1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 70 #include <asm/sections.h> 71 #include <asm/tlbflush.h> 72 #include <asm/div64.h> 73 #include "internal.h" 74 75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 76 static DEFINE_MUTEX(pcp_batch_high_lock); 77 #define MIN_PERCPU_PAGELIST_FRACTION (8) 78 79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 80 DEFINE_PER_CPU(int, numa_node); 81 EXPORT_PER_CPU_SYMBOL(numa_node); 82 #endif 83 84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 85 /* 86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 89 * defined in <linux/topology.h>. 90 */ 91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 92 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 93 int _node_numa_mem_[MAX_NUMNODES]; 94 #endif 95 96 /* work_structs for global per-cpu drains */ 97 DEFINE_MUTEX(pcpu_drain_mutex); 98 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 99 100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 101 volatile unsigned long latent_entropy __latent_entropy; 102 EXPORT_SYMBOL(latent_entropy); 103 #endif 104 105 /* 106 * Array of node states. 107 */ 108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 109 [N_POSSIBLE] = NODE_MASK_ALL, 110 [N_ONLINE] = { { [0] = 1UL } }, 111 #ifndef CONFIG_NUMA 112 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 113 #ifdef CONFIG_HIGHMEM 114 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 115 #endif 116 [N_MEMORY] = { { [0] = 1UL } }, 117 [N_CPU] = { { [0] = 1UL } }, 118 #endif /* NUMA */ 119 }; 120 EXPORT_SYMBOL(node_states); 121 122 /* Protect totalram_pages and zone->managed_pages */ 123 static DEFINE_SPINLOCK(managed_page_count_lock); 124 125 unsigned long totalram_pages __read_mostly; 126 unsigned long totalreserve_pages __read_mostly; 127 unsigned long totalcma_pages __read_mostly; 128 129 int percpu_pagelist_fraction; 130 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 131 132 /* 133 * A cached value of the page's pageblock's migratetype, used when the page is 134 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 135 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 136 * Also the migratetype set in the page does not necessarily match the pcplist 137 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 138 * other index - this ensures that it will be put on the correct CMA freelist. 139 */ 140 static inline int get_pcppage_migratetype(struct page *page) 141 { 142 return page->index; 143 } 144 145 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 146 { 147 page->index = migratetype; 148 } 149 150 #ifdef CONFIG_PM_SLEEP 151 /* 152 * The following functions are used by the suspend/hibernate code to temporarily 153 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 154 * while devices are suspended. To avoid races with the suspend/hibernate code, 155 * they should always be called with pm_mutex held (gfp_allowed_mask also should 156 * only be modified with pm_mutex held, unless the suspend/hibernate code is 157 * guaranteed not to run in parallel with that modification). 158 */ 159 160 static gfp_t saved_gfp_mask; 161 162 void pm_restore_gfp_mask(void) 163 { 164 WARN_ON(!mutex_is_locked(&pm_mutex)); 165 if (saved_gfp_mask) { 166 gfp_allowed_mask = saved_gfp_mask; 167 saved_gfp_mask = 0; 168 } 169 } 170 171 void pm_restrict_gfp_mask(void) 172 { 173 WARN_ON(!mutex_is_locked(&pm_mutex)); 174 WARN_ON(saved_gfp_mask); 175 saved_gfp_mask = gfp_allowed_mask; 176 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 177 } 178 179 bool pm_suspended_storage(void) 180 { 181 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 182 return false; 183 return true; 184 } 185 #endif /* CONFIG_PM_SLEEP */ 186 187 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 188 unsigned int pageblock_order __read_mostly; 189 #endif 190 191 static void __free_pages_ok(struct page *page, unsigned int order); 192 193 /* 194 * results with 256, 32 in the lowmem_reserve sysctl: 195 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 196 * 1G machine -> (16M dma, 784M normal, 224M high) 197 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 198 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 199 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 200 * 201 * TBD: should special case ZONE_DMA32 machines here - in those we normally 202 * don't need any ZONE_NORMAL reservation 203 */ 204 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 205 #ifdef CONFIG_ZONE_DMA 206 256, 207 #endif 208 #ifdef CONFIG_ZONE_DMA32 209 256, 210 #endif 211 #ifdef CONFIG_HIGHMEM 212 32, 213 #endif 214 32, 215 }; 216 217 EXPORT_SYMBOL(totalram_pages); 218 219 static char * const zone_names[MAX_NR_ZONES] = { 220 #ifdef CONFIG_ZONE_DMA 221 "DMA", 222 #endif 223 #ifdef CONFIG_ZONE_DMA32 224 "DMA32", 225 #endif 226 "Normal", 227 #ifdef CONFIG_HIGHMEM 228 "HighMem", 229 #endif 230 "Movable", 231 #ifdef CONFIG_ZONE_DEVICE 232 "Device", 233 #endif 234 }; 235 236 char * const migratetype_names[MIGRATE_TYPES] = { 237 "Unmovable", 238 "Movable", 239 "Reclaimable", 240 "HighAtomic", 241 #ifdef CONFIG_CMA 242 "CMA", 243 #endif 244 #ifdef CONFIG_MEMORY_ISOLATION 245 "Isolate", 246 #endif 247 }; 248 249 compound_page_dtor * const compound_page_dtors[] = { 250 NULL, 251 free_compound_page, 252 #ifdef CONFIG_HUGETLB_PAGE 253 free_huge_page, 254 #endif 255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 256 free_transhuge_page, 257 #endif 258 }; 259 260 int min_free_kbytes = 1024; 261 int user_min_free_kbytes = -1; 262 int watermark_scale_factor = 10; 263 264 static unsigned long __meminitdata nr_kernel_pages; 265 static unsigned long __meminitdata nr_all_pages; 266 static unsigned long __meminitdata dma_reserve; 267 268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 269 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 270 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 271 static unsigned long __initdata required_kernelcore; 272 static unsigned long __initdata required_movablecore; 273 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 274 static bool mirrored_kernelcore; 275 276 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 277 int movable_zone; 278 EXPORT_SYMBOL(movable_zone); 279 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 280 281 #if MAX_NUMNODES > 1 282 int nr_node_ids __read_mostly = MAX_NUMNODES; 283 int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 int page_group_by_mobility_disabled __read_mostly; 289 290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 291 static inline void reset_deferred_meminit(pg_data_t *pgdat) 292 { 293 unsigned long max_initialise; 294 unsigned long reserved_lowmem; 295 296 /* 297 * Initialise at least 2G of a node but also take into account that 298 * two large system hashes that can take up 1GB for 0.25TB/node. 299 */ 300 max_initialise = max(2UL << (30 - PAGE_SHIFT), 301 (pgdat->node_spanned_pages >> 8)); 302 303 /* 304 * Compensate the all the memblock reservations (e.g. crash kernel) 305 * from the initial estimation to make sure we will initialize enough 306 * memory to boot. 307 */ 308 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn, 309 pgdat->node_start_pfn + max_initialise); 310 max_initialise += reserved_lowmem; 311 312 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages); 313 pgdat->first_deferred_pfn = ULONG_MAX; 314 } 315 316 /* Returns true if the struct page for the pfn is uninitialised */ 317 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 318 { 319 int nid = early_pfn_to_nid(pfn); 320 321 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 322 return true; 323 324 return false; 325 } 326 327 /* 328 * Returns false when the remaining initialisation should be deferred until 329 * later in the boot cycle when it can be parallelised. 330 */ 331 static inline bool update_defer_init(pg_data_t *pgdat, 332 unsigned long pfn, unsigned long zone_end, 333 unsigned long *nr_initialised) 334 { 335 /* Always populate low zones for address-contrained allocations */ 336 if (zone_end < pgdat_end_pfn(pgdat)) 337 return true; 338 (*nr_initialised)++; 339 if ((*nr_initialised > pgdat->static_init_size) && 340 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 341 pgdat->first_deferred_pfn = pfn; 342 return false; 343 } 344 345 return true; 346 } 347 #else 348 static inline void reset_deferred_meminit(pg_data_t *pgdat) 349 { 350 } 351 352 static inline bool early_page_uninitialised(unsigned long pfn) 353 { 354 return false; 355 } 356 357 static inline bool update_defer_init(pg_data_t *pgdat, 358 unsigned long pfn, unsigned long zone_end, 359 unsigned long *nr_initialised) 360 { 361 return true; 362 } 363 #endif 364 365 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 366 static inline unsigned long *get_pageblock_bitmap(struct page *page, 367 unsigned long pfn) 368 { 369 #ifdef CONFIG_SPARSEMEM 370 return __pfn_to_section(pfn)->pageblock_flags; 371 #else 372 return page_zone(page)->pageblock_flags; 373 #endif /* CONFIG_SPARSEMEM */ 374 } 375 376 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 377 { 378 #ifdef CONFIG_SPARSEMEM 379 pfn &= (PAGES_PER_SECTION-1); 380 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 381 #else 382 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 383 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 384 #endif /* CONFIG_SPARSEMEM */ 385 } 386 387 /** 388 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 389 * @page: The page within the block of interest 390 * @pfn: The target page frame number 391 * @end_bitidx: The last bit of interest to retrieve 392 * @mask: mask of bits that the caller is interested in 393 * 394 * Return: pageblock_bits flags 395 */ 396 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 397 unsigned long pfn, 398 unsigned long end_bitidx, 399 unsigned long mask) 400 { 401 unsigned long *bitmap; 402 unsigned long bitidx, word_bitidx; 403 unsigned long word; 404 405 bitmap = get_pageblock_bitmap(page, pfn); 406 bitidx = pfn_to_bitidx(page, pfn); 407 word_bitidx = bitidx / BITS_PER_LONG; 408 bitidx &= (BITS_PER_LONG-1); 409 410 word = bitmap[word_bitidx]; 411 bitidx += end_bitidx; 412 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 413 } 414 415 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 416 unsigned long end_bitidx, 417 unsigned long mask) 418 { 419 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 420 } 421 422 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 423 { 424 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 425 } 426 427 /** 428 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 429 * @page: The page within the block of interest 430 * @flags: The flags to set 431 * @pfn: The target page frame number 432 * @end_bitidx: The last bit of interest 433 * @mask: mask of bits that the caller is interested in 434 */ 435 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 436 unsigned long pfn, 437 unsigned long end_bitidx, 438 unsigned long mask) 439 { 440 unsigned long *bitmap; 441 unsigned long bitidx, word_bitidx; 442 unsigned long old_word, word; 443 444 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 445 446 bitmap = get_pageblock_bitmap(page, pfn); 447 bitidx = pfn_to_bitidx(page, pfn); 448 word_bitidx = bitidx / BITS_PER_LONG; 449 bitidx &= (BITS_PER_LONG-1); 450 451 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 452 453 bitidx += end_bitidx; 454 mask <<= (BITS_PER_LONG - bitidx - 1); 455 flags <<= (BITS_PER_LONG - bitidx - 1); 456 457 word = READ_ONCE(bitmap[word_bitidx]); 458 for (;;) { 459 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 460 if (word == old_word) 461 break; 462 word = old_word; 463 } 464 } 465 466 void set_pageblock_migratetype(struct page *page, int migratetype) 467 { 468 if (unlikely(page_group_by_mobility_disabled && 469 migratetype < MIGRATE_PCPTYPES)) 470 migratetype = MIGRATE_UNMOVABLE; 471 472 set_pageblock_flags_group(page, (unsigned long)migratetype, 473 PB_migrate, PB_migrate_end); 474 } 475 476 #ifdef CONFIG_DEBUG_VM 477 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 478 { 479 int ret = 0; 480 unsigned seq; 481 unsigned long pfn = page_to_pfn(page); 482 unsigned long sp, start_pfn; 483 484 do { 485 seq = zone_span_seqbegin(zone); 486 start_pfn = zone->zone_start_pfn; 487 sp = zone->spanned_pages; 488 if (!zone_spans_pfn(zone, pfn)) 489 ret = 1; 490 } while (zone_span_seqretry(zone, seq)); 491 492 if (ret) 493 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 494 pfn, zone_to_nid(zone), zone->name, 495 start_pfn, start_pfn + sp); 496 497 return ret; 498 } 499 500 static int page_is_consistent(struct zone *zone, struct page *page) 501 { 502 if (!pfn_valid_within(page_to_pfn(page))) 503 return 0; 504 if (zone != page_zone(page)) 505 return 0; 506 507 return 1; 508 } 509 /* 510 * Temporary debugging check for pages not lying within a given zone. 511 */ 512 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 513 { 514 if (page_outside_zone_boundaries(zone, page)) 515 return 1; 516 if (!page_is_consistent(zone, page)) 517 return 1; 518 519 return 0; 520 } 521 #else 522 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 523 { 524 return 0; 525 } 526 #endif 527 528 static void bad_page(struct page *page, const char *reason, 529 unsigned long bad_flags) 530 { 531 static unsigned long resume; 532 static unsigned long nr_shown; 533 static unsigned long nr_unshown; 534 535 /* 536 * Allow a burst of 60 reports, then keep quiet for that minute; 537 * or allow a steady drip of one report per second. 538 */ 539 if (nr_shown == 60) { 540 if (time_before(jiffies, resume)) { 541 nr_unshown++; 542 goto out; 543 } 544 if (nr_unshown) { 545 pr_alert( 546 "BUG: Bad page state: %lu messages suppressed\n", 547 nr_unshown); 548 nr_unshown = 0; 549 } 550 nr_shown = 0; 551 } 552 if (nr_shown++ == 0) 553 resume = jiffies + 60 * HZ; 554 555 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 556 current->comm, page_to_pfn(page)); 557 __dump_page(page, reason); 558 bad_flags &= page->flags; 559 if (bad_flags) 560 pr_alert("bad because of flags: %#lx(%pGp)\n", 561 bad_flags, &bad_flags); 562 dump_page_owner(page); 563 564 print_modules(); 565 dump_stack(); 566 out: 567 /* Leave bad fields for debug, except PageBuddy could make trouble */ 568 page_mapcount_reset(page); /* remove PageBuddy */ 569 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 570 } 571 572 /* 573 * Higher-order pages are called "compound pages". They are structured thusly: 574 * 575 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 576 * 577 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 578 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 579 * 580 * The first tail page's ->compound_dtor holds the offset in array of compound 581 * page destructors. See compound_page_dtors. 582 * 583 * The first tail page's ->compound_order holds the order of allocation. 584 * This usage means that zero-order pages may not be compound. 585 */ 586 587 void free_compound_page(struct page *page) 588 { 589 __free_pages_ok(page, compound_order(page)); 590 } 591 592 void prep_compound_page(struct page *page, unsigned int order) 593 { 594 int i; 595 int nr_pages = 1 << order; 596 597 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 598 set_compound_order(page, order); 599 __SetPageHead(page); 600 for (i = 1; i < nr_pages; i++) { 601 struct page *p = page + i; 602 set_page_count(p, 0); 603 p->mapping = TAIL_MAPPING; 604 set_compound_head(p, page); 605 } 606 atomic_set(compound_mapcount_ptr(page), -1); 607 } 608 609 #ifdef CONFIG_DEBUG_PAGEALLOC 610 unsigned int _debug_guardpage_minorder; 611 bool _debug_pagealloc_enabled __read_mostly 612 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 613 EXPORT_SYMBOL(_debug_pagealloc_enabled); 614 bool _debug_guardpage_enabled __read_mostly; 615 616 static int __init early_debug_pagealloc(char *buf) 617 { 618 if (!buf) 619 return -EINVAL; 620 return kstrtobool(buf, &_debug_pagealloc_enabled); 621 } 622 early_param("debug_pagealloc", early_debug_pagealloc); 623 624 static bool need_debug_guardpage(void) 625 { 626 /* If we don't use debug_pagealloc, we don't need guard page */ 627 if (!debug_pagealloc_enabled()) 628 return false; 629 630 if (!debug_guardpage_minorder()) 631 return false; 632 633 return true; 634 } 635 636 static void init_debug_guardpage(void) 637 { 638 if (!debug_pagealloc_enabled()) 639 return; 640 641 if (!debug_guardpage_minorder()) 642 return; 643 644 _debug_guardpage_enabled = true; 645 } 646 647 struct page_ext_operations debug_guardpage_ops = { 648 .need = need_debug_guardpage, 649 .init = init_debug_guardpage, 650 }; 651 652 static int __init debug_guardpage_minorder_setup(char *buf) 653 { 654 unsigned long res; 655 656 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 657 pr_err("Bad debug_guardpage_minorder value\n"); 658 return 0; 659 } 660 _debug_guardpage_minorder = res; 661 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 662 return 0; 663 } 664 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 665 666 static inline bool set_page_guard(struct zone *zone, struct page *page, 667 unsigned int order, int migratetype) 668 { 669 struct page_ext *page_ext; 670 671 if (!debug_guardpage_enabled()) 672 return false; 673 674 if (order >= debug_guardpage_minorder()) 675 return false; 676 677 page_ext = lookup_page_ext(page); 678 if (unlikely(!page_ext)) 679 return false; 680 681 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 682 683 INIT_LIST_HEAD(&page->lru); 684 set_page_private(page, order); 685 /* Guard pages are not available for any usage */ 686 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 687 688 return true; 689 } 690 691 static inline void clear_page_guard(struct zone *zone, struct page *page, 692 unsigned int order, int migratetype) 693 { 694 struct page_ext *page_ext; 695 696 if (!debug_guardpage_enabled()) 697 return; 698 699 page_ext = lookup_page_ext(page); 700 if (unlikely(!page_ext)) 701 return; 702 703 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 704 705 set_page_private(page, 0); 706 if (!is_migrate_isolate(migratetype)) 707 __mod_zone_freepage_state(zone, (1 << order), migratetype); 708 } 709 #else 710 struct page_ext_operations debug_guardpage_ops; 711 static inline bool set_page_guard(struct zone *zone, struct page *page, 712 unsigned int order, int migratetype) { return false; } 713 static inline void clear_page_guard(struct zone *zone, struct page *page, 714 unsigned int order, int migratetype) {} 715 #endif 716 717 static inline void set_page_order(struct page *page, unsigned int order) 718 { 719 set_page_private(page, order); 720 __SetPageBuddy(page); 721 } 722 723 static inline void rmv_page_order(struct page *page) 724 { 725 __ClearPageBuddy(page); 726 set_page_private(page, 0); 727 } 728 729 /* 730 * This function checks whether a page is free && is the buddy 731 * we can do coalesce a page and its buddy if 732 * (a) the buddy is not in a hole (check before calling!) && 733 * (b) the buddy is in the buddy system && 734 * (c) a page and its buddy have the same order && 735 * (d) a page and its buddy are in the same zone. 736 * 737 * For recording whether a page is in the buddy system, we set ->_mapcount 738 * PAGE_BUDDY_MAPCOUNT_VALUE. 739 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 740 * serialized by zone->lock. 741 * 742 * For recording page's order, we use page_private(page). 743 */ 744 static inline int page_is_buddy(struct page *page, struct page *buddy, 745 unsigned int order) 746 { 747 if (page_is_guard(buddy) && page_order(buddy) == order) { 748 if (page_zone_id(page) != page_zone_id(buddy)) 749 return 0; 750 751 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 752 753 return 1; 754 } 755 756 if (PageBuddy(buddy) && page_order(buddy) == order) { 757 /* 758 * zone check is done late to avoid uselessly 759 * calculating zone/node ids for pages that could 760 * never merge. 761 */ 762 if (page_zone_id(page) != page_zone_id(buddy)) 763 return 0; 764 765 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 766 767 return 1; 768 } 769 return 0; 770 } 771 772 /* 773 * Freeing function for a buddy system allocator. 774 * 775 * The concept of a buddy system is to maintain direct-mapped table 776 * (containing bit values) for memory blocks of various "orders". 777 * The bottom level table contains the map for the smallest allocatable 778 * units of memory (here, pages), and each level above it describes 779 * pairs of units from the levels below, hence, "buddies". 780 * At a high level, all that happens here is marking the table entry 781 * at the bottom level available, and propagating the changes upward 782 * as necessary, plus some accounting needed to play nicely with other 783 * parts of the VM system. 784 * At each level, we keep a list of pages, which are heads of continuous 785 * free pages of length of (1 << order) and marked with _mapcount 786 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 787 * field. 788 * So when we are allocating or freeing one, we can derive the state of the 789 * other. That is, if we allocate a small block, and both were 790 * free, the remainder of the region must be split into blocks. 791 * If a block is freed, and its buddy is also free, then this 792 * triggers coalescing into a block of larger size. 793 * 794 * -- nyc 795 */ 796 797 static inline void __free_one_page(struct page *page, 798 unsigned long pfn, 799 struct zone *zone, unsigned int order, 800 int migratetype) 801 { 802 unsigned long combined_pfn; 803 unsigned long uninitialized_var(buddy_pfn); 804 struct page *buddy; 805 unsigned int max_order; 806 807 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 808 809 VM_BUG_ON(!zone_is_initialized(zone)); 810 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 811 812 VM_BUG_ON(migratetype == -1); 813 if (likely(!is_migrate_isolate(migratetype))) 814 __mod_zone_freepage_state(zone, 1 << order, migratetype); 815 816 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 817 VM_BUG_ON_PAGE(bad_range(zone, page), page); 818 819 continue_merging: 820 while (order < max_order - 1) { 821 buddy_pfn = __find_buddy_pfn(pfn, order); 822 buddy = page + (buddy_pfn - pfn); 823 824 if (!pfn_valid_within(buddy_pfn)) 825 goto done_merging; 826 if (!page_is_buddy(page, buddy, order)) 827 goto done_merging; 828 /* 829 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 830 * merge with it and move up one order. 831 */ 832 if (page_is_guard(buddy)) { 833 clear_page_guard(zone, buddy, order, migratetype); 834 } else { 835 list_del(&buddy->lru); 836 zone->free_area[order].nr_free--; 837 rmv_page_order(buddy); 838 } 839 combined_pfn = buddy_pfn & pfn; 840 page = page + (combined_pfn - pfn); 841 pfn = combined_pfn; 842 order++; 843 } 844 if (max_order < MAX_ORDER) { 845 /* If we are here, it means order is >= pageblock_order. 846 * We want to prevent merge between freepages on isolate 847 * pageblock and normal pageblock. Without this, pageblock 848 * isolation could cause incorrect freepage or CMA accounting. 849 * 850 * We don't want to hit this code for the more frequent 851 * low-order merging. 852 */ 853 if (unlikely(has_isolate_pageblock(zone))) { 854 int buddy_mt; 855 856 buddy_pfn = __find_buddy_pfn(pfn, order); 857 buddy = page + (buddy_pfn - pfn); 858 buddy_mt = get_pageblock_migratetype(buddy); 859 860 if (migratetype != buddy_mt 861 && (is_migrate_isolate(migratetype) || 862 is_migrate_isolate(buddy_mt))) 863 goto done_merging; 864 } 865 max_order++; 866 goto continue_merging; 867 } 868 869 done_merging: 870 set_page_order(page, order); 871 872 /* 873 * If this is not the largest possible page, check if the buddy 874 * of the next-highest order is free. If it is, it's possible 875 * that pages are being freed that will coalesce soon. In case, 876 * that is happening, add the free page to the tail of the list 877 * so it's less likely to be used soon and more likely to be merged 878 * as a higher order page 879 */ 880 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 881 struct page *higher_page, *higher_buddy; 882 combined_pfn = buddy_pfn & pfn; 883 higher_page = page + (combined_pfn - pfn); 884 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 885 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 886 if (pfn_valid_within(buddy_pfn) && 887 page_is_buddy(higher_page, higher_buddy, order + 1)) { 888 list_add_tail(&page->lru, 889 &zone->free_area[order].free_list[migratetype]); 890 goto out; 891 } 892 } 893 894 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 895 out: 896 zone->free_area[order].nr_free++; 897 } 898 899 /* 900 * A bad page could be due to a number of fields. Instead of multiple branches, 901 * try and check multiple fields with one check. The caller must do a detailed 902 * check if necessary. 903 */ 904 static inline bool page_expected_state(struct page *page, 905 unsigned long check_flags) 906 { 907 if (unlikely(atomic_read(&page->_mapcount) != -1)) 908 return false; 909 910 if (unlikely((unsigned long)page->mapping | 911 page_ref_count(page) | 912 #ifdef CONFIG_MEMCG 913 (unsigned long)page->mem_cgroup | 914 #endif 915 (page->flags & check_flags))) 916 return false; 917 918 return true; 919 } 920 921 static void free_pages_check_bad(struct page *page) 922 { 923 const char *bad_reason; 924 unsigned long bad_flags; 925 926 bad_reason = NULL; 927 bad_flags = 0; 928 929 if (unlikely(atomic_read(&page->_mapcount) != -1)) 930 bad_reason = "nonzero mapcount"; 931 if (unlikely(page->mapping != NULL)) 932 bad_reason = "non-NULL mapping"; 933 if (unlikely(page_ref_count(page) != 0)) 934 bad_reason = "nonzero _refcount"; 935 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 936 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 937 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 938 } 939 #ifdef CONFIG_MEMCG 940 if (unlikely(page->mem_cgroup)) 941 bad_reason = "page still charged to cgroup"; 942 #endif 943 bad_page(page, bad_reason, bad_flags); 944 } 945 946 static inline int free_pages_check(struct page *page) 947 { 948 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 949 return 0; 950 951 /* Something has gone sideways, find it */ 952 free_pages_check_bad(page); 953 return 1; 954 } 955 956 static int free_tail_pages_check(struct page *head_page, struct page *page) 957 { 958 int ret = 1; 959 960 /* 961 * We rely page->lru.next never has bit 0 set, unless the page 962 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 963 */ 964 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 965 966 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 967 ret = 0; 968 goto out; 969 } 970 switch (page - head_page) { 971 case 1: 972 /* the first tail page: ->mapping is compound_mapcount() */ 973 if (unlikely(compound_mapcount(page))) { 974 bad_page(page, "nonzero compound_mapcount", 0); 975 goto out; 976 } 977 break; 978 case 2: 979 /* 980 * the second tail page: ->mapping is 981 * page_deferred_list().next -- ignore value. 982 */ 983 break; 984 default: 985 if (page->mapping != TAIL_MAPPING) { 986 bad_page(page, "corrupted mapping in tail page", 0); 987 goto out; 988 } 989 break; 990 } 991 if (unlikely(!PageTail(page))) { 992 bad_page(page, "PageTail not set", 0); 993 goto out; 994 } 995 if (unlikely(compound_head(page) != head_page)) { 996 bad_page(page, "compound_head not consistent", 0); 997 goto out; 998 } 999 ret = 0; 1000 out: 1001 page->mapping = NULL; 1002 clear_compound_head(page); 1003 return ret; 1004 } 1005 1006 static __always_inline bool free_pages_prepare(struct page *page, 1007 unsigned int order, bool check_free) 1008 { 1009 int bad = 0; 1010 1011 VM_BUG_ON_PAGE(PageTail(page), page); 1012 1013 trace_mm_page_free(page, order); 1014 kmemcheck_free_shadow(page, order); 1015 1016 /* 1017 * Check tail pages before head page information is cleared to 1018 * avoid checking PageCompound for order-0 pages. 1019 */ 1020 if (unlikely(order)) { 1021 bool compound = PageCompound(page); 1022 int i; 1023 1024 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1025 1026 if (compound) 1027 ClearPageDoubleMap(page); 1028 for (i = 1; i < (1 << order); i++) { 1029 if (compound) 1030 bad += free_tail_pages_check(page, page + i); 1031 if (unlikely(free_pages_check(page + i))) { 1032 bad++; 1033 continue; 1034 } 1035 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1036 } 1037 } 1038 if (PageMappingFlags(page)) 1039 page->mapping = NULL; 1040 if (memcg_kmem_enabled() && PageKmemcg(page)) 1041 memcg_kmem_uncharge(page, order); 1042 if (check_free) 1043 bad += free_pages_check(page); 1044 if (bad) 1045 return false; 1046 1047 page_cpupid_reset_last(page); 1048 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1049 reset_page_owner(page, order); 1050 1051 if (!PageHighMem(page)) { 1052 debug_check_no_locks_freed(page_address(page), 1053 PAGE_SIZE << order); 1054 debug_check_no_obj_freed(page_address(page), 1055 PAGE_SIZE << order); 1056 } 1057 arch_free_page(page, order); 1058 kernel_poison_pages(page, 1 << order, 0); 1059 kernel_map_pages(page, 1 << order, 0); 1060 kasan_free_pages(page, order); 1061 1062 return true; 1063 } 1064 1065 #ifdef CONFIG_DEBUG_VM 1066 static inline bool free_pcp_prepare(struct page *page) 1067 { 1068 return free_pages_prepare(page, 0, true); 1069 } 1070 1071 static inline bool bulkfree_pcp_prepare(struct page *page) 1072 { 1073 return false; 1074 } 1075 #else 1076 static bool free_pcp_prepare(struct page *page) 1077 { 1078 return free_pages_prepare(page, 0, false); 1079 } 1080 1081 static bool bulkfree_pcp_prepare(struct page *page) 1082 { 1083 return free_pages_check(page); 1084 } 1085 #endif /* CONFIG_DEBUG_VM */ 1086 1087 /* 1088 * Frees a number of pages from the PCP lists 1089 * Assumes all pages on list are in same zone, and of same order. 