1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/module.h> 31 #include <linux/suspend.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/slab.h> 35 #include <linux/ratelimit.h> 36 #include <linux/oom.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/random.h> 49 #include <linux/sort.h> 50 #include <linux/pfn.h> 51 #include <linux/backing-dev.h> 52 #include <linux/fault-inject.h> 53 #include <linux/page-isolation.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/sched/rt.h> 65 #include <linux/sched/mm.h> 66 #include <linux/page_owner.h> 67 #include <linux/page_table_check.h> 68 #include <linux/kthread.h> 69 #include <linux/memcontrol.h> 70 #include <linux/ftrace.h> 71 #include <linux/lockdep.h> 72 #include <linux/nmi.h> 73 #include <linux/psi.h> 74 #include <linux/padata.h> 75 #include <linux/khugepaged.h> 76 #include <linux/buffer_head.h> 77 #include <linux/delayacct.h> 78 #include <asm/sections.h> 79 #include <asm/tlbflush.h> 80 #include <asm/div64.h> 81 #include "internal.h" 82 #include "shuffle.h" 83 #include "page_reporting.h" 84 85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 86 typedef int __bitwise fpi_t; 87 88 /* No special request */ 89 #define FPI_NONE ((__force fpi_t)0) 90 91 /* 92 * Skip free page reporting notification for the (possibly merged) page. 93 * This does not hinder free page reporting from grabbing the page, 94 * reporting it and marking it "reported" - it only skips notifying 95 * the free page reporting infrastructure about a newly freed page. For 96 * example, used when temporarily pulling a page from a freelist and 97 * putting it back unmodified. 98 */ 99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 100 101 /* 102 * Place the (possibly merged) page to the tail of the freelist. Will ignore 103 * page shuffling (relevant code - e.g., memory onlining - is expected to 104 * shuffle the whole zone). 105 * 106 * Note: No code should rely on this flag for correctness - it's purely 107 * to allow for optimizations when handing back either fresh pages 108 * (memory onlining) or untouched pages (page isolation, free page 109 * reporting). 110 */ 111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 112 113 /* 114 * Don't poison memory with KASAN (only for the tag-based modes). 115 * During boot, all non-reserved memblock memory is exposed to page_alloc. 116 * Poisoning all that memory lengthens boot time, especially on systems with 117 * large amount of RAM. This flag is used to skip that poisoning. 118 * This is only done for the tag-based KASAN modes, as those are able to 119 * detect memory corruptions with the memory tags assigned by default. 120 * All memory allocated normally after boot gets poisoned as usual. 121 */ 122 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 123 124 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 125 static DEFINE_MUTEX(pcp_batch_high_lock); 126 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 127 128 struct pagesets { 129 local_lock_t lock; 130 }; 131 static DEFINE_PER_CPU(struct pagesets, pagesets) __maybe_unused = { 132 .lock = INIT_LOCAL_LOCK(lock), 133 }; 134 135 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 136 DEFINE_PER_CPU(int, numa_node); 137 EXPORT_PER_CPU_SYMBOL(numa_node); 138 #endif 139 140 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 141 142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 143 /* 144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 147 * defined in <linux/topology.h>. 148 */ 149 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 150 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 151 #endif 152 153 /* work_structs for global per-cpu drains */ 154 struct pcpu_drain { 155 struct zone *zone; 156 struct work_struct work; 157 }; 158 static DEFINE_MUTEX(pcpu_drain_mutex); 159 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 160 161 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 162 volatile unsigned long latent_entropy __latent_entropy; 163 EXPORT_SYMBOL(latent_entropy); 164 #endif 165 166 /* 167 * Array of node states. 168 */ 169 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 170 [N_POSSIBLE] = NODE_MASK_ALL, 171 [N_ONLINE] = { { [0] = 1UL } }, 172 #ifndef CONFIG_NUMA 173 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 174 #ifdef CONFIG_HIGHMEM 175 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 176 #endif 177 [N_MEMORY] = { { [0] = 1UL } }, 178 [N_CPU] = { { [0] = 1UL } }, 179 #endif /* NUMA */ 180 }; 181 EXPORT_SYMBOL(node_states); 182 183 atomic_long_t _totalram_pages __read_mostly; 184 EXPORT_SYMBOL(_totalram_pages); 185 unsigned long totalreserve_pages __read_mostly; 186 unsigned long totalcma_pages __read_mostly; 187 188 int percpu_pagelist_high_fraction; 189 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 191 EXPORT_SYMBOL(init_on_alloc); 192 193 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 194 EXPORT_SYMBOL(init_on_free); 195 196 static bool _init_on_alloc_enabled_early __read_mostly 197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 198 static int __init early_init_on_alloc(char *buf) 199 { 200 201 return kstrtobool(buf, &_init_on_alloc_enabled_early); 202 } 203 early_param("init_on_alloc", early_init_on_alloc); 204 205 static bool _init_on_free_enabled_early __read_mostly 206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 207 static int __init early_init_on_free(char *buf) 208 { 209 return kstrtobool(buf, &_init_on_free_enabled_early); 210 } 211 early_param("init_on_free", early_init_on_free); 212 213 /* 214 * A cached value of the page's pageblock's migratetype, used when the page is 215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 216 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 217 * Also the migratetype set in the page does not necessarily match the pcplist 218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 219 * other index - this ensures that it will be put on the correct CMA freelist. 220 */ 221 static inline int get_pcppage_migratetype(struct page *page) 222 { 223 return page->index; 224 } 225 226 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 227 { 228 page->index = migratetype; 229 } 230 231 #ifdef CONFIG_PM_SLEEP 232 /* 233 * The following functions are used by the suspend/hibernate code to temporarily 234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 235 * while devices are suspended. To avoid races with the suspend/hibernate code, 236 * they should always be called with system_transition_mutex held 237 * (gfp_allowed_mask also should only be modified with system_transition_mutex 238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 239 * with that modification). 240 */ 241 242 static gfp_t saved_gfp_mask; 243 244 void pm_restore_gfp_mask(void) 245 { 246 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 247 if (saved_gfp_mask) { 248 gfp_allowed_mask = saved_gfp_mask; 249 saved_gfp_mask = 0; 250 } 251 } 252 253 void pm_restrict_gfp_mask(void) 254 { 255 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 256 WARN_ON(saved_gfp_mask); 257 saved_gfp_mask = gfp_allowed_mask; 258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 259 } 260 261 bool pm_suspended_storage(void) 262 { 263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 264 return false; 265 return true; 266 } 267 #endif /* CONFIG_PM_SLEEP */ 268 269 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 270 unsigned int pageblock_order __read_mostly; 271 #endif 272 273 static void __free_pages_ok(struct page *page, unsigned int order, 274 fpi_t fpi_flags); 275 276 /* 277 * results with 256, 32 in the lowmem_reserve sysctl: 278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 279 * 1G machine -> (16M dma, 784M normal, 224M high) 280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 283 * 284 * TBD: should special case ZONE_DMA32 machines here - in those we normally 285 * don't need any ZONE_NORMAL reservation 286 */ 287 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 288 #ifdef CONFIG_ZONE_DMA 289 [ZONE_DMA] = 256, 290 #endif 291 #ifdef CONFIG_ZONE_DMA32 292 [ZONE_DMA32] = 256, 293 #endif 294 [ZONE_NORMAL] = 32, 295 #ifdef CONFIG_HIGHMEM 296 [ZONE_HIGHMEM] = 0, 297 #endif 298 [ZONE_MOVABLE] = 0, 299 }; 300 301 static char * const zone_names[MAX_NR_ZONES] = { 302 #ifdef CONFIG_ZONE_DMA 303 "DMA", 304 #endif 305 #ifdef CONFIG_ZONE_DMA32 306 "DMA32", 307 #endif 308 "Normal", 309 #ifdef CONFIG_HIGHMEM 310 "HighMem", 311 #endif 312 "Movable", 313 #ifdef CONFIG_ZONE_DEVICE 314 "Device", 315 #endif 316 }; 317 318 const char * const migratetype_names[MIGRATE_TYPES] = { 319 "Unmovable", 320 "Movable", 321 "Reclaimable", 322 "HighAtomic", 323 #ifdef CONFIG_CMA 324 "CMA", 325 #endif 326 #ifdef CONFIG_MEMORY_ISOLATION 327 "Isolate", 328 #endif 329 }; 330 331 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 332 [NULL_COMPOUND_DTOR] = NULL, 333 [COMPOUND_PAGE_DTOR] = free_compound_page, 334 #ifdef CONFIG_HUGETLB_PAGE 335 [HUGETLB_PAGE_DTOR] = free_huge_page, 336 #endif 337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 339 #endif 340 }; 341 342 int min_free_kbytes = 1024; 343 int user_min_free_kbytes = -1; 344 int watermark_boost_factor __read_mostly = 15000; 345 int watermark_scale_factor = 10; 346 347 static unsigned long nr_kernel_pages __initdata; 348 static unsigned long nr_all_pages __initdata; 349 static unsigned long dma_reserve __initdata; 350 351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 353 static unsigned long required_kernelcore __initdata; 354 static unsigned long required_kernelcore_percent __initdata; 355 static unsigned long required_movablecore __initdata; 356 static unsigned long required_movablecore_percent __initdata; 357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 358 static bool mirrored_kernelcore __meminitdata; 359 360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 361 int movable_zone; 362 EXPORT_SYMBOL(movable_zone); 363 364 #if MAX_NUMNODES > 1 365 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 366 unsigned int nr_online_nodes __read_mostly = 1; 367 EXPORT_SYMBOL(nr_node_ids); 368 EXPORT_SYMBOL(nr_online_nodes); 369 #endif 370 371 int page_group_by_mobility_disabled __read_mostly; 372 373 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 374 /* 375 * During boot we initialize deferred pages on-demand, as needed, but once 376 * page_alloc_init_late() has finished, the deferred pages are all initialized, 377 * and we can permanently disable that path. 378 */ 379 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 380 381 /* 382 * Calling kasan_poison_pages() only after deferred memory initialization 383 * has completed. Poisoning pages during deferred memory init will greatly 384 * lengthen the process and cause problem in large memory systems as the 385 * deferred pages initialization is done with interrupt disabled. 386 * 387 * Assuming that there will be no reference to those newly initialized 388 * pages before they are ever allocated, this should have no effect on 389 * KASAN memory tracking as the poison will be properly inserted at page 390 * allocation time. The only corner case is when pages are allocated by 391 * on-demand allocation and then freed again before the deferred pages 392 * initialization is done, but this is not likely to happen. 393 */ 394 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 395 { 396 return static_branch_unlikely(&deferred_pages) || 397 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 398 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 399 PageSkipKASanPoison(page); 400 } 401 402 /* Returns true if the struct page for the pfn is uninitialised */ 403 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 404 { 405 int nid = early_pfn_to_nid(pfn); 406 407 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 408 return true; 409 410 return false; 411 } 412 413 /* 414 * Returns true when the remaining initialisation should be deferred until 415 * later in the boot cycle when it can be parallelised. 416 */ 417 static bool __meminit 418 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 419 { 420 static unsigned long prev_end_pfn, nr_initialised; 421 422 /* 423 * prev_end_pfn static that contains the end of previous zone 424 * No need to protect because called very early in boot before smp_init. 425 */ 426 if (prev_end_pfn != end_pfn) { 427 prev_end_pfn = end_pfn; 428 nr_initialised = 0; 429 } 430 431 /* Always populate low zones for address-constrained allocations */ 432 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 433 return false; 434 435 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 436 return true; 437 /* 438 * We start only with one section of pages, more pages are added as 439 * needed until the rest of deferred pages are initialized. 440 */ 441 nr_initialised++; 442 if ((nr_initialised > PAGES_PER_SECTION) && 443 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 444 NODE_DATA(nid)->first_deferred_pfn = pfn; 445 return true; 446 } 447 return false; 448 } 449 #else 450 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 451 { 452 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 453 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 454 PageSkipKASanPoison(page); 455 } 456 457 static inline bool early_page_uninitialised(unsigned long pfn) 458 { 459 return false; 460 } 461 462 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 463 { 464 return false; 465 } 466 #endif 467 468 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 469 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 470 unsigned long pfn) 471 { 472 #ifdef CONFIG_SPARSEMEM 473 return section_to_usemap(__pfn_to_section(pfn)); 474 #else 475 return page_zone(page)->pageblock_flags; 476 #endif /* CONFIG_SPARSEMEM */ 477 } 478 479 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 480 { 481 #ifdef CONFIG_SPARSEMEM 482 pfn &= (PAGES_PER_SECTION-1); 483 #else 484 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 485 #endif /* CONFIG_SPARSEMEM */ 486 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 487 } 488 489 static __always_inline 490 unsigned long __get_pfnblock_flags_mask(const struct page *page, 491 unsigned long pfn, 492 unsigned long mask) 493 { 494 unsigned long *bitmap; 495 unsigned long bitidx, word_bitidx; 496 unsigned long word; 497 498 bitmap = get_pageblock_bitmap(page, pfn); 499 bitidx = pfn_to_bitidx(page, pfn); 500 word_bitidx = bitidx / BITS_PER_LONG; 501 bitidx &= (BITS_PER_LONG-1); 502 503 word = bitmap[word_bitidx]; 504 return (word >> bitidx) & mask; 505 } 506 507 /** 508 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 509 * @page: The page within the block of interest 510 * @pfn: The target page frame number 511 * @mask: mask of bits that the caller is interested in 512 * 513 * Return: pageblock_bits flags 514 */ 515 unsigned long get_pfnblock_flags_mask(const struct page *page, 516 unsigned long pfn, unsigned long mask) 517 { 518 return __get_pfnblock_flags_mask(page, pfn, mask); 519 } 520 521 static __always_inline int get_pfnblock_migratetype(const struct page *page, 522 unsigned long pfn) 523 { 524 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 525 } 526 527 /** 528 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 529 * @page: The page within the block of interest 530 * @flags: The flags to set 531 * @pfn: The target page frame number 532 * @mask: mask of bits that the caller is interested in 533 */ 534 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 535 unsigned long pfn, 536 unsigned long mask) 537 { 538 unsigned long *bitmap; 539 unsigned long bitidx, word_bitidx; 540 unsigned long old_word, word; 541 542 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 543 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 544 545 bitmap = get_pageblock_bitmap(page, pfn); 546 bitidx = pfn_to_bitidx(page, pfn); 547 word_bitidx = bitidx / BITS_PER_LONG; 548 bitidx &= (BITS_PER_LONG-1); 549 550 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 551 552 mask <<= bitidx; 553 flags <<= bitidx; 554 555 word = READ_ONCE(bitmap[word_bitidx]); 556 for (;;) { 557 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 558 if (word == old_word) 559 break; 560 word = old_word; 561 } 562 } 563 564 void set_pageblock_migratetype(struct page *page, int migratetype) 565 { 566 if (unlikely(page_group_by_mobility_disabled && 567 migratetype < MIGRATE_PCPTYPES)) 568 migratetype = MIGRATE_UNMOVABLE; 569 570 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 571 page_to_pfn(page), MIGRATETYPE_MASK); 572 } 573 574 #ifdef CONFIG_DEBUG_VM 575 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 576 { 577 int ret = 0; 578 unsigned seq; 579 unsigned long pfn = page_to_pfn(page); 580 unsigned long sp, start_pfn; 581 582 do { 583 seq = zone_span_seqbegin(zone); 584 start_pfn = zone->zone_start_pfn; 585 sp = zone->spanned_pages; 586 if (!zone_spans_pfn(zone, pfn)) 587 ret = 1; 588 } while (zone_span_seqretry(zone, seq)); 589 590 if (ret) 591 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 592 pfn, zone_to_nid(zone), zone->name, 593 start_pfn, start_pfn + sp); 594 595 return ret; 596 } 597 598 static int page_is_consistent(struct zone *zone, struct page *page) 599 { 600 if (zone != page_zone(page)) 601 return 0; 602 603 return 1; 604 } 605 /* 606 * Temporary debugging check for pages not lying within a given zone. 607 */ 608 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 609 { 610 if (page_outside_zone_boundaries(zone, page)) 611 return 1; 612 if (!page_is_consistent(zone, page)) 613 return 1; 614 615 return 0; 616 } 617 #else 618 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 619 { 620 return 0; 621 } 622 #endif 623 624 static void bad_page(struct page *page, const char *reason) 625 { 626 static unsigned long resume; 627 static unsigned long nr_shown; 628 static unsigned long nr_unshown; 629 630 /* 631 * Allow a burst of 60 reports, then keep quiet for that minute; 632 * or allow a steady drip of one report per second. 633 */ 634 if (nr_shown == 60) { 635 if (time_before(jiffies, resume)) { 636 nr_unshown++; 637 goto out; 638 } 639 if (nr_unshown) { 640 pr_alert( 641 "BUG: Bad page state: %lu messages suppressed\n", 642 nr_unshown); 643 nr_unshown = 0; 644 } 645 nr_shown = 0; 646 } 647 if (nr_shown++ == 0) 648 resume = jiffies + 60 * HZ; 649 650 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 651 current->comm, page_to_pfn(page)); 652 dump_page(page, reason); 653 654 print_modules(); 655 dump_stack(); 656 out: 657 /* Leave bad fields for debug, except PageBuddy could make trouble */ 658 page_mapcount_reset(page); /* remove PageBuddy */ 659 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 660 } 661 662 static inline unsigned int order_to_pindex(int migratetype, int order) 663 { 664 int base = order; 665 666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 667 if (order > PAGE_ALLOC_COSTLY_ORDER) { 668 VM_BUG_ON(order != pageblock_order); 669 base = PAGE_ALLOC_COSTLY_ORDER + 1; 670 } 671 #else 672 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 673 #endif 674 675 return (MIGRATE_PCPTYPES * base) + migratetype; 676 } 677 678 static inline int pindex_to_order(unsigned int pindex) 679 { 680 int order = pindex / MIGRATE_PCPTYPES; 681 682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 683 if (order > PAGE_ALLOC_COSTLY_ORDER) 684 order = pageblock_order; 685 #else 686 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 687 #endif 688 689 return order; 690 } 691 692 static inline bool pcp_allowed_order(unsigned int order) 693 { 694 if (order <= PAGE_ALLOC_COSTLY_ORDER) 695 return true; 696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 697 if (order == pageblock_order) 698 return true; 699 #endif 700 return false; 701 } 702 703 static inline void free_the_page(struct page *page, unsigned int order) 704 { 705 if (pcp_allowed_order(order)) /* Via pcp? */ 706 free_unref_page(page, order); 707 else 708 __free_pages_ok(page, order, FPI_NONE); 709 } 710 711 /* 712 * Higher-order pages are called "compound pages". They are structured thusly: 713 * 714 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 715 * 716 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 717 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 718 * 719 * The first tail page's ->compound_dtor holds the offset in array of compound 720 * page destructors. See compound_page_dtors. 721 * 722 * The first tail page's ->compound_order holds the order of allocation. 723 * This usage means that zero-order pages may not be compound. 724 */ 725 726 void free_compound_page(struct page *page) 727 { 728 mem_cgroup_uncharge(page_folio(page)); 729 free_the_page(page, compound_order(page)); 730 } 731 732 static void prep_compound_head(struct page *page, unsigned int order) 733 { 734 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 735 set_compound_order(page, order); 736 atomic_set(compound_mapcount_ptr(page), -1); 737 if (hpage_pincount_available(page)) 738 atomic_set(compound_pincount_ptr(page), 0); 739 } 740 741 static void prep_compound_tail(struct page *head, int tail_idx) 742 { 743 struct page *p = head + tail_idx; 744 745 p->mapping = TAIL_MAPPING; 746 set_compound_head(p, head); 747 } 748 749 void prep_compound_page(struct page *page, unsigned int order) 750 { 751 int i; 752 int nr_pages = 1 << order; 753 754 __SetPageHead(page); 755 for (i = 1; i < nr_pages; i++) 756 prep_compound_tail(page, i); 757 758 prep_compound_head(page, order); 759 } 760 761 #ifdef CONFIG_DEBUG_PAGEALLOC 762 unsigned int _debug_guardpage_minorder; 763 764 bool _debug_pagealloc_enabled_early __read_mostly 765 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 766 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 767 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 768 EXPORT_SYMBOL(_debug_pagealloc_enabled); 769 770 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 771 772 static int __init early_debug_pagealloc(char *buf) 773 { 774 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 775 } 776 early_param("debug_pagealloc", early_debug_pagealloc); 777 778 static int __init debug_guardpage_minorder_setup(char *buf) 779 { 780 unsigned long res; 781 782 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 783 pr_err("Bad debug_guardpage_minorder value\n"); 784 return 0; 785 } 786 _debug_guardpage_minorder = res; 787 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 788 return 0; 789 } 790 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 791 792 static inline bool set_page_guard(struct zone *zone, struct page *page, 793 unsigned int order, int migratetype) 794 { 795 if (!debug_guardpage_enabled()) 796 return false; 797 798 if (order >= debug_guardpage_minorder()) 799 return false; 800 801 __SetPageGuard(page); 802 INIT_LIST_HEAD(&page->lru); 803 set_page_private(page, order); 804 /* Guard pages are not available for any usage */ 805 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 806 807 return true; 808 } 809 810 static inline void clear_page_guard(struct zone *zone, struct page *page, 811 unsigned int order, int migratetype) 812 { 813 if (!debug_guardpage_enabled()) 814 return; 815 816 __ClearPageGuard(page); 817 818 set_page_private(page, 0); 819 if (!is_migrate_isolate(migratetype)) 820 __mod_zone_freepage_state(zone, (1 << order), migratetype); 821 } 822 #else 823 static inline bool set_page_guard(struct zone *zone, struct page *page, 824 unsigned int order, int migratetype) { return false; } 825 static inline void clear_page_guard(struct zone *zone, struct page *page, 826 unsigned int order, int migratetype) {} 827 #endif 828 829 /* 830 * Enable static keys related to various memory debugging and hardening options. 831 * Some override others, and depend on early params that are evaluated in the 832 * order of appearance. So we need to first gather the full picture of what was 833 * enabled, and then make decisions. 834 */ 835 void init_mem_debugging_and_hardening(void) 836 { 837 bool page_poisoning_requested = false; 838 839 #ifdef CONFIG_PAGE_POISONING 840 /* 841 * Page poisoning is debug page alloc for some arches. If 842 * either of those options are enabled, enable poisoning. 843 */ 844 if (page_poisoning_enabled() || 845 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 846 debug_pagealloc_enabled())) { 847 static_branch_enable(&_page_poisoning_enabled); 848 page_poisoning_requested = true; 849 } 850 #endif 851 852 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 853 page_poisoning_requested) { 854 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 855 "will take precedence over init_on_alloc and init_on_free\n"); 856 _init_on_alloc_enabled_early = false; 857 _init_on_free_enabled_early = false; 858 } 859 860 if (_init_on_alloc_enabled_early) 861 static_branch_enable(&init_on_alloc); 862 else 863 static_branch_disable(&init_on_alloc); 864 865 if (_init_on_free_enabled_early) 866 static_branch_enable(&init_on_free); 867 else 868 static_branch_disable(&init_on_free); 869 870 #ifdef CONFIG_DEBUG_PAGEALLOC 871 if (!debug_pagealloc_enabled()) 872 return; 873 874 static_branch_enable(&_debug_pagealloc_enabled); 875 876 if (!debug_guardpage_minorder()) 877 return; 878 879 static_branch_enable(&_debug_guardpage_enabled); 880 #endif 881 } 882 883 static inline void set_buddy_order(struct page *page, unsigned int order) 884 { 885 set_page_private(page, order); 886 __SetPageBuddy(page); 887 } 888 889 /* 890 * This function checks whether a page is free && is the buddy 891 * we can coalesce a page and its buddy if 892 * (a) the buddy is not in a hole (check before calling!) && 893 * (b) the buddy is in the buddy system && 894 * (c) a page and its buddy have the same order && 895 * (d) a page and its buddy are in the same zone. 896 * 897 * For recording whether a page is in the buddy system, we set PageBuddy. 898 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 899 * 900 * For recording page's order, we use page_private(page). 901 */ 902 static inline bool page_is_buddy(struct page *page, struct page *buddy, 903 unsigned int order) 904 { 905 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 906 return false; 907 908 if (buddy_order(buddy) != order) 909 return false; 910 911 /* 912 * zone check is done late to avoid uselessly calculating 913 * zone/node ids for pages that could never merge. 914 */ 915 if (page_zone_id(page) != page_zone_id(buddy)) 916 return false; 917 918 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 919 920 return true; 921 } 922 923 #ifdef CONFIG_COMPACTION 924 static inline struct capture_control *task_capc(struct zone *zone) 925 { 926 struct capture_control *capc = current->capture_control; 927 928 return unlikely(capc) && 929 !(current->flags & PF_KTHREAD) && 930 !capc->page && 931 capc->cc->zone == zone ? capc : NULL; 932 } 933 934 static inline bool 935 compaction_capture(struct capture_control *capc, struct page *page, 936 int order, int migratetype) 937 { 938 if (!capc || order != capc->cc->order) 939 return false; 940 941 /* Do not accidentally pollute CMA or isolated regions*/ 942 if (is_migrate_cma(migratetype) || 943 is_migrate_isolate(migratetype)) 944 return false; 945 946 /* 947 * Do not let lower order allocations pollute a movable pageblock. 948 * This might let an unmovable request use a reclaimable pageblock 949 * and vice-versa but no more than normal fallback logic which can 950 * have trouble finding a high-order free page. 951 */ 952 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 953 return false; 954 955 capc->page = page; 956 return true; 957 } 958 959 #else 960 static inline struct capture_control *task_capc(struct zone *zone) 961 { 962 return NULL; 963 } 964 965 static inline bool 966 compaction_capture(struct capture_control *capc, struct page *page, 967 int order, int migratetype) 968 { 969 return false; 970 } 971 #endif /* CONFIG_COMPACTION */ 972 973 /* Used for pages not on another list */ 974 static inline void add_to_free_list(struct page *page, struct zone *zone, 975 unsigned int order, int migratetype) 976 { 977 struct free_area *area = &zone->free_area[order]; 978 979 list_add(&page->lru, &area->free_list[migratetype]); 980 area->nr_free++; 981 } 982 983 /* Used for pages not on another list */ 984 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 985 unsigned int order, int migratetype) 986 { 987 struct free_area *area = &zone->free_area[order]; 988 989 list_add_tail(&page->lru, &area->free_list[migratetype]); 990 area->nr_free++; 991 } 992 993 /* 994 * Used for pages which are on another list. Move the pages to the tail 995 * of the list - so the moved pages won't immediately be considered for 996 * allocation again (e.g., optimization for memory onlining). 997 */ 998 static inline void move_to_free_list(struct page *page, struct zone *zone, 999 unsigned int order, int migratetype) 1000 { 1001 struct free_area *area = &zone->free_area[order]; 1002 1003 list_move_tail(&page->lru, &area->free_list[migratetype]); 1004 } 1005 1006 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1007 unsigned int order) 1008 { 1009 /* clear reported state and update reported page count */ 1010 if (page_reported(page)) 1011 __ClearPageReported(page); 1012 1013 list_del(&page->lru); 1014 __ClearPageBuddy(page); 1015 set_page_private(page, 0); 1016 zone->free_area[order].nr_free--; 1017 } 1018 1019 /* 1020 * If this is not the largest possible page, check if the buddy 1021 * of the next-highest order is free. If it is, it's possible 1022 * that pages are being freed that will coalesce soon. In case, 1023 * that is happening, add the free page to the tail of the list 1024 * so it's less likely to be used soon and more likely to be merged 1025 * as a higher order page 1026 */ 1027 static inline bool 1028 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1029 struct page *page, unsigned int order) 1030 { 1031 struct page *higher_page, *higher_buddy; 1032 unsigned long combined_pfn; 1033 1034 if (order >= MAX_ORDER - 2) 1035 return false; 1036 1037 combined_pfn = buddy_pfn & pfn; 1038 higher_page = page + (combined_pfn - pfn); 1039 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1040 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1041 1042 return page_is_buddy(higher_page, higher_buddy, order + 1); 1043 } 1044 1045 /* 1046 * Freeing function for a buddy system allocator. 1047 * 1048 * The concept of a buddy system is to maintain direct-mapped table 1049 * (containing bit values) for memory blocks of various "orders". 1050 * The bottom level table contains the map for the smallest allocatable 1051 * units of memory (here, pages), and each level above it describes 1052 * pairs of units from the levels below, hence, "buddies". 1053 * At a high level, all that happens here is marking the table entry 1054 * at the bottom level available, and propagating the changes upward 1055 * as necessary, plus some accounting needed to play nicely with other 1056 * parts of the VM system. 1057 * At each level, we keep a list of pages, which are heads of continuous 1058 * free pages of length of (1 << order) and marked with PageBuddy. 1059 * Page's order is recorded in page_private(page) field. 1060 * So when we are allocating or freeing one, we can derive the state of the 1061 * other. That is, if we allocate a small block, and both were 1062 * free, the remainder of the region must be split into blocks. 1063 * If a block is freed, and its buddy is also free, then this 1064 * triggers coalescing into a block of larger size. 1065 * 1066 * -- nyc 1067 */ 1068 1069 static inline void __free_one_page(struct page *page, 1070 unsigned long pfn, 1071 struct zone *zone, unsigned int order, 1072 int migratetype, fpi_t fpi_flags) 1073 { 1074 struct capture_control *capc = task_capc(zone); 1075 unsigned int max_order = pageblock_order; 1076 unsigned long buddy_pfn; 1077 unsigned long combined_pfn; 1078 struct page *buddy; 1079 bool to_tail; 1080 1081 VM_BUG_ON(!zone_is_initialized(zone)); 1082 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1083 1084 VM_BUG_ON(migratetype == -1); 1085 if (likely(!is_migrate_isolate(migratetype))) 1086 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1087 1088 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1089 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1090 1091 continue_merging: 1092 while (order < max_order) { 1093 if (compaction_capture(capc, page, order, migratetype)) { 1094 __mod_zone_freepage_state(zone, -(1 << order), 1095 migratetype); 1096 return; 1097 } 1098 buddy_pfn = __find_buddy_pfn(pfn, order); 1099 buddy = page + (buddy_pfn - pfn); 1100 1101 if (!page_is_buddy(page, buddy, order)) 1102 goto done_merging; 1103 /* 1104 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1105 * merge with it and move up one order. 1106 */ 1107 if (page_is_guard(buddy)) 1108 clear_page_guard(zone, buddy, order, migratetype); 1109 else 1110 del_page_from_free_list(buddy, zone, order); 1111 combined_pfn = buddy_pfn & pfn; 1112 page = page + (combined_pfn - pfn); 1113 pfn = combined_pfn; 1114 order++; 1115 } 1116 if (order < MAX_ORDER - 1) { 1117 /* If we are here, it means order is >= pageblock_order. 1118 * We want to prevent merge between freepages on pageblock 1119 * without fallbacks and normal pageblock. Without this, 1120 * pageblock isolation could cause incorrect freepage or CMA 1121 * accounting or HIGHATOMIC accounting. 1122 * 1123 * We don't want to hit this code for the more frequent 1124 * low-order merging. 1125 */ 1126 int buddy_mt; 1127 1128 buddy_pfn = __find_buddy_pfn(pfn, order); 1129 buddy = page + (buddy_pfn - pfn); 1130 buddy_mt = get_pageblock_migratetype(buddy); 1131 1132 if (migratetype != buddy_mt 1133 && (!migratetype_is_mergeable(migratetype) || 1134 !migratetype_is_mergeable(buddy_mt))) 1135 goto done_merging; 1136 max_order = order + 1; 1137 goto continue_merging; 1138 } 1139 1140 done_merging: 1141 set_buddy_order(page, order); 1142 1143 if (fpi_flags & FPI_TO_TAIL) 1144 to_tail = true; 1145 else if (is_shuffle_order(order)) 1146 to_tail = shuffle_pick_tail(); 1147 else 1148 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1149 1150 if (to_tail) 1151 add_to_free_list_tail(page, zone, order, migratetype); 1152 else 1153 add_to_free_list(page, zone, order, migratetype); 1154 1155 /* Notify page reporting subsystem of freed page */ 1156 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1157 page_reporting_notify_free(order); 1158 } 1159 1160 /* 1161 * A bad page could be due to a number of fields. Instead of multiple branches, 1162 * try and check multiple fields with one check. The caller must do a detailed 1163 * check if necessary. 1164 */ 1165 static inline bool page_expected_state(struct page *page, 1166 unsigned long check_flags) 1167 { 1168 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1169 return false; 1170 1171 if (unlikely((unsigned long)page->mapping | 1172 page_ref_count(page) | 1173 #ifdef CONFIG_MEMCG 1174 page->memcg_data | 1175 #endif 1176 (page->flags & check_flags))) 1177 return false; 1178 1179 return true; 1180 } 1181 1182 static const char *page_bad_reason(struct page *page, unsigned long flags) 1183 { 1184 const char *bad_reason = NULL; 1185 1186 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1187 bad_reason = "nonzero mapcount"; 1188 if (unlikely(page->mapping != NULL)) 1189 bad_reason = "non-NULL mapping"; 1190 if (unlikely(page_ref_count(page) != 0)) 1191 bad_reason = "nonzero _refcount"; 1192 if (unlikely(page->flags & flags)) { 1193 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1194 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1195 else 1196 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1197 } 1198 #ifdef CONFIG_MEMCG 1199 if (unlikely(page->memcg_data)) 1200 bad_reason = "page still charged to cgroup"; 1201 #endif 1202 return bad_reason; 1203 } 1204 1205 static void check_free_page_bad(struct page *page) 1206 { 1207 bad_page(page, 1208 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1209 } 1210 1211 static inline int check_free_page(struct page *page) 1212 { 1213 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1214 return 0; 1215 1216 /* Something has gone sideways, find it */ 1217 check_free_page_bad(page); 1218 return 1; 1219 } 1220 1221 static int free_tail_pages_check(struct page *head_page, struct page *page) 1222 { 1223 int ret = 1; 1224 1225 /* 1226 * We rely page->lru.next never has bit 0 set, unless the page 1227 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1228 */ 1229 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1230 1231 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1232 ret = 0; 1233 goto out; 1234 } 1235 switch (page - head_page) { 1236 case 1: 1237 /* the first tail page: ->mapping may be compound_mapcount() */ 1238 if (unlikely(compound_mapcount(page))) { 1239 bad_page(page, "nonzero compound_mapcount"); 1240 goto out; 1241 } 1242 break; 1243 case 2: 1244 /* 1245 * the second tail page: ->mapping is 1246 * deferred_list.next -- ignore value. 