xref: /openbmc/linux/mm/page_alloc.c (revision c9b3637f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	spin_lock_irqsave(&_ret->member, flags);			\
179 	_ret;								\
180 })
181 
182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\
183 ({									\
184 	type *_ret;							\
185 	pcpu_task_pin();						\
186 	_ret = this_cpu_ptr(ptr);					\
187 	if (!spin_trylock_irqsave(&_ret->member, flags)) {		\
188 		pcpu_task_unpin();					\
189 		_ret = NULL;						\
190 	}								\
191 	_ret;								\
192 })
193 
194 #define pcpu_spin_unlock(member, ptr)					\
195 ({									\
196 	spin_unlock(&ptr->member);					\
197 	pcpu_task_unpin();						\
198 })
199 
200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\
201 ({									\
202 	spin_unlock_irqrestore(&ptr->member, flags);			\
203 	pcpu_task_unpin();						\
204 })
205 
206 /* struct per_cpu_pages specific helpers. */
207 #define pcp_spin_lock(ptr)						\
208 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209 
210 #define pcp_spin_lock_irqsave(ptr, flags)				\
211 	pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212 
213 #define pcp_spin_trylock_irqsave(ptr, flags)				\
214 	pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215 
216 #define pcp_spin_unlock(ptr)						\
217 	pcpu_spin_unlock(lock, ptr)
218 
219 #define pcp_spin_unlock_irqrestore(ptr, flags)				\
220 	pcpu_spin_unlock_irqrestore(lock, ptr, flags)
221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
222 DEFINE_PER_CPU(int, numa_node);
223 EXPORT_PER_CPU_SYMBOL(numa_node);
224 #endif
225 
226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227 
228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
229 /*
230  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
231  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
232  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
233  * defined in <linux/topology.h>.
234  */
235 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
236 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
237 #endif
238 
239 static DEFINE_MUTEX(pcpu_drain_mutex);
240 
241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
242 volatile unsigned long latent_entropy __latent_entropy;
243 EXPORT_SYMBOL(latent_entropy);
244 #endif
245 
246 /*
247  * Array of node states.
248  */
249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
250 	[N_POSSIBLE] = NODE_MASK_ALL,
251 	[N_ONLINE] = { { [0] = 1UL } },
252 #ifndef CONFIG_NUMA
253 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
254 #ifdef CONFIG_HIGHMEM
255 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
256 #endif
257 	[N_MEMORY] = { { [0] = 1UL } },
258 	[N_CPU] = { { [0] = 1UL } },
259 #endif	/* NUMA */
260 };
261 EXPORT_SYMBOL(node_states);
262 
263 atomic_long_t _totalram_pages __read_mostly;
264 EXPORT_SYMBOL(_totalram_pages);
265 unsigned long totalreserve_pages __read_mostly;
266 unsigned long totalcma_pages __read_mostly;
267 
268 int percpu_pagelist_high_fraction;
269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
271 EXPORT_SYMBOL(init_on_alloc);
272 
273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
274 EXPORT_SYMBOL(init_on_free);
275 
276 static bool _init_on_alloc_enabled_early __read_mostly
277 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
278 static int __init early_init_on_alloc(char *buf)
279 {
280 
281 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
282 }
283 early_param("init_on_alloc", early_init_on_alloc);
284 
285 static bool _init_on_free_enabled_early __read_mostly
286 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
287 static int __init early_init_on_free(char *buf)
288 {
289 	return kstrtobool(buf, &_init_on_free_enabled_early);
290 }
291 early_param("init_on_free", early_init_on_free);
292 
293 /*
294  * A cached value of the page's pageblock's migratetype, used when the page is
295  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
296  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
297  * Also the migratetype set in the page does not necessarily match the pcplist
298  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
299  * other index - this ensures that it will be put on the correct CMA freelist.
300  */
301 static inline int get_pcppage_migratetype(struct page *page)
302 {
303 	return page->index;
304 }
305 
306 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307 {
308 	page->index = migratetype;
309 }
310 
311 #ifdef CONFIG_PM_SLEEP
312 /*
313  * The following functions are used by the suspend/hibernate code to temporarily
314  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
315  * while devices are suspended.  To avoid races with the suspend/hibernate code,
316  * they should always be called with system_transition_mutex held
317  * (gfp_allowed_mask also should only be modified with system_transition_mutex
318  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
319  * with that modification).
320  */
321 
322 static gfp_t saved_gfp_mask;
323 
324 void pm_restore_gfp_mask(void)
325 {
326 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
327 	if (saved_gfp_mask) {
328 		gfp_allowed_mask = saved_gfp_mask;
329 		saved_gfp_mask = 0;
330 	}
331 }
332 
333 void pm_restrict_gfp_mask(void)
334 {
335 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
336 	WARN_ON(saved_gfp_mask);
337 	saved_gfp_mask = gfp_allowed_mask;
338 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
339 }
340 
341 bool pm_suspended_storage(void)
342 {
343 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
344 		return false;
345 	return true;
346 }
347 #endif /* CONFIG_PM_SLEEP */
348 
349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
350 unsigned int pageblock_order __read_mostly;
351 #endif
352 
353 static void __free_pages_ok(struct page *page, unsigned int order,
354 			    fpi_t fpi_flags);
355 
356 /*
357  * results with 256, 32 in the lowmem_reserve sysctl:
358  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
359  *	1G machine -> (16M dma, 784M normal, 224M high)
360  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
361  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
362  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
363  *
364  * TBD: should special case ZONE_DMA32 machines here - in those we normally
365  * don't need any ZONE_NORMAL reservation
366  */
367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
368 #ifdef CONFIG_ZONE_DMA
369 	[ZONE_DMA] = 256,
370 #endif
371 #ifdef CONFIG_ZONE_DMA32
372 	[ZONE_DMA32] = 256,
373 #endif
374 	[ZONE_NORMAL] = 32,
375 #ifdef CONFIG_HIGHMEM
376 	[ZONE_HIGHMEM] = 0,
377 #endif
378 	[ZONE_MOVABLE] = 0,
379 };
380 
381 static char * const zone_names[MAX_NR_ZONES] = {
382 #ifdef CONFIG_ZONE_DMA
383 	 "DMA",
384 #endif
385 #ifdef CONFIG_ZONE_DMA32
386 	 "DMA32",
387 #endif
388 	 "Normal",
389 #ifdef CONFIG_HIGHMEM
390 	 "HighMem",
391 #endif
392 	 "Movable",
393 #ifdef CONFIG_ZONE_DEVICE
394 	 "Device",
395 #endif
396 };
397 
398 const char * const migratetype_names[MIGRATE_TYPES] = {
399 	"Unmovable",
400 	"Movable",
401 	"Reclaimable",
402 	"HighAtomic",
403 #ifdef CONFIG_CMA
404 	"CMA",
405 #endif
406 #ifdef CONFIG_MEMORY_ISOLATION
407 	"Isolate",
408 #endif
409 };
410 
411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
412 	[NULL_COMPOUND_DTOR] = NULL,
413 	[COMPOUND_PAGE_DTOR] = free_compound_page,
414 #ifdef CONFIG_HUGETLB_PAGE
415 	[HUGETLB_PAGE_DTOR] = free_huge_page,
416 #endif
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
419 #endif
420 };
421 
422 int min_free_kbytes = 1024;
423 int user_min_free_kbytes = -1;
424 int watermark_boost_factor __read_mostly = 15000;
425 int watermark_scale_factor = 10;
426 
427 static unsigned long nr_kernel_pages __initdata;
428 static unsigned long nr_all_pages __initdata;
429 static unsigned long dma_reserve __initdata;
430 
431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
433 static unsigned long required_kernelcore __initdata;
434 static unsigned long required_kernelcore_percent __initdata;
435 static unsigned long required_movablecore __initdata;
436 static unsigned long required_movablecore_percent __initdata;
437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
438 bool mirrored_kernelcore __initdata_memblock;
439 
440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441 int movable_zone;
442 EXPORT_SYMBOL(movable_zone);
443 
444 #if MAX_NUMNODES > 1
445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
446 unsigned int nr_online_nodes __read_mostly = 1;
447 EXPORT_SYMBOL(nr_node_ids);
448 EXPORT_SYMBOL(nr_online_nodes);
449 #endif
450 
451 int page_group_by_mobility_disabled __read_mostly;
452 
453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
454 /*
455  * During boot we initialize deferred pages on-demand, as needed, but once
456  * page_alloc_init_late() has finished, the deferred pages are all initialized,
457  * and we can permanently disable that path.
458  */
459 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460 
461 static inline bool deferred_pages_enabled(void)
462 {
463 	return static_branch_unlikely(&deferred_pages);
464 }
465 
466 /* Returns true if the struct page for the pfn is uninitialised */
467 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
468 {
469 	int nid = early_pfn_to_nid(pfn);
470 
471 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
472 		return true;
473 
474 	return false;
475 }
476 
477 /*
478  * Returns true when the remaining initialisation should be deferred until
479  * later in the boot cycle when it can be parallelised.
480  */
481 static bool __meminit
482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
483 {
484 	static unsigned long prev_end_pfn, nr_initialised;
485 
486 	if (early_page_ext_enabled())
487 		return false;
488 	/*
489 	 * prev_end_pfn static that contains the end of previous zone
490 	 * No need to protect because called very early in boot before smp_init.
491 	 */
492 	if (prev_end_pfn != end_pfn) {
493 		prev_end_pfn = end_pfn;
494 		nr_initialised = 0;
495 	}
496 
497 	/* Always populate low zones for address-constrained allocations */
498 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
499 		return false;
500 
501 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
502 		return true;
503 	/*
504 	 * We start only with one section of pages, more pages are added as
505 	 * needed until the rest of deferred pages are initialized.
506 	 */
507 	nr_initialised++;
508 	if ((nr_initialised > PAGES_PER_SECTION) &&
509 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
510 		NODE_DATA(nid)->first_deferred_pfn = pfn;
511 		return true;
512 	}
513 	return false;
514 }
515 #else
516 static inline bool deferred_pages_enabled(void)
517 {
518 	return false;
519 }
520 
521 static inline bool early_page_uninitialised(unsigned long pfn)
522 {
523 	return false;
524 }
525 
526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
527 {
528 	return false;
529 }
530 #endif
531 
532 /* Return a pointer to the bitmap storing bits affecting a block of pages */
533 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
534 							unsigned long pfn)
535 {
536 #ifdef CONFIG_SPARSEMEM
537 	return section_to_usemap(__pfn_to_section(pfn));
538 #else
539 	return page_zone(page)->pageblock_flags;
540 #endif /* CONFIG_SPARSEMEM */
541 }
542 
543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
544 {
545 #ifdef CONFIG_SPARSEMEM
546 	pfn &= (PAGES_PER_SECTION-1);
547 #else
548 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
549 #endif /* CONFIG_SPARSEMEM */
550 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
551 }
552 
553 static __always_inline
554 unsigned long __get_pfnblock_flags_mask(const struct page *page,
555 					unsigned long pfn,
556 					unsigned long mask)
557 {
558 	unsigned long *bitmap;
559 	unsigned long bitidx, word_bitidx;
560 	unsigned long word;
561 
562 	bitmap = get_pageblock_bitmap(page, pfn);
563 	bitidx = pfn_to_bitidx(page, pfn);
564 	word_bitidx = bitidx / BITS_PER_LONG;
565 	bitidx &= (BITS_PER_LONG-1);
566 	/*
567 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
568 	 * a consistent read of the memory array, so that results, even though
569 	 * racy, are not corrupted.
570 	 */
571 	word = READ_ONCE(bitmap[word_bitidx]);
572 	return (word >> bitidx) & mask;
573 }
574 
575 /**
576  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
577  * @page: The page within the block of interest
578  * @pfn: The target page frame number
579  * @mask: mask of bits that the caller is interested in
580  *
581  * Return: pageblock_bits flags
582  */
583 unsigned long get_pfnblock_flags_mask(const struct page *page,
584 					unsigned long pfn, unsigned long mask)
585 {
586 	return __get_pfnblock_flags_mask(page, pfn, mask);
587 }
588 
589 static __always_inline int get_pfnblock_migratetype(const struct page *page,
590 					unsigned long pfn)
591 {
592 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
593 }
594 
595 /**
596  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
597  * @page: The page within the block of interest
598  * @flags: The flags to set
599  * @pfn: The target page frame number
600  * @mask: mask of bits that the caller is interested in
601  */
602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
603 					unsigned long pfn,
604 					unsigned long mask)
605 {
606 	unsigned long *bitmap;
607 	unsigned long bitidx, word_bitidx;
608 	unsigned long word;
609 
610 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
611 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
612 
613 	bitmap = get_pageblock_bitmap(page, pfn);
614 	bitidx = pfn_to_bitidx(page, pfn);
615 	word_bitidx = bitidx / BITS_PER_LONG;
616 	bitidx &= (BITS_PER_LONG-1);
617 
618 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
619 
620 	mask <<= bitidx;
621 	flags <<= bitidx;
622 
623 	word = READ_ONCE(bitmap[word_bitidx]);
624 	do {
625 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
626 }
627 
628 void set_pageblock_migratetype(struct page *page, int migratetype)
629 {
630 	if (unlikely(page_group_by_mobility_disabled &&
631 		     migratetype < MIGRATE_PCPTYPES))
632 		migratetype = MIGRATE_UNMOVABLE;
633 
634 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
635 				page_to_pfn(page), MIGRATETYPE_MASK);
636 }
637 
638 #ifdef CONFIG_DEBUG_VM
639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
640 {
641 	int ret = 0;
642 	unsigned seq;
643 	unsigned long pfn = page_to_pfn(page);
644 	unsigned long sp, start_pfn;
645 
646 	do {
647 		seq = zone_span_seqbegin(zone);
648 		start_pfn = zone->zone_start_pfn;
649 		sp = zone->spanned_pages;
650 		if (!zone_spans_pfn(zone, pfn))
651 			ret = 1;
652 	} while (zone_span_seqretry(zone, seq));
653 
654 	if (ret)
655 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
656 			pfn, zone_to_nid(zone), zone->name,
657 			start_pfn, start_pfn + sp);
658 
659 	return ret;
660 }
661 
662 static int page_is_consistent(struct zone *zone, struct page *page)
663 {
664 	if (zone != page_zone(page))
665 		return 0;
666 
667 	return 1;
668 }
669 /*
670  * Temporary debugging check for pages not lying within a given zone.
671  */
672 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
673 {
674 	if (page_outside_zone_boundaries(zone, page))
675 		return 1;
676 	if (!page_is_consistent(zone, page))
677 		return 1;
678 
679 	return 0;
680 }
681 #else
682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
683 {
684 	return 0;
685 }
686 #endif
687 
688 static void bad_page(struct page *page, const char *reason)
689 {
690 	static unsigned long resume;
691 	static unsigned long nr_shown;
692 	static unsigned long nr_unshown;
693 
694 	/*
695 	 * Allow a burst of 60 reports, then keep quiet for that minute;
696 	 * or allow a steady drip of one report per second.
697 	 */
698 	if (nr_shown == 60) {
699 		if (time_before(jiffies, resume)) {
700 			nr_unshown++;
701 			goto out;
702 		}
703 		if (nr_unshown) {
704 			pr_alert(
705 			      "BUG: Bad page state: %lu messages suppressed\n",
706 				nr_unshown);
707 			nr_unshown = 0;
708 		}
709 		nr_shown = 0;
710 	}
711 	if (nr_shown++ == 0)
712 		resume = jiffies + 60 * HZ;
713 
714 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
715 		current->comm, page_to_pfn(page));
716 	dump_page(page, reason);
717 
718 	print_modules();
719 	dump_stack();
720 out:
721 	/* Leave bad fields for debug, except PageBuddy could make trouble */
722 	page_mapcount_reset(page); /* remove PageBuddy */
723 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
724 }
725 
726 static inline unsigned int order_to_pindex(int migratetype, int order)
727 {
728 	int base = order;
729 
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
732 		VM_BUG_ON(order != pageblock_order);
733 		return NR_LOWORDER_PCP_LISTS;
734 	}
735 #else
736 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
737 #endif
738 
739 	return (MIGRATE_PCPTYPES * base) + migratetype;
740 }
741 
742 static inline int pindex_to_order(unsigned int pindex)
743 {
744 	int order = pindex / MIGRATE_PCPTYPES;
745 
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 	if (pindex == NR_LOWORDER_PCP_LISTS)
748 		order = pageblock_order;
749 #else
750 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
751 #endif
752 
753 	return order;
754 }
755 
756 static inline bool pcp_allowed_order(unsigned int order)
757 {
758 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
759 		return true;
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 	if (order == pageblock_order)
762 		return true;
763 #endif
764 	return false;
765 }
766 
767 static inline void free_the_page(struct page *page, unsigned int order)
768 {
769 	if (pcp_allowed_order(order))		/* Via pcp? */
770 		free_unref_page(page, order);
771 	else
772 		__free_pages_ok(page, order, FPI_NONE);
773 }
774 
775 /*
776  * Higher-order pages are called "compound pages".  They are structured thusly:
777  *
778  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
779  *
780  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
781  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
782  *
783  * The first tail page's ->compound_dtor holds the offset in array of compound
784  * page destructors. See compound_page_dtors.
785  *
786  * The first tail page's ->compound_order holds the order of allocation.
787  * This usage means that zero-order pages may not be compound.
788  */
789 
790 void free_compound_page(struct page *page)
791 {
792 	mem_cgroup_uncharge(page_folio(page));
793 	free_the_page(page, compound_order(page));
794 }
795 
796 static void prep_compound_head(struct page *page, unsigned int order)
797 {
798 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
799 	set_compound_order(page, order);
800 	atomic_set(compound_mapcount_ptr(page), -1);
801 	atomic_set(compound_pincount_ptr(page), 0);
802 }
803 
804 static void prep_compound_tail(struct page *head, int tail_idx)
805 {
806 	struct page *p = head + tail_idx;
807 
808 	p->mapping = TAIL_MAPPING;
809 	set_compound_head(p, head);
810 }
811 
812 void prep_compound_page(struct page *page, unsigned int order)
813 {
814 	int i;
815 	int nr_pages = 1 << order;
816 
817 	__SetPageHead(page);
818 	for (i = 1; i < nr_pages; i++)
819 		prep_compound_tail(page, i);
820 
821 	prep_compound_head(page, order);
822 }
823 
824 void destroy_large_folio(struct folio *folio)
825 {
826 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
827 
828 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
829 	compound_page_dtors[dtor](&folio->page);
830 }
831 
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 unsigned int _debug_guardpage_minorder;
834 
835 bool _debug_pagealloc_enabled_early __read_mostly
836 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
839 EXPORT_SYMBOL(_debug_pagealloc_enabled);
840 
841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
842 
843 static int __init early_debug_pagealloc(char *buf)
844 {
845 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
846 }
847 early_param("debug_pagealloc", early_debug_pagealloc);
848 
849 static int __init debug_guardpage_minorder_setup(char *buf)
850 {
851 	unsigned long res;
852 
853 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
854 		pr_err("Bad debug_guardpage_minorder value\n");
855 		return 0;
856 	}
857 	_debug_guardpage_minorder = res;
858 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
859 	return 0;
860 }
861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
862 
863 static inline bool set_page_guard(struct zone *zone, struct page *page,
864 				unsigned int order, int migratetype)
865 {
866 	if (!debug_guardpage_enabled())
867 		return false;
868 
869 	if (order >= debug_guardpage_minorder())
870 		return false;
871 
872 	__SetPageGuard(page);
873 	INIT_LIST_HEAD(&page->buddy_list);
874 	set_page_private(page, order);
875 	/* Guard pages are not available for any usage */
876 	if (!is_migrate_isolate(migratetype))
877 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
878 
879 	return true;
880 }
881 
882 static inline void clear_page_guard(struct zone *zone, struct page *page,
883 				unsigned int order, int migratetype)
884 {
885 	if (!debug_guardpage_enabled())
886 		return;
887 
888 	__ClearPageGuard(page);
889 
890 	set_page_private(page, 0);
891 	if (!is_migrate_isolate(migratetype))
892 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
893 }
894 #else
895 static inline bool set_page_guard(struct zone *zone, struct page *page,
896 			unsigned int order, int migratetype) { return false; }
897 static inline void clear_page_guard(struct zone *zone, struct page *page,
898 				unsigned int order, int migratetype) {}
899 #endif
900 
901 /*
902  * Enable static keys related to various memory debugging and hardening options.
903  * Some override others, and depend on early params that are evaluated in the
904  * order of appearance. So we need to first gather the full picture of what was
905  * enabled, and then make decisions.
906  */
907 void __init init_mem_debugging_and_hardening(void)
908 {
909 	bool page_poisoning_requested = false;
910 
911 #ifdef CONFIG_PAGE_POISONING
912 	/*
913 	 * Page poisoning is debug page alloc for some arches. If
914 	 * either of those options are enabled, enable poisoning.
915 	 */
916 	if (page_poisoning_enabled() ||
917 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
918 	      debug_pagealloc_enabled())) {
919 		static_branch_enable(&_page_poisoning_enabled);
920 		page_poisoning_requested = true;
921 	}
922 #endif
923 
924 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
925 	    page_poisoning_requested) {
926 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
927 			"will take precedence over init_on_alloc and init_on_free\n");
928 		_init_on_alloc_enabled_early = false;
929 		_init_on_free_enabled_early = false;
930 	}
931 
932 	if (_init_on_alloc_enabled_early)
933 		static_branch_enable(&init_on_alloc);
934 	else
935 		static_branch_disable(&init_on_alloc);
936 
937 	if (_init_on_free_enabled_early)
938 		static_branch_enable(&init_on_free);
939 	else
940 		static_branch_disable(&init_on_free);
941 
942 	if (IS_ENABLED(CONFIG_KMSAN) &&
943 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
944 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
945 
946 #ifdef CONFIG_DEBUG_PAGEALLOC
947 	if (!debug_pagealloc_enabled())
948 		return;
949 
950 	static_branch_enable(&_debug_pagealloc_enabled);
951 
952 	if (!debug_guardpage_minorder())
953 		return;
954 
955 	static_branch_enable(&_debug_guardpage_enabled);
956 #endif
957 }
958 
959 static inline void set_buddy_order(struct page *page, unsigned int order)
960 {
961 	set_page_private(page, order);
962 	__SetPageBuddy(page);
963 }
964 
965 #ifdef CONFIG_COMPACTION
966 static inline struct capture_control *task_capc(struct zone *zone)
967 {
968 	struct capture_control *capc = current->capture_control;
969 
970 	return unlikely(capc) &&
971 		!(current->flags & PF_KTHREAD) &&
972 		!capc->page &&
973 		capc->cc->zone == zone ? capc : NULL;
974 }
975 
976 static inline bool
977 compaction_capture(struct capture_control *capc, struct page *page,
978 		   int order, int migratetype)
979 {
980 	if (!capc || order != capc->cc->order)
981 		return false;
982 
983 	/* Do not accidentally pollute CMA or isolated regions*/
984 	if (is_migrate_cma(migratetype) ||
985 	    is_migrate_isolate(migratetype))
986 		return false;
987 
988 	/*
989 	 * Do not let lower order allocations pollute a movable pageblock.
990 	 * This might let an unmovable request use a reclaimable pageblock
991 	 * and vice-versa but no more than normal fallback logic which can
992 	 * have trouble finding a high-order free page.
993 	 */
994 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
995 		return false;
996 
997 	capc->page = page;
998 	return true;
999 }
1000 
1001 #else
1002 static inline struct capture_control *task_capc(struct zone *zone)
1003 {
1004 	return NULL;
1005 }
1006 
1007 static inline bool
1008 compaction_capture(struct capture_control *capc, struct page *page,
1009 		   int order, int migratetype)
1010 {
1011 	return false;
1012 }
1013 #endif /* CONFIG_COMPACTION */
1014 
1015 /* Used for pages not on another list */
1016 static inline void add_to_free_list(struct page *page, struct zone *zone,
1017 				    unsigned int order, int migratetype)
1018 {
1019 	struct free_area *area = &zone->free_area[order];
1020 
1021 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1022 	area->nr_free++;
1023 }
1024 
1025 /* Used for pages not on another list */
1026 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1027 					 unsigned int order, int migratetype)
1028 {
1029 	struct free_area *area = &zone->free_area[order];
1030 
1031 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1032 	area->nr_free++;
1033 }
1034 
1035 /*
1036  * Used for pages which are on another list. Move the pages to the tail
1037  * of the list - so the moved pages won't immediately be considered for
1038  * allocation again (e.g., optimization for memory onlining).
1039  */
1040 static inline void move_to_free_list(struct page *page, struct zone *zone,
1041 				     unsigned int order, int migratetype)
1042 {
1043 	struct free_area *area = &zone->free_area[order];
1044 
1045 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1046 }
1047 
1048 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1049 					   unsigned int order)
1050 {
1051 	/* clear reported state and update reported page count */
1052 	if (page_reported(page))
1053 		__ClearPageReported(page);
1054 
1055 	list_del(&page->buddy_list);
1056 	__ClearPageBuddy(page);
1057 	set_page_private(page, 0);
1058 	zone->free_area[order].nr_free--;
1059 }
1060 
1061 /*
1062  * If this is not the largest possible page, check if the buddy
1063  * of the next-highest order is free. If it is, it's possible
1064  * that pages are being freed that will coalesce soon. In case,
1065  * that is happening, add the free page to the tail of the list
1066  * so it's less likely to be used soon and more likely to be merged
1067  * as a higher order page
1068  */
1069 static inline bool
1070 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1071 		   struct page *page, unsigned int order)
1072 {
1073 	unsigned long higher_page_pfn;
1074 	struct page *higher_page;
1075 
1076 	if (order >= MAX_ORDER - 2)
1077 		return false;
1078 
1079 	higher_page_pfn = buddy_pfn & pfn;
1080 	higher_page = page + (higher_page_pfn - pfn);
1081 
1082 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1083 			NULL) != NULL;
1084 }
1085 
1086 /*
1087  * Freeing function for a buddy system allocator.
1088  *
1089  * The concept of a buddy system is to maintain direct-mapped table
1090  * (containing bit values) for memory blocks of various "orders".
1091  * The bottom level table contains the map for the smallest allocatable
1092  * units of memory (here, pages), and each level above it describes
1093  * pairs of units from the levels below, hence, "buddies".
1094  * At a high level, all that happens here is marking the table entry
1095  * at the bottom level available, and propagating the changes upward
1096  * as necessary, plus some accounting needed to play nicely with other
1097  * parts of the VM system.
1098  * At each level, we keep a list of pages, which are heads of continuous
1099  * free pages of length of (1 << order) and marked with PageBuddy.
1100  * Page's order is recorded in page_private(page) field.
1101  * So when we are allocating or freeing one, we can derive the state of the
1102  * other.  That is, if we allocate a small block, and both were
1103  * free, the remainder of the region must be split into blocks.
1104  * If a block is freed, and its buddy is also free, then this
1105  * triggers coalescing into a block of larger size.
1106  *
1107  * -- nyc
1108  */
1109 
1110 static inline void __free_one_page(struct page *page,
1111 		unsigned long pfn,
1112 		struct zone *zone, unsigned int order,
1113 		int migratetype, fpi_t fpi_flags)
1114 {
1115 	struct capture_control *capc = task_capc(zone);
1116 	unsigned long buddy_pfn = 0;
1117 	unsigned long combined_pfn;
1118 	struct page *buddy;
1119 	bool to_tail;
1120 
1121 	VM_BUG_ON(!zone_is_initialized(zone));
1122 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1123 
1124 	VM_BUG_ON(migratetype == -1);
1125 	if (likely(!is_migrate_isolate(migratetype)))
1126 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1127 
1128 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1129 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1130 
1131 	while (order < MAX_ORDER - 1) {
1132 		if (compaction_capture(capc, page, order, migratetype)) {
1133 			__mod_zone_freepage_state(zone, -(1 << order),
1134 								migratetype);
1135 			return;
1136 		}
1137 
1138 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1139 		if (!buddy)
1140 			goto done_merging;
1141 
1142 		if (unlikely(order >= pageblock_order)) {
1143 			/*
1144 			 * We want to prevent merge between freepages on pageblock
1145 			 * without fallbacks and normal pageblock. Without this,
1146 			 * pageblock isolation could cause incorrect freepage or CMA
1147 			 * accounting or HIGHATOMIC accounting.
1148 			 */
1149 			int buddy_mt = get_pageblock_migratetype(buddy);
1150 
1151 			if (migratetype != buddy_mt
1152 					&& (!migratetype_is_mergeable(migratetype) ||
1153 						!migratetype_is_mergeable(buddy_mt)))
1154 				goto done_merging;
1155 		}
1156 
1157 		/*
1158 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1159 		 * merge with it and move up one order.
1160 		 */
1161 		if (page_is_guard(buddy))
1162 			clear_page_guard(zone, buddy, order, migratetype);
1163 		else
1164 			del_page_from_free_list(buddy, zone, order);
1165 		combined_pfn = buddy_pfn & pfn;
1166 		page = page + (combined_pfn - pfn);
1167 		pfn = combined_pfn;
1168 		order++;
1169 	}
1170 
1171 done_merging:
1172 	set_buddy_order(page, order);
1173 
1174 	if (fpi_flags & FPI_TO_TAIL)
1175 		to_tail = true;
1176 	else if (is_shuffle_order(order))
1177 		to_tail = shuffle_pick_tail();
1178 	else
1179 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1180 
1181 	if (to_tail)
1182 		add_to_free_list_tail(page, zone, order, migratetype);
1183 	else
1184 		add_to_free_list(page, zone, order, migratetype);
1185 
1186 	/* Notify page reporting subsystem of freed page */
1187 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1188 		page_reporting_notify_free(order);
1189 }
1190 
1191 /**
1192  * split_free_page() -- split a free page at split_pfn_offset
1193  * @free_page:		the original free page
1194  * @order:		the order of the page
1195  * @split_pfn_offset:	split offset within the page
1196  *
1197  * Return -ENOENT if the free page is changed, otherwise 0
1198  *
1199  * It is used when the free page crosses two pageblocks with different migratetypes
1200  * at split_pfn_offset within the page. The split free page will be put into
1201  * separate migratetype lists afterwards. Otherwise, the function achieves
1202  * nothing.
1203  */
1204 int split_free_page(struct page *free_page,
1205 			unsigned int order, unsigned long split_pfn_offset)
1206 {
1207 	struct zone *zone = page_zone(free_page);
1208 	unsigned long free_page_pfn = page_to_pfn(free_page);
1209 	unsigned long pfn;
1210 	unsigned long flags;
1211 	int free_page_order;
1212 	int mt;
1213 	int ret = 0;
1214 
1215 	if (split_pfn_offset == 0)
1216 		return ret;
1217 
1218 	spin_lock_irqsave(&zone->lock, flags);
1219 
1220 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1221 		ret = -ENOENT;
1222 		goto out;
1223 	}
1224 
1225 	mt = get_pageblock_migratetype(free_page);
1226 	if (likely(!is_migrate_isolate(mt)))
1227 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1228 
1229 	del_page_from_free_list(free_page, zone, order);
1230 	for (pfn = free_page_pfn;
1231 	     pfn < free_page_pfn + (1UL << order);) {
1232 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1233 
1234 		free_page_order = min_t(unsigned int,
1235 					pfn ? __ffs(pfn) : order,
1236 					__fls(split_pfn_offset));
1237 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1238 				mt, FPI_NONE);
1239 		pfn += 1UL << free_page_order;
1240 		split_pfn_offset -= (1UL << free_page_order);
1241 		/* we have done the first part, now switch to second part */
1242 		if (split_pfn_offset == 0)
1243 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1244 	}
1245 out:
1246 	spin_unlock_irqrestore(&zone->lock, flags);
1247 	return ret;
1248 }
1249 /*
1250  * A bad page could be due to a number of fields. Instead of multiple branches,
1251  * try and check multiple fields with one check. The caller must do a detailed
1252  * check if necessary.
1253  */
1254 static inline bool page_expected_state(struct page *page,
1255 					unsigned long check_flags)
1256 {
1257 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1258 		return false;
1259 
1260 	if (unlikely((unsigned long)page->mapping |
1261 			page_ref_count(page) |
1262 #ifdef CONFIG_MEMCG
1263 			page->memcg_data |
1264 #endif
1265 			(page->flags & check_flags)))
1266 		return false;
1267 
1268 	return true;
1269 }
1270 
1271 static const char *page_bad_reason(struct page *page, unsigned long flags)
1272 {
1273 	const char *bad_reason = NULL;
1274 
1275 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1276 		bad_reason = "nonzero mapcount";
1277 	if (unlikely(page->mapping != NULL))
1278 		bad_reason = "non-NULL mapping";
1279 	if (unlikely(page_ref_count(page) != 0))
1280 		bad_reason = "nonzero _refcount";
1281 	if (unlikely(page->flags & flags)) {
1282 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1283 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1284 		else
1285 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1286 	}
1287 #ifdef CONFIG_MEMCG
1288 	if (unlikely(page->memcg_data))
1289 		bad_reason = "page still charged to cgroup";
1290 #endif
1291 	return bad_reason;
1292 }
1293 
1294 static void free_page_is_bad_report(struct page *page)
1295 {
1296 	bad_page(page,
1297 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1298 }
1299 
1300 static inline bool free_page_is_bad(struct page *page)
1301 {
1302 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1303 		return false;
1304 
1305 	/* Something has gone sideways, find it */
1306 	free_page_is_bad_report(page);
1307 	return true;
1308 }
1309 
1310 static int free_tail_pages_check(struct page *head_page, struct page *page)
1311 {
1312 	int ret = 1;
1313 
1314 	/*
1315 	 * We rely page->lru.next never has bit 0 set, unless the page
1316 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1317 	 */
1318 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1319 
1320 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1321 		ret = 0;
1322 		goto out;
1323 	}
1324 	switch (page - head_page) {
1325 	case 1:
1326 		/* the first tail page: ->mapping may be compound_mapcount() */
1327 		if (unlikely(compound_mapcount(page))) {
1328 			bad_page(page, "nonzero compound_mapcount");
1329 			goto out;
1330 		}
1331 		break;
1332 	case 2:
1333 		/*
1334 		 * the second tail page: ->mapping is
1335 		 * deferred_list.next -- ignore value.
1336 		 */
1337 		break;
1338 	default:
1339 		if (page->mapping != TAIL_MAPPING) {
1340 			bad_page(page, "corrupted mapping in tail page");
1341 			goto out;
1342 		}
1343 		break;
1344 	}
1345 	if (unlikely(!PageTail(page))) {
1346 		bad_page(page, "PageTail not set");
1347 		goto out;
1348 	}
1349 	if (unlikely(compound_head(page) != head_page)) {
1350 		bad_page(page, "compound_head not consistent");
1351 		goto out;
1352 	}
1353 	ret = 0;
1354 out:
1355 	page->mapping = NULL;
1356 	clear_compound_head(page);
1357 	return ret;
1358 }
1359 
1360 /*
1361  * Skip KASAN memory poisoning when either:
1362  *
1363  * 1. Deferred memory initialization has not yet completed,
1364  *    see the explanation below.
1365  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1366  *    see the comment next to it.
1367  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1368  *    see the comment next to it.
1369  *
1370  * Poisoning pages during deferred memory init will greatly lengthen the
1371  * process and cause problem in large memory systems as the deferred pages
1372  * initialization is done with interrupt disabled.
1373  *
1374  * Assuming that there will be no reference to those newly initialized
1375  * pages before they are ever allocated, this should have no effect on
1376  * KASAN memory tracking as the poison will be properly inserted at page
1377  * allocation time. The only corner case is when pages are allocated by
1378  * on-demand allocation and then freed again before the deferred pages
1379  * initialization is done, but this is not likely to happen.
1380  */
1381 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1382 {
1383 	return deferred_pages_enabled() ||
1384 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1385 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1386 	       PageSkipKASanPoison(page);
1387 }
1388 
1389 static void kernel_init_pages(struct page *page, int numpages)
1390 {
1391 	int i;
1392 
1393 	/* s390's use of memset() could override KASAN redzones. */
1394 	kasan_disable_current();
1395 	for (i = 0; i < numpages; i++)
1396 		clear_highpage_kasan_tagged(page + i);
1397 	kasan_enable_current();
1398 }
1399 
1400 static __always_inline bool free_pages_prepare(struct page *page,
1401 			unsigned int order, bool check_free, fpi_t fpi_flags)
1402 {
1403 	int bad = 0;
1404 	bool init = want_init_on_free();
1405 
1406 	VM_BUG_ON_PAGE(PageTail(page), page);
1407 
1408 	trace_mm_page_free(page, order);
1409 	kmsan_free_page(page, order);
1410 
1411 	if (unlikely(PageHWPoison(page)) && !order) {
1412 		/*
1413 		 * Do not let hwpoison pages hit pcplists/buddy
1414 		 * Untie memcg state and reset page's owner
1415 		 */
1416 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1417 			__memcg_kmem_uncharge_page(page, order);
1418 		reset_page_owner(page, order);
1419 		page_table_check_free(page, order);
1420 		return false;
1421 	}
1422 
1423 	/*
1424 	 * Check tail pages before head page information is cleared to
1425 	 * avoid checking PageCompound for order-0 pages.