1090 * count is the number of pages to free. 1091 * 1092 * If the zone was previously in an "all pages pinned" state then look to 1093 * see if this freeing clears that state. 1094 * 1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1096 * pinned" detection logic. 1097 */ 1098 static void free_pcppages_bulk(struct zone *zone, int count, 1099 struct per_cpu_pages *pcp) 1100 { 1101 int migratetype = 0; 1102 int batch_free = 0; 1103 bool isolated_pageblocks; 1104 1105 spin_lock(&zone->lock); 1106 isolated_pageblocks = has_isolate_pageblock(zone); 1107 1108 while (count) { 1109 struct page *page; 1110 struct list_head *list; 1111 1112 /* 1113 * Remove pages from lists in a round-robin fashion. A 1114 * batch_free count is maintained that is incremented when an 1115 * empty list is encountered. This is so more pages are freed 1116 * off fuller lists instead of spinning excessively around empty 1117 * lists 1118 */ 1119 do { 1120 batch_free++; 1121 if (++migratetype == MIGRATE_PCPTYPES) 1122 migratetype = 0; 1123 list = &pcp->lists[migratetype]; 1124 } while (list_empty(list)); 1125 1126 /* This is the only non-empty list. Free them all. */ 1127 if (batch_free == MIGRATE_PCPTYPES) 1128 batch_free = count; 1129 1130 do { 1131 int mt; /* migratetype of the to-be-freed page */ 1132 1133 page = list_last_entry(list, struct page, lru); 1134 /* must delete as __free_one_page list manipulates */ 1135 list_del(&page->lru); 1136 1137 mt = get_pcppage_migratetype(page); 1138 /* MIGRATE_ISOLATE page should not go to pcplists */ 1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1140 /* Pageblock could have been isolated meanwhile */ 1141 if (unlikely(isolated_pageblocks)) 1142 mt = get_pageblock_migratetype(page); 1143 1144 if (bulkfree_pcp_prepare(page)) 1145 continue; 1146 1147 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1148 trace_mm_page_pcpu_drain(page, 0, mt); 1149 } while (--count && --batch_free && !list_empty(list)); 1150 } 1151 spin_unlock(&zone->lock); 1152 } 1153 1154 static void free_one_page(struct zone *zone, 1155 struct page *page, unsigned long pfn, 1156 unsigned int order, 1157 int migratetype) 1158 { 1159 spin_lock(&zone->lock); 1160 if (unlikely(has_isolate_pageblock(zone) || 1161 is_migrate_isolate(migratetype))) { 1162 migratetype = get_pfnblock_migratetype(page, pfn); 1163 } 1164 __free_one_page(page, pfn, zone, order, migratetype); 1165 spin_unlock(&zone->lock); 1166 } 1167 1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1169 unsigned long zone, int nid) 1170 { 1171 set_page_links(page, zone, nid, pfn); 1172 init_page_count(page); 1173 page_mapcount_reset(page); 1174 page_cpupid_reset_last(page); 1175 1176 INIT_LIST_HEAD(&page->lru); 1177 #ifdef WANT_PAGE_VIRTUAL 1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1179 if (!is_highmem_idx(zone)) 1180 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1181 #endif 1182 } 1183 1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1185 int nid) 1186 { 1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1188 } 1189 1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1191 static void init_reserved_page(unsigned long pfn) 1192 { 1193 pg_data_t *pgdat; 1194 int nid, zid; 1195 1196 if (!early_page_uninitialised(pfn)) 1197 return; 1198 1199 nid = early_pfn_to_nid(pfn); 1200 pgdat = NODE_DATA(nid); 1201 1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1203 struct zone *zone = &pgdat->node_zones[zid]; 1204 1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1206 break; 1207 } 1208 __init_single_pfn(pfn, zid, nid); 1209 } 1210 #else 1211 static inline void init_reserved_page(unsigned long pfn) 1212 { 1213 } 1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1215 1216 /* 1217 * Initialised pages do not have PageReserved set. This function is 1218 * called for each range allocated by the bootmem allocator and 1219 * marks the pages PageReserved. The remaining valid pages are later 1220 * sent to the buddy page allocator. 1221 */ 1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1223 { 1224 unsigned long start_pfn = PFN_DOWN(start); 1225 unsigned long end_pfn = PFN_UP(end); 1226 1227 for (; start_pfn < end_pfn; start_pfn++) { 1228 if (pfn_valid(start_pfn)) { 1229 struct page *page = pfn_to_page(start_pfn); 1230 1231 init_reserved_page(start_pfn); 1232 1233 /* Avoid false-positive PageTail() */ 1234 INIT_LIST_HEAD(&page->lru); 1235 1236 SetPageReserved(page); 1237 } 1238 } 1239 } 1240 1241 static void __free_pages_ok(struct page *page, unsigned int order) 1242 { 1243 unsigned long flags; 1244 int migratetype; 1245 unsigned long pfn = page_to_pfn(page); 1246 1247 if (!free_pages_prepare(page, order, true)) 1248 return; 1249 1250 migratetype = get_pfnblock_migratetype(page, pfn); 1251 local_irq_save(flags); 1252 __count_vm_events(PGFREE, 1 << order); 1253 free_one_page(page_zone(page), page, pfn, order, migratetype); 1254 local_irq_restore(flags); 1255 } 1256 1257 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1258 { 1259 unsigned int nr_pages = 1 << order; 1260 struct page *p = page; 1261 unsigned int loop; 1262 1263 prefetchw(p); 1264 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1265 prefetchw(p + 1); 1266 __ClearPageReserved(p); 1267 set_page_count(p, 0); 1268 } 1269 __ClearPageReserved(p); 1270 set_page_count(p, 0); 1271 1272 page_zone(page)->managed_pages += nr_pages; 1273 set_page_refcounted(page); 1274 __free_pages(page, order); 1275 } 1276 1277 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1278 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1279 1280 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1281 1282 int __meminit early_pfn_to_nid(unsigned long pfn) 1283 { 1284 static DEFINE_SPINLOCK(early_pfn_lock); 1285 int nid; 1286 1287 spin_lock(&early_pfn_lock); 1288 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1289 if (nid < 0) 1290 nid = first_online_node; 1291 spin_unlock(&early_pfn_lock); 1292 1293 return nid; 1294 } 1295 #endif 1296 1297 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1298 static inline bool __meminit __maybe_unused 1299 meminit_pfn_in_nid(unsigned long pfn, int node, 1300 struct mminit_pfnnid_cache *state) 1301 { 1302 int nid; 1303 1304 nid = __early_pfn_to_nid(pfn, state); 1305 if (nid >= 0 && nid != node) 1306 return false; 1307 return true; 1308 } 1309 1310 /* Only safe to use early in boot when initialisation is single-threaded */ 1311 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1312 { 1313 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1314 } 1315 1316 #else 1317 1318 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1319 { 1320 return true; 1321 } 1322 static inline bool __meminit __maybe_unused 1323 meminit_pfn_in_nid(unsigned long pfn, int node, 1324 struct mminit_pfnnid_cache *state) 1325 { 1326 return true; 1327 } 1328 #endif 1329 1330 1331 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1332 unsigned int order) 1333 { 1334 if (early_page_uninitialised(pfn)) 1335 return; 1336 return __free_pages_boot_core(page, order); 1337 } 1338 1339 /* 1340 * Check that the whole (or subset of) a pageblock given by the interval of 1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1342 * with the migration of free compaction scanner. The scanners then need to 1343 * use only pfn_valid_within() check for arches that allow holes within 1344 * pageblocks. 1345 * 1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1347 * 1348 * It's possible on some configurations to have a setup like node0 node1 node0 1349 * i.e. it's possible that all pages within a zones range of pages do not 1350 * belong to a single zone. We assume that a border between node0 and node1 1351 * can occur within a single pageblock, but not a node0 node1 node0 1352 * interleaving within a single pageblock. It is therefore sufficient to check 1353 * the first and last page of a pageblock and avoid checking each individual 1354 * page in a pageblock. 1355 */ 1356 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1357 unsigned long end_pfn, struct zone *zone) 1358 { 1359 struct page *start_page; 1360 struct page *end_page; 1361 1362 /* end_pfn is one past the range we are checking */ 1363 end_pfn--; 1364 1365 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1366 return NULL; 1367 1368 start_page = pfn_to_online_page(start_pfn); 1369 if (!start_page) 1370 return NULL; 1371 1372 if (page_zone(start_page) != zone) 1373 return NULL; 1374 1375 end_page = pfn_to_page(end_pfn); 1376 1377 /* This gives a shorter code than deriving page_zone(end_page) */ 1378 if (page_zone_id(start_page) != page_zone_id(end_page)) 1379 return NULL; 1380 1381 return start_page; 1382 } 1383 1384 void set_zone_contiguous(struct zone *zone) 1385 { 1386 unsigned long block_start_pfn = zone->zone_start_pfn; 1387 unsigned long block_end_pfn; 1388 1389 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1390 for (; block_start_pfn < zone_end_pfn(zone); 1391 block_start_pfn = block_end_pfn, 1392 block_end_pfn += pageblock_nr_pages) { 1393 1394 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1395 1396 if (!__pageblock_pfn_to_page(block_start_pfn, 1397 block_end_pfn, zone)) 1398 return; 1399 } 1400 1401 /* We confirm that there is no hole */ 1402 zone->contiguous = true; 1403 } 1404 1405 void clear_zone_contiguous(struct zone *zone) 1406 { 1407 zone->contiguous = false; 1408 } 1409 1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1411 static void __init deferred_free_range(struct page *page, 1412 unsigned long pfn, int nr_pages) 1413 { 1414 int i; 1415 1416 if (!page) 1417 return; 1418 1419 /* Free a large naturally-aligned chunk if possible */ 1420 if (nr_pages == pageblock_nr_pages && 1421 (pfn & (pageblock_nr_pages - 1)) == 0) { 1422 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1423 __free_pages_boot_core(page, pageblock_order); 1424 return; 1425 } 1426 1427 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1428 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1429 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1430 __free_pages_boot_core(page, 0); 1431 } 1432 } 1433 1434 /* Completion tracking for deferred_init_memmap() threads */ 1435 static atomic_t pgdat_init_n_undone __initdata; 1436 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1437 1438 static inline void __init pgdat_init_report_one_done(void) 1439 { 1440 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1441 complete(&pgdat_init_all_done_comp); 1442 } 1443 1444 /* Initialise remaining memory on a node */ 1445 static int __init deferred_init_memmap(void *data) 1446 { 1447 pg_data_t *pgdat = data; 1448 int nid = pgdat->node_id; 1449 struct mminit_pfnnid_cache nid_init_state = { }; 1450 unsigned long start = jiffies; 1451 unsigned long nr_pages = 0; 1452 unsigned long walk_start, walk_end; 1453 int i, zid; 1454 struct zone *zone; 1455 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1456 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1457 1458 if (first_init_pfn == ULONG_MAX) { 1459 pgdat_init_report_one_done(); 1460 return 0; 1461 } 1462 1463 /* Bind memory initialisation thread to a local node if possible */ 1464 if (!cpumask_empty(cpumask)) 1465 set_cpus_allowed_ptr(current, cpumask); 1466 1467 /* Sanity check boundaries */ 1468 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1469 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1470 pgdat->first_deferred_pfn = ULONG_MAX; 1471 1472 /* Only the highest zone is deferred so find it */ 1473 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1474 zone = pgdat->node_zones + zid; 1475 if (first_init_pfn < zone_end_pfn(zone)) 1476 break; 1477 } 1478 1479 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1480 unsigned long pfn, end_pfn; 1481 struct page *page = NULL; 1482 struct page *free_base_page = NULL; 1483 unsigned long free_base_pfn = 0; 1484 int nr_to_free = 0; 1485 1486 end_pfn = min(walk_end, zone_end_pfn(zone)); 1487 pfn = first_init_pfn; 1488 if (pfn < walk_start) 1489 pfn = walk_start; 1490 if (pfn < zone->zone_start_pfn) 1491 pfn = zone->zone_start_pfn; 1492 1493 for (; pfn < end_pfn; pfn++) { 1494 if (!pfn_valid_within(pfn)) 1495 goto free_range; 1496 1497 /* 1498 * Ensure pfn_valid is checked every 1499 * pageblock_nr_pages for memory holes 1500 */ 1501 if ((pfn & (pageblock_nr_pages - 1)) == 0) { 1502 if (!pfn_valid(pfn)) { 1503 page = NULL; 1504 goto free_range; 1505 } 1506 } 1507 1508 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1509 page = NULL; 1510 goto free_range; 1511 } 1512 1513 /* Minimise pfn page lookups and scheduler checks */ 1514 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) { 1515 page++; 1516 } else { 1517 nr_pages += nr_to_free; 1518 deferred_free_range(free_base_page, 1519 free_base_pfn, nr_to_free); 1520 free_base_page = NULL; 1521 free_base_pfn = nr_to_free = 0; 1522 1523 page = pfn_to_page(pfn); 1524 cond_resched(); 1525 } 1526 1527 if (page->flags) { 1528 VM_BUG_ON(page_zone(page) != zone); 1529 goto free_range; 1530 } 1531 1532 __init_single_page(page, pfn, zid, nid); 1533 if (!free_base_page) { 1534 free_base_page = page; 1535 free_base_pfn = pfn; 1536 nr_to_free = 0; 1537 } 1538 nr_to_free++; 1539 1540 /* Where possible, batch up pages for a single free */ 1541 continue; 1542 free_range: 1543 /* Free the current block of pages to allocator */ 1544 nr_pages += nr_to_free; 1545 deferred_free_range(free_base_page, free_base_pfn, 1546 nr_to_free); 1547 free_base_page = NULL; 1548 free_base_pfn = nr_to_free = 0; 1549 } 1550 /* Free the last block of pages to allocator */ 1551 nr_pages += nr_to_free; 1552 deferred_free_range(free_base_page, free_base_pfn, nr_to_free); 1553 1554 first_init_pfn = max(end_pfn, first_init_pfn); 1555 } 1556 1557 /* Sanity check that the next zone really is unpopulated */ 1558 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1559 1560 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1561 jiffies_to_msecs(jiffies - start)); 1562 1563 pgdat_init_report_one_done(); 1564 return 0; 1565 } 1566 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1567 1568 void __init page_alloc_init_late(void) 1569 { 1570 struct zone *zone; 1571 1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1573 int nid; 1574 1575 /* There will be num_node_state(N_MEMORY) threads */ 1576 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1577 for_each_node_state(nid, N_MEMORY) { 1578 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1579 } 1580 1581 /* Block until all are initialised */ 1582 wait_for_completion(&pgdat_init_all_done_comp); 1583 1584 /* Reinit limits that are based on free pages after the kernel is up */ 1585 files_maxfiles_init(); 1586 #endif 1587 1588 for_each_populated_zone(zone) 1589 set_zone_contiguous(zone); 1590 } 1591 1592 #ifdef CONFIG_CMA 1593 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1594 void __init init_cma_reserved_pageblock(struct page *page) 1595 { 1596 unsigned i = pageblock_nr_pages; 1597 struct page *p = page; 1598 1599 do { 1600 __ClearPageReserved(p); 1601 set_page_count(p, 0); 1602 } while (++p, --i); 1603 1604 set_pageblock_migratetype(page, MIGRATE_CMA); 1605 1606 if (pageblock_order >= MAX_ORDER) { 1607 i = pageblock_nr_pages; 1608 p = page; 1609 do { 1610 set_page_refcounted(p); 1611 __free_pages(p, MAX_ORDER - 1); 1612 p += MAX_ORDER_NR_PAGES; 1613 } while (i -= MAX_ORDER_NR_PAGES); 1614 } else { 1615 set_page_refcounted(page); 1616 __free_pages(page, pageblock_order); 1617 } 1618 1619 adjust_managed_page_count(page, pageblock_nr_pages); 1620 } 1621 #endif 1622 1623 /* 1624 * The order of subdivision here is critical for the IO subsystem. 1625 * Please do not alter this order without good reasons and regression 1626 * testing. Specifically, as large blocks of memory are subdivided, 1627 * the order in which smaller blocks are delivered depends on the order 1628 * they're subdivided in this function. This is the primary factor 1629 * influencing the order in which pages are delivered to the IO 1630 * subsystem according to empirical testing, and this is also justified 1631 * by considering the behavior of a buddy system containing a single 1632 * large block of memory acted on by a series of small allocations. 1633 * This behavior is a critical factor in sglist merging's success. 1634 * 1635 * -- nyc 1636 */ 1637 static inline void expand(struct zone *zone, struct page *page, 1638 int low, int high, struct free_area *area, 1639 int migratetype) 1640 { 1641 unsigned long size = 1 << high; 1642 1643 while (high > low) { 1644 area--; 1645 high--; 1646 size >>= 1; 1647 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1648 1649 /* 1650 * Mark as guard pages (or page), that will allow to 1651 * merge back to allocator when buddy will be freed. 1652 * Corresponding page table entries will not be touched, 1653 * pages will stay not present in virtual address space 1654 */ 1655 if (set_page_guard(zone, &page[size], high, migratetype)) 1656 continue; 1657 1658 list_add(&page[size].lru, &area->free_list[migratetype]); 1659 area->nr_free++; 1660 set_page_order(&page[size], high); 1661 } 1662 } 1663 1664 static void check_new_page_bad(struct page *page) 1665 { 1666 const char *bad_reason = NULL; 1667 unsigned long bad_flags = 0; 1668 1669 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1670 bad_reason = "nonzero mapcount"; 1671 if (unlikely(page->mapping != NULL)) 1672 bad_reason = "non-NULL mapping"; 1673 if (unlikely(page_ref_count(page) != 0)) 1674 bad_reason = "nonzero _count"; 1675 if (unlikely(page->flags & __PG_HWPOISON)) { 1676 bad_reason = "HWPoisoned (hardware-corrupted)"; 1677 bad_flags = __PG_HWPOISON; 1678 /* Don't complain about hwpoisoned pages */ 1679 page_mapcount_reset(page); /* remove PageBuddy */ 1680 return; 1681 } 1682 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1683 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1684 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1685 } 1686 #ifdef CONFIG_MEMCG 1687 if (unlikely(page->mem_cgroup)) 1688 bad_reason = "page still charged to cgroup"; 1689 #endif 1690 bad_page(page, bad_reason, bad_flags); 1691 } 1692 1693 /* 1694 * This page is about to be returned from the page allocator 1695 */ 1696 static inline int check_new_page(struct page *page) 1697 { 1698 if (likely(page_expected_state(page, 1699 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1700 return 0; 1701 1702 check_new_page_bad(page); 1703 return 1; 1704 } 1705 1706 static inline bool free_pages_prezeroed(void) 1707 { 1708 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1709 page_poisoning_enabled(); 1710 } 1711 1712 #ifdef CONFIG_DEBUG_VM 1713 static bool check_pcp_refill(struct page *page) 1714 { 1715 return false; 1716 } 1717 1718 static bool check_new_pcp(struct page *page) 1719 { 1720 return check_new_page(page); 1721 } 1722 #else 1723 static bool check_pcp_refill(struct page *page) 1724 { 1725 return check_new_page(page); 1726 } 1727 static bool check_new_pcp(struct page *page) 1728 { 1729 return false; 1730 } 1731 #endif /* CONFIG_DEBUG_VM */ 1732 1733 static bool check_new_pages(struct page *page, unsigned int order) 1734 { 1735 int i; 1736 for (i = 0; i < (1 << order); i++) { 1737 struct page *p = page + i; 1738 1739 if (unlikely(check_new_page(p))) 1740 return true; 1741 } 1742 1743 return false; 1744 } 1745 1746 inline void post_alloc_hook(struct page *page, unsigned int order, 1747 gfp_t gfp_flags) 1748 { 1749 set_page_private(page, 0); 1750 set_page_refcounted(page); 1751 1752 arch_alloc_page(page, order); 1753 kernel_map_pages(page, 1 << order, 1); 1754 kernel_poison_pages(page, 1 << order, 1); 1755 kasan_alloc_pages(page, order); 1756 set_page_owner(page, order, gfp_flags); 1757 } 1758 1759 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1760 unsigned int alloc_flags) 1761 { 1762 int i; 1763 1764 post_alloc_hook(page, order, gfp_flags); 1765 1766 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1767 for (i = 0; i < (1 << order); i++) 1768 clear_highpage(page + i); 1769 1770 if (order && (gfp_flags & __GFP_COMP)) 1771 prep_compound_page(page, order); 1772 1773 /* 1774 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1775 * allocate the page. The expectation is that the caller is taking 1776 * steps that will free more memory. The caller should avoid the page 1777 * being used for !PFMEMALLOC purposes. 1778 */ 1779 if (alloc_flags & ALLOC_NO_WATERMARKS) 1780 set_page_pfmemalloc(page); 1781 else 1782 clear_page_pfmemalloc(page); 1783 } 1784 1785 /* 1786 * Go through the free lists for the given migratetype and remove 1787 * the smallest available page from the freelists 1788 */ 1789 static inline 1790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1791 int migratetype) 1792 { 1793 unsigned int current_order; 1794 struct free_area *area; 1795 struct page *page; 1796 1797 /* Find a page of the appropriate size in the preferred list */ 1798 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1799 area = &(zone->free_area[current_order]); 1800 page = list_first_entry_or_null(&area->free_list[migratetype], 1801 struct page, lru); 1802 if (!page) 1803 continue; 1804 list_del(&page->lru); 1805 rmv_page_order(page); 1806 area->nr_free--; 1807 expand(zone, page, order, current_order, area, migratetype); 1808 set_pcppage_migratetype(page, migratetype); 1809 return page; 1810 } 1811 1812 return NULL; 1813 } 1814 1815 1816 /* 1817 * This array describes the order lists are fallen back to when 1818 * the free lists for the desirable migrate type are depleted 1819 */ 1820 static int fallbacks[MIGRATE_TYPES][4] = { 1821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1824 #ifdef CONFIG_CMA 1825 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1826 #endif 1827 #ifdef CONFIG_MEMORY_ISOLATION 1828 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1829 #endif 1830 }; 1831 1832 #ifdef CONFIG_CMA 1833 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1834 unsigned int order) 1835 { 1836 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1837 } 1838 #else 1839 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1840 unsigned int order) { return NULL; } 1841 #endif 1842 1843 /* 1844 * Move the free pages in a range to the free lists of the requested type. 1845 * Note that start_page and end_pages are not aligned on a pageblock 1846 * boundary. If alignment is required, use move_freepages_block() 1847 */ 1848 static int move_freepages(struct zone *zone, 1849 struct page *start_page, struct page *end_page, 1850 int migratetype, int *num_movable) 1851 { 1852 struct page *page; 1853 unsigned int order; 1854 int pages_moved = 0; 1855 1856 #ifndef CONFIG_HOLES_IN_ZONE 1857 /* 1858 * page_zone is not safe to call in this context when 1859 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1860 * anyway as we check zone boundaries in move_freepages_block(). 1861 * Remove at a later date when no bug reports exist related to 1862 * grouping pages by mobility 1863 */ 1864 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1865 #endif 1866 1867 if (num_movable) 1868 *num_movable = 0; 1869 1870 for (page = start_page; page <= end_page;) { 1871 if (!pfn_valid_within(page_to_pfn(page))) { 1872 page++; 1873 continue; 1874 } 1875 1876 /* Make sure we are not inadvertently changing nodes */ 1877 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1878 1879 if (!PageBuddy(page)) { 1880 /* 1881 * We assume that pages that could be isolated for 1882 * migration are movable. But we don't actually try 1883 * isolating, as that would be expensive. 1884 */ 1885 if (num_movable && 1886 (PageLRU(page) || __PageMovable(page))) 1887 (*num_movable)++; 1888 1889 page++; 1890 continue; 1891 } 1892 1893 order = page_order(page); 1894 list_move(&page->lru, 1895 &zone->free_area[order].free_list[migratetype]); 1896 page += 1 << order; 1897 pages_moved += 1 << order; 1898 } 1899 1900 return pages_moved; 1901 } 1902 1903 int move_freepages_block(struct zone *zone, struct page *page, 1904 int migratetype, int *num_movable) 1905 { 1906 unsigned long start_pfn, end_pfn; 1907 struct page *start_page, *end_page; 1908 1909 start_pfn = page_to_pfn(page); 1910 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1911 start_page = pfn_to_page(start_pfn); 1912 end_page = start_page + pageblock_nr_pages - 1; 1913 end_pfn = start_pfn + pageblock_nr_pages - 1; 1914 1915 /* Do not cross zone boundaries */ 1916 if (!zone_spans_pfn(zone, start_pfn)) 1917 start_page = page; 1918 if (!zone_spans_pfn(zone, end_pfn)) 1919 return 0; 1920 1921 return move_freepages(zone, start_page, end_page, migratetype, 1922 num_movable); 1923 } 1924 1925 static void change_pageblock_range(struct page *pageblock_page, 1926 int start_order, int migratetype) 1927 { 1928 int nr_pageblocks = 1 << (start_order - pageblock_order); 1929 1930 while (nr_pageblocks--) { 1931 set_pageblock_migratetype(pageblock_page, migratetype); 1932 pageblock_page += pageblock_nr_pages; 1933 } 1934 } 1935 1936 /* 1937 * When we are falling back to another migratetype during allocation, try to 1938 * steal extra free pages from the same pageblocks to satisfy further 1939 * allocations, instead of polluting multiple pageblocks. 1940 * 1941 * If we are stealing a relatively large buddy page, it is likely there will 1942 * be more free pages in the pageblock, so try to steal them all. For 1943 * reclaimable and unmovable allocations, we steal regardless of page size, 1944 * as fragmentation caused by those allocations polluting movable pageblocks 1945 * is worse than movable allocations stealing from unmovable and reclaimable 1946 * pageblocks. 1947 */ 1948 static bool can_steal_fallback(unsigned int order, int start_mt) 1949 { 1950 /* 1951 * Leaving this order check is intended, although there is 1952 * relaxed order check in next check. The reason is that 1953 * we can actually steal whole pageblock if this condition met, 1954 * but, below check doesn't guarantee it and that is just heuristic 1955 * so could be changed anytime. 1956 */ 1957 if (order >= pageblock_order) 1958 return true; 1959 1960 if (order >= pageblock_order / 2 || 1961 start_mt == MIGRATE_RECLAIMABLE || 1962 start_mt == MIGRATE_UNMOVABLE || 1963 page_group_by_mobility_disabled) 1964 return true; 1965 1966 return false; 1967 } 1968 1969 /* 1970 * This function implements actual steal behaviour. If order is large enough, 1971 * we can steal whole pageblock. If not, we first move freepages in this 1972 * pageblock to our migratetype and determine how many already-allocated pages 1973 * are there in the pageblock with a compatible migratetype. If at least half 1974 * of pages are free or compatible, we can change migratetype of the pageblock 1975 * itself, so pages freed in the future will be put on the correct free list. 1976 */ 1977 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1978 int start_type, bool whole_block) 1979 { 1980 unsigned int current_order = page_order(page); 1981 struct free_area *area; 1982 int free_pages, movable_pages, alike_pages; 1983 int old_block_type; 1984 1985 old_block_type = get_pageblock_migratetype(page); 1986 1987 /* 1988 * This can happen due to races and we want to prevent broken 1989 * highatomic accounting. 1990 */ 1991 if (is_migrate_highatomic(old_block_type)) 1992 goto single_page; 1993 1994 /* Take ownership for orders >= pageblock_order */ 1995 if (current_order >= pageblock_order) { 1996 change_pageblock_range(page, current_order, start_type); 1997 goto single_page; 1998 } 1999 2000 /* We are not allowed to try stealing from the whole block */ 2001 if (!whole_block) 2002 goto single_page; 2003 2004 free_pages = move_freepages_block(zone, page, start_type, 2005 &movable_pages); 2006 /* 2007 * Determine how many pages are compatible with our allocation. 2008 * For movable allocation, it's the number of movable pages which 2009 * we just obtained. For other types it's a bit more tricky. 2010 */ 2011 if (start_type == MIGRATE_MOVABLE) { 2012 alike_pages = movable_pages; 2013 } else { 2014 /* 2015 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2016 * to MOVABLE pageblock, consider all non-movable pages as 2017 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2018 * vice versa, be conservative since we can't distinguish the 2019 * exact migratetype of non-movable pages. 2020 */ 2021 if (old_block_type == MIGRATE_MOVABLE) 2022 alike_pages = pageblock_nr_pages 2023 - (free_pages + movable_pages); 2024 else 2025 alike_pages = 0; 2026 } 2027 2028 /* moving whole block can fail due to zone boundary conditions */ 2029 if (!free_pages) 2030 goto single_page; 2031 2032 /* 2033 * If a sufficient number of pages in the block are either free or of 2034 * comparable migratability as our allocation, claim the whole block. 2035 */ 2036 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2037 page_group_by_mobility_disabled) 2038 set_pageblock_migratetype(page, start_type); 2039 2040 return; 2041 2042 single_page: 2043 area = &zone->free_area[current_order]; 2044 list_move(&page->lru, &area->free_list[start_type]); 2045 } 2046 2047 /* 2048 * Check whether there is a suitable fallback freepage with requested order. 2049 * If only_stealable is true, this function returns fallback_mt only if 2050 * we can steal other freepages all together. This would help to reduce 2051 * fragmentation due to mixed migratetype pages in one pageblock. 