1247 */ 1248 break; 1249 default: 1250 if (page->mapping != TAIL_MAPPING) { 1251 bad_page(page, "corrupted mapping in tail page"); 1252 goto out; 1253 } 1254 break; 1255 } 1256 if (unlikely(!PageTail(page))) { 1257 bad_page(page, "PageTail not set"); 1258 goto out; 1259 } 1260 if (unlikely(compound_head(page) != head_page)) { 1261 bad_page(page, "compound_head not consistent"); 1262 goto out; 1263 } 1264 ret = 0; 1265 out: 1266 page->mapping = NULL; 1267 clear_compound_head(page); 1268 return ret; 1269 } 1270 1271 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1272 { 1273 int i; 1274 1275 if (zero_tags) { 1276 for (i = 0; i < numpages; i++) 1277 tag_clear_highpage(page + i); 1278 return; 1279 } 1280 1281 /* s390's use of memset() could override KASAN redzones. */ 1282 kasan_disable_current(); 1283 for (i = 0; i < numpages; i++) { 1284 u8 tag = page_kasan_tag(page + i); 1285 page_kasan_tag_reset(page + i); 1286 clear_highpage(page + i); 1287 page_kasan_tag_set(page + i, tag); 1288 } 1289 kasan_enable_current(); 1290 } 1291 1292 static __always_inline bool free_pages_prepare(struct page *page, 1293 unsigned int order, bool check_free, fpi_t fpi_flags) 1294 { 1295 int bad = 0; 1296 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1297 1298 VM_BUG_ON_PAGE(PageTail(page), page); 1299 1300 trace_mm_page_free(page, order); 1301 1302 if (unlikely(PageHWPoison(page)) && !order) { 1303 /* 1304 * Do not let hwpoison pages hit pcplists/buddy 1305 * Untie memcg state and reset page's owner 1306 */ 1307 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1308 __memcg_kmem_uncharge_page(page, order); 1309 reset_page_owner(page, order); 1310 page_table_check_free(page, order); 1311 return false; 1312 } 1313 1314 /* 1315 * Check tail pages before head page information is cleared to 1316 * avoid checking PageCompound for order-0 pages. 1317 */ 1318 if (unlikely(order)) { 1319 bool compound = PageCompound(page); 1320 int i; 1321 1322 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1323 1324 if (compound) { 1325 ClearPageDoubleMap(page); 1326 ClearPageHasHWPoisoned(page); 1327 } 1328 for (i = 1; i < (1 << order); i++) { 1329 if (compound) 1330 bad += free_tail_pages_check(page, page + i); 1331 if (unlikely(check_free_page(page + i))) { 1332 bad++; 1333 continue; 1334 } 1335 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1336 } 1337 } 1338 if (PageMappingFlags(page)) 1339 page->mapping = NULL; 1340 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1341 __memcg_kmem_uncharge_page(page, order); 1342 if (check_free) 1343 bad += check_free_page(page); 1344 if (bad) 1345 return false; 1346 1347 page_cpupid_reset_last(page); 1348 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1349 reset_page_owner(page, order); 1350 page_table_check_free(page, order); 1351 1352 if (!PageHighMem(page)) { 1353 debug_check_no_locks_freed(page_address(page), 1354 PAGE_SIZE << order); 1355 debug_check_no_obj_freed(page_address(page), 1356 PAGE_SIZE << order); 1357 } 1358 1359 kernel_poison_pages(page, 1 << order); 1360 1361 /* 1362 * As memory initialization might be integrated into KASAN, 1363 * kasan_free_pages and kernel_init_free_pages must be 1364 * kept together to avoid discrepancies in behavior. 1365 * 1366 * With hardware tag-based KASAN, memory tags must be set before the 1367 * page becomes unavailable via debug_pagealloc or arch_free_page. 1368 */ 1369 if (kasan_has_integrated_init()) { 1370 if (!skip_kasan_poison) 1371 kasan_free_pages(page, order); 1372 } else { 1373 bool init = want_init_on_free(); 1374 1375 if (init) 1376 kernel_init_free_pages(page, 1 << order, false); 1377 if (!skip_kasan_poison) 1378 kasan_poison_pages(page, order, init); 1379 } 1380 1381 /* 1382 * arch_free_page() can make the page's contents inaccessible. s390 1383 * does this. So nothing which can access the page's contents should 1384 * happen after this. 1385 */ 1386 arch_free_page(page, order); 1387 1388 debug_pagealloc_unmap_pages(page, 1 << order); 1389 1390 return true; 1391 } 1392 1393 #ifdef CONFIG_DEBUG_VM 1394 /* 1395 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1396 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1397 * moved from pcp lists to free lists. 1398 */ 1399 static bool free_pcp_prepare(struct page *page, unsigned int order) 1400 { 1401 return free_pages_prepare(page, order, true, FPI_NONE); 1402 } 1403 1404 static bool bulkfree_pcp_prepare(struct page *page) 1405 { 1406 if (debug_pagealloc_enabled_static()) 1407 return check_free_page(page); 1408 else 1409 return false; 1410 } 1411 #else 1412 /* 1413 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1414 * moving from pcp lists to free list in order to reduce overhead. With 1415 * debug_pagealloc enabled, they are checked also immediately when being freed 1416 * to the pcp lists. 1417 */ 1418 static bool free_pcp_prepare(struct page *page, unsigned int order) 1419 { 1420 if (debug_pagealloc_enabled_static()) 1421 return free_pages_prepare(page, order, true, FPI_NONE); 1422 else 1423 return free_pages_prepare(page, order, false, FPI_NONE); 1424 } 1425 1426 static bool bulkfree_pcp_prepare(struct page *page) 1427 { 1428 return check_free_page(page); 1429 } 1430 #endif /* CONFIG_DEBUG_VM */ 1431 1432 /* 1433 * Frees a number of pages from the PCP lists 1434 * Assumes all pages on list are in same zone. 1435 * count is the number of pages to free. 1436 */ 1437 static void free_pcppages_bulk(struct zone *zone, int count, 1438 struct per_cpu_pages *pcp, 1439 int pindex) 1440 { 1441 int min_pindex = 0; 1442 int max_pindex = NR_PCP_LISTS - 1; 1443 unsigned int order; 1444 bool isolated_pageblocks; 1445 struct page *page; 1446 1447 /* 1448 * Ensure proper count is passed which otherwise would stuck in the 1449 * below while (list_empty(list)) loop. 1450 */ 1451 count = min(pcp->count, count); 1452 1453 /* Ensure requested pindex is drained first. */ 1454 pindex = pindex - 1; 1455 1456 /* 1457 * local_lock_irq held so equivalent to spin_lock_irqsave for 1458 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1459 */ 1460 spin_lock(&zone->lock); 1461 isolated_pageblocks = has_isolate_pageblock(zone); 1462 1463 while (count > 0) { 1464 struct list_head *list; 1465 int nr_pages; 1466 1467 /* Remove pages from lists in a round-robin fashion. */ 1468 do { 1469 if (++pindex > max_pindex) 1470 pindex = min_pindex; 1471 list = &pcp->lists[pindex]; 1472 if (!list_empty(list)) 1473 break; 1474 1475 if (pindex == max_pindex) 1476 max_pindex--; 1477 if (pindex == min_pindex) 1478 min_pindex++; 1479 } while (1); 1480 1481 order = pindex_to_order(pindex); 1482 nr_pages = 1 << order; 1483 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1484 do { 1485 int mt; 1486 1487 page = list_last_entry(list, struct page, lru); 1488 mt = get_pcppage_migratetype(page); 1489 1490 /* must delete to avoid corrupting pcp list */ 1491 list_del(&page->lru); 1492 count -= nr_pages; 1493 pcp->count -= nr_pages; 1494 1495 if (bulkfree_pcp_prepare(page)) 1496 continue; 1497 1498 /* MIGRATE_ISOLATE page should not go to pcplists */ 1499 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1500 /* Pageblock could have been isolated meanwhile */ 1501 if (unlikely(isolated_pageblocks)) 1502 mt = get_pageblock_migratetype(page); 1503 1504 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1505 trace_mm_page_pcpu_drain(page, order, mt); 1506 } while (count > 0 && !list_empty(list)); 1507 } 1508 1509 spin_unlock(&zone->lock); 1510 } 1511 1512 static void free_one_page(struct zone *zone, 1513 struct page *page, unsigned long pfn, 1514 unsigned int order, 1515 int migratetype, fpi_t fpi_flags) 1516 { 1517 unsigned long flags; 1518 1519 spin_lock_irqsave(&zone->lock, flags); 1520 if (unlikely(has_isolate_pageblock(zone) || 1521 is_migrate_isolate(migratetype))) { 1522 migratetype = get_pfnblock_migratetype(page, pfn); 1523 } 1524 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1525 spin_unlock_irqrestore(&zone->lock, flags); 1526 } 1527 1528 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1529 unsigned long zone, int nid) 1530 { 1531 mm_zero_struct_page(page); 1532 set_page_links(page, zone, nid, pfn); 1533 init_page_count(page); 1534 page_mapcount_reset(page); 1535 page_cpupid_reset_last(page); 1536 page_kasan_tag_reset(page); 1537 1538 INIT_LIST_HEAD(&page->lru); 1539 #ifdef WANT_PAGE_VIRTUAL 1540 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1541 if (!is_highmem_idx(zone)) 1542 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1543 #endif 1544 } 1545 1546 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1547 static void __meminit init_reserved_page(unsigned long pfn) 1548 { 1549 pg_data_t *pgdat; 1550 int nid, zid; 1551 1552 if (!early_page_uninitialised(pfn)) 1553 return; 1554 1555 nid = early_pfn_to_nid(pfn); 1556 pgdat = NODE_DATA(nid); 1557 1558 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1559 struct zone *zone = &pgdat->node_zones[zid]; 1560 1561 if (zone_spans_pfn(zone, pfn)) 1562 break; 1563 } 1564 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1565 } 1566 #else 1567 static inline void init_reserved_page(unsigned long pfn) 1568 { 1569 } 1570 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1571 1572 /* 1573 * Initialised pages do not have PageReserved set. This function is 1574 * called for each range allocated by the bootmem allocator and 1575 * marks the pages PageReserved. The remaining valid pages are later 1576 * sent to the buddy page allocator. 1577 */ 1578 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1579 { 1580 unsigned long start_pfn = PFN_DOWN(start); 1581 unsigned long end_pfn = PFN_UP(end); 1582 1583 for (; start_pfn < end_pfn; start_pfn++) { 1584 if (pfn_valid(start_pfn)) { 1585 struct page *page = pfn_to_page(start_pfn); 1586 1587 init_reserved_page(start_pfn); 1588 1589 /* Avoid false-positive PageTail() */ 1590 INIT_LIST_HEAD(&page->lru); 1591 1592 /* 1593 * no need for atomic set_bit because the struct 1594 * page is not visible yet so nobody should 1595 * access it yet. 1596 */ 1597 __SetPageReserved(page); 1598 } 1599 } 1600 } 1601 1602 static void __free_pages_ok(struct page *page, unsigned int order, 1603 fpi_t fpi_flags) 1604 { 1605 unsigned long flags; 1606 int migratetype; 1607 unsigned long pfn = page_to_pfn(page); 1608 struct zone *zone = page_zone(page); 1609 1610 if (!free_pages_prepare(page, order, true, fpi_flags)) 1611 return; 1612 1613 migratetype = get_pfnblock_migratetype(page, pfn); 1614 1615 spin_lock_irqsave(&zone->lock, flags); 1616 if (unlikely(has_isolate_pageblock(zone) || 1617 is_migrate_isolate(migratetype))) { 1618 migratetype = get_pfnblock_migratetype(page, pfn); 1619 } 1620 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1621 spin_unlock_irqrestore(&zone->lock, flags); 1622 1623 __count_vm_events(PGFREE, 1 << order); 1624 } 1625 1626 void __free_pages_core(struct page *page, unsigned int order) 1627 { 1628 unsigned int nr_pages = 1 << order; 1629 struct page *p = page; 1630 unsigned int loop; 1631 1632 /* 1633 * When initializing the memmap, __init_single_page() sets the refcount 1634 * of all pages to 1 ("allocated"/"not free"). We have to set the 1635 * refcount of all involved pages to 0. 1636 */ 1637 prefetchw(p); 1638 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1639 prefetchw(p + 1); 1640 __ClearPageReserved(p); 1641 set_page_count(p, 0); 1642 } 1643 __ClearPageReserved(p); 1644 set_page_count(p, 0); 1645 1646 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1647 1648 /* 1649 * Bypass PCP and place fresh pages right to the tail, primarily 1650 * relevant for memory onlining. 1651 */ 1652 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1653 } 1654 1655 #ifdef CONFIG_NUMA 1656 1657 /* 1658 * During memory init memblocks map pfns to nids. The search is expensive and 1659 * this caches recent lookups. The implementation of __early_pfn_to_nid 1660 * treats start/end as pfns. 1661 */ 1662 struct mminit_pfnnid_cache { 1663 unsigned long last_start; 1664 unsigned long last_end; 1665 int last_nid; 1666 }; 1667 1668 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1669 1670 /* 1671 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1672 */ 1673 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1674 struct mminit_pfnnid_cache *state) 1675 { 1676 unsigned long start_pfn, end_pfn; 1677 int nid; 1678 1679 if (state->last_start <= pfn && pfn < state->last_end) 1680 return state->last_nid; 1681 1682 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1683 if (nid != NUMA_NO_NODE) { 1684 state->last_start = start_pfn; 1685 state->last_end = end_pfn; 1686 state->last_nid = nid; 1687 } 1688 1689 return nid; 1690 } 1691 1692 int __meminit early_pfn_to_nid(unsigned long pfn) 1693 { 1694 static DEFINE_SPINLOCK(early_pfn_lock); 1695 int nid; 1696 1697 spin_lock(&early_pfn_lock); 1698 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1699 if (nid < 0) 1700 nid = first_online_node; 1701 spin_unlock(&early_pfn_lock); 1702 1703 return nid; 1704 } 1705 #endif /* CONFIG_NUMA */ 1706 1707 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1708 unsigned int order) 1709 { 1710 if (early_page_uninitialised(pfn)) 1711 return; 1712 __free_pages_core(page, order); 1713 } 1714 1715 /* 1716 * Check that the whole (or subset of) a pageblock given by the interval of 1717 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1718 * with the migration of free compaction scanner. 1719 * 1720 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1721 * 1722 * It's possible on some configurations to have a setup like node0 node1 node0 1723 * i.e. it's possible that all pages within a zones range of pages do not 1724 * belong to a single zone. We assume that a border between node0 and node1 1725 * can occur within a single pageblock, but not a node0 node1 node0 1726 * interleaving within a single pageblock. It is therefore sufficient to check 1727 * the first and last page of a pageblock and avoid checking each individual 1728 * page in a pageblock. 1729 */ 1730 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1731 unsigned long end_pfn, struct zone *zone) 1732 { 1733 struct page *start_page; 1734 struct page *end_page; 1735 1736 /* end_pfn is one past the range we are checking */ 1737 end_pfn--; 1738 1739 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1740 return NULL; 1741 1742 start_page = pfn_to_online_page(start_pfn); 1743 if (!start_page) 1744 return NULL; 1745 1746 if (page_zone(start_page) != zone) 1747 return NULL; 1748 1749 end_page = pfn_to_page(end_pfn); 1750 1751 /* This gives a shorter code than deriving page_zone(end_page) */ 1752 if (page_zone_id(start_page) != page_zone_id(end_page)) 1753 return NULL; 1754 1755 return start_page; 1756 } 1757 1758 void set_zone_contiguous(struct zone *zone) 1759 { 1760 unsigned long block_start_pfn = zone->zone_start_pfn; 1761 unsigned long block_end_pfn; 1762 1763 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1764 for (; block_start_pfn < zone_end_pfn(zone); 1765 block_start_pfn = block_end_pfn, 1766 block_end_pfn += pageblock_nr_pages) { 1767 1768 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1769 1770 if (!__pageblock_pfn_to_page(block_start_pfn, 1771 block_end_pfn, zone)) 1772 return; 1773 cond_resched(); 1774 } 1775 1776 /* We confirm that there is no hole */ 1777 zone->contiguous = true; 1778 } 1779 1780 void clear_zone_contiguous(struct zone *zone) 1781 { 1782 zone->contiguous = false; 1783 } 1784 1785 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1786 static void __init deferred_free_range(unsigned long pfn, 1787 unsigned long nr_pages) 1788 { 1789 struct page *page; 1790 unsigned long i; 1791 1792 if (!nr_pages) 1793 return; 1794 1795 page = pfn_to_page(pfn); 1796 1797 /* Free a large naturally-aligned chunk if possible */ 1798 if (nr_pages == pageblock_nr_pages && 1799 (pfn & (pageblock_nr_pages - 1)) == 0) { 1800 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1801 __free_pages_core(page, pageblock_order); 1802 return; 1803 } 1804 1805 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1806 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1807 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1808 __free_pages_core(page, 0); 1809 } 1810 } 1811 1812 /* Completion tracking for deferred_init_memmap() threads */ 1813 static atomic_t pgdat_init_n_undone __initdata; 1814 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1815 1816 static inline void __init pgdat_init_report_one_done(void) 1817 { 1818 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1819 complete(&pgdat_init_all_done_comp); 1820 } 1821 1822 /* 1823 * Returns true if page needs to be initialized or freed to buddy allocator. 1824 * 1825 * First we check if pfn is valid on architectures where it is possible to have 1826 * holes within pageblock_nr_pages. On systems where it is not possible, this 1827 * function is optimized out. 1828 * 1829 * Then, we check if a current large page is valid by only checking the validity 1830 * of the head pfn. 1831 */ 1832 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1833 { 1834 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1835 return false; 1836 return true; 1837 } 1838 1839 /* 1840 * Free pages to buddy allocator. Try to free aligned pages in 1841 * pageblock_nr_pages sizes. 1842 */ 1843 static void __init deferred_free_pages(unsigned long pfn, 1844 unsigned long end_pfn) 1845 { 1846 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1847 unsigned long nr_free = 0; 1848 1849 for (; pfn < end_pfn; pfn++) { 1850 if (!deferred_pfn_valid(pfn)) { 1851 deferred_free_range(pfn - nr_free, nr_free); 1852 nr_free = 0; 1853 } else if (!(pfn & nr_pgmask)) { 1854 deferred_free_range(pfn - nr_free, nr_free); 1855 nr_free = 1; 1856 } else { 1857 nr_free++; 1858 } 1859 } 1860 /* Free the last block of pages to allocator */ 1861 deferred_free_range(pfn - nr_free, nr_free); 1862 } 1863 1864 /* 1865 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1866 * by performing it only once every pageblock_nr_pages. 1867 * Return number of pages initialized. 1868 */ 1869 static unsigned long __init deferred_init_pages(struct zone *zone, 1870 unsigned long pfn, 1871 unsigned long end_pfn) 1872 { 1873 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1874 int nid = zone_to_nid(zone); 1875 unsigned long nr_pages = 0; 1876 int zid = zone_idx(zone); 1877 struct page *page = NULL; 1878 1879 for (; pfn < end_pfn; pfn++) { 1880 if (!deferred_pfn_valid(pfn)) { 1881 page = NULL; 1882 continue; 1883 } else if (!page || !(pfn & nr_pgmask)) { 1884 page = pfn_to_page(pfn); 1885 } else { 1886 page++; 1887 } 1888 __init_single_page(page, pfn, zid, nid); 1889 nr_pages++; 1890 } 1891 return (nr_pages); 1892 } 1893 1894 /* 1895 * This function is meant to pre-load the iterator for the zone init. 1896 * Specifically it walks through the ranges until we are caught up to the 1897 * first_init_pfn value and exits there. If we never encounter the value we 1898 * return false indicating there are no valid ranges left. 1899 */ 1900 static bool __init 1901 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1902 unsigned long *spfn, unsigned long *epfn, 1903 unsigned long first_init_pfn) 1904 { 1905 u64 j; 1906 1907 /* 1908 * Start out by walking through the ranges in this zone that have 1909 * already been initialized. We don't need to do anything with them 1910 * so we just need to flush them out of the system. 1911 */ 1912 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1913 if (*epfn <= first_init_pfn) 1914 continue; 1915 if (*spfn < first_init_pfn) 1916 *spfn = first_init_pfn; 1917 *i = j; 1918 return true; 1919 } 1920 1921 return false; 1922 } 1923 1924 /* 1925 * Initialize and free pages. We do it in two loops: first we initialize 1926 * struct page, then free to buddy allocator, because while we are 1927 * freeing pages we can access pages that are ahead (computing buddy 1928 * page in __free_one_page()). 1929 * 1930 * In order to try and keep some memory in the cache we have the loop 1931 * broken along max page order boundaries. This way we will not cause 1932 * any issues with the buddy page computation. 1933 */ 1934 static unsigned long __init 1935 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1936 unsigned long *end_pfn) 1937 { 1938 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1939 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1940 unsigned long nr_pages = 0; 1941 u64 j = *i; 1942 1943 /* First we loop through and initialize the page values */ 1944 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1945 unsigned long t; 1946 1947 if (mo_pfn <= *start_pfn) 1948 break; 1949 1950 t = min(mo_pfn, *end_pfn); 1951 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1952 1953 if (mo_pfn < *end_pfn) { 1954 *start_pfn = mo_pfn; 1955 break; 1956 } 1957 } 1958 1959 /* Reset values and now loop through freeing pages as needed */ 1960 swap(j, *i); 1961 1962 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1963 unsigned long t; 1964 1965 if (mo_pfn <= spfn) 1966 break; 1967 1968 t = min(mo_pfn, epfn); 1969 deferred_free_pages(spfn, t); 1970 1971 if (mo_pfn <= epfn) 1972 break; 1973 } 1974 1975 return nr_pages; 1976 } 1977 1978 static void __init 1979 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1980 void *arg) 1981 { 1982 unsigned long spfn, epfn; 1983 struct zone *zone = arg; 1984 u64 i; 1985 1986 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1987 1988 /* 1989 * Initialize and free pages in MAX_ORDER sized increments so that we 1990 * can avoid introducing any issues with the buddy allocator. 1991 */ 1992 while (spfn < end_pfn) { 1993 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1994 cond_resched(); 1995 } 1996 } 1997 1998 /* An arch may override for more concurrency. */ 1999 __weak int __init 2000 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2001 { 2002 return 1; 2003 } 2004 2005 /* Initialise remaining memory on a node */ 2006 static int __init deferred_init_memmap(void *data) 2007 { 2008 pg_data_t *pgdat = data; 2009 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2010 unsigned long spfn = 0, epfn = 0; 2011 unsigned long first_init_pfn, flags; 2012 unsigned long start = jiffies; 2013 struct zone *zone; 2014 int zid, max_threads; 2015 u64 i; 2016 2017 /* Bind memory initialisation thread to a local node if possible */ 2018 if (!cpumask_empty(cpumask)) 2019 set_cpus_allowed_ptr(current, cpumask); 2020 2021 pgdat_resize_lock(pgdat, &flags); 2022 first_init_pfn = pgdat->first_deferred_pfn; 2023 if (first_init_pfn == ULONG_MAX) { 2024 pgdat_resize_unlock(pgdat, &flags); 2025 pgdat_init_report_one_done(); 2026 return 0; 2027 } 2028 2029 /* Sanity check boundaries */ 2030 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2031 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2032 pgdat->first_deferred_pfn = ULONG_MAX; 2033 2034 /* 2035 * Once we unlock here, the zone cannot be grown anymore, thus if an 2036 * interrupt thread must allocate this early in boot, zone must be 2037 * pre-grown prior to start of deferred page initialization. 2038 */ 2039 pgdat_resize_unlock(pgdat, &flags); 2040 2041 /* Only the highest zone is deferred so find it */ 2042 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2043 zone = pgdat->node_zones + zid; 2044 if (first_init_pfn < zone_end_pfn(zone)) 2045 break; 2046 } 2047 2048 /* If the zone is empty somebody else may have cleared out the zone */ 2049 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2050 first_init_pfn)) 2051 goto zone_empty; 2052 2053 max_threads = deferred_page_init_max_threads(cpumask); 2054 2055 while (spfn < epfn) { 2056 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2057 struct padata_mt_job job = { 2058 .thread_fn = deferred_init_memmap_chunk, 2059 .fn_arg = zone, 2060 .start = spfn, 2061 .size = epfn_align - spfn, 2062 .align = PAGES_PER_SECTION, 2063 .min_chunk = PAGES_PER_SECTION, 2064 .max_threads = max_threads, 2065 }; 2066 2067 padata_do_multithreaded(&job); 2068 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2069 epfn_align); 2070 } 2071 zone_empty: 2072 /* Sanity check that the next zone really is unpopulated */ 2073 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2074 2075 pr_info("node %d deferred pages initialised in %ums\n", 2076 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2077 2078 pgdat_init_report_one_done(); 2079 return 0; 2080 } 2081 2082 /* 2083 * If this zone has deferred pages, try to grow it by initializing enough 2084 * deferred pages to satisfy the allocation specified by order, rounded up to 2085 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2086 * of SECTION_SIZE bytes by initializing struct pages in increments of 2087 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2088 * 2089 * Return true when zone was grown, otherwise return false. We return true even 2090 * when we grow less than requested, to let the caller decide if there are 2091 * enough pages to satisfy the allocation. 2092 * 2093 * Note: We use noinline because this function is needed only during boot, and 2094 * it is called from a __ref function _deferred_grow_zone. This way we are 2095 * making sure that it is not inlined into permanent text section. 2096 */ 2097 static noinline bool __init 2098 deferred_grow_zone(struct zone *zone, unsigned int order) 2099 { 2100 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2101 pg_data_t *pgdat = zone->zone_pgdat; 2102 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2103 unsigned long spfn, epfn, flags; 2104 unsigned long nr_pages = 0; 2105 u64 i; 2106 2107 /* Only the last zone may have deferred pages */ 2108 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2109 return false; 2110 2111 pgdat_resize_lock(pgdat, &flags); 2112 2113 /* 2114 * If someone grew this zone while we were waiting for spinlock, return 2115 * true, as there might be enough pages already. 2116 */ 2117 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2118 pgdat_resize_unlock(pgdat, &flags); 2119 return true; 2120 } 2121 2122 /* If the zone is empty somebody else may have cleared out the zone */ 2123 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2124 first_deferred_pfn)) { 2125 pgdat->first_deferred_pfn = ULONG_MAX; 2126 pgdat_resize_unlock(pgdat, &flags); 2127 /* Retry only once. */ 2128 return first_deferred_pfn != ULONG_MAX; 2129 } 2130 2131 /* 2132 * Initialize and free pages in MAX_ORDER sized increments so 2133 * that we can avoid introducing any issues with the buddy 2134 * allocator. 2135 */ 2136 while (spfn < epfn) { 2137 /* update our first deferred PFN for this section */ 2138 first_deferred_pfn = spfn; 2139 2140 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2141 touch_nmi_watchdog(); 2142 2143 /* We should only stop along section boundaries */ 2144 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2145 continue; 2146 2147 /* If our quota has been met we can stop here */ 2148 if (nr_pages >= nr_pages_needed) 2149 break; 2150 } 2151 2152 pgdat->first_deferred_pfn = spfn; 2153 pgdat_resize_unlock(pgdat, &flags); 2154 2155 return nr_pages > 0; 2156 } 2157 2158 /* 2159 * deferred_grow_zone() is __init, but it is called from 2160 * get_page_from_freelist() during early boot until deferred_pages permanently 2161 * disables this call. This is why we have refdata wrapper to avoid warning, 2162 * and to ensure that the function body gets unloaded. 2163 */ 2164 static bool __ref 2165 _deferred_grow_zone(struct zone *zone, unsigned int order) 2166 { 2167 return deferred_grow_zone(zone, order); 2168 } 2169 2170 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2171 2172 void __init page_alloc_init_late(void) 2173 { 2174 struct zone *zone; 2175 int nid; 2176 2177 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2178 2179 /* There will be num_node_state(N_MEMORY) threads */ 2180 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2181 for_each_node_state(nid, N_MEMORY) { 2182 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2183 } 2184 2185 /* Block until all are initialised */ 2186 wait_for_completion(&pgdat_init_all_done_comp); 2187 2188 /* 2189 * We initialized the rest of the deferred pages. Permanently disable 2190 * on-demand struct page initialization. 2191 */ 2192 static_branch_disable(&deferred_pages); 2193 2194 /* Reinit limits that are based on free pages after the kernel is up */ 2195 files_maxfiles_init(); 2196 #endif 2197 2198 buffer_init(); 2199 2200 /* Discard memblock private memory */ 2201 memblock_discard(); 2202 2203 for_each_node_state(nid, N_MEMORY) 2204 shuffle_free_memory(NODE_DATA(nid)); 2205 2206 for_each_populated_zone(zone) 2207 set_zone_contiguous(zone); 2208 } 2209 2210 #ifdef CONFIG_CMA 2211 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2212 void __init init_cma_reserved_pageblock(struct page *page) 2213 { 2214 unsigned i = pageblock_nr_pages; 2215 struct page *p = page; 2216 2217 do { 2218 __ClearPageReserved(p); 2219 set_page_count(p, 0); 2220 } while (++p, --i); 2221 2222 set_pageblock_migratetype(page, MIGRATE_CMA); 2223 set_page_refcounted(page); 2224 __free_pages(page, pageblock_order); 2225 2226 adjust_managed_page_count(page, pageblock_nr_pages); 2227 page_zone(page)->cma_pages += pageblock_nr_pages; 2228 } 2229 #endif 2230 2231 /* 2232 * The order of subdivision here is critical for the IO subsystem. 2233 * Please do not alter this order without good reasons and regression 2234 * testing. Specifically, as large blocks of memory are subdivided, 2235 * the order in which smaller blocks are delivered depends on the order 2236 * they're subdivided in this function. This is the primary factor 2237 * influencing the order in which pages are delivered to the IO 2238 * subsystem according to empirical testing, and this is also justified 2239 * by considering the behavior of a buddy system containing a single 2240 * large block of memory acted on by a series of small allocations. 2241 * This behavior is a critical factor in sglist merging's success. 2242 * 2243 * -- nyc 2244 */ 2245 static inline void expand(struct zone *zone, struct page *page, 2246 int low, int high, int migratetype) 2247 { 2248 unsigned long size = 1 << high; 2249 2250 while (high > low) { 2251 high--; 2252 size >>= 1; 2253 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2254 2255 /* 2256 * Mark as guard pages (or page), that will allow to 2257 * merge back to allocator when buddy will be freed. 2258 * Corresponding page table entries will not be touched, 2259 * pages will stay not present in virtual address space 2260 */ 2261 if (set_page_guard(zone, &page[size], high, migratetype)) 2262 continue; 2263 2264 add_to_free_list(&page[size], zone, high, migratetype); 2265 set_buddy_order(&page[size], high); 2266 } 2267 } 2268 2269 static void check_new_page_bad(struct page *page) 2270 { 2271 if (unlikely(page->flags & __PG_HWPOISON)) { 2272 /* Don't complain about hwpoisoned pages */ 2273 page_mapcount_reset(page); /* remove PageBuddy */ 2274 return; 2275 } 2276 2277 bad_page(page, 2278 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2279 } 2280 2281 /* 2282 * This page is about to be returned from the page allocator 2283 */ 2284 static inline int check_new_page(struct page *page) 2285 { 2286 if (likely(page_expected_state(page, 2287 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2288 return 0; 2289 2290 check_new_page_bad(page); 2291 return 1; 2292 } 2293 2294 static bool check_new_pages(struct page *page, unsigned int order) 2295 { 2296 int i; 2297 for (i = 0; i < (1 << order); i++) { 2298 struct page *p = page + i; 2299 2300 if (unlikely(check_new_page(p))) 2301 return true; 2302 } 2303 2304 return false; 2305 } 2306 2307 #ifdef CONFIG_DEBUG_VM 2308 /* 2309 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2310 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2311 * also checked when pcp lists are refilled from the free lists. 2312 */ 2313 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2314 { 2315 if (debug_pagealloc_enabled_static()) 2316 return check_new_pages(page, order); 2317 else 2318 return false; 2319 } 2320 2321 static inline bool check_new_pcp(struct page *page, unsigned int order) 2322 { 2323 return check_new_pages(page, order); 2324 } 2325 #else 2326 /* 2327 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2328 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2329 * enabled, they are also checked when being allocated from the pcp lists. 2330 */ 2331 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2332 { 2333 return check_new_pages(page, order); 2334 } 2335 static inline bool check_new_pcp(struct page *page, unsigned int order) 2336 { 2337 if (debug_pagealloc_enabled_static()) 2338 return check_new_pages(page, order); 2339 else 2340 return false; 2341 } 2342 #endif /* CONFIG_DEBUG_VM */ 2343 2344 inline void post_alloc_hook(struct page *page, unsigned int order, 2345 gfp_t gfp_flags) 2346 { 2347 set_page_private(page, 0); 2348 set_page_refcounted(page); 2349 2350 arch_alloc_page(page, order); 2351 debug_pagealloc_map_pages(page, 1 << order); 2352 2353 /* 2354 * Page unpoisoning must happen before memory initialization. 2355 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2356 * allocations and the page unpoisoning code will complain. 2357 */ 2358 kernel_unpoison_pages(page, 1 << order); 2359 2360 /* 2361 * As memory initialization might be integrated into KASAN, 2362 * kasan_alloc_pages and kernel_init_free_pages must be 2363 * kept together to avoid discrepancies in behavior. 2364 */ 2365 if (kasan_has_integrated_init()) { 2366 kasan_alloc_pages(page, order, gfp_flags); 2367 } else { 2368 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2369 2370 kasan_unpoison_pages(page, order, init); 2371 if (init) 2372 kernel_init_free_pages(page, 1 << order, 2373 gfp_flags & __GFP_ZEROTAGS); 2374 } 2375 2376 set_page_owner(page, order, gfp_flags); 2377 page_table_check_alloc(page, order); 2378 } 2379 2380 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2381 unsigned int alloc_flags) 2382 { 2383 post_alloc_hook(page, order, gfp_flags); 2384 2385 if (order && (gfp_flags & __GFP_COMP)) 2386 prep_compound_page(page, order); 2387 2388 /* 2389 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2390 * allocate the page. The expectation is that the caller is taking 2391 * steps that will free more memory. The caller should avoid the page 2392 * being used for !PFMEMALLOC purposes. 2393 */ 2394 if (alloc_flags & ALLOC_NO_WATERMARKS) 2395 set_page_pfmemalloc(page); 2396 else 2397 clear_page_pfmemalloc(page); 2398 } 2399 2400 /* 2401 * Go through the free lists for the given migratetype and remove 2402 * the smallest available page from the freelists 2403 */ 2404 static __always_inline 2405 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2406 int migratetype) 2407 { 2408 unsigned int current_order; 2409 struct free_area *area; 2410 struct page *page; 2411 2412 /* Find a page of the appropriate size in the preferred list */ 2413 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2414 area = &(zone->free_area[current_order]); 2415 page = get_page_from_free_area(area, migratetype); 2416 if (!page) 2417 continue; 2418 del_page_from_free_list(page, zone, current_order); 2419 expand(zone, page, order, current_order, migratetype); 2420 set_pcppage_migratetype(page, migratetype); 2421 return page; 2422 } 2423 2424 return NULL; 2425 } 2426 2427 2428 /* 2429 * This array describes the order lists are fallen back to when 2430 * the free lists for the desirable migrate type are depleted 2431 * 2432 * The other migratetypes do not have fallbacks. 2433 */ 2434 static int fallbacks[MIGRATE_TYPES][3] = { 2435 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2436 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2437 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2438 }; 2439 2440 #ifdef CONFIG_CMA 2441 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2442 unsigned int order) 2443 { 2444 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2445 } 2446 #else 2447 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2448 unsigned int order) { return NULL; } 2449 #endif 2450 2451 /* 2452 * Move the free pages in a range to the freelist tail of the requested type. 2453 * Note that start_page and end_pages are not aligned on a pageblock 2454 * boundary. If alignment is required, use move_freepages_block() 2455 */ 2456 static int move_freepages(struct zone *zone, 2457 unsigned long start_pfn, unsigned long end_pfn, 2458 int migratetype, int *num_movable) 2459 { 2460 struct page *page; 2461 unsigned long pfn; 2462 unsigned int order; 2463 int pages_moved = 0; 2464 2465 for (pfn = start_pfn; pfn <= end_pfn;) { 2466 page = pfn_to_page(pfn); 2467 if (!PageBuddy(page)) { 2468 /* 2469 * We assume that pages that could be isolated for 2470 * migration are movable. But we don't actually try 2471 * isolating, as that would be expensive. 