365 4366 prep_new_page(page, 0, gfp, 0); 4367 if (page_list) 4368 list_add(&page->lru, page_list); 4369 else 4370 page_array[nr_populated] = page; 4371 nr_populated++; 4372 } 4373 4374 pcp_spin_unlock(pcp); 4375 pcp_trylock_finish(UP_flags); 4376 4377 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4378 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4379 4380 out: 4381 return nr_populated; 4382 4383 failed_irq: 4384 pcp_trylock_finish(UP_flags); 4385 4386 failed: 4387 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4388 if (page) { 4389 if (page_list) 4390 list_add(&page->lru, page_list); 4391 else 4392 page_array[nr_populated] = page; 4393 nr_populated++; 4394 } 4395 4396 goto out; 4397 } 4398 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4399 4400 /* 4401 * This is the 'heart' of the zoned buddy allocator. 4402 */ 4403 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4404 nodemask_t *nodemask) 4405 { 4406 struct page *page; 4407 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4408 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4409 struct alloc_context ac = { }; 4410 4411 /* 4412 * There are several places where we assume that the order value is sane 4413 * so bail out early if the request is out of bound. 4414 */ 4415 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) 4416 return NULL; 4417 4418 gfp &= gfp_allowed_mask; 4419 /* 4420 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4421 * resp. GFP_NOIO which has to be inherited for all allocation requests 4422 * from a particular context which has been marked by 4423 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4424 * movable zones are not used during allocation. 4425 */ 4426 gfp = current_gfp_context(gfp); 4427 alloc_gfp = gfp; 4428 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4429 &alloc_gfp, &alloc_flags)) 4430 return NULL; 4431 4432 /* 4433 * Forbid the first pass from falling back to types that fragment 4434 * memory until all local zones are considered. 4435 */ 4436 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4437 4438 /* First allocation attempt */ 4439 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4440 if (likely(page)) 4441 goto out; 4442 4443 alloc_gfp = gfp; 4444 ac.spread_dirty_pages = false; 4445 4446 /* 4447 * Restore the original nodemask if it was potentially replaced with 4448 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4449 */ 4450 ac.nodemask = nodemask; 4451 4452 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4453 4454 out: 4455 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4456 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4457 __free_pages(page, order); 4458 page = NULL; 4459 } 4460 4461 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4462 kmsan_alloc_page(page, order, alloc_gfp); 4463 4464 return page; 4465 } 4466 EXPORT_SYMBOL(__alloc_pages); 4467 4468 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4469 nodemask_t *nodemask) 4470 { 4471 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4472 preferred_nid, nodemask); 4473 struct folio *folio = (struct folio *)page; 4474 4475 if (folio && order > 1) 4476 folio_prep_large_rmappable(folio); 4477 return folio; 4478 } 4479 EXPORT_SYMBOL(__folio_alloc); 4480 4481 /* 4482 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4483 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4484 * you need to access high mem. 4485 */ 4486 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4487 { 4488 struct page *page; 4489 4490 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4491 if (!page) 4492 return 0; 4493 return (unsigned long) page_address(page); 4494 } 4495 EXPORT_SYMBOL(__get_free_pages); 4496 4497 unsigned long get_zeroed_page(gfp_t gfp_mask) 4498 { 4499 return __get_free_page(gfp_mask | __GFP_ZERO); 4500 } 4501 EXPORT_SYMBOL(get_zeroed_page); 4502 4503 /** 4504 * __free_pages - Free pages allocated with alloc_pages(). 4505 * @page: The page pointer returned from alloc_pages(). 4506 * @order: The order of the allocation. 4507 * 4508 * This function can free multi-page allocations that are not compound 4509 * pages. It does not check that the @order passed in matches that of 4510 * the allocation, so it is easy to leak memory. Freeing more memory 4511 * than was allocated will probably emit a warning. 4512 * 4513 * If the last reference to this page is speculative, it will be released 4514 * by put_page() which only frees the first page of a non-compound 4515 * allocation. To prevent the remaining pages from being leaked, we free 4516 * the subsequent pages here. If you want to use the page's reference 4517 * count to decide when to free the allocation, you should allocate a 4518 * compound page, and use put_page() instead of __free_pages(). 4519 * 4520 * Context: May be called in interrupt context or while holding a normal 4521 * spinlock, but not in NMI context or while holding a raw spinlock. 4522 */ 4523 void __free_pages(struct page *page, unsigned int order) 4524 { 4525 /* get PageHead before we drop reference */ 4526 int head = PageHead(page); 4527 4528 if (put_page_testzero(page)) 4529 free_the_page(page, order); 4530 else if (!head) 4531 while (order-- > 0) 4532 free_the_page(page + (1 << order), order); 4533 } 4534 EXPORT_SYMBOL(__free_pages); 4535 4536 void free_pages(unsigned long addr, unsigned int order) 4537 { 4538 if (addr != 0) { 4539 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4540 __free_pages(virt_to_page((void *)addr), order); 4541 } 4542 } 4543 4544 EXPORT_SYMBOL(free_pages); 4545 4546 /* 4547 * Page Fragment: 4548 * An arbitrary-length arbitrary-offset area of memory which resides 4549 * within a 0 or higher order page. Multiple fragments within that page 4550 * are individually refcounted, in the page's reference counter. 4551 * 4552 * The page_frag functions below provide a simple allocation framework for 4553 * page fragments. This is used by the network stack and network device 4554 * drivers to provide a backing region of memory for use as either an 4555 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4556 */ 4557 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4558 gfp_t gfp_mask) 4559 { 4560 struct page *page = NULL; 4561 gfp_t gfp = gfp_mask; 4562 4563 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4564 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4565 __GFP_NOMEMALLOC; 4566 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4567 PAGE_FRAG_CACHE_MAX_ORDER); 4568 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4569 #endif 4570 if (unlikely(!page)) 4571 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4572 4573 nc->va = page ? page_address(page) : NULL; 4574 4575 return page; 4576 } 4577 4578 void __page_frag_cache_drain(struct page *page, unsigned int count) 4579 { 4580 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4581 4582 if (page_ref_sub_and_test(page, count)) 4583 free_the_page(page, compound_order(page)); 4584 } 4585 EXPORT_SYMBOL(__page_frag_cache_drain); 4586 4587 void *page_frag_alloc_align(struct page_frag_cache *nc, 4588 unsigned int fragsz, gfp_t gfp_mask, 4589 unsigned int align_mask) 4590 { 4591 unsigned int size = PAGE_SIZE; 4592 struct page *page; 4593 int offset; 4594 4595 if (unlikely(!nc->va)) { 4596 refill: 4597 page = __page_frag_cache_refill(nc, gfp_mask); 4598 if (!page) 4599 return NULL; 4600 4601 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4602 /* if size can vary use size else just use PAGE_SIZE */ 4603 size = nc->size; 4604 #endif 4605 /* Even if we own the page, we do not use atomic_set(). 4606 * This would break get_page_unless_zero() users. 4607 */ 4608 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4609 4610 /* reset page count bias and offset to start of new frag */ 4611 nc->pfmemalloc = page_is_pfmemalloc(page); 4612 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4613 nc->offset = size; 4614 } 4615 4616 offset = nc->offset - fragsz; 4617 if (unlikely(offset < 0)) { 4618 page = virt_to_page(nc->va); 4619 4620 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4621 goto refill; 4622 4623 if (unlikely(nc->pfmemalloc)) { 4624 free_the_page(page, compound_order(page)); 4625 goto refill; 4626 } 4627 4628 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4629 /* if size can vary use size else just use PAGE_SIZE */ 4630 size = nc->size; 4631 #endif 4632 /* OK, page count is 0, we can safely set it */ 4633 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4634 4635 /* reset page count bias and offset to start of new frag */ 4636 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4637 offset = size - fragsz; 4638 if (unlikely(offset < 0)) { 4639 /* 4640 * The caller is trying to allocate a fragment 4641 * with fragsz > PAGE_SIZE but the cache isn't big 4642 * enough to satisfy the request, this may 4643 * happen in low memory conditions. 