2052 */ 2053 int find_suitable_fallback(struct free_area *area, unsigned int order, 2054 int migratetype, bool only_stealable, bool *can_steal) 2055 { 2056 int i; 2057 int fallback_mt; 2058 2059 if (area->nr_free == 0) 2060 return -1; 2061 2062 *can_steal = false; 2063 for (i = 0;; i++) { 2064 fallback_mt = fallbacks[migratetype][i]; 2065 if (fallback_mt == MIGRATE_TYPES) 2066 break; 2067 2068 if (list_empty(&area->free_list[fallback_mt])) 2069 continue; 2070 2071 if (can_steal_fallback(order, migratetype)) 2072 *can_steal = true; 2073 2074 if (!only_stealable) 2075 return fallback_mt; 2076 2077 if (*can_steal) 2078 return fallback_mt; 2079 } 2080 2081 return -1; 2082 } 2083 2084 /* 2085 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2086 * there are no empty page blocks that contain a page with a suitable order 2087 */ 2088 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2089 unsigned int alloc_order) 2090 { 2091 int mt; 2092 unsigned long max_managed, flags; 2093 2094 /* 2095 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2096 * Check is race-prone but harmless. 2097 */ 2098 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2099 if (zone->nr_reserved_highatomic >= max_managed) 2100 return; 2101 2102 spin_lock_irqsave(&zone->lock, flags); 2103 2104 /* Recheck the nr_reserved_highatomic limit under the lock */ 2105 if (zone->nr_reserved_highatomic >= max_managed) 2106 goto out_unlock; 2107 2108 /* Yoink! */ 2109 mt = get_pageblock_migratetype(page); 2110 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2111 && !is_migrate_cma(mt)) { 2112 zone->nr_reserved_highatomic += pageblock_nr_pages; 2113 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2114 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2115 } 2116 2117 out_unlock: 2118 spin_unlock_irqrestore(&zone->lock, flags); 2119 } 2120 2121 /* 2122 * Used when an allocation is about to fail under memory pressure. This 2123 * potentially hurts the reliability of high-order allocations when under 2124 * intense memory pressure but failed atomic allocations should be easier 2125 * to recover from than an OOM. 2126 * 2127 * If @force is true, try to unreserve a pageblock even though highatomic 2128 * pageblock is exhausted. 2129 */ 2130 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2131 bool force) 2132 { 2133 struct zonelist *zonelist = ac->zonelist; 2134 unsigned long flags; 2135 struct zoneref *z; 2136 struct zone *zone; 2137 struct page *page; 2138 int order; 2139 bool ret; 2140 2141 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2142 ac->nodemask) { 2143 /* 2144 * Preserve at least one pageblock unless memory pressure 2145 * is really high. 2146 */ 2147 if (!force && zone->nr_reserved_highatomic <= 2148 pageblock_nr_pages) 2149 continue; 2150 2151 spin_lock_irqsave(&zone->lock, flags); 2152 for (order = 0; order < MAX_ORDER; order++) { 2153 struct free_area *area = &(zone->free_area[order]); 2154 2155 page = list_first_entry_or_null( 2156 &area->free_list[MIGRATE_HIGHATOMIC], 2157 struct page, lru); 2158 if (!page) 2159 continue; 2160 2161 /* 2162 * In page freeing path, migratetype change is racy so 2163 * we can counter several free pages in a pageblock 2164 * in this loop althoug we changed the pageblock type 2165 * from highatomic to ac->migratetype. So we should 2166 * adjust the count once. 2167 */ 2168 if (is_migrate_highatomic_page(page)) { 2169 /* 2170 * It should never happen but changes to 2171 * locking could inadvertently allow a per-cpu 2172 * drain to add pages to MIGRATE_HIGHATOMIC 2173 * while unreserving so be safe and watch for 2174 * underflows. 2175 */ 2176 zone->nr_reserved_highatomic -= min( 2177 pageblock_nr_pages, 2178 zone->nr_reserved_highatomic); 2179 } 2180 2181 /* 2182 * Convert to ac->migratetype and avoid the normal 2183 * pageblock stealing heuristics. Minimally, the caller 2184 * is doing the work and needs the pages. More 2185 * importantly, if the block was always converted to 2186 * MIGRATE_UNMOVABLE or another type then the number 2187 * of pageblocks that cannot be completely freed 2188 * may increase. 2189 */ 2190 set_pageblock_migratetype(page, ac->migratetype); 2191 ret = move_freepages_block(zone, page, ac->migratetype, 2192 NULL); 2193 if (ret) { 2194 spin_unlock_irqrestore(&zone->lock, flags); 2195 return ret; 2196 } 2197 } 2198 spin_unlock_irqrestore(&zone->lock, flags); 2199 } 2200 2201 return false; 2202 } 2203 2204 /* 2205 * Try finding a free buddy page on the fallback list and put it on the free 2206 * list of requested migratetype, possibly along with other pages from the same 2207 * block, depending on fragmentation avoidance heuristics. Returns true if 2208 * fallback was found so that __rmqueue_smallest() can grab it. 2209 * 2210 * The use of signed ints for order and current_order is a deliberate 2211 * deviation from the rest of this file, to make the for loop 2212 * condition simpler. 2213 */ 2214 static inline bool 2215 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2216 { 2217 struct free_area *area; 2218 int current_order; 2219 struct page *page; 2220 int fallback_mt; 2221 bool can_steal; 2222 2223 /* 2224 * Find the largest available free page in the other list. This roughly 2225 * approximates finding the pageblock with the most free pages, which 2226 * would be too costly to do exactly. 2227 */ 2228 for (current_order = MAX_ORDER - 1; current_order >= order; 2229 --current_order) { 2230 area = &(zone->free_area[current_order]); 2231 fallback_mt = find_suitable_fallback(area, current_order, 2232 start_migratetype, false, &can_steal); 2233 if (fallback_mt == -1) 2234 continue; 2235 2236 /* 2237 * We cannot steal all free pages from the pageblock and the 2238 * requested migratetype is movable. In that case it's better to 2239 * steal and split the smallest available page instead of the 2240 * largest available page, because even if the next movable 2241 * allocation falls back into a different pageblock than this 2242 * one, it won't cause permanent fragmentation. 2243 */ 2244 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2245 && current_order > order) 2246 goto find_smallest; 2247 2248 goto do_steal; 2249 } 2250 2251 return false; 2252 2253 find_smallest: 2254 for (current_order = order; current_order < MAX_ORDER; 2255 current_order++) { 2256 area = &(zone->free_area[current_order]); 2257 fallback_mt = find_suitable_fallback(area, current_order, 2258 start_migratetype, false, &can_steal); 2259 if (fallback_mt != -1) 2260 break; 2261 } 2262 2263 /* 2264 * This should not happen - we already found a suitable fallback 2265 * when looking for the largest page. 2266 */ 2267 VM_BUG_ON(current_order == MAX_ORDER); 2268 2269 do_steal: 2270 page = list_first_entry(&area->free_list[fallback_mt], 2271 struct page, lru); 2272 2273 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2274 2275 trace_mm_page_alloc_extfrag(page, order, current_order, 2276 start_migratetype, fallback_mt); 2277 2278 return true; 2279 2280 } 2281 2282 /* 2283 * Do the hard work of removing an element from the buddy allocator. 2284 * Call me with the zone->lock already held. 2285 */ 2286 static struct page *__rmqueue(struct zone *zone, unsigned int order, 2287 int migratetype) 2288 { 2289 struct page *page; 2290 2291 retry: 2292 page = __rmqueue_smallest(zone, order, migratetype); 2293 if (unlikely(!page)) { 2294 if (migratetype == MIGRATE_MOVABLE) 2295 page = __rmqueue_cma_fallback(zone, order); 2296 2297 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2298 goto retry; 2299 } 2300 2301 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2302 return page; 2303 } 2304 2305 /* 2306 * Obtain a specified number of elements from the buddy allocator, all under 2307 * a single hold of the lock, for efficiency. Add them to the supplied list. 2308 * Returns the number of new pages which were placed at *list. 2309 */ 2310 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2311 unsigned long count, struct list_head *list, 2312 int migratetype, bool cold) 2313 { 2314 int i, alloced = 0; 2315 2316 spin_lock(&zone->lock); 2317 for (i = 0; i < count; ++i) { 2318 struct page *page = __rmqueue(zone, order, migratetype); 2319 if (unlikely(page == NULL)) 2320 break; 2321 2322 if (unlikely(check_pcp_refill(page))) 2323 continue; 2324 2325 /* 2326 * Split buddy pages returned by expand() are received here 2327 * in physical page order. The page is added to the callers and 2328 * list and the list head then moves forward. From the callers 2329 * perspective, the linked list is ordered by page number in 2330 * some conditions. This is useful for IO devices that can 2331 * merge IO requests if the physical pages are ordered 2332 * properly. 2333 */ 2334 if (likely(!cold)) 2335 list_add(&page->lru, list); 2336 else 2337 list_add_tail(&page->lru, list); 2338 list = &page->lru; 2339 alloced++; 2340 if (is_migrate_cma(get_pcppage_migratetype(page))) 2341 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2342 -(1 << order)); 2343 } 2344 2345 /* 2346 * i pages were removed from the buddy list even if some leak due 2347 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2348 * on i. Do not confuse with 'alloced' which is the number of 2349 * pages added to the pcp list. 2350 */ 2351 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2352 spin_unlock(&zone->lock); 2353 return alloced; 2354 } 2355 2356 #ifdef CONFIG_NUMA 2357 /* 2358 * Called from the vmstat counter updater to drain pagesets of this 2359 * currently executing processor on remote nodes after they have 2360 * expired. 2361 * 2362 * Note that this function must be called with the thread pinned to 2363 * a single processor. 2364 */ 2365 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2366 { 2367 unsigned long flags; 2368 int to_drain, batch; 2369 2370 local_irq_save(flags); 2371 batch = READ_ONCE(pcp->batch); 2372 to_drain = min(pcp->count, batch); 2373 if (to_drain > 0) { 2374 free_pcppages_bulk(zone, to_drain, pcp); 2375 pcp->count -= to_drain; 2376 } 2377 local_irq_restore(flags); 2378 } 2379 #endif 2380 2381 /* 2382 * Drain pcplists of the indicated processor and zone. 2383 * 2384 * The processor must either be the current processor and the 2385 * thread pinned to the current processor or a processor that 2386 * is not online. 2387 */ 2388 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2389 { 2390 unsigned long flags; 2391 struct per_cpu_pageset *pset; 2392 struct per_cpu_pages *pcp; 2393 2394 local_irq_save(flags); 2395 pset = per_cpu_ptr(zone->pageset, cpu); 2396 2397 pcp = &pset->pcp; 2398 if (pcp->count) { 2399 free_pcppages_bulk(zone, pcp->count, pcp); 2400 pcp->count = 0; 2401 } 2402 local_irq_restore(flags); 2403 } 2404 2405 /* 2406 * Drain pcplists of all zones on the indicated processor. 2407 * 2408 * The processor must either be the current processor and the 2409 * thread pinned to the current processor or a processor that 2410 * is not online. 2411 */ 2412 static void drain_pages(unsigned int cpu) 2413 { 2414 struct zone *zone; 2415 2416 for_each_populated_zone(zone) { 2417 drain_pages_zone(cpu, zone); 2418 } 2419 } 2420 2421 /* 2422 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2423 * 2424 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2425 * the single zone's pages. 2426 */ 2427 void drain_local_pages(struct zone *zone) 2428 { 2429 int cpu = smp_processor_id(); 2430 2431 if (zone) 2432 drain_pages_zone(cpu, zone); 2433 else 2434 drain_pages(cpu); 2435 } 2436 2437 static void drain_local_pages_wq(struct work_struct *work) 2438 { 2439 /* 2440 * drain_all_pages doesn't use proper cpu hotplug protection so 2441 * we can race with cpu offline when the WQ can move this from 2442 * a cpu pinned worker to an unbound one. We can operate on a different 2443 * cpu which is allright but we also have to make sure to not move to 2444 * a different one. 2445 */ 2446 preempt_disable(); 2447 drain_local_pages(NULL); 2448 preempt_enable(); 2449 } 2450 2451 /* 2452 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2453 * 2454 * When zone parameter is non-NULL, spill just the single zone's pages. 2455 * 2456 * Note that this can be extremely slow as the draining happens in a workqueue. 2457 */ 2458 void drain_all_pages(struct zone *zone) 2459 { 2460 int cpu; 2461 2462 /* 2463 * Allocate in the BSS so we wont require allocation in 2464 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2465 */ 2466 static cpumask_t cpus_with_pcps; 2467 2468 /* 2469 * Make sure nobody triggers this path before mm_percpu_wq is fully 2470 * initialized. 2471 */ 2472 if (WARN_ON_ONCE(!mm_percpu_wq)) 2473 return; 2474 2475 /* Workqueues cannot recurse */ 2476 if (current->flags & PF_WQ_WORKER) 2477 return; 2478 2479 /* 2480 * Do not drain if one is already in progress unless it's specific to 2481 * a zone. Such callers are primarily CMA and memory hotplug and need 2482 * the drain to be complete when the call returns. 2483 */ 2484 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2485 if (!zone) 2486 return; 2487 mutex_lock(&pcpu_drain_mutex); 2488 } 2489 2490 /* 2491 * We don't care about racing with CPU hotplug event 2492 * as offline notification will cause the notified 2493 * cpu to drain that CPU pcps and on_each_cpu_mask 2494 * disables preemption as part of its processing 2495 */ 2496 for_each_online_cpu(cpu) { 2497 struct per_cpu_pageset *pcp; 2498 struct zone *z; 2499 bool has_pcps = false; 2500 2501 if (zone) { 2502 pcp = per_cpu_ptr(zone->pageset, cpu); 2503 if (pcp->pcp.count) 2504 has_pcps = true; 2505 } else { 2506 for_each_populated_zone(z) { 2507 pcp = per_cpu_ptr(z->pageset, cpu); 2508 if (pcp->pcp.count) { 2509 has_pcps = true; 2510 break; 2511 } 2512 } 2513 } 2514 2515 if (has_pcps) 2516 cpumask_set_cpu(cpu, &cpus_with_pcps); 2517 else 2518 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2519 } 2520 2521 for_each_cpu(cpu, &cpus_with_pcps) { 2522 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2523 INIT_WORK(work, drain_local_pages_wq); 2524 queue_work_on(cpu, mm_percpu_wq, work); 2525 } 2526 for_each_cpu(cpu, &cpus_with_pcps) 2527 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2528 2529 mutex_unlock(&pcpu_drain_mutex); 2530 } 2531 2532 #ifdef CONFIG_HIBERNATION 2533 2534 void mark_free_pages(struct zone *zone) 2535 { 2536 unsigned long pfn, max_zone_pfn; 2537 unsigned long flags; 2538 unsigned int order, t; 2539 struct page *page; 2540 2541 if (zone_is_empty(zone)) 2542 return; 2543 2544 spin_lock_irqsave(&zone->lock, flags); 2545 2546 max_zone_pfn = zone_end_pfn(zone); 2547 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2548 if (pfn_valid(pfn)) { 2549 page = pfn_to_page(pfn); 2550 2551 if (page_zone(page) != zone) 2552 continue; 2553 2554 if (!swsusp_page_is_forbidden(page)) 2555 swsusp_unset_page_free(page); 2556 } 2557 2558 for_each_migratetype_order(order, t) { 2559 list_for_each_entry(page, 2560 &zone->free_area[order].free_list[t], lru) { 2561 unsigned long i; 2562 2563 pfn = page_to_pfn(page); 2564 for (i = 0; i < (1UL << order); i++) 2565 swsusp_set_page_free(pfn_to_page(pfn + i)); 2566 } 2567 } 2568 spin_unlock_irqrestore(&zone->lock, flags); 2569 } 2570 #endif /* CONFIG_PM */ 2571 2572 /* 2573 * Free a 0-order page 2574 * cold == true ? free a cold page : free a hot page 2575 */ 2576 void free_hot_cold_page(struct page *page, bool cold) 2577 { 2578 struct zone *zone = page_zone(page); 2579 struct per_cpu_pages *pcp; 2580 unsigned long flags; 2581 unsigned long pfn = page_to_pfn(page); 2582 int migratetype; 2583 2584 if (!free_pcp_prepare(page)) 2585 return; 2586 2587 migratetype = get_pfnblock_migratetype(page, pfn); 2588 set_pcppage_migratetype(page, migratetype); 2589 local_irq_save(flags); 2590 __count_vm_event(PGFREE); 2591 2592 /* 2593 * We only track unmovable, reclaimable and movable on pcp lists. 2594 * Free ISOLATE pages back to the allocator because they are being 2595 * offlined but treat HIGHATOMIC as movable pages so we can get those 2596 * areas back if necessary. Otherwise, we may have to free 2597 * excessively into the page allocator 2598 */ 2599 if (migratetype >= MIGRATE_PCPTYPES) { 2600 if (unlikely(is_migrate_isolate(migratetype))) { 2601 free_one_page(zone, page, pfn, 0, migratetype); 2602 goto out; 2603 } 2604 migratetype = MIGRATE_MOVABLE; 2605 } 2606 2607 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2608 if (!cold) 2609 list_add(&page->lru, &pcp->lists[migratetype]); 2610 else 2611 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2612 pcp->count++; 2613 if (pcp->count >= pcp->high) { 2614 unsigned long batch = READ_ONCE(pcp->batch); 2615 free_pcppages_bulk(zone, batch, pcp); 2616 pcp->count -= batch; 2617 } 2618 2619 out: 2620 local_irq_restore(flags); 2621 } 2622 2623 /* 2624 * Free a list of 0-order pages 2625 */ 2626 void free_hot_cold_page_list(struct list_head *list, bool cold) 2627 { 2628 struct page *page, *next; 2629 2630 list_for_each_entry_safe(page, next, list, lru) { 2631 trace_mm_page_free_batched(page, cold); 2632 free_hot_cold_page(page, cold); 2633 } 2634 } 2635 2636 /* 2637 * split_page takes a non-compound higher-order page, and splits it into 2638 * n (1<<order) sub-pages: page[0..n] 2639 * Each sub-page must be freed individually. 2640 * 2641 * Note: this is probably too low level an operation for use in drivers. 2642 * Please consult with lkml before using this in your driver. 2643 */ 2644 void split_page(struct page *page, unsigned int order) 2645 { 2646 int i; 2647 2648 VM_BUG_ON_PAGE(PageCompound(page), page); 2649 VM_BUG_ON_PAGE(!page_count(page), page); 2650 2651 #ifdef CONFIG_KMEMCHECK 2652 /* 2653 * Split shadow pages too, because free(page[0]) would 2654 * otherwise free the whole shadow. 2655 */ 2656 if (kmemcheck_page_is_tracked(page)) 2657 split_page(virt_to_page(page[0].shadow), order); 2658 #endif 2659 2660 for (i = 1; i < (1 << order); i++) 2661 set_page_refcounted(page + i); 2662 split_page_owner(page, order); 2663 } 2664 EXPORT_SYMBOL_GPL(split_page); 2665 2666 int __isolate_free_page(struct page *page, unsigned int order) 2667 { 2668 unsigned long watermark; 2669 struct zone *zone; 2670 int mt; 2671 2672 BUG_ON(!PageBuddy(page)); 2673 2674 zone = page_zone(page); 2675 mt = get_pageblock_migratetype(page); 2676 2677 if (!is_migrate_isolate(mt)) { 2678 /* 2679 * Obey watermarks as if the page was being allocated. We can 2680 * emulate a high-order watermark check with a raised order-0 2681 * watermark, because we already know our high-order page 2682 * exists. 2683 */ 2684 watermark = min_wmark_pages(zone) + (1UL << order); 2685 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2686 return 0; 2687 2688 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2689 } 2690 2691 /* Remove page from free list */ 2692 list_del(&page->lru); 2693 zone->free_area[order].nr_free--; 2694 rmv_page_order(page); 2695 2696 /* 2697 * Set the pageblock if the isolated page is at least half of a 2698 * pageblock 2699 */ 2700 if (order >= pageblock_order - 1) { 2701 struct page *endpage = page + (1 << order) - 1; 2702 for (; page < endpage; page += pageblock_nr_pages) { 2703 int mt = get_pageblock_migratetype(page); 2704 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2705 && !is_migrate_highatomic(mt)) 2706 set_pageblock_migratetype(page, 2707 MIGRATE_MOVABLE); 2708 } 2709 } 2710 2711 2712 return 1UL << order; 2713 } 2714 2715 /* 2716 * Update NUMA hit/miss statistics 2717 * 2718 * Must be called with interrupts disabled. 2719 */ 2720 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2721 { 2722 #ifdef CONFIG_NUMA 2723 enum zone_stat_item local_stat = NUMA_LOCAL; 2724 2725 if (z->node != numa_node_id()) 2726 local_stat = NUMA_OTHER; 2727 2728 if (z->node == preferred_zone->node) 2729 __inc_zone_state(z, NUMA_HIT); 2730 else { 2731 __inc_zone_state(z, NUMA_MISS); 2732 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 2733 } 2734 __inc_zone_state(z, local_stat); 2735 #endif 2736 } 2737 2738 /* Remove page from the per-cpu list, caller must protect the list */ 2739 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2740 bool cold, struct per_cpu_pages *pcp, 2741 struct list_head *list) 2742 { 2743 struct page *page; 2744 2745 do { 2746 if (list_empty(list)) { 2747 pcp->count += rmqueue_bulk(zone, 0, 2748 pcp->batch, list, 2749 migratetype, cold); 2750 if (unlikely(list_empty(list))) 2751 return NULL; 2752 } 2753 2754 if (cold) 2755 page = list_last_entry(list, struct page, lru); 2756 else 2757 page = list_first_entry(list, struct page, lru); 2758 2759 list_del(&page->lru); 2760 pcp->count--; 2761 } while (check_new_pcp(page)); 2762 2763 return page; 2764 } 2765 2766 /* Lock and remove page from the per-cpu list */ 2767 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2768 struct zone *zone, unsigned int order, 2769 gfp_t gfp_flags, int migratetype) 2770 { 2771 struct per_cpu_pages *pcp; 2772 struct list_head *list; 2773 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2774 struct page *page; 2775 unsigned long flags; 2776 2777 local_irq_save(flags); 2778 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2779 list = &pcp->lists[migratetype]; 2780 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list); 2781 if (page) { 2782 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2783 zone_statistics(preferred_zone, zone); 2784 } 2785 local_irq_restore(flags); 2786 return page; 2787 } 2788 2789 /* 2790 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2791 */ 2792 static inline 2793 struct page *rmqueue(struct zone *preferred_zone, 2794 struct zone *zone, unsigned int order, 2795 gfp_t gfp_flags, unsigned int alloc_flags, 2796 int migratetype) 2797 { 2798 unsigned long flags; 2799 struct page *page; 2800 2801 if (likely(order == 0)) { 2802 page = rmqueue_pcplist(preferred_zone, zone, order, 2803 gfp_flags, migratetype); 2804 goto out; 2805 } 2806 2807 /* 2808 * We most definitely don't want callers attempting to 2809 * allocate greater than order-1 page units with __GFP_NOFAIL. 2810 */ 2811 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2812 spin_lock_irqsave(&zone->lock, flags); 2813 2814 do { 2815 page = NULL; 2816 if (alloc_flags & ALLOC_HARDER) { 2817 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2818 if (page) 2819 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2820 } 2821 if (!page) 2822 page = __rmqueue(zone, order, migratetype); 2823 } while (page && check_new_pages(page, order)); 2824 spin_unlock(&zone->lock); 2825 if (!page) 2826 goto failed; 2827 __mod_zone_freepage_state(zone, -(1 << order), 2828 get_pcppage_migratetype(page)); 2829 2830 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2831 zone_statistics(preferred_zone, zone); 2832 local_irq_restore(flags); 2833 2834 out: 2835 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2836 return page; 2837 2838 failed: 2839 local_irq_restore(flags); 2840 return NULL; 2841 } 2842 2843 #ifdef CONFIG_FAIL_PAGE_ALLOC 2844 2845 static struct { 2846 struct fault_attr attr; 2847 2848 bool ignore_gfp_highmem; 2849 bool ignore_gfp_reclaim; 2850 u32 min_order; 2851 } fail_page_alloc = { 2852 .attr = FAULT_ATTR_INITIALIZER, 2853 .ignore_gfp_reclaim = true, 2854 .ignore_gfp_highmem = true, 2855 .min_order = 1, 2856 }; 2857 2858 static int __init setup_fail_page_alloc(char *str) 2859 { 2860 return setup_fault_attr(&fail_page_alloc.attr, str); 2861 } 2862 __setup("fail_page_alloc=", setup_fail_page_alloc); 2863 2864 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2865 { 2866 if (order < fail_page_alloc.min_order) 2867 return false; 2868 if (gfp_mask & __GFP_NOFAIL) 2869 return false; 2870 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2871 return false; 2872 if (fail_page_alloc.ignore_gfp_reclaim && 2873 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2874 return false; 2875 2876 return should_fail(&fail_page_alloc.attr, 1 << order); 2877 } 2878 2879 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2880 2881 static int __init fail_page_alloc_debugfs(void) 2882 { 2883 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2884 struct dentry *dir; 2885 2886 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2887 &fail_page_alloc.attr); 2888 if (IS_ERR(dir)) 2889 return PTR_ERR(dir); 2890 2891 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2892 &fail_page_alloc.ignore_gfp_reclaim)) 2893 goto fail; 2894 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2895 &fail_page_alloc.ignore_gfp_highmem)) 2896 goto fail; 2897 if (!debugfs_create_u32("min-order", mode, dir, 2898 &fail_page_alloc.min_order)) 2899 goto fail; 2900 2901 return 0; 2902 fail: 2903 debugfs_remove_recursive(dir); 2904 2905 return -ENOMEM; 2906 } 2907 2908 late_initcall(fail_page_alloc_debugfs); 2909 2910 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2911 2912 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2913 2914 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2915 { 2916 return false; 2917 } 2918 2919 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2920 2921 /* 2922 * Return true if free base pages are above 'mark'. For high-order checks it 2923 * will return true of the order-0 watermark is reached and there is at least 2924 * one free page of a suitable size. Checking now avoids taking the zone lock 2925 * to check in the allocation paths if no pages are free. 2926 */ 2927 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2928 int classzone_idx, unsigned int alloc_flags, 2929 long free_pages) 2930 { 2931 long min = mark; 2932 int o; 2933 const bool alloc_harder = (alloc_flags & ALLOC_HARDER); 2934 2935 /* free_pages may go negative - that's OK */ 2936 free_pages -= (1 << order) - 1; 2937 2938 if (alloc_flags & ALLOC_HIGH) 2939 min -= min / 2; 2940 2941 /* 2942 * If the caller does not have rights to ALLOC_HARDER then subtract 2943 * the high-atomic reserves. This will over-estimate the size of the 2944 * atomic reserve but it avoids a search. 2945 */ 2946 if (likely(!alloc_harder)) 2947 free_pages -= z->nr_reserved_highatomic; 2948 else 2949 min -= min / 4; 2950 2951 #ifdef CONFIG_CMA 2952 /* If allocation can't use CMA areas don't use free CMA pages */ 2953 if (!(alloc_flags & ALLOC_CMA)) 2954 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2955 #endif 2956 2957 /* 2958 * Check watermarks for an order-0 allocation request. If these 2959 * are not met, then a high-order request also cannot go ahead 2960 * even if a suitable page happened to be free. 2961 */ 2962 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2963 return false; 2964 2965 /* If this is an order-0 request then the watermark is fine */ 2966 if (!order) 2967 return true; 2968 2969 /* For a high-order request, check at least one suitable page is free */ 2970 for (o = order; o < MAX_ORDER; o++) { 2971 struct free_area *area = &z->free_area[o]; 2972 int mt; 2973 2974 if (!area->nr_free) 2975 continue; 2976 2977 if (alloc_harder) 2978 return true; 2979 2980 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2981 if (!list_empty(&area->free_list[mt])) 2982 return true; 2983 } 2984 2985 #ifdef CONFIG_CMA 2986 if ((alloc_flags & ALLOC_CMA) && 2987 !list_empty(&area->free_list[MIGRATE_CMA])) { 2988 return true; 2989 } 2990 #endif 2991 } 2992 return false; 2993 } 2994 2995 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2996 int classzone_idx, unsigned int alloc_flags) 2997 { 2998 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2999 zone_page_state(z, NR_FREE_PAGES)); 3000 } 3001 3002 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3003 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3004 { 3005 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3006 long cma_pages = 0; 3007 3008 #ifdef CONFIG_CMA 3009 /* If allocation can't use CMA areas don't use free CMA pages */ 3010 if (!(alloc_flags & ALLOC_CMA)) 3011 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3012 #endif 3013 3014 /* 3015 * Fast check for order-0 only. If this fails then the reserves 3016 * need to be calculated. There is a corner case where the check 3017 * passes but only the high-order atomic reserve are free. If 3018 * the caller is !atomic then it'll uselessly search the free 3019 * list. That corner case is then slower but it is harmless. 3020 */ 3021 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3022 return true; 3023 3024 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3025 free_pages); 3026 } 3027 3028 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3029 unsigned long mark, int classzone_idx) 3030 { 3031 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3032 3033 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3034 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3035 3036 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3037 free_pages); 3038 } 3039 3040 #ifdef CONFIG_NUMA 3041 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3042 { 3043 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3044 RECLAIM_DISTANCE; 3045 } 3046 #else /* CONFIG_NUMA */ 3047 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3048 { 3049 return true; 3050 } 3051 #endif /* CONFIG_NUMA */ 3052 3053 /* 3054 * get_page_from_freelist goes through the zonelist trying to allocate 3055 * a page. 3056 */ 3057 static struct page * 3058 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3059 const struct alloc_context *ac) 3060 { 3061 struct zoneref *z = ac->preferred_zoneref; 3062 struct zone *zone; 3063 struct pglist_data *last_pgdat_dirty_limit = NULL; 3064 3065 /* 3066 * Scan zonelist, looking for a zone with enough free. 3067 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3068 */ 3069 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3070 ac->nodemask) { 3071 struct page *page; 3072 unsigned long mark; 3073 3074 if (cpusets_enabled() && 3075 (alloc_flags & ALLOC_CPUSET) && 3076 !