1426 	 */
1427 	if (unlikely(order)) {
1428 		bool compound = PageCompound(page);
1429 		int i;
1430 
1431 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1432 
1433 		if (compound) {
1434 			ClearPageDoubleMap(page);
1435 			ClearPageHasHWPoisoned(page);
1436 		}
1437 		for (i = 1; i < (1 << order); i++) {
1438 			if (compound)
1439 				bad += free_tail_pages_check(page, page + i);
1440 			if (unlikely(free_page_is_bad(page + i))) {
1441 				bad++;
1442 				continue;
1443 			}
1444 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1445 		}
1446 	}
1447 	if (PageMappingFlags(page))
1448 		page->mapping = NULL;
1449 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1450 		__memcg_kmem_uncharge_page(page, order);
1451 	if (check_free && free_page_is_bad(page))
1452 		bad++;
1453 	if (bad)
1454 		return false;
1455 
1456 	page_cpupid_reset_last(page);
1457 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1458 	reset_page_owner(page, order);
1459 	page_table_check_free(page, order);
1460 
1461 	if (!PageHighMem(page)) {
1462 		debug_check_no_locks_freed(page_address(page),
1463 					   PAGE_SIZE << order);
1464 		debug_check_no_obj_freed(page_address(page),
1465 					   PAGE_SIZE << order);
1466 	}
1467 
1468 	kernel_poison_pages(page, 1 << order);
1469 
1470 	/*
1471 	 * As memory initialization might be integrated into KASAN,
1472 	 * KASAN poisoning and memory initialization code must be
1473 	 * kept together to avoid discrepancies in behavior.
1474 	 *
1475 	 * With hardware tag-based KASAN, memory tags must be set before the
1476 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1477 	 */
1478 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1479 		kasan_poison_pages(page, order, init);
1480 
1481 		/* Memory is already initialized if KASAN did it internally. */
1482 		if (kasan_has_integrated_init())
1483 			init = false;
1484 	}
1485 	if (init)
1486 		kernel_init_pages(page, 1 << order);
1487 
1488 	/*
1489 	 * arch_free_page() can make the page's contents inaccessible.  s390
1490 	 * does this.  So nothing which can access the page's contents should
1491 	 * happen after this.
1492 	 */
1493 	arch_free_page(page, order);
1494 
1495 	debug_pagealloc_unmap_pages(page, 1 << order);
1496 
1497 	return true;
1498 }
1499 
1500 #ifdef CONFIG_DEBUG_VM
1501 /*
1502  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1503  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1504  * moved from pcp lists to free lists.
1505  */
1506 static bool free_pcp_prepare(struct page *page, unsigned int order)
1507 {
1508 	return free_pages_prepare(page, order, true, FPI_NONE);
1509 }
1510 
1511 /* return true if this page has an inappropriate state */
1512 static bool bulkfree_pcp_prepare(struct page *page)
1513 {
1514 	if (debug_pagealloc_enabled_static())
1515 		return free_page_is_bad(page);
1516 	else
1517 		return false;
1518 }
1519 #else
1520 /*
1521  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1522  * moving from pcp lists to free list in order to reduce overhead. With
1523  * debug_pagealloc enabled, they are checked also immediately when being freed
1524  * to the pcp lists.
1525  */
1526 static bool free_pcp_prepare(struct page *page, unsigned int order)
1527 {
1528 	if (debug_pagealloc_enabled_static())
1529 		return free_pages_prepare(page, order, true, FPI_NONE);
1530 	else
1531 		return free_pages_prepare(page, order, false, FPI_NONE);
1532 }
1533 
1534 static bool bulkfree_pcp_prepare(struct page *page)
1535 {
1536 	return free_page_is_bad(page);
1537 }
1538 #endif /* CONFIG_DEBUG_VM */
1539 
1540 /*
1541  * Frees a number of pages from the PCP lists
1542  * Assumes all pages on list are in same zone.
1543  * count is the number of pages to free.
1544  */
1545 static void free_pcppages_bulk(struct zone *zone, int count,
1546 					struct per_cpu_pages *pcp,
1547 					int pindex)
1548 {
1549 	int min_pindex = 0;
1550 	int max_pindex = NR_PCP_LISTS - 1;
1551 	unsigned int order;
1552 	bool isolated_pageblocks;
1553 	struct page *page;
1554 
1555 	/*
1556 	 * Ensure proper count is passed which otherwise would stuck in the
1557 	 * below while (list_empty(list)) loop.
1558 	 */
1559 	count = min(pcp->count, count);
1560 
1561 	/* Ensure requested pindex is drained first. */
1562 	pindex = pindex - 1;
1563 
1564 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1565 	spin_lock(&zone->lock);
1566 	isolated_pageblocks = has_isolate_pageblock(zone);
1567 
1568 	while (count > 0) {
1569 		struct list_head *list;
1570 		int nr_pages;
1571 
1572 		/* Remove pages from lists in a round-robin fashion. */
1573 		do {
1574 			if (++pindex > max_pindex)
1575 				pindex = min_pindex;
1576 			list = &pcp->lists[pindex];
1577 			if (!list_empty(list))
1578 				break;
1579 
1580 			if (pindex == max_pindex)
1581 				max_pindex--;
1582 			if (pindex == min_pindex)
1583 				min_pindex++;
1584 		} while (1);
1585 
1586 		order = pindex_to_order(pindex);
1587 		nr_pages = 1 << order;
1588 		do {
1589 			int mt;
1590 
1591 			page = list_last_entry(list, struct page, pcp_list);
1592 			mt = get_pcppage_migratetype(page);
1593 
1594 			/* must delete to avoid corrupting pcp list */
1595 			list_del(&page->pcp_list);
1596 			count -= nr_pages;
1597 			pcp->count -= nr_pages;
1598 
1599 			if (bulkfree_pcp_prepare(page))
1600 				continue;
1601 
1602 			/* MIGRATE_ISOLATE page should not go to pcplists */
1603 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1604 			/* Pageblock could have been isolated meanwhile */
1605 			if (unlikely(isolated_pageblocks))
1606 				mt = get_pageblock_migratetype(page);
1607 
1608 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1609 			trace_mm_page_pcpu_drain(page, order, mt);
1610 		} while (count > 0 && !list_empty(list));
1611 	}
1612 
1613 	spin_unlock(&zone->lock);
1614 }
1615 
1616 static void free_one_page(struct zone *zone,
1617 				struct page *page, unsigned long pfn,
1618 				unsigned int order,
1619 				int migratetype, fpi_t fpi_flags)
1620 {
1621 	unsigned long flags;
1622 
1623 	spin_lock_irqsave(&zone->lock, flags);
1624 	if (unlikely(has_isolate_pageblock(zone) ||
1625 		is_migrate_isolate(migratetype))) {
1626 		migratetype = get_pfnblock_migratetype(page, pfn);
1627 	}
1628 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1629 	spin_unlock_irqrestore(&zone->lock, flags);
1630 }
1631 
1632 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1633 				unsigned long zone, int nid)
1634 {
1635 	mm_zero_struct_page(page);
1636 	set_page_links(page, zone, nid, pfn);
1637 	init_page_count(page);
1638 	page_mapcount_reset(page);
1639 	page_cpupid_reset_last(page);
1640 	page_kasan_tag_reset(page);
1641 
1642 	INIT_LIST_HEAD(&page->lru);
1643 #ifdef WANT_PAGE_VIRTUAL
1644 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1645 	if (!is_highmem_idx(zone))
1646 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1647 #endif
1648 }
1649 
1650 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1651 static void __meminit init_reserved_page(unsigned long pfn)
1652 {
1653 	pg_data_t *pgdat;
1654 	int nid, zid;
1655 
1656 	if (!early_page_uninitialised(pfn))
1657 		return;
1658 
1659 	nid = early_pfn_to_nid(pfn);
1660 	pgdat = NODE_DATA(nid);
1661 
1662 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1663 		struct zone *zone = &pgdat->node_zones[zid];
1664 
1665 		if (zone_spans_pfn(zone, pfn))
1666 			break;
1667 	}
1668 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1669 }
1670 #else
1671 static inline void init_reserved_page(unsigned long pfn)
1672 {
1673 }
1674 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1675 
1676 /*
1677  * Initialised pages do not have PageReserved set. This function is
1678  * called for each range allocated by the bootmem allocator and
1679  * marks the pages PageReserved. The remaining valid pages are later
1680  * sent to the buddy page allocator.
1681  */
1682 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1683 {
1684 	unsigned long start_pfn = PFN_DOWN(start);
1685 	unsigned long end_pfn = PFN_UP(end);
1686 
1687 	for (; start_pfn < end_pfn; start_pfn++) {
1688 		if (pfn_valid(start_pfn)) {
1689 			struct page *page = pfn_to_page(start_pfn);
1690 
1691 			init_reserved_page(start_pfn);
1692 
1693 			/* Avoid false-positive PageTail() */
1694 			INIT_LIST_HEAD(&page->lru);
1695 
1696 			/*
1697 			 * no need for atomic set_bit because the struct
1698 			 * page is not visible yet so nobody should
1699 			 * access it yet.
1700 			 */
1701 			__SetPageReserved(page);
1702 		}
1703 	}
1704 }
1705 
1706 static void __free_pages_ok(struct page *page, unsigned int order,
1707 			    fpi_t fpi_flags)
1708 {
1709 	unsigned long flags;
1710 	int migratetype;
1711 	unsigned long pfn = page_to_pfn(page);
1712 	struct zone *zone = page_zone(page);
1713 
1714 	if (!free_pages_prepare(page, order, true, fpi_flags))
1715 		return;
1716 
1717 	migratetype = get_pfnblock_migratetype(page, pfn);
1718 
1719 	spin_lock_irqsave(&zone->lock, flags);
1720 	if (unlikely(has_isolate_pageblock(zone) ||
1721 		is_migrate_isolate(migratetype))) {
1722 		migratetype = get_pfnblock_migratetype(page, pfn);
1723 	}
1724 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1725 	spin_unlock_irqrestore(&zone->lock, flags);
1726 
1727 	__count_vm_events(PGFREE, 1 << order);
1728 }
1729 
1730 void __free_pages_core(struct page *page, unsigned int order)
1731 {
1732 	unsigned int nr_pages = 1 << order;
1733 	struct page *p = page;
1734 	unsigned int loop;
1735 
1736 	/*
1737 	 * When initializing the memmap, __init_single_page() sets the refcount
1738 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1739 	 * refcount of all involved pages to 0.
1740 	 */
1741 	prefetchw(p);
1742 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1743 		prefetchw(p + 1);
1744 		__ClearPageReserved(p);
1745 		set_page_count(p, 0);
1746 	}
1747 	__ClearPageReserved(p);
1748 	set_page_count(p, 0);
1749 
1750 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1751 
1752 	/*
1753 	 * Bypass PCP and place fresh pages right to the tail, primarily
1754 	 * relevant for memory onlining.
1755 	 */
1756 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1757 }
1758 
1759 #ifdef CONFIG_NUMA
1760 
1761 /*
1762  * During memory init memblocks map pfns to nids. The search is expensive and
1763  * this caches recent lookups. The implementation of __early_pfn_to_nid
1764  * treats start/end as pfns.
1765  */
1766 struct mminit_pfnnid_cache {
1767 	unsigned long last_start;
1768 	unsigned long last_end;
1769 	int last_nid;
1770 };
1771 
1772 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1773 
1774 /*
1775  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1776  */
1777 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1778 					struct mminit_pfnnid_cache *state)
1779 {
1780 	unsigned long start_pfn, end_pfn;
1781 	int nid;
1782 
1783 	if (state->last_start <= pfn && pfn < state->last_end)
1784 		return state->last_nid;
1785 
1786 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1787 	if (nid != NUMA_NO_NODE) {
1788 		state->last_start = start_pfn;
1789 		state->last_end = end_pfn;
1790 		state->last_nid = nid;
1791 	}
1792 
1793 	return nid;
1794 }
1795 
1796 int __meminit early_pfn_to_nid(unsigned long pfn)
1797 {
1798 	static DEFINE_SPINLOCK(early_pfn_lock);
1799 	int nid;
1800 
1801 	spin_lock(&early_pfn_lock);
1802 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1803 	if (nid < 0)
1804 		nid = first_online_node;
1805 	spin_unlock(&early_pfn_lock);
1806 
1807 	return nid;
1808 }
1809 #endif /* CONFIG_NUMA */
1810 
1811 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1812 							unsigned int order)
1813 {
1814 	if (early_page_uninitialised(pfn))
1815 		return;
1816 	if (!kmsan_memblock_free_pages(page, order)) {
1817 		/* KMSAN will take care of these pages. */
1818 		return;
1819 	}
1820 	__free_pages_core(page, order);
1821 }
1822 
1823 /*
1824  * Check that the whole (or subset of) a pageblock given by the interval of
1825  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1826  * with the migration of free compaction scanner.
1827  *
1828  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1829  *
1830  * It's possible on some configurations to have a setup like node0 node1 node0
1831  * i.e. it's possible that all pages within a zones range of pages do not
1832  * belong to a single zone. We assume that a border between node0 and node1
1833  * can occur within a single pageblock, but not a node0 node1 node0
1834  * interleaving within a single pageblock. It is therefore sufficient to check
1835  * the first and last page of a pageblock and avoid checking each individual
1836  * page in a pageblock.
1837  */
1838 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1839 				     unsigned long end_pfn, struct zone *zone)
1840 {
1841 	struct page *start_page;
1842 	struct page *end_page;
1843 
1844 	/* end_pfn is one past the range we are checking */
1845 	end_pfn--;
1846 
1847 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1848 		return NULL;
1849 
1850 	start_page = pfn_to_online_page(start_pfn);
1851 	if (!start_page)
1852 		return NULL;
1853 
1854 	if (page_zone(start_page) != zone)
1855 		return NULL;
1856 
1857 	end_page = pfn_to_page(end_pfn);
1858 
1859 	/* This gives a shorter code than deriving page_zone(end_page) */
1860 	if (page_zone_id(start_page) != page_zone_id(end_page))
1861 		return NULL;
1862 
1863 	return start_page;
1864 }
1865 
1866 void set_zone_contiguous(struct zone *zone)
1867 {
1868 	unsigned long block_start_pfn = zone->zone_start_pfn;
1869 	unsigned long block_end_pfn;
1870 
1871 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1872 	for (; block_start_pfn < zone_end_pfn(zone);
1873 			block_start_pfn = block_end_pfn,
1874 			 block_end_pfn += pageblock_nr_pages) {
1875 
1876 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1877 
1878 		if (!__pageblock_pfn_to_page(block_start_pfn,
1879 					     block_end_pfn, zone))
1880 			return;
1881 		cond_resched();
1882 	}
1883 
1884 	/* We confirm that there is no hole */
1885 	zone->contiguous = true;
1886 }
1887 
1888 void clear_zone_contiguous(struct zone *zone)
1889 {
1890 	zone->contiguous = false;
1891 }
1892 
1893 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1894 static void __init deferred_free_range(unsigned long pfn,
1895 				       unsigned long nr_pages)
1896 {
1897 	struct page *page;
1898 	unsigned long i;
1899 
1900 	if (!nr_pages)
1901 		return;
1902 
1903 	page = pfn_to_page(pfn);
1904 
1905 	/* Free a large naturally-aligned chunk if possible */
1906 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1907 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1908 		__free_pages_core(page, pageblock_order);
1909 		return;
1910 	}
1911 
1912 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1913 		if (pageblock_aligned(pfn))
1914 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1915 		__free_pages_core(page, 0);
1916 	}
1917 }
1918 
1919 /* Completion tracking for deferred_init_memmap() threads */
1920 static atomic_t pgdat_init_n_undone __initdata;
1921 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1922 
1923 static inline void __init pgdat_init_report_one_done(void)
1924 {
1925 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1926 		complete(&pgdat_init_all_done_comp);
1927 }
1928 
1929 /*
1930  * Returns true if page needs to be initialized or freed to buddy allocator.
1931  *
1932  * We check if a current large page is valid by only checking the validity
1933  * of the head pfn.
1934  */
1935 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1936 {
1937 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1938 		return false;
1939 	return true;
1940 }
1941 
1942 /*
1943  * Free pages to buddy allocator. Try to free aligned pages in
1944  * pageblock_nr_pages sizes.
1945  */
1946 static void __init deferred_free_pages(unsigned long pfn,
1947 				       unsigned long end_pfn)
1948 {
1949 	unsigned long nr_free = 0;
1950 
1951 	for (; pfn < end_pfn; pfn++) {
1952 		if (!deferred_pfn_valid(pfn)) {
1953 			deferred_free_range(pfn - nr_free, nr_free);
1954 			nr_free = 0;
1955 		} else if (pageblock_aligned(pfn)) {
1956 			deferred_free_range(pfn - nr_free, nr_free);
1957 			nr_free = 1;
1958 		} else {
1959 			nr_free++;
1960 		}
1961 	}
1962 	/* Free the last block of pages to allocator */
1963 	deferred_free_range(pfn - nr_free, nr_free);
1964 }
1965 
1966 /*
1967  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1968  * by performing it only once every pageblock_nr_pages.
1969  * Return number of pages initialized.
1970  */
1971 static unsigned long  __init deferred_init_pages(struct zone *zone,
1972 						 unsigned long pfn,
1973 						 unsigned long end_pfn)
1974 {
1975 	int nid = zone_to_nid(zone);
1976 	unsigned long nr_pages = 0;
1977 	int zid = zone_idx(zone);
1978 	struct page *page = NULL;
1979 
1980 	for (; pfn < end_pfn; pfn++) {
1981 		if (!deferred_pfn_valid(pfn)) {
1982 			page = NULL;
1983 			continue;
1984 		} else if (!page || pageblock_aligned(pfn)) {
1985 			page = pfn_to_page(pfn);
1986 		} else {
1987 			page++;
1988 		}
1989 		__init_single_page(page, pfn, zid, nid);
1990 		nr_pages++;
1991 	}
1992 	return (nr_pages);
1993 }
1994 
1995 /*
1996  * This function is meant to pre-load the iterator for the zone init.
1997  * Specifically it walks through the ranges until we are caught up to the
1998  * first_init_pfn value and exits there. If we never encounter the value we
1999  * return false indicating there are no valid ranges left.
2000  */
2001 static bool __init
2002 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2003 				    unsigned long *spfn, unsigned long *epfn,
2004 				    unsigned long first_init_pfn)
2005 {
2006 	u64 j;
2007 
2008 	/*
2009 	 * Start out by walking through the ranges in this zone that have
2010 	 * already been initialized. We don't need to do anything with them
2011 	 * so we just need to flush them out of the system.
2012 	 */
2013 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2014 		if (*epfn <= first_init_pfn)
2015 			continue;
2016 		if (*spfn < first_init_pfn)
2017 			*spfn = first_init_pfn;
2018 		*i = j;
2019 		return true;
2020 	}
2021 
2022 	return false;
2023 }
2024 
2025 /*
2026  * Initialize and free pages. We do it in two loops: first we initialize
2027  * struct page, then free to buddy allocator, because while we are
2028  * freeing pages we can access pages that are ahead (computing buddy
2029  * page in __free_one_page()).
2030  *
2031  * In order to try and keep some memory in the cache we have the loop
2032  * broken along max page order boundaries. This way we will not cause
2033  * any issues with the buddy page computation.
2034  */
2035 static unsigned long __init
2036 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2037 		       unsigned long *end_pfn)
2038 {
2039 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2040 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2041 	unsigned long nr_pages = 0;
2042 	u64 j = *i;
2043 
2044 	/* First we loop through and initialize the page values */
2045 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2046 		unsigned long t;
2047 
2048 		if (mo_pfn <= *start_pfn)
2049 			break;
2050 
2051 		t = min(mo_pfn, *end_pfn);
2052 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2053 
2054 		if (mo_pfn < *end_pfn) {
2055 			*start_pfn = mo_pfn;
2056 			break;
2057 		}
2058 	}
2059 
2060 	/* Reset values and now loop through freeing pages as needed */
2061 	swap(j, *i);
2062 
2063 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2064 		unsigned long t;
2065 
2066 		if (mo_pfn <= spfn)
2067 			break;
2068 
2069 		t = min(mo_pfn, epfn);
2070 		deferred_free_pages(spfn, t);
2071 
2072 		if (mo_pfn <= epfn)
2073 			break;
2074 	}
2075 
2076 	return nr_pages;
2077 }
2078 
2079 static void __init
2080 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2081 			   void *arg)
2082 {
2083 	unsigned long spfn, epfn;
2084 	struct zone *zone = arg;
2085 	u64 i;
2086 
2087 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2088 
2089 	/*
2090 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2091 	 * can avoid introducing any issues with the buddy allocator.
2092 	 */
2093 	while (spfn < end_pfn) {
2094 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2095 		cond_resched();
2096 	}
2097 }
2098 
2099 /* An arch may override for more concurrency. */
2100 __weak int __init
2101 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2102 {
2103 	return 1;
2104 }
2105 
2106 /* Initialise remaining memory on a node */
2107 static int __init deferred_init_memmap(void *data)
2108 {
2109 	pg_data_t *pgdat = data;
2110 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2111 	unsigned long spfn = 0, epfn = 0;
2112 	unsigned long first_init_pfn, flags;
2113 	unsigned long start = jiffies;
2114 	struct zone *zone;
2115 	int zid, max_threads;
2116 	u64 i;
2117 
2118 	/* Bind memory initialisation thread to a local node if possible */
2119 	if (!cpumask_empty(cpumask))
2120 		set_cpus_allowed_ptr(current, cpumask);
2121 
2122 	pgdat_resize_lock(pgdat, &flags);
2123 	first_init_pfn = pgdat->first_deferred_pfn;
2124 	if (first_init_pfn == ULONG_MAX) {
2125 		pgdat_resize_unlock(pgdat, &flags);
2126 		pgdat_init_report_one_done();
2127 		return 0;
2128 	}
2129 
2130 	/* Sanity check boundaries */
2131 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2132 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2133 	pgdat->first_deferred_pfn = ULONG_MAX;
2134 
2135 	/*
2136 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2137 	 * interrupt thread must allocate this early in boot, zone must be
2138 	 * pre-grown prior to start of deferred page initialization.
2139 	 */
2140 	pgdat_resize_unlock(pgdat, &flags);
2141 
2142 	/* Only the highest zone is deferred so find it */
2143 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2144 		zone = pgdat->node_zones + zid;
2145 		if (first_init_pfn < zone_end_pfn(zone))
2146 			break;
2147 	}
2148 
2149 	/* If the zone is empty somebody else may have cleared out the zone */
2150 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2151 						 first_init_pfn))
2152 		goto zone_empty;
2153 
2154 	max_threads = deferred_page_init_max_threads(cpumask);
2155 
2156 	while (spfn < epfn) {
2157 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2158 		struct padata_mt_job job = {
2159 			.thread_fn   = deferred_init_memmap_chunk,
2160 			.fn_arg      = zone,
2161 			.start       = spfn,
2162 			.size        = epfn_align - spfn,
2163 			.align       = PAGES_PER_SECTION,
2164 			.min_chunk   = PAGES_PER_SECTION,
2165 			.max_threads = max_threads,
2166 		};
2167 
2168 		padata_do_multithreaded(&job);
2169 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2170 						    epfn_align);
2171 	}
2172 zone_empty:
2173 	/* Sanity check that the next zone really is unpopulated */
2174 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2175 
2176 	pr_info("node %d deferred pages initialised in %ums\n",
2177 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2178 
2179 	pgdat_init_report_one_done();
2180 	return 0;
2181 }
2182 
2183 /*
2184  * If this zone has deferred pages, try to grow it by initializing enough
2185  * deferred pages to satisfy the allocation specified by order, rounded up to
2186  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2187  * of SECTION_SIZE bytes by initializing struct pages in increments of
2188  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2189  *
2190  * Return true when zone was grown, otherwise return false. We return true even
2191  * when we grow less than requested, to let the caller decide if there are
2192  * enough pages to satisfy the allocation.
2193  *
2194  * Note: We use noinline because this function is needed only during boot, and
2195  * it is called from a __ref function _deferred_grow_zone. This way we are
2196  * making sure that it is not inlined into permanent text section.
2197  */
2198 static noinline bool __init
2199 deferred_grow_zone(struct zone *zone, unsigned int order)
2200 {
2201 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2202 	pg_data_t *pgdat = zone->zone_pgdat;
2203 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2204 	unsigned long spfn, epfn, flags;
2205 	unsigned long nr_pages = 0;
2206 	u64 i;
2207 
2208 	/* Only the last zone may have deferred pages */
2209 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2210 		return false;
2211 
2212 	pgdat_resize_lock(pgdat, &flags);
2213 
2214 	/*
2215 	 * If someone grew this zone while we were waiting for spinlock, return
2216 	 * true, as there might be enough pages already.
2217 	 */
2218 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2219 		pgdat_resize_unlock(pgdat, &flags);
2220 		return true;
2221 	}
2222 
2223 	/* If the zone is empty somebody else may have cleared out the zone */
2224 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2225 						 first_deferred_pfn)) {
2226 		pgdat->first_deferred_pfn = ULONG_MAX;
2227 		pgdat_resize_unlock(pgdat, &flags);
2228 		/* Retry only once. */
2229 		return first_deferred_pfn != ULONG_MAX;
2230 	}
2231 
2232 	/*
2233 	 * Initialize and free pages in MAX_ORDER sized increments so
2234 	 * that we can avoid introducing any issues with the buddy
2235 	 * allocator.
2236 	 */
2237 	while (spfn < epfn) {
2238 		/* update our first deferred PFN for this section */
2239 		first_deferred_pfn = spfn;
2240 
2241 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2242 		touch_nmi_watchdog();
2243 
2244 		/* We should only stop along section boundaries */
2245 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2246 			continue;
2247 
2248 		/* If our quota has been met we can stop here */
2249 		if (nr_pages >= nr_pages_needed)
2250 			break;
2251 	}
2252 
2253 	pgdat->first_deferred_pfn = spfn;
2254 	pgdat_resize_unlock(pgdat, &flags);
2255 
2256 	return nr_pages > 0;
2257 }
2258 
2259 /*
2260  * deferred_grow_zone() is __init, but it is called from
2261  * get_page_from_freelist() during early boot until deferred_pages permanently
2262  * disables this call. This is why we have refdata wrapper to avoid warning,
2263  * and to ensure that the function body gets unloaded.
2264  */
2265 static bool __ref
2266 _deferred_grow_zone(struct zone *zone, unsigned int order)
2267 {
2268 	return deferred_grow_zone(zone, order);
2269 }
2270 
2271 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2272 
2273 void __init page_alloc_init_late(void)
2274 {
2275 	struct zone *zone;
2276 	int nid;
2277 
2278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2279 
2280 	/* There will be num_node_state(N_MEMORY) threads */
2281 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2282 	for_each_node_state(nid, N_MEMORY) {
2283 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284 	}
2285 
2286 	/* Block until all are initialised */
2287 	wait_for_completion(&pgdat_init_all_done_comp);
2288 
2289 	/*
2290 	 * We initialized the rest of the deferred pages.  Permanently disable
2291 	 * on-demand struct page initialization.
2292 	 */
2293 	static_branch_disable(&deferred_pages);
2294 
2295 	/* Reinit limits that are based on free pages after the kernel is up */
2296 	files_maxfiles_init();
2297 #endif
2298 
2299 	buffer_init();
2300 
2301 	/* Discard memblock private memory */
2302 	memblock_discard();
2303 
2304 	for_each_node_state(nid, N_MEMORY)
2305 		shuffle_free_memory(NODE_DATA(nid));
2306 
2307 	for_each_populated_zone(zone)
2308 		set_zone_contiguous(zone);
2309 }
2310 
2311 #ifdef CONFIG_CMA
2312 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2313 void __init init_cma_reserved_pageblock(struct page *page)
2314 {
2315 	unsigned i = pageblock_nr_pages;
2316 	struct page *p = page;
2317 
2318 	do {
2319 		__ClearPageReserved(p);
2320 		set_page_count(p, 0);
2321 	} while (++p, --i);
2322 
2323 	set_pageblock_migratetype(page, MIGRATE_CMA);
2324 	set_page_refcounted(page);
2325 	__free_pages(page, pageblock_order);
2326 
2327 	adjust_managed_page_count(page, pageblock_nr_pages);
2328 	page_zone(page)->cma_pages += pageblock_nr_pages;
2329 }
2330 #endif
2331 
2332 /*
2333  * The order of subdivision here is critical for the IO subsystem.
2334  * Please do not alter this order without good reasons and regression
2335  * testing. Specifically, as large blocks of memory are subdivided,
2336  * the order in which smaller blocks are delivered depends on the order
2337  * they're subdivided in this function. This is the primary factor
2338  * influencing the order in which pages are delivered to the IO
2339  * subsystem according to empirical testing, and this is also justified
2340  * by considering the behavior of a buddy system containing a single
2341  * large block of memory acted on by a series of small allocations.
2342  * This behavior is a critical factor in sglist merging's success.
2343  *
2344  * -- nyc
2345  */
2346 static inline void expand(struct zone *zone, struct page *page,
2347 	int low, int high, int migratetype)
2348 {
2349 	unsigned long size = 1 << high;
2350 
2351 	while (high > low) {
2352 		high--;
2353 		size >>= 1;
2354 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2355 
2356 		/*
2357 		 * Mark as guard pages (or page), that will allow to
2358 		 * merge back to allocator when buddy will be freed.
2359 		 * Corresponding page table entries will not be touched,
2360 		 * pages will stay not present in virtual address space
2361 		 */
2362 		if (set_page_guard(zone, &page[size], high, migratetype))
2363 			continue;
2364 
2365 		add_to_free_list(&page[size], zone, high, migratetype);
2366 		set_buddy_order(&page[size], high);
2367 	}
2368 }
2369 
2370 static void check_new_page_bad(struct page *page)
2371 {
2372 	if (unlikely(page->flags & __PG_HWPOISON)) {
2373 		/* Don't complain about hwpoisoned pages */
2374 		page_mapcount_reset(page); /* remove PageBuddy */
2375 		return;
2376 	}
2377 
2378 	bad_page(page,
2379 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2380 }
2381 
2382 /*
2383  * This page is about to be returned from the page allocator
2384  */
2385 static inline int check_new_page(struct page *page)
2386 {
2387 	if (likely(page_expected_state(page,
2388 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2389 		return 0;
2390 
2391 	check_new_page_bad(page);
2392 	return 1;
2393 }
2394 
2395 static bool check_new_pages(struct page *page, unsigned int order)
2396 {
2397 	int i;
2398 	for (i = 0; i < (1 << order); i++) {
2399 		struct page *p = page + i;
2400 
2401 		if (unlikely(check_new_page(p)))
2402 			return true;
2403 	}
2404 
2405 	return false;
2406 }
2407 
2408 #ifdef CONFIG_DEBUG_VM
2409 /*
2410  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2411  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2412  * also checked when pcp lists are refilled from the free lists.
2413  */
2414 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2415 {
2416 	if (debug_pagealloc_enabled_static())
2417 		return check_new_pages(page, order);
2418 	else
2419 		return false;
2420 }
2421 
2422 static inline bool check_new_pcp(struct page *page, unsigned int order)
2423 {
2424 	return check_new_pages(page, order);
2425 }
2426 #else
2427 /*
2428  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2429  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2430  * enabled, they are also checked when being allocated from the pcp lists.
2431  */
2432 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2433 {
2434 	return check_new_pages(page, order);
2435 }
2436 static inline bool check_new_pcp(struct page *page, unsigned int order)
2437 {
2438 	if (debug_pagealloc_enabled_static())
2439 		return check_new_pages(page, order);
2440 	else
2441 		return false;
2442 }
2443 #endif /* CONFIG_DEBUG_VM */
2444 
2445 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2446 {
2447 	/* Don't skip if a software KASAN mode is enabled. */
2448 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2449 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2450 		return false;
2451 
2452 	/* Skip, if hardware tag-based KASAN is not enabled. */
2453 	if (!kasan_hw_tags_enabled())
2454 		return true;
2455 
2456 	/*
2457 	 * With hardware tag-based KASAN enabled, skip if this has been
2458 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2459 	 */
2460 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2461 }
2462 
2463 static inline bool should_skip_init(gfp_t flags)
2464 {
2465 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2466 	if (!kasan_hw_tags_enabled())
2467 		return false;
2468 
2469 	/* For hardware tag-based KASAN, skip if requested. */
2470 	return (flags & __GFP_SKIP_ZERO);
2471 }
2472 
2473 inline void post_alloc_hook(struct page *page, unsigned int order,
2474 				gfp_t gfp_flags)
2475 {
2476 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2477 			!should_skip_init(gfp_flags);
2478 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2479 	int i;
2480 
2481 	set_page_private(page, 0);
2482 	set_page_refcounted(page);
2483 
2484 	arch_alloc_page(page, order);
2485 	debug_pagealloc_map_pages(page, 1 << order);
2486 
2487 	/*
2488 	 * Page unpoisoning must happen before memory initialization.
2489 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2490 	 * allocations and the page unpoisoning code will complain.
2491 	 */
2492 	kernel_unpoison_pages(page, 1 << order);
2493 
2494 	/*
2495 	 * As memory initialization might be integrated into KASAN,
2496 	 * KASAN unpoisoning and memory initializion code must be
2497 	 * kept together to avoid discrepancies in behavior.
2498 	 */
2499 
2500 	/*
2501 	 * If memory tags should be zeroed (which happens only when memory
2502 	 * should be initialized as well).
2503 	 */
2504 	if (init_tags) {
2505 		/* Initialize both memory and tags. */
2506 		for (i = 0; i != 1 << order; ++i)
2507 			tag_clear_highpage(page + i);
2508 
2509 		/* Note that memory is already initialized by the loop above. */
2510 		init = false;
2511 	}
2512 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2513 		/* Unpoison shadow memory or set memory tags. */
2514 		kasan_unpoison_pages(page, order, init);
2515 
2516 		/* Note that memory is already initialized by KASAN. */
2517 		if (kasan_has_integrated_init())
2518 			init = false;
2519 	} else {
2520 		/* Ensure page_address() dereferencing does not fault. */
2521 		for (i = 0; i != 1 << order; ++i)
2522 			page_kasan_tag_reset(page + i);
2523 	}
2524 	/* If memory is still not initialized, do it now. */
2525 	if (init)
2526 		kernel_init_pages(page, 1 << order);
2527 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2528 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2529 		SetPageSkipKASanPoison(page);
2530 
2531 	set_page_owner(page, order, gfp_flags);
2532 	page_table_check_alloc(page, order);
2533 }
2534 
2535 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2536 							unsigned int alloc_flags)
2537 {
2538 	post_alloc_hook(page, order, gfp_flags);
2539 
2540 	if (order && (gfp_flags & __GFP_COMP))
2541 		prep_compound_page(page, order);
2542 
2543 	/*
2544 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2545 	 * allocate the page. The expectation is that the caller is taking
2546 	 * steps that will free more memory. The caller should avoid the page
2547 	 * being used for !PFMEMALLOC purposes.
2548 	 */
2549 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2550 		set_page_pfmemalloc(page);
2551 	else
2552 		clear_page_pfmemalloc(page);
2553 }
2554 
2555 /*
2556  * Go through the free lists for the given migratetype and remove
2557  * the smallest available page from the freelists
2558  */
2559 static __always_inline
2560 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2561 						int migratetype)
2562 {
2563 	unsigned int current_order;
2564 	struct free_area *area;
2565 	struct page *page;
2566 
2567 	/* Find a page of the appropriate size in the preferred list */
2568 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2569 		area = &(zone->free_area[current_order]);
2570 		page = get_page_from_free_area(area, migratetype);
2571 		if (!page)
2572 			continue;
2573 		del_page_from_free_list(page, zone, current_order);
2574 		expand(zone, page, order, current_order, migratetype);
2575 		set_pcppage_migratetype(page, migratetype);
2576 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2577 				pcp_allowed_order(order) &&
2578 				migratetype < MIGRATE_PCPTYPES);
2579 		return page;
2580 	}
2581 
2582 	return NULL;
2583 }
2584 
2585 
2586 /*
2587  * This array describes the order lists are fallen back to when
2588  * the free lists for the desirable migrate type are depleted
2589  *
2590  * The other migratetypes do not have fallbacks.
2591  */
2592 static int fallbacks[MIGRATE_TYPES][3] = {
2593 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2594 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2595 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2596 };
2597 
2598 #ifdef CONFIG_CMA
2599 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2600 					unsigned int order)
2601 {
2602 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2603 }
2604 #else
2605 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2606 					unsigned int order) { return NULL; }
2607 #endif
2608 
2609 /*
2610  * Move the free pages in a range to the freelist tail of the requested type.