4644 * We don't release the cache page because 4645 * it could make memory pressure worse 4646 * so we simply return NULL here. 4647 */ 4648 return NULL; 4649 } 4650 } 4651 4652 nc->pagecnt_bias--; 4653 offset &= align_mask; 4654 nc->offset = offset; 4655 4656 return nc->va + offset; 4657 } 4658 EXPORT_SYMBOL(page_frag_alloc_align); 4659 4660 /* 4661 * Frees a page fragment allocated out of either a compound or order 0 page. 4662 */ 4663 void page_frag_free(void *addr) 4664 { 4665 struct page *page = virt_to_head_page(addr); 4666 4667 if (unlikely(put_page_testzero(page))) 4668 free_the_page(page, compound_order(page)); 4669 } 4670 EXPORT_SYMBOL(page_frag_free); 4671 4672 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4673 size_t size) 4674 { 4675 if (addr) { 4676 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4677 struct page *page = virt_to_page((void *)addr); 4678 struct page *last = page + nr; 4679 4680 split_page_owner(page, 1 << order); 4681 split_page_memcg(page, 1 << order); 4682 while (page < --last) 4683 set_page_refcounted(last); 4684 4685 last = page + (1UL << order); 4686 for (page += nr; page < last; page++) 4687 __free_pages_ok(page, 0, FPI_TO_TAIL); 4688 } 4689 return (void *)addr; 4690 } 4691 4692 /** 4693 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4694 * @size: the number of bytes to allocate 4695 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4696 * 4697 * This function is similar to alloc_pages(), except that it allocates the 4698 * minimum number of pages to satisfy the request. alloc_pages() can only 4699 * allocate memory in power-of-two pages. 4700 * 4701 * This function is also limited by MAX_ORDER. 4702 * 4703 * Memory allocated by this function must be released by free_pages_exact(). 4704 * 4705 * Return: pointer to the allocated area or %NULL in case of error. 4706 */ 4707 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4708 { 4709 unsigned int order = get_order(size); 4710 unsigned long addr; 4711 4712 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4713 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4714 4715 addr = __get_free_pages(gfp_mask, order); 4716 return make_alloc_exact(addr, order, size); 4717 } 4718 EXPORT_SYMBOL(alloc_pages_exact); 4719 4720 /** 4721 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4722 * pages on a node. 4723 * @nid: the preferred node ID where memory should be allocated 4724 * @size: the number of bytes to allocate 4725 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4726 * 4727 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4728 * back. 4729 * 4730 * Return: pointer to the allocated area or %NULL in case of error. 4731 */ 4732 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4733 { 4734 unsigned int order = get_order(size); 4735 struct page *p; 4736 4737 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4738 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4739 4740 p = alloc_pages_node(nid, gfp_mask, order); 4741 if (!p) 4742 return NULL; 4743 return make_alloc_exact((unsigned long)page_address(p), order, size); 4744 } 4745 4746 /** 4747 * free_pages_exact - release memory allocated via alloc_pages_exact() 4748 * @virt: the value returned by alloc_pages_exact. 4749 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4750 * 4751 * Release the memory allocated by a previous call to alloc_pages_exact. 4752 */ 4753 void free_pages_exact(void *virt, size_t size) 4754 { 4755 unsigned long addr = (unsigned long)virt; 4756 unsigned long end = addr + PAGE_ALIGN(size); 4757 4758 while (addr < end) { 4759 free_page(addr); 4760 addr += PAGE_SIZE; 4761 } 4762 } 4763 EXPORT_SYMBOL(free_pages_exact); 4764 4765 /** 4766 * nr_free_zone_pages - count number of pages beyond high watermark 4767 * @offset: The zone index of the highest zone 4768 * 4769 * nr_free_zone_pages() counts the number of pages which are beyond the 4770 * high watermark within all zones at or below a given zone index. For each 4771 * zone, the number of pages is calculated as: 4772 * 4773 * nr_free_zone_pages = managed_pages - high_pages 4774 * 4775 * Return: number of pages beyond high watermark. 4776 */ 4777 static unsigned long nr_free_zone_pages(int offset) 4778 { 4779 struct zoneref *z; 4780 struct zone *zone; 4781 4782 /* Just pick one node, since fallback list is circular */ 4783 unsigned long sum = 0; 4784 4785 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4786 4787 for_each_zone_zonelist(zone, z, zonelist, offset) { 4788 unsigned long size = zone_managed_pages(zone); 4789 unsigned long high = high_wmark_pages(zone); 4790 if (size > high) 4791 sum += size - high; 4792 } 4793 4794 return sum; 4795 } 4796 4797 /** 4798 * nr_free_buffer_pages - count number of pages beyond high watermark 4799 * 4800 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4801 * watermark within ZONE_DMA and ZONE_NORMAL. 4802 * 4803 * Return: number of pages beyond high watermark within ZONE_DMA and 4804 * ZONE_NORMAL. 4805 */ 4806 unsigned long nr_free_buffer_pages(void) 4807 { 4808 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4809 } 4810 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4811 4812 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4813 { 4814 zoneref->zone = zone; 4815 zoneref->zone_idx = zone_idx(zone); 4816 } 4817 4818 /* 4819 * Builds allocation fallback zone lists. 4820 * 4821 * Add all populated zones of a node to the zonelist. 4822 */ 4823 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4824 { 4825 struct zone *zone; 4826 enum zone_type zone_type = MAX_NR_ZONES; 4827 int nr_zones = 0; 4828 4829 do { 4830 zone_type--; 4831 zone = pgdat->node_zones + zone_type; 4832 if (populated_zone(zone)) { 4833 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4834 check_highest_zone(zone_type); 4835 } 4836 } while (zone_type); 4837 4838 return nr_zones; 4839 } 4840 4841 #ifdef CONFIG_NUMA 4842 4843 static int __parse_numa_zonelist_order(char *s) 4844 { 4845 /* 4846 * We used to support different zonelists modes but they turned 4847 * out to be just not useful. Let's keep the warning in place 4848 * if somebody still use the cmd line parameter so that we do 4849 * not fail it silently 4850 */ 4851 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4852 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4853 return -EINVAL; 4854 } 4855 return 0; 4856 } 4857 4858 static char numa_zonelist_order[] = "Node"; 4859 #define NUMA_ZONELIST_ORDER_LEN 16 4860 /* 4861 * sysctl handler for numa_zonelist_order 4862 */ 4863 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 4864 void *buffer, size_t *length, loff_t *ppos) 4865 { 4866 if (write) 4867 return __parse_numa_zonelist_order(buffer); 4868 return proc_dostring(table, write, buffer, length, ppos); 4869 } 4870 4871 static int node_load[MAX_NUMNODES]; 4872 4873 /** 4874 * find_next_best_node - find the next node that should appear in a given node's fallback list 4875 * @node: node whose fallback list we're appending 4876 * @used_node_mask: nodemask_t of already used nodes 4877 * 4878 * We use a number of factors to determine which is the next node that should 4879 * appear on a given node's fallback list. The node should not have appeared 4880 * already in @node's fallback list, and it should be the next closest node 4881 * according to the distance array (which contains arbitrary distance values 4882 * from each node to each node in the system), and should also prefer nodes 4883 * with no CPUs, since presumably they'll have very little allocation pressure 4884 * on them otherwise. 4885 * 4886 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 4887 */ 4888 int find_next_best_node(int node, nodemask_t *used_node_mask) 4889 { 4890 int n, val; 4891 int min_val = INT_MAX; 4892 int best_node = NUMA_NO_NODE; 4893 4894 /* Use the local node if we haven't already */ 4895 if (!node_isset(node, *used_node_mask)) { 4896 node_set(node, *used_node_mask); 4897 return node; 4898 } 4899 4900 for_each_node_state(n, N_MEMORY) { 4901 4902 /* Don't want a node to appear more than once */ 4903 if (node_isset(n, *used_node_mask)) 4904 continue; 4905 4906 /* Use the distance array to find the distance */ 4907 val = node_distance(node, n); 4908 4909 /* Penalize nodes under us ("prefer the next node") */ 4910 val += (n < node); 4911 4912 /* Give preference to headless and unused nodes */ 4913 if (!cpumask_empty(cpumask_of_node(n))) 4914 val += PENALTY_FOR_NODE_WITH_CPUS; 4915 4916 /* Slight preference for less loaded node */ 4917 val *= MAX_NUMNODES; 4918 val += node_load[n]; 4919 4920 if (val < min_val) { 4921 min_val = val; 4922 best_node = n; 4923 } 4924 } 4925 4926 if (best_node >= 0) 4927 node_set(best_node, *used_node_mask); 4928 4929 return best_node; 4930 } 4931 4932 4933 /* 4934 * Build zonelists ordered by node and zones within node. 4935 * This results in maximum locality--normal zone overflows into local 4936 * DMA zone, if any--but risks exhausting DMA zone. 4937 */ 4938 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 4939 unsigned nr_nodes) 4940 { 4941 struct zoneref *zonerefs; 4942 int i; 4943 4944 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 4945 4946 for (i = 0; i < nr_nodes; i++) { 4947 int nr_zones; 4948 4949 pg_data_t *node = NODE_DATA(node_order[i]); 4950 4951 nr_zones = build_zonerefs_node(node, zonerefs); 4952 zonerefs += nr_zones; 4953 } 4954 zonerefs->zone = NULL; 4955 zonerefs->zone_idx = 0; 4956 } 4957 4958 /* 4959 * Build gfp_thisnode zonelists 4960 */ 4961 static void build_thisnode_zonelists(pg_data_t *pgdat) 4962 { 4963 struct zoneref *zonerefs; 4964 int nr_zones; 4965 4966 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 4967 nr_zones = build_zonerefs_node(pgdat, zonerefs); 4968 zonerefs += nr_zones; 4969 zonerefs->zone = NULL; 4970 zonerefs->zone_idx = 0; 4971 } 4972 4973 /* 4974 * Build zonelists ordered by zone and nodes within zones. 