2472 */ 2473 if (num_movable && 2474 (PageLRU(page) || __PageMovable(page))) 2475 (*num_movable)++; 2476 pfn++; 2477 continue; 2478 } 2479 2480 /* Make sure we are not inadvertently changing nodes */ 2481 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2482 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2483 2484 order = buddy_order(page); 2485 move_to_free_list(page, zone, order, migratetype); 2486 pfn += 1 << order; 2487 pages_moved += 1 << order; 2488 } 2489 2490 return pages_moved; 2491 } 2492 2493 int move_freepages_block(struct zone *zone, struct page *page, 2494 int migratetype, int *num_movable) 2495 { 2496 unsigned long start_pfn, end_pfn, pfn; 2497 2498 if (num_movable) 2499 *num_movable = 0; 2500 2501 pfn = page_to_pfn(page); 2502 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2503 end_pfn = start_pfn + pageblock_nr_pages - 1; 2504 2505 /* Do not cross zone boundaries */ 2506 if (!zone_spans_pfn(zone, start_pfn)) 2507 start_pfn = pfn; 2508 if (!zone_spans_pfn(zone, end_pfn)) 2509 return 0; 2510 2511 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2512 num_movable); 2513 } 2514 2515 static void change_pageblock_range(struct page *pageblock_page, 2516 int start_order, int migratetype) 2517 { 2518 int nr_pageblocks = 1 << (start_order - pageblock_order); 2519 2520 while (nr_pageblocks--) { 2521 set_pageblock_migratetype(pageblock_page, migratetype); 2522 pageblock_page += pageblock_nr_pages; 2523 } 2524 } 2525 2526 /* 2527 * When we are falling back to another migratetype during allocation, try to 2528 * steal extra free pages from the same pageblocks to satisfy further 2529 * allocations, instead of polluting multiple pageblocks. 2530 * 2531 * If we are stealing a relatively large buddy page, it is likely there will 2532 * be more free pages in the pageblock, so try to steal them all. For 2533 * reclaimable and unmovable allocations, we steal regardless of page size, 2534 * as fragmentation caused by those allocations polluting movable pageblocks 2535 * is worse than movable allocations stealing from unmovable and reclaimable 2536 * pageblocks. 2537 */ 2538 static bool can_steal_fallback(unsigned int order, int start_mt) 2539 { 2540 /* 2541 * Leaving this order check is intended, although there is 2542 * relaxed order check in next check. The reason is that 2543 * we can actually steal whole pageblock if this condition met, 2544 * but, below check doesn't guarantee it and that is just heuristic 2545 * so could be changed anytime. 2546 */ 2547 if (order >= pageblock_order) 2548 return true; 2549 2550 if (order >= pageblock_order / 2 || 2551 start_mt == MIGRATE_RECLAIMABLE || 2552 start_mt == MIGRATE_UNMOVABLE || 2553 page_group_by_mobility_disabled) 2554 return true; 2555 2556 return false; 2557 } 2558 2559 static inline bool boost_watermark(struct zone *zone) 2560 { 2561 unsigned long max_boost; 2562 2563 if (!watermark_boost_factor) 2564 return false; 2565 /* 2566 * Don't bother in zones that are unlikely to produce results. 2567 * On small machines, including kdump capture kernels running 2568 * in a small area, boosting the watermark can cause an out of 2569 * memory situation immediately. 2570 */ 2571 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2572 return false; 2573 2574 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2575 watermark_boost_factor, 10000); 2576 2577 /* 2578 * high watermark may be uninitialised if fragmentation occurs 2579 * very early in boot so do not boost. We do not fall 2580 * through and boost by pageblock_nr_pages as failing 2581 * allocations that early means that reclaim is not going 2582 * to help and it may even be impossible to reclaim the 2583 * boosted watermark resulting in a hang. 2584 */ 2585 if (!max_boost) 2586 return false; 2587 2588 max_boost = max(pageblock_nr_pages, max_boost); 2589 2590 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2591 max_boost); 2592 2593 return true; 2594 } 2595 2596 /* 2597 * This function implements actual steal behaviour. If order is large enough, 2598 * we can steal whole pageblock. If not, we first move freepages in this 2599 * pageblock to our migratetype and determine how many already-allocated pages 2600 * are there in the pageblock with a compatible migratetype. If at least half 2601 * of pages are free or compatible, we can change migratetype of the pageblock 2602 * itself, so pages freed in the future will be put on the correct free list. 2603 */ 2604 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2605 unsigned int alloc_flags, int start_type, bool whole_block) 2606 { 2607 unsigned int current_order = buddy_order(page); 2608 int free_pages, movable_pages, alike_pages; 2609 int old_block_type; 2610 2611 old_block_type = get_pageblock_migratetype(page); 2612 2613 /* 2614 * This can happen due to races and we want to prevent broken 2615 * highatomic accounting. 2616 */ 2617 if (is_migrate_highatomic(old_block_type)) 2618 goto single_page; 2619 2620 /* Take ownership for orders >= pageblock_order */ 2621 if (current_order >= pageblock_order) { 2622 change_pageblock_range(page, current_order, start_type); 2623 goto single_page; 2624 } 2625 2626 /* 2627 * Boost watermarks to increase reclaim pressure to reduce the 2628 * likelihood of future fallbacks. Wake kswapd now as the node 2629 * may be balanced overall and kswapd will not wake naturally. 2630 */ 2631 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2632 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2633 2634 /* We are not allowed to try stealing from the whole block */ 2635 if (!whole_block) 2636 goto single_page; 2637 2638 free_pages = move_freepages_block(zone, page, start_type, 2639 &movable_pages); 2640 /* 2641 * Determine how many pages are compatible with our allocation. 2642 * For movable allocation, it's the number of movable pages which 2643 * we just obtained. For other types it's a bit more tricky. 2644 */ 2645 if (start_type == MIGRATE_MOVABLE) { 2646 alike_pages = movable_pages; 2647 } else { 2648 /* 2649 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2650 * to MOVABLE pageblock, consider all non-movable pages as 2651 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2652 * vice versa, be conservative since we can't distinguish the 2653 * exact migratetype of non-movable pages. 2654 */ 2655 if (old_block_type == MIGRATE_MOVABLE) 2656 alike_pages = pageblock_nr_pages 2657 - (free_pages + movable_pages); 2658 else 2659 alike_pages = 0; 2660 } 2661 2662 /* moving whole block can fail due to zone boundary conditions */ 2663 if (!free_pages) 2664 goto single_page; 2665 2666 /* 2667 * If a sufficient number of pages in the block are either free or of 2668 * comparable migratability as our allocation, claim the whole block. 2669 */ 2670 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2671 page_group_by_mobility_disabled) 2672 set_pageblock_migratetype(page, start_type); 2673 2674 return; 2675 2676 single_page: 2677 move_to_free_list(page, zone, current_order, start_type); 2678 } 2679 2680 /* 2681 * Check whether there is a suitable fallback freepage with requested order. 2682 * If only_stealable is true, this function returns fallback_mt only if 2683 * we can steal other freepages all together. This would help to reduce 2684 * fragmentation due to mixed migratetype pages in one pageblock. 2685 */ 2686 int find_suitable_fallback(struct free_area *area, unsigned int order, 2687 int migratetype, bool only_stealable, bool *can_steal) 2688 { 2689 int i; 2690 int fallback_mt; 2691 2692 if (area->nr_free == 0) 2693 return -1; 2694 2695 *can_steal = false; 2696 for (i = 0;; i++) { 2697 fallback_mt = fallbacks[migratetype][i]; 2698 if (fallback_mt == MIGRATE_TYPES) 2699 break; 2700 2701 if (free_area_empty(area, fallback_mt)) 2702 continue; 2703 2704 if (can_steal_fallback(order, migratetype)) 2705 *can_steal = true; 2706 2707 if (!only_stealable) 2708 return fallback_mt; 2709 2710 if (*can_steal) 2711 return fallback_mt; 2712 } 2713 2714 return -1; 2715 } 2716 2717 /* 2718 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2719 * there are no empty page blocks that contain a page with a suitable order 2720 */ 2721 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2722 unsigned int alloc_order) 2723 { 2724 int mt; 2725 unsigned long max_managed, flags; 2726 2727 /* 2728 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2729 * Check is race-prone but harmless. 2730 */ 2731 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2732 if (zone->nr_reserved_highatomic >= max_managed) 2733 return; 2734 2735 spin_lock_irqsave(&zone->lock, flags); 2736 2737 /* Recheck the nr_reserved_highatomic limit under the lock */ 2738 if (zone->nr_reserved_highatomic >= max_managed) 2739 goto out_unlock; 2740 2741 /* Yoink! */ 2742 mt = get_pageblock_migratetype(page); 2743 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2744 if (migratetype_is_mergeable(mt)) { 2745 zone->nr_reserved_highatomic += pageblock_nr_pages; 2746 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2747 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2748 } 2749 2750 out_unlock: 2751 spin_unlock_irqrestore(&zone->lock, flags); 2752 } 2753 2754 /* 2755 * Used when an allocation is about to fail under memory pressure. This 2756 * potentially hurts the reliability of high-order allocations when under 2757 * intense memory pressure but failed atomic allocations should be easier 2758 * to recover from than an OOM. 2759 * 2760 * If @force is true, try to unreserve a pageblock even though highatomic 2761 * pageblock is exhausted. 2762 */ 2763 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2764 bool force) 2765 { 2766 struct zonelist *zonelist = ac->zonelist; 2767 unsigned long flags; 2768 struct zoneref *z; 2769 struct zone *zone; 2770 struct page *page; 2771 int order; 2772 bool ret; 2773 2774 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2775 ac->nodemask) { 2776 /* 2777 * Preserve at least one pageblock unless memory pressure 2778 * is really high. 2779 */ 2780 if (!force && zone->nr_reserved_highatomic <= 2781 pageblock_nr_pages) 2782 continue; 2783 2784 spin_lock_irqsave(&zone->lock, flags); 2785 for (order = 0; order < MAX_ORDER; order++) { 2786 struct free_area *area = &(zone->free_area[order]); 2787 2788 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2789 if (!page) 2790 continue; 2791 2792 /* 2793 * In page freeing path, migratetype change is racy so 2794 * we can counter several free pages in a pageblock 2795 * in this loop although we changed the pageblock type 2796 * from highatomic to ac->migratetype. So we should 2797 * adjust the count once. 2798 */ 2799 if (is_migrate_highatomic_page(page)) { 2800 /* 2801 * It should never happen but changes to 2802 * locking could inadvertently allow a per-cpu 2803 * drain to add pages to MIGRATE_HIGHATOMIC 2804 * while unreserving so be safe and watch for 2805 * underflows. 2806 */ 2807 zone->nr_reserved_highatomic -= min( 2808 pageblock_nr_pages, 2809 zone->nr_reserved_highatomic); 2810 } 2811 2812 /* 2813 * Convert to ac->migratetype and avoid the normal 2814 * pageblock stealing heuristics. Minimally, the caller 2815 * is doing the work and needs the pages. More 2816 * importantly, if the block was always converted to 2817 * MIGRATE_UNMOVABLE or another type then the number 2818 * of pageblocks that cannot be completely freed 2819 * may increase. 2820 */ 2821 set_pageblock_migratetype(page, ac->migratetype); 2822 ret = move_freepages_block(zone, page, ac->migratetype, 2823 NULL); 2824 if (ret) { 2825 spin_unlock_irqrestore(&zone->lock, flags); 2826 return ret; 2827 } 2828 } 2829 spin_unlock_irqrestore(&zone->lock, flags); 2830 } 2831 2832 return false; 2833 } 2834 2835 /* 2836 * Try finding a free buddy page on the fallback list and put it on the free 2837 * list of requested migratetype, possibly along with other pages from the same 2838 * block, depending on fragmentation avoidance heuristics. Returns true if 2839 * fallback was found so that __rmqueue_smallest() can grab it. 2840 * 2841 * The use of signed ints for order and current_order is a deliberate 2842 * deviation from the rest of this file, to make the for loop 2843 * condition simpler. 2844 */ 2845 static __always_inline bool 2846 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2847 unsigned int alloc_flags) 2848 { 2849 struct free_area *area; 2850 int current_order; 2851 int min_order = order; 2852 struct page *page; 2853 int fallback_mt; 2854 bool can_steal; 2855 2856 /* 2857 * Do not steal pages from freelists belonging to other pageblocks 2858 * i.e. orders < pageblock_order. If there are no local zones free, 2859 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2860 */ 2861 if (alloc_flags & ALLOC_NOFRAGMENT) 2862 min_order = pageblock_order; 2863 2864 /* 2865 * Find the largest available free page in the other list. This roughly 2866 * approximates finding the pageblock with the most free pages, which 2867 * would be too costly to do exactly. 2868 */ 2869 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2870 --current_order) { 2871 area = &(zone->free_area[current_order]); 2872 fallback_mt = find_suitable_fallback(area, current_order, 2873 start_migratetype, false, &can_steal); 2874 if (fallback_mt == -1) 2875 continue; 2876 2877 /* 2878 * We cannot steal all free pages from the pageblock and the 2879 * requested migratetype is movable. In that case it's better to 2880 * steal and split the smallest available page instead of the 2881 * largest available page, because even if the next movable 2882 * allocation falls back into a different pageblock than this 2883 * one, it won't cause permanent fragmentation. 2884 */ 2885 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2886 && current_order > order) 2887 goto find_smallest; 2888 2889 goto do_steal; 2890 } 2891 2892 return false; 2893 2894 find_smallest: 2895 for (current_order = order; current_order < MAX_ORDER; 2896 current_order++) { 2897 area = &(zone->free_area[current_order]); 2898 fallback_mt = find_suitable_fallback(area, current_order, 2899 start_migratetype, false, &can_steal); 2900 if (fallback_mt != -1) 2901 break; 2902 } 2903 2904 /* 2905 * This should not happen - we already found a suitable fallback 2906 * when looking for the largest page. 2907 */ 2908 VM_BUG_ON(current_order == MAX_ORDER); 2909 2910 do_steal: 2911 page = get_page_from_free_area(area, fallback_mt); 2912 2913 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2914 can_steal); 2915 2916 trace_mm_page_alloc_extfrag(page, order, current_order, 2917 start_migratetype, fallback_mt); 2918 2919 return true; 2920 2921 } 2922 2923 /* 2924 * Do the hard work of removing an element from the buddy allocator. 2925 * Call me with the zone->lock already held. 2926 */ 2927 static __always_inline struct page * 2928 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2929 unsigned int alloc_flags) 2930 { 2931 struct page *page; 2932 2933 if (IS_ENABLED(CONFIG_CMA)) { 2934 /* 2935 * Balance movable allocations between regular and CMA areas by 2936 * allocating from CMA when over half of the zone's free memory 2937 * is in the CMA area. 2938 */ 2939 if (alloc_flags & ALLOC_CMA && 2940 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2941 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2942 page = __rmqueue_cma_fallback(zone, order); 2943 if (page) 2944 goto out; 2945 } 2946 } 2947 retry: 2948 page = __rmqueue_smallest(zone, order, migratetype); 2949 if (unlikely(!page)) { 2950 if (alloc_flags & ALLOC_CMA) 2951 page = __rmqueue_cma_fallback(zone, order); 2952 2953 if (!page && __rmqueue_fallback(zone, order, migratetype, 2954 alloc_flags)) 2955 goto retry; 2956 } 2957 out: 2958 if (page) 2959 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2960 return page; 2961 } 2962 2963 /* 2964 * Obtain a specified number of elements from the buddy allocator, all under 2965 * a single hold of the lock, for efficiency. Add them to the supplied list. 2966 * Returns the number of new pages which were placed at *list. 2967 */ 2968 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2969 unsigned long count, struct list_head *list, 2970 int migratetype, unsigned int alloc_flags) 2971 { 2972 int i, allocated = 0; 2973 2974 /* 2975 * local_lock_irq held so equivalent to spin_lock_irqsave for 2976 * both PREEMPT_RT and non-PREEMPT_RT configurations. 2977 */ 2978 spin_lock(&zone->lock); 2979 for (i = 0; i < count; ++i) { 2980 struct page *page = __rmqueue(zone, order, migratetype, 2981 alloc_flags); 2982 if (unlikely(page == NULL)) 2983 break; 2984 2985 if (unlikely(check_pcp_refill(page, order))) 2986 continue; 2987 2988 /* 2989 * Split buddy pages returned by expand() are received here in 2990 * physical page order. The page is added to the tail of 2991 * caller's list. From the callers perspective, the linked list 2992 * is ordered by page number under some conditions. This is 2993 * useful for IO devices that can forward direction from the 2994 * head, thus also in the physical page order. This is useful 2995 * for IO devices that can merge IO requests if the physical 2996 * pages are ordered properly. 2997 */ 2998 list_add_tail(&page->lru, list); 2999 allocated++; 3000 if (is_migrate_cma(get_pcppage_migratetype(page))) 3001 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3002 -(1 << order)); 3003 } 3004 3005 /* 3006 * i pages were removed from the buddy list even if some leak due 3007 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3008 * on i. Do not confuse with 'allocated' which is the number of 3009 * pages added to the pcp list. 3010 */ 3011 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3012 spin_unlock(&zone->lock); 3013 return allocated; 3014 } 3015 3016 #ifdef CONFIG_NUMA 3017 /* 3018 * Called from the vmstat counter updater to drain pagesets of this 3019 * currently executing processor on remote nodes after they have 3020 * expired. 3021 * 3022 * Note that this function must be called with the thread pinned to 3023 * a single processor. 3024 */ 3025 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3026 { 3027 unsigned long flags; 3028 int to_drain, batch; 3029 3030 local_lock_irqsave(&pagesets.lock, flags); 3031 batch = READ_ONCE(pcp->batch); 3032 to_drain = min(pcp->count, batch); 3033 if (to_drain > 0) 3034 free_pcppages_bulk(zone, to_drain, pcp, 0); 3035 local_unlock_irqrestore(&pagesets.lock, flags); 3036 } 3037 #endif 3038 3039 /* 3040 * Drain pcplists of the indicated processor and zone. 3041 * 3042 * The processor must either be the current processor and the 3043 * thread pinned to the current processor or a processor that 3044 * is not online. 3045 */ 3046 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3047 { 3048 unsigned long flags; 3049 struct per_cpu_pages *pcp; 3050 3051 local_lock_irqsave(&pagesets.lock, flags); 3052 3053 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3054 if (pcp->count) 3055 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3056 3057 local_unlock_irqrestore(&pagesets.lock, flags); 3058 } 3059 3060 /* 3061 * Drain pcplists of all zones on the indicated processor. 3062 * 3063 * The processor must either be the current processor and the 3064 * thread pinned to the current processor or a processor that 3065 * is not online. 3066 */ 3067 static void drain_pages(unsigned int cpu) 3068 { 3069 struct zone *zone; 3070 3071 for_each_populated_zone(zone) { 3072 drain_pages_zone(cpu, zone); 3073 } 3074 } 3075 3076 /* 3077 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3078 * 3079 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3080 * the single zone's pages. 3081 */ 3082 void drain_local_pages(struct zone *zone) 3083 { 3084 int cpu = smp_processor_id(); 3085 3086 if (zone) 3087 drain_pages_zone(cpu, zone); 3088 else 3089 drain_pages(cpu); 3090 } 3091 3092 static void drain_local_pages_wq(struct work_struct *work) 3093 { 3094 struct pcpu_drain *drain; 3095 3096 drain = container_of(work, struct pcpu_drain, work); 3097 3098 /* 3099 * drain_all_pages doesn't use proper cpu hotplug protection so 3100 * we can race with cpu offline when the WQ can move this from 3101 * a cpu pinned worker to an unbound one. We can operate on a different 3102 * cpu which is alright but we also have to make sure to not move to 3103 * a different one. 3104 */ 3105 migrate_disable(); 3106 drain_local_pages(drain->zone); 3107 migrate_enable(); 3108 } 3109 3110 /* 3111 * The implementation of drain_all_pages(), exposing an extra parameter to 3112 * drain on all cpus. 3113 * 3114 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3115 * not empty. The check for non-emptiness can however race with a free to 3116 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3117 * that need the guarantee that every CPU has drained can disable the 3118 * optimizing racy check. 3119 */ 3120 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3121 { 3122 int cpu; 3123 3124 /* 3125 * Allocate in the BSS so we won't require allocation in 3126 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3127 */ 3128 static cpumask_t cpus_with_pcps; 3129 3130 /* 3131 * Make sure nobody triggers this path before mm_percpu_wq is fully 3132 * initialized. 3133 */ 3134 if (WARN_ON_ONCE(!mm_percpu_wq)) 3135 return; 3136 3137 /* 3138 * Do not drain if one is already in progress unless it's specific to 3139 * a zone. Such callers are primarily CMA and memory hotplug and need 3140 * the drain to be complete when the call returns. 3141 */ 3142 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3143 if (!zone) 3144 return; 3145 mutex_lock(&pcpu_drain_mutex); 3146 } 3147 3148 /* 3149 * We don't care about racing with CPU hotplug event 3150 * as offline notification will cause the notified 3151 * cpu to drain that CPU pcps and on_each_cpu_mask 3152 * disables preemption as part of its processing 3153 */ 3154 for_each_online_cpu(cpu) { 3155 struct per_cpu_pages *pcp; 3156 struct zone *z; 3157 bool has_pcps = false; 3158 3159 if (force_all_cpus) { 3160 /* 3161 * The pcp.count check is racy, some callers need a 3162 * guarantee that no cpu is missed. 3163 */ 3164 has_pcps = true; 3165 } else if (zone) { 3166 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3167 if (pcp->count) 3168 has_pcps = true; 3169 } else { 3170 for_each_populated_zone(z) { 3171 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3172 if (pcp->count) { 3173 has_pcps = true; 3174 break; 3175 } 3176 } 3177 } 3178 3179 if (has_pcps) 3180 cpumask_set_cpu(cpu, &cpus_with_pcps); 3181 else 3182 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3183 } 3184 3185 for_each_cpu(cpu, &cpus_with_pcps) { 3186 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3187 3188 drain->zone = zone; 3189 INIT_WORK(&drain->work, drain_local_pages_wq); 3190 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3191 } 3192 for_each_cpu(cpu, &cpus_with_pcps) 3193 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3194 3195 mutex_unlock(&pcpu_drain_mutex); 3196 } 3197 3198 /* 3199 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3200 * 3201 * When zone parameter is non-NULL, spill just the single zone's pages. 3202 * 3203 * Note that this can be extremely slow as the draining happens in a workqueue. 3204 */ 3205 void drain_all_pages(struct zone *zone) 3206 { 3207 __drain_all_pages(zone, false); 3208 } 3209 3210 #ifdef CONFIG_HIBERNATION 3211 3212 /* 3213 * Touch the watchdog for every WD_PAGE_COUNT pages. 3214 */ 3215 #define WD_PAGE_COUNT (128*1024) 3216 3217 void mark_free_pages(struct zone *zone) 3218 { 3219 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3220 unsigned long flags; 3221 unsigned int order, t; 3222 struct page *page; 3223 3224 if (zone_is_empty(zone)) 3225 return; 3226 3227 spin_lock_irqsave(&zone->lock, flags); 3228 3229 max_zone_pfn = zone_end_pfn(zone); 3230 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3231 if (pfn_valid(pfn)) { 3232 page = pfn_to_page(pfn); 3233 3234 if (!--page_count) { 3235 touch_nmi_watchdog(); 3236 page_count = WD_PAGE_COUNT; 3237 } 3238 3239 if (page_zone(page) != zone) 3240 continue; 3241 3242 if (!swsusp_page_is_forbidden(page)) 3243 swsusp_unset_page_free(page); 3244 } 3245 3246 for_each_migratetype_order(order, t) { 3247 list_for_each_entry(page, 3248 &zone->free_area[order].free_list[t], lru) { 3249 unsigned long i; 3250 3251 pfn = page_to_pfn(page); 3252 for (i = 0; i < (1UL << order); i++) { 3253 if (!--page_count) { 3254 touch_nmi_watchdog(); 3255 page_count = WD_PAGE_COUNT; 3256 } 3257 swsusp_set_page_free(pfn_to_page(pfn + i)); 3258 } 3259 } 3260 } 3261 spin_unlock_irqrestore(&zone->lock, flags); 3262 } 3263 #endif /* CONFIG_PM */ 3264 3265 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3266 unsigned int order) 3267 { 3268 int migratetype; 3269 3270 if (!free_pcp_prepare(page, order)) 3271 return false; 3272 3273 migratetype = get_pfnblock_migratetype(page, pfn); 3274 set_pcppage_migratetype(page, migratetype); 3275 return true; 3276 } 3277 3278 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3279 bool free_high) 3280 { 3281 int min_nr_free, max_nr_free; 3282 3283 /* Free everything if batch freeing high-order pages. */ 3284 if (unlikely(free_high)) 3285 return pcp->count; 3286 3287 /* Check for PCP disabled or boot pageset */ 3288 if (unlikely(high < batch)) 3289 return 1; 3290 3291 /* Leave at least pcp->batch pages on the list */ 3292 min_nr_free = batch; 3293 max_nr_free = high - batch; 3294 3295 /* 3296 * Double the number of pages freed each time there is subsequent 3297 * freeing of pages without any allocation. 3298 */ 3299 batch <<= pcp->free_factor; 3300 if (batch < max_nr_free) 3301 pcp->free_factor++; 3302 batch = clamp(batch, min_nr_free, max_nr_free); 3303 3304 return batch; 3305 } 3306 3307 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3308 bool free_high) 3309 { 3310 int high = READ_ONCE(pcp->high); 3311 3312 if (unlikely(!high || free_high)) 3313 return 0; 3314 3315 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3316 return high; 3317 3318 /* 3319 * If reclaim is active, limit the number of pages that can be 3320 * stored on pcp lists 3321 */ 3322 return min(READ_ONCE(pcp->batch) << 2, high); 3323 } 3324 3325 static void free_unref_page_commit(struct page *page, int migratetype, 3326 unsigned int order) 3327 { 3328 struct zone *zone = page_zone(page); 3329 struct per_cpu_pages *pcp; 3330 int high; 3331 int pindex; 3332 bool free_high; 3333 3334 __count_vm_event(PGFREE); 3335 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3336 pindex = order_to_pindex(migratetype, order); 3337 list_add(&page->lru, &pcp->lists[pindex]); 3338 pcp->count += 1 << order; 3339 3340 /* 3341 * As high-order pages other than THP's stored on PCP can contribute 3342 * to fragmentation, limit the number stored when PCP is heavily 3343 * freeing without allocation. The remainder after bulk freeing 3344 * stops will be drained from vmstat refresh context. 3345 */ 3346 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3347 3348 high = nr_pcp_high(pcp, zone, free_high); 3349 if (pcp->count >= high) { 3350 int batch = READ_ONCE(pcp->batch); 3351 3352 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3353 } 3354 } 3355 3356 /* 3357 * Free a pcp page 3358 */ 3359 void free_unref_page(struct page *page, unsigned int order) 3360 { 3361 unsigned long flags; 3362 unsigned long pfn = page_to_pfn(page); 3363 int migratetype; 3364 3365 if (!free_unref_page_prepare(page, pfn, order)) 3366 return; 3367 3368 /* 3369 * We only track unmovable, reclaimable and movable on pcp lists. 3370 * Place ISOLATE pages on the isolated list because they are being 3371 * offlined but treat HIGHATOMIC as movable pages so we can get those 3372 * areas back if necessary. Otherwise, we may have to free 3373 * excessively into the page allocator 3374 */ 3375 migratetype = get_pcppage_migratetype(page); 3376 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3377 if (unlikely(is_migrate_isolate(migratetype))) { 3378 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3379 return; 3380 } 3381 migratetype = MIGRATE_MOVABLE; 3382 } 3383 3384 local_lock_irqsave(&pagesets.lock, flags); 3385 free_unref_page_commit(page, migratetype, order); 3386 local_unlock_irqrestore(&pagesets.lock, flags); 3387 } 3388 3389 /* 3390 * Free a list of 0-order pages 3391 */ 3392 void free_unref_page_list(struct list_head *list) 3393 { 3394 struct page *page, *next; 3395 unsigned long flags; 3396 int batch_count = 0; 3397 int migratetype; 3398 3399 /* Prepare pages for freeing */ 3400 list_for_each_entry_safe(page, next, list, lru) { 3401 unsigned long pfn = page_to_pfn(page); 3402 if (!free_unref_page_prepare(page, pfn, 0)) { 3403 list_del(&page->lru); 3404 continue; 3405 } 3406 3407 /* 3408 * Free isolated pages directly to the allocator, see 3409 * comment in free_unref_page. 3410 */ 3411 migratetype = get_pcppage_migratetype(page); 3412 if (unlikely(is_migrate_isolate(migratetype))) { 3413 list_del(&page->lru); 3414 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3415 continue; 3416 } 3417 } 3418 3419 local_lock_irqsave(&pagesets.lock, flags); 3420 list_for_each_entry_safe(page, next, list, lru) { 3421 /* 3422 * Non-isolated types over MIGRATE_PCPTYPES get added 3423 * to the MIGRATE_MOVABLE pcp list. 3424 */ 3425 migratetype = get_pcppage_migratetype(page); 3426 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3427 migratetype = MIGRATE_MOVABLE; 3428 3429 trace_mm_page_free_batched(page); 3430 free_unref_page_commit(page, migratetype, 0); 3431 3432 /* 3433 * Guard against excessive IRQ disabled times when we get 3434 * a large list of pages to free. 3435 */ 3436 if (++batch_count == SWAP_CLUSTER_MAX) { 3437 local_unlock_irqrestore(&pagesets.lock, flags); 3438 batch_count = 0; 3439 local_lock_irqsave(&pagesets.lock, flags); 3440 } 3441 } 3442 local_unlock_irqrestore(&pagesets.lock, flags); 3443 } 3444 3445 /* 3446 * split_page takes a non-compound higher-order page, and splits it into 3447 * n (1<<order) sub-pages: page[0..n] 3448 * Each sub-page must be freed individually. 3449 * 3450 * Note: this is probably too low level an operation for use in drivers. 3451 * Please consult with lkml before using this in your driver. 3452 */ 3453 void split_page(struct page *page, unsigned int order) 3454 { 3455 int i; 3456 3457 VM_BUG_ON_PAGE(PageCompound(page), page); 3458 VM_BUG_ON_PAGE(!page_count(page), page); 3459 3460 for (i = 1; i < (1 << order); i++) 3461 set_page_refcounted(page + i); 3462 split_page_owner(page, 1 << order); 3463 split_page_memcg(page, 1 << order); 3464 } 3465 EXPORT_SYMBOL_GPL(split_page); 3466 3467 int __isolate_free_page(struct page *page, unsigned int order) 3468 { 3469 unsigned long watermark; 3470 struct zone *zone; 3471 int mt; 3472 3473 BUG_ON(!PageBuddy(page)); 3474 3475 zone = page_zone(page); 3476 mt = get_pageblock_migratetype(page); 3477 3478 if (!is_migrate_isolate(mt)) { 3479 /* 3480 * Obey watermarks as if the page was being allocated. We can 3481 * emulate a high-order watermark check with a raised order-0 3482 * watermark, because we already know our high-order page 3483 * exists. 3484 */ 3485 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3486 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3487 return 0; 3488 3489 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3490 } 3491 3492 /* Remove page from free list */ 3493 3494 del_page_from_free_list(page, zone, order); 3495 3496 /* 3497 * Set the pageblock if the isolated page is at least half of a 3498 * pageblock 3499 */ 3500 if (order >= pageblock_order - 1) { 3501 struct page *endpage = page + (1 << order) - 1; 3502 for (; page < endpage; page += pageblock_nr_pages) { 3503 int mt = get_pageblock_migratetype(page); 3504 /* 3505 * Only change normal pageblocks (i.e., they can merge 3506 * with others) 3507 */ 3508 if (migratetype_is_mergeable(mt)) 3509 set_pageblock_migratetype(page, 3510 MIGRATE_MOVABLE); 3511 } 3512 } 3513 3514 3515 return 1UL << order; 3516 } 3517 3518 /** 3519 * __putback_isolated_page - Return a now-isolated page back where we got it 3520 * @page: Page that was isolated 3521 * @order: Order of the isolated page 3522 * @mt: The page's pageblock's migratetype 3523 * 3524 * This function is meant to return a page pulled from the free lists via 3525 * __isolate_free_page back to the free lists they were pulled from. 3526 */ 3527 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3528 { 3529 struct zone *zone = page_zone(page); 3530 3531 /* zone lock should be held when this function is called */ 3532 lockdep_assert_held(&zone->lock); 3533 3534 /* Return isolated page to tail of freelist. */ 3535 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3536 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3537 } 3538 3539 /* 3540 * Update NUMA hit/miss statistics 3541 * 3542 * Must be called with interrupts disabled. 3543 */ 3544 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3545 long nr_account) 3546 { 3547 #ifdef CONFIG_NUMA 3548 enum numa_stat_item local_stat = NUMA_LOCAL; 3549 3550 /* skip numa counters update if numa stats is disabled */ 3551 if (!static_branch_likely(&vm_numa_stat_key)) 3552 return; 3553 3554 if (zone_to_nid(z) != numa_node_id()) 3555 local_stat = NUMA_OTHER; 3556 3557 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3558 __count_numa_events(z, NUMA_HIT, nr_account); 3559 else { 3560 __count_numa_events(z, NUMA_MISS, nr_account); 3561 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3562 } 3563 __count_numa_events(z, local_stat, nr_account); 3564 #endif 3565 } 3566 3567 /* Remove page from the per-cpu list, caller must protect the list */ 3568 static inline 3569 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3570 int migratetype, 3571 unsigned int alloc_flags, 3572 struct per_cpu_pages *pcp, 3573 struct list_head *list) 3574 { 3575 struct page *page; 3576 3577 do { 3578 if (list_empty(list)) { 3579 int batch = READ_ONCE(pcp->batch); 3580 int alloced; 3581 3582 /* 3583 * Scale batch relative to order if batch implies 3584 * free pages can be stored on the PCP. Batch can 3585 * be 1 for small zones or for boot pagesets which 3586 * should never store free pages as the pages may 3587 * belong to arbitrary zones. 3588 */ 3589 if (batch > 1) 3590 batch = max(batch >> order, 2); 3591 alloced = rmqueue_bulk(zone, order, 3592 batch, list, 3593 migratetype, alloc_flags); 3594 3595 pcp->count += alloced << order; 3596 if (unlikely(list_empty(list))) 3597 return NULL; 3598 } 3599 3600 page = list_first_entry(list, struct page, lru); 3601 list_del(&page->lru); 3602 pcp->count -= 1 << order; 3603 } while (check_new_pcp(page, order)); 3604 3605 return page; 3606 } 3607 3608 /* Lock and remove page from the per-cpu list */ 3609 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3610 struct zone *zone, unsigned int order, 3611 gfp_t gfp_flags, int migratetype, 3612 unsigned int alloc_flags) 3613 { 3614 struct per_cpu_pages *pcp; 3615 struct list_head *list; 3616 struct page *page; 3617 unsigned long flags; 3618 3619 local_lock_irqsave(&pagesets.lock, flags); 3620 3621 /* 3622 * On allocation, reduce the number of pages that are batch freed. 3623 * See nr_pcp_free() where free_factor is increased for subsequent 3624 * frees. 3625 */ 3626 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3627 pcp->free_factor >>= 1; 3628 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3629 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3630 local_unlock_irqrestore(&pagesets.lock, flags); 3631 if (page) { 3632 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3633 zone_statistics(preferred_zone, zone, 1); 3634 } 3635 return page; 3636 } 3637 3638 /* 3639 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3640 */ 3641 static inline 3642 struct page *rmqueue(struct zone *preferred_zone, 3643 struct zone *zone, unsigned int order, 3644 gfp_t gfp_flags, unsigned int alloc_flags, 3645 int migratetype) 3646 { 3647 unsigned long flags; 3648 struct page *page; 3649 3650 if (likely(pcp_allowed_order(order))) { 3651 /* 3652 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3653 * we need to skip it when CMA area isn't allowed. 3654 */ 3655 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3656 migratetype != MIGRATE_MOVABLE) { 3657 page = rmqueue_pcplist(preferred_zone, zone, order, 3658 gfp_flags, migratetype, alloc_flags); 3659 goto out; 3660 } 3661 } 3662 3663 /* 3664 * We most definitely don't want callers attempting to 3665 * allocate greater than order-1 page units with __GFP_NOFAIL. 