2611  * Note that start_page and end_pages are not aligned on a pageblock
2612  * boundary. If alignment is required, use move_freepages_block()
2613  */
2614 static int move_freepages(struct zone *zone,
2615 			  unsigned long start_pfn, unsigned long end_pfn,
2616 			  int migratetype, int *num_movable)
2617 {
2618 	struct page *page;
2619 	unsigned long pfn;
2620 	unsigned int order;
2621 	int pages_moved = 0;
2622 
2623 	for (pfn = start_pfn; pfn <= end_pfn;) {
2624 		page = pfn_to_page(pfn);
2625 		if (!PageBuddy(page)) {
2626 			/*
2627 			 * We assume that pages that could be isolated for
2628 			 * migration are movable. But we don't actually try
2629 			 * isolating, as that would be expensive.
2630 			 */
2631 			if (num_movable &&
2632 					(PageLRU(page) || __PageMovable(page)))
2633 				(*num_movable)++;
2634 			pfn++;
2635 			continue;
2636 		}
2637 
2638 		/* Make sure we are not inadvertently changing nodes */
2639 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2640 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2641 
2642 		order = buddy_order(page);
2643 		move_to_free_list(page, zone, order, migratetype);
2644 		pfn += 1 << order;
2645 		pages_moved += 1 << order;
2646 	}
2647 
2648 	return pages_moved;
2649 }
2650 
2651 int move_freepages_block(struct zone *zone, struct page *page,
2652 				int migratetype, int *num_movable)
2653 {
2654 	unsigned long start_pfn, end_pfn, pfn;
2655 
2656 	if (num_movable)
2657 		*num_movable = 0;
2658 
2659 	pfn = page_to_pfn(page);
2660 	start_pfn = pageblock_start_pfn(pfn);
2661 	end_pfn = pageblock_end_pfn(pfn) - 1;
2662 
2663 	/* Do not cross zone boundaries */
2664 	if (!zone_spans_pfn(zone, start_pfn))
2665 		start_pfn = pfn;
2666 	if (!zone_spans_pfn(zone, end_pfn))
2667 		return 0;
2668 
2669 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2670 								num_movable);
2671 }
2672 
2673 static void change_pageblock_range(struct page *pageblock_page,
2674 					int start_order, int migratetype)
2675 {
2676 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2677 
2678 	while (nr_pageblocks--) {
2679 		set_pageblock_migratetype(pageblock_page, migratetype);
2680 		pageblock_page += pageblock_nr_pages;
2681 	}
2682 }
2683 
2684 /*
2685  * When we are falling back to another migratetype during allocation, try to
2686  * steal extra free pages from the same pageblocks to satisfy further
2687  * allocations, instead of polluting multiple pageblocks.
2688  *
2689  * If we are stealing a relatively large buddy page, it is likely there will
2690  * be more free pages in the pageblock, so try to steal them all. For
2691  * reclaimable and unmovable allocations, we steal regardless of page size,
2692  * as fragmentation caused by those allocations polluting movable pageblocks
2693  * is worse than movable allocations stealing from unmovable and reclaimable
2694  * pageblocks.
2695  */
2696 static bool can_steal_fallback(unsigned int order, int start_mt)
2697 {
2698 	/*
2699 	 * Leaving this order check is intended, although there is
2700 	 * relaxed order check in next check. The reason is that
2701 	 * we can actually steal whole pageblock if this condition met,
2702 	 * but, below check doesn't guarantee it and that is just heuristic
2703 	 * so could be changed anytime.
2704 	 */
2705 	if (order >= pageblock_order)
2706 		return true;
2707 
2708 	if (order >= pageblock_order / 2 ||
2709 		start_mt == MIGRATE_RECLAIMABLE ||
2710 		start_mt == MIGRATE_UNMOVABLE ||
2711 		page_group_by_mobility_disabled)
2712 		return true;
2713 
2714 	return false;
2715 }
2716 
2717 static inline bool boost_watermark(struct zone *zone)
2718 {
2719 	unsigned long max_boost;
2720 
2721 	if (!watermark_boost_factor)
2722 		return false;
2723 	/*
2724 	 * Don't bother in zones that are unlikely to produce results.
2725 	 * On small machines, including kdump capture kernels running
2726 	 * in a small area, boosting the watermark can cause an out of
2727 	 * memory situation immediately.
2728 	 */
2729 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2730 		return false;
2731 
2732 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2733 			watermark_boost_factor, 10000);
2734 
2735 	/*
2736 	 * high watermark may be uninitialised if fragmentation occurs
2737 	 * very early in boot so do not boost. We do not fall
2738 	 * through and boost by pageblock_nr_pages as failing
2739 	 * allocations that early means that reclaim is not going
2740 	 * to help and it may even be impossible to reclaim the
2741 	 * boosted watermark resulting in a hang.
2742 	 */
2743 	if (!max_boost)
2744 		return false;
2745 
2746 	max_boost = max(pageblock_nr_pages, max_boost);
2747 
2748 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2749 		max_boost);
2750 
2751 	return true;
2752 }
2753 
2754 /*
2755  * This function implements actual steal behaviour. If order is large enough,
2756  * we can steal whole pageblock. If not, we first move freepages in this
2757  * pageblock to our migratetype and determine how many already-allocated pages
2758  * are there in the pageblock with a compatible migratetype. If at least half
2759  * of pages are free or compatible, we can change migratetype of the pageblock
2760  * itself, so pages freed in the future will be put on the correct free list.
2761  */
2762 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2763 		unsigned int alloc_flags, int start_type, bool whole_block)
2764 {
2765 	unsigned int current_order = buddy_order(page);
2766 	int free_pages, movable_pages, alike_pages;
2767 	int old_block_type;
2768 
2769 	old_block_type = get_pageblock_migratetype(page);
2770 
2771 	/*
2772 	 * This can happen due to races and we want to prevent broken
2773 	 * highatomic accounting.
2774 	 */
2775 	if (is_migrate_highatomic(old_block_type))
2776 		goto single_page;
2777 
2778 	/* Take ownership for orders >= pageblock_order */
2779 	if (current_order >= pageblock_order) {
2780 		change_pageblock_range(page, current_order, start_type);
2781 		goto single_page;
2782 	}
2783 
2784 	/*
2785 	 * Boost watermarks to increase reclaim pressure to reduce the
2786 	 * likelihood of future fallbacks. Wake kswapd now as the node
2787 	 * may be balanced overall and kswapd will not wake naturally.
2788 	 */
2789 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2790 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2791 
2792 	/* We are not allowed to try stealing from the whole block */
2793 	if (!whole_block)
2794 		goto single_page;
2795 
2796 	free_pages = move_freepages_block(zone, page, start_type,
2797 						&movable_pages);
2798 	/*
2799 	 * Determine how many pages are compatible with our allocation.
2800 	 * For movable allocation, it's the number of movable pages which
2801 	 * we just obtained. For other types it's a bit more tricky.
2802 	 */
2803 	if (start_type == MIGRATE_MOVABLE) {
2804 		alike_pages = movable_pages;
2805 	} else {
2806 		/*
2807 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2808 		 * to MOVABLE pageblock, consider all non-movable pages as
2809 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2810 		 * vice versa, be conservative since we can't distinguish the
2811 		 * exact migratetype of non-movable pages.
2812 		 */
2813 		if (old_block_type == MIGRATE_MOVABLE)
2814 			alike_pages = pageblock_nr_pages
2815 						- (free_pages + movable_pages);
2816 		else
2817 			alike_pages = 0;
2818 	}
2819 
2820 	/* moving whole block can fail due to zone boundary conditions */
2821 	if (!free_pages)
2822 		goto single_page;
2823 
2824 	/*
2825 	 * If a sufficient number of pages in the block are either free or of
2826 	 * comparable migratability as our allocation, claim the whole block.
2827 	 */
2828 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2829 			page_group_by_mobility_disabled)
2830 		set_pageblock_migratetype(page, start_type);
2831 
2832 	return;
2833 
2834 single_page:
2835 	move_to_free_list(page, zone, current_order, start_type);
2836 }
2837 
2838 /*
2839  * Check whether there is a suitable fallback freepage with requested order.
2840  * If only_stealable is true, this function returns fallback_mt only if
2841  * we can steal other freepages all together. This would help to reduce
2842  * fragmentation due to mixed migratetype pages in one pageblock.
2843  */
2844 int find_suitable_fallback(struct free_area *area, unsigned int order,
2845 			int migratetype, bool only_stealable, bool *can_steal)
2846 {
2847 	int i;
2848 	int fallback_mt;
2849 
2850 	if (area->nr_free == 0)
2851 		return -1;
2852 
2853 	*can_steal = false;
2854 	for (i = 0;; i++) {
2855 		fallback_mt = fallbacks[migratetype][i];
2856 		if (fallback_mt == MIGRATE_TYPES)
2857 			break;
2858 
2859 		if (free_area_empty(area, fallback_mt))
2860 			continue;
2861 
2862 		if (can_steal_fallback(order, migratetype))
2863 			*can_steal = true;
2864 
2865 		if (!only_stealable)
2866 			return fallback_mt;
2867 
2868 		if (*can_steal)
2869 			return fallback_mt;
2870 	}
2871 
2872 	return -1;
2873 }
2874 
2875 /*
2876  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2877  * there are no empty page blocks that contain a page with a suitable order
2878  */
2879 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2880 				unsigned int alloc_order)
2881 {
2882 	int mt;
2883 	unsigned long max_managed, flags;
2884 
2885 	/*
2886 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2887 	 * Check is race-prone but harmless.
2888 	 */
2889 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2890 	if (zone->nr_reserved_highatomic >= max_managed)
2891 		return;
2892 
2893 	spin_lock_irqsave(&zone->lock, flags);
2894 
2895 	/* Recheck the nr_reserved_highatomic limit under the lock */
2896 	if (zone->nr_reserved_highatomic >= max_managed)
2897 		goto out_unlock;
2898 
2899 	/* Yoink! */
2900 	mt = get_pageblock_migratetype(page);
2901 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2902 	if (migratetype_is_mergeable(mt)) {
2903 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2904 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2905 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2906 	}
2907 
2908 out_unlock:
2909 	spin_unlock_irqrestore(&zone->lock, flags);
2910 }
2911 
2912 /*
2913  * Used when an allocation is about to fail under memory pressure. This
2914  * potentially hurts the reliability of high-order allocations when under
2915  * intense memory pressure but failed atomic allocations should be easier
2916  * to recover from than an OOM.
2917  *
2918  * If @force is true, try to unreserve a pageblock even though highatomic
2919  * pageblock is exhausted.
2920  */
2921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2922 						bool force)
2923 {
2924 	struct zonelist *zonelist = ac->zonelist;
2925 	unsigned long flags;
2926 	struct zoneref *z;
2927 	struct zone *zone;
2928 	struct page *page;
2929 	int order;
2930 	bool ret;
2931 
2932 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2933 								ac->nodemask) {
2934 		/*
2935 		 * Preserve at least one pageblock unless memory pressure
2936 		 * is really high.
2937 		 */
2938 		if (!force && zone->nr_reserved_highatomic <=
2939 					pageblock_nr_pages)
2940 			continue;
2941 
2942 		spin_lock_irqsave(&zone->lock, flags);
2943 		for (order = 0; order < MAX_ORDER; order++) {
2944 			struct free_area *area = &(zone->free_area[order]);
2945 
2946 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2947 			if (!page)
2948 				continue;
2949 
2950 			/*
2951 			 * In page freeing path, migratetype change is racy so
2952 			 * we can counter several free pages in a pageblock
2953 			 * in this loop although we changed the pageblock type
2954 			 * from highatomic to ac->migratetype. So we should
2955 			 * adjust the count once.
2956 			 */
2957 			if (is_migrate_highatomic_page(page)) {
2958 				/*
2959 				 * It should never happen but changes to
2960 				 * locking could inadvertently allow a per-cpu
2961 				 * drain to add pages to MIGRATE_HIGHATOMIC
2962 				 * while unreserving so be safe and watch for
2963 				 * underflows.
2964 				 */
2965 				zone->nr_reserved_highatomic -= min(
2966 						pageblock_nr_pages,
2967 						zone->nr_reserved_highatomic);
2968 			}
2969 
2970 			/*
2971 			 * Convert to ac->migratetype and avoid the normal
2972 			 * pageblock stealing heuristics. Minimally, the caller
2973 			 * is doing the work and needs the pages. More
2974 			 * importantly, if the block was always converted to
2975 			 * MIGRATE_UNMOVABLE or another type then the number
2976 			 * of pageblocks that cannot be completely freed
2977 			 * may increase.
2978 			 */
2979 			set_pageblock_migratetype(page, ac->migratetype);
2980 			ret = move_freepages_block(zone, page, ac->migratetype,
2981 									NULL);
2982 			if (ret) {
2983 				spin_unlock_irqrestore(&zone->lock, flags);
2984 				return ret;
2985 			}
2986 		}
2987 		spin_unlock_irqrestore(&zone->lock, flags);
2988 	}
2989 
2990 	return false;
2991 }
2992 
2993 /*
2994  * Try finding a free buddy page on the fallback list and put it on the free
2995  * list of requested migratetype, possibly along with other pages from the same
2996  * block, depending on fragmentation avoidance heuristics. Returns true if
2997  * fallback was found so that __rmqueue_smallest() can grab it.
2998  *
2999  * The use of signed ints for order and current_order is a deliberate
3000  * deviation from the rest of this file, to make the for loop
3001  * condition simpler.
3002  */
3003 static __always_inline bool
3004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3005 						unsigned int alloc_flags)
3006 {
3007 	struct free_area *area;
3008 	int current_order;
3009 	int min_order = order;
3010 	struct page *page;
3011 	int fallback_mt;
3012 	bool can_steal;
3013 
3014 	/*
3015 	 * Do not steal pages from freelists belonging to other pageblocks
3016 	 * i.e. orders < pageblock_order. If there are no local zones free,
3017 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3018 	 */
3019 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3020 		min_order = pageblock_order;
3021 
3022 	/*
3023 	 * Find the largest available free page in the other list. This roughly
3024 	 * approximates finding the pageblock with the most free pages, which
3025 	 * would be too costly to do exactly.
3026 	 */
3027 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3028 				--current_order) {
3029 		area = &(zone->free_area[current_order]);
3030 		fallback_mt = find_suitable_fallback(area, current_order,
3031 				start_migratetype, false, &can_steal);
3032 		if (fallback_mt == -1)
3033 			continue;
3034 
3035 		/*
3036 		 * We cannot steal all free pages from the pageblock and the
3037 		 * requested migratetype is movable. In that case it's better to
3038 		 * steal and split the smallest available page instead of the
3039 		 * largest available page, because even if the next movable
3040 		 * allocation falls back into a different pageblock than this
3041 		 * one, it won't cause permanent fragmentation.
3042 		 */
3043 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3044 					&& current_order > order)
3045 			goto find_smallest;
3046 
3047 		goto do_steal;
3048 	}
3049 
3050 	return false;
3051 
3052 find_smallest:
3053 	for (current_order = order; current_order < MAX_ORDER;
3054 							current_order++) {
3055 		area = &(zone->free_area[current_order]);
3056 		fallback_mt = find_suitable_fallback(area, current_order,
3057 				start_migratetype, false, &can_steal);
3058 		if (fallback_mt != -1)
3059 			break;
3060 	}
3061 
3062 	/*
3063 	 * This should not happen - we already found a suitable fallback
3064 	 * when looking for the largest page.
3065 	 */
3066 	VM_BUG_ON(current_order == MAX_ORDER);
3067 
3068 do_steal:
3069 	page = get_page_from_free_area(area, fallback_mt);
3070 
3071 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3072 								can_steal);
3073 
3074 	trace_mm_page_alloc_extfrag(page, order, current_order,
3075 		start_migratetype, fallback_mt);
3076 
3077 	return true;
3078 
3079 }
3080 
3081 /*
3082  * Do the hard work of removing an element from the buddy allocator.
3083  * Call me with the zone->lock already held.
3084  */
3085 static __always_inline struct page *
3086 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3087 						unsigned int alloc_flags)
3088 {
3089 	struct page *page;
3090 
3091 	if (IS_ENABLED(CONFIG_CMA)) {
3092 		/*
3093 		 * Balance movable allocations between regular and CMA areas by
3094 		 * allocating from CMA when over half of the zone's free memory
3095 		 * is in the CMA area.
3096 		 */
3097 		if (alloc_flags & ALLOC_CMA &&
3098 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3099 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3100 			page = __rmqueue_cma_fallback(zone, order);
3101 			if (page)
3102 				return page;
3103 		}
3104 	}
3105 retry:
3106 	page = __rmqueue_smallest(zone, order, migratetype);
3107 	if (unlikely(!page)) {
3108 		if (alloc_flags & ALLOC_CMA)
3109 			page = __rmqueue_cma_fallback(zone, order);
3110 
3111 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3112 								alloc_flags))
3113 			goto retry;
3114 	}
3115 	return page;
3116 }
3117 
3118 /*
3119  * Obtain a specified number of elements from the buddy allocator, all under
3120  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3121  * Returns the number of new pages which were placed at *list.
3122  */
3123 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3124 			unsigned long count, struct list_head *list,
3125 			int migratetype, unsigned int alloc_flags)
3126 {
3127 	int i, allocated = 0;
3128 
3129 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3130 	spin_lock(&zone->lock);
3131 	for (i = 0; i < count; ++i) {
3132 		struct page *page = __rmqueue(zone, order, migratetype,
3133 								alloc_flags);
3134 		if (unlikely(page == NULL))
3135 			break;
3136 
3137 		if (unlikely(check_pcp_refill(page, order)))
3138 			continue;
3139 
3140 		/*
3141 		 * Split buddy pages returned by expand() are received here in
3142 		 * physical page order. The page is added to the tail of
3143 		 * caller's list. From the callers perspective, the linked list
3144 		 * is ordered by page number under some conditions. This is
3145 		 * useful for IO devices that can forward direction from the
3146 		 * head, thus also in the physical page order. This is useful
3147 		 * for IO devices that can merge IO requests if the physical
3148 		 * pages are ordered properly.
3149 		 */
3150 		list_add_tail(&page->pcp_list, list);
3151 		allocated++;
3152 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3153 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3154 					      -(1 << order));
3155 	}
3156 
3157 	/*
3158 	 * i pages were removed from the buddy list even if some leak due
3159 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3160 	 * on i. Do not confuse with 'allocated' which is the number of
3161 	 * pages added to the pcp list.
3162 	 */
3163 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3164 	spin_unlock(&zone->lock);
3165 	return allocated;
3166 }
3167 
3168 #ifdef CONFIG_NUMA
3169 /*
3170  * Called from the vmstat counter updater to drain pagesets of this
3171  * currently executing processor on remote nodes after they have
3172  * expired.
3173  */
3174 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3175 {
3176 	int to_drain, batch;
3177 
3178 	batch = READ_ONCE(pcp->batch);
3179 	to_drain = min(pcp->count, batch);
3180 	if (to_drain > 0) {
3181 		unsigned long flags;
3182 
3183 		/*
3184 		 * free_pcppages_bulk expects IRQs disabled for zone->lock
3185 		 * so even though pcp->lock is not intended to be IRQ-safe,
3186 		 * it's needed in this context.
3187 		 */
3188 		spin_lock_irqsave(&pcp->lock, flags);
3189 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3190 		spin_unlock_irqrestore(&pcp->lock, flags);
3191 	}
3192 }
3193 #endif
3194 
3195 /*
3196  * Drain pcplists of the indicated processor and zone.
3197  */
3198 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3199 {
3200 	struct per_cpu_pages *pcp;
3201 
3202 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3203 	if (pcp->count) {
3204 		unsigned long flags;
3205 
3206 		/* See drain_zone_pages on why this is disabling IRQs */
3207 		spin_lock_irqsave(&pcp->lock, flags);
3208 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3209 		spin_unlock_irqrestore(&pcp->lock, flags);
3210 	}
3211 }
3212 
3213 /*
3214  * Drain pcplists of all zones on the indicated processor.
3215  */
3216 static void drain_pages(unsigned int cpu)
3217 {
3218 	struct zone *zone;
3219 
3220 	for_each_populated_zone(zone) {
3221 		drain_pages_zone(cpu, zone);
3222 	}
3223 }
3224 
3225 /*
3226  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3227  */
3228 void drain_local_pages(struct zone *zone)
3229 {
3230 	int cpu = smp_processor_id();
3231 
3232 	if (zone)
3233 		drain_pages_zone(cpu, zone);
3234 	else
3235 		drain_pages(cpu);
3236 }
3237 
3238 /*
3239  * The implementation of drain_all_pages(), exposing an extra parameter to
3240  * drain on all cpus.
3241  *
3242  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3243  * not empty. The check for non-emptiness can however race with a free to
3244  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3245  * that need the guarantee that every CPU has drained can disable the
3246  * optimizing racy check.
3247  */
3248 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3249 {
3250 	int cpu;
3251 
3252 	/*
3253 	 * Allocate in the BSS so we won't require allocation in
3254 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3255 	 */
3256 	static cpumask_t cpus_with_pcps;
3257 
3258 	/*
3259 	 * Do not drain if one is already in progress unless it's specific to
3260 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3261 	 * the drain to be complete when the call returns.
3262 	 */
3263 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3264 		if (!zone)
3265 			return;
3266 		mutex_lock(&pcpu_drain_mutex);
3267 	}
3268 
3269 	/*
3270 	 * We don't care about racing with CPU hotplug event
3271 	 * as offline notification will cause the notified
3272 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3273 	 * disables preemption as part of its processing
3274 	 */
3275 	for_each_online_cpu(cpu) {
3276 		struct per_cpu_pages *pcp;
3277 		struct zone *z;
3278 		bool has_pcps = false;
3279 
3280 		if (force_all_cpus) {
3281 			/*
3282 			 * The pcp.count check is racy, some callers need a
3283 			 * guarantee that no cpu is missed.
3284 			 */
3285 			has_pcps = true;
3286 		} else if (zone) {
3287 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3288 			if (pcp->count)
3289 				has_pcps = true;
3290 		} else {
3291 			for_each_populated_zone(z) {
3292 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3293 				if (pcp->count) {
3294 					has_pcps = true;
3295 					break;
3296 				}
3297 			}
3298 		}
3299 
3300 		if (has_pcps)
3301 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3302 		else
3303 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3304 	}
3305 
3306 	for_each_cpu(cpu, &cpus_with_pcps) {
3307 		if (zone)
3308 			drain_pages_zone(cpu, zone);
3309 		else
3310 			drain_pages(cpu);
3311 	}
3312 
3313 	mutex_unlock(&pcpu_drain_mutex);
3314 }
3315 
3316 /*
3317  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3318  *
3319  * When zone parameter is non-NULL, spill just the single zone's pages.
3320  */
3321 void drain_all_pages(struct zone *zone)
3322 {
3323 	__drain_all_pages(zone, false);
3324 }
3325 
3326 #ifdef CONFIG_HIBERNATION
3327 
3328 /*
3329  * Touch the watchdog for every WD_PAGE_COUNT pages.
3330  */
3331 #define WD_PAGE_COUNT	(128*1024)
3332 
3333 void mark_free_pages(struct zone *zone)
3334 {
3335 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3336 	unsigned long flags;
3337 	unsigned int order, t;
3338 	struct page *page;
3339 
3340 	if (zone_is_empty(zone))
3341 		return;
3342 
3343 	spin_lock_irqsave(&zone->lock, flags);
3344 
3345 	max_zone_pfn = zone_end_pfn(zone);
3346 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3347 		if (pfn_valid(pfn)) {
3348 			page = pfn_to_page(pfn);
3349 
3350 			if (!--page_count) {
3351 				touch_nmi_watchdog();
3352 				page_count = WD_PAGE_COUNT;
3353 			}
3354 
3355 			if (page_zone(page) != zone)
3356 				continue;
3357 
3358 			if (!swsusp_page_is_forbidden(page))
3359 				swsusp_unset_page_free(page);
3360 		}
3361 
3362 	for_each_migratetype_order(order, t) {
3363 		list_for_each_entry(page,
3364 				&zone->free_area[order].free_list[t], buddy_list) {
3365 			unsigned long i;
3366 
3367 			pfn = page_to_pfn(page);
3368 			for (i = 0; i < (1UL << order); i++) {
3369 				if (!--page_count) {
3370 					touch_nmi_watchdog();
3371 					page_count = WD_PAGE_COUNT;
3372 				}
3373 				swsusp_set_page_free(pfn_to_page(pfn + i));
3374 			}
3375 		}
3376 	}
3377 	spin_unlock_irqrestore(&zone->lock, flags);
3378 }
3379 #endif /* CONFIG_PM */
3380 
3381 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3382 							unsigned int order)
3383 {
3384 	int migratetype;
3385 
3386 	if (!free_pcp_prepare(page, order))
3387 		return false;
3388 
3389 	migratetype = get_pfnblock_migratetype(page, pfn);
3390 	set_pcppage_migratetype(page, migratetype);
3391 	return true;
3392 }
3393 
3394 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3395 		       bool free_high)
3396 {
3397 	int min_nr_free, max_nr_free;
3398 
3399 	/* Free everything if batch freeing high-order pages. */
3400 	if (unlikely(free_high))
3401 		return pcp->count;
3402 
3403 	/* Check for PCP disabled or boot pageset */
3404 	if (unlikely(high < batch))
3405 		return 1;
3406 
3407 	/* Leave at least pcp->batch pages on the list */
3408 	min_nr_free = batch;
3409 	max_nr_free = high - batch;
3410 
3411 	/*
3412 	 * Double the number of pages freed each time there is subsequent
3413 	 * freeing of pages without any allocation.
3414 	 */
3415 	batch <<= pcp->free_factor;
3416 	if (batch < max_nr_free)
3417 		pcp->free_factor++;
3418 	batch = clamp(batch, min_nr_free, max_nr_free);
3419 
3420 	return batch;
3421 }
3422 
3423 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3424 		       bool free_high)
3425 {
3426 	int high = READ_ONCE(pcp->high);
3427 
3428 	if (unlikely(!high || free_high))
3429 		return 0;
3430 
3431 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3432 		return high;
3433 
3434 	/*
3435 	 * If reclaim is active, limit the number of pages that can be
3436 	 * stored on pcp lists
3437 	 */
3438 	return min(READ_ONCE(pcp->batch) << 2, high);
3439 }
3440 
3441 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3442 				   struct page *page, int migratetype,
3443 				   unsigned int order)
3444 {
3445 	int high;
3446 	int pindex;
3447 	bool free_high;
3448 
3449 	__count_vm_event(PGFREE);
3450 	pindex = order_to_pindex(migratetype, order);
3451 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3452 	pcp->count += 1 << order;
3453 
3454 	/*
3455 	 * As high-order pages other than THP's stored on PCP can contribute
3456 	 * to fragmentation, limit the number stored when PCP is heavily
3457 	 * freeing without allocation. The remainder after bulk freeing
3458 	 * stops will be drained from vmstat refresh context.
3459 	 */
3460 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3461 
3462 	high = nr_pcp_high(pcp, zone, free_high);
3463 	if (pcp->count >= high) {
3464 		int batch = READ_ONCE(pcp->batch);
3465 
3466 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3467 	}
3468 }
3469 
3470 /*
3471  * Free a pcp page
3472  */
3473 void free_unref_page(struct page *page, unsigned int order)
3474 {
3475 	unsigned long flags;
3476 	unsigned long __maybe_unused UP_flags;
3477 	struct per_cpu_pages *pcp;
3478 	struct zone *zone;
3479 	unsigned long pfn = page_to_pfn(page);
3480 	int migratetype;
3481 
3482 	if (!free_unref_page_prepare(page, pfn, order))
3483 		return;
3484 
3485 	/*
3486 	 * We only track unmovable, reclaimable and movable on pcp lists.
3487 	 * Place ISOLATE pages on the isolated list because they are being
3488 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3489 	 * areas back if necessary. Otherwise, we may have to free
3490 	 * excessively into the page allocator
3491 	 */
3492 	migratetype = get_pcppage_migratetype(page);
3493 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3494 		if (unlikely(is_migrate_isolate(migratetype))) {
3495 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3496 			return;
3497 		}
3498 		migratetype = MIGRATE_MOVABLE;
3499 	}
3500 
3501 	zone = page_zone(page);
3502 	pcp_trylock_prepare(UP_flags);
3503 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3504 	if (pcp) {
3505 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3506 		pcp_spin_unlock_irqrestore(pcp, flags);
3507 	} else {
3508 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3509 	}
3510 	pcp_trylock_finish(UP_flags);
3511 }
3512 
3513 /*
3514  * Free a list of 0-order pages
3515  */
3516 void free_unref_page_list(struct list_head *list)
3517 {
3518 	struct page *page, *next;
3519 	struct per_cpu_pages *pcp = NULL;
3520 	struct zone *locked_zone = NULL;
3521 	unsigned long flags;
3522 	int batch_count = 0;
3523 	int migratetype;
3524 
3525 	/* Prepare pages for freeing */
3526 	list_for_each_entry_safe(page, next, list, lru) {
3527 		unsigned long pfn = page_to_pfn(page);
3528 		if (!free_unref_page_prepare(page, pfn, 0)) {
3529 			list_del(&page->lru);
3530 			continue;
3531 		}
3532 
3533 		/*
3534 		 * Free isolated pages directly to the allocator, see
3535 		 * comment in free_unref_page.
3536 		 */
3537 		migratetype = get_pcppage_migratetype(page);
3538 		if (unlikely(is_migrate_isolate(migratetype))) {
3539 			list_del(&page->lru);
3540 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 			continue;
3542 		}
3543 	}
3544 
3545 	list_for_each_entry_safe(page, next, list, lru) {
3546 		struct zone *zone = page_zone(page);
3547 
3548 		/* Different zone, different pcp lock. */
3549 		if (zone != locked_zone) {
3550 			if (pcp)
3551 				pcp_spin_unlock_irqrestore(pcp, flags);
3552 
3553 			locked_zone = zone;
3554 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3555 		}
3556 
3557 		/*
3558 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3559 		 * to the MIGRATE_MOVABLE pcp list.
3560 		 */
3561 		migratetype = get_pcppage_migratetype(page);
3562 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3563 			migratetype = MIGRATE_MOVABLE;
3564 
3565 		trace_mm_page_free_batched(page);
3566 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3567 
3568 		/*
3569 		 * Guard against excessive IRQ disabled times when we get
3570 		 * a large list of pages to free.
3571 		 */
3572 		if (++batch_count == SWAP_CLUSTER_MAX) {
3573 			pcp_spin_unlock_irqrestore(pcp, flags);
3574 			batch_count = 0;
3575 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3576 		}
3577 	}
3578 
3579 	if (pcp)
3580 		pcp_spin_unlock_irqrestore(pcp, flags);
3581 }
3582 
3583 /*
3584  * split_page takes a non-compound higher-order page, and splits it into
3585  * n (1<<order) sub-pages: page[0..n]
3586  * Each sub-page must be freed individually.
3587  *
3588  * Note: this is probably too low level an operation for use in drivers.
3589  * Please consult with lkml before using this in your driver.
3590  */
3591 void split_page(struct page *page, unsigned int order)
3592 {
3593 	int i;
3594 
3595 	VM_BUG_ON_PAGE(PageCompound(page), page);
3596 	VM_BUG_ON_PAGE(!page_count(page), page);
3597 
3598 	for (i = 1; i < (1 << order); i++)
3599 		set_page_refcounted(page + i);
3600 	split_page_owner(page, 1 << order);
3601 	split_page_memcg(page, 1 << order);
3602 }
3603 EXPORT_SYMBOL_GPL(split_page);
3604 
3605 int __isolate_free_page(struct page *page, unsigned int order)
3606 {
3607 	struct zone *zone = page_zone(page);
3608 	int mt = get_pageblock_migratetype(page);
3609 
3610 	if (!is_migrate_isolate(mt)) {
3611 		unsigned long watermark;
3612 		/*
3613 		 * Obey watermarks as if the page was being allocated. We can
3614 		 * emulate a high-order watermark check with a raised order-0
3615 		 * watermark, because we already know our high-order page
3616 		 * exists.
3617 		 */
3618 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3619 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3620 			return 0;
3621 
3622 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3623 	}
3624 
3625 	del_page_from_free_list(page, zone, order);
3626 
3627 	/*
3628 	 * Set the pageblock if the isolated page is at least half of a
3629 	 * pageblock
3630 	 */
3631 	if (order >= pageblock_order - 1) {
3632 		struct page *endpage = page + (1 << order) - 1;
3633 		for (; page < endpage; page += pageblock_nr_pages) {
3634 			int mt = get_pageblock_migratetype(page);
3635 			/*
3636 			 * Only change normal pageblocks (i.e., they can merge
3637 			 * with others)
3638 			 */
3639 			if (migratetype_is_mergeable(mt))
3640 				set_pageblock_migratetype(page,
3641 							  MIGRATE_MOVABLE);
3642 		}
3643 	}
3644 
3645 	return 1UL << order;
3646 }
3647 
3648 /**
3649  * __putback_isolated_page - Return a now-isolated page back where we got it
3650  * @page: Page that was isolated
3651  * @order: Order of the isolated page
3652  * @mt: The page's pageblock's migratetype
3653  *
3654  * This function is meant to return a page pulled from the free lists via
3655  * __isolate_free_page back to the free lists they were pulled from.
3656  */
3657 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3658 {
3659 	struct zone *zone = page_zone(page);
3660 
3661 	/* zone lock should be held when this function is called */
3662 	lockdep_assert_held(&zone->lock);
3663 
3664 	/* Return isolated page to tail of freelist. */
3665 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3666 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3667 }
3668 
3669 /*
3670  * Update NUMA hit/miss statistics
3671  */
3672 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3673 				   long nr_account)
3674 {
3675 #ifdef CONFIG_NUMA
3676 	enum numa_stat_item local_stat = NUMA_LOCAL;
3677 
3678 	/* skip numa counters update if numa stats is disabled */
3679 	if (!static_branch_likely(&vm_numa_stat_key))
3680 		return;
3681 
3682 	if (zone_to_nid(z) != numa_node_id())
3683 		local_stat = NUMA_OTHER;
3684 
3685 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3686 		__count_numa_events(z, NUMA_HIT, nr_account);
3687 	else {
3688 		__count_numa_events(z, NUMA_MISS, nr_account);
3689 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3690 	}
3691 	__count_numa_events(z, local_stat, nr_account);
3692 #endif
3693 }
3694 
3695 static __always_inline
3696 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3697 			   unsigned int order, unsigned int alloc_flags,
3698 			   int migratetype)
3699 {
3700 	struct page *page;
3701 	unsigned long flags;
3702 
3703 	do {
3704 		page = NULL;
3705 		spin_lock_irqsave(&zone->lock, flags);
3706 		/*
3707 		 * order-0 request can reach here when the pcplist is skipped
3708 		 * due to non-CMA allocation context. HIGHATOMIC area is
3709 		 * reserved for high-order atomic allocation, so order-0
3710 		 * request should skip it.
3711 		 */
3712 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3713 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3714 		if (!page) {
3715 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3716 			if (!page) {
3717 				spin_unlock_irqrestore(&zone->lock, flags);
3718 				return NULL;
3719 			}
3720 		}
3721 		__mod_zone_freepage_state(zone, -(1 << order),
3722 					  get_pcppage_migratetype(page));
3723 		spin_unlock_irqrestore(&zone->lock, flags);
3724 	} while (check_new_pages(page, order));
3725 
3726 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3727 	zone_statistics(preferred_zone, zone, 1);
3728 
3729 	return page;
3730 }
3731 
3732 /* Remove page from the per-cpu list, caller must protect the list */
3733 static inline
3734 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3735 			int migratetype,
3736 			unsigned int alloc_flags,
3737 			struct per_cpu_pages *pcp,
3738 			struct list_head *list)
3739 {
3740 	struct page *page;
3741 
3742 	do {
3743 		if (list_empty(list)) {
3744 			int batch = READ_ONCE(pcp->batch);
3745 			int alloced;
3746 
3747 			/*
3748 			 * Scale batch relative to order if batch implies
3749 			 * free pages can be stored on the PCP. Batch can
3750 			 * be 1 for small zones or for boot pagesets which
3751 			 * should never store free pages as the pages may
3752 			 * belong to arbitrary zones.
3753 			 */
3754 			if (batch > 1)
3755 				batch = max(batch >> order, 2);
3756 			alloced = rmqueue_bulk(zone, order,
3757 					batch, list,
3758 					migratetype, alloc_flags);
3759 
3760 			pcp->count += alloced << order;
3761 			if (unlikely(list_empty(list)))
3762 				return NULL;
3763 		}
3764 
3765 		page = list_first_entry(list, struct page, pcp_list);
3766 		list_del(&page->pcp_list);
3767 		pcp->count -= 1 << order;
3768 	} while (check_new_pcp(page, order));
3769 
3770 	return page;
3771 }
3772 
3773 /* Lock and remove page from the per-cpu list */
3774 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3775 			struct zone *zone, unsigned int order,
3776 			int migratetype, unsigned int alloc_flags)
3777 {
3778 	struct per_cpu_pages *pcp;
3779 	struct list_head *list;
3780 	struct page *page;
3781 	unsigned long flags;
3782 	unsigned long __maybe_unused UP_flags;
3783 
3784 	/*
3785 	 * spin_trylock may fail due to a parallel drain. In the future, the
3786 	 * trylock will also protect against IRQ reentrancy.