__cpuset_zone_allowed(zone, gfp_mask)) 3077 continue; 3078 /* 3079 * When allocating a page cache page for writing, we 3080 * want to get it from a node that is within its dirty 3081 * limit, such that no single node holds more than its 3082 * proportional share of globally allowed dirty pages. 3083 * The dirty limits take into account the node's 3084 * lowmem reserves and high watermark so that kswapd 3085 * should be able to balance it without having to 3086 * write pages from its LRU list. 3087 * 3088 * XXX: For now, allow allocations to potentially 3089 * exceed the per-node dirty limit in the slowpath 3090 * (spread_dirty_pages unset) before going into reclaim, 3091 * which is important when on a NUMA setup the allowed 3092 * nodes are together not big enough to reach the 3093 * global limit. The proper fix for these situations 3094 * will require awareness of nodes in the 3095 * dirty-throttling and the flusher threads. 3096 */ 3097 if (ac->spread_dirty_pages) { 3098 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3099 continue; 3100 3101 if (!node_dirty_ok(zone->zone_pgdat)) { 3102 last_pgdat_dirty_limit = zone->zone_pgdat; 3103 continue; 3104 } 3105 } 3106 3107 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3108 if (!zone_watermark_fast(zone, order, mark, 3109 ac_classzone_idx(ac), alloc_flags)) { 3110 int ret; 3111 3112 /* Checked here to keep the fast path fast */ 3113 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3114 if (alloc_flags & ALLOC_NO_WATERMARKS) 3115 goto try_this_zone; 3116 3117 if (node_reclaim_mode == 0 || 3118 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3119 continue; 3120 3121 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3122 switch (ret) { 3123 case NODE_RECLAIM_NOSCAN: 3124 /* did not scan */ 3125 continue; 3126 case NODE_RECLAIM_FULL: 3127 /* scanned but unreclaimable */ 3128 continue; 3129 default: 3130 /* did we reclaim enough */ 3131 if (zone_watermark_ok(zone, order, mark, 3132 ac_classzone_idx(ac), alloc_flags)) 3133 goto try_this_zone; 3134 3135 continue; 3136 } 3137 } 3138 3139 try_this_zone: 3140 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3141 gfp_mask, alloc_flags, ac->migratetype); 3142 if (page) { 3143 prep_new_page(page, order, gfp_mask, alloc_flags); 3144 3145 /* 3146 * If this is a high-order atomic allocation then check 3147 * if the pageblock should be reserved for the future 3148 */ 3149 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3150 reserve_highatomic_pageblock(page, zone, order); 3151 3152 return page; 3153 } 3154 } 3155 3156 return NULL; 3157 } 3158 3159 /* 3160 * Large machines with many possible nodes should not always dump per-node 3161 * meminfo in irq context. 3162 */ 3163 static inline bool should_suppress_show_mem(void) 3164 { 3165 bool ret = false; 3166 3167 #if NODES_SHIFT > 8 3168 ret = in_interrupt(); 3169 #endif 3170 return ret; 3171 } 3172 3173 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3174 { 3175 unsigned int filter = SHOW_MEM_FILTER_NODES; 3176 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3177 3178 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3179 return; 3180 3181 /* 3182 * This documents exceptions given to allocations in certain 3183 * contexts that are allowed to allocate outside current's set 3184 * of allowed nodes. 3185 */ 3186 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3187 if (test_thread_flag(TIF_MEMDIE) || 3188 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3189 filter &= ~SHOW_MEM_FILTER_NODES; 3190 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3191 filter &= ~SHOW_MEM_FILTER_NODES; 3192 3193 show_mem(filter, nodemask); 3194 } 3195 3196 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3197 { 3198 struct va_format vaf; 3199 va_list args; 3200 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3201 DEFAULT_RATELIMIT_BURST); 3202 3203 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3204 return; 3205 3206 pr_warn("%s: ", current->comm); 3207 3208 va_start(args, fmt); 3209 vaf.fmt = fmt; 3210 vaf.va = &args; 3211 pr_cont("%pV", &vaf); 3212 va_end(args); 3213 3214 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask); 3215 if (nodemask) 3216 pr_cont("%*pbl\n", nodemask_pr_args(nodemask)); 3217 else 3218 pr_cont("(null)\n"); 3219 3220 cpuset_print_current_mems_allowed(); 3221 3222 dump_stack(); 3223 warn_alloc_show_mem(gfp_mask, nodemask); 3224 } 3225 3226 static inline struct page * 3227 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3228 unsigned int alloc_flags, 3229 const struct alloc_context *ac) 3230 { 3231 struct page *page; 3232 3233 page = get_page_from_freelist(gfp_mask, order, 3234 alloc_flags|ALLOC_CPUSET, ac); 3235 /* 3236 * fallback to ignore cpuset restriction if our nodes 3237 * are depleted 3238 */ 3239 if (!page) 3240 page = get_page_from_freelist(gfp_mask, order, 3241 alloc_flags, ac); 3242 3243 return page; 3244 } 3245 3246 static inline struct page * 3247 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3248 const struct alloc_context *ac, unsigned long *did_some_progress) 3249 { 3250 struct oom_control oc = { 3251 .zonelist = ac->zonelist, 3252 .nodemask = ac->nodemask, 3253 .memcg = NULL, 3254 .gfp_mask = gfp_mask, 3255 .order = order, 3256 }; 3257 struct page *page; 3258 3259 *did_some_progress = 0; 3260 3261 /* 3262 * Acquire the oom lock. If that fails, somebody else is 3263 * making progress for us. 3264 */ 3265 if (!mutex_trylock(&oom_lock)) { 3266 *did_some_progress = 1; 3267 schedule_timeout_uninterruptible(1); 3268 return NULL; 3269 } 3270 3271 /* 3272 * Go through the zonelist yet one more time, keep very high watermark 3273 * here, this is only to catch a parallel oom killing, we must fail if 3274 * we're still under heavy pressure. 3275 */ 3276 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 3277 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3278 if (page) 3279 goto out; 3280 3281 /* Coredumps can quickly deplete all memory reserves */ 3282 if (current->flags & PF_DUMPCORE) 3283 goto out; 3284 /* The OOM killer will not help higher order allocs */ 3285 if (order > PAGE_ALLOC_COSTLY_ORDER) 3286 goto out; 3287 /* 3288 * We have already exhausted all our reclaim opportunities without any 3289 * success so it is time to admit defeat. We will skip the OOM killer 3290 * because it is very likely that the caller has a more reasonable 3291 * fallback than shooting a random task. 3292 */ 3293 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3294 goto out; 3295 /* The OOM killer does not needlessly kill tasks for lowmem */ 3296 if (ac->high_zoneidx < ZONE_NORMAL) 3297 goto out; 3298 if (pm_suspended_storage()) 3299 goto out; 3300 /* 3301 * XXX: GFP_NOFS allocations should rather fail than rely on 3302 * other request to make a forward progress. 3303 * We are in an unfortunate situation where out_of_memory cannot 3304 * do much for this context but let's try it to at least get 3305 * access to memory reserved if the current task is killed (see 3306 * out_of_memory). Once filesystems are ready to handle allocation 3307 * failures more gracefully we should just bail out here. 3308 */ 3309 3310 /* The OOM killer may not free memory on a specific node */ 3311 if (gfp_mask & __GFP_THISNODE) 3312 goto out; 3313 3314 /* Exhausted what can be done so it's blamo time */ 3315 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3316 *did_some_progress = 1; 3317 3318 /* 3319 * Help non-failing allocations by giving them access to memory 3320 * reserves 3321 */ 3322 if (gfp_mask & __GFP_NOFAIL) 3323 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3324 ALLOC_NO_WATERMARKS, ac); 3325 } 3326 out: 3327 mutex_unlock(&oom_lock); 3328 return page; 3329 } 3330 3331 /* 3332 * Maximum number of compaction retries wit a progress before OOM 3333 * killer is consider as the only way to move forward. 3334 */ 3335 #define MAX_COMPACT_RETRIES 16 3336 3337 #ifdef CONFIG_COMPACTION 3338 /* Try memory compaction for high-order allocations before reclaim */ 3339 static struct page * 3340 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3341 unsigned int alloc_flags, const struct alloc_context *ac, 3342 enum compact_priority prio, enum compact_result *compact_result) 3343 { 3344 struct page *page; 3345 unsigned int noreclaim_flag; 3346 3347 if (!order) 3348 return NULL; 3349 3350 noreclaim_flag = memalloc_noreclaim_save(); 3351 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3352 prio); 3353 memalloc_noreclaim_restore(noreclaim_flag); 3354 3355 if (*compact_result <= COMPACT_INACTIVE) 3356 return NULL; 3357 3358 /* 3359 * At least in one zone compaction wasn't deferred or skipped, so let's 3360 * count a compaction stall 3361 */ 3362 count_vm_event(COMPACTSTALL); 3363 3364 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3365 3366 if (page) { 3367 struct zone *zone = page_zone(page); 3368 3369 zone->compact_blockskip_flush = false; 3370 compaction_defer_reset(zone, order, true); 3371 count_vm_event(COMPACTSUCCESS); 3372 return page; 3373 } 3374 3375 /* 3376 * It's bad if compaction run occurs and fails. The most likely reason 3377 * is that pages exist, but not enough to satisfy watermarks. 3378 */ 3379 count_vm_event(COMPACTFAIL); 3380 3381 cond_resched(); 3382 3383 return NULL; 3384 } 3385 3386 static inline bool 3387 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3388 enum compact_result compact_result, 3389 enum compact_priority *compact_priority, 3390 int *compaction_retries) 3391 { 3392 int max_retries = MAX_COMPACT_RETRIES; 3393 int min_priority; 3394 bool ret = false; 3395 int retries = *compaction_retries; 3396 enum compact_priority priority = *compact_priority; 3397 3398 if (!order) 3399 return false; 3400 3401 if (compaction_made_progress(compact_result)) 3402 (*compaction_retries)++; 3403 3404 /* 3405 * compaction considers all the zone as desperately out of memory 3406 * so it doesn't really make much sense to retry except when the 3407 * failure could be caused by insufficient priority 3408 */ 3409 if (compaction_failed(compact_result)) 3410 goto check_priority; 3411 3412 /* 3413 * make sure the compaction wasn't deferred or didn't bail out early 3414 * due to locks contention before we declare that we should give up. 3415 * But do not retry if the given zonelist is not suitable for 3416 * compaction. 3417 */ 3418 if (compaction_withdrawn(compact_result)) { 3419 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3420 goto out; 3421 } 3422 3423 /* 3424 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3425 * costly ones because they are de facto nofail and invoke OOM 3426 * killer to move on while costly can fail and users are ready 3427 * to cope with that. 1/4 retries is rather arbitrary but we 3428 * would need much more detailed feedback from compaction to 3429 * make a better decision. 3430 */ 3431 if (order > PAGE_ALLOC_COSTLY_ORDER) 3432 max_retries /= 4; 3433 if (*compaction_retries <= max_retries) { 3434 ret = true; 3435 goto out; 3436 } 3437 3438 /* 3439 * Make sure there are attempts at the highest priority if we exhausted 3440 * all retries or failed at the lower priorities. 3441 */ 3442 check_priority: 3443 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3444 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3445 3446 if (*compact_priority > min_priority) { 3447 (*compact_priority)--; 3448 *compaction_retries = 0; 3449 ret = true; 3450 } 3451 out: 3452 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3453 return ret; 3454 } 3455 #else 3456 static inline struct page * 3457 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3458 unsigned int alloc_flags, const struct alloc_context *ac, 3459 enum compact_priority prio, enum compact_result *compact_result) 3460 { 3461 *compact_result = COMPACT_SKIPPED; 3462 return NULL; 3463 } 3464 3465 static inline bool 3466 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3467 enum compact_result compact_result, 3468 enum compact_priority *compact_priority, 3469 int *compaction_retries) 3470 { 3471 struct zone *zone; 3472 struct zoneref *z; 3473 3474 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3475 return false; 3476 3477 /* 3478 * There are setups with compaction disabled which would prefer to loop 3479 * inside the allocator rather than hit the oom killer prematurely. 3480 * Let's give them a good hope and keep retrying while the order-0 3481 * watermarks are OK. 3482 */ 3483 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3484 ac->nodemask) { 3485 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3486 ac_classzone_idx(ac), alloc_flags)) 3487 return true; 3488 } 3489 return false; 3490 } 3491 #endif /* CONFIG_COMPACTION */ 3492 3493 /* Perform direct synchronous page reclaim */ 3494 static int 3495 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3496 const struct alloc_context *ac) 3497 { 3498 struct reclaim_state reclaim_state; 3499 int progress; 3500 unsigned int noreclaim_flag; 3501 3502 cond_resched(); 3503 3504 /* We now go into synchronous reclaim */ 3505 cpuset_memory_pressure_bump(); 3506 noreclaim_flag = memalloc_noreclaim_save(); 3507 lockdep_set_current_reclaim_state(gfp_mask); 3508 reclaim_state.reclaimed_slab = 0; 3509 current->reclaim_state = &reclaim_state; 3510 3511 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3512 ac->nodemask); 3513 3514 current->reclaim_state = NULL; 3515 lockdep_clear_current_reclaim_state(); 3516 memalloc_noreclaim_restore(noreclaim_flag); 3517 3518 cond_resched(); 3519 3520 return progress; 3521 } 3522 3523 /* The really slow allocator path where we enter direct reclaim */ 3524 static inline struct page * 3525 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3526 unsigned int alloc_flags, const struct alloc_context *ac, 3527 unsigned long *did_some_progress) 3528 { 3529 struct page *page = NULL; 3530 bool drained = false; 3531 3532 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3533 if (unlikely(!(*did_some_progress))) 3534 return NULL; 3535 3536 retry: 3537 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3538 3539 /* 3540 * If an allocation failed after direct reclaim, it could be because 3541 * pages are pinned on the per-cpu lists or in high alloc reserves. 3542 * Shrink them them and try again 3543 */ 3544 if (!page && !drained) { 3545 unreserve_highatomic_pageblock(ac, false); 3546 drain_all_pages(NULL); 3547 drained = true; 3548 goto retry; 3549 } 3550 3551 return page; 3552 } 3553 3554 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3555 { 3556 struct zoneref *z; 3557 struct zone *zone; 3558 pg_data_t *last_pgdat = NULL; 3559 3560 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3561 ac->high_zoneidx, ac->nodemask) { 3562 if (last_pgdat != zone->zone_pgdat) 3563 wakeup_kswapd(zone, order, ac->high_zoneidx); 3564 last_pgdat = zone->zone_pgdat; 3565 } 3566 } 3567 3568 static inline unsigned int 3569 gfp_to_alloc_flags(gfp_t gfp_mask) 3570 { 3571 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3572 3573 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3574 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3575 3576 /* 3577 * The caller may dip into page reserves a bit more if the caller 3578 * cannot run direct reclaim, or if the caller has realtime scheduling 3579 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3580 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3581 */ 3582 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3583 3584 if (gfp_mask & __GFP_ATOMIC) { 3585 /* 3586 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3587 * if it can't schedule. 3588 */ 3589 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3590 alloc_flags |= ALLOC_HARDER; 3591 /* 3592 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3593 * comment for __cpuset_node_allowed(). 3594 */ 3595 alloc_flags &= ~ALLOC_CPUSET; 3596 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3597 alloc_flags |= ALLOC_HARDER; 3598 3599 #ifdef CONFIG_CMA 3600 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3601 alloc_flags |= ALLOC_CMA; 3602 #endif 3603 return alloc_flags; 3604 } 3605 3606 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3607 { 3608 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3609 return false; 3610 3611 if (gfp_mask & __GFP_MEMALLOC) 3612 return true; 3613 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3614 return true; 3615 if (!in_interrupt() && 3616 ((current->flags & PF_MEMALLOC) || 3617 unlikely(test_thread_flag(TIF_MEMDIE)))) 3618 return true; 3619 3620 return false; 3621 } 3622 3623 /* 3624 * Checks whether it makes sense to retry the reclaim to make a forward progress 3625 * for the given allocation request. 3626 * 3627 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3628 * without success, or when we couldn't even meet the watermark if we 3629 * reclaimed all remaining pages on the LRU lists. 3630 * 3631 * Returns true if a retry is viable or false to enter the oom path. 3632 */ 3633 static inline bool 3634 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3635 struct alloc_context *ac, int alloc_flags, 3636 bool did_some_progress, int *no_progress_loops) 3637 { 3638 struct zone *zone; 3639 struct zoneref *z; 3640 3641 /* 3642 * Costly allocations might have made a progress but this doesn't mean 3643 * their order will become available due to high fragmentation so 3644 * always increment the no progress counter for them 3645 */ 3646 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3647 *no_progress_loops = 0; 3648 else 3649 (*no_progress_loops)++; 3650 3651 /* 3652 * Make sure we converge to OOM if we cannot make any progress 3653 * several times in the row. 3654 */ 3655 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3656 /* Before OOM, exhaust highatomic_reserve */ 3657 return unreserve_highatomic_pageblock(ac, true); 3658 } 3659 3660 /* 3661 * Keep reclaiming pages while there is a chance this will lead 3662 * somewhere. If none of the target zones can satisfy our allocation 3663 * request even if all reclaimable pages are considered then we are 3664 * screwed and have to go OOM. 3665 */ 3666 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3667 ac->nodemask) { 3668 unsigned long available; 3669 unsigned long reclaimable; 3670 unsigned long min_wmark = min_wmark_pages(zone); 3671 bool wmark; 3672 3673 available = reclaimable = zone_reclaimable_pages(zone); 3674 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3675 3676 /* 3677 * Would the allocation succeed if we reclaimed all 3678 * reclaimable pages? 3679 */ 3680 wmark = __zone_watermark_ok(zone, order, min_wmark, 3681 ac_classzone_idx(ac), alloc_flags, available); 3682 trace_reclaim_retry_zone(z, order, reclaimable, 3683 available, min_wmark, *no_progress_loops, wmark); 3684 if (wmark) { 3685 /* 3686 * If we didn't make any progress and have a lot of 3687 * dirty + writeback pages then we should wait for 3688 * an IO to complete to slow down the reclaim and 3689 * prevent from pre mature OOM 3690 */ 3691 if (!did_some_progress) { 3692 unsigned long write_pending; 3693 3694 write_pending = zone_page_state_snapshot(zone, 3695 NR_ZONE_WRITE_PENDING); 3696 3697 if (2 * write_pending > reclaimable) { 3698 congestion_wait(BLK_RW_ASYNC, HZ/10); 3699 return true; 3700 } 3701 } 3702 3703 /* 3704 * Memory allocation/reclaim might be called from a WQ 3705 * context and the current implementation of the WQ 3706 * concurrency control doesn't recognize that 3707 * a particular WQ is congested if the worker thread is 3708 * looping without ever sleeping. Therefore we have to 3709 * do a short sleep here rather than calling 3710 * cond_resched(). 3711 */ 3712 if (current->flags & PF_WQ_WORKER) 3713 schedule_timeout_uninterruptible(1); 3714 else 3715 cond_resched(); 3716 3717 return true; 3718 } 3719 } 3720 3721 return false; 3722 } 3723 3724 static inline bool 3725 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3726 { 3727 /* 3728 * It's possible that cpuset's mems_allowed and the nodemask from 3729 * mempolicy don't intersect. This should be normally dealt with by 3730 * policy_nodemask(), but it's possible to race with cpuset update in 3731 * such a way the check therein was true, and then it became false 3732 * before we got our cpuset_mems_cookie here. 3733 * This assumes that for all allocations, ac->nodemask can come only 3734 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3735 * when it does not intersect with the cpuset restrictions) or the 3736 * caller can deal with a violated nodemask. 3737 */ 3738 if (cpusets_enabled() && ac->nodemask && 3739 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3740 ac->nodemask = NULL; 3741 return true; 3742 } 3743 3744 /* 3745 * When updating a task's mems_allowed or mempolicy nodemask, it is 3746 * possible to race with parallel threads in such a way that our 3747 * allocation can fail while the mask is being updated. If we are about 3748 * to fail, check if the cpuset changed during allocation and if so, 3749 * retry. 3750 */ 3751 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3752 return true; 3753 3754 return false; 3755 } 3756 3757 static inline struct page * 3758 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3759 struct alloc_context *ac) 3760 { 3761 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3762 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3763 struct page *page = NULL; 3764 unsigned int alloc_flags; 3765 unsigned long did_some_progress; 3766 enum compact_priority compact_priority; 3767 enum compact_result compact_result; 3768 int compaction_retries; 3769 int no_progress_loops; 3770 unsigned long alloc_start = jiffies; 3771 unsigned int stall_timeout = 10 * HZ; 3772 unsigned int cpuset_mems_cookie; 3773 3774 /* 3775 * In the slowpath, we sanity check order to avoid ever trying to 3776 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3777 * be using allocators in order of preference for an area that is 3778 * too large. 3779 */ 3780 if (order >= MAX_ORDER) { 3781 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3782 return NULL; 3783 } 3784 3785 /* 3786 * We also sanity check to catch abuse of atomic reserves being used by 3787 * callers that are not in atomic context. 3788 */ 3789 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3790 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3791 gfp_mask &= ~__GFP_ATOMIC; 3792 3793 retry_cpuset: 3794 compaction_retries = 0; 3795 no_progress_loops = 0; 3796 compact_priority = DEF_COMPACT_PRIORITY; 3797 cpuset_mems_cookie = read_mems_allowed_begin(); 3798 3799 /* 3800 * The fast path uses conservative alloc_flags to succeed only until 3801 * kswapd needs to be woken up, and to avoid the cost of setting up 3802 * alloc_flags precisely. So we do that now. 3803 */ 3804 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3805 3806 /* 3807 * We need to recalculate the starting point for the zonelist iterator 3808 * because we might have used different nodemask in the fast path, or 3809 * there was a cpuset modification and we are retrying - otherwise we 3810 * could end up iterating over non-eligible zones endlessly. 3811 */ 3812 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3813 ac->high_zoneidx, ac->nodemask); 3814 if (!ac->preferred_zoneref->zone) 3815 goto nopage; 3816 3817 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3818 wake_all_kswapds(order, ac); 3819 3820 /* 3821 * The adjusted alloc_flags might result in immediate success, so try 3822 * that first 3823 */ 3824 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3825 if (page) 3826 goto got_pg; 3827 3828 /* 3829 * For costly allocations, try direct compaction first, as it's likely 3830 * that we have enough base pages and don't need to reclaim. For non- 3831 * movable high-order allocations, do that as well, as compaction will 3832 * try prevent permanent fragmentation by migrating from blocks of the 3833 * same migratetype. 3834 * Don't try this for allocations that are allowed to ignore 3835 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3836 */ 3837 if (can_direct_reclaim && 3838 (costly_order || 3839 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3840 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3841 page = __alloc_pages_direct_compact(gfp_mask, order, 3842 alloc_flags, ac, 3843 INIT_COMPACT_PRIORITY, 3844 &compact_result); 3845 if (page) 3846 goto got_pg; 3847 3848 /* 3849 * Checks for costly allocations with __GFP_NORETRY, which 3850 * includes THP page fault allocations 3851 */ 3852 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 3853 /* 3854 * If compaction is deferred for high-order allocations, 3855 * it is because sync compaction recently failed. If 3856 * this is the case and the caller requested a THP 3857 * allocation, we do not want to heavily disrupt the 3858 * system, so we fail the allocation instead of entering 3859 * direct reclaim. 3860 */ 3861 if (compact_result == COMPACT_DEFERRED) 3862 goto nopage; 3863 3864 /* 3865 * Looks like reclaim/compaction is worth trying, but 3866 * sync compaction could be very expensive, so keep 3867 * using async compaction. 3868 */ 3869 compact_priority = INIT_COMPACT_PRIORITY; 3870 } 3871 } 3872 3873 retry: 3874 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3875 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3876 wake_all_kswapds(order, ac); 3877 3878 if (gfp_pfmemalloc_allowed(gfp_mask)) 3879 alloc_flags = ALLOC_NO_WATERMARKS; 3880 3881 /* 3882 * Reset the zonelist iterators if memory policies can be ignored. 3883 * These allocations are high priority and system rather than user 3884 * orientated. 3885 */ 3886 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { 3887 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3888 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3889 ac->high_zoneidx, ac->nodemask); 3890 } 3891 3892 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3893 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3894 if (page) 3895 goto got_pg; 3896 3897 /* Caller is not willing to reclaim, we can't balance anything */ 3898 if (!can_direct_reclaim) 3899 goto nopage; 3900 3901 /* Make sure we know about allocations which stall for too long */ 3902 if (time_after(jiffies, alloc_start + stall_timeout)) { 3903 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask, 3904 "page allocation stalls for %ums, order:%u", 3905 jiffies_to_msecs(jiffies-alloc_start), order); 3906 stall_timeout += 10 * HZ; 3907 } 3908 3909 /* Avoid recursion of direct reclaim */ 3910 if (current->flags & PF_MEMALLOC) 3911 goto nopage; 3912 3913 /* Try direct reclaim and then allocating */ 3914 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3915 &did_some_progress); 3916 if (page) 3917 goto got_pg; 3918 3919 /* Try direct compaction and then allocating */ 3920 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3921 compact_priority, &compact_result); 3922 if (page) 3923 goto got_pg; 3924 3925 /* Do not loop if specifically requested */ 3926 if (gfp_mask & __GFP_NORETRY) 3927 goto nopage; 3928 3929 /* 3930 * Do not retry costly high order allocations unless they are 3931 * __GFP_RETRY_MAYFAIL 3932 */ 3933 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 3934 goto nopage; 3935 3936 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 3937 did_some_progress > 0, &no_progress_loops)) 3938 goto retry; 3939 3940 /* 3941 * It doesn't make any sense to retry for the compaction if the order-0 3942 * reclaim is not able to make any progress because the current 3943 * implementation of the compaction depends on the sufficient amount 3944 * of free memory (see __compaction_suitable) 3945 */ 3946 if (did_some_progress > 0 && 3947 should_compact_retry(ac, order, alloc_flags, 3948 compact_result, &compact_priority, 3949 &compaction_retries)) 3950 goto retry; 3951 3952 3953 /* Deal with possible cpuset update races before we start OOM killing */ 3954 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 3955 goto retry_cpuset; 3956 3957 /* Reclaim has failed us, start killing things */ 3958 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3959 if (page) 3960 goto got_pg; 3961 3962 /* Avoid allocations with no watermarks from looping endlessly */ 3963 if (test_thread_flag(TIF_MEMDIE) && 3964 (alloc_flags == ALLOC_NO_WATERMARKS || 3965 (gfp_mask & __GFP_NOMEMALLOC))) 3966 goto nopage; 3967 3968 /* Retry as long as the OOM killer is making progress */ 3969 if (did_some_progress) { 3970 no_progress_loops = 0; 3971 goto retry; 3972 } 3973 3974 nopage: 3975 /* Deal with possible cpuset update races before we fail */ 3976 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 3977 goto retry_cpuset; 3978 3979 /* 3980 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 3981 * we always retry 3982 */ 3983 if (gfp_mask & __GFP_NOFAIL) { 3984 /* 3985 * All existing users of the __GFP_NOFAIL are blockable, so warn 3986 * of any new users that actually require GFP_NOWAIT 3987 */ 3988 if (WARN_ON_ONCE(!can_direct_reclaim)) 3989 goto fail; 3990 3991 /* 3992 * PF_MEMALLOC request from this context is rather bizarre 3993 * because we cannot reclaim anything and only can loop waiting 3994 * for somebody to do a work for us 3995 */ 3996 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 3997 3998 /* 3999 * non failing costly orders are a hard requirement which we 4000 * are not prepared for much so let's warn about these users 4001 * so that we can identify them and convert them to something 4002 * else. 4003 */ 4004 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4005 4006 /* 4007 * Help non-failing allocations by giving them access to memory 4008 * reserves but do not use ALLOC_NO_WATERMARKS because this 4009 * could deplete whole memory reserves which would just make 4010 * the situation worse 4011 */ 4012 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4013 if (page) 4014 goto got_pg; 4015 4016 cond_resched(); 4017 goto retry; 4018 } 4019 fail: 4020 warn_alloc(gfp_mask, ac->nodemask, 4021 "page allocation failure: order:%u", order); 4022 got_pg: 4023 return page; 4024 } 4025 4026 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4027 int preferred_nid, nodemask_t *nodemask, 4028 struct alloc_context *ac, gfp_t *alloc_mask, 4029 unsigned int *alloc_flags) 4030 { 4031 ac->high_zoneidx = gfp_zone(gfp_mask); 4032 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4033 ac->nodemask = nodemask; 4034 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4035 4036 if (cpusets_enabled()) { 4037 *alloc_mask |= __GFP_HARDWALL; 4038 if (!ac->nodemask) 4039 ac->nodemask = &cpuset_current_mems_allowed; 4040 else 4041 *alloc_flags |= ALLOC_CPUSET; 4042 } 4043 4044 lockdep_trace_alloc(gfp_mask); 4045 4046 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4047 4048 if (should_fail_alloc_page(gfp_mask, order)) 4049 return false; 4050 4051 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4052 *alloc_flags |= ALLOC_CMA; 4053 4054 return true; 4055 } 4056 4057 /* Determine whether to spread dirty pages and what the first usable zone */ 4058 static inline void finalise_ac(gfp_t gfp_mask, 4059 unsigned int order, struct alloc_context *ac) 4060 { 4061 /* Dirty zone balancing only done in the fast path */ 4062 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4063 4064 /* 4065 * The preferred zone is used for statistics but crucially it is 4066 * also used as the starting point for the zonelist iterator. It 4067 * may get reset for allocations that ignore memory policies. 