4975 * This results in conserving DMA zone[s] until all Normal memory is 4976 * exhausted, but results in overflowing to remote node while memory 4977 * may still exist in local DMA zone. 4978 */ 4979 4980 static void build_zonelists(pg_data_t *pgdat) 4981 { 4982 static int node_order[MAX_NUMNODES]; 4983 int node, nr_nodes = 0; 4984 nodemask_t used_mask = NODE_MASK_NONE; 4985 int local_node, prev_node; 4986 4987 /* NUMA-aware ordering of nodes */ 4988 local_node = pgdat->node_id; 4989 prev_node = local_node; 4990 4991 memset(node_order, 0, sizeof(node_order)); 4992 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4993 /* 4994 * We don't want to pressure a particular node. 4995 * So adding penalty to the first node in same 4996 * distance group to make it round-robin. 4997 */ 4998 if (node_distance(local_node, node) != 4999 node_distance(local_node, prev_node)) 5000 node_load[node] += 1; 5001 5002 node_order[nr_nodes++] = node; 5003 prev_node = node; 5004 } 5005 5006 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5007 build_thisnode_zonelists(pgdat); 5008 pr_info("Fallback order for Node %d: ", local_node); 5009 for (node = 0; node < nr_nodes; node++) 5010 pr_cont("%d ", node_order[node]); 5011 pr_cont("\n"); 5012 } 5013 5014 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5015 /* 5016 * Return node id of node used for "local" allocations. 5017 * I.e., first node id of first zone in arg node's generic zonelist. 5018 * Used for initializing percpu 'numa_mem', which is used primarily 5019 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5020 */ 5021 int local_memory_node(int node) 5022 { 5023 struct zoneref *z; 5024 5025 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5026 gfp_zone(GFP_KERNEL), 5027 NULL); 5028 return zone_to_nid(z->zone); 5029 } 5030 #endif 5031 5032 static void setup_min_unmapped_ratio(void); 5033 static void setup_min_slab_ratio(void); 5034 #else /* CONFIG_NUMA */ 5035 5036 static void build_zonelists(pg_data_t *pgdat) 5037 { 5038 int node, local_node; 5039 struct zoneref *zonerefs; 5040 int nr_zones; 5041 5042 local_node = pgdat->node_id; 5043 5044 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5045 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5046 zonerefs += nr_zones; 5047 5048 /* 5049 * Now we build the zonelist so that it contains the zones 5050 * of all the other nodes. 5051 * We don't want to pressure a particular node, so when 5052 * building the zones for node N, we make sure that the 5053 * zones coming right after the local ones are those from 5054 * node N+1 (modulo N) 5055 */ 5056 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5057 if (!node_online(node)) 5058 continue; 5059 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5060 zonerefs += nr_zones; 5061 } 5062 for (node = 0; node < local_node; node++) { 5063 if (!node_online(node)) 5064 continue; 5065 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5066 zonerefs += nr_zones; 5067 } 5068 5069 zonerefs->zone = NULL; 5070 zonerefs->zone_idx = 0; 5071 } 5072 5073 #endif /* CONFIG_NUMA */ 5074 5075 /* 5076 * Boot pageset table. One per cpu which is going to be used for all 5077 * zones and all nodes. The parameters will be set in such a way 5078 * that an item put on a list will immediately be handed over to 5079 * the buddy list. This is safe since pageset manipulation is done 5080 * with interrupts disabled. 5081 * 5082 * The boot_pagesets must be kept even after bootup is complete for 5083 * unused processors and/or zones. They do play a role for bootstrapping 5084 * hotplugged processors. 5085 * 5086 * zoneinfo_show() and maybe other functions do 5087 * not check if the processor is online before following the pageset pointer. 5088 * Other parts of the kernel may not check if the zone is available. 5089 */ 5090 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5091 /* These effectively disable the pcplists in the boot pageset completely */ 5092 #define BOOT_PAGESET_HIGH 0 5093 #define BOOT_PAGESET_BATCH 1 5094 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5095 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5096 5097 static void __build_all_zonelists(void *data) 5098 { 5099 int nid; 5100 int __maybe_unused cpu; 5101 pg_data_t *self = data; 5102 unsigned long flags; 5103 5104 /* 5105 * The zonelist_update_seq must be acquired with irqsave because the 5106 * reader can be invoked from IRQ with GFP_ATOMIC. 5107 */ 5108 write_seqlock_irqsave(&zonelist_update_seq, flags); 5109 /* 5110 * Also disable synchronous printk() to prevent any printk() from 5111 * trying to hold port->lock, for 5112 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5113 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5114 */ 5115 printk_deferred_enter(); 5116 5117 #ifdef CONFIG_NUMA 5118 memset(node_load, 0, sizeof(node_load)); 5119 #endif 5120 5121 /* 5122 * This node is hotadded and no memory is yet present. So just 5123 * building zonelists is fine - no need to touch other nodes. 5124 */ 5125 if (self && !node_online(self->node_id)) { 5126 build_zonelists(self); 5127 } else { 5128 /* 5129 * All possible nodes have pgdat preallocated 5130 * in free_area_init 5131 */ 5132 for_each_node(nid) { 5133 pg_data_t *pgdat = NODE_DATA(nid); 5134 5135 build_zonelists(pgdat); 5136 } 5137 5138 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5139 /* 5140 * We now know the "local memory node" for each node-- 5141 * i.e., the node of the first zone in the generic zonelist. 5142 * Set up numa_mem percpu variable for on-line cpus. During 5143 * boot, only the boot cpu should be on-line; we'll init the 5144 * secondary cpus' numa_mem as they come on-line. During 5145 * node/memory hotplug, we'll fixup all on-line cpus. 5146 */ 5147 for_each_online_cpu(cpu) 5148 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5149 #endif 5150 } 5151 5152 printk_deferred_exit(); 5153 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5154 } 5155 5156 static noinline void __init 5157 build_all_zonelists_init(void) 5158 { 5159 int cpu; 5160 5161 __build_all_zonelists(NULL); 5162 5163 /* 5164 * Initialize the boot_pagesets that are going to be used 5165 * for bootstrapping processors. The real pagesets for 5166 * each zone will be allocated later when the per cpu 5167 * allocator is available. 5168 * 5169 * boot_pagesets are used also for bootstrapping offline 5170 * cpus if the system is already booted because the pagesets 5171 * are needed to initialize allocators on a specific cpu too. 5172 * F.e. the percpu allocator needs the page allocator which 5173 * needs the percpu allocator in order to allocate its pagesets 5174 * (a chicken-egg dilemma). 5175 */ 5176 for_each_possible_cpu(cpu) 5177 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5178 5179 mminit_verify_zonelist(); 5180 cpuset_init_current_mems_allowed(); 5181 } 5182 5183 /* 5184 * unless system_state == SYSTEM_BOOTING. 5185 * 5186 * __ref due to call of __init annotated helper build_all_zonelists_init 5187 * [protected by SYSTEM_BOOTING]. 5188 */ 5189 void __ref build_all_zonelists(pg_data_t *pgdat) 5190 { 5191 unsigned long vm_total_pages; 5192 5193 if (system_state == SYSTEM_BOOTING) { 5194 build_all_zonelists_init(); 5195 } else { 5196 __build_all_zonelists(pgdat); 5197 /* cpuset refresh routine should be here */ 5198 } 5199 /* Get the number of free pages beyond high watermark in all zones. */ 5200 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5201 /* 5202 * Disable grouping by mobility if the number of pages in the 5203 * system is too low to allow the mechanism to work. It would be 5204 * more accurate, but expensive to check per-zone. This check is 5205 * made on memory-hotadd so a system can start with mobility 5206 * disabled and enable it later 5207 */ 5208 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5209 page_group_by_mobility_disabled = 1; 5210 else 5211 page_group_by_mobility_disabled = 0; 5212 5213 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5214 nr_online_nodes, 5215 page_group_by_mobility_disabled ? "off" : "on", 5216 vm_total_pages); 5217 #ifdef CONFIG_NUMA 5218 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5219 #endif 5220 } 5221 5222 static int zone_batchsize(struct zone *zone) 5223 { 5224 #ifdef CONFIG_MMU 5225 int batch; 5226 5227 /* 5228 * The number of pages to batch allocate is either ~0.1% 5229 * of the zone or 1MB, whichever is smaller. The batch 5230 * size is striking a balance between allocation latency 5231 * and zone lock contention. 