3787 	 */
3788 	pcp_trylock_prepare(UP_flags);
3789 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3790 	if (!pcp) {
3791 		pcp_trylock_finish(UP_flags);
3792 		return NULL;
3793 	}
3794 
3795 	/*
3796 	 * On allocation, reduce the number of pages that are batch freed.
3797 	 * See nr_pcp_free() where free_factor is increased for subsequent
3798 	 * frees.
3799 	 */
3800 	pcp->free_factor >>= 1;
3801 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3802 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3803 	pcp_spin_unlock_irqrestore(pcp, flags);
3804 	pcp_trylock_finish(UP_flags);
3805 	if (page) {
3806 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3807 		zone_statistics(preferred_zone, zone, 1);
3808 	}
3809 	return page;
3810 }
3811 
3812 /*
3813  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3814  */
3815 
3816 /*
3817  * Do not instrument rmqueue() with KMSAN. This function may call
3818  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3819  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3820  * may call rmqueue() again, which will result in a deadlock.
3821  */
3822 __no_sanitize_memory
3823 static inline
3824 struct page *rmqueue(struct zone *preferred_zone,
3825 			struct zone *zone, unsigned int order,
3826 			gfp_t gfp_flags, unsigned int alloc_flags,
3827 			int migratetype)
3828 {
3829 	struct page *page;
3830 
3831 	/*
3832 	 * We most definitely don't want callers attempting to
3833 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3834 	 */
3835 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3836 
3837 	if (likely(pcp_allowed_order(order))) {
3838 		/*
3839 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3840 		 * we need to skip it when CMA area isn't allowed.
3841 		 */
3842 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3843 				migratetype != MIGRATE_MOVABLE) {
3844 			page = rmqueue_pcplist(preferred_zone, zone, order,
3845 					migratetype, alloc_flags);
3846 			if (likely(page))
3847 				goto out;
3848 		}
3849 	}
3850 
3851 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3852 							migratetype);
3853 
3854 out:
3855 	/* Separate test+clear to avoid unnecessary atomics */
3856 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3857 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3858 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3859 	}
3860 
3861 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3862 	return page;
3863 }
3864 
3865 #ifdef CONFIG_FAIL_PAGE_ALLOC
3866 
3867 static struct {
3868 	struct fault_attr attr;
3869 
3870 	bool ignore_gfp_highmem;
3871 	bool ignore_gfp_reclaim;
3872 	u32 min_order;
3873 } fail_page_alloc = {
3874 	.attr = FAULT_ATTR_INITIALIZER,
3875 	.ignore_gfp_reclaim = true,
3876 	.ignore_gfp_highmem = true,
3877 	.min_order = 1,
3878 };
3879 
3880 static int __init setup_fail_page_alloc(char *str)
3881 {
3882 	return setup_fault_attr(&fail_page_alloc.attr, str);
3883 }
3884 __setup("fail_page_alloc=", setup_fail_page_alloc);
3885 
3886 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3887 {
3888 	if (order < fail_page_alloc.min_order)
3889 		return false;
3890 	if (gfp_mask & __GFP_NOFAIL)
3891 		return false;
3892 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3893 		return false;
3894 	if (fail_page_alloc.ignore_gfp_reclaim &&
3895 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3896 		return false;
3897 
3898 	if (gfp_mask & __GFP_NOWARN)
3899 		fail_page_alloc.attr.no_warn = true;
3900 
3901 	return should_fail(&fail_page_alloc.attr, 1 << order);
3902 }
3903 
3904 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3905 
3906 static int __init fail_page_alloc_debugfs(void)
3907 {
3908 	umode_t mode = S_IFREG | 0600;
3909 	struct dentry *dir;
3910 
3911 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3912 					&fail_page_alloc.attr);
3913 
3914 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3915 			    &fail_page_alloc.ignore_gfp_reclaim);
3916 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3917 			    &fail_page_alloc.ignore_gfp_highmem);
3918 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3919 
3920 	return 0;
3921 }
3922 
3923 late_initcall(fail_page_alloc_debugfs);
3924 
3925 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3926 
3927 #else /* CONFIG_FAIL_PAGE_ALLOC */
3928 
3929 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3930 {
3931 	return false;
3932 }
3933 
3934 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3935 
3936 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3937 {
3938 	return __should_fail_alloc_page(gfp_mask, order);
3939 }
3940 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3941 
3942 static inline long __zone_watermark_unusable_free(struct zone *z,
3943 				unsigned int order, unsigned int alloc_flags)
3944 {
3945 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3946 	long unusable_free = (1 << order) - 1;
3947 
3948 	/*
3949 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3950 	 * the high-atomic reserves. This will over-estimate the size of the
3951 	 * atomic reserve but it avoids a search.
3952 	 */
3953 	if (likely(!alloc_harder))
3954 		unusable_free += z->nr_reserved_highatomic;
3955 
3956 #ifdef CONFIG_CMA
3957 	/* If allocation can't use CMA areas don't use free CMA pages */
3958 	if (!(alloc_flags & ALLOC_CMA))
3959 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3960 #endif
3961 
3962 	return unusable_free;
3963 }
3964 
3965 /*
3966  * Return true if free base pages are above 'mark'. For high-order checks it
3967  * will return true of the order-0 watermark is reached and there is at least
3968  * one free page of a suitable size. Checking now avoids taking the zone lock
3969  * to check in the allocation paths if no pages are free.
3970  */
3971 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3972 			 int highest_zoneidx, unsigned int alloc_flags,
3973 			 long free_pages)
3974 {
3975 	long min = mark;
3976 	int o;
3977 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3978 
3979 	/* free_pages may go negative - that's OK */
3980 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3981 
3982 	if (alloc_flags & ALLOC_HIGH)
3983 		min -= min / 2;
3984 
3985 	if (unlikely(alloc_harder)) {
3986 		/*
3987 		 * OOM victims can try even harder than normal ALLOC_HARDER
3988 		 * users on the grounds that it's definitely going to be in
3989 		 * the exit path shortly and free memory. Any allocation it
3990 		 * makes during the free path will be small and short-lived.
3991 		 */
3992 		if (alloc_flags & ALLOC_OOM)
3993 			min -= min / 2;
3994 		else
3995 			min -= min / 4;
3996 	}
3997 
3998 	/*
3999 	 * Check watermarks for an order-0 allocation request. If these
4000 	 * are not met, then a high-order request also cannot go ahead
4001 	 * even if a suitable page happened to be free.
4002 	 */
4003 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4004 		return false;
4005 
4006 	/* If this is an order-0 request then the watermark is fine */
4007 	if (!order)
4008 		return true;
4009 
4010 	/* For a high-order request, check at least one suitable page is free */
4011 	for (o = order; o < MAX_ORDER; o++) {
4012 		struct free_area *area = &z->free_area[o];
4013 		int mt;
4014 
4015 		if (!area->nr_free)
4016 			continue;
4017 
4018 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4019 			if (!free_area_empty(area, mt))
4020 				return true;
4021 		}
4022 
4023 #ifdef CONFIG_CMA
4024 		if ((alloc_flags & ALLOC_CMA) &&
4025 		    !free_area_empty(area, MIGRATE_CMA)) {
4026 			return true;
4027 		}
4028 #endif
4029 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4030 			return true;
4031 	}
4032 	return false;
4033 }
4034 
4035 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4036 		      int highest_zoneidx, unsigned int alloc_flags)
4037 {
4038 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4039 					zone_page_state(z, NR_FREE_PAGES));
4040 }
4041 
4042 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4043 				unsigned long mark, int highest_zoneidx,
4044 				unsigned int alloc_flags, gfp_t gfp_mask)
4045 {
4046 	long free_pages;
4047 
4048 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4049 
4050 	/*
4051 	 * Fast check for order-0 only. If this fails then the reserves
4052 	 * need to be calculated.
4053 	 */
4054 	if (!order) {
4055 		long usable_free;
4056 		long reserved;
4057 
4058 		usable_free = free_pages;
4059 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4060 
4061 		/* reserved may over estimate high-atomic reserves. */
4062 		usable_free -= min(usable_free, reserved);
4063 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4064 			return true;
4065 	}
4066 
4067 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4068 					free_pages))
4069 		return true;
4070 	/*
4071 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4072 	 * when checking the min watermark. The min watermark is the
4073 	 * point where boosting is ignored so that kswapd is woken up
4074 	 * when below the low watermark.
4075 	 */
4076 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4077 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4078 		mark = z->_watermark[WMARK_MIN];
4079 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4080 					alloc_flags, free_pages);
4081 	}
4082 
4083 	return false;
4084 }
4085 
4086 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4087 			unsigned long mark, int highest_zoneidx)
4088 {
4089 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4090 
4091 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4092 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4093 
4094 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4095 								free_pages);
4096 }
4097 
4098 #ifdef CONFIG_NUMA
4099 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4100 
4101 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4102 {
4103 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4104 				node_reclaim_distance;
4105 }
4106 #else	/* CONFIG_NUMA */
4107 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4108 {
4109 	return true;
4110 }
4111 #endif	/* CONFIG_NUMA */
4112 
4113 /*
4114  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4115  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4116  * premature use of a lower zone may cause lowmem pressure problems that
4117  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4118  * probably too small. It only makes sense to spread allocations to avoid
4119  * fragmentation between the Normal and DMA32 zones.
4120  */
4121 static inline unsigned int
4122 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4123 {
4124 	unsigned int alloc_flags;
4125 
4126 	/*
4127 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4128 	 * to save a branch.
4129 	 */
4130 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4131 
4132 #ifdef CONFIG_ZONE_DMA32
4133 	if (!zone)
4134 		return alloc_flags;
4135 
4136 	if (zone_idx(zone) != ZONE_NORMAL)
4137 		return alloc_flags;
4138 
4139 	/*
4140 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4141 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4142 	 * on UMA that if Normal is populated then so is DMA32.
4143 	 */
4144 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4145 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4146 		return alloc_flags;
4147 
4148 	alloc_flags |= ALLOC_NOFRAGMENT;
4149 #endif /* CONFIG_ZONE_DMA32 */
4150 	return alloc_flags;
4151 }
4152 
4153 /* Must be called after current_gfp_context() which can change gfp_mask */
4154 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4155 						  unsigned int alloc_flags)
4156 {
4157 #ifdef CONFIG_CMA
4158 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4159 		alloc_flags |= ALLOC_CMA;
4160 #endif
4161 	return alloc_flags;
4162 }
4163 
4164 /*
4165  * get_page_from_freelist goes through the zonelist trying to allocate
4166  * a page.
4167  */
4168 static struct page *
4169 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4170 						const struct alloc_context *ac)
4171 {
4172 	struct zoneref *z;
4173 	struct zone *zone;
4174 	struct pglist_data *last_pgdat = NULL;
4175 	bool last_pgdat_dirty_ok = false;
4176 	bool no_fallback;
4177 
4178 retry:
4179 	/*
4180 	 * Scan zonelist, looking for a zone with enough free.
4181 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4182 	 */
4183 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4184 	z = ac->preferred_zoneref;
4185 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4186 					ac->nodemask) {
4187 		struct page *page;
4188 		unsigned long mark;
4189 
4190 		if (cpusets_enabled() &&
4191 			(alloc_flags & ALLOC_CPUSET) &&
4192 			!__cpuset_zone_allowed(zone, gfp_mask))
4193 				continue;
4194 		/*
4195 		 * When allocating a page cache page for writing, we
4196 		 * want to get it from a node that is within its dirty
4197 		 * limit, such that no single node holds more than its
4198 		 * proportional share of globally allowed dirty pages.
4199 		 * The dirty limits take into account the node's
4200 		 * lowmem reserves and high watermark so that kswapd
4201 		 * should be able to balance it without having to
4202 		 * write pages from its LRU list.
4203 		 *
4204 		 * XXX: For now, allow allocations to potentially
4205 		 * exceed the per-node dirty limit in the slowpath
4206 		 * (spread_dirty_pages unset) before going into reclaim,
4207 		 * which is important when on a NUMA setup the allowed
4208 		 * nodes are together not big enough to reach the
4209 		 * global limit.  The proper fix for these situations
4210 		 * will require awareness of nodes in the
4211 		 * dirty-throttling and the flusher threads.
4212 		 */
4213 		if (ac->spread_dirty_pages) {
4214 			if (last_pgdat != zone->zone_pgdat) {
4215 				last_pgdat = zone->zone_pgdat;
4216 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4217 			}
4218 
4219 			if (!last_pgdat_dirty_ok)
4220 				continue;
4221 		}
4222 
4223 		if (no_fallback && nr_online_nodes > 1 &&
4224 		    zone != ac->preferred_zoneref->zone) {
4225 			int local_nid;
4226 
4227 			/*
4228 			 * If moving to a remote node, retry but allow
4229 			 * fragmenting fallbacks. Locality is more important
4230 			 * than fragmentation avoidance.
4231 			 */
4232 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4233 			if (zone_to_nid(zone) != local_nid) {
4234 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4235 				goto retry;
4236 			}
4237 		}
4238 
4239 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4240 		if (!zone_watermark_fast(zone, order, mark,
4241 				       ac->highest_zoneidx, alloc_flags,
4242 				       gfp_mask)) {
4243 			int ret;
4244 
4245 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4246 			/*
4247 			 * Watermark failed for this zone, but see if we can
4248 			 * grow this zone if it contains deferred pages.
4249 			 */
4250 			if (static_branch_unlikely(&deferred_pages)) {
4251 				if (_deferred_grow_zone(zone, order))
4252 					goto try_this_zone;
4253 			}
4254 #endif
4255 			/* Checked here to keep the fast path fast */
4256 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4257 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4258 				goto try_this_zone;
4259 
4260 			if (!node_reclaim_enabled() ||
4261 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4262 				continue;
4263 
4264 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4265 			switch (ret) {
4266 			case NODE_RECLAIM_NOSCAN:
4267 				/* did not scan */
4268 				continue;
4269 			case NODE_RECLAIM_FULL:
4270 				/* scanned but unreclaimable */
4271 				continue;
4272 			default:
4273 				/* did we reclaim enough */
4274 				if (zone_watermark_ok(zone, order, mark,
4275 					ac->highest_zoneidx, alloc_flags))
4276 					goto try_this_zone;
4277 
4278 				continue;
4279 			}
4280 		}
4281 
4282 try_this_zone:
4283 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4284 				gfp_mask, alloc_flags, ac->migratetype);
4285 		if (page) {
4286 			prep_new_page(page, order, gfp_mask, alloc_flags);
4287 
4288 			/*
4289 			 * If this is a high-order atomic allocation then check
4290 			 * if the pageblock should be reserved for the future
4291 			 */
4292 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4293 				reserve_highatomic_pageblock(page, zone, order);
4294 
4295 			return page;
4296 		} else {
4297 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4298 			/* Try again if zone has deferred pages */
4299 			if (static_branch_unlikely(&deferred_pages)) {
4300 				if (_deferred_grow_zone(zone, order))
4301 					goto try_this_zone;
4302 			}
4303 #endif
4304 		}
4305 	}
4306 
4307 	/*
4308 	 * It's possible on a UMA machine to get through all zones that are
4309 	 * fragmented. If avoiding fragmentation, reset and try again.
4310 	 */
4311 	if (no_fallback) {
4312 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4313 		goto retry;
4314 	}
4315 
4316 	return NULL;
4317 }
4318 
4319 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4320 {
4321 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4322 
4323 	/*
4324 	 * This documents exceptions given to allocations in certain
4325 	 * contexts that are allowed to allocate outside current's set
4326 	 * of allowed nodes.
4327 	 */
4328 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4329 		if (tsk_is_oom_victim(current) ||
4330 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4331 			filter &= ~SHOW_MEM_FILTER_NODES;
4332 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4333 		filter &= ~SHOW_MEM_FILTER_NODES;
4334 
4335 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4336 }
4337 
4338 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4339 {
4340 	struct va_format vaf;
4341 	va_list args;
4342 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4343 
4344 	if ((gfp_mask & __GFP_NOWARN) ||
4345 	     !__ratelimit(&nopage_rs) ||
4346 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4347 		return;
4348 
4349 	va_start(args, fmt);
4350 	vaf.fmt = fmt;
4351 	vaf.va = &args;
4352 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4353 			current->comm, &vaf, gfp_mask, &gfp_mask,
4354 			nodemask_pr_args(nodemask));
4355 	va_end(args);
4356 
4357 	cpuset_print_current_mems_allowed();
4358 	pr_cont("\n");
4359 	dump_stack();
4360 	warn_alloc_show_mem(gfp_mask, nodemask);
4361 }
4362 
4363 static inline struct page *
4364 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4365 			      unsigned int alloc_flags,
4366 			      const struct alloc_context *ac)
4367 {
4368 	struct page *page;
4369 
4370 	page = get_page_from_freelist(gfp_mask, order,
4371 			alloc_flags|ALLOC_CPUSET, ac);
4372 	/*
4373 	 * fallback to ignore cpuset restriction if our nodes
4374 	 * are depleted
4375 	 */
4376 	if (!page)
4377 		page = get_page_from_freelist(gfp_mask, order,
4378 				alloc_flags, ac);
4379 
4380 	return page;
4381 }
4382 
4383 static inline struct page *
4384 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4385 	const struct alloc_context *ac, unsigned long *did_some_progress)
4386 {
4387 	struct oom_control oc = {
4388 		.zonelist = ac->zonelist,
4389 		.nodemask = ac->nodemask,
4390 		.memcg = NULL,
4391 		.gfp_mask = gfp_mask,
4392 		.order = order,
4393 	};
4394 	struct page *page;
4395 
4396 	*did_some_progress = 0;
4397 
4398 	/*
4399 	 * Acquire the oom lock.  If that fails, somebody else is
4400 	 * making progress for us.
4401 	 */
4402 	if (!mutex_trylock(&oom_lock)) {
4403 		*did_some_progress = 1;
4404 		schedule_timeout_uninterruptible(1);
4405 		return NULL;
4406 	}
4407 
4408 	/*
4409 	 * Go through the zonelist yet one more time, keep very high watermark
4410 	 * here, this is only to catch a parallel oom killing, we must fail if
4411 	 * we're still under heavy pressure. But make sure that this reclaim
4412 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4413 	 * allocation which will never fail due to oom_lock already held.
4414 	 */
4415 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4416 				      ~__GFP_DIRECT_RECLAIM, order,
4417 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4418 	if (page)
4419 		goto out;
4420 
4421 	/* Coredumps can quickly deplete all memory reserves */
4422 	if (current->flags & PF_DUMPCORE)
4423 		goto out;
4424 	/* The OOM killer will not help higher order allocs */
4425 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4426 		goto out;
4427 	/*
4428 	 * We have already exhausted all our reclaim opportunities without any
4429 	 * success so it is time to admit defeat. We will skip the OOM killer
4430 	 * because it is very likely that the caller has a more reasonable
4431 	 * fallback than shooting a random task.
4432 	 *
4433 	 * The OOM killer may not free memory on a specific node.
4434 	 */
4435 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4436 		goto out;
4437 	/* The OOM killer does not needlessly kill tasks for lowmem */
4438 	if (ac->highest_zoneidx < ZONE_NORMAL)
4439 		goto out;
4440 	if (pm_suspended_storage())
4441 		goto out;
4442 	/*
4443 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4444 	 * other request to make a forward progress.
4445 	 * We are in an unfortunate situation where out_of_memory cannot
4446 	 * do much for this context but let's try it to at least get
4447 	 * access to memory reserved if the current task is killed (see
4448 	 * out_of_memory). Once filesystems are ready to handle allocation
4449 	 * failures more gracefully we should just bail out here.
4450 	 */
4451 
4452 	/* Exhausted what can be done so it's blame time */
4453 	if (out_of_memory(&oc) ||
4454 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4455 		*did_some_progress = 1;
4456 
4457 		/*
4458 		 * Help non-failing allocations by giving them access to memory
4459 		 * reserves
4460 		 */
4461 		if (gfp_mask & __GFP_NOFAIL)
4462 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4463 					ALLOC_NO_WATERMARKS, ac);
4464 	}
4465 out:
4466 	mutex_unlock(&oom_lock);
4467 	return page;
4468 }
4469 
4470 /*
4471  * Maximum number of compaction retries with a progress before OOM
4472  * killer is consider as the only way to move forward.
4473  */
4474 #define MAX_COMPACT_RETRIES 16
4475 
4476 #ifdef CONFIG_COMPACTION
4477 /* Try memory compaction for high-order allocations before reclaim */
4478 static struct page *
4479 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4480 		unsigned int alloc_flags, const struct alloc_context *ac,
4481 		enum compact_priority prio, enum compact_result *compact_result)
4482 {
4483 	struct page *page = NULL;
4484 	unsigned long pflags;
4485 	unsigned int noreclaim_flag;
4486 
4487 	if (!order)
4488 		return NULL;
4489 
4490 	psi_memstall_enter(&pflags);
4491 	delayacct_compact_start();
4492 	noreclaim_flag = memalloc_noreclaim_save();
4493 
4494 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4495 								prio, &page);
4496 
4497 	memalloc_noreclaim_restore(noreclaim_flag);
4498 	psi_memstall_leave(&pflags);
4499 	delayacct_compact_end();
4500 
4501 	if (*compact_result == COMPACT_SKIPPED)
4502 		return NULL;
4503 	/*
4504 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4505 	 * count a compaction stall
4506 	 */
4507 	count_vm_event(COMPACTSTALL);
4508 
4509 	/* Prep a captured page if available */
4510 	if (page)
4511 		prep_new_page(page, order, gfp_mask, alloc_flags);
4512 
4513 	/* Try get a page from the freelist if available */
4514 	if (!page)
4515 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4516 
4517 	if (page) {
4518 		struct zone *zone = page_zone(page);
4519 
4520 		zone->compact_blockskip_flush = false;
4521 		compaction_defer_reset(zone, order, true);
4522 		count_vm_event(COMPACTSUCCESS);
4523 		return page;
4524 	}
4525 
4526 	/*
4527 	 * It's bad if compaction run occurs and fails. The most likely reason
4528 	 * is that pages exist, but not enough to satisfy watermarks.
4529 	 */
4530 	count_vm_event(COMPACTFAIL);
4531 
4532 	cond_resched();
4533 
4534 	return NULL;
4535 }
4536 
4537 static inline bool
4538 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4539 		     enum compact_result compact_result,
4540 		     enum compact_priority *compact_priority,
4541 		     int *compaction_retries)
4542 {
4543 	int max_retries = MAX_COMPACT_RETRIES;
4544 	int min_priority;
4545 	bool ret = false;
4546 	int retries = *compaction_retries;
4547 	enum compact_priority priority = *compact_priority;
4548 
4549 	if (!order)
4550 		return false;
4551 
4552 	if (fatal_signal_pending(current))
4553 		return false;
4554 
4555 	if (compaction_made_progress(compact_result))
4556 		(*compaction_retries)++;
4557 
4558 	/*
4559 	 * compaction considers all the zone as desperately out of memory
4560 	 * so it doesn't really make much sense to retry except when the
4561 	 * failure could be caused by insufficient priority
4562 	 */
4563 	if (compaction_failed(compact_result))
4564 		goto check_priority;
4565 
4566 	/*
4567 	 * compaction was skipped because there are not enough order-0 pages
4568 	 * to work with, so we retry only if it looks like reclaim can help.
4569 	 */
4570 	if (compaction_needs_reclaim(compact_result)) {
4571 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4572 		goto out;
4573 	}
4574 
4575 	/*
4576 	 * make sure the compaction wasn't deferred or didn't bail out early
4577 	 * due to locks contention before we declare that we should give up.
4578 	 * But the next retry should use a higher priority if allowed, so
4579 	 * we don't just keep bailing out endlessly.
4580 	 */
4581 	if (compaction_withdrawn(compact_result)) {
4582 		goto check_priority;
4583 	}
4584 
4585 	/*
4586 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4587 	 * costly ones because they are de facto nofail and invoke OOM
4588 	 * killer to move on while costly can fail and users are ready
4589 	 * to cope with that. 1/4 retries is rather arbitrary but we
4590 	 * would need much more detailed feedback from compaction to
4591 	 * make a better decision.
4592 	 */
4593 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4594 		max_retries /= 4;
4595 	if (*compaction_retries <= max_retries) {
4596 		ret = true;
4597 		goto out;
4598 	}
4599 
4600 	/*
4601 	 * Make sure there are attempts at the highest priority if we exhausted
4602 	 * all retries or failed at the lower priorities.
4603 	 */
4604 check_priority:
4605 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4606 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4607 
4608 	if (*compact_priority > min_priority) {
4609 		(*compact_priority)--;
4610 		*compaction_retries = 0;
4611 		ret = true;
4612 	}
4613 out:
4614 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4615 	return ret;
4616 }
4617 #else
4618 static inline struct page *
4619 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4620 		unsigned int alloc_flags, const struct alloc_context *ac,
4621 		enum compact_priority prio, enum compact_result *compact_result)
4622 {
4623 	*compact_result = COMPACT_SKIPPED;
4624 	return NULL;
4625 }
4626 
4627 static inline bool
4628 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4629 		     enum compact_result compact_result,
4630 		     enum compact_priority *compact_priority,
4631 		     int *compaction_retries)
4632 {
4633 	struct zone *zone;
4634 	struct zoneref *z;
4635 
4636 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4637 		return false;
4638 
4639 	/*
4640 	 * There are setups with compaction disabled which would prefer to loop
4641 	 * inside the allocator rather than hit the oom killer prematurely.
4642 	 * Let's give them a good hope and keep retrying while the order-0
4643 	 * watermarks are OK.
4644 	 */
4645 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4646 				ac->highest_zoneidx, ac->nodemask) {
4647 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4648 					ac->highest_zoneidx, alloc_flags))
4649 			return true;
4650 	}
4651 	return false;
4652 }
4653 #endif /* CONFIG_COMPACTION */
4654 
4655 #ifdef CONFIG_LOCKDEP
4656 static struct lockdep_map __fs_reclaim_map =
4657 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4658 
4659 static bool __need_reclaim(gfp_t gfp_mask)
4660 {
4661 	/* no reclaim without waiting on it */
4662 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4663 		return false;
4664 
4665 	/* this guy won't enter reclaim */
4666 	if (current->flags & PF_MEMALLOC)
4667 		return false;
4668 
4669 	if (gfp_mask & __GFP_NOLOCKDEP)
4670 		return false;
4671 
4672 	return true;
4673 }
4674 
4675 void __fs_reclaim_acquire(unsigned long ip)
4676 {
4677 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4678 }
4679 
4680 void __fs_reclaim_release(unsigned long ip)
4681 {
4682 	lock_release(&__fs_reclaim_map, ip);
4683 }
4684 
4685 void fs_reclaim_acquire(gfp_t gfp_mask)
4686 {
4687 	gfp_mask = current_gfp_context(gfp_mask);
4688 
4689 	if (__need_reclaim(gfp_mask)) {
4690 		if (gfp_mask & __GFP_FS)
4691 			__fs_reclaim_acquire(_RET_IP_);
4692 
4693 #ifdef CONFIG_MMU_NOTIFIER
4694 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4695 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4696 #endif
4697 
4698 	}
4699 }
4700 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4701 
4702 void fs_reclaim_release(gfp_t gfp_mask)
4703 {
4704 	gfp_mask = current_gfp_context(gfp_mask);
4705 
4706 	if (__need_reclaim(gfp_mask)) {
4707 		if (gfp_mask & __GFP_FS)
4708 			__fs_reclaim_release(_RET_IP_);
4709 	}
4710 }
4711 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4712 #endif
4713 
4714 /*
4715  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4716  * have been rebuilt so allocation retries. Reader side does not lock and
4717  * retries the allocation if zonelist changes. Writer side is protected by the
4718  * embedded spin_lock.
4719  */
4720 static DEFINE_SEQLOCK(zonelist_update_seq);
4721 
4722 static unsigned int zonelist_iter_begin(void)
4723 {
4724 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4725 		return read_seqbegin(&zonelist_update_seq);
4726 
4727 	return 0;
4728 }
4729 
4730 static unsigned int check_retry_zonelist(unsigned int seq)
4731 {
4732 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4733 		return read_seqretry(&zonelist_update_seq, seq);
4734 
4735 	return seq;
4736 }
4737 
4738 /* Perform direct synchronous page reclaim */
4739 static unsigned long
4740 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4741 					const struct alloc_context *ac)
4742 {
4743 	unsigned int noreclaim_flag;
4744 	unsigned long progress;
4745 
4746 	cond_resched();
4747 
4748 	/* We now go into synchronous reclaim */
4749 	cpuset_memory_pressure_bump();
4750 	fs_reclaim_acquire(gfp_mask);
4751 	noreclaim_flag = memalloc_noreclaim_save();
4752 
4753 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4754 								ac->nodemask);
4755 
4756 	memalloc_noreclaim_restore(noreclaim_flag);
4757 	fs_reclaim_release(gfp_mask);
4758 
4759 	cond_resched();
4760 
4761 	return progress;
4762 }
4763 
4764 /* The really slow allocator path where we enter direct reclaim */
4765 static inline struct page *
4766 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4767 		unsigned int alloc_flags, const struct alloc_context *ac,
4768 		unsigned long *did_some_progress)
4769 {
4770 	struct page *page = NULL;
4771 	unsigned long pflags;
4772 	bool drained = false;
4773 
4774 	psi_memstall_enter(&pflags);
4775 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4776 	if (unlikely(!(*did_some_progress)))
4777 		goto out;
4778 
4779 retry:
4780 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4781 
4782 	/*
4783 	 * If an allocation failed after direct reclaim, it could be because
4784 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4785 	 * Shrink them and try again
4786 	 */
4787 	if (!page && !drained) {
4788 		unreserve_highatomic_pageblock(ac, false);
4789 		drain_all_pages(NULL);
4790 		drained = true;
4791 		goto retry;
4792 	}
4793 out:
4794 	psi_memstall_leave(&pflags);
4795 
4796 	return page;
4797 }
4798 
4799 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4800 			     const struct alloc_context *ac)
4801 {
4802 	struct zoneref *z;
4803 	struct zone *zone;
4804 	pg_data_t *last_pgdat = NULL;
4805 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4806 
4807 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4808 					ac->nodemask) {
4809 		if (!managed_zone(zone))
4810 			continue;
4811 		if (last_pgdat != zone->zone_pgdat) {
4812 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4813 			last_pgdat = zone->zone_pgdat;
4814 		}
4815 	}
4816 }
4817 
4818 static inline unsigned int
4819 gfp_to_alloc_flags(gfp_t gfp_mask)
4820 {
4821 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4822 
4823 	/*
4824 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4825 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4826 	 * to save two branches.
4827 	 */
4828 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4829 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4830 
4831 	/*
4832 	 * The caller may dip into page reserves a bit more if the caller
4833 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4834 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4835 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4836 	 */
4837 	alloc_flags |= (__force int)
4838 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4839 
4840 	if (gfp_mask & __GFP_ATOMIC) {
4841 		/*
4842 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4843 		 * if it can't schedule.
4844 		 */
4845 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4846 			alloc_flags |= ALLOC_HARDER;
4847 		/*
4848 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4849 		 * comment for __cpuset_node_allowed().
4850 		 */
4851 		alloc_flags &= ~ALLOC_CPUSET;
4852 	} else if (unlikely(rt_task(current)) && in_task())
4853 		alloc_flags |= ALLOC_HARDER;
4854 
4855 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4856 
4857 	return alloc_flags;
4858 }
4859 
4860 static bool oom_reserves_allowed(struct task_struct *tsk)
4861 {
4862 	if (!tsk_is_oom_victim(tsk))
4863 		return false;
4864 
4865 	/*
4866 	 * !MMU doesn't have oom reaper so give access to memory reserves
4867 	 * only to the thread with TIF_MEMDIE set
4868 	 */
4869 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4870 		return false;
4871 
4872 	return true;
4873 }
4874 
4875 /*
4876  * Distinguish requests which really need access to full memory
4877  * reserves from oom victims which can live with a portion of it
4878  */
4879 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4880 {
4881 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4882 		return 0;
4883 	if (gfp_mask & __GFP_MEMALLOC)
4884 		return ALLOC_NO_WATERMARKS;
4885 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4886 		return ALLOC_NO_WATERMARKS;
4887 	if (!in_interrupt()) {
4888 		if (current->flags & PF_MEMALLOC)
4889 			return ALLOC_NO_WATERMARKS;
4890 		else if (oom_reserves_allowed(current))
4891 			return ALLOC_OOM;
4892 	}
4893 
4894 	return 0;
4895 }
4896 
4897 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4898 {
4899 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4900 }
4901 
4902 /*
4903  * Checks whether it makes sense to retry the reclaim to make a forward progress
4904  * for the given allocation request.
4905  *
4906  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4907  * without success, or when we couldn't even meet the watermark if we
4908  * reclaimed all remaining pages on the LRU lists.
4909  *
4910  * Returns true if a retry is viable or false to enter the oom path.
4911  */
4912 static inline bool
4913 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4914 		     struct alloc_context *ac, int alloc_flags,
4915 		     bool did_some_progress, int *no_progress_loops)
4916 {
4917 	struct zone *zone;
4918 	struct zoneref *z;
4919 	bool ret = false;
4920 
4921 	/*
4922 	 * Costly allocations might have made a progress but this doesn't mean
4923 	 * their order will become available due to high fragmentation so
4924 	 * always increment the no progress counter for them
4925 	 */
4926 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4927 		*no_progress_loops = 0;
4928 	else
4929 		(*no_progress_loops)++;
4930 
4931 	/*
4932 	 * Make sure we converge to OOM if we cannot make any progress
4933 	 * several times in the row.
4934 	 */
4935 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4936 		/* Before OOM, exhaust highatomic_reserve */
4937 		return unreserve_highatomic_pageblock(ac, true);
4938 	}
4939 
4940 	/*
4941 	 * Keep reclaiming pages while there is a chance this will lead
4942 	 * somewhere.  If none of the target zones can satisfy our allocation
4943 	 * request even if all reclaimable pages are considered then we are
4944 	 * screwed and have to go OOM.
4945 	 */
4946 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4947 				ac->highest_zoneidx, ac->nodemask) {
4948 		unsigned long available;
4949 		unsigned long reclaimable;
4950 		unsigned long min_wmark = min_wmark_pages(zone);
4951 		bool wmark;
4952 
4953 		available = reclaimable = zone_reclaimable_pages(zone);
4954 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4955 
4956 		/*
4957 		 * Would the allocation succeed if we reclaimed all
4958 		 * reclaimable pages?
4959 		 */
4960 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4961 				ac->highest_zoneidx, alloc_flags, available);
4962 		trace_reclaim_retry_zone(z, order, reclaimable,
4963 				available, min_wmark, *no_progress_loops, wmark);
4964 		if (wmark) {
4965 			ret = true;
4966 			break;
4967 		}
4968 	}
4969 
4970 	/*
4971 	 * Memory allocation/reclaim might be called from a WQ context and the
4972 	 * current implementation of the WQ concurrency control doesn't
4973 	 * recognize that a particular WQ is congested if the worker thread is
4974 	 * looping without ever sleeping. Therefore we have to do a short sleep
4975 	 * here rather than calling cond_resched().
4976 	 */
4977 	if (current->flags & PF_WQ_WORKER)
4978 		schedule_timeout_uninterruptible(1);
4979 	else
4980 		cond_resched();
4981 	return ret;
4982 }
4983 
4984 static inline bool
4985 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4986 {
4987 	/*
4988 	 * It's possible that cpuset's mems_allowed and the nodemask from
4989 	 * mempolicy don't intersect. This should be normally dealt with by
4990 	 * policy_nodemask(), but it's possible to race with cpuset update in
4991 	 * such a way the check therein was true, and then it became false
4992 	 * before we got our cpuset_mems_cookie here.
4993 	 * This assumes that for all allocations, ac->nodemask can come only
4994 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4995 	 * when it does not intersect with the cpuset restrictions) or the
4996 	 * caller can deal with a violated nodemask.
4997 	 */
4998 	if (cpusets_enabled() && ac->nodemask &&
4999 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5000 		ac->nodemask = NULL;
5001 		return true;
5002 	}
5003 
5004 	/*
5005 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5006 	 * possible to race with parallel threads in such a way that our
5007 	 * allocation can fail while the mask is being updated. If we are about
5008 	 * to fail, check if the cpuset changed during allocation and if so,
5009 	 * retry.
5010 	 */
5011 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5012 		return true;
5013 
5014 	return false;
5015 }
5016 
5017 static inline struct page *
5018 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5019 						struct alloc_context *ac)
5020 {
5021 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5022 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5023 	struct page *page = NULL;
5024 	unsigned int alloc_flags;
5025 	unsigned long did_some_progress;
5026 	enum compact_priority compact_priority;
5027 	enum compact_result compact_result;
5028 	int compaction_retries;
5029 	int no_progress_loops;
5030 	unsigned int cpuset_mems_cookie;
5031 	unsigned int zonelist_iter_cookie;
5032 	int reserve_flags;
5033 
5034 	/*
5035 	 * We also sanity check to catch abuse of atomic reserves being used by
5036 	 * callers that are not in atomic context.