4068 */ 4069 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4070 ac->high_zoneidx, ac->nodemask); 4071 } 4072 4073 /* 4074 * This is the 'heart' of the zoned buddy allocator. 4075 */ 4076 struct page * 4077 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4078 nodemask_t *nodemask) 4079 { 4080 struct page *page; 4081 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4082 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ 4083 struct alloc_context ac = { }; 4084 4085 gfp_mask &= gfp_allowed_mask; 4086 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4087 return NULL; 4088 4089 finalise_ac(gfp_mask, order, &ac); 4090 4091 /* First allocation attempt */ 4092 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4093 if (likely(page)) 4094 goto out; 4095 4096 /* 4097 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4098 * resp. GFP_NOIO which has to be inherited for all allocation requests 4099 * from a particular context which has been marked by 4100 * memalloc_no{fs,io}_{save,restore}. 4101 */ 4102 alloc_mask = current_gfp_context(gfp_mask); 4103 ac.spread_dirty_pages = false; 4104 4105 /* 4106 * Restore the original nodemask if it was potentially replaced with 4107 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4108 */ 4109 if (unlikely(ac.nodemask != nodemask)) 4110 ac.nodemask = nodemask; 4111 4112 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4113 4114 out: 4115 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4116 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4117 __free_pages(page, order); 4118 page = NULL; 4119 } 4120 4121 if (kmemcheck_enabled && page) 4122 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 4123 4124 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4125 4126 return page; 4127 } 4128 EXPORT_SYMBOL(__alloc_pages_nodemask); 4129 4130 /* 4131 * Common helper functions. 4132 */ 4133 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4134 { 4135 struct page *page; 4136 4137 /* 4138 * __get_free_pages() returns a 32-bit address, which cannot represent 4139 * a highmem page 4140 */ 4141 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4142 4143 page = alloc_pages(gfp_mask, order); 4144 if (!page) 4145 return 0; 4146 return (unsigned long) page_address(page); 4147 } 4148 EXPORT_SYMBOL(__get_free_pages); 4149 4150 unsigned long get_zeroed_page(gfp_t gfp_mask) 4151 { 4152 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4153 } 4154 EXPORT_SYMBOL(get_zeroed_page); 4155 4156 void __free_pages(struct page *page, unsigned int order) 4157 { 4158 if (put_page_testzero(page)) { 4159 if (order == 0) 4160 free_hot_cold_page(page, false); 4161 else 4162 __free_pages_ok(page, order); 4163 } 4164 } 4165 4166 EXPORT_SYMBOL(__free_pages); 4167 4168 void free_pages(unsigned long addr, unsigned int order) 4169 { 4170 if (addr != 0) { 4171 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4172 __free_pages(virt_to_page((void *)addr), order); 4173 } 4174 } 4175 4176 EXPORT_SYMBOL(free_pages); 4177 4178 /* 4179 * Page Fragment: 4180 * An arbitrary-length arbitrary-offset area of memory which resides 4181 * within a 0 or higher order page. Multiple fragments within that page 4182 * are individually refcounted, in the page's reference counter. 4183 * 4184 * The page_frag functions below provide a simple allocation framework for 4185 * page fragments. This is used by the network stack and network device 4186 * drivers to provide a backing region of memory for use as either an 4187 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4188 */ 4189 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4190 gfp_t gfp_mask) 4191 { 4192 struct page *page = NULL; 4193 gfp_t gfp = gfp_mask; 4194 4195 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4196 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4197 __GFP_NOMEMALLOC; 4198 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4199 PAGE_FRAG_CACHE_MAX_ORDER); 4200 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4201 #endif 4202 if (unlikely(!page)) 4203 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4204 4205 nc->va = page ? page_address(page) : NULL; 4206 4207 return page; 4208 } 4209 4210 void __page_frag_cache_drain(struct page *page, unsigned int count) 4211 { 4212 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4213 4214 if (page_ref_sub_and_test(page, count)) { 4215 unsigned int order = compound_order(page); 4216 4217 if (order == 0) 4218 free_hot_cold_page(page, false); 4219 else 4220 __free_pages_ok(page, order); 4221 } 4222 } 4223 EXPORT_SYMBOL(__page_frag_cache_drain); 4224 4225 void *page_frag_alloc(struct page_frag_cache *nc, 4226 unsigned int fragsz, gfp_t gfp_mask) 4227 { 4228 unsigned int size = PAGE_SIZE; 4229 struct page *page; 4230 int offset; 4231 4232 if (unlikely(!nc->va)) { 4233 refill: 4234 page = __page_frag_cache_refill(nc, gfp_mask); 4235 if (!page) 4236 return NULL; 4237 4238 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4239 /* if size can vary use size else just use PAGE_SIZE */ 4240 size = nc->size; 4241 #endif 4242 /* Even if we own the page, we do not use atomic_set(). 4243 * This would break get_page_unless_zero() users. 4244 */ 4245 page_ref_add(page, size - 1); 4246 4247 /* reset page count bias and offset to start of new frag */ 4248 nc->pfmemalloc = page_is_pfmemalloc(page); 4249 nc->pagecnt_bias = size; 4250 nc->offset = size; 4251 } 4252 4253 offset = nc->offset - fragsz; 4254 if (unlikely(offset < 0)) { 4255 page = virt_to_page(nc->va); 4256 4257 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4258 goto refill; 4259 4260 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4261 /* if size can vary use size else just use PAGE_SIZE */ 4262 size = nc->size; 4263 #endif 4264 /* OK, page count is 0, we can safely set it */ 4265 set_page_count(page, size); 4266 4267 /* reset page count bias and offset to start of new frag */ 4268 nc->pagecnt_bias = size; 4269 offset = size - fragsz; 4270 } 4271 4272 nc->pagecnt_bias--; 4273 nc->offset = offset; 4274 4275 return nc->va + offset; 4276 } 4277 EXPORT_SYMBOL(page_frag_alloc); 4278 4279 /* 4280 * Frees a page fragment allocated out of either a compound or order 0 page. 4281 */ 4282 void page_frag_free(void *addr) 4283 { 4284 struct page *page = virt_to_head_page(addr); 4285 4286 if (unlikely(put_page_testzero(page))) 4287 __free_pages_ok(page, compound_order(page)); 4288 } 4289 EXPORT_SYMBOL(page_frag_free); 4290 4291 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4292 size_t size) 4293 { 4294 if (addr) { 4295 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4296 unsigned long used = addr + PAGE_ALIGN(size); 4297 4298 split_page(virt_to_page((void *)addr), order); 4299 while (used < alloc_end) { 4300 free_page(used); 4301 used += PAGE_SIZE; 4302 } 4303 } 4304 return (void *)addr; 4305 } 4306 4307 /** 4308 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4309 * @size: the number of bytes to allocate 4310 * @gfp_mask: GFP flags for the allocation 4311 * 4312 * This function is similar to alloc_pages(), except that it allocates the 4313 * minimum number of pages to satisfy the request. alloc_pages() can only 4314 * allocate memory in power-of-two pages. 4315 * 4316 * This function is also limited by MAX_ORDER. 4317 * 4318 * Memory allocated by this function must be released by free_pages_exact(). 4319 */ 4320 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4321 { 4322 unsigned int order = get_order(size); 4323 unsigned long addr; 4324 4325 addr = __get_free_pages(gfp_mask, order); 4326 return make_alloc_exact(addr, order, size); 4327 } 4328 EXPORT_SYMBOL(alloc_pages_exact); 4329 4330 /** 4331 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4332 * pages on a node. 4333 * @nid: the preferred node ID where memory should be allocated 4334 * @size: the number of bytes to allocate 4335 * @gfp_mask: GFP flags for the allocation 4336 * 4337 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4338 * back. 4339 */ 4340 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4341 { 4342 unsigned int order = get_order(size); 4343 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4344 if (!p) 4345 return NULL; 4346 return make_alloc_exact((unsigned long)page_address(p), order, size); 4347 } 4348 4349 /** 4350 * free_pages_exact - release memory allocated via alloc_pages_exact() 4351 * @virt: the value returned by alloc_pages_exact. 4352 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4353 * 4354 * Release the memory allocated by a previous call to alloc_pages_exact. 4355 */ 4356 void free_pages_exact(void *virt, size_t size) 4357 { 4358 unsigned long addr = (unsigned long)virt; 4359 unsigned long end = addr + PAGE_ALIGN(size); 4360 4361 while (addr < end) { 4362 free_page(addr); 4363 addr += PAGE_SIZE; 4364 } 4365 } 4366 EXPORT_SYMBOL(free_pages_exact); 4367 4368 /** 4369 * nr_free_zone_pages - count number of pages beyond high watermark 4370 * @offset: The zone index of the highest zone 4371 * 4372 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4373 * high watermark within all zones at or below a given zone index. For each 4374 * zone, the number of pages is calculated as: 4375 * 4376 * nr_free_zone_pages = managed_pages - high_pages 4377 */ 4378 static unsigned long nr_free_zone_pages(int offset) 4379 { 4380 struct zoneref *z; 4381 struct zone *zone; 4382 4383 /* Just pick one node, since fallback list is circular */ 4384 unsigned long sum = 0; 4385 4386 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4387 4388 for_each_zone_zonelist(zone, z, zonelist, offset) { 4389 unsigned long size = zone->managed_pages; 4390 unsigned long high = high_wmark_pages(zone); 4391 if (size > high) 4392 sum += size - high; 4393 } 4394 4395 return sum; 4396 } 4397 4398 /** 4399 * nr_free_buffer_pages - count number of pages beyond high watermark 4400 * 4401 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4402 * watermark within ZONE_DMA and ZONE_NORMAL. 4403 */ 4404 unsigned long nr_free_buffer_pages(void) 4405 { 4406 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4407 } 4408 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4409 4410 /** 4411 * nr_free_pagecache_pages - count number of pages beyond high watermark 4412 * 4413 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4414 * high watermark within all zones. 4415 */ 4416 unsigned long nr_free_pagecache_pages(void) 4417 { 4418 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4419 } 4420 4421 static inline void show_node(struct zone *zone) 4422 { 4423 if (IS_ENABLED(CONFIG_NUMA)) 4424 printk("Node %d ", zone_to_nid(zone)); 4425 } 4426 4427 long si_mem_available(void) 4428 { 4429 long available; 4430 unsigned long pagecache; 4431 unsigned long wmark_low = 0; 4432 unsigned long pages[NR_LRU_LISTS]; 4433 struct zone *zone; 4434 int lru; 4435 4436 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4437 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4438 4439 for_each_zone(zone) 4440 wmark_low += zone->watermark[WMARK_LOW]; 4441 4442 /* 4443 * Estimate the amount of memory available for userspace allocations, 4444 * without causing swapping. 4445 */ 4446 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 4447 4448 /* 4449 * Not all the page cache can be freed, otherwise the system will 4450 * start swapping. Assume at least half of the page cache, or the 4451 * low watermark worth of cache, needs to stay. 4452 */ 4453 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4454 pagecache -= min(pagecache / 2, wmark_low); 4455 available += pagecache; 4456 4457 /* 4458 * Part of the reclaimable slab consists of items that are in use, 4459 * and cannot be freed. Cap this estimate at the low watermark. 4460 */ 4461 available += global_page_state(NR_SLAB_RECLAIMABLE) - 4462 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); 4463 4464 if (available < 0) 4465 available = 0; 4466 return available; 4467 } 4468 EXPORT_SYMBOL_GPL(si_mem_available); 4469 4470 void si_meminfo(struct sysinfo *val) 4471 { 4472 val->totalram = totalram_pages; 4473 val->sharedram = global_node_page_state(NR_SHMEM); 4474 val->freeram = global_page_state(NR_FREE_PAGES); 4475 val->bufferram = nr_blockdev_pages(); 4476 val->totalhigh = totalhigh_pages; 4477 val->freehigh = nr_free_highpages(); 4478 val->mem_unit = PAGE_SIZE; 4479 } 4480 4481 EXPORT_SYMBOL(si_meminfo); 4482 4483 #ifdef CONFIG_NUMA 4484 void si_meminfo_node(struct sysinfo *val, int nid) 4485 { 4486 int zone_type; /* needs to be signed */ 4487 unsigned long managed_pages = 0; 4488 unsigned long managed_highpages = 0; 4489 unsigned long free_highpages = 0; 4490 pg_data_t *pgdat = NODE_DATA(nid); 4491 4492 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4493 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4494 val->totalram = managed_pages; 4495 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4496 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4497 #ifdef CONFIG_HIGHMEM 4498 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4499 struct zone *zone = &pgdat->node_zones[zone_type]; 4500 4501 if (is_highmem(zone)) { 4502 managed_highpages += zone->managed_pages; 4503 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4504 } 4505 } 4506 val->totalhigh = managed_highpages; 4507 val->freehigh = free_highpages; 4508 #else 4509 val->totalhigh = managed_highpages; 4510 val->freehigh = free_highpages; 4511 #endif 4512 val->mem_unit = PAGE_SIZE; 4513 } 4514 #endif 4515 4516 /* 4517 * Determine whether the node should be displayed or not, depending on whether 4518 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4519 */ 4520 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4521 { 4522 if (!(flags & SHOW_MEM_FILTER_NODES)) 4523 return false; 4524 4525 /* 4526 * no node mask - aka implicit memory numa policy. Do not bother with 4527 * the synchronization - read_mems_allowed_begin - because we do not 4528 * have to be precise here. 4529 */ 4530 if (!nodemask) 4531 nodemask = &cpuset_current_mems_allowed; 4532 4533 return !node_isset(nid, *nodemask); 4534 } 4535 4536 #define K(x) ((x) << (PAGE_SHIFT-10)) 4537 4538 static void show_migration_types(unsigned char type) 4539 { 4540 static const char types[MIGRATE_TYPES] = { 4541 [MIGRATE_UNMOVABLE] = 'U', 4542 [MIGRATE_MOVABLE] = 'M', 4543 [MIGRATE_RECLAIMABLE] = 'E', 4544 [MIGRATE_HIGHATOMIC] = 'H', 4545 #ifdef CONFIG_CMA 4546 [MIGRATE_CMA] = 'C', 4547 #endif 4548 #ifdef CONFIG_MEMORY_ISOLATION 4549 [MIGRATE_ISOLATE] = 'I', 4550 #endif 4551 }; 4552 char tmp[MIGRATE_TYPES + 1]; 4553 char *p = tmp; 4554 int i; 4555 4556 for (i = 0; i < MIGRATE_TYPES; i++) { 4557 if (type & (1 << i)) 4558 *p++ = types[i]; 4559 } 4560 4561 *p = '\0'; 4562 printk(KERN_CONT "(%s) ", tmp); 4563 } 4564 4565 /* 4566 * Show free area list (used inside shift_scroll-lock stuff) 4567 * We also calculate the percentage fragmentation. We do this by counting the 4568 * memory on each free list with the exception of the first item on the list. 4569 * 4570 * Bits in @filter: 4571 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4572 * cpuset. 4573 */ 4574 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4575 { 4576 unsigned long free_pcp = 0; 4577 int cpu; 4578 struct zone *zone; 4579 pg_data_t *pgdat; 4580 4581 for_each_populated_zone(zone) { 4582 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4583 continue; 4584 4585 for_each_online_cpu(cpu) 4586 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4587 } 4588 4589 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4590 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4591 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4592 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4593 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4594 " free:%lu free_pcp:%lu free_cma:%lu\n", 4595 global_node_page_state(NR_ACTIVE_ANON), 4596 global_node_page_state(NR_INACTIVE_ANON), 4597 global_node_page_state(NR_ISOLATED_ANON), 4598 global_node_page_state(NR_ACTIVE_FILE), 4599 global_node_page_state(NR_INACTIVE_FILE), 4600 global_node_page_state(NR_ISOLATED_FILE), 4601 global_node_page_state(NR_UNEVICTABLE), 4602 global_node_page_state(NR_FILE_DIRTY), 4603 global_node_page_state(NR_WRITEBACK), 4604 global_node_page_state(NR_UNSTABLE_NFS), 4605 global_page_state(NR_SLAB_RECLAIMABLE), 4606 global_page_state(NR_SLAB_UNRECLAIMABLE), 4607 global_node_page_state(NR_FILE_MAPPED), 4608 global_node_page_state(NR_SHMEM), 4609 global_page_state(NR_PAGETABLE), 4610 global_page_state(NR_BOUNCE), 4611 global_page_state(NR_FREE_PAGES), 4612 free_pcp, 4613 global_page_state(NR_FREE_CMA_PAGES)); 4614 4615 for_each_online_pgdat(pgdat) { 4616 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4617 continue; 4618 4619 printk("Node %d" 4620 " active_anon:%lukB" 4621 " inactive_anon:%lukB" 4622 " active_file:%lukB" 4623 " inactive_file:%lukB" 4624 " unevictable:%lukB" 4625 " isolated(anon):%lukB" 4626 " isolated(file):%lukB" 4627 " mapped:%lukB" 4628 " dirty:%lukB" 4629 " writeback:%lukB" 4630 " shmem:%lukB" 4631 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4632 " shmem_thp: %lukB" 4633 " shmem_pmdmapped: %lukB" 4634 " anon_thp: %lukB" 4635 #endif 4636 " writeback_tmp:%lukB" 4637 " unstable:%lukB" 4638 " all_unreclaimable? %s" 4639 "\n", 4640 pgdat->node_id, 4641 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4642 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4643 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4644 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4645 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4646 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4647 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4648 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4649 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4650 K(node_page_state(pgdat, NR_WRITEBACK)), 4651 K(node_page_state(pgdat, NR_SHMEM)), 4652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4653 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4654 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4655 * HPAGE_PMD_NR), 4656 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4657 #endif 4658 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4659 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4660 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4661 "yes" : "no"); 4662 } 4663 4664 for_each_populated_zone(zone) { 4665 int i; 4666 4667 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4668 continue; 4669 4670 free_pcp = 0; 4671 for_each_online_cpu(cpu) 4672 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4673 4674 show_node(zone); 4675 printk(KERN_CONT 4676 "%s" 4677 " free:%lukB" 4678 " min:%lukB" 4679 " low:%lukB" 4680 " high:%lukB" 4681 " active_anon:%lukB" 4682 " inactive_anon:%lukB" 4683 " active_file:%lukB" 4684 " inactive_file:%lukB" 4685 " unevictable:%lukB" 4686 " writepending:%lukB" 4687 " present:%lukB" 4688 " managed:%lukB" 4689 " mlocked:%lukB" 4690 " kernel_stack:%lukB" 4691 " pagetables:%lukB" 4692 " bounce:%lukB" 4693 " free_pcp:%lukB" 4694 " local_pcp:%ukB" 4695 " free_cma:%lukB" 4696 "\n", 4697 zone->name, 4698 K(zone_page_state(zone, NR_FREE_PAGES)), 4699 K(min_wmark_pages(zone)), 4700 K(low_wmark_pages(zone)), 4701 K(high_wmark_pages(zone)), 4702 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4703 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4704 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4705 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4706 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4707 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4708 K(zone->present_pages), 4709 K(zone->managed_pages), 4710 K(zone_page_state(zone, NR_MLOCK)), 4711 zone_page_state(zone, NR_KERNEL_STACK_KB), 4712 K(zone_page_state(zone, NR_PAGETABLE)), 4713 K(zone_page_state(zone, NR_BOUNCE)), 4714 K(free_pcp), 4715 K(this_cpu_read(zone->pageset->pcp.count)), 4716 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4717 printk("lowmem_reserve[]:"); 4718 for (i = 0; i < MAX_NR_ZONES; i++) 4719 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4720 printk(KERN_CONT "\n"); 4721 } 4722 4723 for_each_populated_zone(zone) { 4724 unsigned int order; 4725 unsigned long nr[MAX_ORDER], flags, total = 0; 4726 unsigned char types[MAX_ORDER]; 4727 4728 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4729 continue; 4730 show_node(zone); 4731 printk(KERN_CONT "%s: ", zone->name); 4732 4733 spin_lock_irqsave(&zone->lock, flags); 4734 for (order = 0; order < MAX_ORDER; order++) { 4735 struct free_area *area = &zone->free_area[order]; 4736 int type; 4737 4738 nr[order] = area->nr_free; 4739 total += nr[order] << order; 4740 4741 types[order] = 0; 4742 for (type = 0; type < MIGRATE_TYPES; type++) { 4743 if (!list_empty(&area->free_list[type])) 4744 types[order] |= 1 << type; 4745 } 4746 } 4747 spin_unlock_irqrestore(&zone->lock, flags); 4748 for (order = 0; order < MAX_ORDER; order++) { 4749 printk(KERN_CONT "%lu*%lukB ", 4750 nr[order], K(1UL) << order); 4751 if (nr[order]) 4752 show_migration_types(types[order]); 4753 } 4754 printk(KERN_CONT "= %lukB\n", K(total)); 4755 } 4756 4757 hugetlb_show_meminfo(); 4758 4759 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4760 4761 show_swap_cache_info(); 4762 } 4763 4764 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4765 { 4766 zoneref->zone = zone; 4767 zoneref->zone_idx = zone_idx(zone); 4768 } 4769 4770 /* 4771 * Builds allocation fallback zone lists. 4772 * 4773 * Add all populated zones of a node to the zonelist. 4774 */ 4775 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4776 int nr_zones) 4777 { 4778 struct zone *zone; 4779 enum zone_type zone_type = MAX_NR_ZONES; 4780 4781 do { 4782 zone_type--; 4783 zone = pgdat->node_zones + zone_type; 4784 if (managed_zone(zone)) { 4785 zoneref_set_zone(zone, 4786 &zonelist->_zonerefs[nr_zones++]); 4787 check_highest_zone(zone_type); 4788 } 4789 } while (zone_type); 4790 4791 return nr_zones; 4792 } 4793 4794 4795 /* 4796 * zonelist_order: 4797 * 0 = automatic detection of better ordering. 4798 * 1 = order by ([node] distance, -zonetype) 4799 * 2 = order by (-zonetype, [node] distance) 4800 * 4801 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4802 * the same zonelist. So only NUMA can configure this param. 4803 */ 4804 #define ZONELIST_ORDER_DEFAULT 0 4805 #define ZONELIST_ORDER_NODE 1 4806 #define ZONELIST_ORDER_ZONE 2 4807 4808 /* zonelist order in the kernel. 4809 * set_zonelist_order() will set this to NODE or ZONE. 4810 */ 4811 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4812 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4813 4814 4815 #ifdef CONFIG_NUMA 4816 /* The value user specified ....changed by config */ 4817 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4818 /* string for sysctl */ 4819 #define NUMA_ZONELIST_ORDER_LEN 16 4820 char numa_zonelist_order[16] = "default"; 4821 4822 /* 4823 * interface for configure zonelist ordering. 4824 * command line option "numa_zonelist_order" 4825 * = "[dD]efault - default, automatic configuration. 4826 * = "[nN]ode - order by node locality, then by zone within node 4827 * = "[zZ]one - order by zone, then by locality within zone 4828 */ 4829 4830 static int __parse_numa_zonelist_order(char *s) 4831 { 4832 if (*s == 'd' || *s == 'D') { 4833 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4834 } else if (*s == 'n' || *s == 'N') { 4835 user_zonelist_order = ZONELIST_ORDER_NODE; 4836 } else if (*s == 'z' || *s == 'Z') { 4837 user_zonelist_order = ZONELIST_ORDER_ZONE; 4838 } else { 4839 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4840 return -EINVAL; 4841 } 4842 return 0; 4843 } 4844 4845 static __init int setup_numa_zonelist_order(char *s) 4846 { 4847 int ret; 4848 4849 if (!s) 4850 return 0; 4851 4852 ret = __parse_numa_zonelist_order(s); 4853 if (ret == 0) 4854 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4855 4856 return ret; 4857 } 4858 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4859 4860 /* 4861 * sysctl handler for numa_zonelist_order 4862 */ 4863 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4864 void __user *buffer, size_t *length, 4865 loff_t *ppos) 4866 { 4867 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4868 int ret; 4869 static DEFINE_MUTEX(zl_order_mutex); 4870 4871 mutex_lock(&zl_order_mutex); 4872 if (write) { 4873 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4874 ret = -EINVAL; 4875 goto out; 4876 } 4877 strcpy(saved_string, (char *)table->data); 4878 } 4879 ret = proc_dostring(table, write, buffer, length, ppos); 4880 if (ret) 4881 goto out; 4882 if (write) { 4883 int oldval = user_zonelist_order; 4884 4885 ret = __parse_numa_zonelist_order((char *)table->data); 4886 if (ret) { 4887 /* 4888 * bogus value. restore saved string 4889 */ 4890 strncpy((char *)table->data, saved_string, 4891 NUMA_ZONELIST_ORDER_LEN); 4892 user_zonelist_order = oldval; 4893 } else if (oldval != user_zonelist_order) { 4894 mutex_lock(&zonelists_mutex); 4895 build_all_zonelists(NULL, NULL); 4896 mutex_unlock(&zonelists_mutex); 4897 } 4898 } 4899 out: 4900 mutex_unlock(&zl_order_mutex); 4901 return ret; 4902 } 4903 4904 4905 #define MAX_NODE_LOAD (nr_online_nodes) 4906 static int node_load[MAX_NUMNODES]; 4907 4908 /** 4909 * find_next_best_node - find the next node that should appear in a given node's fallback list 4910 * @node: node whose fallback list we're appending 4911 * @used_node_mask: nodemask_t of already used nodes 4912 * 4913 * We use a number of factors to determine which is the next node that should 4914 * appear on a given node's fallback list. The node should not have appeared 4915 * already in @node's fallback list, and it should be the next closest node 4916 * according to the distance array (which contains arbitrary distance values 4917 * from each node to each node in the system), and should also prefer nodes 4918 * with no CPUs, since presumably they'll have very little allocation pressure 4919 * on them otherwise. 4920 * It returns -1 if no node is found. 