3666 */ 3667 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3668 3669 do { 3670 page = NULL; 3671 spin_lock_irqsave(&zone->lock, flags); 3672 /* 3673 * order-0 request can reach here when the pcplist is skipped 3674 * due to non-CMA allocation context. HIGHATOMIC area is 3675 * reserved for high-order atomic allocation, so order-0 3676 * request should skip it. 3677 */ 3678 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3679 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3680 if (page) 3681 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3682 } 3683 if (!page) { 3684 page = __rmqueue(zone, order, migratetype, alloc_flags); 3685 if (!page) 3686 goto failed; 3687 } 3688 __mod_zone_freepage_state(zone, -(1 << order), 3689 get_pcppage_migratetype(page)); 3690 spin_unlock_irqrestore(&zone->lock, flags); 3691 } while (check_new_pages(page, order)); 3692 3693 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3694 zone_statistics(preferred_zone, zone, 1); 3695 3696 out: 3697 /* Separate test+clear to avoid unnecessary atomics */ 3698 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3699 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3700 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3701 } 3702 3703 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3704 return page; 3705 3706 failed: 3707 spin_unlock_irqrestore(&zone->lock, flags); 3708 return NULL; 3709 } 3710 3711 #ifdef CONFIG_FAIL_PAGE_ALLOC 3712 3713 static struct { 3714 struct fault_attr attr; 3715 3716 bool ignore_gfp_highmem; 3717 bool ignore_gfp_reclaim; 3718 u32 min_order; 3719 } fail_page_alloc = { 3720 .attr = FAULT_ATTR_INITIALIZER, 3721 .ignore_gfp_reclaim = true, 3722 .ignore_gfp_highmem = true, 3723 .min_order = 1, 3724 }; 3725 3726 static int __init setup_fail_page_alloc(char *str) 3727 { 3728 return setup_fault_attr(&fail_page_alloc.attr, str); 3729 } 3730 __setup("fail_page_alloc=", setup_fail_page_alloc); 3731 3732 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3733 { 3734 if (order < fail_page_alloc.min_order) 3735 return false; 3736 if (gfp_mask & __GFP_NOFAIL) 3737 return false; 3738 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3739 return false; 3740 if (fail_page_alloc.ignore_gfp_reclaim && 3741 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3742 return false; 3743 3744 return should_fail(&fail_page_alloc.attr, 1 << order); 3745 } 3746 3747 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3748 3749 static int __init fail_page_alloc_debugfs(void) 3750 { 3751 umode_t mode = S_IFREG | 0600; 3752 struct dentry *dir; 3753 3754 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3755 &fail_page_alloc.attr); 3756 3757 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3758 &fail_page_alloc.ignore_gfp_reclaim); 3759 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3760 &fail_page_alloc.ignore_gfp_highmem); 3761 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3762 3763 return 0; 3764 } 3765 3766 late_initcall(fail_page_alloc_debugfs); 3767 3768 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3769 3770 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3771 3772 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3773 { 3774 return false; 3775 } 3776 3777 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3778 3779 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3780 { 3781 return __should_fail_alloc_page(gfp_mask, order); 3782 } 3783 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3784 3785 static inline long __zone_watermark_unusable_free(struct zone *z, 3786 unsigned int order, unsigned int alloc_flags) 3787 { 3788 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3789 long unusable_free = (1 << order) - 1; 3790 3791 /* 3792 * If the caller does not have rights to ALLOC_HARDER then subtract 3793 * the high-atomic reserves. This will over-estimate the size of the 3794 * atomic reserve but it avoids a search. 3795 */ 3796 if (likely(!alloc_harder)) 3797 unusable_free += z->nr_reserved_highatomic; 3798 3799 #ifdef CONFIG_CMA 3800 /* If allocation can't use CMA areas don't use free CMA pages */ 3801 if (!(alloc_flags & ALLOC_CMA)) 3802 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3803 #endif 3804 3805 return unusable_free; 3806 } 3807 3808 /* 3809 * Return true if free base pages are above 'mark'. For high-order checks it 3810 * will return true of the order-0 watermark is reached and there is at least 3811 * one free page of a suitable size. Checking now avoids taking the zone lock 3812 * to check in the allocation paths if no pages are free. 3813 */ 3814 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3815 int highest_zoneidx, unsigned int alloc_flags, 3816 long free_pages) 3817 { 3818 long min = mark; 3819 int o; 3820 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3821 3822 /* free_pages may go negative - that's OK */ 3823 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3824 3825 if (alloc_flags & ALLOC_HIGH) 3826 min -= min / 2; 3827 3828 if (unlikely(alloc_harder)) { 3829 /* 3830 * OOM victims can try even harder than normal ALLOC_HARDER 3831 * users on the grounds that it's definitely going to be in 3832 * the exit path shortly and free memory. Any allocation it 3833 * makes during the free path will be small and short-lived. 3834 */ 3835 if (alloc_flags & ALLOC_OOM) 3836 min -= min / 2; 3837 else 3838 min -= min / 4; 3839 } 3840 3841 /* 3842 * Check watermarks for an order-0 allocation request. If these 3843 * are not met, then a high-order request also cannot go ahead 3844 * even if a suitable page happened to be free. 3845 */ 3846 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3847 return false; 3848 3849 /* If this is an order-0 request then the watermark is fine */ 3850 if (!order) 3851 return true; 3852 3853 /* For a high-order request, check at least one suitable page is free */ 3854 for (o = order; o < MAX_ORDER; o++) { 3855 struct free_area *area = &z->free_area[o]; 3856 int mt; 3857 3858 if (!area->nr_free) 3859 continue; 3860 3861 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3862 if (!free_area_empty(area, mt)) 3863 return true; 3864 } 3865 3866 #ifdef CONFIG_CMA 3867 if ((alloc_flags & ALLOC_CMA) && 3868 !free_area_empty(area, MIGRATE_CMA)) { 3869 return true; 3870 } 3871 #endif 3872 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3873 return true; 3874 } 3875 return false; 3876 } 3877 3878 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3879 int highest_zoneidx, unsigned int alloc_flags) 3880 { 3881 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3882 zone_page_state(z, NR_FREE_PAGES)); 3883 } 3884 3885 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3886 unsigned long mark, int highest_zoneidx, 3887 unsigned int alloc_flags, gfp_t gfp_mask) 3888 { 3889 long free_pages; 3890 3891 free_pages = zone_page_state(z, NR_FREE_PAGES); 3892 3893 /* 3894 * Fast check for order-0 only. If this fails then the reserves 3895 * need to be calculated. 3896 */ 3897 if (!order) { 3898 long fast_free; 3899 3900 fast_free = free_pages; 3901 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3902 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3903 return true; 3904 } 3905 3906 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3907 free_pages)) 3908 return true; 3909 /* 3910 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3911 * when checking the min watermark. The min watermark is the 3912 * point where boosting is ignored so that kswapd is woken up 3913 * when below the low watermark. 3914 */ 3915 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3916 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3917 mark = z->_watermark[WMARK_MIN]; 3918 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3919 alloc_flags, free_pages); 3920 } 3921 3922 return false; 3923 } 3924 3925 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3926 unsigned long mark, int highest_zoneidx) 3927 { 3928 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3929 3930 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3931 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3932 3933 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3934 free_pages); 3935 } 3936 3937 #ifdef CONFIG_NUMA 3938 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3939 3940 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3941 { 3942 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3943 node_reclaim_distance; 3944 } 3945 #else /* CONFIG_NUMA */ 3946 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3947 { 3948 return true; 3949 } 3950 #endif /* CONFIG_NUMA */ 3951 3952 /* 3953 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3954 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3955 * premature use of a lower zone may cause lowmem pressure problems that 3956 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3957 * probably too small. It only makes sense to spread allocations to avoid 3958 * fragmentation between the Normal and DMA32 zones. 3959 */ 3960 static inline unsigned int 3961 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3962 { 3963 unsigned int alloc_flags; 3964 3965 /* 3966 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3967 * to save a branch. 3968 */ 3969 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3970 3971 #ifdef CONFIG_ZONE_DMA32 3972 if (!zone) 3973 return alloc_flags; 3974 3975 if (zone_idx(zone) != ZONE_NORMAL) 3976 return alloc_flags; 3977 3978 /* 3979 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3980 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3981 * on UMA that if Normal is populated then so is DMA32. 3982 */ 3983 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3984 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3985 return alloc_flags; 3986 3987 alloc_flags |= ALLOC_NOFRAGMENT; 3988 #endif /* CONFIG_ZONE_DMA32 */ 3989 return alloc_flags; 3990 } 3991 3992 /* Must be called after current_gfp_context() which can change gfp_mask */ 3993 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3994 unsigned int alloc_flags) 3995 { 3996 #ifdef CONFIG_CMA 3997 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3998 alloc_flags |= ALLOC_CMA; 3999 #endif 4000 return alloc_flags; 4001 } 4002 4003 /* 4004 * get_page_from_freelist goes through the zonelist trying to allocate 4005 * a page. 4006 */ 4007 static struct page * 4008 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4009 const struct alloc_context *ac) 4010 { 4011 struct zoneref *z; 4012 struct zone *zone; 4013 struct pglist_data *last_pgdat_dirty_limit = NULL; 4014 bool no_fallback; 4015 4016 retry: 4017 /* 4018 * Scan zonelist, looking for a zone with enough free. 4019 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4020 */ 4021 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4022 z = ac->preferred_zoneref; 4023 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4024 ac->nodemask) { 4025 struct page *page; 4026 unsigned long mark; 4027 4028 if (cpusets_enabled() && 4029 (alloc_flags & ALLOC_CPUSET) && 4030 !__cpuset_zone_allowed(zone, gfp_mask)) 4031 continue; 4032 /* 4033 * When allocating a page cache page for writing, we 4034 * want to get it from a node that is within its dirty 4035 * limit, such that no single node holds more than its 4036 * proportional share of globally allowed dirty pages. 4037 * The dirty limits take into account the node's 4038 * lowmem reserves and high watermark so that kswapd 4039 * should be able to balance it without having to 4040 * write pages from its LRU list. 4041 * 4042 * XXX: For now, allow allocations to potentially 4043 * exceed the per-node dirty limit in the slowpath 4044 * (spread_dirty_pages unset) before going into reclaim, 4045 * which is important when on a NUMA setup the allowed 4046 * nodes are together not big enough to reach the 4047 * global limit. The proper fix for these situations 4048 * will require awareness of nodes in the 4049 * dirty-throttling and the flusher threads. 4050 */ 4051 if (ac->spread_dirty_pages) { 4052 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4053 continue; 4054 4055 if (!node_dirty_ok(zone->zone_pgdat)) { 4056 last_pgdat_dirty_limit = zone->zone_pgdat; 4057 continue; 4058 } 4059 } 4060 4061 if (no_fallback && nr_online_nodes > 1 && 4062 zone != ac->preferred_zoneref->zone) { 4063 int local_nid; 4064 4065 /* 4066 * If moving to a remote node, retry but allow 4067 * fragmenting fallbacks. Locality is more important 4068 * than fragmentation avoidance. 4069 */ 4070 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4071 if (zone_to_nid(zone) != local_nid) { 4072 alloc_flags &= ~ALLOC_NOFRAGMENT; 4073 goto retry; 4074 } 4075 } 4076 4077 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4078 if (!zone_watermark_fast(zone, order, mark, 4079 ac->highest_zoneidx, alloc_flags, 4080 gfp_mask)) { 4081 int ret; 4082 4083 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4084 /* 4085 * Watermark failed for this zone, but see if we can 4086 * grow this zone if it contains deferred pages. 4087 */ 4088 if (static_branch_unlikely(&deferred_pages)) { 4089 if (_deferred_grow_zone(zone, order)) 4090 goto try_this_zone; 4091 } 4092 #endif 4093 /* Checked here to keep the fast path fast */ 4094 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4095 if (alloc_flags & ALLOC_NO_WATERMARKS) 4096 goto try_this_zone; 4097 4098 if (!node_reclaim_enabled() || 4099 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4100 continue; 4101 4102 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4103 switch (ret) { 4104 case NODE_RECLAIM_NOSCAN: 4105 /* did not scan */ 4106 continue; 4107 case NODE_RECLAIM_FULL: 4108 /* scanned but unreclaimable */ 4109 continue; 4110 default: 4111 /* did we reclaim enough */ 4112 if (zone_watermark_ok(zone, order, mark, 4113 ac->highest_zoneidx, alloc_flags)) 4114 goto try_this_zone; 4115 4116 continue; 4117 } 4118 } 4119 4120 try_this_zone: 4121 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4122 gfp_mask, alloc_flags, ac->migratetype); 4123 if (page) { 4124 prep_new_page(page, order, gfp_mask, alloc_flags); 4125 4126 /* 4127 * If this is a high-order atomic allocation then check 4128 * if the pageblock should be reserved for the future 4129 */ 4130 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4131 reserve_highatomic_pageblock(page, zone, order); 4132 4133 return page; 4134 } else { 4135 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4136 /* Try again if zone has deferred pages */ 4137 if (static_branch_unlikely(&deferred_pages)) { 4138 if (_deferred_grow_zone(zone, order)) 4139 goto try_this_zone; 4140 } 4141 #endif 4142 } 4143 } 4144 4145 /* 4146 * It's possible on a UMA machine to get through all zones that are 4147 * fragmented. If avoiding fragmentation, reset and try again. 4148 */ 4149 if (no_fallback) { 4150 alloc_flags &= ~ALLOC_NOFRAGMENT; 4151 goto retry; 4152 } 4153 4154 return NULL; 4155 } 4156 4157 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4158 { 4159 unsigned int filter = SHOW_MEM_FILTER_NODES; 4160 4161 /* 4162 * This documents exceptions given to allocations in certain 4163 * contexts that are allowed to allocate outside current's set 4164 * of allowed nodes. 4165 */ 4166 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4167 if (tsk_is_oom_victim(current) || 4168 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4169 filter &= ~SHOW_MEM_FILTER_NODES; 4170 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4171 filter &= ~SHOW_MEM_FILTER_NODES; 4172 4173 show_mem(filter, nodemask); 4174 } 4175 4176 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4177 { 4178 struct va_format vaf; 4179 va_list args; 4180 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4181 4182 if ((gfp_mask & __GFP_NOWARN) || 4183 !__ratelimit(&nopage_rs) || 4184 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4185 return; 4186 4187 va_start(args, fmt); 4188 vaf.fmt = fmt; 4189 vaf.va = &args; 4190 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4191 current->comm, &vaf, gfp_mask, &gfp_mask, 4192 nodemask_pr_args(nodemask)); 4193 va_end(args); 4194 4195 cpuset_print_current_mems_allowed(); 4196 pr_cont("\n"); 4197 dump_stack(); 4198 warn_alloc_show_mem(gfp_mask, nodemask); 4199 } 4200 4201 static inline struct page * 4202 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4203 unsigned int alloc_flags, 4204 const struct alloc_context *ac) 4205 { 4206 struct page *page; 4207 4208 page = get_page_from_freelist(gfp_mask, order, 4209 alloc_flags|ALLOC_CPUSET, ac); 4210 /* 4211 * fallback to ignore cpuset restriction if our nodes 4212 * are depleted 4213 */ 4214 if (!page) 4215 page = get_page_from_freelist(gfp_mask, order, 4216 alloc_flags, ac); 4217 4218 return page; 4219 } 4220 4221 static inline struct page * 4222 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4223 const struct alloc_context *ac, unsigned long *did_some_progress) 4224 { 4225 struct oom_control oc = { 4226 .zonelist = ac->zonelist, 4227 .nodemask = ac->nodemask, 4228 .memcg = NULL, 4229 .gfp_mask = gfp_mask, 4230 .order = order, 4231 }; 4232 struct page *page; 4233 4234 *did_some_progress = 0; 4235 4236 /* 4237 * Acquire the oom lock. If that fails, somebody else is 4238 * making progress for us. 4239 */ 4240 if (!mutex_trylock(&oom_lock)) { 4241 *did_some_progress = 1; 4242 schedule_timeout_uninterruptible(1); 4243 return NULL; 4244 } 4245 4246 /* 4247 * Go through the zonelist yet one more time, keep very high watermark 4248 * here, this is only to catch a parallel oom killing, we must fail if 4249 * we're still under heavy pressure. But make sure that this reclaim 4250 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4251 * allocation which will never fail due to oom_lock already held. 4252 */ 4253 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4254 ~__GFP_DIRECT_RECLAIM, order, 4255 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4256 if (page) 4257 goto out; 4258 4259 /* Coredumps can quickly deplete all memory reserves */ 4260 if (current->flags & PF_DUMPCORE) 4261 goto out; 4262 /* The OOM killer will not help higher order allocs */ 4263 if (order > PAGE_ALLOC_COSTLY_ORDER) 4264 goto out; 4265 /* 4266 * We have already exhausted all our reclaim opportunities without any 4267 * success so it is time to admit defeat. We will skip the OOM killer 4268 * because it is very likely that the caller has a more reasonable 4269 * fallback than shooting a random task. 4270 * 4271 * The OOM killer may not free memory on a specific node. 4272 */ 4273 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4274 goto out; 4275 /* The OOM killer does not needlessly kill tasks for lowmem */ 4276 if (ac->highest_zoneidx < ZONE_NORMAL) 4277 goto out; 4278 if (pm_suspended_storage()) 4279 goto out; 4280 /* 4281 * XXX: GFP_NOFS allocations should rather fail than rely on 4282 * other request to make a forward progress. 4283 * We are in an unfortunate situation where out_of_memory cannot 4284 * do much for this context but let's try it to at least get 4285 * access to memory reserved if the current task is killed (see 4286 * out_of_memory). Once filesystems are ready to handle allocation 4287 * failures more gracefully we should just bail out here. 4288 */ 4289 4290 /* Exhausted what can be done so it's blame time */ 4291 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4292 *did_some_progress = 1; 4293 4294 /* 4295 * Help non-failing allocations by giving them access to memory 4296 * reserves 4297 */ 4298 if (gfp_mask & __GFP_NOFAIL) 4299 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4300 ALLOC_NO_WATERMARKS, ac); 4301 } 4302 out: 4303 mutex_unlock(&oom_lock); 4304 return page; 4305 } 4306 4307 /* 4308 * Maximum number of compaction retries with a progress before OOM 4309 * killer is consider as the only way to move forward. 4310 */ 4311 #define MAX_COMPACT_RETRIES 16 4312 4313 #ifdef CONFIG_COMPACTION 4314 /* Try memory compaction for high-order allocations before reclaim */ 4315 static struct page * 4316 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4317 unsigned int alloc_flags, const struct alloc_context *ac, 4318 enum compact_priority prio, enum compact_result *compact_result) 4319 { 4320 struct page *page = NULL; 4321 unsigned long pflags; 4322 unsigned int noreclaim_flag; 4323 4324 if (!order) 4325 return NULL; 4326 4327 psi_memstall_enter(&pflags); 4328 delayacct_compact_start(); 4329 noreclaim_flag = memalloc_noreclaim_save(); 4330 4331 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4332 prio, &page); 4333 4334 memalloc_noreclaim_restore(noreclaim_flag); 4335 psi_memstall_leave(&pflags); 4336 delayacct_compact_end(); 4337 4338 if (*compact_result == COMPACT_SKIPPED) 4339 return NULL; 4340 /* 4341 * At least in one zone compaction wasn't deferred or skipped, so let's 4342 * count a compaction stall 4343 */ 4344 count_vm_event(COMPACTSTALL); 4345 4346 /* Prep a captured page if available */ 4347 if (page) 4348 prep_new_page(page, order, gfp_mask, alloc_flags); 4349 4350 /* Try get a page from the freelist if available */ 4351 if (!page) 4352 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4353 4354 if (page) { 4355 struct zone *zone = page_zone(page); 4356 4357 zone->compact_blockskip_flush = false; 4358 compaction_defer_reset(zone, order, true); 4359 count_vm_event(COMPACTSUCCESS); 4360 return page; 4361 } 4362 4363 /* 4364 * It's bad if compaction run occurs and fails. The most likely reason 4365 * is that pages exist, but not enough to satisfy watermarks. 4366 */ 4367 count_vm_event(COMPACTFAIL); 4368 4369 cond_resched(); 4370 4371 return NULL; 4372 } 4373 4374 static inline bool 4375 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4376 enum compact_result compact_result, 4377 enum compact_priority *compact_priority, 4378 int *compaction_retries) 4379 { 4380 int max_retries = MAX_COMPACT_RETRIES; 4381 int min_priority; 4382 bool ret = false; 4383 int retries = *compaction_retries; 4384 enum compact_priority priority = *compact_priority; 4385 4386 if (!order) 4387 return false; 4388 4389 if (fatal_signal_pending(current)) 4390 return false; 4391 4392 if (compaction_made_progress(compact_result)) 4393 (*compaction_retries)++; 4394 4395 /* 4396 * compaction considers all the zone as desperately out of memory 4397 * so it doesn't really make much sense to retry except when the 4398 * failure could be caused by insufficient priority 4399 */ 4400 if (compaction_failed(compact_result)) 4401 goto check_priority; 4402 4403 /* 4404 * compaction was skipped because there are not enough order-0 pages 4405 * to work with, so we retry only if it looks like reclaim can help. 4406 */ 4407 if (compaction_needs_reclaim(compact_result)) { 4408 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4409 goto out; 4410 } 4411 4412 /* 4413 * make sure the compaction wasn't deferred or didn't bail out early 4414 * due to locks contention before we declare that we should give up. 4415 * But the next retry should use a higher priority if allowed, so 4416 * we don't just keep bailing out endlessly. 4417 */ 4418 if (compaction_withdrawn(compact_result)) { 4419 goto check_priority; 4420 } 4421 4422 /* 4423 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4424 * costly ones because they are de facto nofail and invoke OOM 4425 * killer to move on while costly can fail and users are ready 4426 * to cope with that. 1/4 retries is rather arbitrary but we 4427 * would need much more detailed feedback from compaction to 4428 * make a better decision. 4429 */ 4430 if (order > PAGE_ALLOC_COSTLY_ORDER) 4431 max_retries /= 4; 4432 if (*compaction_retries <= max_retries) { 4433 ret = true; 4434 goto out; 4435 } 4436 4437 /* 4438 * Make sure there are attempts at the highest priority if we exhausted 4439 * all retries or failed at the lower priorities. 4440 */ 4441 check_priority: 4442 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4443 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4444 4445 if (*compact_priority > min_priority) { 4446 (*compact_priority)--; 4447 *compaction_retries = 0; 4448 ret = true; 4449 } 4450 out: 4451 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4452 return ret; 4453 } 4454 #else 4455 static inline struct page * 4456 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4457 unsigned int alloc_flags, const struct alloc_context *ac, 4458 enum compact_priority prio, enum compact_result *compact_result) 4459 { 4460 *compact_result = COMPACT_SKIPPED; 4461 return NULL; 4462 } 4463 4464 static inline bool 4465 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4466 enum compact_result compact_result, 4467 enum compact_priority *compact_priority, 4468 int *compaction_retries) 4469 { 4470 struct zone *zone; 4471 struct zoneref *z; 4472 4473 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4474 return false; 4475 4476 /* 4477 * There are setups with compaction disabled which would prefer to loop 4478 * inside the allocator rather than hit the oom killer prematurely. 4479 * Let's give them a good hope and keep retrying while the order-0 4480 * watermarks are OK. 4481 */ 4482 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4483 ac->highest_zoneidx, ac->nodemask) { 4484 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4485 ac->highest_zoneidx, alloc_flags)) 4486 return true; 4487 } 4488 return false; 4489 } 4490 #endif /* CONFIG_COMPACTION */ 4491 4492 #ifdef CONFIG_LOCKDEP 4493 static struct lockdep_map __fs_reclaim_map = 4494 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4495 4496 static bool __need_reclaim(gfp_t gfp_mask) 4497 { 4498 /* no reclaim without waiting on it */ 4499 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4500 return false; 4501 4502 /* this guy won't enter reclaim */ 4503 if (current->flags & PF_MEMALLOC) 4504 return false; 4505 4506 if (gfp_mask & __GFP_NOLOCKDEP) 4507 return false; 4508 4509 return true; 4510 } 4511 4512 void __fs_reclaim_acquire(unsigned long ip) 4513 { 4514 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4515 } 4516 4517 void __fs_reclaim_release(unsigned long ip) 4518 { 4519 lock_release(&__fs_reclaim_map, ip); 4520 } 4521 4522 void fs_reclaim_acquire(gfp_t gfp_mask) 4523 { 4524 gfp_mask = current_gfp_context(gfp_mask); 4525 4526 if (__need_reclaim(gfp_mask)) { 4527 if (gfp_mask & __GFP_FS) 4528 __fs_reclaim_acquire(_RET_IP_); 4529 4530 #ifdef CONFIG_MMU_NOTIFIER 4531 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4532 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4533 #endif 4534 4535 } 4536 } 4537 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4538 4539 void fs_reclaim_release(gfp_t gfp_mask) 4540 { 4541 gfp_mask = current_gfp_context(gfp_mask); 4542 4543 if (__need_reclaim(gfp_mask)) { 4544 if (gfp_mask & __GFP_FS) 4545 __fs_reclaim_release(_RET_IP_); 4546 } 4547 } 4548 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4549 #endif 4550 4551 /* Perform direct synchronous page reclaim */ 4552 static unsigned long 4553 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4554 const struct alloc_context *ac) 4555 { 4556 unsigned int noreclaim_flag; 4557 unsigned long progress; 4558 4559 cond_resched(); 4560 4561 /* We now go into synchronous reclaim */ 4562 cpuset_memory_pressure_bump(); 4563 fs_reclaim_acquire(gfp_mask); 4564 noreclaim_flag = memalloc_noreclaim_save(); 4565 4566 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4567 ac->nodemask); 4568 4569 memalloc_noreclaim_restore(noreclaim_flag); 4570 fs_reclaim_release(gfp_mask); 4571 4572 cond_resched(); 4573 4574 return progress; 4575 } 4576 4577 /* The really slow allocator path where we enter direct reclaim */ 4578 static inline struct page * 4579 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4580 unsigned int alloc_flags, const struct alloc_context *ac, 4581 unsigned long *did_some_progress) 4582 { 4583 struct page *page = NULL; 4584 unsigned long pflags; 4585 bool drained = false; 4586 4587 psi_memstall_enter(&pflags); 4588 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4589 if (unlikely(!(*did_some_progress))) 4590 goto out; 4591 4592 retry: 4593 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4594 4595 /* 4596 * If an allocation failed after direct reclaim, it could be because 4597 * pages are pinned on the per-cpu lists or in high alloc reserves. 4598 * Shrink them and try again 4599 */ 4600 if (!page && !drained) { 4601 unreserve_highatomic_pageblock(ac, false); 4602 drain_all_pages(NULL); 4603 drained = true; 4604 goto retry; 4605 } 4606 out: 4607 psi_memstall_leave(&pflags); 4608 4609 return page; 4610 } 4611 4612 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4613 const struct alloc_context *ac) 4614 { 4615 struct zoneref *z; 4616 struct zone *zone; 4617 pg_data_t *last_pgdat = NULL; 4618 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4619 4620 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4621 ac->nodemask) { 4622 if (last_pgdat != zone->zone_pgdat) 4623 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4624 last_pgdat = zone->zone_pgdat; 4625 } 4626 } 4627 4628 static inline unsigned int 4629 gfp_to_alloc_flags(gfp_t gfp_mask) 4630 { 4631 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4632 4633 /* 4634 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4635 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4636 * to save two branches. 4637 */ 4638 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4639 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4640 4641 /* 4642 * The caller may dip into page reserves a bit more if the caller 4643 * cannot run direct reclaim, or if the caller has realtime scheduling 4644 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4645 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4646 */ 4647 alloc_flags |= (__force int) 4648 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4649 4650 if (gfp_mask & __GFP_ATOMIC) { 4651 /* 4652 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4653 * if it can't schedule. 4654 */ 4655 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4656 alloc_flags |= ALLOC_HARDER; 4657 /* 4658 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4659 * comment for __cpuset_node_allowed(). 4660 */ 4661 alloc_flags &= ~ALLOC_CPUSET; 4662 } else if (unlikely(rt_task(current)) && in_task()) 4663 alloc_flags |= ALLOC_HARDER; 4664 4665 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4666 4667 return alloc_flags; 4668 } 4669 4670 static bool oom_reserves_allowed(struct task_struct *tsk) 4671 { 4672 if (!tsk_is_oom_victim(tsk)) 4673 return false; 4674 4675 /* 4676 * !MMU doesn't have oom reaper so give access to memory reserves 4677 * only to the thread with TIF_MEMDIE set 4678 */ 4679 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4680 return false; 4681 4682 return true; 4683 } 4684 4685 /* 4686 * Distinguish requests which really need access to full memory 4687 * reserves from oom victims which can live with a portion of it 4688 */ 4689 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4690 { 4691 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4692 return 0; 4693 if (gfp_mask & __GFP_MEMALLOC) 4694 return ALLOC_NO_WATERMARKS; 4695 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4696 return ALLOC_NO_WATERMARKS; 4697 if (!in_interrupt()) { 4698 if (current->flags & PF_MEMALLOC) 4699 return ALLOC_NO_WATERMARKS; 4700 else if (oom_reserves_allowed(current)) 4701 return ALLOC_OOM; 4702 } 4703 4704 return 0; 4705 } 4706 4707 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4708 { 4709 return !!__gfp_pfmemalloc_flags(gfp_mask); 4710 } 4711 4712 /* 4713 * Checks whether it makes sense to retry the reclaim to make a forward progress 4714 * for the given allocation request. 4715 * 4716 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4717 * without success, or when we couldn't even meet the watermark if we 4718 * reclaimed all remaining pages on the LRU lists. 4719 * 4720 * Returns true if a retry is viable or false to enter the oom path. 4721 */ 4722 static inline bool 4723 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4724 struct alloc_context *ac, int alloc_flags, 4725 bool did_some_progress, int *no_progress_loops) 4726 { 4727 struct zone *zone; 4728 struct zoneref *z; 4729 bool ret = false; 4730 4731 /* 4732 * Costly allocations might have made a progress but this doesn't mean 4733 * their order will become available due to high fragmentation so 4734 * always increment the no progress counter for them 4735 */ 4736 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4737 *no_progress_loops = 0; 4738 else 4739 (*no_progress_loops)++; 4740 4741 /* 4742 * Make sure we converge to OOM if we cannot make any progress 4743 * several times in the row. 4744 */ 4745 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4746 /* Before OOM, exhaust highatomic_reserve */ 4747 return unreserve_highatomic_pageblock(ac, true); 4748 } 4749 4750 /* 4751 * Keep reclaiming pages while there is a chance this will lead 4752 * somewhere. If none of the target zones can satisfy our allocation 4753 * request even if all reclaimable pages are considered then we are 4754 * screwed and have to go OOM. 4755 */ 4756 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4757 ac->highest_zoneidx, ac->nodemask) { 4758 unsigned long available; 4759 unsigned long reclaimable; 4760 unsigned long min_wmark = min_wmark_pages(zone); 4761 bool wmark; 4762 4763 available = reclaimable = zone_reclaimable_pages(zone); 4764 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4765 4766 /* 4767 * Would the allocation succeed if we reclaimed all 4768 * reclaimable pages? 4769 */ 4770 wmark = __zone_watermark_ok(zone, order, min_wmark, 4771 ac->highest_zoneidx, alloc_flags, available); 4772 trace_reclaim_retry_zone(z, order, reclaimable, 4773 available, min_wmark, *no_progress_loops, wmark); 4774 if (wmark) { 4775 ret = true; 4776 break; 4777 } 4778 } 4779 4780 /* 4781 * Memory allocation/reclaim might be called from a WQ context and the 4782 * current implementation of the WQ concurrency control doesn't 4783 * recognize that a particular WQ is congested if the worker thread is 4784 * looping without ever sleeping. Therefore we have to do a short sleep 4785 * here rather than calling cond_resched(). 4786 */ 4787 if (current->flags & PF_WQ_WORKER) 4788 schedule_timeout_uninterruptible(1); 4789 else 4790 cond_resched(); 4791 return ret; 4792 } 4793 4794 static inline bool 4795 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4796 { 4797 /* 4798 * It's possible that cpuset's mems_allowed and the nodemask from 4799 * mempolicy don't intersect. This should be normally dealt with by 4800 * policy_nodemask(), but it's possible to race with cpuset update in 4801 * such a way the check therein was true, and then it became false 4802 * before we got our cpuset_mems_cookie here. 4803 * This assumes that for all allocations, ac->nodemask can come only 4804 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4805 * when it does not intersect with the cpuset restrictions) or the 4806 * caller can deal with a violated nodemask. 4807 */ 4808 if (cpusets_enabled() && ac->nodemask && 4809 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4810 ac->nodemask = NULL; 4811 return true; 4812 } 4813 4814 /* 4815 * When updating a task's mems_allowed or mempolicy nodemask, it is 4816 * possible to race with parallel threads in such a way that our 4817 * allocation can fail while the mask is being updated. If we are about 4818 * to fail, check if the cpuset changed during allocation and if so, 4819 * retry. 4820 */ 4821 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4822 return true; 4823 4824 return false; 4825 } 4826 4827 static inline struct page * 4828 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4829 struct alloc_context *ac) 4830 { 4831 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4832 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4833 struct page *page = NULL; 4834 unsigned int alloc_flags; 4835 unsigned long did_some_progress; 4836 enum compact_priority compact_priority; 4837 enum compact_result compact_result; 4838 int compaction_retries; 4839 int no_progress_loops; 4840 unsigned int cpuset_mems_cookie; 4841 int reserve_flags; 4842 4843 /* 4844 * We also sanity check to catch abuse of atomic reserves being used by 4845 * callers that are not in atomic context. 4846 */ 4847 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4848 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4849 gfp_mask &= ~__GFP_ATOMIC; 4850 4851 retry_cpuset: 4852 compaction_retries = 0; 4853 no_progress_loops = 0; 4854 compact_priority = DEF_COMPACT_PRIORITY; 4855 cpuset_mems_cookie = read_mems_allowed_begin(); 4856 4857 /* 4858 * The fast path uses conservative alloc_flags to succeed only until 4859 * kswapd needs to be woken up, and to avoid the cost of setting up 4860 * alloc_flags precisely. So we do that now. 4861 */ 4862 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4863 4864 /* 4865 * We need to recalculate the starting point for the zonelist iterator 4866 * because we might have used different nodemask in the fast path, or 4867 * there was a cpuset modification and we are retrying - otherwise we 4868 * could end up iterating over non-eligible zones endlessly. 