5037 	 */
5038 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5039 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5040 		gfp_mask &= ~__GFP_ATOMIC;
5041 
5042 restart:
5043 	compaction_retries = 0;
5044 	no_progress_loops = 0;
5045 	compact_priority = DEF_COMPACT_PRIORITY;
5046 	cpuset_mems_cookie = read_mems_allowed_begin();
5047 	zonelist_iter_cookie = zonelist_iter_begin();
5048 
5049 	/*
5050 	 * The fast path uses conservative alloc_flags to succeed only until
5051 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5052 	 * alloc_flags precisely. So we do that now.
5053 	 */
5054 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5055 
5056 	/*
5057 	 * We need to recalculate the starting point for the zonelist iterator
5058 	 * because we might have used different nodemask in the fast path, or
5059 	 * there was a cpuset modification and we are retrying - otherwise we
5060 	 * could end up iterating over non-eligible zones endlessly.
5061 	 */
5062 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5063 					ac->highest_zoneidx, ac->nodemask);
5064 	if (!ac->preferred_zoneref->zone)
5065 		goto nopage;
5066 
5067 	/*
5068 	 * Check for insane configurations where the cpuset doesn't contain
5069 	 * any suitable zone to satisfy the request - e.g. non-movable
5070 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5071 	 */
5072 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5073 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5074 					ac->highest_zoneidx,
5075 					&cpuset_current_mems_allowed);
5076 		if (!z->zone)
5077 			goto nopage;
5078 	}
5079 
5080 	if (alloc_flags & ALLOC_KSWAPD)
5081 		wake_all_kswapds(order, gfp_mask, ac);
5082 
5083 	/*
5084 	 * The adjusted alloc_flags might result in immediate success, so try
5085 	 * that first
5086 	 */
5087 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5088 	if (page)
5089 		goto got_pg;
5090 
5091 	/*
5092 	 * For costly allocations, try direct compaction first, as it's likely
5093 	 * that we have enough base pages and don't need to reclaim. For non-
5094 	 * movable high-order allocations, do that as well, as compaction will
5095 	 * try prevent permanent fragmentation by migrating from blocks of the
5096 	 * same migratetype.
5097 	 * Don't try this for allocations that are allowed to ignore
5098 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5099 	 */
5100 	if (can_direct_reclaim &&
5101 			(costly_order ||
5102 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5103 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5104 		page = __alloc_pages_direct_compact(gfp_mask, order,
5105 						alloc_flags, ac,
5106 						INIT_COMPACT_PRIORITY,
5107 						&compact_result);
5108 		if (page)
5109 			goto got_pg;
5110 
5111 		/*
5112 		 * Checks for costly allocations with __GFP_NORETRY, which
5113 		 * includes some THP page fault allocations
5114 		 */
5115 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5116 			/*
5117 			 * If allocating entire pageblock(s) and compaction
5118 			 * failed because all zones are below low watermarks
5119 			 * or is prohibited because it recently failed at this
5120 			 * order, fail immediately unless the allocator has
5121 			 * requested compaction and reclaim retry.
5122 			 *
5123 			 * Reclaim is
5124 			 *  - potentially very expensive because zones are far
5125 			 *    below their low watermarks or this is part of very
5126 			 *    bursty high order allocations,
5127 			 *  - not guaranteed to help because isolate_freepages()
5128 			 *    may not iterate over freed pages as part of its
5129 			 *    linear scan, and
5130 			 *  - unlikely to make entire pageblocks free on its
5131 			 *    own.
5132 			 */
5133 			if (compact_result == COMPACT_SKIPPED ||
5134 			    compact_result == COMPACT_DEFERRED)
5135 				goto nopage;
5136 
5137 			/*
5138 			 * Looks like reclaim/compaction is worth trying, but
5139 			 * sync compaction could be very expensive, so keep
5140 			 * using async compaction.
5141 			 */
5142 			compact_priority = INIT_COMPACT_PRIORITY;
5143 		}
5144 	}
5145 
5146 retry:
5147 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5148 	if (alloc_flags & ALLOC_KSWAPD)
5149 		wake_all_kswapds(order, gfp_mask, ac);
5150 
5151 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5152 	if (reserve_flags)
5153 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5154 					  (alloc_flags & ALLOC_KSWAPD);
5155 
5156 	/*
5157 	 * Reset the nodemask and zonelist iterators if memory policies can be
5158 	 * ignored. These allocations are high priority and system rather than
5159 	 * user oriented.
5160 	 */
5161 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5162 		ac->nodemask = NULL;
5163 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5164 					ac->highest_zoneidx, ac->nodemask);
5165 	}
5166 
5167 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5168 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5169 	if (page)
5170 		goto got_pg;
5171 
5172 	/* Caller is not willing to reclaim, we can't balance anything */
5173 	if (!can_direct_reclaim)
5174 		goto nopage;
5175 
5176 	/* Avoid recursion of direct reclaim */
5177 	if (current->flags & PF_MEMALLOC)
5178 		goto nopage;
5179 
5180 	/* Try direct reclaim and then allocating */
5181 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5182 							&did_some_progress);
5183 	if (page)
5184 		goto got_pg;
5185 
5186 	/* Try direct compaction and then allocating */
5187 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5188 					compact_priority, &compact_result);
5189 	if (page)
5190 		goto got_pg;
5191 
5192 	/* Do not loop if specifically requested */
5193 	if (gfp_mask & __GFP_NORETRY)
5194 		goto nopage;
5195 
5196 	/*
5197 	 * Do not retry costly high order allocations unless they are
5198 	 * __GFP_RETRY_MAYFAIL
5199 	 */
5200 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5201 		goto nopage;
5202 
5203 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5204 				 did_some_progress > 0, &no_progress_loops))
5205 		goto retry;
5206 
5207 	/*
5208 	 * It doesn't make any sense to retry for the compaction if the order-0
5209 	 * reclaim is not able to make any progress because the current
5210 	 * implementation of the compaction depends on the sufficient amount
5211 	 * of free memory (see __compaction_suitable)
5212 	 */
5213 	if (did_some_progress > 0 &&
5214 			should_compact_retry(ac, order, alloc_flags,
5215 				compact_result, &compact_priority,
5216 				&compaction_retries))
5217 		goto retry;
5218 
5219 
5220 	/*
5221 	 * Deal with possible cpuset update races or zonelist updates to avoid
5222 	 * a unnecessary OOM kill.
5223 	 */
5224 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5225 	    check_retry_zonelist(zonelist_iter_cookie))
5226 		goto restart;
5227 
5228 	/* Reclaim has failed us, start killing things */
5229 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5230 	if (page)
5231 		goto got_pg;
5232 
5233 	/* Avoid allocations with no watermarks from looping endlessly */
5234 	if (tsk_is_oom_victim(current) &&
5235 	    (alloc_flags & ALLOC_OOM ||
5236 	     (gfp_mask & __GFP_NOMEMALLOC)))
5237 		goto nopage;
5238 
5239 	/* Retry as long as the OOM killer is making progress */
5240 	if (did_some_progress) {
5241 		no_progress_loops = 0;
5242 		goto retry;
5243 	}
5244 
5245 nopage:
5246 	/*
5247 	 * Deal with possible cpuset update races or zonelist updates to avoid
5248 	 * a unnecessary OOM kill.
5249 	 */
5250 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5251 	    check_retry_zonelist(zonelist_iter_cookie))
5252 		goto restart;
5253 
5254 	/*
5255 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5256 	 * we always retry
5257 	 */
5258 	if (gfp_mask & __GFP_NOFAIL) {
5259 		/*
5260 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5261 		 * of any new users that actually require GFP_NOWAIT
5262 		 */
5263 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5264 			goto fail;
5265 
5266 		/*
5267 		 * PF_MEMALLOC request from this context is rather bizarre
5268 		 * because we cannot reclaim anything and only can loop waiting
5269 		 * for somebody to do a work for us
5270 		 */
5271 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5272 
5273 		/*
5274 		 * non failing costly orders are a hard requirement which we
5275 		 * are not prepared for much so let's warn about these users
5276 		 * so that we can identify them and convert them to something
5277 		 * else.
5278 		 */
5279 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5280 
5281 		/*
5282 		 * Help non-failing allocations by giving them access to memory
5283 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5284 		 * could deplete whole memory reserves which would just make
5285 		 * the situation worse
5286 		 */
5287 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5288 		if (page)
5289 			goto got_pg;
5290 
5291 		cond_resched();
5292 		goto retry;
5293 	}
5294 fail:
5295 	warn_alloc(gfp_mask, ac->nodemask,
5296 			"page allocation failure: order:%u", order);
5297 got_pg:
5298 	return page;
5299 }
5300 
5301 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5302 		int preferred_nid, nodemask_t *nodemask,
5303 		struct alloc_context *ac, gfp_t *alloc_gfp,
5304 		unsigned int *alloc_flags)
5305 {
5306 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5307 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5308 	ac->nodemask = nodemask;
5309 	ac->migratetype = gfp_migratetype(gfp_mask);
5310 
5311 	if (cpusets_enabled()) {
5312 		*alloc_gfp |= __GFP_HARDWALL;
5313 		/*
5314 		 * When we are in the interrupt context, it is irrelevant
5315 		 * to the current task context. It means that any node ok.
5316 		 */
5317 		if (in_task() && !ac->nodemask)
5318 			ac->nodemask = &cpuset_current_mems_allowed;
5319 		else
5320 			*alloc_flags |= ALLOC_CPUSET;
5321 	}
5322 
5323 	might_alloc(gfp_mask);
5324 
5325 	if (should_fail_alloc_page(gfp_mask, order))
5326 		return false;
5327 
5328 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5329 
5330 	/* Dirty zone balancing only done in the fast path */
5331 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5332 
5333 	/*
5334 	 * The preferred zone is used for statistics but crucially it is
5335 	 * also used as the starting point for the zonelist iterator. It
5336 	 * may get reset for allocations that ignore memory policies.
5337 	 */
5338 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5339 					ac->highest_zoneidx, ac->nodemask);
5340 
5341 	return true;
5342 }
5343 
5344 /*
5345  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5346  * @gfp: GFP flags for the allocation
5347  * @preferred_nid: The preferred NUMA node ID to allocate from
5348  * @nodemask: Set of nodes to allocate from, may be NULL
5349  * @nr_pages: The number of pages desired on the list or array
5350  * @page_list: Optional list to store the allocated pages
5351  * @page_array: Optional array to store the pages
5352  *
5353  * This is a batched version of the page allocator that attempts to
5354  * allocate nr_pages quickly. Pages are added to page_list if page_list
5355  * is not NULL, otherwise it is assumed that the page_array is valid.
5356  *
5357  * For lists, nr_pages is the number of pages that should be allocated.
5358  *
5359  * For arrays, only NULL elements are populated with pages and nr_pages
5360  * is the maximum number of pages that will be stored in the array.
5361  *
5362  * Returns the number of pages on the list or array.
5363  */
5364 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5365 			nodemask_t *nodemask, int nr_pages,
5366 			struct list_head *page_list,
5367 			struct page **page_array)
5368 {
5369 	struct page *page;
5370 	unsigned long flags;
5371 	unsigned long __maybe_unused UP_flags;
5372 	struct zone *zone;
5373 	struct zoneref *z;
5374 	struct per_cpu_pages *pcp;
5375 	struct list_head *pcp_list;
5376 	struct alloc_context ac;
5377 	gfp_t alloc_gfp;
5378 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5379 	int nr_populated = 0, nr_account = 0;
5380 
5381 	/*
5382 	 * Skip populated array elements to determine if any pages need
5383 	 * to be allocated before disabling IRQs.
5384 	 */
5385 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5386 		nr_populated++;
5387 
5388 	/* No pages requested? */
5389 	if (unlikely(nr_pages <= 0))
5390 		goto out;
5391 
5392 	/* Already populated array? */
5393 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5394 		goto out;
5395 
5396 	/* Bulk allocator does not support memcg accounting. */
5397 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5398 		goto failed;
5399 
5400 	/* Use the single page allocator for one page. */
5401 	if (nr_pages - nr_populated == 1)
5402 		goto failed;
5403 
5404 #ifdef CONFIG_PAGE_OWNER
5405 	/*
5406 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5407 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5408 	 * removes much of the performance benefit of bulk allocation so
5409 	 * force the caller to allocate one page at a time as it'll have
5410 	 * similar performance to added complexity to the bulk allocator.
5411 	 */
5412 	if (static_branch_unlikely(&page_owner_inited))
5413 		goto failed;
5414 #endif
5415 
5416 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5417 	gfp &= gfp_allowed_mask;
5418 	alloc_gfp = gfp;
5419 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5420 		goto out;
5421 	gfp = alloc_gfp;
5422 
5423 	/* Find an allowed local zone that meets the low watermark. */
5424 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5425 		unsigned long mark;
5426 
5427 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5428 		    !__cpuset_zone_allowed(zone, gfp)) {
5429 			continue;
5430 		}
5431 
5432 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5433 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5434 			goto failed;
5435 		}
5436 
5437 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5438 		if (zone_watermark_fast(zone, 0,  mark,
5439 				zonelist_zone_idx(ac.preferred_zoneref),
5440 				alloc_flags, gfp)) {
5441 			break;
5442 		}
5443 	}
5444 
5445 	/*
5446 	 * If there are no allowed local zones that meets the watermarks then
5447 	 * try to allocate a single page and reclaim if necessary.
5448 	 */
5449 	if (unlikely(!zone))
5450 		goto failed;
5451 
5452 	/* Is a parallel drain in progress? */
5453 	pcp_trylock_prepare(UP_flags);
5454 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5455 	if (!pcp)
5456 		goto failed_irq;
5457 
5458 	/* Attempt the batch allocation */
5459 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5460 	while (nr_populated < nr_pages) {
5461 
5462 		/* Skip existing pages */
5463 		if (page_array && page_array[nr_populated]) {
5464 			nr_populated++;
5465 			continue;
5466 		}
5467 
5468 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5469 								pcp, pcp_list);
5470 		if (unlikely(!page)) {
5471 			/* Try and allocate at least one page */
5472 			if (!nr_account) {
5473 				pcp_spin_unlock_irqrestore(pcp, flags);
5474 				goto failed_irq;
5475 			}
5476 			break;
5477 		}
5478 		nr_account++;
5479 
5480 		prep_new_page(page, 0, gfp, 0);
5481 		if (page_list)
5482 			list_add(&page->lru, page_list);
5483 		else
5484 			page_array[nr_populated] = page;
5485 		nr_populated++;
5486 	}
5487 
5488 	pcp_spin_unlock_irqrestore(pcp, flags);
5489 	pcp_trylock_finish(UP_flags);
5490 
5491 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5492 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5493 
5494 out:
5495 	return nr_populated;
5496 
5497 failed_irq:
5498 	pcp_trylock_finish(UP_flags);
5499 
5500 failed:
5501 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5502 	if (page) {
5503 		if (page_list)
5504 			list_add(&page->lru, page_list);
5505 		else
5506 			page_array[nr_populated] = page;
5507 		nr_populated++;
5508 	}
5509 
5510 	goto out;
5511 }
5512 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5513 
5514 /*
5515  * This is the 'heart' of the zoned buddy allocator.
5516  */
5517 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5518 							nodemask_t *nodemask)
5519 {
5520 	struct page *page;
5521 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5522 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5523 	struct alloc_context ac = { };
5524 
5525 	/*
5526 	 * There are several places where we assume that the order value is sane
5527 	 * so bail out early if the request is out of bound.
5528 	 */
5529 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5530 		return NULL;
5531 
5532 	gfp &= gfp_allowed_mask;
5533 	/*
5534 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5535 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5536 	 * from a particular context which has been marked by
5537 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5538 	 * movable zones are not used during allocation.
5539 	 */
5540 	gfp = current_gfp_context(gfp);
5541 	alloc_gfp = gfp;
5542 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5543 			&alloc_gfp, &alloc_flags))
5544 		return NULL;
5545 
5546 	/*
5547 	 * Forbid the first pass from falling back to types that fragment
5548 	 * memory until all local zones are considered.
5549 	 */
5550 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5551 
5552 	/* First allocation attempt */
5553 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5554 	if (likely(page))
5555 		goto out;
5556 
5557 	alloc_gfp = gfp;
5558 	ac.spread_dirty_pages = false;
5559 
5560 	/*
5561 	 * Restore the original nodemask if it was potentially replaced with
5562 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5563 	 */
5564 	ac.nodemask = nodemask;
5565 
5566 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5567 
5568 out:
5569 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5570 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5571 		__free_pages(page, order);
5572 		page = NULL;
5573 	}
5574 
5575 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5576 	kmsan_alloc_page(page, order, alloc_gfp);
5577 
5578 	return page;
5579 }
5580 EXPORT_SYMBOL(__alloc_pages);
5581 
5582 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5583 		nodemask_t *nodemask)
5584 {
5585 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5586 			preferred_nid, nodemask);
5587 
5588 	if (page && order > 1)
5589 		prep_transhuge_page(page);
5590 	return (struct folio *)page;
5591 }
5592 EXPORT_SYMBOL(__folio_alloc);
5593 
5594 /*
5595  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5596  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5597  * you need to access high mem.
5598  */
5599 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5600 {
5601 	struct page *page;
5602 
5603 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5604 	if (!page)
5605 		return 0;
5606 	return (unsigned long) page_address(page);
5607 }
5608 EXPORT_SYMBOL(__get_free_pages);
5609 
5610 unsigned long get_zeroed_page(gfp_t gfp_mask)
5611 {
5612 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5613 }
5614 EXPORT_SYMBOL(get_zeroed_page);
5615 
5616 /**
5617  * __free_pages - Free pages allocated with alloc_pages().
5618  * @page: The page pointer returned from alloc_pages().
5619  * @order: The order of the allocation.
5620  *
5621  * This function can free multi-page allocations that are not compound
5622  * pages.  It does not check that the @order passed in matches that of
5623  * the allocation, so it is easy to leak memory.  Freeing more memory
5624  * than was allocated will probably emit a warning.
5625  *
5626  * If the last reference to this page is speculative, it will be released
5627  * by put_page() which only frees the first page of a non-compound
5628  * allocation.  To prevent the remaining pages from being leaked, we free
5629  * the subsequent pages here.  If you want to use the page's reference
5630  * count to decide when to free the allocation, you should allocate a
5631  * compound page, and use put_page() instead of __free_pages().
5632  *
5633  * Context: May be called in interrupt context or while holding a normal
5634  * spinlock, but not in NMI context or while holding a raw spinlock.
5635  */
5636 void __free_pages(struct page *page, unsigned int order)
5637 {
5638 	if (put_page_testzero(page))
5639 		free_the_page(page, order);
5640 	else if (!PageHead(page))
5641 		while (order-- > 0)
5642 			free_the_page(page + (1 << order), order);
5643 }
5644 EXPORT_SYMBOL(__free_pages);
5645 
5646 void free_pages(unsigned long addr, unsigned int order)
5647 {
5648 	if (addr != 0) {
5649 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5650 		__free_pages(virt_to_page((void *)addr), order);
5651 	}
5652 }
5653 
5654 EXPORT_SYMBOL(free_pages);
5655 
5656 /*
5657  * Page Fragment:
5658  *  An arbitrary-length arbitrary-offset area of memory which resides
5659  *  within a 0 or higher order page.  Multiple fragments within that page
5660  *  are individually refcounted, in the page's reference counter.
5661  *
5662  * The page_frag functions below provide a simple allocation framework for
5663  * page fragments.  This is used by the network stack and network device
5664  * drivers to provide a backing region of memory for use as either an
5665  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5666  */
5667 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5668 					     gfp_t gfp_mask)
5669 {
5670 	struct page *page = NULL;
5671 	gfp_t gfp = gfp_mask;
5672 
5673 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5674 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5675 		    __GFP_NOMEMALLOC;
5676 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5677 				PAGE_FRAG_CACHE_MAX_ORDER);
5678 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5679 #endif
5680 	if (unlikely(!page))
5681 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5682 
5683 	nc->va = page ? page_address(page) : NULL;
5684 
5685 	return page;
5686 }
5687 
5688 void __page_frag_cache_drain(struct page *page, unsigned int count)
5689 {
5690 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5691 
5692 	if (page_ref_sub_and_test(page, count))
5693 		free_the_page(page, compound_order(page));
5694 }
5695 EXPORT_SYMBOL(__page_frag_cache_drain);
5696 
5697 void *page_frag_alloc_align(struct page_frag_cache *nc,
5698 		      unsigned int fragsz, gfp_t gfp_mask,
5699 		      unsigned int align_mask)
5700 {
5701 	unsigned int size = PAGE_SIZE;
5702 	struct page *page;
5703 	int offset;
5704 
5705 	if (unlikely(!nc->va)) {
5706 refill:
5707 		page = __page_frag_cache_refill(nc, gfp_mask);
5708 		if (!page)
5709 			return NULL;
5710 
5711 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5712 		/* if size can vary use size else just use PAGE_SIZE */
5713 		size = nc->size;
5714 #endif
5715 		/* Even if we own the page, we do not use atomic_set().
5716 		 * This would break get_page_unless_zero() users.
5717 		 */
5718 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5719 
5720 		/* reset page count bias and offset to start of new frag */
5721 		nc->pfmemalloc = page_is_pfmemalloc(page);
5722 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5723 		nc->offset = size;
5724 	}
5725 
5726 	offset = nc->offset - fragsz;
5727 	if (unlikely(offset < 0)) {
5728 		page = virt_to_page(nc->va);
5729 
5730 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5731 			goto refill;
5732 
5733 		if (unlikely(nc->pfmemalloc)) {
5734 			free_the_page(page, compound_order(page));
5735 			goto refill;
5736 		}
5737 
5738 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5739 		/* if size can vary use size else just use PAGE_SIZE */
5740 		size = nc->size;
5741 #endif
5742 		/* OK, page count is 0, we can safely set it */
5743 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5744 
5745 		/* reset page count bias and offset to start of new frag */
5746 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5747 		offset = size - fragsz;
5748 		if (unlikely(offset < 0)) {
5749 			/*
5750 			 * The caller is trying to allocate a fragment
5751 			 * with fragsz > PAGE_SIZE but the cache isn't big
5752 			 * enough to satisfy the request, this may
5753 			 * happen in low memory conditions.
5754 			 * We don't release the cache page because
5755 			 * it could make memory pressure worse
5756 			 * so we simply return NULL here.
5757 			 */
5758 			return NULL;
5759 		}
5760 	}
5761 
5762 	nc->pagecnt_bias--;
5763 	offset &= align_mask;
5764 	nc->offset = offset;
5765 
5766 	return nc->va + offset;
5767 }
5768 EXPORT_SYMBOL(page_frag_alloc_align);
5769 
5770 /*
5771  * Frees a page fragment allocated out of either a compound or order 0 page.
5772  */
5773 void page_frag_free(void *addr)
5774 {
5775 	struct page *page = virt_to_head_page(addr);
5776 
5777 	if (unlikely(put_page_testzero(page)))
5778 		free_the_page(page, compound_order(page));
5779 }
5780 EXPORT_SYMBOL(page_frag_free);
5781 
5782 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5783 		size_t size)
5784 {
5785 	if (addr) {
5786 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5787 		unsigned long used = addr + PAGE_ALIGN(size);
5788 
5789 		split_page(virt_to_page((void *)addr), order);
5790 		while (used < alloc_end) {
5791 			free_page(used);
5792 			used += PAGE_SIZE;
5793 		}
5794 	}
5795 	return (void *)addr;
5796 }
5797 
5798 /**
5799  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5800  * @size: the number of bytes to allocate
5801  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5802  *
5803  * This function is similar to alloc_pages(), except that it allocates the
5804  * minimum number of pages to satisfy the request.  alloc_pages() can only
5805  * allocate memory in power-of-two pages.
5806  *
5807  * This function is also limited by MAX_ORDER.
5808  *
5809  * Memory allocated by this function must be released by free_pages_exact().
5810  *
5811  * Return: pointer to the allocated area or %NULL in case of error.
5812  */
5813 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5814 {
5815 	unsigned int order = get_order(size);
5816 	unsigned long addr;
5817 
5818 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5819 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5820 
5821 	addr = __get_free_pages(gfp_mask, order);
5822 	return make_alloc_exact(addr, order, size);
5823 }
5824 EXPORT_SYMBOL(alloc_pages_exact);
5825 
5826 /**
5827  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5828  *			   pages on a node.
5829  * @nid: the preferred node ID where memory should be allocated
5830  * @size: the number of bytes to allocate
5831  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5832  *
5833  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5834  * back.
5835  *
5836  * Return: pointer to the allocated area or %NULL in case of error.
5837  */
5838 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5839 {
5840 	unsigned int order = get_order(size);
5841 	struct page *p;
5842 
5843 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5844 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5845 
5846 	p = alloc_pages_node(nid, gfp_mask, order);
5847 	if (!p)
5848 		return NULL;
5849 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5850 }
5851 
5852 /**
5853  * free_pages_exact - release memory allocated via alloc_pages_exact()
5854  * @virt: the value returned by alloc_pages_exact.
5855  * @size: size of allocation, same value as passed to alloc_pages_exact().
5856  *
5857  * Release the memory allocated by a previous call to alloc_pages_exact.
5858  */
5859 void free_pages_exact(void *virt, size_t size)
5860 {
5861 	unsigned long addr = (unsigned long)virt;
5862 	unsigned long end = addr + PAGE_ALIGN(size);
5863 
5864 	while (addr < end) {
5865 		free_page(addr);
5866 		addr += PAGE_SIZE;
5867 	}
5868 }
5869 EXPORT_SYMBOL(free_pages_exact);
5870 
5871 /**
5872  * nr_free_zone_pages - count number of pages beyond high watermark
5873  * @offset: The zone index of the highest zone
5874  *
5875  * nr_free_zone_pages() counts the number of pages which are beyond the
5876  * high watermark within all zones at or below a given zone index.  For each
5877  * zone, the number of pages is calculated as:
5878  *
5879  *     nr_free_zone_pages = managed_pages - high_pages
5880  *
5881  * Return: number of pages beyond high watermark.
5882  */
5883 static unsigned long nr_free_zone_pages(int offset)
5884 {
5885 	struct zoneref *z;
5886 	struct zone *zone;
5887 
5888 	/* Just pick one node, since fallback list is circular */
5889 	unsigned long sum = 0;
5890 
5891 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5892 
5893 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5894 		unsigned long size = zone_managed_pages(zone);
5895 		unsigned long high = high_wmark_pages(zone);
5896 		if (size > high)
5897 			sum += size - high;
5898 	}
5899 
5900 	return sum;
5901 }
5902 
5903 /**
5904  * nr_free_buffer_pages - count number of pages beyond high watermark
5905  *
5906  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5907  * watermark within ZONE_DMA and ZONE_NORMAL.
5908  *
5909  * Return: number of pages beyond high watermark within ZONE_DMA and
5910  * ZONE_NORMAL.
5911  */
5912 unsigned long nr_free_buffer_pages(void)
5913 {
5914 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5915 }
5916 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5917 
5918 static inline void show_node(struct zone *zone)
5919 {
5920 	if (IS_ENABLED(CONFIG_NUMA))
5921 		printk("Node %d ", zone_to_nid(zone));
5922 }
5923 
5924 long si_mem_available(void)
5925 {
5926 	long available;
5927 	unsigned long pagecache;
5928 	unsigned long wmark_low = 0;
5929 	unsigned long pages[NR_LRU_LISTS];
5930 	unsigned long reclaimable;
5931 	struct zone *zone;
5932 	int lru;
5933 
5934 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5935 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5936 
5937 	for_each_zone(zone)
5938 		wmark_low += low_wmark_pages(zone);
5939 
5940 	/*
5941 	 * Estimate the amount of memory available for userspace allocations,
5942 	 * without causing swapping or OOM.
5943 	 */
5944 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5945 
5946 	/*
5947 	 * Not all the page cache can be freed, otherwise the system will
5948 	 * start swapping or thrashing. Assume at least half of the page
5949 	 * cache, or the low watermark worth of cache, needs to stay.
5950 	 */
5951 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5952 	pagecache -= min(pagecache / 2, wmark_low);
5953 	available += pagecache;
5954 
5955 	/*
5956 	 * Part of the reclaimable slab and other kernel memory consists of
5957 	 * items that are in use, and cannot be freed. Cap this estimate at the
5958 	 * low watermark.
5959 	 */
5960 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5961 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5962 	available += reclaimable - min(reclaimable / 2, wmark_low);
5963 
5964 	if (available < 0)
5965 		available = 0;
5966 	return available;
5967 }
5968 EXPORT_SYMBOL_GPL(si_mem_available);
5969 
5970 void si_meminfo(struct sysinfo *val)
5971 {
5972 	val->totalram = totalram_pages();
5973 	val->sharedram = global_node_page_state(NR_SHMEM);
5974 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5975 	val->bufferram = nr_blockdev_pages();
5976 	val->totalhigh = totalhigh_pages();
5977 	val->freehigh = nr_free_highpages();
5978 	val->mem_unit = PAGE_SIZE;
5979 }
5980 
5981 EXPORT_SYMBOL(si_meminfo);
5982 
5983 #ifdef CONFIG_NUMA
5984 void si_meminfo_node(struct sysinfo *val, int nid)
5985 {
5986 	int zone_type;		/* needs to be signed */
5987 	unsigned long managed_pages = 0;
5988 	unsigned long managed_highpages = 0;
5989 	unsigned long free_highpages = 0;
5990 	pg_data_t *pgdat = NODE_DATA(nid);
5991 
5992 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5993 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5994 	val->totalram = managed_pages;
5995 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5996 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5997 #ifdef CONFIG_HIGHMEM
5998 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5999 		struct zone *zone = &pgdat->node_zones[zone_type];
6000 
6001 		if (is_highmem(zone)) {
6002 			managed_highpages += zone_managed_pages(zone);
6003 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6004 		}
6005 	}
6006 	val->totalhigh = managed_highpages;
6007 	val->freehigh = free_highpages;
6008 #else
6009 	val->totalhigh = managed_highpages;
6010 	val->freehigh = free_highpages;
6011 #endif
6012 	val->mem_unit = PAGE_SIZE;
6013 }
6014 #endif
6015 
6016 /*
6017  * Determine whether the node should be displayed or not, depending on whether
6018  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6019  */
6020 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6021 {
6022 	if (!(flags & SHOW_MEM_FILTER_NODES))
6023 		return false;
6024 
6025 	/*
6026 	 * no node mask - aka implicit memory numa policy. Do not bother with
6027 	 * the synchronization - read_mems_allowed_begin - because we do not
6028 	 * have to be precise here.
6029 	 */
6030 	if (!nodemask)
6031 		nodemask = &cpuset_current_mems_allowed;
6032 
6033 	return !node_isset(nid, *nodemask);
6034 }
6035 
6036 #define K(x) ((x) << (PAGE_SHIFT-10))
6037 
6038 static void show_migration_types(unsigned char type)
6039 {
6040 	static const char types[MIGRATE_TYPES] = {
6041 		[MIGRATE_UNMOVABLE]	= 'U',
6042 		[MIGRATE_MOVABLE]	= 'M',
6043 		[MIGRATE_RECLAIMABLE]	= 'E',
6044 		[MIGRATE_HIGHATOMIC]	= 'H',
6045 #ifdef CONFIG_CMA
6046 		[MIGRATE_CMA]		= 'C',
6047 #endif
6048 #ifdef CONFIG_MEMORY_ISOLATION
6049 		[MIGRATE_ISOLATE]	= 'I',
6050 #endif
6051 	};
6052 	char tmp[MIGRATE_TYPES + 1];
6053 	char *p = tmp;
6054 	int i;
6055 
6056 	for (i = 0; i < MIGRATE_TYPES; i++) {
6057 		if (type & (1 << i))
6058 			*p++ = types[i];
6059 	}
6060 
6061 	*p = '\0';
6062 	printk(KERN_CONT "(%s) ", tmp);
6063 }
6064 
6065 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6066 {
6067 	int zone_idx;
6068 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6069 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6070 			return true;
6071 	return false;
6072 }
6073 
6074 /*
6075  * Show free area list (used inside shift_scroll-lock stuff)
6076  * We also calculate the percentage fragmentation. We do this by counting the
6077  * memory on each free list with the exception of the first item on the list.
6078  *
6079  * Bits in @filter:
6080  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6081  *   cpuset.
6082  */
6083 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6084 {
6085 	unsigned long free_pcp = 0;
6086 	int cpu, nid;
6087 	struct zone *zone;
6088 	pg_data_t *pgdat;
6089 
6090 	for_each_populated_zone(zone) {
6091 		if (zone_idx(zone) > max_zone_idx)
6092 			continue;
6093 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6094 			continue;
6095 
6096 		for_each_online_cpu(cpu)
6097 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6098 	}
6099 
6100 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6101 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6102 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6103 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6104 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6105 		" kernel_misc_reclaimable:%lu\n"
6106 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6107 		global_node_page_state(NR_ACTIVE_ANON),
6108 		global_node_page_state(NR_INACTIVE_ANON),
6109 		global_node_page_state(NR_ISOLATED_ANON),
6110 		global_node_page_state(NR_ACTIVE_FILE),
6111 		global_node_page_state(NR_INACTIVE_FILE),
6112 		global_node_page_state(NR_ISOLATED_FILE),
6113 		global_node_page_state(NR_UNEVICTABLE),
6114 		global_node_page_state(NR_FILE_DIRTY),
6115 		global_node_page_state(NR_WRITEBACK),
6116 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6117 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6118 		global_node_page_state(NR_FILE_MAPPED),
6119 		global_node_page_state(NR_SHMEM),
6120 		global_node_page_state(NR_PAGETABLE),
6121 		global_zone_page_state(NR_BOUNCE),
6122 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6123 		global_zone_page_state(NR_FREE_PAGES),
6124 		free_pcp,
6125 		global_zone_page_state(NR_FREE_CMA_PAGES));
6126 
6127 	for_each_online_pgdat(pgdat) {
6128 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6129 			continue;
6130 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6131 			continue;
6132 
6133 		printk("Node %d"
6134 			" active_anon:%lukB"
6135 			" inactive_anon:%lukB"
6136 			" active_file:%lukB"
6137 			" inactive_file:%lukB"
6138 			" unevictable:%lukB"
6139 			" isolated(anon):%lukB"
6140 			" isolated(file):%lukB"
6141 			" mapped:%lukB"
6142 			" dirty:%lukB"
6143 			" writeback:%lukB"
6144 			" shmem:%lukB"
6145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6146 			" shmem_thp: %lukB"
6147 			" shmem_pmdmapped: %lukB"
6148 			" anon_thp: %lukB"
6149 #endif
6150 			" writeback_tmp:%lukB"
6151 			" kernel_stack:%lukB"
6152 #ifdef CONFIG_SHADOW_CALL_STACK
6153 			" shadow_call_stack:%lukB"
6154 #endif
6155 			" pagetables:%lukB"
6156 			" all_unreclaimable? %s"
6157 			"\n",
6158 			pgdat->node_id,
6159 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6160 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6161 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6162 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6163 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6164 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6165 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6166 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6167 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6168 			K(node_page_state(pgdat, NR_WRITEBACK)),
6169 			K(node_page_state(pgdat, NR_SHMEM)),
6170 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6171 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6172 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6173 			K(node_page_state(pgdat, NR_ANON_THPS)),
6174 #endif
6175 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6176 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6177 #ifdef CONFIG_SHADOW_CALL_STACK
6178 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6179 #endif
6180 			K(node_page_state(pgdat, NR_PAGETABLE)),
6181 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6182 				"yes" : "no");
6183 	}
6184 
6185 	for_each_populated_zone(zone) {
6186 		int i;
6187 
6188 		if (zone_idx(zone) > max_zone_idx)
6189 			continue;
6190 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6191 			continue;
6192 
6193 		free_pcp = 0;
6194 		for_each_online_cpu(cpu)
6195 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6196 
6197 		show_node(zone);
6198 		printk(KERN_CONT
6199 			"%s"
6200 			" free:%lukB"
6201 			" boost:%lukB"
6202 			" min:%lukB"
6203 			" low:%lukB"
6204 			" high:%lukB"
6205 			" reserved_highatomic:%luKB"
6206 			" active_anon:%lukB"
6207 			" inactive_anon:%lukB"
6208 			" active_file:%lukB"
6209 			" inactive_file:%lukB"
6210 			" unevictable:%lukB"
6211 			" writepending:%lukB"
6212 			" present:%lukB"
6213 			" managed:%lukB"
6214 			" mlocked:%lukB"
6215 			" bounce:%lukB"
6216 			" free_pcp:%lukB"
6217 			" local_pcp:%ukB"
6218 			" free_cma:%lukB"
6219 			"\n",
6220 			zone->name,
6221 			K(zone_page_state(zone, NR_FREE_PAGES)),
6222 			K(zone->watermark_boost),
6223 			K(min_wmark_pages(zone)),
6224 			K(low_wmark_pages(zone)),
6225 			K(high_wmark_pages(zone)),
6226 			K(zone->nr_reserved_highatomic),
6227 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6228 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6229 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6230 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6231 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6232 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6233 			K(zone->present_pages),
6234 			K(zone_managed_pages(zone)),
6235 			K(zone_page_state(zone, NR_MLOCK)),
6236 			K(zone_page_state(zone, NR_BOUNCE)),
6237 			K(free_pcp),
6238 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6239 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6240 		printk("lowmem_reserve[]:");
6241 		for (i = 0; i < MAX_NR_ZONES; i++)
6242 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6243 		printk(KERN_CONT "\n");
6244 	}
6245 
6246 	for_each_populated_zone(zone) {
6247 		unsigned int order;
6248 		unsigned long nr[MAX_ORDER], flags, total = 0;
6249 		unsigned char types[MAX_ORDER];
6250 
6251 		if (zone_idx(zone) > max_zone_idx)
6252 			continue;
6253 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6254 			continue;
6255 		show_node(zone);
6256 		printk(KERN_CONT "%s: ", zone->name);
6257 
6258 		spin_lock_irqsave(&zone->lock, flags);
6259 		for (order = 0; order < MAX_ORDER; order++) {
6260 			struct free_area *area = &zone->free_area[order];
6261 			int type;
6262 
6263 			nr[order] = area->nr_free;
6264 			total += nr[order] << order;
6265 
6266 			types[order] = 0;
6267 			for (type = 0; type < MIGRATE_TYPES; type++) {
6268 				if (!free_area_empty(area, type))
6269 					types[order] |= 1 << type;
6270 			}
6271 		}
6272 		spin_unlock_irqrestore(&zone->lock, flags);
6273 		for (order = 0; order < MAX_ORDER; order++) {
6274 			printk(KERN_CONT "%lu*%lukB ",
6275 			       nr[order], K(1UL) << order);
6276 			if (nr[order])
6277 				show_migration_types(types[order]);
6278 		}
6279 		printk(KERN_CONT "= %lukB\n", K(total));
6280 	}
6281 
6282 	for_each_online_node(nid) {
6283 		if (show_mem_node_skip(filter, nid, nodemask))
6284 			continue;
6285 		hugetlb_show_meminfo_node(nid);
6286 	}
6287 
6288 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6289 
6290 	show_swap_cache_info();
6291 }
6292 
6293 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6294 {
6295 	zoneref->zone = zone;
6296 	zoneref->zone_idx = zone_idx(zone);
6297 }
6298 
6299 /*
6300  * Builds allocation fallback zone lists.