5232 */ 5233 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5234 batch /= 4; /* We effectively *= 4 below */ 5235 if (batch < 1) 5236 batch = 1; 5237 5238 /* 5239 * Clamp the batch to a 2^n - 1 value. Having a power 5240 * of 2 value was found to be more likely to have 5241 * suboptimal cache aliasing properties in some cases. 5242 * 5243 * For example if 2 tasks are alternately allocating 5244 * batches of pages, one task can end up with a lot 5245 * of pages of one half of the possible page colors 5246 * and the other with pages of the other colors. 5247 */ 5248 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5249 5250 return batch; 5251 5252 #else 5253 /* The deferral and batching of frees should be suppressed under NOMMU 5254 * conditions. 5255 * 5256 * The problem is that NOMMU needs to be able to allocate large chunks 5257 * of contiguous memory as there's no hardware page translation to 5258 * assemble apparent contiguous memory from discontiguous pages. 5259 * 5260 * Queueing large contiguous runs of pages for batching, however, 5261 * causes the pages to actually be freed in smaller chunks. As there 5262 * can be a significant delay between the individual batches being 5263 * recycled, this leads to the once large chunks of space being 5264 * fragmented and becoming unavailable for high-order allocations. 5265 */ 5266 return 0; 5267 #endif 5268 } 5269 5270 static int percpu_pagelist_high_fraction; 5271 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 5272 { 5273 #ifdef CONFIG_MMU 5274 int high; 5275 int nr_split_cpus; 5276 unsigned long total_pages; 5277 5278 if (!percpu_pagelist_high_fraction) { 5279 /* 5280 * By default, the high value of the pcp is based on the zone 5281 * low watermark so that if they are full then background 5282 * reclaim will not be started prematurely. 5283 */ 5284 total_pages = low_wmark_pages(zone); 5285 } else { 5286 /* 5287 * If percpu_pagelist_high_fraction is configured, the high 5288 * value is based on a fraction of the managed pages in the 5289 * zone. 5290 */ 5291 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 5292 } 5293 5294 /* 5295 * Split the high value across all online CPUs local to the zone. Note 5296 * that early in boot that CPUs may not be online yet and that during 5297 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5298 * onlined. For memory nodes that have no CPUs, split pcp->high across 5299 * all online CPUs to mitigate the risk that reclaim is triggered 5300 * prematurely due to pages stored on pcp lists. 5301 */ 5302 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5303 if (!nr_split_cpus) 5304 nr_split_cpus = num_online_cpus(); 5305 high = total_pages / nr_split_cpus; 5306 5307 /* 5308 * Ensure high is at least batch*4. The multiple is based on the 5309 * historical relationship between high and batch. 5310 */ 5311 high = max(high, batch << 2); 5312 5313 return high; 5314 #else 5315 return 0; 5316 #endif 5317 } 5318 5319 /* 5320 * pcp->high and pcp->batch values are related and generally batch is lower 5321 * than high. They are also related to pcp->count such that count is lower 5322 * than high, and as soon as it reaches high, the pcplist is flushed. 5323 * 5324 * However, guaranteeing these relations at all times would require e.g. write 5325 * barriers here but also careful usage of read barriers at the read side, and 5326 * thus be prone to error and bad for performance. Thus the update only prevents 5327 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 5328 * can cope with those fields changing asynchronously, and fully trust only the 5329 * pcp->count field on the local CPU with interrupts disabled. 5330 * 5331 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5332 * outside of boot time (or some other assurance that no concurrent updaters 5333 * exist). 5334 */ 5335 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5336 unsigned long batch) 5337 { 5338 WRITE_ONCE(pcp->batch, batch); 5339 WRITE_ONCE(pcp->high, high); 5340 } 5341 5342 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5343 { 5344 int pindex; 5345 5346 memset(pcp, 0, sizeof(*pcp)); 5347 memset(pzstats, 0, sizeof(*pzstats)); 5348 5349 spin_lock_init(&pcp->lock); 5350 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5351 INIT_LIST_HEAD(&pcp->lists[pindex]); 5352 5353 /* 5354 * Set batch and high values safe for a boot pageset. A true percpu 5355 * pageset's initialization will update them subsequently. Here we don't 5356 * need to be as careful as pageset_update() as nobody can access the 5357 * pageset yet. 5358 */ 5359 pcp->high = BOOT_PAGESET_HIGH; 5360 pcp->batch = BOOT_PAGESET_BATCH; 5361 pcp->free_factor = 0; 5362 } 5363 5364 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 5365 unsigned long batch) 5366 { 5367 struct per_cpu_pages *pcp; 5368 int cpu; 5369 5370 for_each_possible_cpu(cpu) { 5371 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5372 pageset_update(pcp, high, batch); 5373 } 5374 } 5375 5376 /* 5377 * Calculate and set new high and batch values for all per-cpu pagesets of a 5378 * zone based on the zone's size. 5379 */ 5380 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5381 { 5382 int new_high, new_batch; 5383 5384 new_batch = max(1, zone_batchsize(zone)); 5385 new_high = zone_highsize(zone, new_batch, cpu_online); 5386 5387 if (zone->pageset_high == new_high && 5388 zone->pageset_batch == new_batch) 5389 return; 5390 5391 zone->pageset_high = new_high; 5392 zone->pageset_batch = new_batch; 5393 5394 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 5395 } 5396 5397 void __meminit setup_zone_pageset(struct zone *zone) 5398 { 5399 int cpu; 5400 5401 /* Size may be 0 on !SMP && !NUMA */ 5402 if (sizeof(struct per_cpu_zonestat) > 0) 5403 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5404 5405 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5406 for_each_possible_cpu(cpu) { 5407 struct per_cpu_pages *pcp; 5408 struct per_cpu_zonestat *pzstats; 5409 5410 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5411 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5412 per_cpu_pages_init(pcp, pzstats); 5413 } 5414 5415 zone_set_pageset_high_and_batch(zone, 0); 5416 } 5417 5418 /* 5419 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5420 * page high values need to be recalculated. 5421 */ 5422 static void zone_pcp_update(struct zone *zone, int cpu_online) 5423 { 5424 mutex_lock(&pcp_batch_high_lock); 5425 zone_set_pageset_high_and_batch(zone, cpu_online); 5426 mutex_unlock(&pcp_batch_high_lock); 5427 } 5428 5429 /* 5430 * Allocate per cpu pagesets and initialize them. 5431 * Before this call only boot pagesets were available. 5432 */ 5433 void __init setup_per_cpu_pageset(void) 5434 { 5435 struct pglist_data *pgdat; 5436 struct zone *zone; 5437 int __maybe_unused cpu; 5438 5439 for_each_populated_zone(zone) 5440 setup_zone_pageset(zone); 5441 5442 #ifdef CONFIG_NUMA 5443 /* 5444 * Unpopulated zones continue using the boot pagesets. 5445 * The numa stats for these pagesets need to be reset. 5446 * Otherwise, they will end up skewing the stats of 5447 * the nodes these zones are associated with. 5448 */ 5449 for_each_possible_cpu(cpu) { 5450 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5451 memset(pzstats->vm_numa_event, 0, 5452 sizeof(pzstats->vm_numa_event)); 5453 } 5454 #endif 5455 5456 for_each_online_pgdat(pgdat) 5457 pgdat->per_cpu_nodestats = 5458 alloc_percpu(struct per_cpu_nodestat); 5459 } 5460 5461 __meminit void zone_pcp_init(struct zone *zone) 5462 { 5463 /* 5464 * per cpu subsystem is not up at this point. The following code 5465 * relies on the ability of the linker to provide the 5466 * offset of a (static) per cpu variable into the per cpu area. 5467 */ 5468 zone->per_cpu_pageset = &boot_pageset; 5469 zone->per_cpu_zonestats = &boot_zonestats; 5470 zone->pageset_high = BOOT_PAGESET_HIGH; 5471 zone->pageset_batch = BOOT_PAGESET_BATCH; 5472 5473 if (populated_zone(zone)) 5474 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5475 zone->present_pages, zone_batchsize(zone)); 5476 } 5477 5478 void adjust_managed_page_count(struct page *page, long count) 5479 { 5480 atomic_long_add(count, &page_zone(page)->managed_pages); 5481 totalram_pages_add(count); 5482 #ifdef CONFIG_HIGHMEM 5483 if (PageHighMem(page)) 5484 totalhigh_pages_add(count); 5485 #endif 5486 } 5487 EXPORT_SYMBOL(adjust_managed_page_count); 5488 5489 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5490 { 5491 void *pos; 5492 unsigned long pages = 0; 5493 5494 start = (void *)PAGE_ALIGN((unsigned long)start); 5495 end = (void *)((unsigned long)end & PAGE_MASK); 5496 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5497 struct page *page = virt_to_page(pos); 5498 void *direct_map_addr; 5499 5500 /* 5501 * 'direct_map_addr' might be different from 'pos' 5502 * because some architectures' virt_to_page() 5503 * work with aliases. Getting the direct map 5504 * address ensures that we get a _writeable_ 5505 * alias for the memset(). 