4869 */ 4870 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4871 ac->highest_zoneidx, ac->nodemask); 4872 if (!ac->preferred_zoneref->zone) 4873 goto nopage; 4874 4875 /* 4876 * Check for insane configurations where the cpuset doesn't contain 4877 * any suitable zone to satisfy the request - e.g. non-movable 4878 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4879 */ 4880 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4881 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4882 ac->highest_zoneidx, 4883 &cpuset_current_mems_allowed); 4884 if (!z->zone) 4885 goto nopage; 4886 } 4887 4888 if (alloc_flags & ALLOC_KSWAPD) 4889 wake_all_kswapds(order, gfp_mask, ac); 4890 4891 /* 4892 * The adjusted alloc_flags might result in immediate success, so try 4893 * that first 4894 */ 4895 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4896 if (page) 4897 goto got_pg; 4898 4899 /* 4900 * For costly allocations, try direct compaction first, as it's likely 4901 * that we have enough base pages and don't need to reclaim. For non- 4902 * movable high-order allocations, do that as well, as compaction will 4903 * try prevent permanent fragmentation by migrating from blocks of the 4904 * same migratetype. 4905 * Don't try this for allocations that are allowed to ignore 4906 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4907 */ 4908 if (can_direct_reclaim && 4909 (costly_order || 4910 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4911 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4912 page = __alloc_pages_direct_compact(gfp_mask, order, 4913 alloc_flags, ac, 4914 INIT_COMPACT_PRIORITY, 4915 &compact_result); 4916 if (page) 4917 goto got_pg; 4918 4919 /* 4920 * Checks for costly allocations with __GFP_NORETRY, which 4921 * includes some THP page fault allocations 4922 */ 4923 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4924 /* 4925 * If allocating entire pageblock(s) and compaction 4926 * failed because all zones are below low watermarks 4927 * or is prohibited because it recently failed at this 4928 * order, fail immediately unless the allocator has 4929 * requested compaction and reclaim retry. 4930 * 4931 * Reclaim is 4932 * - potentially very expensive because zones are far 4933 * below their low watermarks or this is part of very 4934 * bursty high order allocations, 4935 * - not guaranteed to help because isolate_freepages() 4936 * may not iterate over freed pages as part of its 4937 * linear scan, and 4938 * - unlikely to make entire pageblocks free on its 4939 * own. 4940 */ 4941 if (compact_result == COMPACT_SKIPPED || 4942 compact_result == COMPACT_DEFERRED) 4943 goto nopage; 4944 4945 /* 4946 * Looks like reclaim/compaction is worth trying, but 4947 * sync compaction could be very expensive, so keep 4948 * using async compaction. 4949 */ 4950 compact_priority = INIT_COMPACT_PRIORITY; 4951 } 4952 } 4953 4954 retry: 4955 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4956 if (alloc_flags & ALLOC_KSWAPD) 4957 wake_all_kswapds(order, gfp_mask, ac); 4958 4959 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4960 if (reserve_flags) 4961 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 4962 4963 /* 4964 * Reset the nodemask and zonelist iterators if memory policies can be 4965 * ignored. These allocations are high priority and system rather than 4966 * user oriented. 4967 */ 4968 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4969 ac->nodemask = NULL; 4970 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4971 ac->highest_zoneidx, ac->nodemask); 4972 } 4973 4974 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4975 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4976 if (page) 4977 goto got_pg; 4978 4979 /* Caller is not willing to reclaim, we can't balance anything */ 4980 if (!can_direct_reclaim) 4981 goto nopage; 4982 4983 /* Avoid recursion of direct reclaim */ 4984 if (current->flags & PF_MEMALLOC) 4985 goto nopage; 4986 4987 /* Try direct reclaim and then allocating */ 4988 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4989 &did_some_progress); 4990 if (page) 4991 goto got_pg; 4992 4993 /* Try direct compaction and then allocating */ 4994 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4995 compact_priority, &compact_result); 4996 if (page) 4997 goto got_pg; 4998 4999 /* Do not loop if specifically requested */ 5000 if (gfp_mask & __GFP_NORETRY) 5001 goto nopage; 5002 5003 /* 5004 * Do not retry costly high order allocations unless they are 5005 * __GFP_RETRY_MAYFAIL 5006 */ 5007 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5008 goto nopage; 5009 5010 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5011 did_some_progress > 0, &no_progress_loops)) 5012 goto retry; 5013 5014 /* 5015 * It doesn't make any sense to retry for the compaction if the order-0 5016 * reclaim is not able to make any progress because the current 5017 * implementation of the compaction depends on the sufficient amount 5018 * of free memory (see __compaction_suitable) 5019 */ 5020 if (did_some_progress > 0 && 5021 should_compact_retry(ac, order, alloc_flags, 5022 compact_result, &compact_priority, 5023 &compaction_retries)) 5024 goto retry; 5025 5026 5027 /* Deal with possible cpuset update races before we start OOM killing */ 5028 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5029 goto retry_cpuset; 5030 5031 /* Reclaim has failed us, start killing things */ 5032 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5033 if (page) 5034 goto got_pg; 5035 5036 /* Avoid allocations with no watermarks from looping endlessly */ 5037 if (tsk_is_oom_victim(current) && 5038 (alloc_flags & ALLOC_OOM || 5039 (gfp_mask & __GFP_NOMEMALLOC))) 5040 goto nopage; 5041 5042 /* Retry as long as the OOM killer is making progress */ 5043 if (did_some_progress) { 5044 no_progress_loops = 0; 5045 goto retry; 5046 } 5047 5048 nopage: 5049 /* Deal with possible cpuset update races before we fail */ 5050 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5051 goto retry_cpuset; 5052 5053 /* 5054 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5055 * we always retry 5056 */ 5057 if (gfp_mask & __GFP_NOFAIL) { 5058 /* 5059 * All existing users of the __GFP_NOFAIL are blockable, so warn 5060 * of any new users that actually require GFP_NOWAIT 5061 */ 5062 if (WARN_ON_ONCE(!can_direct_reclaim)) 5063 goto fail; 5064 5065 /* 5066 * PF_MEMALLOC request from this context is rather bizarre 5067 * because we cannot reclaim anything and only can loop waiting 5068 * for somebody to do a work for us 5069 */ 5070 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5071 5072 /* 5073 * non failing costly orders are a hard requirement which we 5074 * are not prepared for much so let's warn about these users 5075 * so that we can identify them and convert them to something 5076 * else. 5077 */ 5078 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5079 5080 /* 5081 * Help non-failing allocations by giving them access to memory 5082 * reserves but do not use ALLOC_NO_WATERMARKS because this 5083 * could deplete whole memory reserves which would just make 5084 * the situation worse 5085 */ 5086 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5087 if (page) 5088 goto got_pg; 5089 5090 cond_resched(); 5091 goto retry; 5092 } 5093 fail: 5094 warn_alloc(gfp_mask, ac->nodemask, 5095 "page allocation failure: order:%u", order); 5096 got_pg: 5097 return page; 5098 } 5099 5100 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5101 int preferred_nid, nodemask_t *nodemask, 5102 struct alloc_context *ac, gfp_t *alloc_gfp, 5103 unsigned int *alloc_flags) 5104 { 5105 ac->highest_zoneidx = gfp_zone(gfp_mask); 5106 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5107 ac->nodemask = nodemask; 5108 ac->migratetype = gfp_migratetype(gfp_mask); 5109 5110 if (cpusets_enabled()) { 5111 *alloc_gfp |= __GFP_HARDWALL; 5112 /* 5113 * When we are in the interrupt context, it is irrelevant 5114 * to the current task context. It means that any node ok. 5115 */ 5116 if (in_task() && !ac->nodemask) 5117 ac->nodemask = &cpuset_current_mems_allowed; 5118 else 5119 *alloc_flags |= ALLOC_CPUSET; 5120 } 5121 5122 fs_reclaim_acquire(gfp_mask); 5123 fs_reclaim_release(gfp_mask); 5124 5125 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5126 5127 if (should_fail_alloc_page(gfp_mask, order)) 5128 return false; 5129 5130 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5131 5132 /* Dirty zone balancing only done in the fast path */ 5133 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5134 5135 /* 5136 * The preferred zone is used for statistics but crucially it is 5137 * also used as the starting point for the zonelist iterator. It 5138 * may get reset for allocations that ignore memory policies. 5139 */ 5140 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5141 ac->highest_zoneidx, ac->nodemask); 5142 5143 return true; 5144 } 5145 5146 /* 5147 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5148 * @gfp: GFP flags for the allocation 5149 * @preferred_nid: The preferred NUMA node ID to allocate from 5150 * @nodemask: Set of nodes to allocate from, may be NULL 5151 * @nr_pages: The number of pages desired on the list or array 5152 * @page_list: Optional list to store the allocated pages 5153 * @page_array: Optional array to store the pages 5154 * 5155 * This is a batched version of the page allocator that attempts to 5156 * allocate nr_pages quickly. Pages are added to page_list if page_list 5157 * is not NULL, otherwise it is assumed that the page_array is valid. 5158 * 5159 * For lists, nr_pages is the number of pages that should be allocated. 5160 * 5161 * For arrays, only NULL elements are populated with pages and nr_pages 5162 * is the maximum number of pages that will be stored in the array. 5163 * 5164 * Returns the number of pages on the list or array. 5165 */ 5166 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5167 nodemask_t *nodemask, int nr_pages, 5168 struct list_head *page_list, 5169 struct page **page_array) 5170 { 5171 struct page *page; 5172 unsigned long flags; 5173 struct zone *zone; 5174 struct zoneref *z; 5175 struct per_cpu_pages *pcp; 5176 struct list_head *pcp_list; 5177 struct alloc_context ac; 5178 gfp_t alloc_gfp; 5179 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5180 int nr_populated = 0, nr_account = 0; 5181 5182 /* 5183 * Skip populated array elements to determine if any pages need 5184 * to be allocated before disabling IRQs. 5185 */ 5186 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5187 nr_populated++; 5188 5189 /* No pages requested? */ 5190 if (unlikely(nr_pages <= 0)) 5191 goto out; 5192 5193 /* Already populated array? */ 5194 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5195 goto out; 5196 5197 /* Bulk allocator does not support memcg accounting. */ 5198 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5199 goto failed; 5200 5201 /* Use the single page allocator for one page. */ 5202 if (nr_pages - nr_populated == 1) 5203 goto failed; 5204 5205 #ifdef CONFIG_PAGE_OWNER 5206 /* 5207 * PAGE_OWNER may recurse into the allocator to allocate space to 5208 * save the stack with pagesets.lock held. Releasing/reacquiring 5209 * removes much of the performance benefit of bulk allocation so 5210 * force the caller to allocate one page at a time as it'll have 5211 * similar performance to added complexity to the bulk allocator. 5212 */ 5213 if (static_branch_unlikely(&page_owner_inited)) 5214 goto failed; 5215 #endif 5216 5217 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5218 gfp &= gfp_allowed_mask; 5219 alloc_gfp = gfp; 5220 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5221 goto out; 5222 gfp = alloc_gfp; 5223 5224 /* Find an allowed local zone that meets the low watermark. */ 5225 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5226 unsigned long mark; 5227 5228 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5229 !__cpuset_zone_allowed(zone, gfp)) { 5230 continue; 5231 } 5232 5233 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5234 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5235 goto failed; 5236 } 5237 5238 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5239 if (zone_watermark_fast(zone, 0, mark, 5240 zonelist_zone_idx(ac.preferred_zoneref), 5241 alloc_flags, gfp)) { 5242 break; 5243 } 5244 } 5245 5246 /* 5247 * If there are no allowed local zones that meets the watermarks then 5248 * try to allocate a single page and reclaim if necessary. 5249 */ 5250 if (unlikely(!zone)) 5251 goto failed; 5252 5253 /* Attempt the batch allocation */ 5254 local_lock_irqsave(&pagesets.lock, flags); 5255 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5256 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5257 5258 while (nr_populated < nr_pages) { 5259 5260 /* Skip existing pages */ 5261 if (page_array && page_array[nr_populated]) { 5262 nr_populated++; 5263 continue; 5264 } 5265 5266 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5267 pcp, pcp_list); 5268 if (unlikely(!page)) { 5269 /* Try and get at least one page */ 5270 if (!nr_populated) 5271 goto failed_irq; 5272 break; 5273 } 5274 nr_account++; 5275 5276 prep_new_page(page, 0, gfp, 0); 5277 if (page_list) 5278 list_add(&page->lru, page_list); 5279 else 5280 page_array[nr_populated] = page; 5281 nr_populated++; 5282 } 5283 5284 local_unlock_irqrestore(&pagesets.lock, flags); 5285 5286 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5287 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5288 5289 out: 5290 return nr_populated; 5291 5292 failed_irq: 5293 local_unlock_irqrestore(&pagesets.lock, flags); 5294 5295 failed: 5296 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5297 if (page) { 5298 if (page_list) 5299 list_add(&page->lru, page_list); 5300 else 5301 page_array[nr_populated] = page; 5302 nr_populated++; 5303 } 5304 5305 goto out; 5306 } 5307 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5308 5309 /* 5310 * This is the 'heart' of the zoned buddy allocator. 5311 */ 5312 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5313 nodemask_t *nodemask) 5314 { 5315 struct page *page; 5316 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5317 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5318 struct alloc_context ac = { }; 5319 5320 /* 5321 * There are several places where we assume that the order value is sane 5322 * so bail out early if the request is out of bound. 5323 */ 5324 if (unlikely(order >= MAX_ORDER)) { 5325 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5326 return NULL; 5327 } 5328 5329 gfp &= gfp_allowed_mask; 5330 /* 5331 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5332 * resp. GFP_NOIO which has to be inherited for all allocation requests 5333 * from a particular context which has been marked by 5334 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5335 * movable zones are not used during allocation. 5336 */ 5337 gfp = current_gfp_context(gfp); 5338 alloc_gfp = gfp; 5339 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5340 &alloc_gfp, &alloc_flags)) 5341 return NULL; 5342 5343 /* 5344 * Forbid the first pass from falling back to types that fragment 5345 * memory until all local zones are considered. 5346 */ 5347 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5348 5349 /* First allocation attempt */ 5350 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5351 if (likely(page)) 5352 goto out; 5353 5354 alloc_gfp = gfp; 5355 ac.spread_dirty_pages = false; 5356 5357 /* 5358 * Restore the original nodemask if it was potentially replaced with 5359 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5360 */ 5361 ac.nodemask = nodemask; 5362 5363 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5364 5365 out: 5366 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5367 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5368 __free_pages(page, order); 5369 page = NULL; 5370 } 5371 5372 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5373 5374 return page; 5375 } 5376 EXPORT_SYMBOL(__alloc_pages); 5377 5378 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5379 nodemask_t *nodemask) 5380 { 5381 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5382 preferred_nid, nodemask); 5383 5384 if (page && order > 1) 5385 prep_transhuge_page(page); 5386 return (struct folio *)page; 5387 } 5388 EXPORT_SYMBOL(__folio_alloc); 5389 5390 /* 5391 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5392 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5393 * you need to access high mem. 5394 */ 5395 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5396 { 5397 struct page *page; 5398 5399 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5400 if (!page) 5401 return 0; 5402 return (unsigned long) page_address(page); 5403 } 5404 EXPORT_SYMBOL(__get_free_pages); 5405 5406 unsigned long get_zeroed_page(gfp_t gfp_mask) 5407 { 5408 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5409 } 5410 EXPORT_SYMBOL(get_zeroed_page); 5411 5412 /** 5413 * __free_pages - Free pages allocated with alloc_pages(). 5414 * @page: The page pointer returned from alloc_pages(). 5415 * @order: The order of the allocation. 5416 * 5417 * This function can free multi-page allocations that are not compound 5418 * pages. It does not check that the @order passed in matches that of 5419 * the allocation, so it is easy to leak memory. Freeing more memory 5420 * than was allocated will probably emit a warning. 5421 * 5422 * If the last reference to this page is speculative, it will be released 5423 * by put_page() which only frees the first page of a non-compound 5424 * allocation. To prevent the remaining pages from being leaked, we free 5425 * the subsequent pages here. If you want to use the page's reference 5426 * count to decide when to free the allocation, you should allocate a 5427 * compound page, and use put_page() instead of __free_pages(). 5428 * 5429 * Context: May be called in interrupt context or while holding a normal 5430 * spinlock, but not in NMI context or while holding a raw spinlock. 5431 */ 5432 void __free_pages(struct page *page, unsigned int order) 5433 { 5434 if (put_page_testzero(page)) 5435 free_the_page(page, order); 5436 else if (!PageHead(page)) 5437 while (order-- > 0) 5438 free_the_page(page + (1 << order), order); 5439 } 5440 EXPORT_SYMBOL(__free_pages); 5441 5442 void free_pages(unsigned long addr, unsigned int order) 5443 { 5444 if (addr != 0) { 5445 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5446 __free_pages(virt_to_page((void *)addr), order); 5447 } 5448 } 5449 5450 EXPORT_SYMBOL(free_pages); 5451 5452 /* 5453 * Page Fragment: 5454 * An arbitrary-length arbitrary-offset area of memory which resides 5455 * within a 0 or higher order page. Multiple fragments within that page 5456 * are individually refcounted, in the page's reference counter. 5457 * 5458 * The page_frag functions below provide a simple allocation framework for 5459 * page fragments. This is used by the network stack and network device 5460 * drivers to provide a backing region of memory for use as either an 5461 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5462 */ 5463 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5464 gfp_t gfp_mask) 5465 { 5466 struct page *page = NULL; 5467 gfp_t gfp = gfp_mask; 5468 5469 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5470 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5471 __GFP_NOMEMALLOC; 5472 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5473 PAGE_FRAG_CACHE_MAX_ORDER); 5474 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5475 #endif 5476 if (unlikely(!page)) 5477 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5478 5479 nc->va = page ? page_address(page) : NULL; 5480 5481 return page; 5482 } 5483 5484 void __page_frag_cache_drain(struct page *page, unsigned int count) 5485 { 5486 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5487 5488 if (page_ref_sub_and_test(page, count)) 5489 free_the_page(page, compound_order(page)); 5490 } 5491 EXPORT_SYMBOL(__page_frag_cache_drain); 5492 5493 void *page_frag_alloc_align(struct page_frag_cache *nc, 5494 unsigned int fragsz, gfp_t gfp_mask, 5495 unsigned int align_mask) 5496 { 5497 unsigned int size = PAGE_SIZE; 5498 struct page *page; 5499 int offset; 5500 5501 if (unlikely(!nc->va)) { 5502 refill: 5503 page = __page_frag_cache_refill(nc, gfp_mask); 5504 if (!page) 5505 return NULL; 5506 5507 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5508 /* if size can vary use size else just use PAGE_SIZE */ 5509 size = nc->size; 5510 #endif 5511 /* Even if we own the page, we do not use atomic_set(). 5512 * This would break get_page_unless_zero() users. 5513 */ 5514 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5515 5516 /* reset page count bias and offset to start of new frag */ 5517 nc->pfmemalloc = page_is_pfmemalloc(page); 5518 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5519 nc->offset = size; 5520 } 5521 5522 offset = nc->offset - fragsz; 5523 if (unlikely(offset < 0)) { 5524 page = virt_to_page(nc->va); 5525 5526 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5527 goto refill; 5528 5529 if (unlikely(nc->pfmemalloc)) { 5530 free_the_page(page, compound_order(page)); 5531 goto refill; 5532 } 5533 5534 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5535 /* if size can vary use size else just use PAGE_SIZE */ 5536 size = nc->size; 5537 #endif 5538 /* OK, page count is 0, we can safely set it */ 5539 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5540 5541 /* reset page count bias and offset to start of new frag */ 5542 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5543 offset = size - fragsz; 5544 } 5545 5546 nc->pagecnt_bias--; 5547 offset &= align_mask; 5548 nc->offset = offset; 5549 5550 return nc->va + offset; 5551 } 5552 EXPORT_SYMBOL(page_frag_alloc_align); 5553 5554 /* 5555 * Frees a page fragment allocated out of either a compound or order 0 page. 5556 */ 5557 void page_frag_free(void *addr) 5558 { 5559 struct page *page = virt_to_head_page(addr); 5560 5561 if (unlikely(put_page_testzero(page))) 5562 free_the_page(page, compound_order(page)); 5563 } 5564 EXPORT_SYMBOL(page_frag_free); 5565 5566 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5567 size_t size) 5568 { 5569 if (addr) { 5570 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5571 unsigned long used = addr + PAGE_ALIGN(size); 5572 5573 split_page(virt_to_page((void *)addr), order); 5574 while (used < alloc_end) { 5575 free_page(used); 5576 used += PAGE_SIZE; 5577 } 5578 } 5579 return (void *)addr; 5580 } 5581 5582 /** 5583 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5584 * @size: the number of bytes to allocate 5585 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5586 * 5587 * This function is similar to alloc_pages(), except that it allocates the 5588 * minimum number of pages to satisfy the request. alloc_pages() can only 5589 * allocate memory in power-of-two pages. 5590 * 5591 * This function is also limited by MAX_ORDER. 5592 * 5593 * Memory allocated by this function must be released by free_pages_exact(). 5594 * 5595 * Return: pointer to the allocated area or %NULL in case of error. 5596 */ 5597 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5598 { 5599 unsigned int order = get_order(size); 5600 unsigned long addr; 5601 5602 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5603 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5604 5605 addr = __get_free_pages(gfp_mask, order); 5606 return make_alloc_exact(addr, order, size); 5607 } 5608 EXPORT_SYMBOL(alloc_pages_exact); 5609 5610 /** 5611 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5612 * pages on a node. 5613 * @nid: the preferred node ID where memory should be allocated 5614 * @size: the number of bytes to allocate 5615 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5616 * 5617 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5618 * back. 5619 * 5620 * Return: pointer to the allocated area or %NULL in case of error. 5621 */ 5622 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5623 { 5624 unsigned int order = get_order(size); 5625 struct page *p; 5626 5627 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5628 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5629 5630 p = alloc_pages_node(nid, gfp_mask, order); 5631 if (!p) 5632 return NULL; 5633 return make_alloc_exact((unsigned long)page_address(p), order, size); 5634 } 5635 5636 /** 5637 * free_pages_exact - release memory allocated via alloc_pages_exact() 5638 * @virt: the value returned by alloc_pages_exact. 5639 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5640 * 5641 * Release the memory allocated by a previous call to alloc_pages_exact. 5642 */ 5643 void free_pages_exact(void *virt, size_t size) 5644 { 5645 unsigned long addr = (unsigned long)virt; 5646 unsigned long end = addr + PAGE_ALIGN(size); 5647 5648 while (addr < end) { 5649 free_page(addr); 5650 addr += PAGE_SIZE; 5651 } 5652 } 5653 EXPORT_SYMBOL(free_pages_exact); 5654 5655 /** 5656 * nr_free_zone_pages - count number of pages beyond high watermark 5657 * @offset: The zone index of the highest zone 5658 * 5659 * nr_free_zone_pages() counts the number of pages which are beyond the 5660 * high watermark within all zones at or below a given zone index. For each 5661 * zone, the number of pages is calculated as: 5662 * 5663 * nr_free_zone_pages = managed_pages - high_pages 5664 * 5665 * Return: number of pages beyond high watermark. 5666 */ 5667 static unsigned long nr_free_zone_pages(int offset) 5668 { 5669 struct zoneref *z; 5670 struct zone *zone; 5671 5672 /* Just pick one node, since fallback list is circular */ 5673 unsigned long sum = 0; 5674 5675 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5676 5677 for_each_zone_zonelist(zone, z, zonelist, offset) { 5678 unsigned long size = zone_managed_pages(zone); 5679 unsigned long high = high_wmark_pages(zone); 5680 if (size > high) 5681 sum += size - high; 5682 } 5683 5684 return sum; 5685 } 5686 5687 /** 5688 * nr_free_buffer_pages - count number of pages beyond high watermark 5689 * 5690 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5691 * watermark within ZONE_DMA and ZONE_NORMAL. 5692 * 5693 * Return: number of pages beyond high watermark within ZONE_DMA and 5694 * ZONE_NORMAL. 5695 */ 5696 unsigned long nr_free_buffer_pages(void) 5697 { 5698 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5699 } 5700 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5701 5702 static inline void show_node(struct zone *zone) 5703 { 5704 if (IS_ENABLED(CONFIG_NUMA)) 5705 printk("Node %d ", zone_to_nid(zone)); 5706 } 5707 5708 long si_mem_available(void) 5709 { 5710 long available; 5711 unsigned long pagecache; 5712 unsigned long wmark_low = 0; 5713 unsigned long pages[NR_LRU_LISTS]; 5714 unsigned long reclaimable; 5715 struct zone *zone; 5716 int lru; 5717 5718 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5719 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5720 5721 for_each_zone(zone) 5722 wmark_low += low_wmark_pages(zone); 5723 5724 /* 5725 * Estimate the amount of memory available for userspace allocations, 5726 * without causing swapping. 5727 */ 5728 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5729 5730 /* 5731 * Not all the page cache can be freed, otherwise the system will 5732 * start swapping. Assume at least half of the page cache, or the 5733 * low watermark worth of cache, needs to stay. 5734 */ 5735 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5736 pagecache -= min(pagecache / 2, wmark_low); 5737 available += pagecache; 5738 5739 /* 5740 * Part of the reclaimable slab and other kernel memory consists of 5741 * items that are in use, and cannot be freed. Cap this estimate at the 5742 * low watermark. 5743 */ 5744 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5745 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5746 available += reclaimable - min(reclaimable / 2, wmark_low); 5747 5748 if (available < 0) 5749 available = 0; 5750 return available; 5751 } 5752 EXPORT_SYMBOL_GPL(si_mem_available); 5753 5754 void si_meminfo(struct sysinfo *val) 5755 { 5756 val->totalram = totalram_pages(); 5757 val->sharedram = global_node_page_state(NR_SHMEM); 5758 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5759 val->bufferram = nr_blockdev_pages(); 5760 val->totalhigh = totalhigh_pages(); 5761 val->freehigh = nr_free_highpages(); 5762 val->mem_unit = PAGE_SIZE; 5763 } 5764 5765 EXPORT_SYMBOL(si_meminfo); 5766 5767 #ifdef CONFIG_NUMA 5768 void si_meminfo_node(struct sysinfo *val, int nid) 5769 { 5770 int zone_type; /* needs to be signed */ 5771 unsigned long managed_pages = 0; 5772 unsigned long managed_highpages = 0; 5773 unsigned long free_highpages = 0; 5774 pg_data_t *pgdat = NODE_DATA(nid); 5775 5776 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5777 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5778 val->totalram = managed_pages; 5779 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5780 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5781 #ifdef CONFIG_HIGHMEM 5782 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5783 struct zone *zone = &pgdat->node_zones[zone_type]; 5784 5785 if (is_highmem(zone)) { 5786 managed_highpages += zone_managed_pages(zone); 5787 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5788 } 5789 } 5790 val->totalhigh = managed_highpages; 5791 val->freehigh = free_highpages; 5792 #else 5793 val->totalhigh = managed_highpages; 5794 val->freehigh = free_highpages; 5795 #endif 5796 val->mem_unit = PAGE_SIZE; 5797 } 5798 #endif 5799 5800 /* 5801 * Determine whether the node should be displayed or not, depending on whether 5802 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5803 */ 5804 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5805 { 5806 if (!(flags & SHOW_MEM_FILTER_NODES)) 5807 return false; 5808 5809 /* 5810 * no node mask - aka implicit memory numa policy. Do not bother with 5811 * the synchronization - read_mems_allowed_begin - because we do not 5812 * have to be precise here. 5813 */ 5814 if (!nodemask) 5815 nodemask = &cpuset_current_mems_allowed; 5816 5817 return !node_isset(nid, *nodemask); 5818 } 5819 5820 #define K(x) ((x) << (PAGE_SHIFT-10)) 5821 5822 static void show_migration_types(unsigned char type) 5823 { 5824 static const char types[MIGRATE_TYPES] = { 5825 [MIGRATE_UNMOVABLE] = 'U', 5826 [MIGRATE_MOVABLE] = 'M', 5827 [MIGRATE_RECLAIMABLE] = 'E', 5828 [MIGRATE_HIGHATOMIC] = 'H', 5829 #ifdef CONFIG_CMA 5830 [MIGRATE_CMA] = 'C', 5831 #endif 5832 #ifdef CONFIG_MEMORY_ISOLATION 5833 [MIGRATE_ISOLATE] = 'I', 5834 #endif 5835 }; 5836 char tmp[MIGRATE_TYPES + 1]; 5837 char *p = tmp; 5838 int i; 5839 5840 for (i = 0; i < MIGRATE_TYPES; i++) { 5841 if (type & (1 << i)) 5842 *p++ = types[i]; 5843 } 5844 5845 *p = '\0'; 5846 printk(KERN_CONT "(%s) ", tmp); 5847 } 5848 5849 /* 5850 * Show free area list (used inside shift_scroll-lock stuff) 5851 * We also calculate the percentage fragmentation. We do this by counting the 5852 * memory on each free list with the exception of the first item on the list. 5853 * 5854 * Bits in @filter: 5855 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5856 * cpuset. 5857 */ 5858 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5859 { 5860 unsigned long free_pcp = 0; 5861 int cpu; 5862 struct zone *zone; 5863 pg_data_t *pgdat; 5864 5865 for_each_populated_zone(zone) { 5866 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5867 continue; 5868 5869 for_each_online_cpu(cpu) 5870 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5871 } 5872 5873 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5874 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5875 " unevictable:%lu dirty:%lu writeback:%lu\n" 5876 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5877 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5878 " kernel_misc_reclaimable:%lu\n" 5879 " free:%lu free_pcp:%lu free_cma:%lu\n", 5880 global_node_page_state(NR_ACTIVE_ANON), 5881 global_node_page_state(NR_INACTIVE_ANON), 5882 global_node_page_state(NR_ISOLATED_ANON), 5883 global_node_page_state(NR_ACTIVE_FILE), 5884 global_node_page_state(NR_INACTIVE_FILE), 5885 global_node_page_state(NR_ISOLATED_FILE), 5886 global_node_page_state(NR_UNEVICTABLE), 5887 global_node_page_state(NR_FILE_DIRTY), 5888 global_node_page_state(NR_WRITEBACK), 5889 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5890 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5891 global_node_page_state(NR_FILE_MAPPED), 5892 global_node_page_state(NR_SHMEM), 5893 global_node_page_state(NR_PAGETABLE), 5894 global_zone_page_state(NR_BOUNCE), 5895 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5896 global_zone_page_state(NR_FREE_PAGES), 5897 free_pcp, 5898 global_zone_page_state(NR_FREE_CMA_PAGES)); 5899 5900 for_each_online_pgdat(pgdat) { 5901 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5902 continue; 5903 5904 printk("Node %d" 5905 " active_anon:%lukB" 5906 " inactive_anon:%lukB" 5907 " active_file:%lukB" 5908 " inactive_file:%lukB" 5909 " unevictable:%lukB" 5910 " isolated(anon):%lukB" 5911 " isolated(file):%lukB" 5912 " mapped:%lukB" 5913 " dirty:%lukB" 5914 " writeback:%lukB" 5915 " shmem:%lukB" 5916 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5917 " shmem_thp: %lukB" 5918 " shmem_pmdmapped: %lukB" 5919 " anon_thp: %lukB" 5920 #endif 5921 " writeback_tmp:%lukB" 5922 " kernel_stack:%lukB" 5923 #ifdef CONFIG_SHADOW_CALL_STACK 5924 " shadow_call_stack:%lukB" 5925 #endif 5926 " pagetables:%lukB" 5927 " all_unreclaimable? %s" 5928 "\n", 5929 pgdat->node_id, 5930 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5931 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5932 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5933 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5934 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5935 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5936 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5937 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5938 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5939 K(node_page_state(pgdat, NR_WRITEBACK)), 5940 K(node_page_state(pgdat, NR_SHMEM)), 5941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5942 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5943 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5944 K(node_page_state(pgdat, NR_ANON_THPS)), 5945 #endif 5946 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5947 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5948 #ifdef CONFIG_SHADOW_CALL_STACK 5949 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5950 #endif 5951 K(node_page_state(pgdat, NR_PAGETABLE)), 5952 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5953 "yes" : "no"); 5954 } 5955 5956 for_each_populated_zone(zone) { 5957 int i; 5958 5959 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5960 continue; 5961 5962 free_pcp = 0; 5963 for_each_online_cpu(cpu) 5964 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5965 5966 show_node(zone); 5967 printk(KERN_CONT 5968 "%s" 5969 " free:%lukB" 5970 " boost:%lukB" 5971 " min:%lukB" 5972 " low:%lukB" 5973 " high:%lukB" 5974 " reserved_highatomic:%luKB" 5975 " active_anon:%lukB" 5976 " inactive_anon:%lukB" 5977 " active_file:%lukB" 5978 " inactive_file:%lukB" 5979 " unevictable:%lukB" 5980 " writepending:%lukB" 5981 " present:%lukB" 5982 " managed:%lukB" 5983 " mlocked:%lukB" 5984 " bounce:%lukB" 5985 " free_pcp:%lukB" 5986 " local_pcp:%ukB" 5987 " free_cma:%lukB" 5988 "\n", 5989 zone->name, 5990 K(zone_page_state(zone, NR_FREE_PAGES)), 5991 K(zone->watermark_boost), 5992 K(min_wmark_pages(zone)), 5993 K(low_wmark_pages(zone)), 5994 K(high_wmark_pages(zone)), 5995 K(zone->nr_reserved_highatomic), 5996 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5997 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5998 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5999 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6000 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6001 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6002 K(zone->present_pages), 6003 K(zone_managed_pages(zone)), 6004 K(zone_page_state(zone, NR_MLOCK)), 6005 K(zone_page_state(zone, NR_BOUNCE)), 6006 K(free_pcp), 6007 K(this_cpu_read(zone->per_cpu_pageset->count)), 6008 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6009 printk("lowmem_reserve[]:"); 6010 for (i = 0; i < MAX_NR_ZONES; i++) 6011 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6012 printk(KERN_CONT "\n"); 6013 } 6014 6015 for_each_populated_zone(zone) { 6016 unsigned int order; 6017 unsigned long nr[MAX_ORDER], flags, total = 0; 6018 unsigned char types[MAX_ORDER]; 6019 6020 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6021 continue; 6022 show_node(zone); 6023 printk(KERN_CONT "%s: ", zone->name); 6024 6025 spin_lock_irqsave(&zone->lock, flags); 6026 for (order = 0; order < MAX_ORDER; order++) { 6027 struct free_area *area = &zone->free_area[order]; 6028 int type; 6029 6030 nr[order] = area->nr_free; 6031 total += nr[order] << order; 6032 6033 types[order] = 0; 6034 for (type = 0; type < MIGRATE_TYPES; type++) { 6035 if (!free_area_empty(area, type)) 6036 types[order] |= 1 << type; 6037 } 6038 } 6039 spin_unlock_irqrestore(&zone->lock, flags); 6040 for (order = 0; order < MAX_ORDER; order++) { 6041 printk(KERN_CONT "%lu*%lukB ", 6042 nr[order], K(1UL) << order); 6043 if (nr[order]) 6044 show_migration_types(types[order]); 6045 } 6046 printk(KERN_CONT "= %lukB\n", K(total)); 6047 } 6048 6049 hugetlb_show_meminfo(); 6050 6051 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6052 6053 show_swap_cache_info(); 6054 } 6055 6056 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6057 { 6058 zoneref->zone = zone; 6059 zoneref->zone_idx = zone_idx(zone); 6060 } 6061 6062 /* 6063 * Builds allocation fallback zone lists. 