4921 */ 4922 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4923 { 4924 int n, val; 4925 int min_val = INT_MAX; 4926 int best_node = NUMA_NO_NODE; 4927 const struct cpumask *tmp = cpumask_of_node(0); 4928 4929 /* Use the local node if we haven't already */ 4930 if (!node_isset(node, *used_node_mask)) { 4931 node_set(node, *used_node_mask); 4932 return node; 4933 } 4934 4935 for_each_node_state(n, N_MEMORY) { 4936 4937 /* Don't want a node to appear more than once */ 4938 if (node_isset(n, *used_node_mask)) 4939 continue; 4940 4941 /* Use the distance array to find the distance */ 4942 val = node_distance(node, n); 4943 4944 /* Penalize nodes under us ("prefer the next node") */ 4945 val += (n < node); 4946 4947 /* Give preference to headless and unused nodes */ 4948 tmp = cpumask_of_node(n); 4949 if (!cpumask_empty(tmp)) 4950 val += PENALTY_FOR_NODE_WITH_CPUS; 4951 4952 /* Slight preference for less loaded node */ 4953 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4954 val += node_load[n]; 4955 4956 if (val < min_val) { 4957 min_val = val; 4958 best_node = n; 4959 } 4960 } 4961 4962 if (best_node >= 0) 4963 node_set(best_node, *used_node_mask); 4964 4965 return best_node; 4966 } 4967 4968 4969 /* 4970 * Build zonelists ordered by node and zones within node. 4971 * This results in maximum locality--normal zone overflows into local 4972 * DMA zone, if any--but risks exhausting DMA zone. 4973 */ 4974 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4975 { 4976 int j; 4977 struct zonelist *zonelist; 4978 4979 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4980 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4981 ; 4982 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4983 zonelist->_zonerefs[j].zone = NULL; 4984 zonelist->_zonerefs[j].zone_idx = 0; 4985 } 4986 4987 /* 4988 * Build gfp_thisnode zonelists 4989 */ 4990 static void build_thisnode_zonelists(pg_data_t *pgdat) 4991 { 4992 int j; 4993 struct zonelist *zonelist; 4994 4995 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK]; 4996 j = build_zonelists_node(pgdat, zonelist, 0); 4997 zonelist->_zonerefs[j].zone = NULL; 4998 zonelist->_zonerefs[j].zone_idx = 0; 4999 } 5000 5001 /* 5002 * Build zonelists ordered by zone and nodes within zones. 5003 * This results in conserving DMA zone[s] until all Normal memory is 5004 * exhausted, but results in overflowing to remote node while memory 5005 * may still exist in local DMA zone. 5006 */ 5007 static int node_order[MAX_NUMNODES]; 5008 5009 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 5010 { 5011 int pos, j, node; 5012 int zone_type; /* needs to be signed */ 5013 struct zone *z; 5014 struct zonelist *zonelist; 5015 5016 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5017 pos = 0; 5018 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 5019 for (j = 0; j < nr_nodes; j++) { 5020 node = node_order[j]; 5021 z = &NODE_DATA(node)->node_zones[zone_type]; 5022 if (managed_zone(z)) { 5023 zoneref_set_zone(z, 5024 &zonelist->_zonerefs[pos++]); 5025 check_highest_zone(zone_type); 5026 } 5027 } 5028 } 5029 zonelist->_zonerefs[pos].zone = NULL; 5030 zonelist->_zonerefs[pos].zone_idx = 0; 5031 } 5032 5033 #if defined(CONFIG_64BIT) 5034 /* 5035 * Devices that require DMA32/DMA are relatively rare and do not justify a 5036 * penalty to every machine in case the specialised case applies. Default 5037 * to Node-ordering on 64-bit NUMA machines 5038 */ 5039 static int default_zonelist_order(void) 5040 { 5041 return ZONELIST_ORDER_NODE; 5042 } 5043 #else 5044 /* 5045 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 5046 * by the kernel. If processes running on node 0 deplete the low memory zone 5047 * then reclaim will occur more frequency increasing stalls and potentially 5048 * be easier to OOM if a large percentage of the zone is under writeback or 5049 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 5050 * Hence, default to zone ordering on 32-bit. 5051 */ 5052 static int default_zonelist_order(void) 5053 { 5054 return ZONELIST_ORDER_ZONE; 5055 } 5056 #endif /* CONFIG_64BIT */ 5057 5058 static void set_zonelist_order(void) 5059 { 5060 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 5061 current_zonelist_order = default_zonelist_order(); 5062 else 5063 current_zonelist_order = user_zonelist_order; 5064 } 5065 5066 static void build_zonelists(pg_data_t *pgdat) 5067 { 5068 int i, node, load; 5069 nodemask_t used_mask; 5070 int local_node, prev_node; 5071 struct zonelist *zonelist; 5072 unsigned int order = current_zonelist_order; 5073 5074 /* initialize zonelists */ 5075 for (i = 0; i < MAX_ZONELISTS; i++) { 5076 zonelist = pgdat->node_zonelists + i; 5077 zonelist->_zonerefs[0].zone = NULL; 5078 zonelist->_zonerefs[0].zone_idx = 0; 5079 } 5080 5081 /* NUMA-aware ordering of nodes */ 5082 local_node = pgdat->node_id; 5083 load = nr_online_nodes; 5084 prev_node = local_node; 5085 nodes_clear(used_mask); 5086 5087 memset(node_order, 0, sizeof(node_order)); 5088 i = 0; 5089 5090 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5091 /* 5092 * We don't want to pressure a particular node. 5093 * So adding penalty to the first node in same 5094 * distance group to make it round-robin. 5095 */ 5096 if (node_distance(local_node, node) != 5097 node_distance(local_node, prev_node)) 5098 node_load[node] = load; 5099 5100 prev_node = node; 5101 load--; 5102 if (order == ZONELIST_ORDER_NODE) 5103 build_zonelists_in_node_order(pgdat, node); 5104 else 5105 node_order[i++] = node; /* remember order */ 5106 } 5107 5108 if (order == ZONELIST_ORDER_ZONE) { 5109 /* calculate node order -- i.e., DMA last! */ 5110 build_zonelists_in_zone_order(pgdat, i); 5111 } 5112 5113 build_thisnode_zonelists(pgdat); 5114 } 5115 5116 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5117 /* 5118 * Return node id of node used for "local" allocations. 5119 * I.e., first node id of first zone in arg node's generic zonelist. 5120 * Used for initializing percpu 'numa_mem', which is used primarily 5121 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5122 */ 5123 int local_memory_node(int node) 5124 { 5125 struct zoneref *z; 5126 5127 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5128 gfp_zone(GFP_KERNEL), 5129 NULL); 5130 return z->zone->node; 5131 } 5132 #endif 5133 5134 static void setup_min_unmapped_ratio(void); 5135 static void setup_min_slab_ratio(void); 5136 #else /* CONFIG_NUMA */ 5137 5138 static void set_zonelist_order(void) 5139 { 5140 current_zonelist_order = ZONELIST_ORDER_ZONE; 5141 } 5142 5143 static void build_zonelists(pg_data_t *pgdat) 5144 { 5145 int node, local_node; 5146 enum zone_type j; 5147 struct zonelist *zonelist; 5148 5149 local_node = pgdat->node_id; 5150 5151 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5152 j = build_zonelists_node(pgdat, zonelist, 0); 5153 5154 /* 5155 * Now we build the zonelist so that it contains the zones 5156 * of all the other nodes. 5157 * We don't want to pressure a particular node, so when 5158 * building the zones for node N, we make sure that the 5159 * zones coming right after the local ones are those from 5160 * node N+1 (modulo N) 5161 */ 5162 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5163 if (!node_online(node)) 5164 continue; 5165 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5166 } 5167 for (node = 0; node < local_node; node++) { 5168 if (!node_online(node)) 5169 continue; 5170 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5171 } 5172 5173 zonelist->_zonerefs[j].zone = NULL; 5174 zonelist->_zonerefs[j].zone_idx = 0; 5175 } 5176 5177 #endif /* CONFIG_NUMA */ 5178 5179 /* 5180 * Boot pageset table. One per cpu which is going to be used for all 5181 * zones and all nodes. The parameters will be set in such a way 5182 * that an item put on a list will immediately be handed over to 5183 * the buddy list. This is safe since pageset manipulation is done 5184 * with interrupts disabled. 5185 * 5186 * The boot_pagesets must be kept even after bootup is complete for 5187 * unused processors and/or zones. They do play a role for bootstrapping 5188 * hotplugged processors. 5189 * 5190 * zoneinfo_show() and maybe other functions do 5191 * not check if the processor is online before following the pageset pointer. 5192 * Other parts of the kernel may not check if the zone is available. 5193 */ 5194 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5195 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5196 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5197 static void setup_zone_pageset(struct zone *zone); 5198 5199 /* 5200 * Global mutex to protect against size modification of zonelists 5201 * as well as to serialize pageset setup for the new populated zone. 5202 */ 5203 DEFINE_MUTEX(zonelists_mutex); 5204 5205 /* return values int ....just for stop_machine() */ 5206 static int __build_all_zonelists(void *data) 5207 { 5208 int nid; 5209 int cpu; 5210 pg_data_t *self = data; 5211 5212 #ifdef CONFIG_NUMA 5213 memset(node_load, 0, sizeof(node_load)); 5214 #endif 5215 5216 if (self && !node_online(self->node_id)) { 5217 build_zonelists(self); 5218 } 5219 5220 for_each_online_node(nid) { 5221 pg_data_t *pgdat = NODE_DATA(nid); 5222 5223 build_zonelists(pgdat); 5224 } 5225 5226 /* 5227 * Initialize the boot_pagesets that are going to be used 5228 * for bootstrapping processors. The real pagesets for 5229 * each zone will be allocated later when the per cpu 5230 * allocator is available. 5231 * 5232 * boot_pagesets are used also for bootstrapping offline 5233 * cpus if the system is already booted because the pagesets 5234 * are needed to initialize allocators on a specific cpu too. 5235 * F.e. the percpu allocator needs the page allocator which 5236 * needs the percpu allocator in order to allocate its pagesets 5237 * (a chicken-egg dilemma). 5238 */ 5239 for_each_possible_cpu(cpu) { 5240 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5241 5242 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5243 /* 5244 * We now know the "local memory node" for each node-- 5245 * i.e., the node of the first zone in the generic zonelist. 5246 * Set up numa_mem percpu variable for on-line cpus. During 5247 * boot, only the boot cpu should be on-line; we'll init the 5248 * secondary cpus' numa_mem as they come on-line. During 5249 * node/memory hotplug, we'll fixup all on-line cpus. 5250 */ 5251 if (cpu_online(cpu)) 5252 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5253 #endif 5254 } 5255 5256 return 0; 5257 } 5258 5259 static noinline void __init 5260 build_all_zonelists_init(void) 5261 { 5262 __build_all_zonelists(NULL); 5263 mminit_verify_zonelist(); 5264 cpuset_init_current_mems_allowed(); 5265 } 5266 5267 /* 5268 * Called with zonelists_mutex held always 5269 * unless system_state == SYSTEM_BOOTING. 5270 * 5271 * __ref due to (1) call of __meminit annotated setup_zone_pageset 5272 * [we're only called with non-NULL zone through __meminit paths] and 5273 * (2) call of __init annotated helper build_all_zonelists_init 5274 * [protected by SYSTEM_BOOTING]. 5275 */ 5276 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 5277 { 5278 set_zonelist_order(); 5279 5280 if (system_state == SYSTEM_BOOTING) { 5281 build_all_zonelists_init(); 5282 } else { 5283 #ifdef CONFIG_MEMORY_HOTPLUG 5284 if (zone) 5285 setup_zone_pageset(zone); 5286 #endif 5287 /* we have to stop all cpus to guarantee there is no user 5288 of zonelist */ 5289 stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL); 5290 /* cpuset refresh routine should be here */ 5291 } 5292 vm_total_pages = nr_free_pagecache_pages(); 5293 /* 5294 * Disable grouping by mobility if the number of pages in the 5295 * system is too low to allow the mechanism to work. It would be 5296 * more accurate, but expensive to check per-zone. This check is 5297 * made on memory-hotadd so a system can start with mobility 5298 * disabled and enable it later 5299 */ 5300 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5301 page_group_by_mobility_disabled = 1; 5302 else 5303 page_group_by_mobility_disabled = 0; 5304 5305 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 5306 nr_online_nodes, 5307 zonelist_order_name[current_zonelist_order], 5308 page_group_by_mobility_disabled ? "off" : "on", 5309 vm_total_pages); 5310 #ifdef CONFIG_NUMA 5311 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5312 #endif 5313 } 5314 5315 /* 5316 * Initially all pages are reserved - free ones are freed 5317 * up by free_all_bootmem() once the early boot process is 5318 * done. Non-atomic initialization, single-pass. 5319 */ 5320 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5321 unsigned long start_pfn, enum memmap_context context) 5322 { 5323 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5324 unsigned long end_pfn = start_pfn + size; 5325 pg_data_t *pgdat = NODE_DATA(nid); 5326 unsigned long pfn; 5327 unsigned long nr_initialised = 0; 5328 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5329 struct memblock_region *r = NULL, *tmp; 5330 #endif 5331 5332 if (highest_memmap_pfn < end_pfn - 1) 5333 highest_memmap_pfn = end_pfn - 1; 5334 5335 /* 5336 * Honor reservation requested by the driver for this ZONE_DEVICE 5337 * memory 5338 */ 5339 if (altmap && start_pfn == altmap->base_pfn) 5340 start_pfn += altmap->reserve; 5341 5342 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5343 /* 5344 * There can be holes in boot-time mem_map[]s handed to this 5345 * function. They do not exist on hotplugged memory. 5346 */ 5347 if (context != MEMMAP_EARLY) 5348 goto not_early; 5349 5350 if (!early_pfn_valid(pfn)) { 5351 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5352 /* 5353 * Skip to the pfn preceding the next valid one (or 5354 * end_pfn), such that we hit a valid pfn (or end_pfn) 5355 * on our next iteration of the loop. 5356 */ 5357 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5358 #endif 5359 continue; 5360 } 5361 if (!early_pfn_in_nid(pfn, nid)) 5362 continue; 5363 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5364 break; 5365 5366 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5367 /* 5368 * Check given memblock attribute by firmware which can affect 5369 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5370 * mirrored, it's an overlapped memmap init. skip it. 5371 */ 5372 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5373 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5374 for_each_memblock(memory, tmp) 5375 if (pfn < memblock_region_memory_end_pfn(tmp)) 5376 break; 5377 r = tmp; 5378 } 5379 if (pfn >= memblock_region_memory_base_pfn(r) && 5380 memblock_is_mirror(r)) { 5381 /* already initialized as NORMAL */ 5382 pfn = memblock_region_memory_end_pfn(r); 5383 continue; 5384 } 5385 } 5386 #endif 5387 5388 not_early: 5389 /* 5390 * Mark the block movable so that blocks are reserved for 5391 * movable at startup. This will force kernel allocations 5392 * to reserve their blocks rather than leaking throughout 5393 * the address space during boot when many long-lived 5394 * kernel allocations are made. 5395 * 5396 * bitmap is created for zone's valid pfn range. but memmap 5397 * can be created for invalid pages (for alignment) 5398 * check here not to call set_pageblock_migratetype() against 5399 * pfn out of zone. 5400 */ 5401 if (!(pfn & (pageblock_nr_pages - 1))) { 5402 struct page *page = pfn_to_page(pfn); 5403 5404 __init_single_page(page, pfn, zone, nid); 5405 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5406 } else { 5407 __init_single_pfn(pfn, zone, nid); 5408 } 5409 } 5410 } 5411 5412 static void __meminit zone_init_free_lists(struct zone *zone) 5413 { 5414 unsigned int order, t; 5415 for_each_migratetype_order(order, t) { 5416 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5417 zone->free_area[order].nr_free = 0; 5418 } 5419 } 5420 5421 #ifndef __HAVE_ARCH_MEMMAP_INIT 5422 #define memmap_init(size, nid, zone, start_pfn) \ 5423 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5424 #endif 5425 5426 static int zone_batchsize(struct zone *zone) 5427 { 5428 #ifdef CONFIG_MMU 5429 int batch; 5430 5431 /* 5432 * The per-cpu-pages pools are set to around 1000th of the 5433 * size of the zone. But no more than 1/2 of a meg. 5434 * 5435 * OK, so we don't know how big the cache is. So guess. 5436 */ 5437 batch = zone->managed_pages / 1024; 5438 if (batch * PAGE_SIZE > 512 * 1024) 5439 batch = (512 * 1024) / PAGE_SIZE; 5440 batch /= 4; /* We effectively *= 4 below */ 5441 if (batch < 1) 5442 batch = 1; 5443 5444 /* 5445 * Clamp the batch to a 2^n - 1 value. Having a power 5446 * of 2 value was found to be more likely to have 5447 * suboptimal cache aliasing properties in some cases. 5448 * 5449 * For example if 2 tasks are alternately allocating 5450 * batches of pages, one task can end up with a lot 5451 * of pages of one half of the possible page colors 5452 * and the other with pages of the other colors. 5453 */ 5454 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5455 5456 return batch; 5457 5458 #else 5459 /* The deferral and batching of frees should be suppressed under NOMMU 5460 * conditions. 5461 * 5462 * The problem is that NOMMU needs to be able to allocate large chunks 5463 * of contiguous memory as there's no hardware page translation to 5464 * assemble apparent contiguous memory from discontiguous pages. 5465 * 5466 * Queueing large contiguous runs of pages for batching, however, 5467 * causes the pages to actually be freed in smaller chunks. As there 5468 * can be a significant delay between the individual batches being 5469 * recycled, this leads to the once large chunks of space being 5470 * fragmented and becoming unavailable for high-order allocations. 5471 */ 5472 return 0; 5473 #endif 5474 } 5475 5476 /* 5477 * pcp->high and pcp->batch values are related and dependent on one another: 5478 * ->batch must never be higher then ->high. 5479 * The following function updates them in a safe manner without read side 5480 * locking. 5481 * 5482 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5483 * those fields changing asynchronously (acording the the above rule). 5484 * 5485 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5486 * outside of boot time (or some other assurance that no concurrent updaters 5487 * exist). 5488 */ 5489 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5490 unsigned long batch) 5491 { 5492 /* start with a fail safe value for batch */ 5493 pcp->batch = 1; 5494 smp_wmb(); 5495 5496 /* Update high, then batch, in order */ 5497 pcp->high = high; 5498 smp_wmb(); 5499 5500 pcp->batch = batch; 5501 } 5502 5503 /* a companion to pageset_set_high() */ 5504 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5505 { 5506 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5507 } 5508 5509 static void pageset_init(struct per_cpu_pageset *p) 5510 { 5511 struct per_cpu_pages *pcp; 5512 int migratetype; 5513 5514 memset(p, 0, sizeof(*p)); 5515 5516 pcp = &p->pcp; 5517 pcp->count = 0; 5518 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5519 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5520 } 5521 5522 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5523 { 5524 pageset_init(p); 5525 pageset_set_batch(p, batch); 5526 } 5527 5528 /* 5529 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5530 * to the value high for the pageset p. 5531 */ 5532 static void pageset_set_high(struct per_cpu_pageset *p, 5533 unsigned long high) 5534 { 5535 unsigned long batch = max(1UL, high / 4); 5536 if ((high / 4) > (PAGE_SHIFT * 8)) 5537 batch = PAGE_SHIFT * 8; 5538 5539 pageset_update(&p->pcp, high, batch); 5540 } 5541 5542 static void pageset_set_high_and_batch(struct zone *zone, 5543 struct per_cpu_pageset *pcp) 5544 { 5545 if (percpu_pagelist_fraction) 5546 pageset_set_high(pcp, 5547 (zone->managed_pages / 5548 percpu_pagelist_fraction)); 5549 else 5550 pageset_set_batch(pcp, zone_batchsize(zone)); 5551 } 5552 5553 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5554 { 5555 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5556 5557 pageset_init(pcp); 5558 pageset_set_high_and_batch(zone, pcp); 5559 } 5560 5561 static void __meminit setup_zone_pageset(struct zone *zone) 5562 { 5563 int cpu; 5564 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5565 for_each_possible_cpu(cpu) 5566 zone_pageset_init(zone, cpu); 5567 } 5568 5569 /* 5570 * Allocate per cpu pagesets and initialize them. 5571 * Before this call only boot pagesets were available. 5572 */ 5573 void __init setup_per_cpu_pageset(void) 5574 { 5575 struct pglist_data *pgdat; 5576 struct zone *zone; 5577 5578 for_each_populated_zone(zone) 5579 setup_zone_pageset(zone); 5580 5581 for_each_online_pgdat(pgdat) 5582 pgdat->per_cpu_nodestats = 5583 alloc_percpu(struct per_cpu_nodestat); 5584 } 5585 5586 static __meminit void zone_pcp_init(struct zone *zone) 5587 { 5588 /* 5589 * per cpu subsystem is not up at this point. The following code 5590 * relies on the ability of the linker to provide the 5591 * offset of a (static) per cpu variable into the per cpu area. 5592 */ 5593 zone->pageset = &boot_pageset; 5594 5595 if (populated_zone(zone)) 5596 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5597 zone->name, zone->present_pages, 5598 zone_batchsize(zone)); 5599 } 5600 5601 void __meminit init_currently_empty_zone(struct zone *zone, 5602 unsigned long zone_start_pfn, 5603 unsigned long size) 5604 { 5605 struct pglist_data *pgdat = zone->zone_pgdat; 5606 5607 pgdat->nr_zones = zone_idx(zone) + 1; 5608 5609 zone->zone_start_pfn = zone_start_pfn; 5610 5611 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5612 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5613 pgdat->node_id, 5614 (unsigned long)zone_idx(zone), 5615 zone_start_pfn, (zone_start_pfn + size)); 5616 5617 zone_init_free_lists(zone); 5618 zone->initialized = 1; 5619 } 5620 5621 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5622 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5623 5624 /* 5625 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5626 */ 5627 int __meminit __early_pfn_to_nid(unsigned long pfn, 5628 struct mminit_pfnnid_cache *state) 5629 { 5630 unsigned long start_pfn, end_pfn; 5631 int nid; 5632 5633 if (state->last_start <= pfn && pfn < state->last_end) 5634 return state->last_nid; 5635 5636 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5637 if (nid != -1) { 5638 state->last_start = start_pfn; 5639 state->last_end = end_pfn; 5640 state->last_nid = nid; 5641 } 5642 5643 return nid; 5644 } 5645 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5646 5647 /** 5648 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5649 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5650 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5651 * 5652 * If an architecture guarantees that all ranges registered contain no holes 5653 * and may be freed, this this function may be used instead of calling 5654 * memblock_free_early_nid() manually. 5655 */ 5656 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5657 { 5658 unsigned long start_pfn, end_pfn; 5659 int i, this_nid; 5660 5661 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5662 start_pfn = min(start_pfn, max_low_pfn); 5663 end_pfn = min(end_pfn, max_low_pfn); 5664 5665 if (start_pfn < end_pfn) 5666 memblock_free_early_nid(PFN_PHYS(start_pfn), 5667 (end_pfn - start_pfn) << PAGE_SHIFT, 5668 this_nid); 5669 } 5670 } 5671 5672 /** 5673 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5674 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5675 * 5676 * If an architecture guarantees that all ranges registered contain no holes and may 5677 * be freed, this function may be used instead of calling memory_present() manually. 5678 */ 5679 void __init sparse_memory_present_with_active_regions(int nid) 5680 { 5681 unsigned long start_pfn, end_pfn; 5682 int i, this_nid; 5683 5684 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5685 memory_present(this_nid, start_pfn, end_pfn); 5686 } 5687 5688 /** 5689 * get_pfn_range_for_nid - Return the start and end page frames for a node 5690 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5691 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5692 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5693 * 5694 * It returns the start and end page frame of a node based on information 5695 * provided by memblock_set_node(). If called for a node 5696 * with no available memory, a warning is printed and the start and end 5697 * PFNs will be 0. 5698 */ 5699 void __meminit get_pfn_range_for_nid(unsigned int nid, 5700 unsigned long *start_pfn, unsigned long *end_pfn) 5701 { 5702 unsigned long this_start_pfn, this_end_pfn; 5703 int i; 5704 5705 *start_pfn = -1UL; 5706 *end_pfn = 0; 5707 5708 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5709 *start_pfn = min(*start_pfn, this_start_pfn); 5710 *end_pfn = max(*end_pfn, this_end_pfn); 5711 } 5712 5713 if (*start_pfn == -1UL) 5714 *start_pfn = 0; 5715 } 5716 5717 /* 5718 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5719 * assumption is made that zones within a node are ordered in monotonic 5720 * increasing memory addresses so that the "highest" populated zone is used 5721 */ 5722 static void __init find_usable_zone_for_movable(void) 5723 { 5724 int zone_index; 5725 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5726 if (zone_index == ZONE_MOVABLE) 5727 continue; 5728 5729 if (arch_zone_highest_possible_pfn[zone_index] > 5730 arch_zone_lowest_possible_pfn[zone_index]) 5731 break; 5732 } 5733 5734 VM_BUG_ON(zone_index == -1); 5735 movable_zone = zone_index; 5736 } 5737 5738 /* 5739 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5740 * because it is sized independent of architecture. Unlike the other zones, 5741 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5742 * in each node depending on the size of each node and how evenly kernelcore 5743 * is distributed. This helper function adjusts the zone ranges 5744 * provided by the architecture for a given node by using the end of the 5745 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5746 * zones within a node are in order of monotonic increases memory addresses 5747 */ 5748 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5749 unsigned long zone_type, 5750 unsigned long node_start_pfn, 5751 unsigned long node_end_pfn, 5752 unsigned long *zone_start_pfn, 5753 unsigned long *zone_end_pfn) 5754 { 5755 /* Only adjust if ZONE_MOVABLE is on this node */ 5756 if (zone_movable_pfn[nid]) { 5757 /* Size ZONE_MOVABLE */ 5758 if (zone_type == ZONE_MOVABLE) { 5759 *zone_start_pfn = zone_movable_pfn[nid]; 5760 *zone_end_pfn = min(node_end_pfn, 5761 arch_zone_highest_possible_pfn[movable_zone]); 5762 5763 /* Adjust for ZONE_MOVABLE starting within this range */ 5764 } else if (!mirrored_kernelcore && 5765 *zone_start_pfn < zone_movable_pfn[nid] && 5766 *zone_end_pfn > zone_movable_pfn[nid]) { 5767 *zone_end_pfn = zone_movable_pfn[nid]; 5768 5769 /* Check if this whole range is within ZONE_MOVABLE */ 5770 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5771 *zone_start_pfn = *zone_end_pfn; 5772 } 5773 } 5774 5775 /* 5776 * Return the number of pages a zone spans in a node, including holes 5777 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5778 */ 5779 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5780 unsigned long zone_type, 5781 unsigned long node_start_pfn, 5782 unsigned long node_end_pfn, 5783 unsigned long *zone_start_pfn, 5784 unsigned long *zone_end_pfn, 5785 unsigned long *ignored) 5786 { 5787 /* When hotadd a new node from cpu_up(), the node should be empty */ 5788 if (!node_start_pfn && !node_end_pfn) 5789 return 0; 5790 5791 /* Get the start and end of the zone */ 5792 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5793 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5794 adjust_zone_range_for_zone_movable(nid, zone_type, 5795 node_start_pfn, node_end_pfn, 5796 zone_start_pfn, zone_end_pfn); 5797 5798 /* Check that this node has pages within the zone's required range */ 5799 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5800 return 0; 5801 5802 /* Move the zone boundaries inside the node if necessary */ 5803 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5804 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5805 5806 /* Return the spanned pages */ 5807 return *zone_end_pfn - *zone_start_pfn; 5808 } 5809 5810 /* 5811 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5812 * then all holes in the requested range will be accounted for. 5813 */ 5814 unsigned long __meminit __absent_pages_in_range(int nid, 5815 unsigned long range_start_pfn, 5816 unsigned long range_end_pfn) 5817 { 5818 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5819 unsigned long start_pfn, end_pfn; 5820 int i; 5821 5822 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5823 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5824 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5825 nr_absent -= end_pfn - start_pfn; 5826 } 5827 return nr_absent; 5828 } 5829 5830 /** 5831 * absent_pages_in_range - Return number of page frames in holes within a range 5832 * @start_pfn: The start PFN to start searching for holes 5833 * @end_pfn: The end PFN to stop searching for holes 5834 * 5835 * It returns the number of pages frames in memory holes within a range. 5836 */ 5837 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5838 unsigned long end_pfn) 5839 { 5840 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5841 } 5842 5843 /* Return the number of page frames in holes in a zone on a node */ 5844 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5845 unsigned long zone_type, 5846 unsigned long node_start_pfn, 5847 unsigned long node_end_pfn, 5848 unsigned long *ignored) 5849 { 5850 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5851 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5852 unsigned long zone_start_pfn, zone_end_pfn; 5853 unsigned long nr_absent; 5854 5855 /* When hotadd a new node from cpu_up(), the node should be empty */ 5856 if (!node_start_pfn && !node_end_pfn) 5857 return 0; 5858 5859 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5860 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5861 5862 adjust_zone_range_for_zone_movable(nid, zone_type, 5863 node_start_pfn, node_end_pfn, 5864 &zone_start_pfn, &zone_end_pfn); 5865 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5866 5867 /* 5868 * ZONE_MOVABLE handling. 5869 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5870 * and vice versa. 