5506 */ 5507 direct_map_addr = page_address(page); 5508 /* 5509 * Perform a kasan-unchecked memset() since this memory 5510 * has not been initialized. 5511 */ 5512 direct_map_addr = kasan_reset_tag(direct_map_addr); 5513 if ((unsigned int)poison <= 0xFF) 5514 memset(direct_map_addr, poison, PAGE_SIZE); 5515 5516 free_reserved_page(page); 5517 } 5518 5519 if (pages && s) 5520 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5521 5522 return pages; 5523 } 5524 5525 static int page_alloc_cpu_dead(unsigned int cpu) 5526 { 5527 struct zone *zone; 5528 5529 lru_add_drain_cpu(cpu); 5530 mlock_drain_remote(cpu); 5531 drain_pages(cpu); 5532 5533 /* 5534 * Spill the event counters of the dead processor 5535 * into the current processors event counters. 5536 * This artificially elevates the count of the current 5537 * processor. 5538 */ 5539 vm_events_fold_cpu(cpu); 5540 5541 /* 5542 * Zero the differential counters of the dead processor 5543 * so that the vm statistics are consistent. 5544 * 5545 * This is only okay since the processor is dead and cannot 5546 * race with what we are doing. 5547 */ 5548 cpu_vm_stats_fold(cpu); 5549 5550 for_each_populated_zone(zone) 5551 zone_pcp_update(zone, 0); 5552 5553 return 0; 5554 } 5555 5556 static int page_alloc_cpu_online(unsigned int cpu) 5557 { 5558 struct zone *zone; 5559 5560 for_each_populated_zone(zone) 5561 zone_pcp_update(zone, 1); 5562 return 0; 5563 } 5564 5565 void __init page_alloc_init_cpuhp(void) 5566 { 5567 int ret; 5568 5569 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5570 "mm/page_alloc:pcp", 5571 page_alloc_cpu_online, 5572 page_alloc_cpu_dead); 5573 WARN_ON(ret < 0); 5574 } 5575 5576 /* 5577 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5578 * or min_free_kbytes changes. 5579 */ 5580 static void calculate_totalreserve_pages(void) 5581 { 5582 struct pglist_data *pgdat; 5583 unsigned long reserve_pages = 0; 5584 enum zone_type i, j; 5585 5586 for_each_online_pgdat(pgdat) { 5587 5588 pgdat->totalreserve_pages = 0; 5589 5590 for (i = 0; i < MAX_NR_ZONES; i++) { 5591 struct zone *zone = pgdat->node_zones + i; 5592 long max = 0; 5593 unsigned long managed_pages = zone_managed_pages(zone); 5594 5595 /* Find valid and maximum lowmem_reserve in the zone */ 5596 for (j = i; j < MAX_NR_ZONES; j++) { 5597 if (zone->lowmem_reserve[j] > max) 5598 max = zone->lowmem_reserve[j]; 5599 } 5600 5601 /* we treat the high watermark as reserved pages. */ 5602 max += high_wmark_pages(zone); 5603 5604 if (max > managed_pages) 5605 max = managed_pages; 5606 5607 pgdat->totalreserve_pages += max; 5608 5609 reserve_pages += max; 5610 } 5611 } 5612 totalreserve_pages = reserve_pages; 5613 } 5614 5615 /* 5616 * setup_per_zone_lowmem_reserve - called whenever 5617 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5618 * has a correct pages reserved value, so an adequate number of 5619 * pages are left in the zone after a successful __alloc_pages(). 5620 */ 5621 static void setup_per_zone_lowmem_reserve(void) 5622 { 5623 struct pglist_data *pgdat; 5624 enum zone_type i, j; 5625 5626 for_each_online_pgdat(pgdat) { 5627 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5628 struct zone *zone = &pgdat->node_zones[i]; 5629 int ratio = sysctl_lowmem_reserve_ratio[i]; 5630 bool clear = !ratio || !zone_managed_pages(zone); 5631 unsigned long managed_pages = 0; 5632 5633 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5634 struct zone *upper_zone = &pgdat->node_zones[j]; 5635 5636 managed_pages += zone_managed_pages(upper_zone); 5637 5638 if (clear) 5639 zone->lowmem_reserve[j] = 0; 5640 else 5641 zone->lowmem_reserve[j] = managed_pages / ratio; 5642 } 5643 } 5644 } 5645 5646 /* update totalreserve_pages */ 5647 calculate_totalreserve_pages(); 5648 } 5649 5650 static void __setup_per_zone_wmarks(void) 5651 { 5652 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5653 unsigned long lowmem_pages = 0; 5654 struct zone *zone; 5655 unsigned long flags; 5656 5657 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5658 for_each_zone(zone) { 5659 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5660 lowmem_pages += zone_managed_pages(zone); 5661 } 5662 5663 for_each_zone(zone) { 5664 u64 tmp; 5665 5666 spin_lock_irqsave(&zone->lock, flags); 5667 tmp = (u64)pages_min * zone_managed_pages(zone); 5668 do_div(tmp, lowmem_pages); 5669 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5670 /* 5671 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5672 * need highmem and movable zones pages, so cap pages_min 5673 * to a small value here. 5674 * 5675 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5676 * deltas control async page reclaim, and so should 5677 * not be capped for highmem and movable zones. 5678 */ 5679 unsigned long min_pages; 5680 5681 min_pages = zone_managed_pages(zone) / 1024; 5682 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5683 zone->_watermark[WMARK_MIN] = min_pages; 5684 } else { 5685 /* 5686 * If it's a lowmem zone, reserve a number of pages 5687 * proportionate to the zone's size. 5688 */ 5689 zone->_watermark[WMARK_MIN] = tmp; 5690 } 5691 5692 /* 5693 * Set the kswapd watermarks distance according to the 5694 * scale factor in proportion to available memory, but 5695 * ensure a minimum size on small systems. 5696 */ 5697 tmp = max_t(u64, tmp >> 2, 5698 mult_frac(zone_managed_pages(zone), 5699 watermark_scale_factor, 10000)); 5700 5701 zone->watermark_boost = 0; 5702 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5703 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5704 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5705 5706 spin_unlock_irqrestore(&zone->lock, flags); 5707 } 5708 5709 /* update totalreserve_pages */ 5710 calculate_totalreserve_pages(); 5711 } 5712 5713 /** 5714 * setup_per_zone_wmarks - called when min_free_kbytes changes 5715 * or when memory is hot-{added|removed} 5716 * 5717 * Ensures that the watermark[min,low,high] values for each zone are set 5718 * correctly with respect to min_free_kbytes. 5719 */ 5720 void setup_per_zone_wmarks(void) 5721 { 5722 struct zone *zone; 5723 static DEFINE_SPINLOCK(lock); 5724 5725 spin_lock(&lock); 5726 __setup_per_zone_wmarks(); 5727 spin_unlock(&lock); 5728 5729 /* 5730 * The watermark size have changed so update the pcpu batch 5731 * and high limits or the limits may be inappropriate. 5732 */ 5733 for_each_zone(zone) 5734 zone_pcp_update(zone, 0); 5735 } 5736 5737 /* 5738 * Initialise min_free_kbytes. 5739 * 5740 * For small machines we want it small (128k min). For large machines 5741 * we want it large (256MB max). But it is not linear, because network 5742 * bandwidth does not increase linearly with machine size. We use 5743 * 5744 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5745 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5746 * 5747 * which yields 5748 * 5749 * 16MB: 512k 5750 * 32MB: 724k 5751 * 64MB: 1024k 5752 * 128MB: 1448k 5753 * 256MB: 2048k 5754 * 512MB: 2896k 5755 * 1024MB: 4096k 5756 * 2048MB: 5792k 5757 * 4096MB: 8192k 5758 * 8192MB: 11584k 5759 * 16384MB: 16384k 5760 */ 5761 void calculate_min_free_kbytes(void) 5762 { 5763 unsigned long lowmem_kbytes; 5764 int new_min_free_kbytes; 5765 5766 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5767 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5768 5769 if (new_min_free_kbytes > user_min_free_kbytes) 5770 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5771 else 5772 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5773 new_min_free_kbytes, user_min_free_kbytes); 5774 5775 } 5776 5777 int __meminit init_per_zone_wmark_min(void) 5778 { 5779 calculate_min_free_kbytes(); 5780 setup_per_zone_wmarks(); 5781 refresh_zone_stat_thresholds(); 5782 setup_per_zone_lowmem_reserve(); 5783 5784 #ifdef CONFIG_NUMA 5785 setup_min_unmapped_ratio(); 5786 setup_min_slab_ratio(); 5787 #endif 5788 5789 khugepaged_min_free_kbytes_update(); 5790 5791 return 0; 5792 } 5793 postcore_initcall(init_per_zone_wmark_min) 5794 5795 /* 5796 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5797 * that we can call two helper functions whenever min_free_kbytes 5798 * changes. 