6301  *
6302  * Add all populated zones of a node to the zonelist.
6303  */
6304 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6305 {
6306 	struct zone *zone;
6307 	enum zone_type zone_type = MAX_NR_ZONES;
6308 	int nr_zones = 0;
6309 
6310 	do {
6311 		zone_type--;
6312 		zone = pgdat->node_zones + zone_type;
6313 		if (populated_zone(zone)) {
6314 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6315 			check_highest_zone(zone_type);
6316 		}
6317 	} while (zone_type);
6318 
6319 	return nr_zones;
6320 }
6321 
6322 #ifdef CONFIG_NUMA
6323 
6324 static int __parse_numa_zonelist_order(char *s)
6325 {
6326 	/*
6327 	 * We used to support different zonelists modes but they turned
6328 	 * out to be just not useful. Let's keep the warning in place
6329 	 * if somebody still use the cmd line parameter so that we do
6330 	 * not fail it silently
6331 	 */
6332 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6333 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6334 		return -EINVAL;
6335 	}
6336 	return 0;
6337 }
6338 
6339 char numa_zonelist_order[] = "Node";
6340 
6341 /*
6342  * sysctl handler for numa_zonelist_order
6343  */
6344 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6345 		void *buffer, size_t *length, loff_t *ppos)
6346 {
6347 	if (write)
6348 		return __parse_numa_zonelist_order(buffer);
6349 	return proc_dostring(table, write, buffer, length, ppos);
6350 }
6351 
6352 
6353 static int node_load[MAX_NUMNODES];
6354 
6355 /**
6356  * find_next_best_node - find the next node that should appear in a given node's fallback list
6357  * @node: node whose fallback list we're appending
6358  * @used_node_mask: nodemask_t of already used nodes
6359  *
6360  * We use a number of factors to determine which is the next node that should
6361  * appear on a given node's fallback list.  The node should not have appeared
6362  * already in @node's fallback list, and it should be the next closest node
6363  * according to the distance array (which contains arbitrary distance values
6364  * from each node to each node in the system), and should also prefer nodes
6365  * with no CPUs, since presumably they'll have very little allocation pressure
6366  * on them otherwise.
6367  *
6368  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6369  */
6370 int find_next_best_node(int node, nodemask_t *used_node_mask)
6371 {
6372 	int n, val;
6373 	int min_val = INT_MAX;
6374 	int best_node = NUMA_NO_NODE;
6375 
6376 	/* Use the local node if we haven't already */
6377 	if (!node_isset(node, *used_node_mask)) {
6378 		node_set(node, *used_node_mask);
6379 		return node;
6380 	}
6381 
6382 	for_each_node_state(n, N_MEMORY) {
6383 
6384 		/* Don't want a node to appear more than once */
6385 		if (node_isset(n, *used_node_mask))
6386 			continue;
6387 
6388 		/* Use the distance array to find the distance */
6389 		val = node_distance(node, n);
6390 
6391 		/* Penalize nodes under us ("prefer the next node") */
6392 		val += (n < node);
6393 
6394 		/* Give preference to headless and unused nodes */
6395 		if (!cpumask_empty(cpumask_of_node(n)))
6396 			val += PENALTY_FOR_NODE_WITH_CPUS;
6397 
6398 		/* Slight preference for less loaded node */
6399 		val *= MAX_NUMNODES;
6400 		val += node_load[n];
6401 
6402 		if (val < min_val) {
6403 			min_val = val;
6404 			best_node = n;
6405 		}
6406 	}
6407 
6408 	if (best_node >= 0)
6409 		node_set(best_node, *used_node_mask);
6410 
6411 	return best_node;
6412 }
6413 
6414 
6415 /*
6416  * Build zonelists ordered by node and zones within node.
6417  * This results in maximum locality--normal zone overflows into local
6418  * DMA zone, if any--but risks exhausting DMA zone.
6419  */
6420 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6421 		unsigned nr_nodes)
6422 {
6423 	struct zoneref *zonerefs;
6424 	int i;
6425 
6426 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6427 
6428 	for (i = 0; i < nr_nodes; i++) {
6429 		int nr_zones;
6430 
6431 		pg_data_t *node = NODE_DATA(node_order[i]);
6432 
6433 		nr_zones = build_zonerefs_node(node, zonerefs);
6434 		zonerefs += nr_zones;
6435 	}
6436 	zonerefs->zone = NULL;
6437 	zonerefs->zone_idx = 0;
6438 }
6439 
6440 /*
6441  * Build gfp_thisnode zonelists
6442  */
6443 static void build_thisnode_zonelists(pg_data_t *pgdat)
6444 {
6445 	struct zoneref *zonerefs;
6446 	int nr_zones;
6447 
6448 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6449 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6450 	zonerefs += nr_zones;
6451 	zonerefs->zone = NULL;
6452 	zonerefs->zone_idx = 0;
6453 }
6454 
6455 /*
6456  * Build zonelists ordered by zone and nodes within zones.
6457  * This results in conserving DMA zone[s] until all Normal memory is
6458  * exhausted, but results in overflowing to remote node while memory
6459  * may still exist in local DMA zone.
6460  */
6461 
6462 static void build_zonelists(pg_data_t *pgdat)
6463 {
6464 	static int node_order[MAX_NUMNODES];
6465 	int node, nr_nodes = 0;
6466 	nodemask_t used_mask = NODE_MASK_NONE;
6467 	int local_node, prev_node;
6468 
6469 	/* NUMA-aware ordering of nodes */
6470 	local_node = pgdat->node_id;
6471 	prev_node = local_node;
6472 
6473 	memset(node_order, 0, sizeof(node_order));
6474 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6475 		/*
6476 		 * We don't want to pressure a particular node.
6477 		 * So adding penalty to the first node in same
6478 		 * distance group to make it round-robin.
6479 		 */
6480 		if (node_distance(local_node, node) !=
6481 		    node_distance(local_node, prev_node))
6482 			node_load[node] += 1;
6483 
6484 		node_order[nr_nodes++] = node;
6485 		prev_node = node;
6486 	}
6487 
6488 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6489 	build_thisnode_zonelists(pgdat);
6490 	pr_info("Fallback order for Node %d: ", local_node);
6491 	for (node = 0; node < nr_nodes; node++)
6492 		pr_cont("%d ", node_order[node]);
6493 	pr_cont("\n");
6494 }
6495 
6496 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6497 /*
6498  * Return node id of node used for "local" allocations.
6499  * I.e., first node id of first zone in arg node's generic zonelist.
6500  * Used for initializing percpu 'numa_mem', which is used primarily
6501  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6502  */
6503 int local_memory_node(int node)
6504 {
6505 	struct zoneref *z;
6506 
6507 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6508 				   gfp_zone(GFP_KERNEL),
6509 				   NULL);
6510 	return zone_to_nid(z->zone);
6511 }
6512 #endif
6513 
6514 static void setup_min_unmapped_ratio(void);
6515 static void setup_min_slab_ratio(void);
6516 #else	/* CONFIG_NUMA */
6517 
6518 static void build_zonelists(pg_data_t *pgdat)
6519 {
6520 	int node, local_node;
6521 	struct zoneref *zonerefs;
6522 	int nr_zones;
6523 
6524 	local_node = pgdat->node_id;
6525 
6526 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6527 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6528 	zonerefs += nr_zones;
6529 
6530 	/*
6531 	 * Now we build the zonelist so that it contains the zones
6532 	 * of all the other nodes.
6533 	 * We don't want to pressure a particular node, so when
6534 	 * building the zones for node N, we make sure that the
6535 	 * zones coming right after the local ones are those from
6536 	 * node N+1 (modulo N)
6537 	 */
6538 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6539 		if (!node_online(node))
6540 			continue;
6541 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6542 		zonerefs += nr_zones;
6543 	}
6544 	for (node = 0; node < local_node; node++) {
6545 		if (!node_online(node))
6546 			continue;
6547 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6548 		zonerefs += nr_zones;
6549 	}
6550 
6551 	zonerefs->zone = NULL;
6552 	zonerefs->zone_idx = 0;
6553 }
6554 
6555 #endif	/* CONFIG_NUMA */
6556 
6557 /*
6558  * Boot pageset table. One per cpu which is going to be used for all
6559  * zones and all nodes. The parameters will be set in such a way
6560  * that an item put on a list will immediately be handed over to
6561  * the buddy list. This is safe since pageset manipulation is done
6562  * with interrupts disabled.
6563  *
6564  * The boot_pagesets must be kept even after bootup is complete for
6565  * unused processors and/or zones. They do play a role for bootstrapping
6566  * hotplugged processors.
6567  *
6568  * zoneinfo_show() and maybe other functions do
6569  * not check if the processor is online before following the pageset pointer.
6570  * Other parts of the kernel may not check if the zone is available.
6571  */
6572 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6573 /* These effectively disable the pcplists in the boot pageset completely */
6574 #define BOOT_PAGESET_HIGH	0
6575 #define BOOT_PAGESET_BATCH	1
6576 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6577 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6578 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6579 
6580 static void __build_all_zonelists(void *data)
6581 {
6582 	int nid;
6583 	int __maybe_unused cpu;
6584 	pg_data_t *self = data;
6585 
6586 	write_seqlock(&zonelist_update_seq);
6587 
6588 #ifdef CONFIG_NUMA
6589 	memset(node_load, 0, sizeof(node_load));
6590 #endif
6591 
6592 	/*
6593 	 * This node is hotadded and no memory is yet present.   So just
6594 	 * building zonelists is fine - no need to touch other nodes.
6595 	 */
6596 	if (self && !node_online(self->node_id)) {
6597 		build_zonelists(self);
6598 	} else {
6599 		/*
6600 		 * All possible nodes have pgdat preallocated
6601 		 * in free_area_init
6602 		 */
6603 		for_each_node(nid) {
6604 			pg_data_t *pgdat = NODE_DATA(nid);
6605 
6606 			build_zonelists(pgdat);
6607 		}
6608 
6609 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6610 		/*
6611 		 * We now know the "local memory node" for each node--
6612 		 * i.e., the node of the first zone in the generic zonelist.
6613 		 * Set up numa_mem percpu variable for on-line cpus.  During
6614 		 * boot, only the boot cpu should be on-line;  we'll init the
6615 		 * secondary cpus' numa_mem as they come on-line.  During
6616 		 * node/memory hotplug, we'll fixup all on-line cpus.
6617 		 */
6618 		for_each_online_cpu(cpu)
6619 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6620 #endif
6621 	}
6622 
6623 	write_sequnlock(&zonelist_update_seq);
6624 }
6625 
6626 static noinline void __init
6627 build_all_zonelists_init(void)
6628 {
6629 	int cpu;
6630 
6631 	__build_all_zonelists(NULL);
6632 
6633 	/*
6634 	 * Initialize the boot_pagesets that are going to be used
6635 	 * for bootstrapping processors. The real pagesets for
6636 	 * each zone will be allocated later when the per cpu
6637 	 * allocator is available.
6638 	 *
6639 	 * boot_pagesets are used also for bootstrapping offline
6640 	 * cpus if the system is already booted because the pagesets
6641 	 * are needed to initialize allocators on a specific cpu too.
6642 	 * F.e. the percpu allocator needs the page allocator which
6643 	 * needs the percpu allocator in order to allocate its pagesets
6644 	 * (a chicken-egg dilemma).
6645 	 */
6646 	for_each_possible_cpu(cpu)
6647 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6648 
6649 	mminit_verify_zonelist();
6650 	cpuset_init_current_mems_allowed();
6651 }
6652 
6653 /*
6654  * unless system_state == SYSTEM_BOOTING.
6655  *
6656  * __ref due to call of __init annotated helper build_all_zonelists_init
6657  * [protected by SYSTEM_BOOTING].
6658  */
6659 void __ref build_all_zonelists(pg_data_t *pgdat)
6660 {
6661 	unsigned long vm_total_pages;
6662 
6663 	if (system_state == SYSTEM_BOOTING) {
6664 		build_all_zonelists_init();
6665 	} else {
6666 		__build_all_zonelists(pgdat);
6667 		/* cpuset refresh routine should be here */
6668 	}
6669 	/* Get the number of free pages beyond high watermark in all zones. */
6670 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6671 	/*
6672 	 * Disable grouping by mobility if the number of pages in the
6673 	 * system is too low to allow the mechanism to work. It would be
6674 	 * more accurate, but expensive to check per-zone. This check is
6675 	 * made on memory-hotadd so a system can start with mobility
6676 	 * disabled and enable it later
6677 	 */
6678 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6679 		page_group_by_mobility_disabled = 1;
6680 	else
6681 		page_group_by_mobility_disabled = 0;
6682 
6683 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6684 		nr_online_nodes,
6685 		page_group_by_mobility_disabled ? "off" : "on",
6686 		vm_total_pages);
6687 #ifdef CONFIG_NUMA
6688 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6689 #endif
6690 }
6691 
6692 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6693 static bool __meminit
6694 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6695 {
6696 	static struct memblock_region *r;
6697 
6698 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6699 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6700 			for_each_mem_region(r) {
6701 				if (*pfn < memblock_region_memory_end_pfn(r))
6702 					break;
6703 			}
6704 		}
6705 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6706 		    memblock_is_mirror(r)) {
6707 			*pfn = memblock_region_memory_end_pfn(r);
6708 			return true;
6709 		}
6710 	}
6711 	return false;
6712 }
6713 
6714 /*
6715  * Initially all pages are reserved - free ones are freed
6716  * up by memblock_free_all() once the early boot process is
6717  * done. Non-atomic initialization, single-pass.
6718  *
6719  * All aligned pageblocks are initialized to the specified migratetype
6720  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6721  * zone stats (e.g., nr_isolate_pageblock) are touched.
6722  */
6723 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6724 		unsigned long start_pfn, unsigned long zone_end_pfn,
6725 		enum meminit_context context,
6726 		struct vmem_altmap *altmap, int migratetype)
6727 {
6728 	unsigned long pfn, end_pfn = start_pfn + size;
6729 	struct page *page;
6730 
6731 	if (highest_memmap_pfn < end_pfn - 1)
6732 		highest_memmap_pfn = end_pfn - 1;
6733 
6734 #ifdef CONFIG_ZONE_DEVICE
6735 	/*
6736 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6737 	 * memory. We limit the total number of pages to initialize to just
6738 	 * those that might contain the memory mapping. We will defer the
6739 	 * ZONE_DEVICE page initialization until after we have released
6740 	 * the hotplug lock.
6741 	 */
6742 	if (zone == ZONE_DEVICE) {
6743 		if (!altmap)
6744 			return;
6745 
6746 		if (start_pfn == altmap->base_pfn)
6747 			start_pfn += altmap->reserve;
6748 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6749 	}
6750 #endif
6751 
6752 	for (pfn = start_pfn; pfn < end_pfn; ) {
6753 		/*
6754 		 * There can be holes in boot-time mem_map[]s handed to this
6755 		 * function.  They do not exist on hotplugged memory.
6756 		 */
6757 		if (context == MEMINIT_EARLY) {
6758 			if (overlap_memmap_init(zone, &pfn))
6759 				continue;
6760 			if (defer_init(nid, pfn, zone_end_pfn))
6761 				break;
6762 		}
6763 
6764 		page = pfn_to_page(pfn);
6765 		__init_single_page(page, pfn, zone, nid);
6766 		if (context == MEMINIT_HOTPLUG)
6767 			__SetPageReserved(page);
6768 
6769 		/*
6770 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6771 		 * such that unmovable allocations won't be scattered all
6772 		 * over the place during system boot.
6773 		 */
6774 		if (pageblock_aligned(pfn)) {
6775 			set_pageblock_migratetype(page, migratetype);
6776 			cond_resched();
6777 		}
6778 		pfn++;
6779 	}
6780 }
6781 
6782 #ifdef CONFIG_ZONE_DEVICE
6783 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6784 					  unsigned long zone_idx, int nid,
6785 					  struct dev_pagemap *pgmap)
6786 {
6787 
6788 	__init_single_page(page, pfn, zone_idx, nid);
6789 
6790 	/*
6791 	 * Mark page reserved as it will need to wait for onlining
6792 	 * phase for it to be fully associated with a zone.
6793 	 *
6794 	 * We can use the non-atomic __set_bit operation for setting
6795 	 * the flag as we are still initializing the pages.
6796 	 */
6797 	__SetPageReserved(page);
6798 
6799 	/*
6800 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6801 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6802 	 * ever freed or placed on a driver-private list.
6803 	 */
6804 	page->pgmap = pgmap;
6805 	page->zone_device_data = NULL;
6806 
6807 	/*
6808 	 * Mark the block movable so that blocks are reserved for
6809 	 * movable at startup. This will force kernel allocations
6810 	 * to reserve their blocks rather than leaking throughout
6811 	 * the address space during boot when many long-lived
6812 	 * kernel allocations are made.
6813 	 *
6814 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6815 	 * because this is done early in section_activate()
6816 	 */
6817 	if (pageblock_aligned(pfn)) {
6818 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6819 		cond_resched();
6820 	}
6821 }
6822 
6823 /*
6824  * With compound page geometry and when struct pages are stored in ram most
6825  * tail pages are reused. Consequently, the amount of unique struct pages to
6826  * initialize is a lot smaller that the total amount of struct pages being
6827  * mapped. This is a paired / mild layering violation with explicit knowledge
6828  * of how the sparse_vmemmap internals handle compound pages in the lack
6829  * of an altmap. See vmemmap_populate_compound_pages().
6830  */
6831 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6832 					      unsigned long nr_pages)
6833 {
6834 	return is_power_of_2(sizeof(struct page)) &&
6835 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6836 }
6837 
6838 static void __ref memmap_init_compound(struct page *head,
6839 				       unsigned long head_pfn,
6840 				       unsigned long zone_idx, int nid,
6841 				       struct dev_pagemap *pgmap,
6842 				       unsigned long nr_pages)
6843 {
6844 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6845 	unsigned int order = pgmap->vmemmap_shift;
6846 
6847 	__SetPageHead(head);
6848 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6849 		struct page *page = pfn_to_page(pfn);
6850 
6851 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6852 		prep_compound_tail(head, pfn - head_pfn);
6853 		set_page_count(page, 0);
6854 
6855 		/*
6856 		 * The first tail page stores compound_mapcount_ptr() and
6857 		 * compound_order() and the second tail page stores
6858 		 * compound_pincount_ptr(). Call prep_compound_head() after
6859 		 * the first and second tail pages have been initialized to
6860 		 * not have the data overwritten.
6861 		 */
6862 		if (pfn == head_pfn + 2)
6863 			prep_compound_head(head, order);
6864 	}
6865 }
6866 
6867 void __ref memmap_init_zone_device(struct zone *zone,
6868 				   unsigned long start_pfn,
6869 				   unsigned long nr_pages,
6870 				   struct dev_pagemap *pgmap)
6871 {
6872 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6873 	struct pglist_data *pgdat = zone->zone_pgdat;
6874 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6875 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6876 	unsigned long zone_idx = zone_idx(zone);
6877 	unsigned long start = jiffies;
6878 	int nid = pgdat->node_id;
6879 
6880 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6881 		return;
6882 
6883 	/*
6884 	 * The call to memmap_init should have already taken care
6885 	 * of the pages reserved for the memmap, so we can just jump to
6886 	 * the end of that region and start processing the device pages.
6887 	 */
6888 	if (altmap) {
6889 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6890 		nr_pages = end_pfn - start_pfn;
6891 	}
6892 
6893 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6894 		struct page *page = pfn_to_page(pfn);
6895 
6896 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6897 
6898 		if (pfns_per_compound == 1)
6899 			continue;
6900 
6901 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6902 				     compound_nr_pages(altmap, pfns_per_compound));
6903 	}
6904 
6905 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6906 		nr_pages, jiffies_to_msecs(jiffies - start));
6907 }
6908 
6909 #endif
6910 static void __meminit zone_init_free_lists(struct zone *zone)
6911 {
6912 	unsigned int order, t;
6913 	for_each_migratetype_order(order, t) {
6914 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6915 		zone->free_area[order].nr_free = 0;
6916 	}
6917 }
6918 
6919 /*
6920  * Only struct pages that correspond to ranges defined by memblock.memory
6921  * are zeroed and initialized by going through __init_single_page() during
6922  * memmap_init_zone_range().
6923  *
6924  * But, there could be struct pages that correspond to holes in
6925  * memblock.memory. This can happen because of the following reasons:
6926  * - physical memory bank size is not necessarily the exact multiple of the
6927  *   arbitrary section size
6928  * - early reserved memory may not be listed in memblock.memory
6929  * - memory layouts defined with memmap= kernel parameter may not align
6930  *   nicely with memmap sections
6931  *
6932  * Explicitly initialize those struct pages so that:
6933  * - PG_Reserved is set
6934  * - zone and node links point to zone and node that span the page if the
6935  *   hole is in the middle of a zone
6936  * - zone and node links point to adjacent zone/node if the hole falls on
6937  *   the zone boundary; the pages in such holes will be prepended to the
6938  *   zone/node above the hole except for the trailing pages in the last
6939  *   section that will be appended to the zone/node below.
6940  */
6941 static void __init init_unavailable_range(unsigned long spfn,
6942 					  unsigned long epfn,
6943 					  int zone, int node)
6944 {
6945 	unsigned long pfn;
6946 	u64 pgcnt = 0;
6947 
6948 	for (pfn = spfn; pfn < epfn; pfn++) {
6949 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6950 			pfn = pageblock_end_pfn(pfn) - 1;
6951 			continue;
6952 		}
6953 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6954 		__SetPageReserved(pfn_to_page(pfn));
6955 		pgcnt++;
6956 	}
6957 
6958 	if (pgcnt)
6959 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6960 			node, zone_names[zone], pgcnt);
6961 }
6962 
6963 static void __init memmap_init_zone_range(struct zone *zone,
6964 					  unsigned long start_pfn,
6965 					  unsigned long end_pfn,
6966 					  unsigned long *hole_pfn)
6967 {
6968 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6969 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6970 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6971 
6972 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6973 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6974 
6975 	if (start_pfn >= end_pfn)
6976 		return;
6977 
6978 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6979 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6980 
6981 	if (*hole_pfn < start_pfn)
6982 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6983 
6984 	*hole_pfn = end_pfn;
6985 }
6986 
6987 static void __init memmap_init(void)
6988 {
6989 	unsigned long start_pfn, end_pfn;
6990 	unsigned long hole_pfn = 0;
6991 	int i, j, zone_id = 0, nid;
6992 
6993 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6994 		struct pglist_data *node = NODE_DATA(nid);
6995 
6996 		for (j = 0; j < MAX_NR_ZONES; j++) {
6997 			struct zone *zone = node->node_zones + j;
6998 
6999 			if (!populated_zone(zone))
7000 				continue;
7001 
7002 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7003 					       &hole_pfn);
7004 			zone_id = j;
7005 		}
7006 	}
7007 
7008 #ifdef CONFIG_SPARSEMEM
7009 	/*
7010 	 * Initialize the memory map for hole in the range [memory_end,
7011 	 * section_end].
7012 	 * Append the pages in this hole to the highest zone in the last
7013 	 * node.
7014 	 * The call to init_unavailable_range() is outside the ifdef to
7015 	 * silence the compiler warining about zone_id set but not used;
7016 	 * for FLATMEM it is a nop anyway
7017 	 */
7018 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7019 	if (hole_pfn < end_pfn)
7020 #endif
7021 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7022 }
7023 
7024 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7025 			  phys_addr_t min_addr, int nid, bool exact_nid)
7026 {
7027 	void *ptr;
7028 
7029 	if (exact_nid)
7030 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7031 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7032 						   nid);
7033 	else
7034 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7035 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7036 						 nid);
7037 
7038 	if (ptr && size > 0)
7039 		page_init_poison(ptr, size);
7040 
7041 	return ptr;
7042 }
7043 
7044 static int zone_batchsize(struct zone *zone)
7045 {
7046 #ifdef CONFIG_MMU
7047 	int batch;
7048 
7049 	/*
7050 	 * The number of pages to batch allocate is either ~0.1%
7051 	 * of the zone or 1MB, whichever is smaller. The batch
7052 	 * size is striking a balance between allocation latency
7053 	 * and zone lock contention.
7054 	 */
7055 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7056 	batch /= 4;		/* We effectively *= 4 below */
7057 	if (batch < 1)
7058 		batch = 1;
7059 
7060 	/*
7061 	 * Clamp the batch to a 2^n - 1 value. Having a power
7062 	 * of 2 value was found to be more likely to have
7063 	 * suboptimal cache aliasing properties in some cases.
7064 	 *
7065 	 * For example if 2 tasks are alternately allocating
7066 	 * batches of pages, one task can end up with a lot
7067 	 * of pages of one half of the possible page colors
7068 	 * and the other with pages of the other colors.
7069 	 */
7070 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7071 
7072 	return batch;
7073 
7074 #else
7075 	/* The deferral and batching of frees should be suppressed under NOMMU
7076 	 * conditions.
7077 	 *
7078 	 * The problem is that NOMMU needs to be able to allocate large chunks
7079 	 * of contiguous memory as there's no hardware page translation to
7080 	 * assemble apparent contiguous memory from discontiguous pages.
7081 	 *
7082 	 * Queueing large contiguous runs of pages for batching, however,
7083 	 * causes the pages to actually be freed in smaller chunks.  As there
7084 	 * can be a significant delay between the individual batches being
7085 	 * recycled, this leads to the once large chunks of space being
7086 	 * fragmented and becoming unavailable for high-order allocations.
7087 	 */
7088 	return 0;
7089 #endif
7090 }
7091 
7092 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7093 {
7094 #ifdef CONFIG_MMU
7095 	int high;
7096 	int nr_split_cpus;
7097 	unsigned long total_pages;
7098 
7099 	if (!percpu_pagelist_high_fraction) {
7100 		/*
7101 		 * By default, the high value of the pcp is based on the zone
7102 		 * low watermark so that if they are full then background
7103 		 * reclaim will not be started prematurely.
7104 		 */
7105 		total_pages = low_wmark_pages(zone);
7106 	} else {
7107 		/*
7108 		 * If percpu_pagelist_high_fraction is configured, the high
7109 		 * value is based on a fraction of the managed pages in the
7110 		 * zone.
7111 		 */
7112 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7113 	}
7114 
7115 	/*
7116 	 * Split the high value across all online CPUs local to the zone. Note
7117 	 * that early in boot that CPUs may not be online yet and that during
7118 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7119 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7120 	 * all online CPUs to mitigate the risk that reclaim is triggered
7121 	 * prematurely due to pages stored on pcp lists.
7122 	 */
7123 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7124 	if (!nr_split_cpus)
7125 		nr_split_cpus = num_online_cpus();
7126 	high = total_pages / nr_split_cpus;
7127 
7128 	/*
7129 	 * Ensure high is at least batch*4. The multiple is based on the
7130 	 * historical relationship between high and batch.
7131 	 */
7132 	high = max(high, batch << 2);
7133 
7134 	return high;
7135 #else
7136 	return 0;
7137 #endif
7138 }
7139 
7140 /*
7141  * pcp->high and pcp->batch values are related and generally batch is lower
7142  * than high. They are also related to pcp->count such that count is lower
7143  * than high, and as soon as it reaches high, the pcplist is flushed.
7144  *
7145  * However, guaranteeing these relations at all times would require e.g. write
7146  * barriers here but also careful usage of read barriers at the read side, and
7147  * thus be prone to error and bad for performance. Thus the update only prevents
7148  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7149  * can cope with those fields changing asynchronously, and fully trust only the
7150  * pcp->count field on the local CPU with interrupts disabled.
7151  *
7152  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7153  * outside of boot time (or some other assurance that no concurrent updaters
7154  * exist).
7155  */
7156 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7157 		unsigned long batch)
7158 {
7159 	WRITE_ONCE(pcp->batch, batch);
7160 	WRITE_ONCE(pcp->high, high);
7161 }
7162 
7163 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7164 {
7165 	int pindex;
7166 
7167 	memset(pcp, 0, sizeof(*pcp));
7168 	memset(pzstats, 0, sizeof(*pzstats));
7169 
7170 	spin_lock_init(&pcp->lock);
7171 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7172 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7173 
7174 	/*
7175 	 * Set batch and high values safe for a boot pageset. A true percpu
7176 	 * pageset's initialization will update them subsequently. Here we don't
7177 	 * need to be as careful as pageset_update() as nobody can access the
7178 	 * pageset yet.
7179 	 */
7180 	pcp->high = BOOT_PAGESET_HIGH;
7181 	pcp->batch = BOOT_PAGESET_BATCH;
7182 	pcp->free_factor = 0;
7183 }
7184 
7185 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7186 		unsigned long batch)
7187 {
7188 	struct per_cpu_pages *pcp;
7189 	int cpu;
7190 
7191 	for_each_possible_cpu(cpu) {
7192 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7193 		pageset_update(pcp, high, batch);
7194 	}
7195 }
7196 
7197 /*
7198  * Calculate and set new high and batch values for all per-cpu pagesets of a
7199  * zone based on the zone's size.
7200  */
7201 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7202 {
7203 	int new_high, new_batch;
7204 
7205 	new_batch = max(1, zone_batchsize(zone));
7206 	new_high = zone_highsize(zone, new_batch, cpu_online);
7207 
7208 	if (zone->pageset_high == new_high &&
7209 	    zone->pageset_batch == new_batch)
7210 		return;
7211 
7212 	zone->pageset_high = new_high;
7213 	zone->pageset_batch = new_batch;
7214 
7215 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7216 }
7217 
7218 void __meminit setup_zone_pageset(struct zone *zone)
7219 {
7220 	int cpu;
7221 
7222 	/* Size may be 0 on !SMP && !NUMA */
7223 	if (sizeof(struct per_cpu_zonestat) > 0)
7224 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7225 
7226 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7227 	for_each_possible_cpu(cpu) {
7228 		struct per_cpu_pages *pcp;
7229 		struct per_cpu_zonestat *pzstats;
7230 
7231 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7232 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7233 		per_cpu_pages_init(pcp, pzstats);
7234 	}
7235 
7236 	zone_set_pageset_high_and_batch(zone, 0);
7237 }
7238 
7239 /*
7240  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7241  * page high values need to be recalculated.
7242  */
7243 static void zone_pcp_update(struct zone *zone, int cpu_online)
7244 {
7245 	mutex_lock(&pcp_batch_high_lock);
7246 	zone_set_pageset_high_and_batch(zone, cpu_online);
7247 	mutex_unlock(&pcp_batch_high_lock);
7248 }
7249 
7250 /*
7251  * Allocate per cpu pagesets and initialize them.
7252  * Before this call only boot pagesets were available.
7253  */
7254 void __init setup_per_cpu_pageset(void)
7255 {
7256 	struct pglist_data *pgdat;
7257 	struct zone *zone;
7258 	int __maybe_unused cpu;
7259 
7260 	for_each_populated_zone(zone)
7261 		setup_zone_pageset(zone);
7262 
7263 #ifdef CONFIG_NUMA
7264 	/*
7265 	 * Unpopulated zones continue using the boot pagesets.
7266 	 * The numa stats for these pagesets need to be reset.
7267 	 * Otherwise, they will end up skewing the stats of
7268 	 * the nodes these zones are associated with.
7269 	 */
7270 	for_each_possible_cpu(cpu) {
7271 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7272 		memset(pzstats->vm_numa_event, 0,
7273 		       sizeof(pzstats->vm_numa_event));
7274 	}
7275 #endif
7276 
7277 	for_each_online_pgdat(pgdat)
7278 		pgdat->per_cpu_nodestats =
7279 			alloc_percpu(struct per_cpu_nodestat);
7280 }
7281 
7282 static __meminit void zone_pcp_init(struct zone *zone)
7283 {
7284 	/*
7285 	 * per cpu subsystem is not up at this point. The following code
7286 	 * relies on the ability of the linker to provide the
7287 	 * offset of a (static) per cpu variable into the per cpu area.
7288 	 */
7289 	zone->per_cpu_pageset = &boot_pageset;
7290 	zone->per_cpu_zonestats = &boot_zonestats;
7291 	zone->pageset_high = BOOT_PAGESET_HIGH;
7292 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7293 
7294 	if (populated_zone(zone))
7295 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7296 			 zone->present_pages, zone_batchsize(zone));
7297 }
7298 
7299 void __meminit init_currently_empty_zone(struct zone *zone,
7300 					unsigned long zone_start_pfn,
7301 					unsigned long size)
7302 {
7303 	struct pglist_data *pgdat = zone->zone_pgdat;
7304 	int zone_idx = zone_idx(zone) + 1;
7305 
7306 	if (zone_idx > pgdat->nr_zones)
7307 		pgdat->nr_zones = zone_idx;
7308 
7309 	zone->zone_start_pfn = zone_start_pfn;
7310 
7311 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7312 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7313 			pgdat->node_id,
7314 			(unsigned long)zone_idx(zone),
7315 			zone_start_pfn, (zone_start_pfn + size));
7316 
7317 	zone_init_free_lists(zone);
7318 	zone->initialized = 1;
7319 }
7320 
7321 /**
7322  * get_pfn_range_for_nid - Return the start and end page frames for a node
7323  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7324  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7325  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7326  *
7327  * It returns the start and end page frame of a node based on information
7328  * provided by memblock_set_node(). If called for a node
7329  * with no available memory, a warning is printed and the start and end
7330  * PFNs will be 0.