5871 */ 5872 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5873 unsigned long start_pfn, end_pfn; 5874 struct memblock_region *r; 5875 5876 for_each_memblock(memory, r) { 5877 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5878 zone_start_pfn, zone_end_pfn); 5879 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5880 zone_start_pfn, zone_end_pfn); 5881 5882 if (zone_type == ZONE_MOVABLE && 5883 memblock_is_mirror(r)) 5884 nr_absent += end_pfn - start_pfn; 5885 5886 if (zone_type == ZONE_NORMAL && 5887 !memblock_is_mirror(r)) 5888 nr_absent += end_pfn - start_pfn; 5889 } 5890 } 5891 5892 return nr_absent; 5893 } 5894 5895 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5896 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5897 unsigned long zone_type, 5898 unsigned long node_start_pfn, 5899 unsigned long node_end_pfn, 5900 unsigned long *zone_start_pfn, 5901 unsigned long *zone_end_pfn, 5902 unsigned long *zones_size) 5903 { 5904 unsigned int zone; 5905 5906 *zone_start_pfn = node_start_pfn; 5907 for (zone = 0; zone < zone_type; zone++) 5908 *zone_start_pfn += zones_size[zone]; 5909 5910 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5911 5912 return zones_size[zone_type]; 5913 } 5914 5915 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5916 unsigned long zone_type, 5917 unsigned long node_start_pfn, 5918 unsigned long node_end_pfn, 5919 unsigned long *zholes_size) 5920 { 5921 if (!zholes_size) 5922 return 0; 5923 5924 return zholes_size[zone_type]; 5925 } 5926 5927 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5928 5929 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5930 unsigned long node_start_pfn, 5931 unsigned long node_end_pfn, 5932 unsigned long *zones_size, 5933 unsigned long *zholes_size) 5934 { 5935 unsigned long realtotalpages = 0, totalpages = 0; 5936 enum zone_type i; 5937 5938 for (i = 0; i < MAX_NR_ZONES; i++) { 5939 struct zone *zone = pgdat->node_zones + i; 5940 unsigned long zone_start_pfn, zone_end_pfn; 5941 unsigned long size, real_size; 5942 5943 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5944 node_start_pfn, 5945 node_end_pfn, 5946 &zone_start_pfn, 5947 &zone_end_pfn, 5948 zones_size); 5949 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5950 node_start_pfn, node_end_pfn, 5951 zholes_size); 5952 if (size) 5953 zone->zone_start_pfn = zone_start_pfn; 5954 else 5955 zone->zone_start_pfn = 0; 5956 zone->spanned_pages = size; 5957 zone->present_pages = real_size; 5958 5959 totalpages += size; 5960 realtotalpages += real_size; 5961 } 5962 5963 pgdat->node_spanned_pages = totalpages; 5964 pgdat->node_present_pages = realtotalpages; 5965 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5966 realtotalpages); 5967 } 5968 5969 #ifndef CONFIG_SPARSEMEM 5970 /* 5971 * Calculate the size of the zone->blockflags rounded to an unsigned long 5972 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5973 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5974 * round what is now in bits to nearest long in bits, then return it in 5975 * bytes. 5976 */ 5977 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5978 { 5979 unsigned long usemapsize; 5980 5981 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5982 usemapsize = roundup(zonesize, pageblock_nr_pages); 5983 usemapsize = usemapsize >> pageblock_order; 5984 usemapsize *= NR_PAGEBLOCK_BITS; 5985 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5986 5987 return usemapsize / 8; 5988 } 5989 5990 static void __init setup_usemap(struct pglist_data *pgdat, 5991 struct zone *zone, 5992 unsigned long zone_start_pfn, 5993 unsigned long zonesize) 5994 { 5995 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5996 zone->pageblock_flags = NULL; 5997 if (usemapsize) 5998 zone->pageblock_flags = 5999 memblock_virt_alloc_node_nopanic(usemapsize, 6000 pgdat->node_id); 6001 } 6002 #else 6003 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6004 unsigned long zone_start_pfn, unsigned long zonesize) {} 6005 #endif /* CONFIG_SPARSEMEM */ 6006 6007 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6008 6009 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6010 void __paginginit set_pageblock_order(void) 6011 { 6012 unsigned int order; 6013 6014 /* Check that pageblock_nr_pages has not already been setup */ 6015 if (pageblock_order) 6016 return; 6017 6018 if (HPAGE_SHIFT > PAGE_SHIFT) 6019 order = HUGETLB_PAGE_ORDER; 6020 else 6021 order = MAX_ORDER - 1; 6022 6023 /* 6024 * Assume the largest contiguous order of interest is a huge page. 6025 * This value may be variable depending on boot parameters on IA64 and 6026 * powerpc. 6027 */ 6028 pageblock_order = order; 6029 } 6030 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6031 6032 /* 6033 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6034 * is unused as pageblock_order is set at compile-time. See 6035 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6036 * the kernel config 6037 */ 6038 void __paginginit set_pageblock_order(void) 6039 { 6040 } 6041 6042 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6043 6044 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6045 unsigned long present_pages) 6046 { 6047 unsigned long pages = spanned_pages; 6048 6049 /* 6050 * Provide a more accurate estimation if there are holes within 6051 * the zone and SPARSEMEM is in use. If there are holes within the 6052 * zone, each populated memory region may cost us one or two extra 6053 * memmap pages due to alignment because memmap pages for each 6054 * populated regions may not be naturally aligned on page boundary. 6055 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6056 */ 6057 if (spanned_pages > present_pages + (present_pages >> 4) && 6058 IS_ENABLED(CONFIG_SPARSEMEM)) 6059 pages = present_pages; 6060 6061 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6062 } 6063 6064 /* 6065 * Set up the zone data structures: 6066 * - mark all pages reserved 6067 * - mark all memory queues empty 6068 * - clear the memory bitmaps 6069 * 6070 * NOTE: pgdat should get zeroed by caller. 6071 */ 6072 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6073 { 6074 enum zone_type j; 6075 int nid = pgdat->node_id; 6076 6077 pgdat_resize_init(pgdat); 6078 #ifdef CONFIG_NUMA_BALANCING 6079 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6080 pgdat->numabalancing_migrate_nr_pages = 0; 6081 pgdat->numabalancing_migrate_next_window = jiffies; 6082 #endif 6083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6084 spin_lock_init(&pgdat->split_queue_lock); 6085 INIT_LIST_HEAD(&pgdat->split_queue); 6086 pgdat->split_queue_len = 0; 6087 #endif 6088 init_waitqueue_head(&pgdat->kswapd_wait); 6089 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6090 #ifdef CONFIG_COMPACTION 6091 init_waitqueue_head(&pgdat->kcompactd_wait); 6092 #endif 6093 pgdat_page_ext_init(pgdat); 6094 spin_lock_init(&pgdat->lru_lock); 6095 lruvec_init(node_lruvec(pgdat)); 6096 6097 pgdat->per_cpu_nodestats = &boot_nodestats; 6098 6099 for (j = 0; j < MAX_NR_ZONES; j++) { 6100 struct zone *zone = pgdat->node_zones + j; 6101 unsigned long size, realsize, freesize, memmap_pages; 6102 unsigned long zone_start_pfn = zone->zone_start_pfn; 6103 6104 size = zone->spanned_pages; 6105 realsize = freesize = zone->present_pages; 6106 6107 /* 6108 * Adjust freesize so that it accounts for how much memory 6109 * is used by this zone for memmap. This affects the watermark 6110 * and per-cpu initialisations 6111 */ 6112 memmap_pages = calc_memmap_size(size, realsize); 6113 if (!is_highmem_idx(j)) { 6114 if (freesize >= memmap_pages) { 6115 freesize -= memmap_pages; 6116 if (memmap_pages) 6117 printk(KERN_DEBUG 6118 " %s zone: %lu pages used for memmap\n", 6119 zone_names[j], memmap_pages); 6120 } else 6121 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6122 zone_names[j], memmap_pages, freesize); 6123 } 6124 6125 /* Account for reserved pages */ 6126 if (j == 0 && freesize > dma_reserve) { 6127 freesize -= dma_reserve; 6128 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6129 zone_names[0], dma_reserve); 6130 } 6131 6132 if (!is_highmem_idx(j)) 6133 nr_kernel_pages += freesize; 6134 /* Charge for highmem memmap if there are enough kernel pages */ 6135 else if (nr_kernel_pages > memmap_pages * 2) 6136 nr_kernel_pages -= memmap_pages; 6137 nr_all_pages += freesize; 6138 6139 /* 6140 * Set an approximate value for lowmem here, it will be adjusted 6141 * when the bootmem allocator frees pages into the buddy system. 6142 * And all highmem pages will be managed by the buddy system. 6143 */ 6144 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6145 #ifdef CONFIG_NUMA 6146 zone->node = nid; 6147 #endif 6148 zone->name = zone_names[j]; 6149 zone->zone_pgdat = pgdat; 6150 spin_lock_init(&zone->lock); 6151 zone_seqlock_init(zone); 6152 zone_pcp_init(zone); 6153 6154 if (!size) 6155 continue; 6156 6157 set_pageblock_order(); 6158 setup_usemap(pgdat, zone, zone_start_pfn, size); 6159 init_currently_empty_zone(zone, zone_start_pfn, size); 6160 memmap_init(size, nid, j, zone_start_pfn); 6161 } 6162 } 6163 6164 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6165 { 6166 unsigned long __maybe_unused start = 0; 6167 unsigned long __maybe_unused offset = 0; 6168 6169 /* Skip empty nodes */ 6170 if (!pgdat->node_spanned_pages) 6171 return; 6172 6173 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6174 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6175 offset = pgdat->node_start_pfn - start; 6176 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6177 if (!pgdat->node_mem_map) { 6178 unsigned long size, end; 6179 struct page *map; 6180 6181 /* 6182 * The zone's endpoints aren't required to be MAX_ORDER 6183 * aligned but the node_mem_map endpoints must be in order 6184 * for the buddy allocator to function correctly. 6185 */ 6186 end = pgdat_end_pfn(pgdat); 6187 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6188 size = (end - start) * sizeof(struct page); 6189 map = alloc_remap(pgdat->node_id, size); 6190 if (!map) 6191 map = memblock_virt_alloc_node_nopanic(size, 6192 pgdat->node_id); 6193 pgdat->node_mem_map = map + offset; 6194 } 6195 #ifndef CONFIG_NEED_MULTIPLE_NODES 6196 /* 6197 * With no DISCONTIG, the global mem_map is just set as node 0's 6198 */ 6199 if (pgdat == NODE_DATA(0)) { 6200 mem_map = NODE_DATA(0)->node_mem_map; 6201 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6202 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6203 mem_map -= offset; 6204 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6205 } 6206 #endif 6207 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6208 } 6209 6210 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6211 unsigned long node_start_pfn, unsigned long *zholes_size) 6212 { 6213 pg_data_t *pgdat = NODE_DATA(nid); 6214 unsigned long start_pfn = 0; 6215 unsigned long end_pfn = 0; 6216 6217 /* pg_data_t should be reset to zero when it's allocated */ 6218 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6219 6220 pgdat->node_id = nid; 6221 pgdat->node_start_pfn = node_start_pfn; 6222 pgdat->per_cpu_nodestats = NULL; 6223 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6224 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6225 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6226 (u64)start_pfn << PAGE_SHIFT, 6227 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6228 #else 6229 start_pfn = node_start_pfn; 6230 #endif 6231 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6232 zones_size, zholes_size); 6233 6234 alloc_node_mem_map(pgdat); 6235 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6236 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 6237 nid, (unsigned long)pgdat, 6238 (unsigned long)pgdat->node_mem_map); 6239 #endif 6240 6241 reset_deferred_meminit(pgdat); 6242 free_area_init_core(pgdat); 6243 } 6244 6245 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6246 6247 #if MAX_NUMNODES > 1 6248 /* 6249 * Figure out the number of possible node ids. 6250 */ 6251 void __init setup_nr_node_ids(void) 6252 { 6253 unsigned int highest; 6254 6255 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6256 nr_node_ids = highest + 1; 6257 } 6258 #endif 6259 6260 /** 6261 * node_map_pfn_alignment - determine the maximum internode alignment 6262 * 6263 * This function should be called after node map is populated and sorted. 6264 * It calculates the maximum power of two alignment which can distinguish 6265 * all the nodes. 6266 * 6267 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6268 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6269 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6270 * shifted, 1GiB is enough and this function will indicate so. 6271 * 6272 * This is used to test whether pfn -> nid mapping of the chosen memory 6273 * model has fine enough granularity to avoid incorrect mapping for the 6274 * populated node map. 6275 * 6276 * Returns the determined alignment in pfn's. 0 if there is no alignment 6277 * requirement (single node). 6278 */ 6279 unsigned long __init node_map_pfn_alignment(void) 6280 { 6281 unsigned long accl_mask = 0, last_end = 0; 6282 unsigned long start, end, mask; 6283 int last_nid = -1; 6284 int i, nid; 6285 6286 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6287 if (!start || last_nid < 0 || last_nid == nid) { 6288 last_nid = nid; 6289 last_end = end; 6290 continue; 6291 } 6292 6293 /* 6294 * Start with a mask granular enough to pin-point to the 6295 * start pfn and tick off bits one-by-one until it becomes 6296 * too coarse to separate the current node from the last. 6297 */ 6298 mask = ~((1 << __ffs(start)) - 1); 6299 while (mask && last_end <= (start & (mask << 1))) 6300 mask <<= 1; 6301 6302 /* accumulate all internode masks */ 6303 accl_mask |= mask; 6304 } 6305 6306 /* convert mask to number of pages */ 6307 return ~accl_mask + 1; 6308 } 6309 6310 /* Find the lowest pfn for a node */ 6311 static unsigned long __init find_min_pfn_for_node(int nid) 6312 { 6313 unsigned long min_pfn = ULONG_MAX; 6314 unsigned long start_pfn; 6315 int i; 6316 6317 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6318 min_pfn = min(min_pfn, start_pfn); 6319 6320 if (min_pfn == ULONG_MAX) { 6321 pr_warn("Could not find start_pfn for node %d\n", nid); 6322 return 0; 6323 } 6324 6325 return min_pfn; 6326 } 6327 6328 /** 6329 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6330 * 6331 * It returns the minimum PFN based on information provided via 6332 * memblock_set_node(). 6333 */ 6334 unsigned long __init find_min_pfn_with_active_regions(void) 6335 { 6336 return find_min_pfn_for_node(MAX_NUMNODES); 6337 } 6338 6339 /* 6340 * early_calculate_totalpages() 6341 * Sum pages in active regions for movable zone. 6342 * Populate N_MEMORY for calculating usable_nodes. 6343 */ 6344 static unsigned long __init early_calculate_totalpages(void) 6345 { 6346 unsigned long totalpages = 0; 6347 unsigned long start_pfn, end_pfn; 6348 int i, nid; 6349 6350 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6351 unsigned long pages = end_pfn - start_pfn; 6352 6353 totalpages += pages; 6354 if (pages) 6355 node_set_state(nid, N_MEMORY); 6356 } 6357 return totalpages; 6358 } 6359 6360 /* 6361 * Find the PFN the Movable zone begins in each node. Kernel memory 6362 * is spread evenly between nodes as long as the nodes have enough 6363 * memory. When they don't, some nodes will have more kernelcore than 6364 * others 6365 */ 6366 static void __init find_zone_movable_pfns_for_nodes(void) 6367 { 6368 int i, nid; 6369 unsigned long usable_startpfn; 6370 unsigned long kernelcore_node, kernelcore_remaining; 6371 /* save the state before borrow the nodemask */ 6372 nodemask_t saved_node_state = node_states[N_MEMORY]; 6373 unsigned long totalpages = early_calculate_totalpages(); 6374 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6375 struct memblock_region *r; 6376 6377 /* Need to find movable_zone earlier when movable_node is specified. */ 6378 find_usable_zone_for_movable(); 6379 6380 /* 6381 * If movable_node is specified, ignore kernelcore and movablecore 6382 * options. 6383 */ 6384 if (movable_node_is_enabled()) { 6385 for_each_memblock(memory, r) { 6386 if (!memblock_is_hotpluggable(r)) 6387 continue; 6388 6389 nid = r->nid; 6390 6391 usable_startpfn = PFN_DOWN(r->base); 6392 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6393 min(usable_startpfn, zone_movable_pfn[nid]) : 6394 usable_startpfn; 6395 } 6396 6397 goto out2; 6398 } 6399 6400 /* 6401 * If kernelcore=mirror is specified, ignore movablecore option 6402 */ 6403 if (mirrored_kernelcore) { 6404 bool mem_below_4gb_not_mirrored = false; 6405 6406 for_each_memblock(memory, r) { 6407 if (memblock_is_mirror(r)) 6408 continue; 6409 6410 nid = r->nid; 6411 6412 usable_startpfn = memblock_region_memory_base_pfn(r); 6413 6414 if (usable_startpfn < 0x100000) { 6415 mem_below_4gb_not_mirrored = true; 6416 continue; 6417 } 6418 6419 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6420 min(usable_startpfn, zone_movable_pfn[nid]) : 6421 usable_startpfn; 6422 } 6423 6424 if (mem_below_4gb_not_mirrored) 6425 pr_warn("This configuration results in unmirrored kernel memory."); 6426 6427 goto out2; 6428 } 6429 6430 /* 6431 * If movablecore=nn[KMG] was specified, calculate what size of 6432 * kernelcore that corresponds so that memory usable for 6433 * any allocation type is evenly spread. If both kernelcore 6434 * and movablecore are specified, then the value of kernelcore 6435 * will be used for required_kernelcore if it's greater than 6436 * what movablecore would have allowed. 6437 */ 6438 if (required_movablecore) { 6439 unsigned long corepages; 6440 6441 /* 6442 * Round-up so that ZONE_MOVABLE is at least as large as what 6443 * was requested by the user 6444 */ 6445 required_movablecore = 6446 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6447 required_movablecore = min(totalpages, required_movablecore); 6448 corepages = totalpages - required_movablecore; 6449 6450 required_kernelcore = max(required_kernelcore, corepages); 6451 } 6452 6453 /* 6454 * If kernelcore was not specified or kernelcore size is larger 6455 * than totalpages, there is no ZONE_MOVABLE. 6456 */ 6457 if (!required_kernelcore || required_kernelcore >= totalpages) 6458 goto out; 6459 6460 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6461 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6462 6463 restart: 6464 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6465 kernelcore_node = required_kernelcore / usable_nodes; 6466 for_each_node_state(nid, N_MEMORY) { 6467 unsigned long start_pfn, end_pfn; 6468 6469 /* 6470 * Recalculate kernelcore_node if the division per node 6471 * now exceeds what is necessary to satisfy the requested 6472 * amount of memory for the kernel 6473 */ 6474 if (required_kernelcore < kernelcore_node) 6475 kernelcore_node = required_kernelcore / usable_nodes; 6476 6477 /* 6478 * As the map is walked, we track how much memory is usable 6479 * by the kernel using kernelcore_remaining. When it is 6480 * 0, the rest of the node is usable by ZONE_MOVABLE 6481 */ 6482 kernelcore_remaining = kernelcore_node; 6483 6484 /* Go through each range of PFNs within this node */ 6485 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6486 unsigned long size_pages; 6487 6488 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6489 if (start_pfn >= end_pfn) 6490 continue; 6491 6492 /* Account for what is only usable for kernelcore */ 6493 if (start_pfn < usable_startpfn) { 6494 unsigned long kernel_pages; 6495 kernel_pages = min(end_pfn, usable_startpfn) 6496 - start_pfn; 6497 6498 kernelcore_remaining -= min(kernel_pages, 6499 kernelcore_remaining); 6500 required_kernelcore -= min(kernel_pages, 6501 required_kernelcore); 6502 6503 /* Continue if range is now fully accounted */ 6504 if (end_pfn <= usable_startpfn) { 6505 6506 /* 6507 * Push zone_movable_pfn to the end so 6508 * that if we have to rebalance 6509 * kernelcore across nodes, we will 6510 * not double account here 6511 */ 6512 zone_movable_pfn[nid] = end_pfn; 6513 continue; 6514 } 6515 start_pfn = usable_startpfn; 6516 } 6517 6518 /* 6519 * The usable PFN range for ZONE_MOVABLE is from 6520 * start_pfn->end_pfn. Calculate size_pages as the 6521 * number of pages used as kernelcore 6522 */ 6523 size_pages = end_pfn - start_pfn; 6524 if (size_pages > kernelcore_remaining) 6525 size_pages = kernelcore_remaining; 6526 zone_movable_pfn[nid] = start_pfn + size_pages; 6527 6528 /* 6529 * Some kernelcore has been met, update counts and 6530 * break if the kernelcore for this node has been 6531 * satisfied 6532 */ 6533 required_kernelcore -= min(required_kernelcore, 6534 size_pages); 6535 kernelcore_remaining -= size_pages; 6536 if (!kernelcore_remaining) 6537 break; 6538 } 6539 } 6540 6541 /* 6542 * If there is still required_kernelcore, we do another pass with one 6543 * less node in the count. This will push zone_movable_pfn[nid] further 6544 * along on the nodes that still have memory until kernelcore is 6545 * satisfied 6546 */ 6547 usable_nodes--; 6548 if (usable_nodes && required_kernelcore > usable_nodes) 6549 goto restart; 6550 6551 out2: 6552 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6553 for (nid = 0; nid < MAX_NUMNODES; nid++) 6554 zone_movable_pfn[nid] = 6555 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6556 6557 out: 6558 /* restore the node_state */ 6559 node_states[N_MEMORY] = saved_node_state; 6560 } 6561 6562 /* Any regular or high memory on that node ? */ 6563 static void check_for_memory(pg_data_t *pgdat, int nid) 6564 { 6565 enum zone_type zone_type; 6566 6567 if (N_MEMORY == N_NORMAL_MEMORY) 6568 return; 6569 6570 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6571 struct zone *zone = &pgdat->node_zones[zone_type]; 6572 if (populated_zone(zone)) { 6573 node_set_state(nid, N_HIGH_MEMORY); 6574 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6575 zone_type <= ZONE_NORMAL) 6576 node_set_state(nid, N_NORMAL_MEMORY); 6577 break; 6578 } 6579 } 6580 } 6581 6582 /** 6583 * free_area_init_nodes - Initialise all pg_data_t and zone data 6584 * @max_zone_pfn: an array of max PFNs for each zone 6585 * 6586 * This will call free_area_init_node() for each active node in the system. 6587 * Using the page ranges provided by memblock_set_node(), the size of each 6588 * zone in each node and their holes is calculated. If the maximum PFN 6589 * between two adjacent zones match, it is assumed that the zone is empty. 6590 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6591 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6592 * starts where the previous one ended. For example, ZONE_DMA32 starts 6593 * at arch_max_dma_pfn. 6594 */ 6595 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6596 { 6597 unsigned long start_pfn, end_pfn; 6598 int i, nid; 6599 6600 /* Record where the zone boundaries are */ 6601 memset(arch_zone_lowest_possible_pfn, 0, 6602 sizeof(arch_zone_lowest_possible_pfn)); 6603 memset(arch_zone_highest_possible_pfn, 0, 6604 sizeof(arch_zone_highest_possible_pfn)); 6605 6606 start_pfn = find_min_pfn_with_active_regions(); 6607 6608 for (i = 0; i < MAX_NR_ZONES; i++) { 6609 if (i == ZONE_MOVABLE) 6610 continue; 6611 6612 end_pfn = max(max_zone_pfn[i], start_pfn); 6613 arch_zone_lowest_possible_pfn[i] = start_pfn; 6614 arch_zone_highest_possible_pfn[i] = end_pfn; 6615 6616 start_pfn = end_pfn; 6617 } 6618 6619 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6620 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6621 find_zone_movable_pfns_for_nodes(); 6622 6623 /* Print out the zone ranges */ 6624 pr_info("Zone ranges:\n"); 6625 for (i = 0; i < MAX_NR_ZONES; i++) { 6626 if (i == ZONE_MOVABLE) 6627 continue; 6628 pr_info(" %-8s ", zone_names[i]); 6629 if (arch_zone_lowest_possible_pfn[i] == 6630 arch_zone_highest_possible_pfn[i]) 6631 pr_cont("empty\n"); 6632 else 6633 pr_cont("[mem %#018Lx-%#018Lx]\n", 6634 (u64)arch_zone_lowest_possible_pfn[i] 6635 << PAGE_SHIFT, 6636 ((u64)arch_zone_highest_possible_pfn[i] 6637 << PAGE_SHIFT) - 1); 6638 } 6639 6640 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6641 pr_info("Movable zone start for each node\n"); 6642 for (i = 0; i < MAX_NUMNODES; i++) { 6643 if (zone_movable_pfn[i]) 6644 pr_info(" Node %d: %#018Lx\n", i, 6645 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6646 } 6647 6648 /* Print out the early node map */ 6649 pr_info("Early memory node ranges\n"); 6650 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6651 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6652 (u64)start_pfn << PAGE_SHIFT, 6653 ((u64)end_pfn << PAGE_SHIFT) - 1); 6654 6655 /* Initialise every node */ 6656 mminit_verify_pageflags_layout(); 6657 setup_nr_node_ids(); 6658 for_each_online_node(nid) { 6659 pg_data_t *pgdat = NODE_DATA(nid); 6660 free_area_init_node(nid, NULL, 6661 find_min_pfn_for_node(nid), NULL); 6662 6663 /* Any memory on that node */ 6664 if (pgdat->node_present_pages) 6665 node_set_state(nid, N_MEMORY); 6666 check_for_memory(pgdat, nid); 6667 } 6668 } 6669 6670 static int __init cmdline_parse_core(char *p, unsigned long *core) 6671 { 6672 unsigned long long coremem; 6673 if (!p) 6674 return -EINVAL; 6675 6676 coremem = memparse(p, &p); 6677 *core = coremem >> PAGE_SHIFT; 6678 6679 /* Paranoid check that UL is enough for the coremem value */ 6680 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6681 6682 return 0; 6683 } 6684 6685 /* 6686 * kernelcore=size sets the amount of memory for use for allocations that 6687 * cannot be reclaimed or migrated. 6688 */ 6689 static int __init cmdline_parse_kernelcore(char *p) 6690 { 6691 /* parse kernelcore=mirror */ 6692 if (parse_option_str(p, "mirror")) { 6693 mirrored_kernelcore = true; 6694 return 0; 6695 } 6696 6697 return cmdline_parse_core(p, &required_kernelcore); 6698 } 6699 6700 /* 6701 * movablecore=size sets the amount of memory for use for allocations that 6702 * can be reclaimed or migrated. 6703 */ 6704 static int __init cmdline_parse_movablecore(char *p) 6705 { 6706 return cmdline_parse_core(p, &required_movablecore); 6707 } 6708 6709 early_param("kernelcore", cmdline_parse_kernelcore); 6710 early_param("movablecore", cmdline_parse_movablecore); 6711 6712 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6713 6714 void adjust_managed_page_count(struct page *page, long count) 6715 { 6716 spin_lock(&managed_page_count_lock); 6717 page_zone(page)->managed_pages += count; 6718 totalram_pages += count; 6719 #ifdef CONFIG_HIGHMEM 6720 if (PageHighMem(page)) 6721 totalhigh_pages += count; 6722 #endif 6723 spin_unlock(&managed_page_count_lock); 6724 } 6725 EXPORT_SYMBOL(adjust_managed_page_count); 6726 6727 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6728 { 6729 void *pos; 6730 unsigned long pages = 0; 6731 6732 start = (void *)PAGE_ALIGN((unsigned long)start); 6733 end = (void *)((unsigned long)end & PAGE_MASK); 6734 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6735 if ((unsigned int)poison <= 0xFF) 6736 memset(pos, poison, PAGE_SIZE); 6737 free_reserved_page(virt_to_page(pos)); 6738 } 6739 6740 if (pages && s) 6741 pr_info("Freeing %s memory: %ldK\n", 6742 s, pages << (PAGE_SHIFT - 10)); 6743 6744 return pages; 6745 } 6746 EXPORT_SYMBOL(free_reserved_area); 6747 6748 #ifdef CONFIG_HIGHMEM 6749 void free_highmem_page(struct page *page) 6750 { 6751 __free_reserved_page(page); 6752 totalram_pages++; 6753 page_zone(page)->managed_pages++; 6754 totalhigh_pages++; 6755 } 6756 #endif 6757 6758 6759 void __init mem_init_print_info(const char *str) 6760 { 6761 unsigned long physpages, codesize, datasize, rosize, bss_size; 6762 unsigned long init_code_size, init_data_size; 6763 6764 physpages = get_num_physpages(); 6765 codesize = _etext - _stext; 6766 datasize = _edata - _sdata; 6767 rosize = __end_rodata - __start_rodata; 6768 bss_size = __bss_stop - __bss_start; 6769 init_data_size = __init_end - __init_begin; 6770 init_code_size = _einittext - _sinittext; 6771 6772 /* 6773 * Detect special cases and adjust section sizes accordingly: 6774 * 1) .init.* may be embedded into .data sections 6775 * 2) .init.text.* may be out of [__init_begin, __init_end], 6776 * please refer to arch/tile/kernel/vmlinux.lds.S. 6777 * 3) .rodata.* may be embedded into .text or .data sections. 6778 */ 6779 #define adj_init_size(start, end, size, pos, adj) \ 6780 do { \ 6781 if (start <= pos && pos < end && size > adj) \ 6782 size -= adj; \ 6783 } while (0) 6784 6785 adj_init_size(__init_begin, __init_end, init_data_size, 6786 _sinittext, init_code_size); 6787 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6788 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6789 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6790 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6791 6792 #undef adj_init_size 6793 6794 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6795 #ifdef CONFIG_HIGHMEM 6796 ", %luK highmem" 6797 #endif 6798 "%s%s)\n", 6799 nr_free_pages() << (PAGE_SHIFT - 10), 6800 physpages << (PAGE_SHIFT - 10), 6801 codesize >> 10, datasize >> 10, rosize >> 10, 6802 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6803 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6804 totalcma_pages << (PAGE_SHIFT - 10), 6805 #ifdef CONFIG_HIGHMEM 6806 totalhigh_pages << (PAGE_SHIFT - 10), 6807 #endif 6808 str ? ", " : "", str ? str : ""); 6809 } 6810 6811 /** 6812 * set_dma_reserve - set the specified number of pages reserved in the first zone 6813 * @new_dma_reserve: The number of pages to mark reserved 6814 * 6815 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6816 * In the DMA zone, a significant percentage may be consumed by kernel image 6817 * and other unfreeable allocations which can skew the watermarks badly. This 6818 * function may optionally be used to account for unfreeable pages in the 6819 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6820 * smaller per-cpu batchsize. 