5799 */ 5800 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5801 void *buffer, size_t *length, loff_t *ppos) 5802 { 5803 int rc; 5804 5805 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5806 if (rc) 5807 return rc; 5808 5809 if (write) { 5810 user_min_free_kbytes = min_free_kbytes; 5811 setup_per_zone_wmarks(); 5812 } 5813 return 0; 5814 } 5815 5816 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 5817 void *buffer, size_t *length, loff_t *ppos) 5818 { 5819 int rc; 5820 5821 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5822 if (rc) 5823 return rc; 5824 5825 if (write) 5826 setup_per_zone_wmarks(); 5827 5828 return 0; 5829 } 5830 5831 #ifdef CONFIG_NUMA 5832 static void setup_min_unmapped_ratio(void) 5833 { 5834 pg_data_t *pgdat; 5835 struct zone *zone; 5836 5837 for_each_online_pgdat(pgdat) 5838 pgdat->min_unmapped_pages = 0; 5839 5840 for_each_zone(zone) 5841 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 5842 sysctl_min_unmapped_ratio) / 100; 5843 } 5844 5845 5846 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5847 void *buffer, size_t *length, loff_t *ppos) 5848 { 5849 int rc; 5850 5851 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5852 if (rc) 5853 return rc; 5854 5855 setup_min_unmapped_ratio(); 5856 5857 return 0; 5858 } 5859 5860 static void setup_min_slab_ratio(void) 5861 { 5862 pg_data_t *pgdat; 5863 struct zone *zone; 5864 5865 for_each_online_pgdat(pgdat) 5866 pgdat->min_slab_pages = 0; 5867 5868 for_each_zone(zone) 5869 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 5870 sysctl_min_slab_ratio) / 100; 5871 } 5872 5873 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5874 void *buffer, size_t *length, loff_t *ppos) 5875 { 5876 int rc; 5877 5878 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5879 if (rc) 5880 return rc; 5881 5882 setup_min_slab_ratio(); 5883 5884 return 0; 5885 } 5886 #endif 5887 5888 /* 5889 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5890 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5891 * whenever sysctl_lowmem_reserve_ratio changes. 5892 * 5893 * The reserve ratio obviously has absolutely no relation with the 5894 * minimum watermarks. The lowmem reserve ratio can only make sense 5895 * if in function of the boot time zone sizes. 5896 */ 5897 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 5898 int write, void *buffer, size_t *length, loff_t *ppos) 5899 { 5900 int i; 5901 5902 proc_dointvec_minmax(table, write, buffer, length, ppos); 5903 5904 for (i = 0; i < MAX_NR_ZONES; i++) { 5905 if (sysctl_lowmem_reserve_ratio[i] < 1) 5906 sysctl_lowmem_reserve_ratio[i] = 0; 5907 } 5908 5909 setup_per_zone_lowmem_reserve(); 5910 return 0; 5911 } 5912 5913 /* 5914 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 5915 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5916 * pagelist can have before it gets flushed back to buddy allocator. 5917 */ 5918 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 5919 int write, void *buffer, size_t *length, loff_t *ppos) 5920 { 5921 struct zone *zone; 5922 int old_percpu_pagelist_high_fraction; 5923 int ret; 5924 5925 mutex_lock(&pcp_batch_high_lock); 5926 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 5927 5928 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5929 if (!write || ret < 0) 5930 goto out; 5931 5932 /* Sanity checking to avoid pcp imbalance */ 5933 if (percpu_pagelist_high_fraction && 5934 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 5935 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 5936 ret = -EINVAL; 5937 goto out; 5938 } 5939 5940 /* No change? */ 5941 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 5942 goto out; 5943 5944 for_each_populated_zone(zone) 5945 zone_set_pageset_high_and_batch(zone, 0); 5946 out: 5947 mutex_unlock(&pcp_batch_high_lock); 5948 return ret; 5949 } 5950 5951 static struct ctl_table page_alloc_sysctl_table[] = { 5952 { 5953 .procname = "min_free_kbytes", 5954 .data = &min_free_kbytes, 5955 .maxlen = sizeof(min_free_kbytes), 5956 .mode = 0644, 5957 .proc_handler = min_free_kbytes_sysctl_handler, 5958 .extra1 = SYSCTL_ZERO, 5959 }, 5960 { 5961 .procname = "watermark_boost_factor", 5962 .data = &watermark_boost_factor, 5963 .maxlen = sizeof(watermark_boost_factor), 5964 .mode = 0644, 5965 .proc_handler = proc_dointvec_minmax, 5966 .extra1 = SYSCTL_ZERO, 5967 }, 5968 { 5969 .procname = "watermark_scale_factor", 5970 .data = &watermark_scale_factor, 5971 .maxlen = sizeof(watermark_scale_factor), 5972 .mode = 0644, 5973 .proc_handler = watermark_scale_factor_sysctl_handler, 5974 .extra1 = SYSCTL_ONE, 5975 .extra2 = SYSCTL_THREE_THOUSAND, 5976 }, 5977 { 5978 .procname = "percpu_pagelist_high_fraction", 5979 .data = &percpu_pagelist_high_fraction, 5980 .maxlen = sizeof(percpu_pagelist_high_fraction), 5981 .mode = 0644, 5982 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 5983 .extra1 = SYSCTL_ZERO, 5984 }, 5985 { 5986 .procname = "lowmem_reserve_ratio", 5987 .data = &sysctl_lowmem_reserve_ratio, 5988 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 5989 .mode = 0644, 5990 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 5991 }, 5992 #ifdef CONFIG_NUMA 5993 { 5994 .procname = "numa_zonelist_order", 5995 .data = &numa_zonelist_order, 5996 .maxlen = NUMA_ZONELIST_ORDER_LEN, 5997 .mode = 0644, 5998 .proc_handler = numa_zonelist_order_handler, 5999 }, 6000 { 6001 .procname = "min_unmapped_ratio", 6002 .data = &sysctl_min_unmapped_ratio, 6003 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6004 .mode = 0644, 6005 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6006 .extra1 = SYSCTL_ZERO, 6007 .extra2 = SYSCTL_ONE_HUNDRED, 6008 }, 6009 { 6010 .procname = "min_slab_ratio", 6011 .data = &sysctl_min_slab_ratio, 6012 .maxlen = sizeof(sysctl_min_slab_ratio), 6013 .mode = 0644, 6014 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6015 .extra1 = SYSCTL_ZERO, 6016 .extra2 = SYSCTL_ONE_HUNDRED, 6017 }, 6018 #endif 6019 {} 6020 }; 6021 6022 void __init page_alloc_sysctl_init(void) 6023 { 6024 register_sysctl_init("vm", page_alloc_sysctl_table); 6025 } 6026 6027 #ifdef CONFIG_CONTIG_ALLOC 6028 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6029 static void alloc_contig_dump_pages(struct list_head *page_list) 6030 { 6031 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6032 6033 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6034 struct page *page; 6035 6036 dump_stack(); 6037 list_for_each_entry(page, page_list, lru) 6038 dump_page(page, "migration failure"); 6039 } 6040 } 6041 6042 /* [start, end) must belong to a single zone. */ 6043 int __alloc_contig_migrate_range(struct compact_control *cc, 6044 unsigned long start, unsigned long end) 6045 { 6046 /* This function is based on compact_zone() from compaction.c. */ 6047 unsigned int nr_reclaimed; 6048 unsigned long pfn = start; 6049 unsigned int tries = 0; 6050 int ret = 0; 6051 struct migration_target_control mtc = { 6052 .nid = zone_to_nid(cc->zone), 6053 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6054 }; 6055 6056 lru_cache_disable(); 6057 6058 while (pfn < end || !list_empty(&cc->migratepages)) { 6059 if (fatal_signal_pending(current)) { 6060 ret = -EINTR; 6061 break; 6062 } 6063 6064 if (list_empty(&cc->migratepages)) { 6065 cc->nr_migratepages = 0; 6066 ret = isolate_migratepages_range(cc, pfn, end); 6067 if (ret && ret != -EAGAIN) 6068 break; 6069 pfn = cc->migrate_pfn; 6070 tries = 0; 6071 } else if (++tries == 5) { 6072 ret = -EBUSY; 6073 break; 6074 } 6075 6076 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6077 &cc->migratepages); 6078 cc->nr_migratepages -= nr_reclaimed; 6079 6080 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6081 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6082 6083 /* 6084 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6085 * to retry again over this error, so do the same here. 6086 */ 6087 if (ret == -ENOMEM) 6088 break; 6089 } 6090 6091 lru_cache_enable(); 6092 if (ret < 0) { 6093 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6094 alloc_contig_dump_pages(&cc->migratepages); 6095 putback_movable_pages(&cc->migratepages); 6096 return ret; 6097 } 6098 return 0; 6099 } 6100 6101 /** 6102 * alloc_contig_range() -- tries to allocate given range of pages 6103 * @start: start PFN to allocate 6104 * @end: one-past-the-last PFN to allocate 6105 * @migratetype: migratetype of the underlying pageblocks (either 6106 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6107 * in range must have the same migratetype and it must 6108 * be either of the two. 6109 * @gfp_mask: GFP mask to use during compaction 6110 * 6111 * The PFN range does not have to be pageblock aligned. The PFN range must 6112 * belong to a single zone. 6113 * 6114 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6115 * pageblocks in the range. Once isolated, the pageblocks should not 6116 * be modified by others. 6117 * 6118 * Return: zero on success or negative error code. On success all 6119 * pages which PFN is in [start, end) are allocated for the caller and 6120 * need to be freed with free_contig_range(). 