7331  */
7332 void __init get_pfn_range_for_nid(unsigned int nid,
7333 			unsigned long *start_pfn, unsigned long *end_pfn)
7334 {
7335 	unsigned long this_start_pfn, this_end_pfn;
7336 	int i;
7337 
7338 	*start_pfn = -1UL;
7339 	*end_pfn = 0;
7340 
7341 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7342 		*start_pfn = min(*start_pfn, this_start_pfn);
7343 		*end_pfn = max(*end_pfn, this_end_pfn);
7344 	}
7345 
7346 	if (*start_pfn == -1UL)
7347 		*start_pfn = 0;
7348 }
7349 
7350 /*
7351  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7352  * assumption is made that zones within a node are ordered in monotonic
7353  * increasing memory addresses so that the "highest" populated zone is used
7354  */
7355 static void __init find_usable_zone_for_movable(void)
7356 {
7357 	int zone_index;
7358 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7359 		if (zone_index == ZONE_MOVABLE)
7360 			continue;
7361 
7362 		if (arch_zone_highest_possible_pfn[zone_index] >
7363 				arch_zone_lowest_possible_pfn[zone_index])
7364 			break;
7365 	}
7366 
7367 	VM_BUG_ON(zone_index == -1);
7368 	movable_zone = zone_index;
7369 }
7370 
7371 /*
7372  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7373  * because it is sized independent of architecture. Unlike the other zones,
7374  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7375  * in each node depending on the size of each node and how evenly kernelcore
7376  * is distributed. This helper function adjusts the zone ranges
7377  * provided by the architecture for a given node by using the end of the
7378  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7379  * zones within a node are in order of monotonic increases memory addresses
7380  */
7381 static void __init adjust_zone_range_for_zone_movable(int nid,
7382 					unsigned long zone_type,
7383 					unsigned long node_start_pfn,
7384 					unsigned long node_end_pfn,
7385 					unsigned long *zone_start_pfn,
7386 					unsigned long *zone_end_pfn)
7387 {
7388 	/* Only adjust if ZONE_MOVABLE is on this node */
7389 	if (zone_movable_pfn[nid]) {
7390 		/* Size ZONE_MOVABLE */
7391 		if (zone_type == ZONE_MOVABLE) {
7392 			*zone_start_pfn = zone_movable_pfn[nid];
7393 			*zone_end_pfn = min(node_end_pfn,
7394 				arch_zone_highest_possible_pfn[movable_zone]);
7395 
7396 		/* Adjust for ZONE_MOVABLE starting within this range */
7397 		} else if (!mirrored_kernelcore &&
7398 			*zone_start_pfn < zone_movable_pfn[nid] &&
7399 			*zone_end_pfn > zone_movable_pfn[nid]) {
7400 			*zone_end_pfn = zone_movable_pfn[nid];
7401 
7402 		/* Check if this whole range is within ZONE_MOVABLE */
7403 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7404 			*zone_start_pfn = *zone_end_pfn;
7405 	}
7406 }
7407 
7408 /*
7409  * Return the number of pages a zone spans in a node, including holes
7410  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7411  */
7412 static unsigned long __init zone_spanned_pages_in_node(int nid,
7413 					unsigned long zone_type,
7414 					unsigned long node_start_pfn,
7415 					unsigned long node_end_pfn,
7416 					unsigned long *zone_start_pfn,
7417 					unsigned long *zone_end_pfn)
7418 {
7419 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7420 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7421 	/* When hotadd a new node from cpu_up(), the node should be empty */
7422 	if (!node_start_pfn && !node_end_pfn)
7423 		return 0;
7424 
7425 	/* Get the start and end of the zone */
7426 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7427 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7428 	adjust_zone_range_for_zone_movable(nid, zone_type,
7429 				node_start_pfn, node_end_pfn,
7430 				zone_start_pfn, zone_end_pfn);
7431 
7432 	/* Check that this node has pages within the zone's required range */
7433 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7434 		return 0;
7435 
7436 	/* Move the zone boundaries inside the node if necessary */
7437 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7438 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7439 
7440 	/* Return the spanned pages */
7441 	return *zone_end_pfn - *zone_start_pfn;
7442 }
7443 
7444 /*
7445  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7446  * then all holes in the requested range will be accounted for.
7447  */
7448 unsigned long __init __absent_pages_in_range(int nid,
7449 				unsigned long range_start_pfn,
7450 				unsigned long range_end_pfn)
7451 {
7452 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7453 	unsigned long start_pfn, end_pfn;
7454 	int i;
7455 
7456 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7457 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7458 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7459 		nr_absent -= end_pfn - start_pfn;
7460 	}
7461 	return nr_absent;
7462 }
7463 
7464 /**
7465  * absent_pages_in_range - Return number of page frames in holes within a range
7466  * @start_pfn: The start PFN to start searching for holes
7467  * @end_pfn: The end PFN to stop searching for holes
7468  *
7469  * Return: the number of pages frames in memory holes within a range.
7470  */
7471 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7472 							unsigned long end_pfn)
7473 {
7474 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7475 }
7476 
7477 /* Return the number of page frames in holes in a zone on a node */
7478 static unsigned long __init zone_absent_pages_in_node(int nid,
7479 					unsigned long zone_type,
7480 					unsigned long node_start_pfn,
7481 					unsigned long node_end_pfn)
7482 {
7483 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7484 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7485 	unsigned long zone_start_pfn, zone_end_pfn;
7486 	unsigned long nr_absent;
7487 
7488 	/* When hotadd a new node from cpu_up(), the node should be empty */
7489 	if (!node_start_pfn && !node_end_pfn)
7490 		return 0;
7491 
7492 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7493 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7494 
7495 	adjust_zone_range_for_zone_movable(nid, zone_type,
7496 			node_start_pfn, node_end_pfn,
7497 			&zone_start_pfn, &zone_end_pfn);
7498 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7499 
7500 	/*
7501 	 * ZONE_MOVABLE handling.
7502 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7503 	 * and vice versa.
7504 	 */
7505 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7506 		unsigned long start_pfn, end_pfn;
7507 		struct memblock_region *r;
7508 
7509 		for_each_mem_region(r) {
7510 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7511 					  zone_start_pfn, zone_end_pfn);
7512 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7513 					zone_start_pfn, zone_end_pfn);
7514 
7515 			if (zone_type == ZONE_MOVABLE &&
7516 			    memblock_is_mirror(r))
7517 				nr_absent += end_pfn - start_pfn;
7518 
7519 			if (zone_type == ZONE_NORMAL &&
7520 			    !memblock_is_mirror(r))
7521 				nr_absent += end_pfn - start_pfn;
7522 		}
7523 	}
7524 
7525 	return nr_absent;
7526 }
7527 
7528 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7529 						unsigned long node_start_pfn,
7530 						unsigned long node_end_pfn)
7531 {
7532 	unsigned long realtotalpages = 0, totalpages = 0;
7533 	enum zone_type i;
7534 
7535 	for (i = 0; i < MAX_NR_ZONES; i++) {
7536 		struct zone *zone = pgdat->node_zones + i;
7537 		unsigned long zone_start_pfn, zone_end_pfn;
7538 		unsigned long spanned, absent;
7539 		unsigned long size, real_size;
7540 
7541 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7542 						     node_start_pfn,
7543 						     node_end_pfn,
7544 						     &zone_start_pfn,
7545 						     &zone_end_pfn);
7546 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7547 						   node_start_pfn,
7548 						   node_end_pfn);
7549 
7550 		size = spanned;
7551 		real_size = size - absent;
7552 
7553 		if (size)
7554 			zone->zone_start_pfn = zone_start_pfn;
7555 		else
7556 			zone->zone_start_pfn = 0;
7557 		zone->spanned_pages = size;
7558 		zone->present_pages = real_size;
7559 #if defined(CONFIG_MEMORY_HOTPLUG)
7560 		zone->present_early_pages = real_size;
7561 #endif
7562 
7563 		totalpages += size;
7564 		realtotalpages += real_size;
7565 	}
7566 
7567 	pgdat->node_spanned_pages = totalpages;
7568 	pgdat->node_present_pages = realtotalpages;
7569 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7570 }
7571 
7572 #ifndef CONFIG_SPARSEMEM
7573 /*
7574  * Calculate the size of the zone->blockflags rounded to an unsigned long
7575  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7576  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7577  * round what is now in bits to nearest long in bits, then return it in
7578  * bytes.
7579  */
7580 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7581 {
7582 	unsigned long usemapsize;
7583 
7584 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7585 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7586 	usemapsize = usemapsize >> pageblock_order;
7587 	usemapsize *= NR_PAGEBLOCK_BITS;
7588 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7589 
7590 	return usemapsize / 8;
7591 }
7592 
7593 static void __ref setup_usemap(struct zone *zone)
7594 {
7595 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7596 					       zone->spanned_pages);
7597 	zone->pageblock_flags = NULL;
7598 	if (usemapsize) {
7599 		zone->pageblock_flags =
7600 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7601 					    zone_to_nid(zone));
7602 		if (!zone->pageblock_flags)
7603 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7604 			      usemapsize, zone->name, zone_to_nid(zone));
7605 	}
7606 }
7607 #else
7608 static inline void setup_usemap(struct zone *zone) {}
7609 #endif /* CONFIG_SPARSEMEM */
7610 
7611 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7612 
7613 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7614 void __init set_pageblock_order(void)
7615 {
7616 	unsigned int order = MAX_ORDER - 1;
7617 
7618 	/* Check that pageblock_nr_pages has not already been setup */
7619 	if (pageblock_order)
7620 		return;
7621 
7622 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7623 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7624 		order = HUGETLB_PAGE_ORDER;
7625 
7626 	/*
7627 	 * Assume the largest contiguous order of interest is a huge page.
7628 	 * This value may be variable depending on boot parameters on IA64 and
7629 	 * powerpc.
7630 	 */
7631 	pageblock_order = order;
7632 }
7633 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7634 
7635 /*
7636  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7637  * is unused as pageblock_order is set at compile-time. See
7638  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7639  * the kernel config
7640  */
7641 void __init set_pageblock_order(void)
7642 {
7643 }
7644 
7645 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7646 
7647 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7648 						unsigned long present_pages)
7649 {
7650 	unsigned long pages = spanned_pages;
7651 
7652 	/*
7653 	 * Provide a more accurate estimation if there are holes within
7654 	 * the zone and SPARSEMEM is in use. If there are holes within the
7655 	 * zone, each populated memory region may cost us one or two extra
7656 	 * memmap pages due to alignment because memmap pages for each
7657 	 * populated regions may not be naturally aligned on page boundary.
7658 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7659 	 */
7660 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7661 	    IS_ENABLED(CONFIG_SPARSEMEM))
7662 		pages = present_pages;
7663 
7664 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7665 }
7666 
7667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7668 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7669 {
7670 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7671 
7672 	spin_lock_init(&ds_queue->split_queue_lock);
7673 	INIT_LIST_HEAD(&ds_queue->split_queue);
7674 	ds_queue->split_queue_len = 0;
7675 }
7676 #else
7677 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7678 #endif
7679 
7680 #ifdef CONFIG_COMPACTION
7681 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7682 {
7683 	init_waitqueue_head(&pgdat->kcompactd_wait);
7684 }
7685 #else
7686 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7687 #endif
7688 
7689 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7690 {
7691 	int i;
7692 
7693 	pgdat_resize_init(pgdat);
7694 	pgdat_kswapd_lock_init(pgdat);
7695 
7696 	pgdat_init_split_queue(pgdat);
7697 	pgdat_init_kcompactd(pgdat);
7698 
7699 	init_waitqueue_head(&pgdat->kswapd_wait);
7700 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7701 
7702 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7703 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7704 
7705 	pgdat_page_ext_init(pgdat);
7706 	lruvec_init(&pgdat->__lruvec);
7707 }
7708 
7709 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7710 							unsigned long remaining_pages)
7711 {
7712 	atomic_long_set(&zone->managed_pages, remaining_pages);
7713 	zone_set_nid(zone, nid);
7714 	zone->name = zone_names[idx];
7715 	zone->zone_pgdat = NODE_DATA(nid);
7716 	spin_lock_init(&zone->lock);
7717 	zone_seqlock_init(zone);
7718 	zone_pcp_init(zone);
7719 }
7720 
7721 /*
7722  * Set up the zone data structures
7723  * - init pgdat internals
7724  * - init all zones belonging to this node
7725  *
7726  * NOTE: this function is only called during memory hotplug
7727  */
7728 #ifdef CONFIG_MEMORY_HOTPLUG
7729 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7730 {
7731 	int nid = pgdat->node_id;
7732 	enum zone_type z;
7733 	int cpu;
7734 
7735 	pgdat_init_internals(pgdat);
7736 
7737 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7738 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7739 
7740 	/*
7741 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7742 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7743 	 * when it starts in the near future.
7744 	 */
7745 	pgdat->nr_zones = 0;
7746 	pgdat->kswapd_order = 0;
7747 	pgdat->kswapd_highest_zoneidx = 0;
7748 	pgdat->node_start_pfn = 0;
7749 	for_each_online_cpu(cpu) {
7750 		struct per_cpu_nodestat *p;
7751 
7752 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7753 		memset(p, 0, sizeof(*p));
7754 	}
7755 
7756 	for (z = 0; z < MAX_NR_ZONES; z++)
7757 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7758 }
7759 #endif
7760 
7761 /*
7762  * Set up the zone data structures:
7763  *   - mark all pages reserved
7764  *   - mark all memory queues empty
7765  *   - clear the memory bitmaps
7766  *
7767  * NOTE: pgdat should get zeroed by caller.
7768  * NOTE: this function is only called during early init.
7769  */
7770 static void __init free_area_init_core(struct pglist_data *pgdat)
7771 {
7772 	enum zone_type j;
7773 	int nid = pgdat->node_id;
7774 
7775 	pgdat_init_internals(pgdat);
7776 	pgdat->per_cpu_nodestats = &boot_nodestats;
7777 
7778 	for (j = 0; j < MAX_NR_ZONES; j++) {
7779 		struct zone *zone = pgdat->node_zones + j;
7780 		unsigned long size, freesize, memmap_pages;
7781 
7782 		size = zone->spanned_pages;
7783 		freesize = zone->present_pages;
7784 
7785 		/*
7786 		 * Adjust freesize so that it accounts for how much memory
7787 		 * is used by this zone for memmap. This affects the watermark
7788 		 * and per-cpu initialisations
7789 		 */
7790 		memmap_pages = calc_memmap_size(size, freesize);
7791 		if (!is_highmem_idx(j)) {
7792 			if (freesize >= memmap_pages) {
7793 				freesize -= memmap_pages;
7794 				if (memmap_pages)
7795 					pr_debug("  %s zone: %lu pages used for memmap\n",
7796 						 zone_names[j], memmap_pages);
7797 			} else
7798 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7799 					zone_names[j], memmap_pages, freesize);
7800 		}
7801 
7802 		/* Account for reserved pages */
7803 		if (j == 0 && freesize > dma_reserve) {
7804 			freesize -= dma_reserve;
7805 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7806 		}
7807 
7808 		if (!is_highmem_idx(j))
7809 			nr_kernel_pages += freesize;
7810 		/* Charge for highmem memmap if there are enough kernel pages */
7811 		else if (nr_kernel_pages > memmap_pages * 2)
7812 			nr_kernel_pages -= memmap_pages;
7813 		nr_all_pages += freesize;
7814 
7815 		/*
7816 		 * Set an approximate value for lowmem here, it will be adjusted
7817 		 * when the bootmem allocator frees pages into the buddy system.
7818 		 * And all highmem pages will be managed by the buddy system.
7819 		 */
7820 		zone_init_internals(zone, j, nid, freesize);
7821 
7822 		if (!size)
7823 			continue;
7824 
7825 		set_pageblock_order();
7826 		setup_usemap(zone);
7827 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7828 	}
7829 }
7830 
7831 #ifdef CONFIG_FLATMEM
7832 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7833 {
7834 	unsigned long __maybe_unused start = 0;
7835 	unsigned long __maybe_unused offset = 0;
7836 
7837 	/* Skip empty nodes */
7838 	if (!pgdat->node_spanned_pages)
7839 		return;
7840 
7841 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7842 	offset = pgdat->node_start_pfn - start;
7843 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7844 	if (!pgdat->node_mem_map) {
7845 		unsigned long size, end;
7846 		struct page *map;
7847 
7848 		/*
7849 		 * The zone's endpoints aren't required to be MAX_ORDER
7850 		 * aligned but the node_mem_map endpoints must be in order
7851 		 * for the buddy allocator to function correctly.
7852 		 */
7853 		end = pgdat_end_pfn(pgdat);
7854 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7855 		size =  (end - start) * sizeof(struct page);
7856 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7857 				   pgdat->node_id, false);
7858 		if (!map)
7859 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7860 			      size, pgdat->node_id);
7861 		pgdat->node_mem_map = map + offset;
7862 	}
7863 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7864 				__func__, pgdat->node_id, (unsigned long)pgdat,
7865 				(unsigned long)pgdat->node_mem_map);
7866 #ifndef CONFIG_NUMA
7867 	/*
7868 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7869 	 */
7870 	if (pgdat == NODE_DATA(0)) {
7871 		mem_map = NODE_DATA(0)->node_mem_map;
7872 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7873 			mem_map -= offset;
7874 	}
7875 #endif
7876 }
7877 #else
7878 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7879 #endif /* CONFIG_FLATMEM */
7880 
7881 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7882 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7883 {
7884 	pgdat->first_deferred_pfn = ULONG_MAX;
7885 }
7886 #else
7887 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7888 #endif
7889 
7890 static void __init free_area_init_node(int nid)
7891 {
7892 	pg_data_t *pgdat = NODE_DATA(nid);
7893 	unsigned long start_pfn = 0;
7894 	unsigned long end_pfn = 0;
7895 
7896 	/* pg_data_t should be reset to zero when it's allocated */
7897 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7898 
7899 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7900 
7901 	pgdat->node_id = nid;
7902 	pgdat->node_start_pfn = start_pfn;
7903 	pgdat->per_cpu_nodestats = NULL;
7904 
7905 	if (start_pfn != end_pfn) {
7906 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7907 			(u64)start_pfn << PAGE_SHIFT,
7908 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7909 	} else {
7910 		pr_info("Initmem setup node %d as memoryless\n", nid);
7911 	}
7912 
7913 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7914 
7915 	alloc_node_mem_map(pgdat);
7916 	pgdat_set_deferred_range(pgdat);
7917 
7918 	free_area_init_core(pgdat);
7919 }
7920 
7921 static void __init free_area_init_memoryless_node(int nid)
7922 {
7923 	free_area_init_node(nid);
7924 }
7925 
7926 #if MAX_NUMNODES > 1
7927 /*
7928  * Figure out the number of possible node ids.
7929  */
7930 void __init setup_nr_node_ids(void)
7931 {
7932 	unsigned int highest;
7933 
7934 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7935 	nr_node_ids = highest + 1;
7936 }
7937 #endif
7938 
7939 /**
7940  * node_map_pfn_alignment - determine the maximum internode alignment
7941  *
7942  * This function should be called after node map is populated and sorted.
7943  * It calculates the maximum power of two alignment which can distinguish
7944  * all the nodes.
7945  *
7946  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7947  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7948  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7949  * shifted, 1GiB is enough and this function will indicate so.
7950  *
7951  * This is used to test whether pfn -> nid mapping of the chosen memory
7952  * model has fine enough granularity to avoid incorrect mapping for the
7953  * populated node map.
7954  *
7955  * Return: the determined alignment in pfn's.  0 if there is no alignment
7956  * requirement (single node).
7957  */
7958 unsigned long __init node_map_pfn_alignment(void)
7959 {
7960 	unsigned long accl_mask = 0, last_end = 0;
7961 	unsigned long start, end, mask;
7962 	int last_nid = NUMA_NO_NODE;
7963 	int i, nid;
7964 
7965 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7966 		if (!start || last_nid < 0 || last_nid == nid) {
7967 			last_nid = nid;
7968 			last_end = end;
7969 			continue;
7970 		}
7971 
7972 		/*
7973 		 * Start with a mask granular enough to pin-point to the
7974 		 * start pfn and tick off bits one-by-one until it becomes
7975 		 * too coarse to separate the current node from the last.
7976 		 */
7977 		mask = ~((1 << __ffs(start)) - 1);
7978 		while (mask && last_end <= (start & (mask << 1)))
7979 			mask <<= 1;
7980 
7981 		/* accumulate all internode masks */
7982 		accl_mask |= mask;
7983 	}
7984 
7985 	/* convert mask to number of pages */
7986 	return ~accl_mask + 1;
7987 }
7988 
7989 /*
7990  * early_calculate_totalpages()
7991  * Sum pages in active regions for movable zone.
7992  * Populate N_MEMORY for calculating usable_nodes.
7993  */
7994 static unsigned long __init early_calculate_totalpages(void)
7995 {
7996 	unsigned long totalpages = 0;
7997 	unsigned long start_pfn, end_pfn;
7998 	int i, nid;
7999 
8000 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8001 		unsigned long pages = end_pfn - start_pfn;
8002 
8003 		totalpages += pages;
8004 		if (pages)
8005 			node_set_state(nid, N_MEMORY);
8006 	}
8007 	return totalpages;
8008 }
8009 
8010 /*
8011  * Find the PFN the Movable zone begins in each node. Kernel memory
8012  * is spread evenly between nodes as long as the nodes have enough
8013  * memory. When they don't, some nodes will have more kernelcore than
8014  * others
8015  */
8016 static void __init find_zone_movable_pfns_for_nodes(void)
8017 {
8018 	int i, nid;
8019 	unsigned long usable_startpfn;
8020 	unsigned long kernelcore_node, kernelcore_remaining;
8021 	/* save the state before borrow the nodemask */
8022 	nodemask_t saved_node_state = node_states[N_MEMORY];
8023 	unsigned long totalpages = early_calculate_totalpages();
8024 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8025 	struct memblock_region *r;
8026 
8027 	/* Need to find movable_zone earlier when movable_node is specified. */
8028 	find_usable_zone_for_movable();
8029 
8030 	/*
8031 	 * If movable_node is specified, ignore kernelcore and movablecore
8032 	 * options.
8033 	 */
8034 	if (movable_node_is_enabled()) {
8035 		for_each_mem_region(r) {
8036 			if (!memblock_is_hotpluggable(r))
8037 				continue;
8038 
8039 			nid = memblock_get_region_node(r);
8040 
8041 			usable_startpfn = PFN_DOWN(r->base);
8042 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8043 				min(usable_startpfn, zone_movable_pfn[nid]) :
8044 				usable_startpfn;
8045 		}
8046 
8047 		goto out2;
8048 	}
8049 
8050 	/*
8051 	 * If kernelcore=mirror is specified, ignore movablecore option
8052 	 */
8053 	if (mirrored_kernelcore) {
8054 		bool mem_below_4gb_not_mirrored = false;
8055 
8056 		for_each_mem_region(r) {
8057 			if (memblock_is_mirror(r))
8058 				continue;
8059 
8060 			nid = memblock_get_region_node(r);
8061 
8062 			usable_startpfn = memblock_region_memory_base_pfn(r);
8063 
8064 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8065 				mem_below_4gb_not_mirrored = true;
8066 				continue;
8067 			}
8068 
8069 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8070 				min(usable_startpfn, zone_movable_pfn[nid]) :
8071 				usable_startpfn;
8072 		}
8073 
8074 		if (mem_below_4gb_not_mirrored)
8075 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8076 
8077 		goto out2;
8078 	}
8079 
8080 	/*
8081 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8082 	 * amount of necessary memory.
8083 	 */
8084 	if (required_kernelcore_percent)
8085 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8086 				       10000UL;
8087 	if (required_movablecore_percent)
8088 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8089 					10000UL;
8090 
8091 	/*
8092 	 * If movablecore= was specified, calculate what size of
8093 	 * kernelcore that corresponds so that memory usable for
8094 	 * any allocation type is evenly spread. If both kernelcore
8095 	 * and movablecore are specified, then the value of kernelcore
8096 	 * will be used for required_kernelcore if it's greater than
8097 	 * what movablecore would have allowed.
8098 	 */
8099 	if (required_movablecore) {
8100 		unsigned long corepages;
8101 
8102 		/*
8103 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8104 		 * was requested by the user
8105 		 */
8106 		required_movablecore =
8107 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8108 		required_movablecore = min(totalpages, required_movablecore);
8109 		corepages = totalpages - required_movablecore;
8110 
8111 		required_kernelcore = max(required_kernelcore, corepages);
8112 	}
8113 
8114 	/*
8115 	 * If kernelcore was not specified or kernelcore size is larger
8116 	 * than totalpages, there is no ZONE_MOVABLE.
8117 	 */
8118 	if (!required_kernelcore || required_kernelcore >= totalpages)
8119 		goto out;
8120 
8121 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8122 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8123 
8124 restart:
8125 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8126 	kernelcore_node = required_kernelcore / usable_nodes;
8127 	for_each_node_state(nid, N_MEMORY) {
8128 		unsigned long start_pfn, end_pfn;
8129 
8130 		/*
8131 		 * Recalculate kernelcore_node if the division per node
8132 		 * now exceeds what is necessary to satisfy the requested
8133 		 * amount of memory for the kernel
8134 		 */
8135 		if (required_kernelcore < kernelcore_node)
8136 			kernelcore_node = required_kernelcore / usable_nodes;
8137 
8138 		/*
8139 		 * As the map is walked, we track how much memory is usable
8140 		 * by the kernel using kernelcore_remaining. When it is
8141 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8142 		 */
8143 		kernelcore_remaining = kernelcore_node;
8144 
8145 		/* Go through each range of PFNs within this node */
8146 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8147 			unsigned long size_pages;
8148 
8149 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8150 			if (start_pfn >= end_pfn)
8151 				continue;
8152 
8153 			/* Account for what is only usable for kernelcore */
8154 			if (start_pfn < usable_startpfn) {
8155 				unsigned long kernel_pages;
8156 				kernel_pages = min(end_pfn, usable_startpfn)
8157 								- start_pfn;
8158 
8159 				kernelcore_remaining -= min(kernel_pages,
8160 							kernelcore_remaining);
8161 				required_kernelcore -= min(kernel_pages,
8162 							required_kernelcore);
8163 
8164 				/* Continue if range is now fully accounted */
8165 				if (end_pfn <= usable_startpfn) {
8166 
8167 					/*
8168 					 * Push zone_movable_pfn to the end so
8169 					 * that if we have to rebalance
8170 					 * kernelcore across nodes, we will
8171 					 * not double account here
8172 					 */
8173 					zone_movable_pfn[nid] = end_pfn;
8174 					continue;
8175 				}
8176 				start_pfn = usable_startpfn;
8177 			}
8178 
8179 			/*
8180 			 * The usable PFN range for ZONE_MOVABLE is from
8181 			 * start_pfn->end_pfn. Calculate size_pages as the
8182 			 * number of pages used as kernelcore
8183 			 */
8184 			size_pages = end_pfn - start_pfn;
8185 			if (size_pages > kernelcore_remaining)
8186 				size_pages = kernelcore_remaining;
8187 			zone_movable_pfn[nid] = start_pfn + size_pages;
8188 
8189 			/*
8190 			 * Some kernelcore has been met, update counts and
8191 			 * break if the kernelcore for this node has been
8192 			 * satisfied
8193 			 */
8194 			required_kernelcore -= min(required_kernelcore,
8195 								size_pages);
8196 			kernelcore_remaining -= size_pages;
8197 			if (!kernelcore_remaining)
8198 				break;
8199 		}
8200 	}
8201 
8202 	/*
8203 	 * If there is still required_kernelcore, we do another pass with one
8204 	 * less node in the count. This will push zone_movable_pfn[nid] further
8205 	 * along on the nodes that still have memory until kernelcore is
8206 	 * satisfied
8207 	 */
8208 	usable_nodes--;
8209 	if (usable_nodes && required_kernelcore > usable_nodes)
8210 		goto restart;
8211 
8212 out2:
8213 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8214 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8215 		unsigned long start_pfn, end_pfn;
8216 
8217 		zone_movable_pfn[nid] =
8218 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8219 
8220 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8221 		if (zone_movable_pfn[nid] >= end_pfn)
8222 			zone_movable_pfn[nid] = 0;
8223 	}
8224 
8225 out:
8226 	/* restore the node_state */
8227 	node_states[N_MEMORY] = saved_node_state;
8228 }
8229 
8230 /* Any regular or high memory on that node ? */
8231 static void check_for_memory(pg_data_t *pgdat, int nid)
8232 {
8233 	enum zone_type zone_type;
8234 
8235 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8236 		struct zone *zone = &pgdat->node_zones[zone_type];
8237 		if (populated_zone(zone)) {
8238 			if (IS_ENABLED(CONFIG_HIGHMEM))
8239 				node_set_state(nid, N_HIGH_MEMORY);
8240 			if (zone_type <= ZONE_NORMAL)
8241 				node_set_state(nid, N_NORMAL_MEMORY);
8242 			break;
8243 		}
8244 	}
8245 }
8246 
8247 /*
8248  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8249  * such cases we allow max_zone_pfn sorted in the descending order
8250  */
8251 bool __weak arch_has_descending_max_zone_pfns(void)
8252 {
8253 	return false;
8254 }
8255 
8256 /**
8257  * free_area_init - Initialise all pg_data_t and zone data
8258  * @max_zone_pfn: an array of max PFNs for each zone
8259  *
8260  * This will call free_area_init_node() for each active node in the system.
8261  * Using the page ranges provided by memblock_set_node(), the size of each
8262  * zone in each node and their holes is calculated. If the maximum PFN
8263  * between two adjacent zones match, it is assumed that the zone is empty.
8264  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8265  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8266  * starts where the previous one ended. For example, ZONE_DMA32 starts
8267  * at arch_max_dma_pfn.
8268  */
8269 void __init free_area_init(unsigned long *max_zone_pfn)
8270 {
8271 	unsigned long start_pfn, end_pfn;
8272 	int i, nid, zone;
8273 	bool descending;
8274 
8275 	/* Record where the zone boundaries are */
8276 	memset(arch_zone_lowest_possible_pfn, 0,
8277 				sizeof(arch_zone_lowest_possible_pfn));
8278 	memset(arch_zone_highest_possible_pfn, 0,
8279 				sizeof(arch_zone_highest_possible_pfn));
8280 
8281 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8282 	descending = arch_has_descending_max_zone_pfns();
8283 
8284 	for (i = 0; i < MAX_NR_ZONES; i++) {
8285 		if (descending)
8286 			zone = MAX_NR_ZONES - i - 1;
8287 		else
8288 			zone = i;
8289 
8290 		if (zone == ZONE_MOVABLE)
8291 			continue;
8292 
8293 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8294 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8295 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8296 
8297 		start_pfn = end_pfn;
8298 	}
8299 
8300 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8301 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8302 	find_zone_movable_pfns_for_nodes();
8303 
8304 	/* Print out the zone ranges */
8305 	pr_info("Zone ranges:\n");
8306 	for (i = 0; i < MAX_NR_ZONES; i++) {
8307 		if (i == ZONE_MOVABLE)
8308 			continue;
8309 		pr_info("  %-8s ", zone_names[i]);
8310 		if (arch_zone_lowest_possible_pfn[i] ==
8311 				arch_zone_highest_possible_pfn[i])
8312 			pr_cont("empty\n");
8313 		else
8314 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8315 				(u64)arch_zone_lowest_possible_pfn[i]
8316 					<< PAGE_SHIFT,
8317 				((u64)arch_zone_highest_possible_pfn[i]
8318 					<< PAGE_SHIFT) - 1);
8319 	}
8320 
8321 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8322 	pr_info("Movable zone start for each node\n");
8323 	for (i = 0; i < MAX_NUMNODES; i++) {
8324 		if (zone_movable_pfn[i])
8325 			pr_info("  Node %d: %#018Lx\n", i,
8326 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8327 	}
8328 
8329 	/*
8330 	 * Print out the early node map, and initialize the
8331 	 * subsection-map relative to active online memory ranges to
8332 	 * enable future "sub-section" extensions of the memory map.
8333 	 */
8334 	pr_info("Early memory node ranges\n");
8335 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8336 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8337 			(u64)start_pfn << PAGE_SHIFT,
8338 			((u64)end_pfn << PAGE_SHIFT) - 1);
8339 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8340 	}
8341 
8342 	/* Initialise every node */
8343 	mminit_verify_pageflags_layout();
8344 	setup_nr_node_ids();
8345 	for_each_node(nid) {
8346 		pg_data_t *pgdat;
8347 
8348 		if (!node_online(nid)) {
8349 			pr_info("Initializing node %d as memoryless\n", nid);
8350 
8351 			/* Allocator not initialized yet */
8352 			pgdat = arch_alloc_nodedata(nid);
8353 			if (!pgdat) {
8354 				pr_err("Cannot allocate %zuB for node %d.\n",
8355 						sizeof(*pgdat), nid);
8356 				continue;
8357 			}
8358 			arch_refresh_nodedata(nid, pgdat);
8359 			free_area_init_memoryless_node(nid);
8360 
8361 			/*
8362 			 * We do not want to confuse userspace by sysfs
8363 			 * files/directories for node without any memory
8364 			 * attached to it, so this node is not marked as
8365 			 * N_MEMORY and not marked online so that no sysfs
8366 			 * hierarchy will be created via register_one_node for
8367 			 * it. The pgdat will get fully initialized by
8368 			 * hotadd_init_pgdat() when memory is hotplugged into
8369 			 * this node.
8370 			 */
8371 			continue;
8372 		}
8373 
8374 		pgdat = NODE_DATA(nid);
8375 		free_area_init_node(nid);
8376 
8377 		/* Any memory on that node */
8378 		if (pgdat->node_present_pages)
8379 			node_set_state(nid, N_MEMORY);
8380 		check_for_memory(pgdat, nid);
8381 	}
8382 
8383 	memmap_init();
8384 }
8385 
8386 static int __init cmdline_parse_core(char *p, unsigned long *core,
8387 				     unsigned long *percent)
8388 {
8389 	unsigned long long coremem;
8390 	char *endptr;
8391 
8392 	if (!p)
8393 		return -EINVAL;
8394 
8395 	/* Value may be a percentage of total memory, otherwise bytes */
8396 	coremem = simple_strtoull(p, &endptr, 0);
8397 	if (*endptr == '%') {
8398 		/* Paranoid check for percent values greater than 100 */
8399 		WARN_ON(coremem > 100);
8400 
8401 		*percent = coremem;
8402 	} else {
8403 		coremem = memparse(p, &p);
8404 		/* Paranoid check that UL is enough for the coremem value */
8405 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8406 
8407 		*core = coremem >> PAGE_SHIFT;
8408 		*percent = 0UL;
8409 	}
8410 	return 0;
8411 }
8412 
8413 /*
8414  * kernelcore=size sets the amount of memory for use for allocations that
8415  * cannot be reclaimed or migrated.
8416  */
8417 static int __init cmdline_parse_kernelcore(char *p)
8418 {
8419 	/* parse kernelcore=mirror */
8420 	if (parse_option_str(p, "mirror")) {
8421 		mirrored_kernelcore = true;
8422 		return 0;
8423 	}
8424 
8425 	return cmdline_parse_core(p, &required_kernelcore,
8426 				  &required_kernelcore_percent);
8427 }
8428 
8429 /*
8430  * movablecore=size sets the amount of memory for use for allocations that
8431  * can be reclaimed or migrated.
8432  */
8433 static int __init cmdline_parse_movablecore(char *p)
8434 {
8435 	return cmdline_parse_core(p, &required_movablecore,
8436 				  &required_movablecore_percent);
8437 }
8438 
8439 early_param("kernelcore", cmdline_parse_kernelcore);
8440 early_param("movablecore", cmdline_parse_movablecore);
8441 
8442 void adjust_managed_page_count(struct page *page, long count)
8443 {
8444 	atomic_long_add(count, &page_zone(page)->managed_pages);
8445 	totalram_pages_add(count);
8446 #ifdef CONFIG_HIGHMEM
8447 	if (PageHighMem(page))
8448 		totalhigh_pages_add(count);
8449 #endif
8450 }
8451 EXPORT_SYMBOL(adjust_managed_page_count);
8452 
8453 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8454 {
8455 	void *pos;
8456 	unsigned long pages = 0;
8457 
8458 	start = (void *)PAGE_ALIGN((unsigned long)start);
8459 	end = (void *)((unsigned long)end & PAGE_MASK);
8460 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8461 		struct page *page = virt_to_page(pos);
8462 		void *direct_map_addr;
8463 
8464 		/*
8465 		 * 'direct_map_addr' might be different from 'pos'
8466 		 * because some architectures' virt_to_page()
8467 		 * work with aliases.  Getting the direct map
8468 		 * address ensures that we get a _writeable_
8469 		 * alias for the memset().
8470 		 */
8471 		direct_map_addr = page_address(page);
8472 		/*
8473 		 * Perform a kasan-unchecked memset() since this memory
8474 		 * has not been initialized.
8475 		 */
8476 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8477 		if ((unsigned int)poison <= 0xFF)
8478 			memset(direct_map_addr, poison, PAGE_SIZE);
8479 
8480 		free_reserved_page(page);
8481 	}
8482 
8483 	if (pages && s)
8484 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8485 
8486 	return pages;
8487 }
8488 
8489 void __init mem_init_print_info(void)
8490 {
8491 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8492 	unsigned long init_code_size, init_data_size;
8493 
8494 	physpages = get_num_physpages();
8495 	codesize = _etext - _stext;
8496 	datasize = _edata - _sdata;
8497 	rosize = __end_rodata - __start_rodata;
8498 	bss_size = __bss_stop - __bss_start;
8499 	init_data_size = __init_end - __init_begin;
8500 	init_code_size = _einittext - _sinittext;
8501 
8502 	/*
8503 	 * Detect special cases and adjust section sizes accordingly:
8504 	 * 1) .init.* may be embedded into .data sections
8505 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8506 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8507 	 * 3) .rodata.* may be embedded into .text or .data sections.
8508 	 */
8509 #define adj_init_size(start, end, size, pos, adj) \
8510 	do { \
8511 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8512 			size -= adj; \
8513 	} while (0)
8514 
8515 	adj_init_size(__init_begin, __init_end, init_data_size,
8516 		     _sinittext, init_code_size);
8517 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8518 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8519 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8520 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8521 
8522 #undef	adj_init_size
8523 
8524 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8525 #ifdef	CONFIG_HIGHMEM
8526 		", %luK highmem"
8527 #endif
8528 		")\n",
8529 		K(nr_free_pages()), K(physpages),
8530 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8531 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8532 		K(physpages - totalram_pages() - totalcma_pages),
8533 		K(totalcma_pages)
8534 #ifdef	CONFIG_HIGHMEM
8535 		, K(totalhigh_pages())
8536 #endif
8537 		);
8538 }
8539 
8540 /**
8541  * set_dma_reserve - set the specified number of pages reserved in the first zone
8542  * @new_dma_reserve: The number of pages to mark reserved
8543  *
8544  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8545  * In the DMA zone, a significant percentage may be consumed by kernel image
8546  * and other unfreeable allocations which can skew the watermarks badly. This
8547  * function may optionally be used to account for unfreeable pages in the
8548  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8549  * smaller per-cpu batchsize.