6821 */ 6822 void __init set_dma_reserve(unsigned long new_dma_reserve) 6823 { 6824 dma_reserve = new_dma_reserve; 6825 } 6826 6827 void __init free_area_init(unsigned long *zones_size) 6828 { 6829 free_area_init_node(0, zones_size, 6830 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6831 } 6832 6833 static int page_alloc_cpu_dead(unsigned int cpu) 6834 { 6835 6836 lru_add_drain_cpu(cpu); 6837 drain_pages(cpu); 6838 6839 /* 6840 * Spill the event counters of the dead processor 6841 * into the current processors event counters. 6842 * This artificially elevates the count of the current 6843 * processor. 6844 */ 6845 vm_events_fold_cpu(cpu); 6846 6847 /* 6848 * Zero the differential counters of the dead processor 6849 * so that the vm statistics are consistent. 6850 * 6851 * This is only okay since the processor is dead and cannot 6852 * race with what we are doing. 6853 */ 6854 cpu_vm_stats_fold(cpu); 6855 return 0; 6856 } 6857 6858 void __init page_alloc_init(void) 6859 { 6860 int ret; 6861 6862 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6863 "mm/page_alloc:dead", NULL, 6864 page_alloc_cpu_dead); 6865 WARN_ON(ret < 0); 6866 } 6867 6868 /* 6869 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6870 * or min_free_kbytes changes. 6871 */ 6872 static void calculate_totalreserve_pages(void) 6873 { 6874 struct pglist_data *pgdat; 6875 unsigned long reserve_pages = 0; 6876 enum zone_type i, j; 6877 6878 for_each_online_pgdat(pgdat) { 6879 6880 pgdat->totalreserve_pages = 0; 6881 6882 for (i = 0; i < MAX_NR_ZONES; i++) { 6883 struct zone *zone = pgdat->node_zones + i; 6884 long max = 0; 6885 6886 /* Find valid and maximum lowmem_reserve in the zone */ 6887 for (j = i; j < MAX_NR_ZONES; j++) { 6888 if (zone->lowmem_reserve[j] > max) 6889 max = zone->lowmem_reserve[j]; 6890 } 6891 6892 /* we treat the high watermark as reserved pages. */ 6893 max += high_wmark_pages(zone); 6894 6895 if (max > zone->managed_pages) 6896 max = zone->managed_pages; 6897 6898 pgdat->totalreserve_pages += max; 6899 6900 reserve_pages += max; 6901 } 6902 } 6903 totalreserve_pages = reserve_pages; 6904 } 6905 6906 /* 6907 * setup_per_zone_lowmem_reserve - called whenever 6908 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6909 * has a correct pages reserved value, so an adequate number of 6910 * pages are left in the zone after a successful __alloc_pages(). 6911 */ 6912 static void setup_per_zone_lowmem_reserve(void) 6913 { 6914 struct pglist_data *pgdat; 6915 enum zone_type j, idx; 6916 6917 for_each_online_pgdat(pgdat) { 6918 for (j = 0; j < MAX_NR_ZONES; j++) { 6919 struct zone *zone = pgdat->node_zones + j; 6920 unsigned long managed_pages = zone->managed_pages; 6921 6922 zone->lowmem_reserve[j] = 0; 6923 6924 idx = j; 6925 while (idx) { 6926 struct zone *lower_zone; 6927 6928 idx--; 6929 6930 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6931 sysctl_lowmem_reserve_ratio[idx] = 1; 6932 6933 lower_zone = pgdat->node_zones + idx; 6934 lower_zone->lowmem_reserve[j] = managed_pages / 6935 sysctl_lowmem_reserve_ratio[idx]; 6936 managed_pages += lower_zone->managed_pages; 6937 } 6938 } 6939 } 6940 6941 /* update totalreserve_pages */ 6942 calculate_totalreserve_pages(); 6943 } 6944 6945 static void __setup_per_zone_wmarks(void) 6946 { 6947 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6948 unsigned long lowmem_pages = 0; 6949 struct zone *zone; 6950 unsigned long flags; 6951 6952 /* Calculate total number of !ZONE_HIGHMEM pages */ 6953 for_each_zone(zone) { 6954 if (!is_highmem(zone)) 6955 lowmem_pages += zone->managed_pages; 6956 } 6957 6958 for_each_zone(zone) { 6959 u64 tmp; 6960 6961 spin_lock_irqsave(&zone->lock, flags); 6962 tmp = (u64)pages_min * zone->managed_pages; 6963 do_div(tmp, lowmem_pages); 6964 if (is_highmem(zone)) { 6965 /* 6966 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6967 * need highmem pages, so cap pages_min to a small 6968 * value here. 6969 * 6970 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6971 * deltas control asynch page reclaim, and so should 6972 * not be capped for highmem. 6973 */ 6974 unsigned long min_pages; 6975 6976 min_pages = zone->managed_pages / 1024; 6977 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6978 zone->watermark[WMARK_MIN] = min_pages; 6979 } else { 6980 /* 6981 * If it's a lowmem zone, reserve a number of pages 6982 * proportionate to the zone's size. 6983 */ 6984 zone->watermark[WMARK_MIN] = tmp; 6985 } 6986 6987 /* 6988 * Set the kswapd watermarks distance according to the 6989 * scale factor in proportion to available memory, but 6990 * ensure a minimum size on small systems. 6991 */ 6992 tmp = max_t(u64, tmp >> 2, 6993 mult_frac(zone->managed_pages, 6994 watermark_scale_factor, 10000)); 6995 6996 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6997 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6998 6999 spin_unlock_irqrestore(&zone->lock, flags); 7000 } 7001 7002 /* update totalreserve_pages */ 7003 calculate_totalreserve_pages(); 7004 } 7005 7006 /** 7007 * setup_per_zone_wmarks - called when min_free_kbytes changes 7008 * or when memory is hot-{added|removed} 7009 * 7010 * Ensures that the watermark[min,low,high] values for each zone are set 7011 * correctly with respect to min_free_kbytes. 7012 */ 7013 void setup_per_zone_wmarks(void) 7014 { 7015 mutex_lock(&zonelists_mutex); 7016 __setup_per_zone_wmarks(); 7017 mutex_unlock(&zonelists_mutex); 7018 } 7019 7020 /* 7021 * Initialise min_free_kbytes. 7022 * 7023 * For small machines we want it small (128k min). For large machines 7024 * we want it large (64MB max). But it is not linear, because network 7025 * bandwidth does not increase linearly with machine size. We use 7026 * 7027 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7028 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7029 * 7030 * which yields 7031 * 7032 * 16MB: 512k 7033 * 32MB: 724k 7034 * 64MB: 1024k 7035 * 128MB: 1448k 7036 * 256MB: 2048k 7037 * 512MB: 2896k 7038 * 1024MB: 4096k 7039 * 2048MB: 5792k 7040 * 4096MB: 8192k 7041 * 8192MB: 11584k 7042 * 16384MB: 16384k 7043 */ 7044 int __meminit init_per_zone_wmark_min(void) 7045 { 7046 unsigned long lowmem_kbytes; 7047 int new_min_free_kbytes; 7048 7049 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7050 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7051 7052 if (new_min_free_kbytes > user_min_free_kbytes) { 7053 min_free_kbytes = new_min_free_kbytes; 7054 if (min_free_kbytes < 128) 7055 min_free_kbytes = 128; 7056 if (min_free_kbytes > 65536) 7057 min_free_kbytes = 65536; 7058 } else { 7059 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7060 new_min_free_kbytes, user_min_free_kbytes); 7061 } 7062 setup_per_zone_wmarks(); 7063 refresh_zone_stat_thresholds(); 7064 setup_per_zone_lowmem_reserve(); 7065 7066 #ifdef CONFIG_NUMA 7067 setup_min_unmapped_ratio(); 7068 setup_min_slab_ratio(); 7069 #endif 7070 7071 return 0; 7072 } 7073 core_initcall(init_per_zone_wmark_min) 7074 7075 /* 7076 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7077 * that we can call two helper functions whenever min_free_kbytes 7078 * changes. 7079 */ 7080 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7081 void __user *buffer, size_t *length, loff_t *ppos) 7082 { 7083 int rc; 7084 7085 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7086 if (rc) 7087 return rc; 7088 7089 if (write) { 7090 user_min_free_kbytes = min_free_kbytes; 7091 setup_per_zone_wmarks(); 7092 } 7093 return 0; 7094 } 7095 7096 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7097 void __user *buffer, size_t *length, loff_t *ppos) 7098 { 7099 int rc; 7100 7101 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7102 if (rc) 7103 return rc; 7104 7105 if (write) 7106 setup_per_zone_wmarks(); 7107 7108 return 0; 7109 } 7110 7111 #ifdef CONFIG_NUMA 7112 static void setup_min_unmapped_ratio(void) 7113 { 7114 pg_data_t *pgdat; 7115 struct zone *zone; 7116 7117 for_each_online_pgdat(pgdat) 7118 pgdat->min_unmapped_pages = 0; 7119 7120 for_each_zone(zone) 7121 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7122 sysctl_min_unmapped_ratio) / 100; 7123 } 7124 7125 7126 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7127 void __user *buffer, size_t *length, loff_t *ppos) 7128 { 7129 int rc; 7130 7131 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7132 if (rc) 7133 return rc; 7134 7135 setup_min_unmapped_ratio(); 7136 7137 return 0; 7138 } 7139 7140 static void setup_min_slab_ratio(void) 7141 { 7142 pg_data_t *pgdat; 7143 struct zone *zone; 7144 7145 for_each_online_pgdat(pgdat) 7146 pgdat->min_slab_pages = 0; 7147 7148 for_each_zone(zone) 7149 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7150 sysctl_min_slab_ratio) / 100; 7151 } 7152 7153 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7154 void __user *buffer, size_t *length, loff_t *ppos) 7155 { 7156 int rc; 7157 7158 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7159 if (rc) 7160 return rc; 7161 7162 setup_min_slab_ratio(); 7163 7164 return 0; 7165 } 7166 #endif 7167 7168 /* 7169 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7170 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7171 * whenever sysctl_lowmem_reserve_ratio changes. 7172 * 7173 * The reserve ratio obviously has absolutely no relation with the 7174 * minimum watermarks. The lowmem reserve ratio can only make sense 7175 * if in function of the boot time zone sizes. 7176 */ 7177 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7178 void __user *buffer, size_t *length, loff_t *ppos) 7179 { 7180 proc_dointvec_minmax(table, write, buffer, length, ppos); 7181 setup_per_zone_lowmem_reserve(); 7182 return 0; 7183 } 7184 7185 /* 7186 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7187 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7188 * pagelist can have before it gets flushed back to buddy allocator. 7189 */ 7190 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7191 void __user *buffer, size_t *length, loff_t *ppos) 7192 { 7193 struct zone *zone; 7194 int old_percpu_pagelist_fraction; 7195 int ret; 7196 7197 mutex_lock(&pcp_batch_high_lock); 7198 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7199 7200 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7201 if (!write || ret < 0) 7202 goto out; 7203 7204 /* Sanity checking to avoid pcp imbalance */ 7205 if (percpu_pagelist_fraction && 7206 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7207 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7208 ret = -EINVAL; 7209 goto out; 7210 } 7211 7212 /* No change? */ 7213 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7214 goto out; 7215 7216 for_each_populated_zone(zone) { 7217 unsigned int cpu; 7218 7219 for_each_possible_cpu(cpu) 7220 pageset_set_high_and_batch(zone, 7221 per_cpu_ptr(zone->pageset, cpu)); 7222 } 7223 out: 7224 mutex_unlock(&pcp_batch_high_lock); 7225 return ret; 7226 } 7227 7228 #ifdef CONFIG_NUMA 7229 int hashdist = HASHDIST_DEFAULT; 7230 7231 static int __init set_hashdist(char *str) 7232 { 7233 if (!str) 7234 return 0; 7235 hashdist = simple_strtoul(str, &str, 0); 7236 return 1; 7237 } 7238 __setup("hashdist=", set_hashdist); 7239 #endif 7240 7241 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7242 /* 7243 * Returns the number of pages that arch has reserved but 7244 * is not known to alloc_large_system_hash(). 7245 */ 7246 static unsigned long __init arch_reserved_kernel_pages(void) 7247 { 7248 return 0; 7249 } 7250 #endif 7251 7252 /* 7253 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7254 * machines. As memory size is increased the scale is also increased but at 7255 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7256 * quadruples the scale is increased by one, which means the size of hash table 7257 * only doubles, instead of quadrupling as well. 7258 * Because 32-bit systems cannot have large physical memory, where this scaling 7259 * makes sense, it is disabled on such platforms. 7260 */ 7261 #if __BITS_PER_LONG > 32 7262 #define ADAPT_SCALE_BASE (64ul << 30) 7263 #define ADAPT_SCALE_SHIFT 2 7264 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7265 #endif 7266 7267 /* 7268 * allocate a large system hash table from bootmem 7269 * - it is assumed that the hash table must contain an exact power-of-2 7270 * quantity of entries 7271 * - limit is the number of hash buckets, not the total allocation size 7272 */ 7273 void *__init alloc_large_system_hash(const char *tablename, 7274 unsigned long bucketsize, 7275 unsigned long numentries, 7276 int scale, 7277 int flags, 7278 unsigned int *_hash_shift, 7279 unsigned int *_hash_mask, 7280 unsigned long low_limit, 7281 unsigned long high_limit) 7282 { 7283 unsigned long long max = high_limit; 7284 unsigned long log2qty, size; 7285 void *table = NULL; 7286 gfp_t gfp_flags; 7287 7288 /* allow the kernel cmdline to have a say */ 7289 if (!numentries) { 7290 /* round applicable memory size up to nearest megabyte */ 7291 numentries = nr_kernel_pages; 7292 numentries -= arch_reserved_kernel_pages(); 7293 7294 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7295 if (PAGE_SHIFT < 20) 7296 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7297 7298 #if __BITS_PER_LONG > 32 7299 if (!high_limit) { 7300 unsigned long adapt; 7301 7302 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7303 adapt <<= ADAPT_SCALE_SHIFT) 7304 scale++; 7305 } 7306 #endif 7307 7308 /* limit to 1 bucket per 2^scale bytes of low memory */ 7309 if (scale > PAGE_SHIFT) 7310 numentries >>= (scale - PAGE_SHIFT); 7311 else 7312 numentries <<= (PAGE_SHIFT - scale); 7313 7314 /* Make sure we've got at least a 0-order allocation.. */ 7315 if (unlikely(flags & HASH_SMALL)) { 7316 /* Makes no sense without HASH_EARLY */ 7317 WARN_ON(!(flags & HASH_EARLY)); 7318 if (!(numentries >> *_hash_shift)) { 7319 numentries = 1UL << *_hash_shift; 7320 BUG_ON(!numentries); 7321 } 7322 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7323 numentries = PAGE_SIZE / bucketsize; 7324 } 7325 numentries = roundup_pow_of_two(numentries); 7326 7327 /* limit allocation size to 1/16 total memory by default */ 7328 if (max == 0) { 7329 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7330 do_div(max, bucketsize); 7331 } 7332 max = min(max, 0x80000000ULL); 7333 7334 if (numentries < low_limit) 7335 numentries = low_limit; 7336 if (numentries > max) 7337 numentries = max; 7338 7339 log2qty = ilog2(numentries); 7340 7341 /* 7342 * memblock allocator returns zeroed memory already, so HASH_ZERO is 7343 * currently not used when HASH_EARLY is specified. 7344 */ 7345 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7346 do { 7347 size = bucketsize << log2qty; 7348 if (flags & HASH_EARLY) 7349 table = memblock_virt_alloc_nopanic(size, 0); 7350 else if (hashdist) 7351 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7352 else { 7353 /* 7354 * If bucketsize is not a power-of-two, we may free 7355 * some pages at the end of hash table which 7356 * alloc_pages_exact() automatically does 7357 */ 7358 if (get_order(size) < MAX_ORDER) { 7359 table = alloc_pages_exact(size, gfp_flags); 7360 kmemleak_alloc(table, size, 1, gfp_flags); 7361 } 7362 } 7363 } while (!table && size > PAGE_SIZE && --log2qty); 7364 7365 if (!table) 7366 panic("Failed to allocate %s hash table\n", tablename); 7367 7368 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7369 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7370 7371 if (_hash_shift) 7372 *_hash_shift = log2qty; 7373 if (_hash_mask) 7374 *_hash_mask = (1 << log2qty) - 1; 7375 7376 return table; 7377 } 7378 7379 /* 7380 * This function checks whether pageblock includes unmovable pages or not. 7381 * If @count is not zero, it is okay to include less @count unmovable pages 7382 * 7383 * PageLRU check without isolation or lru_lock could race so that 7384 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7385 * check without lock_page also may miss some movable non-lru pages at 7386 * race condition. So you can't expect this function should be exact. 7387 */ 7388 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7389 bool skip_hwpoisoned_pages) 7390 { 7391 unsigned long pfn, iter, found; 7392 int mt; 7393 7394 /* 7395 * For avoiding noise data, lru_add_drain_all() should be called 7396 * If ZONE_MOVABLE, the zone never contains unmovable pages 7397 */ 7398 if (zone_idx(zone) == ZONE_MOVABLE) 7399 return false; 7400 mt = get_pageblock_migratetype(page); 7401 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7402 return false; 7403 7404 pfn = page_to_pfn(page); 7405 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7406 unsigned long check = pfn + iter; 7407 7408 if (!pfn_valid_within(check)) 7409 continue; 7410 7411 page = pfn_to_page(check); 7412 7413 /* 7414 * Hugepages are not in LRU lists, but they're movable. 7415 * We need not scan over tail pages bacause we don't 7416 * handle each tail page individually in migration. 7417 */ 7418 if (PageHuge(page)) { 7419 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7420 continue; 7421 } 7422 7423 /* 7424 * We can't use page_count without pin a page 7425 * because another CPU can free compound page. 7426 * This check already skips compound tails of THP 7427 * because their page->_refcount is zero at all time. 7428 */ 7429 if (!page_ref_count(page)) { 7430 if (PageBuddy(page)) 7431 iter += (1 << page_order(page)) - 1; 7432 continue; 7433 } 7434 7435 /* 7436 * The HWPoisoned page may be not in buddy system, and 7437 * page_count() is not 0. 7438 */ 7439 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7440 continue; 7441 7442 if (__PageMovable(page)) 7443 continue; 7444 7445 if (!PageLRU(page)) 7446 found++; 7447 /* 7448 * If there are RECLAIMABLE pages, we need to check 7449 * it. But now, memory offline itself doesn't call 7450 * shrink_node_slabs() and it still to be fixed. 7451 */ 7452 /* 7453 * If the page is not RAM, page_count()should be 0. 7454 * we don't need more check. This is an _used_ not-movable page. 7455 * 7456 * The problematic thing here is PG_reserved pages. PG_reserved 7457 * is set to both of a memory hole page and a _used_ kernel 7458 * page at boot. 7459 */ 7460 if (found > count) 7461 return true; 7462 } 7463 return false; 7464 } 7465 7466 bool is_pageblock_removable_nolock(struct page *page) 7467 { 7468 struct zone *zone; 7469 unsigned long pfn; 7470 7471 /* 7472 * We have to be careful here because we are iterating over memory 7473 * sections which are not zone aware so we might end up outside of 7474 * the zone but still within the section. 7475 * We have to take care about the node as well. If the node is offline 7476 * its NODE_DATA will be NULL - see page_zone. 7477 */ 7478 if (!node_online(page_to_nid(page))) 7479 return false; 7480 7481 zone = page_zone(page); 7482 pfn = page_to_pfn(page); 7483 if (!zone_spans_pfn(zone, pfn)) 7484 return false; 7485 7486 return !has_unmovable_pages(zone, page, 0, true); 7487 } 7488 7489 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7490 7491 static unsigned long pfn_max_align_down(unsigned long pfn) 7492 { 7493 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7494 pageblock_nr_pages) - 1); 7495 } 7496 7497 static unsigned long pfn_max_align_up(unsigned long pfn) 7498 { 7499 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7500 pageblock_nr_pages)); 7501 } 7502 7503 /* [start, end) must belong to a single zone. */ 7504 static int __alloc_contig_migrate_range(struct compact_control *cc, 7505 unsigned long start, unsigned long end) 7506 { 7507 /* This function is based on compact_zone() from compaction.c. */ 7508 unsigned long nr_reclaimed; 7509 unsigned long pfn = start; 7510 unsigned int tries = 0; 7511 int ret = 0; 7512 7513 migrate_prep(); 7514 7515 while (pfn < end || !list_empty(&cc->migratepages)) { 7516 if (fatal_signal_pending(current)) { 7517 ret = -EINTR; 7518 break; 7519 } 7520 7521 if (list_empty(&cc->migratepages)) { 7522 cc->nr_migratepages = 0; 7523 pfn = isolate_migratepages_range(cc, pfn, end); 7524 if (!pfn) { 7525 ret = -EINTR; 7526 break; 7527 } 7528 tries = 0; 7529 } else if (++tries == 5) { 7530 ret = ret < 0 ? ret : -EBUSY; 7531 break; 7532 } 7533 7534 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7535 &cc->migratepages); 7536 cc->nr_migratepages -= nr_reclaimed; 7537 7538 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7539 NULL, 0, cc->mode, MR_CMA); 7540 } 7541 if (ret < 0) { 7542 putback_movable_pages(&cc->migratepages); 7543 return ret; 7544 } 7545 return 0; 7546 } 7547 7548 /** 7549 * alloc_contig_range() -- tries to allocate given range of pages 7550 * @start: start PFN to allocate 7551 * @end: one-past-the-last PFN to allocate 7552 * @migratetype: migratetype of the underlaying pageblocks (either 7553 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7554 * in range must have the same migratetype and it must 7555 * be either of the two. 7556 * @gfp_mask: GFP mask to use during compaction 7557 * 7558 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7559 * aligned, however it's the caller's responsibility to guarantee that 7560 * we are the only thread that changes migrate type of pageblocks the 7561 * pages fall in. 7562 * 7563 * The PFN range must belong to a single zone. 7564 * 7565 * Returns zero on success or negative error code. On success all 7566 * pages which PFN is in [start, end) are allocated for the caller and 7567 * need to be freed with free_contig_range(). 7568 */ 7569 int alloc_contig_range(unsigned long start, unsigned long end, 7570 unsigned migratetype, gfp_t gfp_mask) 7571 { 7572 unsigned long outer_start, outer_end; 7573 unsigned int order; 7574 int ret = 0; 7575 7576 struct compact_control cc = { 7577 .nr_migratepages = 0, 7578 .order = -1, 7579 .zone = page_zone(pfn_to_page(start)), 7580 .mode = MIGRATE_SYNC, 7581 .ignore_skip_hint = true, 7582 .gfp_mask = current_gfp_context(gfp_mask), 7583 }; 7584 INIT_LIST_HEAD(&cc.migratepages); 7585 7586 /* 7587 * What we do here is we mark all pageblocks in range as 7588 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7589 * have different sizes, and due to the way page allocator 7590 * work, we align the range to biggest of the two pages so 7591 * that page allocator won't try to merge buddies from 7592 * different pageblocks and change MIGRATE_ISOLATE to some 7593 * other migration type. 7594 * 7595 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7596 * migrate the pages from an unaligned range (ie. pages that 7597 * we are interested in). This will put all the pages in 7598 * range back to page allocator as MIGRATE_ISOLATE. 7599 * 7600 * When this is done, we take the pages in range from page 7601 * allocator removing them from the buddy system. This way 7602 * page allocator will never consider using them. 7603 * 7604 * This lets us mark the pageblocks back as 7605 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7606 * aligned range but not in the unaligned, original range are 7607 * put back to page allocator so that buddy can use them. 7608 */ 7609 7610 ret = start_isolate_page_range(pfn_max_align_down(start), 7611 pfn_max_align_up(end), migratetype, 7612 false); 7613 if (ret) 7614 return ret; 7615 7616 /* 7617 * In case of -EBUSY, we'd like to know which page causes problem. 7618 * So, just fall through. We will check it in test_pages_isolated(). 7619 */ 7620 ret = __alloc_contig_migrate_range(&cc, start, end); 7621 if (ret && ret != -EBUSY) 7622 goto done; 7623 7624 /* 7625 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7626 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7627 * more, all pages in [start, end) are free in page allocator. 7628 * What we are going to do is to allocate all pages from 7629 * [start, end) (that is remove them from page allocator). 7630 * 7631 * The only problem is that pages at the beginning and at the 7632 * end of interesting range may be not aligned with pages that 7633 * page allocator holds, ie. they can be part of higher order 7634 * pages. Because of this, we reserve the bigger range and 7635 * once this is done free the pages we are not interested in. 7636 * 7637 * We don't have to hold zone->lock here because the pages are 7638 * isolated thus they won't get removed from buddy. 7639 */ 7640 7641 lru_add_drain_all(); 7642 drain_all_pages(cc.zone); 7643 7644 order = 0; 7645 outer_start = start; 7646 while (!PageBuddy(pfn_to_page(outer_start))) { 7647 if (++order >= MAX_ORDER) { 7648 outer_start = start; 7649 break; 7650 } 7651 outer_start &= ~0UL << order; 7652 } 7653 7654 if (outer_start != start) { 7655 order = page_order(pfn_to_page(outer_start)); 7656 7657 /* 7658 * outer_start page could be small order buddy page and 7659 * it doesn't include start page. Adjust outer_start 7660 * in this case to report failed page properly 7661 * on tracepoint in test_pages_isolated() 7662 */ 7663 if (outer_start + (1UL << order) <= start) 7664 outer_start = start; 7665 } 7666 7667 /* Make sure the range is really isolated. */ 7668 if (test_pages_isolated(outer_start, end, false)) { 7669 pr_info("%s: [%lx, %lx) PFNs busy\n", 7670 __func__, outer_start, end); 7671 ret = -EBUSY; 7672 goto done; 7673 } 7674 7675 /* Grab isolated pages from freelists. */ 7676 outer_end = isolate_freepages_range(&cc, outer_start, end); 7677 if (!outer_end) { 7678 ret = -EBUSY; 7679 goto done; 7680 } 7681 7682 /* Free head and tail (if any) */ 7683 if (start != outer_start) 7684 free_contig_range(outer_start, start - outer_start); 7685 if (end != outer_end) 7686 free_contig_range(end, outer_end - end); 7687 7688 done: 7689 undo_isolate_page_range(pfn_max_align_down(start), 7690 pfn_max_align_up(end), migratetype); 7691 return ret; 7692 } 7693 7694 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7695 { 7696 unsigned int count = 0; 7697 7698 for (; nr_pages--; pfn++) { 7699 struct page *page = pfn_to_page(pfn); 7700 7701 count += page_count(page) != 1; 7702 __free_page(page); 7703 } 7704 WARN(count != 0, "%d pages are still in use!\n", count); 7705 } 7706 #endif 7707 7708 #ifdef CONFIG_MEMORY_HOTPLUG 7709 /* 7710 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7711 * page high values need to be recalulated. 7712 */ 7713 void __meminit zone_pcp_update(struct zone *zone) 7714 { 7715 unsigned cpu; 7716 mutex_lock(&pcp_batch_high_lock); 7717 for_each_possible_cpu(cpu) 7718 pageset_set_high_and_batch(zone, 7719 per_cpu_ptr(zone->pageset, cpu)); 7720 mutex_unlock(&pcp_batch_high_lock); 7721 } 7722 #endif 7723 7724 void zone_pcp_reset(struct zone *zone) 7725 { 7726 unsigned long flags; 7727 int cpu; 7728 struct per_cpu_pageset *pset; 7729 7730 /* avoid races with drain_pages() */ 7731 local_irq_save(flags); 7732 if (zone->pageset != &boot_pageset) { 7733 for_each_online_cpu(cpu) { 7734 pset = per_cpu_ptr(zone->pageset, cpu); 7735 drain_zonestat(zone, pset); 7736 } 7737 free_percpu(zone->pageset); 7738 zone->pageset = &boot_pageset; 7739 } 7740 local_irq_restore(flags); 7741 } 7742 7743 #ifdef CONFIG_MEMORY_HOTREMOVE 7744 /* 7745 * All pages in the range must be in a single zone and isolated 7746 * before calling this. 7747 */ 7748 void 7749 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7750 { 7751 struct page *page; 7752 struct zone *zone; 7753 unsigned int order, i; 7754 unsigned long pfn; 7755 unsigned long flags; 7756 /* find the first valid pfn */ 7757 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7758 if (pfn_valid(pfn)) 7759 break; 7760 if (pfn == end_pfn) 7761 return; 7762 offline_mem_sections(pfn, end_pfn); 7763 zone = page_zone(pfn_to_page(pfn)); 7764 spin_lock_irqsave(&zone->lock, flags); 7765 pfn = start_pfn; 7766 while (pfn < end_pfn) { 7767 if (!pfn_valid(pfn)) { 7768 pfn++; 7769 continue; 7770 } 7771 page = pfn_to_page(pfn); 7772 /* 7773 * The HWPoisoned page may be not in buddy system, and 7774 * page_count() is not 0. 7775 */ 7776 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7777 pfn++; 7778 SetPageReserved(page); 7779 continue; 7780 } 7781 7782 BUG_ON(page_count(page)); 7783 BUG_ON(!PageBuddy(page)); 7784 order = page_order(page); 7785 #ifdef CONFIG_DEBUG_VM 7786 pr_info("remove from free list %lx %d %lx\n", 7787 pfn, 1 << order, end_pfn); 7788 #endif 7789 list_del(&page->lru); 7790 rmv_page_order(page); 7791 zone->free_area[order].nr_free--; 7792 for (i = 0; i < (1 << order); i++) 7793 SetPageReserved((page+i)); 7794 pfn += (1 << order); 7795 } 7796 spin_unlock_irqrestore(&zone->lock, flags); 7797 } 7798 #endif 7799 7800 bool is_free_buddy_page(struct page *page) 7801 { 7802 struct zone *zone = page_zone(page); 7803 unsigned long pfn = page_to_pfn(page); 7804 unsigned long flags; 7805 unsigned int order; 7806 7807 spin_lock_irqsave(&zone->lock, flags); 7808 for (order = 0; order < MAX_ORDER; order++) { 7809 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7810 7811 if (PageBuddy(page_head) && page_order(page_head) >= order) 7812 break; 7813 } 7814 spin_unlock_irqrestore(&zone->lock, flags); 7815 7816 return order < MAX_ORDER; 7817 } 7818