6064 * 6065 * Add all populated zones of a node to the zonelist. 6066 */ 6067 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6068 { 6069 struct zone *zone; 6070 enum zone_type zone_type = MAX_NR_ZONES; 6071 int nr_zones = 0; 6072 6073 do { 6074 zone_type--; 6075 zone = pgdat->node_zones + zone_type; 6076 if (managed_zone(zone)) { 6077 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6078 check_highest_zone(zone_type); 6079 } 6080 } while (zone_type); 6081 6082 return nr_zones; 6083 } 6084 6085 #ifdef CONFIG_NUMA 6086 6087 static int __parse_numa_zonelist_order(char *s) 6088 { 6089 /* 6090 * We used to support different zonelists modes but they turned 6091 * out to be just not useful. Let's keep the warning in place 6092 * if somebody still use the cmd line parameter so that we do 6093 * not fail it silently 6094 */ 6095 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6096 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6097 return -EINVAL; 6098 } 6099 return 0; 6100 } 6101 6102 char numa_zonelist_order[] = "Node"; 6103 6104 /* 6105 * sysctl handler for numa_zonelist_order 6106 */ 6107 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6108 void *buffer, size_t *length, loff_t *ppos) 6109 { 6110 if (write) 6111 return __parse_numa_zonelist_order(buffer); 6112 return proc_dostring(table, write, buffer, length, ppos); 6113 } 6114 6115 6116 #define MAX_NODE_LOAD (nr_online_nodes) 6117 static int node_load[MAX_NUMNODES]; 6118 6119 /** 6120 * find_next_best_node - find the next node that should appear in a given node's fallback list 6121 * @node: node whose fallback list we're appending 6122 * @used_node_mask: nodemask_t of already used nodes 6123 * 6124 * We use a number of factors to determine which is the next node that should 6125 * appear on a given node's fallback list. The node should not have appeared 6126 * already in @node's fallback list, and it should be the next closest node 6127 * according to the distance array (which contains arbitrary distance values 6128 * from each node to each node in the system), and should also prefer nodes 6129 * with no CPUs, since presumably they'll have very little allocation pressure 6130 * on them otherwise. 6131 * 6132 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6133 */ 6134 int find_next_best_node(int node, nodemask_t *used_node_mask) 6135 { 6136 int n, val; 6137 int min_val = INT_MAX; 6138 int best_node = NUMA_NO_NODE; 6139 6140 /* Use the local node if we haven't already */ 6141 if (!node_isset(node, *used_node_mask)) { 6142 node_set(node, *used_node_mask); 6143 return node; 6144 } 6145 6146 for_each_node_state(n, N_MEMORY) { 6147 6148 /* Don't want a node to appear more than once */ 6149 if (node_isset(n, *used_node_mask)) 6150 continue; 6151 6152 /* Use the distance array to find the distance */ 6153 val = node_distance(node, n); 6154 6155 /* Penalize nodes under us ("prefer the next node") */ 6156 val += (n < node); 6157 6158 /* Give preference to headless and unused nodes */ 6159 if (!cpumask_empty(cpumask_of_node(n))) 6160 val += PENALTY_FOR_NODE_WITH_CPUS; 6161 6162 /* Slight preference for less loaded node */ 6163 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6164 val += node_load[n]; 6165 6166 if (val < min_val) { 6167 min_val = val; 6168 best_node = n; 6169 } 6170 } 6171 6172 if (best_node >= 0) 6173 node_set(best_node, *used_node_mask); 6174 6175 return best_node; 6176 } 6177 6178 6179 /* 6180 * Build zonelists ordered by node and zones within node. 6181 * This results in maximum locality--normal zone overflows into local 6182 * DMA zone, if any--but risks exhausting DMA zone. 6183 */ 6184 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6185 unsigned nr_nodes) 6186 { 6187 struct zoneref *zonerefs; 6188 int i; 6189 6190 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6191 6192 for (i = 0; i < nr_nodes; i++) { 6193 int nr_zones; 6194 6195 pg_data_t *node = NODE_DATA(node_order[i]); 6196 6197 nr_zones = build_zonerefs_node(node, zonerefs); 6198 zonerefs += nr_zones; 6199 } 6200 zonerefs->zone = NULL; 6201 zonerefs->zone_idx = 0; 6202 } 6203 6204 /* 6205 * Build gfp_thisnode zonelists 6206 */ 6207 static void build_thisnode_zonelists(pg_data_t *pgdat) 6208 { 6209 struct zoneref *zonerefs; 6210 int nr_zones; 6211 6212 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6213 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6214 zonerefs += nr_zones; 6215 zonerefs->zone = NULL; 6216 zonerefs->zone_idx = 0; 6217 } 6218 6219 /* 6220 * Build zonelists ordered by zone and nodes within zones. 6221 * This results in conserving DMA zone[s] until all Normal memory is 6222 * exhausted, but results in overflowing to remote node while memory 6223 * may still exist in local DMA zone. 6224 */ 6225 6226 static void build_zonelists(pg_data_t *pgdat) 6227 { 6228 static int node_order[MAX_NUMNODES]; 6229 int node, load, nr_nodes = 0; 6230 nodemask_t used_mask = NODE_MASK_NONE; 6231 int local_node, prev_node; 6232 6233 /* NUMA-aware ordering of nodes */ 6234 local_node = pgdat->node_id; 6235 load = nr_online_nodes; 6236 prev_node = local_node; 6237 6238 memset(node_order, 0, sizeof(node_order)); 6239 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6240 /* 6241 * We don't want to pressure a particular node. 6242 * So adding penalty to the first node in same 6243 * distance group to make it round-robin. 6244 */ 6245 if (node_distance(local_node, node) != 6246 node_distance(local_node, prev_node)) 6247 node_load[node] += load; 6248 6249 node_order[nr_nodes++] = node; 6250 prev_node = node; 6251 load--; 6252 } 6253 6254 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6255 build_thisnode_zonelists(pgdat); 6256 pr_info("Fallback order for Node %d: ", local_node); 6257 for (node = 0; node < nr_nodes; node++) 6258 pr_cont("%d ", node_order[node]); 6259 pr_cont("\n"); 6260 } 6261 6262 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6263 /* 6264 * Return node id of node used for "local" allocations. 6265 * I.e., first node id of first zone in arg node's generic zonelist. 6266 * Used for initializing percpu 'numa_mem', which is used primarily 6267 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6268 */ 6269 int local_memory_node(int node) 6270 { 6271 struct zoneref *z; 6272 6273 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6274 gfp_zone(GFP_KERNEL), 6275 NULL); 6276 return zone_to_nid(z->zone); 6277 } 6278 #endif 6279 6280 static void setup_min_unmapped_ratio(void); 6281 static void setup_min_slab_ratio(void); 6282 #else /* CONFIG_NUMA */ 6283 6284 static void build_zonelists(pg_data_t *pgdat) 6285 { 6286 int node, local_node; 6287 struct zoneref *zonerefs; 6288 int nr_zones; 6289 6290 local_node = pgdat->node_id; 6291 6292 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6293 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6294 zonerefs += nr_zones; 6295 6296 /* 6297 * Now we build the zonelist so that it contains the zones 6298 * of all the other nodes. 6299 * We don't want to pressure a particular node, so when 6300 * building the zones for node N, we make sure that the 6301 * zones coming right after the local ones are those from 6302 * node N+1 (modulo N) 6303 */ 6304 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6305 if (!node_online(node)) 6306 continue; 6307 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6308 zonerefs += nr_zones; 6309 } 6310 for (node = 0; node < local_node; node++) { 6311 if (!node_online(node)) 6312 continue; 6313 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6314 zonerefs += nr_zones; 6315 } 6316 6317 zonerefs->zone = NULL; 6318 zonerefs->zone_idx = 0; 6319 } 6320 6321 #endif /* CONFIG_NUMA */ 6322 6323 /* 6324 * Boot pageset table. One per cpu which is going to be used for all 6325 * zones and all nodes. The parameters will be set in such a way 6326 * that an item put on a list will immediately be handed over to 6327 * the buddy list. This is safe since pageset manipulation is done 6328 * with interrupts disabled. 6329 * 6330 * The boot_pagesets must be kept even after bootup is complete for 6331 * unused processors and/or zones. They do play a role for bootstrapping 6332 * hotplugged processors. 6333 * 6334 * zoneinfo_show() and maybe other functions do 6335 * not check if the processor is online before following the pageset pointer. 6336 * Other parts of the kernel may not check if the zone is available. 6337 */ 6338 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6339 /* These effectively disable the pcplists in the boot pageset completely */ 6340 #define BOOT_PAGESET_HIGH 0 6341 #define BOOT_PAGESET_BATCH 1 6342 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6343 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6344 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6345 6346 static void __build_all_zonelists(void *data) 6347 { 6348 int nid; 6349 int __maybe_unused cpu; 6350 pg_data_t *self = data; 6351 static DEFINE_SPINLOCK(lock); 6352 6353 spin_lock(&lock); 6354 6355 #ifdef CONFIG_NUMA 6356 memset(node_load, 0, sizeof(node_load)); 6357 #endif 6358 6359 /* 6360 * This node is hotadded and no memory is yet present. So just 6361 * building zonelists is fine - no need to touch other nodes. 6362 */ 6363 if (self && !node_online(self->node_id)) { 6364 build_zonelists(self); 6365 } else { 6366 /* 6367 * All possible nodes have pgdat preallocated 6368 * in free_area_init 6369 */ 6370 for_each_node(nid) { 6371 pg_data_t *pgdat = NODE_DATA(nid); 6372 6373 build_zonelists(pgdat); 6374 } 6375 6376 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6377 /* 6378 * We now know the "local memory node" for each node-- 6379 * i.e., the node of the first zone in the generic zonelist. 6380 * Set up numa_mem percpu variable for on-line cpus. During 6381 * boot, only the boot cpu should be on-line; we'll init the 6382 * secondary cpus' numa_mem as they come on-line. During 6383 * node/memory hotplug, we'll fixup all on-line cpus. 6384 */ 6385 for_each_online_cpu(cpu) 6386 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6387 #endif 6388 } 6389 6390 spin_unlock(&lock); 6391 } 6392 6393 static noinline void __init 6394 build_all_zonelists_init(void) 6395 { 6396 int cpu; 6397 6398 __build_all_zonelists(NULL); 6399 6400 /* 6401 * Initialize the boot_pagesets that are going to be used 6402 * for bootstrapping processors. The real pagesets for 6403 * each zone will be allocated later when the per cpu 6404 * allocator is available. 6405 * 6406 * boot_pagesets are used also for bootstrapping offline 6407 * cpus if the system is already booted because the pagesets 6408 * are needed to initialize allocators on a specific cpu too. 6409 * F.e. the percpu allocator needs the page allocator which 6410 * needs the percpu allocator in order to allocate its pagesets 6411 * (a chicken-egg dilemma). 6412 */ 6413 for_each_possible_cpu(cpu) 6414 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6415 6416 mminit_verify_zonelist(); 6417 cpuset_init_current_mems_allowed(); 6418 } 6419 6420 /* 6421 * unless system_state == SYSTEM_BOOTING. 6422 * 6423 * __ref due to call of __init annotated helper build_all_zonelists_init 6424 * [protected by SYSTEM_BOOTING]. 6425 */ 6426 void __ref build_all_zonelists(pg_data_t *pgdat) 6427 { 6428 unsigned long vm_total_pages; 6429 6430 if (system_state == SYSTEM_BOOTING) { 6431 build_all_zonelists_init(); 6432 } else { 6433 __build_all_zonelists(pgdat); 6434 /* cpuset refresh routine should be here */ 6435 } 6436 /* Get the number of free pages beyond high watermark in all zones. */ 6437 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6438 /* 6439 * Disable grouping by mobility if the number of pages in the 6440 * system is too low to allow the mechanism to work. It would be 6441 * more accurate, but expensive to check per-zone. This check is 6442 * made on memory-hotadd so a system can start with mobility 6443 * disabled and enable it later 6444 */ 6445 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6446 page_group_by_mobility_disabled = 1; 6447 else 6448 page_group_by_mobility_disabled = 0; 6449 6450 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6451 nr_online_nodes, 6452 page_group_by_mobility_disabled ? "off" : "on", 6453 vm_total_pages); 6454 #ifdef CONFIG_NUMA 6455 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6456 #endif 6457 } 6458 6459 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6460 static bool __meminit 6461 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6462 { 6463 static struct memblock_region *r; 6464 6465 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6466 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6467 for_each_mem_region(r) { 6468 if (*pfn < memblock_region_memory_end_pfn(r)) 6469 break; 6470 } 6471 } 6472 if (*pfn >= memblock_region_memory_base_pfn(r) && 6473 memblock_is_mirror(r)) { 6474 *pfn = memblock_region_memory_end_pfn(r); 6475 return true; 6476 } 6477 } 6478 return false; 6479 } 6480 6481 /* 6482 * Initially all pages are reserved - free ones are freed 6483 * up by memblock_free_all() once the early boot process is 6484 * done. Non-atomic initialization, single-pass. 6485 * 6486 * All aligned pageblocks are initialized to the specified migratetype 6487 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6488 * zone stats (e.g., nr_isolate_pageblock) are touched. 6489 */ 6490 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6491 unsigned long start_pfn, unsigned long zone_end_pfn, 6492 enum meminit_context context, 6493 struct vmem_altmap *altmap, int migratetype) 6494 { 6495 unsigned long pfn, end_pfn = start_pfn + size; 6496 struct page *page; 6497 6498 if (highest_memmap_pfn < end_pfn - 1) 6499 highest_memmap_pfn = end_pfn - 1; 6500 6501 #ifdef CONFIG_ZONE_DEVICE 6502 /* 6503 * Honor reservation requested by the driver for this ZONE_DEVICE 6504 * memory. We limit the total number of pages to initialize to just 6505 * those that might contain the memory mapping. We will defer the 6506 * ZONE_DEVICE page initialization until after we have released 6507 * the hotplug lock. 6508 */ 6509 if (zone == ZONE_DEVICE) { 6510 if (!altmap) 6511 return; 6512 6513 if (start_pfn == altmap->base_pfn) 6514 start_pfn += altmap->reserve; 6515 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6516 } 6517 #endif 6518 6519 for (pfn = start_pfn; pfn < end_pfn; ) { 6520 /* 6521 * There can be holes in boot-time mem_map[]s handed to this 6522 * function. They do not exist on hotplugged memory. 6523 */ 6524 if (context == MEMINIT_EARLY) { 6525 if (overlap_memmap_init(zone, &pfn)) 6526 continue; 6527 if (defer_init(nid, pfn, zone_end_pfn)) 6528 break; 6529 } 6530 6531 page = pfn_to_page(pfn); 6532 __init_single_page(page, pfn, zone, nid); 6533 if (context == MEMINIT_HOTPLUG) 6534 __SetPageReserved(page); 6535 6536 /* 6537 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6538 * such that unmovable allocations won't be scattered all 6539 * over the place during system boot. 6540 */ 6541 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6542 set_pageblock_migratetype(page, migratetype); 6543 cond_resched(); 6544 } 6545 pfn++; 6546 } 6547 } 6548 6549 #ifdef CONFIG_ZONE_DEVICE 6550 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6551 unsigned long zone_idx, int nid, 6552 struct dev_pagemap *pgmap) 6553 { 6554 6555 __init_single_page(page, pfn, zone_idx, nid); 6556 6557 /* 6558 * Mark page reserved as it will need to wait for onlining 6559 * phase for it to be fully associated with a zone. 6560 * 6561 * We can use the non-atomic __set_bit operation for setting 6562 * the flag as we are still initializing the pages. 6563 */ 6564 __SetPageReserved(page); 6565 6566 /* 6567 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6568 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6569 * ever freed or placed on a driver-private list. 6570 */ 6571 page->pgmap = pgmap; 6572 page->zone_device_data = NULL; 6573 6574 /* 6575 * Mark the block movable so that blocks are reserved for 6576 * movable at startup. This will force kernel allocations 6577 * to reserve their blocks rather than leaking throughout 6578 * the address space during boot when many long-lived 6579 * kernel allocations are made. 6580 * 6581 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6582 * because this is done early in section_activate() 6583 */ 6584 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6585 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6586 cond_resched(); 6587 } 6588 } 6589 6590 static void __ref memmap_init_compound(struct page *head, 6591 unsigned long head_pfn, 6592 unsigned long zone_idx, int nid, 6593 struct dev_pagemap *pgmap, 6594 unsigned long nr_pages) 6595 { 6596 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6597 unsigned int order = pgmap->vmemmap_shift; 6598 6599 __SetPageHead(head); 6600 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6601 struct page *page = pfn_to_page(pfn); 6602 6603 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6604 prep_compound_tail(head, pfn - head_pfn); 6605 set_page_count(page, 0); 6606 6607 /* 6608 * The first tail page stores compound_mapcount_ptr() and 6609 * compound_order() and the second tail page stores 6610 * compound_pincount_ptr(). Call prep_compound_head() after 6611 * the first and second tail pages have been initialized to 6612 * not have the data overwritten. 6613 */ 6614 if (pfn == head_pfn + 2) 6615 prep_compound_head(head, order); 6616 } 6617 } 6618 6619 void __ref memmap_init_zone_device(struct zone *zone, 6620 unsigned long start_pfn, 6621 unsigned long nr_pages, 6622 struct dev_pagemap *pgmap) 6623 { 6624 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6625 struct pglist_data *pgdat = zone->zone_pgdat; 6626 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6627 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6628 unsigned long zone_idx = zone_idx(zone); 6629 unsigned long start = jiffies; 6630 int nid = pgdat->node_id; 6631 6632 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6633 return; 6634 6635 /* 6636 * The call to memmap_init should have already taken care 6637 * of the pages reserved for the memmap, so we can just jump to 6638 * the end of that region and start processing the device pages. 6639 */ 6640 if (altmap) { 6641 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6642 nr_pages = end_pfn - start_pfn; 6643 } 6644 6645 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6646 struct page *page = pfn_to_page(pfn); 6647 6648 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6649 6650 if (pfns_per_compound == 1) 6651 continue; 6652 6653 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6654 pfns_per_compound); 6655 } 6656 6657 pr_info("%s initialised %lu pages in %ums\n", __func__, 6658 nr_pages, jiffies_to_msecs(jiffies - start)); 6659 } 6660 6661 #endif 6662 static void __meminit zone_init_free_lists(struct zone *zone) 6663 { 6664 unsigned int order, t; 6665 for_each_migratetype_order(order, t) { 6666 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6667 zone->free_area[order].nr_free = 0; 6668 } 6669 } 6670 6671 /* 6672 * Only struct pages that correspond to ranges defined by memblock.memory 6673 * are zeroed and initialized by going through __init_single_page() during 6674 * memmap_init_zone_range(). 6675 * 6676 * But, there could be struct pages that correspond to holes in 6677 * memblock.memory. This can happen because of the following reasons: 6678 * - physical memory bank size is not necessarily the exact multiple of the 6679 * arbitrary section size 6680 * - early reserved memory may not be listed in memblock.memory 6681 * - memory layouts defined with memmap= kernel parameter may not align 6682 * nicely with memmap sections 6683 * 6684 * Explicitly initialize those struct pages so that: 6685 * - PG_Reserved is set 6686 * - zone and node links point to zone and node that span the page if the 6687 * hole is in the middle of a zone 6688 * - zone and node links point to adjacent zone/node if the hole falls on 6689 * the zone boundary; the pages in such holes will be prepended to the 6690 * zone/node above the hole except for the trailing pages in the last 6691 * section that will be appended to the zone/node below. 6692 */ 6693 static void __init init_unavailable_range(unsigned long spfn, 6694 unsigned long epfn, 6695 int zone, int node) 6696 { 6697 unsigned long pfn; 6698 u64 pgcnt = 0; 6699 6700 for (pfn = spfn; pfn < epfn; pfn++) { 6701 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6702 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6703 + pageblock_nr_pages - 1; 6704 continue; 6705 } 6706 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6707 __SetPageReserved(pfn_to_page(pfn)); 6708 pgcnt++; 6709 } 6710 6711 if (pgcnt) 6712 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6713 node, zone_names[zone], pgcnt); 6714 } 6715 6716 static void __init memmap_init_zone_range(struct zone *zone, 6717 unsigned long start_pfn, 6718 unsigned long end_pfn, 6719 unsigned long *hole_pfn) 6720 { 6721 unsigned long zone_start_pfn = zone->zone_start_pfn; 6722 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6723 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6724 6725 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6726 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6727 6728 if (start_pfn >= end_pfn) 6729 return; 6730 6731 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6732 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6733 6734 if (*hole_pfn < start_pfn) 6735 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6736 6737 *hole_pfn = end_pfn; 6738 } 6739 6740 static void __init memmap_init(void) 6741 { 6742 unsigned long start_pfn, end_pfn; 6743 unsigned long hole_pfn = 0; 6744 int i, j, zone_id = 0, nid; 6745 6746 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6747 struct pglist_data *node = NODE_DATA(nid); 6748 6749 for (j = 0; j < MAX_NR_ZONES; j++) { 6750 struct zone *zone = node->node_zones + j; 6751 6752 if (!populated_zone(zone)) 6753 continue; 6754 6755 memmap_init_zone_range(zone, start_pfn, end_pfn, 6756 &hole_pfn); 6757 zone_id = j; 6758 } 6759 } 6760 6761 #ifdef CONFIG_SPARSEMEM 6762 /* 6763 * Initialize the memory map for hole in the range [memory_end, 6764 * section_end]. 6765 * Append the pages in this hole to the highest zone in the last 6766 * node. 6767 * The call to init_unavailable_range() is outside the ifdef to 6768 * silence the compiler warining about zone_id set but not used; 6769 * for FLATMEM it is a nop anyway 6770 */ 6771 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6772 if (hole_pfn < end_pfn) 6773 #endif 6774 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6775 } 6776 6777 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6778 phys_addr_t min_addr, int nid, bool exact_nid) 6779 { 6780 void *ptr; 6781 6782 if (exact_nid) 6783 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6784 MEMBLOCK_ALLOC_ACCESSIBLE, 6785 nid); 6786 else 6787 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6788 MEMBLOCK_ALLOC_ACCESSIBLE, 6789 nid); 6790 6791 if (ptr && size > 0) 6792 page_init_poison(ptr, size); 6793 6794 return ptr; 6795 } 6796 6797 static int zone_batchsize(struct zone *zone) 6798 { 6799 #ifdef CONFIG_MMU 6800 int batch; 6801 6802 /* 6803 * The number of pages to batch allocate is either ~0.1% 6804 * of the zone or 1MB, whichever is smaller. The batch 6805 * size is striking a balance between allocation latency 6806 * and zone lock contention. 6807 */ 6808 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6809 batch /= 4; /* We effectively *= 4 below */ 6810 if (batch < 1) 6811 batch = 1; 6812 6813 /* 6814 * Clamp the batch to a 2^n - 1 value. Having a power 6815 * of 2 value was found to be more likely to have 6816 * suboptimal cache aliasing properties in some cases. 6817 * 6818 * For example if 2 tasks are alternately allocating 6819 * batches of pages, one task can end up with a lot 6820 * of pages of one half of the possible page colors 6821 * and the other with pages of the other colors. 6822 */ 6823 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6824 6825 return batch; 6826 6827 #else 6828 /* The deferral and batching of frees should be suppressed under NOMMU 6829 * conditions. 6830 * 6831 * The problem is that NOMMU needs to be able to allocate large chunks 6832 * of contiguous memory as there's no hardware page translation to 6833 * assemble apparent contiguous memory from discontiguous pages. 6834 * 6835 * Queueing large contiguous runs of pages for batching, however, 6836 * causes the pages to actually be freed in smaller chunks. As there 6837 * can be a significant delay between the individual batches being 6838 * recycled, this leads to the once large chunks of space being 6839 * fragmented and becoming unavailable for high-order allocations. 6840 */ 6841 return 0; 6842 #endif 6843 } 6844 6845 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6846 { 6847 #ifdef CONFIG_MMU 6848 int high; 6849 int nr_split_cpus; 6850 unsigned long total_pages; 6851 6852 if (!percpu_pagelist_high_fraction) { 6853 /* 6854 * By default, the high value of the pcp is based on the zone 6855 * low watermark so that if they are full then background 6856 * reclaim will not be started prematurely. 6857 */ 6858 total_pages = low_wmark_pages(zone); 6859 } else { 6860 /* 6861 * If percpu_pagelist_high_fraction is configured, the high 6862 * value is based on a fraction of the managed pages in the 6863 * zone. 6864 */ 6865 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6866 } 6867 6868 /* 6869 * Split the high value across all online CPUs local to the zone. Note 6870 * that early in boot that CPUs may not be online yet and that during 6871 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6872 * onlined. For memory nodes that have no CPUs, split pcp->high across 6873 * all online CPUs to mitigate the risk that reclaim is triggered 6874 * prematurely due to pages stored on pcp lists. 6875 */ 6876 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6877 if (!nr_split_cpus) 6878 nr_split_cpus = num_online_cpus(); 6879 high = total_pages / nr_split_cpus; 6880 6881 /* 6882 * Ensure high is at least batch*4. The multiple is based on the 6883 * historical relationship between high and batch. 6884 */ 6885 high = max(high, batch << 2); 6886 6887 return high; 6888 #else 6889 return 0; 6890 #endif 6891 } 6892 6893 /* 6894 * pcp->high and pcp->batch values are related and generally batch is lower 6895 * than high. They are also related to pcp->count such that count is lower 6896 * than high, and as soon as it reaches high, the pcplist is flushed. 6897 * 6898 * However, guaranteeing these relations at all times would require e.g. write 6899 * barriers here but also careful usage of read barriers at the read side, and 6900 * thus be prone to error and bad for performance. Thus the update only prevents 6901 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6902 * can cope with those fields changing asynchronously, and fully trust only the 6903 * pcp->count field on the local CPU with interrupts disabled. 6904 * 6905 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6906 * outside of boot time (or some other assurance that no concurrent updaters 6907 * exist). 6908 */ 6909 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6910 unsigned long batch) 6911 { 6912 WRITE_ONCE(pcp->batch, batch); 6913 WRITE_ONCE(pcp->high, high); 6914 } 6915 6916 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6917 { 6918 int pindex; 6919 6920 memset(pcp, 0, sizeof(*pcp)); 6921 memset(pzstats, 0, sizeof(*pzstats)); 6922 6923 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6924 INIT_LIST_HEAD(&pcp->lists[pindex]); 6925 6926 /* 6927 * Set batch and high values safe for a boot pageset. A true percpu 6928 * pageset's initialization will update them subsequently. Here we don't 6929 * need to be as careful as pageset_update() as nobody can access the 6930 * pageset yet. 6931 */ 6932 pcp->high = BOOT_PAGESET_HIGH; 6933 pcp->batch = BOOT_PAGESET_BATCH; 6934 pcp->free_factor = 0; 6935 } 6936 6937 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6938 unsigned long batch) 6939 { 6940 struct per_cpu_pages *pcp; 6941 int cpu; 6942 6943 for_each_possible_cpu(cpu) { 6944 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6945 pageset_update(pcp, high, batch); 6946 } 6947 } 6948 6949 /* 6950 * Calculate and set new high and batch values for all per-cpu pagesets of a 6951 * zone based on the zone's size. 6952 */ 6953 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6954 { 6955 int new_high, new_batch; 6956 6957 new_batch = max(1, zone_batchsize(zone)); 6958 new_high = zone_highsize(zone, new_batch, cpu_online); 6959 6960 if (zone->pageset_high == new_high && 6961 zone->pageset_batch == new_batch) 6962 return; 6963 6964 zone->pageset_high = new_high; 6965 zone->pageset_batch = new_batch; 6966 6967 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6968 } 6969 6970 void __meminit setup_zone_pageset(struct zone *zone) 6971 { 6972 int cpu; 6973 6974 /* Size may be 0 on !SMP && !NUMA */ 6975 if (sizeof(struct per_cpu_zonestat) > 0) 6976 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6977 6978 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6979 for_each_possible_cpu(cpu) { 6980 struct per_cpu_pages *pcp; 6981 struct per_cpu_zonestat *pzstats; 6982 6983 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6984 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6985 per_cpu_pages_init(pcp, pzstats); 6986 } 6987 6988 zone_set_pageset_high_and_batch(zone, 0); 6989 } 6990 6991 /* 6992 * Allocate per cpu pagesets and initialize them. 6993 * Before this call only boot pagesets were available. 6994 */ 6995 void __init setup_per_cpu_pageset(void) 6996 { 6997 struct pglist_data *pgdat; 6998 struct zone *zone; 6999 int __maybe_unused cpu; 7000 7001 for_each_populated_zone(zone) 7002 setup_zone_pageset(zone); 7003 7004 #ifdef CONFIG_NUMA 7005 /* 7006 * Unpopulated zones continue using the boot pagesets. 7007 * The numa stats for these pagesets need to be reset. 7008 * Otherwise, they will end up skewing the stats of 7009 * the nodes these zones are associated with. 7010 */ 7011 for_each_possible_cpu(cpu) { 7012 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7013 memset(pzstats->vm_numa_event, 0, 7014 sizeof(pzstats->vm_numa_event)); 7015 } 7016 #endif 7017 7018 for_each_online_pgdat(pgdat) 7019 pgdat->per_cpu_nodestats = 7020 alloc_percpu(struct per_cpu_nodestat); 7021 } 7022 7023 static __meminit void zone_pcp_init(struct zone *zone) 7024 { 7025 /* 7026 * per cpu subsystem is not up at this point. The following code 7027 * relies on the ability of the linker to provide the 7028 * offset of a (static) per cpu variable into the per cpu area. 7029 */ 7030 zone->per_cpu_pageset = &boot_pageset; 7031 zone->per_cpu_zonestats = &boot_zonestats; 7032 zone->pageset_high = BOOT_PAGESET_HIGH; 7033 zone->pageset_batch = BOOT_PAGESET_BATCH; 7034 7035 if (populated_zone(zone)) 7036 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7037 zone->present_pages, zone_batchsize(zone)); 7038 } 7039 7040 void __meminit init_currently_empty_zone(struct zone *zone, 7041 unsigned long zone_start_pfn, 7042 unsigned long size) 7043 { 7044 struct pglist_data *pgdat = zone->zone_pgdat; 7045 int zone_idx = zone_idx(zone) + 1; 7046 7047 if (zone_idx > pgdat->nr_zones) 7048 pgdat->nr_zones = zone_idx; 7049 7050 zone->zone_start_pfn = zone_start_pfn; 7051 7052 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7053 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7054 pgdat->node_id, 7055 (unsigned long)zone_idx(zone), 7056 zone_start_pfn, (zone_start_pfn + size)); 7057 7058 zone_init_free_lists(zone); 7059 zone->initialized = 1; 7060 } 7061 7062 /** 7063 * get_pfn_range_for_nid - Return the start and end page frames for a node 7064 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7065 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7066 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7067 * 7068 * It returns the start and end page frame of a node based on information 7069 * provided by memblock_set_node(). If called for a node 7070 * with no available memory, a warning is printed and the start and end 7071 * PFNs will be 0. 7072 */ 7073 void __init get_pfn_range_for_nid(unsigned int nid, 7074 unsigned long *start_pfn, unsigned long *end_pfn) 7075 { 7076 unsigned long this_start_pfn, this_end_pfn; 7077 int i; 7078 7079 *start_pfn = -1UL; 7080 *end_pfn = 0; 7081 7082 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7083 *start_pfn = min(*start_pfn, this_start_pfn); 7084 *end_pfn = max(*end_pfn, this_end_pfn); 7085 } 7086 7087 if (*start_pfn == -1UL) 7088 *start_pfn = 0; 7089 } 7090 7091 /* 7092 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7093 * assumption is made that zones within a node are ordered in monotonic 7094 * increasing memory addresses so that the "highest" populated zone is used 7095 */ 7096 static void __init find_usable_zone_for_movable(void) 7097 { 7098 int zone_index; 7099 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7100 if (zone_index == ZONE_MOVABLE) 7101 continue; 7102 7103 if (arch_zone_highest_possible_pfn[zone_index] > 7104 arch_zone_lowest_possible_pfn[zone_index]) 7105 break; 7106 } 7107 7108 VM_BUG_ON(zone_index == -1); 7109 movable_zone = zone_index; 7110 } 7111 7112 /* 7113 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7114 * because it is sized independent of architecture. Unlike the other zones, 7115 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7116 * in each node depending on the size of each node and how evenly kernelcore 7117 * is distributed. This helper function adjusts the zone ranges 7118 * provided by the architecture for a given node by using the end of the 7119 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7120 * zones within a node are in order of monotonic increases memory addresses 7121 */ 7122 static void __init adjust_zone_range_for_zone_movable(int nid, 7123 unsigned long zone_type, 7124 unsigned long node_start_pfn, 7125 unsigned long node_end_pfn, 7126 unsigned long *zone_start_pfn, 7127 unsigned long *zone_end_pfn) 7128 { 7129 /* Only adjust if ZONE_MOVABLE is on this node */ 7130 if (zone_movable_pfn[nid]) { 7131 /* Size ZONE_MOVABLE */ 7132 if (zone_type == ZONE_MOVABLE) { 7133 *zone_start_pfn = zone_movable_pfn[nid]; 7134 *zone_end_pfn = min(node_end_pfn, 7135 arch_zone_highest_possible_pfn[movable_zone]); 7136 7137 /* Adjust for ZONE_MOVABLE starting within this range */ 7138 } else if (!mirrored_kernelcore && 7139 *zone_start_pfn < zone_movable_pfn[nid] && 7140 *zone_end_pfn > zone_movable_pfn[nid]) { 7141 *zone_end_pfn = zone_movable_pfn[nid]; 7142 7143 /* Check if this whole range is within ZONE_MOVABLE */ 7144 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7145 *zone_start_pfn = *zone_end_pfn; 7146 } 7147 } 7148 7149 /* 7150 * Return the number of pages a zone spans in a node, including holes 7151 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7152 */ 7153 static unsigned long __init zone_spanned_pages_in_node(int nid, 7154 unsigned long zone_type, 7155 unsigned long node_start_pfn, 7156 unsigned long node_end_pfn, 7157 unsigned long *zone_start_pfn, 7158 unsigned long *zone_end_pfn) 7159 { 7160 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7161 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7162 /* When hotadd a new node from cpu_up(), the node should be empty */ 7163 if (!node_start_pfn && !node_end_pfn) 7164 return 0; 7165 7166 /* Get the start and end of the zone */ 7167 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7168 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7169 adjust_zone_range_for_zone_movable(nid, zone_type, 7170 node_start_pfn, node_end_pfn, 7171 zone_start_pfn, zone_end_pfn); 7172 7173 /* Check that this node has pages within the zone's required range */ 7174 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7175 return 0; 7176 7177 /* Move the zone boundaries inside the node if necessary */ 7178 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7179 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7180 7181 /* Return the spanned pages */ 7182 return *zone_end_pfn - *zone_start_pfn; 7183 } 7184 7185 /* 7186 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7187 * then all holes in the requested range will be accounted for. 7188 */ 7189 unsigned long __init __absent_pages_in_range(int nid, 7190 unsigned long range_start_pfn, 7191 unsigned long range_end_pfn) 7192 { 7193 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7194 unsigned long start_pfn, end_pfn; 7195 int i; 7196 7197 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7198 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7199 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7200 nr_absent -= end_pfn - start_pfn; 7201 } 7202 return nr_absent; 7203 } 7204 7205 /** 7206 * absent_pages_in_range - Return number of page frames in holes within a range 7207 * @start_pfn: The start PFN to start searching for holes 7208 * @end_pfn: The end PFN to stop searching for holes 7209 * 7210 * Return: the number of pages frames in memory holes within a range. 