8550  */
8551 void __init set_dma_reserve(unsigned long new_dma_reserve)
8552 {
8553 	dma_reserve = new_dma_reserve;
8554 }
8555 
8556 static int page_alloc_cpu_dead(unsigned int cpu)
8557 {
8558 	struct zone *zone;
8559 
8560 	lru_add_drain_cpu(cpu);
8561 	mlock_page_drain_remote(cpu);
8562 	drain_pages(cpu);
8563 
8564 	/*
8565 	 * Spill the event counters of the dead processor
8566 	 * into the current processors event counters.
8567 	 * This artificially elevates the count of the current
8568 	 * processor.
8569 	 */
8570 	vm_events_fold_cpu(cpu);
8571 
8572 	/*
8573 	 * Zero the differential counters of the dead processor
8574 	 * so that the vm statistics are consistent.
8575 	 *
8576 	 * This is only okay since the processor is dead and cannot
8577 	 * race with what we are doing.
8578 	 */
8579 	cpu_vm_stats_fold(cpu);
8580 
8581 	for_each_populated_zone(zone)
8582 		zone_pcp_update(zone, 0);
8583 
8584 	return 0;
8585 }
8586 
8587 static int page_alloc_cpu_online(unsigned int cpu)
8588 {
8589 	struct zone *zone;
8590 
8591 	for_each_populated_zone(zone)
8592 		zone_pcp_update(zone, 1);
8593 	return 0;
8594 }
8595 
8596 #ifdef CONFIG_NUMA
8597 int hashdist = HASHDIST_DEFAULT;
8598 
8599 static int __init set_hashdist(char *str)
8600 {
8601 	if (!str)
8602 		return 0;
8603 	hashdist = simple_strtoul(str, &str, 0);
8604 	return 1;
8605 }
8606 __setup("hashdist=", set_hashdist);
8607 #endif
8608 
8609 void __init page_alloc_init(void)
8610 {
8611 	int ret;
8612 
8613 #ifdef CONFIG_NUMA
8614 	if (num_node_state(N_MEMORY) == 1)
8615 		hashdist = 0;
8616 #endif
8617 
8618 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8619 					"mm/page_alloc:pcp",
8620 					page_alloc_cpu_online,
8621 					page_alloc_cpu_dead);
8622 	WARN_ON(ret < 0);
8623 }
8624 
8625 /*
8626  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8627  *	or min_free_kbytes changes.
8628  */
8629 static void calculate_totalreserve_pages(void)
8630 {
8631 	struct pglist_data *pgdat;
8632 	unsigned long reserve_pages = 0;
8633 	enum zone_type i, j;
8634 
8635 	for_each_online_pgdat(pgdat) {
8636 
8637 		pgdat->totalreserve_pages = 0;
8638 
8639 		for (i = 0; i < MAX_NR_ZONES; i++) {
8640 			struct zone *zone = pgdat->node_zones + i;
8641 			long max = 0;
8642 			unsigned long managed_pages = zone_managed_pages(zone);
8643 
8644 			/* Find valid and maximum lowmem_reserve in the zone */
8645 			for (j = i; j < MAX_NR_ZONES; j++) {
8646 				if (zone->lowmem_reserve[j] > max)
8647 					max = zone->lowmem_reserve[j];
8648 			}
8649 
8650 			/* we treat the high watermark as reserved pages. */
8651 			max += high_wmark_pages(zone);
8652 
8653 			if (max > managed_pages)
8654 				max = managed_pages;
8655 
8656 			pgdat->totalreserve_pages += max;
8657 
8658 			reserve_pages += max;
8659 		}
8660 	}
8661 	totalreserve_pages = reserve_pages;
8662 }
8663 
8664 /*
8665  * setup_per_zone_lowmem_reserve - called whenever
8666  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8667  *	has a correct pages reserved value, so an adequate number of
8668  *	pages are left in the zone after a successful __alloc_pages().
8669  */
8670 static void setup_per_zone_lowmem_reserve(void)
8671 {
8672 	struct pglist_data *pgdat;
8673 	enum zone_type i, j;
8674 
8675 	for_each_online_pgdat(pgdat) {
8676 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8677 			struct zone *zone = &pgdat->node_zones[i];
8678 			int ratio = sysctl_lowmem_reserve_ratio[i];
8679 			bool clear = !ratio || !zone_managed_pages(zone);
8680 			unsigned long managed_pages = 0;
8681 
8682 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8683 				struct zone *upper_zone = &pgdat->node_zones[j];
8684 
8685 				managed_pages += zone_managed_pages(upper_zone);
8686 
8687 				if (clear)
8688 					zone->lowmem_reserve[j] = 0;
8689 				else
8690 					zone->lowmem_reserve[j] = managed_pages / ratio;
8691 			}
8692 		}
8693 	}
8694 
8695 	/* update totalreserve_pages */
8696 	calculate_totalreserve_pages();
8697 }
8698 
8699 static void __setup_per_zone_wmarks(void)
8700 {
8701 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8702 	unsigned long lowmem_pages = 0;
8703 	struct zone *zone;
8704 	unsigned long flags;
8705 
8706 	/* Calculate total number of !ZONE_HIGHMEM pages */
8707 	for_each_zone(zone) {
8708 		if (!is_highmem(zone))
8709 			lowmem_pages += zone_managed_pages(zone);
8710 	}
8711 
8712 	for_each_zone(zone) {
8713 		u64 tmp;
8714 
8715 		spin_lock_irqsave(&zone->lock, flags);
8716 		tmp = (u64)pages_min * zone_managed_pages(zone);
8717 		do_div(tmp, lowmem_pages);
8718 		if (is_highmem(zone)) {
8719 			/*
8720 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8721 			 * need highmem pages, so cap pages_min to a small
8722 			 * value here.
8723 			 *
8724 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8725 			 * deltas control async page reclaim, and so should
8726 			 * not be capped for highmem.
8727 			 */
8728 			unsigned long min_pages;
8729 
8730 			min_pages = zone_managed_pages(zone) / 1024;
8731 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8732 			zone->_watermark[WMARK_MIN] = min_pages;
8733 		} else {
8734 			/*
8735 			 * If it's a lowmem zone, reserve a number of pages
8736 			 * proportionate to the zone's size.
8737 			 */
8738 			zone->_watermark[WMARK_MIN] = tmp;
8739 		}
8740 
8741 		/*
8742 		 * Set the kswapd watermarks distance according to the
8743 		 * scale factor in proportion to available memory, but
8744 		 * ensure a minimum size on small systems.
8745 		 */
8746 		tmp = max_t(u64, tmp >> 2,
8747 			    mult_frac(zone_managed_pages(zone),
8748 				      watermark_scale_factor, 10000));
8749 
8750 		zone->watermark_boost = 0;
8751 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8752 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8753 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8754 
8755 		spin_unlock_irqrestore(&zone->lock, flags);
8756 	}
8757 
8758 	/* update totalreserve_pages */
8759 	calculate_totalreserve_pages();
8760 }
8761 
8762 /**
8763  * setup_per_zone_wmarks - called when min_free_kbytes changes
8764  * or when memory is hot-{added|removed}
8765  *
8766  * Ensures that the watermark[min,low,high] values for each zone are set
8767  * correctly with respect to min_free_kbytes.
8768  */
8769 void setup_per_zone_wmarks(void)
8770 {
8771 	struct zone *zone;
8772 	static DEFINE_SPINLOCK(lock);
8773 
8774 	spin_lock(&lock);
8775 	__setup_per_zone_wmarks();
8776 	spin_unlock(&lock);
8777 
8778 	/*
8779 	 * The watermark size have changed so update the pcpu batch
8780 	 * and high limits or the limits may be inappropriate.
8781 	 */
8782 	for_each_zone(zone)
8783 		zone_pcp_update(zone, 0);
8784 }
8785 
8786 /*
8787  * Initialise min_free_kbytes.
8788  *
8789  * For small machines we want it small (128k min).  For large machines
8790  * we want it large (256MB max).  But it is not linear, because network
8791  * bandwidth does not increase linearly with machine size.  We use
8792  *
8793  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8794  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8795  *
8796  * which yields
8797  *
8798  * 16MB:	512k
8799  * 32MB:	724k
8800  * 64MB:	1024k
8801  * 128MB:	1448k
8802  * 256MB:	2048k
8803  * 512MB:	2896k
8804  * 1024MB:	4096k
8805  * 2048MB:	5792k
8806  * 4096MB:	8192k
8807  * 8192MB:	11584k
8808  * 16384MB:	16384k
8809  */
8810 void calculate_min_free_kbytes(void)
8811 {
8812 	unsigned long lowmem_kbytes;
8813 	int new_min_free_kbytes;
8814 
8815 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8816 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8817 
8818 	if (new_min_free_kbytes > user_min_free_kbytes)
8819 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8820 	else
8821 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8822 				new_min_free_kbytes, user_min_free_kbytes);
8823 
8824 }
8825 
8826 int __meminit init_per_zone_wmark_min(void)
8827 {
8828 	calculate_min_free_kbytes();
8829 	setup_per_zone_wmarks();
8830 	refresh_zone_stat_thresholds();
8831 	setup_per_zone_lowmem_reserve();
8832 
8833 #ifdef CONFIG_NUMA
8834 	setup_min_unmapped_ratio();
8835 	setup_min_slab_ratio();
8836 #endif
8837 
8838 	khugepaged_min_free_kbytes_update();
8839 
8840 	return 0;
8841 }
8842 postcore_initcall(init_per_zone_wmark_min)
8843 
8844 /*
8845  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8846  *	that we can call two helper functions whenever min_free_kbytes
8847  *	changes.
8848  */
8849 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8850 		void *buffer, size_t *length, loff_t *ppos)
8851 {
8852 	int rc;
8853 
8854 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8855 	if (rc)
8856 		return rc;
8857 
8858 	if (write) {
8859 		user_min_free_kbytes = min_free_kbytes;
8860 		setup_per_zone_wmarks();
8861 	}
8862 	return 0;
8863 }
8864 
8865 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8866 		void *buffer, size_t *length, loff_t *ppos)
8867 {
8868 	int rc;
8869 
8870 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8871 	if (rc)
8872 		return rc;
8873 
8874 	if (write)
8875 		setup_per_zone_wmarks();
8876 
8877 	return 0;
8878 }
8879 
8880 #ifdef CONFIG_NUMA
8881 static void setup_min_unmapped_ratio(void)
8882 {
8883 	pg_data_t *pgdat;
8884 	struct zone *zone;
8885 
8886 	for_each_online_pgdat(pgdat)
8887 		pgdat->min_unmapped_pages = 0;
8888 
8889 	for_each_zone(zone)
8890 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8891 						         sysctl_min_unmapped_ratio) / 100;
8892 }
8893 
8894 
8895 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8896 		void *buffer, size_t *length, loff_t *ppos)
8897 {
8898 	int rc;
8899 
8900 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8901 	if (rc)
8902 		return rc;
8903 
8904 	setup_min_unmapped_ratio();
8905 
8906 	return 0;
8907 }
8908 
8909 static void setup_min_slab_ratio(void)
8910 {
8911 	pg_data_t *pgdat;
8912 	struct zone *zone;
8913 
8914 	for_each_online_pgdat(pgdat)
8915 		pgdat->min_slab_pages = 0;
8916 
8917 	for_each_zone(zone)
8918 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8919 						     sysctl_min_slab_ratio) / 100;
8920 }
8921 
8922 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8923 		void *buffer, size_t *length, loff_t *ppos)
8924 {
8925 	int rc;
8926 
8927 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8928 	if (rc)
8929 		return rc;
8930 
8931 	setup_min_slab_ratio();
8932 
8933 	return 0;
8934 }
8935 #endif
8936 
8937 /*
8938  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8939  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8940  *	whenever sysctl_lowmem_reserve_ratio changes.
8941  *
8942  * The reserve ratio obviously has absolutely no relation with the
8943  * minimum watermarks. The lowmem reserve ratio can only make sense
8944  * if in function of the boot time zone sizes.
8945  */
8946 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8947 		void *buffer, size_t *length, loff_t *ppos)
8948 {
8949 	int i;
8950 
8951 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8952 
8953 	for (i = 0; i < MAX_NR_ZONES; i++) {
8954 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8955 			sysctl_lowmem_reserve_ratio[i] = 0;
8956 	}
8957 
8958 	setup_per_zone_lowmem_reserve();
8959 	return 0;
8960 }
8961 
8962 /*
8963  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8964  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8965  * pagelist can have before it gets flushed back to buddy allocator.
8966  */
8967 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8968 		int write, void *buffer, size_t *length, loff_t *ppos)
8969 {
8970 	struct zone *zone;
8971 	int old_percpu_pagelist_high_fraction;
8972 	int ret;
8973 
8974 	mutex_lock(&pcp_batch_high_lock);
8975 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8976 
8977 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8978 	if (!write || ret < 0)
8979 		goto out;
8980 
8981 	/* Sanity checking to avoid pcp imbalance */
8982 	if (percpu_pagelist_high_fraction &&
8983 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8984 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8985 		ret = -EINVAL;
8986 		goto out;
8987 	}
8988 
8989 	/* No change? */
8990 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8991 		goto out;
8992 
8993 	for_each_populated_zone(zone)
8994 		zone_set_pageset_high_and_batch(zone, 0);
8995 out:
8996 	mutex_unlock(&pcp_batch_high_lock);
8997 	return ret;
8998 }
8999 
9000 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9001 /*
9002  * Returns the number of pages that arch has reserved but
9003  * is not known to alloc_large_system_hash().
9004  */
9005 static unsigned long __init arch_reserved_kernel_pages(void)
9006 {
9007 	return 0;
9008 }
9009 #endif
9010 
9011 /*
9012  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9013  * machines. As memory size is increased the scale is also increased but at
9014  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9015  * quadruples the scale is increased by one, which means the size of hash table
9016  * only doubles, instead of quadrupling as well.
9017  * Because 32-bit systems cannot have large physical memory, where this scaling
9018  * makes sense, it is disabled on such platforms.
9019  */
9020 #if __BITS_PER_LONG > 32
9021 #define ADAPT_SCALE_BASE	(64ul << 30)
9022 #define ADAPT_SCALE_SHIFT	2
9023 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9024 #endif
9025 
9026 /*
9027  * allocate a large system hash table from bootmem
9028  * - it is assumed that the hash table must contain an exact power-of-2
9029  *   quantity of entries
9030  * - limit is the number of hash buckets, not the total allocation size
9031  */
9032 void *__init alloc_large_system_hash(const char *tablename,
9033 				     unsigned long bucketsize,
9034 				     unsigned long numentries,
9035 				     int scale,
9036 				     int flags,
9037 				     unsigned int *_hash_shift,
9038 				     unsigned int *_hash_mask,
9039 				     unsigned long low_limit,
9040 				     unsigned long high_limit)
9041 {
9042 	unsigned long long max = high_limit;
9043 	unsigned long log2qty, size;
9044 	void *table;
9045 	gfp_t gfp_flags;
9046 	bool virt;
9047 	bool huge;
9048 
9049 	/* allow the kernel cmdline to have a say */
9050 	if (!numentries) {
9051 		/* round applicable memory size up to nearest megabyte */
9052 		numentries = nr_kernel_pages;
9053 		numentries -= arch_reserved_kernel_pages();
9054 
9055 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9056 		if (PAGE_SIZE < SZ_1M)
9057 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9058 
9059 #if __BITS_PER_LONG > 32
9060 		if (!high_limit) {
9061 			unsigned long adapt;
9062 
9063 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9064 			     adapt <<= ADAPT_SCALE_SHIFT)
9065 				scale++;
9066 		}
9067 #endif
9068 
9069 		/* limit to 1 bucket per 2^scale bytes of low memory */
9070 		if (scale > PAGE_SHIFT)
9071 			numentries >>= (scale - PAGE_SHIFT);
9072 		else
9073 			numentries <<= (PAGE_SHIFT - scale);
9074 
9075 		/* Make sure we've got at least a 0-order allocation.. */
9076 		if (unlikely(flags & HASH_SMALL)) {
9077 			/* Makes no sense without HASH_EARLY */
9078 			WARN_ON(!(flags & HASH_EARLY));
9079 			if (!(numentries >> *_hash_shift)) {
9080 				numentries = 1UL << *_hash_shift;
9081 				BUG_ON(!numentries);
9082 			}
9083 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9084 			numentries = PAGE_SIZE / bucketsize;
9085 	}
9086 	numentries = roundup_pow_of_two(numentries);
9087 
9088 	/* limit allocation size to 1/16 total memory by default */
9089 	if (max == 0) {
9090 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9091 		do_div(max, bucketsize);
9092 	}
9093 	max = min(max, 0x80000000ULL);
9094 
9095 	if (numentries < low_limit)
9096 		numentries = low_limit;
9097 	if (numentries > max)
9098 		numentries = max;
9099 
9100 	log2qty = ilog2(numentries);
9101 
9102 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9103 	do {
9104 		virt = false;
9105 		size = bucketsize << log2qty;
9106 		if (flags & HASH_EARLY) {
9107 			if (flags & HASH_ZERO)
9108 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9109 			else
9110 				table = memblock_alloc_raw(size,
9111 							   SMP_CACHE_BYTES);
9112 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9113 			table = vmalloc_huge(size, gfp_flags);
9114 			virt = true;
9115 			if (table)
9116 				huge = is_vm_area_hugepages(table);
9117 		} else {
9118 			/*
9119 			 * If bucketsize is not a power-of-two, we may free
9120 			 * some pages at the end of hash table which
9121 			 * alloc_pages_exact() automatically does
9122 			 */
9123 			table = alloc_pages_exact(size, gfp_flags);
9124 			kmemleak_alloc(table, size, 1, gfp_flags);
9125 		}
9126 	} while (!table && size > PAGE_SIZE && --log2qty);
9127 
9128 	if (!table)
9129 		panic("Failed to allocate %s hash table\n", tablename);
9130 
9131 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9132 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9133 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9134 
9135 	if (_hash_shift)
9136 		*_hash_shift = log2qty;
9137 	if (_hash_mask)
9138 		*_hash_mask = (1 << log2qty) - 1;
9139 
9140 	return table;
9141 }
9142 
9143 #ifdef CONFIG_CONTIG_ALLOC
9144 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9145 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9146 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9147 static void alloc_contig_dump_pages(struct list_head *page_list)
9148 {
9149 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9150 
9151 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9152 		struct page *page;
9153 
9154 		dump_stack();
9155 		list_for_each_entry(page, page_list, lru)
9156 			dump_page(page, "migration failure");
9157 	}
9158 }
9159 #else
9160 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9161 {
9162 }
9163 #endif
9164 
9165 /* [start, end) must belong to a single zone. */
9166 int __alloc_contig_migrate_range(struct compact_control *cc,
9167 					unsigned long start, unsigned long end)
9168 {
9169 	/* This function is based on compact_zone() from compaction.c. */
9170 	unsigned int nr_reclaimed;
9171 	unsigned long pfn = start;
9172 	unsigned int tries = 0;
9173 	int ret = 0;
9174 	struct migration_target_control mtc = {
9175 		.nid = zone_to_nid(cc->zone),
9176 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9177 	};
9178 
9179 	lru_cache_disable();
9180 
9181 	while (pfn < end || !list_empty(&cc->migratepages)) {
9182 		if (fatal_signal_pending(current)) {
9183 			ret = -EINTR;
9184 			break;
9185 		}
9186 
9187 		if (list_empty(&cc->migratepages)) {
9188 			cc->nr_migratepages = 0;
9189 			ret = isolate_migratepages_range(cc, pfn, end);
9190 			if (ret && ret != -EAGAIN)
9191 				break;
9192 			pfn = cc->migrate_pfn;
9193 			tries = 0;
9194 		} else if (++tries == 5) {
9195 			ret = -EBUSY;
9196 			break;
9197 		}
9198 
9199 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9200 							&cc->migratepages);
9201 		cc->nr_migratepages -= nr_reclaimed;
9202 
9203 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9204 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9205 
9206 		/*
9207 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9208 		 * to retry again over this error, so do the same here.
9209 		 */
9210 		if (ret == -ENOMEM)
9211 			break;
9212 	}
9213 
9214 	lru_cache_enable();
9215 	if (ret < 0) {
9216 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9217 			alloc_contig_dump_pages(&cc->migratepages);
9218 		putback_movable_pages(&cc->migratepages);
9219 		return ret;
9220 	}
9221 	return 0;
9222 }
9223 
9224 /**
9225  * alloc_contig_range() -- tries to allocate given range of pages
9226  * @start:	start PFN to allocate
9227  * @end:	one-past-the-last PFN to allocate
9228  * @migratetype:	migratetype of the underlying pageblocks (either
9229  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9230  *			in range must have the same migratetype and it must
9231  *			be either of the two.
9232  * @gfp_mask:	GFP mask to use during compaction
9233  *
9234  * The PFN range does not have to be pageblock aligned. The PFN range must
9235  * belong to a single zone.
9236  *
9237  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9238  * pageblocks in the range.  Once isolated, the pageblocks should not
9239  * be modified by others.
9240  *
9241  * Return: zero on success or negative error code.  On success all
9242  * pages which PFN is in [start, end) are allocated for the caller and
9243  * need to be freed with free_contig_range().
9244  */
9245 int alloc_contig_range(unsigned long start, unsigned long end,
9246 		       unsigned migratetype, gfp_t gfp_mask)
9247 {
9248 	unsigned long outer_start, outer_end;
9249 	int order;
9250 	int ret = 0;
9251 
9252 	struct compact_control cc = {
9253 		.nr_migratepages = 0,
9254 		.order = -1,
9255 		.zone = page_zone(pfn_to_page(start)),
9256 		.mode = MIGRATE_SYNC,
9257 		.ignore_skip_hint = true,
9258 		.no_set_skip_hint = true,
9259 		.gfp_mask = current_gfp_context(gfp_mask),
9260 		.alloc_contig = true,
9261 	};
9262 	INIT_LIST_HEAD(&cc.migratepages);
9263 
9264 	/*
9265 	 * What we do here is we mark all pageblocks in range as
9266 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9267 	 * have different sizes, and due to the way page allocator
9268 	 * work, start_isolate_page_range() has special handlings for this.
9269 	 *
9270 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9271 	 * migrate the pages from an unaligned range (ie. pages that
9272 	 * we are interested in). This will put all the pages in
9273 	 * range back to page allocator as MIGRATE_ISOLATE.
9274 	 *
9275 	 * When this is done, we take the pages in range from page
9276 	 * allocator removing them from the buddy system.  This way
9277 	 * page allocator will never consider using them.
9278 	 *
9279 	 * This lets us mark the pageblocks back as
9280 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9281 	 * aligned range but not in the unaligned, original range are
9282 	 * put back to page allocator so that buddy can use them.
9283 	 */
9284 
9285 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9286 	if (ret)
9287 		goto done;
9288 
9289 	drain_all_pages(cc.zone);
9290 
9291 	/*
9292 	 * In case of -EBUSY, we'd like to know which page causes problem.
9293 	 * So, just fall through. test_pages_isolated() has a tracepoint
9294 	 * which will report the busy page.
9295 	 *
9296 	 * It is possible that busy pages could become available before
9297 	 * the call to test_pages_isolated, and the range will actually be
9298 	 * allocated.  So, if we fall through be sure to clear ret so that
9299 	 * -EBUSY is not accidentally used or returned to caller.
9300 	 */
9301 	ret = __alloc_contig_migrate_range(&cc, start, end);
9302 	if (ret && ret != -EBUSY)
9303 		goto done;
9304 	ret = 0;
9305 
9306 	/*
9307 	 * Pages from [start, end) are within a pageblock_nr_pages
9308 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9309 	 * more, all pages in [start, end) are free in page allocator.
9310 	 * What we are going to do is to allocate all pages from
9311 	 * [start, end) (that is remove them from page allocator).
9312 	 *
9313 	 * The only problem is that pages at the beginning and at the
9314 	 * end of interesting range may be not aligned with pages that
9315 	 * page allocator holds, ie. they can be part of higher order
9316 	 * pages.  Because of this, we reserve the bigger range and
9317 	 * once this is done free the pages we are not interested in.
9318 	 *
9319 	 * We don't have to hold zone->lock here because the pages are
9320 	 * isolated thus they won't get removed from buddy.
9321 	 */
9322 
9323 	order = 0;
9324 	outer_start = start;
9325 	while (!PageBuddy(pfn_to_page(outer_start))) {
9326 		if (++order >= MAX_ORDER) {
9327 			outer_start = start;
9328 			break;
9329 		}
9330 		outer_start &= ~0UL << order;
9331 	}
9332 
9333 	if (outer_start != start) {
9334 		order = buddy_order(pfn_to_page(outer_start));
9335 
9336 		/*
9337 		 * outer_start page could be small order buddy page and
9338 		 * it doesn't include start page. Adjust outer_start
9339 		 * in this case to report failed page properly
9340 		 * on tracepoint in test_pages_isolated()
9341 		 */
9342 		if (outer_start + (1UL << order) <= start)
9343 			outer_start = start;
9344 	}
9345 
9346 	/* Make sure the range is really isolated. */
9347 	if (test_pages_isolated(outer_start, end, 0)) {
9348 		ret = -EBUSY;
9349 		goto done;
9350 	}
9351 
9352 	/* Grab isolated pages from freelists. */
9353 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9354 	if (!outer_end) {
9355 		ret = -EBUSY;
9356 		goto done;
9357 	}
9358 
9359 	/* Free head and tail (if any) */
9360 	if (start != outer_start)
9361 		free_contig_range(outer_start, start - outer_start);
9362 	if (end != outer_end)
9363 		free_contig_range(end, outer_end - end);
9364 
9365 done:
9366 	undo_isolate_page_range(start, end, migratetype);
9367 	return ret;
9368 }
9369 EXPORT_SYMBOL(alloc_contig_range);
9370 
9371 static int __alloc_contig_pages(unsigned long start_pfn,
9372 				unsigned long nr_pages, gfp_t gfp_mask)
9373 {
9374 	unsigned long end_pfn = start_pfn + nr_pages;
9375 
9376 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9377 				  gfp_mask);
9378 }
9379 
9380 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9381 				   unsigned long nr_pages)
9382 {
9383 	unsigned long i, end_pfn = start_pfn + nr_pages;
9384 	struct page *page;
9385 
9386 	for (i = start_pfn; i < end_pfn; i++) {
9387 		page = pfn_to_online_page(i);
9388 		if (!page)
9389 			return false;
9390 
9391 		if (page_zone(page) != z)
9392 			return false;
9393 
9394 		if (PageReserved(page))
9395 			return false;
9396 	}
9397 	return true;
9398 }
9399 
9400 static bool zone_spans_last_pfn(const struct zone *zone,
9401 				unsigned long start_pfn, unsigned long nr_pages)
9402 {
9403 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9404 
9405 	return zone_spans_pfn(zone, last_pfn);
9406 }
9407 
9408 /**
9409  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9410  * @nr_pages:	Number of contiguous pages to allocate
9411  * @gfp_mask:	GFP mask to limit search and used during compaction
9412  * @nid:	Target node
9413  * @nodemask:	Mask for other possible nodes
9414  *
9415  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9416  * on an applicable zonelist to find a contiguous pfn range which can then be
9417  * tried for allocation with alloc_contig_range(). This routine is intended
9418  * for allocation requests which can not be fulfilled with the buddy allocator.
9419  *
9420  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9421  * power of two, then allocated range is also guaranteed to be aligned to same
9422  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9423  *
9424  * Allocated pages can be freed with free_contig_range() or by manually calling
9425  * __free_page() on each allocated page.
9426  *
9427  * Return: pointer to contiguous pages on success, or NULL if not successful.
9428  */
9429 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9430 				int nid, nodemask_t *nodemask)
9431 {
9432 	unsigned long ret, pfn, flags;
9433 	struct zonelist *zonelist;
9434 	struct zone *zone;
9435 	struct zoneref *z;
9436 
9437 	zonelist = node_zonelist(nid, gfp_mask);
9438 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9439 					gfp_zone(gfp_mask), nodemask) {
9440 		spin_lock_irqsave(&zone->lock, flags);
9441 
9442 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9443 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9444 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9445 				/*
9446 				 * We release the zone lock here because
9447 				 * alloc_contig_range() will also lock the zone
9448 				 * at some point. If there's an allocation
9449 				 * spinning on this lock, it may win the race
9450 				 * and cause alloc_contig_range() to fail...
9451 				 */
9452 				spin_unlock_irqrestore(&zone->lock, flags);
9453 				ret = __alloc_contig_pages(pfn, nr_pages,
9454 							gfp_mask);
9455 				if (!ret)
9456 					return pfn_to_page(pfn);
9457 				spin_lock_irqsave(&zone->lock, flags);
9458 			}
9459 			pfn += nr_pages;
9460 		}
9461 		spin_unlock_irqrestore(&zone->lock, flags);
9462 	}
9463 	return NULL;
9464 }
9465 #endif /* CONFIG_CONTIG_ALLOC */
9466 
9467 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9468 {
9469 	unsigned long count = 0;
9470 
9471 	for (; nr_pages--; pfn++) {
9472 		struct page *page = pfn_to_page(pfn);
9473 
9474 		count += page_count(page) != 1;
9475 		__free_page(page);
9476 	}
9477 	WARN(count != 0, "%lu pages are still in use!\n", count);
9478 }
9479 EXPORT_SYMBOL(free_contig_range);
9480 
9481 /*
9482  * Effectively disable pcplists for the zone by setting the high limit to 0
9483  * and draining all cpus. A concurrent page freeing on another CPU that's about
9484  * to put the page on pcplist will either finish before the drain and the page
9485  * will be drained, or observe the new high limit and skip the pcplist.
9486  *
9487  * Must be paired with a call to zone_pcp_enable().
9488  */
9489 void zone_pcp_disable(struct zone *zone)
9490 {
9491 	mutex_lock(&pcp_batch_high_lock);
9492 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9493 	__drain_all_pages(zone, true);
9494 }
9495 
9496 void zone_pcp_enable(struct zone *zone)
9497 {
9498 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9499 	mutex_unlock(&pcp_batch_high_lock);
9500 }
9501 
9502 void zone_pcp_reset(struct zone *zone)
9503 {
9504 	int cpu;
9505 	struct per_cpu_zonestat *pzstats;
9506 
9507 	if (zone->per_cpu_pageset != &boot_pageset) {
9508 		for_each_online_cpu(cpu) {
9509 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9510 			drain_zonestat(zone, pzstats);
9511 		}
9512 		free_percpu(zone->per_cpu_pageset);
9513 		zone->per_cpu_pageset = &boot_pageset;
9514 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9515 			free_percpu(zone->per_cpu_zonestats);
9516 			zone->per_cpu_zonestats = &boot_zonestats;
9517 		}
9518 	}
9519 }
9520 
9521 #ifdef CONFIG_MEMORY_HOTREMOVE
9522 /*
9523  * All pages in the range must be in a single zone, must not contain holes,
9524  * must span full sections, and must be isolated before calling this function.
9525  */
9526 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9527 {
9528 	unsigned long pfn = start_pfn;
9529 	struct page *page;
9530 	struct zone *zone;
9531 	unsigned int order;
9532 	unsigned long flags;
9533 
9534 	offline_mem_sections(pfn, end_pfn);
9535 	zone = page_zone(pfn_to_page(pfn));
9536 	spin_lock_irqsave(&zone->lock, flags);
9537 	while (pfn < end_pfn) {
9538 		page = pfn_to_page(pfn);
9539 		/*
9540 		 * The HWPoisoned page may be not in buddy system, and
9541 		 * page_count() is not 0.
9542 		 */
9543 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9544 			pfn++;
9545 			continue;
9546 		}
9547 		/*
9548 		 * At this point all remaining PageOffline() pages have a
9549 		 * reference count of 0 and can simply be skipped.
9550 		 */
9551 		if (PageOffline(page)) {
9552 			BUG_ON(page_count(page));
9553 			BUG_ON(PageBuddy(page));
9554 			pfn++;
9555 			continue;
9556 		}
9557 
9558 		BUG_ON(page_count(page));
9559 		BUG_ON(!PageBuddy(page));
9560 		order = buddy_order(page);
9561 		del_page_from_free_list(page, zone, order);
9562 		pfn += (1 << order);
9563 	}
9564 	spin_unlock_irqrestore(&zone->lock, flags);
9565 }
9566 #endif
9567 
9568 /*
9569  * This function returns a stable result only if called under zone lock.
9570  */
9571 bool is_free_buddy_page(struct page *page)
9572 {
9573 	unsigned long pfn = page_to_pfn(page);
9574 	unsigned int order;
9575 
9576 	for (order = 0; order < MAX_ORDER; order++) {
9577 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9578 
9579 		if (PageBuddy(page_head) &&
9580 		    buddy_order_unsafe(page_head) >= order)
9581 			break;
9582 	}
9583 
9584 	return order < MAX_ORDER;
9585 }
9586 EXPORT_SYMBOL(is_free_buddy_page);
9587 
9588 #ifdef CONFIG_MEMORY_FAILURE
9589 /*
9590  * Break down a higher-order page in sub-pages, and keep our target out of
9591  * buddy allocator.
9592  */
9593 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9594 				   struct page *target, int low, int high,
9595 				   int migratetype)
9596 {
9597 	unsigned long size = 1 << high;
9598 	struct page *current_buddy, *next_page;
9599 
9600 	while (high > low) {
9601 		high--;
9602 		size >>= 1;
9603 
9604 		if (target >= &page[size]) {
9605 			next_page = page + size;
9606 			current_buddy = page;
9607 		} else {
9608 			next_page = page;
9609 			current_buddy = page + size;
9610 		}
9611 
9612 		if (set_page_guard(zone, current_buddy, high, migratetype))
9613 			continue;
9614 
9615 		if (current_buddy != target) {
9616 			add_to_free_list(current_buddy, zone, high, migratetype);
9617 			set_buddy_order(current_buddy, high);
9618 			page = next_page;
9619 		}
9620 	}
9621 }
9622 
9623 /*
9624  * Take a page that will be marked as poisoned off the buddy allocator.
9625  */
9626 bool take_page_off_buddy(struct page *page)
9627 {
9628 	struct zone *zone = page_zone(page);
9629 	unsigned long pfn = page_to_pfn(page);
9630 	unsigned long flags;
9631 	unsigned int order;
9632 	bool ret = false;
9633 
9634 	spin_lock_irqsave(&zone->lock, flags);
9635 	for (order = 0; order < MAX_ORDER; order++) {
9636 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9637 		int page_order = buddy_order(page_head);
9638 
9639 		if (PageBuddy(page_head) && page_order >= order) {
9640 			unsigned long pfn_head = page_to_pfn(page_head);
9641 			int migratetype = get_pfnblock_migratetype(page_head,
9642 								   pfn_head);
9643 
9644 			del_page_from_free_list(page_head, zone, page_order);
9645 			break_down_buddy_pages(zone, page_head, page, 0,
9646 						page_order, migratetype);
9647 			SetPageHWPoisonTakenOff(page);
9648 			if (!is_migrate_isolate(migratetype))
9649 				__mod_zone_freepage_state(zone, -1, migratetype);
9650 			ret = true;
9651 			break;
9652 		}
9653 		if (page_count(page_head) > 0)
9654 			break;
9655 	}
9656 	spin_unlock_irqrestore(&zone->lock, flags);
9657 	return ret;
9658 }
9659 
9660 /*
9661  * Cancel takeoff done by take_page_off_buddy().
9662  */
9663 bool put_page_back_buddy(struct page *page)
9664 {
9665 	struct zone *zone = page_zone(page);
9666 	unsigned long pfn = page_to_pfn(page);
9667 	unsigned long flags;
9668 	int migratetype = get_pfnblock_migratetype(page, pfn);
9669 	bool ret = false;
9670 
9671 	spin_lock_irqsave(&zone->lock, flags);
9672 	if (put_page_testzero(page)) {
9673 		ClearPageHWPoisonTakenOff(page);
9674 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9675 		if (TestClearPageHWPoison(page)) {
9676 			ret = true;
9677 		}
9678 	}
9679 	spin_unlock_irqrestore(&zone->lock, flags);
9680 
9681 	return ret;
9682 }
9683 #endif
9684 
9685 #ifdef CONFIG_ZONE_DMA
9686 bool has_managed_dma(void)
9687 {
9688 	struct pglist_data *pgdat;
9689 
9690 	for_each_online_pgdat(pgdat) {
9691 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9692 
9693 		if (managed_zone(zone))
9694 			return true;
9695 	}
9696 	return false;
9697 }
9698 #endif /* CONFIG_ZONE_DMA */
9699