6121 */ 6122 int alloc_contig_range(unsigned long start, unsigned long end, 6123 unsigned migratetype, gfp_t gfp_mask) 6124 { 6125 unsigned long outer_start, outer_end; 6126 int order; 6127 int ret = 0; 6128 6129 struct compact_control cc = { 6130 .nr_migratepages = 0, 6131 .order = -1, 6132 .zone = page_zone(pfn_to_page(start)), 6133 .mode = MIGRATE_SYNC, 6134 .ignore_skip_hint = true, 6135 .no_set_skip_hint = true, 6136 .gfp_mask = current_gfp_context(gfp_mask), 6137 .alloc_contig = true, 6138 }; 6139 INIT_LIST_HEAD(&cc.migratepages); 6140 6141 /* 6142 * What we do here is we mark all pageblocks in range as 6143 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6144 * have different sizes, and due to the way page allocator 6145 * work, start_isolate_page_range() has special handlings for this. 6146 * 6147 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6148 * migrate the pages from an unaligned range (ie. pages that 6149 * we are interested in). This will put all the pages in 6150 * range back to page allocator as MIGRATE_ISOLATE. 6151 * 6152 * When this is done, we take the pages in range from page 6153 * allocator removing them from the buddy system. This way 6154 * page allocator will never consider using them. 6155 * 6156 * This lets us mark the pageblocks back as 6157 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6158 * aligned range but not in the unaligned, original range are 6159 * put back to page allocator so that buddy can use them. 6160 */ 6161 6162 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6163 if (ret) 6164 goto done; 6165 6166 drain_all_pages(cc.zone); 6167 6168 /* 6169 * In case of -EBUSY, we'd like to know which page causes problem. 6170 * So, just fall through. test_pages_isolated() has a tracepoint 6171 * which will report the busy page. 6172 * 6173 * It is possible that busy pages could become available before 6174 * the call to test_pages_isolated, and the range will actually be 6175 * allocated. So, if we fall through be sure to clear ret so that 6176 * -EBUSY is not accidentally used or returned to caller. 6177 */ 6178 ret = __alloc_contig_migrate_range(&cc, start, end); 6179 if (ret && ret != -EBUSY) 6180 goto done; 6181 ret = 0; 6182 6183 /* 6184 * Pages from [start, end) are within a pageblock_nr_pages 6185 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6186 * more, all pages in [start, end) are free in page allocator. 6187 * What we are going to do is to allocate all pages from 6188 * [start, end) (that is remove them from page allocator). 6189 * 6190 * The only problem is that pages at the beginning and at the 6191 * end of interesting range may be not aligned with pages that 6192 * page allocator holds, ie. they can be part of higher order 6193 * pages. Because of this, we reserve the bigger range and 6194 * once this is done free the pages we are not interested in. 6195 * 6196 * We don't have to hold zone->lock here because the pages are 6197 * isolated thus they won't get removed from buddy. 6198 */ 6199 6200 order = 0; 6201 outer_start = start; 6202 while (!PageBuddy(pfn_to_page(outer_start))) { 6203 if (++order > MAX_ORDER) { 6204 outer_start = start; 6205 break; 6206 } 6207 outer_start &= ~0UL << order; 6208 } 6209 6210 if (outer_start != start) { 6211 order = buddy_order(pfn_to_page(outer_start)); 6212 6213 /* 6214 * outer_start page could be small order buddy page and 6215 * it doesn't include start page. Adjust outer_start 6216 * in this case to report failed page properly 6217 * on tracepoint in test_pages_isolated() 6218 */ 6219 if (outer_start + (1UL << order) <= start) 6220 outer_start = start; 6221 } 6222 6223 /* Make sure the range is really isolated. */ 6224 if (test_pages_isolated(outer_start, end, 0)) { 6225 ret = -EBUSY; 6226 goto done; 6227 } 6228 6229 /* Grab isolated pages from freelists. */ 6230 outer_end = isolate_freepages_range(&cc, outer_start, end); 6231 if (!outer_end) { 6232 ret = -EBUSY; 6233 goto done; 6234 } 6235 6236 /* Free head and tail (if any) */ 6237 if (start != outer_start) 6238 free_contig_range(outer_start, start - outer_start); 6239 if (end != outer_end) 6240 free_contig_range(end, outer_end - end); 6241 6242 done: 6243 undo_isolate_page_range(start, end, migratetype); 6244 return ret; 6245 } 6246 EXPORT_SYMBOL(alloc_contig_range); 6247 6248 static int __alloc_contig_pages(unsigned long start_pfn, 6249 unsigned long nr_pages, gfp_t gfp_mask) 6250 { 6251 unsigned long end_pfn = start_pfn + nr_pages; 6252 6253 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6254 gfp_mask); 6255 } 6256 6257 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6258 unsigned long nr_pages) 6259 { 6260 unsigned long i, end_pfn = start_pfn + nr_pages; 6261 struct page *page; 6262 6263 for (i = start_pfn; i < end_pfn; i++) { 6264 page = pfn_to_online_page(i); 6265 if (!page) 6266 return false; 6267 6268 if (page_zone(page) != z) 6269 return false; 6270 6271 if (PageReserved(page)) 6272 return false; 6273 6274 if (PageHuge(page)) 6275 return false; 6276 } 6277 return true; 6278 } 6279 6280 static bool zone_spans_last_pfn(const struct zone *zone, 6281 unsigned long start_pfn, unsigned long nr_pages) 6282 { 6283 unsigned long last_pfn = start_pfn + nr_pages - 1; 6284 6285 return zone_spans_pfn(zone, last_pfn); 6286 } 6287 6288 /** 6289 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6290 * @nr_pages: Number of contiguous pages to allocate 6291 * @gfp_mask: GFP mask to limit search and used during compaction 6292 * @nid: Target node 6293 * @nodemask: Mask for other possible nodes 6294 * 6295 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6296 * on an applicable zonelist to find a contiguous pfn range which can then be 6297 * tried for allocation with alloc_contig_range(). This routine is intended 6298 * for allocation requests which can not be fulfilled with the buddy allocator. 6299 * 6300 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6301 * power of two, then allocated range is also guaranteed to be aligned to same 6302 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6303 * 6304 * Allocated pages can be freed with free_contig_range() or by manually calling 6305 * __free_page() on each allocated page. 6306 * 6307 * Return: pointer to contiguous pages on success, or NULL if not successful. 6308 */ 6309 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6310 int nid, nodemask_t *nodemask) 6311 { 6312 unsigned long ret, pfn, flags; 6313 struct zonelist *zonelist; 6314 struct zone *zone; 6315 struct zoneref *z; 6316 6317 zonelist = node_zonelist(nid, gfp_mask); 6318 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6319 gfp_zone(gfp_mask), nodemask) { 6320 spin_lock_irqsave(&zone->lock, flags); 6321 6322 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6323 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6324 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6325 /* 6326 * We release the zone lock here because 6327 * alloc_contig_range() will also lock the zone 6328 * at some point. If there's an allocation 6329 * spinning on this lock, it may win the race 6330 * and cause alloc_contig_range() to fail... 6331 */ 6332 spin_unlock_irqrestore(&zone->lock, flags); 6333 ret = __alloc_contig_pages(pfn, nr_pages, 6334 gfp_mask); 6335 if (!ret) 6336 return pfn_to_page(pfn); 6337 spin_lock_irqsave(&zone->lock, flags); 6338 } 6339 pfn += nr_pages; 6340 } 6341 spin_unlock_irqrestore(&zone->lock, flags); 6342 } 6343 return NULL; 6344 } 6345 #endif /* CONFIG_CONTIG_ALLOC */ 6346 6347 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6348 { 6349 unsigned long count = 0; 6350 6351 for (; nr_pages--; pfn++) { 6352 struct page *page = pfn_to_page(pfn); 6353 6354 count += page_count(page) != 1; 6355 __free_page(page); 6356 } 6357 WARN(count != 0, "%lu pages are still in use!\n", count); 6358 } 6359 EXPORT_SYMBOL(free_contig_range); 6360 6361 /* 6362 * Effectively disable pcplists for the zone by setting the high limit to 0 6363 * and draining all cpus. A concurrent page freeing on another CPU that's about 6364 * to put the page on pcplist will either finish before the drain and the page 6365 * will be drained, or observe the new high limit and skip the pcplist. 6366 * 6367 * Must be paired with a call to zone_pcp_enable(). 6368 */ 6369 void zone_pcp_disable(struct zone *zone) 6370 { 6371 mutex_lock(&pcp_batch_high_lock); 6372 __zone_set_pageset_high_and_batch(zone, 0, 1); 6373 __drain_all_pages(zone, true); 6374 } 6375 6376 void zone_pcp_enable(struct zone *zone) 6377 { 6378 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 6379 mutex_unlock(&pcp_batch_high_lock); 6380 } 6381 6382 void zone_pcp_reset(struct zone *zone) 6383 { 6384 int cpu; 6385 struct per_cpu_zonestat *pzstats; 6386 6387 if (zone->per_cpu_pageset != &boot_pageset) { 6388 for_each_online_cpu(cpu) { 6389 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6390 drain_zonestat(zone, pzstats); 6391 } 6392 free_percpu(zone->per_cpu_pageset); 6393 zone->per_cpu_pageset = &boot_pageset; 6394 if (zone->per_cpu_zonestats != &boot_zonestats) { 6395 free_percpu(zone->per_cpu_zonestats); 6396 zone->per_cpu_zonestats = &boot_zonestats; 6397 } 6398 } 6399 } 6400 6401 #ifdef CONFIG_MEMORY_HOTREMOVE 6402 /* 6403 * All pages in the range must be in a single zone, must not contain holes, 6404 * must span full sections, and must be isolated before calling this function. 