7211 */ 7212 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7213 unsigned long end_pfn) 7214 { 7215 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7216 } 7217 7218 /* Return the number of page frames in holes in a zone on a node */ 7219 static unsigned long __init zone_absent_pages_in_node(int nid, 7220 unsigned long zone_type, 7221 unsigned long node_start_pfn, 7222 unsigned long node_end_pfn) 7223 { 7224 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7225 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7226 unsigned long zone_start_pfn, zone_end_pfn; 7227 unsigned long nr_absent; 7228 7229 /* When hotadd a new node from cpu_up(), the node should be empty */ 7230 if (!node_start_pfn && !node_end_pfn) 7231 return 0; 7232 7233 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7234 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7235 7236 adjust_zone_range_for_zone_movable(nid, zone_type, 7237 node_start_pfn, node_end_pfn, 7238 &zone_start_pfn, &zone_end_pfn); 7239 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7240 7241 /* 7242 * ZONE_MOVABLE handling. 7243 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7244 * and vice versa. 7245 */ 7246 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7247 unsigned long start_pfn, end_pfn; 7248 struct memblock_region *r; 7249 7250 for_each_mem_region(r) { 7251 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7252 zone_start_pfn, zone_end_pfn); 7253 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7254 zone_start_pfn, zone_end_pfn); 7255 7256 if (zone_type == ZONE_MOVABLE && 7257 memblock_is_mirror(r)) 7258 nr_absent += end_pfn - start_pfn; 7259 7260 if (zone_type == ZONE_NORMAL && 7261 !memblock_is_mirror(r)) 7262 nr_absent += end_pfn - start_pfn; 7263 } 7264 } 7265 7266 return nr_absent; 7267 } 7268 7269 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7270 unsigned long node_start_pfn, 7271 unsigned long node_end_pfn) 7272 { 7273 unsigned long realtotalpages = 0, totalpages = 0; 7274 enum zone_type i; 7275 7276 for (i = 0; i < MAX_NR_ZONES; i++) { 7277 struct zone *zone = pgdat->node_zones + i; 7278 unsigned long zone_start_pfn, zone_end_pfn; 7279 unsigned long spanned, absent; 7280 unsigned long size, real_size; 7281 7282 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7283 node_start_pfn, 7284 node_end_pfn, 7285 &zone_start_pfn, 7286 &zone_end_pfn); 7287 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7288 node_start_pfn, 7289 node_end_pfn); 7290 7291 size = spanned; 7292 real_size = size - absent; 7293 7294 if (size) 7295 zone->zone_start_pfn = zone_start_pfn; 7296 else 7297 zone->zone_start_pfn = 0; 7298 zone->spanned_pages = size; 7299 zone->present_pages = real_size; 7300 #if defined(CONFIG_MEMORY_HOTPLUG) 7301 zone->present_early_pages = real_size; 7302 #endif 7303 7304 totalpages += size; 7305 realtotalpages += real_size; 7306 } 7307 7308 pgdat->node_spanned_pages = totalpages; 7309 pgdat->node_present_pages = realtotalpages; 7310 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7311 } 7312 7313 #ifndef CONFIG_SPARSEMEM 7314 /* 7315 * Calculate the size of the zone->blockflags rounded to an unsigned long 7316 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7317 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7318 * round what is now in bits to nearest long in bits, then return it in 7319 * bytes. 7320 */ 7321 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7322 { 7323 unsigned long usemapsize; 7324 7325 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7326 usemapsize = roundup(zonesize, pageblock_nr_pages); 7327 usemapsize = usemapsize >> pageblock_order; 7328 usemapsize *= NR_PAGEBLOCK_BITS; 7329 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7330 7331 return usemapsize / 8; 7332 } 7333 7334 static void __ref setup_usemap(struct zone *zone) 7335 { 7336 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7337 zone->spanned_pages); 7338 zone->pageblock_flags = NULL; 7339 if (usemapsize) { 7340 zone->pageblock_flags = 7341 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7342 zone_to_nid(zone)); 7343 if (!zone->pageblock_flags) 7344 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7345 usemapsize, zone->name, zone_to_nid(zone)); 7346 } 7347 } 7348 #else 7349 static inline void setup_usemap(struct zone *zone) {} 7350 #endif /* CONFIG_SPARSEMEM */ 7351 7352 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7353 7354 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7355 void __init set_pageblock_order(void) 7356 { 7357 unsigned int order = MAX_ORDER - 1; 7358 7359 /* Check that pageblock_nr_pages has not already been setup */ 7360 if (pageblock_order) 7361 return; 7362 7363 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7364 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7365 order = HUGETLB_PAGE_ORDER; 7366 7367 /* 7368 * Assume the largest contiguous order of interest is a huge page. 7369 * This value may be variable depending on boot parameters on IA64 and 7370 * powerpc. 7371 */ 7372 pageblock_order = order; 7373 } 7374 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7375 7376 /* 7377 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7378 * is unused as pageblock_order is set at compile-time. See 7379 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7380 * the kernel config 7381 */ 7382 void __init set_pageblock_order(void) 7383 { 7384 } 7385 7386 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7387 7388 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7389 unsigned long present_pages) 7390 { 7391 unsigned long pages = spanned_pages; 7392 7393 /* 7394 * Provide a more accurate estimation if there are holes within 7395 * the zone and SPARSEMEM is in use. If there are holes within the 7396 * zone, each populated memory region may cost us one or two extra 7397 * memmap pages due to alignment because memmap pages for each 7398 * populated regions may not be naturally aligned on page boundary. 7399 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7400 */ 7401 if (spanned_pages > present_pages + (present_pages >> 4) && 7402 IS_ENABLED(CONFIG_SPARSEMEM)) 7403 pages = present_pages; 7404 7405 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7406 } 7407 7408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7409 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7410 { 7411 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7412 7413 spin_lock_init(&ds_queue->split_queue_lock); 7414 INIT_LIST_HEAD(&ds_queue->split_queue); 7415 ds_queue->split_queue_len = 0; 7416 } 7417 #else 7418 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7419 #endif 7420 7421 #ifdef CONFIG_COMPACTION 7422 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7423 { 7424 init_waitqueue_head(&pgdat->kcompactd_wait); 7425 } 7426 #else 7427 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7428 #endif 7429 7430 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7431 { 7432 int i; 7433 7434 pgdat_resize_init(pgdat); 7435 7436 pgdat_init_split_queue(pgdat); 7437 pgdat_init_kcompactd(pgdat); 7438 7439 init_waitqueue_head(&pgdat->kswapd_wait); 7440 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7441 7442 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7443 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7444 7445 pgdat_page_ext_init(pgdat); 7446 lruvec_init(&pgdat->__lruvec); 7447 } 7448 7449 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7450 unsigned long remaining_pages) 7451 { 7452 atomic_long_set(&zone->managed_pages, remaining_pages); 7453 zone_set_nid(zone, nid); 7454 zone->name = zone_names[idx]; 7455 zone->zone_pgdat = NODE_DATA(nid); 7456 spin_lock_init(&zone->lock); 7457 zone_seqlock_init(zone); 7458 zone_pcp_init(zone); 7459 } 7460 7461 /* 7462 * Set up the zone data structures 7463 * - init pgdat internals 7464 * - init all zones belonging to this node 7465 * 7466 * NOTE: this function is only called during memory hotplug 7467 */ 7468 #ifdef CONFIG_MEMORY_HOTPLUG 7469 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7470 { 7471 int nid = pgdat->node_id; 7472 enum zone_type z; 7473 int cpu; 7474 7475 pgdat_init_internals(pgdat); 7476 7477 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7478 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7479 7480 /* 7481 * Reset the nr_zones, order and highest_zoneidx before reuse. 7482 * Note that kswapd will init kswapd_highest_zoneidx properly 7483 * when it starts in the near future. 7484 */ 7485 pgdat->nr_zones = 0; 7486 pgdat->kswapd_order = 0; 7487 pgdat->kswapd_highest_zoneidx = 0; 7488 pgdat->node_start_pfn = 0; 7489 for_each_online_cpu(cpu) { 7490 struct per_cpu_nodestat *p; 7491 7492 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7493 memset(p, 0, sizeof(*p)); 7494 } 7495 7496 for (z = 0; z < MAX_NR_ZONES; z++) 7497 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7498 } 7499 #endif 7500 7501 /* 7502 * Set up the zone data structures: 7503 * - mark all pages reserved 7504 * - mark all memory queues empty 7505 * - clear the memory bitmaps 7506 * 7507 * NOTE: pgdat should get zeroed by caller. 7508 * NOTE: this function is only called during early init. 7509 */ 7510 static void __init free_area_init_core(struct pglist_data *pgdat) 7511 { 7512 enum zone_type j; 7513 int nid = pgdat->node_id; 7514 7515 pgdat_init_internals(pgdat); 7516 pgdat->per_cpu_nodestats = &boot_nodestats; 7517 7518 for (j = 0; j < MAX_NR_ZONES; j++) { 7519 struct zone *zone = pgdat->node_zones + j; 7520 unsigned long size, freesize, memmap_pages; 7521 7522 size = zone->spanned_pages; 7523 freesize = zone->present_pages; 7524 7525 /* 7526 * Adjust freesize so that it accounts for how much memory 7527 * is used by this zone for memmap. This affects the watermark 7528 * and per-cpu initialisations 7529 */ 7530 memmap_pages = calc_memmap_size(size, freesize); 7531 if (!is_highmem_idx(j)) { 7532 if (freesize >= memmap_pages) { 7533 freesize -= memmap_pages; 7534 if (memmap_pages) 7535 pr_debug(" %s zone: %lu pages used for memmap\n", 7536 zone_names[j], memmap_pages); 7537 } else 7538 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7539 zone_names[j], memmap_pages, freesize); 7540 } 7541 7542 /* Account for reserved pages */ 7543 if (j == 0 && freesize > dma_reserve) { 7544 freesize -= dma_reserve; 7545 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7546 } 7547 7548 if (!is_highmem_idx(j)) 7549 nr_kernel_pages += freesize; 7550 /* Charge for highmem memmap if there are enough kernel pages */ 7551 else if (nr_kernel_pages > memmap_pages * 2) 7552 nr_kernel_pages -= memmap_pages; 7553 nr_all_pages += freesize; 7554 7555 /* 7556 * Set an approximate value for lowmem here, it will be adjusted 7557 * when the bootmem allocator frees pages into the buddy system. 7558 * And all highmem pages will be managed by the buddy system. 7559 */ 7560 zone_init_internals(zone, j, nid, freesize); 7561 7562 if (!size) 7563 continue; 7564 7565 set_pageblock_order(); 7566 setup_usemap(zone); 7567 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7568 } 7569 } 7570 7571 #ifdef CONFIG_FLATMEM 7572 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7573 { 7574 unsigned long __maybe_unused start = 0; 7575 unsigned long __maybe_unused offset = 0; 7576 7577 /* Skip empty nodes */ 7578 if (!pgdat->node_spanned_pages) 7579 return; 7580 7581 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7582 offset = pgdat->node_start_pfn - start; 7583 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7584 if (!pgdat->node_mem_map) { 7585 unsigned long size, end; 7586 struct page *map; 7587 7588 /* 7589 * The zone's endpoints aren't required to be MAX_ORDER 7590 * aligned but the node_mem_map endpoints must be in order 7591 * for the buddy allocator to function correctly. 7592 */ 7593 end = pgdat_end_pfn(pgdat); 7594 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7595 size = (end - start) * sizeof(struct page); 7596 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7597 pgdat->node_id, false); 7598 if (!map) 7599 panic("Failed to allocate %ld bytes for node %d memory map\n", 7600 size, pgdat->node_id); 7601 pgdat->node_mem_map = map + offset; 7602 } 7603 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7604 __func__, pgdat->node_id, (unsigned long)pgdat, 7605 (unsigned long)pgdat->node_mem_map); 7606 #ifndef CONFIG_NUMA 7607 /* 7608 * With no DISCONTIG, the global mem_map is just set as node 0's 7609 */ 7610 if (pgdat == NODE_DATA(0)) { 7611 mem_map = NODE_DATA(0)->node_mem_map; 7612 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7613 mem_map -= offset; 7614 } 7615 #endif 7616 } 7617 #else 7618 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7619 #endif /* CONFIG_FLATMEM */ 7620 7621 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7622 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7623 { 7624 pgdat->first_deferred_pfn = ULONG_MAX; 7625 } 7626 #else 7627 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7628 #endif 7629 7630 static void __init free_area_init_node(int nid) 7631 { 7632 pg_data_t *pgdat = NODE_DATA(nid); 7633 unsigned long start_pfn = 0; 7634 unsigned long end_pfn = 0; 7635 7636 /* pg_data_t should be reset to zero when it's allocated */ 7637 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7638 7639 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7640 7641 pgdat->node_id = nid; 7642 pgdat->node_start_pfn = start_pfn; 7643 pgdat->per_cpu_nodestats = NULL; 7644 7645 if (start_pfn != end_pfn) { 7646 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7647 (u64)start_pfn << PAGE_SHIFT, 7648 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7649 } else { 7650 pr_info("Initmem setup node %d as memoryless\n", nid); 7651 } 7652 7653 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7654 7655 alloc_node_mem_map(pgdat); 7656 pgdat_set_deferred_range(pgdat); 7657 7658 free_area_init_core(pgdat); 7659 } 7660 7661 static void __init free_area_init_memoryless_node(int nid) 7662 { 7663 free_area_init_node(nid); 7664 } 7665 7666 #if MAX_NUMNODES > 1 7667 /* 7668 * Figure out the number of possible node ids. 7669 */ 7670 void __init setup_nr_node_ids(void) 7671 { 7672 unsigned int highest; 7673 7674 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7675 nr_node_ids = highest + 1; 7676 } 7677 #endif 7678 7679 /** 7680 * node_map_pfn_alignment - determine the maximum internode alignment 7681 * 7682 * This function should be called after node map is populated and sorted. 7683 * It calculates the maximum power of two alignment which can distinguish 7684 * all the nodes. 7685 * 7686 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7687 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7688 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7689 * shifted, 1GiB is enough and this function will indicate so. 7690 * 7691 * This is used to test whether pfn -> nid mapping of the chosen memory 7692 * model has fine enough granularity to avoid incorrect mapping for the 7693 * populated node map. 7694 * 7695 * Return: the determined alignment in pfn's. 0 if there is no alignment 7696 * requirement (single node). 7697 */ 7698 unsigned long __init node_map_pfn_alignment(void) 7699 { 7700 unsigned long accl_mask = 0, last_end = 0; 7701 unsigned long start, end, mask; 7702 int last_nid = NUMA_NO_NODE; 7703 int i, nid; 7704 7705 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7706 if (!start || last_nid < 0 || last_nid == nid) { 7707 last_nid = nid; 7708 last_end = end; 7709 continue; 7710 } 7711 7712 /* 7713 * Start with a mask granular enough to pin-point to the 7714 * start pfn and tick off bits one-by-one until it becomes 7715 * too coarse to separate the current node from the last. 7716 */ 7717 mask = ~((1 << __ffs(start)) - 1); 7718 while (mask && last_end <= (start & (mask << 1))) 7719 mask <<= 1; 7720 7721 /* accumulate all internode masks */ 7722 accl_mask |= mask; 7723 } 7724 7725 /* convert mask to number of pages */ 7726 return ~accl_mask + 1; 7727 } 7728 7729 /** 7730 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7731 * 7732 * Return: the minimum PFN based on information provided via 7733 * memblock_set_node(). 7734 */ 7735 unsigned long __init find_min_pfn_with_active_regions(void) 7736 { 7737 return PHYS_PFN(memblock_start_of_DRAM()); 7738 } 7739 7740 /* 7741 * early_calculate_totalpages() 7742 * Sum pages in active regions for movable zone. 7743 * Populate N_MEMORY for calculating usable_nodes. 7744 */ 7745 static unsigned long __init early_calculate_totalpages(void) 7746 { 7747 unsigned long totalpages = 0; 7748 unsigned long start_pfn, end_pfn; 7749 int i, nid; 7750 7751 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7752 unsigned long pages = end_pfn - start_pfn; 7753 7754 totalpages += pages; 7755 if (pages) 7756 node_set_state(nid, N_MEMORY); 7757 } 7758 return totalpages; 7759 } 7760 7761 /* 7762 * Find the PFN the Movable zone begins in each node. Kernel memory 7763 * is spread evenly between nodes as long as the nodes have enough 7764 * memory. When they don't, some nodes will have more kernelcore than 7765 * others 7766 */ 7767 static void __init find_zone_movable_pfns_for_nodes(void) 7768 { 7769 int i, nid; 7770 unsigned long usable_startpfn; 7771 unsigned long kernelcore_node, kernelcore_remaining; 7772 /* save the state before borrow the nodemask */ 7773 nodemask_t saved_node_state = node_states[N_MEMORY]; 7774 unsigned long totalpages = early_calculate_totalpages(); 7775 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7776 struct memblock_region *r; 7777 7778 /* Need to find movable_zone earlier when movable_node is specified. */ 7779 find_usable_zone_for_movable(); 7780 7781 /* 7782 * If movable_node is specified, ignore kernelcore and movablecore 7783 * options. 7784 */ 7785 if (movable_node_is_enabled()) { 7786 for_each_mem_region(r) { 7787 if (!memblock_is_hotpluggable(r)) 7788 continue; 7789 7790 nid = memblock_get_region_node(r); 7791 7792 usable_startpfn = PFN_DOWN(r->base); 7793 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7794 min(usable_startpfn, zone_movable_pfn[nid]) : 7795 usable_startpfn; 7796 } 7797 7798 goto out2; 7799 } 7800 7801 /* 7802 * If kernelcore=mirror is specified, ignore movablecore option 7803 */ 7804 if (mirrored_kernelcore) { 7805 bool mem_below_4gb_not_mirrored = false; 7806 7807 for_each_mem_region(r) { 7808 if (memblock_is_mirror(r)) 7809 continue; 7810 7811 nid = memblock_get_region_node(r); 7812 7813 usable_startpfn = memblock_region_memory_base_pfn(r); 7814 7815 if (usable_startpfn < 0x100000) { 7816 mem_below_4gb_not_mirrored = true; 7817 continue; 7818 } 7819 7820 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7821 min(usable_startpfn, zone_movable_pfn[nid]) : 7822 usable_startpfn; 7823 } 7824 7825 if (mem_below_4gb_not_mirrored) 7826 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7827 7828 goto out2; 7829 } 7830 7831 /* 7832 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7833 * amount of necessary memory. 7834 */ 7835 if (required_kernelcore_percent) 7836 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7837 10000UL; 7838 if (required_movablecore_percent) 7839 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7840 10000UL; 7841 7842 /* 7843 * If movablecore= was specified, calculate what size of 7844 * kernelcore that corresponds so that memory usable for 7845 * any allocation type is evenly spread. If both kernelcore 7846 * and movablecore are specified, then the value of kernelcore 7847 * will be used for required_kernelcore if it's greater than 7848 * what movablecore would have allowed. 7849 */ 7850 if (required_movablecore) { 7851 unsigned long corepages; 7852 7853 /* 7854 * Round-up so that ZONE_MOVABLE is at least as large as what 7855 * was requested by the user 7856 */ 7857 required_movablecore = 7858 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7859 required_movablecore = min(totalpages, required_movablecore); 7860 corepages = totalpages - required_movablecore; 7861 7862 required_kernelcore = max(required_kernelcore, corepages); 7863 } 7864 7865 /* 7866 * If kernelcore was not specified or kernelcore size is larger 7867 * than totalpages, there is no ZONE_MOVABLE. 7868 */ 7869 if (!required_kernelcore || required_kernelcore >= totalpages) 7870 goto out; 7871 7872 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7873 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7874 7875 restart: 7876 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7877 kernelcore_node = required_kernelcore / usable_nodes; 7878 for_each_node_state(nid, N_MEMORY) { 7879 unsigned long start_pfn, end_pfn; 7880 7881 /* 7882 * Recalculate kernelcore_node if the division per node 7883 * now exceeds what is necessary to satisfy the requested 7884 * amount of memory for the kernel 7885 */ 7886 if (required_kernelcore < kernelcore_node) 7887 kernelcore_node = required_kernelcore / usable_nodes; 7888 7889 /* 7890 * As the map is walked, we track how much memory is usable 7891 * by the kernel using kernelcore_remaining. When it is 7892 * 0, the rest of the node is usable by ZONE_MOVABLE 7893 */ 7894 kernelcore_remaining = kernelcore_node; 7895 7896 /* Go through each range of PFNs within this node */ 7897 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7898 unsigned long size_pages; 7899 7900 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7901 if (start_pfn >= end_pfn) 7902 continue; 7903 7904 /* Account for what is only usable for kernelcore */ 7905 if (start_pfn < usable_startpfn) { 7906 unsigned long kernel_pages; 7907 kernel_pages = min(end_pfn, usable_startpfn) 7908 - start_pfn; 7909 7910 kernelcore_remaining -= min(kernel_pages, 7911 kernelcore_remaining); 7912 required_kernelcore -= min(kernel_pages, 7913 required_kernelcore); 7914 7915 /* Continue if range is now fully accounted */ 7916 if (end_pfn <= usable_startpfn) { 7917 7918 /* 7919 * Push zone_movable_pfn to the end so 7920 * that if we have to rebalance 7921 * kernelcore across nodes, we will 7922 * not double account here 7923 */ 7924 zone_movable_pfn[nid] = end_pfn; 7925 continue; 7926 } 7927 start_pfn = usable_startpfn; 7928 } 7929 7930 /* 7931 * The usable PFN range for ZONE_MOVABLE is from 7932 * start_pfn->end_pfn. Calculate size_pages as the 7933 * number of pages used as kernelcore 7934 */ 7935 size_pages = end_pfn - start_pfn; 7936 if (size_pages > kernelcore_remaining) 7937 size_pages = kernelcore_remaining; 7938 zone_movable_pfn[nid] = start_pfn + size_pages; 7939 7940 /* 7941 * Some kernelcore has been met, update counts and 7942 * break if the kernelcore for this node has been 7943 * satisfied 7944 */ 7945 required_kernelcore -= min(required_kernelcore, 7946 size_pages); 7947 kernelcore_remaining -= size_pages; 7948 if (!kernelcore_remaining) 7949 break; 7950 } 7951 } 7952 7953 /* 7954 * If there is still required_kernelcore, we do another pass with one 7955 * less node in the count. This will push zone_movable_pfn[nid] further 7956 * along on the nodes that still have memory until kernelcore is 7957 * satisfied 7958 */ 7959 usable_nodes--; 7960 if (usable_nodes && required_kernelcore > usable_nodes) 7961 goto restart; 7962 7963 out2: 7964 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7965 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7966 unsigned long start_pfn, end_pfn; 7967 7968 zone_movable_pfn[nid] = 7969 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7970 7971 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7972 if (zone_movable_pfn[nid] >= end_pfn) 7973 zone_movable_pfn[nid] = 0; 7974 } 7975 7976 out: 7977 /* restore the node_state */ 7978 node_states[N_MEMORY] = saved_node_state; 7979 } 7980 7981 /* Any regular or high memory on that node ? */ 7982 static void check_for_memory(pg_data_t *pgdat, int nid) 7983 { 7984 enum zone_type zone_type; 7985 7986 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7987 struct zone *zone = &pgdat->node_zones[zone_type]; 7988 if (populated_zone(zone)) { 7989 if (IS_ENABLED(CONFIG_HIGHMEM)) 7990 node_set_state(nid, N_HIGH_MEMORY); 7991 if (zone_type <= ZONE_NORMAL) 7992 node_set_state(nid, N_NORMAL_MEMORY); 7993 break; 7994 } 7995 } 7996 } 7997 7998 /* 7999 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8000 * such cases we allow max_zone_pfn sorted in the descending order 8001 */ 8002 bool __weak arch_has_descending_max_zone_pfns(void) 8003 { 8004 return false; 8005 } 8006 8007 /** 8008 * free_area_init - Initialise all pg_data_t and zone data 8009 * @max_zone_pfn: an array of max PFNs for each zone 8010 * 8011 * This will call free_area_init_node() for each active node in the system. 8012 * Using the page ranges provided by memblock_set_node(), the size of each 8013 * zone in each node and their holes is calculated. If the maximum PFN 8014 * between two adjacent zones match, it is assumed that the zone is empty. 8015 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8016 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8017 * starts where the previous one ended. For example, ZONE_DMA32 starts 8018 * at arch_max_dma_pfn. 8019 */ 8020 void __init free_area_init(unsigned long *max_zone_pfn) 8021 { 8022 unsigned long start_pfn, end_pfn; 8023 int i, nid, zone; 8024 bool descending; 8025 8026 /* Record where the zone boundaries are */ 8027 memset(arch_zone_lowest_possible_pfn, 0, 8028 sizeof(arch_zone_lowest_possible_pfn)); 8029 memset(arch_zone_highest_possible_pfn, 0, 8030 sizeof(arch_zone_highest_possible_pfn)); 8031 8032 start_pfn = find_min_pfn_with_active_regions(); 8033 descending = arch_has_descending_max_zone_pfns(); 8034 8035 for (i = 0; i < MAX_NR_ZONES; i++) { 8036 if (descending) 8037 zone = MAX_NR_ZONES - i - 1; 8038 else 8039 zone = i; 8040 8041 if (zone == ZONE_MOVABLE) 8042 continue; 8043 8044 end_pfn = max(max_zone_pfn[zone], start_pfn); 8045 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8046 arch_zone_highest_possible_pfn[zone] = end_pfn; 8047 8048 start_pfn = end_pfn; 8049 } 8050 8051 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8052 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8053 find_zone_movable_pfns_for_nodes(); 8054 8055 /* Print out the zone ranges */ 8056 pr_info("Zone ranges:\n"); 8057 for (i = 0; i < MAX_NR_ZONES; i++) { 8058 if (i == ZONE_MOVABLE) 8059 continue; 8060 pr_info(" %-8s ", zone_names[i]); 8061 if (arch_zone_lowest_possible_pfn[i] == 8062 arch_zone_highest_possible_pfn[i]) 8063 pr_cont("empty\n"); 8064 else 8065 pr_cont("[mem %#018Lx-%#018Lx]\n", 8066 (u64)arch_zone_lowest_possible_pfn[i] 8067 << PAGE_SHIFT, 8068 ((u64)arch_zone_highest_possible_pfn[i] 8069 << PAGE_SHIFT) - 1); 8070 } 8071 8072 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8073 pr_info("Movable zone start for each node\n"); 8074 for (i = 0; i < MAX_NUMNODES; i++) { 8075 if (zone_movable_pfn[i]) 8076 pr_info(" Node %d: %#018Lx\n", i, 8077 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8078 } 8079 8080 /* 8081 * Print out the early node map, and initialize the 8082 * subsection-map relative to active online memory ranges to 8083 * enable future "sub-section" extensions of the memory map. 8084 */ 8085 pr_info("Early memory node ranges\n"); 8086 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8087 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8088 (u64)start_pfn << PAGE_SHIFT, 8089 ((u64)end_pfn << PAGE_SHIFT) - 1); 8090 subsection_map_init(start_pfn, end_pfn - start_pfn); 8091 } 8092 8093 /* Initialise every node */ 8094 mminit_verify_pageflags_layout(); 8095 setup_nr_node_ids(); 8096 for_each_node(nid) { 8097 pg_data_t *pgdat; 8098 8099 if (!node_online(nid)) { 8100 pr_info("Initializing node %d as memoryless\n", nid); 8101 8102 /* Allocator not initialized yet */ 8103 pgdat = arch_alloc_nodedata(nid); 8104 if (!pgdat) { 8105 pr_err("Cannot allocate %zuB for node %d.\n", 8106 sizeof(*pgdat), nid); 8107 continue; 8108 } 8109 arch_refresh_nodedata(nid, pgdat); 8110 free_area_init_memoryless_node(nid); 8111 8112 /* 8113 * We do not want to confuse userspace by sysfs 8114 * files/directories for node without any memory 8115 * attached to it, so this node is not marked as 8116 * N_MEMORY and not marked online so that no sysfs 8117 * hierarchy will be created via register_one_node for 8118 * it. The pgdat will get fully initialized by 8119 * hotadd_init_pgdat() when memory is hotplugged into 8120 * this node. 8121 */ 8122 continue; 8123 } 8124 8125 pgdat = NODE_DATA(nid); 8126 free_area_init_node(nid); 8127 8128 /* Any memory on that node */ 8129 if (pgdat->node_present_pages) 8130 node_set_state(nid, N_MEMORY); 8131 check_for_memory(pgdat, nid); 8132 } 8133 8134 memmap_init(); 8135 } 8136 8137 static int __init cmdline_parse_core(char *p, unsigned long *core, 8138 unsigned long *percent) 8139 { 8140 unsigned long long coremem; 8141 char *endptr; 8142 8143 if (!p) 8144 return -EINVAL; 8145 8146 /* Value may be a percentage of total memory, otherwise bytes */ 8147 coremem = simple_strtoull(p, &endptr, 0); 8148 if (*endptr == '%') { 8149 /* Paranoid check for percent values greater than 100 */ 8150 WARN_ON(coremem > 100); 8151 8152 *percent = coremem; 8153 } else { 8154 coremem = memparse(p, &p); 8155 /* Paranoid check that UL is enough for the coremem value */ 8156 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8157 8158 *core = coremem >> PAGE_SHIFT; 8159 *percent = 0UL; 8160 } 8161 return 0; 8162 } 8163 8164 /* 8165 * kernelcore=size sets the amount of memory for use for allocations that 8166 * cannot be reclaimed or migrated. 8167 */ 8168 static int __init cmdline_parse_kernelcore(char *p) 8169 { 8170 /* parse kernelcore=mirror */ 8171 if (parse_option_str(p, "mirror")) { 8172 mirrored_kernelcore = true; 8173 return 0; 8174 } 8175 8176 return cmdline_parse_core(p, &required_kernelcore, 8177 &required_kernelcore_percent); 8178 } 8179 8180 /* 8181 * movablecore=size sets the amount of memory for use for allocations that 8182 * can be reclaimed or migrated. 8183 */ 8184 static int __init cmdline_parse_movablecore(char *p) 8185 { 8186 return cmdline_parse_core(p, &required_movablecore, 8187 &required_movablecore_percent); 8188 } 8189 8190 early_param("kernelcore", cmdline_parse_kernelcore); 8191 early_param("movablecore", cmdline_parse_movablecore); 8192 8193 void adjust_managed_page_count(struct page *page, long count) 8194 { 8195 atomic_long_add(count, &page_zone(page)->managed_pages); 8196 totalram_pages_add(count); 8197 #ifdef CONFIG_HIGHMEM 8198 if (PageHighMem(page)) 8199 totalhigh_pages_add(count); 8200 #endif 8201 } 8202 EXPORT_SYMBOL(adjust_managed_page_count); 8203 8204 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8205 { 8206 void *pos; 8207 unsigned long pages = 0; 8208 8209 start = (void *)PAGE_ALIGN((unsigned long)start); 8210 end = (void *)((unsigned long)end & PAGE_MASK); 8211 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8212 struct page *page = virt_to_page(pos); 8213 void *direct_map_addr; 8214 8215 /* 8216 * 'direct_map_addr' might be different from 'pos' 8217 * because some architectures' virt_to_page() 8218 * work with aliases. Getting the direct map 8219 * address ensures that we get a _writeable_ 8220 * alias for the memset(). 8221 */ 8222 direct_map_addr = page_address(page); 8223 /* 8224 * Perform a kasan-unchecked memset() since this memory 8225 * has not been initialized. 8226 */ 8227 direct_map_addr = kasan_reset_tag(direct_map_addr); 8228 if ((unsigned int)poison <= 0xFF) 8229 memset(direct_map_addr, poison, PAGE_SIZE); 8230 8231 free_reserved_page(page); 8232 } 8233 8234 if (pages && s) 8235 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8236 8237 return pages; 8238 } 8239 8240 void __init mem_init_print_info(void) 8241 { 8242 unsigned long physpages, codesize, datasize, rosize, bss_size; 8243 unsigned long init_code_size, init_data_size; 8244 8245 physpages = get_num_physpages(); 8246 codesize = _etext - _stext; 8247 datasize = _edata - _sdata; 8248 rosize = __end_rodata - __start_rodata; 8249 bss_size = __bss_stop - __bss_start; 8250 init_data_size = __init_end - __init_begin; 8251 init_code_size = _einittext - _sinittext; 8252 8253 /* 8254 * Detect special cases and adjust section sizes accordingly: 8255 * 1) .init.* may be embedded into .data sections 8256 * 2) .init.text.* may be out of [__init_begin, __init_end], 8257 * please refer to arch/tile/kernel/vmlinux.lds.S. 8258 * 3) .rodata.* may be embedded into .text or .data sections. 8259 */ 8260 #define adj_init_size(start, end, size, pos, adj) \ 8261 do { \ 8262 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8263 size -= adj; \ 8264 } while (0) 8265 8266 adj_init_size(__init_begin, __init_end, init_data_size, 8267 _sinittext, init_code_size); 8268 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8269 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8270 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8271 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8272 8273 #undef adj_init_size 8274 8275 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8276 #ifdef CONFIG_HIGHMEM 8277 ", %luK highmem" 8278 #endif 8279 ")\n", 8280 K(nr_free_pages()), K(physpages), 8281 codesize >> 10, datasize >> 10, rosize >> 10, 8282 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8283 K(physpages - totalram_pages() - totalcma_pages), 8284 K(totalcma_pages) 8285 #ifdef CONFIG_HIGHMEM 8286 , K(totalhigh_pages()) 8287 #endif 8288 ); 8289 } 8290 8291 /** 8292 * set_dma_reserve - set the specified number of pages reserved in the first zone 8293 * @new_dma_reserve: The number of pages to mark reserved 8294 * 8295 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8296 * In the DMA zone, a significant percentage may be consumed by kernel image 8297 * and other unfreeable allocations which can skew the watermarks badly. This 8298 * function may optionally be used to account for unfreeable pages in the 8299 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8300 * smaller per-cpu batchsize. 8301 */ 8302 void __init set_dma_reserve(unsigned long new_dma_reserve) 8303 { 8304 dma_reserve = new_dma_reserve; 8305 } 8306 8307 static int page_alloc_cpu_dead(unsigned int cpu) 8308 { 8309 struct zone *zone; 8310 8311 lru_add_drain_cpu(cpu); 8312 drain_pages(cpu); 8313 8314 /* 8315 * Spill the event counters of the dead processor 8316 * into the current processors event counters. 8317 * This artificially elevates the count of the current 8318 * processor. 8319 */ 8320 vm_events_fold_cpu(cpu); 8321 8322 /* 8323 * Zero the differential counters of the dead processor 8324 * so that the vm statistics are consistent. 8325 * 8326 * This is only okay since the processor is dead and cannot 8327 * race with what we are doing. 8328 */ 8329 cpu_vm_stats_fold(cpu); 8330 8331 for_each_populated_zone(zone) 8332 zone_pcp_update(zone, 0); 8333 8334 return 0; 8335 } 8336 8337 static int page_alloc_cpu_online(unsigned int cpu) 8338 { 8339 struct zone *zone; 8340 8341 for_each_populated_zone(zone) 8342 zone_pcp_update(zone, 1); 8343 return 0; 8344 } 8345 8346 #ifdef CONFIG_NUMA 8347 int hashdist = HASHDIST_DEFAULT; 8348 8349 static int __init set_hashdist(char *str) 8350 { 8351 if (!str) 8352 return 0; 8353 hashdist = simple_strtoul(str, &str, 0); 8354 return 1; 8355 } 8356 __setup("hashdist=", set_hashdist); 8357 #endif 8358 8359 void __init page_alloc_init(void) 8360 { 8361 int ret; 8362 8363 #ifdef CONFIG_NUMA 8364 if (num_node_state(N_MEMORY) == 1) 8365 hashdist = 0; 8366 #endif 8367 8368 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8369 "mm/page_alloc:pcp", 8370 page_alloc_cpu_online, 8371 page_alloc_cpu_dead); 8372 WARN_ON(ret < 0); 8373 } 8374 8375 /* 8376 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8377 * or min_free_kbytes changes. 