6405 */ 6406 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6407 { 6408 unsigned long pfn = start_pfn; 6409 struct page *page; 6410 struct zone *zone; 6411 unsigned int order; 6412 unsigned long flags; 6413 6414 offline_mem_sections(pfn, end_pfn); 6415 zone = page_zone(pfn_to_page(pfn)); 6416 spin_lock_irqsave(&zone->lock, flags); 6417 while (pfn < end_pfn) { 6418 page = pfn_to_page(pfn); 6419 /* 6420 * The HWPoisoned page may be not in buddy system, and 6421 * page_count() is not 0. 6422 */ 6423 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6424 pfn++; 6425 continue; 6426 } 6427 /* 6428 * At this point all remaining PageOffline() pages have a 6429 * reference count of 0 and can simply be skipped. 6430 */ 6431 if (PageOffline(page)) { 6432 BUG_ON(page_count(page)); 6433 BUG_ON(PageBuddy(page)); 6434 pfn++; 6435 continue; 6436 } 6437 6438 BUG_ON(page_count(page)); 6439 BUG_ON(!PageBuddy(page)); 6440 order = buddy_order(page); 6441 del_page_from_free_list(page, zone, order); 6442 pfn += (1 << order); 6443 } 6444 spin_unlock_irqrestore(&zone->lock, flags); 6445 } 6446 #endif 6447 6448 /* 6449 * This function returns a stable result only if called under zone lock. 6450 */ 6451 bool is_free_buddy_page(struct page *page) 6452 { 6453 unsigned long pfn = page_to_pfn(page); 6454 unsigned int order; 6455 6456 for (order = 0; order <= MAX_ORDER; order++) { 6457 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6458 6459 if (PageBuddy(page_head) && 6460 buddy_order_unsafe(page_head) >= order) 6461 break; 6462 } 6463 6464 return order <= MAX_ORDER; 6465 } 6466 EXPORT_SYMBOL(is_free_buddy_page); 6467 6468 #ifdef CONFIG_MEMORY_FAILURE 6469 /* 6470 * Break down a higher-order page in sub-pages, and keep our target out of 6471 * buddy allocator. 6472 */ 6473 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6474 struct page *target, int low, int high, 6475 int migratetype) 6476 { 6477 unsigned long size = 1 << high; 6478 struct page *current_buddy, *next_page; 6479 6480 while (high > low) { 6481 high--; 6482 size >>= 1; 6483 6484 if (target >= &page[size]) { 6485 next_page = page + size; 6486 current_buddy = page; 6487 } else { 6488 next_page = page; 6489 current_buddy = page + size; 6490 } 6491 6492 if (set_page_guard(zone, current_buddy, high, migratetype)) 6493 continue; 6494 6495 if (current_buddy != target) { 6496 add_to_free_list(current_buddy, zone, high, migratetype); 6497 set_buddy_order(current_buddy, high); 6498 page = next_page; 6499 } 6500 } 6501 } 6502 6503 /* 6504 * Take a page that will be marked as poisoned off the buddy allocator. 6505 */ 6506 bool take_page_off_buddy(struct page *page) 6507 { 6508 struct zone *zone = page_zone(page); 6509 unsigned long pfn = page_to_pfn(page); 6510 unsigned long flags; 6511 unsigned int order; 6512 bool ret = false; 6513 6514 spin_lock_irqsave(&zone->lock, flags); 6515 for (order = 0; order <= MAX_ORDER; order++) { 6516 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6517 int page_order = buddy_order(page_head); 6518 6519 if (PageBuddy(page_head) && page_order >= order) { 6520 unsigned long pfn_head = page_to_pfn(page_head); 6521 int migratetype = get_pfnblock_migratetype(page_head, 6522 pfn_head); 6523 6524 del_page_from_free_list(page_head, zone, page_order); 6525 break_down_buddy_pages(zone, page_head, page, 0, 6526 page_order, migratetype); 6527 SetPageHWPoisonTakenOff(page); 6528 if (!is_migrate_isolate(migratetype)) 6529 __mod_zone_freepage_state(zone, -1, migratetype); 6530 ret = true; 6531 break; 6532 } 6533 if (page_count(page_head) > 0) 6534 break; 6535 } 6536 spin_unlock_irqrestore(&zone->lock, flags); 6537 return ret; 6538 } 6539 6540 /* 6541 * Cancel takeoff done by take_page_off_buddy(). 6542 */ 6543 bool put_page_back_buddy(struct page *page) 6544 { 6545 struct zone *zone = page_zone(page); 6546 unsigned long pfn = page_to_pfn(page); 6547 unsigned long flags; 6548 int migratetype = get_pfnblock_migratetype(page, pfn); 6549 bool ret = false; 6550 6551 spin_lock_irqsave(&zone->lock, flags); 6552 if (put_page_testzero(page)) { 6553 ClearPageHWPoisonTakenOff(page); 6554 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6555 if (TestClearPageHWPoison(page)) { 6556 ret = true; 6557 } 6558 } 6559 spin_unlock_irqrestore(&zone->lock, flags); 6560 6561 return ret; 6562 } 6563 #endif 6564 6565 #ifdef CONFIG_ZONE_DMA 6566 bool has_managed_dma(void) 6567 { 6568 struct pglist_data *pgdat; 6569 6570 for_each_online_pgdat(pgdat) { 6571 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6572 6573 if (managed_zone(zone)) 6574 return true; 6575 } 6576 return false; 6577 } 6578 #endif /* CONFIG_ZONE_DMA */ 6579 6580 #ifdef CONFIG_UNACCEPTED_MEMORY 6581 6582 /* Counts number of zones with unaccepted pages. */ 6583 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6584 6585 static bool lazy_accept = true; 6586 6587 static int __init accept_memory_parse(char *p) 6588 { 6589 if (!strcmp(p, "lazy")) { 6590 lazy_accept = true; 6591 return 0; 6592 } else if (!strcmp(p, "eager")) { 6593 lazy_accept = false; 6594 return 0; 6595 } else { 6596 return -EINVAL; 6597 } 6598 } 6599 early_param("accept_memory", accept_memory_parse); 6600 6601 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6602 { 6603 phys_addr_t start = page_to_phys(page); 6604 phys_addr_t end = start + (PAGE_SIZE << order); 6605 6606 return range_contains_unaccepted_memory(start, end); 6607 } 6608 6609 static void accept_page(struct page *page, unsigned int order) 6610 { 6611 phys_addr_t start = page_to_phys(page); 6612 6613 accept_memory(start, start + (PAGE_SIZE << order)); 6614 } 6615 6616 static bool try_to_accept_memory_one(struct zone *zone) 6617 { 6618 unsigned long flags; 6619 struct page *page; 6620 bool last; 6621 6622 if (list_empty(&zone->unaccepted_pages)) 6623 return false; 6624 6625 spin_lock_irqsave(&zone->lock, flags); 6626 page = list_first_entry_or_null(&zone->unaccepted_pages, 6627 struct page, lru); 6628 if (!page) { 6629 spin_unlock_irqrestore(&zone->lock, flags); 6630 return false; 6631 } 6632 6633 list_del(&page->lru); 6634 last = list_empty(&zone->unaccepted_pages); 6635 6636 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6637 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6638 spin_unlock_irqrestore(&zone->lock, flags); 6639 6640 accept_page(page, MAX_ORDER); 6641 6642 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL); 6643 6644 if (last) 6645 static_branch_dec(&zones_with_unaccepted_pages); 6646 6647 return true; 6648 } 6649 6650 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6651 { 6652 long to_accept; 6653 int ret = false; 6654 6655 /* How much to accept to get to high watermark? */ 6656 to_accept = high_wmark_pages(zone) - 6657 (zone_page_state(zone, NR_FREE_PAGES) - 6658 __zone_watermark_unusable_free(zone, order, 0)); 6659 6660 /* Accept at least one page */ 6661 do { 6662 if (!try_to_accept_memory_one(zone)) 6663 break; 6664 ret = true; 6665 to_accept -= MAX_ORDER_NR_PAGES; 6666 } while (to_accept > 0); 6667 6668 return ret; 6669 } 6670 6671 static inline bool has_unaccepted_memory(void) 6672 { 6673 return static_branch_unlikely(&zones_with_unaccepted_pages); 6674 } 6675 6676 static bool __free_unaccepted(struct page *page) 6677 { 6678 struct zone *zone = page_zone(page); 6679 unsigned long flags; 6680 bool first = false; 6681 6682 if (!lazy_accept) 6683 return false; 6684 6685 spin_lock_irqsave(&zone->lock, flags); 6686 first = list_empty(&zone->unaccepted_pages); 6687 list_add_tail(&page->lru, &zone->unaccepted_pages); 6688 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6689 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6690 spin_unlock_irqrestore(&zone->lock, flags); 6691 6692 if (first) 6693 static_branch_inc(&zones_with_unaccepted_pages); 6694 6695 return true; 6696 } 6697 6698 #else 6699 6700 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6701 { 6702 return false; 6703 } 6704 6705 static void accept_page(struct page *page, unsigned int order) 6706 { 6707 } 6708 6709 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6710 { 6711 return false; 6712 } 6713 6714 static inline bool has_unaccepted_memory(void) 6715 { 6716 return false; 6717 } 6718 6719 static bool __free_unaccepted(struct page *page) 6720 { 6721 BUILD_BUG(); 6722 return false; 6723 } 6724 6725 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6726