8378 */ 8379 static void calculate_totalreserve_pages(void) 8380 { 8381 struct pglist_data *pgdat; 8382 unsigned long reserve_pages = 0; 8383 enum zone_type i, j; 8384 8385 for_each_online_pgdat(pgdat) { 8386 8387 pgdat->totalreserve_pages = 0; 8388 8389 for (i = 0; i < MAX_NR_ZONES; i++) { 8390 struct zone *zone = pgdat->node_zones + i; 8391 long max = 0; 8392 unsigned long managed_pages = zone_managed_pages(zone); 8393 8394 /* Find valid and maximum lowmem_reserve in the zone */ 8395 for (j = i; j < MAX_NR_ZONES; j++) { 8396 if (zone->lowmem_reserve[j] > max) 8397 max = zone->lowmem_reserve[j]; 8398 } 8399 8400 /* we treat the high watermark as reserved pages. */ 8401 max += high_wmark_pages(zone); 8402 8403 if (max > managed_pages) 8404 max = managed_pages; 8405 8406 pgdat->totalreserve_pages += max; 8407 8408 reserve_pages += max; 8409 } 8410 } 8411 totalreserve_pages = reserve_pages; 8412 } 8413 8414 /* 8415 * setup_per_zone_lowmem_reserve - called whenever 8416 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8417 * has a correct pages reserved value, so an adequate number of 8418 * pages are left in the zone after a successful __alloc_pages(). 8419 */ 8420 static void setup_per_zone_lowmem_reserve(void) 8421 { 8422 struct pglist_data *pgdat; 8423 enum zone_type i, j; 8424 8425 for_each_online_pgdat(pgdat) { 8426 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8427 struct zone *zone = &pgdat->node_zones[i]; 8428 int ratio = sysctl_lowmem_reserve_ratio[i]; 8429 bool clear = !ratio || !zone_managed_pages(zone); 8430 unsigned long managed_pages = 0; 8431 8432 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8433 struct zone *upper_zone = &pgdat->node_zones[j]; 8434 8435 managed_pages += zone_managed_pages(upper_zone); 8436 8437 if (clear) 8438 zone->lowmem_reserve[j] = 0; 8439 else 8440 zone->lowmem_reserve[j] = managed_pages / ratio; 8441 } 8442 } 8443 } 8444 8445 /* update totalreserve_pages */ 8446 calculate_totalreserve_pages(); 8447 } 8448 8449 static void __setup_per_zone_wmarks(void) 8450 { 8451 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8452 unsigned long lowmem_pages = 0; 8453 struct zone *zone; 8454 unsigned long flags; 8455 8456 /* Calculate total number of !ZONE_HIGHMEM pages */ 8457 for_each_zone(zone) { 8458 if (!is_highmem(zone)) 8459 lowmem_pages += zone_managed_pages(zone); 8460 } 8461 8462 for_each_zone(zone) { 8463 u64 tmp; 8464 8465 spin_lock_irqsave(&zone->lock, flags); 8466 tmp = (u64)pages_min * zone_managed_pages(zone); 8467 do_div(tmp, lowmem_pages); 8468 if (is_highmem(zone)) { 8469 /* 8470 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8471 * need highmem pages, so cap pages_min to a small 8472 * value here. 8473 * 8474 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8475 * deltas control async page reclaim, and so should 8476 * not be capped for highmem. 8477 */ 8478 unsigned long min_pages; 8479 8480 min_pages = zone_managed_pages(zone) / 1024; 8481 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8482 zone->_watermark[WMARK_MIN] = min_pages; 8483 } else { 8484 /* 8485 * If it's a lowmem zone, reserve a number of pages 8486 * proportionate to the zone's size. 8487 */ 8488 zone->_watermark[WMARK_MIN] = tmp; 8489 } 8490 8491 /* 8492 * Set the kswapd watermarks distance according to the 8493 * scale factor in proportion to available memory, but 8494 * ensure a minimum size on small systems. 8495 */ 8496 tmp = max_t(u64, tmp >> 2, 8497 mult_frac(zone_managed_pages(zone), 8498 watermark_scale_factor, 10000)); 8499 8500 zone->watermark_boost = 0; 8501 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8502 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8503 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8504 8505 spin_unlock_irqrestore(&zone->lock, flags); 8506 } 8507 8508 /* update totalreserve_pages */ 8509 calculate_totalreserve_pages(); 8510 } 8511 8512 /** 8513 * setup_per_zone_wmarks - called when min_free_kbytes changes 8514 * or when memory is hot-{added|removed} 8515 * 8516 * Ensures that the watermark[min,low,high] values for each zone are set 8517 * correctly with respect to min_free_kbytes. 8518 */ 8519 void setup_per_zone_wmarks(void) 8520 { 8521 struct zone *zone; 8522 static DEFINE_SPINLOCK(lock); 8523 8524 spin_lock(&lock); 8525 __setup_per_zone_wmarks(); 8526 spin_unlock(&lock); 8527 8528 /* 8529 * The watermark size have changed so update the pcpu batch 8530 * and high limits or the limits may be inappropriate. 8531 */ 8532 for_each_zone(zone) 8533 zone_pcp_update(zone, 0); 8534 } 8535 8536 /* 8537 * Initialise min_free_kbytes. 8538 * 8539 * For small machines we want it small (128k min). For large machines 8540 * we want it large (256MB max). But it is not linear, because network 8541 * bandwidth does not increase linearly with machine size. We use 8542 * 8543 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8544 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8545 * 8546 * which yields 8547 * 8548 * 16MB: 512k 8549 * 32MB: 724k 8550 * 64MB: 1024k 8551 * 128MB: 1448k 8552 * 256MB: 2048k 8553 * 512MB: 2896k 8554 * 1024MB: 4096k 8555 * 2048MB: 5792k 8556 * 4096MB: 8192k 8557 * 8192MB: 11584k 8558 * 16384MB: 16384k 8559 */ 8560 void calculate_min_free_kbytes(void) 8561 { 8562 unsigned long lowmem_kbytes; 8563 int new_min_free_kbytes; 8564 8565 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8566 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8567 8568 if (new_min_free_kbytes > user_min_free_kbytes) 8569 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8570 else 8571 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8572 new_min_free_kbytes, user_min_free_kbytes); 8573 8574 } 8575 8576 int __meminit init_per_zone_wmark_min(void) 8577 { 8578 calculate_min_free_kbytes(); 8579 setup_per_zone_wmarks(); 8580 refresh_zone_stat_thresholds(); 8581 setup_per_zone_lowmem_reserve(); 8582 8583 #ifdef CONFIG_NUMA 8584 setup_min_unmapped_ratio(); 8585 setup_min_slab_ratio(); 8586 #endif 8587 8588 khugepaged_min_free_kbytes_update(); 8589 8590 return 0; 8591 } 8592 postcore_initcall(init_per_zone_wmark_min) 8593 8594 /* 8595 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8596 * that we can call two helper functions whenever min_free_kbytes 8597 * changes. 8598 */ 8599 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8600 void *buffer, size_t *length, loff_t *ppos) 8601 { 8602 int rc; 8603 8604 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8605 if (rc) 8606 return rc; 8607 8608 if (write) { 8609 user_min_free_kbytes = min_free_kbytes; 8610 setup_per_zone_wmarks(); 8611 } 8612 return 0; 8613 } 8614 8615 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8616 void *buffer, size_t *length, loff_t *ppos) 8617 { 8618 int rc; 8619 8620 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8621 if (rc) 8622 return rc; 8623 8624 if (write) 8625 setup_per_zone_wmarks(); 8626 8627 return 0; 8628 } 8629 8630 #ifdef CONFIG_NUMA 8631 static void setup_min_unmapped_ratio(void) 8632 { 8633 pg_data_t *pgdat; 8634 struct zone *zone; 8635 8636 for_each_online_pgdat(pgdat) 8637 pgdat->min_unmapped_pages = 0; 8638 8639 for_each_zone(zone) 8640 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8641 sysctl_min_unmapped_ratio) / 100; 8642 } 8643 8644 8645 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8646 void *buffer, size_t *length, loff_t *ppos) 8647 { 8648 int rc; 8649 8650 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8651 if (rc) 8652 return rc; 8653 8654 setup_min_unmapped_ratio(); 8655 8656 return 0; 8657 } 8658 8659 static void setup_min_slab_ratio(void) 8660 { 8661 pg_data_t *pgdat; 8662 struct zone *zone; 8663 8664 for_each_online_pgdat(pgdat) 8665 pgdat->min_slab_pages = 0; 8666 8667 for_each_zone(zone) 8668 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8669 sysctl_min_slab_ratio) / 100; 8670 } 8671 8672 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8673 void *buffer, size_t *length, loff_t *ppos) 8674 { 8675 int rc; 8676 8677 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8678 if (rc) 8679 return rc; 8680 8681 setup_min_slab_ratio(); 8682 8683 return 0; 8684 } 8685 #endif 8686 8687 /* 8688 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8689 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8690 * whenever sysctl_lowmem_reserve_ratio changes. 8691 * 8692 * The reserve ratio obviously has absolutely no relation with the 8693 * minimum watermarks. The lowmem reserve ratio can only make sense 8694 * if in function of the boot time zone sizes. 8695 */ 8696 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8697 void *buffer, size_t *length, loff_t *ppos) 8698 { 8699 int i; 8700 8701 proc_dointvec_minmax(table, write, buffer, length, ppos); 8702 8703 for (i = 0; i < MAX_NR_ZONES; i++) { 8704 if (sysctl_lowmem_reserve_ratio[i] < 1) 8705 sysctl_lowmem_reserve_ratio[i] = 0; 8706 } 8707 8708 setup_per_zone_lowmem_reserve(); 8709 return 0; 8710 } 8711 8712 /* 8713 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8714 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8715 * pagelist can have before it gets flushed back to buddy allocator. 8716 */ 8717 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8718 int write, void *buffer, size_t *length, loff_t *ppos) 8719 { 8720 struct zone *zone; 8721 int old_percpu_pagelist_high_fraction; 8722 int ret; 8723 8724 mutex_lock(&pcp_batch_high_lock); 8725 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8726 8727 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8728 if (!write || ret < 0) 8729 goto out; 8730 8731 /* Sanity checking to avoid pcp imbalance */ 8732 if (percpu_pagelist_high_fraction && 8733 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8734 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8735 ret = -EINVAL; 8736 goto out; 8737 } 8738 8739 /* No change? */ 8740 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8741 goto out; 8742 8743 for_each_populated_zone(zone) 8744 zone_set_pageset_high_and_batch(zone, 0); 8745 out: 8746 mutex_unlock(&pcp_batch_high_lock); 8747 return ret; 8748 } 8749 8750 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8751 /* 8752 * Returns the number of pages that arch has reserved but 8753 * is not known to alloc_large_system_hash(). 8754 */ 8755 static unsigned long __init arch_reserved_kernel_pages(void) 8756 { 8757 return 0; 8758 } 8759 #endif 8760 8761 /* 8762 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8763 * machines. As memory size is increased the scale is also increased but at 8764 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8765 * quadruples the scale is increased by one, which means the size of hash table 8766 * only doubles, instead of quadrupling as well. 8767 * Because 32-bit systems cannot have large physical memory, where this scaling 8768 * makes sense, it is disabled on such platforms. 8769 */ 8770 #if __BITS_PER_LONG > 32 8771 #define ADAPT_SCALE_BASE (64ul << 30) 8772 #define ADAPT_SCALE_SHIFT 2 8773 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8774 #endif 8775 8776 /* 8777 * allocate a large system hash table from bootmem 8778 * - it is assumed that the hash table must contain an exact power-of-2 8779 * quantity of entries 8780 * - limit is the number of hash buckets, not the total allocation size 8781 */ 8782 void *__init alloc_large_system_hash(const char *tablename, 8783 unsigned long bucketsize, 8784 unsigned long numentries, 8785 int scale, 8786 int flags, 8787 unsigned int *_hash_shift, 8788 unsigned int *_hash_mask, 8789 unsigned long low_limit, 8790 unsigned long high_limit) 8791 { 8792 unsigned long long max = high_limit; 8793 unsigned long log2qty, size; 8794 void *table = NULL; 8795 gfp_t gfp_flags; 8796 bool virt; 8797 bool huge; 8798 8799 /* allow the kernel cmdline to have a say */ 8800 if (!numentries) { 8801 /* round applicable memory size up to nearest megabyte */ 8802 numentries = nr_kernel_pages; 8803 numentries -= arch_reserved_kernel_pages(); 8804 8805 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8806 if (PAGE_SHIFT < 20) 8807 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8808 8809 #if __BITS_PER_LONG > 32 8810 if (!high_limit) { 8811 unsigned long adapt; 8812 8813 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8814 adapt <<= ADAPT_SCALE_SHIFT) 8815 scale++; 8816 } 8817 #endif 8818 8819 /* limit to 1 bucket per 2^scale bytes of low memory */ 8820 if (scale > PAGE_SHIFT) 8821 numentries >>= (scale - PAGE_SHIFT); 8822 else 8823 numentries <<= (PAGE_SHIFT - scale); 8824 8825 /* Make sure we've got at least a 0-order allocation.. */ 8826 if (unlikely(flags & HASH_SMALL)) { 8827 /* Makes no sense without HASH_EARLY */ 8828 WARN_ON(!(flags & HASH_EARLY)); 8829 if (!(numentries >> *_hash_shift)) { 8830 numentries = 1UL << *_hash_shift; 8831 BUG_ON(!numentries); 8832 } 8833 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8834 numentries = PAGE_SIZE / bucketsize; 8835 } 8836 numentries = roundup_pow_of_two(numentries); 8837 8838 /* limit allocation size to 1/16 total memory by default */ 8839 if (max == 0) { 8840 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8841 do_div(max, bucketsize); 8842 } 8843 max = min(max, 0x80000000ULL); 8844 8845 if (numentries < low_limit) 8846 numentries = low_limit; 8847 if (numentries > max) 8848 numentries = max; 8849 8850 log2qty = ilog2(numentries); 8851 8852 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8853 do { 8854 virt = false; 8855 size = bucketsize << log2qty; 8856 if (flags & HASH_EARLY) { 8857 if (flags & HASH_ZERO) 8858 table = memblock_alloc(size, SMP_CACHE_BYTES); 8859 else 8860 table = memblock_alloc_raw(size, 8861 SMP_CACHE_BYTES); 8862 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8863 table = __vmalloc(size, gfp_flags); 8864 virt = true; 8865 if (table) 8866 huge = is_vm_area_hugepages(table); 8867 } else { 8868 /* 8869 * If bucketsize is not a power-of-two, we may free 8870 * some pages at the end of hash table which 8871 * alloc_pages_exact() automatically does 8872 */ 8873 table = alloc_pages_exact(size, gfp_flags); 8874 kmemleak_alloc(table, size, 1, gfp_flags); 8875 } 8876 } while (!table && size > PAGE_SIZE && --log2qty); 8877 8878 if (!table) 8879 panic("Failed to allocate %s hash table\n", tablename); 8880 8881 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8882 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8883 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8884 8885 if (_hash_shift) 8886 *_hash_shift = log2qty; 8887 if (_hash_mask) 8888 *_hash_mask = (1 << log2qty) - 1; 8889 8890 return table; 8891 } 8892 8893 /* 8894 * This function checks whether pageblock includes unmovable pages or not. 8895 * 8896 * PageLRU check without isolation or lru_lock could race so that 8897 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8898 * check without lock_page also may miss some movable non-lru pages at 8899 * race condition. So you can't expect this function should be exact. 8900 * 8901 * Returns a page without holding a reference. If the caller wants to 8902 * dereference that page (e.g., dumping), it has to make sure that it 8903 * cannot get removed (e.g., via memory unplug) concurrently. 8904 * 8905 */ 8906 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8907 int migratetype, int flags) 8908 { 8909 unsigned long iter = 0; 8910 unsigned long pfn = page_to_pfn(page); 8911 unsigned long offset = pfn % pageblock_nr_pages; 8912 8913 if (is_migrate_cma_page(page)) { 8914 /* 8915 * CMA allocations (alloc_contig_range) really need to mark 8916 * isolate CMA pageblocks even when they are not movable in fact 8917 * so consider them movable here. 8918 */ 8919 if (is_migrate_cma(migratetype)) 8920 return NULL; 8921 8922 return page; 8923 } 8924 8925 for (; iter < pageblock_nr_pages - offset; iter++) { 8926 page = pfn_to_page(pfn + iter); 8927 8928 /* 8929 * Both, bootmem allocations and memory holes are marked 8930 * PG_reserved and are unmovable. We can even have unmovable 8931 * allocations inside ZONE_MOVABLE, for example when 8932 * specifying "movablecore". 8933 */ 8934 if (PageReserved(page)) 8935 return page; 8936 8937 /* 8938 * If the zone is movable and we have ruled out all reserved 8939 * pages then it should be reasonably safe to assume the rest 8940 * is movable. 8941 */ 8942 if (zone_idx(zone) == ZONE_MOVABLE) 8943 continue; 8944 8945 /* 8946 * Hugepages are not in LRU lists, but they're movable. 8947 * THPs are on the LRU, but need to be counted as #small pages. 8948 * We need not scan over tail pages because we don't 8949 * handle each tail page individually in migration. 8950 */ 8951 if (PageHuge(page) || PageTransCompound(page)) { 8952 struct page *head = compound_head(page); 8953 unsigned int skip_pages; 8954 8955 if (PageHuge(page)) { 8956 if (!hugepage_migration_supported(page_hstate(head))) 8957 return page; 8958 } else if (!PageLRU(head) && !__PageMovable(head)) { 8959 return page; 8960 } 8961 8962 skip_pages = compound_nr(head) - (page - head); 8963 iter += skip_pages - 1; 8964 continue; 8965 } 8966 8967 /* 8968 * We can't use page_count without pin a page 8969 * because another CPU can free compound page. 8970 * This check already skips compound tails of THP 8971 * because their page->_refcount is zero at all time. 8972 */ 8973 if (!page_ref_count(page)) { 8974 if (PageBuddy(page)) 8975 iter += (1 << buddy_order(page)) - 1; 8976 continue; 8977 } 8978 8979 /* 8980 * The HWPoisoned page may be not in buddy system, and 8981 * page_count() is not 0. 8982 */ 8983 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8984 continue; 8985 8986 /* 8987 * We treat all PageOffline() pages as movable when offlining 8988 * to give drivers a chance to decrement their reference count 8989 * in MEM_GOING_OFFLINE in order to indicate that these pages 8990 * can be offlined as there are no direct references anymore. 8991 * For actually unmovable PageOffline() where the driver does 8992 * not support this, we will fail later when trying to actually 8993 * move these pages that still have a reference count > 0. 8994 * (false negatives in this function only) 8995 */ 8996 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8997 continue; 8998 8999 if (__PageMovable(page) || PageLRU(page)) 9000 continue; 9001 9002 /* 9003 * If there are RECLAIMABLE pages, we need to check 9004 * it. But now, memory offline itself doesn't call 9005 * shrink_node_slabs() and it still to be fixed. 9006 */ 9007 return page; 9008 } 9009 return NULL; 9010 } 9011 9012 #ifdef CONFIG_CONTIG_ALLOC 9013 static unsigned long pfn_max_align_down(unsigned long pfn) 9014 { 9015 return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES); 9016 } 9017 9018 static unsigned long pfn_max_align_up(unsigned long pfn) 9019 { 9020 return ALIGN(pfn, MAX_ORDER_NR_PAGES); 9021 } 9022 9023 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9024 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9025 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9026 static void alloc_contig_dump_pages(struct list_head *page_list) 9027 { 9028 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9029 9030 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9031 struct page *page; 9032 9033 dump_stack(); 9034 list_for_each_entry(page, page_list, lru) 9035 dump_page(page, "migration failure"); 9036 } 9037 } 9038 #else 9039 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9040 { 9041 } 9042 #endif 9043 9044 /* [start, end) must belong to a single zone. */ 9045 static int __alloc_contig_migrate_range(struct compact_control *cc, 9046 unsigned long start, unsigned long end) 9047 { 9048 /* This function is based on compact_zone() from compaction.c. */ 9049 unsigned int nr_reclaimed; 9050 unsigned long pfn = start; 9051 unsigned int tries = 0; 9052 int ret = 0; 9053 struct migration_target_control mtc = { 9054 .nid = zone_to_nid(cc->zone), 9055 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9056 }; 9057 9058 lru_cache_disable(); 9059 9060 while (pfn < end || !list_empty(&cc->migratepages)) { 9061 if (fatal_signal_pending(current)) { 9062 ret = -EINTR; 9063 break; 9064 } 9065 9066 if (list_empty(&cc->migratepages)) { 9067 cc->nr_migratepages = 0; 9068 ret = isolate_migratepages_range(cc, pfn, end); 9069 if (ret && ret != -EAGAIN) 9070 break; 9071 pfn = cc->migrate_pfn; 9072 tries = 0; 9073 } else if (++tries == 5) { 9074 ret = -EBUSY; 9075 break; 9076 } 9077 9078 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9079 &cc->migratepages); 9080 cc->nr_migratepages -= nr_reclaimed; 9081 9082 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9083 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9084 9085 /* 9086 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9087 * to retry again over this error, so do the same here. 9088 */ 9089 if (ret == -ENOMEM) 9090 break; 9091 } 9092 9093 lru_cache_enable(); 9094 if (ret < 0) { 9095 if (ret == -EBUSY) 9096 alloc_contig_dump_pages(&cc->migratepages); 9097 putback_movable_pages(&cc->migratepages); 9098 return ret; 9099 } 9100 return 0; 9101 } 9102 9103 /** 9104 * alloc_contig_range() -- tries to allocate given range of pages 9105 * @start: start PFN to allocate 9106 * @end: one-past-the-last PFN to allocate 9107 * @migratetype: migratetype of the underlying pageblocks (either 9108 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9109 * in range must have the same migratetype and it must 9110 * be either of the two. 9111 * @gfp_mask: GFP mask to use during compaction 9112 * 9113 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 9114 * aligned. The PFN range must belong to a single zone. 9115 * 9116 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9117 * pageblocks in the range. Once isolated, the pageblocks should not 9118 * be modified by others. 9119 * 9120 * Return: zero on success or negative error code. On success all 9121 * pages which PFN is in [start, end) are allocated for the caller and 9122 * need to be freed with free_contig_range(). 9123 */ 9124 int alloc_contig_range(unsigned long start, unsigned long end, 9125 unsigned migratetype, gfp_t gfp_mask) 9126 { 9127 unsigned long outer_start, outer_end; 9128 unsigned int order; 9129 int ret = 0; 9130 9131 struct compact_control cc = { 9132 .nr_migratepages = 0, 9133 .order = -1, 9134 .zone = page_zone(pfn_to_page(start)), 9135 .mode = MIGRATE_SYNC, 9136 .ignore_skip_hint = true, 9137 .no_set_skip_hint = true, 9138 .gfp_mask = current_gfp_context(gfp_mask), 9139 .alloc_contig = true, 9140 }; 9141 INIT_LIST_HEAD(&cc.migratepages); 9142 9143 /* 9144 * What we do here is we mark all pageblocks in range as 9145 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9146 * have different sizes, and due to the way page allocator 9147 * work, we align the range to biggest of the two pages so 9148 * that page allocator won't try to merge buddies from 9149 * different pageblocks and change MIGRATE_ISOLATE to some 9150 * other migration type. 9151 * 9152 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9153 * migrate the pages from an unaligned range (ie. pages that 9154 * we are interested in). This will put all the pages in 9155 * range back to page allocator as MIGRATE_ISOLATE. 9156 * 9157 * When this is done, we take the pages in range from page 9158 * allocator removing them from the buddy system. This way 9159 * page allocator will never consider using them. 9160 * 9161 * This lets us mark the pageblocks back as 9162 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9163 * aligned range but not in the unaligned, original range are 9164 * put back to page allocator so that buddy can use them. 9165 */ 9166 9167 ret = start_isolate_page_range(pfn_max_align_down(start), 9168 pfn_max_align_up(end), migratetype, 0); 9169 if (ret) 9170 return ret; 9171 9172 drain_all_pages(cc.zone); 9173 9174 /* 9175 * In case of -EBUSY, we'd like to know which page causes problem. 9176 * So, just fall through. test_pages_isolated() has a tracepoint 9177 * which will report the busy page. 9178 * 9179 * It is possible that busy pages could become available before 9180 * the call to test_pages_isolated, and the range will actually be 9181 * allocated. So, if we fall through be sure to clear ret so that 9182 * -EBUSY is not accidentally used or returned to caller. 9183 */ 9184 ret = __alloc_contig_migrate_range(&cc, start, end); 9185 if (ret && ret != -EBUSY) 9186 goto done; 9187 ret = 0; 9188 9189 /* 9190 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9191 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9192 * more, all pages in [start, end) are free in page allocator. 9193 * What we are going to do is to allocate all pages from 9194 * [start, end) (that is remove them from page allocator). 9195 * 9196 * The only problem is that pages at the beginning and at the 9197 * end of interesting range may be not aligned with pages that 9198 * page allocator holds, ie. they can be part of higher order 9199 * pages. Because of this, we reserve the bigger range and 9200 * once this is done free the pages we are not interested in. 9201 * 9202 * We don't have to hold zone->lock here because the pages are 9203 * isolated thus they won't get removed from buddy. 9204 */ 9205 9206 order = 0; 9207 outer_start = start; 9208 while (!PageBuddy(pfn_to_page(outer_start))) { 9209 if (++order >= MAX_ORDER) { 9210 outer_start = start; 9211 break; 9212 } 9213 outer_start &= ~0UL << order; 9214 } 9215 9216 if (outer_start != start) { 9217 order = buddy_order(pfn_to_page(outer_start)); 9218 9219 /* 9220 * outer_start page could be small order buddy page and 9221 * it doesn't include start page. Adjust outer_start 9222 * in this case to report failed page properly 9223 * on tracepoint in test_pages_isolated() 9224 */ 9225 if (outer_start + (1UL << order) <= start) 9226 outer_start = start; 9227 } 9228 9229 /* Make sure the range is really isolated. */ 9230 if (test_pages_isolated(outer_start, end, 0)) { 9231 ret = -EBUSY; 9232 goto done; 9233 } 9234 9235 /* Grab isolated pages from freelists. */ 9236 outer_end = isolate_freepages_range(&cc, outer_start, end); 9237 if (!outer_end) { 9238 ret = -EBUSY; 9239 goto done; 9240 } 9241 9242 /* Free head and tail (if any) */ 9243 if (start != outer_start) 9244 free_contig_range(outer_start, start - outer_start); 9245 if (end != outer_end) 9246 free_contig_range(end, outer_end - end); 9247 9248 done: 9249 undo_isolate_page_range(pfn_max_align_down(start), 9250 pfn_max_align_up(end), migratetype); 9251 return ret; 9252 } 9253 EXPORT_SYMBOL(alloc_contig_range); 9254 9255 static int __alloc_contig_pages(unsigned long start_pfn, 9256 unsigned long nr_pages, gfp_t gfp_mask) 9257 { 9258 unsigned long end_pfn = start_pfn + nr_pages; 9259 9260 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9261 gfp_mask); 9262 } 9263 9264 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9265 unsigned long nr_pages) 9266 { 9267 unsigned long i, end_pfn = start_pfn + nr_pages; 9268 struct page *page; 9269 9270 for (i = start_pfn; i < end_pfn; i++) { 9271 page = pfn_to_online_page(i); 9272 if (!page) 9273 return false; 9274 9275 if (page_zone(page) != z) 9276 return false; 9277 9278 if (PageReserved(page)) 9279 return false; 9280 } 9281 return true; 9282 } 9283 9284 static bool zone_spans_last_pfn(const struct zone *zone, 9285 unsigned long start_pfn, unsigned long nr_pages) 9286 { 9287 unsigned long last_pfn = start_pfn + nr_pages - 1; 9288 9289 return zone_spans_pfn(zone, last_pfn); 9290 } 9291 9292 /** 9293 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9294 * @nr_pages: Number of contiguous pages to allocate 9295 * @gfp_mask: GFP mask to limit search and used during compaction 9296 * @nid: Target node 9297 * @nodemask: Mask for other possible nodes 9298 * 9299 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9300 * on an applicable zonelist to find a contiguous pfn range which can then be 9301 * tried for allocation with alloc_contig_range(). This routine is intended 9302 * for allocation requests which can not be fulfilled with the buddy allocator. 9303 * 9304 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9305 * power of two, then allocated range is also guaranteed to be aligned to same 9306 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9307 * 9308 * Allocated pages can be freed with free_contig_range() or by manually calling 9309 * __free_page() on each allocated page. 9310 * 9311 * Return: pointer to contiguous pages on success, or NULL if not successful. 9312 */ 9313 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9314 int nid, nodemask_t *nodemask) 9315 { 9316 unsigned long ret, pfn, flags; 9317 struct zonelist *zonelist; 9318 struct zone *zone; 9319 struct zoneref *z; 9320 9321 zonelist = node_zonelist(nid, gfp_mask); 9322 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9323 gfp_zone(gfp_mask), nodemask) { 9324 spin_lock_irqsave(&zone->lock, flags); 9325 9326 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9327 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9328 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9329 /* 9330 * We release the zone lock here because 9331 * alloc_contig_range() will also lock the zone 9332 * at some point. If there's an allocation 9333 * spinning on this lock, it may win the race 9334 * and cause alloc_contig_range() to fail... 9335 */ 9336 spin_unlock_irqrestore(&zone->lock, flags); 9337 ret = __alloc_contig_pages(pfn, nr_pages, 9338 gfp_mask); 9339 if (!ret) 9340 return pfn_to_page(pfn); 9341 spin_lock_irqsave(&zone->lock, flags); 9342 } 9343 pfn += nr_pages; 9344 } 9345 spin_unlock_irqrestore(&zone->lock, flags); 9346 } 9347 return NULL; 9348 } 9349 #endif /* CONFIG_CONTIG_ALLOC */ 9350 9351 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9352 { 9353 unsigned long count = 0; 9354 9355 for (; nr_pages--; pfn++) { 9356 struct page *page = pfn_to_page(pfn); 9357 9358 count += page_count(page) != 1; 9359 __free_page(page); 9360 } 9361 WARN(count != 0, "%lu pages are still in use!\n", count); 9362 } 9363 EXPORT_SYMBOL(free_contig_range); 9364 9365 /* 9366 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9367 * page high values need to be recalculated. 9368 */ 9369 void zone_pcp_update(struct zone *zone, int cpu_online) 9370 { 9371 mutex_lock(&pcp_batch_high_lock); 9372 zone_set_pageset_high_and_batch(zone, cpu_online); 9373 mutex_unlock(&pcp_batch_high_lock); 9374 } 9375 9376 /* 9377 * Effectively disable pcplists for the zone by setting the high limit to 0 9378 * and draining all cpus. A concurrent page freeing on another CPU that's about 9379 * to put the page on pcplist will either finish before the drain and the page 9380 * will be drained, or observe the new high limit and skip the pcplist. 9381 * 9382 * Must be paired with a call to zone_pcp_enable(). 9383 */ 9384 void zone_pcp_disable(struct zone *zone) 9385 { 9386 mutex_lock(&pcp_batch_high_lock); 9387 __zone_set_pageset_high_and_batch(zone, 0, 1); 9388 __drain_all_pages(zone, true); 9389 } 9390 9391 void zone_pcp_enable(struct zone *zone) 9392 { 9393 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9394 mutex_unlock(&pcp_batch_high_lock); 9395 } 9396 9397 void zone_pcp_reset(struct zone *zone) 9398 { 9399 int cpu; 9400 struct per_cpu_zonestat *pzstats; 9401 9402 if (zone->per_cpu_pageset != &boot_pageset) { 9403 for_each_online_cpu(cpu) { 9404 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9405 drain_zonestat(zone, pzstats); 9406 } 9407 free_percpu(zone->per_cpu_pageset); 9408 free_percpu(zone->per_cpu_zonestats); 9409 zone->per_cpu_pageset = &boot_pageset; 9410 zone->per_cpu_zonestats = &boot_zonestats; 9411 } 9412 } 9413 9414 #ifdef CONFIG_MEMORY_HOTREMOVE 9415 /* 9416 * All pages in the range must be in a single zone, must not contain holes, 9417 * must span full sections, and must be isolated before calling this function. 9418 */ 9419 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9420 { 9421 unsigned long pfn = start_pfn; 9422 struct page *page; 9423 struct zone *zone; 9424 unsigned int order; 9425 unsigned long flags; 9426 9427 offline_mem_sections(pfn, end_pfn); 9428 zone = page_zone(pfn_to_page(pfn)); 9429 spin_lock_irqsave(&zone->lock, flags); 9430 while (pfn < end_pfn) { 9431 page = pfn_to_page(pfn); 9432 /* 9433 * The HWPoisoned page may be not in buddy system, and 9434 * page_count() is not 0. 9435 */ 9436 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9437 pfn++; 9438 continue; 9439 } 9440 /* 9441 * At this point all remaining PageOffline() pages have a 9442 * reference count of 0 and can simply be skipped. 9443 */ 9444 if (PageOffline(page)) { 9445 BUG_ON(page_count(page)); 9446 BUG_ON(PageBuddy(page)); 9447 pfn++; 9448 continue; 9449 } 9450 9451 BUG_ON(page_count(page)); 9452 BUG_ON(!PageBuddy(page)); 9453 order = buddy_order(page); 9454 del_page_from_free_list(page, zone, order); 9455 pfn += (1 << order); 9456 } 9457 spin_unlock_irqrestore(&zone->lock, flags); 9458 } 9459 #endif 9460 9461 /* 9462 * This function returns a stable result only if called under zone lock. 9463 */ 9464 bool is_free_buddy_page(struct page *page) 9465 { 9466 unsigned long pfn = page_to_pfn(page); 9467 unsigned int order; 9468 9469 for (order = 0; order < MAX_ORDER; order++) { 9470 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9471 9472 if (PageBuddy(page_head) && 9473 buddy_order_unsafe(page_head) >= order) 9474 break; 9475 } 9476 9477 return order < MAX_ORDER; 9478 } 9479 EXPORT_SYMBOL(is_free_buddy_page); 9480 9481 #ifdef CONFIG_MEMORY_FAILURE 9482 /* 9483 * Break down a higher-order page in sub-pages, and keep our target out of 9484 * buddy allocator. 9485 */ 9486 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9487 struct page *target, int low, int high, 9488 int migratetype) 9489 { 9490 unsigned long size = 1 << high; 9491 struct page *current_buddy, *next_page; 9492 9493 while (high > low) { 9494 high--; 9495 size >>= 1; 9496 9497 if (target >= &page[size]) { 9498 next_page = page + size; 9499 current_buddy = page; 9500 } else { 9501 next_page = page; 9502 current_buddy = page + size; 9503 } 9504 9505 if (set_page_guard(zone, current_buddy, high, migratetype)) 9506 continue; 9507 9508 if (current_buddy != target) { 9509 add_to_free_list(current_buddy, zone, high, migratetype); 9510 set_buddy_order(current_buddy, high); 9511 page = next_page; 9512 } 9513 } 9514 } 9515 9516 /* 9517 * Take a page that will be marked as poisoned off the buddy allocator. 9518 */ 9519 bool take_page_off_buddy(struct page *page) 9520 { 9521 struct zone *zone = page_zone(page); 9522 unsigned long pfn = page_to_pfn(page); 9523 unsigned long flags; 9524 unsigned int order; 9525 bool ret = false; 9526 9527 spin_lock_irqsave(&zone->lock, flags); 9528 for (order = 0; order < MAX_ORDER; order++) { 9529 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9530 int page_order = buddy_order(page_head); 9531 9532 if (PageBuddy(page_head) && page_order >= order) { 9533 unsigned long pfn_head = page_to_pfn(page_head); 9534 int migratetype = get_pfnblock_migratetype(page_head, 9535 pfn_head); 9536 9537 del_page_from_free_list(page_head, zone, page_order); 9538 break_down_buddy_pages(zone, page_head, page, 0, 9539 page_order, migratetype); 9540 SetPageHWPoisonTakenOff(page); 9541 if (!is_migrate_isolate(migratetype)) 9542 __mod_zone_freepage_state(zone, -1, migratetype); 9543 ret = true; 9544 break; 9545 } 9546 if (page_count(page_head) > 0) 9547 break; 9548 } 9549 spin_unlock_irqrestore(&zone->lock, flags); 9550 return ret; 9551 } 9552 9553 /* 9554 * Cancel takeoff done by take_page_off_buddy(). 9555 */ 9556 bool put_page_back_buddy(struct page *page) 9557 { 9558 struct zone *zone = page_zone(page); 9559 unsigned long pfn = page_to_pfn(page); 9560 unsigned long flags; 9561 int migratetype = get_pfnblock_migratetype(page, pfn); 9562 bool ret = false; 9563 9564 spin_lock_irqsave(&zone->lock, flags); 9565 if (put_page_testzero(page)) { 9566 ClearPageHWPoisonTakenOff(page); 9567 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9568 if (TestClearPageHWPoison(page)) { 9569 num_poisoned_pages_dec(); 9570 ret = true; 9571 } 9572 } 9573 spin_unlock_irqrestore(&zone->lock, flags); 9574 9575 return ret; 9576 } 9577 #endif 9578 9579 #ifdef CONFIG_ZONE_DMA 9580 bool has_managed_dma(void) 9581 { 9582 struct pglist_data *pgdat; 9583 9584 for_each_online_pgdat(pgdat) { 9585 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9586 9587 if (managed_zone(zone)) 9588 return true; 9589 } 9590 return false; 9591 } 9592 #endif /* CONFIG_ZONE_DMA */ 9593